

XAML Developer
Reference

Mamta Dalal
Ashish Ghoda

Published with the authorization of Microsoft Corporation by:
O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, California 95472

Copyright © 2011 by Mamta Dalal and Ashish Ghoda
All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any
means without the written permission of the publisher.

ISBN: 978-0-7356-5896-7

1 2 3 4 5 6 7 8 9 LSI 6 5 4 3 2 1

Printed and bound in the United States of America.

Microsoft Press books are available through booksellers and distributors worldwide. If you need support related
to this book, email Microsoft Press Book Support at mspinput@microsoft.com. Please tell us what you think of
this book at http://www.microsoft.com/learning/booksurvey.

Microsoft and the trademarks listed at http://www.microsoft.com/about/legal/en/us/IntellectualProperty/
Trademarks/EN-US.aspx are trademarks of the Microsoft group of companies. All other marks are property of
their respective owners.

The example companies, organizations, products, domain names, email addresses, logos, people, places, and
events depicted herein are fictitious. No association with any real company, organization, product, domain name,
email address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without
any express, statutory, or implied warranties. Neither the authors, O’Reilly Media, Inc., Microsoft Corporation,
nor its resellers, or distributors will be held liable for any damages caused or alleged to be caused either directly
or indirectly by this book.

Acquistions and Developmental Editor: Russell Jones

Production Editor: Kristen Borg

Editorial Production: S4Carlisle Publishing Services

Technical Reviewer: Vikas Sahni

Copyeditor: Becka McKay

Indexer: Denise Getz

Cover Design: Twist Creative • Seattle

Cover Composition: Karen Montgomery

Illustrator: S4Carlisle Publishing Services

To Nimish and to my mother, for being my inspiration and
strength.

—Mamta Dalal

I dedicate this book to my grandparents (Nayansukhray and
Kumud Ghoda, Mahavir and Sarla Majmudar), parents (Jitendra
and Varsha Ghoda), sister (Kruti Vaishnav), and lovely family
(Pratixa, Gyan, and Anand Ghoda) whose blessings, sacrifice,
continuous support, and encouragement enabled me to achieve
the dream.

—Ashish Ghoda

Contents at a Glance

Introduction	 xiii

Part I	 XAML Basics

Chapter 1	 Introducing XAML	 3

Chapter 2	 Object Elements and Attributes	 19

Chapter 3	 XAML Properties and Events	 49

Part II	 Enhancing User Experience

Chapter 4	 Markup Extensions and Other Features	 87

Chapter 5	 Resources, Styles, and Triggers	 101

Part III	 XAML User Interface Controls

Chapter 6	 Layout and Positioning System	 129

Chapter 7	 Form and Functional Controls	 171

Part IV	 Content Integration and Animation

Chapter 8	 Data Binding	 213

Chapter 9	 Media, Graphics, and Animation	 245

Part V	 Appendixes

Appendix A	 Major Namespaces and Classes	 289

Appendix B	 XAML Editors and Tools	 299

Index	 303

		 vii

Contents

Introduction. xiii

Part I	 XAML Basics

Chapter 1	 Introducing XAML	 3
Windows Presentation Foundation (WPF). 4

XAML—A Declarative Language for .NET Applications. 4

XAML Is Part of the Microsoft Open Specification Program (OSP). . 6

XAML Structure . 6

Dynamic User Interface. 7

Decouple Control Style Definitions . 8

Customized Design of XAML Controls. 9

Integration with Code-Behind to Control Behavior. 9

Inline Code . 12

Silverlight. 13

The Microsoft .NET Framework . 14

Design-Time Components . 15

Runtime Cross-Platform Components. 16

Summary. 17

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. To participate in a brief online survey, please visit:

microsoft.com/learning/booksurvey

viii	 Contents

Chapter 2	 Object Elements and Attributes	 19
XAML Is XML. 20

Root Element . 22

XAML Namespaces . 23

Default User Interface Element. 27

Introducing the XAML Presentation Framework . 28

WPF and Silverlight Presentation Framework. 28

Defining User Interfaces with XAML. 30

XAML User Interface Controls . 41

Layout and Positioning Controls. 42

Form Controls. 42

Functional Controls. 43

Data Handling and Information Management Controls. 45

Image and Media Controls. 45

Graphics and Animation Controls. 46

Summary. .47

Chapter 3	 XAML Properties and Events	 49
XAML Properties. 49

XAML Events . 68

The Syntax. 68

The EventSetter and EventTrigger Classes. 81

Summary. .83

Part II	 Enhancing User Experience

Chapter 4	 Markup Extensions and Other Features	 87
Markup Extensions. 88

Built-In XAML Markup Extensions. 89

XAML Markup Extensions Used in WPF and Silverlight. 94

Escape Sequences . 95

Custom Markup Extensions. 95

		 ix

Type Converters versus Markup Extensions. 98

XAML Services. 99

Security in XAML. 99

Summary. .100

Chapter 5	 Resources, Styles, and Triggers	 101
Resources. 101

Types of Resources. 102

Static Resources. 102

Defining Static Resources Using XAML . 102

Defining Static Resources Programmatically. 104

Dynamic Resources. 105

When to Use Which Resource. 106

How Static and Dynamic Resources Work. 106

Defining ResourceDictionary Files. 107

Merged Resource Dictionaries. 108

Scope and Hierarchy of Resources. 109

Styles. 111

Defining Styles. 112

Implicit Styles. 115

Inheriting Styles. 116

The Silverlight Toolkit Styles. 117

Styles vs. Control Templates. 117

More on Styles. 117

The generic.xaml File. 119

Triggers. 120

Troubleshooting Resources, Styles, and Triggers . 126

Summary. .126

x	 Contents

Part III	 XAML User Interface Controls

Chapter 6	 Layout and Positioning System	 129
The Layout System. 130

XAML Layout and Positioning Controls . 135

Common Sizing and Positioning Properties. .160

Summary. .170

Chapter 7	 Form and Functional Controls	 171
Action Controls. 172

The ButtonBase Class . 172

Text Editing Controls . 182

The TextBoxBase Class. 182

Functional Controls to Improve Usability. 194

Functional Controls to Control and Monitor Behavior. 205

The RangeBase Class. 205

Summary. .210

Part IV	 Content Integration and Animation

Chapter 8	 Data Binding	 213
Data Sources . 213

Data Binding . 215

Setting the Binding Source. 216

MultiBinding. 221

Binding to Data from a Database. 221

Binding Modes . 227

Example of Two-Way Binding with TextBox. 227

Source Updates. .228

Data Templating, Conversion, and Validation. 228

Data Templating. 230

Data Conversion. 231

Data Validation. 233

	 Contents	 xi

Creating and Binding to an ObservableCollection. 234

Collection Views. 235

Sorting and Grouping Using a CollectionView 235

Hierarchical Binding. 238

Using HierarchicalDataTemplate. 238

Using ObservableCollection for Hierarchical Binding. 241

Binding to XML Data . 243

Summary. .244

Chapter 9	 Media, Graphics, and Animation	 245
Media . 245

Images. 245

Audio and Video . 246

Graphics. 249

Ellipse. 250

Rectangle. 251

Rounded Rectangle. 251

Polygon. 251

Polyline . 251

Path. 253

Geometries. 256

Brushes. 256

Transforms. 259

3-D Graphics . 261

 3-D Graphics in WPF. .261

Defining Shapes. 263

3-D Graphics in Silverlight. 268

Pixel Shaders. 271

Animations and Storyboards . 275

Summary. .285

xii	 Contents

Part V	 Appendixes

Appendix A	 Major Namespaces and Classes	 289
Commonly Used Namespaces and Classes in WPF. 289

Commonly Used Namespaces and Classes in Silverlight 293

Appendix B	 XAML Editors and Tools	 299
Editors. 299

Kaxaml. 299

XAML Cruncher . 299

XamlPad. 300

XamlPadX . 300

Tools . 300

Index	 303

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. To participate in a brief online survey, please visit:

microsoft.com/learning/booksurvey

		 xiii

Introduction

XAML is ubiquitous today. Whether with Silverlight, WPF, WF, various XPS formats, or
XML-based formats, XAML is being used in a whole lot of Microsoft platform-based

technologies. Though based on XML, XAML is unlike most other markup languages,
because it is strongly linked to CLR assemblies through its objects.

Microsoft originally intended XAML to be a new and much more malleable and
adaptable user interface (UI) description language for the .NET Framework through a
technology named Windows Presentation Foundation (formerly called WinFX). From
that specific beginning, XAML has not only outgrown that original goal, but achieved
far more.

Recently, WPF has begun to supersede Windows Forms as the preferred
development target. XAML’s support for rich web interfaces, media streaming, and
data-driven Line-of-Business (LOB) applications has made Silverlight a popular
application platform in the web development community. The upcoming version of the
Windows operating system, Windows 8, also includes extensive support for XAML.

This book introduces you to XAML and explains its syntax and constructs. It then
explores various concepts, including XAML elements, properties, data binding, and so
forth. Although the book does not provide exhaustive coverage of every XAML feature,
it does offer essential guidance in using the key XAML functionality; you’ll gain a strong
foundation for designing rich and powerful user interfaces and applications using either
WPF or Silverlight.

Beyond the explanatory content, each chapter includes procedural examples and
downloadable sample projects that you can explore and expand for your own projects.

Who Should Read This Book

This book is aimed at proficient developers using the .NET platform, who understand
the core concepts of XAML. It is especially useful for programmers looking to work with
new or existing WPF or Silverlight applications. Although most readers will have some
experience with XAML, the book is also suitable for those who are new to XAML but
wish to learn XAML development.

xiv   Introduction

Assumptions
This book expects that you have at least a minimal understanding of .NET-based WPF
and Silverlight development with C# or Visual Basic. The book also assumes that you
have a basic knowledge of SQL Server and XML.

If you have not yet gained familiarity with Silverlight or WPF, you might consider
reading the following books:

■■ Ashish Ghoda’s Introducing Silverlight 4 (Apress, 2010), or Laurence Moroney’s
Microsoft Silverlight 4 Step by Step (Microsoft Press, 2010)

■■ Adam Nathan’s WPF 4 Unleashed (Sams, 2010)

Who Should Not Read This Book

If you are completely unfamiliar with WPF and Silverlight, or if you’re not comfortable
reading and writing C# or Visual Basic code, this book is not for you. This book does not
include a detailed explanation of the Model-View-ViewModel (MVVM) pattern; if you’re
looking for that information, take a look at:

■■ Raffaele Garofalo’s Building Enterprise Applications with Windows Presentation
Foundation and the Model View ViewModel Pattern (Microsoft Press, 2011)

■■ Gary Hall’s Pro WPF and Silverlight MVVM: Effective Application Development
with Model-View-ViewModel (Expert’s Voice in WPF) (Apress, 2010)

This book also does not cover XAML for Windows 8—the timing of this edition
of book precluded including that information with any reasonable hope of accuracy.
However, based on our current level of information, the majority of the basic XAML
concepts should remain the same for the future Windows 8 platform.

Organization of This Book

This book is divided into four sections, each of which focuses on a different aspect or
set of features within XAML.

■■ Part I, “XAML Basics,” introduces the .NET Framework and provides a quick
overview of XAML fundamental concepts and classes, including object elements,
attributes, properties, and events.

	 Introduction   xv

■■ Part II, “Enhancing User Experience,” describes the various language features
such as markup extensions, resources, and styles.

■■ Part III, “XAML User Interface Controls,” describes the layout system and various
XAML controls.

■■ Part IV, ”Content Integration and Animation,” delves into data binding, media,
graphics, and animation.

Finding Your Best Starting Point in This Book
The different sections of the XAML Developer Reference cover a wide range of
technologies associated with the Microsoft .NET Framework library and design and
development tools. Depending on your needs and your existing understanding of the
Microsoft .NET Framework, WPF, Silverlight, data binding, and design and development
tools, you may wish to focus on specific areas of the book.

If you are Follow these steps

New to XAML development Focus on Parts I and III, or read through the entire book in chapter
sequence.
To get an overview of different XAML controls used in various
samples throughout this book, read Chapters 6 and 7, which intro-
duce layout and form and functional XAML controls.

Familiar with XAML Briefly skim Parts I and III if you need a refresher on the core
concepts.
To get an overview of different XAML controls used in various
samples throughout this book, read Chapters 6 and 7, which intro-
duce layout and form and functional XAML controls.
Read up on markup extensions, styles, and other features in Parts II
and IV.

Most of the book’s chapters include hands-on samples that let you try out the
concepts covered in that chapter. No matter which chapters or parts you choose to
focus on, be sure to download and install the sample applications on your system.

Conventions and Features in This Book

This book presents information using conventions designed to make the information
readable and easy to follow.

■■ In most cases, the book includes examples that are XAML markup–based.
Although you will see some minimal C# code to show the connection of the
XAML to the code-behind code, the exercises rarely delve deeply into any
code-behind.

xvi   Introduction

■■ Boxed elements with labels such as “Note” provide additional information or
alternative methods for completing a step successfully.

■■ Text that you need to type (apart from code blocks) appears in bold.

■■ A plus sign (+) between two key names means that you must press those keys
at the same time. For example, “Alt+Tab” means that you hold down the Alt key
while you press the Tab key.

■■ A vertical bar between two or more menu items (such as File | Close), means that
you should select the first menu or menu item, then the next, and so on.

System Requirements

You will need the following hardware and software to complete the practice exercises in
this book:

■■ One of the following: Windows Vista with Service Pack 2 (except Starter edition),
Windows XP with Service Pack 3 (except Starter edition), or Windows 7.

■■ Microsoft .NET Framework 4.0 or 3.5 SP1 (4.0 is recommended)

■■ Silverlight 4 SDK, toolkit, and run time (including developer run time)

■■ SQL Server 2008 Express edition or higher (2008 or R2 release), with SQL Server
Management Studio 2008 Express or higher (included with Visual Studio;
Express editions require separate download)

■■ Visual Studio 2010, any edition (multiple downloads may be required if using
Express edition products)

■■ Microsoft Expression Blend 4

■■ Computer that has a 1.6 GHz or faster processor (2 GHz or above recommended)

■■ Minimum 1 GB (32-bit) or 2 GB (64-bit) RAM (Add 512 MB if running in a virtual
machine or SQL Server Express editions, more for advanced SQL Server editions)

■■ 3.5 GB of available hard disk space

■■ 5400 RPM hard disk drive

■■ DirectX 9–capable video card running at 1024 x 768 or higher-resolution display

	 Introduction   xvii

■■ DVD-ROM drive (if installing Visual Studio and Expression Blend from DVD)

■■ Internet connection to download software or chapter examples

Depending on your Windows configuration, you might require Local Administrator
rights to install or configure Visual Studio 2010 and SQL Server 2008 products.

Code Samples

Most of the chapters in this book include projects or code snippets that let you
interactively try out the new material discussed in the main text. You can download all
the sample code from this link:

http://go.microsoft.com/FWLink/?Linkid=233593

Follow the instructions to download the XAML_Developer_Reference_samples.zip
file.

Note  In addition to the code samples, your system should have Visual Studio
2010 and SQL Server 2008 installed. The following instructions use SQL Server
Management Studio 2008 to set up the sample database used with the
practice examples. If available, install the latest service packs for each product.

Installing the Code Samples
Follow these steps to install the code samples on your computer so that you can use
them with the exercises in this book:

1.	 Unzip the XAML_Developer_Reference_samples.zip file that you downloaded
from the book’s website. (Name a specific directory along with directions to
create it, if necessary.)

2.	 If prompted, review the displayed end user license agreement. If you accept the
terms, select the Accept option, and then click Next.

Note  If the license agreement doesn’t appear, you can access it from the
same webpage from which you downloaded the XAML_Developer_Reference_
samples.zip file.

3.	 Attach the Northwind sample database to your instance of SQL Server 2008.

http://go.microsoft.com/FWLink/?Linkid=233593

xviii   Introduction

Using the Code Samples
The folder created by the Setup.exe program contains three subfolders:

■■ Chapters  Example projects referenced in each chapter appear in this folder.
Each chapter appears as subfolder with chapter number. Each chapter folder
may include one or more sample projects related to that chapter. The chapter
may contain separate projects for WPF and Silverlight. Follow the instructions
given in the chapter to run the project. Some of the chapters may include one or
more XAML file for individual samples. Some of these projects are incomplete,
and will not run without following the steps indicated in the associated chapter.

■■ Snippets  Fragmented or partial code snippets that are included in the chapter
are included in text files. These can be copied and pasted into existing projects
or applications and then executed.

■■ Sample Database  This folder contains the SQL script used to build the sample
database. The instructions for creating this database appear earlier in this
Introduction.

To access the example project of a particular chapter, browse to the appropriate
chapter folder in the Chapters folder, and open the project file.

Acknowledgments

Mamta Dalal:

This book is the culmination of the efforts of a number of people. Therefore, I’d like
to thank the editorial and copyedit team of Microsoft and O’Reilly—in particular, our
editor Russell Jones, without whom this book would not have been possible. I am also
grateful to Kristen Borg, our production editor at O’Reilly; and Diane Kohnen and her
amazing copyediting team. I would also like to thank my coauthor Ashish Ghoda for
his valuable collaboration and strong support. Vikas Sahni, our technical reviewer, also
deserves a strong vote of thanks for his feedback, which went a long way toward mak-
ing this book better. I thank my parents for having believed in me and for encouraging
me to nurture my skills.

I would also like to take this opportunity to thank the awesome .NET, WPF, and
Silverlight communities at the MSDN forums and at Stackoverflow.com. The latter in
particular has been a tremendous source of enlightenment for me. Thank you to Jeff
Atwood and Joel Spolsky for having created this wonderful site.

	 Introduction   xix

Finally, I thank my husband, Nimish, for his constant encouragement, understanding,
love, and support.

Ashish Ghoda:

Working with the Microsoft Press and O’Reilly teams and my coauthor for this book
was a great experience. The support, positive attitude, and constructive feedback from
the Microsoft Press editorial and production teams and from our technical reviewer—
Vikas Sahni—made this project run smoothly.

My special thanks goes to Russell Jones—senior editor of Microsoft Press division—
for giving me the opportunity to help write this book and for remaining confident that
we could finish the book in the given time frame, despite some unexpected personal
challenges faced by both Mamta and myself.

It’s challenging when the authors of a work are located in different countries. Mamta
Dalal, coauthor of this book, deserves full credit for her cooperation and efforts to keep
the content in sync while working remotely.

With blessings from God and encouragement from my grandparents, parents,
and in-laws, I was able to accomplish this task successfully. My wife, Pratixa, and two
God-gifted sons, Gyan and Anand, have continued their support so that I could finish a
fourth consecutive book. I thank my family for their cooperation and encouragement
and for their faith in me during this difficult endeavor.

Errata & Book Support

We’ve made every effort to ensure the accuracy of this book and its companion
content. Any errors that have been reported since this book was published are listed on
our Microsoft Press site at oreilly.com:

http://go.microsoft.com/FWLink/?Linkid=233594

If you find an error that is not already listed, you can report it to us through the
same page.

If you need additional support, email Microsoft Press Book Support at
mspinput@­microsoft.com.

Please note that product support for Microsoft software is not offered through the
addresses above.

http://go.microsoft.com/FWLink/?Linkid=233594
mailto:mspinput@microsoft.com

xx   Introduction

We Want to Hear from You

At Microsoft Press, your satisfaction is our top priority, and your feedback our most
valuable asset. Please tell us what you think of this book at:

http://www.microsoft.com/learning/booksurvey

The survey is short, and we read every one of your comments and ideas. Thanks in
advance for your input!

Stay in Touch

Let’s keep the conversation going! We’re on Twitter: http://twitter.com/MicrosoftPress

http://www.microsoft.com/learning/booksurvey
http://twitter.com/MicrosoftPress

		 1

Part 1

XAML Basics

chapter 1	 Introducing XAML . 3

chapter 2	 Object Elements and Attributes 19

chapter 3	 XAML Properties and Events 49

		 3

C h apter 1

Introducing XAML

In this chapter:

■■ Windows Presentation Foundation (WPF)

■■ XAML—A Declarative Language for .NET Applications

■■ Silverlight

■■ The Microsoft .NET Framework

■■ Summary

Object-oriented and service-oriented programming models (along with language- and
environment-independent features) lie at the core of the .NET Framework architecture. Since the
release of .NET Framework 3.0, Microsoft has added several important components to support the
unified programming and deployment model:

■■ A presentation layer  Windows Presentation Foundation (WPF)

■■ A messaging and communication services layer  Windows Communication Foundation
(WCF)

■■ Workflow management  Windows Workflow Foundation (WF)

You use the Windows Presentation Foundation (WPF) framework libraries along with the
XML-based eXtensible Application Markup Language (XAML) declarative markup language to define
and develop next-generation, abstracted, dynamic, rich, and interactive user interface layers that
provide data-integration capabilities and comprehensive support for multimedia, graphics, animation,
and documents.

The eXtensible Application Markup Language (XAML, pronounced zammel)—a declarative
XML-based markup language—is at the center of the declarative user interface (UI) WPF framework.
It is a language for describing an abstracted—externalized and decoupled—user interface layer. The
current .NET Framework has extended XAML as its core user interface definition language to define
user interfaces not only for WPF and Silverlight applications, but also for the custom activity libraries
of WF 4.0–based workflows.

4   Part 1  XAML Basics

Windows Presentation Foundation (WPF)

WPF supports the development of rich and interactive Windows desktop applications that can pro-
vide sophisticated and realistic user experiences. WPF is built upon a very different architecture than
Windows Forms. The key architectural differences are:

■■ WPF introduces a new user interface XML-based declarative markup language—XAML—
that can support layout, styles, resources, and control templates to simplify and standardize
management of the visual appearance of the user interface. XAML also supports properties
and events that developers can handle in code-behind code to control its behavior.

■■ WPF provides a new presentation framework that integrates XAML for user interface design.
The framework supports a unified programming model that includes data binding capabilities
to develop data-driven applications as well as media integration, 2-D and 3-D vector graphics,
document integration, text, and typography.

■■ WPF provides a set of .NET Framework libraries for the presentation core that are mainly
derived from the System.Windows namespace. These libraries handle integration of the
XAML-based user interface with the managed code-behind, including enhanced properties
and events integration, such as dependency properties and routed events (topics you’ll explore
later in this book).

■■ The new Media Integration Layer (MIL) provides a rendering engine for WPF applications built
upon Direct3D. The tight integration with DirectX means that WPF has high-performance
rendering of the visual interface that can take advantage of hardware acceleration using
the graphics processing units (GPUs) that most modern computers have, which reduces the
load on the central processing unit (CPU). This is a very different approach than that taken
in Window Forms applications, where the .NET Framework uses the User32 DLL to render
standard Window Forms user interface elements and uses older Graphics Device Interface
(GDI) to render graphics. Figure 1-1 illustrates the differences between the visual interface
rendering approaches for WPF and Windows Forms applications.

More Info  Visit MSDN at http://msdn.microsoft.com/en-us/library/ms750441.aspx to get
more details on the WPF architecture.

XAML—A Declarative Language for .NET Applications

As mentioned earlier, XAML is at the center of the declarative user interface (UI) WPF framework
because it implements the abstracted user interface layer. XAML is becoming a core UI definition
language for .NET Framework–based applications. Using XAML, you can define and develop user
interfaces for WPF and Silverlight applications and custom workflow activities for WF version 4.0.

http://msdn.microsoft.com/en-us/library/ms750441.aspx

	 Chapter 1  Introducing XAML    5

You define and implement these user interfaces using a set of XAML controls provided as part of
the WPF framework. These XAML controls are derived from a set of WPF presentation framework
classes that can be hosted in either a window (WPF applications) or a page (Silverlight applications) to
render the defined user interface at runtime using a XAML parser.

Windows Forms

WPF

Presentation Framework−XAML

Presentation Core

Rendering
Graphics

Rendering All Visual
Interface Components

Media Integration Library (MIL)

Direct 3D

Operating System

User32

GDI

Device Drivers

Rendering
Standard UI
Elements

Common Language Runtime (CLR)

Figure 1-1  Rendering WPF and Windows Forms applications.

Caution  Not all XAML controls are interoperable between WPF, Silverlight, and WF
applications. In addition, the XAML parsers for each platform are also different. You will
need to use and set appropriate WPF, Silverlight, and WF platform specific–XAML controls
and compile applications using the corresponding platform.

6   Part 1  XAML Basics

XAML Is Part of the Microsoft Open Specification Program (OSP)
You are probably aware that XAML is currently a Microsoft domain-specific language. To provide
transparency and simplify the development of XAML applications by the broader developer community,
Microsoft published the technical specification of XAML Object Mapping for WPF and Silverlight in March
2008, under its Open Specification Promise (OSP) program. Microsoft is committed to maintaining those
specifications.

The XAML technical specification documentation provides details on XAML’s data model for types,
object hierarchies, and the techniques for mapping between XML and the object hierarchy data model.
It also documents the WPF and Silverlight vocabulary of types that can be used with XAML specifications.
Developers can use the WPF and Silverlight XAML technical specification documentation in conjunction
with publicly available standard specifications, computer language design, and implementation art to fully
understand and take advantage of XAML.

More Info  Visit MSDN at http://msdn.microsoft.com/en-us/library/dd361847.aspx to
download the various releases of XAML Object Mapping, and the WPF and Silverlight
technical specification documentation.

XAML Structure
Figure 1-2 provides a quick overview of defining a button. In the example, the button width is set to
100, the button background color is set to LightGray, and the content (the button label) is set to “I am
a Button“ in XAML. The example also shows an identical Button object created in C#, with its related
properties set in code.

I am a Button

XAML C#

<Button Width="100">I am a Button
 <Button.Background>
 LightGray
 </Button.Background>
</Button>

Button b1 = new Button();
b1.Width = 100;
b1.Content = "I am a Button";
b1.Background = new
 SolidColorBrush(Colors.LightGray);

Figure 1-2  Defining a Button object and its properties in XAML and in C# code-behind.

A XAML file has a .xaml file extension. As shown in Figure 1-2, any XAML file consists of XML-like
structured information that defines the relationships among various XAML controls. At runtime,
these controls render as an object tree to create the user interface. In other words, XAML itself is
an abstraction—it simply describes objects. This abstraction lets XAML serve as the UI description

http://msdn.microsoft.com/en-us/library/dd361847.aspx

	 Chapter 1  Introducing XAML    7

language for several different .NET application types (WPF, Silverlight, and WF). The properties
you define within the XAML elements (such as the Width, Content, and Background properties of
the Button control in Figure 1-2) control the look and feel of the particular user interface object
represented by that XAML element. You can also determine how or whether a control binds with
data. When you bind a control, it can display information (often from a database) unavailable at
design time, and obtained only at runtime.

More Info  See Chapter 2, “Object Elements and Attributes,” for more details on XAML
syntax, XAML object elements, and attributes.

Dynamic User Interface
As shown in Figure 1-3, the key difference and advantage of using XAML—compared to building the user
interface by creating and adding the controls in code-behind—is that XAML provides a declarative and
separately compiled and rendered way of describing the user interface. User interface controls defined
in code are described at design time and executed at runtime. In contrast, controls defined in XAML are
stored separately from compiled code in .xaml files. At runtime, the XAML file is loaded and parsed by a
XAML parser, and the user interface is then rendered dynamically. Thus if you change the user interface
within a XAML file and redeploy it, the updated XAML content will be parsed and rendered; any changes
in the user interface definition will be reflected in the user interface.

XAML’s capability to develop an externalized and loosely coupled user interface enables developers
to develop and modify the user interface without affecting the underlying program code and without
recompiling the project for each UI change, which can significantly reduce the overall effort required for
application development and testing.

I am a Button

I am a Button

XAML

C#
Compile (Design-time)
and Execute (Runtime)

Load, Parse,
Render and Display
At Runtime<Button Width="100">I am a Button

 <Button.Background>
 LightGray
 </Button.Background>
</Button>

Button b1 = new Button();
b1.Width = 100;
b1.Content = "I am a Button";
b1.Background = new
 SolidColorBrush(Colors.LightGray);

Figure 1-3  Defining a Button object with its properties in XAML and using C# in code-behind.

8   Part 1  XAML Basics

When working with XAML, remember that the WPF XAML parser is full-featured, whereas the
Silverlight XAML parser ships with a more limited feature set. As mentioned earlier, not all XAML
controls are interoperable between WPF, Silverlight, and WF applications. You will need to use the
appropriate WPF, Silverlight, and WF platform–specific XAML controls and compile applications using
the specific platform to which you want to deliver.

More Info  Visit MSDN at http://msdn.microsoft.com/en-us/library/cc917841.aspx for more
details on the differences between WPF and the Silverlight XAML parser.

Decouple Control Style Definitions
Applications should maintain consistency throughout to give users a predictable experience, including
using the same color set, fonts, font sizes, and styles. Typically, ensuring this consistency can become quite
challenging when you are using multiple controls of similar types in single or multiple XAML files within
the same application, or across multiple applications. However, the WPF and Silverlight platforms help, be-
cause it provides the capability to easily externalize and decouple style sheets, which XAML elements can
then reference from within XAML files to help maintain a consistent user experience. The approach and
capability is similar to the Cascading Style Sheets (CSS) approach used in standard HTML web applications.

Figure 1-4 demonstrates how you can define a style within a XAML file as a resource or as an
external resource file, and apply that style to a Button control.

<Style x:Key="ButtonStyle5" TargetType="Button">
 <Setter Property="Foreground" Value="Black"/>
 <Setter Property="Background" Value="Green"/>
 <Setter Property="FontStyle" Value="Italic"/>
 <Setter Property="FontFamily" Value="Verdana"/>
 <Setter Property="FontSize" Value="16"/>
</Style>

Defining a Style

Applying a Style

<Button Style="{StaticResource ButtonStyle5}"
 Width="115" Content="Button"/>

Button

Figure 1-4  Defining and applying styles to XAML controls.

More Info  See Chapter 5, "Resources, Styles, and Triggers," for more details on styles and
resources for XAML.

http://msdn.microsoft.com/en-us/library/cc917841.aspx

	 Chapter 1  Introducing XAML    9

Customized Design of XAML Controls
One of the biggest advantages of WPF’s separation of the visual appearance of controls defined in XAML
from business logic implemented mainly in code is that a designer not only controls the common styles
of controls but can also alter the default look and feel of the control. For example, you might change
the default look and feel of a button to make it look like a star! In WPF you can use a ControlTemplate to
define the visual structure and behavior of a control without affecting its functionality.

Each control can exist in a number of possible states, such as disabled, having the input focus, a state
where the mouse is hovering over it, and so on. A control template lets you define what a control looks
like in each of these states. Sometimes this is referred to as changing the look and feel of the control,
because changing the visual appearance of each state alters how a user sees and experiences a control.

Figure 1-5 demonstrates how you can define a control template to change the appearance of a
Button control to make it look like an ellipse.

Defining a ControlTemplate

<ControlTemplate x:Key="ButtonControlTemplate1" TargetType="Button">
 <Grid>
 <Ellipse Margin="8,0,0,0" Stroke="#FF000000">
 <Ellipse.Fill>
 <LinearGradientBrush EndPoint="0.5,1" StartPoint="0.5,1">
 <GradientStop Color="#FF4292F2"/>
 <GradientStop Color="#FFC9EDF7" Offset="1"/>
 </LinearGradientBrush>
 </Ellipse.Fill>
 </Ellipse>
 <TextBlock Margin="48,19,19,14" Text="Button" TextWrapping="Wrap"/>
 </Grid>
</ControlTemplate>

Applying a ControlTemplate

<Button Margin="50" Height="56" Width="119" Content="Button"
 Template="{StaticResource ButtonControlTemplate1}"/>

Button

Figure 1-5  Defining and applying a control template to XAML controls.

Integration with Code-Behind to Control Behavior
In general, markup languages such as HTML are mainly limited to defining the look and feel of the
user interface; most markup languages cannot define the behavior of the user interface by controlling
user interactions and defining various application actions. The typical way to implement some level of
business logic within an HTML file is to use a scripting language such as JavaScript or VBScript.

10   Part 1  XAML Basics

In contrast to HTML, XAML was specifically developed for use with .NET Framework components. It
can use the .NET Framework platform and the Microsoft design and development tools and extend its
capabilities because it’s not limited simply to defining the user interface. It also enables interaction by
integrating XAML controls with managed code such as C# and VB .NET, and even dynamic languages
such as Ruby and Python.

More Info  See the article “Creating Interactive Bing Maps with Silverlight and IronRuby,” at
http://msdn.microsoft.com/en-us/magazine/ee291739.aspx for an example of how IronRuby
dynamic language integrates events of XAML objects to implement required business logic.

Each XAML file for WPF, Silverlight, or WF project has a corresponding code-behind file, which
Microsoft development tools such as Visual Studio or Expression Blend create for you automatically.
However, a third file type is associated with the XAML file. Figure 1-6 illustrates the full class imple-
mentation for the MainWindow XAML file of a standard WPF project created using either Visual
Studio or Expression Blend.

MainWindow.xaml

WPF XAML File

As part of build process
(or in Visual Studio

upon saving the XAML
file), a code-behind file
is generated based on

XAML

Code-behind files
create the WPF

MainWindow class

MainWindow Class

MainWindow.xaml.cs

MainWindow.g.i.cs

Figure 1-6  Full class implementation of XAML.

Note  As defined on MSDN, “code-behind is a term used to describe the code that is joined
with markup-defined objects, when a XAML page is markup-compiled.” See http://msdn.
microsoft.com/en-us/library/aa970568.aspx to get more information on the code-behind
capabilities of XAML.

If you create a WPF application project by selecting WPF Application template in Visual Studio, you
will get a default MainWindow.xaml file. If you expand the MainWindow.xaml file in the Visual Studio
Solution Explorer, you will see an associated code-behind file named either MainWindow.xaml.cs file
(when you create a C# WPF project) or MainWindow.xaml.vb (when you create a Visual Basic WPF
project). This code-behind class is usually used to manage events and as a gateway to integrate with
other application components and services to implement the business logic.

http://msdn.microsoft.com/en-us/magazine/ee291739.aspx
http://msdn.microsoft.com/en-us/library/aa970568.aspx
http://msdn.microsoft.com/en-us/library/aa970568.aspx

	 Chapter 1  Introducing XAML    11

Now, open this code-behind file in the code editor. Locate the class constructor and right-click the
InitializeComponent() method. Select the Go To Definition option from the shortcut menu. You will
see that the InitializeComponent definition code opens a MainWindow.g.i.cs file. MainWindow.g.i.cs is
a generated file based on the XAML defined in the MainWindow.xaml file. Any objects in the XAML
file that have an x:Name cause the creation of a class member in the generated file.

The following code snippet demonstrates the default MainWindow.xaml.cs file of the WPF application
and the InitializeComponent() method (in bold font) within the class constructor:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Data;
using System.Windows.Documents;
using System.Windows.Input;
using System.Windows.Media;
using System.Windows.Media.Imaging;
using System.Windows.Navigation;
using System.Windows.Shapes;
namespace WpfApplication1
{
 /// <summary>
 /// Interaction logic for MainWindow.xaml
 /// </summary>
 public partial class MainWindow : Window
 {
 public MainWindow()
 {
 InitializeComponent();
 }
 }
}

XAML defines the language features x:Class, x:Subclass, and x:ClassModifier directives, which (as you
will explore more deeply in Chapter 2) enable integration of the XAML markup file with the code-behind
partial class. You must derive the partial class defined in the root element of the XAML markup file using
the x:Class attribute. This class usually gets defined automatically by Visual Studio, using the naming
convention <XAMLFileName.xaml>.cs or <XAMLFileName.xaml>.vb, depending on which .NET language
you’re using. The following code snippet shows the definition of the x:Class attribute (in bold font) defined
in the Window root element of the MainWindow.xaml file of the WPF application.

<Window x:Class="WpfApplication1.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="MainWindow" Height="350" Width="525">
 <Grid>
 </Grid>
</Window>

12   Part 1  XAML Basics

Note  Because XAML is a declarative language, it can contain data binding, state management,
triggers, and so on as part of the UI definition. That means that design patterns such as the
Model-View-Controller (MVC) and Model-View-Presenter (MVP) that were developed for
service-oriented applications are not the best-fitting patterns for WPF-based applications.
Instead, a new design pattern called the Model-View-View-Model (MVVM) pattern has
been developed to define the user interface layer for XAML-based applications. Although
MVVM was largely derived from the concept of MVC and MVP patterns, it differs by defining a
view model that represents both a data model and behavior for views, and allows views to
bind to the view model declaratively within XAML. Visit http://msdn.microsoft.com/en-us/
magazine/dd419663.aspx to get an overview of how you can develop WPF applications using
the MVVM design pattern. Also see http://weblogs.asp.net/dwahlin/archive/2009/12/08/
getting-started-with-the-mvvm-pattern-in-silverlight-applications.aspx to get an overview
on how to develop Silverlight applications using MVVM.

Inline Code
The WPF XAML namespace also supports an additional x:Code directive element that can contain
inline programming code (in C# or Visual Basic) to implement business logic directly within the XAML
file. Programming code within the x:Code element must be entered inside a <[CDATA[…]]> segment
so that it will be processed as code rather than as XML by the XAML parser.

The following example implements the Click event of a Button control within the XAML file as
inline code (in bold font). The code is written in C#, and is defined right next to the definition of the
Button control, but within an x:Code element:

<Button Name="button1" Click="button1_click">Click Me!</Button>
<x:Code>
 <![CDATA[
 void button1_click(object sender, RoutedEventArgs e)
 {
 button1.Content = "Inline Code Works!!";
 }
]]>
</x:Code>

Warning  Despite the existence of the <x:code> element, inline coding within XAML is not
considered a best practice, and its use is not recommended except in special circumstances. It’s
defnitely not the best way to implement complex business logic. Inline code has some limitations
that make implementing reusable code across a project considerably more challenging. In
addition, it’s more difficult to code, maintain, and support complex business logic in inline code.

The inline code must be defined within the XAML file. The scope of inline code is limited to the scope
of the partial class created for that particular XAML instance.

http://msdn.microsoft.com/en-us/magazine/dd419663.aspx
http://msdn.microsoft.com/en-us/magazine/dd419663.aspx
http://weblogs.asp.net/dwahlin/archive/2009/12/08/getting-started-with-the-mvvm-pattern-in-silverlight-applications.aspx
http://weblogs.asp.net/dwahlin/archive/2009/12/08/getting-started-with-the-mvvm-pattern-in-silverlight-applications.aspx

	 Chapter 1  Introducing XAML    13

You cannot use using (C#) or Imports (VB.NET) statements. Instead, you must fully qualify
references to code entities outside the partial class.

The <x:Code> element must be an immediate child element of the root element of the XAML
production. Moreover, although XAML itself has the advantage of abstracting the user interface
definition of the application from the implementation of the business logic, inline code does not pro-
vide that abstraction, because it’s defined directly within the XAML file.

Caution  The x:Code directive (and thus inline coding) is supported only by the WPF
XAML parser—it is not supported by the Silverlight XAML parser. Therefore, you cannot
implement inline coding in Silverlight applications. The Silverlight XAML parser also does
not guarantee preservation of CDATA segment content.

Silverlight

Silverlight is an extension of the .NET Framework–based technology platform to develop
cross-browser, cross-platform, and cross-device Rich Internet Applications (RIAs). RIAs are web
applications that have features and functionality similar to traditional desktop applications, including
rich and interactive user interfaces.

You can deploy Silverlight applications as plug-ins (in both in-browser and out-of-browser modes) that
run in a sandboxed environment. Silverlight is built upon lightweight components of the .NET Framework
that are a subset of the full WPF libraries. Silverlight applications do not require users to perform a
full install of the .NET Framework; instead, users need to install only a small Silverlight plug-in on their
Windows or Mac (Intel processer–based) computers, or Windows Phone 7 mobile devices.

Note  To install the latest version of Silverlight and get the latest information on Silverlight,
visit Microsoft’s official Silverlight website at http://www.silverlight.net/getstarted/.

Like WPF Windows applications, the declarative XAML markup language used by Silverlight is at the
center of the declarative user interface (UI) framework. You can use the same Microsoft development tools
(Visual Studio and Expression Blend) to define Silverlight user interfaces in XAML and you can implement
business logic using standard .NET languages. However, there is a significant difference between the set of
XAML controls available for WPF and those available for Silverlight. In addition, the Silverlight platform has
limited .NET Framework libraries and its XAML parser as compared to the full WPF platform.

The initial versions of Silverlight (Silverlight 1.0 and 2.0 versions) were mainly targeted toward
building media applications, so it focused on media integration, vector graphics, and animation. Later
versions (Silverlight 3 and Silverlight 4) enhanced and streamlined Silverlight’s media applications
capabilities, and extended the product focus to implementing data-driven enterprise line of business
(LoB) applications. Silverlight 5 version extended the LoB applications capabilities and added support
for mobile applications development, as well as support for gaming and 3-D animations.

http://www.silverlight.net/getstarted/

14   Part 1  XAML Basics

With Silverlight 5, Silverlight has reached maturity as an enterprise platform for developing and
deploying media and data-driven RIAs. It supports the required security, maintainability, flexibility,
scalability, and as a result, it is being adopted across a wide range of industries.

Note  HTML5 has extended the HTML platform capabilities to support native markup
integration with multimedia (audio and video elements), enhanced user interface controls
(such as calendar, date, time, email, URL, and search elements), and content integration
(such as article, footer, header, and section elements). The new capabilities in HTML5 will
reduce the need for custom scripting and custom plugins (such as Adobe Flash) when
developing rich interactive applications. However, the implementation of the HTML5
specification is not standard. As a result, different browsers may take different approaches
and render HTML5 differently. This is a challenge for developers trying to develop HTML5-
based applications that provide consistent results across many different potential browser
targets. Offsetting this problem is the advantage that HTML is a cross-platform technology
platform supported by all modern operating systems (including operating systems such as
Windows, Linux, OS X, iOS, and Android).

The Microsoft .NET Framework

When it released XAML, Microsoft also provided a set of development and designer tools to use the
capabilities of XAML and the .NET Framework during the design and development process, as shown
in Figure 1-7.

Artists-
Define Visuals

Developers-
Implement Logic

Expression Blend Visual Studio

XAML

WCF

WF

VB.NET,
C#, ...

Data
Sources

XAML

Media

Data
Sources

Button

Button

Figure 1-7  Separation of the design and development processes.

	 Chapter 1  Introducing XAML    15

The WPF platform enables separation of the visual appearance of the application from the actual
implementation of the business logic. In addition to Visual Studio as a development tool, Microsoft
introduced Expression Blend (part of Expression Studio). Expression Blend is a tool that designers can
use to create custom user interfaces in XAML. Using Expression Blend you can build sophisticated,
rich, and interactive user interfaces as well as create 2-D and 3-D vector graphics and animations—all
without needing a deep knowledge of XAML syntax, and also without needing any .NET language
programming knowledge. This separation finally frees developers from building UI elements. Design-
ers can work on the design while the development team starts implementing the code-behind and
other application components and services. In other words, developers and designers can work in
concert to implement both the UI and the actual business logic. And because Expression Blend can
load and use Visual Studio projects and files directly, artists and developers can work on the same
WPF, Silverlight, or WF projects, switching easily from Expression Blend to Visual Studio project and
vice versa.

Before ending this chapter, it’s worthwhile to provide a quick high-level overview of the key design-
time and runtime components of the .NET Framework so you’ll understand how they fit together.

Design-Time Components
Since .NET Framework 3.0, Microsoft has introduced the following key foundation components that
support a unified programming and deployment model:

■■ Windows Presentation Foundation (WPF), which uses XAML to define and develop abstracted,
dynamic, rich, and interactive user interface layer providing integration capabilities with data,
media, graphics, animation, and documents

■■ Windows Communication Foundation (WCF), a service-oriented messaging system that can
integrate across platforms and that supports industry-standard networking protocols

More Info  See this MSDN page (http://msdn.microsoft.com/en-us/library/ms735119.aspx)
to get more information on WCF. For an introduction to the new WCF features in .NET
Framework 4.0, see http://msdn.microsoft.com/en-us/library/dd456779.aspx.

■■ Windows Workflow Foundation (WF), which provides a framework for developing workflow-
driven task integration and automation

More Info  Visit the MSDN page at http://msdn.microsoft.com/en-us/library/dd489441.aspx
for more details on WF.

http://msdn.microsoft.com/en-us/library/ms735119.aspx
http://msdn.microsoft.com/en-us/library/dd456779.aspx
http://msdn.microsoft.com/en-us/library/dd489441.aspx

16   Part 1  XAML Basics

Runtime Cross-Platform Components
■■ The Common Language Runtime (CLR), the Dynamic Language Runtime (DLR) and Base Class

Library (BCL) for .NET Framework components are key components of the runtime cross-platform
execution engine.

Figure 1-8 demonstrates the language-independent execution model of .NET applications
developed using both static languages such as Visual Basic .NET, C#, and J#, as well as
dynamic languages such as IronRuby and IronPython.

Languages

Dynamic Languages Runtime

Dyanamic Languages

VB.NET

Ru
nt

im
e

Co
m

pi
le

 T
im

e

Ruby
Libraries
Python
Libraries

Common Intermediate Language (CIL) /
Microsoft Intermediate Language (MSIL)

Common Language Runtime (CLR)

BYTE CODE

NATIVE CODE

Expression
Trees

Dyanamic Objects
Interoperability

C# J# IronRuby IronPython

SOURCE CODE

Language
Complier J#

Complier
VB.NET

Complier
C#

Complier

.NET Base
Class Library

(BCL)

Custom
Assemblies

Figure 1-8  Execution model of .NET Framework 4.0–based applications and services.

■■ The Common Language Runtime (CLR) is the underlying runtime execution engine of the
.NET Framework that provides a managed and secured application and services execution
environment. The CLR enables abstracted development of application components and
services using different languages, which get compiled to the common intermediate language
(CIL) bytecode format at design time. At runtime, CLR will translate CIL bytecode to the native
code using the Just-In-Time (JIT) compiler.

More Info  Visit the MSDN page at http://msdn.microsoft.com/en-us/
library/8bs2ecf4.aspx for more details on the CLR.

■■ Dynamic Language Runtime (DLR) is a .NET Framework hosting model for dynamic languages,
which provides a set of .NET Framework libraries and services for .NET and Silverlight that
create a bridge between dynamic languages and the CLR in .NET and Silverlight.

http://msdn.microsoft.com/en-us/library/8bs2ecf4.aspx
http://msdn.microsoft.com/en-us/library/8bs2ecf4.aspx

	 Chapter 1  Introducing XAML    17

More Info  Visit the MSDN page at http://msdn.microsoft.com/en-us/library/
dd233052.aspx for more details on DLR.

■■ Base Class Library (BCL) is a foundation for development of any .NET Framework–based
applications or services. It is a library of classes, interfaces, and value types that provides the
basic and system-level functionalities such as processing and managing XML files, integration
with database, integration with file systems and connected devices, animation, graphics and
media management, error and diagnostic management, integration with industry standard
protocols, providing encryption mechanisms, LINQ, parallel computing, and capabilities to
integrate with COM Interops.

More Info  Visit the MSDN page at http://msdn.microsoft.com/en-us/library/
gg145045.aspx for more details on BCL.

Summary

The declarative XML-based eXtensible Application Markup Language (XAML) is at the center of the
WPF framework. You use XAML to define and develop abstracted, dynamic, rich, and interactive user
interface layers that can integrate with data, media, graphics, animation, and documents.

Using WPF, you can develop rich and interactive Windows desktop applications that can provide
sophisticated and realistic user experiences. Silverlight is a subset of WPF; you can use it to develop
browser-hosted cross-platform, rich Internet applications as well as applications for Windows 7.x
series mobile devices.

This chapter clearly shows that Microsoft has established a robust software and services development
and delivery platform—the Microsoft .NET Framework—built upon solid core software development
concepts such as object-oriented programming and language and environment independence. Together,
these support the following essential attributes of software platform and services:

■■ Device- and platform-independent application services  With the introduction of
Silverlight and the Dynamic Language Runtime (DLR), the .NET Framework offers broad
support for development of cross-platform applications and services suitable for a broad
range of development, deployment, and usage scenarios.

■■ Dynamic and flexible services-focused architecture  With the introduction of WPF, WCF,
and WF and support for managed code integration, you can now develop service-oriented
flexible software services using the .NET Framework deployable to both enterprise and cloud
platforms.

http://msdn.microsoft.com/en-us/library/dd233052.aspx
http://msdn.microsoft.com/en-us/library/dd233052.aspx
http://msdn.microsoft.com/en-us/library/gg145045.aspx
http://msdn.microsoft.com/en-us/library/gg145045.aspx

18   Part 1  XAML Basics

■■ Aesthetic and high-performance user interfaces  XAML gives you the ability to define
abstracted user interfaces that can support five usability dimensions:

o	 Availability (can I get to it?)

o	 Responsiveness (Is it fast enough?)

o	 Clarity (can I figure it out?)

o	 Utility (does it have what I want?)

o	 Safety (is my identity and information secure?)

The next chapter, “Object Elements and Attributes,” will provide a detailed walkthrough of XAML
basics—all the key information you need to know to create visuals for the user interface layer of
XAML-driven applications.

		 19

C h apter 2

Object Elements and Attributes

In this chapter:

■■ XAML Is XML

■■ Introducing the XAML Presentation Framework

■■ XAML User Interface Controls

■■ Summary

As discussed in Chapter 1, “Introducing XAML,” you can use XAML with three types of applications:

■■ Rich and interactive Windows applications using WPF

■■ Rich Internet Applications (RIAs) and Windows Mobile applications using Silverlight

■■ Workflow activities using Windows Workflow Foundation (WF) 4.0

This is the first of eight chapters that take a deep dive into XAML and how it integrates with the .NET
Framework to help you develop loosely coupled applications.

This chapter provides a detailed walkthrough of XAML basics—the key information you need to
know to create visuals for the user interfaces of XAML-driven applications.

First, you’ll see a brief explanation of XAML syntax and format. Later, you’ll explore XAML elements
and their structure, which are of key importance when defining the layout and user interface of your
application. You’ll explore the element attributes that control the look and feel and behavior of the
elements. The chapter ends by showing examples of different types of built-in user interface XAML
controls. These built-in controls support agile development through development tools such as
Microsoft Visual Studio and Expression Blend.

Note  This chapter is purposefully kept basic—it is intended for readers who do not have a
thorough understanding of XAML and who need to learn XAML from the beginning. If you
are familiar with XAML and have experience developing XAML-based applications, you can
skim or skip much of this chapter.

20   Part 1  XAML Basics

XAML Is XML

Any XAML document is a qualified XML document. Qualified XAML documents are both well-formed
and valid, and can be parsed successfully by the XAML parser. XAML is structured information that
defines the relationships among various XAML elements. At runtime, the .NET Framework renders
these XAML elements to create the user interface for several different .NET application types (WPF,
Silverlight, and WF).

The properties you define within a XAML element control the look and feel of the particular user
interface object that XAML element represents. The properties also determine how or whether the
displayed object or control binds with data so that it can display content available only at runtime.
(Such content often comes from a database.)

XAML elements integrate with .NET code-behind through events, which makes them usable
even by open source .NET-compatible code written in dynamic languages such as IronRuby and
IronPython, which run on the Dynamic Language Runtime (DLR).

More Info  See the article “Creating Interactive Bing Maps with Silverlight and IronRuby,” at
http://msdn.microsoft.com/en-us/magazine/ee291739.aspx.

One good way to begin working with XAML is to take a brief tour through the default XAML
files that Visual Studio generates when you create a WPF, Silverlight, or WF Activity Designer Library
application. (Note that these are not the only XAML files you might find in an application.)

A WPF application contains two XAML files by default—App.xaml and MainWindow.xaml files—as
shown here:

App.xaml

<Application x:Class="WpfApplication1.App"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 StartupUri="MainWindow.xaml">
 <Application.Resources>
 </Application.Resources>
</Application>

MainWindow.xaml

<Window x:Class="WpfApplication1.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="MainWindow" Height="350" Width="525">
 <Grid>
 </Grid>
</Window>

http://msdn.microsoft.com/en-us/magazine/ee291739.aspx

	 Chapter 2  Object Elements and Attributes    21

A Silverlight application contains two XAML files by default—App.xaml and MainPage.xaml—as
shown here:

App.xaml

<Application xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 x:Class="SilverlightApplication1.App">
 <Application.Resources>

 </Application.Resources>
</Application>

MainPage.xaml

<UserControl x:Class="SilverlightApplication1.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d"
 d:DesignHeight="300" d:DesignWidth="400">
 <Grid x:Name="LayoutRoot" Background="White">
 </Grid>
</UserControl>

WF Activity Designer Library Applications contain one XAML file by default—ActivityDesigner
Library1.xaml:

<sap:ActivityDesigner x:Class="ActivityDesignerLibrary1.ActivityDesigner1"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:sap="clr-namespace:System.Activities.Presentation;assembly=
 System.Activities.Presentation"
 xmlns:sapv="clr-namespace:System.Activities.Presentation.View;assembly=
 System.Activities.Presentation"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d"
 d:DesignHeight="241" d:DesignWidth="248">
 <Grid>
 </Grid>
</sap:ActivityDesigner>

You can create these applications using Microsoft Visual Studio 2010. See Appendix B of this book
to get more details on XAML editor tools—including Microsoft Visual Studio.

By studying the preceding XAML files, you can see that XAML is simply an XML dialect; it possesses
all the characteristics of XML. Like XML, XAML is case sensitive, so all element and attribute names are
case sensitive.

Important  XAML is case sensitive!

22   Part 1  XAML Basics

Like any standard XML file, a XAML file must contain one root node. You will see many similarities
in the basic XAML file structure for WPF, Silverlight, and Windows Workflow Activity Designer
XAML files as well some unique features based on the targeted application type: WPF, Silverlight,
or Windows Workflow Activity Designer application. To discover the differences, you need to delve
deeper into the details of these files.

Root Element
Like any standard XML file, any qualified XAML file contains one root element. Based on the type of
application, the related XAML file contains a different root element. However, each root element acts
as a master container, which does not have any visual representation but houses different controls/
elements in a structured way to build the user interface.

The root element of the XAML file of WPF-based Windows applications is Application for App.xaml
file and Window for MainWindow.xaml file, as shown here:

App.xaml

<Application … >
 XAML Code Goes Here
</Application>

MainWindow.xaml

<Window … >
 XAML Code Goes Here
</Window>

Silverlight-based RIAs are actually plug-ins to the browser and thus the root element of the MainPage.xaml
file is UserControl and Application for App.xaml (similar to WPF application), as shown here:

App.xaml

<Application … >
 XAML Code Goes Here
</Application>

MainPage.xaml

<UserControl … >
 XAML Code Goes Here
</UserControl>

With WF 4.0 now you can develop WPF (XAML)-based rich and interactive custom activities
using the Activity Designer template in Visual Studio 2010. The System.Activities.Presentation.
ActivityDesigner class provides base activity designer classes to develop custom activity designers by
enabling design-time access to properties, and by controlling basic features such as customizing the
icon that represents the activity. The root element of the XAML file of Windows Workflow Activity
Designer is <sap:ActivityDesigner>, as shown on the next page. Note that you need to add a reference

	 Chapter 2  Object Elements and Attributes    23

to the ActivityDesigner class, adding its definition to XAML by declaring a namespace (here the prefix
for the namespace identifier is sap:), and including the assembly attribute:

<sap:ActivityDesigner
 xmlns:sap="clr-namespace:System.Activities.Presentation;
 assembly=System.Activities.Presentation"
 …
>
 XAML Code Goes Here
</sap:ActivityDesigner>

XAML Namespaces
XAML namespaces follow the same syntax, concept, and scope as any other XML namespace. The key
difference is that XAML namespaces define the XAML vocabulary—the elements, attributes, and the
way XAML integrates with the .NET Framework class libraries.

Defining appropriate namespaces for XAML files ensures the uniqueness of element names. For
example, it’s possible to have two or more different element types, all named Grid, each of which
exists in a different namespace. The different namespaces ensure that when you add elements
(such as the Grid element in the preceding examples) to your XAML file, it identifies and renders the
specific Grid element you intended, for example, the standard Grid control for a WPF, Silverlight,
or WF application, rather than some other type of Grid element. The other Grid elements would
be associated with a different namespace. The namespace prefix you define when including the
namespace clearly marks each Grid object as unique.

As you can see in the examples, each XAML file defines XAML namespaces within its root element,
starting with the XML pseudo-attribute xmlns. The default namespace has no prefix: it begins
with only xmlns, but all the other namespace declarations start with xmlns:prefix, where prefix is a
shorthand way to refer to the namespace later. The XAML namespace identifier itself appears after
the equals sign in quotes and is either a URI or a string token in the form of a CLR namespace and
some assembly information, as shown here:

Default Namespace With
No Prefix

xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

xmlns:sap="xmlns:sap-"clr=namespace:System.Activities.Presentation;assembly=System.Activities.Presentation"

Namespace With
x Prefix

Namespace With
sap Prefix

System.Activities.Presentation Namespace Declared
Using CLR-namespace and assembly information

WPF Namespace Declared
Using URI

XAML Namespace Declared
Using URI

24   Part 1  XAML Basics

All WPF, Silverlight, and WF Activity applications contain two standard namespaces that represent
the WPF and XAML classes.

The Default WPF Namespace
XAML files allow only one default namespace. The following default namespace

xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

maps to the WPF namespace defined in the .NET Framework core library, which in turn references
multiple CLR namespaces, such as:

■■ System.Windows

■■ System.Windows.Automation

■■ System.Windows.UIElements

■■ System.Windows.FrameworkElements

■■ System.Windows.Controls

■■ System.Windows.Documents

■■ System.Windows.Shapes

■■ System.Windows.Interop

■■ System.Windows.Themes

The default namespace declaration does not include a prefix; therefore, you don’t need to include
a prefix for XAML elements that are part of the libraries listed previously in your markup. To revisit the
earlier example, Grid, with no prefix, refers to the Grid control defined by this default namespace. To
use a different Grid element defined in a namespace with a z prefix, you’d need to write <z:Grid>. To
get a glimpse of how much the default namespace defines, try removing it from a XAML file in Visual
Studio; blue squiggly lines will appear throughout the document.

The XAML (x:) Namespace
The other standard XAML language namespace is typically defined with the x: prefix, which is mapped
to the System.Windows.Markup class.

xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

The x: namespace provides integration between the XAML instance and the .NET code-behind.
Table 2-1 highlights the key capabilities enabled by the XAML (x:) namespace. You can get complete
details of features provided by the XAML namespace at MSDN (http://msdn.microsoft.com/en-us/
library/ms753327.aspx).

http://msdn.microsoft.com/en-us/library/ms753327.aspx
http://msdn.microsoft.com/en-us/library/ms753327.aspx

	 Chapter 2  Object Elements and Attributes    25

Table 2-1  Key Features Introduced by the XAML (:x) Namespace.

Attribute Description

x:Class A mandatory attribute that joins different pieces of a partial class to-
gether. Valid syntax for this is x:Class=”namespace.classname” and
x:Class=”namespace.classname;assembly=assemblyname”. The XAML page
generates code for a partial portion of the class, which then combines with
the rest of the class code, which is a partial class file in the code-behind. If you
revisit the earlier code snippet, you will notice that the x:Class is automatically
defined in the XAML file in the root element—which is also the name of the
automatically generated code-behind partial-class file (C# or VB .NET—based
on your language preference settings in Visual Studio).
So for the WPF application example—WpfApplication1, the code-behind file
for the MainWindow.xaml file is MainWindow.xaml.cs, which is defined in the
root element of the MainWindow.xaml file as shown here:
<Window x:Class=”WpfApplication1.MainWindow” … >
 …
</Window>

x:Key Provides a unique identifier for resources defined in XAML. These identifiers
are vital for referencing resources via markup extensions. Identifiers must
begin with a letter or an underscore and can contain only letters, digits, and
the underscore character. You will see more information about how to use this
attribute in Chapter 5, “Resources, Styles, and Triggers.”

x:Name Provides a way to give an identifier to an object element in XAML for ac-
cessing via the code-behind. This is not appropriate for use with resources.
(Use x:Key instead.) Many XAML elements have a Name property also, and
although Name and x:Name can be used interchangeably, only one should
be set at a time. Identifiers must begin with a letter or an underscore and can
contain only letters, digits, and the underscore.

x:Null This attribute corresponds to null in C# (or Nothing in VB .NET). You can it use
as a markup extension ({x:Null}) or through a property element (<x:Null/>).

Warning  As described in this MSDN article (http://msdn.microsoft.com/en-us/library/
cc917841.aspx), the Silverlight XAML parser supports only x:Class, x:Key, x:Name, and x:Null. In
contrast, the WPF XAML parser supports additional attributes such as x:Array, x:Code, x:Type,
x:ClassModifier, x:FieldModifier, and x:Uid. Visit this MSDN page (http://msdn.microsoft.com/
en-us/library/ms753327.aspx) for more information about these attributes.

Additional Namespaces for Silverlight Applications
In addition to the default WPF and XAML language (x:) namespaces, you will see two additional
namespaces defined in Silverlight applications within the root element.

The Designer (d:) Namespace  The first additional namespace is the d: namespace, which enables
support for design time features in Visual Studio and Expression Blend.

xmlns:d="http://schemas.microsoft.com/expression/blend/2008"

The XAML designer namespace d: for Silverlight contains design-time attributes that apply only
while you are designing the application. The attributes provide designers and developers with
design-time control while using the Microsoft Visual Studio and Expression Blend design surface.

http://msdn.microsoft.com/en-us/library/cc917841.aspx
http://msdn.microsoft.com/en-us/library/cc917841.aspx
http://msdn.microsoft.com/en-us/library/ms753327.aspx
http://msdn.microsoft.com/en-us/library/ms753327.aspx

26   Part 1  XAML Basics

The d:DesignHeight and d:DesignWidth attributes control the height and width of the Silverlight
user control at design time without affecting the height and width of the application at runtime.

It’s very useful to be able to use a set of sample data to populate your application interface
at design time so that designers can see and test how the user controls and the applications will
behave using representative data values. The designer namespace provides a set of attributes that
you can use with data-bound user controls to bind them to sample data at design time. At runtime,
the controls use the DataContext to set the data source; at design time, the d:DataContext attribute
defines the data context. Similarly, the d:DesignSource attribute defines the design-time data source.

Among other attributes that function as part of the d:DataContext and d:DataSource declaration,
the d:DesignData attribute defines the XAML file used as a sample data file, and d:DesignInstance
defines the type using a d:type attribute, used as a data source to bind with the controls. You can
use d:IsDesignTimeCreatable to specify whether the designer should be able to create an instance
of your type or create a designer-generated substitute type. The d:CreateList attribute, part of the
d:DesignInstance markup extension, specifies that the design instance is a list of the specified type
when it has a value of true.

More Info  For additional information on the design of d: namespace attributes, see this
MSDN link: http://msdn.microsoft.com/en-us/library/ff602277.aspx. For an example of how
to use sample data for the Silverlight application at design time, see http://msdn.microsoft.
com/en-us/library/ff602279.aspx.

The Markup Compatibility (mc:) Namespace  The second additional namespace, mc:, supports
markup compatibility mode for reading XAML.

xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"

The mc:Ignorable attribute specifies which XML namespaces defined in a markup file the XAML parser
should ignore at runtime. For example, the mc:Ignorable attribute is associated with the d: designer
namespace for Silverlight and WF applications. In the earlier Silverlight application and WF activity
examples, it’s set to the d prefix of the designer namespace within the root element by default. The
attribute specifies that the XAML parser should ignore all the design-time attributes at runtime.

You can also use the mc:ProcessContent attribute to inform the parser about element content that
it should process at runtime—even if that element’s immediate parent is set to be ignored at runtime
because of an mc:Ignorable attribute.

More Info  For additional reference material on the markup compatibility mc: attribute, see
this MSDN page: http://msdn.microsoft.com/en-us/library/aa348909.aspx.

 The Silverlight SDK (sdk:) Namespace  The Silverlight Software Development Kit (SDK) provides
extended capabilities for developing Silverlight applications. It includes a set of additional controls,

http://msdn.microsoft.com/en-us/library/ff602277.aspx
http://msdn.microsoft.com/en-us/library/ff602279.aspx
http://msdn.microsoft.com/en-us/library/ff602279.aspx
http://msdn.microsoft.com/en-us/library/aa348909.aspx

	 Chapter 2  Object Elements and Attributes    27

including DataGrid, DatePicker, and Calendar, as well as additional .NET Framework libraries such as
System.Xml.Linq.dll.

Silverlight version 4 or later support the XmlnsDefinition attribute, which declares the namespaces
for custom assemblies. This lets you declare the Silverlight SDK using a URI format rather than a
string token (the syntax that consists of a CLR namespace and the required assembly information).
If you add any controls from the Silverlight SDK library, Visual Studio adds the following additional
Silverlight SDK namespace (sdk:) to the root element of that XAML file automatically:

xmlns:sdk ="http://schemas.microsoft.com/winfx/2006/xaml/presentation/sdk"

The Silverlight Toolkit (toolkit:) Namespace  The Silverlight Toolkit provides even more Silverlight
controls, such as DockPanel, WrapPanel, DataForm, Label, and related source code and themes that
support Visual Studio 2010 and .NET 4.0. The Silverlight controls part of the toolkit uses open-source
licensing.

With Silverlight version 4 or later, when you use any controls from the Silverlight toolkit, Visual
Studio adds the following additional Silverlight toolkit namespace (toolkit:) to the root element of that
XAML file automatically:

xmlns:toolkit ="http://schemas.microsoft.com/winfx/2006/xaml/presentation/toolkit"

Additional Namespaces for WF Activities Application
You have already seen that the WF activity designer needs a reference to the ActivityDesigner class
namespace, referenced with the sap: prefix. A Windows Workflow Activity Designer application also
contains the Designer (d:) and Markup Compatibility (mc:) namespaces by default, just like Silverlight
applications. The additional namespace is described here.

The System.Activities.Presentation.View (sapv:) Namespace 

xmlns:sapv="clr-namespace:System.Activities.Presentation.View;
 assembly=System.Activities.Presentation"

Adding a reference to the sapv: namespace lets developers create view elements and provides
access to commands and view state, user selections, and the ExpressionTextBox control. The
ExpressionTextBox is a XAML control that lets users edit expressions in an activity designer.

Default User Interface Element
You may have noticed the presence of a Grid element in the example WPF, Silverlight, and WF XAML
files shown earlier. The Grid element is a layout control; in fact, it’s the default UI element that appears
within the root element of MainWindow.xaml, MainPage.xaml, and ActivityDesigner1.xaml file.

<Grid … >
 XAML code goes here
</Grid>

28   Part 1  XAML Basics

One XAML rule is that you can have only one UI element for each XAML file. However, as you will
see in the examples in this chapter and throughout this book, the Grid-type layout user control can
contain multiple child elements, so you can use it as a base layout control for building complex and
rich user interfaces.

Introducing the XAML Presentation Framework

The System.Windows namespace provides a wide set of feature-rich WPF and Silverlight presentation
framework classes.

WPF and Silverlight Presentation Framework
As discussed earlier, the WPF and Silverlight .NET Framework libraries are not exactly the same. WPF
provides full-featured .NET Framework 4.0 libraries to support the development of rich and interac-
tive client applications using XAML as a presentation layer. You need to install the full .NET Frame-
work and WPF application and related components and services on the target computer to run any
WPF application successfully. As a result, WPF applications have full control of and can integrate with
machine resources and other installed application components. However, this requirement introduces
a restriction: you can run WPF applications only on the Windows platform. (WPF applications cannot
run on Mac OS or Linux.)

In contrast, the Silverlight .NET Framework is a lightweight subset of the WPF libraries. It
also contains lightweight .NET Framework libraries that support the development of media-rich
applications that run in a sandboxed environment. This small package makes Silverlight a suitable
cross-platform, application-delivery environment, which users can run by installing a Silverlight
plug-in for their particular operating system, including Windows, Mac, and Linux.

Figure 2-1 shows the presentation framework objects hierarchy for WPF applications.

System.Object

System.Windows.Threading.DispatcherObject

System.Windows.DependencyObject

System.Windows.Media.Visual

System.Windows.UIElement

System.Windows.FrameworkElement

System.Windows.Controls

System.Windows.Themes
System.Windows.Shapes
System.Windows.Interop
System.Windows.Documents

Figure 2-1  WPF Presentation framework object hierarchy.

	 Chapter 2  Object Elements and Attributes    29

Figure 2-2 shows the presentation framework object hierarchy for Silverlight applications.

System.Object

System.Windows.DependencyObject

System.Windows.UIElement

System.Windows.FrameworkElement

System.Windows.Controls

System.Windows.Shapes
System.Windows.Documents

Figure 2-2  Silverlight presentation framework objects hierarchy.

As you can see from Figures 2-1 and 2-2, both the WPF and Silverlight presentation frameworks
derive from the System.Windows.DependencyObject class. The DependencyObject class is responsible
for providing property system services. The property system processes the values of object properties
(with the support of GetValue and SetValue) and also provides notification services when property
values change. You’ll see more about this class and the dependency property system later in this
chapter and in Chapter 3, “XAML Properties and Events,” which discusses attributes and properties.

