
ptg8106388

ptg8106388

Programming in
CoffeeScript

ptg8106388

informit.com/devlibrary

Developer’s
Library

Developer’s Library books are designed to provide practicing programmers with unique,
high-quality references and tutorials on the programming languages and technologies
they use in their daily work.

All books in the Developer’s Library are written by expert technology practitioners who
are especially skilled at organizing and presenting information in a way that’s useful
for other programmers.

PHP & MySQL Web Development
Luke Welling & Laura Thomson
ISBN 978-0-672-32916-6

MySQL
Paul DuBois
ISBN-13: 978-0-672-32938-8

Linux Kernel Development
Robert Love
ISBN-13: 978-0-672-32946-3

Python Essential Reference
David Beazley
ISBN-13: 978-0-672-32862-6

Programming in Objective-C
Stephen G. Kochan
ISBN-13: 978-0-321-56615-7

PostgreSQL
Korry Douglas
ISBN-13: 978-0-672-33015-5

Developer’s Library books are available at most retail and online bookstores, as well as
by subscription from Safari Books Online at safari.informit.com

EssEntial rEfErEncEs for programming profEssionals

Developer’s Library

Key titles include some of the best, most widely acclaimed books within their
topic areas:

ptg8106388

Programming in
CoffeeScript

Mark Bates

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Cape Town • Sydney • Tokyo • Singapore • Mexico City

ptg8106388

programming in coffeescript
Copyright © 2012 by Pearson Education, Inc.

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system,
or transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise,
without written permission from the publisher. No patent liability is assumed with respect
to the use of the information contained herein. Although every precaution has been taken in
the preparation of this book, the publisher and author assume no responsibility for errors or
omissions. Nor is any liability assumed for damages resulting from the use of the informa-
tion contained herein.

ISBN-13: 978-0-32-182010-5
ISBN-10: 0-32-182010-X

Library of Congress Cataloging-in-Publication Data is on file

trademarks
All terms mentioned in this book that are known to be trademarks or service marks have
been appropriately capitalized. Pearson cannot attest to the accuracy of this information.
Use of a term in this book should not be regarded as affecting the validity of any trademark
or service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as possible,
but no warranty or fitness is implied. The information provided is on an “as is” basis. The
author and the publisher shall have neither liability nor responsibility to any person or entity
with respect to any loss or damages arising from the information contained in this book.

Bulk sales
Pearson offers excellent discounts on this book when ordered in quantity for bulk purchases
or special sales. For more information, please contact

U.s. corporate and government sales
1-800-382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact

international sales
international@pearsoned.com

Editor-in-chief
Mark Taub

acquisitions Editor
Debra Williams
Cauley

senior
Development
Editor
Chris Zahn

managing Editor
Kristy Hart

project Editor
Andy Beaster

Copy Editor
Barbara Hacha

indexer
Tim Wright

proofreader
Debbie Williams

technical Editors
Stuart Garner
Dan Pickett

publishing
coordinator
Olivia Basegio

Book Designer
Gary Adair

compositor
Nonie Ratcliff

ptg8106388

v

Rachel, Dylan, and Leo: My life for you.

v

ptg8106388

contents at a glance

Preface xv

part i: core coffeescript

1 Getting Started 3

2 The Basics 13

3 Control Structures 33

4 Functions and Arguments 65

5 Collections and Iterations 81

6 Classes 123

part ii: coffeescript in practice

7 Cake and Cakefiles 161

8 Testing with Jasmine 171

9 Intro to Node.js 193

10 Example: Todo List Part 1 (Server-side) 217

11 Example: Todo List Part 2 (Client-side
w/ jQuery) 237

12 Example: Todo List Part 3 (Client-side
w/ Backbone.js) 255

Index 277

ptg8106388

table of contents

Dedication v

 acknowledgments xii

about the author xiv

 preface xv
What Is CoffeeScript? xvii
Who Is This Book For? xix
How to Read This Book xix
How This Book Is Organized xxi

Part I: Core CoffeeScript xxii
Part II: CoffeeScript in Practice xxii

Installing CoffeeScript xxiii
How to Run the Examples xxiii
Notes xxiv

part i: core coffeescript

1 getting started 3
The CoffeeScript REPL 3
In-Browser Compilation 6
Caveats 7
Command-Line Compilation 7