The System.Windows.UIElement class derives from DependencyObject. It functions as a base class
for object elements that can appear or be interacted with in a user interface. It handles keyboard,
mouse, and stylus input; provides focus support; and provides basic layout support for building an
interactive and animated visual representation of the application.

The UIElement class is part of the PresentationCore.dll assembly of .NET Framework 4 for WPF
applications. In contrast, in the Silverlight .NET Framework, the UIElement class is included in the
System.Windows.dll.

The System.Windows.FrameworkElement class derives from System.Windows.UIElement. It extends
the layout support, data binding capabilities, and adds the ability to build a logical tree of object
elements. It also provides object-lifetime events, and defines the Style property, which you can use
with the Control and ContentControl classes.

Revisit Figures 2-1 and 2-2 and you will notice that some key XAML UI object element classes—
such as System.Windows.Controls, System.Windows.Documents, and System.Windows.Shapes—are
common for WPF and Silverlight platforms, whereas System.Windows.Interop and System.Windows.
Themes are available only to the WPF platform.

The System.Windows.Controls.Control class is the base class for the majority of object elements/
controls in the complete WPF and Silverlight control set. It uses a ControlTemplate to define the
appearance of the control. This class provides properties to set the background and foreground colors
of a control, configure the appearance of text within the control, and enable control templating. You
will learn more about styles and templating in Chapter 5.

With this basic understanding of the building blocks of the WPF and Silverlight presentation framework, the
next step is to understand how to define object elements in XAML to build a user interface.

30   Part 1  XAML Basics

Defining User Interfaces with XAML
To begin building a user interface in XAML, Figure 2-3 shows a basic example Silverlight application
that lets users enter an email address and vote for their favorite vacation location.

Vote for your favorite vacation location

Your Email Address:

vacation location:

Vote

Hawaii
Switzerland
Italy

Figure 2-3  Sample XAML-based screen output.

The following XAML code snippet creates the UI shown in Figure 2-3:

<UserControl x:Class="SilverlightApplication1.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d"
 d:DesignHeight="300" d:DesignWidth="400">
 <Grid
 x:Name="LayoutRoot"
 Background="White"
 Height="250"
 Width="350">

 <Grid.Resources>
 <Style
 x:Key="HeaderFontStyle"
 TargetType="TextBlock">
 <Setter
 Property="FontFamily"
 Value="Times New Roman"/>
 <Setter
 Property="FontSize"
 Value="20"/>
 </Style>
 <Style
 x:Key="LabelFontStyle"
 TargetType="TextBlock">
 <Setter
 Property="FontFamily"
 Value="Arial"/>
 <Setter
 Property="FontSize"
 Value="14"/>
 </Style>
 </Grid.Resources>

 <Grid.RowDefinitions>
 <RowDefinition Height="35"/>

	 Chapter 2  Object Elements and Attributes    31

 <RowDefinition Height="35"/>
 <RowDefinition Height="Auto"/>
 <RowDefinition Height="Auto"/>
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto"/>
 <ColumnDefinition/>
 </Grid.ColumnDefinitions>

 <TextBlock HorizontalAlignment="Center"
 Text="Vote for your favorite vacation location"
 Grid.Column="0"
 Grid.Row="0"
 Grid.ColumnSpan="2"
 Margin="5"
 Style="{StaticResource HeaderFontStyle}"/>
 <TextBlock VerticalAlignment="Top"
 HorizontalAlignment="Right"
 Grid.Column="0"
 Grid.Row="1"
 Margin="5"
 Style="{StaticResource LabelFontStyle}">
 Your Email Address:</TextBlock>
 <TextBox VerticalAlignment="Top"
 Grid.Column="1"
 Grid.Row="1"
 Margin="5"/>
 <TextBlock VerticalAlignment="Top"
 HorizontalAlignment="Right"
 Grid.Column="0"
 Grid.Row="2"
 Margin="5"
 Style="{StaticResource LabelFontStyle}">
 vacation location:</TextBlock>
 <StackPanel
 Grid.Column="1"
 Grid.Row="2"
 Margin="5">
 <RadioButton x:Name="radioButton1"
 GroupName="group1"
 Content="Hawaii"/>
 <RadioButton x:Name="radioButton2"
 GroupName="group1"
 Content="Switzerland"/>
 <RadioButton x:Name="radioButton3"
 GroupName="group1"
 Content="Italy"/>
 </StackPanel>
 <Button Content="Vote"
 Grid.Column="1"
 Grid.Row="3"
 Width="100"
 Margin="10"
 HorizontalAlignment="Left"
 Click="Button_Click"/>
 </Grid>
</UserControl>

32   Part 1  XAML Basics

That’s a lot of code for such a simple application. As you can see, the XAML is a standard XML file,
but one with a specific structure as defined in Figure 2-4.

<UserControl x:Class="SilverlightApplication1.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d"
 d:DesignHeight="300" d:DesignWidth="400">

<Grid
 x:Name="LayoutRoot"
 Background="White"
 Height="250"
 Width="350">

<Grid.Resources>
 <Style
 x:Key="HeaderFontStyle"
 TargetType="TextBlock">
 <Setter
 Property="FontFamily"
 Value="Times New Roman"/>
 <Setter
 Property="FontSize"
 Value="20"/>
 </Style>
 …….
</Grid.Resources>

<Grid.RowDefinitions>
 <RowDefinition Height="35"/>
 ….
</Grid.RowDefinitions>
<Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto"/>
 …..
</Grid.ColumnDefinitions>

<TextBlock HorizontalAlignment="Center"
 Text="Vote for your favorite vacation location"
 Grid.Column="0"
 Grid.Row="0"
 Grid.ColumnSpan="2"
 Margin="5"
 Style="{StaticResource HeaderFontStyle}"/>
 ……
</Grid>

</UserControl>

Root Element

Root Layout
Control

Static Resource
Dictionary

Grid Layout Control
Definition
(Rows and Columns
Definition)

Additional XAML
controls
Defining User
Interface

Figure 2-4  XAML structure.

	 Chapter 2  Object Elements and Attributes    33

Here’s a quick breakdown of the various sections within the XAML file shown in Figure 2-4:

■■ The XAML file starts with a root element, which is UserControl for Silverlight and Window for
WPF applications.

■■ Each XAML element must contain only a single node within the root element. However,
you can include multiple child nodes within that single node to build the user interface. To
meet this requirement, you will usually have a XAML layout control element (the Grid object
element in this example) as the root node. Beneath that, you build a hierarchical tree of object
elements. See Chapter 6, “Layout and Positioning System,” to gain a more detailed
understanding of the different layout and positioning controls available.

■■ To maintain consistency when setting up object element attributes, you can define static
resources (which are similar to the Cascading Style Sheet (CSS) classes used in HTML), in a
XAML file. In Figure 2-4, the static resources are defined at the Grid control-level scope, and
define a font style. Using defined styles for object elements simplifies your code and helps
keep such things as font attributes consistent across controls.

Revisit the App.xaml file for WPF and Silverlight applications. You can define application-level
resources within the Application.Resources element.

More Info  See Chapter 5 for a more detailed understanding of resources and
styles. Note that defining styles and resources is optional.

■■ Depending on the type of the layout control you use, you may need to define additional
attributes for the layout control to determine its scope. For the Grid layout control, for
example, you need to define the number of rows and columns in the grid, and its Height and
Weight attributes. Again, the exact attributes you need to define depend on the layout control
used and your application requirements. As an example, you do not need to define any
additional attributes if you use a Canvas layout control.

■■ Layout controls can contain nested child object elements. This example includes several nested
object elements as children of the Grid layout control that define the user interface, including
TextBlock, TextBox, StackPanel, RadioButton, and Button controls. You’ll see more about these
controls later in this chapter.

The controls used in this example are common for both Silverlight and WPF. However, the root
elements for the two platforms are different. To test this, you can copy the XAML code for the
UserControl element in this Silverlight example and paste it into the Window root element of
the WPF application default XAML file. When you compile the application, you will see a user
interface similar to that shown in Figure 2-3, but it runs as a WPF desktop application rather in
a browser like the Silverlight example.

From the preceding explanations and the structure presented in Figure 2-4, you can deduce that:

■■ A XAML file consists of series of structured object elements (controls), which are defined and
declared as namespace within the root element.

34   Part 1  XAML Basics

■■ Each object element contains a set of attributes. By defining these attributes you can control
the appearance and content of the control.

■■ The nested structure of the definition of the object elements defines the location of the
control within the user interface layout.

Object Elements
XAML user interface controls are object elements. Each control represents a CLR type defined in the
.NET presentation framework library (primarily derived directly or indirectly from the FrameworkElement
class). In XAML, you declare these controls through the default namespace or as a custom assembly. (The
reference library is actually mapped through the namespace declaration.)

As you saw earlier, the object element syntax is similar to any other standard XML element. You
write these object elements in one of the following ways. When an element has no content, only
attributes, you can use the empty element syntax, which requires only one tag that ends with a
forward slash and the closing bracket:

Empty Element Tag Syntax:

<ObjectElementName … />

As another example, here’s a TextBox element that uses the empty element tag syntax:

<TextBox … />

Alternatively, you can use separate opening and closing tags.

Open/Close Tag Syntax:

<ObjectElementName … >
 …
</ObjectElementName>

When an element has content (not just attributes), you must use the open/close tag syntax.
The following TextBlock element example uses separate open and close tags, enclosing its content
between the tags:

<TextBlock … >
 Your Email Address:
</TextBlock>

An element may contain child elements rather than content between its tags. The following StackPanel
example uses separate opening and closing tags and contains RadioButton elements as child elements
between the tags:

<StackPanel … >
 <RadioButton … />
 <RadioButton … />
 <RadioButton … />
</StackPanel>

If you revisit Figure 2-4, you’ll notice that the XAML file contains only valid elements in a hierarchical
structure that follows the definition of the namespaces within the XAML file. As mentioned earlier,

	 Chapter 2  Object Elements and Attributes    35

the namespaces also allow the XAML instance to interact with .NET Framework libraries and custom
assemblies at runtime.

XAML elements in a XAML file must follow a defined hierarchical order to create a qualified,
well-formed XAML file that will compile, render, and function properly at runtime. When XAML is
compiled and parsed at runtime, the result is an object tree with a UserControl object as its root for
Silverlight applications, or a Window object as the root for WPF applications.

Visual Studio provides a view of the object logical tree through the Document Outline feature at
design time. Figure 2-5 shows the Document Outline window (the left-hand window in the figure),
displaying the object tree for the example application shown in Figure 2-3.

Figure 2-5  Design Time XAML objects tree view as Document Outline window within Visual Studio 2010.

Object Element Properties
Just as the XAML parser maps XAML namespaces to CLR namespaces and assemblies, and object
elements to CLR types, it maps object element attributes to properties or events.

In addition, you can reference attached properties and routed events (also called attached events)
that are attached to an element using the attribute syntax. Attached properties and routed events
are not declared in the mapped CLR type for an object element; they’re specific to XAML. Chapter 3,
discusses attached properties and routed events in more detail.

You can set object element properties in any of the following four ways:

■■ Attribute Syntax

■■ Property Element Syntax

36   Part 1  XAML Basics

■■ Content Element Syntax

■■ Collection Syntax

Attribute Syntax  The syntax for setting object element attributes is similar to any other standard
XML element. You include XAML element attributes within the start tag to define mapped properties
or events using this syntax:

<ObjectElementName AttributeName="Value" EventName="Value" … />

Note that you place attributes in the opening tag even for elements that have both open and close
tags:

<ObjectElementName AttributeName="Value" EventName="Value" … />
 …
</ObjectElementName>

There are a few ground rules for setting up attributes and their values that are mapped to object
properties and events:

■■ To set properties using the attribute syntax within XAML, the mapped CLR-type properties
must be defined as public and must be writable.

■■ To set events using the attributes syntax within XAML, the mapped CLR-type events must be
public and must have a public delegate.

■■ Object elements can contain zero or more valid attributes and events.

■■ All required attributes must be defined within the start tag of the object element.

■■ Attribute values must be a string representation of the value type.

■■ Attributes must be separated by white space (not by commas).

The Grid and TextBlock elements from the earlier example illustrate the different types of attributes.

<TextBlock HorizontalAlignment="Center"

<Grid

.....
</Grid>

x:Name="Layout Root"
Background="White"
Height="250"
Width="350">

Text="Vote for your favorite vacation location"
Grid.Column="0"
Grid.Row="0"
Grid.ColumnSpan="2"
Margin="5"
Style="{StaticResource HeaderFontStyle}"/>

.....

Type Converted Attribute

Direct String Value

Attached Property

Markup Extension

As you can see in the preceding image, you can define attribute names in two ways:

	 Chapter 2  Object Elements and Attributes    37

1.	 Define just the property name. Background, Height, and Width are defined directly as
attributes for the Grid object. This means that the Grid object exposes these properties as
both public and writable. The Text, Margin, and Style for the TextBlock element object are
defined similarly.

2.	 Define as attached properties. The Grid.Row, Grid.Column, and Grid.ColumnSpan properties
set within the TextBlock element define the row and column of the parent Grid object in which
the TextBlock element will appear. These properties are defined as attached properties for the
Grid object and can be set within other child elements. This feature is specific to XAML; it’s not
a feature of standard XML files.

More Info  See Chapter 3 for more about attached properties.

Attribute values are always strings, but as you can see in the preceding example, the XAML parser
parses these values in three ways, based on the property type and the way you define the string value
of the property:

Markup extension  A markup extension is a special syntax used to specify property values that
require interpretation. The interpretation itself depends on which markup extension is used. A markup
extension uses this syntax: { (opening curly brace), followed by the markup extension name, optionally
followed by parameters to the markup extension, and ending with } (a closing curly brace). Markup
extensions are specific to XAML, enabling resources, data binding, and template binding.

This example uses a markup extension to bind the TextBlock element’s Style property to defined
static resource named HeaderFontStyle:
<TextBlock …
 Style={StaticResource HeaderFontStyle}/>

Type converter  Some properties require a specific type of object rather than a simple string
value. This feature is specific to XAML. Based on the property type, the XAML parser must
determine how to convert the string representation to a new object instance. You declare this
property with an attribute TypeConverter for the XAML parser to parse the value properly.

In our example, we have set the Background property of the Grid object element to “White”. In
XAML, the Background property is of Brush object type. So here the XAML parser will create a
SolidColorBrush object instance to set the background with the solid white color.

You can explicitly define TypeConverter attributed properties using property element syntax rather
than attribute syntax, as discussed in the next section.

Direct conversion  The XAML parser converts string representations of property values that are
not markup extensions or type-converted directly to the property type value or to appropriate
enumeration values.

In the example, the Grid object element has x:Name, Height, and Width properties. The TextBlock
object element has Text and Margin properties—all are examples of direct conversion.

38   Part 1  XAML Basics

The next logical question is: How does the XAML parser determine and prioritize the processing
of an attribute value? As shown in Figure 2-6, markup extensions (either the attribute value starts
with an opening curly bracket, or the object element is derived from MarkupExtension) get the
highest priority. When a property is not a markup extension, the next priority is to check whether the
attribute value requires type conversion; if so, the parser performs the appropriate type conversion.
Finally, the XAML parser performs direct string conversions.

XAML
Parser

<ObjectElement
 AttributeName=”AttributeValue” ... />

Markup Extension

Type Conversion

Direct Conversion

XAML

Attribute Value Processing Order

Figure 2-6  Precedence for processing attribute value.

To set events using the attributes syntax within XAML, the mapped CLR-type events must be public
and must have a public delegate. As shown in the following example, the Button control object has
a public Click event, which is set as a Button_Click declaratively, using attribute syntax. When a user
clicks the button, the application will call the code-behind class’s Button_Click method.

<Button Content="Vote"
 Grid.Column="1"
 Grid.Row="3"
 Width="100"
 Margin="10"
 HorizontalAlignment="Left"
 Click=”Button_Click”/>

The attribute syntax also supports keyboard and mouse events, called routed events (attached events).
The following example shows the MouseLeftButtonDown event set as Grid_MouseLeftButtonDown for the
Grid element:

<Grid
 x:Name="LayoutRoot"
 Background="White"
 Height="250"
 Width="350"
 MouseLeftButtonDown=”Grid_MouseLeftButtonDown”>

You will learn more about events and routed events in Chapter 3.

	 Chapter 2  Object Elements and Attributes    39

Property Element Syntax  You can set properties using property element syntax, where you
represent a property using the object element–like syntax shown here:

<ObjectElementName … >
 <ParentObjectElementName.PropertyName>
 Value
 </ParentObjectElementName.PropertyName>
</ObjectElementName>

or
<ObjectElementName … >
 <ParentObjectElementName.PropertyName>
 <ObjectElementName AttributeName="Value"/>
 </ParentObjectElementName.PropertyName>
</ObjectElementName>

or

<ObjectElementName … >
 <ParentObjectElementName.PropertyName>
 <ObjectElementName … >
 <ObjectElementName AttributeName="Value"/>
 …
 </ObjectElementName>
 </ParentObjectElementName.PropertyName>
</ObjectElementName>

Earlier you saw how to set the type-converted Grid Background property to White using attribute syntax:

<Grid
 x:Name="LayoutRoot"
 Background=”White”
 Height="250"
 Width="350">

In XAML, the Background property is actually a Brush object type, so the XAML parser creates a
SolidColorBrush object instance to set the background to a solid white color. You could define this
property using property element syntax instead, in one of the following ways:

<Grid … >
 <Grid.Background>
 White
 </Grid.Background>
</Grid>

or

<Grid … >
 <Grid.Background>
 <SolidColorBrush Color=”White”/>
 </Grid.Background>
</Grid>

The first approach still uses the Background property as a type-converted property; again, the
XAML parser will create a SolidColorBrush to set the background color. In contrast, the second

40   Part 1  XAML Basics

approach explicitly sets the Background property to a SolidColorBrush, creating that as a child element
of the Background property and setting its Color property to White using attribute syntax.

There are a few ground rules for setting up object element properties using property syntax:

■■ Properties that can be set up using attribute syntax can also be set up using the property
element syntax.

■■ When using property syntax, the XML element used as the property value must be a child
element of the object element.

■■ The property element name must be in the format ParentObjectElementName.PropertyName,
where ParentObjectElementName is the name of the parent object element (Grid in the
example) and PropertyName is the name of the property (Background in this example) that
you want to set for the parent object. ParentObjectElementName and PropertyName must
appear as a single term, separated by a period (.).

Note that in standard XML, a term such as ParentObjectElementName.PropertyName is
treated as a single element name containing a period (.), whereas the XAML parser treats the
period as a separator between the object name and its property name.

■■ The property object element must not contain any other properties as an attribute.

Content Element Syntax  If the object property is declared as a ContentPropertyAttribute, which is
usually of type string, you can set it using content element syntax, where the content (the property
value) appears between the object element’s opening and closing tags as shown here:

<ObjectElementName>
 value
</ObjectElementName>

or

<ObjectElementName … >
 value
</ObjectElementName>

The example sets the Text property of the TextBlock object element using content element syntax:

<TextBlock VerticalAlignment="Top"
 HorizontalAlignment="Right"
 Grid.Column="0"
 Grid.Row="1"
 Margin="5"
 Style="{StaticResource LabelFontStyle}">
 Your Email Address:
</TextBlock>

Note that although content element syntax is supported in WPF and Silverlight version 4 and later,
it is not supported in the earlier Silverlight 2 and 3 versions.

	 Chapter 2  Object Elements and Attributes    41

Collection Element Syntax  When a property type implements IList, IDictionary, or an Array-type
collection, you use the collection element syntax to define a collection of one or more object ele-
ments as child elements:

<Grid.RowDefinitions>
 <RowDefinition Height="35"/>
 <RowDefinition Height="35"/>
 <RowDefinition Height="Auto"/>
 <RowDefinition Height="Auto"/>
</Grid.RowDefinitions>

In the preceding example the RowDefinitions property of the Grid object implements RowDefi-
nitionCollection, which contains one or more RowDefinition object elements, defined above as child
elements.

Similarly, in the full example, Grid.ColumnDefinitions, Grid.Resources, StackPanel, and Style use
collection element syntax.

XAML User Interface Controls

As you saw earlier in this chapter, XAML user interface controls are represented in XAML as object
elements. Each object element represents a CLR type, defined in the .NET presentation Framework
library (mainly derived directly or indirectly from the FrameworkElement class, which is declared in
XAML in the default namespace) or a custom assembly (mapped through a namespace declaration).

The .NET presentation framework library provides a standard set of rich XAML user interface
controls. These are mainly derived from System.Windows.Controls, System.Windows.Documents, and
System.Windows.Shapes classes, and are common to both WPF and Silverlight platforms. In contrast,
Windows.Interop and System.Windows.Themes are available only to the WPF platform.

It’s worth emphasizing the point that Silverlight is a subset of WPF. There are substantial
differences in the total number of standard controls available for WPF and Silverlight and in their
features. Some controls are common to both WPF and Silverlight; others are unique controls available
only in one platform or the other.

Based on the features and functionality these controls provide, you can group them into six cat-
egories, which can help you understand them in an organized way:

■■ Layout and positioning controls

■■ Form controls

■■ Functional controls

■■ Image and media controls

■■ Graphics and animation controls

■■ Data-handling and information-management controls

42   Part 1  XAML Basics

Note that these are not official Microsoft categories; they’re simply a logical grouping based on
control features and functionality. Other authors and experts might equally well group these standard
controls into different categories.

Layout and Positioning Controls
System.Windows.Controls.Panel is a base class that provides a set of layout and positioning controls
that range from the very basic to advanced. These controls act as a main or sub container for group
of user controls so that you can arrange them in specific positions and in a particular order to build a
meaningful user interface.

As shown in Figure 2-7, Canvas, StackPanel, Primitives.TabPanel, and Grid are key layout and
positioning controls for Silverlight and WPF. Figure 2-8 shows DockPanel, WrapPanel, and Primitives.
ToolBarOverflowPanel, which are additional standard controls for WPF only. Note that WrapPanel
and DockPanel controls are present in the Silverlight toolkit, and these controls will be included as
standard Silverlight controls in future releases.

More Info  See Chapter 6 for more detailed information and examples on layout and posi-
tioning controls.

Form Controls
Handling and processing user input is a basic requirement of all Windows and web applications.
Microsoft provides a rich set of standard XAML controls that support a variety of user input and
interactions, including:

■■ The TextBox, RichTextBox, AutoCompleteBox, and PasswordBox controls in Silverlight, and the
TextBox, RichTextBox, PasswordBox, and StickyNoteControl controls in WPF handle and process
text input.

■■ SpellCheck and SpellingError provide a real-time spelling checker and spelling error notification
scheme for text-editing controls such as TextBox and RichTextBox control. At the time of this
writing, the spelling check and spelling error indication features are available only for WPF
applications.

■■ Calendar and DatePicker controls handle date-related input in a user-friendly fashion,
providing a consistent user experience for displaying and selecting calendar-related
information. Silverlight SDK includes these controls for the Silverlight platform.

■■ Button, RepeatButton, CalendarButton, and CalendarDayButton are a common set of
button controls that provide basic as well as specialized features (such as a CalendarButton
that displays a calendar within the button) for building rich and interactive UI in WPF and
Silverlight applications with little effort. Silverlight provides an additional HyperlinkButton
button that displays a hyperlink within the button control.

	 Chapter 2  Object Elements and Attributes    43

■■ ToggleButton is a base class for CheckBox and RadioButton controls, which basically switch
from one state to another (checked, unchecked, and indeterminate), letting you provide
multiple ways to select individual items and choose an item from a group (RadioButton).

More Info  See Chapter 7, “Form and Functional Controls,” for more detail about form
controls.

Functional Controls
Functional controls provide a different set of features that make the user interface cleaner and more
usable; control and monitor an application’s behavior; and interact with file systems to access and
save files, print information and content, and generate custom child windows.

Making the User Interface Cleaner and More Usable
You can use the same types of techniques you have probably been using in your Windows Forms
and/or ASP .NET applications, but using XAML lets you do so in a more manageable and controlled
way. Here are some examples:

■■ You can associate a Label control with any control to display related text. This control exposes
different features in WPF and Silverlight applications. In WPF you can associate an access key with
the label text. Such an association is not available in Silverlight, but you can use the label as a
validator for the control (for example, if the associated control is a required field). The Label control
in Silverlight is available as part of the Silverlight toolkit. If you do not need an access key for WPF
or validation for Silverlight, you can use a TextBlock control instead, described next.

■■ The TextBlock control, arguably one of the most-used controls in XAML, is like a label in that
it displays non-editable text. Unlike Label, it has extended features that provide rich text
formatting using inline elements such as Bold, LineBreak, Underline, and Italic.

■■ Use the Border control to create a border that may include a special background to surround
the content.

■■ The PopUp control displays content in a pop-up window. When used correctly, it can
significantly improve the usability of your applications. You can use the PopUp control along
with a group of other controls to create a right click–enabled shortcut menu in Silverlight.

■■ The ToolBarPanel (for WPF), creates a toolbar that holds toolbar items.

■■ For WPF applications, you can use the Menu and ContextMenu controls to create a menu
containing a group of items that control event-based features and functionality exposed by
the application and its content.

44   Part 1  XAML Basics

Controlling and Monitoring Application and Content Behavior
It is critical to position and size controls so that they fit properly in the available display area. At the
same time, you want to be able to support oversize content and display information in a usable
manner. It is also important to have a visual control that manages the behavior of the application, the
application’s controls, and the content. WPF and Silverlight provide a set of standard XAML controls
that feature such capabilities.

■■ ScrollBar, ScrollViewer, and Slider controls are useful for displaying oversize content in a
well-managed and controlled fashion. You can set the range of the display as well as manage
slider values to control the behavior of the both the control(s) and their content.

■■ The ProgressBar control provides a visual indication of progress during a lengthy operation or
process.

■■ WPF provides a StatusBar control that can display items and information about the application
itself, an ongoing or available operation, and/or some process status. The StatusBar is a
horizontal bar typically placed at the bottom of an application window. You can include a
ProgressBar control as part of your status bar to show real-time progress.

■■ The Thumb control is a control that users can drag. Thumb controls typically control the
behavior and/or appearance of an application or control. For example, the ScrollBar control is
a combination of two RepeatButton controls and a Thumb control. In the Scrollbar, the Thumb
control represents a current value within the control’s range. Users can drag it in one direction
or another to select a particular value within the defined range.

Dialog Boxes
The ability to display default dialog boxes that interact with the file system and connected devices is
essential for providing a consistent and integrated way of implementing these features in line-of-business
(LoB) applications. In addition, you will need to create custom dialog boxes in a majority of enterprise LoB
applications. WPF and Silverlight both provide support for displaying default dialog boxes—such as an
open or save file dialog box and a print dialog box—and for implementing custom dialog boxes.

■■ The OpenFileDialog, SaveFileDialog, and PrintDialog classes facilitate calling these default modal
dialog boxes from code-behind. Note that the print dialog box implementation differs somewhat
between WPF and Silverlight. The PrintDialog control is part of the Systems.Windows.Controls
library in WPF. In Silverlight, you use the Print method of the System.Windows.Printing namespace
to open a print dialog box.

■■ You use the System.Windows.MessageBox class to show a modal message box window from
code-behind. However, the Silverlight implementation of this class is limited. By default, it creates
an OK button message box. You can customize the title of the window and add a Cancel button to
the window. In contrast, WPF supports both Yes-No and Yes-No-Cancel button options in addition
to OK and OK-Cancel. WPF also supports various message box images (None, Hand, Question,
Exclamation, Asterisk, Stop, Error, Warning, and Information).

	 Chapter 2  Object Elements and Attributes    45

■■ There are separate implementation for WPF (for Windows applications) and Silverlight (for
Web applications) to create custom dialog boxes. In WPF you will have to use the System.
Windows.Window class to create the custom modal window. In Silverlight you will need
to use System.Windows.Controls.ContentControl.ChildWindow class to create the custom
modal windows.

More Info  See Chapter 7 to get more detailed information about functional controls.

Data Handling and Information Management Controls
Data-driven applications require integration with different types of data and external processes and
represent them in different ways. XAML contains a set of controls that support data binding with
different data sources and can display a wide range of data types:

■■ Controls such as ListBox, ComboBox, TabControl, and TreeView present and process lists of items.

■■ The DataGrid control can display and process items in a tabular format, in spreadsheet-like
rows and columns.

■■ The DataForm control displays and processes individual items in a form format.

■■ The DataPager control lets you implement data paging easily so that users can navigate
through large data sets.

■■ To display a summary of validation errors when a user updates data and submits those
changes in a form, you can use the ValidationSummary control.

More Info  See Chapter 8, “Data Binding,” for more detailed information about data
handling and information management controls.

Image and Media Controls
WPF and Silverlight both provide rich support for working with images and media (audio and video).

The Image XAML control lets you place an image on the user interface. You can load and display
several different common formats of image files using this control: The WPF version of the Image con-
trol supports bitmap (.bmp), Graphics Interchange Format (.gif), Joint Photographics Experts Group
(.jpeg), Portable Network Graphics (.png), Tagged Image File Format (.tiff), Microsoft Windows Media
Photo (.wdp), and icon (.ico) formats, whereas the Silverlight 4 version of the Image control supports
only .jpeg and .png format.

The MediaElement control provides a control surface for integrating media (audio and/or video) in
WPF and Silverlight applications.

46   Part 1  XAML Basics

The MultiScaleImage control is available only for Silverlight. This control can render multi-resolution
images, which users can zoom in on and pan across. This control enables Silverlight’s DeepZoom
feature.

More Info  See Chapter 9, “Media, Graphics, and Animation,” for a deeper understanding of
the image and media controls.

Graphics and Animation Controls
Silverlight and WPF development platform are both intended for delivering rich and interactive
applications. Graphics and animations play a vital role in supporting the complex visual effects
required by such applications. Using XAML’s graphic capabilities, brush, and storyboard controls, you
can easily develop 2-D and 3-D graphics and complex animated applications.

XAML’s graphics features make it easy to create interesting surfaces. In addition, both WPF and
Silverlight controls can be completely re-skinned, resized, and transformed to generate complex and
interesting visual effects.

■■ The System.Windows.Shapes.Shape class provides basic shape controls such as Ellipse, Line,
Path, Polygon, Polyline, and Rectangle.

■■ The System.Windows.Media.Geometry class provides even more 2-D geometric shape controls,
including EllipseGeometry, PathGeometry, GeometryGroup, LineGeometry, and RectangleGeometry.

■■ You use transforms to alter an element’s coordinate system; applying a transform to a root
element causes it and all its child content to change appearance in a uniform and predictable
way. The benefit of a transform is that the underlying elements need no knowledge of the
transform—they act as if the coordinate system remains unaltered.

You can use a translation transformation to change the position of an element using
the TranslateTransform class. Other types of transformations, such as RotateTransform,
SkewTransform, ScaleTransform, MatrixTransform, and CompositeTransform implement other
2-D visual effects.

WPF adds support for drawing, transforming, and animating 3-D graphics. The ViewPort3D
element holds 3-D graphics content. You can use a ProjectionCamera to control the projection
of a 3-D model from the point of view of an onlooker, and the PerspectiveCamera to view a
3-D model from its vanishing point. WPF also supports 3-D geometric modeling through the
GeometryModel3D class and the MeshGeometry3D class.

In contrast, Silverlight has much more limited 3-D graphics capabilities. You can use a
perspective transformation through the PlaneProjection class to create 3-D effects in Silverlight 4.

Animation is typically achieved by moving user interface objects over a specific duration along
a particular pattern. If the movement is fast enough, it generates the illusion of motion—an
animated effect. Using the Storyboard class and various types of animation such as From/To/By

	 Chapter 2  Object Elements and Attributes    47

animation classes (ColorAnimation, DoubleAnimation and PointAnimation) and keyframe animation
classes (ColorAnimationUsingKeyFrames, DoubleAnimationUsingKeyFrames, PointAnimation, and
ObjectAnimationUsingKeyFrames), you can produce a wide range of smooth, realistic animations.

More Info  Chapter 9 contains much more detail about the graphics and animation
controls.

Summary

A qualified XAML file is a well-formed and structured XML file that defines the relationships among
various object elements. The XAML parser can render these elements at runtime to create the user in-
terface of several different .NET application types (WPF, Silverlight, and WF). At the time of rendering,
the XAML parser maps XAML namespaces to CLR namespaces and assemblies, it maps object elements
to CLR types, and it maps object element attributes to properties or events.

The .NET presentation Framework library provides a standard set of rich XAML user interface
controls. There are substantial differences in the total number of standard controls available for WPF
and Silverlight and in their features. Although some controls are common to both WPF and Silverlight,
others are unique controls available only in one platform or the other. This chapter provided an
overview of layout and positioning controls, forms and functional controls, image, media, graphics
and animation types controls, and data-handling and information-management controls.

The next chapter, “XAML Properties and Events,” will cover different types of properties and events
you can set for XAML object elements and perform code-behind integration to implement different
types of application features.

		 49

C h apter 3

XAML Properties and Events

In this chapter:

■■ XAML Properties

■■ XAML Events

■■ Summary

As discussed in Chapter 2, “Object Elements and Attributes,” declaring an object element in XAML
maps it to the corresponding CLR type. The process is similar to creating an object instance of that
CLR type by using the default constructor in code-behind. With that said, setting an attribute in an
object element is the equivalent of either setting a property or creating an event handler for that
object in code-behind. In XAML you can also use the attribute syntax to define attached properties
and attached events, which are properties and events not actually defined in the mapped CLR type.

This chapter explores the different types of property and event systems available as part of WPF
and Silverlight frameworks.

XAML Properties

The WPF property system extends the functionality of .NET CLR property and provides plumbing for
the following:

■■ Gaining access to object properties

■■ Processing the values of object properties (with the support of GetValue and SetValue)

■■ Providing notification services when property values change

■■ Defining and mapping resources, styles, and templates

■■ Performing validation and data binding

■■ Implementing animation

50   Part 1  XAML Basics

Dependency Properties
Supported By

WPF Yes

Silverlight Yes

Quick Summary

Definition Extended CLR properties backed by the WPF property system—
DependencyProperty—that can process property values based on
different sources such as data bound values, animation values, template
resources specified in the XAML, styles, or local values. Dependency
properties can also handle property change notifications.

Naming Convention The name of the dependency property field is always the name of the
property with the suffix Property appended. For example, for a Width
dependency property implemented in WPF, the class would have a
dependency property field name of WidthProperty.

Can You Create Custom
Dependency Properties?

Yes

MSDN Reference For WPF: http://msdn.microsoft.com/en-us/library/ms752914.aspx
For Silverlight: http://msdn.microsoft.com/en-us/library/cc265148.aspx

Microsoft .NET Framework 3.0 and later versions provide a system called dependency properties for
the WPF, Silverlight, and WF platforms. Like regular .NET properties, the main focus of dependency
properties is to manage object state by performing property value resolution and property value
change notification. The key difference between regular .NET properties and dependency properties
is that unlike storing a local property value in an instance variable for a regular .NET property, the
dependency property doesn’t store the value locally; instead, it uses the dependency property
framework to determine the property value when required, providing a value change notification
service when the value changes. You register dependency properties along with a defined set of
rules for value resolution and change notification in the central dependency property registration
repository, which is managed by the dependency property framework.

Defining a Dependency Property
You define a dependency property with the DependencyProperty type, using the public static and
readonly identifier keywords. This field is registered to the dependency property system and then
wrapped by a .NET property by defining Get and Set access using the DependencyObject.GetValue
and DependencyObject.SetValue methods.

The WPF and Silverlight property systems are built upon dependency properties. The FontSize
property of the System.Windows.Controls.Control class of WPF and Silverlight framework is an
example of a dependency property, one that you use for many XAML controls. The FontSize property
is defined in the Control class as a dependency property, as shown here:

public static readonly DependencyProperty FontSizeProperty;

The definition of the dependency property follows a specific naming convention. The name
of the field is always the name of the property, with the suffix Property appended—in this case

http://msdn.microsoft.com/en-us/library/ms752914.aspx
http://msdn.microsoft.com/en-us/library/cc265148.aspx

	 Chapter 3  XAML Properties and Events    51

FontSizeProperty. It is then wrapped by a .NET property—in this case the FontSize property—using
the GetValue and SetValue methods to process the dependency property’s value.

public double FontSize
{
 get {
 return (double) this.GetValue(FontSizeProperty);
 }
 set {
 base.SetValue(FontSizeProperty, value);
 }
}

Using this approach, developers can get and set dependency property values exactly as they
do regular .NET properties—but the property still provides all the features and advantages of the
dependency property system. In the following XAML code snippet, the FontSize and Text properties
are dependency properties, set like regular .NET properties.

<TextBlock x:Name="sampletextblock"
 Text="Text goes here..."
 FontSize="12"/>

You can also get and set dependency properties as regular .NET properties in code-behind, as
shown here for the sampletextblock TextBlock control.

//Get Dependency Property in code-behind
sampletextblock_text = sampletextblock.Text;
sampletextblock_fontsize = sampletextblock.FontSize;
//Set Dependency Property in code-behind
sampletextblock.Text = "Text goes here…";
sampletextblock.FontSize = 12;

Two dependency property framework classes—DependencyProperty and DependencyObject—are
critical for implementing the dependency property system in WPF and Silverlight.

The DependencyProperty Class
The System.Windows.DependencyProperty class handles registration of a dependency property
backed by a CLR property. The property value can be set through data binding, with animation
values, or from template resources specified in XAML. The template resource can be defined as styles
or can be defined as local values.

You can retrieve the dependency property identification and other related information using the
following key properties of the DependencyProperty class:

■■ DefaultMetadata  Gets the default metadata for the dependency property.

■■ Name  Gets the name of the dependency property.

■■ OwnerType  Gets the object type, which has either registered with the dependency property
system or added itself as the owner of the property.

■■ PropertyType  Gets the type of dependency property value.

52   Part 1  XAML Basics

■■ ReadOnly  Returns a Boolean true when the dependency property is read-only; otherwise
returns false.

■■ ValidateValueCallback  Gets the value validation callback for the dependency property. It
returns null when the dependency property does not have a registered validation callback.

You can register and define identification, metadata, and dependency property notification using
methods provided by the DependencyProperty class. Some of the key overridden methods are:

■■ AddOwner()  Add an owner for the dependency property.

■■ GetMetadata()  Retrieve metadata for the dependency property.

■■ OverrideMetadata()  Override metadata for the dependency property.

■■ Register()  Register a dependency property.

■■ RegisterReadOnly()  Register a read-only dependency property.

■■ RegisterAttached()  Register a dependency property as an attached property.

■■ RegisterAttachedReadOnly()  Register a dependency property as a read-only attached
property.

Note  See the “Attached Properties” section on page 62 for more information about at-
tached properties.

The DependencyObject Class
The System.Windows.DependencyObject class is a base class. Instances of DependencyObject can
host dependency properties and attached properties. As discussed in Chapter 2, both the WPF
and Silverlight presentation frameworks derive from the DependencyObject class. (See Figure 3-1.)
As a result, the majority of the object elements in XAML for both WPF and Silverlight support
dependency properties.

The DependencyObject class provides GetValue and SetValue methods to get and set dependency
property values and the ClearValue method to reset the dependency property value to its default value.

More Info  Visit MSDN at http://msdn.microsoft.com/en-us/library/system.windows
.dependencyobject.aspx for more information about the DependencyObject class.

Creating a Custom Dependency Property
Microsoft recommends that you create a custom dependency property only when you want to create
a property that can process values that come from different sources, such as data binding, animation,
template resources specified in the XAML, styles, or local values—and when you potentially need to
handle property change notification. If you do not need these features, you should use a custom .NET
property backed by a private field instead.

http://msdn.microsoft.com/en-us/library/system.windows.dependencyobject.aspx
http://msdn.microsoft.com/en-us/library/system.windows.dependencyobject.aspx

	 Chapter 3  XAML Properties and Events    53

System.Object

WPF Presentation Framework Objects Hierarchy

System.Windows.Threading.DispatcherObject

System.Windows.DependencyObject

System.Windows.Media.Visual

System.Windows.UIElement

System.Windows.FrameworkElement

System.Windows.Controls

System.Windows.Themes
System.Windows.Shapes
System.Windows.Interop
System.Windows.Documents

Silverlight Presentation Framework Objects Hierarchy

System.Windows.DependencyObject

System.Windows.UIElement

System.Windows.FrameworkElement

System.Object

System.Windows.Controls

System.Windows.Shapes
System.Windows.Documents

Figure 3-1  WPF and Silverlight presentation framework objects are derived from the DependencyObject.

You need to follow some specific steps to create a custom dependency property.

Step 1−Optional Step
Define Property Metadata

Step 2
Register Dependency Property

Step 3
Define Dependency Property Indentifier

Step 4
Wrap Dependency Property by .NET CLR Property

54   Part 1  XAML Basics

■■ Step 1  This is an optional step. Create dependency property metadata. You’ll see how to do
this in the next example.

■■ Step 2  Register the dependency property name with the dependency property system. You
need to specify an owner type and the type of the property value, and optionally specify
property metadata.

■■ Step 3  Define the DependencyProperty identifier as a public static readonly field in the owner type.

■■ Step 4  Wrap the dependency property with a .NET CLR property using the GetValue and
SetValue methods to process the dependency property’s value.

You can create a custom dependency property within your WPF or Silverlight project’s code-behind file
for any XAML file, or you can create a custom class that inherits from the DependencyObject class.

More Info  See this MSDN page: http://msdn.microsoft.com/en-us/library/ms753358.aspx
for more information on creating custom dependency properties for the WPF platform. See
http://msdn.microsoft.com/en-us/library/cc903933.aspx for information on creating custom
dependency properties for the Silverlight platform.

Create a custom dependency property in the XAML code-behind file  The following example
is a WPF application with the project name WpfApplication1. This example creates a custom depen-
dency property named SSN in the code-behind for the MainWindow.xaml file, in MainWindow.xaml.
cs. The goal of this example is to create a custom dependency property named SSN of type string that
contains the default value 000-00-0000. The code also validates a string in the SSN (Social Security
Number) format using a regular expression as part of the custom dependency property change noti-
fication service. After validation it displays a message box when the entered value does not match the
format, and sets the property back to the default value.

Here’s the complete code for that code-behind file. The code in bold text is related to adding the cus-
tom dependency property and setting the data context to bind this property within XAML controls:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Data;
using System.Windows.Documents;
using System.Windows.Input;
using System.Windows.Media;
using System.Windows.Media.Imaging;
using System.Windows.Navigation;
using System.Windows.Shapes;
using System.Text.RegularExpressions;

http://msdn.microsoft.com/en-us/library/ms753358.aspx
http://msdn.microsoft.com/en-us/library/cc903933.aspx

	 Chapter 3  XAML Properties and Events    55

namespace WpfApplication1
{
 /// <summary>
 /// Interaction logic for MainWindow.xaml
 /// </summary>
 public partial class MainWindow : Window
 {
 //Define and Register SSN Custom Dependency Property
 public static readonly DependencyProperty SSNProperty =
 DependencyProperty.Register(
 "SSN", typeof(string), typeof(MainWindow),
 new PropertyMetadata(
 "000-00-0000",
 new PropertyChangedCallback(
 MainWindow.OnSSNPropertyChanged)));

 //.NET Wrapper to process SSN custom dependency property
 public string SSN
 {
 get
 {
 return (string)GetValue(SSNProperty);
 }

 set
 {
 SetValue(SSNProperty, value);
 }
 }

 //Property change notification service implementation
 private static void OnSSNPropertyChanged
 (DependencyObject ssnvalue, DependencyPropertyChangedEventArgs e)
 {
 if (!Regex.IsMatch
 ((string)ssnvalue.GetValue(e.Property), @"^\d{3}-\d{2}-\d{4}$"))
 { MessageBox.Show("Not valid SSN");
 ssnvalue.SetValue(e.Property, "000-00-0000");
 }
 }

 public MainWindow()
 {
 InitializeComponent();
 DataContext = this;
 }
 }
}

The preceding code defines a custom SSN property within the code-behind file, above the
MainWindow class constructor.

Following the required steps shown earlier, the code first defines the metadata—setting the
default value to 000-00-000—which helps end users understand the required format. The code also
defines OnSSNPropertyChanged as the property change method.

56   Part 1  XAML Basics

You can see the DependencyProperty identifier defined as a public static readonly field named
SSNProperty and registered using the DependencyProperty.Register method.

//Define and Register SSN Custom Dependency Property
public static readonly DependencyProperty SSNProperty =
 DependencyProperty.Register(
 "SSN", typeof(string), typeof(MainWindow),
 new PropertyMetadata(
 "000-00-0000",
 new PropertyChangedCallback(
 MainWindow.OnSSNPropertyChanged)));

Later the code wraps the SSNProperty custom dependency property in an SSN .NET property.
Internally, the get and set process the property values using GetValue and SetValue methods, as
shown here:

//.NET Wrapper to process SSN custom dependency property
public string SSN
{
 get
 {
 return (string)GetValue(SSNProperty);
 }
 set
 {
 SetValue(SSNProperty, value);
 }
 }

Caution  Implementing additional business logic in the CLR wrappers for custom
dependency properties will result in inconsistent results when processing dependency
property values. The XAML parser omits additional logic defined in the .NET CLR property
wrapper during get or set operations for custom dependency properties.

Finally the code defines the property change notification service by creating a static method
named OnSSNPropertyChanged. The example uses a regular expression and the IsMatch method
to check the format of the entered SSN property value. For entries that do not match the specified
SSN format, it displays a message box notifying users of the problem, and resets the property to the
default value.

//Property change notification service implementation
private static void OnSSNPropertyChanged
 (DependencyObject ssnvalue, DependencyPropertyChangedEventArgs e)
{
 if (!Regex.IsMatch
 ((string)ssnvalue.GetValue(e.Property), @"^\d{3}-\d{2}-\d{4}$"))
 {
 MessageBox.Show("Not a valid SSN");
 ssnvalue.SetValue(e.Property, "000-00-0000");
 }
}

	 Chapter 3  XAML Properties and Events    57

Note that to use the regular expression, you have to add the using reference to the System.Text.
RegularExpressions class, as shown here:

using System.Text.RegularExpressions;

At this point, you are all set to use this custom property. To bind one of the XAML TextBox controls
to this local SSN custom dependency property, set the DataContext within the MainWindow class
constructor, as shown here:

DataContext = this;

Access and bind a custom dependency property to a XAML control within a XAML file  Now
you are all set to bind the SSN custom dependency property to a XAML control. This next example
binds it to the XAML TextBox control where users enter an SSN. Here’s the complete XAML code. The
code in bold highlights binding the SSN property:

<Window x:Class="WpfApplication1.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="Custom Dependency Property Example" Height="150" Width="750">
 <Grid
 x:Name="LayoutRoot"
 Background="White"
 Height="250"
 Width="650">
 <Grid.Resources>
 <Style
 x:Key="HeaderFontStyle"
 TargetType="TextBlock">
 <Setter
 Property="FontFamily"
 Value="Times New Roman"/>
 <Setter
 Property="FontSize"
 Value="20"/>
 </Style>
 <Style
 x:Key="LabelFontStyle"
 TargetType="TextBlock">
 <Setter
 Property="FontFamily"
 Value="Arial"/>
 <Setter
 Property="FontSize"
 Value="14"/>
 </Style>
 </Grid.Resources>

 <Grid.RowDefinitions>
 <RowDefinition Height="35"/>
 <RowDefinition Height="35"/>
 <RowDefinition Height="35"/>
 </Grid.RowDefinitions>

58   Part 1  XAML Basics

 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto"/>
 <ColumnDefinition/>
 </Grid.ColumnDefinitions>

 <TextBlock HorizontalAlignment="Center"
 Text="Example: Custom Dependency Property
 with Change Notification Service"
 Grid.Column="0"
 Grid.Row="0"
 Grid.ColumnSpan="2"
 Margin="5"
 Style="{StaticResource HeaderFontStyle}"/>

 <TextBlock VerticalAlignment="Top"
 HorizontalAlignment="Right"
 Grid.Column="0"
 Grid.Row="1"
 Margin="5"
 Style="{StaticResource LabelFontStyle}">
 Social Security Number:</TextBlock>

 <TextBox x:Name="SSNTextBox"
 VerticalAlignment="Top"
 Grid.Column="1"
 Grid.Row="1"
 Margin="5"
 Text="{Binding SSN}"/>

 <TextBlock VerticalAlignment="Top"
 HorizontalAlignment="Right"
 Grid.Column="0"
 Grid.Row="2"
 Margin="5"
 Style="{StaticResource LabelFontStyle}">
 Name:</TextBlock>

 <TextBox x:Name="NameTextBox"
 VerticalAlignment="Top"
 Grid.Column="1"
 Grid.Row="2"
 Margin="5"/>
 </Grid>
</Window>

If you’ve been following along, you can now compile and run the project. You will see a window
with the SSN text box value set to the default: 000-00-0000.

	 Chapter 3  XAML Properties and Events    59

Enter an SSN in an invalid format—for example, abcd—and you will get the invalid SSN format
message box when the property changes. When you click the OK button in the message box the
message box closes, and the text box value resets to 000-00-0000.

Next, enter a correctly formatted SSN—for example, 123-45-6789. This time, you will not get the
message box when the property changes, and the text box will contain the entered value.

More Info  See Chapter 5, “Resources, Styles, and Triggers,” for more information about
resources and styling. See Chapter 8, “Data Binding,” for an exploration of data binding in
XAML.

Accessing a Dependency Property from Code-Behind
You access and set dependency properties from code-behind in the same way you access default
WPF and Silverlight framework class properties. The following example uses the Text property of the
NameTextBox text box control defined in the previous example for demonstration purposes:

//Demonstration of Accessing TextBox Text Dependency Property

//Set Text Dependency Property Value of TextBox Control
NameTextBox.Text = "Enter Name Here";

//Get Text Dependency Property Value of TextBox Control
string txtpropertyvalue;
txtpropertyvalue = NameTextBox.Text;

To prove the point, the following example uses the SSN custom dependency property created in
the previous example:

//Demonstration of Accessing SSN Custom Dependency Property

//Set SSN Custom Dependency Property Value
SSN = "123-45-6789";

60   Part 1  XAML Basics

//Get SSN Custom Dependency Property Value
string txtpropertyvalue;
txtpropertyvalue = SSN;

Dependency Property Value Precedence
Dependency property values depend on varying sources, as discussed earlier.

The WPF and Silverlight dependency property system determines the value of the dependency
property at runtime based on a precedence set in the dependency property framework. Figure 3-2
represents the dependency property value precedence for the WPF and Silverlight dependency property
frameworks. Note that highlighted sources are supported only in the WPF framework, and thus are not
applicable to the Silverlight dependency property system.

As demonstrated in Figure 3-2, animation gets higher precedence than any other value—those
set as local values or set by an explicit or implicit style, theme style or style setter value, template or
style triggers, inheritance, and default value. Local values are those set via an attribute or property
element. Local values can also be set via data binding or a static resource, or set via explicit
style—thus these all have equal precedence. As a result, if you have set a local value using any
approach, setting the local value using another approach later will replace the previous value entirely.
The default value has the lowest precedence and will be used only when no other source has set the
value.

Higher Precedence

Lower Precedence

Explicit Style Data Binding

Implicit Style

Style Triggers

Template Triggers

Inheritance

Default Value

Supported by WPF
and Silverlight

Supported by
WPF Only

Legend:

Static Resource

Animation

Property System Coercion

TemplatedTemplate Template
Properties

Local Value

Figure 3-2  Precedence for sources of dependency property values.

	 Chapter 3  XAML Properties and Events    61

Caution  The base value for a property is not the same as its default value. A property’s
base value is determined by applying the sources defined in Figure 3-2, except those
applied through animation. A property’s default value is its value when no other sources
provide a value. (For example, a layout container’s constructor may establish a default
value for a size property, and if not modified anywhere else, the default value remains
untouched.)

The following XAML code snippet demonstrates how explicit style, implicit style, and default value
precedence determine the FontSize dependency property of Button and ToggleButton controls at
runtime.

<UserControl.Resources>
 <Style TargetType="Button">
 <Setter Property="FontSize" Value="16" />
 </Style>
 <Style x:Key="ButtonStyle" TargetType="Button">
 <Setter Property="FontSize" Value="24" />
 </Style>
</UserControl.Resources>
<StackPanel>
 <Button Content="Submit" Width="150" Height="60" x:Name="b1"/>
 <Button Content="OK" Width="150" Height="60" x:Name="b2"
 Style="{StaticResource ButtonStyle}"/>
 <ToggleButton Content="Toggle Button Content" Width="150" Height="75" />
</StackPanel>

If you compile and run the project, the outcome of rendering the preceding markup will show the
Submit button using the implicit style, in size-16 font. The OK button renders with a font size of 24
because the defined explicit style overrides the implicit style. The ToggleButton content appears in the
default font size value because no other source has set the font size value.

More Info  See Chapter 5 for more information on explicit and implicit styling.

Implicit style is applied

Explicit style overrides Implicit style

Default FontSize value is applied

Submit

OK

Toggle Button Content

You should also notice that the Background property is not defined for any of the controls,
and thus it renders in the default color for the background of Button and ToggleButton
controls.

62   Part 1  XAML Basics

Read-Only Dependency Properties
WPF and Silverlight framework classes contain some read-only dependency properties, mainly
used to report the state of the control. Some examples of read-only (mostly Boolean) dependency
properties are:

■■ IsEnabled, a dependency property of the System.Windows.UIElement WPF framework class and
of the System.Windows.Control Silverlight framework class

■■ IsFocused, a dependency property of the System.Windows.UIElement WPF framework class and
of the System.Windows.Controls.Primitives.ButtonBase Silverlight framework class

■■ IsMouseOver, a dependency property of the System.Windows.UIElement WPF framework class
and of the System.Windows.Controls.Primitives.ButtonBase Silverlight framework class

You can create custom read-only dependency properties for WPF framework in a similar fashion
and follow the same steps that you use to create regular read/write dependency properties (as
discussed earlier in this chapter). The key difference lies in how you register the property and how you
wrap the CLR properties to process the dependency property value.

As discussed, you use the DependencyProperty.Register() method to register regular read/write
properties to the dependency property system. Doing that returns a DependencyProperty object.
For a read-only dependency property, you use the DependencyProperty.RegisterReadOnly() method,
which returns a DependencyPropertyKey object. Also, instead of implementing Get and Set methods
as for regular dependency properties, you need to implement only the Get method for read-only
dependency properties.

Caution  Silverlight does not support the implementation of custom read-only dependency
properties.

Attached Properties
Supported By

WPF Yes

Silverlight Yes

Quick Summary

Definition An attached property is a special type of dependency property that is
specific to XAML and is not wrapped by CLR property. You use an at-
tached property as a type of global property, defined in the parent object
element, for any child object element.

Naming Convention The property name is always the name of the property, with the suffix
Property appended—similar to other dependency properties. For ex-
ample, a Column attached property implemented on the Grid class has its
attached property name set to ColumnProperty.

Can You Create Custom
Attached Properties?

Yes

MSDN Reference For WPF: http://msdn.microsoft.com/en-us/library/ms749011.aspx
For Silverlight: http://msdn.microsoft.com/en-us/library/cc265152.aspx

http://msdn.microsoft.com/en-us/library/ms749011.aspx
http://msdn.microsoft.com/en-us/library/cc265152.aspx

	 Chapter 3  XAML Properties and Events    63

Attached properties are a special type of dependency property designed solely for XAML. You
can set an attached property from other object elements (usually child elements) rather than setting
them in the object element where they are defined. Attached properties provide classes with dynamic
extension capabilities without inheritance. They relate child objects to parent objects in a predefined
specific context. Just like any other regular dependency property in WPF and Silverlight, an attached
property is also defined as a DependencyProperty: it uses the same naming convention (the identifier
field followed by Property) and it’s registered to the dependency property system.

Why Use Attached Properties?
Attached properties are widely used by both WPF and Silverlight framework components to provide
specific feature sets.

The most common use of attached properties for WPF and Silverlight is to provide a flexible and
dynamic layout system. Layout and positioning controls, such as Grid, Canvas, and StackPanel, define
sets of attached properties that child elements can use to define their location and positioning within the
parent control. At runtime, these child elements render and position themselves to a defined location
(based on the value of attached properties set for these child elements) to build an appropriate user
interface.

For example, to allow the proper positioning of various elements within a grid, the Grid control
provides a set of attached properties:

■■ Grid.Column  Defines a value that indicates which column the child element content should
be displayed in within a Grid control.

■■ Grid.ColumnSpan  Defines a value that indicates the total number of columns the child
element content spans within a Grid control.

■■ Grid.Row  Defines a value that indicates which row the child element content should be
displayed in within a Grid control.

■■ Grid.RowSpan  Defines a value that indicates the total number of rows the child element
content spans within a Grid control.

■■ IsSharedSizeScope  Indicates whether multiple Grid elements share the size properties
(if set to true) or not (if set to false—the default value). Note that this attached property is
available only to the WPF Grid class. It’s not available in the latest version of the Silverlight Grid
class.

More Info  See Chapter 6, “Layout and Positioning System,” for more information on the
various layout and positioning controls available for WPF and Silverlight.

WPF and Silverlight also provide the System.Windows.Documents.TextElement type class with a set
of attached properties, including FontStyle, FontSize, FontFamily, and FontWeight. These properties
can help control the display of the content of both the parent and its child elements.

64   Part 1  XAML Basics

In addition, you can use attached properties to implement some common services that you can
then apply to WPF and Silverlight objects.

■■ The System.Windows.Controls.Validation class of WPF and Silverlight framework provides a set
of attached properties such as Errors and HasError, intended for use in data validation for the
targeted element.

■■ Similarly WPF and Silverlight framework provide attached properties such as Tooltip,
Placement, and PlacementTarget for the System.Windows.Controls.TooltipService class to display
tooltips related to WPF and XAML elements.

You can also develop custom attached properties to implement similar types of features for your
own purpose.

The Syntax
While setting an attached property within a child element, you need to follow the static property-
like syntax and reference the parent object that actually has defined and registered the attached
property—in other words, a specific named object instance. Here’s an example of the syntax to set an
attached property:

ParentObjectAttchedPropertyProvider.AttachedPropertyName

The attached property name must be in the format ParentObjectAttachedPropertyProvider.
AttachedPropertyName, where ParentObjectAttachedPropertyProvider is the parent object and
AttachedPropertyName is the name of the attached property that you want to set in the child
element. You separate the ParentObjectAttachedPropertyProvider and PropertyName with a period.

You set an attached property using the property attribute syntax discussed in Chapter 2. The
following code snippet demonstrates how you would set up an attached property that has a specific
value for a child element.

<ParentObjectElement>
…
 <ChildElement ParentObjectAttchedPropertyProvider.AttachedProperty="Value" … >
 …
 </ChildElement>
<ParentObjectElement>

When you add child elements to the Grid control, you need to define the column and row where
the child element should be placed. The Grid control provides Column and Row attached properties
so that you can define the child element position.

In the following example, Grid.Column and Grid.Row are attached properties of the Grid layout and
positioning control. These properties are defined for the TextBox control named NameTextBox. The
properties let you define the specific position of that control within the parent Grid control (in the first
column and second row of the grid in this case). The example also uses the TextElement.FontStyle attached
property for the Grid control, set to Italic, which will set the font style of grid child elements to italic.

	 Chapter 3  XAML Properties and Events    65

<Grid TextElement.FontStyle="Italic">
…
 <TextBox x:Name="NameTextBox"
 VerticalAlignment="Top"
 Grid.Column="1"
 Grid.Row="2"
 Margin="5"/>
</Grid>

Defining Read/Write and Read-Only Attached Properties
As discussed earlier, the majority of the WPF and Silverlight attached properties are built upon
dependency properties systems, so just as with any other regular dependency property, to define an
attached property you start by defining a DependencyProperty using the public static and read-only
identifier field. Similar to a regular dependency property, the definition of the attached dependency
property follows a specific naming convention—the name of the field is always the name of the
property, with the suffix Property appended. However, there are some key differences in creating and
registering an attached dependency property as compared to a regular dependency property:

■■ You use the DependencyProperty.RegisterAttached() method to register a read/write attached
property, and the DependencyProperty.RegisterAttachedReadOnly() method to register a
read-only attached property.

■■ An attached property can be set for child elements and may not be part of the related CLR
namespace. As a result, attached properties cannot be wrapped by a .NET property using
Get and Set as you do for a regular dependency property. Instead, you implement
GetPropertyName and SetPropertyName accessors using the DependencyObject.GetValue and
DependencyObject.SetValue methods to process the attached property value.

Creating a Custom Attached Property
To demonstrate creation of an attached property, we’ll extend the earlier example that demonstrated
creating a custom dependency property.

This example adds a Boolean custom attached property named IsIdentifier. The property value
determines which user entry field acts as a unique identifier for the record. The default value of the
IsIdentifier attached property is false.

You follow the same four steps discussed in the earlier section, “Creating a Custom Dependency
Property,” to create a custom attached property within the code-behind file for any XAML file in
your WPF or Silverlight project. Alternatively, you can create a custom class that inherits from the
DependencyObject class.

More Info  See this MSDN link (http://msdn.microsoft.com/en-us/library/ms749011.aspx) for
more information on custom attached properties for WPF. See this link (http://msdn.microsoft.
com/en-us/library/cc903943.aspx) for information on custom attached properties for Silverlight.

http://msdn.microsoft.com/en-us/library/ms749011.aspx
http://msdn.microsoft.com/en-us/library/cc903943.aspx
http://msdn.microsoft.com/en-us/library/cc903943.aspx

66   Part 1  XAML Basics

Create a custom attached property in the XAML code-behind file  Reopen the WPF windows
application you created earlier with the project name WpfApplication1, and then open the code-
behind file for the main window xaml file—MainWindow.xaml.cs.

To create the IsIdentifier custom attached property, you will add code immediately after the code
you added to create the SSN named custom dependency property.

First, you need to define the metadata. In this case, the metadata defines the default value as false
(so you won’t need a property changed method).

Next, define the DependencyProperty identifier as a public static readonly field, with a Boolean
type. Name it IsIdentifierProperty, and register it using the DependencyProperty.RegisterAttached
method. Here’s the code:

//Define and Register IsIdentifier Custom Attached Property
public static readonly DependencyProperty IsIdentifierProperty =
 DependencyProperty.RegisterAttached(
 "IsIdentifier", typeof(Boolean), typeof(MainWindow),
 new PropertyMetadata(false));

More Info  A custom attached property can have property metadata to set the default
value as well as define the property change method. In the preceding example, we have set
only the default value to false. You can also define the property change method as part of
the metadata, similar to the way we discussed earlier for the custom dependency property.

Next, instead of wrapping the IsIdentifierProperty attached property with a .NET property using
Get and Set as you did when defining the regular dependency property, add GetIsIdentifier and
SetIsIdentifier accessor methods. These use the DependencyObject.GetValue and DependencyObject.
SetValue methods to process the attached property value, as shown here:

//GetPropertyName and SetPropertyName Accessors for custom attached property
public static void SetIsIdentifier(UIElement element, Boolean val)
{
 element.SetValue(MainWindow.IsIdentifierProperty, val);
}
public static Boolean GetIsIdentifier(UIElement element)
{
 return (Boolean)element.GetValue(MainWindow.IsIdentifierProperty);
}

Finally, press F5 to build the solution.

Access a custom attached property for a XAML control within a XAML file  To access the
custom attached property you just created within the local code-behind from XAML, you must first
map an XML namespace that references the CLR namespace containing the relevant class (in this case
it’s the local class WpfApplication1) and the related assembly containing that class.

	 Chapter 3  XAML Properties and Events    67

Add the local class reference to the Window root element (the bold text in the following code) in
the MainWindow.xaml file of the WpfApplication1 project, as shown here:

<Window x:Class="WpfApplication1.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="clr-namespace:WpfApplication1"
 Title="Custom Dependency Property Example" Height="150" Width="750">

After adding the reference, you can access the IsIdentifier custom attached property from the
XAML control. Because a Social Security Number is unique for each individual, the example uses
that for the identifier field. To set that field as the unique identifier, locate the XAML TextBox control
for SSN entry, and set the MainWindow.IsIdentifier attached property to “True”, as shown here
(in bold text).

<TextBox x:Name="SSNTextBox"
 VerticalAlignment="Top"
 Grid.Column="1"
 Grid.Row="1"
 Margin="5"
 Text="{Binding SSN}"
 local:MainWindow.IsIdentifier="True"/>

Accessing an Attached Property from Code-Behind
You can set and get attached property values through code-behind in the same way you
access attached WPF and Silverlight framework class properties such as Grid.Column and
Grid.Row.

The following XAML code snippet adds a TextBlock control to the second row (1) and first column
(0) of the Grid by setting the appropriate properties.

<TextBlock VerticalAlignment="Top"
 HorizontalAlignment="Right"
 Grid.Column="0"
 Grid.Row="1"
 Margin="5"
 Text="Social Security Number:"/>

To perform the identical action from code-behind, you would write:

TextBlock codebehind_tb = new TextBlock();
codebehind_tb.VerticalAlignment = System.Windows.VerticalAlignment.Top;
codebehind_tb.HorizontalAlignment = System.Windows.HorizontalAlignment.Right;
codebehind_tb.Margin = new Thickness(5);
codebehind_tb.Text = "Social Security Number";
codebehind_tb.SetValue(Grid.RowProperty, 1);
codebehind_tb.SetValue(Grid.ColumnProperty, 0);
LayoutRoot.Children.Add(codebehind_tb);

68   Part 1  XAML Basics

As the example shows, you use the DependencyObject.SetValue method to set the Grid.Row-
Property and Grid.ColumnProperty attached properties. Similarly, you use the DependencyObject.
GetValue method to retrieve the attached property value in code-behind. The following example
shows how to retrieve the IsIdentifier custom attached property for the TextBox control named
SSNTextBox, where you earlier set the IsIdentifier property to true within the XAML file.

Boolean IsIdentifierProperty_Value;
IsIdentifierProperty_Value =
 (Boolean)SSNTextBox.GetValue(MainWindow.IsIdentifierProperty);

If you step through the program in the debugger, you can see that the value returned by the
IsIdentifier custom attached property is true.

XAML Events

Event handling is a notification service provided by the framework. An event is initiated by an object based
on some type of action at runtime. Like any other presentation layer development technology, XAML
and WPF/Silverlight framework provide event-handling capability so that you can manage user input,
performing actions and processing business logic based on specific user input actions such as selecting a
value or date, clicking a button, moving the mouse, or pressing a key. In addition, the event notification
system lets you handle changing conditions, such as a dependency property value change notification or a
validation event so that you can evaluate an entered value and generate error messages.

The object that raises the event is called the event sender; the object that consumes the event and
processes it is called the event receiver. If you have worked with Windows Forms, you are probably
already familiar with the way Microsoft .NET Framework handles CLR events. In Windows Forms, the
same object is always the event sender and event receiver. For example, if you click a Button object,
the Button object raises the event and the same object responds to process logic written in code.
However, because XAML and WPF/Silverlight framework introduce a new and extended dependency
property system, they also introduce an enhanced events handling and management system called
Routed Events. You can integrate with these events through XAML, and implement logic to handle
them in the code-behind.

Routed events can have one object element as event sender but one or more event receivers
(including the object that raises the event), all of which can execute code in an event handler.

The Syntax
You define the event handler for a particular object event using the property attribute syntax
discussed in Chapter 2. You then implement the event handler in the managed code-behind file.

The following example shows how you would define a System.Windows.Controls.Premitives.
ButtonBase.Click event for a Button element in a XAML file.

	 Chapter 3  XAML Properties and Events    69

<Button Content="SubmitButton"
 Width="100"
 Margin="10"
 HorizontalAlignment="Left"
 Click="SubmitButton_Click"/>

In the preceding code, the Click attribute name in the XAML represents the Click event for
the ButtonBase class. You define the event handler method name as the string value of the Click
attribute—in this example it’s called SubmitButton_Click. Next, you must implement the partial class
method (using the name SubmitButton_Click) within the code-behind file, as shown here:

private void SubmitButton_Click(object sender, RoutedEventArgs e)
{
 //code goes here
}

Routed Events
Supported By

WPF Yes

Silverlight Yes

Quick Summary

Definition A routed event is a CLR-type event backed by the RoutedEvent class and
processed by the WPF event system. You can define a routed event within a
XAML file and implement a handler in code-behind.

Routed events can have one object element as the event sender but one or
more event receivers (including the object that raises the event) that execute
the implemented code-behind event handler.

Naming Convention There is no mandatory naming convention for routed event names.
However, tunneling routed events use Preview as a prefix to the event name.
(For example, for the KeyDown routed event, the corresponding tunneling
routed event name is PreviewKeyDown.)

Even though you can define any name for the event handler method,
as a best practice, the event handler method name usually follows
<NameoftheObjectElement-EventSender>_<EventName> naming
convention. For example, the Button object named SubmitButton would
have a Click event handler method named SubmitButton_Click.