The compile Flag 7
The CoffeeScript CLI 8

The output Flag 9
The bare Flag 9
The print Flag 10
The watch Flag 10
Executing CoffeeScript Files 11
Other Options 11

Wrapping Up 12
Notes 12

2 the Basics 13
Syntax 13

Significant Whitespace 14
Function Keyword 16
Parentheses 16

ptg8106388

Scope and Variables 18
Variable Scope in JavaScript 18
Variable Scope in CoffeeScript 19
The Anonymous Wrapper Function 20

Interpolation 23
String Interpolation 23
Interpolated Strings 23
Literal Strings 25
Heredocs 28
Comments 29
Inline Comments 29
Block Comments 30

Extended Regular Expressions 31
Wrapping Up 31
Notes 32

3 control structures 33
Operators and Aliases 33

Arithmetic 33
Assignment 35
Comparison 39
String 42
The Existential Operator 43
Aliases 46
The is and isnt Aliases 47
The not Alias 48
The and and or Aliases 49
The Boolean Aliases 50
The @ Alias 51

If/Unless 52
The if Statement 53
The if/else Statement 54
The if/else if Statement 56
The unless Statement 58
Inline Conditionals 60

Switch/Case Statements 60
Wrapping Up 63
Notes 63

viii Programming in CoffeeScript

ptg8106388

ixContents

4 functions and arguments 65
Function Basics 68
Arguments 70
Default Arguments 72
Splats... 75
Wrapping Up 79
Notes 79

5 collections and iterations 81
Arrays 81

Testing Inclusion 83

Swapping Assignment 85

Multiple Assignment aka Destructing Assignment 86

Ranges 90

Slicing Arrays 92

Replacing Array Values 94

Injecting Values 95

Objects/Hashes 96

Getting/Setting Attributes 101

Destructuring Assignment 103

Loops and Iteration 105

Iterating Arrays 105

The by Keyword 106

The when Keyword 107

Iterating Objects 108

The by Keyword 109

The when Keyword 109

The own Keyword 110

while Loops 113

until Loops 114

Comprehensions 116

The do Keyword 119

Wrapping Up 120
Notes 121

6 classes 123
Defining Classes 123
Defining Functions 125

The constructor Function 126

ptg8106388

Scope in Classes 127
Extending Classes 137
Class-Level Functions 145
Prototype Functions 150
Binding (-> Versus =>) 151
Wrapping Up 158
Notes 158

part ii: coffeescript in practice

7 cake and cakefiles 161
Getting Started 161
Creating Cake Tasks 162
Running Cake Tasks 163
Using Options 163
Invoking Other Tasks 167
Wrapping Up 169
Notes 170

8 testing with Jasmine 171
Installing Jasmine 172
Setting Up Jasmine 172
Introduction to Jasmine 175
Unit Testing 176
Before and After 181
Custom Matchers 187
Wrapping Up 190
Notes 191

9 intro to node.js 193
What Is Node.js? 193
Installing Node 194
Getting Started 195
Streaming Responses 197
Building a CoffeeScript Server 199
Trying Out the Server 214
Wrapping Up 215
Notes 215

x Programming in CoffeeScript

ptg8106388

10 Example: todo list part 1 (server-side) 217
Installing and Setting Up Express 218
Setting Up MongoDB Using Mongoose 222
Writing the Todo API 225
Querying with Mongoose 226

Finding All Todos 227
Creating New Todos 228
Getting, Updating, and Destroying a Todo 230
Cleaning Up the Controller 232

Wrapping Up 236
Notes 236

11 Example: todo list part 2 (client-side w/ jQuery) 237
Priming the HTML with Twitter Bootstrap 237
Interacting with jQuery 240
Hooking Up the New Todo Form 242

Cleaning Up the Todo List with Underscore.js
Templates 244

Listing Existing Todos 247
Updating Todos 248
Deleting Todos 252
Wrapping Up 253
Notes 253

12 Example: todo list part 3 (client-side w/
Backbone.js) 255
What Is Backbone.js? 255

Cleaning Up 256
Setting Up Backbone.js 256
Writing our Todo Model and Collection 260
Listing Todos Using a View 263
Creating New Todos 265
A View per Todo 268

Updating and Validating Models from Views 270
Validation 272

Deleting Models from Views 273
Wrapping Up 275
Notes 275

 index 277

xiContents

ptg8106388

acknowledgments1

I said it in my first book, and I’ll say it again here: Writing a book is incredibly hard work!
Please make sure no one ever tells you differently. If they do, they are either an incredible liar
or Stephen King. Fortunately for me I fall somewhere in the middle.