MSDN Reference For WPF: http://msdn.microsoft.com/en-us/library/ms742806.aspx
For Silverlight: http://msdn.microsoft.com/en-us/library/cc189018.aspx

XAML object elements in a XAML file must follow a defined hierarchical order to create a qualified,
well-formed XAML file that will compile, render, and function properly at runtime. When XAML is
compiled and parsed at runtime, the result is an object tree with a UserControl object as its root for
Silverlight applications or a Window object at the root for WPF applications.

As shown in Figure 3-3, routed events can do the following:

■■ Move upward from the element where the event was raised (the original source element) to
each parent element in that branch of the object tree, continuing until it reaches the root
element, or until the event is handled by setting RoutedEventArgs.Handled to true within an

http://msdn.microsoft.com/en-us/library/ms742806.aspx
http://msdn.microsoft.com/en-us/library/cc189018.aspx

70   Part 1  XAML Basics

event handler method. Any object along the path can handle the event. This upward path is
called bubbling and is supported in both WPF and Silverlight frameworks.

■■ Move downward from the root element to each subsequent child element in the object tree
until it reaches the element where the event is raised (the original source element) or until the
event is handled by an object in the path by setting RoutedEventArgs.Handled to true within
an event handler method. This downward path is called tunneling and supported in WPF only;
the Silverlight framework does not support tunneling. WPF input events are implemented with
both tunneling and bubbling strategies.

■■ Specifically notify only the original source element. These events will not route upward
(bubbling) or downward (tunneling). This is also called direct routing, and is supported in
both WPF and Silverlight. Direct routing also supports class handling; thus EventSetter and
EventTrigger can use the direct routing strategy.

As discussed earlier, Silverlight supports only bubbling and direct routing, whereas WPF supports
all three types of routing: bubbling, tunneling, and direct. The common set of routed input events
with bubbling (and optionally tunneling) that are supported on both WPF and Silverlight platforms
are described in Table 3-1.

Routed Events Strategies Sample XAML Object Tree

Root Element

Source Element Source Element Source Element

Window

Grid (LayoutRoot)

Resources

RowDefinitions

ColumnDefinitions

TextBlock

TextBlock

TextBlock

StackPanel

Button (SubmitButton)

Button (CancelButton)

TextBox (SSNTextBox)

TextBox (NameTextBox)

Root Element

Bubbling
(WPF and
Silverlight)

Tunneling
(WPF Only)

Direct
(WPF and
Silverlight)

Figure 3-3  WPF and Silverlight platform routed events system strategies.

	 Chapter 3  XAML Properties and Events    71

Table 3-1  Key Routed Input Events for WPF and Silverlight.

Routed Event WPF Silverlight

KeyDown Bubbling and Tunneling Bubbling

KeyUp Bubbling and Tunneling Bubbling

GotFocus Bubbling Bubbling

LostFocus Bubbling Bubbling

MouseDown Bubbling and Tunneling Not Applicable

MouseLeftButtonDown Direct Bubbling

MouseLeftButtonUp Direct Bubbling

MouseMove Bubbling and Tunneling Bubbling

MouseRightButtonDown Direct Bubbling

MouseRightButtonUp Direct Bubbling

MouseWheel Bubbling and Tunneling Bubbling

BindingValidationError Not Applicable Bubbling

DragEnter Bubbling and Tunneling Bubbling

DragLeave Bubbling and Tunneling Bubbling

DragOver Bubbling and Tunneling Bubbling

Drop Bubbling and Tunneling Bubbling

Note  The corresponding tunneling event for the bubbling event is prefixed with the word
Preview on the bubbling event name. Thus in Table 3-1, each corresponding tunneling
event for WPF has a Preview prefix. For example, the Drop bubbling WPF event’s corre-
sponding tunneling event is PreviewDrop.

The following example originally appeared in a slightly different form in the book
Introducing Silverlight 4 (Ashish Ghoda, Apress, 2010). Here, the example is slightly extended
to demonstrate the behavior of the bubble up routed events.

Create a WPF application project named RoutedEvents, and update the MainWindow.xaml with the
following code snippet:
<Window x:Class="RoutedEvents.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="MainWindow" Height="350" Width="525">
 <Grid Background="Gray"
 MouseLeftButtonDown="Grid_MouseLeftButtonDown"
 Width="350"
 Height="250" >
 <TextBlock
 Text= "Grid Control"
 FontWeight="Bold"
 Margin="5" />
 <Canvas
 Height="200"
 Width="300"
 MouseLeftButtonDown="Canvas_MouseLeftButtonDown"
 Background="Black"

72   Part 1  XAML Basics

 Margin="25">
 <TextBlock
 Text= "Canvas Control"
 FontWeight="Bold"
 Foreground="White"
 Margin="5" />
 <StackPanel
 Height="150"
 Width="250"
 MouseLeftButtonDown="StackPanel_MouseLeftButtonDown"
 Background="Yellow"
 Canvas.Top="25"
 Canvas.Left="25">
 <TextBlock
 Text= "StackPanel Control"
 FontWeight="Bold"
 Margin="5" />
 <TextBlock
 Text= "'MouseLeftButtonDown' bubble up order"
 FontWeight="Bold"
 Margin="5"/>
 <TextBlock
 x:Name="eventOrder"
 Width="250"
 TextWrapping="Wrap"/>
 </StackPanel>
 </Canvas>
 </Grid>
</Window>

The preceding XAML places the Canvas layout control within StackPanel, which is in turn placed
within the Grid layout control. The Canvas control contains two TextBlock controls that display the
results of bubbling routed events. Notice that each layout control defines the MouseLeftButtonDown
routed event (in bold text in the code).

If you look at the Document Outline Window in Visual Studio 2010, you will see the related object
tree: Grid → StackPanel → Canvas, as shown in Figure 3-4.

MouseLeftButtonDown Bubbling Routed Event Order

Originating
Source:

StackPanel

Order:
StackPanel-Canvas-Grid

Order:
Canvas-Grid

Order:
Grid

Originating
Source:
Canvas

Originating
Source:

Grid

Grid

TextBlock

TextBlock

TextBlock

TextBlock

TextBlock(eventOrder)

Canvas

StackPanel

Window

Figure 3-4  MouseLeftButtonDown bubbling routing event execution order.

	 Chapter 3  XAML Properties and Events    73

Now implement the corresponding MouseLeftButtonDown event methods in the code-behind
MainWindow.xaml.cs file. You can place the following code immediately after the MainWindow
constructor.

private void Grid_MouseLeftButtonDown
 (object sender, MouseButtonEventArgs e)
{
 eventOrder.Text += " Grid; ";
 e.Handled = true;
}
private void Canvas_MouseLeftButtonDown
 (object sender, MouseButtonEventArgs e)
{
 eventOrder.Text += " Canvas -";
}
private void StackPanel_MouseLeftButtonDown
 (object sender, MouseButtonEventArgs e)
{
 eventOrder.Text += " StackPanel -";
}

If you now compile and run the project, the output text depends on which control
(Canvas, StackPanel, or Grid) you click; the event will bubble up to the Grid control and display
text accordingly.

If you copy and paste the same code (XAML and code-behind) within a Silverlight project, you
will receive similar output because the MouseLeftButtonDown event also uses bubble up routing in
Silverlight.

Note  If you revisit Table 3-1, you will notice that the MouseLeftButtonDown routed event
is a bubbling event for Silverlight, but for WPF it’s a direct event. However, in WPF the
MouseDown button is a bubbling attached routed event—and it’s raised together with the
MouseLeftButtonDown event. Thus you get a similar result: the event bubbles up to the root
element (the Grid control in this example).

74   Part 1  XAML Basics

The RoutedEventArgs Class
As discussed, a routed event can be handled by an element that did not initially raise the event. At
the same time, because of its routing behavior, multiple event handlers may execute code for the
event, which may not be your intention in some cases. To be able to control the behavior of routed
events and execute the desired (and only the desired) business logic, you need two things during the
execution of routed events:

1.	 You need to be able to retrieve the original source element that raised the event.

2.	 You should be able to control when to stop the routing.

The System.Windows.RoutedEventArgs class contains the state information and event
data associated with a routed event. This information lets you manage event execution. The
RoutedEventArgs class provides a set of properties that you use to manage the event:

■■ OriginalSource  This property returns the original source that raised the event. The
OriginalSource property is available in both WPF and Silverlight. You use it to identify the
element that actually raised the event originally rather than the element where it might be
attached and executed (which could be a different element).

■■ Source  This property gets or sets the source object reference that raised the event. This property
is available only for WPF; it’s not available in Silverlight. In WPF you can change the Source in
parent class code, which you might want to do when the original source is part of a composite
control. For example, when a user clicks an item in a list box, the Source would be the selected
item, not the list box. In many cases, you might want handlers further up the line to treat the
source as the list box itself. In such cases, you can change the Source property. The selected
element within the list is still available through the OriginalSource property. In other words, unless
you change the Source it will contain the same object reference as the OriginalSource.

■■ Handled  This Boolean property (the default value is false) lets you control event routing
logic. Setting the property to true makes the event invisible to any objects that might handle it
along the routing path (the remaining route in the WPF object tree). As a result any remaining
event handlers (except for the event handler added with the HandledEventToo = true) will not
be invoked.

Caution  The WPF framework RoutedEventArgs class contains the Handled property and
is available to all event-base classes. However, the RoutedEventArgs implementation is
different for Silverlight. The Handled property is not available for the RoutedEventArgs
class; instead, it is available through specific event-base classes such as DragEventArgs,
KeyEventArgs, MouseButtonEventArgs, MouseWheelEventArgs, and ValidationEventArgs.

	 Chapter 3  XAML Properties and Events    75

Here’s an example that implements one common scenario for using routed events. The example
creates a single common event handler for multiple Button controls, and uses the RoutedEventArgs
properties to manage the event. The example extends the attached property example you saw earlier
in this chapter.

Reopen the WpfApplication1 WPF project and the MainWindow.xaml file. Add two buttons: a
Submit button and a Cancel button. To do that, first define an additional row in the Grid control as
shown here in bold text:

<Grid.RowDefinitions>
 <RowDefinition Height="35"/>
 <RowDefinition Height="35"/>
 <RowDefinition Height="35"/>
 <RowDefinition Height="35"/>
</Grid.RowDefinitions>

Now add a StackPanel control and two buttons in the newly added row, and define Click events
(one common for both Button elements and one specific to a single Button element) within the XAML
file, as shown here:

<StackPanel
 Orientation="Horizontal"
 HorizontalAlignment="Right"
 Grid.Column="1"
 Grid.Row="3"
 ButtonBase.Click="CommonButtonClickEvent">
 <Button
 x:Name="SubmitButton"
 Content="Submit"
 Margin="5"
 Width="100"
 Click="SubmitButton_Click"/>
 <Button
 x:Name="CancelButton"
 HorizontalAlignment="Left"
 Content="Cancel"
 Margin="5"
 Width="100"/>
</StackPanel>

The highlighted code defines two Click events for the buttons:

■■ A common click event named CommonButtonClickEvent that applies to all child elements
derived from the ButtonBase class (by defining ButtonBase.Click=”CommonButtonClickEvent”)
at the StackPanel parent element level

■■ A click event specific to the Submit button (by defining Click=”SubmitButton_Click”)

76   Part 1  XAML Basics

To finish the event handler implementation, open the code-behind file MainWindow.xaml.cs and
add the following two event handler methods:

//Common Click Event Handler
private void CommonButtonClickEvent(object sender, RoutedEventArgs e)
{
 FrameworkElement SourceElement = e.Source as FrameworkElement;
 switch (SourceElement.Name)
 {
 case "SubmitButton":
 MessageBox.Show(e.OriginalSource + " – Common Click Event Processed");
 break;
 case "CancelButton":
 MessageBox.Show(e.OriginalSource + " – Common Click Event Processed");
 break;
 }
 //Implement your business logic here
 e.Handled = true;
}
// Click Event Handler for the SubmitButton
private void SubmitButton_Click(object sender, RoutedEventArgs e)
{
 MessageBox.Show("Submit Button Clicked");
 //Implement your business logic here
}

Now save the project, compile, and run it. You will see the added Submit and Cancel buttons in the
application window. If you click the Submit button, here’s what happens:

■■ First, any Click event specific to that element will be raised and executed (if defined). In this
case, you’ll get the first message box that displays the text “Submit Button Click,” which is the
output from the event handler method SubmitButton_Click.

■■ Next, the event bubbles up to the parent object element of the SubmitButton control, which is
the StackPanel element. The StackPanel control implements the CommonButtonClickEvent, so
that code executes. The code also retrieves and displays the OriginalSource property, so you’ll
see a message box with the text “System.Windows.Controls.Button: Submit—Common Click
Event Processed”.

	 Chapter 3  XAML Properties and Events    77

Because the handler sets the e.Handled property to true, the raised click event will be invisible to
the remaining object tree elements.

Next, click the Cancel button. This time, you should get only one common click event specific message
box that displays the text “System.Windows.Controls.Button: Cancel – Common Click Event Processed”.

Finally, change the SubmitButton_Click event handler method and add e.Handled = true; as shown
in the bold code here:

// Click Event Handler for the SubmitButton
private void SubmitButton_Click(object sender, RoutedEventArgs e)
{
 MessageBox.Show("Submit Button Clicked");
 //Implement your business logic here
 e.Handled = true;
}

Run the project again. Now when you click the Submit button, you’ll see only one message box
titled “Submit Button Clicked,” which is specific to the Submit button click event. Because the code
now sets the event Handled property to true, the common click event handler will not be executed.

Add and Remove Event Handlers Using Code-Behind
You aren’t limited to adding event handlers in XAML—you can also add object specific event handlers
in code-behind by declaring a new delegate that uses the event handler method name using the +=
operator in C#.

Remove the attribute Click=”SubmitButton_Click” you added earlier in the SubmitButton named in
the XAML file. This time, you’ll use the code-behind approach to implement the same event handler.

One good place to add the event is in the Loaded event of the existing LayoutRoot Grid control. Although
you could do that in code-behind as well, for simplicity, define the event in XAML, as shown here:

<Grid
 x:Name="LayoutRoot"
 Background="White"
 Height="150"
 Width="650"
 Loaded="LayoutRoot_Loaded">

78   Part 1  XAML Basics

Now implement this event in code-behind, and also add the SubmitButton_Click event handler:
private void LayoutRoot_Loaded(object sender, RoutedEventArgs e)
{
 SubmitButton.Click += new RoutedEventHandler(SubmitButton_Click);
}

Because this alternative method simply defines the same event handler as before (SubmitButton_
Click), you do not need to change any more code. If you run the project now you should get the same
output as you received earlier.

You can also remove an event handler dynamically using the -= operator in C#;. As an example,
the following code snippet removes the Submit button's SubmitButton_Click event.

SubmitButton.Click -= SubmitButton_Click;

Creating Custom Routed Event  You can create a custom routed event (a process similar to creat-
ing a custom dependency property) by following these steps:

1.	 Register the custom routed event with the WPF event system. You use the EventManager.Reg-
isterRoutedEvent method to register the event, specifying the event name, routing strategy,
handler type, and an owner type as parameters.

The following is the syntax of the EventManager.RegisterRoutedEvent method:

 public static RoutedEvent RegisterRoutedEvent(
	 string name,
	 RoutingStrategy routingStrategy,
	 Type handlerType,
	 Type ownerType)

The name parameter contains the name of the event.

•	 The routingStrategy parameter contains the routing strategy for the event, which is a value
from the System.Windows.RoutingStrategy enumeration, which contains Tunnel, Bubble, and
Direct as members.

•	 The handlerType parameter contains the type of event handler, which must be a delegate
type, and cannot be null.

•	 The ownerType parameter contains the owner class type of the routed event. This
parameter cannot be null.

2.	 Define the RoutedEvent identifier as a public static readonly field on the owner
type. The RoutedEvent static field name must end with the suffix Event, such as
<CustomRoutedEventName>Event.

3.	 Wrap the routed event with .NET CLR add and remove event handler accessors.

Caution  The custom routed event can be created only for the WPF framework. You cannot
create custom routed event for the Silverlight framework.

	 Chapter 3  XAML Properties and Events    79

The following code-snippet creates a custom routed event named CustomSelectedText, which
follows the three steps listed previously and also raises the CustomSelectedText event.

public class MyCustomControl : Control
{
 //Define and Register CustomSelectedText Custom Dependency Property
 public static readonly RoutedEvent CustomSelectedTextEvent =
 EventManager.RegisterRoutedEvent(
 "CustomSelectedText",
 RoutingStrtegy.Bubble,
 typeof(RoutedEventHandler),
 typeof(MyCustomControl));
 //.NET CLR add and remove event handler accessors for custom routed event
 public event RoutedEventHandler CustomSelectedText
 {
 add
 {
 AddHandler(CustomSelectedTextEvent, value);
 }
 remove
 {
 RemoveHandler(CustomSelectedTextEvent, value);
 }
 }
 // Raises the CustomSelectedText custom routed event
 void RaiseCustomSelectedTextEvent()
 {
 RoutedEventArgs newEventArgs = new
 RoutedEventArgs(MyCustomControl.SelectedTextEvent);
 RaiseEvent(newEventArgs);
 }
}

You can call the RaiseCustomSelectedTextEvent method to raise the CustomSelectedText routed event.

Attached Routed Events
Supported By

WPF Yes

Silverlight Yes

Quick Summary

Definition An attached routed event is a special type of routed event that is specific to XAML
and not wrapped by .NET CLR add and remove handler accessors. The attached
event is neither owned by the event sender nor by the event receiver. You can attach
an attached routed event arbitrarily to any object element.

Naming Convention and
syntax

The name of a RoutedEvent static field name is always the name of the attached
routed event, with the suffix Event appended, similar to other routed events. For
example, the MouseDown attached routed event on the Mouse class has the event
identifier set to MouseDownEvent.

To define the attached routed event in XAML, you must follow the syntax of <Attach
edEventOwnType>.<EventName>.

Can You Create Custom
Attached Events?

Yes

MSDN Reference For WPF: http://msdn.microsoft.com/en-us/library/bb613550.aspx
For Silverlight: http://msdn.microsoft.com/en-us/library/cc189018.aspx

http://msdn.microsoft.com/en-us/library/bb613550.aspx

80   Part 1  XAML Basics

In a procedure similar to creating a custom routed event, you can create a custom attached routed
event by following these steps:

1.	 The first step is the same as for any other custom routed event. You need to register the
attached routed event with the WPF event system. You use the EventManager.Register-
RoutedEvent method to register the event, specifying the event name, routing strategy,
handler type, and an owner type as parameters.

2.	 The second step is also the same as any other custom routed event. You need to define the
RoutedEvent identifier as a public static readonly field on the owner type. The RoutedEvent
static field name must end with the suffix Event, such as <AttachedRoutedEventName>Event.

3.	 As with attached dependency properties, you don’t need to wrap attached routed events
by .NET CLR add and remove event handler accessors. Instead, you need to define add and
remove event handlers as utility methods:

•	 The Add<AttachedEventName>Handler public static method has no return value and must
contain a first parameter that identifies the event and a second parameter that adds the
routed event handler.

•	 The Remove<AttachedEventName>Handler public static method has no return value and
must contain a first parameter that identifies the event and a second parameter that
removes the routed event handler.

Caution  You can create custom attached routed events only for WPF. You cannot create a
custom attached routed event for Silverlight.

The following code creates a custom attached routed event named MyCustomAttachedEvent,
which follows the three steps listed earlier:

public partial class MainWindow : Window
{
 //Define and Register MyCustomAttachedEvent Custom Attached Routed Event
 public static readonly RoutedEvent MyCustomAttachedEventEvent =
 EventManager.RegisterRoutedEvent(
 " MyCustomAttachedEvent",
 RoutingStrtegy.Bubble,
 typeof(RoutedEventHandler),
 typeof(MyWindow));
 //add and remove event handler utility methods for custom attached routed event
 public static void AddMyCustomAttachedEventHandler
 (DependencyObject d, RoutedEventHandler hander)
 {
 UIElement element = d as UIElement;
 if (element != null)
 {
 element.AddHandler(MyWindow.MyCustomAttachedEventEvent, handler);
 }
 }
 public static void RemoveMyCustomAttachedEventHandler

	 Chapter 3  XAML Properties and Events    81

 (DependencyObject d, RoutedEventHandler hander)
 {
 UIElement element = d as UIElement;
 if (element != null)
 {
 element.RemoveHandler(MyWindow.MyCustomAttachedEventEvent, handler);
 }
 }
}

The EventSetter and EventTrigger Classes
As discussed earlier, XAML enables you to set up a common set of styles targeted to specific types
of controls. But just as you can use styles and templates to set common set of properties to provide
a consistent, unified look, XAML also lets you set up a common event handler that corresponds to
a specific event. This event handler can perform unified actions (including the use of the Storyboard
element to provide some types of animation) using the EventSetter and EventTrigger classes and their
corresponding XAML elements.

The EventSetter Class
Supported By

WPF Yes

Silverlight No

In XAML, the EventSetter represents a specific event handler that should be invoked in response
to a corresponding routed event. Within the scope of the Style, you can set EventSetter as an object
element in the XAML file and define the event hander for the targeted control (such as the Click event
for a Button control).

Earlier in this chapter, in the section titled “The RoutedEventArgs Class,” you saw how to set up
a common Click event called CommonButtonClickEvent for the ButtonBase class at the StackPanel
level by attaching the ButtonBase.Click in XAML to the StackPanel control. You can achieve the same
functionality by adding a style setter at the StackPanel level.

Reopen the WpfApplication1 project, open the MainWindow.xaml page, and locate the StackPanel
element in the XAML code. The StackPanel contains two buttons: Submit and Cancel. Remove the
ButtonBase.Click=”CommonButtonClickEvent” from the StackPanel element and add the highlighted
portion (in bold text) from the following code. These are StackPanel resources that create the
EventSetter as a style targeted toward the Click event of Button controls (in this case targeting the
Submit and Cancel buttons) and process the CommonButtonClickEvent event handler method when a
Click event is raised:

<StackPanel
 Orientation="Horizontal"
 HorizontalAlignment="Right"
 Grid.Column="1"
 Grid.Row="3">
 <StackPanel.Resources>

82   Part 1  XAML Basics

 <Style TargetType="{x:Type Button}">
 <EventSetter
 Event="Click"
 Handler="CommonButtonClickEvent"/>
 </Style>
 </StackPanel.Resources>
 <Button
 x:Name="SubmitButton"
 Content="Submit"
 Margin="5"
 Width="100"
 Click="SubmitButton_Click"/>
 <Button
 x:Name="CancelButton"
 HorizontalAlignment="Left"
 Content="Cancel"
 Margin="5"
 Width="100"/>
</StackPanel>

If you now compile and run the project, you should get similar results as you did before when
clicking the Submit and Cancel buttons. (See the results discussed on page 74, in the section “The
RoutedEventArgs Class.”)

Caution  The EventSetter is applicable to only routed events and is available only for the
WPF framework. Silverlight does not support EventSetter.

The EventTrigger Class
Supported By

WPF Yes

Silverlight Yes

The EventTrigger class lets you set actions and apply animations in response to specific routed events.
Event triggers make use of the Storyboard element to apply an animation. You can declare an EventTrigger
within Style or page-level elements as part of the Triggers collection, or in a ControlTemplate.

The following XAML code snippet defines an EventTrigger for the Rectangle.Loaded event as part of
the Rectangle.Triggers collection. The event enables you to change the color of the Rectangle when it
gets loaded. The EventTrigger property has an attribute called RoutedEvent that indicates which event
will trigger the action:

<Rectangle.Triggers>
 <EventTrigger
 RoutedEvent="Rectangle.Loaded">
 <BeginStoryboard>
 <Storyboard>
 <ColorAnimation
 Storyboard.TargetName="brush"
 Storyboard.TargetProperty="Color"

	 Chapter 3  XAML Properties and Events    83

 To="Magenta"
 Duration="0:0:6"/>
 </Storyboard>
 </BeginStoryboard>
 </EventTrigger>
</Rectangle.Triggers>

More Info  See Chapter 5 for more information on resources and styling. See Chapter 9,
“Media, Graphics, and Animation,” for more information on animation.

The next chapter, “Markup Extensions and Other Features,” covers markup extensions that can
extend the capabilities of XAML to resolve property values at runtime. It also covers XAML services
and security measures in XAML.

Summary

This chapter introduced the new dependency property and routed event systems for XAML and the
WPF and Silverlight frameworks.

A dependency property is backed by a regular CLR .NET property and uses the dependency
property framework to determine the property value based on various possible sources, including
data binding, animation, template resources specified in the XAML, styles, or local values.
Dependency properties also provide a value change notification service.

Attached properties are dependency properties that provide dynamic extension of classes without
inheritance, and relate child objects to parent objects in a predefined specific context.

Routed events are CLR-type events backed by the RoutedEvent class and processed by the WPF
event system. You can define a routed event within a XAML file using attribute syntax or implement
a routed event in code-behind. Routed events follow one of three possible routing paths: bubble up,
tunneling, or direct routing. A routed event can have one object element as the event sender and one
or more event receivers (which may include the object that raises the event) that can execute an event
handler implemented in code-behind. Like attached dependency properties, attached routed events
are a special type of routed event that is specific to XAML and not wrapped by .NET CLR add and
remove handler accessors. The attached event is neither owned by event sender nor by event receiver.
You can attach an attached routed event arbitrarily to any object element.

		 85

Part 2

Enhancing User
Experience

chapter 4	 Markup Extensions and Other Features 87

chapter 5	 Resources, Styles, and Triggers 101

		 87

C h apter 4

Markup Extensions and Other
Features

In this chapter:

■■ Markup Extensions in XAML

■■ Built-In XAML Extensions

■■ XAML Markup Extensions in WPF and Silverlight

■■ Escape Sequences

■■ Custom Markup Extensions

■■ Type Converters versus Markup Extensions

■■ XAML Services

■■ Security in XAML

■■ Summary

You’ll see a great deal more about data binding in Chapter 8, “Data Binding,” including several
methods and approaches for binding controls to data, but for now, two key extensions crucial to the
implementation of data binding are the StaticResource and Binding extensions. These extensions, also
called markup extensions, are placeholders to resolve a property at runtime. Without the use of the
StaticResource and Binding markup extensions, the process of binding would be very cumbersome
indeed.

XAML and the WPF and Silverlight implementations of XAML also support several other markup
extensions that can be used for tasks besides data binding.

88   Part 2  Enhancing User Experience

Markup Extensions

XAML, being an XML-based language used to declare objects and the relationships between them, is
simple by nature. However, this simplicity comes at a cost—XAML can be quite long-winded at times.

XAML lacks any inherent or built-in knowledge of common artifacts such as arrays, static
members of a class, data binding, and so forth. Because XAML can be an integral part of application
development, developers need some way to express information about such artifacts in it.
Additionally, to be a long-lasting format, XAML had to be extensible.

To provide a solution for all these issues, Microsoft introduced the concept of markup extensions.
Using markup extensions, you can extend XAML in an elegant way; you can set any property that can
be set in XAML using attribute syntax. Attribute syntax can provide reference values for a property
even if that property does not support an attribute syntax for direct object instantiation.

For example, the following code makes use of attribute syntax to set the value of the Style
property. The Style property takes an instance of the Style class, a reference type that typically could
not be specified within an attribute syntax string. But here, the attribute references a specific markup
extension, StaticResource. When that markup extension is processed, it returns a reference to a style
which was instantiated earlier as a keyed resource.

<UserControl.Resources>
 <SolidColorBrush x:Key=”Test” Color=”Pink”/>
 <Style TargetType=”Border” x:Key=”MyBorder”>
 <Setter Property=”Background” Value=”Gray”/>
 </Style>
</UserControl.Resources>
<StackPanel>
 <Border Style=”{StaticResource MyBorder}”>
 </Border>
</StackPanel>

The System.Windows.Markup namespace contains the definitions for most of the markup extension
classes. These class names end with the suffix Extension; however, when you use them in XAML, you
can omit the Extension suffix. For example, in XAML you represent the NullExtension markup class as
x:Null. Markup extensions may also support parameters, which you specify as a comma-delimited list.
Markup extension classes typically have default constructors.

The syntax of a markup extension is an opening brace ({), followed by the markup extension
name, optionally followed by parameters to the markup extension, and ending with a closing brace
(}). When the XAML compiler or parser encounters an attribute enclosed in braces, it automatically
recognizes it as a markup extension.

Although WPF and Silverlight commonly support various markup extensions, some extensions are
supported only by WPF. In contrast, Silverlight-only extensions are rare.

You can also create a custom markup extension by deriving from the MarkupExtension class.

	 Chapter 4  Markup Extensions and Other Features    89

Built-In XAML Markup Extensions

Some markup extensions are built in to XAML; that is, they are a part of the native XAML vocabulary.
These are not specific to the WPF implementation of XAML; they are features of XAML as a language
and are implemented in the System.Xaml assembly.

The built-in XAML markup extensions are typically prefixed with x: and enclosed within braces, like
other markup extensions. However, not all language features that start with x: are markup extensions.
For instance, the x:Class name that you use with an element is an attribute, not a markup extension.
Similarly, x:Key and x:Name are attributes.

Note  There are no built-in markup extensions for string manipulation in XAML.

Some of the built-in XAML markup extensions are described in detail in the following sections.

x:Null
Supported By

WPF Yes

Silverlight Yes

Use this markup extension to specify a null value. This markup extension is supported by both WPF
and Silverlight. In some scenarios you may want to assign a null value to an element, style, or similar
item. The x:Null markup extension proves useful in such scenarios.

Here’s an example. Suppose you have defined a style for buttons in a Silverlight application. You
now want to prevent a specific button from using that style. To do that, use the markup <Button
Style=”{x:Null} “ Name=btnOK” ></Button>. Assigning the x:Null markup extension prevents the but-
ton from using that style.

<Grid x:Name="LayoutRoot" Background="Beige">
 <Grid.Resources>
 <Style TargetType="Button">
 <Setter Property="BorderBrush" Value="Red"></Setter>
 <Setter Property="BorderThickness" Value="4"></Setter>
 </Style>
 </Grid.Resources>
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto"/>
 <RowDefinition Height="Auto"/>
 <RowDefinition Height="Auto"/>
 </Grid.RowDefinitions>
 <Button Grid.Row="0" Name="btnOK" Content="OK" Height="100" Width="200"/>
 <Button Grid.Row="1" Name="btnDone" Content="Done" Height="100" Width="200"/>
 <Button Grid.Row="2" Content="Bye" Style=”{x:Null}” Height="100" Width="200"/>
</Grid>

90   Part 2  Enhancing User Experience

As a result of this markup, two buttons will use the predefined Button style, but the third button will
not have any style, because its style has been assigned the {x:Null} markup extension, as shown in bold.

Figure 4-1 shows the outcome of this markup.

Figure 4-1  Using the X:Null markup extension.

Note  It’s important to remember that setting a value to null is not the same as not setting
it at all. Dependency properties in WPF obtain their value from a number of sources;
therefore, setting a local value takes precedence over values sourced from elsewhere, such
as an animation or a style.

Assigning x:Null to the background of an element such as Button is different from assigning
Transparent to the background. Consider the following code in a WPF application:

<Button Height="200" Width="200" Background="Transparent"
 BorderBrush="Blue" BorderThickness="3" Click="Button_Click"></Button>

This code works as expected and renders a transparent button with a blue border. The button is
clickable, and when a user clicks the button, you could perform some action.

However, if you change the Background to x:Null, as shown here, the rendered button will not be
clickable.

<Button Height="200" Width="200" Background="{x:Null}" BorderBrush="Blue"
 BorderThickness="3" Click="Button_Click"></Button>

The reason for this is that in the first case, the background was set to a transparent brush. Even
though the brush is transparent, it is still an instance of SolidColorBrush with the color SystemColors.
Transparent. However, in the second case, the brush is set to null, which means there is no brush at all,
which renders the button as unclickable.

	 Chapter 4  Markup Extensions and Other Features    91

x:Array
Supported By

WPF Yes

Silverlight No

This markup extension is supported by WPF but is not supported in Silverlight. In XAML 2009,
x:Array is defined as a language primitive rather than a markup extension.

x:Array lets you to create simple arrays using XAML syntax, as shown here:

<x:Array Type="sys:String" xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:sys="clr-namespace:System;assembly=mscorlib" >
 <sys:String>Orange</sys:String>
 <sys:String>Blue</sys:String>
 <sys:String>Green</sys:String>
 <sys:String>Pink</sys:String>
</x:Array>

A typical use of this markup extension would be to provide a list of contents for a ListBox or
ComboBox, as shown here:

<ListBox>
 <ListBox.ItemTemplate>
 <DataTemplate>
 <TextBlock Text="{Binding}" Background="PaleGreen"/>
 </DataTemplate>
 </ListBox.ItemTemplate>
 <ListBox.ItemsSource>
 <x:Array Type="sys:String" xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:sys="clr-namespace:System;assembly=mscorlib" >
 <sys:String>Orange</sys:String>
 <sys:String>Blue</sys:String>
 <sys:String>Green</sys:String>
 <sys:String>Pink</sys:String>
 </x:Array>
 </ListBox.ItemsSource>
</ListBox>

Figure 4-2 shows the outcome of this markup.

Figure 4-2  Using X:Array with a ListBox.

92   Part 2  Enhancing User Experience

x:Reference
Supported By

WPF Yes

Silverlight No

This markup extension is not supported in Silverlight. In WPF, it is used to reference a previously
declared element. Here’s an example: A Label used to prompt for customer name must set the focus
to a text box that will accept the customer name when a user presses a specified access key assigned
to the Label. In earlier versions of XAML, you could accomplish this explicitly by using Binding and
ElementName to perform the binding.

<StackPanel>
 <TextBox Name="customerName" Text="" Height="24" Grid.Row="0" Grid.Column="1"
Margin="20,40,238,40"></TextBox>
 <Label Target='{Binding ElementName=customerName}' Height="27" Width="117" Grid.Row="0"
Grid.Column="0">_Customer Name:</Label>
</StackPanel>

The underscore in the Label name defines the subsequent character as the access key. In this case,
pressing C at runtime will set the focus to the customerName text box.

Using the x:Reference markup extension, you can now write the same code as the following:

<StackPanel>
 <TextBox Name="customerName" Text="" Height="24" Grid.Row="0" Grid.Column="1"
Margin="20,40,238,40">
 </TextBox>
 <Label Target="{x:Reference customerName}" Height="27" Width="117" Grid.Row="0"
Grid.Column="0">_Customer Name:</Label>
</StackPanel>

Thus, using x:Reference, the code becomes more concise and simpler. Although this example was
simple, you can use the x:Reference markup extension in more complex scenarios, too.

Note  When using {x:Reference <controlname>} as the Target of a WPF Label, the Visual
Studio designer throws an InvalidOperationException exception with the message “Service
provider is missing the INameResolver service.” The project will compile and execute
without any issues, but the Design canvas where the x:Reference appears will be disabled
because of the exception. As of this book’s writing, this is a known issue and should be
resolved sometime in the future.

x:Static
Supported By

WPF Yes

	 Chapter 4  Markup Extensions and Other Features    93

Silverlight No

This markup extension produces static values. The values come from value-type code entities that
are not directly the type of a target property’s value, but can be evaluated to that type. The x:Static
markup extension is evaluated at runtime when the XAML is actually loaded.

For example, you could use it as shown here:

<TextBlock Text="Demo!" >
 <TextBlock.Background>
 <SolidColorBrush Color="{x:Static SystemColors.ControlColor}" />
 </TextBlock.Background>
</TextBlock>

The preceding code uses a built-in system type ControlColor defined in the SystemColors assembly
and assigns it to the Color property of the brush used to fill the TextBlock background.

The following example assigns the Text property of a TextBlock to the value defined in a custom
assembly. This assembly is first referenced in the XAML markup with a prefix; later, that prefix is used
to refer to the type:

<TextBlock Text="{x:Static Member="local:MyClass.Header}" Grid.Row="0" />

In the preceding example, local was previously defined as a namespace prefix using this syntax:

xmlns:local="clr-namespace:WPFApp"

The code-behind class defines a custom type named MyClass, which contains a static readonly
property named Header.

public class MyClass
{
 public static readonly string Header = "DevCon 2011";
}

In this example, specifying Text=”{local:MyClass.Header}” without using the x:Static markup
extension would result in a compiler error. The only way you can access the static property defined in
the MyClass class from markup is by using the x:Static markup extension.

This extension can also be useful in scenarios where you want to specify a base style that is defined
as a class property:

<StackPanel>
 <StackPanel.Resources>
 <ResourceDictionary>
 <Style TargetType="Button" BasedOn="{x:Static local:MyStyle.BaseStyle}" />
 </ResourceDictionary>
 </StackPanel.Resources>
</StackPanel>

94   Part 2  Enhancing User Experience

In the preceding XAML, MyStyle is a class that defines a static property named BaseStyle of type
Style.

x:Type
Supported By

WPF Yes

Silverlight No

This markup extension is supported only in WPF, not in Silverlight. It is used to specify the target
type for an element—for example, while creating a style. The functionality of this markup extension is
identical to TargetType in that you can use either interchangeably. The only scenario where using the
x:Type extension makes more sense is when you’re specifying custom objects and want to set the type
explicitly.

Here’s a simple example of using this extension:

<Grid x:Name="LayoutRoot" Background="Beige">
 <Grid.Resources>
 <Style TargetType="{x:Type Button}">
 <Setter Property="BorderBrush" Value="Red"></Setter>
 <Setter Property="BorderThickness" Value="7"></Setter>
 </Style>
 </Grid.Resources>
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto"/>
 <RowDefinition Height="Auto"/>
 <RowDefinition Height="Auto"/>
 </Grid.RowDefinitions>
 <Button Grid.Row="0" Name="btnOK" Content="OK" Height="100" Width="200"/>
 <Button Grid.Row="1" Name="btnDone" Content="Done" Height="100" Width="200"/>
</Grid>

Note that in the preceding code, you could have easily omitted {x:Type} in the TargetType declara-
tion without making any difference to the output. That is, you could write TargetType=”Button” in
place of TargetType=”{x:Type Button}”.

XAML Markup Extensions Used in WPF and Silverlight

The following markup extensions are a part of the XAML language and are intrinsic language
features:

■■ Binding  This markup extension binds the values of two properties together. It is most
commonly used in data-binding scenarios to bind the value of a FrameworkElement instance
to a specific piece of data. For example, you can bind a customer name to a text box.

■■ StaticResource  This markup extension is used to implement a one-time lookup of a resource
entry. The resource entry could be defined in the resources section of a container control such
as a Grid, a StackPanel, and so forth.

	 Chapter 4  Markup Extensions and Other Features    95

■■ DynamicResource  This markup extension is used to implement lookup of a resource entry
dynamically at runtime.

■■ TemplateBinding  This markup extension is used to bind a property of a control template to a
dependency property of the control.

You’ll see numerous examples of these extensions discussed in Chapter 8. Apart from specifying
property values using markup extensions, you can use two other approaches to assign property
values:

■■ Property assigned a literal string value

■■ Property assigned a value by a type converter, converted from a literal string

For example, the following markup demonstrates how property element syntax can be used to
refer to a StaticResource without using markup extensions:

<Binding.ValidationRules>
 <StaticResource ResourceKey="IsValidRule"/>
</Binding.ValidationRules>

Escape Sequences

In some scenarios you may need to include a pair of braces as a literal in your code as a string
text. Typically, XAML processors use an open brace ({) to indicate the start of a markup extension
sequence. So when the open brace is encountered, the XAML processor assumes that a markup
extension follows. To override this behavior and specify an escape sequence, use a pair of empty
braces. The two-brace escape sequence ({}) identifies braces in the subsequent text as literal
characters.

For example, the following markup shows an escape sequence for an XML namespace that appears
at the start of a XAML attribute value:

<StackPanel>
 <TextBlock Text="{}{http://www.contoso.com}" />
</StackPanel>

Here, you want to use the namespace http://www.contoso.com/ and the braces together as a literal,
so you specify an escape sequence by using a pair of empty braces. The output produced will include
the braces and will display {http://www.contoso.com}.

Custom Markup Extensions

Custom markup extensions are useful in scenarios where you need the extension to provide
functionality or behavior that is beyond the scope of existing built-in markup extensions.

96   Part 2  Enhancing User Experience

In earlier versions of Silverlight, you could not create custom markup extensions, but Silverlight 5
added support for them. You create a custom markup extension by extending the MarkupExtension
class or the IMarkupExtension interface.

One of the biggest issues in data binding with Silverlight is that there is no support for an
ObjectDataProvider class. In some instances, such as when binding to XML data, the lack of support
for this class proves to be a huge drawback.

Until Silverlight 5, for example, there was no way to write something like the markup shown
here, which binds an XML file and an element within it to a UI element in a Silverlight application
declaratively:

<ListBox ItemsSource="<some mechanism> Source=Employee.xml, Path=/Manager/FirstName}"

You could parse the XML entirely in code in a number of ways—but you had no way to perform
a declarative binding in XAML. This is where the custom markup extension feature introduced in
Silverlight 5 can come to the rescue.

Use the following steps to create and use such an extension:

1.	 Create a Silverlight 5 application named XMLBinderDemo.

2.	 Add an XML file named Employee.xml to the application that has the following contents:

<?xml version="1.0" encoding="utf-8" ?>
<Employee>
 <Manager FirstName="Jonathan" LastName="Foster" />
 <Manager FirstName="Bill" LastName="Malone" />
 <Manager FirstName="Patrick" LastName="Sands" />
 <Engineer FirstName="Weiss" LastName="Charlotte"/>
</Employee>

3.	 Add a reference to the System.Xml.Linq assembly.

4.	 Add a class named XMLBinderExtension to the application.

5.	 Add the following code to the class:

namespace XMLBinderDemo
{
 public class XMLBinderExtension : MarkupExtension
 {
 public string Source { get; set; }
 public string Path { get; set; }
 private static List<string> Parse(string file, string path)
 {
 XDocument xdoc = XDocument.Load(file);
 string[] text = path.Substring(1).Split('/');
 string desc = text[0].ToString();
 string elementname = text[1].ToString();

	 Chapter 4  Markup Extensions and Other Features    97

 List<string> data = new List<string>();
 IEnumerable<XElement> elems = xdoc.Descendants(desc);
 IEnumerable<XElement> elem_list = from elem in elems
 select elem;
 foreach (XElement element in elem_list)
 {
 String str0 = element.Attribute(elementname).Value.ToString();
 data.Add(str0);
 }
 return data;
 }

 /// <summary>
 /// Overridden method that returns the source and path to bind to
 /// </summary>
 /// <param name="serviceProvider"></param>
 /// <returns></returns>
 public override object ProvideValue(IServiceProvider serviceProvider)
 {
 if ((Source != null) && (Path != null))
 return Parse(Source, Path);
 else
 throw new InvalidOperationException("Inputs cannot be blank");
 }
 }
}

6.	 Finally, you can write the XAML markup, as shown here:

<UserControl x:Class="XMLBinderDemo.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 xmlns:local="clr-namespace:XMLBinderDemo"
 mc:Ignorable="d"
 d:DesignHeight="300" d:DesignWidth="400" >
 <Grid x:Name="LayoutRoot" Background="White">
 <ListBox ItemsSource="{local:XMLBinderExtension Source=Employee.xml,
 Path=/Manager/FirstName}" Height="200" Width="200" Background="Beige" />
 </Grid>
</UserControl>

The XMLBinderExtension class derives from the MarkupExtension class defined in the
System.Windows.Markup assembly. The MarkupExtension class provides a base class for XAML
markup extension implementations.

The ProvideValue() method is typically overridden (or implemented, if inheriting from the interface
in the derived class) and returns an object that becomes the value of the target property for this
markup extension. In the current example, the ProvideValue() method returns an object used as the
source for the XML binding.

The general syntax of the ProvideValue() method is as follows:

Syntax:

98   Part 2  Enhancing User Experience

public abstract Object ProvideValue(
	 IServiceProvider serviceProvider
)

Note  In the preceding example, serviceProvider indicates a service provider helper that can
provide services for the markup extension.

If the service is designed to return a value, the custom markup extension class can throw an
exception if the service is unavailable. In addition, if any of the arguments used by the custom markup
extension class to provide values are null, or if an argument does not match the expected data type,
or if it contains a value that cannot be processed by the custom markup extension, you can throw an
exception within the custom markup class. The recommended exception to throw in either or both of
these cases is InvalidOperationException.

The following XAML markup assigns the CLR namespace XMLBinderDemo to the alias local. Then it
invokes the custom markup extension using this alias and passes the XML file name and path to bind
to using the Source and Path attributes, as shown here:

<ListBox ItemsSource="{local:XMLBinderExtension Source=Employee.xml,
 Path=/Manager/FirstName}" Height="200" Width="200" Background="Beige" />

This approach makes declarative XML binding possible and much easier to work with.

Note  The MarkupExtension type is defined in the System.Windows.Markup namespace and
not in the System.Xaml namespace. This does not mean that this type is specific to either the
WPF or Windows Forms technologies. MarkupExtension is in the System.Xaml assembly and
therefore has no specific framework dependency. This type existed in the CLR namespace
for .NET Framework 3.0 and remains in the CLR namespace in .NET Framework 4 to avoid
breaking references in existing WPF projects.

Type Converters versus Markup Extensions

Type converters and markup extensions are similar in that they are used by XAML type systems and
XAML writers to render object graph components.

Type converters are classes that derive from the TypeConverter class in the .NET Framework.
The TypeConverter class converts a text representation of an object (such as an attribute value or
a XAML value node) into an object. You can also use a TypeConverter to serialize an object value
to a text representation. The TypeConverter class was present in the .NET Framework long before
the development of XAML. Markup extensions, on the other hand, are classes that derive from the
MarkupExtension class. Markup extensions are a concept that originated with XAML.

	 Chapter 4  Markup Extensions and Other Features    99

Although type converters and markup extensions have a few characteristics in common, each
is represented differently within a XAML node stream. Also, markup extensions return objects in
a more elegant manner than type converters. When a type or member includes a type converter
implementation, the XAML object writer invokes the type converter.

Type converters are typically associated with types or members, and are invoked when an object
graph creation or a serialization method encounters the text representation associated with those
entities. Thus, a type converter call is dependent on the type or property definition.

A markup extension is under the control of user code and user-generated markup, and can be
called when an application scenario demands it, whereas a type converter is not.

XAML Services

The .NET Framework XAML Services are a set of services and APIs defined in the assembly
System.Xaml. This is a new assembly introduced with .NET Framework 4, and includes readers, writers,
schema classes, and other XAML language features.

The System.Xaml assembly also defines types that relate to XAML readers and XAML writers, types
for the XAML type system, and other support types related to XAML and .NET Framework XAML
Services concepts.

A crucial feature added to XAML Services that was not present in earlier versions of .NET Frame-
work is a type system for XAML.

You can extend the XAML type system functionality of XAML representations into specific features
enabled by a framework, an application, and so on that accept and render XAML. The XAML type
system provides the APIs required to work with the nodes of a XAML node stream.

Security in XAML

Just as with any other .NET technology, XAML addresses security issues to help ensure that your hard
work does not go down the drain because of security loopholes.

Any XAML source that your application did not specifically create or render is categorized as
untrusted XAML. However, XAML compiled into or stored as a resx-type resource within a trusted and
signed assembly can be trusted based on the trust level of the assembly. You should typically treat
untrusted XAML as if it were untrusted code.

Through XAML, you work with objects, type converters, assemblies in the application domain, and
so on. XAML is also popular for rendering UIs in technologies such as WPF and Silverlight. To secure
Silverlight-based applications against attacks, Microsoft recommends that you do not pass untrusted
XAML strings to the Load or CreateFromXaml methods.

100   Part 2  Enhancing User Experience

In addition, you should avoid sharing XAML reader instances, settings for XAML reader/writer
classes, or similar such details between trusted and untrusted code.

You must also take care to secure XAML namespace mappings—an untrusted assembly can spoof
a trusted assembly’s proposed XAML namespace mapping. After the untrusted assembly obtains the
XAML namespace mapping, it can grab the object and property information from object sources.
Some security measures you can take include using fully qualified assembly names with strong
names in XAML namespace mappings, and restricting assembly mapping to a fixed set of reference
assemblies.

Summary

■■ The extensions described in this chapter, also called markup extensions, are placeholders to
resolve a property at runtime.

■■ The System.Windows.Markup namespace contains the definitions for most of the markup
extension classes.

■■ x:Null, x:Array, x:Reference, x:Static, and x:Type are some of the built-in XAML markup
extensions.

■■ Binding, StaticResource, and DynamicResource are some other commonly used markup
extensions that form part of the XAML language. See Chapter 8 for more information.

■■ Custom markup extensions are useful in scenarios where you need the extension to provide
functionality or behavior that is beyond the scope of existing built-in markup extensions.

■■ The .NET Framework XAML Services are a set of services and APIs defined in the assembly
System.Xaml.

		 101

C h apter 5

Resources, Styles, and Triggers

In this chapter:

■■ Resources

■■ Types of Resources

■■ Defining Resource Dictionary Files

■■ Merged Resource Dictionaries

■■ Scope and Hierarchy of Resources

■■ Styles

■■ Triggers

■■ Troubleshooting Resources, Styles, and Triggers

■■ Summary

XAML provides some powerful features through resources, styles, and triggers that let you customize
the visual appearance and behavior of controls. You can capitalize on these features to transform a
dull, ordinary application into an application with a rich, interactive, and striking user interface.

Resources

Resources in Silverlight and WPF provide designers and developers with a way to reuse commonly
defined objects. Using resources, you can set the properties of several controls simultaneously. This
can help maintain consistency across the application. Defining resources in an application simplifies
making changes to the application, because when you modify the resource, all the elements that
make use of that resource immediately reflect the change.

Silverlight and WPF provide a Resources property for every framework-level element, which you
can use to define the resources. This means that you can define specific resources for elements such
as Window, UserControl, Grid, Button, and so forth. However, the recommended approach is to define
the resources at a Window or Page element level. This is because any resource you define for an
element also applies to its child elements. For example, if you define a resource for a Page that has a

102   Part 2  Enhancing User Experience

Grid as a child element, the grid element can also use the page-level resources. However, if you define
a resource for the grid element, the resource applies only to the grid element and its child elements;
you can’t use that resource for the parent Page.

For all elements, the Resources property is of type ResourceDictionary. When you create resources
using the Resources property, you are actually adding them to a ResourceDictionary exposed by the
object. Resources can be stored either in resource dictionaries or in a XAML file.

Note  You cannot place UIElement objects in a resource.

Types of Resources

You can define resources using either XAML or code. The two types of resources are static resources
and dynamic resources.

Static Resources
Supported By

WPF Yes

Silverlight Yes

A static resource is resolved at compile time, after which the XAML processor assigns it to a property
while the XAML loads, which occurs before the application runs. The term StaticResource references a
static resource in XAML and includes the key that uniquely identifies the resource. StaticResource is
a markup extension, which is a placeholder to resolve a property at runtime. Chapter 4, “Markup
Extensions and Other Features,” covers markup extensions in detail.

After a property obtains a value through a StaticResource markup extension, any changes made
later to the resource dictionary are ignored. Static resource references must reference only those
resources that have been defined before the resource reference.

Defining Static Resources Using XAML
You use the Resources property of a framework-level element to define resources using XAML. Each
resource must have a unique key specified through the x:Key attribute.

Suppose that you want to define a LinearGradientBrush as a resource on a Grid element that you
want to apply to several UI elements, including a button. The following XAML markup will help you
accomplish this. You can use this markup either in a Silverlight application or a WPF application and
therefore, in this case, you declare the resource at the Grid level. The Grid will contain a button named
btnSubmit as its child element.

<Grid.Resources>
 <LinearGradientBrush x:Key="bgBrush" StartPoint="0.5,0" EndPoint="0.5,1">
 <GradientStop Color="Yellow" Offset="0.0" />

	 Chapter 5  Resources, Styles, and Triggers    103

 <GradientStop Color="Blue" Offset="0.75" />
 <GradientStop Color="Green" Offset="1.0" />
 </LinearGradientBrush>
</Grid.Resources>

Here, the markup creates a LinearGradientBrush as a resource that is assigned the key bgBrush. This
unique key is the resource identifier, and you will use it to reference the resource later on.

The <Grid.Resources></Grid.Resources> tags enclose the definition of the resource, signifying that
this resource has been defined in the Resources property of the Grid element.

To reference this resource, you will use the StaticResource markup extension, as shown in the
following markup:

<Button x:Name="btnSubmit" Background="{StaticResource bgBrush}" Height="60" Width="120"
 Margin="112,23,168,217"/>

In this code shown, the StaticResource markup extension uses the key name bgBrush to reference
the resource. Thus, the background property of the button is resolved to the LinearGradientBrush
defined earlier.

The complete XAML markup for declaring and using the resource is as follows:

<Grid x:Name="LayoutRoot">
 <Grid.Resources>
 <LinearGradientBrush x:Key="bgBrush" StartPoint="0.5,0" EndPoint="0.5,1">
 <GradientStop Color="Yellow" Offset="0.0" />
 <GradientStop Color="Blue" Offset="0.75" />
 <GradientStop Color="Green" Offset="1.0" />
 </LinearGradientBrush>
 </Grid.Resources>
 <Button x:Name="btnSubmit" Background="{StaticResource bgBrush}"
 Height="60" Width="120" Margin="112,23,168,217"/>
</Grid>

Because the markup declares bgBrush as a resource, you can apply it to several other elements as
well. As mentioned earlier, reusing the same object—in this case, LinearGradientBrush—as a resource
not only promotes consistency, but also eventually makes the code easier to maintain and modify.

Here’s another example of defining and using a resource:

<UserControl x:Class="SilverlightApp.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d"
 d:DesignHeight="300" d:DesignWidth="400">
 <UserControl.Resources>
 <TextBlock x:Key="copyright"
 Text="Copyright Wingtip Toys 2008"/>
 </UserControl.Resources>
 <ContentControl Content="{StaticResource copyright}"/>
</UserControl>

104   Part 2  Enhancing User Experience

Suppose a Silverlight application has the following code fragment:

<Page.Resources>
 <TextBlock x:Key="copyright"
 Text="Copyright Tailspin Toys 2008"/>
</Page.Resources>
<ContentControl Content="{StaticResource copyright}"/>

The XAML markup will display the copyright message on the pages of the application.

Note  You must always define static resources before referencing them. A StaticResource
must not attempt to make a forward reference to a resource defined later in the XAML
file. Attempting to specify a StaticResource to a key that cannot be resolved will result in a
XAML parse exception.

You can define strings and other primitives as resources, as shown in the following example:

<Grid x:Name="LayoutRoot">
 <Grid.Resources>
 <sys:String x:Key="currencytext">150 dollars</sys:String>
 </Grid.Resources>
 <Button x:Name="btnSubmit" Height="60" Width="120"
 Margin="112,23,168,217" Content="{StaticResource currencytext}"/>
 <TextBlock Text="{StaticResource currencytext }" Margin="12,119,294,156" />
</Grid>

Defining Static Resources Programmatically
You use the ResourceDictionary class to create a resource programmatically. First, create a new
ResourceDictionary instance, and then add resources to the dictionary by calling its ResourceDictionary.
Add method. After creating the resource dictionary, and adding resources to it, you can assign the
now-populated ResourceDictionary instance to the Resources property of any appropriate element.

The following C# code in a Silverlight application shows how to create a resource similar to the one
defined in the previous XAML example and assign it to the Grid element named LayoutRoot.

The code retrieves the resource from the resource dictionary, casts into a LinearGradientBrush, and
assigns to the Background property of the button, btnSubmit.

ResourceDictionary dict = new ResourceDictionary();
LinearGradientBrush bgBrush = new LinearGradientBrush();
bgBrush.StartPoint = new Point(0.5, 0);
bgBrush.EndPoint = new Point(0.5, 1);
GradientStopCollection stops = new GradientStopCollection();
GradientStop stop1 = new GradientStop();
stop1.Color = Colors.Yellow;
stop1.Offset = 0.0;
stops.Add(stop1);
GradientStop stop2 = new GradientStop();

	 Chapter 5  Resources, Styles, and Triggers    105

stop2.Color = Colors.Blue;
stop2.Offset = 0.75;
stops.Add(stop2);
GradientStop stop3 = new GradientStop();
stop3.Color = Colors.Green;
stop3.Offset = 1.0;
stops.Add(stop3);
bgBrush.GradientStops = stops;
dict.Add("bgBrush", bgBrush);
this.LayoutRoot.Resources = dict;
this.btnSubmit.Background = (LinearGradientBrush)
 this.LayoutRoot.Resources["bgBrush"];

This C# code assumes that you have defined the following XAML markup in the application:

<Grid x:Name="LayoutRoot">
 <Button x:Name="btnSubmit" Height="60" Width="120" Margin="112,23,168,217"/>
</Grid>

In WPF, you can use the FindResource() and TryFindResource() methods to look up a particular
resource from within the code-behind. Silverlight does not implement these methods.

Note  The XAML processor parses resources and enters them in a resource dictionary in the
order in which you specify them.

Dynamic Resources
Supported By

WPF Yes

Silverlight No

A dynamic resource is unresolved at compile time; it is resolved only at runtime. In addition to
the StaticResource markup extension, WPF also provides the DynamicResource markup extension
that enables you to reference resources dynamically. In other words, WPF supports both kinds
of resources—static resources and dynamic resources—whereas Silverlight supports only static
resources and lacks support for dynamic resources. The DynamicResource markup extension enables
you to defer the resolution of a resource to runtime.

The following example demonstrates the use of DynamicResource markup extension. The color of
the element changes whenever the Desktop Color changes:

<Button>
 <Button.Background>
 <SolidColorBrush Color="{DynamicResource
 {x:Static SystemColors.DesktopColorKey}}" />
 </Button.Background>
 Hello
</Button>

106   Part 2  Enhancing User Experience

When to Use Which Resource
Sometimes you may need to choose between defining a static resource and a dynamic resource.
Depending on the requirements, you will need to make a call as to which resource to use.

If your current scenario satisfies one or more of these conditions, you should use a static resource
if you are:

■■ Attempting to set the value of a property that is not on a DependencyObject or a Freezable
element.

■■ Creating a resource dictionary that will eventually be compiled into a DLL and packaged as
part of an application or shared between applications.

■■ Creating an application design that focuses most of its resources into page- or application-
level resource dictionaries.

■■ Defining a theme for a custom control and resources that are used within the themes.

■■ Setting an abundance of dependency properties using resources.

On the other hand, if your current scenario satisfies one or more of the following conditions, you
should use a dynamic resource when you are:

■■ Depending on conditions that will be resolved only at runtime to set the values of resources.

■■ Manipulating the contents of a ResourceDictionary during an application lifetime.

■■ Creating or referencing theme styles for a custom control.

■■ Designing a complex resource structure that has interdependencies, where a forward
reference may be required.

How Static and Dynamic Resources Work
For static resources, the lookup process works as follows:

1.	 It checks for the requested key in the resource dictionary defined by the element setting the
property.

2.	 It navigates the logical tree upward, to the parent element and its resource dictionary. This
upward navigation continues until the lookup process reaches the root element.

3.	 It concludes by checking application resources.

Resource lookup behavior for a dynamic resource reference is very similar to the lookup behavior in
your code that takes place when you call the FindResource() or SetResourceReference() method in WPF.

The steps taken during resource lookup for a dynamic resource are as follows:

1.	 The lookup process checks for the requested key in the resource dictionary defined by the
element setting the property.

	 Chapter 5  Resources, Styles, and Triggers    107

2.	 The process navigates the logical tree upward, to the parent element and its resource
dictionary and continues until it reaches the root element.

3.	 It checks the application resources.

4.	 It checks the theme resource dictionary for the currently active theme. If the theme changes at
runtime, the lookup process reevaluates the value.

5.	 Finally, the process checks the system resources.

Defining ResourceDictionary Files

If your application is small and needs only a few resources, you can define them in App.xaml. Doing this
extends the scope of the resources to the entire application, instead of being constrained to a single
element. Most real-world applications, however, require a large number of resources, and you will want
to manage these properly. You use a ResourceDictionary file to group and organize related resources
together. You can later merge multiple resource dictionaries to share them across applications.

Both Silverlight and WPF provide the capability to add a ResourceDictionary file through the
Project | Add New Item command. The Add New Item dialog box displays a ResourceDictionary file as
one of the templates.

When you select this template, the dialog box creates a resource dictionary with the default name
Dictionary1.xml.

Figure 5-1 shows the Add New Item dialog box displaying the ResourceDictionary template.

Figure 5-1  Adding a resource dictionary.

108   Part 2  Enhancing User Experience

The skeleton structure of a default ResourceDictionary file is as follows:

<ResourceDictionary xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">
</ResourceDictionary>

You can then add resources to this file just as you would define them normally. For example, the
following resource dictionary file defines a LinearGradientBrush with the key shadedBrush:

TestResource.xaml:

<ResourceDictionary
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" >
 <LinearGradientBrush EndPoint="0.5,1" StartPoint="0.5,0" x:Key="shadedBrush">
 <GradientStop Color="Black" Offset="0"/>
 <GradientStop Color="DarkMagenta" Offset="1"/>
 </LinearGradientBrush>
</ResourceDictionary>

You can add the x:Shared attribute to a new instance of a resource for each resource request
instead of using a shared instance for every request. You can find more on the x:Shared attribute at
the following link:

http://msdn.microsoft.com/en-us/library/aa970778.aspx

Note  Silverlight XAML does not support the x:Shared markup extension.

Merged Resource Dictionaries

Merged dictionaries enable you to share resources across applications by combining multiple
resource dictionaries.

Consider an example to understand this concept. This example defines a resource dictionary,
DictionaryA.xaml, in one application and then makes use of it in another application that also has a
local resource dictionary, DictionaryB.xaml, defined in it.

Create a Merged Resource Dictionary

1.	 Create a Silverlight Class Library application and add a resource dictionary, DictionaryA.xaml,
to it through the Project | Add New Item command.

2.	 Add the following markup to the resource dictionary:

<ResourceDictionary
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" >

http://msdn.microsoft.com/en-us/library/aa970778.aspx

	 Chapter 5  Resources, Styles, and Triggers    109

 <LinearGradientBrush EndPoint="0.5,1" StartPoint="0.5,0" x:Key="bgBrush">
 <GradientStop Color="Black" Offset="0"/>
 <GradientStop Color="DarkMagenta" Offset="1"/>
 </LinearGradientBrush>
</ResourceDictionary>

3.	 Build the application.

4.	 Create a new Silverlight application. Add a resource dictionary to it named DictionaryB.xaml
and insert the following markup into it:

<ResourceDictionary
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">
 <SolidColorBrush x:Key ="myBrush" Color="DarkGreen"/>
</ResourceDictionary>

5.	 Add a reference to the Silverlight Class Library application. You can then use DictionaryA.xaml
as follows:

<UserControl x:Class="Dict.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">
 <UserControl.Resources>
 <ResourceDictionary>
 <ResourceDictionary.MergedDictionaries>
 <ResourceDictionary Source="DictionaryB.xaml" />
 <ResourceDictionary
 Source="/SilverlightClassLibrary1;component/ DictionaryA.xaml " />
 </ResourceDictionary.MergedDictionaries>
 </ResourceDictionary>
 </UserControl.Resources>
 <Button Background="{StaticResource shadedBrush}" Content="Resource Dictionaries"
Height="48" Width="148" />
</UserControl>

In the markup, the statement <ResourceDictionary Source=”SomeResources.xaml” /> references
the locally defined resource dictionary, whereas the statement <ResourceDictionary Source=”/
SilverlightClassLibrary1;component/TestResource.xaml” /> references the resource dictionary
defined in the class library. The MergedDictionaries property merges these two resource
dictionaries.

Scope and Hierarchy of Resources

Resources declared locally within an element—also called locally defined resources—override the
resources defined for a parent. For example, consider the following code:

<UserControl
	 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
	 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
	 x:Class="SilverlightApp2.MainPage"

110   Part 2  Enhancing User Experience

	 Width="640" Height="480">
 <UserControl.Resources>
 <RadialGradientBrush GradientOrigin="0.5,0.5" Center="0.5,0.5"
 RadiusX="0.5" RadiusY="0.5" x:Key="thinBrush">
 <GradientStop Color="Yellow" Offset="0" />
 <GradientStop Color="Red" Offset="0.25" />
 <GradientStop Color="Blue" Offset="0.75" />
 <GradientStop Color="LimeGreen" Offset="1" />
 </RadialGradientBrush>
 </UserControl.Resources>
 <StackPanel>
 <Rectangle Fill="{StaticResource thinBrush}" Height="48" Width="148" />
 </StackPanel>
</UserControl>

Here, when the XAML processor encounters the markup {StaticResource thinBrush}, it first looks
for the resource definition in the Rectangle element, then looks for it under the StackPanel element.
When it fails to find a resources collection named thinBrush in StackPanel, the XAML processor checks
the UserControl and eventually finds the resource collection there. The code creates a radial gradient
brush as a resource.

On the other hand, if you declare a resource with the same name under a parent element as well
as a child element, the resource defined for the child element overrides the resource declared for the
parent element.

The following example illustrates this concept:

<UserControl
	 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
	 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
	 x:Class="SilverlightApp3.MainPage"
	 Width="640" Height="480">
 <UserControl.Resources>
 <RadialGradientBrush GradientOrigin="0.5,0.5" Center="0.5,0.5"
 RadiusX="0.5" RadiusY="0.5" x:Key="radialBrush">
 <GradientStop Color="Yellow" Offset="0.2" />
 <GradientStop Color="Red" Offset="0.5" />
 <GradientStop Color="Blue" Offset="0.75" />
 <GradientStop Color="DarkBlue" Offset="1" />
 </RadialGradientBrush>
 </UserControl.Resources>
 <StackPanel>
 <StackPanel.Resources>
 <RadialGradientBrush GradientOrigin="0.5,0.5" Center="0.5,0.5"
 RadiusX="0.5" RadiusY="0.5" x:Key=" radialBrush ">
 <GradientStop Color="White" Offset="0.5" />
 <GradientStop Color="Tomato" Offset="0.75" />
 <GradientStop Color="DarkBlue" Offset="0.75" />
 <GradientStop Color="Orange" Offset="0.5" />
 </RadialGradientBrush>
 </StackPanel.Resources>

	 Chapter 5  Resources, Styles, and Triggers    111

 <Button Height="48" Width="148">
 <Button.Resources>
 <RadialGradientBrush GradientOrigin="0.5,0.5" Center="0.5,0.5"
 RadiusX="0.5" RadiusY="0.5" x:Key=" radialBrush ">
 <GradientStop Color="Magenta" Offset="0.75" />
 <GradientStop Color="Green" Offset="0.25" />
 <GradientStop Color="White" Offset="0.5" />
 <GradientStop Color="LimeGreen" Offset="1" />
 </RadialGradientBrush>
 </Button.Resources>
 <Button.Background>
 <StaticResource ResourceKey=" radialBrush "/>
 </Button.Background>
 </Button>
 </StackPanel>
</UserControl>

Here, the markup declares a resource with the name radialBrush on the UserControl, the
StackPanel, and the Button, respectively. Then, you the reference the resource for the button
background using the StaticResource markup extension. In this case, when the XAML processor finds
the resource definition in the resources collection of the button, it stops looking any further and
applies that resource straight away. Thus, the resources collection of Button overrides the collection
defined under the parent element.

One of the most common uses of resources is to define styles.

Styles

One of the key advantages of WPF and Silverlight applications is the rich look and feel they offer for
user interfaces. Today’s applications—whether they are line-of-business (LOB) applications or other
types—demand a high level of user experience (UX). This means that your application doesn’t just
need to have working functionality and performance but must also provide a good (if not awesome)
experience for the user.

Using WPF and Silverlight, it’s easy to design visually attractive and rich, jazzy user interfaces. However,
if your application has many controls (as is normally the case in large real-world applications), it becomes
cumbersome to customize the appearance of each and every control.

Here’s where styles come to the rescue. Styles let you implement a consistent look and behavior
in Silverlight and WPF applications. They provide a way to easily change the visual appearance of
a control. You can use styles to apply a set of one or more properties, resources, and even event
handlers to one or more elements.

Suppose that you want to create a number puzzle game with a UI consisting of attractive buttons.
You want all the buttons to look similar but you want to do this with the least effort possible. Styles
can help you achieve this outcome. Figure 5-2 shows an example of using styles to create the UI.

112   Part 2  Enhancing User Experience

8 2 4

3 1 5

7 6

Figure 5-2  Using styles to implement a consistent look.

Any element that derives from FrameworkElement can have a style applied to it.

Figure 5-3 shows another example of a Silverlight Button control using styles.

Submit

Figure 5-3  Using styles.

Defining Styles
You define styles using the Style element. The Style element has a TargetType attribute that specifies
the object to which the style will be applied and a Key attribute to uniquely identify the style. You will
use this Key value later with the StaticResource markup extension to apply the style. A Style element
contains one or more Setter elements. A Setter element has a Property attribute that specifies which
property this Setter is changing and a Value attribute that specifies the property value.

The following XAML snippet shows a simple example of defining a style:

<UserControl.Resources>
 <Style x:Key="ButtonStyle" TargetType="Button">
 <Setter Property="FontSize" Value="16" />
 </Style>
</UserControl.Resources>
<StackPanel>
 <Button Content="Submit" Width="150" Height="60"
 Style="{StaticResource ButtonStyle}" x:Name="b1"/>
 <Button Content="OK" Width="150" Height="60"
 Style="{StaticResource ButtonStyle}" x:Name="b2"/>
 <RadioButton Content="Business"></RadioButton>
</StackPanel>

The preceding code defines a style resource named ButtonStyle that creates a font style that you
want to apply to objects of type Button. The Style contains only one Setter element that sets the
FontSize property. In the preceding markup, within the StackPanel, you create three controls:

<StackPanel>
 <Button Content="Submit" Width="150" Height="60"
 Style="{StaticResource ButtonStyle}" x:Name="b1"/>
 <Button Content="OK" Width="150" Height="60"
 Style="{StaticResource ButtonStyle}" x:Name="b2"/>
 <RadioButton Content="Business"></RadioButton>
</StackPanel>

	 Chapter 5  Resources, Styles, and Triggers    113

However, you apply the style only to the Button controls, excluding the RadioButton control. This is
for two reasons: first, the TargetType of the style is set to be Button; second, the Style property of the
Button controls is explicitly set to ButtonStyle.

Even if you apply the ButtonStyle to the RadioButton control, it will not succeed; in fact, doing so
will result in an exception, because the TargetType of the style is Button.

Note  You must set the TargetType property when you create a style. If you do not, the
XAML processor throws an exception.

Instead of using attribute syntax, you can also use property element syntax to define styles. The
following XAML snippet shows an example of this:

<UserControl.Resources>
 <Style x:Key="ButtonStyle" TargetType="Button">
 <Setter Property="Background">
 <Setter.Value>
 <LinearGradientBrush StartPoint="0,0.5" EndPoint="1,0.5">
 <GradientStop Color="Black" Offset="0.75"/>
 <GradientStop Color="Orchid"/>
 </LinearGradientBrush>
 </Setter.Value>
 </Setter>
 </Style>
</UserControl.Resources>
<StackPanel>
 <Button Content="Submit" Width="150" Height="60" Style="{StaticResource ButtonStyle}"
x:Name="b1"/>
</StackPanel>

This is a more elaborate approach to defining styles. Developers often prefer the more compact
approach of using attributes with styles.

You can also define inline styles using XAML, instead of specifying styles through resources. The
following XAML, when used in a Silverlight application, applies a style with a custom linear gradient
brush to a button:

 <Button Height="90" Width="200">
 <Button.Style>
 <Style TargetType="Button">
 <Setter Property="Button.Background">
 <Setter.Value>
 <LinearGradientBrush StartPoint="0,0.5" EndPoint="1,0.5">
 <GradientStop Color="Black" Offset="0.75"/>
 <GradientStop Color="Orchid"/>
 </LinearGradientBrush>
 </Setter.Value>
 </Setter>
 </Style>
 </Button.Style>
 </Button>

114   Part 2  Enhancing User Experience

If you were to use the preceding style in a WPF application, the only difference would be that you
wouldn’t have to specify the TargetType property—it’s considered implicit.

The following XAML snippet creates a ListBox in which only one ListBoxItem has a large font:

<StackPanel>
 <ListBox Width="150" Height="60" x:Name="b1">

 <ListBoxItem Content="B" >
 <ListBoxItem.Style>
 <Style TargetType="ListBoxItem">
 <Setter Property="FontSize" Value="24"/>
 </Style>
 </ListBoxItem.Style>
 </ListBoxItem>
 <ListBoxItem Content="A" />
 <ListBoxItem Content="C" />
 <ListBoxItem />
 </ListBox>
</StackPanel>

Figure 5-4 shows the outcome.

Figure 5-4 Using inline styles.

A style defined inline instead of in a resource is limited in scope to the containing element. It has
no resource key; therefore, you cannot reuse it, even for other elements of the same type.

A style defined in a resource is more adaptable and useful, and is strongly recommended.

It is invalid to specify more than one value in a single Setter element. The following XAML snippet
will cause the compiler error “Property is set more than once” because a single Setter is trying to set
both the font and the background:

<UserControl.Resources>
 <Style x:Key="ButtonStyle" TargetType="Button">
 <Setter Property="FontSize" Value="16" Property="Background" Value="Orchid"/>
 </Style>
</UserControl.Resources>
<StackPanel>
 <Button Content="Submit" Width="150" Height="60"
 Style="{StaticResource ButtonStyle}" x:Name="b1"/>
 <Button Content="OK" Width="150" Height="60"
 Style="{StaticResource ButtonStyle}" x:Name="b2"/>
 <RadioButton Content="Business"></RadioButton>
</StackPanel>

	 Chapter 5  Resources, Styles, and Triggers    115

Note  It is a recommended that you create styles in the Assets folder. You can also store
styles and resources in a separate library that you can reuse across several Silverlight
applications.

Implicit Styles
Supported By

WPF Yes

Silverlight Yes

From Silverlight 4 onward, you can set styles implicitly by omitting the x:Key attribute in the Style
definition. When you leave out the x:Key attribute, the TargetType is used as the x:Key, thus making
the style implicit for all the objects of that type.

The following XAML snippet illustrates the use of implicit styles:

<UserControl.Resources>
 <Style TargetType="Button">
 <Setter Property="FontSize" Value="16" />
 </Style>
</UserControl.Resources>
<StackPanel>
 <Button Content="Submit" Width="150" Height="60" x:Name="b1"/>
 <Button Content="OK" Width="150" Height="60" x:Name="b2"/>
 <ToggleButton Height="200" Width="200" Content="text"></ToggleButton>
</StackPanel>

Here, no x:Key was specified for the style; therefore, it will be applied to all buttons—even if they
omit the StaticResource markup extension. This is because of the implicit style feature.

In the following XAML snippet, an explicit style overrides the implicit style:

<UserControl.Resources>
 <Style TargetType="Button">
 <Setter Property="FontSize" Value="16" />
 </Style>
 <Style x:Key="ButtonStyle" TargetType="Button">
 <Setter Property="FontSize" Value="24" />
 </Style>
</UserControl.Resources>
<StackPanel>
 <Button Content="Submit" Width="150" Height="60" x:Name="b1"/>
 <Button Content="OK" Width="150" Height="60" x:Name="b2"
 Style="{StaticResource ButtonStyle}"/>
 <ToggleButton Height="200" Width="200" Content="text"></ToggleButton>
</StackPanel>

The preceding markup will result in a Submit button that uses font size 16, an OK button with font
size 24, and a ToggleButton with a default font size. Figure 5-5 shows the outcome.

116   Part 2  Enhancing User Experience

Note  If more than one setter in the Setter collection has the same Property value, the setter
that is declared last is used. Similarly, if you set a value for the same property in a style and
directly on an element, the value set directly on the element takes precedence.

Submit

OK

Text

Figure 5-5 Overriding implicit styles with explicit ones.

Inheriting Styles
Supported By

WPF Yes

Silverlight Yes

You can reuse an existing style to create a new style and add additional Setter elements if required.
The BasedOn attribute of a Style element enables you to implement this functionality.

For example, you could reuse a style named ButtonStyle that sets font size to 16 and add a new
Setter element to set the background to Orchid as follows:

<UserControl.Resources>
 <Style x:Key="ButtonStyle" TargetType="Button">
 <Setter Property="FontSize" Value="24" />
 </Style>
 <Style x:Key="InheritedButtonStyle" TargetType="Button"
 BasedOn="{StaticResource ButtonStyle}">
 <Setter Property="Background" Value="Orchid" />
 </Style>
</UserControl.Resources>
<StackPanel>
 <Button Content="Submit" Width="150" Height="60" x:Name="b1"
 Style="{StaticResource InheritedButtonStyle}"/>
</StackPanel>

Here, InheritedButtonStyle is a style that inherits or is based on an earlier style, ButtonStyle.

Inherited styles, also called BasedOn styles, are a great way to apply multiple styles to a control,
because you can’t use more than one style key in the StaticResource reference.

For example, the following XAML snippet is invalid:

 <Button Content="Submit" Width="150" Height="60" x:Name="b1"
 Style="{StaticResource Style1 Style2}"/>

	 Chapter 5  Resources, Styles, and Triggers    117

However, you can achieve the intended result using the BasedOn style feature.

Tip  You can find some ready-made downloadable styles at the following links:

■■ http://www.xamltemplates.net/

■■ http://gallery.expression.microsoft.com/site/search

■■ http://reuxables.com

The Silverlight Toolkit Styles
You’ll find a number of pre-created styles that you can use in your applications immediately at
http://www.silverlight.net/learn/videos/all/silverlight-toolkit-using-themes-in-silverlight/.

If you have a large Line of Business (LoB) application that needs lots of customizations for probably
hundreds of controls, you'd be better off defining themes instead of styles. Nikhil Kothari from the Microsoft
Developer Division has created a theme primer that you can find at http://www.nikhilk.net/Silverlight-Themes.
aspx. (Although written for Silverlight 2, the article applies to later versions of Silverlight as well.)

You can find some ready-made themes at http://www.microsoft.com/downloads/en/details.
aspx?FamilyID=e9da0eb8-f31b-4490-85b8-92c2f807df9e&displaylang=en.

Styles vs. Control Templates
A control template defines the visual appearance of a control. You can customize a control by modify-
ing its default control template. A style can determine the individual properties of a control, whereas
a control template determines how the control will display bound data. With a control template, you
can collate several smaller controls into a single control to present different views of the bound data.

More on Styles
Creating a project of type Silverlight Business Application automatically creates styles for a
business-like template for your pages.

Styles lack support for multiple TargetType objects within a single Style definition. Therefore, if you
want to reuse a Style for more than one TargetType, such as a ListBox and ComboBox, you will need to
create a common style with a key and then create separate styles for the individual controls to which
you want to apply that style and use BasedOn, as shown in the following snippet:

<UserControl.Resources>
 <Style x:Key="CommonStyle" TargetType="Control">
 <Setter Property="FontSize" Value="24" />
 </Style>
 <Style BasedOn="{StaticResource CommonStyle}" TargetType="ListBox" />
 <Style BasedOn="{StaticResource CommonStyle}" TargetType="ComboBox" />
</UserControl.Resources>

http://www.xamltemplates.net/
http://gallery.expression.microsoft.com/site/search
http://reuxables.com
http://www.silverlight.net/learn/videos/all/silverlight-toolkit-using-themes-in-silverlight/
http://www.nikhilk.net/Silverlight-Themes.aspx
http://www.nikhilk.net/Silverlight-Themes.aspx
http://www.microsoft.com/downloads/en/details.aspx?FamilyID=e9da0eb8-f31b-4490-85b8-92c2f807df9e&displaylang=en
http://www.microsoft.com/downloads/en/details.aspx?FamilyID=e9da0eb8-f31b-4490-85b8-92c2f807df9e&displaylang=en

118   Part 2  Enhancing User Experience

Note  If you define a multitude of styles and leave them unused, they increase the size of
the final XAP file because they compile into the DLL and consume space. XAP (pronounced
zap) is the file extension for a Silverlight-based application package (.xap). A .xap file con-
tains the compressed assemblies and resources of a Silverlight application. If you don’t intend
to use certain styles, just remove them before deploying your application.

If you want to apply alignment to your text using a style, ensure that you use the TextAlignment prop-
erty instead of HorizontalContentAlignment. The following XAML snippet shows the correct way to do this:

<UserControl.Resources>
 <Style x:Key="MyStyle" TargetType="TextBlock">
 <Setter Property="FontSize" Value="24" />
 <Setter Property="TextAlignment" Value="Right" />
 </Style>
</UserControl.Resources>
<StackPanel>
 <TextBlock Text="Submit" Width="150" Height="60" x:Name="b1" Style="
{StaticResource MyStyle}"/>
</StackPanel>

The following code shows a neat little example of using styles and resources with a ListBox to
customize the appearance of its items:

<Grid>
 <Grid.Resources>
 <Style x:Key="lstStyle" TargetType="ListBox">
 <Setter Property="Background" Value="PaleGreen"></Setter>
 </Style>
 <Style TargetType="ListBoxItem" >
 <Setter Property="Background">
 <Setter.Value>
 <LinearGradientBrush EndPoint="0.5,1" StartPoint="0.5,0">
 <GradientStop Color="#FF406DC7" Offset="1"/>
 <GradientStop Color="#FF002C83"/>
 </LinearGradientBrush>
 </Setter.Value>
 </Setter>
 <Setter Property="FontFamily" Value="Trebuchet MS"></Setter>
 <Setter Property="Foreground" Value="White"></Setter>
 </Style>
 </Grid.Resources>
 <ListBox Height="58" HorizontalAlignment="Left" Margin="228,20,0,0" Name="listBox1"
 VerticalAlignment="Top" Width="141" AllowDrop="True"
 Style="{StaticResource lstStyle}">
 <ListBoxItem Content="Trekking"/>
 <ListBoxItem Content="Swimming" />
 <ListBoxItem Content="Cycling" />
 <ListBoxItem Content="Mountaineering" />
 <ListBoxItem Content="Jogging" />
 <ListBoxItem Content="Road Trips" />
 </ListBox>
 <sdk:Label Content="What's your favorite outdoor activity?" Height="28"
 HorizontalAlignment="Left" Margin="33,0,0,0" Name="label1" VerticalAlignment="Top"/>
 </Grid>

	 Chapter 5  Resources, Styles, and Triggers    119

The output of the preceding code looks like Figure 5-6.

Figure 5-6  Using styles to implement a consistent look.

In Chapter 9, “Media, Graphics, and Animation,” you will learn about storyboards and animations
and can apply them to list boxes and other controls to further enhance their appearance.

The generic.xaml File
A generic.xaml file is typically present in the Themes subfolder of a WPF custom control library or a
Silverlight Templated control in a Silverlight Class Library application. This file serves as the default
lookup location for any default styles you wish to apply to your controls.

The following XAML snippet shows the contents of a generic.xaml file in a WPF custom control
library. The file is located in the Themes subfolder.

<ResourceDictionary
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="clr-namespace:WpfCustomControlLibrary1">
 <Style TargetType="{x:Type local:CustomControl1}">
 <Setter Property="Template">
 <Setter.Value>
 <ControlTemplate TargetType="{x:Type local:CustomControl1}">
 <Border Background="{TemplateBinding Background}"
 BorderBrush="{TemplateBinding BorderBrush}"
 BorderThickness="{TemplateBinding BorderThickness}">
 </Border>
 </ControlTemplate>
 </Setter.Value>
 </Setter>
 </Style>
</ResourceDictionary>

120   Part 2  Enhancing User Experience

In generic.xaml only, both Name x:Name and x:Key are optional on Style elements so long as the
TargetType attribute is specified (the TargetType is implicitly used as the key). Another aspect that is
unique to generic.xaml is that syntax that references the {x:Type} markup extension is supported when
you are setting TargetType for styles and template resources. This is to support template compatibility
and migration with WPF, where the {x:Type} markup extension is supported by a backing XAML
markup extension. Outside of generic.xaml, the Silverlight XAML parser uses implicit conversion for
any property of type Type; explicit use of {x:Type} is not supported and generates a XAML parse error.

Triggers

Triggers enable you to set or modify attributes of an element based on a specific action. Triggers can
either act on single instances of an element or they can affect an entire class of elements.

A simple example of a trigger and its corresponding action is that of a button changing its back-
ground color based on a mouse hover or mouse click action.

The Style, ControlTemplate, and DataTemplate elements have a Triggers property that contains a
set of triggers.

Triggers in WPF are of various types: property triggers, event triggers, data triggers, multi triggers,
and multi data triggers.

Property Triggers
Supported By

WPF Yes

Silverlight Yes

Defining a property trigger is simple. You define a Trigger element, specify the property change
that initiates the trigger, and define the behavior of the trigger.

For example, the following XAML defines a property trigger that changes the font size of the
button whenever the mouse hovers over the button:

<Window x:Class="WpfApplication.NewMainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="MainWindow" Height="350" Width="525"
 xmlns:sys="clr-namespace:System;assembly=mscorlib"
 xmlns:collections="clr-namespace:System.Collections;assembly=mscorlib"
 xmlns:local="clr-namespace:WpfApplication5"
 >
 <Window.Resources>
 <Style x:Key="ButtonStyle" TargetType="Button">
 <Setter Property="FontSize" Value="16" />
 <Style.Triggers>
 <Trigger Property="IsMouseOver" Value="True">
 <Setter Property="FontSize" Value="36" />
 </Trigger>

	 Chapter 5  Resources, Styles, and Triggers    121

 </Style.Triggers>
 </Style>
 </Window.Resources>
 <StackPanel>
 <Button Content="Submit" Width="150" Height="60"
 Style="{StaticResource ButtonStyle}" x:Name="b1"/>
 </StackPanel>
</Window>

You can also combine two or more properties within a single trigger, as shown in the following
example:

<Window.Resources>
 <Style x:Key="ButtonStyle" TargetType="Button">
 <Setter Property="FontSize" Value="16" />
 <Style.Triggers>
 <Trigger Property="IsMouseOver" Value="True">
 <Setter Property="FontSize" Value="36" />
 <Setter Property="Background" Value="LavenderBlush"/>
 </Trigger>
 </Style.Triggers>
 </Style>
</Window.Resources>
<StackPanel>
 <Button Content="Submit" Width="150" Height="60"
 Style="{StaticResource ButtonStyle}" x:Name="b1"/>
</StackPanel>

This markup changes the button’s FontSize and Background properties based on a single property
trigger: IsMouseOver. Thus, when the user’s mouse hovers over the button at runtime, the font size of
the Button text changes to 36 and its background changes to LavenderBlush.

Event Triggers
Supported By

WPF Yes

Silverlight Yes

Event triggers enable you to apply changes to property values in response to events. Event triggers
make use of the Storyboard element. A Storyboard is a collection of one or more animations, where an
animation is any action such as changing the behavior of elements or transforming their appearances.
Chapter 9 covers storyboards and animations in detail.

As an example, the following XAML snippet in a Silverlight application changes the color of a
Rectangle as it is loaded. The EventTrigger property has an attribute called RoutedEvent that indicates
which event will trigger the action. Silverlight supports only the Loaded event in an event trigger:

<Rectangle x:Name="rect" Canvas.Top="100"
 Canvas.Left="100" Width="100" Height="100">
 <Rectangle.Fill>
 <SolidColorBrush x:Name="brush" Color="Black" />
 </Rectangle.Fill>

122   Part 2  Enhancing User Experience

 <Rectangle.Triggers>
 <EventTrigger RoutedEvent="Rectangle.Loaded">
 <BeginStoryboard>
 <Storyboard>
 <ColorAnimation Storyboard.TargetName="brush"
 Storyboard.TargetProperty="Color" To="Magenta"
 Duration="0:0:6" />
 </Storyboard>
 </BeginStoryboard>
 </EventTrigger>
 </Rectangle.Triggers>
 </Rectangle>

The following XAML snippet works only in a WPF application. It changes the color of the ListBox
whenever you select any item in the ListBox:

<StackPanel x:Name="stackPanel1">
 <ListBox Height="100" Name="listBox1" Width="120">
 <ListBox.Background>
 <SolidColorBrush x:Name="brush" Color="PaleGoldenrod" />
 </ListBox.Background>
 <ListBoxItem Content="Orange" >
 </ListBoxItem>
 <ListBoxItem Content="Blue" />
 <ListBoxItem Content="Magenta" />
 </ListBox>
 <StackPanel.Triggers>
 <EventTrigger RoutedEvent="ListBox.SelectionChanged" SourceName ="listBox1">
 <EventTrigger.Actions>
 <BeginStoryboard>
 <Storyboard>
 <ColorAnimation Storyboard.TargetName="brush"
 Storyboard.TargetProperty="Color" To="Tomato" Duration="0:0:1" />
 </Storyboard>
 </BeginStoryboard>
 </EventTrigger.Actions>
 </EventTrigger>
 </StackPanel.Triggers>
 </StackPanel>

The preceding code defines a ListBox with a SolidBrush named “brush” that has a background
color of PaleGoldenrod. It then creates a trigger on the StackPanel that targets the brush assigned to
the ListBox and includes a Storyboard that changes the color to blue. This type of trigger is an event
trigger, because it fires only when the event takes place.

MultiTriggers
Supported By

WPF Yes

Silverlight No

MultiTriggers let you apply changes to property values based on the state of multiple properties.

	 Chapter 5  Resources, Styles, and Triggers    123

The following markup demonstrates an example of a MultiTrigger:

 <Window.Resources>
 <Style TargetType="{x:Type Button}">
 <Style.Triggers>
 <MultiTrigger>
 <MultiTrigger.Conditions>
 <Condition Property="IsHitTestVisible" Value="True" />
 <Condition Property="IsCancel" Value="True" />
 </MultiTrigger.Conditions>
 <Setter Property="Background" Value="Yellow" />
 </MultiTrigger>
 </Style.Triggers>
 </Style>
 </Window.Resources>
 <StackPanel x:Name="stackPanel1">
 <Button Content="" Height=" 60" Width=" 200" IsCancel="True" />
 </StackPanel>

When the XAML processor encounters a button with IsHitTestVisible and IsCancel properties set to
true, the MultiTrigger fires and the button background becomes yellow.

DataTrigger
Supported By

WPF Yes

Silverlight No

DataTriggers provide the ability to apply changes to property values in response to changes in
data-bound property values.

The following markup in a WPF application demonstrates an example of a DataTrigger:

<Window.Resources>
 <local:Books x:Key="AuthorsData"/>
 <Style TargetType="DataGridRow">
 <Style.Triggers>
 <DataTrigger Binding="{Binding Path=Author}" Value="Jane Austen">
 <Setter Property="Background" Value="Yellow" />
 </DataTrigger>
 </Style.Triggers>
 </Style>
 <DataTemplate DataType="{x:Type local:Book}">
 <Canvas Width="160" Height="20">
 <TextBlock FontSize="12"
 		 Width="130" Canvas.Left="0" Text="{Binding Path=Name}"/>
 <TextBlock FontSize="12" Width="30"
 Canvas.Left="130" Text="{Binding Path=Author}"/>
 </Canvas>
 </DataTemplate>
 </Window.Resources>
 <StackPanel>
 <DataGrid Width="241" HorizontalAlignment="Center" Background="Beige"
 ItemsSource="{Binding Source={StaticResource AuthorsData}}"/>
 </StackPanel>

124   Part 2  Enhancing User Experience

The markup creates a DataGrid where all the rows that contain data where “author” is “Jane
Austen” have a yellow background.

The markup assumes that you have created the following classes in the code-behind:

public class Books : ObservableCollection<Book>
 {
 public Books()
 : base()
 {
 Add(new Book("Pride and Prejudice", "Jane Austen"));
 Add(new Book("Far from the Madding Crowd", "Thomas Hardy"));
 Add(new Book("The Day of the Jackal", "Frederick Forysth"));
 Add(new Book("Blink", "Malcolm Gladwell"));
 Add(new Book("The Color Purple", "Alice Walker"));
 Add(new Book("Emma", "Jane Austen"));
 }
 }
 public class Book
 {
 private string name;
 private string author;
 public Book(string nm, string au)
 {
 this.name = nm;
 this.author = au;
 }
 public string Name
 {
 get { return name; }
 set { name = value; }
 }
 public string Author
 {
 get { return author; }
 set { author = value; }
 }
 }

Here, Books is an ObservableCollection of Book, which defines two properties: Author and Name.

Interaction Triggers
Microsoft Expression Blend also supports a new set of triggers for use with Silverlight called
interaction triggers. Because Silverlight otherwise supports only event triggers, interaction triggers can
be very useful.

Interaction triggers require you to reference the interactivity DLLs provided by Expression Blend.

Thus you will need to have the Microsoft Expression Blend SDK installed on your computer.

	 Chapter 5  Resources, Styles, and Triggers    125

By default, when you create a Silverlight (4.0 and later) application using Expression Blend, it does
not automatically add references to the interactivity DLLs to your XAML; instead, they’re added when
you begin an interaction trigger. Here’s an example of how you can do that.

Add an Interaction Trigger in Expression Blend

1.	 Open the Assets pane, select Behaviors, and then drag the GoToStateAction behavior onto the
object for which you want to set the interaction trigger.

Alternatively, you can just add a reference to the System.Windows.Interactivity.dll assembly
located in: {Program Files}\Microsoft SDKs\Expression\Blend XX\Interactivity\Libraries\
Silverlight, where XX is the version of Blend you installed; and then include the respective
behavior.

The following XAML markup demonstrates how you can trigger an interaction between two
buttons: clicking one button causes another to behave as though it were also clicked:

<UserControl
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:i="http://schemas.microsoft.com/expression/2010/interactivity"
 xmlns:ei="http://schemas.microsoft.com/expression/2010/interactions"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d"
 x:Class="SilverlightApplication11.MainPage"
 Width="640" Height="480">
 <Grid>
 <VisualStateManager.VisualStateGroups>
 <VisualStateGroup x:Name="VisualStateGroup"/>
 </VisualStateManager.VisualStateGroups>
 <Button x:Name="btn1" Height="45" Margin="260,123,260,0" VerticalAlignment="Top"
 Width="120" Content="Click Here" d:LayoutOverrides="HorizontalAlignment">
 <i:Interaction.Triggers>
 <i:EventTrigger EventName="Click">
 <ei:GoToStateAction TargetName="btn2" StateName="Pressed"/>
 </i:EventTrigger>
 </i:Interaction.Triggers>
 </Button>
 <Button x:Name="btn2" Height="45" Width="120" Content="OK" Background="Brown"/>
 </Grid>
</UserControl>

Clicking the first button, Click Here, causes the second button to appear in a pressed state.

You can read more about interaction triggers and behaviors at the following links: http://www.
silverlightshow.net/items/Behaviors-and-Triggers-in-Silverlight-3.aspx and http://msdn.microsoft.com/
en-us/library/ff726403%28v=Expression.40%29.aspx.

http://www.silverlightshow.net/items/Behaviors-and-Triggers-in-Silverlight-3.aspx
http://www.silverlightshow.net/items/Behaviors-and-Triggers-in-Silverlight-3.aspx
http://msdn.microsoft.com/en-us/library/ff726403%28v=Expression.40%29.aspx
http://msdn.microsoft.com/en-us/library/ff726403%28v=Expression.40%29.aspx

126   Part 2  Enhancing User Experience

Troubleshooting Resources, Styles, and Triggers

If you reference a style in a StaticResource extension and the style is not defined at all in your
application, you will get an XamlParseException. However, a XamlParseException can occur in several
other scenarios as well. For example, if you define a style twice in your application with the same key
identifier, you will get a XamlParseException. The following code shows an example of such a scenario:

<Grid.Resources>
 <Style x:Key="lstStyle" TargetType="ListBox">
 <Setter Property="BorderBrush" Value="Blue"></Setter>
 </Style>
 <Style x:Key="lstStyle" TargetType="ListBox">
 <Setter Property="Background" Value="PaleGreen"></Setter>
 </Style>
<Grid.Resources>

To identify why exactly the exception occurred and determine the cause for it, you should view the
inner exception of the XamlParseException and check its Message property. For example, in this case,
the message will be “The dictionary key ‘lstStyle’ is already used. Key attributes are used as keys when
inserting objects into a dictionary and must be unique.”

The parse exception occurs because both styles have the same key: lstStyle.

If the inner exception message says “Cannot find a Resource with the Name/Key”, it means that
you have specified an invalid or missing resource name or key.

A good approach to debugging a XamlParseException is to set the debugger to break on
exceptions and then view the call stack.

You can find a few helpful resources on this topic at:

■■ http://markegilbert.wordpress.com/2008/03/15/debugging-xaml/

■■ http://joshsmithonwpf.wordpress.com/2007/03/29/tips-on-how-to-debug-and-learn-about-wpf/

■■ http://msdn.microsoft.com/en-us/library/system.windows.markup.xamlparseexception.aspx

Summary

This chapter introduced the concept of resources, styles, and triggers, all of which are essential
components in XAML-based applications targeted at either WPF or Silverlight. By using a combination
of resources and styles, you can reuse control styles and properties and also promote consistency
throughout your application. Your application will be better organized, easy to maintain, and capable
of achieving complex functionality through declarative syntax alone. Understanding how to use
resources, styles, and triggers will go a long way toward making you a proficient developer.

http://markegilbert.wordpress.com/2008/03/15/debugging-xaml/
http://joshsmithonwpf.wordpress.com/2007/03/29/tips-on-how-to-debug-and-learn-about-wpf/
http://msdn.microsoft.com/en-us/library/system.windows.markup.xamlparseexception.aspx

		 127

Part 3

XAML User Interface
Controls

chapter 6	 Layout and Positioning System 129

chapter 7	 Forms and Functional Controls 171

		 129

C h apter 6

Layout and Positioning System

In this chapter:

■■ WPF and Silverlight Layout System

■■ XAML Layout and Positioning Controls

■■ Common Sizing and Positioning Dependency Properties

■■ Summary

Usability is a measure of how well, how comfortably, and how fast users can achieve, perform, or
successfully execute the functionality of an application—and how satisfied users are at the end of
their interaction with the application in terms of achieving their goals.

An efficient, interactive, rich, and usable user interface is a key feature for any successful
application. The user interface layout and the sizing and positioning of controls play a vital role in
improving the usability of the application service. Generally you would consider the following factors
when defining the user interface:

■■ Scope of the application  Some applications must support different types of devices—such
as laptops, desktops, mobile phones, and tablets. Each device is likely to have a different
screen size and each may have a different screen resolution.

■■ Runtime changes  Depending on the device and the operating system, the application’s
window size may change at runtime. (The user might resize a window.)

■■ Globalization  Many applications must be able to support different languages, which may
include character sets (single- and multi-byte versions) and language direction (left to right
and right to left languages).

■■ Mode changes  Rich Internet Applications (RIAs) can work in different modes—such as
in-browser mode and out-of-browser mode (OOB)—that you can implement using the
Silverlight platform.

This chapter covers the WPF and Silverlight layout system as well as various XAML layout and
positioning controls and attributes in details.

130   Part 3  XAML User Interface Controls

The Layout System

Supported By

WPF Yes

Silverlight Yes

Every time the screen is loaded for the first time or refreshed, the window size changes, or a child
element is updated (such as change in the display condition of the control or an added or removed
child control through code-behind), the WPF and Silverlight layout system calculates the relative
sizing and position for each control within the given window, page, or plug-in at runtime. It then
renders and arranges the controls to build the dynamic user interface. The layout process includes
two distinctive steps:

■■ The Measuring Step  In this step the layout system will query each child element
of each parent to calculate the desired size, and returns the required values back to the
parent Panel or other container object. This is a recursive process in which each parent
asks its child elements to calculate their desired sizes and return the values back to
that parent.

■■ The Arranging Step  After obtaining the desired sizes from each child element, the
parent container object element determines the best possible size and the bounding box
for each child control. It then positions the child control within the bounding box. This
process repeats for each child element. When child layout is complete, execution returns
back to the container object’s parent element. This process repeats to build the user interface
dynamically.

The bounding box—the layout slot for a child element—is a rectangle. You can obtain the
dimensions of the bounding box rectangle for any FrameworkElement control by calling the
LayoutInformation.GetLayoutSlot method from code-behind. As shown here, the layout slot
for a child element can be of the same size as the child element or greater than the child
element’s size—or the child element size may actually be larger than the layout slot, in which
case the child element gets clipped and will be only partially visible.

More Info  See the MSDN page at http://msdn.microsoft.com/en-us/library/ms745058.aspx
for more information about the WPF Layout System. See http://msdn.microsoft.com/en-us/
library/cc645025.aspx for more information about the Silverlight Layout System.

To demonstrate the WPF and Silverlight layout system, create a WPF application project and name
it DemonstratingLayoutSystem. Create a new folder named res under the project and add three
images named 1.jpg, 2.jpg, and Buddy.png as resource files. Now open the XAML code for the
MainWindow.xaml file and update it as shown here (changes in bold text):

<Window x:Class="DemonstratingLayoutSystem.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

http://msdn.microsoft.com/en-us/library/ms745058.aspx
http://msdn.microsoft.com/en-us/library/cc645025.aspx
http://msdn.microsoft.com/en-us/library/cc645025.aspx

	 Chapter 6  Layout and Positioning System    131

 Title="DemonstratingLayoutSystem" Height="700" Width="525">
 <StackPanel>
 <TextBlock
 Text="WPF Layout System Demonstration"
 FontSize="20"
 TextAlignment="Center"
 TextWrapping="Wrap"
 Margin="5"/>
 <WrapPanel Orientation="Horizontal">
 <Image Width="150" Height="100" Margin="2" Source="res/1.jpg"/>
 <Image Width="150" Height="100" Margin="2" Source="res/2.jpg"/>
 </WrapPanel>
 <Image Source="res/Buddy.png" Margin="2"/>
 </StackPanel>
</Window>

Layout Slot Size > Child Element Size

Layout Slot Size = Child Element Size

Layout Slot Size < Child Element Size
The Chid Element Is Partially Clipped

Parent Panel

Parent Panel

Parent Panel

Layout Slot

Layout Slot and Child Element

Layout Slot

Child Element

Child Element

Visual Portion of the
Child Element

The preceding code changed the main window Height and Width properties to accommodate all
added controls. It also added a StackPanel layout and positioning control as the root layout control,
and added a WrapPanel layout and positioning control as its child to hold the image collection.

132   Part 3  XAML User Interface Controls

Note  You can use the same XAML code to create a Silverlight application. The only
difference is that the WrapPanel control is part of the default WPF user controls library.
For Silverlight, it is available in the Silverlight toolkit (http://silverlight.codeplex.com/). For
Silverlight, you need to add a reference to the Silverlight toolkit to insert the WrapPanel
control.

Now when you save, compile, and run the project, to render the user interface dynamically the
WPF layout system will first perform the measuring step, as shown in Figure 6-1.

Calculate Size

Calculate Size Calculate Size

Report Size

Report Size Request Size

Request Size

Request Size

Request Size

Request Size
Report Size

Report Size

Report Size

Ca
lc

ul
at

e
Si

ze

Ca
lc

ul
at

e
Si

ze

Ca
lc

ul
at

e
Si

ze

Image

ImageImage

TextBlock WrapPanel

StackPanel

WindowApplication Object Tree
StackPanel

TextBlock
WrapPanel

Image
Image

Image

1

16

4

5
7

10

14112

96

8

12

3

15

13

Figure 6-1  Understanding the measuring step of the WPF/Silverlight layout system to determine the size and
position of each element control.

Figure 6-1 demonstrates how the recursive measuring step of the WPF/Silverlight layout system,
following the object tree, reaches out to each child element control to calculate the desired size of
each element and report back to its corresponding parent control.

When calculating the desired size of each child control, the layout system measuring process
follows two steps to set the UIElement.DesiredSize property:

■■ The child element first considers the core sizing properties such as Visibility and Clip.

http://silverlight.codeplex.com/

	 Chapter 6  Layout and Positioning System    133

■■ The child element then measures the defined set FrameworkElement properties such as Height,
Width, MinHeight, MinWeight, Margin, and Style.

Next, the layout system considers defined child control alignment properties such as Orientation
and Dock.

After this the parent Panel determines the best possible size for each child control and the
bounding box for each child control. It positions the child control within the bounding box and
returns back to its parent element. The output of this example is shown in Figure 6-2.

Figure 6-2  The layout system with the default defined window size.

Now resize the window. As you resize the application window, the layout system will rearrange
each child control based on the size of the window and the defined sizing properties for each
control. In Figure 6-3 you will notice that upon resizing the window, the following occurs:

■■ The TextBlock content gets wrapped to multiple lines because the TextWrapping property is
set to Wrap; it is center-aligned because the TextAlignment property is set to Center.

■■ The WrapPanel layout and positioning control arranges the child controls horizontally because
the Orientation property is set to Horizontal.

134   Part 3  XAML User Interface Controls

■■ The child Image controls within WrapPanel arrange automatically based on the size of the
application window. (Compare Figures 6-2 and 6-3.) The second image is shifted to the
second row (Figure 6-3). You will also notice that the position and location of both images
are rearranged. However, their height and width stays the same, because each Image control’s
Height and Width properties are set explicitly.

■■ The final Image control added in the StackPanel does not explicitly define its Height and Width
properties, so its size is adjusted based on the window’s size.

Figure 6-3  Resizing and rearrangement of controls based on the window’s resize.

Caution  By now you probably have noticed that the layout system processes the
measuring and calculation and arranging steps at runtime when application user interface
needs rendering and redrawing. This capability makes the application more flexible and
usable, but at the same time the overall computing and rendering process can slow down
the application performance. For example, the Canvas layout and positioning control is
simpler and more straightforward compared to the complex Grid layout and positioning
control—which naturally takes comparatively more time to render. To achieve maximum
application user interface rending performance, use the most appropriate set of layout and
positioning controls and define the overall user interface layout with the minimum possible
number of controls.

	 Chapter 6  Layout and Positioning System    135

XAML Layout and Positioning Controls

As discussed in Chapter 2, “Object Elements and Attributes,” the System.Windows.Controls.Panel is a
base class of layout containers and provides a set of layout and positioning controls that range from
very basic to advanced. These controls act as a main or subcontainer for group of user controls so
that you can arrange them in specific positions and in a particular order to build a meaningful user
interface.

Note  The WPF Panel class provides the full set of layout and positioning controls. However,
the Silverlight Panel class includes all the key layout and positioning controls as part of
the default library; remaining controls such as WrapPanel are part of the Silverlight toolkit
(http://silverlight.codeplex.com/). To use these latter controls, you need to add a reference
to the Silverlight toolkit. The following sections specify whether the layout and positioning
control being discussed is part of the default Silverlight platform (specified as Default
Control) or is available with the Silverlight toolkit (Toolkit Control).

Canvas
Supported By

WPF Yes

Silverlight Yes (Default Control)

The System.Windows.Controls.Canvas layout and positioning control is the simplest control.
It provides Window Forms such as layout capabilities, letting you place controls using absolute
positioning, defined with x and y coordinates. The coordinates are relative to the parent Canvas
control.

Caution  If you do not explicitly define coordinates for Canvas controls or if you define the
same coordinate for multiple controls, they will overlap. The ZIndex property defines the
overlapping behavior (which control appears on top) when controls overlap. You’ll see more
about this topic later in this section.

The WPF version of the Canvas class provides four attached properties: The Left and Right attached
properties control the x coordinate; the Top and Bottom attached properties control the y coordinate.

■■ Canvas.Top  This property can be set in XAML and is read/write through code-behind. It
determines the position of the top edge of an element relative to the top edge of its parent
Canvas element. This attached property is available for both WPF and Silverlight.

■■ Canvas.Bottom  This property can be set in XAML and is read/write through code-behind. It
determines the position of the bottom edge of an element relative to the bottom edge of its
parent canvas element. This attached property is available only in WPF.

http://silverlight.codeplex.com/

136   Part 3  XAML User Interface Controls

■■ Canvas.Left  This property can be set in XAML and is read/write through code-behind. It
determines the position of the left edge of an element relative to the left side of its parent
Canvas element. This attached property is available for both WPF and Silverlight.

■■ Canvas.Right  This property can be set in XAML and is read/write through code-behind. It
determines the position of the right edge of an element relative to the right side of its parent
Canvas element. This attached property is available only in WPF.

Figure 6-4 illustrates positioning a child element using these four Canvas attached properties.

Window

Canvas

Canvas.Left

Canvas.Top

Canvas.Right

Canvas.Bottom

Child Element

Figure 6-4  Top, Bottom, Left, and Right attached properties of the Canvas control to position a child element.

The following WPF application XAML code snippet demonstrates the use of these attached
properties (see bold font) for several Button controls to place them in absolute positions relative to
their parent Canvas element:

<Window x:Class="LayoutControlsExample.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="MainWindow" Height="350" Width="525">
 <Canvas Background="LightBlue" Height="300" Width="500">
 <Button
 Canvas.Top="0"
 Canvas.Left="0"
 Content="Top=0 and Left=0"/>
 <Button
 Canvas.Top="50"
 Canvas.Left="100"
 Canvas.Bottom="0"
 Canvas.Right="0"
 Content="Top=50 and Left=100 and Bottom=0 and Right=0"/>
 <Button
 Canvas.Top="150"
 Canvas.Left="250"
 Content="Top=150 and Left=250"/>
 <Button
 Canvas.Bottom="0"

	 Chapter 6  Layout and Positioning System    137

 Canvas.Right="0"
 Content="Bottom=0 and Right=0"/>
 </Canvas>
</Window>

If you create, compile, and run the project, you will see the output shown in Figure 6-5.

Figure 6-5  Demonstrating Top, Bottom, Left, and Right attached properties of the Canvas control.

Note  Notice that in the preceding code snippet, the button with the content “Top=50
and Left=100 and Bottom=0 and Right=0” defines all four attached properties. However,
as shown in the output in Figure 6-5, when both Top and Bottom attached properties are
defined for a child control, the Top property takes priority and will be considered instead of
the Bottom property. Similarly when both Left and Right attached properties are defined for
a child control, the Left property takes priority, and it will be considered instead of the Right
property.

Absolute positions for child controls are relative to the immediate parent Canvas control. To
demonstrate this, let’s add an additional Canvas control with white background as a child control
to the existing Canvas and move the last two buttons into the child Canvas control, as shown here
in bold:

<Window x:Class="LayoutControlsExample.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="MainWindow" Height="350" Width="525">
 <Canvas Background="LightBlue" Height="300" Width="500">
 <Button
 Canvas.Top="0"
 Canvas.Left="0"
 Content="Top=0 and Left=0"/>
 <Button
 Canvas.Top="50"
 Canvas.Left="100"
 Canvas.Bottom="0"

138   Part 3  XAML User Interface Controls

 Canvas.Right="0"
 Content="Top=50 and Left=100 and Bottom=0 and Right=0"/>
 <Canvas Background="White" Top="80" Left="50" Height="200" Width="400">
 <Button
 Canvas.Top="150"
 Canvas.Left="250"
 Content="Top=150 and Left=250"/>
 <Button
 Canvas.Bottom="0"
 Canvas.Right="0"
 Content="Bottom=0 and Right=0"/>
 </Canvas>
 </Canvas>
</Window>

Compile and run the project. You will get the output shown in Figure 6-6.

Figure 6-6  Demonstrating that Top, Bottom, Left, and Right attached properties relate to the immediate parent
Canvas control.

The Canvas layout and positioning control facilitates absolute positioning of its child controls—it
does not provide other layout control features such as the following:

■■ Positioning child elements relative to other layout controls such as StackPanel or Grid.

■■ Automatic resizing and positioning of child controls when a user resizes the application
window. As shown in Figure 6-7, when you use the Canvas control, child controls will not resize
or adjust to the resized window. Instead, the child controls will maintain their original size.
Depending on the resize results, child controls may become partially or completely invisible.

Sometimes two or more controls may overlap each other. In that case for WPF applications, you
can use the Panel.ZIndex attached property value to determine which overlapping control will appear
in the foreground and which one will appear in the background. Higher ZIndex values mean that the
control will appear closer to the foreground; lower ZIndex values place the control further toward
the background. To demonstrate this, change the Button controls within the child Canvas control as
shown here (in bold text) so that they overlap. The ZIndex values will now determine which button
appears in the foreground.

	 Chapter 6  Layout and Positioning System    139

Figure 6-7  Absolutely positioned child controls within the Canvas control.

......
 <Canvas Background="White" Top="80" Left="50" Height="200" Width="400">
 <Button
 Canvas.Top="50"
 Canvas.Left="50"
 Content="Button One"
 Panel.ZIndex="50"/>
 <Button
 Canvas.Top="40"
 Canvas.Left="70"
 Content="Button Two"
 Panel.ZIndex="40"/>
 </Canvas>
......

The preceding code defines one Button control with a ZIndex value of 50 and another with a
ZIndex of 40. If you compile and run the project now, the button with the ZIndex value of 50 appears
in the foreground, while the button with the ZIndex value 40 appears below it. As a result, the latter
button is only partially visible, as shown in Figure 6-8.

Figure 6-8  The Panel.Zindex attached property of the WPF platform controls which child element appears in
the foreground and which one appears in the background.

140   Part 3  XAML User Interface Controls

Caution  The Panel.ZIndex attached property is available only for the WPF platform. It’s not
available to the Silverlight platform.

StackPanel
Supported By

WPF Yes

Silverlight Yes (Default Control)

WPF and Silverlight provide a series of layout and positioning controls, of which the System.
Windows.Controls.StackPanel is probably the simplest. It provides relative positioning based on the
Window, Page, or UserControl’s window size.

As illustrated in Figure 6-9, you can use the StackPanel control to stack a collection of child
controls vertically (the default) or horizontally using the StackPanel.Orientation property. The
collection of child controls can also include one or more layout and positioning controls.

Window/Page/UserControl

StackPanel with Orientation property set to Vertical (default value)

Child Element 1

Child Element 2

Child Element 3

Window/Page/UserControl

StackPanel with Orientation property set to Horizontal

Child Element 1 Child Element 2 Child Element 3

Figure 6-9  The StackPanel.Orientation property determines the direction to stack children control vertically or
horizontally.

	 Chapter 6  Layout and Positioning System    141

To test it, let’s replace the Canvas layout and positioning controls (both the parent and child
Canvas controls) from the previous example and adjust the Button control properties appropriately. In
the following code snippet, the changes are highlighted in bold text.

<Window x:Class="LayoutControlsExample.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="MainWindow" Height="350" Width="525">
 <StackPanel Background="LightBlue" Height="300" Width="500">
 <Button Content="Button 1" Margin="2"/>
 <Button Content="Button 2" Margin="2"/>
 <StackPanel
 Background="White"
 Height="200"
 Orientation="Vertical">
 <Button Content="Button 3" Margin="2"/>
 <Button Content="Button 4" Margin="2"/>
 </StackPanel>
 </StackPanel>
</Window>

The preceding code snippet defines two nested stack panels. The Orientation property is not set
for the root stack panel but for the child stack panel—it’s set to Vertical. However, the controls should
appear stacked vertically because vertical is the default setting. If you compile and run the project,
you will find the result as expected, shown in Figure 6-10.

Figure 6-10  StackPanel layout and positioning controls stacking all child elements vertically.

Now change the Orientation property of the child StackPanel control from Vertical to Horizontal
(as shown here in bold).

<Window x:Class="LayoutControlsExample.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="MainWindow" Height="350" Width="525">

142   Part 3  XAML User Interface Controls

 <StackPanel Background="LightBlue" Height="300" Width="500">
 <Button Content="Button 1" Margin="2"/>
 <Button Content="Button 2" Margin="2"/>
 <StackPanel
 Background="White"
 Height="200"
 Orientation="Horizontal">
 <Button Content="Button 3" Margin="2"/>
 <Button Content="Button 4" Margin="2"/>
 </StackPanel>
 </StackPanel>
</Window>

As shown in Figure 6-11, the change causes Button 3 and Button 4 to be stacked horizontally.

Figure 6-11  Setting the child StackPanel Orientation to Horizontal to stack its child elements horizontally.

You probably have noticed two things from Figures 6-10 and 6-11:

■■ Collections of child elements are positioned according to the properties set for the immediate
parent element. The nested StackPanel has its Orientation property set to Horizontal. Even
though its parent StackPanel has the default vertical orientation, it stacks its child controls
horizontally.

■■ The default value of the HorizontalAlignment and VerticalAlignment of child controls under the
StackPanel control is set to Stretch. Because the example defined no specific Height and Width
properties for the buttons, the layout engine adjusts the button Width and Height to cover the
entire available area.

Note  If you resize your sample application window, then some of the button controls will
not be visible (depending on the resized window size). StackPanel implements the IScrollInfo
interface so that you can wrap the host StackPanel control in a ScrollViewer control to
implement horizontal and/or vertical scroll bars. For more information on the ScrollViewer
control, see Chapter 7, “Forms and Functional Controls.”

	 Chapter 6  Layout and Positioning System    143

Along with the StackPanel.Orientation property of the StackPanel control, you can also use the
FrameworkElement.FlowDirection property to set the direction of child controls (in the context of the
parent element) to LeftToRight (default setting) or RightToLeft.

Note  The FrameworkElement.FlowDirection property is not specific to the StackPanel
control; it is applicable to all controls that inherit from the FrameworkElement class. Also, it
is important to note that you can only set the direction to either left to right or right to left.
Top-to-bottom or bottom-to-top settings are not available.

To demonstrate the FlowDirection property, update the nested child StackPanel control in the preceding
sample application to set the FlowDirection property to RightToLeft, as shown here in bold font.

<StackPanel
 Background="White"
 Height="200"
 Orientation="Horizontal"
 FlowDirection="RightToLeft">
 <Button Content="Button 3" Margin="2"/>
 <Button Content="Button 4" Margin="2"/>
</StackPanel>

When you compile and run the project, Button 3 and Button 4 are now arranged in the
right-to-left direction, as shown in Figure 6-12.

Figure 6-12  The FrameworkElement.FlowDirection property.

Grid
Supported By

WPF Yes

Silverlight Yes (Default Control)

144   Part 3  XAML User Interface Controls

The Grid is a relatively complex layout and positioning control that has more sophisticated
capabilities for arranging child controls in a tabular matrix format. You do that by adding the child
controls to specific rows and columns of the Grid control. Figure 6-13 illustrates the row and column
definitions of a Grid control.

Row=0
Column=0

Row=1
Column=0

Row=0
Column=0

Row=1
Column=1

Row=0
Column=2

Row=1
Column=2

Row=2
Column=2

Zero-Based Grid Columns

Ze
ro

-B
as

ed
 G

rid
 R

ow
s

Row=0
Column=3

Merged Row
1 and 2
Column=3Row=2

Merged Column 0 and 1

Figure 6-13  Defining Grid layout container.

From Figure 6-13, you can determine the following:

■■ A Grid can contain a number of rows and columns. By default, a Grid contains one row and
one column when no specific number of rows and/or columns have been defined.

■■ The rows and columns of the Grid control are indexed starting from 0; in other words, you
would specify the first row and column have index values of 0.

■■ You can merge adjacent rows and column cells (see the highlighted cells in Figure 6-13) to cre-
ate a more complex layout to support application requirements.

■■ You can make the border of a Grid control visible or not visible (the default setting).

Each Grid cell can contain one child element. That child element can be a form and functional
control such as a TextBox or Button, or it can be a layout and positioning control container, such as a
StackPanel or a Canvas that itself may contain a collection of child controls.

Defining the Grid
You use the Grid.RowDefinitions and Grid.ColumnDefinitions properties to define the collection
of rows and columns and their appropriate properties. Grid.RowDefinitions contains one or more
RowDefinition elements, where each element represents one row of the grid. Grid.ColumnDefinitions
contains one or more ColumnDefinition elements, where each element represents one column of the
Grid control. Again, one row and one column are the default if you don’t specify the number of rows
and/or columns explicitly.

The following XAML code snippet represents a Grid with three rows and three columns:

<Window x:Class="LayoutControlsExample.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="MainWindow" Height="300" Width="300">

	 Chapter 6  Layout and Positioning System    145

 <Grid Background="LightBlue">
 <Grid.RowDefinitions>
 <RowDefinition></RowDefinition>
 <RowDefinition></RowDefinition>
 <RowDefinition></RowDefinition>
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition></ColumnDefinition>
 <ColumnDefinition></ColumnDefinition>
 <ColumnDefinition></ColumnDefinition>
 </Grid.ColumnDefinitions>
 </Grid>
</Window>

Figure 6-14 shows the resulting Grid in the Visual Studio designer, with three columns and three
rows.

Figure 6-14  Grid layout with three columns and three rows.

Sizing Grid Columns and Rows
You use the Width property of the ColumnDefinition element and the Height property of the
RowDefinition element to define the width of each column and the height of each row. The Grid
control supports proportional sizing (the default setting), also known as star sizing, and absolute or
automatic sizing of the rows and columns.

Proportional sizing  Revisit Figure 6-14 and you will notice that the width of the columns and
height of the rows are determined proportionally. Each cell receives 1 times width and height of the
available space. If you look closely at Figure 6-14, you will notice that 1* appears on the top and left
sides of the grid, showing the equal proportional sizing of each cell. Thus you use an asterisk (*) to
define the proportional sizing of row and column. Now make the first column and first row 2 times

146   Part 3  XAML User Interface Controls

proportional to the available space and other two columns and two rows 1 time proportional to the
available space. The following is the updated XAML code snippet (updated portion in bold font), and
the resultant proportional spacing Grid layout is shown in Figure 6-15.

<Grid Background="LightBlue">
 <Grid.RowDefinitions>
 <RowDefinition Height="2*"></RowDefinition>
 <RowDefinition></RowDefinition>
 <RowDefinition></RowDefinition>
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="2*"></ColumnDefinition>
 <ColumnDefinition></ColumnDefinition>
 <ColumnDefinition></ColumnDefinition>
 </Grid.ColumnDefinitions>
</Grid>

Column = 0
Width = 2*

Row = 0
Height = 2*

Row = 1
Height = 1*

Row = 1
Height = 1*

Column = 1
Width = 1*

Column = 2
Width = 1*

Figure 6-15  Proportional sizing of Grid layout.

Absolute sizing  You can also assign an absolute size to individual rows and columns by providing
specific values for the Height and Width properties in the RowDefinition and ColumnDefinition
elements, respectively. The following code updates the example to set the second-row height and
the second-column width to 50 pixels and the third-row height and third-column width to 75 pixels.

	 Chapter 6  Layout and Positioning System    147

The first row and first column will fill up all the remaining space because the first row height and first
column width are set to asterisk (*). The resulting Grid layout is shown in Figure 6-16.

<Grid Background="LightBlue">
 <Grid.RowDefinitions>
 <RowDefinition Height="*"></RowDefinition>
 <RowDefinition Height="50"></RowDefinition>
 <RowDefinition Height="75"></RowDefinition>
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="*"></ColumnDefinition>
 <ColumnDefinition Width="50"></ColumnDefinition>
 <ColumnDefinition Width="75"></ColumnDefinition>
 </Grid.ColumnDefinitions>
</Grid>

Column = 0
Width = *

Column = 1
Width = 50

Column = 2
Width = 75

Row = 0
Height = *

Row = 1
Height = 50

Row = 1
Height = 75

Figure 6-16  Absolute sizing of Grid layout.

Automatic sizing  At times you need to resize a Grid column and row automatically to fit its
contents. Automatic sizing supports this feature. You can enable automatic sizing for any row
and column by setting the Height and Width properties to Auto in the related RowDefinition and
ColumnDefinition elements.

148   Part 3  XAML User Interface Controls

The following XAML code snippet is updated (the updated portion is in bold font) to set the
second-row height and column width to automatic.

<Grid Background="LightBlue">
 <Grid.RowDefinitions>
 <RowDefinition Height="*"></RowDefinition>
 <RowDefinition Height="Auto"></RowDefinition>
 <RowDefinition Height="75"></RowDefinition>
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="*"></ColumnDefinition>
 <ColumnDefinition Width="50"></ColumnDefinition>
 <ColumnDefinition Width="75"></ColumnDefinition>
 </Grid.ColumnDefinitions>
</Grid>

The resulting Grid layout is shown in Figure 6-17. Notice that the Grid does not yet have any added
content. The second-row height and second-column width are both set to Auto, so they render with
a size of 0—the second row and column are not visible. The third column and row maintain their
size because they were assigned an absolute size; the first row and column enlarge to take up the
remaining space.

Row = 0
Height = *

Row = 1
Height = 75

Row = 1
Height = Auto

Column = 0
Width = *

Column = 2
Width = 75

Column = 1
Width = Auto

Figure 6-17  Column 0 and Row 0 set to Proportional sizing, Column 1 and Row 1 set to Automatic sizing, and
Column 2 and Row 2 set to Absolute sizing.

	 Chapter 6  Layout and Positioning System    149

Adding Content to Grid
Each Grid cell can contain only one child element. That child element can be one of the form
and functional controls such as TextBox or Button or can contain a layout and positioning control
container such as StackPanel or Canvas. You can also merge adjacent rows and column cells to create
a more complex layout.

The Grid control provides Grid.Row and Grid.Column attached properties so that you can add a
child element to a specific row and column:

■■ The Grid.Row attached property defines the row of the grid into which content is placed. The
first row is index 0. The default value is 0.

■■ The Grid.Column attached property defines the column of the grid into which content is
placed. The first column is index 0. The default value is 0.

The Grid control also provides Grid.RowSpan and Grid.ColumnSpan attached properties. You use
these to merge adjacent rows and column cells, and place content in the combined area:

■■ The Grid.RowSpan attached property defines the number of rows the content will occupy. The
default value is 1.

■■ The Grid.ColumnSpan attached property defines the number of columns the added content
will occupy. The default value is 1.

Let’s extend the example and add a few Button controls to demonstrate how different types of
Grid sizing (proportional, absolute, and automatic) affect the sizing of the content. Here’s the updated
XAML:

<Window x:Class="LayoutControlsExample.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="MainWindow" Height="300" Width="300">
 <Grid Background="LightBlue" ShowGridLines="True">
 <Grid.RowDefinitions>
 <RowDefinition Height="*"></RowDefinition>
 <RowDefinition Height="Auto"></RowDefinition>
 <RowDefinition Height="75"></RowDefinition>
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="*"></ColumnDefinition>
 <ColumnDefinition Width="Auto"></ColumnDefinition>
 <ColumnDefinition Width="75"></ColumnDefinition>
 </Grid.ColumnDefinitions>
 <Button
 Grid.Row="0"
 Grid.Column="0"
 Content="Button 1"
 Background="LightGray"/>
 <Button
 Grid.Row="0"
 Grid.Column="1"
 Content="Button 2"
 Background="LemonChiffon"/>

150   Part 3  XAML User Interface Controls

 <Button
 Grid.Row="0"
 Grid.Column="2"
 Grid.RowSpan="2"
 Content="Button 3"
 Background="LightGray"/>
 <Button
 Grid.Row="1"
 Grid.Column="0"
 Content="Button 4"
 Background="LemonChiffon"/>
 <Button
 Grid.Row="1"
 Grid.Column="1"
 Content="Button 5"
 Background="LightGray"/>
 <Button
 Grid.Row="2"
 Grid.Column="0"
 Grid.ColumnSpan="2"
 Content="Button 6"
 Background="LightGray"/>
 <Button
 Grid.Row="2"
 Grid.Column="2"
 Content="Button 7"
 Background="LemonChiffon"/>
 </Grid>
</Window>

This version contains seven buttons in a 3x3 Grid. Each Button control contains Grid.Row and
Grid.Column attached properties to specify the row and cell into which the button will be placed
at runtime. Button 3 also has a Grid.RowSpan attached property so that it will span rows 0 and 1.
Similarly, Button 6 defines a Grid.ColumnSpan attached property, so it will span columns 0 and 1. Also
note that at Grid control level, the ShowGridLine property of Grid is set to True, which makes the grid
lines visible at runtime (to help show you how the buttons span two rows and two columns clearly).

If you compile and run the project now, you will get the output shown in Figure 6-18.

Figure 6-18  Adding content that spans multiple rows and columns.

	 Chapter 6  Layout and Positioning System    151

From Figure 6-18, you can see the following:

■■ The third row (row index 2) and third column (column index 2) have absolute height and width
settings of 75 pixels; the buttons located in the second row and second column are sized
accordingly.

■■ The second row (row index 1) and second column (column index 1) are set to have automatic
sizing. As a result, the second column width and second row height are set to the size of the
buttons placed in them.

■■ The first row (row index 0) and first column (column index 0) are set to have proportional
sizing. As a result, the first column width and first column height get calculated at runtime so
that they fill up the remaining space in the window. Buttons placed in the first row and first
column will be sized accordingly.

If you resize the window now, you will notice that the absolute and automatic positioned columns
(columns 1 and 2) and rows (rows 1 and 2) and the content (in this example, buttons) will not be
resized, whereas the proportionally sized column and row will resize automatically. If the window size
becomes too small, that row and/or column may become completely invisible.

Like StackPanel, the Grid control also implements the IScrollInfo interface so that you can wrap the
Grid control in a ScrollViewer control to implement horizontal and/or vertical scroll bars. For more
information on the ScrollViewer control, see Chapter 7.

UniformGrid
Supported By

WPF Yes

Silverlight No

The System.Windows.Controls.Primitives.UniformGrid control is a simplified version of the Grid
control that arranges child elements—one element per cell—in a tabular matrix format where each
cell is the same size.

Like the Grid control, the UniformGrid control can contain n number of rows and m number of
columns. You use the Rows and Columns dependency properties to define the number of rows and
columns within the UniformGrid control.

The following XAML code snippet defines a UniformGrid with two rows and three columns:

<Window x:Class="LayoutControlsExample.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="MainWindow" Height="300" Width="300">
 <UniformGrid Rows="2" Columns="3">
 </UniformGrid>
</Window>

152   Part 3  XAML User Interface Controls

Unlike the Grid control, the size of each cell in a UniformGrid control always remains the same. You
can control the overall height and width of the UniformGrid control by defining the Height and Width
properties; otherwise, it follows the height and width of its parent element.

The preceding example doesn’t define Height and Width explicitly for the UniformGrid, so it will
adjust its height and width to 300 pixels, which is defined in its parent Window element. In contrast,
the following code snippet sets the UniformGrid control Height and Width properties to 200 pixels.

<UniformGrid Rows="2" Columns="3" Height="200" Width="200">
</UniformGrid>

Like the Grid control, each UniformGrid cell can contain one child element, either a form and
functional control such as TextBox or Button, or a layout and positioning control container such as
StackPanel or Canvas. Unlike the Grid, you cannot merge adjacent rows and column cells.

Also unlike the Grid control, the UniformGrid control does not provide attached properties such as
Grid.Row and Grid.Column. Instead, child controls of the UniformGrid are added in the order in which
you define them in the XAML file.

The following example defines a UniformGrid control with two rows and three columns containing
five buttons, which are added to UniformGrid in definition order (see Figure 6-19):

<Window x:Class="LayoutControlsExample.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="MainWindow" Height="300" Width="300">
 <UniformGrid Rows="2" Columns="3" Background="LightBlue">
 <Button Content="Button 1" Background="LightGray"/>
 <Button Content="Button 2" Background="LemonChiffon"/>
 <Button Content="Button 3" Background="LightGray"/>
 <Button Content="Button 4" Background="LemonChiffon"/>
 <Button Content="Button 5" Background="LightGray"/>
 </UniformGrid>
</Window>

Figure 6-19  Content added in the UniformGrid control.

	 Chapter 6  Layout and Positioning System    153

As Figure 6-19 shows, all five Button controls have the same size. Notice that the last cell is empty,
because only five buttons were added.

The UniformGrid control has a FirstColumn dependency property, which defines the number of
leading blank cells in the first row of the UniformGrid. If you write FirstColumn=”1” in the XAML for
the preceding example, as shown in Figure 6-20, the first cell in the first row will be blank:

<UniformGrid Rows="2" Columns="3" FirstColumn="1" Background="LightBlue">
 …
</UniformGrid>

Figure 6-20  Setting the FirstColumn dependency property of the UniformGrid control to 1 causes the first cell
to be left empty when the UniformGrid adds its child controls.

WrapPanel
Supported By

WPF Yes

Silverlight Yes (Toolkit Control)

The System.Windows.Controls.WrapPanel layout and positioning control is similar to the StackPanel
control in that:

■■ It arranges child controls in the horizontal or vertical direction based on the value (Horizontal
or Vertical) you set for the Orientation dependency property. The default value is Horizontal.
Note that the default value for StackPanel is Vertical. Revisit Figure 6-9 to clarify the
orientation behavior.

■■ You can also use the FrameworkElement.FlowDirection property to set the direction of child
controls (in the context of the parent element): either LeftToRight (the default setting), or
RightToLeft.

The key difference between the StackPanel and the WrapPanel controls is that when the child
elements are positioning themselves, the remaining child elements automatically wrap to a new row
when they reach the edge of the WrapPanel.

154   Part 3  XAML User Interface Controls

Previous examples in this chapter used a WrapPanel control to demonstrate the layout system.
Revisit the DemonstratingLayoutSystem project and Figures 6-2 and 6-3, and you’ll notice that based
on the application window size, the WrapPanel child Image control wraps to a new row. (See Figure
6-3.)

The WrapPanel control also provides two additional dependency properties—ItemHeight and
ItemWidth—that you can use to set a specific height and width for all child items contained within the
WrapPanel. This feature lets you place child elements uniformly within the WrapPanel. If you do not
set these properties, the size of the child element is the determining factor.

When the Height property of one or more child elements is defined along with the ItemHeight
property, the ItemHeight property value takes precedence over the child element’s Height property
value. The same behavior is also applicable for the ItemWidth property of the WrapPanel control and
the Width property of children elements.

Note  The WrapPanel control is a part of the default WPF user controls library; for
Silverlight, it is available in the Silverlight toolkit (http://silverlight.codeplex.com/). For
Silverlight you need to add a reference to the Silverlight toolkit to insert the WrapPanel
control.

DockPanel
Supported By

WPF Yes

Silverlight Yes (Toolkit Control)

The System.Windows.Controls.DockPanel layout and positioning control places content around the
edges of the panel: top, bottom, left, and right. To facilitate this feature, the DockPanel control has a
DockPanel.Dock attached property that a child element uses to determine its position within a parent
DockPanel. The possible values are Left, Right, Top, and Bottom. The default value is Left.

The following XAML code snippet adds five buttons that are docked by default to the left edge of
the panel. (The DockPanel.Dock attached property is not defined explicitly within each child Button
control.)

<Window x:Class="LayoutControlsExample.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="MainWindow" Height="300" Width="300">
 <DockPanel Background="LightBlue">
 <Button Content="Button 1" Background="LightGray"/>
 <Button Content="Button 2" Background="LemonChiffon"/>
 <Button Content="Button 3" Background="LightGray"/>
 <Button Content="Button 4" Background="LemonChiffon"/>
 <Button Content="Button 5" Background="LightGray"/>
 </DockPanel>
</Window>

http://silverlight.codeplex.com/

	 Chapter 6  Layout and Positioning System    155

Figure 6-21 illustrates the default behavior of child controls added to a DockPanel.

Figure 6-21  Default behavior of the DockPanel control.

Here each added Button control is placed using the default DockPanel.Dock=”Left” value. Note
that the first four buttons are equally sized horizontally, whereas Button 5 is stretched to fill the
remaining space of the DockPanel. This is because the default behavior of DockPanel is to resize the
last added element to fill any remaining space. You can control this behavior by using the DockPanel.
LastChildFill dependency property. The default value is True, which is why you get the result shown in
Figure 6-21. If you change the LastChildFill dependency property to False, as shown in the following
code snippet, you will see the result shown in Figure 6-22:

<DockPanel LastChildFill="False" Background="LightBlue">

 …

</DockPanel>

Figure 6-22  DockPanel.Dock=”Left” and DockPanel.LastChildFill=”False”.

156   Part 3  XAML User Interface Controls

With that change, all five buttons are now equally sized, and some remaining space (the light blue
background on the right side of the DockPanel) has been left unfilled because the DockPanel no
longer stretches the fifth button to fill the remaining space.

Next, let’s define different possible values of the DockPanel.Dock attached property to
demonstrate them. This example keeps the LastChildFill property to its default value, True:

<DockPanel LastChildFill="True" Background="LightBlue">
 <Button DockPanel.Dock="Top" Content="Top Button" Background="LemonChiffon"/>
 <Button DockPanel.Dock="Bottom" Content="Bottom Button" Background="LemonChiffon"/>
 <Button DockPanel.Dock="Left" Content="Left Button" Background="LemonChiffon"/>
 <Button DockPanel.Dock="Right" Content="Right Button" Background="LemonChiffon"/>
 <Button DockPanel.Dock="Left" Content="Last Child" Background="LightGray"/>
</DockPanel>

This example also changes the Content and Background property values to make the output a bit
more user-friendly.

Figure 6-23 shows the outcome of running the preceding XAML code snippet. Here the buttons
are added in the sequence Top, Bottom, Left, Right by setting the appropriate value for their
DockPanel.Dock attached properties, and the last button is again stretched to fill the remaining space.

Figure 6-23  Child Button controls added with DockPanel.Dock set in the sequence Top, Bottom, Left, Right, and
Left (for the last child) and LastChildFill is set to True.

If you now change the DockPanel.Dock property value for each button to add them in a different
order—Left, Top, Right, Bottom—and leave the last button stretched to fill the remaining space, you
will get a different outcome, as shown in Figure 6-24. The related XAML code snippet is shown here:

<DockPanel LastChildFill="True" Background="LightBlue">
 <Button DockPanel.Dock="Left" Content="Left Button" Background="LemonChiffon"/>
 <Button DockPanel.Dock="Top" Content="Top Button" Background="LemonChiffon"/>
 <Button DockPanel.Dock="Right" Content="Right Button" Background="LemonChiffon"/>
 <Button DockPanel.Dock="Bottom" Content="Bottom Button" Background="LemonChiffon"/>
 <Button DockPanel.Dock="Left" Content="Last Child" Background="LightGray"/>
</DockPanel>

	 Chapter 6  Layout and Positioning System    157

Figure 6-24  Child Button controls added with DockPanel.Dock set in the order of Left, Top, Right, Bottom, and
Left (for the last child) and LastChildFill set to True.