Writing a book is simultaneously a very independent and solitary activity, as well as a team
effort. After I put the kids to bed, I head down to my office, crack open a few Guinesses (is the
plural Guinei?), crank up the tunes, and work, by myself, into the wee hours of the morning.
When I finish a chapter, I send it off to my editor, who then sends it off to a bunch of people
who take what I have written and improve it in ways that I didn’t know possible. Whether
it’s as simple as correcting grammar or spelling mistakes, to something more complex such as
helping to improve the flow of the book, or point out where example code could be improved
to further clarify a point. So, while the writing may be done alone in a dark room by yours
truly, the final product is the culmination of many people’s hard work.

In this section of the book, I get the chance to say thank you to those who help shape, define,
and otherwise ensure that the book you are currently holding (or downloading) is of the
highest quality it can be. So without further adieu I’m going to thank people Academy Awards
style, knowing that I’m sure I’ve left someone off the list, for which I am incredibly sorry.

First and foremost I have to thank my beautiful wife, Rachel. Rachel is one of the most support-
ive and strong people I have ever met. Each night I get to crawl into bed beside her and each
morning I get the joy of waking up next to her. I have the pleasure of staring into her eyes and
seeing unconditional love there. I also get the encouragement to write books, start my own
business, and to do whatever it is that will make me happiest in life. She gave me two hand-
some sons and in return I’ve given her bad jokes and my used cell phones. I clearly got the
better end of the bargain in this marriage, and for that I am eternally grateful.

Next, I would like to thank my sons, Dylan and Leo. While neither of them directly contrib-
uted to this book, they do make life worth living and they give my life an energy and excite-
ment that only children can. I love you boys both so very much.

Before moving off the subject of my family, I would like to thank my parents (especially you
Mom!) and the rest of my family for always being there to both simultaneously support me and
cut me down to size. I love you all.

Next I have to thank Debra Williams Cauley. Debra was my editor, handler, and psychiatrist on
my first book, Distributed Programming with Ruby. I can only hope that other authors have the
fortune to work with an editor as good as Debra. She truly has the patience of a saint.

1 Many at my publishing house thought that my acknowledgments section, as well as other parts of this
book, were a bit risqué, so the original has been edited down to what you see here. I apologize if you
are offended by anything I wrote, that was never my intention. Apparently, I’ve been told, my sense of
humor is not appreciated by all. If you do like bad fart jokes, then please follow me on Twitter
@markbates.

ptg8106388

xiiiAcknowledgments

I hope that should I ever write another book, Debra will be right there with me. I can’t imagine
writing a book without her. Thank you, Debra.

When writing a technical book, there are people that are very important to the process; they
are the technical reviewers. A technical reviewer’s job is to read each chapter and critique it
from a technical standpoint, as well as answer the question, “Does it make sense to learn this
here?” These reviewers are there to act as your audience. They are technically minded and
know their subject. Therefore, the feedback that you get from them is incredibly important.
On this book there have a been a few technical reviewers. But the two I really want to call out
are Stuart Garner and Dan Pickett. Stuart and Dan went way above the call of duty on this
book and were by no means afraid of telling me when I did or said something boneheaded.
They received frantic phone calls and emails from me at all hours of the day and night and
responded with amazing feedback. If I didn’t want all those sweet royalty checks all to myself
I might’ve been tempted to cut them in. (Don’t worry, they got paid for their work. They each
received a coupon for one free hour of “Mark” time.) Thank you Dan and Stuart, and the rest of
the technical reviewers, for all of your hard work.

There are people who contribute to a book like this in different ways. Someone has to design
the cover, index the book, write the language (CoffeeScript), or do any of the other countless
jobs involved in something like this. Here is a list of some of those people (that I know about),
in no particular order: Jeremey Ashkenas, Trevor Burnham, Dan Fishman, Chris Zahn, Gregg
Pollack, Gary Adair, Sandra Schroeder, Obie Fernandez, Kristy Hart, Andy Beaster, Barbara
Hacha, Tim Wright, Debbie Williams, Brian France, Vanessa Evans, Dan Scherf, Gary Adair,
Nonie Ratcliff, and Kim Boedigheimer.