Note  Like the WrapPanel control, the DockPanel control is part of the default WPF user
controls library, whereas for Silverlight it is available in the Silverlight toolkit (http://silverlight.
codeplex.com/). For Silverlight you need to add a reference to the Silverlight toolkit to insert
the DockPanel control.

TabPanel
Supported By

WPF Yes

Silverlight Yes

The System.Windows.Controls.Primitives.TabPanel layout and positioning control hosts TabItem
objects on a TabControl, handles its layout, and defines the logic for multiple rows of TabItem objects.

The TabControl object can contain multiple TabItem objects that share the same screen space.
You can have only one TabItem object visible at a time. You have to select each TabItem to make its
related element(s) visible.

Each TabItem can contain one child element, but as usual, in addition to UI controls, that element
can be another layout and positioning control, including Canvas, StackPanel, or Grid, which can
contain multiple child elements. The TabItem.Header property defines the name of the TabItem.

The following example demonstrates two tabs: Tab #1 and Tab #2. Each tab contains a Canvas
control with a different background color—Red for the first tab and Green for the second:

<Window x:Class="LayoutControlsExample.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="MainWindow" Height="300" Width="300">

http://silverlight.codeplex.com/
http://silverlight.codeplex.com/

158   Part 3  XAML User Interface Controls

 <TabPanel Background="LightBlue">
 <TabControl Height="200" Width="200">
 <TabItem Header="Tab #1">
 <Canvas Background="Red"/>
 </TabItem>
 <TabItem Header="Tab #2">
 <Canvas Background="Green"/>
 </TabItem>
 </TabControl>
 </TabPanel>
</Window>

Figure 6-25 shows the generated output.

Figure 6-25  Two TabPanel tabs with different background colors.

In Figure 6-25, the tab headers are aligned to the top relative to the tab content, which is the
default behavior. The TabControl object contains a TabStripPlacement dependency property that
controls how tab headers align relative to the tab content. The default value is Top. You can also align
tab headers to Left, Right, or Bottom. This feature is demonstrated in the following example:

<Window x:Class="LayoutControlsExample.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="MainWindow" Height="300" Width="300">
 <TabPanel Background="LightBlue">
 <StackPanel>
 <TabControl TabStripPlacement="Top" Height="75" Width="200">
 <TabItem Header="Tab #1">
 <Canvas Background="Red"/>
 </TabItem>
 <TabItem Header="Tab #2">
 <Canvas Background="Green"/>
 </TabItem>
 </TabControl>
 <TabControl TabStripPlacement="Bottom" Height="75" Width="200">
 <TabItem Header="Tab #1">

	 Chapter 6  Layout and Positioning System    159

 <Canvas Background="Red"/>
 </TabItem>
 <TabItem Header="Tab #2">
 <Canvas Background="Green"/>
 </TabItem>
 </TabControl>
 <TabControl TabStripPlacement="Left" Height="75" Width="200">
 <TabItem Header="Tab #1">
 <Canvas Background="Red"/>
 </TabItem>
 <TabItem Header="Tab #2">
 <Canvas Background="Green"/>
 </TabItem>
 </TabControl>
 <TabControl TabStripPlacement="Right" Height="75" Width="200">
 <TabItem Header="Tab #1">
 <Canvas Background="Red"/>
 </TabItem>
 <TabItem Header="Tab #2">
 <Canvas Background="Green"/>
 </TabItem>
 </TabControl>
 </StackPanel>
 </TabPanel>
</Window>

Figure 6-26 shows the output of this example.

Figure 6-26  Demonstrating TabControl.TabStripPlacement dependency property.

Note  To use the TabControl in a Silverlight application, you need to add a reference to the
System.Windows.Controls namespace and assembly to the UserControl element.

160   Part 3  XAML User Interface Controls

Common Sizing and Positioning Properties

So far in this chapter you’ve covered the key layout and positioning controls for WPF and
Silverlight that derive from the System.Windows.Controls.Panel class. The Panel class is derived
instead from the System.Windows.FrameworkElement class, which provides a set of common sizing
dependency properties such as Height and Width and positioning dependency properties such as
VerticalAlignment, HorizontalAlignment, and Margin. You’ve seen these used in examples already. This
section provides a quick overview of that set of common sizing and positioning properties.

Sizing Properties
Supported By

WPF Yes

Silverlight Yes

The System.Windows.FrameworkElement class provides the following sizing dependency properties
that can control the height and width of the element:

■■ Height  Defines the height of the element

■■ Width  Defines the width of the element

■■ MinHeight  Defines the minimum height constraint of the element

■■ MinWidth  Defines the minimum width constraint of the element

■■ MaxHeight  Defines the maximum height constraint of the element

■■ MaxWidth  Defines the maximum width constraint of the element

By defining MinHeight and MaxHeight for an element, you can define a range for the possible
height for that specific element. Similarly, by defining MinWidth and MaxWidth for an element, you
are defining a range of possible width values for that specific element.

The following example demonstrates how you can use these sizing properties to control the height
and width of an element and its behavior when a window gets resized:

<Window x:Class="LayoutControlsExample.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="MainWindow" Height="300" Width="300">
 <StackPanel Background="LightBlue">
 <Button Content="Default Height and Width"/>
 <Button Height="50" Width="200" Content="Height=50 and Width=200"/>
 <Button MinHeight="20" MaxHeight="100" Content="MinHeight=20 and MaxHeight=100"/>
 <Button MinWidth="200" MaxWidth="250" Content="MinWidth=200 and MaxWidth=250"/>
 </StackPanel>
</Window>

	 Chapter 6  Layout and Positioning System    161

Figure 6-27 shows the default output of this example and the impact on the element resizing when
the window is resized.

Figure 6-27  Demonstrating MinHeight, MaxHeight, Height, MinWidth, MaxWidth, and Width dependency
properties.

162   Part 3  XAML User Interface Controls

Alignment Properties
Supported By

WPF Yes

Silverlight Yes

Controls Position Alignment
In addition to the sizing properties, the System.Windows.FrameworkElement class provides the
following horizontal and vertical alignment dependency properties that can determine the relative
position of a control by aligning the control horizontally and vertically in the layout space allocated
by the parent control.

■■ HorizontalAlignment  Defines how the control is aligned horizontally in the layout space
available within the parent control. The possible values are:

•	 Left  Left horizontal alignment.

•	 Right  Right horizontal alignment.

•	 Center  Horizontally aligned in center.

•	 Stretch  Stretch the control horizontally to fill up the available space. This is the default
value.

■■ VerticalAlignment  Defines how the control is aligned vertically in the layout space available
within the parent control. The possible values are:

•	 Top  Aligned with top of the parent element available space.

•	 Bottom  Aligned with bottom of the parent element available space.

•	 Center  Vertically aligned in center.

•	 Stretch  Stretch the control vertically to fill up the available space. This is the default value.

Note  The Stretch value of the HorizontalAlignment and VerticalAlignment dependency
properties will be in effect only if the Height and Width properties are not explicitly defined
for that control.

The following example demonstrates how you can apply HorizontalAlignment and
VerticalAlignment dependency properties with different possible values to Button controls.

<Window x:Class="LayoutControlsExample.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="MainWindow" Height="300" Width="300">
 <StackPanel>
 <TextBlock

	 Chapter 6  Layout and Positioning System    163

 HorizontalAlignment="Center"
 Text="Horizontal Alignment Example"
 FontWeight="Bold"/>
 <StackPanel Height="100" Width="250" Background="LightBlue">
 <Button HorizontalAlignment="Center" Content="Center"/>
 <Button HorizontalAlignment ="Left" Content="Left"/>
 <Button HorizontalAlignment ="Right" Content="Right"/>
 <Button HorizontalAlignment ="Stretch" Content="Stretch (Default)"/>
 </StackPanel>
 <TextBlock
 HorizontalAlignment="Center"
 Text="Vertical Alignment Example"
 FontWeight="Bold"/>
 <StackPanel Height="100" Width="250"
 Background="LightYellow" Orientation="Horizontal">
 <Button VerticalAlignment="Center" Content="Center"/>
 <Button VerticalAlignment ="Top" Content="Top"/>
 <Button VerticalAlignment ="Bottom" Content="Bootom"/>
 <Button VerticalAlignment ="Stretch" Content="Stretch (Defalut)"/>
 </StackPanel>
 </StackPanel>
</Window>

Figure 6-28 presents the output application window.

Figure 6-28  The HorizontalAlignment and VerticalAlignment dependency properties.

Caution  The HorizontalAlignment and VerticalAlignment dependency properties are
applicable only to the control that can position itself relatively within the allocated space
in the layout. If the control requires absolute positioning, such as the Canvas layout
and positioning control, you cannot apply HorizontalAlignment and VerticalAlignment
properties.

164   Part 3  XAML User Interface Controls

Controls Content Alignment
Similar to the way System.Windows.FrameworkElement class provides the horizontal and vertical
alignment dependency properties to position elements relatively—either horizontally and/or
vertically—the System.Windows.Controls.Control class provides horizontal and vertical alignment
dependency properties to align control content horizontally and vertically.

■■ HorizontalContentAlignment  Defines how the control content is aligned horizontally. The
possible values are:

•	 Left  Left horizontal alignment. This is the default value.

•	 Right  Right horizontal alignment.

•	 Center  Horizontally aligned in center.

•	 Stretch  Stretch the control horizontally to fill up the available space.

■■ VerticalContentAlignment  Defines how the control content is aligned vertically. The
possible values are:

•	 Top  Aligned with top of the parent element available space. This is the default value.

•	 Bottom  Aligned with bottom of the parent element available space.

•	 Center  Vertically aligned in center.

•	 Stretch  Stretch the control vertically to fill up the available space.

The following example demonstrates how you can apply HorizontalContentAlignment and
VerticalContentAlignment dependency properties with different possible values to the content of the
Button controls:

<Window x:Class="LayoutControlsExample.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="MainWindow" Height="300" Width="300">
 <StackPanel>
 <TextBlock
 HorizontalAlignment="Center"
 Text="Horizontal Content Alignment Example"
 FontWeight="Bold"/>
 <StackPanel Height="100" Width="250" Background="LightBlue">
 <Button HorizontalContentAlignment="Center" Content="Center"/>
 <Button HorizontalContentAlignment ="Left" Content="Left (Default)"/>
 <Button HorizontalContentAlignment ="Right" Content="Right"/>
 <Button HorizontalContentAlignment ="Stretch" Content="Stretch"/>
 </StackPanel>
 <TextBlock
 HorizontalAlignment="Center"
 Text="Vertical Content Alignment Example"
 FontWeight="Bold"/>
 <StackPanel Height="100" Width="250"
 Background="LightYellow" Orientation="Horizontal">

	 Chapter 6  Layout and Positioning System    165

 <Button VerticalContentAlignment="Center" Content="Center"/>
 <Button VerticalContentAlignment ="Top" Content="Top (Defalut)"/>
 <Button VerticalContentAlignment ="Bottom" Content="Bootom"/>
 <Button VerticalContentAlignment ="Stretch" Content="Stretch"/>
 </StackPanel>
 </StackPanel>
</Window>

Figure 6-29 presents the output application window.

Figure 6-29  Effects of the HorizontalContentAlignment and VerticalContentAlignment dependency properties.

Margin Property
Supported By

WPF Yes

Silverlight Yes

To structure the user interface, it is critical to provide proper spacing between two controls. The
System.Windows.FrameworkElement.Margin dependency property defines the outer spacing (in
pixels) for an element.

You can define the outer margin (space) for all four sides using the Margin property:

■■ To provide a uniform margin on all four sides of the element, you need to specify only a single
value (0 or greater) for the Margin property. For example, by defining Margin=”10” for the
element, the outer spacing for all four sides will be set to 10 pixels.

■■ To define one outer spacing value for the left and right sides and another outer spacing value
for the top and bottom sides, you define two comma-separated values (0 or greater) to the
Margin property. The first value sets the left and right margins; the second value sets the top
and bottom margins. For example, by defining Margin=”10,20” for an element, the outer
spacing for the left and right sides of the element will be 10 pixels and the outer spacing for
the top and bottom sides will be 20 pixels.

166   Part 3  XAML User Interface Controls

■■ To define a specific outer spacing for each side, you define four comma-separated values (of
0 or greater) for the Margin property. The values apply to the element in clockwise fashion:
the first value sets the left margin, the second value sets the top margin, the third value sets
the right margin, and the fourth and last value sets the bottom margin. For example, defining
Margin=”10,20,30,40” for an element sets the left margin to 10 pixels while the top, right, and
bottom margins are 20, 30, and 50 pixels, respectively.

The following example demonstrates how you can apply FrameworkElement.Margin to Button
controls. This example uses a Border control to demonstrate allocated margin spacing clearly for
different Button controls:

<Window x:Class="LayoutControlsExample.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="MainWindow" Height="300" Width="300">
 <StackPanel>
 <Border BorderBrush="Black" BorderThickness="2">
 <Button Margin="10" Content="AllSides=10"/>
 </Border>
 <Border BorderBrush="Black" BorderThickness="2">
 <Button Margin="10,20" Content="Left,Right=10 Top,Bottom=20"/>
 </Border>
 <Border BorderBrush="Black" BorderThickness="2">
 <Button Margin="10,20,30,40" Content="Left=10, Top=20, Right=30, Bottom=40"/>
 </Border>
 </StackPanel>
</Window>

Figure 6-30 presents the output application window.

Figure 6-30  The Margin dependency property.

	 Chapter 6  Layout and Positioning System    167

Padding Property
Supported By

WPF Yes

Silverlight Yes

As you just saw, the Margin dependency property defines the outer spacing of an element. In
contrast, the Padding dependency property defines the inner spacing (in pixels) on all four sides
between the element’s border and its contents.

Like the Margin dependency property, you can also set the Padding property in three ways that
define how much inner spacing to render between the left, right, top, and bottom sides of the
element border and that element’s contents:

■■ To provide a uniform margin for all four sides of the element, specify a single value (0 or
greater) for the Padding property.

■■ To define the same inner spacing value for the left and right sides and a different inner
spacing value for the top and bottom sides, you use two comma-separated values (0 or
greater) for the Padding property; the first value sets the left and right side margins while the
second value sets the top and bottom margins.

■■ To define specific inner spacing for each side, use four comma-separated values (0 or greater)
for the Padding property. Again, the values get applied in clockwise fashion, starting with the
left side. For example, by defining Padding=”10,20,30,40” for the element, inner spacing for
the left side is set to 10 pixels, and the top, right, and bottom sides are set to 20, 30, and 40
pixels, respectively.

Extend the earlier example that demonstrates the Margin property by adding Padding to the
Button controls:

<Window x:Class="LayoutControlsExample.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="MainWindow" Height="400" Width="300">
 <StackPanel>
 <Border BorderBrush="Black" BorderThickness="2">
 <Button Margin="10"
 Padding="10" Content="AllSides=10"/>
 </Border>
 <Border BorderBrush="Black" BorderThickness="2">
 <Button Margin="10,20"
 Padding="10,20" Content="Left,Right=10 Top,Bottom=20"/>
 </Border>
 <Border BorderBrush="Black" BorderThickness="2">
 <Button Margin="10,20,30,40"
 Padding="10,20,30,40" Content="Left=10, Top=20, Right=30, Bottom=40"/>
 </Border>
 </StackPanel>
</Window>

168   Part 3  XAML User Interface Controls

Figure 6-31 presents the output application window.

Figure 6-31  The Padding dependency property.

Visibility Property
Supported By

WPF Yes

Silverlight Yes

By default, all WPF and Silverlight elements are visible. However, you will find many use cases
where you want to control element visibility at design and runtime. Based on the specific business
logic, you will have to make one or more elements visible or not visible. This change in control
visibility can impact the layout and positioning of other elements.

The WPF UIElement.Visibility dependency property controls the visibility of user interface elements.
The Visibility property has three possible state values:

■■ Visible  This state makes the element visible at runtime. This is the default state for all user
interface elements.

■■ Hidden  This state makes the element invisible at run\time, but the hidden elements still
consume their allocated space in the layout.

■■ Collapsed  This state makes the element invisible at run\time. Collapsed elements do not
consume any space.

	 Chapter 6  Layout and Positioning System    169

Note  The WPF version of the UIElement.Visibility dependency property can take any of
the preceding values: Visible, Hidden, or Collapsed. However, the Silverlight version of the
UIElement.Visibility dependency property supports only two state values—Visible and
Collapsed. For the Silverlight version of UI elements, there is no Hidden state.

Invisible controls do not process any events or input commands, and do not participate in the tab
sequence. Many use cases require checking the visibility state of UI element(s) in the code-behind
when performing specific business logic at runtime. The UIElement.IsVisible dependency property
returns the visibility state of the UI element so that you can identify invisible controls and enable
them to implement business logic.

Note  The default value of the IsVisible dependency property is false, which indicates that
the Visibility state of that specific UI element is Visible. When IsVisible is true, the Visibility
state of the corresponding UI element is either Hidden or Collapsed for WPF UI elements,
and Collapsed for Silverlight UI elements.

The following WPF application example demonstrates how you can apply the UIElement.Visibility
dependency property to Button controls, and shows the impact of the Hidden and Collapsed states
on the layout. As mentioned earlier, if you use a similar example and run it as a Silverlight application,
you will not be able to use the Hidden state:

<Window x:Class="LayoutControlsExample.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="MainWindow" Height="300" Width="300">
 <StackPanel>
 <StackPanel>
 <StackPanel>
 <TextBlock Text="All Buttons Visible"
 HorizontalAlignment="Center" FontWeight="Bold"/>
 <Button Visibility="Visible" Content="Button1"/>
 <Button Visibility="Visible" Content="Button2"/>
 <Button Visibility="Visible" Content="Button3"/>
 </StackPanel>
 <StackPanel>
 <TextBlock Text="Button2 is Hidden"
 HorizontalAlignment="Center" FontWeight="Bold"/>
 <Button Visibility="Visible" Content="Button1"/>
 <Button Visibility="Hidden" Content="Button2"/>
 <Button Visibility="Visible" Content="Button3"/>
 </StackPanel>
 <StackPanel>
 <TextBlock Text="Button2 is Collapsed"
 HorizontalAlignment="Center" FontWeight="Bold"/>
 <Button Visibility="Visible" Content="Button1"/>
 <Button Visibility="Collapsed" Content="Button2"/>

170   Part 3  XAML User Interface Controls

 <Button Visibility="Visible" Content="Button3"/>
 </StackPanel>
 </StackPanel>
</Window>

Figure 6-32 shows the running application window. As you can see, when the Button2 Visibility
property is set to Hidden, the layout retains the required area for the Button2 element. In contrast,
when the Button2 Visibility property is set to Collapsed, the layout does not maintain that area;
Button3 shifts upward, so it’s positioned immediately below Button1.

Figure 6-32  Setting the UIElement.Visibility dependency property.

Summary
WPF introduced a flexible layout system that supports rendering XAML elements that have been
defined with relative sizing and positioning, creating a fluid user interface that can adapt to changing
conditions at run time.

This chapter covered the WPF and Silverlight layout systems as well as various XAML layout and
positioning controls and their attributes.

The System.Windows.Controls.Panel is a base class for layout containers. It provides a set of
layout and positioning controls that range from very basic, such as Canvas and StackPanel, to more
advanced controls such as Grid. These controls can act as either a main or a subcontainer for a group
of user controls, letting you arrange controls in specific positions and in a particular order to build a
meaningful user interface.

Common sizing dependency properties such as Height and Width and positioning dependency
properties such as VerticalAlignment, HorizontalAlignement, Margin, and Padding help to align the
control and its content, define specific heights and widths for elements, and define outer and inner
spacing between controls and their content. The Visibility property lets you control the element
visibility dynamically so that you can implement key use cases.

Chapter 7 provides a more in-depth exploration of different form and functional XAML controls
and their basic features.

		 171

C h apter 7

Form and Functional Controls

In this chapter

■■ Action Controls

■■ Text Editing Controls

■■ Functional Controls to Improve Usability

■■ Functional Controls to Control and Monitor Behavior

■■ Summary

Chapter 6, “Layout and Positioning System,” gave you a detailed overview of the key XAML layout
and positioning controls, and of sizing and positioning dependency properties. With that information
in hand, you are ready to start building user interfaces (UIs) with XAML.

The form and functional XAML controls are core, critical controls for building rich and interactive
user interfaces. You usually add them to a UI as child controls of one of the layout and positioning
controls in the XAML file at design time, or create them using code-behind to implement a specific
use case at runtime.

Form controls enable and process different types of user input. The Microsoft WPF and Silverlight
platform provide a rich set of form controls, including:

■■ Action controls  Controls such as Button, CheckBox, RadioButton, and RepeatButton can
accept user input in terms of mouse or stylus pen click, key press (such as pressing the Enter
key), or selection/pressing with a finger to perform a particular action.

■■ Text editing  Controls such as TextBox, PasswordBox, RichTextBox, Calendar, and DatePicker,
which can accept simple and/or rich text entry through keyboard, mouse, stylus, or your
fingers that can be processed using data binding within XAML or using the code-behind
at runtime.

Functional controls provide a different set of features that make your user interfaces cleaner and
more usable, let you control and monitor application behavior, and provide support for interacting
with file systems and printers through generic dialogs:

■■ Controls to improve usability  Functional controls such as Label, TextBlock, Border, Popup,
ToolTip, ToolBarPanel, Menu, and ContextMenu help you organize and categorize information
and actions, and provide useful visual guidance for people using your applications.

172   Part 3  XAML User Interface Controls

■■ Controls to control and monitor application and content behavior  Functional controls
such as ScrollBar, ScrollViewer, StatusBar, ProgressBar, and Thumb controls enable developers
to control the visible areas of the application and provide various types of status information,
such as a status or progress bar.

More Info  This chapter provides a high-level overview of only commonly used form
and functional controls. See the MSDN page at http://msdn.microsoft.com/en-us/library/
ms752324.aspx for a more complete overview of available WPF XAML controls. See http://
msdn.microsoft.com/en-us/library/cc645072.aspx for a more complete overview of available
Silverlight XAML controls.

The majority of form and functional control classes inherit from the System.Windows.Controls.
Control class and thus can use ControlTemplate to define and customize the appearance of the
control. The Control class provides basic properties for setting the background and foreground of a
control, configuring the appearance of text within the control, and enabling control templating.

Action Controls

Action controls are mainly Button type controls such as Button, HyperlinkButton, CheckBox, Radio
Button, and RepeatButton controls that you use to execute specific actions upon clicking or selecting
them.

The ButtonBase Class
System.Windows.Controls.Premitives.ButtonBase is a base class for a set of Button type controls
available for WPF and Silverlight platforms. This class also provides a common set of properties and
events that are available to derived Button type controls:

■■ ClickMode  This dependency property defines when to raise the Click event:

•	 Upon mouse hover by setting value to Hover.

•	 Upon mouse click, or by pressing the Enter key.

•	 When the button has focus, pressing the spacebar by setting the value to Press.

•	 Upon mouse button release by setting the value to Release. The default value is ClickMode.
Release.

■■ Command  This dependency property defines the command (ApplicationCommands,
NavigationCommands, or custom command) to execute when the button is pressed. The
default value is null. You usually use this property when you want to execute some predefined
commands, such as Close, Copy, PrintPreview, Save, Zoom, FirstPage, LastPage, and NextPage.

http://msdn.microsoft.com/en-us/library/ms752324.aspx
http://msdn.microsoft.com/en-us/library/ms752324.aspx
http://msdn.microsoft.com/en-us/library/cc645072.aspx
http://msdn.microsoft.com/en-us/library/cc645072.aspx

	 Chapter 7  Form and Functional Controls    173

More Info  See the MSDN page at http://msdn.microsoft.com/en-us/library/
system.windows.input.navigationcommands.aspx for more details about the
NavigationCommands class. See http://msdn.microsoft.com/en-us/library/system.
windows.input.applicationcommands.aspx for more information about the
ApplicationCommands class.

■■ IsPressed  This dependency property returns true when the button state is pressed;
otherwise, it returns false. The default value is false.

ButtonBase also provides a Click event that is raised whenever the Button control is clicked.
Remember that exactly when the Click event occurs depends on the setting of the ClickMode
property, as discussed earlier in this section.

The ButtonBase class derives from the System.Windows.Controls.ContentControl class, which
allows any button-type XAML control to contain any type of an object, including a string, image, or
UIElement. It also allows you to create a custom appearance (including animation and graphics) for
the button types that use ControlTemplate. You can control appearance based on different visual
states of the control, such as Normal, MouseOver, Pressed, Disabled, Focused, and Unfocused.

The following subsections provide an overview of various Button type controls inherited from the
ButtonBase class and available for both the WPF and Silverlight platforms.

Button
Supported By

WPF Yes

Silverlight Yes

A regular basic button has a rectangular shape and uses simple text as its content. The following
XAML code snippet defines a basic button with the control identifier name x:Name set to Button1,
and the Content set to the string “Button Text.” Its Click event fires the method Button1_Click defined
in code-behind:

<Button
 x:Name="Button1"
 Content="Button Text"
 Click="Button1_Click"/>

The code-behind implementation of the Click event for the Button1 named button control is
shown here:

private void Button1_Click(object sender, RoutedEventArgs e)
{
 //Code goes here…
}

http://msdn.microsoft.com/en-us/library/system.windows.input.navigationcommands.aspx
http://msdn.microsoft.com/en-us/library/system.windows.input.navigationcommands.aspx
http://msdn.microsoft.com/en-us/library/system.windows.input.application<00AD>commands.aspx
http://msdn.microsoft.com/en-us/library/system.windows.input.application<00AD>commands.aspx

174   Part 3  XAML User Interface Controls

You could change the button’s content to any single UIElement control, which could be a layout
and positioning control containing a collection of children controls. The following XAML code
snippet defines a button with its Content set to a StackPanel control containing an Image and a
TextBlock control containing the string “Button Text,” text and its Click event set to the Button2_Click
code-behind method:

<Button
 x:Name="Button2"
 Click="Button2_Click">
 <StackPanel>
 <Image Source="buttonimage.jpg"/>
 <TextBlock Text="Button Text"/>
 </StackPanel>
</Button>

The ability to change content lets you customize buttons to some degree, but you can go far
beyond that. For example, you can change the button’s appearance to make it non-rectangular. This
next example makes the button take on a star shape!

To do this, you define a ControlTemplate with its TargetType set to Button. Then when you add a
Button control, you set its Style property to the appropriate ControlTemplate to apply the custom
visual appearance that the ControlTemplate defines (in this case, a star-shaped button). The following
code defines the ControlTemplate as a local Window resource and then applies that style to a Button:

<Window
	 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
	 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
	 xmlns:ed="http://schemas.microsoft.com/expression/2010/drawing"
	 x:Class=" FormsFunctionalControls.MainWindow"
	 Width="640" Height="480">
 <Window.Resources>
 <Style x:Key="StartButton" TargetType="Button">
 <Setter Property="Template">
 <Setter.Value>
 <ControlTemplate TargetType="Button">
 <Grid>
 <ed:RegularPolygon
 Fill="#FF21238F"
 InnerRadius="0.47211"
 PointCount="5"
 Stretch="Fill"
 UseLayoutRounding="False"/>
 <ContentPresenter
 HorizontalAlignment=
 "{TemplateBinding HorizontalContentAlignment}"
 VerticalAlignment=
 "{TemplateBinding VerticalContentAlignment}"/>
 </Grid>
 </ControlTemplate>
 </Setter.Value>
 </Setter>
 </Style>
 </Window.Resources>

	 Chapter 7  Form and Functional Controls    175

 <StackPanel>
 <Button
 x:Name="StarButton"
 Content="Star Button"
 Foreground="White"
 Height="144"
 Margin="152,80,240,0"
 Style="{StaticResource StartButton}"
 VerticalAlignment="Top"
 Click="StarButton_Click"/>
 </StackPanel>
</Window>

The preceding XAML code may look quite complex, but don’t worry—you don’t typically write
such code manually; instead, a Microsoft development and design tool named Microsoft Expression
Blend handles the creation of this complex XAML.

Using Microsoft Expression Blend, you create a star shape by selecting the Star shape from the
available Shape types, and then customizing the Star shape on the design surface. When you’re
satisfied with its appearance, you can right-click the star shape and select the Make Into Control
option, selecting the Button control type from the controls collection and providing an identifier.
You set the scope to the same document—Window:Window. Doing that defines a ControlTemplate
targeted to the Button type control. If you look at the XAML definition of the newly created control,
you will find more code than is shown in the preceding example. The additional code manages the
visual states of the Button control. If you’re following along, you can delete the extra code for this
example, and just keep the code to create the star-shaped button.

Note  To use a star shape drawn using Expression Blend, you need to add the namespace
xmlns:ed=”http://schemas.microsoft.com/expression/2010/drawing”, as shown in the
preceding code example. You also have to add a reference to the Microsoft.Expression.
Drawing assembly to the application project.

Figure 7-1 shows the three buttons—a regular basic button, a button with the image and text, and
the star-shaped button—as an output of the project.

Figure 7-1  Demonstrating the Button control.

176   Part 3  XAML User Interface Controls

HyperlinkButton
Supported By

WPF No

Silverlight Yes

The System.Windows.Controls.HyperlinkButton class provides a HyperlinkButton XAML control for
only the Silverlight platform that lets you create a button that navigates to a defined link.

The key properties of the HyperlinkButton class are:

■■ NavigateUri  This dependency property defines an absolute or application-relative URI to
which to navigate when the HyperlinkButton control is clicked.

Caution  You must set the EnableNavigation parameter to all at Silverlight plug-in
object level to enable navigation to absolute URIs. If the EnableNavigation
parameter is set to none, you can enable only application-relative URIs through
the HyperlinkButton, and the application will throw a SecurityException if you try to
navigate the absolute URI. See http://msdn.microsoft.com/en-us/library/dd833071.
aspx for more information on the EnableNavigation parameter.

■■ TargetName  This dependency property defines how the defined targeted web page should
be opened: in a new window or in the current active window. If the value is set to _blank,
_media, or _search, the targeted page will open in a new window. If the value is set to _parent,
_self, _top, or blank (“”), the targeted page will open in the current active window.

The following XAML code snippet creates a hyperlink button with its Content set to Visit
TechnologyOpinion.com, an absolute URI set to http://www.technologyopinion.com, and TargetName
set to _blank. When a user clicks the text, the application will open the technologyopinion website in a
new window. The output of the Silverlight application is shown in Figure 7-2.

<HyperlinkButton
 Content="Visit TechnologyOpinion.com"
 FontSize="18" Margin="30"
 NavigateUri="http://www.technologyopinion.com"
 TargetName="_blank"/>

Figure 7-2  Demonstrating the HyperlinkButton control.

http://msdn.microsoft.com/en-us/library/dd833071.aspx
http://msdn.microsoft.com/en-us/library/dd833071.aspx
http://www.technologyopinion.com

	 Chapter 7  Form and Functional Controls    177

RepeatButton
Supported By

WPF Yes

Silverlight Yes

While you are developing Windows or web-based applications, you certainly will come across
cases in which you need to implement continuous operation—from the point at which you click a
control to the point at which you release that control. This will reduce the number of clicks to just
one click that the user has to click to achieve a specific functionality. Some examples are continuous
increasing/decreasing volume and continuous zoom-in/zoom-out of a window/image.

For WPF and Silverlight platform, the System.Windows.Controls.RepeatButton class provides a
RepeatButton XAML control, which enables the Click events repeatedly when you press the Repeat-
Button until you release it. The Delay and Interval dependency properties control the behavior of the
repeating Click event:

■■ Delay  This dependency property defines the delay in milliseconds for the Click event to
raise after the RepeatButton is pressed. The default value is the value of SystemParameters.
KeyboardDelay, which varies from 250 milliseconds to 1 second.

■■ Interval  This dependency property defines the interval between two repeating Click events.
The default value is the value of SystemParameters.KeyboardDelay, which varies from
250 milliseconds to 1 second.

The following example contains two RepeatButton controls with the Delay set to 250 milliseconds
and Interval set to 100 milliseconds. The Increase Size repeat button will repeatedly increase the size
of the Image control to 10 pixels until the height of the image reaches 500 pixels. The Decrease Size
repeat button will repeatedly decrease the size of the Image control to 10 pixels until the height of
the image reduces to 50 pixels. It also defines the Click event code-behind method name so that
you can implement required business to increase/decrease the size of the image through managed
code-behind:

<Window x:Class="FormsFunctionalControls.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="MainWindow" Height="350" Width="525">
 <StackPanel>
 <StackPanel HorizontalAlignment="Center" Orientation="Horizontal">
 <RepeatButton
 Content="Increase Size"
 Interval="100"
 Delay="250"
 Height="25" Width="100"
 Margin="10"
 Click="RepeatButton_Click" />
 <RepeatButton
 Content="Decrease Size"
 Interval="100"
 Delay="250"
 Height="25" Width="100"

178   Part 3  XAML User Interface Controls

 Margin="10"
 Click="RepeatButton_Click_1" />
 </StackPanel>
 <TextBlock x:Name="currentstatus"
 Text="Increasing/Decreasing Image Size"
 FontSize="12" HorizontalAlignment="Center"/>
 <Image
 x:Name="image"
 Height="50" Width="50"
 MinHeight="50" MinWidth="50" Margin="10"
 Source="Resources/Tulips.jpg"/>
 </StackPanel>
</Window>

The code-behind implementation of both RepeatButton controls’ Click events are shown in
the following code. The code changes the TextBlock control Text property to show that it’s either
increasing or decreasing the image size, and implements the logic to increase/decrease the image size
by 10 pixels for each key press until the image reaches predefined upper or lower size thresholds:

private void RepeatButton_Click(object sender, RoutedEventArgs e)
{
 currentstatus.Text = "Increasing Image Size";
 if (image.Height < 500)
 {
 image.Height += 10;
 image.Width += 10;
 }
}
private void RepeatButton_Click_1(object sender, RoutedEventArgs e)
{
 currentstatus.Text = "Decreasing Image Size";
 if (image.Height > 50)
 {
 image.Height -= 10;
 image.Width -= 10;
 }
}

Figure 7-3 shows the output of this sample application. When you click and hold the RepeatButton,
the image size will continuously increase or decrease until it reaches the threshold size.

ToggleButton
So far, you’ve seen Button type controls that perform some action when clicked. In certain practical
scenarios you want to let users select one or more options from a group. For example, you might
select one or more choices to indicate your skill level with various Microsoft platform technologies,
or select a gender (male or female) while filling out a form. The familiar Windows forms platform
has the CheckBox control (for selecting one or more choices) and the RadioButton control (to select
one option from a group of options) so you can implement such use cases. The WPF and Silverlight
platforms supply similar—but enhanced—controls.

	 Chapter 7  Form and Functional Controls    179

Figure 7-3  The RepeatButton control in action.

The System.Windows.Controls.Primitives.ToggleButton class is a base class for System.Windows.
Controls.CheckBox and System.Windows.Controls.RadioButton XAML controls, by which you manage
selection states. The ToggleButton class provides the following key properties to define possible states
and retrieve the current state information:

■■ IsThreeState  This dependency Boolean property, when true, defines three states for a
CheckBox or RadioButton control: Checked, UnChecked, and Intermediate. When false, the
control has only two states: Checked and UnChecked. The default value is false.

■■ IsChecked  This dependency property returns true when the control is checked or selected,
or false otherwise. If the IsThreeState property is set to true, IsChecked can contain a third
Intermediate state representation, which you can define by setting it to null.

The ToggleButton class also introduces three state-specific events to capture state changes and let
you implement code-behind for state-specific logic:

■■ Checked  This routed event occurs when a ToggleButton is checked.

180   Part 3  XAML User Interface Controls

■■ UnChecked  This routed event occurs when a ToggleButton is unchecked.

■■ Intermediate  This routed event occurs when a ToggleButton state becomes Intermediate.
This event can occur only when the IsThreeState property is set to true.

CheckBox
Supported By

WPF Yes

Silverlight Yes

The System.Windows.Controls.CheckBox control allows users to select (by checking) or unselect/
clear (by clearing) the control. If the IsThreeState dependency property is set to true, the control can
also be in an intermediate state (neither selected nor cleared).

RadioButton
Supported By

WPF Yes

Silverlight Yes

The System.Windows.Controls.RadioButton control allows users to choose one option from a group
of radio buttons. Developers can check the IsChecked property to determine whether any particular
radio button is checked. Unlike the CheckBox control, a user cannot clear a RadioButton control;
however, you can clear the selection through code-behind by setting the IsChecked property of the
specific RadioButton to false.

The RadioButton control introduces a new GroupName dependency property with which you
define a group that can contain one or more RadioButton controls. At any given time, only one
RadioButton control can be selected within any one group.

An Example  The following example defines three CheckBox controls with which users can select
their skills from among various Microsoft technologies. By default, the example selects the Silverlight
skill using the IsChecked property. The Silverlight and WCF skills CheckBox controls can have an
Intermediate state because their IsThreeState property is set to true. The example also includes two
RadioButton controls with their GroupName property set to genderselection, which enables users to
select their gender. By default, the example application selects the Male related RadioButton control
by setting its IsChecked property to true. For demonstration purposes the CheckBox control named
checkbox1 fires all three possible events—Checked, UnChecked, and Intermediate. It also sets the
Checked and UnChecked states for the RadioButton control named radiobutton1. Here’s the XAML
code:

<Window x:Class="FormsFunctionalControls.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="MainWindow" Height="350" Width="525">
 <StackPanel>
 <StackPanel Margin="10">
 <TextBlock

	 Chapter 7  Form and Functional Controls    181

 Text="Select technical skills on Microsoft platform"
 Margin="5" FontWeight="Bold"/>
 <CheckBox
 x:Name="checkbox1"
 IsThreeState="True"
 IsChecked="True"
 Content="Silverlight"
 Checked="checkbox1_Checked"
 Unchecked="checkbox1_Unchecked"
 Indeterminate="checkbox1_Indeterminate"/>
 <CheckBox
 x:Name="checkbox2"
 IsThreeState="True"
 Content="WCF"/>
 <CheckBox
 x:Name="checkbox3"
 Content="SQL Server"/>
 </StackPanel>
 <StackPanel Margin="10">
 <TextBlock Text="Select your gender" Margin="5" FontWeight="Bold"/>
 <RadioButton
 x:Name="radiobutton1"
 GroupName="genderselection"
 IsChecked="True"
 Content="Male"
 Checked="radiobutton1_Checked"
 Unchecked="radiobutton1_Unchecked"/>
 <RadioButton
 x:Name="radiobutton2"
 GroupName="genderselection"
 Content="Female"/>
 </StackPanel>
 </StackPanel>
</Window>

The following code snippet shows the related code-behind event handler implementations for the
checkbox1 and radiobutton1 controls defined in the preceding XAML:

private void checkbox1_Checked(object sender, RoutedEventArgs e)
{
}
private void checkbox1_Unchecked(object sender, RoutedEventArgs e)
{
}
private void checkbox1_Indeterminate(object sender, RoutedEventArgs e)
{
}
private void checkbox2_Checked(object sender, RoutedEventArgs e)
{
}
private void radiobutton1_Checked(object sender, RoutedEventArgs e)
{
}
private void radiobutton1_Unchecked(object sender, RoutedEventArgs e)
{
}

182   Part 3  XAML User Interface Controls

Figure 7-4 shows this example at runtime. Note that the Silverlight check box is selected, the WCF
check box is in the Intermediate state, and the SQL server check box is not selected.

Figure 7-4  The CheckBox and RadioButton controls in action.

Text Editing Controls

Text editing controls such as TextBox, RichTextBox, AutoCompleteBox, and PasswordBox allow users to
input single- and multiple-line simple and rich text.

The TextBoxBase Class
In WPF the TextBox and RichTextBox (covered in the next section) controls derive from the System.
Windows.Controls.Primitives.TextBoxBase abstract base class, which provides basic text editing
functionality. In Silverlight the TextBox and RichTextBox controls are derived directly from the System.
Windows.Controls.Control class.

TextBoxBase provides a common set of properties and events for TextBox and RichTextBox controls,
including:

■■ AcceptsReturn  A dependency property that defines the behavior of the TextBox and
RichTextBox controls when users press the Enter key. If set to true, the TextBox and RichTextBox
controls insert a new line at the cursor position upon an Enter key press. When set to false
they ignore the Enter key. The default value is false for the TextBox control and true for the
RichTextBox control.

■■ AcceptsTab  This dependency property defines the behavior of the TextBox and RichTextBox
controls when users press the Tab key. When set to true the controls insert a tab character
at the cursor position upon a Tab key press. When set to false, focus moves to the next user
control when users press Tab. The default value is false for both the TextBox and RichTextBox
controls.

■■ IsUndoEnabled  This dependency property defines whether undo-action support is
enabled for both the TextBox and RichTextBox controls. When set to false at runtime through
code-behind, the undo stack will be cleared. The default value is true for both the TextBox and
RichTextBox controls.

	 Chapter 7  Form and Functional Controls    183

■■ UndoLimit  This dependency property defines the number of eligible undo-action items
stored in a queue in the undo stack. If you set this property at run time through code-behind,
the undo stack will be cleared and redefined based on the new value. If you set the property
value to 0, the undo feature is disabled. The default value is -1, which means there’s no
pre-defined limit to the undo queue; instead, the limit is dependent on the amount of
memory available at any given time.

■■ CanUndo  This dependency property defines whether the most recent action can be undone.
This feature is very common while you are entering some information. The property returns
true if the greatest recent action can be undone; otherwise it returns false. This property has
no default value.

■■ CanRedo  This dependency property defines whether the most recent undo action can be
re-created—a common task when users are entering information. The property returns true
if the most recent undo action can be redone; otherwise, it returns false. This property has no
default value.

■■ HorizontalScrollBarVisibility  This dependency property defines whether a horizon-
tal scrollbar is hidden or how it is shown. The four possible values (in the ScrollBarVisibility
enumeration) are Disabled, Auto, Hidden, and Visible. The default value is Hidden for both the
TextBox and RichTextBox controls.

■■ VerticalScrollBarVisibility  This dependency property defines whether a vertical scrollbar
is hidden or how it is shown. The four possible values (defined in the ScrollBarVisibility
enumeration) are Disabled, Auto, Hidden, and Visible. The default value is Hidden for both the
TextBox and RichTextBox controls.

TextBoxBase also provides two key events that help users implement code-behind logic when
text in the controls changes or when the text selection has been changed, either by users or through
code-behind:

■■ TextChanged  When this event is set, the event occurs every time the content within the
control changes, whether through user action or through code-behind. For the TextBox
control, content is always simple text; for the RichTextBox control, content can include text,
images, and table objects.

■■ SelectionChanged  When this event is set, the event occurs every time the content selection
within the control changes, whether changed by the user or through code-behind. For the
TextBox control, the selected content is always simple text, whereas for RichTextBox control,
content can include text, images, and table objects.

184   Part 3  XAML User Interface Controls

TextBox
Supported By

WPF Yes

Silverlight Yes

The Textbox control is one of the most basic user input controls—it lets users input simple (no
images, bullet lists, tables, and so on) unformatted text. A Textbox can contain one or more lines of
text. WPF and Silverlight platforms both provide this basic control; however, the implementations
differ slightly.

The following are some of the key properties of the TextBox control:

■■ Text  This dependency property defines the content of the TextBox. The default value is an
empty string (“”). Setting the Text property from code-behind replaces the existing content
with the new defined string value.

■■ TextAlignment  This dependency property defines the text alignment, which can be left-
aligned (Left), right-aligned (Right), center-aligned (Center), or justified (Justify). The default
value is Left.

■■ TextWrapping  This dependency property controls whether text wraps to a new line when
it reaches the edge of the TextBox control. The value can be WrapWithOverflow, NoWrap (the
default value), or Wrap.

■■ MaxLength  This dependency property defines the number of characters that users can
enter manually. The default value is zero (0), which indicates no limit. This setting does not
apply a limit to text set programmatically.

■■ MaxLines  This dependency property controls the size of the TextBox control—how many
lines of text it will display. Although this property controls how many lines will be visible at any
given time, it has no impact on the actual text value; in other words, the number of lines of
text may exceed the number of lines set by this property. If you set the Height property of the
TextBox control, the MaxLines property will be ignored. The default value is Int32.MaxValue,
which is equal to 2,147,483,647.

■■ MinLines  This dependency property controls the size of the TextBox control—its value is
the minimum number of lines the control will display. The control will resize if necessary to
display the minimum number of lines set by this property. If you set the Height property of the
TextBox control, the MinLines property will be ignored. The default value is 1.

■■ SelectedText  This property returns a copy of the text selected in the TextBox control. Setting
this value replaces the currently selected text with the new value.

■■ SelectionLength  This property defines the number of characters currently selected in
the TextBox control. If you set this value through code-behind, it automatically adjusts the
selection end point. During the adjustment process the control ensures that the end selection
point is valid. For example, it won’t end the selection at an invalid character position such as a
carriage return or tab character. The default value is zero (0).

■■ SelectionStart  This property defines the character index of the character at the beginning of
the current selection.

	 Chapter 7  Form and Functional Controls    185

RichTextBox
Supported By

WPF Yes

Silverlight Yes

The System.Windows.Controls.RichTextBox control provides a wealth of editing capabilities.
The RichTextBox control can host formatted text paragraphs, hyperlinks, UIElements, bulleted and
numbered lists, images, and tables. This control can also host FlowDocument objects to provide rich
editing capabilities.

The WPF and Silverlight platforms introduced the System.Windows.Documents.FlowDocument
class, which is derived from the System.Windows.FrameworkContentElement class. This class can
host and format a flow of content, and offers advanced document features such as pagination and
columns. The FlowDocument class provides developers with endless opportunities to develop rich
content for both Windows and web applications. The flow document can contain a group of one or
more of the following child content elements derived from the abstracted System.Windows.Documents.
Block class:

■■ System.Windows.Documents.BlockUIContainer  This class lets you embed XAML
UIElement controls (such as Button, Image, and Shape controls) as flow content.

■■ System.Windows.Documents.List  This class enables the insertion of a collection of bulleted
or numbered list items as flow content.

■■ System.Windows.Documents.Paragraph  This class supports plain text insertion as
well as a group of Inline flow content elements such as Bold, Figure, Floater, Hyperlink,
InlineUIContainer, Italic, LineBreak, Run, Span, and Underline that provide text-formatting
capabilities.

■■ System.Windows.Documents.Section  This class enables you to insert a group of other
content elements—BlockUIContainer, List, Paragraph, Section, and Table—derived from the
Block class as child elements of the Section element.

■■ System.Windows.Documents.Table  This class enables the insertion of content in a matrix
grid format (in rows and columns). The Table element can contain FlowDocument, TableCell,
ListBoxItem, ListViewItem, Section, Floater, and Figure elements.

The RichTextBox control introduces the following two properties:

■■ IsDocumentEnabled  This property determines whether the user can interact with the
UIElement and ContentElement objects inserted within the RichTextBox control. If the property
is set to true, the user can interact with these objects; when set to false, the objects become
read-only.

■■ Selection  This property returns a System.Windows.Documents.TextSelection object that
contains the current selection in the RichTextBox. The default TextSelection object returned has
a read-only IsEmpty property value set to true. To select the content within the RichTextBox
control from code-behind you need to call the System.Windows.Documents.TextRange.Select
method.

186   Part 3  XAML User Interface Controls

TextBox and RichTextBox Example
You have seen examples that use the TextBox control in earlier chapters of this book. This example
demonstrates some additional attributes of the TextBox control, and the use of the RichTextBox control.

The following XAML code snippet performs the following actions:

■■ Sets key attributes of the TextBox control  Allows multiple lines by setting AcceptsReturn to
true. Initiates text wrapping automatically by setting TextWrapping to Wrap. Horizontal and
vertical scroll bars will be automatically visible. A maximum of 15 lines and minimum of 3 lines
will be visible.

■■ Defines events of the TextBox control  The TextChanged event fires the textbox_TextChanged
method in code-behind, and the SelectionChanged event fires the textbox_SelectionChanged
method in code-behind.

■■ Inserts multiple Paragraph, Section, and List elements  These have various attributes,
including a right-aligned paragraph with a variety of fonts and formatting (bold, underlined,
and italic), an inline Image, an inline Grid UIElement control, and bullet list items.

<StackPanel>
 <StackPanel>
 <TextBlock Margin="5" FontWeight="Bold">
 Multi-line and Text Wrapping Enabled TextBox Control Example
 </TextBlock>
 <TextBox
 x:Name="textbox"
 Text="Default Text"
 TextWrapping="Wrap"
 AcceptsReturn="True"
 TextAlignment="Left"
 HorizontalScrollBarVisibility="Auto"
 VerticalScrollBarVisibility="Auto"
 MaxLines="15"
 MinLines="3"
 TextChanged="textbox_TextChanged"
 SelectionChanged="textbox_SelectionChanged"/>
 </StackPanel>
<StackPanel>
 <TextBlock Margin="5" FontWeight="Bold">RichTextBox Control Example</TextBlock>
 <RichTextBox>
 <FlowDocument>
 <Paragraph
 FontSize="16"
 TextAlignment="Right"
 FontFamily="Courier New">
 <Underline>
 Right aligned formatted paragraph with
 <Bold>
 bold font
 </Bold>
 <LineBreak/>
 <Italic>
 Second formatted line with Italic font
 </Italic>

	 Chapter 7  Form and Functional Controls    187

 </Underline>
 </Paragraph>
 <Section>
 <Paragraph>
 This is inline image..
 <InlineUIContainer>
 <Image
 Source="Resources/Tulips.jpg"
 Height="150" Width="200"
 Stretch="UniformToFill"/>
 </InlineUIContainer>
 </Paragraph>
 <List>
 <ListItem>
 <Paragraph>
 List Item 1
 </Paragraph>
 </ListItem>
 <ListItem>
 <Paragraph>
 List Item 2
 </Paragraph>
 </ListItem>
 </List>
 </Section>
 <Paragraph>
 <LineBreak/>
 Inserting Grid Panel to the RichTextBox
 <LineBreak/>
 <InlineUIContainer>
 <Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition/>
 <ColumnDefinition/>
 </Grid.ColumnDefinitions>
 <Grid.RowDefinitions>
 <RowDefinition/>
 <RowDefinition/>
 </Grid.RowDefinitions>
 <Border Grid.Row="0" Grid.Column="0" Background="Beige">
 <TextBlock HorizontalAlignment="Center"
 VerticalAlignment="Center"
 Text="Row = 0, Column = 0"/>
 </Border>
 <Border Grid.Row="0" Grid.Column="1"
 Background="BurlyWood">
 <TextBlock HorizontalAlignment="Center"
 VerticalAlignment="Center"
 Text="Row = 0, Column = 1"/>
 </Border>
 <Border Grid.Row="1" Grid.Column="0"
 Grid.ColumnSpan="2"
 Background="DarkKhaki"
 BorderThickness="2"
 BorderBrush="Black">
 <StackPanel HorizontalAlignment="Center"
 VerticalAlignment="Center" >

188   Part 3  XAML User Interface Controls

 <TextBlock Text="Row = 0, Column = 1"/>
 <TextBlock
 HorizontalAlignment="Center"
 Text="ColumnSpan = 2"/>
 </StackPanel>
 </Border>
 </Grid>
 </InlineUIContainer>
 </Paragraph>
 </FlowDocument>
 </RichTextBox>
 </StackPanel>
</StackPanel>

The following code snippet shows the code-behind events implementation for TextBox controls:

private void textbox_TextChanged(object sender, TextChangedEventArgs e)
{
}
private void textbox_SelectionChanged(object sender, RoutedEventArgs e)
{
}

If you run the project now, you will see that the height of the TextBox control is automatically sized
to display three lines, displaying Default Text in the first line. The RichTextBox displays the populated
content at the design time. Figure 7-5 shows the output of this example. I have entered 16 lines of
text in the TextBox control; line 3 is wrapped to two lines and displays a maximum of 15 lines with the
horizontal scroll bar.

Figure 7-5  TextBox, RichTextBox, and Border controls example.

	 Chapter 7  Form and Functional Controls    189

PasswordBox
Supported By

WPF Yes

Silverlight Yes

You often need to build a user interface where users can enter sensitive information, such as a
password, social security number, or PIN code. In such cases, you want to mask the user entry with
some predefined character rather than displaying the actual entry text. The System.Windows.Controls.
PasswordBox control is designed to facilitate such entries. It provides the ability to enter a single line
of non-wrapping content so that a user can enter sensitive information. Each entered character gets
displayed as a specified password character based on the PasswordChar property value.

The key properties of the PasswordBox control are:

■■ PasswordChar  This dependency property defines the masking character that will be
displayed, replacing each input character entered by the user. The default value is a bullet
character (●).

■■ MaxLength  This property defines the maximum number of characters allowed in the
PasswordBox. The default value is zero (0), which represents no limit.

■■ Password  This property defines the current password value of the PasswordTextBox. It
retrieves the entered password value as plain text stored in memory.

■■ SecurePassword  This property defines the current password value as a SecureString. The
returned text is encrypted and will be deleted from the computer memory. This approach
prevents the potential security risk of keeping the password string in plain text in memory as
with the Password property.

Note  See the MSDN page at http://msdn.microsoft.com/en-us/library/system.security
.securestring.aspx for more detail about the System.Security.SecureString class.

The PasswordBox control introduces PasswordChanged routed event, which occurs number of
times the Password property changes.

The following example demonstrates the PasswordBox control with the PasswordChar set to an
asterisk (*). It allows a maximum 10-character password by setting MaxLength to 10, and also fires
the PasswordChanged event to display the entered password in plain text back to the user. Note
that displaying the entered password is implemented only for demonstration purposes; for security
reasons, you would never implement this feature in real-world applications:

<StackPanel>
 <TextBlock Margin="5" FontWeight="Bold">Enter Password</TextBlock>
 <PasswordBox
 x:Name="passwordbox"
 PasswordChar="*"
 MaxLength="10"

http://msdn.microsoft.com/en-us/library/system.security.securestring.aspx
http://msdn.microsoft.com/en-us/library/system.security.securestring.aspx

190   Part 3  XAML User Interface Controls

 PasswordChanged="passwordbox_PasswordChanged"/>
 <TextBlock Margin="5" FontWeight="Bold">Display Entered Password</TextBlock>
 <TextBlock x:Name="displaypassword"/>
</StackPanel>

Here’s the PasswordChanged event handler code:

private void passwordbox_PasswordChanged(object sender, RoutedEventArgs e)
{
 displaypassword.Text = passwordbox.Password;
}

Figure 7-6 shows the running application after entering the password mypassword.

Figure 7-6  The PasswordBox control example.

StickyNoteControl
Supported By

WPF Yes

Silverlight No

Annotation features are extremely useful when performing various text-centric processes such
as reading, reviews, and sign-offs. Annotation has been a popular feature in Microsoft Office and
Adobe products because they can help replace or reduce paper-based processes. With the help of
the WPF platform, Microsoft is providing capabilities to build annotation features into your Windows
applications. WPF document viewing controls such as DocumentViewer, FlowDocumentPageViewer,
FlowDocumentReader, and FlowDocumentScrollViewer support annotation features. Note that the
annotation feature is not yet available for the Silverlight platform.

The sticky note is a handy annotation tool in day-to-day life. You either use a handwritten note
or an electronically typed, text-edited note. The System.Windows.Controls.StickyNoteControl class
provides a StickyNoteControl control, which lets users add either inked (handwritten) or typed text
notes. By default, a StickyNoteControl is a resizable rectangle that overlays the original content. Based
on the type of sticky note you create, it contains either a RichTextBox control, which supports typed
text, or an InkCanvas control, which enables handwritten note entry.

The control provides dependency properties such as Author, which provides the name of the
author who created the sticky note. You can also determine the type of the sticky note (Text or Ink)
through the StickyNoteType property. In addition, it provides properties such as CaptionFontFamily,
CaptionFontStyle, and CaptionFontSize that define the appearance of the sticky note’s caption. For full

	 Chapter 7  Form and Functional Controls    191

details on all of this control’s properties, see http://msdn.microsoft.com/en-us/library/system.windows.
controls.stickynotecontrol.aspx.

To demonstrate the sticky note feature, the following XAML code snippet creates two shortcut
menu items to create Text- and Ink-type sticky notes on an XPS document displayed using a
DocumentViewer control:

<Window x:Class="FormsFunctionalControls.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:ann="clr-namespace:System.Windows.Annotations;assembly=PresentationFramework"
 Title="MainWindow" Height="600" Width="525">
 <Grid>
 <DocumentViewer x:Name="documentview" Loaded="documentview_Loaded">
 <DocumentViewer.ContextMenu>
 <ContextMenu>
 <MenuItem
 Command="ann:AnnotationService.CreateTextStickyNoteCommand"
 Header="Add Text Note" />
 <MenuItem
 Command="ann:AnnotationService.CreateInkStickyNoteCommand"
 Header="Add Ink Note" />
 </ContextMenu>
 </DocumentViewer.ContextMenu>
 </DocumentViewer>
 </Grid>
</Window>

Note that the XAML root node contains a reference to the System.Windows.Annotation namespace.
This reference defines the CreateTextStickyNoteCommand and CreateInkStickyNoteCommand methods
of the AnnotationService class, which create text or ink type sticky notes on the selected area. The
code also defines the Loaded event for the DocumentViewer control, which will call the document-
view_Loaded event handler in the code-behind. That code opens the specified XPS file and enables
the annotation services.

To enable annotation services and read XPS-type documents, you need to add UIAnnotationtype
and ReachFramework.dll assemblies to the project. You’ll need to add the following references to the
code-behind class:

using System.Windows.Annotations;
using System.Windows.Annotations.Storage;
using System.Windows.Xps;
using System.Windows.Xps.Packaging;
using System.IO;

Next, implement the documentview_Loaded method to load and open a predefined XPS document
in the DocumentViewer control, and then start the annotations service by calling the StartAnnotation
method. Here’s the code-behind:

http://msdn.microsoft.com/en-us/library/system.windows.controls.stickynotecontrol.aspx
http://msdn.microsoft.com/en-us/library/system.windows.controls.stickynotecontrol.aspx

192   Part 3  XAML User Interface Controls

private void documentview_Loaded(object sender, RoutedEventArgs e)
{
 XpsDocument xpsdocument = new
 XpsDocument
 ("C:/Users/aghoda/Documents/Books/XAML/Projects/Chapter7/XPSSample.xps",
 FileAccess.Read);
 FixedDocumentSequence fds = xpsdocument.GetFixedDocumentSequence();
 documentview.Document = fds;
 StartAnnotations();
 documentview.Focus();
}

Next, define the StartAnnotations() method as shown here, which creates an annotation store and
then starts the annotation services:

private AnnotationService _annotService = null;
private FileStream _annotStream = null;
private XmlStreamStore _annotStore = null;
private readonly string _annotStorePath = @"annotations.xml";
private void StartAnnotations()
{
 // If there is no AnnotationService yet, create one.
 if (_annotService == null)
 // docViewer is a document viewing control named in Window1.xaml.
 _annotService = new AnnotationService(documentview);
 // If the AnnotationService is currently enabled, disable it.
 if (_annotService.IsEnabled == true)
 _annotService.Disable();
 // Open a stream to the file for storing annotations.
 _annotStream = new FileStream(
 _annotStorePath, FileMode.OpenOrCreate, FileAccess.ReadWrite);
 // Create an AnnotationStore using the file stream.
 _annotStore = new XmlStreamStore(_annotStream);
 // Enable the AnnotationService using the new store.
 _annotService.Enable(_annotStore);
}

Note  The preceding code example was taken directly from MSDN (http://msdn.microsoft.
com/en-us/library/ms748864.aspx).

Run the project, and the XPSSample.xps file opens. Select a portion of the XPS text area and right-
click to get the shortcut menu (Figure 7-7), from which you can choose to add either a text or ink
sticky note.

Note  You can find a complete example that demonstrates all the possible annotation
services at http://msdn.microsoft.com/en-us/library/ms771648.aspx.

http://msdn.microsoft.com/en-us/library/ms748864.aspx
http://msdn.microsoft.com/en-us/library/ms748864.aspx
http://msdn.microsoft.com/en-us/library/ms771648.aspx

	 Chapter 7  Form and Functional Controls    193

Figure 7-7  Adding a text or ink sticky note.

You can add multiple text and ink-type sticky notes, as shown in Figure 7-8.

Figure 7-8  Text and ink sticky notes added to the XPS document.

194   Part 3  XAML User Interface Controls

Functional Controls to Improve Usability

Functional controls such as Label, TextBlock, Border, ToolTip, Menu, and ContextMenu help to organize
and categorize information and different actions and provide useful visual guidance while you are
working on the application.

Label
Supported By

WPF Yes

Silverlight Yes (SDK)

The System.Windows.Controls.Label control provides user interface information with support for a
shortcut access key. Unlike traditional Windows Forms label controls, the XAML Label control can not
only display simple text but can also contain any UIElement because the Label class inherits from the
System.Windows.Controls.ContentControl class.

The Label control provides a Target dependency property that defines which element should gain
the focus when a user presses the Alt key along with the label’s defined access key.

The following XAML code snippet defines a label for the TextBox control with the shortcut access
key set to Alt + U (or ALT + u):

<StackPanel Orientation="Horizontal">
 <Label
 Content="_User ID:"
 Target="{Binding ElementName=userid}"
 Width="50" Height="25" FontSize="12"/>
 <TextBox Name="userid" Width="100" Height="25" FontSize="12" />
</StackPanel>

Be sure to note the format the Target property uses to bind the targeted element. You will use the
regular binding format with the attribute ElementName set to the targeted element’s Name property,
which must be unique within the given scope in XAML. Also, in the Content property, you need to add
an underscore (_) before the character you want to set as the label’s access key. In this case we want
to use U as the access key, so add an underscore before the U character, so it becomes _User ID.

Figure 7-9 shows the output of this example. The figure shows the U with an underline character in
the label, which indicates that U is the shortcut access key.

Figure 7-9  Label control with access key.

	 Chapter 7  Form and Functional Controls    195

Note  You can use the same XAML code to create a Silverlight application. The only
difference is that the Label control is part of the default WPF user controls library; for
Silverlight it’s available in the Silverlight SDK (http://www.microsoft.com/download/en/
details.aspx?id=7335). For Silverlight you need add a reference to the Silverlight SDK to in-
sert the Label control.

TextBlock
Supported By

WPF Yes

Silverlight Yes

The System.Windows.Controls.TextBlock control provides an alternative to the Label control that
adds unique features. The TextBlock control can contain not only single or multiple lines of plain
text, but may also contain Inline flow content elements such as LineBreak, Bold, Italic, Hyperlink, and
InlineUIContainer to format the content.

Some of the key properties of the TextBlock control are:

■■ Text  This dependency property contains the plain text for the TextBlock control. The default
value is an empty string (“”).

■■ TextAlignment  This dependency property defines the horizontal text alignment:
left-aligned (Left), right-aligned (Right), center-aligned (Center), or justified (Justify). The
default value is left-aligned.

■■ TextWrapping  This dependency property defines whether text wraps to a new line when
it reaches the edge of the TextBox control. It can contain WrapWithOverflow, NoWrap (the
default value), or Wrap.

■■ TextEffects  A dependency property used to apply one or more text effects based on the
TextEffect objects collection. The default value is null.

■■ TextDecorations  A dependency property for visually decorating (altering the appearance)
the text. The four possibilities are Underline, Strikethrough, Baseline, and Overline. The default
value is null.

■■ TextTrimming  This dependency property determines how text will trim when it overflows
the edge of the TextBlock control. You can set this value to None (no text trimming),
CharacterEllipsis (trim text at character boundary and add an ellipsis (…) in place of the
remaining text), and WordEllipsis (trim text at word boundary and add ellipsis in place of the
remaining text). The default value is None.

■■ InLines  This dependency property defines an InlineCollection containing Inline elements
such as Bold, Hyperlink, Italic, Underline, and Span as part of the TextBlock content.

http://www.microsoft.com/download/en/details.aspx?id=7335
http://www.microsoft.com/download/en/details.aspx?id=7335

196   Part 3  XAML User Interface Controls

■■ FontFamily, FontSize, FontStretch, FontStyle, and FontWeight  These dependency
properties define different font characteristics.

■■ Background  A dependency property that defines a Brush to fill the background of the
TextBlock control content area.

The following code snippet shows an example of a TextBlock control that contains simple text,
a Button control as an InlineUIContainer, and formatted text. Figure 7-10 shows the output of this
sample:

<StackPanel>
 <TextBlock
 Text="Simple Text in TextBlock Control"
 Height="20" Width="200"
 Margin="5"
 Background="Gray"
 HorizontalAlignment="Right"/>
 <TextBlock>
 <InlineUIContainer>
 <Button Content="Button"/>
 </InlineUIContainer>
 TextBlock Control with Inline
 <Italic>Button</Italic>
 Control and Text with
 <Bold>Bold font</Bold>
 </TextBlock>
</StackPanel>

Figure 7-10  Demonstrating the TextBlock control.

Border
Supported By

WPF Yes

Silverlight Yes

The System.Windows.Controls.Border control enables drawing of a border and/or background
around a control. This control enables you to create a separation between two controls by creating
a border with required thickness and also allows you to define the background. You can have only
one element as child to the Border control. However, if you place one of the layout and positioning
controls derived from the Panel class as a child element of the Border, the Panel control can contain
one or more child elements.

	 Chapter 7  Form and Functional Controls    197

Some of the key properties of the Border control are:

■■ Background  This dependency property defines a Brush to fill the background of the area
defined by the border. It does not have any default value.

■■ BorderBrush  This dependency property defines a Brush to draw the outer border color. It
does not have any default value.

■■ BorderThickness  This dependency property defines relative width (thickness) of the
boundaries of the border. It has no default value.

■■ CornerRadius  This dependency property defines the degree to which corners of the border
boundaries are rounded. It does not have any default value.

■■ Padding  This dependency property defines the Thickness value, which controls the space
between the Border and its child element. It has no default value.

Revisit the earlier section of this chapter, “TextBox and RichTextBox Examples,” to see an example
that uses a Border control within a Grid element.

ToolTip
Supported By

WPF Yes

Silverlight Yes

Tooltip is a common, functional UI element that you use mainly to provide a small amount of
guidance text at runtime for any element or for any process. A Tooltip is a pop-up window that
typically appears when you hover the mouse pointer over an element.

Both WPF and Silverlight provide support for displaying tooltips for any element both within
XAML and through code-behind. The System.Windows.Controls.ToolTipService class provides a set of
attached properties and static methods that enable a tooltip for an element; the System.Windows.
Controls.ToolTip class creates a pop-up window that displays the tooltip information for an element.

The key attached properties of the ToolTipService class are:

■■ Placement  This attached property defines where the tooltip pop-up window appears
in relation to the user interface element to which the tooltip applies. This property holds
PlacementMode enumeration values. The possible values are Bottom, Top, Right, Left, and
Mouse. The first four place the tooltip at the corresponding side of the target element, while
Mouse causes the tooltip to appear at the mouse pointer position. The Placement property of
the ToolTipService class takes precedence over the Placement property of the ToolTip class.

■■ PlacementTarget  This attached property defines the target element relative to which the
tooltip will appear. You can set the Tooltip property for a parent element and then target
a child visual element by using the property. When this property is not defined the tooltip
always targets the visible parent element. When this property is not defined and the parent

198   Part 3  XAML User Interface Controls

element is not visible, the tooltip appears at the upper-left corner of the current screen
window. The PlacementTarget property of the ToolTipService class takes precedence over the
PlacementTarget property of the ToolTip class.

■■ ToolTip  This attached property defines tooltip content (simple text or element objects).

The ToolTipService class also provides Get and Set methods to get or set the value of the preceding
attached properties.

The key attached properties of the ToolTip class are:

■■ IsOpen  This property defines whether the tooltip window is visible (true) or not visible (false).
The default value is false.

Caution  Use the IsOpen property only from code-behind. If used in XAML, the
application will not function properly.

■■ Placement  This attached property defines the placement of the tooltip pop-up window in
the context of the user interface element for which you are setting the tooltip-using values
from the PlacementMode enumerations. The four values—Bottom, Top, Right, and Left—cause
the tooltip to appear at the bottom, top, right, or left of the target element; the value Mouse
places the tooltip at the current mouse pointer position. The Placement property of the
ToolTipService class takes precedence over the Placement property of the ToolTip class.

■■ PlacementTarget  This attached property specifies a target element that controls the
position where the tooltip appears. You can set the Tooltip property for a parent element and
then target a child visual element using this property. When this property is not defined, the
tooltip target is the visible parent element. When this property is not defined and the parent
element is not visible, the tooltip will appear in the upper-left corner of the current screen
window. The PlacementTarget property of the ToolTipService class takes precedence over the
PlacementTarget property of the ToolTip class.