I would also like to thank everyone I have seen since I first starting writing this book who
have heard me blather on for hours about it. I know it’s not that interesting to most people,
but damn, do I love to hear the sound of my voice. Thank you all for not punching me in the
mouth, like I probably deserve.

Finally, I would like to say thank you to you, the reader. Thank you for purchasing this book
and helping to support people such as myself who, at the end of the day, really just want to
help out our fellow developers by sharing the knowledge we have with the rest of the world.
It’s for you that I have put the countless hours of work and toil into this book. I hope that by
the time you close the cover, you will have gained a better understanding of CoffeeScript and
how it can impact your development. Good luck.

ptg8106388

about the author
Mark Bates is the founder and chief architect of the Boston-based consulting company Meta42
Labs. Mark spends his days focusing on new application development and consulting for his
clients. At night he writes books, raises kids, and occasionally he forms a band and “tries to
make it.”

Mark has been writing web applications, in one form or another, since 1996. His career
started as a UI developer writing HTML and JavaScript applications before moving toward the
middle(ware) with Java and Ruby. Nowadays, Mark spends his days cheating on Ruby with his
new mistress, CoffeeScript.

Always wanting to share his wisdom, or more correctly just wanting to hear the sound of
his own voice, Mark has spoken at several high-profile conferences, including RubyConf,
RailsConf, and jQueryConf. Mark has also taught classes on Ruby and Ruby on Rails. In 2009
Mark’s first (surprisingly not his last!) book, Distributed Programming with Ruby, was published
by Addison-Wesley.

Mark lives just outside of Boston with his wife, Rachel, and their two sons, Dylan and Leo.
Mark can be found on the web at: http://www.markbates.com, http://twitter.com/markbates,
and http://github.com/markbates.

http://www.markbates.com
http://twitter.com/markbates
http://github.com/markbates

ptg8106388

preface

I started my professional development career in 1999, when I first was paid a salary to be a
developer. (I don’t count the few years before that when I was just having fun playing around
on the Web.) In 1999 the Web was a scary place. HTML files were loaded down with font
and table tags. CSS was just coming on the scene. JavaScript1 was only a few years old, and a
battlefield of various implementations existed across the major browsers. Sure, you could write
some JavaScript to do something in one browser, but would it work in another browser? Prob-
ably not. Because of that, JavaScript got a bad name in the early 2000s.

In the middle of the 2000s two important things happened that helped improve JavaScript in
the eyes of web developers. The first was AJAX.2 AJAX enabled developers to make web pages
more interactive, and faster, by making remote calls back to the server in the background
without end users having to refresh their browsers.

The second was the popularity of JavaScript libraries, such as Prototype,3 that made writing
cross-browser JavaScript much simpler. You could use AJAX to make your applications more
responsive and easier to use and a library like Prototype to make sure it worked across major
browsers.

In 2010, and certainly in 2011, the Web started evolving into “single page” applications. These
applications were driven through the use of JavaScript frameworks, such as Backbone.js.4 These
frameworks allowed the use of an MVC5 design pattern using JavaScript. Whole applications
would be built in JavaScript and then downloaded and executed in the end user’s browser. This
all made for incredibly responsive and rich client-side applications.

On the developer’s side, however, things weren’t all roses. Although the frameworks and tools
made writing these sorts of applications easier, JavaScript itself proved to be the pain point.
JavaScript is at times both an incredibly powerful language and an incredibly frustrating one. It
is full of paradoxes and design traps that can quickly make your code unmanageable and bug
ridden.

So what were developers to do? They want to build these great new applications, but the only
universally accepted browser language is JavaScript. They could certainly write these applica-
tions in Flash,6 but that would require plug-ins, and it won’t work on some platforms, such as
iOS7 devices.

I first discovered CoffeeScript8 in October 2010. CoffeeScript promised to help tame
JavaScript and to expose the best parts of the quirky language that is JavaScript. It presented
a cleaner syntax, like forgoing most punctuation in favor of significant whitespace and protec-
tion from those design traps that awaited JavaScript developers at every turn, such as poor
scoping and misuse of the comparison operators. Best of all, it did all this while compiling to
standard JavaScript that could then be executed in any browser or other JavaScript runtime
environment.

When I first used CoffeeScript, the language was still very rough around the edges, even at
version 0.9.4. I used it on a project for a client to try it out to see whether it was worth the

ptg8106388

xvi Programming in CoffeeScript

little bit of hype I was hearing. Unfortunately, at the time two things caused me to push it
aside. The first was that it was still not quite ready for prime time. There were too many bugs
and missing features.