■■ HorizontalOffset and VerticalOffset  These dependency properties define the horizontal
and vertical distance (respectively) between the target element and the tooltip pop-up
window alignment point. The default value is 0.

The ToolTip class also provides two events. The Opened event occurs when a ToolTip becomes
visible and the Closed event occurs when a ToolTip pop-up windows is closed and is no longer visible.

The ToolTipService class also provides Get and Set methods to get or set the value of the preceding
attached properties.

In WPF, you can use the attached ToolTip property for an element or the ToolTip property from the
System.Windows.Controls.ToolTipService class. In the following code snippet, the first Button control
uses the ToolTipService class with its ToolTip property set to create a tooltip containing some simple
text with a Border element. The second Button control uses the ToolTip attached property to create a
similar tooltip.

	 Chapter 7  Form and Functional Controls    199

<StackPanel>
 <Button Content="Submit">
 <ToolTipService.ToolTip>
 <Border BorderBrush="Black" BorderThickness="2" Background="Beige" Padding="5">
 <TextBlock Text="Click to Submit your changes"/>
 </Border>
 </ToolTipService.ToolTip>
 </Button>
 <Button Content="Cancel">
 <Button.ToolTip>
 <Border BorderBrush="Black" BorderThickness="2" Background="Beige" Padding="5">
 <TextBlock Text="Click to Cancel your changes"/>
 </Border>
 </Button.ToolTip>
 </Button>
</StackPanel>

Figure 7-11 shows the output of this example.

Figure 7-11  Demonstrating the TextBlock control.

Note  In Silverlight, only the ToolTipService class with its ToolTip property is available.

Menu
Supported By

WPF Yes

Silverlight No

The majority of Window applications contain a menu bar. The menu bar can hold one or
more menu items arranged in hierarchical fashion to create menus and submenus. You can
associate each menu item with some action to be performed by attaching an event or executing
a command.

The System.Windows.Controls.Menu class provides a Menu control for WPF that can contain one or
more MenuItem controls—each of which can itself contain one or more actionable child elements.

The Menu class has an IsMainMenu dependency property that determines whether the Menu
control receives a main menu activation notification when a user presses the ALT or F10 key. The
default value is true.

200   Part 3  XAML User Interface Controls

The System.Windows.Controls.MenuItem class, which derives from the System.Windows.Controls.
HeaderedItemsControl, can contain a header and collection of MenuItem objects that function as a
submenu. A MenuItem can function in one of the following ways:

■■ As a header (top-level) menu item containing submenu items

■■ As a selectable menu item that can execute a command or raise an event

■■ As a menu item that can be checked or cleared

■■ As a menu item separator

The key properties of the MenuItem class are:

■■ Command  This dependency property defines the command to execute when a user selects
the menu item. The command fires immediately after the Click event. The command is raised
on the element in a specific order of priority:

•	 When the CommandTarget property is set on the MenuItem, the element specified by
CommandTarget is used.

•	 The PlacementTarget of a ContextMenu that contains the MenuItem.

•	 The focus target of the main window that contains the Menu.

•	 The MenuItem that was clicked.

■■ CommandParameter  This dependency property defines a parameter to pass to the
Command property of the MenuItem.

■■ CommandTarget  This dependency property defines the target element on which to
raise the Command of the MenuItem. The default value is null. If this property is not set, the
element with the keyboard focus receives the command.

■■ Icon  This dependency property defines the icon that appears with the MenuItem. The
default value is null.

■■ InputGestureText  This dependency property defines an input gesture (a shortcut) that fires
the command for the specified MenuItem. The default value is an empty string (“”).

■■ IsCheckable  This dependency property defines whether the MenuItem can be checked (true)
or not (false). The default value is false.

■■ IsChecked  This dependency property defines whether the MenuItem is currently checked
(true) or not (false). The default value is false.

■■ IsPressed  This dependency property defines whether the MenuItem is currently pressed
(true) or not (false). The default value is false.

■■ Role  This dependency property defines the role of the MenuItem. Possible values are:

	 Chapter 7  Form and Functional Controls    201

•	 TopLevelItem  A top-level menu item that can invoke commands

•	 TopLevelHeader  A header for top-level menus

•	 SubMenuItem  A submenu item that can invoke command

•	 SubMenuHearder  A header for a submenu

■■ StaysOpenOnClick  This dependency property defines whether an opened submenu
remains open after clicking a MenuItem within that submenu. The default value is false.

The key events of the MenuItem class are:

■■ Checked  Occurs when a MenuItem is checked

■■ UnChecked  Occurs when a MenuItem is cleared

■■ Click  Occurs when a MenuItem is clicked

■■ SubmenuOpened  Occurs when the IsSubmenuOpen property changes to true

■■ SubmenuClosed  Occurs when the IsSubmenuOpen property changes to false

Here’s a brief example. The following code snippet creates a menu with various characteristics:

<StackPanel>
 <Menu>
 <MenuItem Header="_Menu">
 <MenuItem Header="_Copy" Command="Copy"/>
 <MenuItem
 Header="Menu Item _1"
 IsCheckable="True"
 Checked="MenuItem1_Checked"
 Unchecked="MenuItem1_Unchecked"/>
 <Separator/>
 <MenuItem
 Header="Menu Item 2"
 InputGestureText="Ctrl+2"
 Click="MenuItem2_Click"/>
 </MenuItem>
 </Menu>
</StackPanel>

Figure 7-12 shows the output of this example.

Figure 7-12  Demonstrating the Menu control.

202   Part 3  XAML User Interface Controls

ContextMenu
Supported By

WPF Yes

Silverlight Yes (through code-behind)

Like the menu bar, the majority of content-driven Window applications also support context
menus. Context menus are usually implemented as a right mouse click pop-up menu tied to the
context of a specific element. The context menu can contain one or more menu items in hierarchical
and non-hierarchical format to create menu and submenu. You can associate each menu item with
some action to be performed by attaching an event or executing a command.

ContextMenu for WPF Platform
The System.Windows.Controls.ContextMenu class provides a Windows pop-up menu control for WPF
that can contain one or more MenuItem controls, each of which can contain one or more actionable
child elements.

The key properties of the MenuItem class are:

■■ Placement  This dependency property defines the placement of the ContextMenu pop-up
window in relation to the user interface element to which the context menu applies. This
property can contain the following values from the PlacementMode enumeration: Absolute,
Relative, Bottom, Center, Right, AbsolutePoint, RelativePoint, Mouse, MousePoint, Left, Top, and
Custom.

More Info  The PlacementMode enumeration values are well named, but if you
need more information, see http://msdn.microsoft.com/en-us/library/system.
windows.controls.primitives.placementmode.aspx.

■■ PlacementTarget  This dependency property defines the target element for the Context-
Menu. When this property is not defined, the ContextMenu will target the parent element. The
default value is null. You use the PlacementTarget property of the ContextMenuService class to
target a different UI element than the parent.

■■ PlacementRectangle  This dependency property defines the rectangle area where the
ContenxMenu appears. The default value is Empty.

■■ HorizontalOffset and VerticalOffset  These dependency properties define the horizontal
and vertical distance (respectively) between the target element and the ContextMenu pop-up
window alignment point. The default value is 0.

■■ IsOpen  This property defines whether the ContextMenu pop-up window is visible (true) or
not visible (false). The default value is false.

■■ StaysOpen  This dependency property controls whether the ContextMenu pop-up window
stays open until the IsOpen property changes to false or whether it closes automatically (false).
The default value is false.

http://msdn.microsoft.com/en-us/library/system.windows.controls.primitives.placementmode.aspx
http://msdn.microsoft.com/en-us/library/system.windows.controls.primitives.placementmode.aspx

	 Chapter 7  Form and Functional Controls    203

Much like the ToolTip class, the ContextMenu class also provides two events. The Opened event
occurs when the ContextMenu opens and the Closed event occurs when the ContextMenu pop-up
window closes.

Revisit the preceding section on the StickyNoteControl in this chapter to see an example that uses
the ContextMenu control.

ContextMenu for Silverlight
With Silverlight 4, you can enable a right mouse click pop-up context menu with the help of two
newly introduced events: MouseRightButtonDown and MouseRightButtonUp. You can define these in
both XAML and code-behind, using a three-step approach:

1.	 Set MouseRightButtonDown and MouseRightButtonUp events for the control you want to
display in the right mouse click context menu in the XAML file.

2.	 Set MouseButtonEventArgs.Handled to true, and then use the MouseRightButtonDown event to
remove the default Silverlight context menu that occurs on a right mouse click and substitute
your custom right mouse click menu.

3.	 Create a custom right mouse click context menu using the PopUp class.

The following XAML code snippet demonstrates step 1. It defines MouseRightButtonDown and
MouseRightButtonUp events for a TextBox control to enable a right mouse click custom context menu.

<UserControl x:Class="ContextMenu_Silverlight.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d"
 d:DesignHeight="300" d:DesignWidth="400">
 <StackPanel>
 <TextBlock>Demonstrating Context Menu in Silverlight</TextBlock>
 <TextBox x:Name="contextmenutextbox"
 MouseRightButtonDown="contextmenutextbox_MouseRightButtonDown"
 MouseRightButtonUp="contextmenutextbox_MouseRightButtonUp"/>
 </StackPanel>
</UserControl>

The following code-behind demonstrates step 2, which disables the default Silverlight context
menu:

private void contextmenutextbox_MouseRightButtonDown
 (object sender, MouseButtonEventArgs e)
{
 e.Handled = true;
}

204   Part 3  XAML User Interface Controls

For the first part of step 3:

■■ Add a reference to the System.Windows.Controls.Primitives so that you can use the Popup class
to create an instance of the custom pop-up window:

using System.Windows.Controls.Primitives;

■■ Now define a Popup instance at the class level:

Popup contextMenu = new Popup();

■■ Next, implement the MouseRightButtonUp event to define the pop-up context menu. This
example creates two Button controls within a StackPanel and displays the Popup by setting the
IsOpen dependency property to true:

private void contextmenutextbox_MouseRightButtonUp
 (object sender, MouseButtonEventArgs e)
{
 StackPanel panel1 = new StackPanel();
 panel1.Background = new SolidColorBrush(Colors.LightGray);
 //Menu Item 1
 Button menuitem1 = new Button();
 menuitem1.Content = "Menu Item 1";
 menuitem1.Width = 100;
 menuitem1.Margin = new Thickness(3);
 //Click event to provide Menu Item 1 functionality
 menuitem1.Click += new
 RoutedEventHandler(menuitem1_Click);

 //Menu Item 2
 Button menuitem2 = new Button();
 menuitem2.Content = "Menu Item 2";
 menuitem2.Width = 100;
 menuitem2.Margin = new Thickness(3);
 //Click event to provide Menu Item 2 functionality
 menuitem2.Click += new
 RoutedEventHandler(menuitem2_Click);

 panel1.Children.Add(menuitem1);
 panel1.Children.Add(menuitem2);

 contextMenu.Child = panel1;
 //set display location to current cursor
 contextMenu.VerticalOffset = e.GetPosition(null).Y;
 contextMenu.HorizontalOffset = e.GetPosition(null).X;
 //show the context menu
 contextMenu.IsOpen = true;
}

■■ Finally, implement the Click events for both the Button controls defined for the context menu:

private void menuitem1_Click(object sender, RoutedEventArgs e)
{
 MessageBox.Show("Menu Item 1 Related Code..");
 contextMenu.IsOpen = false;

	 Chapter 7  Form and Functional Controls    205

}
private void menuitem2_Click(object sender, RoutedEventArgs e)
{
 MessageBox.Show("Menu Item 2 Related Code..");
 contextMenu.IsOpen = false;
}

When you run this project and right-click within the TextBox control, instead of the Silverlight
default context menu, you will see the custom context menu displayed based on your current mouse
pointer position, as shown in Figure 7-13.

Figure 7-13  A custom ContextMenu in a Silverlight application.

Functional Controls to Control and Monitor Behavior

Functional controls such as ScrollBar, ScrollViewer, Slider, and ProgressBar help to control and monitor
both application and content behavior and visibility. The following sections describe these controls.

The RangeBase Class
The System.Windows.Controls.Primitives.RangeBase class provides behavior to handle a range
of values and a selected value within that range. It is the base class for the ScrollBar, Slider, and
ProgressBar controls. The RangeBase class uses value coercion to ensure that the current value is
within the range. (In other words, the value remains between or equal to the minimum and maximum
defined values.) The system raises an ArgumentException if any of the properties defining the end
points of the range are set to a value that does not make sense, such as setting Minimum to NaN or
SmallChange (the minimum change amount) to a value less than zero.

Key properties provided by the RangeBase class are:

■■ Value  This dependency property holds the current value of the range control. The default
value is 0. If the Value property is set to less than the Minimum property value, it automatically
resets to the value of the Minimum property.

■■ LargeChange  This dependency property specifies the amount by which the Value increases
or decreases when the user changes the value by a large amount. The default value is 1. (Note
that the ProgressBar control inherited from this class does not use this property.)

206   Part 3  XAML User Interface Controls

■■ SmallChange  This dependency property defines the amount by which the Value increases
or decreases when the user changes the value by a small amount. The default value is 0.1.
(Note that the ProgressBar control inherited from this class does not use this property.)

■■ Maximum  This dependency property defines the highest possible Value of the range
element. The default value is 1, which is applicable to the ScrollBar control. The Slider control
overrides this default property and sets it to 10 by default, whereas the ProgressBar control
overrides and sets it to 100 by default.

■■ Minimum  This dependency property defines the smallest possible Value of the range
element. The default value is 0.

The RangeBase class provides a ValueChanged event that gets raised whenever the value of the
range control changes.

ScrollBar
Supported By

WPF Yes

Silverlight Yes

The System.Windows.Controls.Primitives.ScrollBar class is visually represented by two RepeatButton
controls and a Thumb control that corresponds positionally to the currently selected value within the
defined range.

Key properties provided by the ScrollBar class are:

■■ Orientation  This dependency property controls whether the ScrollBar displays vertically or
horizontally:

•	 For WPF, the ScrollBar control’s default Orientation value is Vertical.

•	 For Silverlight, the ScrollBar control’s default Orientation value is Horizontal.

■■ ViewportSize  This dependency property specifies the amount of content currently visible
according to the position of the thumb within the scrollbar. The default value is 0.

■■ Track  This property defines the System.Windows.Controls.Primitives.Track for a ScrollBar
control. The Track handles positioning and sizing the Thumb control and two RepeatButton
controls used to set the Value. This property is available for the WPF version of the ScrollBar
control only.

The ScrollBar control also provides a Scroll event that occurs multiple times when a user drags the
Thumb control of the ScrollBar to change its position (and the Value).

The following XAML code snippet demonstrates horizontal and vertical scrollbars, as shown in
Figure 7-14:

<StackPanel>
 <TextBlock Text="Horizontal Scroll Bar"/>
 <ScrollBar Orientation="Horizontal" Width="200"

	 Chapter 7  Form and Functional Controls    207

 Minimum="0" Maximum="100"
 SmallChange="1" LargeChange="10" Value="50"/>
 <TextBlock Text="Vertical Scroll Bar"/>
 <ScrollBar Orientation="Vertical" Width="20" Height="150"/>
</StackPanel>

Figure 7-14  Horizontal and vertical ScrollBar controls.

Slider
Supported By

WPF Yes

Silverlight Yes

The System.Windows.Controls.Slider control is similar to the ScrollBar control, but additionally
provides the capability to select a particular value from within a range.

The key properties provided by the Slider class are:

■■ Orientation  This dependency property controls whether the slider displays vertically or
horizontally:

•	 For WPF, the default is Vertical.

•	 For Silverlight, the default is Horizontal.

■■ IsDirectionReversed  This dependency property defines the direction of increasing value
of a Slider control. The default value is false, which means that values increase as the thumb
moves up for vertical sliders or right for horizontal sliders. When true, the direction of
increasing values reverses: down for vertical sliders and left for horizontal sliders.

■■ IsFocused  This dependency property determines whether the Slider control has focus (true)
or not (false). The default value is false.

The following XAML code snippet demonstrates horizontal and vertical sliders, as shown in
Figure 7-15:

<StackPanel>
 <TextBlock Text="Horizontal Slider"/>
 <Slider Orientation="Horizontal" Width="200"

208   Part 3  XAML User Interface Controls

 Minimum="0" Maximum="100"
 SmallChange="1" LargeChange="10"/>
 <TextBlock Text="Vertical Slider"/>
 <Slider Orientation="Vertical" Width="20" Height="150"
 IsDirectionReversed="True"/>
</StackPanel>

Figure 7-15  Two Slider controls in their initial default positions.

Note that for the vertical slider, the IsDirectionReversed property is set to true, which is why the
default position of the vertical slider is at the topmost position.

ProgressBar
Supported By

WPF Yes

Silverlight Yes

The System.Windows.Controls.ProgressBar control is intended to show users the progress of
some operation. You can define the following two visual styles for the ProgressBar control using the
IsIndeterminate property:

■■ For a ProgressBar with a repeating pattern, set the IsIndeterminate property to true.

■■ For a ProgressBar that gets filled progressively based on a value, set the IsIndeterminate
property to false, and then define the range by setting the Minimum and Maximum properties
and the value using the Value property.

The following XAML code snippet demonstrates both repeating and filling progress bars, as shown
in Figure 7-16:

<StackPanel>
 <TextBlock Text="Repeating Pattern Progress Bar"/>
 <ProgressBar Height="20" Width="200" IsIndeterminate="True"/>
 <TextBlock Text="Filling Progress Bar"/>
 <ProgressBar Height="20" Width="200" IsIndeterminate="False"
 Minimum="0" Maximum="100" Value="30"/>
</StackPanel>

	 Chapter 7  Form and Functional Controls    209

Figure 7-16  Repeating and progressively filling ProgressBar controls in action.

ScrollViewer
Supported By

WPF Yes

Silverlight Yes

When you design any user interface you need to consider the possible screen resolution, window
size and screen size of the devices on which users will access your applications. Often, you will
encounter use cases where you need to display content using vertical and horizontal scroll bars,
letting users scroll through the content that must appear within an area smaller than the content
itself.

The System.Windows.Controls.ScrollViewer control provides such a capability. You use it when the
content display control (such as a Grid) does not have the ability to display scrollbars.

Some of the key properties of the ScrollViewer control are:

■■ HorizontalScrollBarVisibility and VerticalScrollBarVisibility  These dependency
properties control whether the horizontal and vertical scrollbars are visible (true) or not (false).

■■ ViewportHeight and ViewportWidth  These dependency properties define the height and
width of the viewport within which the ScrollViewer displays content.

■■ ScrollableHeight and ScrollableWidth  These dependency properties define the vertical
and horizontal size of the content.

■■ ComputedHorizontalScrollBarVisibility and ComputedVerticalScrollBarVisibility  These
dependency properties determine whether the horizontal and vertical scrollbar are currently
visible (true value) or not (false value).

■■ HorizontalOffset and VerticalOffset  These dependency properties define the horizontal
and vertical distance (respectively) between the content and the scrollbars. The default value
is 0.

The following XAML code snippet demonstrates a Grid control containing a Border control in each
cell with alternating black and white background colors. The Grid control itself is placed within a
ScrollViewer control with vertical and horizontal scrollbars visible, as shown in Figure 7-17.

<StackPanel>
 <ScrollViewer Width="150" Height="150"
 HorizontalScrollBarVisibility="Auto">

210   Part 3  XAML User Interface Controls

 <Grid Background="White" Height="200" Width="200">
 <Grid.RowDefinitions>
 <RowDefinition/>
 <RowDefinition/>
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition/>
 <ColumnDefinition/>
 </Grid.ColumnDefinitions>
 <Border Grid.Row="0" Grid.Column="0"
 Height="100" Width="100" Background="White"/>
 <Border Grid.Row="0" Grid.Column="1"
 Height="100" Width="100" Background="Black"/>
 <Border Grid.Row="1" Grid.Column="0"
 Height="100" Width="100" Background="Black"/>
 <Border Grid.Row="1" Grid.Column="1"
 Height="100" Width="100" Background="White"/>
 </Grid>
 </ScrollViewer>
</StackPanel>

Figure 7-17  A ScrollViewer control containing a Grid with Border controls in each cell.

Summary

This chapter provided an overview of form controls and functional controls. You use form controls to
provide various types of user interactions with the user interface. For example, form controls include
Button type controls for initiating actions, and text entry controls for implementing text editing
features. Functional controls improve the user experience by categorizing information and actions.
Functional controls include those that improve usability, such as menus and context menus as well as
guidance controls such as tooltips, labels, and text blocks. They also include controls to monitor and
control behavior, such as scrollbars, sliders, and progress bars.

		 211

Part 4

Content Integration
and Animation

chapter 8	 Data Binding . 213

chapter 9	 Media, Graphics, and Animation 245

		 213

C h apter 8

Data Binding

In this chapter:

■■ Data Sources

■■ Data Binding

■■ Binding Modes

■■ Data Templating, Conversion, and Validation

■■ Creating and Binding to an ObservableCollection

■■ Collection Views

■■ Hierarchical Binding

■■ Binding to XML Data

■■ Summary

Data binding is a process by which applications establish a connection between user interface (UI)
elements and data. Using data binding, you can separate the display of data from the manipulation of
data. When the underlying data source used to populate a UI with data undergoes frequent changes,
the impact on your application can be huge. The data binding process maintains a connection
between the UI and the data such that the impact is minimal.

Data binding can also ensure that whenever bound data changes—either in the UI or elsewhere—
the corresponding value will be updated automatically. Most .NET technologies, including Windows
Forms and ASP.NET, support data binding. XAML also includes strong support for data binding. In
fact, data binding is one of the key capabilities and advantages of XAML. By implementing binding
using declarative markup (and occasionally some code), you can ensure better data handling
operations in your applications.

Data Sources

To begin working with data, you first need to have data present somewhere. In .NET jargon, a data
source holds the data that you can use within your application. Examples of such data sources are
databases, text files, XML files, object collections, and so forth. You typically connect to the data
source or create an instance of it (in case it is a class), and then use the data source to store and
retrieve data for your application.

214   Part 4  Content Integration and Animation

In Visual Studio 2010, you can create a new data source using the Data Source Configuration
Wizard.

In addition to databases, Silverlight and WPF applications support the following data source types:

■■ Service (data from a Web service)

■■ Object (data from objects in an assembly)

■■ SharePoint (data from a SharePoint site)

The following sections explore these data source types.

Service
You can use data from a Windows Communication Foundation (WCF) service as a data source. WCF
data services consist of patterns and libraries that enable data creation and consumption through the
web or an intranet. You use familiar HTTP actions such as GET, PUT, and POST to access and update
the data.

Any application that sends HTTP requests and processes responses in the format that a data
service understands can work with WCF Data Services.

Object
You can use data from objects in .NET assemblies as data sources. These are classes that define the
data. You need to reference the appropriate assemblies in your Silverlight or WPF application.

You can also use the Silverlight Designer in Visual Studio 2010 to add a class as a data source.
To do that, from the Choose Your Data Source Type page of the Data Source Configuration Wizard,
select Object, and then select the appropriate class.

SharePoint
SharePoint sites can also function as data sources. If you have created a SharePoint List, you can make
use of WCF Data Services to retrieve the SharePoint data in the Silverlight application.

In addition to the preceding types, WPF applications also support using a database as a data source.

Database
When employing a database as a data source, you create data objects by using either a DataSet or an
Entity Data Model.

A DataSet is based on a disconnected architecture, and enables data access independent of a data
source. The ADO.NET DataSet represents a complete collection of data, including tables, constraints,
and any relationships among the tables.

Although the most commonly used data sources with DataSet are SQL Server databases, you can
also use an XML data source, an Access database, an ODBC data source, and so on with a DataSet.

	 Chapter 8  Data Binding    215

An Entity Data Model creates data classes based on the Microsoft ADO.NET Entity Data
Framework. Visual Studio 2008 and ADO.NET 3.5 introduced this framework in .NET 4.0 and Visual
Studio 2010 enhanced it further.

The ADO.NET Entity Framework is an Object-Relational Mapping (ORM) framework; ORM is a
programming approach for converting data between relational databases and object-oriented
programming languages. The ADO.NET Entity Framework consists of a data model and a number
of design-time and runtime services. Using these, developers can describe the application data and
interact with it at a conceptual abstraction level—making it ideal for business applications.

Note  You can add an item of type ADO.NET Entity Framework directly to a Silverlight
application through the Add New Item dialog box.

More Info  Shawn Wildermuth has written an excellent blog post on the pros and cons
of various data access strategies in Silverlight at http://wildermuth.com/2009/09/29/
Choosing_a_Data_Access_Layer_for_Silverlight_3.

Data Binding

After identifying the data source, you need to establish a link between the business logic and the
application UI. In simpler terms, this means creating a link between the data in the data source and
your UI elements. Data binding is the process of establishing this link.

Not only are several different kinds of data binding available, but you can also accomplish data
binding in different ways.

Four major components are involved in data binding:

■■ binding target object

■■ target property

■■ binding source

■■ path

The binding target object is the object to which you want to bind some data. It’s typically a UI
element such as TextBox, ListBox, or DataGrid.

The target property may display and enable changes to the data. The target property can be any
dependency property of a FrameworkElement. Silverlight 4 and later versions also support targets
that are a DependencyProperty of a DependencyObject in certain cases:

http://wildermuth.com/2009/09/29/Choosing_a_Data_Access_Layer_for_Silverlight_3
http://wildermuth.com/2009/09/29/Choosing_a_Data_Access_Layer_for_Silverlight_3

216   Part 4  Content Integration and Animation

■■ The DependencyObject is in a DependencyObjectCollection.

■■ The DependencyObject is part of a collection that is the value of a FrameworkElement property.

■■ The DependencyObject is the value of a property of a FrameworkElement.

The binding source can be any data source, as explained earlier. The path in a data binding
expression indicates the path that must be traversed to get to the value in the data source. For
example, a binding target object might be a TextBlock control. The target property could then be the
Text property, the binding source could be a collection containing data from a database retrieved
through a service, and the path could be the name of the column in the table or the table name.

Figure 8-1 shows an overview of data binding.

Dependency
Property Property

Converter

Binding
Object

Source of BindingTarget of Binding

FrameworkElement CLR Object

Figure 8-1  Data binding overview.

Setting the Binding Source
You can set the binding source in the following ways:

■■ Using the DataContext property

■■ Using the Source property

■■ Inheriting the DataContext property from the parent element

■■ Using the ElementName property

■■ Using the RelativeSource property

■■ Using the Ancestor RelativeSource property

The actual approach you use will depend on your application logic. You will see the details of some
of these methods using some actual examples in this chapter.

	 Chapter 8  Data Binding    217

The DataContext Property
The DataContext property indicates that any data it binds to is a property on the data item that either
it or its parent is set to. Thus, if you have a Button defined within a Grid and you set the DataContext
of that Grid to an instance of a class named Toys, both the Button and Grid controls can get or set
properties from that DataContext instance.

Suppose, for example, that you have defined a Toys class in MainPage.xaml.cs as follows:

public class Toys : List<string>
{
 public string ColorName {get;set;}
}

You can now bind the ColorName property to a Button control in the following manner:

<Grid x:Name="LayoutRoot" >
 <Grid.Resources>
 <c:Toys x:Key="myClass" ColorName="Yellow"/>
 </Grid.Resources>
 <Button Background="{Binding ColorName}" DataContext="{StaticResource myClass}"
 Margin="220,140,236,295" Content="Submit"/>
</Grid>

Here, the code uses the DataContext property of the Button along with the Binding markup
extension to bind the background to the ColorName property. The code assumes that you have
declared an XML namespace alias named c for the current assembly.

The Source Property
The following code achieves the same outcome using the Source property of the Binding object:

<Grid x:Name="LayoutRoot" >
 <Grid.Resources>
 <c:Toys x:Key="myClass" ColorName="Yellow"/>
 </Grid.Resources>
 <Button Background="{Binding Path=ColorName, Source={StaticResource myClass}}"
 Margin="220,140,236,295" Content="Submit"/>
</Grid>

The difference between the Source and the DataContext property is that the latter enables all the
child elements of the main element to inherit the data source.

Inheriting the DataContext Property from the Parent Element
Consider an example where you want to set the DataContext on a Grid and have all the child elements
of the Grid inherit that DataContext. You can achieve this as follows:

<UserControl.Resources>
 <c:Toys x:Key="myClass" ColorName="Yellow"/>
</UserControl.Resources>

218   Part 4  Content Integration and Animation

 <Grid x:Name="LayoutRoot" DataContext="{StaticResource myClass}" Height="317" Width="358">
 <Grid.RowDefinitions>
 <RowDefinition Height="150" />
 <RowDefinition Height="150" />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="174"/>
 <ColumnDefinition Width="172"/>
 </Grid.ColumnDefinitions>
 <Button Background="{Binding ColorName}" Height="30" Width="120" Content="Submit"
 Margin="12,52,42,68" Grid.Column="0" x:Name="btn1"/>
 <Button Background="{Binding ColorName}" Content="Cancel"
 HorizontalAlignment="Right" Height="30" Width="120" Margin="0,52,25,68"
 Grid.Column="1" />
 </Grid>

Here, both buttons will have the same background, set through the ColorName property, because
they inherit the DataContext from the Grid.

The ElementName Property
The following markup shows a simple example of using the ElementName property:

<Button x:Name="btn1" Background="Pink" Height="30" Width="120" Content="Submit"
 Margin="12,52,42,68" Grid.Column="0" />
<Button x:Name="btn2" Background="{Binding ElementName=btn1, Path=Background}" Content="Cancel"
 HorizontalAlignment="Right" Height="30" Width="120" Margin="0,52,25,68" Grid.Column="1" />

Here, the second button will have the same background as the first button because of the binding.

The RelativeSource Property
The RelativeSource property uses the location of the data source relative to the position of the
binding target. The RelativeSource property is useful when you specify the binding in a control
template or a style.

The general syntax for this property is as follows:

<Binding>
 <Binding.RelativeSource>
 <RelativeSource Mode="modeEnumValue"/>
 </Binding.RelativeSource>
</Binding>
- or
<Binding>
 <Binding.RelativeSource>
 <RelativeSource
 Mode="FindAncestor"
 AncestorType="{x:Type typeName}"
 AncestorLevel="intLevel"
 />
 </Binding.RelativeSource>
</Binding>

	 Chapter 8  Data Binding    219

where modeEnumValue is one of the following string tokens:

■■ Self  Represents a RelativeSource binding source that is created with Mode set to Self.

■■ TemplatedParent  Represents a RelativeSource binding source that is created with Mode set to
TemplatedParent.

■■ PreviousData  Represents a RelativeSource binding source that is created with Mode set to
PreviousData.

■■ FindAncestor  Using this string token enters a mode through which a RelativeSource specifies
an ancestor type and optionally an ancestor level. This is similar to a RelativeSource created
with its Mode property set to FindAncestor.

■■ typeName  This string token is an attribute required for FindAncestor mode and indicates the
name of a type, which fills the AncestorType property.

■■ intLevel  This string token is an optional attribute for FindAncestor mode, indicating an
ancestor level.

Here are a few examples of using RelativeSource:

■■ {Binding RelativeSource={RelativeSource Self}} will bind to a target element.

■■ {Binding RelativeSource={RelativeSource Self}, Path=Color} will bind to the Color property of a
target element.

■■ {Binding RelativeSource={RelativeSource FindAncestor, AncestorType={x:Type Window}},
Path=Title} will bind to the title of the parent window.

■■ {Binding RelativeSource={RelativeSource FindAncestor, AncestorType={x:Type ItemsControl},
AncestorLevel=2}, Path=Name} will bind to the name of the second parent of type
ItemsControl.

■■ {Binding RelativeSource={RelativeSource TemplateParent}, Path=Name} is the same as
{TemplateBinding Name} and will bind to the Name property of the element to which the
template is applied.

Ancestor RelativeSource
This is a feature of XAML supported by both Silverlight 5 and WPF that lets you bind to a property of
a parent control.

To implement this feature, you first use {Binding.RelativeSource} to specify the source in the
tree, and then use the AncestorType property to specify the type of parent control to bind to, and
if necessary, the AncestorLevel property to specify how far that parent control is from the current
control.

The following markup demonstrates a simple example of using FindAncestor and AncestorType:

<TextBlock Text="{Binding Path=Title, RelativeSource= {RelativeSource FindAncestor,
 AncestorType=navigation:Page}}"/>

220   Part 4  Content Integration and Animation

In that example, the XAML code displays the title of the page in a TextBlock control that you place
at the top of a page.

The following XAML code shows a series of TextBlock controls binding to the same Tag property of
a Grid:

<Grid Tag="RelativeSource Demonstration">
 <Grid.RowDefinitions>
 <RowDefinition Height="80" />
 <RowDefinition Height="80" />
 <RowDefinition Height="80" />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition />
 </Grid.ColumnDefinitions>
 <TextBlock Text="{Binding Tag, RelativeSource={RelativeSource
 AncestorType=Grid}}"
 Grid.Row="0" Grid.Column="0"
 Foreground="Orange" />
 <TextBlock Text="{Binding Tag, RelativeSource={RelativeSource
 AncestorType=Grid, AncestorLevel=1}}"
 Grid.Row="1" Grid.Column="0"
 Foreground="BlueViolet" />
 <TextBlock Text="{Binding Tag,
 RelativeSource={RelativeSource AncestorType=Grid,
 AncestorLevel=1}}"
 Grid.Row="2" Grid.Column="0"
 Foreground="Magenta" />
</Grid>

Figure 8-2 shows the outcome of the markup.

Figure 8-2 Using Ancestor RelativeSource.

Note  Source, RelativeSource, and ElementName are mutually exclusive in a binding. After
you set one of these attributes, setting either of the other two in a binding results in an
exception.

	 Chapter 8  Data Binding    221

MultiBinding
In addition to binding to single values, you can also implement MultiBinding. MultiBinding is a
form of binding that enables you to bind to multiple items but return a single new value by using a
converter. This is done by using the MultiBinding element in XAML. The simplest example that you
can create in WPF to implement MultiBinding is as follows:

<StackPanel>
 <TextBlock Height="35" Width="166">
 <TextBlock.Text>
 <MultiBinding StringFormat="Mr {0} is a {1}.">
 <Binding Path="Name" />
 <Binding Path="JobTitle" />
 </MultiBinding>
 </TextBlock.Text>
 </TextBlock>
</StackPanel>

The preceding XAML binds a single TextBlock to two different items. This would not have been
possible before the MultiBinding feature.

Note  MultiBinding in WPF is fairly easy, but the process is a little more complex in
Silverlight. For more information on MultiBinding in Silverlight, visit Colin Eberhadt’s blog,
which has a detailed article on this topic along with sample source code, at http://www.
scottlogic.co.uk/blog/colin/2009/06/silverlight-multibindings-how-to-attached-mutiple-
bindings-to-a-single-property/.

Binding to Data from a Database
Binding in Windows Forms and WPF can be fairly direct, but in Silverlight-based Web applications,
you must access such data through a service. You can use a WCF service, a WCF Data service, or RIA
services to accomplish this.

More info  For more information about WCF RIA services and WCF SOAP services, see
http://www.silverlight.net/learn/advanced-techniques/wcf-ria-services/get-started-with-wcf-
ria-services and http://blog.tonysneed.com/2010/04/13/wcf-data-services-versus-wcf-soap-
services/.

Consider this example to bind a DataGrid in a Silverlight application. Assume that you have a
Silverlight application named Silverlight_and_Data. For the sake of simplicity, the details of the
application are left out here. You may implement a Silverlight Model-View-ViewModel (MVVM)
application and then include data binding features in it. MVVM is a framework—a pattern for clean
separation of business logic, data, and UI elements.

http://www.scottlogic.co.uk/blog/colin/2009/06/silverlight-multibindings-how-to-attached-mutiple-bindings-to-a-single-property/
http://www.scottlogic.co.uk/blog/colin/2009/06/silverlight-multibindings-how-to-attached-mutiple-bindings-to-a-single-property/
http://www.scottlogic.co.uk/blog/colin/2009/06/silverlight-multibindings-how-to-attached-mutiple-bindings-to-a-single-property/
http://www.silverlight.net/learn/advanced-techniques/wcf-ria-services/get-started-with-wcf-ria-services
http://www.silverlight.net/learn/advanced-techniques/wcf-ria-services/get-started-with-wcf-ria-services
http://blog.tonysneed.com/2010/04/13/wcf-data-services-versus-wcf-soap-services/
http://blog.tonysneed.com/2010/04/13/wcf-data-services-versus-wcf-soap-services/

222   Part 4  Content Integration and Animation

More Info  If you are not familiar with MVVM, the following links will help you understand
the concept:

http://www.codeproject.com/KB/silverlight/IssueVisionForSilverlight.aspx

http://weblogs.asp.net/kashyapa/archive/2010/01/01/mvvm-sample-applications-index.aspx

http://alexburtsev.wordpress.com/2011/03/05/mvvm-pattern-in-silverlight-and-wpf/

For now, let’s continue with the simple application, by following these steps:

1.	 Drag and drop a DataGrid onto the design area of MainPage.xaml using the ToolBox.
Configure the new DataGrid as follows:

<sdk:DataGrid Name="dgCustomers" AutoGenerateColumns="True" Margin="15,44,45,161"
ItemsSource="{Binding}"/>

2.	 Open Server Explorer and add a new data connection, as shown in Figure 8-3.

Figure 8-3  Adding a new connection.

The Northwind database shown in Figure 8-3 is a sample database for SQL Server. You can
download it from the samples provided with this book.

3.	 Select the Silverlight_and_Data.Web project in Solution Explorer, and add a new item to the
application using the Add New Item dialog box.

http://www.codeproject.com/KB/silverlight/IssueVisionForSilverlight.aspx
http://weblogs.asp.net/kashyapa/archive/2010/01/01/mvvm-sample-applications-index.aspx
http://alexburtsev.wordpress.com/2011/03/05/mvvm-pattern-in-silverlight-and-wpf/

	 Chapter 8  Data Binding    223

4.	 Select the ADO.NET Entity Data Model item, and then rename it NorthwindModel.edmx, as
shown in Figure 8-4.

Figure 8-4  Adding an Entity Data Model.

5.	 In the Entity Data Model Wizard, select Generate from the database. Select appropriate
connection details, as shown in Figure 8-5. Choose the Customers table in the Choose Your
Database Objects section and click Finish.

Figure 8-5  Choosing the data connection.

224   Part 4  Content Integration and Animation

6.	 Select the Silverlight_and_Data.Web project in the Solution Explorer, and then add a new
Silverlight-enabled WCF Service item to the application using the Add New Item dialog box.

7.		 Name the service NorthwindService, as shown in Figure 8-6.

Figure 8-6  Creating a WCF service.

8.	 Add the following code to the NorthwindService.svc.cs file:

[ServiceContract(Namespace = "")]
[AspNetCompatibilityRequirements(RequirementsMode = AspNetCompatibilityRequirementsMode.
Allowed)]
public class NorthwindService
{
 [OperationContract]
 public List<Customer> GetCustomers()
 {
 NorthwindEntities ncontext = new NorthwindEntities();
 var customers = from customer in ncontext.Customers
 select customer;
 return customers.ToList();
 }
}

9.	 Build the Web application containing the service. Add a service reference named
NorthwindServiceReference in the Silverlight application to the service, as shown in Figure 8-7.

	 Chapter 8  Data Binding    225

Figure 8-7  Adding the service reference.

10.	 In MainPage.xaml, add the following code:

<UserControl xmlns:sdk="http://schemas.microsoft.com/winfx/2006/xaml/presentation/sdk"
x:Class="Silverlight_and_Data.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d"
 >
 <Grid x:Name="LayoutRoot" Background="White" Height="199" Width="466">
 <sdk:DataGrid Name="dgCustomers" AutoGenerateColumns="True" Margin="15,44,45,0"
 ItemsSource="{Binding}" Background="Beige"
 />
 </Grid>
</UserControl>

This markup code has specified the target property ItemsSource of the UI element
dgCustomers for data binding. The Binding object establishes a binding.

11.	 In MainPage.xaml.cs add the following code:

using Silverlight_and_Data.NorthwindServiceReference;
...
public partial class MainPage : UserControl
{
public MainPage()
{

226   Part 4  Content Integration and Animation

 InitializeComponent();
 var client = new NorthwindServiceClient();
 client.GetCustomersCompleted += new
 EventHandler<GetCustomersCompletedEventArgs>
 (client_GetCustomersCompleted);
 client.GetCustomersAsync();
}
void client_GetCustomersCompleted(object sender,
 GetCustomersCompletedEventArgs e)
{
 this.dgCustomers.DataContext = e.Result;
}
}

Figure 8-8 shows the resulting output.

Figure 8-8  Output after data binding.

The output from the preceding steps shows an additional column, EntityKey. To remove this
column, create an event handler for the AutoGeneratingColumn event and add the following code to
MainPage.xaml.cs. The code checks each column’s property name to see if it matches with the strings
“EntityState” or “EntityKey”. If a match is found, the particular column will not be added:

private void dgCustomers_AutoGeneratingColumn(object sender,
DataGridAutoGeneratingColumnEventArgs e)
{
 if ((e.PropertyName == "EntityState") || (e.PropertyName == "EntityKey"))
 {
 e.Cancel = true;
 }
}

Also update the XAML to include the event handler:

<Grid x:Name="LayoutRoot" Background="White" Height="199" Width="466" >
 <sdk:DataGrid Name="dgCustomers" AutoGenerateColumns="True" Margin="15,44,45,0"
 ItemsSource="{Binding}" Background="Beige"
 AutoGeneratingColumn="dgCustomers_AutoGeneratingColumn"/>
</Grid>

	 Chapter 8  Data Binding    227

Binding Modes

Apart from the default binding, which is one-way, you can also configure binding to be two-way,
one-way to source, and so forth. You can do this by specifying the Mode property, as shown in
Table 8-1.

Table 8-1  Binding Modes

Mode Description

OneWay This causes changes to the source property to automatically update the target
property but the source does not get changed.

TwoWay This causes changes in the source or target to automatically update the other.

OneWayToSource This causes changes to the target property to automatically update the source
property but the target does not get changed.

OneTime This causes only the first-time change to the source property to automatically
update the target property but the source does not get changed, and
subsequent changes do not affect the target property.

Example of Two-Way Binding with TextBox
Consider the following example that demonstrates two-way data binding with a TextBox. This
example creates a ListBox containing a set of routes. A TextBox control is bound to this ListBox using
the following code:

<TextBox Text="{Binding ElementName=FlightRoutes, Path=SelectedItem.Content, Mode=TwoWay}">

Here, the code has specified the binding source, the path to bind to, and the binding mode.
Because the binding mode is set to two-way, any changes made to the TextBox are automatically
reflected in the ListBox. As mentioned in Table 8-1, two-way binding means that changes made to the
bound control result in updates to the source and vice versa.

The XAML code for this example is:

<Grid x:Name="LayoutRoot" Background="White" Height="199" Width="466">
 <Grid.RowDefinitions>
 <RowDefinition Height="150" />
 <RowDefinition Height="150" />
 <RowDefinition Height="150" />
 <RowDefinition Height="150" />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition />
 </Grid.ColumnDefinitions>
 <ListBox x:Name="FlightRoutes" Grid.RowSpan="2" Background="Azure" Height="158"
 Margin="0,0,12,142" Width="137">
 <ListBoxItem Content="LA"/>
 <ListBoxItem Content="Mexico"/>
 <ListBoxItem Content="SF"/>
 <ListBoxItem Content="Au"/>
 </ListBox>

228   Part 4  Content Integration and Animation

 <TextBox Text="{Binding ElementName=FlightRoutes, Path=SelectedItem.Content, Mode=TwoWay}"
 Background="LightPink" Margin="0,42,12,81" Grid.Row="1" Height="27" Width="137">
 </TextBox>
 <Button Content="Submit" Grid.Row="1" Height="23" HorizontalAlignment="Left"
 Margin="62,107,0,0" Name="btnClick" VerticalAlignment="Top" Width="75" />
</Grid>

Source Updates
When the Mode property of a binding is set to TwoWay or OneWayToSource, the binding will keep
a lookout for changes in the target property and accordingly send the changes to the source. This
process, called updating the source, usually takes place whenever the target property undergoes a
change. As a developer, you want better control over what causes an update, rather than relying on a
default mechanism. The UpdateSourceTrigger property of the Binding class enables you to determine
what causes source updates. This is basically an enumeration.

In WPF, this property has three possible values: LostFocus, PropertyChanged, and Explicit. LostFocus
causes the source to update whenever the control in question loses focus. PropertyChanged causes
the source to update whenever the property of a control in question changes value. Explicit causes
the source to update whenever the application calls the UpdateSource() method. Unless you call this
method, the source will not receive any changes.

Different dependency properties have different default UpdateSourceTrigger values. The default
for most controls is PropertyChanged. Though this is good enough for most basic controls, you don’t
want to use the same for text boxes or other text fields. For this reason, the default UpdateSource
Trigger value of the Text property is LostFocus and not PropertyChanged.

Silverlight supports only two values: Default and Explicit. A simple example of updating the source
using the Explicit value of UpdateSourceTrigger is shown here:

<TextBox x:Name="textBox1" Text="{Binding Path=Text, ElementName=textBox2, Mode=TwoWay,
UpdateSourceTrigger=Explicit}" TextChanged="textBox1_TextChanged" Margin="0,117,458,344" />
<TextBox x:Name="textBox2" Margin="0,160,458,302" />

Here, as soon as you begin typing in the first text box, the second text box is updated. This is
because of the UpdateSourceTrigger. By default, the behavior for TextBox is such that the source
updates happen only on the LostFocus event.

Data Templating, Conversion, and Validation

Consider a simple example of a ListBox bound to the CompanyName column of a table named
Customers. The following is the XAML markup for the example:

 <Grid Height="383" Width="508">
 <ListBox Height="155" HorizontalAlignment="Left" Margin="12,29,0,0"
 Name="listBox1" VerticalAlignment="Top" Width="202" ItemsSource="{Binding}">
 </ListBox>
 <TextBlock Height="22" HorizontalAlignment="Left" Margin="12,0,0,0"
 Name="textBlock1" Text="Company Name" VerticalAlignment="Top" Width="146" />
 </Grid>

	 Chapter 8  Data Binding    229

The code-behind class logic is as follows:

using System;
. . .
using Silverlight_and_Data.NorthwindServiceReference;
namespace Silverlight_and_Data
{
 public partial class MainPage : Page
 {
 public MainPage()
 {
 InitializeComponent();
 var client = new NorthwindServiceClient();
 client.GetCustomersCompleted += new EventHandler<GetCustomersCompletedEventArgs>
(client_GetCustomersCompleted);
 client.GetCustomersAsync();
 }
 void client_GetCustomersCompleted(object sender, GetCustomersCompletedEventArgs e)
 {
 this.DataContext = e.Result;
 }
 }
}

Upon executing the application, you will be bewildered to see the series of words Silverlight_and_
Data.NorthwindServiceReference.Customer, as shown in Figure 8-9.

Figure 8-9  Output displayed without using templates.

This has happened because there is no template specified to display the data in the ListBox.
Without a template, the runtime will not know how to render the output in the ListBox. In the present
example, the ListBox by default calls ToString() on the objects it is binding to. Hence, the ListBox shows
a series of strings containing the words Silverlight_and_Data.NorthwindServiceReference.Customer.
This is the string representation of each object in the underlying data source.

But what you actually want is the list of company names. You need a means to specify how to
render the content.

230   Part 4  Content Integration and Animation

Data Templating
The DataTemplate class enables you to specify a template that will indicate how to render the output
for a data object. The MSDN library defines the purpose of the DataTemplate class as “Describes the
visual structure of a data object.” You can use a DataTemplate anytime you bind an ItemsControl to
an entire collection. The DataTemplate class also enables you to create visually rich representations of
data.

Let’s add a DataTemplate to the preceding XAML code:

<Grid Height="383" Width="508">
 <ListBox Height="155" HorizontalAlignment="Left" Margin="12,29,0,0" Name="listBox1"
 VerticalAlignment="Top" Width="202" ItemsSource="{Binding}">
 <ListBox.ItemTemplate>
 <DataTemplate>
 <TextBlock Text="{Binding Path=CompanyName}"/>
 </DataTemplate>
 </ListBox.ItemTemplate>
 </ListBox>
 <TextBlock Height="22" HorizontalAlignment="Left" Margin="12,0,0,0" Name="textBlock1"
 Text="Company Name" VerticalAlignment="Top" Width="146" />
</Grid>

Here, the template specifies that a TextBlock that is bound to a target, CompanyName, represents
each item in the ListBox.

Figure 8-10 shows the result of adding this template.

Figure 8-10  Output with templates.

The complete XAML code for the example is listed here:

<Grid Height="383" Width="508">
 <ListBox Height="155" HorizontalAlignment="Left" Margin="12,29,0,0" Name="listBox1"
 VerticalAlignment="Top" Width="202" ItemsSource="{Binding}">

	 Chapter 8  Data Binding    231

 <ListBox.ItemTemplate>
 <DataTemplate>
 <TextBlock Text="{Binding Path=CompanyName}"/>
 </DataTemplate>
 </ListBox.ItemTemplate>
 </ListBox>
 <TextBlock Height="22" HorizontalAlignment="Left" Margin="12,0,0,0" Name="textBlock1"
 Text="Company Name" VerticalAlignment="Top" Width="146" />
</Grid>

Instead of defining the template inline as shown in the preceding example, you can also define the
template as a resource:

 <Grid Height="383" Width="508">
 <Grid.Resources>
 <DataTemplate>
 <TextBlock Text="{Binding Path=CompanyName}"/>
 </DataTemplate>
 </Grid.Resources>
 <ListBox Height="155" HorizontalAlignment="Left" Margin="12,29,0,0" Name="listBox1"
 VerticalAlignment="Top" Width="202" ItemTemplate="{StaticResource NameTemplate}">
 </ListBox>
 <TextBlock Height="22" HorizontalAlignment="Left" Margin="12,0,0,0" Name="textBlock1"
 Text="CompanyName" VerticalAlignment="Top" Width="146" />
 </Grid>

The output in both of the cases would be the same. The advantage of declaring the template as a
resource is that it now becomes reusable and you can now apply it to other controls as well.

Data Conversion
Occasionally you may come across situations where the data you are binding to is in a different
format from the way you want it to be displayed. In such a case, you would use data value converters.
Converters are a provision in WPF and Silverlight to help you bind to data present in one form
and display it in a totally different format. Also, data binding mechanisms in Silverlight are far less
powerful than those in WPF. To find a workaround for this, you need to create and implement many
converters.

You can create custom converters by deriving from the IValueConverter interface located in the
System.Windows.Data namespace. This interface defines two methods: Convert() and ConvertBack().
When a value that is being rendered from a binding source to a binding target is to be converted,
the XAML binding engine calls the Convert() method, returns the converted value, and passes the
returned data to the target.

In simpler words, whenever you pass data from the source, XAML binding engine calls Convert()
and returns the converted value. When data is passed from the target, the binding engine calls
ConvertBack() and passes the returned data to the source.

232   Part 4  Content Integration and Animation

Consider a scenario where you want to bind an Image control to images based on content you
choose in a ComboBox control. You can implement a custom converter to convert the string returned
by the ComboBox control to an image. The following markup and code demonstrate how to do this:

<StackPanel>
 <StackPanel.Resources>
 <local:TextToImageConverter x:Key="boolToImage" />
 </StackPanel.Resources>
 <ComboBox x:Name="pictureName" Height="33" Width="158">
 <ComboBoxItem Content="Sunset" />
 <ComboBoxItem Content="Winter" />
 <ComboBoxItem />
 </ComboBox>
 <Image Margin="8" Width="191" Height="196"
 VerticalAlignment="Top" HorizontalAlignment="Center"
 Source="{Binding ElementName=pictureName, Path=SelectedItem.Content,
 Converter={StaticResource boolToImage}}" />
</StackPanel>

The markup creates a ComboBox control with a few sample items. When you select one of its
items, it causes the Image control to update its Source. The Source of an Image control takes an
image—hence you will create a converter that returns an image.

The code for the example is as follows:

public class TextToImageConverter : IValueConverter
{
 public object Convert(object value, Type targetType, object parameter,
 CultureInfo culture)
 {
 var text = value.ToString();
 Uri uri;
 try
 {
 switch (text)
 {
 case "Sunset":
 uri = new Uri("Images/Sunset.jpg", UriKind.Relative); break;
 case "Winter":
 uri = new Uri("Images/Winter.jpg", UriKind.Relative); break;
 default:
 uri = new Uri("Images/Blue Hills.jpg", UriKind.Relative);
 break;
 }
 return new BitmapImage(uri);
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.Message);
 MessageBox.Show(ex.StackTrace);
 return "";
 }
 }

	 Chapter 8  Data Binding    233

 public object ConvertBack(object value, Type targetType, object parameter,
 CultureInfo culture)
 {
 throw new NotImplementedException();
 }

As you can observe, the TextToImageConverter class inherits IValueConverter, and Convert() and
ConvertBack() methods are implemented. The Convert() method contains the logic for the conversion,
which in this case involves a switch-case block that checks for the value passed in and accordingly
returns an appropriate URI. A try…catch block enclosing the entire block of code captures any
exceptions that may possibly occur at runtime.

Note that you don’t always need to explicitly implement converters; many inbuilt converters are
available with WPF that you use for simple conversions, such as DefaultValueConverter, ObjectTarget
Converter, and SystemConvertConverter. These are all internal types defined in the MS.Internal.Data
namespace.

Data Validation
So far you have seen how to create data sources, bind to data, and create templates to customize
the data presentation. But one important aspect in data access is yet to be explored: data validation.
Validating user input data is a crucial operation in data handling, especially in CRUD (Create, Read,
Update, Delete) tasks. Validation is essential in numerous cases. Numeric data may have to be vali-
dated for ranges, alphabetic data may need to be validated for correctness, and so forth.

You will now discover what provisions Silverlight has for data validation. The Binding class has
a property called ValidationRules that you can use to associate your validation rules with Binding
or MultiBinding objects. To specify the value for this property, you can either derive from the
ValidationRule class or use one of the two built-in classes: ExceptionValidationRule or DataError
ValidationRule. The ExceptionValidationRule class catches any exceptions that are thrown when you are
trying to update the source, whereas the DataErrorValidationRule catches errors thrown if your source
implements the IDataErrorInfo interface.

Instead of using the DataErrorValidationRule class, you can also set the ValidateOnDataErrors
property of the Binding object to true.

For now, let’s just see a basic example. Include the following code in your application to indicate
that your validation rule is based on any exceptions that may be thrown while updating the source:

 <Binding.ValidationRules>
 <ExceptionValidationRule></ExceptionValidationRule>
 </Binding.ValidationRules>

The application will consist of a TextBox control data bound to a column HireDate in the Employee
table. The following example will raise validation errors if the date format is not correct:

<Window x:Class="DataValidation.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

234   Part 4  Content Integration and Animation

 Title="MainWindow" Height="250" Width="432">
 <Grid Height="215" Width="385">
 <TextBox Name="hiredate" Margin="0,29,145,163"
 HorizontalAlignment="Right" Width="140">
 <TextBox.Text>
 <Binding Path="HireDate" UpdateSourceTrigger="LostFocus">
 <Binding.ValidationRules>
 <ExceptionValidationRule></ExceptionValidationRule>
 </Binding.ValidationRules>
 </Binding>
 </TextBox.Text>
 </TextBox>
 <Button Content="Submit" Height="23" HorizontalAlignment="Left"
 Margin="165,58,0,0" Name="button1" VerticalAlignment="Top" Width="75" />
 <TextBlock Height="23" HorizontalAlignment="Left" Margin="20,30,0,0"
 Name="textBlock1" Text="Enter HireDate:" VerticalAlignment="Top" Width="77" />
 </Grid>
</Window>

Silverlight has no Validation.ErrorTemplate; hence you will need to use some other means to
indicate that an exception has occurred.

Creating and Binding to an ObservableCollection

When using an ItemsControl such as a ListBox or TreeView to display a collection of data, you need to
bind to the collection and enumerate through its elements.

A collection implementing the IEnumerable interface is eligible for binding to an ItemsControl. The
ObservableCollection class enables you to easily bind to collections and also provides notifications when-
ever you add, remove, or refresh items in the collection. Both WPF and Silverlight support this class. It is
defined in the System.Collections.ObjectModel namespace and implements the INotifyCollectionChanged
interface.

For example, to bind to a collection of cities, you can use the following XAML markup and code:

XAML Markup:

<Grid x:Name="LayoutRoot">
 <Grid.Resources>
 <local:CityList x:Key="CityListData"/>
 <DataTemplate x:Key="test">
 <TextBlock Text="{Binding Path=Name}"/>
 </DataTemplate>
 </Grid.Resources>
 <ListBox Width="200"
 ItemsSource="{Binding Source={StaticResource CityListData}}"
 ItemTemplate="{StaticResource test}" Margin="220,0,220,356" />
</Grid>

Code:

using System.Collections.ObjectModel;

namespace ObservableDemo

	 Chapter 8  Data Binding    235

{
public partial class MainPage : UserControl
{
 public MainPage()
 {
 CityList cities = new CityList();
 InitializeComponent();
 }
}

public class CityList : ObservableCollection<City>
{
 public CityList()
 : base()
 {
 Add(new City() {Name = "Savannah" });
 Add(new City() {Name = "Des Moines" });
 Add(new City(){Name="Houston"});
 Add(new City(){Name="Phoenix"});
 Add(new City(){Name="Tempe"});
 }
}

public class City
{
 public string Name { get; set; }
}
}

This example generates a ListBox with the list of cities specified in the class. At a later stage, even if
you add 100 or even 1,000 cities, the XAML markup remains unchanged and the binding renders the
data successfully.

Collection Views

After binding to a collection of data, you can sort, filter, or group the data using a collection view.
A collection view is like a layer on top of a binding source collection, enabling you to navigate and
display the source collection based on sort, filter, and group queries, without having to change the
underlying source collection itself.

If a source collection implements the INotifyCollectionChanged interface, the changes raised by
the CollectionChanged event are propagated to the views. A source collection can have multiple views
associated with it.

Sorting and Grouping Using a CollectionView
Although WPF supports several CollectionView classes such as ListCollectionView and Binding
ListCollectionView, Silverlight supports grouping functionality only through the PagedCollectionView
class.

236   Part 4  Content Integration and Animation

The following example demonstrates how to sort and group bound data in a collection using a
CollectionViewSource and a PagedCollectionView, respectively. The markup adds the SortDescription to
the SortDescriptions collection of the CollectionViewSource and specifies the property name on which
to sort—in this case, Name:

<UserControl x:Class="CollectionsDemo.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 xmlns:scm="clr-namespace:System.ComponentModel;assembly=System.Windows"
 xmlns:dat="clr-namespace:System.Windows.Data;assembly=System.Windows"
 xmlns:local="clr-namespace:CollectionsDemo"
 mc:Ignorable="d"
 d:DesignHeight="300" d:DesignWidth="400"
>
<Grid x:Name="LayoutRoot">
 <Grid.Resources>
 <local:Employees x:Key="emps"/>
 <CollectionViewSource Source="{StaticResource emps}" x:Key="cvs">
 <CollectionViewSource.SortDescriptions>
 <scm:SortDescription PropertyName="Name"/>
 </CollectionViewSource.SortDescriptions>
 </CollectionViewSource>
 </Grid.Resources>
 <sdk:DataGrid Name="dgEmps" ItemsSource="{Binding}">
 <sdk:DataGrid.RowGroupHeaderStyles>
 <!--Define style for groups at the top level -->
 <Style TargetType="sdk:DataGridRowGroupHeader">
 <Setter Property="PropertyNameVisibility" Value="Collapsed" />
 <Setter Property="Background" Value="BurlyWood" />
 <Setter Property="SublevelIndent" Value="25" />
 </Style>
 <!--Define style for groups below the top level -->
 <Style TargetType="sdk:DataGridRowGroupHeader">
 <Setter Property="Background" Value="#44225566" />
 </Style>
 </sdk:DataGrid.RowGroupHeaderStyles>
 </sdk:DataGrid>
</Grid>
</UserControl>

The following code creates the Employee and Employees classes:

public partial class MainPage : UserControl
{
 public MainPage()
 {
 Employees emps = new Employees();
 InitializeComponent();
 PagedCollectionView pg = new PagedCollectionView(emps);
 pg.GroupDescriptions.Add(new PropertyGroupDescription("Designation"));
 dgEmps.DataContext = pg;
 }

	 Chapter 8  Data Binding    237

}
public class Employees : ObservableCollection<Employee>
{
 public Employees()
 : base()
 {
 Add(new Employee() { Name = "John Evans", Designation = "Manager" });
 Add(new Employee() { Name = "Dylan Miller", Designation = "Accountant" });
 Add(new Employee() { Name = "David Bristol", Designation = "Manager" });
 Add(new Employee() { Name = "Oliver Kiel", Designation = "Programmer" });
 Add(new Employee() { Name = "Jill Shrader", Designation = "Programmer" });
 Add(new Employee() { Name = "Prakash Paramasivam", Designation = "Programmer" });
 }
}
public class Employee
{
 public string Name { get; set; }
 public string Designation { get; set; }
}

The code creates a PropertyGroupDescription object and passes the name of the property based
on which grouping will take place. Then add the PropertyGroupDescription to the GroupDescriptions
collection of PagedCollectionView.

On executing, the output will be similar to Figure 8-11. As you can see, the employee details are
grouped by designation and sorted within each designation.

Figure 8-11  Sorted and grouped data.

Similarly, you can also filter the data using the Filter property of the PagedCollectionView class. You
need to remove existing filters, if any, and create a callback method that accepts a parameter of type
Object. Assign the callback method to the PagedCollectionView.Filter property.

238   Part 4  Content Integration and Animation

. . .
pg.Filter = new Predicate<object>(PerformFilter);

. . .
}
//Callback method
private bool PerformFilter(object o)
{
 //it is not a case sensitive search
 Employee emp = o as Employee;
 if (emp != null)
 {
 if(emp.Designation=="Manager")
 {
 return true;
 }
 else
 {
 return false;
 }
 }
 return false;
}

This filters the data to show only the rows that have Designation as Manager.

Hierarchical Binding

A master-detail relationship is where one table or entity acts like a master or parent table or entity
and the other acts like a detail or child table or child entity. Typically, the master and detail tables or
entities will have a one-many relationship among them, with the master containing unique records
and the child containing details pertaining to those records. One of the simplest examples is that of
employees and departments in an organization. A department can have many employees, but an
employee typically belongs only to one department. Thus, the department is a classic example of a
master while the employee table or entity forms the child. Binding to data in master-detail form is a
little more complex when compared to binding regular data.

You will now explore this through some examples. The first example uses the HierarchicalData
Template to bind to master-detail data.

Using HierarchicalDataTemplate
Consider the tables Orders and Order Details in the Northwind database. They have a common
column, Order ID. The Orders table contains unique orders. The Order Details can contain more than
an instance of an order, and specifies the details of each order, such as the product ID, order date, and
so forth.

	 Chapter 8  Data Binding    239

The XAML code for constructing and binding the TreeView instance is as follows:

<UserControl x:Class="TreeViewDemo.MainPage"
 xmlns:sdk="http://schemas.microsoft.com/winfx/2006/xaml/presentation/sdk"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d"
 d:DesignHeight="600" d:DesignWidth="400">
 <UserControl.Resources>
 <sdk:HierarchicalDataTemplate x:Key="ChildTemplate">
 <TextBlock FontStyle="Italic" Text="{Binding ProductID}"/>
 </sdk:HierarchicalDataTemplate>
 <sdk:HierarchicalDataTemplate x:Key="MasterTemplate"
 ItemsSource="{Binding Order_Details}"
 ItemTemplate="{StaticResource ChildTemplate}">
 <TextBlock Text="{Binding OrderID}" Margin="5,0"/>
 </sdk:HierarchicalDataTemplate>
 </UserControl.Resources>
 <Grid>
 <sdk:TreeView Margin="10,10,21,175" Name="TreeView1"
 ItemTemplate="{StaticResource MasterTemplate}"
 Background="Beige" ItemsSource="{Binding}" />
 <Button Content="Button" Height="23" HorizontalAlignment="Left"
 Margin="136,441,0,0" Name="button1" VerticalAlignment="Top" Width="75" />
 </Grid>
</UserControl>

Observe that the markup specifies the HierarchicalDataTemplate. This template presents data
that has multiple items and a header. Typically, you use this template to specify a data template for
controls that derive from HeaderedItemsControl.

In WPF and Silverlight, the following three controls inherit from HeaderedItemsControl: MenuItem,
ToolBar, and TreeViewItem.

The following markup binds a TextBlock to the ProductID column:

 <sdk:HierarchicalDataTemplate x:Key="ChildTemplate">
 <TextBlock FontStyle="Italic" Text="{Binding ProductID}"/>
 </sdk:HierarchicalDataTemplate>

The following markup binds a TextBlock to the OrderID column in the Order_Details table. The
ItemTemplate of HierarchicalDataTemplate is set to the previously defined resource ChildTemplate:

<sdk:HierarchicalDataTemplate x:Key="MasterTemplate" ItemsSource="{Binding Order_Details}"
ItemTemplate="{StaticResource ChildTemplate}">
 <TextBlock Text="{Binding OrderID}" Margin="5,0"/>
</sdk:HierarchicalDataTemplate>

Finally, the markup sets the TreeView’s ItemTemplate to the resource, MasterTemplate:

<sdk:TreeView Margin="10,10,21,175" Name="TreeView1" ItemTemplate="{StaticResource
MasterTemplate}" Background="Beige" ItemsSource="{Binding}" />

240   Part 4  Content Integration and Animation

In the code-behind, write the following:

// Add the service reference manually
using TreeViewDemo.NorthwindServiceReference;

namespace TreeViewDemo
{
public partial class MainPage : UserControl
{
public MainPage()
{
 try
 {
 InitializeComponent();
 // Create an instance of the Service class.
 var client = new NorthwindServiceClient();
 client.GetDataCompleted += new EventHandler<GetDataCompletedEventArgs>
(client_GetDataCompleted);
 client.GetDataAsync();
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.StackTrace);
 MessageBox.Show(ex.Message);
 }
}
void client_GetDataCompleted(object sender, GetDataCompletedEventArgs e)
{
 var lst = e.Result;
 MessageBox.Show(lst.Count.ToString());
 try
 {
 this.TreeView1.DataContext = lst;
 this.TreeView1.ItemsSource = lst;
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.Message.ToString());
 MessageBox.Show(ex.StackTrace.ToString());
 }
}
}
}

The code for the service NorthwindService.svc.cs is as follows:

public class NorthwindService
{
 [OperationContract]
 public List<orders2> GetData()
 {
 NorthwindEntities ne = new NorthwindEntities();
 return ne.orders2.Include("orderdetails2").ToList ();
 }
}

	 Chapter 8  Data Binding    241

The output will show a series of Order IDs. When you expand the Order IDs, you can see the
Product IDs, as shown in Figure 8-12.

Figure 8-12  Using a hierarchical data template.

Using ObservableCollection for Hierarchical Binding
The second example will make use of the ObservableCollection class to bind to master-detail
data. Consider the scenario of departments and employees described earlier. You will define two
classes, Dept and Employee, each having a string property, Name. The Dept class will also have a
property representing an ObservableCollection of employees. This establishes a master-detail kind
of relationship between the two. Then you define the class DeptList as an ObservableCollection of
departments. For the sake of this example, the code includes some dummy data such as Dept 1, Dept
2, Emp 1, Emp 2, and so forth. The code-behind for the example is as follows:

using System.Collections.ObjectModel;
namespace ObsCollMasterDetail
{
 public partial class MainPage : UserControl
 {
 DeptList dept = new DeptList();
 public MainPage()
 {
 InitializeComponent();
 }
 }
 public class Employee
 {
 public string Name { get; set; }
 }
 public class Dept
 {

242   Part 4  Content Integration and Animation

 public string Name { get; set; }
 public ObservableCollection<Employee> Employees { get; set; }
 }
 public class DeptList : ObservableCollection<Dept>
 {
 public DeptList()
 {
 for (int i = 1; i < 3; i++)
 {
 Dept dept = new Dept()
 {
 Name = "Dept " + i,
 Employees = new ObservableCollection<Employee>()
 };
 for (int j = 1; j < 5; j++)
 {
 Employee emp = new Employee
 {
 Name = String.Format("Emp " + j)
 };

 dept.Employees.Add(emp);
 }
 this.Add(dept);
 }
 }
 }
}

Here’s the XAML markup:

<UserControl x:Class="ObsCollMasterDetail.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="clr-namespace:ObsCollMasterDetail">
 <UserControl.Resources>
 <local:DeptList x:Key="DeptData"/>
 <CollectionViewSource x:Name="Depts" Source="{StaticResource DeptData}"/>
 <CollectionViewSource x:Name="Employees"
 Source="{Binding Employees, Source={StaticResource Depts}}"/>
 </UserControl.Resources>
 <StackPanel x:Name="LayoutRoot" Orientation="Horizontal" Margin="5"
 DataContext="{Binding Source={StaticResource Depts}}">
 <StackPanel Margin="5">
 <TextBlock Text="All Depts" Margin="3" FontWeight="Bold"/>
 <ListBox ItemsSource="{Binding}" DisplayMemberPath="Name"/>
 </StackPanel>
 <StackPanel Margin="5">
 <TextBlock Text="{Binding Name}" Margin="3" FontWeight="Bold"/>
 <ListBox ItemsSource="{Binding Employees}"
 DisplayMemberPath="Name"/>
 </StackPanel>
 </StackPanel>
</UserControl>

	 Chapter 8  Data Binding    243

In the XAML markup, you bind to the Dept and Employee classes using the CollectionViewSource
class, which is a proxy for a CollectionView class, or any class that you derive from CollectionView.

When you execute the application, you will see the output shown in Figure 8-13.

Figure 8-13  Using an ObservableCollection.

Binding to XML Data

WPF provides support for XmlDataProvider, which enables you to easily bind to XML data. With hardly
any code and only declarative markup, you can bind to elements from an external XML file.

Consider the following XML file:

<?xml version="1.0" encoding="utf-8" ?>
<Employees xmlns="">
 <Employee>
 <Name>Jonah Baker</Name>
 <Address>155, Sunshine Apts, 6th Street, Virginia</Address>
 <Designation>Manager</Designation>
 </Employee>
 <Employee>
 <Name>Kyle Patrick</Name>
 <Address>Gordon Bungalows, Behind Lake Tahoe, USA</Address>
 <Designation>Manager</Designation>
 </Employee>
 <Employee>
 <Name>Azhar Umman</Name>
 <Address>707, 5th Floor, StreetSide Western Building, Harrington Road, NYC</Address>
 <Designation>Manager</Designation>
 </Employee>
</Employees>

244   Part 4  Content Integration and Animation

You can now use the XmlDataProvider class to display this XML data in a DataGrid using the
following markup:

<Window x:Class="TestXML.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="MainWindow" Height="350" Width="525">
 <Window.Resources>
 <XmlDataProvider x:Key="EmployeeData" Source="sample.xml" XPath="/Employees/Employee" />
 </Window.Resources>
<Grid>
 <DataGrid ItemsSource="{Binding Source={StaticResource EmployeeData}}"
 AutoGenerateColumns="False">
 <DataGrid.Columns>
 <DataGridTextColumn Header="Name" Binding="{Binding XPath=Name}"/>
 <DataGridTextColumn Header="Address" Binding="{Binding XPath=Address}"/>
 <DataGridTextColumn Header="Designation" Binding="{Binding XPath=Designation}"/>
 </DataGrid.Columns>
 </DataGrid>
</Grid>
 </Window>

Silverlight does not support the XmlDataProvider class. Chapter 4, “Markup Extensions and Other
Features,” will demonstrate how to implement a custom markup extension to bind to XML data in a
Silverlight application.

Note  Silverlight also supports additional data-specific controls such as DataForm (defined
in the Silverlight Toolkit), DataPager, ValidationError, and ValidationSummary. You can learn
about these controls at:

http://msdn.microsoft.com/en-us/library/system.windows.controls.datapager%28VS.95%29.
aspx

http://www.silverlight.net/content/samples/sl4/toolkitcontrolsamples/run/default.html

http://msdn.microsoft.com/en-us/library/system.windows.controls.
validationsummary%28VS.95%29.aspx

http://msdn.microsoft.com/en-us/library/system.windows.controls.
validationerror%28v=VS.95%29.aspx

Summary

This chapter discussed data binding to various kinds of data sources, as well as different binding
approaches that you can take. You also explored how to bind to collections and to sort, group, and
filter data. Finally, you saw how to validate data and how to implement converters to display bound
data in the format you want.

http://msdn.microsoft.com/en-us/library/system.windows.controls.datapager%28VS.95%29.aspx
http://msdn.microsoft.com/en-us/library/system.windows.controls.datapager%28VS.95%29.aspx
http://www.silverlight.net/content/samples/sl4/toolkitcontrolsamples/run/default.html
http://msdn.microsoft.com/en-us/library/system.windows.controls.validationsummary%28VS.95%29.aspx
http://msdn.microsoft.com/en-us/library/system.windows.controls.validationsummary%28VS.95%29.aspx
http://msdn.microsoft.com/en-us/library/system.windows.controls.validationerror%28v=VS.95%29.aspx
http://msdn.microsoft.com/en-us/library/system.windows.controls.validationerror%28v=VS.95%29.aspx

		 245

C h apter 9

Media, Graphics, and Animation

In this chapter:

■■ Media

■■ Graphics

■■ 3-D Graphics

■■ Animations and Storyboards

■■ Summary

One key defining feature of a rich application is its ability to render graphics and animations.
With multimedia applications becoming the norm these days rather than an exception, rich and
interactive applications must also provide strong support for working with various kinds of media
such as audio and video. Toward this end, XAML includes several features that enable you to use
media, graphics, and animation in your applications.

Media

XAML provides strong support for media such as images, audio, and video.

Images
The simplest media that you can display in a XAML page is an image. An image can take the form of
an icon, a picture, a photograph, and so forth. WPF supports native image formats such as .bmp, .gif,
.ico, .jpeg/.jpg, .png, .wdp, and .tiff; Silverlight supports only .jpeg and .png formats.

The following basic example demonstrates the use of the Image control to display a .jpg file:

<UserControl x:Class="MediaApp.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d" >
 <Grid x:Name="LayoutRoot" Height="300" Width="400">
 <Image Source="Water Lilies.jpg" Stretch="Fill" Margin="197,0,0,129"></Image>

246   Part 4  Content Integration and Animation

 </Grid>
</UserControl>

In XAML, you can use the ImageBrush to paint using an Image. Any area that takes a brush
qualifies for use with the ImageBrush element. In XAML graphics, a brush is similar to the concept of
a brush in real life—it is used to paint an object with a color. You will see more about brushes later in
the chapter.

The following example uses the ImageBrush:

<UserControl x:Class="MediaApp1.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d">
 <Grid x:Name="LayoutRoot" Height="300" Width="400">
 <Grid.Background>
 <ImageBrush ImageSource="Water Lilies.jpg"></ImageBrush>
 </Grid.Background>
 </Grid>
</UserControl>

Here, the background of the Grid is painted with an ImageBrush, which is set to an image named
Water Lilies.jpg. Thus, you will see a Grid with a picture instead of a standard color.

Audio and Video
A MediaElement is a control representing a rectangular region on a Silverlight or WPF user interface
that can contain audio or video on its surface. The MediaElement control allows you to specify event
handlers for mouse and keyboard events. You can either specify a URL for the media element or you
can add it as an item to the project.

Media types supported by Silverlight and WPF include:

■■ Advanced Stream Redirector (ASX) playlist file format

■■ Windows Media Audio 7 (WMA 7)

■■ Windows Media Audio 8 (WMA 8)

■■ Windows Media Audio 9 (WMA 9)

■■ ISO/MPEG Layer-3 compliant data stream input (MP3)

■■ Windows Media Video 7 (WMV 1)

■■ Windows Media Video 8 (WMV 2)

■■ Windows Media Video 9 (WMV 3)

■■ Windows Media Video Advanced Profile, non-VC1 (WMVA)

	 Chapter 9  Media, Graphics, and Animation    247

You will now create a Silverlight application that demonstrates the media capabilities of XAML.
Name the application MediaApp2 and add an existing .wmv file to the project. For the purpose of
this example, assume the filename is FlyingPlanes.wmv.

1.	 Modify the default XAML code of Page.xaml, as shown here:

<UserControl x:Class="MediaApp2.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d"
 d:DesignHeight="640" d:DesignWidth="480">
 <Grid x:Name="LayoutRoot" Background="Bisque" Height="300" Width="400">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="400" />
 </Grid.ColumnDefinitions>
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>
 </Grid>
</UserControl>

The preceding code will create a Grid with a bisque background, one column, and two rows.

2.	 Drag a MediaElement between the <Grid> tags after the </GridRowDefinitions> tags.

3.	 Modify the properties of MediaElement, as shown here:

<UserControl x:Class="MediaApp2.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d"
 d:DesignHeight="640" d:DesignWidth="480">
 <Grid x:Name="LayoutRoot" Background="Bisque" Height="300" Width="400">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="400" />
 </Grid.ColumnDefinitions>
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>
 <MediaElement x:Name="myvideo" Source="FlyingPlanes.wmv" AutoPlay="True"
 IsMuted="True" Stretch="Uniform"/>
 </Grid>
</UserControl>

The video will play as soon as the page is loaded. Thus, you display a video using pure XAML
markup.

248   Part 4  Content Integration and Animation

Similarly, you can play an audio file, such as .mp3, or .avi, using the MediaElement:

<UserControl x:Class="MediaApp3.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d"
 d:DesignHeight="300" d:DesignWidth="400">
 <Grid x:Name="LayoutRoot" Background="Bisque" Height="300" Width="400">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="400" />
 </Grid.ColumnDefinitions>
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>
 <MediaElement x:Name="MySong" Source="01—Summer Haze.mp3" AutoPlay="False"
 Volume="2" Stretch="Uniform"/>
 <Button Content="Play Me" Click="Button_Click" Margin="157,129,150,127"
 Grid.Row="3"></Button>
 </Grid>
</UserControl>

The System.Windows.Controls namespace defines the MediaElement class. The commonly used
properties and methods of MediaElement class are listed in Table 9-1.

Table 9-1  Properties and Methods of the MediaElement Class

Name Description

AudioStreamCount Gets the number of audio streams available in the current media file.

AudioStreamIndex Retrieves or sets the index of the audio stream that plays along with the video
component. The set of audio streams is built at runtime and represents all
audio streams available within the media file.

AudioStreamCount Retrieves the number of audio streams available in the current media file.

AutoPlay Retrieves or specifies a value that indicates whether media will begin playback
automatically when the Source property is set.

BufferingProgress Retrieves a value that indicates the current buffering progress.

BufferingTime Retrieves or specifies the amount of time to buffer.

CanPause Retrieves a value indicating if media can be paused if you call the Pause
method.

CurrentState Retrieves the status of the MediaElement.

IsMuted Retrieves or specifies a value indicating whether the audio is muted.

Source Retrieves or specifies a media source on MediaElement.

Stretch Retrieves or specifies a Stretch value that describes how MediaElement fills the
destination rectangle.

Volume Retrieves or specifies the media’s volume.

	 Chapter 9  Media, Graphics, and Animation    249

Table 9-2 lists the states of the MediaElement Class.

Table 9-2  States of MediaElement Class

Value Description

Buffering Indicates that MediaElement is loading the media for playback.

Closed Indicates that MediaElement contains no media; MediaElement displays a
transparent frame.

Opening Indicates that MediaElement is validating and attempting to open the URI
specified by its Source property.

Paused Indicates that MediaElement does not advance its position. If MediaElement
was playing video, it continues to display the current frame.

Playing Indicates that MediaElement is playing the media specified by its source prop-
erty. Its position advances forward.

Stopped Indicates that MediaElement contains media, but it is not playing or paused. Its
position is 0 and does not advance.

Graphics

Consider that you are developing an application that depicts various element of physics or biology.
You need to be able to display graphical objects and manipulate them—perhaps showing them in
animated form. Obviously, the standard XAML UIElements, such as TextBlock and Button, fall short for
such an application. This is where XAML’s graphical capabilities come into focus. XAML lets you draw
and paint various forms of graphics, including shapes and geometries.

You use Shape and Geometry to render two-dimensional (2-D) objects. Although the two have
much in common, there are important differences between the two sets of drawing objects. The
chapter covers these differences in a later section.

Shapes are UI elements, so you can place them inside panels and most controls. The
System.Windows.Shapes namespace defines shape elements. Some of the commonly used shapes
are Ellipse, Rectangle, Line, Polygon, Polyline, and Path. Table 9-3 lists some of the attributes common
to all shape elements.

Table 9-3  Attributes Common to All Shape Elements

Property Name Data Type Description

Fill Brush Describes how you fill the shape’s interior. The default
is null.

Height Double Describes the height of the element.

250   Part 4  Content Integration and Animation

Property Name Data Type Description

Stroke Brush Describes how you draw the outline of the shape. The
default is null.

StrokeDashCap Enumeration Describes how the ends of a dash look like. Possible
values are:

■■ Flat  No line cap.
■■ Round  The line is capped with a

semicircle equal in diameter to the line
thickness.

■■ Square  The line is capped with a square
whose sides are equal in length to the
line thickness.

■■ Triangle  The line is capped with a
triangle equal in height to the line
thickness.

The default is Flat.

StrokeDashOffset Double Describes the distance in the dash pattern at which
the dash will start.

StrokeEndLineCap Enumeration Describes the shape used at the end of the element’s
stroke. Possible values are:

■■ Flat
■■ Round
■■ Square
■■ Triangle

The default is Flat.

StrokeLineJoin Enumeration Sets the type that joins vertices of a shape’s outline.
Must be one of the following:

■■ Bevel  Indicates beveled vertices
(non-perpendicular)

■■ Miter  Indicates normal angular vertices
■■ Round  Indicates rounded vertices

StrokeThickness Double Sets the width of the shape’s outline.

Width Double Describes the width of the element.

Opacity Double The transparency factor for Shape.

Ellipse
The following XAML markup snippet demonstrates how to draw an ellipse:

<Grid x:Name="LayoutRoot" Background="LemonChiffon">
 <Ellipse Fill="BlueViolet" Width="170" Height="83" ></Ellipse>
</Grid>

You can further customize the preceding snippet to show an orange border with a thickness of 5:

<Grid x:Name="LayoutRoot" Background="LemonChiffon">
 <Ellipse Fill="BlueViolet" Width="170" Height="83" Stroke="Orange" StrokeThickness="5">
 </Ellipse>
</Grid>

A creative use of the Ellipse element is to include it within the content of another UIElement. The
following markup shows how to do this with a Button:

<Button Height="80" Width="100" Background="blue">
 <Button.Content>

	 Chapter 9  Media, Graphics, and Animation    251

 <Ellipse Fill="Orange" Width="70" Height="50"></Ellipse>
 </Button.Content>
</Button>

Rectangle
The following XAML markup snippet demonstrates how to draw a rectangle, and also shows the use
of the Stroke and StrokeThickness properties:

<Grid x:Name="LayoutRoot" Background="LemonChiffon">
 <Rectangle Fill="BlueViolet" Width="170" Height="83" Stroke="Orange"
 StrokeThickness="5">
 </Rectangle>
 </Grid>

Rounded Rectangle
Although there is no specific element named RoundedRectangle, you can easily draw one by using
the RadiusX and RadiusY properties of the Rectangle element. The following XAML markup snippet
demonstrates how to create a rounded rectangle:

<Grid x:Name="LayoutRoot" Background="LemonChiffon">
 <Rectangle Fill="BlueViolet" Width="170" Height="83" Stroke="Orange"
 StrokeThickness="5" RadiusX="7" RadiusY="7">
 </Rectangle>
</Grid>

Polygon
The Polygon element enables you to draw polygonal shapes. It takes a Points attribute that takes a
series of points. The last set of points should connect back to the first. For example, the following
markup draws a triangle with a pastel shade of red:

 <Polygon Points="100,150 300,150 200,50 100,150"
 Fill="Red" Opacity="0.4" Stroke="Black" StrokeThickness="4">
 </Polygon>

The Stroke property indicates the color of the stroke used to draw the shape. StrokeThickness
indicates the thickness of the brush used to draw the strokes. Finally, the Opacity sets opacity level to
0.4, thus rendering a lighter shade of red.

Polyline
The Polyline element is similar to Polygon except that the last points need not connect back to the
first. The following XAML markup snippet demonstrates how to create a polyline:

<Polyline
 Points="100,150 300,150 200,50 80,80"
 Stroke="Black"

252   Part 4  Content Integration and Animation

 StrokeThickness="2" Fill="Red" />

The markup produces the output shown in Figure 9-1.

Figure 9-1  Creating a polyline.

The following code draws the letter N:

 <Polyline Points="50, 150 50, 50 120, 140 120, 40 "
 StrokeThickness="10"
 Canvas.Left="75" Canvas.Top="50" Stroke="Purple" >
 </Polyline>

The markup produces the output shown in Figure 9-2.

Figure 9-2  Another example of a polyline.

The following markup demonstrates use of the StrokeEndLineCap property:

<Grid x:Name="LayoutRoot" Width="433" Height="300">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="400" />
 </Grid.ColumnDefinitions>
 <Grid.RowDefinitions>

	 Chapter 9  Media, Graphics, and Animation    253

 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="9" />
 <RowDefinition Height="55" />
 <RowDefinition Height="8" />
 <RowDefinition Height="21" />
 <RowDefinition Height="53" />
 <RowDefinition Height="102*" />
 </Grid.RowDefinitions>
 <Polyline Stroke="Orange" StrokeThickness="12" StrokeEndLineCap="Flat"
 Points="5,10 20,0 30,20 50,10 90,10" Grid.Row="3" Grid.Column="0" />
 <Polyline Stroke="Orange" StrokeThickness="12" StrokeEndLineCap="Round"
 Points="5,10 20,0 30,20 50,10 90,10" Grid.Row="4" Margin="0,11,0,53"
 Grid.RowSpan="3" />
 <Polyline Stroke="Orange" StrokeThickness="12" StrokeEndLineCap="Square"
 Points="5,10 20,0 30,20 50,10 90,10" Grid.Row="6" Margin="-12,41,12,0"
 Grid.RowSpan="5" />
 <Polyline Stroke="Orange" StrokeThickness="12" StrokeEndLineCap="Triangle"
 Points="5,10 20,0 30,20 50,10 90,10" Grid.Row="9" />
 </Grid>

The outcome of this markup is shown in Figure 9-3.

Figure 9-3  Using the StrokeEndLineCap property with Polyline.

Path
You use the Path element to draw a series of graphic elements such as curves and lines. Silverlight
and WPF support a powerful and complex mini-language to describe geometric paths using XAML.

254   Part 4  Content Integration and Animation

The XAML path syntax consists of an optional FillRule value and one or more figure
descriptions.

<Path>
 <object property ="[fillRule] figureDescription[figureDescription]*" ... />
</Path>

Table 9-4 lists the various elements comprising the Path markup mini-language.

Table 9-4  Elements Available in the Path Markup Mini-Language

Term Description

fillRule States whether the path uses the EvenOdd or NonZero fill rule value:
■■ The EvenOdd rule checks whether a point is inside the fill region

by drawing a line from that point to infinity in any direction and
counting the all the path segments within the given shape that the
line crosses. If this number is odd, the point is inside; otherwise, the
point is outside.

■■ The NonZero rule checks whether a point is in the fill region of the
path by drawing a line from that point to infinity in any direction
and then checking the places where a segment of the shape crosses
the line. If the result is zero,the point is outside the path. Otherwise,
it is inside.

F0 specifies the EvenOdd fill rule.
F1 specifies the NonZero fill rule.
The default behavior is EvenOdd.

figureDescription A figure composed of a move command, draw commands, and an optional
close command:
moveCommand drawCommands [closeCommand]

moveCommand A move command that specifies the start point of the figure.

drawCommands One or more draw commands that describe the figure’s contents.

closeCommand An optional close command that closes the figure.

The important elements from the table are:

■■ Move Command  You specify a move command with the letter m, which signifies a move to
operation.

■■ Draw Commands  A draw command can consist of several shape commands. You can use
one of the following shape commands: line, horizontal line, vertical line, cubic Bezier curve,
quadratic Bezier curve, smooth cubic Bezier curve, smooth quadratic Bezier curve, and
elliptical arc.

You enter each command by using either an uppercase letter or a lowercase letter: Uppercase
letters denote absolute values, and lowercase letters denote relative values. The control points for a
segment are relative to the end point of the preceding segment.

For example, you use v and h to indicate a vertical line or a horizontal line, respectively.

Here’s a simple example of using the Path element:

	 Chapter 9  Media, Graphics, and Animation    255

<Path Stroke="Navy" StrokeThickness="3" Data="M 90,90 v 150 h 175" />

This markup moves to the point 90, 90; draws a vertical line from 90 to 150; and then draws a hori-
zontal line to 175. The outcome will be similar to Figure 9-4.

Figure 9-4  Using the Path element.

The following markup draws a quadratic Bezier curve:

<Path Stroke="Red"
 StrokeThickness="3" Data="M 10, 40 q 10,40 70,30" />

The markup produces output similar to Figure 9-5.

Figure 9-5  Drawing a Bezier curve with the Path element.

256   Part 4  Content Integration and Animation

Geometries
The Path class includes a single property, Data, that accepts a Geometry object that defines one or
more shapes the path includes. Geometry is an abstract class, so you cannot create Geometry objects
directly; instead, you use one of the derived classes from the System.Windows.Media namespace to
create the objects. Table 9-5 describes these classes.

Table 9-5  Derived Classes in the System.Windows.Media Namespace

Name Description

LineGeometry The geometry equivalent of the Line shape, representing a straight line

RectangleGeometry The geometry equivalent of the Rectangle shape, representing a rectangle

EllipseGeometry The geometry equivalent of the Ellipse shape, representing an ellipse

GeometryGroup Adds any number of Geometry objects to a single path, using the EvenOdd or
NonZero fill rule to determine what regions to fill

PathGeometry The geometry equivalent of Path, representing a more complex figure
composed of arcs, curves, and lines

The LineGeometry, RectangleGeometry, and EllipseGeometry classes map directly to the Line,
Rectangle, and Ellipse shapes. The following markup demonstrates the use of the EllipseGeometry
element:

<Path Fill="Green" Stroke="Red" StrokeThickness="3" Margin="88,108,-88,-108">
 <Path.Data>
 <EllipseGeometry RadiusX="55" RadiusY="40"/>
 </Path.Data>
</Path>

Brushes
In XAML, you use Brush objects to paint the Stroke (edge) and Fill (interior) of a shape element. The
System.Windows.Media namespace defines several brushes:

■■ SolidColorBrush

■■ ImageBrush

■■ LinearGradientBrush

■■ RadialGradientBrush

■■ VideoBrush

All of these brushes support object element syntax. In addition, SolidColorBrush supports attribute
syntax as well. Even though the other brushes cannot use attribute syntax, you can specify properties
through binding references.

	 Chapter 9  Media, Graphics, and Animation    257

The SolidColorBrush, as its name suggests, paints a region with a solid color. The following markup
demonstrates using a SolidColorBrush with attribute syntax. It also demonstrates how to customize
the Opacity property to render a lighter shade of the specified color:

<Rectangle Height="40" Width="40">
 <Rectangle.Fill>
 <SolidColorBrush Color="Red" Opacity="0.7">
 </SolidColorBrush>
 </Rectangle.Fill>
</Rectangle>

Figure 9-6 shows the rectangle inside the UserControl.

Figure 9-6  Using SolidColorBrush.

You use ImageBrush to paint a shape element with an image instead of a color. You already saw an
example that uses ImageBrush earlier in this chapter.

LinearGradientBrush lets you paint a region with linear gradients. The following markup
demonstrates how to use a LinearGradientBrush:

<Rectangle Margin="192,39,328,483">
 <Rectangle.Fill>
 <LinearGradientBrush StartPoint="0,0" EndPoint="1,1">
 <GradientStop Color="Beige" Offset="0.09" />
 <GradientStop Color="Green" Offset="0.45" />
 <GradientStop Color="Yellow" Offset="0.75" />
 <GradientStop Color="Navy" Offset="1.0" />
 </LinearGradientBrush>
 </Rectangle.Fill>
</Rectangle>

258   Part 4  Content Integration and Animation

Figure 9-7 shows the result of the markup with each gradient section demarcated by appropriate
labels to aid in understanding.

GradientStop 1
Color Beige
Offset 0.09

GradientStop 2
Color Green
Offset 0.45

GradientStop 3
Color Yellow
Offset 0.75

GradientStop 4
Color Navy
Offset 1.0

Figure 9-7  Using LinearGradientBrush.

You use the RadialGradientBrush to paint a region with radial gradients. The following markup
demonstrates using the RadialGradientBrush:

<Rectangle Margin="27,20,228,282">
 <Rectangle.Fill>
 <RadialGradientBrush GradientOrigin="0.5,0.5" Center="0.5,0.5"
 RadiusX="0.5" RadiusY="0.5">
 <GradientStop Color="Crimson" Offset="0.5" />
 <GradientStop Color="LightGray" Offset="0.75" />
 <GradientStop Color="Red" Offset="1" />
 </RadialGradientBrush>
 </Rectangle.Fill>
</Rectangle>

Figure 9-8 shows the brush in action.

Figure 9-8  Using RadialGradientBrush.

You use VideoBrush to paint a region or shape with video content. VideoBrush makes use of
a MediaElement to render the video content. The following markup demonstrates the use of
VideoBrush:

<Grid x:Name="LayoutRoot">
 <Grid.Resources>
 <MediaElement x:Name="myvideo" Source="WindowsMedia.wmv" AutoPlay="True"

	 Chapter 9  Media, Graphics, and Animation    259

 IsMuted="True" />
 </Grid.Resources>
 <Rectangle Margin="27,20,56,196">
 <Rectangle.Fill>
 <VideoBrush SourceName="myvideo" Stretch="UniformToFill" />
 </Rectangle.Fill>
 </Rectangle>
</Grid>

The video format must be one of the supported formats.

More Info  For more information on VideoBrush and the relationship between MediaElement
and VideoBrush, see http://msdn.microsoft.com/en-us/library/cc189009%28v=vs.95%29.aspx.

Transforms
You can use the two-dimensional Transform classes in Silverlight to rotate, scale, skew, and move
(translate) objects. The transform classes are:

■■ RotateTransform

■■ ScaleTransform

■■ SkewTransform

The following sections show these classes in action.

RotateTransform
RotateTransform applies a transformation that rotates a UI element by a specified angle. The following
example applies a transform that rotates a rectangle:

<Rectangle Margin="124,15,-16,216" Fill="LightGoldenrodYellow">
 <Rectangle.RenderTransform>
 <RotateTransform Angle="45" ></RotateTransform>
 </Rectangle.RenderTransform>
</Rectangle>

Figure 9-9 shows what the rotated rectangle looks like.

Figure 9-9  Using RotateTransform.

http://msdn.microsoft.com/en-us/library/cc189009%28v=vs.95%29.aspx

260   Part 4  Content Integration and Animation

The properties of the RotateTransform class are as follows:

■■ Angle  Retrieves or assigns the angle in degrees of the clockwise rotation

■■ CenterX  Retrieves or assigns the x-coordinate of the rotation center point

■■ CenterY  Retrieves or assigns the y-coordinate of the rotation center point

ScaleTransform
A ScaleTransform applies a transformation that scales a UIElement up or down by specified ScaleX and
ScaleY amounts. The following markup demonstrates how to scale a rectangle using ScaleTransform:

<Rectangle Margin="82,85,78,193" Fill="LightGoldenrodYellow">
 <Rectangle.RenderTransform>
 <ScaleTransform ScaleX="2" ScaleY="2" />
 </Rectangle.RenderTransform>
</Rectangle>

SkewTransform
A SkewTransform skews a UIElement by the specified AngleX and AngleY amounts. The following
markup demonstrates how to skew a rectangle using SkewTransform:

<Rectangle Margin="82,85,78,193" Fill="Blue">
 <Rectangle.RenderTransform>
 <SkewTransform AngleX="25" AngleY="15 " />
 </Rectangle.RenderTransform>
</Rectangle>

Complex Transformations
You aren’t limited to the three types of transforms described in the preceding sections. You can create
more complex transformations using additional classes that Silverlight provides, which are listed in
Table 9-6.

Table 9-6  Silverlight Classes for Creating Complex Transformations

Class Description

CompositeTransform Use this class to apply multiple transforms to the same object.

TransformGroup You can also use this class to apply multiple transforms; however, the
CompositeTransform class is the preferred way of doing this—unless you want
to apply the transforms in a specific order or wish to apply different center
points for the different transforms.

MatrixTransform Use this class to create custom transformations that you cannot achieve
through the other Transform classes. When you use a MatrixTransform, you
manipulate a matrix directly.

	 Chapter 9  Media, Graphics, and Animation    261

3-D Graphics

Having seen how to create and render 2-D graphics objects, you will now explore how to render 3-D
graphics objects in XAML.

WPF and Silverlight each implement 3-D graphics in their own way. First you’ll see how to work
with 3-D graphics in WPF.

 3-D Graphics in WPF
As depicted in Figure 9-10, the coordinate system in 3-D is different from that in 2-D.

Origin (0,0)

Origin (0,0,0)

Coordinate System in 2-D

Coordinate System in 3-D

+Y

+Y

-Z

-Y

+X

+Z

+X

-X

Figure 9-10  Coordinate system in 2-D and in 3-D.

To create 3-D graphics, you need four components: a model, a material, a camera, and a light
source. A model in 3-D is similar to a drawing in 2-D. A material in 3-D is similar to a brush in 2-D.

You use Model3D-derived classes to create the models. These classes include Material-derived
classes for the materials, Camera-derived classes to represent the camera in the scene, and Light-
derived classes to represent the lighting for the scene.

262   Part 4  Content Integration and Animation

Model3D is an abstract class defined in the System.Windows.Media.Media3D namespace. It
contains the following classes: GeometryModel3D, Light, and Model3DGroup. Of these, Geometry
Model3D is most commonly used in WPF graphics. You use the ModelVisual3D class to render
Model3D objects.

Material is also an abstract class defined in the System.Windows.Media.Media3D. WPF graphics
commonly use the following types of materials:

■■ EmissiveMaterial  Using this class, you can add color to an existing Material equal to the
color of the EmissiveMaterial’s brush.

■■ DiffuseMaterial  Using this class, you can apply a SolidBrush or TileBrush to the 3-D model.

■■ SpecularMaterial  Using this material adds highlight-like effects or illuminating effects.

The various types of light are:

■■ AmbientLight  Represents a Light object that applies light to objects evenly

■■ DirectionalLight  Represents a Light object that projects its effect in a direction specified by
a Vector3D object

■■ PointLight  Represents a Light object that has a specified position in space, and projects its
light in all directions

■■ SpotLight  Represents a Light object that projects its effect in a cone-shaped area in a
particular direction

To display 3-D graphics in your applications, you use the Viewport3D control, which is similar to
the MediaElement and Image controls. The Viewport3D class inherits from FrameworkElement.

Viewport3D includes standard properties such as Height, Width, and so forth. The Camera property
stores one or more Visual3D-derived objects.

The following XAML syntax illustrates the hierarchy of Viewport3D objects:

<Viewport3D>
 <ModelVisual3D>
 <ModelVisual3D.Content>
 ...
 <Viewport3D.Camera>
 ...
 </Viewport3D.Camera>
 </ModelVisual3D.Content>
 <ModelVisual3D>
</Viewport3D>

Using this kind of syntax, you will define the 3-D models, materials, lighting, and camera for your
3-D scene.

You can use any Camera-derived class as a camera in your 3-D scene. However, you can only use
one camera with a Viewport3D. If you want to use more than one camera to display your scene, you
must create a Viewport3D for each camera.

	 Chapter 9  Media, Graphics, and Animation    263

The various camera types are described in the following sections.

PerspectiveCamera
For most scenes, you use the PerspectiveCamera (which is the camera that Viewport3D uses by default
if you do not specify a camera). This provides perspective, because objects that you draw closer to
this camera appear larger than objects you draw in the distance. Table 9-7 lists the properties of
PerspectiveCamera.

Table 9-7  Properties of PerspectiveCamera

Property Description

FieldOfView You use this property to adjust the zoom of the camera in degrees. The default
value is 45.

LookDirection You use this property to set the direction that the camera is looking as vector.
You set this value by using a Vector3D structure.

Position You use this property to place the camera in your scene. You set this value as a
Point3D structure.

UpDirection You use this property to change how the camera is oriented. You set this value
by using a Vector3D structure. The default value is 0,1,0, which states that the
top of the camera is pointing positive Y.

OrthographicCamera
When you use OrthographicCamera and draw two elements that are the same size, OrthographicCamera
renders them in the same size, no matter how near or far away from the camera you place them.

The properties of OrthographicCamera are similar to PerspectiveCamera, except that Orthographic-
Camera does not have a FieldOfView property—it has a Width property that you use to set the width
of the viewing box.

MatrixCamera
MatrixCamera gives you the freedom to calculate your own view and projection matrices.

Defining Shapes
You use the GeometryModel3D and Model3DGroup classes to define the shape of your 3-D objects.

The Model3DGroup class enables you to build several models through the GeometryModel3D
classes and combine them into a single Viewport3D. The following XAML code example illustrates the
hierarchy of Model3DGroup and GeometryModel3D objects:

<Viewport3D ...>
 <ModelVisual3D>
 <ModelVisual3D.Content>
 <Model3DGroup>
 <GeometryModel3D>
 <GeometryModel3D.Geometry>
 <MeshGeometry3D .../>
...

264   Part 4  Content Integration and Animation

Geometry3D is abstract and has only one descendant, called MeshGeometry3D. You use a mesh
as a foundation to define the geometry of your model. A mesh is a representation of a surface
described through triangles. Thus, you build all your models in WPF by using triangles. Using one or
more Point3D instances, you define the position of all the points in your 3-D scene. Then you use the
Positions and TriangleIndices properties of the MeshGeometry3D class to make triangles that represent
your model.

When defining these values in XAML, you can use a simplified notation, as shown in the following
code example:

<MeshGeometry3D
 Positions="1 0 -3, 0 1 -3, -1 0 -3"
 TriangleIndices="0 1 2" />

The Positions property in this example defines three points, with the X, Y, and Z locations separated
by spaces and the points separated by commas. The TriangleIndices property specifies the order in
which to join the array of points defined in the Positions property to create a single triangle.

Here’s a complete example of using these properties to render a triangle:

<Window x:Class="WpfApplication1.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="Window4" Height="300" Width="300">
 <Grid>
 <Viewport3D>
 <ModelVisual3D>
 <ModelVisual3D.Content>
 <Model3DGroup>
 <GeometryModel3D>
 <GeometryModel3D.Geometry>
 <MeshGeometry3D
 Positions="1 0 -3, 0 1 -3, -1 0 -3"
 TriangleIndices="0 1 2" />
 </GeometryModel3D.Geometry>
 <GeometryModel3D.Material>
 <DiffuseMaterial Brush="Fuchsia"/>
 </GeometryModel3D.Material>
 </GeometryModel3D>
 <DirectionalLight Color="White" Direction="2,-1,-9" />
 </Model3DGroup>
 </ModelVisual3D.Content>
 </ModelVisual3D>
 <Viewport3D.Camera>
 <PerspectiveCamera Position="-1,1,3" UpDirection="1,0,1" />
 </Viewport3D.Camera>
 </Viewport3D>
 </Grid>
</Window>

	 Chapter 9  Media, Graphics, and Animation    265

The Viewport3D object contains everything required to render the triangle. In simple terms, you
can think of each object in the code as follows:

■■ Viewport3D  Represents a container containing elements that will generate 3-D graphics

■■ Camera  Represents a camera that will render the scene

■■ ModelVisual3D  Represents a 3-D object within Viewport, which can be either a light or a
geometry

■■ DirectionalLight  Represents a light shining in a particular direction

■■ GeometryModel3D  Represents a 3-D geometrical object

■■ MeshGeometry3D  Represents the set of triangles that defines a 3-D object

■■ DiffuseMaterial  Represents a material used to render a 3-D object, such as a brush

Figure 9-11 shows the outcome of the example.

Figure 9-11  Creating a 3-D triangle in Silverlight.

Here’s another example, which renders a 3-D cube:

<Viewport3D Margin="0,0,0,30">
 <Viewport3D.Camera>
 <PerspectiveCamera Position="-40,40,40" LookDirection="40,-40,-40 "
 UpDirection="0,0,1" />
 </Viewport3D.Camera>
 <ModelVisual3D>
 <ModelVisual3D.Content>
 <Model3DGroup>
 <DirectionalLight Color="Yellow" Direction="2,-1,-9" />
 <GeometryModel3D>
 <GeometryModel3D.Geometry>
 <MeshGeometry3D Positions="0,0,0 10,0,0 10,10,0 0,10,0 0,0,10
 10,0,10 10,10,10 0,10,10"
 TriangleIndices="0 1 3 1 2 3 0 4 3 4 7 3 4 6 7 4 5 6
 0 4 1 1 4 5 1 2 6 6 5 2 2 3 7 7 6 2"/>
 </GeometryModel3D.Geometry>
 <GeometryModel3D.Material>
 <DiffuseMaterial Brush="Yellow"/>
 </GeometryModel3D.Material>

266   Part 4  Content Integration and Animation

 </GeometryModel3D>
 </Model3DGroup>
 </ModelVisual3D.Content>
 </ModelVisual3D>
</Viewport3D>

Figure 9-12 shows the resultant outcome.

Figure 9-12  Creating a 3-D cube.

For more complex 3-D objects, you need to create comprehensive meshes. The effort to create
such meshes, camera properties, and so forth can be quite huge. Fortunately, you can find some
ready-to-use 3-D models on the web. For example, a number of models are available at http://
archive3d.net/.

You can download the desired model in .3ds (3D Studio Max) format, which you can then convert
to XAML using a third-party tool. Several popular tools are available for converting a .3ds model to
XAML, including:

■■ Zam3D from electricrain (http://www.erain.com/products/zam3d/DefaultPDC.asp)

■■ Deep Exploration from Right Hemisphere (http://www.righthemisphere.com/products/dexp/
de_std.html)

■■ Viewer3ds by Andrej Benedik (http://www.wpf-graphics.com/Viewer3ds.aspx)

Note  For the examples in this book I used Zam3D to convert models in .3ds format to
XAML.

Follow these steps to create an intricate 3-D object:

1.	 Visit http://archive3d.net/ and download any good model in .3ds format. For this exercise,
download the Cup model from http://archive3d.net/?a=download&id=41934.

2.	 Launch Zam3D.

Figure 9-13 shows the ZAM3D tool.

http://archive3d.net/
http://archive3d.net/
http://www.erain.com/products/zam3d/DefaultPDC.asp
http://www.righthemisphere.com/products/dexp/de_std.html
http://www.righthemisphere.com/products/dexp/de_std.html
http://www.wpf-graphics.com/Viewer3ds.aspx
http://archive3d.net/
http://archive3d.net/?a=download&id=41934

	 Chapter 9  Media, Graphics, and Animation    267

Figure 9-13  The ZAM3D tool.

3.	 From the File menu, select New From 3DS.

4.	 In the Import 3DS File dialog box, select the .3DS model file you downloaded in Step 1.

5.	 From the File menu, select Export Scene To XAML.

6.	 In the Export Options group box, select Viewport3D as the Control Type and Export Elements
Inline.

7.		 Copy the generated XAML to a WPF application. Customize any properties such as LookDirection
or UpDirection according to your requirements.

8.	 Build and execute the application.

Figure 9-14 shows a sample outcome.

Figure 9-14  Using WPF 3-D graphics.

268   Part 4  Content Integration and Animation

Voila! You have rendered an intricate and complex 3-D object with the least possible effort,
thanks to the rich set of tools available today.

3-D Graphics in Silverlight
To apply 3-D effects to any Silverlight UIElement, you can use perspective transforms. Perspective
transforms let you produce an illusion for your objects, making them appear as if they are rotating or
moving in a 3-D space.

The PlaneProjection class represents a 3-D-like effect on an object. PlaneProjection has 12
properties you can use to control the rotation and positioning of an object. Table 9-8 describes these
properties.

Table 9-8  Properties of PlaneProjection

Name Description

CenterOfRotationX Specifies or retrieves the x-coordinate of the center of rotation of the object

CenterOfRotationY Specifies or retrieves the y-coordinate of the center of rotation of the object

CenterOfRotationZ Specifies or retrieves the z-coordinate of the center of rotation of the object

GlobalOffsetX Specifies or retrieves the distance by which the object will be translated along
the x-axis of the screen

GlobalOffsetY Specifies or retrieves the distance by which you will translate the object along
the y-axis of the screen

GlobalOffsetZ Specifies or retrieves the distance by which you will translate the object along
the z-axis of the screen

LocalOffsetX Specifies or retrieves the distance by which you will translate the object along
the x-axis of the plane of the object

LocalOffsetY Specifies or retrieves the distance by which you will translate the object along
the y-axis of the plane of the object

LocalOffsetZ Specifies or retrieves the distance by which you will translate the object along
the z-axis of the plane of the object

RotationX Specifies or retrieves the number of degrees to rotate the object around the
x-axis of rotation

RotationY Specifies or retrieves the number of degrees to rotate the object around the
y-axis of rotation

RotationZ Specifies or retrieves the number of degrees to rotate the object around the
z-axis of rotation

The following example renders a 3-D like effect to a StackPanel and its contents. Thus, when you
see the output, you will experience an illusion of 3-D controls.

<Grid x:Name="LayoutRoot">
<StackPanel Margin="262,35,100,265" Background="#FF681010">
 <StackPanel.Projection>
 <PlaneProjection RotationX="-35" RotationY="-35" RotationZ="15" />
 </StackPanel.Projection>
 <ListBox Height="100" Name="listBox1" Width="120" >

	 Chapter 9  Media, Graphics, and Animation    269

 <ListBoxItem Content="Python" />
 <ListBoxItem Content="Ruby" />
 <ListBoxItem Content="C#" />
 <ListBoxItem Content="Java" />
 <ListBoxItem Content="JavaScript" />
 </ListBox>
 <Button Content="Click" Width="100" Margin="25" />
</StackPanel>
</Grid>

Here, the properties RotationX, RotationY, and RotationZ indicate degree of rotation. For example,
the RotationX property will specify the rotation around the horizontal axis of the object. Based on the
value of RotationX, the object will either rotate toward you or away from you.

Similarly, you specify the rotation around the vertical axis of the object by using the RotationY
property.

Figure 9-15 shows the output.

Figure 9-15  Perspective transforms in Silverlight.

The following example again similarly renders a 3-D illusion:

<Grid x:Name="LayoutRoot">
 <StackPanel Height="150" Background="#FF681010" Width="250">
 <StackPanel.Projection>
 <PlaneProjection RotationX="25" RotationY="5" RotationZ="40" />
 </StackPanel.Projection>
 <ListBox Height="100" Name="listBox1" Width="120" >
 <ListBoxItem Content="Python" />
 <ListBoxItem Content="Ruby" />
 <ListBoxItem Content="C#" />
 <ListBoxItem Content="Java" />
 <ListBoxItem Content="JavaScript" />
 </ListBox>
 <Button Content="Click" Width="100" Margin="25" />
 </StackPanel>
</Grid>

270   Part 4  Content Integration and Animation

Figure 9-16 shows the output.

Figure 9-16  Another example of perspective transforms in Silverlight.

In the next example, you rotate the object, and then—based on the rotation—you apply
translations using the LocalOffsetX property to translate an object along the X axis of the plane of
the object after it has been rotated. Therefore, the rotation of the object determines the direction in
which you translate the object:

<Grid Background="Gray" x:Name="LayoutRoot">
 <Canvas Grid.Row="1" Margin="20" Width="200" Height="200" Background="Beige">
 <Canvas.Effect>
 <DropShadowEffect />
 </Canvas.Effect>
 </Canvas>
 <Image Grid.Row="1" Margin="20" Width="200" Height="200" Source="Water lilies.jpg">
 <Image.Effect>
 <DropShadowEffect />
 </Image.Effect>
 <Image.Projection>
 <PlaneProjection x:Name="myPlaneProjection" RotationY=”65”
 LocalOffsetX=”10”/>
 </Image.Projection>
 </Image>
</Grid>

As you can see in Figure 9-17, the image is rotated towards you.

Figure 9-17  Using the LocalOffsetX property.

	 Chapter 9  Media, Graphics, and Animation    271

Pixel Shaders
Pixel-shader effects are effects that you can apply to any user interface element on the Silverlight or
WPF UI.

A shader is like a kernel function, executed in parallel for each data element. You can think of a
pixel shader as a specialized shader that you execute for each pixel of a bitmap.

A shader is an algorithm compiled and loaded into the Graphics Processor Unit (GPU) that
executes once for every pixel in an input image. GPUs are efficient parallel processors; therefore, your
algorithm will be executed thousands of pixels at a time.

Pixel shader effects allow you to add effects such as glow, pixel brightness, red eye removal, and
shadows to rendered objects. Silverlight and WPF support the use of pixel shader effects.

You can either use the built-in pixel shader effects or custom shader effects. You can add these
effects to any UIElement using appropriate XAML. You don’t need to add any code-behind to use a
shader effect.

WPF and Silverlight provide support for several pixel shaders such as DropShadowEffect, BlurEffect,
and so forth. You can apply only one effect directly to an element at a time. For example, you cannot
apply both BlurEffect and a DropShadowEffect to the same element directly.

The System.Windows.Media.Effects namespace defines all the relevant classes for shader effects.
Table 9-9 lists a few built-in classes that provide shader effects.

Table 9-9  Classes in the System.Windows.Media.Effects Namespace

Class Name Description

Effect This class acts as a base class for all bitmap effects.

PixelShader This class acts as a managed wrapper around a High Level Shader Language
(HLSL) pixel shader.

BlurEffect This class represents a blur effect that you can apply to an object.

DropShadowEffect This class applies a shadow behind a visual object at a slight offset. The offset
is determined by mimicking a casting shadow from an imaginary light source.

ShaderEffect This class provides a custom bitmap effect by using a PixelShader.

As listed in Table 9-10, the DropShadowEffect class has several important properties that determine
characteristics of the drop shadow.

Table 9-10  Properties of the DropShadowEffect Class

Property Name Description

Color Specifies the color of the drop shadow. The default is black.

BlurRadius Specifies how blurred the shadow is. The default is 5.

Opacity Specifies how transparent the shadow is. Typical range is between 0 and 1,
where 1 means fully opaque and 0 means fully transparent (not visible). The
default is 1.

272   Part 4  Content Integration and Animation

Property Name Description

ShadowDepth Specifies how much the shadow will be displaced from the object that is cast-
ing the shadow. The default is 5.

Direction Specifies the direction in which the object casts the shadow. The value is an
angle between 0 and 360, with 0 starting on the right hand side and moving
counter-clockwise around the object. The default angle is 315.

The following example demonstrates the DropShadow effect:

<UserControl x:Class="SilverlightGraphics.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d" d:DesignWidth="640" d:DesignHeight="480">
 <Grid x:Name="LayoutRoot">
 <Button Content="DropShadowEffect Demo" Height="30" Width="240"
 Margin="23,23,100,137" Background="AliceBlue">
 <Button.Effect>
 <DropShadowEffect Color="Purple" Direction="270"
 ShadowDepth="7" BlurRadius="5" Opacity="0.7" >
 </DropShadowEffect>
 </Button.Effect>
 </Button>
 </Grid>
</UserControl>

Figure 9-18 shows the output.

Figure 9-18  Using DropShadowEffect.

Similarly, you can use the BlurEffect, which is far easier to use than the previously described effect.
For this class, you can just specify the Radius property:

<UserControl x:Class="ShaderEffects.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

	 Chapter 9  Media, Graphics, and Animation    273

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008" xmlns:mc="http://schemas.
openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d" d:DesignWidth="640" d:DesignHeight="480">
 <Grid x:Name="LayoutRoot">
 <TextBlock Text="BlurEffect Demo" Height="30" Width="100" Margin="23,23,100,137">
 <TextBlock.Effect>
 <BlurEffect Radius="4" >
 </BlurEffect>
 </TextBlock.Effect>

 </TextBlock>
 </Grid>
</UserControl>

Figure 9-19 shows the output.

Figure 9-19  Using BlurEffect.

If you check MSDN for shader samples, you’ll find more effects, such as bitmap effects and glow
effects. However, these are applicable only to WPF and not supported in Silverlight. By making smart
use of the ones that are available in Silverlight, however, you can still work wonders.

Custom Shaders
High Level Shading Language (HLSL) was originally created for DirectX. Using HLSL, you can create
programmable shaders for the Direct3D pipeline. The ShaderEffect class (mentioned in Table 9-9)
provides support for HLSL in Silverlight. Using this feature, you can create pixel shaders that were
earlier unavailable in Silverlight or tweak WPF’s shaders.

Here’s the procedure to create and use a custom shader:

1.	 Download and install the following tools:

•	 Walt Ritscher’s Shazzam Shader Editing Tool. Shazzam is a ClickOnce application and
provides a cool interface to edit and test HSLS shaders.

274   Part 4  Content Integration and Animation

•	 Microsoft DirectX SDK (June 2010) from Microsoft at http://www.microsoft.com/downloads/
details.aspx?FamilyID=3021d52b-514e-41d3-ad02-438a3ba730ba&displaylang=en.

2.	 In Shazzam, specify the path for the fxc.exe file (which is present in Microsoft DirectX SDK).

3.	 Create a new shader effect file using the File | New Shader File option in Shazzam.

4.	 Add appropriate code. For example, you could add the following simple code in a shader file
named TestEffect:

sampler2D myImage : register(s0);
// new HLSL shader
float4 main(float2 locationInSource : TEXCOORD) : COLOR
{
 float4 color;
 // get the color of the current pixel
 color = tex2D(myImage , locationInSource.xy);
 color.r = 1;
 color.a=0.25;
 return color;
}

5.	 Compile the shader file by selecting Tools | Compile Shader from the menu.

6.	 Create a Silverlight library named EffectsLib. Delete the default class.

7.		 Include the compiled (.ps) file in your project, and set its compile type to Resource.

8.	 Copy the C# code generated by Shazzam into a new class file and name it Effect.cs.

9.	 Change the UriSource in the code as follows:

pixelShader.UriSource = new Uri(
 "/EffectsLib;component/TestEffect.ps", UriKind.Relative);

10.	 Create a new Silverlight application and add a reference to the EffectsLib dll file.

11.	 Include the namespace and assembly for the library in the XAML code, as shown here:

<UserControl x:Class="Effects.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d"
 xmlns:custom=”clr-namespace:EffectsLib;assembly= EffectsLib”
 d:DesignHeight="600" d:DesignWidth="400">

12.	 Attach the custom effect class to the element you want in XAML. For example, you can add
this effect to a button:

<Button.Effect>
 <custom:TestEffect></m:TestEffect>
</Button.Effect>

Now you can build and test the application.

http://www.microsoft.com/downloads/details.aspx?FamilyID=3021d52b-514e-41d3-ad02-438a3ba730ba&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=3021d52b-514e-41d3-ad02-438a3ba730ba&displaylang=en

	 Chapter 9  Media, Graphics, and Animation    275

Animations and Storyboards

An animation is an action that can change one or more of the properties of an element. For example,
when a button is clicked, you might want to change its background color to a darker hue, and then,
when the mouse button is released, change the color back to its original color. Or you might want to
render a continually moving ellipse. You can achieve all such actions through animations in XAML.

Note  Animations only temporarily change the property values of elements—the change
isn’t permanent.

Though you can create animations directly in C# code, in XAML, you create animations through a
storyboard. A storyboard in XAML is a resource that contains a collection of animations, each of which
targets a specific property of a specific control. A storyboard may even contain other storyboard
objects—that is, you can have nested storyboard objects. You typically use nested storyboards to
organize rich animation sequences.

You can start, stop, or pause storyboards by using triggers that you set on objects or by using
event handlers.

Although Silverlight and WPF share the same framework for animations, the same model for
defining animations, and even the same storyboard system, Silverlight uses a scaled-down version of
the WPF animation system. There are additional differences in the way you create and begin anima-
tions programmatically.

To create an animation in Silverlight or WPF, you basically modify the value of a dependency
property over a time interval. For example, to make an image grow taller as soon as it is loaded, you
could modify its Height property in an animation. To make it expand both horizontally and vertically,
you could change both the width and height properties of the image.

Likewise, if you wanted to fade out a UIElement, you would change the LinearGradientBrush that
it uses for its background. The core of animations is knowing which properties to modify and in what
manner. For example, to make an element appear and disappear over a few seconds, you should use
the Opacity property rather than the Visibility property. To animate the position of an element, you
should use Canvas.Left or Canvas.Top, which requires the least overheard to alter the position.

Table 9-11 shows three of the most common animation types. The System.Windows.Media.
Animation namespace defines these classes.

Table 9-11  Classes in the System.Windows.Media.Animation Namespace

Animation Type Property Type

ColorAnimation Color

DoubleAnimation Double

PointAnimation Point

276   Part 4  Content Integration and Animation

You set the From, To, or By (instead of To), and Duration properties of an animation to specify a
starting value, an ending value, an ending value relative to the starting value, and the timeline of the
animation.

As an example, the following markup renders a bouncing ball animation using the Ellipse element,
event triggers, and DoubleAnimation:

<Canvas Width="60" Height="20" Margin="5">
 <Ellipse x:Name="ellipse" Fill="Green" Canvas.Top="100" Canvas.Left="10"
 Width="100" Height="100">
 <Ellipse.Triggers>
 <EventTrigger RoutedEvent="Ellipse.Loaded">
 <BeginStoryboard>
 <Storyboard>
 <DoubleAnimation RepeatBehavior="Forever"
 Storyboard.TargetName="ellipse"
 Storyboard.TargetProperty="(Canvas.Top)"
 To="500" Duration="0:0:1"
 AutoReverse="True" />
 </Storyboard>
 </BeginStoryboard>
 </EventTrigger>
 </Ellipse.Triggers>
 </Ellipse>
</Canvas>

The following example demonstrates ColorAnimation. It renders an ellipse that changes color as
soon as it is loaded.

<Canvas Width="60" Height="20" Margin="5">
 <Ellipse x:Name="ellipse" Fill="Green" Canvas.Top="-146" Canvas.Left="-150"
 Width="100" Height="100">
 <Ellipse.Triggers>
 <EventTrigger RoutedEvent="Ellipse.Loaded">
 <BeginStoryboard>
 <Storyboard>
 <ColorAnimation
 Storyboard.TargetName="ellipse"
 Storyboard.TargetProperty =
 "(Ellipse.Fill).(SolidColorBrush.Color)"
 From="Blue"
 To="Red" Duration="0:0:2"
 />
 </Storyboard>
 </BeginStoryboard>
 </EventTrigger>
 </Ellipse.Triggers>
 </Ellipse>
</Canvas>

The following example demonstrates PointAnimation. It renders an ellipse that changes its center
as soon as it is loaded and then goes back to the earlier position. This action is repeated infinitely:

<Canvas Width="450" Height="350">
 <Path>

	 Chapter 9  Media, Graphics, and Animation    277

 <Path.Fill>
 <LinearGradientBrush StartPoint="0,0" EndPoint="1,1">
 <GradientStop Color="Beige" Offset="0.09" />
 <GradientStop Color="Green" Offset="0.45" />
 <GradientStop Color="Yellow" Offset="0.75" />
 <GradientStop Color="Navy" Offset="1.0" />
 </LinearGradientBrush>
 </Path.Fill>
 <Path.Triggers>
 <EventTrigger RoutedEvent="Ellipse.Loaded" >
 <BeginStoryboard>
 <Storyboard x:Name="myStoryboard">
 <PointAnimation
 Storyboard.TargetProperty="Center"
 Storyboard.TargetName="Ellipse1"
 Duration="0:0:1"
 From="100,300"
 To="175,300"
 RepeatBehavior="Forever"
 AutoReverse="True"/>
 </Storyboard>
 </BeginStoryboard>
 </EventTrigger>
 </Path.Triggers>
 <Path.Data>
 <EllipseGeometry x:Name="Ellipse1"
 Center="200,100" RadiusX="75" RadiusY="75" />
 </Path.Data>
 </Path>
</Canvas>

Using Expression Blend for Storyboards and Animations
As you’ve seen so far, you can create storyboards and animations directly in XAML, but an alternative
approach is to use Microsoft Expression Blend to create storyboards.

You can use the following steps to create storyboards in the Blend IDE using the Storyboard Picker:

1.	 Assume that you have created a new Silverlight application in Blend. Add a Button control to it.

2.	 Launch the Storyboard Picker by clicking the plus (+) symbol and selecting the New option, as
shown in Figure 9-20.

Figure 9-20  Launching the Storyboard Picker in Blend.

278   Part 4  Content Integration and Animation

3.	 In the Create Storyboard Resource dialog box, leave the default name as is.

4.	 Open the newly created Storyboard by selecting Open A Storyboard from the Object and
Timeline drop-down menu (see Figure 9-21).

Figure 9-21  Creating a new storyboard in Blend.

5.	 Select the Properties pane for the button and after scrolling to the Transform property group,
choose the Skew option, and skew the button. Figure 9-22 shows this setting in action.

Figure 9-22  Recording an animation.

6.	 Click Base to stop recording. When you view the XAML, you will find that all the lengthy
lines of animation are auto-generated. All you need to do now is build and execute your
application to view the animation in action.

Now you can see how much easier Expression Blend makes it for you.

Types of Animations
Silverlight and WPF support the following types of animations, each of which uses a different strategy
for varying a property value:

■■ Linear interpolation  Also called From/To/By animations, they enable the property value to
vary in a smooth and continuous manner for the duration of the animation. DoubleAnimation,
PointAnimation, and ColorAnimation are examples of this type of animation. You already saw
these classes earlier.

	 Chapter 9  Media, Graphics, and Animation    279

■■ Key-frame animation  In general animation terminology, a keyframe is an object in
animation that sets the starting and ending points of any transition. A sequence of keyframes
defines which movement you will see, whereas the position of the keyframes on the animation
defines the timing of the movement. These kinds of animations animate an object between
a series of values by using key-frame objects. Key-frame animations are more powerful than
the conventional From/To/By animations because they enable you to provide any number of
target values. In this kind of animation, values can jump abruptly from one value to another, or
they can combine jumps. ColorAnimationUsingKeyFrames, DoubleAnimationUsingKeyFrames,
PointAnimationUsingKeyFrames, and ObjectAnimationUsingKeyFrames are examples of key-
frame animations.

Table 9-12 lists the three most common types of keyframes.

Table 9-12  Types of Keyframes

Type Example

Linear <LinearDoubleKeyFrame KeyTime=”00:01:01” Value=”140”/>

Spline <SplineDoubleKeyFrame KeyTime=”00:01:01” Value=”140”/>

Discrete <DiscreteDoubleKeyFrame KeyTime=”00:01:01” Value=”140”/>

The following markup shows how to create key-frame animations. It renders a rectangle, animates
it vertically, and simulates a bounce movement. The markup makes use of event triggers to begin the
animations:

<Grid x:Name="LayoutRoot" Background="LightGray" >
 <Grid.Triggers>
 <EventTrigger RoutedEvent="Grid.Loaded">
 <TriggerActionCollection>
 <BeginStoryboard>
 <Storyboard x:Name="Storyboard1"
 RepeatBehavior="Forever">
 <DoubleAnimationUsingKeyFrames AutoReverse="True"
 Storyboard.TargetName="box"
 Storyboard.TargetProperty=
 "(UIElement.RenderTransform).(TransformGroup.Children)[3].
 (TranslateTransform.Y)"
 BeginTime="00:00:00">
 <SplineDoubleKeyFrame KeyTime="00:00:01" Value="200"/>
 <SplineDoubleKeyFrame KeyTime="00:00:02" Value="300"/>
 <SplineDoubleKeyFrame KeyTime="00:00:03" Value="290"/>
 <SplineDoubleKeyFrame KeyTime="00:00:03.5" Value="316"/>
 </DoubleAnimationUsingKeyFrames>
 <DoubleAnimationUsingKeyFrames AutoReverse="True"
 Storyboard.TargetName="box"
 Storyboard.TargetProperty=
 "(UIElement.RenderTransform).(TransformGroup.Children)[0].
 (ScaleTransform.ScaleY)"
 BeginTime="00:00:00">
 <SplineDoubleKeyFrame KeyTime="00:00:03" Value="1"/>
 <SplineDoubleKeyFrame KeyTime="00:00:03.5" Value="0.5"/>
 </DoubleAnimationUsingKeyFrames>

280   Part 4  Content Integration and Animation

 </Storyboard>
 </BeginStoryboard>
 </TriggerActionCollection>
 </EventTrigger>
 </Grid.Triggers>
 <Rectangle x:Name="box"
 VerticalAlignment="Top"
 Margin="0,20,0,0"
 Height="100" Width="100"
 Fill="LightSeaGreen"
 RenderTransformOrigin="0.5,0.5">
 <Rectangle.RenderTransform>
 <TransformGroup>
 <ScaleTransform/>
 <SkewTransform/>
 <RotateTransform/>
 <TranslateTransform/>
 </TransformGroup>
 </Rectangle.RenderTransform>
 </Rectangle>
</Grid>

The following markup shows how to use DoubleAnimationUsingKeyFrames and LinearDouble
KeyFrame:

 <Canvas>
 <Canvas.Resources>
 <Storyboard x:Name="Storyboard1">
 <DoubleAnimationUsingKeyFrames Storyboard.TargetName="Rectangle"
 Storyboard.TargetProperty=
 "(UIElement.RenderTransform).(TransformGroup.Children)[3].
 (TranslateTransform.X)" BeginTime="00:00:00">
 <LinearDoubleKeyFrame KeyTime="00:00:00.5" Value="100"/>
 <LinearDoubleKeyFrame KeyTime="00:00:01" Value="426"/>
 <LinearDoubleKeyFrame KeyTime="00:00:01.5" Value="153"/>
 <LinearDoubleKeyFrame KeyTime="00:00:02" Value="13"/>
 </DoubleAnimationUsingKeyFrames>
 <DoubleAnimationUsingKeyFrames Storyboard.TargetName="Rectangle"
 Storyboard.TargetProperty="(UIElement.RenderTransform).
 (TransformGroup.Children)[3].(TranslateTransform.Y)" BeginTime="00:00:00">
 <LinearDoubleKeyFrame KeyTime="00:00:00.5" Value="-11"/>
 <LinearDoubleKeyFrame KeyTime="00:00:01" Value="55"/>
 <LinearDoubleKeyFrame KeyTime="00:00:01.5" Value="305"/>
 <LinearDoubleKeyFrame KeyTime="00:00:02" Value="84"/>
 </DoubleAnimationUsingKeyFrames>
 </Storyboard>
 </Canvas.Resources>
 <Canvas x:Name="LayoutRoot" Background="White" >
 <Rectangle Height="100" Width="163" Fill="Blue" Canvas.Top="54" Canvas.Left="46"
 RenderTransformOrigin="0.1,0.1" x:Name="Rectangle">
 <Rectangle.RenderTransform>
 <TransformGroup>
 <ScaleTransform/>
 <SkewTransform/>
 <RotateTransform/>
 <TranslateTransform/>

	 Chapter 9  Media, Graphics, and Animation    281

 </TransformGroup>
 </Rectangle.RenderTransform>
 </Rectangle>
 </Canvas>
 </Canvas>

Because the preceding code does not use any triggers, you will need to launch the storyboard in
the code-behind, as follows:

public Page()
{
	 InitializeComponent();
 Storyboard1.Begin();
}

To create a keyframe-based animation in Expression Blend, you create a storyboard, and in the
storyboard, you set keyframes on a timeline to mark property changes:

1.	 Open an existing application in Blend and open the file Page.xaml in design view.

2.	 Select the timeline from the Storyboard Picker by clicking the Open a Storyboard button
under Objects and Timeline and then select a storyboard.

Working with Storyboards
You can set properties on storyboards to make them automatically reverse or repeat when they reach
the end of their last timeline. You can also begin, stop, pause, and resume a storyboard; however, you
can’t do all this through XAML alone. You need to use a small amount of code to accomplish this task.

The following markup shows how you can begin, stop, pause, and resume a storyboard. It
animates a TextBlock to behave like a scrolling marquee:

<Canvas x:Name="LayoutRoot" Height="480" Width="640" Background="LavenderBlush">
 <Canvas.Resources>
 <Storyboard x:Name="SB">
 <DoubleAnimation Storyboard.TargetProperty="(Canvas.Left)"
 Storyboard.TargetName="tblk"
 Duration="0:0:5"
 From="10"
 To="350"
 RepeatBehavior="Forever" />
 </Storyboard>
 </Canvas.Resources>
 <TextBlock x:Name="tblk" Canvas.Left="10" Canvas.Top="10"
 Text="Demonstrating how to control storyboards" FontWeight="Bold" FontSize="12"/>
 <StackPanel Orientation="Horizontal" Canvas.Left="10" Canvas.Top="265">
 <Button Click="Begin"
 Width="54" Height="30" Margin="2" Content="Begin" />
 <Button Click="Pause"
 Width="54" Height="30" Margin="2" Content="Pause" />
 <Button Click="Resume"
 Width="54" Height="30" Margin="2" Content="Resume" />
 <Button Click="Stop"
 Width="54" Height="30" Margin="2" Content="Stop" />

282   Part 4  Content Integration and Animation

 </StackPanel>
</Canvas>

The code-behind for accomplishing the start, pause, resume, and stop actions is straightforward,
and looks like this:

private void Begin(object sender, RoutedEventArgs e)
{
 SB.Begin();
}
private void Pause(object sender, RoutedEventArgs e)
{
 SB.Pause();
}
private void Resume(object sender, RoutedEventArgs e)
{
 SB.Resume();
}
private void Stop(object sender, RoutedEventArgs e)
{
 SB.Stop();
}

Defining Storyboards in Styles
You can also use storyboards within styles and then apply that style to a UIElement. The following
markup in a WPF application creates a style with two storyboards that use DoubleAnimations. It then
applies that style to a Button element. No code-behind is involved—you can accomplish everything
through XAML:

<Grid x:Name="LayoutRoot">
 <Grid.Resources>
 <Style x:Key="ButtonStyle" TargetType="{x:Type Button}">
 <Style.Resources>
 <Storyboard x:Key="OnMouseEnterSB">
 <DoubleAnimation BeginTime="00:00:00"
 Storyboard.TargetProperty="(UIElement.RenderTransform).
 (ScaleTransform.ScaleX)" To="4" />
 </Storyboard>
 <Storyboard x:Key="OnMouseLeaveSB">
 <DoubleAnimation BeginTime="00:00:00"
 Storyboard.TargetProperty="(UIElement.RenderTransform).
 (ScaleTransform.ScaleX)" To="1" />
 </Storyboard>
 </Style.Resources>
 <Style.Triggers>
 <EventTrigger RoutedEvent="Mouse.MouseLeave">
 <RemoveStoryboard BeginStoryboardName="OnMouseEnterSB_BeginSB"/>
 <BeginStoryboard x:Name="OnMouseLeaveSB_BeginSB"
 Storyboard="{StaticResource OnMouseLeaveSB}"/>
 </EventTrigger>
 <EventTrigger RoutedEvent="Mouse.MouseEnter">
 <BeginStoryboard x:Name="OnMouseEnterSB_BeginSB"
 Storyboard="{StaticResource OnMouseEnterSB}"/>

	 Chapter 9  Media, Graphics, and Animation    283

 <RemoveStoryboard BeginStoryboardName="OnMouseLeaveSB_BeginSB"/>
 </EventTrigger>
 </Style.Triggers>
 <Setter Property="RenderTransform">
 <Setter.Value>
 <ScaleTransform/>
 </Setter.Value>
 </Setter>
 </Style>
 </Grid.Resources>
 <Button Style="{StaticResource ButtonStyle}" Content="OK" Height="40" Width="40"/>
</Grid>

The output shows a button that expands horizontally when the mouse enters its area and reverts
to its normal width when the mouse leaves the button area.

You can define global storyboards for an application so that you can use them across any of the
pages. This is useful if you want to play a consistent animation sequence on multiple pages in an
application. For example, whenever a user clicks a button on any page, the button should expand and
then shrink in a span of 1.5 seconds.

You can achieve this by placing the requisite animation in App.xaml and then using that animation
wherever that animation needs to be played.

For example, you could place the following markup in App.xaml:

<Application.Resources>
 <Storyboard x:Key="GrowButton">
 <DoubleAnimation Storyboard.TargetProperty="Width" Duration="0:0:1"
 From="100"
 To="300"/>
 </Storyboard>
</Application.Resources>

In the MainPage.xaml, you could write:

<Button x:Name="okbutton" Content="OK" Height="100" Width="100" MouseEnter="
okbutton_MouseEnter" MouseLeave=" okbutton_MouseLeave"/>

And to reference the Storyboard in code, you can use the following:

private void okbutton_MouseEnter(object sender, MouseEventArgs e)
{
 sb = Application.Current.Resources["GrowButton"] as Storyboard;
 Storyboard.SetTarget(sb, okbutton);
 sb.Begin();
}

Easing Functions
So far, you explored how you could create animations through elaborately written XAML markup
or by using a design tool like Expression Blend. But what if you don’t want to use either? In such
a scenario, you use prebuilt animation easing functions. Animation easing requires less effort as

284   Part 4  Content Integration and Animation

compared to creating key frames for animations. Easing functions use mathematical formulas to
render the animations.

Silverlight supports several easing functions such as ElasticEase, BounceEase, CircleEase, BackEase,
and so forth. Table 9-13 offers brief descriptions of some of these functions.