The second reason why I didn’t use CoffeeScript was because the app I was trying it out on
wasn’t a very JavaScript-heavy application. I was mostly doing a few validation checks and an
occasional bit of AJAX, which Ruby on Rails9 helped me do with very little, if any, JavaScript
code.

So what made me come back to CoffeeScript? Some six months after I had tried out Coffee-
Script for the first time, it was announced10 that Rails 3.1 would ship with CoffeeScript as the
default JavaScript engine. Like most developers I was taken aback by this. I had tried Coffee-
Script and didn’t think it was that great. What were they thinking?

Unlike a lot of my fellow developers, I took the time to have another look at CoffeeScript. Six
months is a very long time in the development of any project. CoffeeScript had come a long,
long way. I decided to try it again, this time on an application that had some pretty heavy
JavaScript. Within a few days of using CoffeeScript again, I became not just a convert but an
advocate of the language.

I’m not going to tell you exactly what it was that converted me, or try to tell you why I love it.
I want you to form your own opinion. Over the course of this book I hope to both convert you
and make you an advocate of this wonderful little language for reasons that are all your own.
But I will give you a little sneak peak at what’s to come. Here’s a bit of CoffeeScript, from an
actual application, followed by its equivalent JavaScript. Enjoy!

Example: (source: sneak_peak.coffee)

@updateAvatars = ->
 names = $('.avatar[data-name]').map -> $(this).data('name')
 Utils.findAvatar(name) for name in $.unique(names)

Example: (source: sneak_peak.js)

(function() {

 this.updateAvatars = function() {
 var name, names, _i, _len, _ref, _results;
 names = $('.avatar[data-name]').map(function() {
 return $(this).data('name');
 });
 _ref = $.unique(names);
 _results = [];
 for (_i = 0, _len = _ref.length; _i < _len; _i++) {
 name = _ref[_i];
 _results.push(Utils.findAvatar(name));

ptg8106388

xviiPreface

 }
 return _results;
 };

}).call(this);

What is coffeescript?
CoffeeScript is a language that compiles down to JavaScript. Not very informative, I know,
but it’s what it does. CoffeeScript was developed to closely resemble languages such as Ruby11

and Python.12 It was designed to help developers write their JavaScript more efficiently. By
removing unnecessary punctuation like braces, semicolons, and so on, and by using significant
whitespace to replace those characters, you can quickly focus on the code at hand—and not on
making sure you have all your curly braces closed.

Chances are you would write the following JavaScript like this:

Example: (source: punctuation.js)

(function() {

 if (something === something_else) {
 console.log('do something');
 } else {
 console.log('do something else');
 }

}).call(this);

So why not write it like this:

Example: (source: punctuation.coffee)

if something is something_else
 console.log 'do something'
else
 console.log 'do something else'

CoffeeScript also gives you several shortcuts to write rather complicated sections of JavaScript
with just a short code snippet. Take, for example, this code that lets you loop through the
values in an array, without worrying about their indices:

ptg8106388

xxxvvviiiiiiiii Programming in CoffeeScript

Example: (source: array.coffee)

for name in array
 console.log name

Example: (source: array.js)

(function() {
 var name, _i, _len;

 for (_i = 0, _len = array.length; _i < _len; _i++) {
 name = array[_i];
 console.log(name);
 }

}).call(this);

In addition to the sugary sweet syntax improvements CoffeeScript gives you, it also helps you
write better JavaScript code by doing things such as helping you scope your variables and
classes appropriately, making sure you use the appropriate comparison operators, and much
more, as you’ll see during the course of reading this book.

CoffeeScript, Ruby, and Python often get mentioned together in the same breath, and for good
reason. CoffeeScript was directly modeled on the terseness and the simple syntax that these
languages have to offer. Because of this, CoffeeScript has a much more modern “feel” than
JavaScript does, which was modeled on languages such as Java13 and C++.14 Like JavaScript,
CoffeeScript can be used in any programming environment. Whether you are writing your
application using Ruby, Python, PHP,15 Java, or .Net,16 it doesn’t matter. The compiled JavaS-
cript will work with them all.

Because CoffeeScript compiles down to JavaScript, you can still use any and all of the JavaScript
libraries you currently use. You can use jQuery,17 Zepto,18 Backbone,19 Jasmine,20 and the like,
and they’ll all just work. You don’t hear that too often when talking about new languages.