Table 9-13  Easing Functions

Easing Function Description

BackEase Retracts the motion of an animation slightly before it begins to animate in the
path indicated.

BounceEase Creates a bouncing effect.

CircleEase Creates an animation that accelerates and/or decelerates using a circular
function.

CubicEase Creates an animation that accelerates and/or decelerates using the formula
f(t) = t3.

ElasticEase Creates an animation that resembles a spring oscillating back and forth until it
comes to rest.

ExponentialEase Creates an animation that accelerates and/or decelerates using an exponential
formula.

PowerEase Creates an animation that accelerates and/or decelerates using the formula
f(t) = tp where p is equal to the Power property.

You use the EasingMode property to change the behavior of the easing function. The three pos-
sible values you can give for EasingMode are:

■■ EaseIn  Interpolation follows the mathematical formula associated with the easing function.

■■ EaseOut  Interpolation follows 100-percent interpolation minus the output of the formula
associated with the easing function.

■■ EaseInOut  Interpolation uses EaseIn for the first half of the animation and EaseOut for the
second half.

The following markup demonstrates an example of BounceEase and bounces an ellipse when
loaded:

<Grid x:Name="LayoutRoot" Background="White">
<Ellipse x:Name="ellipse" Fill="Green" Canvas.Top="-146" Canvas.Left="-150" Width="100"
Height="100" Margin="120,92,420,288" >
 <Ellipse.Triggers>
 <EventTrigger RoutedEvent="Ellipse.Loaded">
 <BeginStoryboard>
 <Storyboard x:Name="myStoryboard" AutoReverse="True">
 <DoubleAnimation From="25" To="150" Duration="00:00:2"
 Storyboard.TargetName="ellipse"
 Storyboard.TargetProperty="Height">
 <DoubleAnimation.EasingFunction>
 <BounceEase Bounces="2" EasingMode="EaseOut"
 Bounciness="2" />
 </DoubleAnimation.EasingFunction>

	 Chapter 9  Media, Graphics, and Animation    285

 </DoubleAnimation>
 </Storyboard>
 </BeginStoryboard>
 </EventTrigger>
 </Ellipse.Triggers>
 </Ellipse>
</Grid>

The following markup shows how to achieve the same animation effect by applying easing
functions to key-frame animations:

<Grid x:Name="LayoutRoot" Background="White">
 <Ellipse x:Name="ellipse" Fill="Green" Canvas.Top="-146" Canvas.Left="-150"
 Width="100" Height="100" Margin="120,92,420,288" >
 <Ellipse.Triggers>
 <EventTrigger RoutedEvent="Ellipse.Loaded">
 <BeginStoryboard>
 <Storyboard x:Name="myStoryboard">
 <DoubleAnimationUsingKeyFrames
 Storyboard.TargetProperty="Height"
 Storyboard.TargetName="ellipse">
 <EasingDoubleKeyFrame Value="25" KeyTime="00:00:02">
 <EasingDoubleKeyFrame.EasingFunction>
 <CubicEase EasingMode="EaseOut"/>
 </EasingDoubleKeyFrame.EasingFunction>
 </EasingDoubleKeyFrame>
 <EasingDoubleKeyFrame Value="150"
 KeyTime="00:00:06">
 <EasingDoubleKeyFrame.EasingFunction>
 <BounceEase Bounces="5" EasingMode="EaseOut"/>
 </EasingDoubleKeyFrame.EasingFunction>
 </EasingDoubleKeyFrame>
 </DoubleAnimationUsingKeyFrames>
 </Storyboard>
 </BeginStoryboard>
 </EventTrigger>
 </Ellipse.Triggers>
 </Ellipse>
 </Grid>

Summary

This chapter described how to use various types of media in WPF and Silverlight applications. The
chapter defined the purpose of MediaElement and illustrated its use with examples. The chapter also
explored 2-D and 3-D graphics in detail and demonstrated their use with a number of examples. Then
the chapter explained animations and storyboards and discussed how to use them.

		 287

Part 5

Appendixes

Appendix A:	 Major Namespaces and Classes 289

Appendix B:	 XAML Editors and Tools . 299

		 289

A ppe n dix A

Major Namespaces and Classes

This appendix shows the most commonly used namespaces and classes in Windows Presentation
Foundation (WPF) and Silverlight, along with a breakdown of the controls and functionality that

each namespace provides. Because there are significant differences between the two technologies,
they are separated into different sections in this appendix.

Commonly Used Namespaces and Classes in WPF
This section shows namespaces and classes commonly used in WPF development.

System.Windows.Controls Namespace
This namespace defines controls or elements that you can use in XAML. A few of the commonly used
classes are listed in the following table.

Class Name Description

Border Draws a border and/or background around another element.

Button This is a standard Windows button control.

Calendar This control lets users select a date through a calendar display.

Canvas This container control lets you position child elements using coordinates that
are relative to the Canvas area.

CheckBox This control displays options or choices that a user can select or clear.

ComboBox This selection control displays a TextBox combined with a ListBox, so users can
either select items from a list or type in a new value.

ComboBoxItem This class represents each selectable item inside a ComboBox.

DataGrid This control displays data in a grid.

DataGridColumn This class represents each column in a DataGrid control.

DataGridRow This class represents each row in a DataGrid control.

DatePicker This control lets users choose a date by either typing the date text into a text
field or by selecting a date from a drop-down Calendar control.

FlowDocumentReader This control lets you view flowed content. It supports several different viewing
modes.

Grid This container control consists of columns and rows that can hold child
elements.

290   Part 5  Appendixes

Class Name Description

GridSplitter This control that reallocates space between the rows or columns of a Grid
control.

GroupBox This control is a container with a border and header text.

Image This control displays an image.

ItemsControl This control is suited for presenting a collection of items.

Label This control displays a text label. It is often used as the label for another
control.

ListBox This selection control contains a list of selectable items.

ListBoxItem This class represents each selectable item in a ListBox.

ListView This control displays a list of data items.

ListViewItem This class represents each item in a ListView control.

MediaElement This control contains media elements such as audio and video.

Page This class encapsulates a page of content to which you can navigate. A Page
can be hosted by a browser, a NavigationWindow, and a Frame.

Panel Provides a base class for all Panel elements.

ProgressBar Indicates the progress of a task.

RadioButton This control allows users to select a single option from a group of choices
when combined with other RadioButton controls.

RichTextBox This rich editing control operates on FlowDocument objects.

StackPanel Arranges child elements into a single stack, either vertically or horizontally.

TabControl This control holds one or more tab pages represented by TabPage objects.

TextBlock This is a lightweight control that displays small amounts of text or flow
content.

TextBox This control enables users to view or edit unformatted text.

UserControl Provides a simple way to create a custom control.

System.Windows.Data Namespace
This namespace defines classes that support data binding in XAML. A few of the commonly used
classes are listed in the following table.

Class Name Description

Binding Provides access to define a binding, which connects the properties of WPF
elements and any data source.

CollectionView A view for tasks such as grouping, sorting, and so forth to be performed on a
data collection.

CollectionViewSource The XAML proxy of a CollectionView class.

MultiBinding Defines a collection of Binding objects, which are attached to a single target
property.

ObjectDataProvider Enables you to use an object as a binding source.

	 Appendix A  Major Namespaces and Classes    291

Class Name Description

PriorityBinding Defines a collection of Binding objects that are attached to a single target
property. This property obtains its value from the first binding in the
collection that produces a value successfully.

PropertyGroupDescription Defines the grouping of items based on the name of a property.

RelativeSource Implements a markup extension describing the location of the binding source
relative to the position of the binding target.

XmlDataProvider Enables you to bind to XML data.

System.Windows.Shapes Namespace
This namespace defines a set of shapes that you can use in XAML. A few of the commonly used
classes are listed in the following table.

Class Name Description

Ellipse Enables you to draw an ellipse.

Line Enables you to draw a straight line between two points.

Path Enables you to draw a series of connected lines and curves.

Polygon Enables you to draw a polygon, which is a connected series of lines that form
a closed shape.

Polyline Enables you to draw a series of connected straight lines.

Rectangle Enables you to draw a rectangle.

System.Windows.Media Namespace
This namespace defines types that enable content integration. This could include media such as audio,
video, images, and graphics. A few of the commonly used classes are listed in the following table.
Note that most of these classes make use of linear interpolation.

Class Description

ArcSegment Creates an elliptical arc between two points.

BezierSegment Creates a cubic Bezier curve that is drawn between two points.

EllipseGeometry Creates the geometry of a circle or ellipse.

FontFamily Creates a family of related fonts.

GeometryDrawing Enables you to draw a Geometry using the specified Brush and Pen.

GeometryGroup Creates a composite geometry, composed of other Geometry objects.

GradientStop Defines the color and position of an individual transition point in a gradient.

GradientStopCollection Creates a collection of GradientStop objects which you access through an
index.

ImageBrush Paints an area with an image.

ImageDrawing Enables you to draw an image within a region defined by a Rect.

292   Part 5  Appendixes

Class Description

LinearGradientBrush Paints an area with a linear gradient.

LineGeometry Creates the geometry of a line.

MediaPlayer Provides media playback for drawings.

PathGeometry Creates a complex shape consisting of various shapes such as curves, arcs,
ellipses, lines, and so forth.

Pen Defines how a shape is outlined.

RadialGradientBrush Paints an area with a radial gradient.

RectangleGeometry Defines a two-dimensional rectangle.

RenderCapability Enables WPF applications to query for the current rendering tier for their
associated Dispatcher object and to register for notification of changes.

RotateTransform Rotates an object in the clockwise direction around a given point in a 2-D x-y
coordinate system.

ScaleTransform Scales an object in the 2-D x-y coordinate system.

SkewTransform Enables you to skew an object.

SolidColorBrush Paints an area with a solid color.

TileBrush Paints a region by using one or more tiles.

TranslateTransform Enables you to move an object in the two-dimensional x-y coordinate system.

System.Windows.Media.Animation Namespace
This namespace defines types that support animations. A few of the commonly used classes are listed
in the following table.

Class Description

BeginStoryboard Begins a Storyboard and allocates the animations to the various targeted
objects and properties.

BounceEase An easing function that creates an animated effect such as a bouncing object.

CircleEase An easing function that creates an animation that increases or decreases
speed using a circular function.

ColorAnimation Enables you to animate the value of a Color property between two target
color values over a specified Duration.

DecimalAnimation Enables you to animate the value of a Decimal property between two target
decimal values over a specified Duration.

DoubleAnimation Enables you to animate the value of a Double property between two target
double values over a specified Duration.

DoubleAnimationUsing
KeyFrames

Enables you to animate the value of a Double property along a set of
KeyFrames.

ElasticEase An easing function that creates an elastic-like animation which looks similar to
a spring moving back and forth until it comes to rest.

Int16Animation Enables you to animate the value of an Int16 property between two target
integer values over a specified Duration.

	 Appendix A  Major Namespaces and Classes    293

Class Description

Int32Animation Enables you to animate the value of an Int32 property between two target
integer values over a specified Duration.

LinearDoubleKeyFrame Enables you to animate from the Double value of the preceding key frame to
its own Value.

LinearInt16KeyFrame Enables you to animate from the Int16 value of the preceding key frame to its
own Value.

LinearInt32KeyFrame Enables you to animate from the Int32 value of the preceding key frame to its
own Value.

LinearInt64KeyFrame Enables you to animate from the Int64 value of the preceding key frame to its
own Value.

LinearPointKeyFrame Enables you to animate from the Point value of the preceding key frame to its
own Value using linear interpolation.

PauseStoryboard Pauses a Storyboard.

Point3DAnimation Enables you to animate the value of a Point3D property using linear interpola-
tion between two values.

PointAnimation Enables you to animate the value of a Point property between two target val-
ues using linear interpolation over a specified Duration.

ResumeStoryboard Resumes a paused Storyboard.

StopStoryboard Stops a Storyboard.

Storyboard Contains object and property targeting information for child animations.

Commonly Used Namespaces and Classes in Silverlight
Because the Silverlight namespaces and classes differ from those in WPF, this section of the appendix
lists them separately.

System.Windows.Controls Namespace
This namespace contains classes to create UI controls for an application. Some of the controls defined
in this namespace are available with the Silverlight runtime; others are available only in the Silverlight
SDK. When you use a control from the Silverlight SDK, you must add a reference to the appropriate
assembly. You must also include the XML namespace mapping in XAML. For example, when adding
an AutoCompleteBox control manually, you must also add a reference to the System.Windows.
Controls.Input assembly and include the mapping in XAML. However, when you drag the control from
the toolbox, Visual Studio adds the reference and namespace mappings automatically.

The following table lists some of most commonly used classes in this namespace.

294   Part 5  Appendixes

Class Description

AutoCompleteBox A control that accepts or displays text and provides suggestions based on the
input in the text box

Border A control that draws a border around an object

Button A button control

Calendar A control that enables you to select a date through a calendar display

Canvas A container control in which you can position child elements by using
coordinates relative to the Canvas area

CheckBox A control that a user can select or clear

ChildWindow Provides a window that you can display over a parent window

ComboBox A container control in which you can position child elements by using
coordinates relative to the Canvas area

ComboBoxItem A selectable item contained in a ComboBox control

DataGrid Displays data in a customizable grid

DataGridColumn A DataGrid column

DataGridRow A DataGrid row

DataGridTextColumn A DataGrid column that can contain text

DatePicker Enables a user to choose a date by either typing it into a text field or by using
a drop-down Calendar control

Grid Creates a flexible grid area consisting of columns and rows

HyperlinkButton A button control that displays a hyperlink

Image Displays an image in the .jpeg or .png file formats

Label Displays a caption or other text such as a validation error indicator for an
associated control

ListBox A selection control containing a list of selectable items

MediaElement An object that contains audio, video, or both

Page Encapsulates a page having content and is hosted by a browser, a
NavigationWindow, or a Frame

Panel The base class for all Panel elements

PasswordBox A control that enables you to enter passwords

ProgressBar A control that indicates the progress of a task

RadioButton Enables you to provide a group of options from which a user can select one

RichTextBox A rich-text editing control that supports content such as formatted text

SaveFileDialog Enables the user to specify options for saving a file through a dialog box

StackPanel Arranges child elements into a single stack in a vertical or horizontal fashion

TabControl A control that contains one or more tab pages represented by TabPage
objects

TextBlock A control intended to be lightweight that displays small amounts of text or
flow content

	 Appendix A  Major Namespaces and Classes    295

Class Description

TextBox A control enabling a user to view or edit unformatted text

ToolTip A control that displays information for an element using a small pop-up
window

TreeView A control that displays hierarchical data in a tree structure

TreeViewItem Provides a hierarchical item for the TreeView control that can be selected

UserControl Provides the base class for defining a new control that encapsulates related
existing controls and provides its own logic

System.Windows.Data Namespace
This namespace contains classes that provide support for implementing data binding. Two of the
commonly used classes are listed in the following table.

Class Description

Binding Defines a binding that connects the properties of binding targets and data
sources

RelativeSource Implements a markup extension describing the location of the binding source
relative to the position of the binding target

System.Windows.Documents Namespace
This namespace contains types with text content and document support in Silverlight. A few of the
commonly used classes are listed in the following table.

Class Name Description

Block Provides a base for all content elements that are present at block level

Bold Provides an inline-level content element that causes content to render in bold
format

FontSource A set of one or more fonts created from a stream

Glyphs Renders letters, characters, or symbols in a specific font and style

Hyperlink Facilitates hosting of hyperlinks

Inline Supports inline flow content element behavior

Italic Causes content to render with an italic font style

LineBreak Causes a new line to begin in content when rendered in a text container

Paragraph A block-level content element that groups content into a paragraph

Run A separate section of content that may be formatted or unformatted text

Section A block-level element that groups other Block elements

Span Groups other Inline content elements

296   Part 5  Appendixes

System.Windows.Media Namespace
This namespace defines types that enable content integration. This could include media such as audio,
video, images, and drawn graphics. A few of the commonly used classes are listed in the following
table. Note that most of these classes make use of linear interpolation.

Class Description

ArcSegment An elliptical arc between two points

BezierSegment Creates a cubic Bezier curve that is drawn between two points

DoubleCollection An ordered collection of Double values

FontFamily Creates a family of related fonts

GeometryCollection Creates a collection of Geometry objects

GeometryGroup Creates a composite geometry, composed of other Geometry objects

GradientStop Describes the color and position of an individual transition point in a gradient

GradientStopCollection Creates a collection of GradientStop objects that you can individually access
through an index

ImageBrush Fills an area with an image

ImageSource Provides an object source type for Source and ImageSource

LinearGradientBrush Fills an area with a linear gradient

LineGeometry Creates the geometry of a line

LineSegment Creates a line between two points, which can be part of a PathFigure within
Path data

PathGeometry Creates a complex shape consisting of shapes such as curves, arcs, ellipses,
lines, and so forth

PathSegment Creates a segment of a PathFigure object

PathSegmentCollection Creates a collection of PathSegment objects that you can individually access
by index

PlaneProjection Creates a perspective transform (a 3-D-like effect) on an object

PointCollection Creates a collection of Point values that can be individually accessed by index

RadialGradientBrush Fills an area with a radial gradient

RectangleGeometry Describes a two-dimensional rectangular geometry

RotateTransform Enables you to rotate an object in the clockwise direction around a given
point in a two-dimensional x-y coordinate system

ScaleTransform Enables you to resize an object in the two-dimensional x-y coordinate system

SkewTransform Enables you to skew an objec

SolidColorBrush Fills an area with a solid color

TransformCollection Creates a collection of Transform objects that you can individually access
through an index

	 Appendix A  Major Namespaces and Classes    297

Class Description

TransformGroup Creates a composite Transform composed of other Transform objects

TranslateTransform Enables you to move or relocate an object in the two-dimensional x-y coordinate
system

VideoBrush Fills an area with video content

System.Windows.Media.Effects Namespace
This namespace provides types that you can use to apply visual effects. A few of the commonly used
classes are listed in the following table.

Class Description

BlurEffect Creates an effect that simulates looking at the object through an out-of-focus
lens

DropShadowEffect Creates an effect that renders a shadow behind a visual object with a minor
offset

PixelShader Creates an effect using a HLSL pixel shader

ShaderEffect Creates a custom bitmap effect using a pixel shader

		 299

A ppe n dix B

XAML Editors and Tools

Visual Studio 2010 and/or Expression Blend 4 are commonly used to create and edit XAML
markup. In addition to these, there are a number of editors and tools available today that

make XAML development a breeze.

Editors

Kaxaml
Kaxaml is a lightweight XAML editor created by Robby Ingebretsen. It provides a split view so that
you can see both your XAML and your rendered content. The main Kaxaml website is:

http://www.kaxaml.com/

and you can download it from the following link:

http://www.kaxaml.com/downloads/Kaxaml_1.8.msi

In the words of its creator, Kaxaml is “designed to be a notepad for XAML. It’s supposed to be
simple and lightweight and make it easy to just try something out. It also has some basic support
for IntelliSense and some fun plugins.”

Kaxaml supports .NET Framework 4, WPF, and Silverlight.

The Silverlight version of Kaxaml has basic support for Silverlight. The Silverlight support requires
Silverlight 4 to be installed.

Requirements
Kaxaml is built using WPF. To use it, you need to have the .NET Framework version 4.0 installed on
your computer. If you’re running Windows XP, Windows Vista, or Windows 7, you can get it here.

XAML Cruncher
XAML Cruncher was created by Charles Petzold. XAML Cruncher is more or less a Notepad clone, with
the addition of a large pane to the right that displays the result of parsing the XAML entered into the
text pane.

http://www.kaxaml.com/
http://www.kaxaml.com/downloads/Kaxaml_1.8.msi

300   Part 5 A ppendixes

XAML Cruncher is fast and responsive and automatically re-parses the XAML even as you type. You
can download it from the following link:

http://www.charlespetzold.com/wpf/

XamlPad
XamlPad (xamlpad.exe) is a basic visual editor for XAML produced by Microsoft and distributed
(sporadically) as part of the Windows SDK.

XamlPad is pretty basic. It significantly lacks any facility to open or save XAML files—you just type your
XAML into the text box. It does, however, remember previous content when closed and restarted.

Notable features include the Visual Tree Explorer, which displays the visual tree of your creation.
Select an item on this tree and its dependency properties are displayed in the Property Tree Explorer.

As per MSDN, XAMLPad is installed with Visual Studio 2008 and can be found at Program Files\
Microsoft SDKs\Windows\v6.0A\Bin\XAMLPad.

XamlPadX
XamlPadX is another fast and lightweight tool, but this one packs a few more features. It was created
by Lester Lobo and can be downloaded from his blog.

It features XML syntax highlighting, can collapse tags, and will automatically create closing tags
as you type. If your XAML can’t be parsed, the error message displayed on the status bar includes a
hyperlink to jump straight to the offending code.

Tools

Shazzam
Shazzam is a pixel shader utility for WPF and Silverlight applications. It was created by Walt Ritscher.
Shazzam simplifies editing, testing, and learning pixel shader effects.

Shazzam compiles HLSL code, auto-generates C#/VB shader classes, and creates a testing page for
each effect. You can download it from the following link:

http://shazzam-tool.com

Ab3d.Reader3ds - 3ds file importer
Ab3d.Reader3ds is a class library used to read 3-D models from .3ds files. You can use it in any WPF
application. You can download the tool from the following link:

http://www.wpf-graphics.com/Reader3ds.aspx

http://www.charlespetzold.com/wpf/
http://shazzam-tool.com
http://www.wpf-graphics.com/Reader3ds.aspx

	 Appendix B  XAML Editors and Tools    301

XAML Power Toys 3.5
XAML Power Toys is the brainchild of Karl Shifflett and is a Visual Studio 2008 SP1 Add-In or a Visual
Studio 2010 Add-In that empowers WPF and Silverlight developers while working in the XAML editor.
It provides Line of Business form generation tools, DataForm, DataGrid, Grid tools, and ListView
generation. These tools shorten the XAML form layout time.

You can download it from the following link:

http://karlshifflett.wordpress.com/xaml-power-toys/

Aurora XAML Designer
Aurora XAML Designer is a standalone design application that generates the XAML markup
required by Visual Studio for developing .NET 4.0 applications. It is intended for use in WPF
software applications. Aurora also supports loose XAML files, works in multiple layers and the
output is optimized so that the individual graphics can be easily integrated with .NET code-
behind.

You can download the tool from the following link:

http://www.dotnetuidevelopment.com/auroraxamldesigner.htm

http://karlshifflett.wordpress.com/xaml-power-toys/
http://www.dotnetuidevelopment.com/auroraxamldesigner.htm

	 303

storyboards,  275, 281–283
types of animation,  278–281

annotation features,  190–193
application and content behavior, controlling and
monitoring

classes for,  44
dialog boxes,  44
RangeBase class
key properties,  205
ProgressBar class,  208
Scrollbar class,  206
Slider class,  207

applications
Application.Resources element,  33
deployment, styles and,  118
displaying 3-D graphics in,  262
scope,  129

architecture of WPF vs. Windows Forms,  4
arranging step of the layout system,  130
arrays, creating with markup extensions,  91
artifacts and XAML,  88
Assets folder, creating styles in,  114
ASX playlist file format,  246
attached properties

accessing, from code-behind,  67
creating,  65
defining, using the attribute syntax,  37
definition and naming conventions,  62
read/write and read-only properties, defining,  65
referencing,  35
syntax,  64
when to use,  63

attached routed events,  79
attribute syntax

code to set the value of the Style property using,  88
of object element properties,  36–39
vs. property element syntax, for defining styles,  113

Index

Symbols
{} (braces), use of in XAML,  95
+ (plus) sign,  xvi
| (vertical bar) between menu items,  xvi

A
Ab3d.Reader3ds class library,  300
absolute sizing of Grid columns and rows,  146
absolute URLs in Silverlight,  176
AcceptsReturn dependency property,  182
AcceptsTab dependency property,  182
action controls

ButtonBase class,  172–175
HyperlinkButton,  176
RepeatButton,  177
ToggleButton,  178–181
types of,  171

Add New Item dialog box,  107
AddOwner() dependency property,  52
ADO.NET Entity Framework,  215
Advanced Stream Redirector (ASX) playlist file
format,  246
alignment properties

content alignment,  164
position alignment,  160

AmbientLight object,  262
Ancestor RelativeSource,  219
animation

bouncing ball example,  276
controls,  46
easing functions,  283–285
EventTrigger class,  82
Expression Blend for,  15, 277
namespaces and commonly used classes,  292
process of,  275–277

audio and video

304   Index

audio and video,  246–249
AudioStreamCount and AudioStreamIndex,  248
Author property for sticky notes,  190
automatic sizing of Grid columns and rows,  147
Autoplay property,  248

B
BackEase easing function,  284
Background dependency property,  196, 197
Background property,  39
Base Class Library (BCL),  16, 17
BasedOn attribute,  116
base style defined as a class property,  93
behavior integration with code-behind,  9–12
beveled vertices of shape outlines,  250
Binding markup extension,  94
binding modes, data

Mode property, using,  227
source updates,  228
two way binding with TextBox,  227

binding sources, setting
Ancestor RelativeSource,  219
DataContext property,  217
ElementName property,  218
inheriting the DataContext property from the
parent element,  217
RelativeSource property,  218
Source property,  217
ways to set,  216

bitmap effects,  273
BlockUIContainer elements,  185
BlurEffect class,  271, 272
BlurRadius property,  271
Bold text formatting class,  185
BorderBrush and BorderThickness,  197
Border control,  43, 166, 196
bottom vertical alignment,  162, 164
BounceEase easing function,  284
bouncing ball animation, example,  276
bound data, sorting and grouping,  236–238
bounding box of the layout system,  130
braces {} in XAML,  95
brushes

Brush objects,  256–259
Color property of brush, to fill TextBox
background,  93
ImageBrush,  246
LinearGradientBrush, defining,  102

bubbling,  70–73
BufferingProgress and BufferingTime property,  248
Buffering state of MediaElement class,  249
built-in XAML markup extensions

native vocabulary,  89
x:Array,  91
x:Null,  89
x:Reference,  92
x:Static,  92
x:Type,  94

bulleted lists,  185
business templates and styles,  117
ButtonBase class

Button controls,  43, 75–77, 173–175
ClickMode dependency property,  172
command property,  172
IsPressed property,  173

buttons
adding,  75
background color, changing,  123
Border control, using,  166
Button object, defining in XAML,  7
ColorName property and,  217
defining,  173–175
DockPanel and,  154–156
font size, changing,  120
Grid, adding buttons to,  149
Hidden and Collapsed states, impact of,  169
HorizontalAlignment and VerticalAlignment
dependency properties, applying,  162–164
padding, adding,  167
placement of,  136–138
RepeatButton controls,  177
ToolTip property and,  198
triggering interaction between,  125

C
Calendar control,  42
Camera property,  262
camera types for 3-D graphics,  263
CanPause property,  248
CanRedo dependency property,  183
CanUndo dependency property,  183
Canvas,  135–140
Canvas properties,  135
caption features for sticky notes,  190
center horizontal alignment,  162, 164
CenterOfRotationX, Y, and Z properties,  268

	 controls. See also specific controls

	 Index   305

center vertical alignment,  162, 164
CheckBox control,  180–182
Checked event,  201
Checked ToggleButton event,  179
child Image controls,  134
child object elements,  33
CircleEase easing function,  284
classes. See also specific classes

controls or elements used in WPF,  289–293
DataErrorValidationRule class,  233
DependencyObject class,  52
DependencyProperty class,  51
dialog boxes,  44
EventSetter and EventTrigger,  81
ExceptionValidationRule class,  233
FlowDocument class,  185
markup extension classes,  88
MediaElement class,  248
ObservableCollection class,  241
PagedCollectionView class,  235
RoutedEventArgs class,  74–77
Silverlight, classes supported in,  295
System.Windows.Controls.Control class,  172
System.Windows.Document.Block class,  185
System.Windows.Media.Animation
namespace,  275
System.Windows.Media.Effects namespace,  271
System.Windows.Media.Geometry class,  46
System.Windows.Shapes.Shape class,  46
TranslateTransform class,  46
type converters,  98
UI controls, namespace containing classes
for,  293–295
ValidationRule class,  233
WPF, classes supported in,  290
XmlDataProvider class,  243

Click event,  12, 172, 201, 203–205
closeCommand element,  254
Closed state of MediaElement class,  249
code-behind

accessing a dependency property,  59
accessing an attached property,  67
controlling behavior with,  9–12
for custom dependency properties,  54–58
event handlers, adding and removing with,  77
RepeatButton control Click events,  178
as used in this book,  xv
working with storyboards,  282

code samples. See also examples
downloads for,  xvii
installing,  xvii
using,  xviii

collapsed elements,  168
collection element syntax,  41
collection views,  235–237
ColorAnimation class,  275
ColorName property,  217
Color property of the DropShadowEffect class,  271
columns in the Grid. See Grid
ComboBox, contents list for,  91
ComboBox control,  45
Command dependency property,  200
CommandParameter and CommandTarget,  200
CommonButtonClickEvent,  75
Common Language Runtime (CLR),  16
complex transformations,  260
CompositeTransform,  260
ComputedHorizontalScrollBarVisibility,  209
ComputedVerticalScrollBarVisibility,  209
content

adding to Grid,  149–151
behavior, controlling and monitoring,  44
button content, changing,  174
content alignment properties,  164
content element syntax,  40
integration
namespace defining types of, in Silverlight,  296
namespace defining types of, in WPF,  291

ContextMenu control,  44, 202–205
controls. See also specific controls

action controls,  172–182
application and content behavior, controlling and
monitoring,  44
content alignment controls,  164
control style definitions, decoupled in XAML,  7
control templates,  117
data handling and information management
controls,  45
form controls,  42
graphics and animation controls,  46
image and media controls,  45
layout and positioning controls,  42
MediaElement control,  246
namespaces defining in XAML,  289
PasswordBox control,  189
placement of,  138
position alignment,  162

controls

306   Index

controls,  continued
spacing between,  165
StackPanel controls,  140–143
StickyNoteControl,  190–193
TabPanel control,  157–159
text editing controls,  182–189
UniformGrid control,  151
user interface, making cleaner and more
usable,  43
XAML controls
customized design of,  7
defining and applying a control template to,  9
defining and applying styles to,  8

conversion, data,  228, 231
CornerRadius dependency property,  197
cube, rendering in 3-D,  265
CubicEase easing function,  284
CurrentState property,  248
curves, drawing with the Path element,  253
custom attached properties,  65
custom dependency properties,  52–57
custom dialog boxes,  45
custom markup extensions,  95–98
custom routed events,  78
custom shaders,  273

D
dashes, drawing using the Shape element,  250
data binding. See also markup extensions

binding modes
Mode property, using,  227
source updates,  228
two way binding with TextBox,  227
binding source, setting
Ancestor RelativeSource,  219
DataContext property,  217
ElementName property,  218
inheriting the DataContext property from the

parent element,  217
RelativeSource property,  218
Source property,  217
ways to set,  216
classes supported in Silverlight,  295
classes supported in WPF,  290
collection views,  235–237
components of,  215
data conversion,  231

data sources
databases,  214, 221–226
examples of,  213
objects,  214
services,  214
SharePoint,  214
Visual Studio 2010, creating in,  214
data templating,  230
data validation,  233
description of,  213, 215
hierarchical binding
HierarchicalDataTemplate, using,  238–240
master-detail relationships,  238
ObservableCollection, using,  241
MultiBinding,  221
ObservableCollection, creating and binding
to,  234, 241
sorting and grouping using a
CollectionView,  235–237
support for,  213
XML data, binding to,  243

DataContext property,  217
data conversion, custom,  232
DataErrorValidationRule class,  233
DataGrid

binding, in a Silverlight application,  221–225
creating,  124
and DataForm and DataPager controls,  45

data handling and information management
controls,  45
DataSet, creating data objects with,  214
data-specific controls in Silverlight,  244
DataTriggers,  123
DatePicker control,  42
Deep Exploration,  266
DefaultMetadata property,  51
Delay dependency property,  177
departments, and the master-detail relationship,  238
DependencyObject,  216
dependency properties

AcceptsReturn,  182
AcceptsTab,  182
accessing from code-behind,  59
CanRedo,  183
CanUndo,  183
ClickMode,  172
Command,  172
custom, creating,  52–58

	 examples

	 Index   307

defining,  50
definition and naming conventions,  50
Delay dependency property,  177
dependency Boolean properties,  179
DependencyObject class,  52
DependencyProperty class,  51
GroupName dependency property,  180
HorizontalScrollBarVisibility,  183
Interval dependency property,  177
IsChecked,  179
IsPressed,  173
IsUndoEnabled,  182
NavigateUrl,  176
read-only dependency properties,  62
TargetName dependency property,  176
TextBox dependency properties,  184
UndoLimit dependency property,  183
as used in animation,  275
value precedence,  60–62
VerticalScrollBarVisibility,  183

design and development process, separation of,  14
design patterns,  12
design-time attributes in Silverlight,  25
design-time components in .NET Framework 3.0,  15
dialog boxes,  44
dictionaries

merged resource dictionaries,  108
ResourceDictionary files, defining,  107

DiffuseMaterial object,  262, 265
Direct3D pipeline,  273
direct conversion of property values,  37
DirectionalLight object,  262, 265
Direction property of the DropShadowEffect
class,  272
Discrete keyframes,  279
d: namespace in Silverlight,  25
DockPanel control,  154–156
Document Outline feature,  35
document support,  295
DoubleAnimation class,  275
DoubleAnimationUsingKeyFrames,  280
drawCommands element,  254
DropShadowEffect class,  271
Dynamic Language Runtime (DLR),  16
DynamicResource markup extension,  94
dynamic resources,  105, 106
dynamic user interface, working with,  7. See
also user interface (UI)

E
easing functions,  283–285
editors. See also Expression Blend (Microsoft), Visual
Studio 2010

Kaxaml,  299
XAML Cruncher,  299
XamlPad,  300
XamlPadX,  300

Effect class,  271
ElasticEase easing function,  284
ElementName property,  218
elements. See also specific elements

controlling height and width of,  160
target types for, specifying with markup
extensions,  94
triggers and,  120

ellipse, bouncing animation,  284
EllipseGeometry class,  256
ellipses, drawing,  250
EmissiveMaterial,  262
Employee classes,  236
employees, and the master-detail relationship,  238
empty element tag syntax,  34
EnableNavigation parameter,  176
Entity Data Model,  215, 223
enumeration values, PlacementMode,  202
escape sequences,  95
EvenOdd fill rule,  254
events

attached routed events,  79
event handlers, adding and removing using
code-behind,  77
EventSetter and EventTrigger classes,  81, 82
event triggers,  121
routed events,  69–79
SelectionChanged event,  183
syntax,  68
terminology,  68
TextChanged event,  183

examples
attached routed event, custom,  80
Blur effect,  272
bouncing ball animation,  276
bound data, sorting and grouping,  236–238
brushes, creating and modifying,  257
buttons
background color, changing,  123
Click event of a Button control,  12

examples

308   Index

examples,  continued
defining,  173–175
DockPanel, using,  154–156
font size, changing,  120
Hidden and Collapsed states, showing the im-

pact of,  169
HorizontalAlignment and VerticalAlignment de-

pendency properties, applying,  162–164
multiple button controls using a single event

handler,  75–77
padding, adding,  167
placement of,  136–138
RepeatButton controls,  177
ToolTip property and,  198
trigger interaction between,  125
using Border control with,  166
CheckBox controls, defining,  180–182
ContextMenu,  203
controls, placement of,  138
data conversion, custom,  232
DataGrid, binding in a Silverlight
application,  221–225
DataTriggers,  123
dependency property, custom,  54–58
DropShadow effect,  272
elements, controlling height and width of,  160
ellipses, bouncing,  284
ellipses, drawing,  250
EventTrigger, defining for the Rectangle,  82
event triggers,  121
FlowDirection property,  143
Grid
absolute sizing,  147
automatic sizing,  148
content, adding,  149
Grid example,  144
proportional sizing,  146
ImageBrush, using to paint an Image,  246
implicit styles, using,  115
inheriting styles,  116
jpg. files, displaying,  245
KeyFrame animations,  279–281
LinearGradientBrush defining,  102
ListBox, changing color of,  122
markup extensions, using to specify a null
value,  89
media applications in Silverlight,  247
menu creation,  201
merged resource dictionary, creating,  108
mouse click, custom,  203–205

MultiBinding,  221
MultiTriggers,  123
ObservableCollection, binding master-detail
data,  241
ObservableCollection, creating and binding
to,  234
PasswordBox control,  189
polyline, drawing,  251
progress bars,  208
property triggers,  120
Rectangle, changing color when loaded,  121
rectangles, drawing,  251
resources, defining,  102–106
resources, scope and hierarchy of,  109–111
routed event, custom,  79
RoutedEvents WPF application project,  71
scrollbars, horizontal and vertical,  206
Silverlight, binding elements in S,  96
StackPanels, nested,  141
sticky note feature,  191–193
storyboards, working with,  281–283
StrokeEndLineCap property,  252
Style property, setting the value of using
attribute syntax,  88
styles, defining,  112–114
TabPanel,  157–159
text alignment using a style,  118
TextBlock control,  196
TextBox
control attributes,  186–188
labels, defining,  194
two-way data binding with,  227
3-D cube, rendering,  265
3-D effects using PlaneProjection,  268
TreeView instance, constructing and binding,  239
triangle, drawing,  251, 264
UI creation, code snippets for,  30–32
UniformGrid,  151
validation,  233
window size, changing,  131
x:Array, creating contents lists for ListBox or
ComboBox,  91
XML data, binding to,  243
x:Type extension, using,  94

exceptions. See troubleshooting
ExceptionValidationRule class,  233
Explicit property,  228
explicit styles,  115
ExponentialEase easing function,  284

	 graphics

	 Index   309

Expression Blend (Microsoft)
complex XAML creation,  175
creaing a keyframe-based animation in,  281
description of,  15
for storyboards and animation,  277
triggers in,  124

eXtensible Application Markup Language. See XAML

F
FieldOfView property,  263
figureDescription element,  254
Figure element,  185
Figure formatting, class for,  185
file formats for images,  245
filling ProgressBar,  208
Fill property for the Shape element,  249
fillRule element,  254
filtering data, using the Filter property,  237
FindAncestor string token,  219
Floater element,  185
FlowDirection property,  143
FlowDocument class,  185
FlowDocument element,  185
font characteristics,  196
FontSize property,  50
form controls

action controls
ButtonBase class,  172–175
HyperlinkButton,  176
RepeatButton,  177
ToggleButton,  178–181
PasswordBox,  189
StickyNoteControl,  190–193
text editing controls
RichTextBox,  185
TextBox,  184
TextBox and RichTextBox example,  186–188
TextBoxBase class,  182
types of,  42, 171

FrameworkElement.FlowDirection property,  143, 153
functional controls

application and content behavior, controlling and
monitoring
RangeBase class,  205–208
ScrollViewer,  209
types of controls,  44
dialog boxes,  44
purpose and types of,  171

user interface, improving
Border control,  196
ContextMenu,  202–205
Label control,  194
Menu controls,  199–201
techniques for,  43
TextBlock control,  195
ToolTip,  197–199

G
generic.xaml file,  119
geometric shapes,  46
GeometryGroup class,  256
GeometryModel3D classes,  262, 263
GeometryModel3D object,  265
geometry objects,  256
GetMetadata() dependency property,  52
GetValue, SetValue, and ClearValue methods,  52
globalization,  129
GlobalOffsetX, Y, and Z properties,  268
global storyboards,  283
glow effects,  273
graphics

brushes,  256–259
controls,  46
drawing, 2-D
Ellipse,  250
Path element, to draw curves and lines,  253
Polygon,  251
Polyline,  251
Rectangle,  251
RoundedRectangle,  251
Shape elements, common attributes,  249
geometries,  256
pixel shaders,  271–274
3-D graphics in Silverlight,  268–270
3-D graphics in WPF
components of,  261
MatrixCamera,  263
OrthographicCamera,  263
PerspectiveCamera,  263
shapes, defining,  263–267
transforms
complex transformations,  260
RotateTransform,  259
ScaleTransform,  260
SkewTransform,  260
transform classes,  259
XAML capabilities,  249

Grid

310   Index

Grid
adding content to,  149–152
background colors, alternating,  209
background painting with ImageBrush,  246
DataContext on,  217
description of,  143, 144
Grid element,  27, 63
sizing columns and rows,  145–148
UniformGrid,  151

GroupName dependency property,  180

H
Handled property,  74
handlerType parameter,  78
Height property,  154, 160, 249
hidden elements,  168
Hidden state,  169
hierarchical data binding

HierarchicalDataTemplate, using,  238–240
master-detail relationships,  238
ObservableCollection,  241

High Level Shading Language (HLSL),  273
HorizontalAlignment control,  162
HorizontalContentAlignment control,  164
HorizontalOffset dependency property,  198, 202,
209
HorizontalScrollBarVisibility,  183, 209
HTML5, and multimedia integration,  14
HyperlinkButton class,  176
Hyperlink formatting, class for,  185

I
Icon dependency property,  200
identification, registering and identifying,  52
IEnumerable interface,  234
images

displaying a .jpg file, example,  245
ImageBrush,  246, 257
image controls,  45
image formats,  45, 245

implicit styles,  115
information management controls,  45
inheriting styles,  116
InkCanvas control,  190
inline code in XAML,  12
inline coding, support for,  13

Inline flow content elements, class for,  185
InLines dependency property,  195
InlineUIContainer formatting, class for,  185
INotifyCollectionChanged interface,  234, 235
InputGestureText dependency property,  200
installing the code samples used in the book,  xvii
interaction triggers,  124
interface. See dynamic user interface
Intermediate ToggleButton state,  180
Interval dependency property,  177
intLevel string token,  219
invisible controls,  169
IsCheckable and IsChecked,  179, 200
IScrollInfo interface,  142
IsDirectionReversed dependency property,  207
IsDocumentEnabled property,  185
IsEnabled dependency property,  62
IsFocused dependency property,  62, 207
IsMouseOver dependency property,  62
IsMuted property,  248
ISO/MPEG Layer-3 compliant data stream input
(MP3) file format,  246
IsOpen property,  198, 202
IsPressed dependency property,  200
IsThreeState dependency Boolean property,  179
IsUndoEnabled dependency property,  182
Italic formatting, class for,  185
ItemHeight and ItemWidth properties,  154
ItemsControl,  234

J
jpg. files, displaying,  245

K
Kaxaml editor,  300
key-frame animation,  279–281, 285

L
Label control,  43, 194
language-independent execution model,  16
LargeChange dependency property,  205
layout control

alignment properties,  162–165
attributes, defining,  33
the layout system,  130–135

	 ModelVisual3D object

	 Index   311

Margin property,  165
nested child object elements,  33
Padding property,  167
sizing properties,  160
System.Window.Controls.Panel base class,  42
Visibility property,  168–170
XAML layout and positioning controls
Canvas control,  135–140
DockPanel control,  154–156
Grid control,  143–151
StackPanel control,  140–143
TabPanel control,  157–159
UniformGrid control,  151
WrapPanel control,  153

left horizontal alignment,  162, 164
libraries

generic.xaml files, locating,  119
in .NET Framework 3.0,  4, 41
Reader3ds class library,  300

light applied to 3-D objects,  262
LinearDoubleKeyFrame,  280
LinearGradientBrush defining,  102
LinearGradientBrush object,  257
linear interpolation animation,  278
Linear keyframes,  279
LineBreak formatting, class for,  185
LineGeometry class,  256
lines, drawing with the Path element,  253
ListBox

changing color of,  122
contents list for,  91
data templating and,  228, 230
ListBox control,  45
ListBoxItem element,  185
using styles and resources with,  118

List elements,  185
lists, inserting as flow content,  185
ListViewItem element,  185
LocalOffsetX, Y, and Z properties,  268
LookDirection property,  263
LostFocus property,  228

M
Margin property,  165
markup compatibility (mc:) namespace,  26
markup extensions

built-in,  89–94
custom,  95–98

DynamicResource in WPF,  105
escape sequences,  95
StaticResource as,  102
syntax,  37
vs. type converters,  98
as used in XAML,  88
in WPF and Silverlight,  94

master-detail relationships,  238, 241
Material classes,  262
MatrixCamera,  263
MatrixTransform,  260
MaxHeight and MaxWidth properties,  160
Maximum dependency property,  206
MaxLength property,  184, 189
MaxLines dependency property,  184
mc: namespace in Silverlight,  26
measuring step of the layout system,  130, 132
media

audio and video,  246–249
controls,  45
images,  245
MediaElement class
MediaElement control,  46, 246
properties and methods of,  248
states of,  249
Media Integration Layer (MIL),  4
media types supported by WPF and
Silverlight,  246
namespace for, in Silverlight,  296
namespace for, in WPF,  291
Silverlight, for building media applications,  13

Menu control,  44, 199–201
merged resource dictionaries,  108
meshes for complex objects, resources for,  266
MeshGeometry3D,  264, 265
metadata, registering and identifying,  52
Microsoft DirectX SDK,  274
Microsoft Expression Blend. See Expression Blend
(Microsoft)
Microsoft Open Specialization Program (OSP),  14
MinHeight and MinWidth properties,  160
Minimum dependency property,  206
MinLines dependency property,  184
mitered vertices of shape outlines,  250
mode changes,  129
Model3D class,  262
Model3DGroup class,  263
models to convert to XAML,  266
ModelVisual3D object,  265

Mode property, using for data binding

312   Index

Mode property, using for data binding,  227
mouse click, custom,  203–205
moveCommand element,  254
MP3 file format,  246
MultiBinding,  221
MultiScaleImage control,  46
MultiTriggers,  122
MVVM (model-view-view-model) design pattern

data binding and,  221–226
vs. MVC and MVP patterns,  12
understanding, resources for,  xiv

N
Name property,  51
namespaces. See also specific namespaces

defaults,  24
key features of,  25
prefixes for,  23
for Silverlight applications,  25–27, 293–297
System.Collections.ObjectModel namespace,  234
System.Windows.Markup namespace,  88, 98
System.Windows.Media.Animation classes,  275
System.Windows.Media.Effects, classes in,  271
System.Windows namespace,  28
used in WPF,  289–293
for WF activities applications,  27
and XML namespaces, comparison of,  23
x: namespace,  24

NavigateUrl dependency property,  176
nested object elements,  33
.NET Framework

data binding, support for,  213
design-time components,  15
developer and designer tools for,  14
execution model, based on applications and
services,  16
libraries,  4, 41
new components in,  3
runtime cross-platform components,  16
XAML as declarative language for,  4

nodes in XAML elements,  33
NonZero fill rule,  254
null values, using markup extensions to specify,  89
numbered lists,  185

O
object elements

brushes supported in,  256
consistency of attributes, maintaining,  33
object element properties,  35–40
use of, in XAML files,  33

objects
as data sources,  214
DependencyObject,  216
light objects,  262
TargetType objects,  117

ObservableCollection, creating and binding to,  234,
241
OneTime binding mode,  227
OneWay binding mode,  227
OneWayToSource binding mode,  227
Opacity property,  250, 271
open/close tag syntax,  34
OpenFileDialog class,  44
Opening state of MediaElement class,  249
Orientation dependency property,  206, 207
OriginalSource property,  74
OrthographicCamera,  263
OSP (Microsoft Open Specialization Program),  14
outlines of shapes, width of,  250
OverrideMetadata() dependency property,  52
ownerType parameter,  78
OwnerType property,  51

P
Padding dependency property,  197
Padding property,  167
PagedCollectionView class,  235
Panel.ZIndex attached property,  138
Paragraph elements,  185
parent-child entities, as master-detail
relationship,  238
PasswordBox control,  189
Path element, to draw curves and lines,  253
PathGeometry class,  256
Path markup mini-language, elements available
in,  254
Paused state of MediaElement class,  249
PerspectiveCamera,  263
pixel shaders,  271–274
pixel shader utility,  300
Placement attached property,  197

	 resources

	 Index   313

Placement dependency property,  202
PlacementRectangle dependency property,  202
PlacementTarget properties,  197, 198, 202
PlaneProjection class properties,  268–270
Playing state of MediaElement class,  249
plug-ins, Silverlight applications as,  13
+ (plus) sign,  xvi
PointAnimation class,  275
PointLight object,  262
polygon, drawing,  251
polyline, drawing,  251
PopUp control,  43
position alignment properties,  162
positioning. See layout control
Position property of PerspectiveCamera,  263
Positions property,  264
PowerEase easing function,  284
precedence for dependency property values,  60–62
prefixes for XAML namespaces,  23
PrintDialog class,  44
programmatically created resources,  104
ProgressBar control,  44, 208
properties. See also specific properties

alignment properties,  162–165
attached properties,  62–67
canvas properties,  135
DataContext property,  217
dependency properties,  50–62
of the DropShadowEffect class,  271
ElementName property,  218
Explicit property,  228
Filter property,  237
FrameworkElement.FlowDirection property,  143,
153
Grid properties,  144, 149
ItemHeight and ItemWidth properties,  154
LostFocus property,  228
Margin property,  165
of the MenuItem class,  200
object element properties,  35–40
Padding property,  167
PlaneProjection class properties,  268
PropertyChanged property,  228
property values, assigning,  95
RangeBase class,  205
RelativeSource property,  218
sizing properties,  160
Source property,  217
TargetType property,  113
TextBlock,  195

TextWrapping property,  133
ToolTipService, attached properties of,  197
ValidateOnDataErrors property,  233
Visibility property,  168–170
ZIndex property,  135

property element name
defining using the attribute syntax,  37
using collection element syntax,  41
using content element syntax,  40
using the property element syntax,  40

property element syntax,  39, 113
PropertyGroupDescription object,  237
property triggers,  120
PropertyType property,  51
proportional sizing of Grid columns and rows,  145
ProvideValue() method,  97

R
RadialGradientBrush object,  258
RadioButton control,  180
RangeBase class

key properties,  205
ProgressBar class,  208
Scrollbar class,  206
Slider class,  207

ReachFramework.dll assembly,  191
read-only dependency properties,  62
ReadOnly property,  52
read/write and read-only attached properties,  64
rectangles

changing color of,  121
drawing,  251
RectangleGeometry class,  256

referencing static resources,  104
referencing, using markup extensions,  92
Register() dependency properties,  52
RelativeSource property,  218
RepeatButton class,  177–179
repeating pattern ProgressBar,  208
resources

dynamic resources,  105
how they work,  106
with a ListBox,  118
merged resource dictionaries,  108
ResourceDictionary files, defining,  107
scope and hierarchy of,  109–111
static resources
defining programmatically,  104

resources

314   Index

resources,  continued
defining, using XAML,  102–104
description of,  102
styles defined in,  114
troubleshooting,  126
when to use static vs. dynamic,  106

RIAs (Rich Internet Applications),  13
right horizontal alignment,  162, 164
right mouse click, custom,  203–205
Role dependency property,  200
root elements of XAML files,  22, 33
RotateTransform,  259
RotationX, Y, and Z properties,  268
RoundedRectangle, drawing,  251
rounded vertices of shape outlines,  250
RoutedEventArgs class,  74–77
routed events (attached events),  , 35, 69–74, 79
routingStrategy parameter,  78
rows in the Grid. See Grid
Run formatting, class for,  185
runtime changes,  129
runtime cross-platform components,  16

S
sampletextblock TextBlock control,  51
SaveFileDialog class,  44
ScaleTransform,  260
ScrollableHeight dependency property,  209
ScrollableWidth dependency property,  209
ScrollBar and Scrollviewer controls,  44
Scrollbar class,  206–208
ScrollViewer control,  209
sdk: namespace in Silverlight,  26
Section elements,  185
SecurePasswork property,  189
security in XAML,  99
SelectedText property,  184
SelectionChanged event,  183
SelectionLength property,  184
Selection property,  185
SelectionStart property,  184
services

as data sources,  214
for binding data from a database, in
Silverlight,  221
XAML,  99

Setter element,  114
ShaderEffect class,  271

shaders, description of,  271
shaders, pixel,  271–274
ShadowDepth property of the DropShadowEffect
class,  272
Shape elements, common attributes of,  249
shapes

namespace defining shapes used in XAML,  291
of 3-D objects, defining,  263–267

SharePoint as data source,  214
Shazzam utility,  273, 300
Silverlight

applications
default XAML files in,  21
root element,  22
binding a DataGrid in,  221–225
classes supported in,  295
ContextMenu for,  203–205
custom markup extensions, support for,  95–97
custom routed events and,  78
data access strategies in,  215
data-specific controls, support for,  244
easing functions supported in,  284
EnableNavigation parameter,  176
as enterprise platform,  13
grouping functionality, support for,  235
image formats supported,  45, 245
Kaxaml editor and,  299
Label controls in,  195
markup extensions used in,  94
multibinding in,  221
namespaces
and classes commonly used in,  293–297
designer (d:) namespace,  25
markup compatibility (mc:) namespace,  26
Silverlight software development kit (sdk:)

namespace,  26
Silverlight Toolkit (toolkit:) namespace,  27
presentation framework,  28–30, 53
routed events, support for,  70
security in,  99
services for binding data from a database,  221
shading effects in,  273
Silverlight Toolkit styles,  117
as subset of WPF,  41
TabControl in,  159
3-D graphics capabilities,  46
triggers in,  124
understanding, resources for,  xiv
visibility properties in,  169

sizing of Grid columns and rows,  145–148

	 System.Xaml assembly

	 Index   315

sizing properties,  160
SkewTransform,  260
sliders

horizontal and vertical,  207
Slider class,  207
Slider controls,  44

SmallChange dependency property,  206
SolidColorBrush object,  257
Sort Descriptions collection,  236
Source property,  74, 217, 248
source updates,  228
Span formatting, class for,  185
SpecularMaterial,  262
spell checker and spelling error notification,  42
Spline keyframes,  279
SpotLight object,  262
SSN property, custom,  55
StackPanel controls,  140–143
StackPanel, rendering a 3-D effect to,  268
star-shaped buttons,  175
StartAnnotation method,  191
StaticResource markup extension,  94
static resources

defining in XAML,  33
defining programmatically,  104
defining, using XAML,  102–104
vs. dynamic resources, when to use,  106

static values, producing with markup extensions,  92
StatusBar control,  44
StaysOpenOnClick dependency property,  201
StaysOpen property,  202
StickyNoteControl,  190–193
Stopped state of MediaElement class,  249
storyboards

for creating animation,  275
defining in styles,  282
Storyboard Picker,  277
using Expression Blend for,  277
working with,  281

stretch horizontal alignment,  162, 164
Stretch property,  248
stretch vertical alignment,  162, 164
strings

attributes as,  37
manipulation in XAML,  89
string tokens,  219
string values for assigning property values,  95

StrokeDashCap property,  250
StrokeEndLineCap property,  250, 252
StrokeLineJoin property,  250

Stroke property for the Shape element,  250
StrokeThickness property,  250
structural overview of XAML,  6
styles

business templates and,  117
vs. control templates,  117
defining and applying to XAML controls,  8
defining storyboards in,  282
defining with the Style element,  112–114
generic.xaml file,  119
implicit styles,  115
inheriting styles,  116
with a ListBox,  118
ready-made, downloadable styles,  117
Silverlight Toolkit styles,  117
Style property, setting the value of,  88
and TargetType objects,  117
text alignment and,  118
troubleshooting,  126
when to use,  111

SubmenuOpened and SubmenuClosed events,  201
syntax

for attached properties,  64
collection element syntax,  41
content element syntax,  40
for defining styles,  113
for event handling,  68
of markup extensions,  88
object element syntax, brushes supported in,  256
property element syntax,  39
for the RelativeSource property,  218

System.Activities.Presentation.View (sapv:)
namespace,  27
System.Collections.ObjectModel namespace,  234
system requirements to complete exercises,  xvi
System.Window.Controls.Panel base class,  42
System.Window.Markup namespace,  98
System.Windows.Controls.Canvas control,  135
System.Windows.Controls.Control class,  172
System.Windows.Controls.Panel,  170
System.Windows.Controls.Validation class,  64
System.Windows.Document.Block class,  185
System.Windows.Markup namespace,  88
System.Windows.Media.Animation namespace,  275
System.Windows.Media.Effects, classes in,  271
System.Windows.Media.Geometry class,  46
System.Windows.MessageBox class,  44
System.Windows namespace,  28
System.Windows.Shapes.Shape class,  46
System.Xaml assembly,  99

TabControl objects

316   Index

T
TabControl objects,  45, 157
TableCell element,  185
Table elements,  185
TabPanel control,  157–159
TargetName dependency property,  176
target properties, for data binding,  215
TargetType objects,  117
TargetType property,  113
target types for elements, markup extensions
and,  94
TemplateBinding markup extension,  95
templates

business templates and styles,  117
ControlTemplate,  172
control template, defining and applying to XAML
controls,  9
control templates vs. styles,  117
data templating,  230
HierarchicalDataTemplate,  238–240

TextAlignment dependency property,  184, 195
text alignment using styles,  118
TextBlock controls,  43, 195–197, 220, 281
TextBox

labels, defining,  194
and RichTextBox, example,  186–189
TextBox controls,  42, 184
two way data binding with,  227

TextChanged event,  183
text content, types of in Silverlight,  295
TextDecorations dependency property,  195
Text dependency property,  184, 195
text editing controls. See also TextBox

RichTextBox,  185
TextBox and RichTextBox example,  186–188
TextBoxBase class,  182

TextEffects dependency property,  195
text insertion, class for,  185
TextTrimming dependency property,  195
TextWrapping dependency property,  184, 195
TextWrapping property,  133
themes vs. styles,  117
3-D graphics

3-D cube, rendering,  265
pixel shaders,  271–274
in Silverlight,  268–270
surfaces and visual effects,  46
in WPF
complex objects, creating,  266
components and classes,  261

MatrixCamera,  263
OrthographicCamera,  263
PerspectiveCamera,  263
shapes, defining,  263–267

Thumb control,  44
ToggleButton control,  43, 178–181
ToolBarPanel (for WPF),  44
toolkit: namespace in Silverlight,  27
tools to convert .3ds models to XAML,  266
ToolTip control,  197–199
tooltips, properties for displaying,  64
top vertical alignment,  162, 164
Track dependency property,  206
transforms

to alter an element's coordinate system,  46
complex transformations,  260
RotateTransform,  259
ScaleTransform,  260
SkewTransform,  260

translation transformation,  46
transparency factor for Shape,  250
TreeView control,  45
TreeView instance, constructing and binding
to,  239–241
triangles

as basis of models in WPF,  264
drawing, using the Polygon element,  251
rendering, using TriangleIndices property,  264

triggers
DataTriggers,  123
event triggers,  121
interaction triggers,  124
MultiTriggers,  122
property triggers,  120
troubleshooting,  126
when to use,  120

troubleshooting resources, styles, and triggers,  126
tunneling,  70–72
2-D graphics

ellipse,  250
Path element, to draw curves and lines,  253
Polygon,  251
Polyline,  251
rectangle,  251
RoundedRectangle, drawing,  251
Shape elements, common attributes,  249
surfaces and visual effects,  46

TwoWay binding mode,  227
two way data binding with TextBox,  227

	 WF 4.0 (Windows Workflow Foundation)

	 Index   317

type converters
to assign property values,  95
vs. markup extensions,  98
TypeConverter attribute,  37

typeName string token,  219
type system for XAML,  99

U
UI. See user interface (UI)
UIAnnotationtype assembly,  191
UIElement controls, embedding,  185
Unchecked event,  201
Unchecked ToggleButton event,  180
Underline formatting, class for,  185
UndoLimit dependency property,  183
UniformGrid control,  151
untrusted XAML,  99
UpdateSourceTrigger property,  228
UpDirection property,  263
usability

controls to improve, types of,  171
dimensions supported with XAML,  18
the measure of,  129

user experience (UX),  111
user interface (UI)

controls
application and content behavior, controlling,  44
categories of,  41
data handling and information management

controls,  45
form controls,  42
functional controls,  43
graphics and animation controls,  46
image and media controls,  45
layout and positioning controls,  42
namespace to create classes for,  293–295
default Grid element,  27
defining,  30–34, 129
dialog boxes,  44
making cleaner and more usable,  43
object element properties,  35–40
object elements,  34

utilities, Shazzam,  300

V
ValidateOnDataErrors property,  233
ValidateValueCallback property,  52

validation
data validation,  228, 229
errors, displaying a summary of,  45
System.Windows.Controls.Validation class,  64

ValidationRule class,  233
Value dependency property,  205
value precedence of dependency properties,  60–62
VerticalAlignment control,  162
| (vertical bar) between menu items,  xvi
VerticalContentAlignment control,  164
VerticalOffset dependency property,  198, 202, 209
VerticalScrollBarVisibility dependency property,  183,
209
video and audio,  246–249
VideoBrush object,  258
Viewer3ds,  266
Viewport3D control,  262
Viewport3D object,  265
ViewportHeight dependency property,  209
ViewportSize dependency property,  206
ViewportWidth dependency property,  209
Visibility property,  168–170
visible elements,  168
visual effects, in Silverlight,  297
Visual Studio 2010

creating data sources in,  214
Expression Blend and,  15
object logical tree, viewing,  35
XamlPad editor in,  300

Visual Tree Explorer,  300
volume, increasing/decreasing,  177
Volume property,  248

W
WCF (Windows Communication Foundation)

description of,  15
services, as data source,  214

web page targets,  176
WF 4.0 (Windows Workflow Foundation)

Activity Designer
library applications, default XAML files in,  21
templates in Visual Studio,  22
applications
namespaces,  27
rendering,  5
root element,  22
code-behind files for,  10
description of,  15

width and height properties

318   Index

width and height properties,  154
width of elements,  250
Width property,  160, 250
window size, changing,  131
Windows Media Audio and video file formats,  246
WPF (Windows Presentation Foundation)

applications
default XAML files in,  20
rendering,  5
root element,  22
code-behind files for,  10
CollectionView classes supported in,  235
ContextMenu for,  202
description of,  3, 4, 15
image formats supported,  45
markup extensions used in,  94
namespaces
and commonly used classes,  289–293
default,  24
presentation framework,  28–30, 53
routing support,  70
Silverlight as subset of,  41
understanding, resources for,  xiv

WrapPanel layout and positioning control,  133, 153

X
XAML (eXtensible Application Markup Language)

behavior control in,  9–12
as case sensitive,  21
controls, customized design of,  9
as declarative language for .NET applications,  4
description of,  3, 4, 17
as dialect of XML,  20
dynamic user interface,  7
editors
Kaxaml,  300
XAML Cruncher,  299
XamlPad and XamlPadX,  300
files
hierarchical order in,  35
root elements,  22
full class implementation of,  10
inline code,  12
layout and positioning controls,  135–140
namespaces
defaults,  24
key features of,  25
prefixes for,  23

for Silverlight applications,  25–27
for WF activities applications,  27
and XML namespaces, comparison of,  23
x: namespace,  24
.NET framework and,  14–17
as part of Microsoft OSP,  6
presentation framework
user interface, defining,  30–34
for WPF and Silverlight,  28–30
root elements,  22
security in,  99
services,  99
Silverlight, as used in,  13
structure of,  6, 32
style definitions, decoupled,  8
styles, defining,  113

XamlParseException,  126
x:Array markup extension,  91
x:Class attribute,  25
<x:code> element,  12
x:Code directive,  13
x:Key attribute,  25, 115
XML

and XAML namespaces, comparison of,  23
XAML as dialect of,  20
XML data, binding to,  243

XMLBinderDemo in Silverlight,  96–98
XmlDataProvider class,  243
x:Name attribute,  25
x: namespace,  24
x:Null attribute,  25
x:Null markup extension,  89
x:Reference markup extension,  92
x:Static markup extension,  92
x:Type markup extension,  94
x, y, and z coordinates

CenterOfRotationX, Y, and Z properties,  268
GlobalOffsetX, Y, and Z properties,  268
LocalOffsetX, Y, and Z properties,  268
positioning controls with,  135
RotationX, Y, and Z properties,  268
in 3-D graphics,  264

Z
Zam3D,  266
ZIndex property,  135
ZIndex values,  138
zoom-in/zoom-out of windows or images,  177

About the Authors

Mamta Dalal has over 10 years of experience in the IT industry. She is an
active contributor to the .NET community and has written several articles on
C#, .NET, Silverlight, and WPF on various websites. When not experimenting
with technology, she likes to read and write fiction. She is also a travel
enthusiast and loves fantasizing about her next trip.

Ashish Ghoda is the founder and president of Technology Opinion
LLC, and an accomplished author with over 15 years of experience in
enterprise architecture, application development, and technical and financial
management. He is also a director at a Big Four accounting firm and adjunct
professor at NJIT and UMUC.

What do
you think of
this book?
We want to hear from you!
To participate in a brief online survey, please visit:

Tell us how well this book meets your needs —what works effectively, and what we can
do better. Your feedback will help us continually improve our books and learning
resources for you.

Thank you in advance for your input!

microsoft.com/learning/booksurvey

SurvPage_Corp_02.indd 1 5/19/2011 4:18:12 PM

	Introduction
	www.ebooksave.com
	XAML Basics
	Introducing XAML
	Windows Presentation Foundation (WPF)
	XAML—A Declarative Language for .NET Applications
	XAML Is Part of the Microsoft Open Specification Program (OSP)
	XAML Structure
	Dynamic User Interface
	Decouple Control Style Definitions
	Customized Design of XAML Controls
	Integration with Code-Behind to Control Behavior
	Inline Code

	Silverlight
	The Microsoft .NET Framework
	Design-Time Components
	Runtime Cross-Platform Components

	Summary

	Object Elements and Attributes
	XAML Is XML
	Root Element
	XAML Namespaces
	Default User Interface Element

	Introducing the XAML Presentation Framework
	WPF and Silverlight Presentation Framework
	Defining User Interfaces with XAML

	XAML User Interface Controls
	Layout and Positioning Controls
	Form Controls
	Functional Controls
	Data Handling and Information Management Controls
	Image and Media Controls
	Graphics and Animation Controls

	Summary

	XAML Properties and Events
	XAML Properties
	XAML Events
	The Syntax
	The EventSetter and EventTrigger Classes

	Summary

	Enhancing User Experience
	Markup Extensions and Other Features
	Markup Extensions
	Built-In XAML Markup Extensions
	XAML Markup Extensions Used in WPF and Silverlight
	Escape Sequences
	Custom Markup Extensions
	Type Converters versus Markup Extensions
	XAML Services
	Security in XAML
	Summary

	Resources, Styles, and Triggers
	Resources
	Types of Resources
	Static Resources
	Defining Static Resources Using XAML
	Defining Static Resources Programmatically
	Dynamic Resources
	When to Use Which Resource
	How Static and Dynamic Resources Work

	Defining ResourceDictionary Files
	Merged Resource Dictionaries
	Scope and Hierarchy of Resources
	Styles
	Defining Styles
	Implicit Styles
	Inheriting Styles
	The Silverlight Toolkit Styles
	Styles vs. Control Templates
	More on Styles
	The generic.xaml File

	Triggers
	Troubleshooting Resources, Styles, and Triggers
	Summary

	XAML User Interface Controls
	Layout and Positioning System
	The Layout System
	XAML Layout and Positioning Controls
	Common Sizing and Positioning Properties
	Summary

	Form and Functional Controls
	Action Controls
	The ButtonBase Class

	Text Editing Controls
	The TextBoxBase Class

	Functional Controls to Improve Usability
	Functional Controls to Control and Monitor Behavior
	The RangeBase Class

	Summary

	Content Integration and Animation
	Data Binding
	Data Sources
	Data Binding
	Setting the Binding Source
	MultiBinding
	Binding to Data from a Database

	Binding Modes
	Example of Two-Way Binding with TextBox
	Source Updates

	Data Templating, Conversion, and Validation
	Data Templating
	Data Conversion
	Data Validation

	Creating and Binding to an ObservableCollection
	Collection Views
	Sorting and Grouping Using a CollectionView

	Hierarchical Binding
	Using HierarchicalDataTemplate
	Using ObservableCollection for Hierarchical Binding

	Binding to XML Data
	Summary

	Media, Graphics, and Animation
	Media
	Images
	Audio and Video

	Graphics
	Ellipse
	Rectangle
	Rounded Rectangle
	Polygon
	Polyline
	Path
	Geometries
	Brushes
	Transforms

	3-D Graphics
	3-D Graphics in WPF
	Defining Shapes
	3-D Graphics in Silverlight
	Pixel Shaders

	Animations and Storyboards
	Summary

	Appendixes
	Major Namespaces and Classes
	Commonly Used Namespaces and Classes in WPF
	Commonly Used Namespaces and Classes in Silverlight

	XAML Editors and Tools
	Editors
	Kaxaml
	XAML Cruncher
	XamlPad
	XamlPadX

	Tools

	Index
	_GoBack
	_GoBack
	OLE_LINK3
	OLE_LINK4
	_GoBack
	OLE_LINK3
	OLE_LINK4
	OLE_LINK1
	OLE_LINK2
	OLE_LINK3
	OLE_LINK4
	_GoBack
	_GoBack
	_GoBack
	IDX-APP-C-0003
	_GoBack