This all sounds great, I hear you saying, but what are the downsides of using CoffeeScript over
just plain old JavaScript? This is a great question. The answer is, not much. First, although
CoffeeScript is a really nice way to write your JavaScript, it does not let you do anything you
couldn’t already do with JavaScript. I still can’t, for example, create a JavaScript version of
Ruby’s famous method_missing.21 The biggest downside would have to be that it’s another
language for you or the members of your team to learn. Fortunately, this is easily rectified. As
you’ll see, CoffeeScript is incredibly easy to learn.

Finally, should CoffeeScript, for whatever reason, not be right for you or your project, you
can take the generated JavaScript and work from there. So really, you have nothing to lose by
giving CoffeeScript a try in your next project, or even in your current project (CoffeeScript and
JavaScript play very well with each other).

ptg8106388

xixPreface

Who is this Book for?
This book is for intermediate- to advanced-level JavaScript developers. There are several reasons
why I don’t think this book is good for those unfamiliar with JavaScript, or for those who only
have a passing acquaintance.

First, this book is not going to teach you about JavaScript. This is a book about CoffeeScript.
Along the way you are certainly going to learn a few bits and bobs about JavaScript (and
CoffeeScript has a knack for making you learn more about JavaScript), but we are not going to
start at the beginning of JavaScript and work our way up.

Example: What does this code do? (source: example.js)

(function() {
 var array, index, _i, _len;

 array = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10];

 for (_i = 0, _len = array.length; _i < _len; _i++) {
 index = array[_i];
 console.log(index);
 }

}).call(this);

If you don’t know what the preceding code example does, I recommend that you stop reading
here. Don’t worry, I really want you to come back and keep reading. I just think that you will
get the most out of this book if you already have a good understanding of JavaScript. I will
be covering certain basic areas of JavaScript as we go along, usually to help illustrate a point
or help you to better understand what CoffeeScript is doing. Despite covering certain areas of
JavaScript for clarity, it really is important that you have a fundamental grasp of JavaScript
before we continue. So please, go find a good book on JavaScript (there are plenty out there),
read it, and then join me along our journey to become CoffeeScript gurus.

For those of you who are already JavaScript rock stars, let’s step up your game. This book is
going to teach you how to write cleaner, more succinct, and better JavaScript using the sweet
sugary goodness that is CoffeeScript.

How to read this Book
I have to tried to present the material in this book to help you form building blocks to learning
CoffeeScript. The chapters, in Part I, should be read in order because each chapter will build on
the concepts that we have learned in previous chapters—so please, no jumping around.

As we go through each chapter, you’ll notice a few things at work.

ptg8106388

xx Programming in CoffeeScript

First, whenever I introduce some outside library, idea, or concept, I include a footnote to a
website where you can learn further information about that subject. Although I would love to
be able to talk your ear off about things like Ruby, there is not enough space in this book to do
that. So if I mention something and you want to find out more about it before continuing, go
to the bookmarked site, quench your thirst for knowledge, and come back to the book.

Second, as we go through each chapter I will sometimes walk you through the wrong solu-
tion to a problem first. After you see the wrong way to do something, we can then examine it,
understand it, and then work out the correct solution to the problem at hand. A great example
of this is in Chapter 1, “Getting Started,” when we talk about the different ways to compile
your CoffeeScript to JavaScript.

At some points in the book you will come across something like this:

tip some helpful tip here.
These are little tips and tricks that I think might be of value to you.

Finally, throughout the book I will present you with two or three code blocks at a time. I will
first give you the CoffeeScript example followed by the compiled (JavaScript) version of the
same example. If there is any output from the example (and if I think it’s worth showing) I will
include the output from the example, as well. Here’s what that looks like:

Example: (source: example.coffee)

array = [1..10]

for index in array
 console.log index

Example: (source: example.js)

(function() {
 var array, index, _i, _len;

 array = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10];

 for (_i = 0, _len = array.length; _i < _len; _i++) {
 index = array[_i];
 console.log(index);
 }

}).call(this);

ptg8106388

xxiPreface

Output: (source: example.coffee)

1
2
3
4
5
6
7
8
9
10

Sometimes there are errors that I want to show you. Here is an example:

Example: (source: oops.coffee)

array = [1..10]

oops! index in array
 console.log index

Output: (source: oops.coffee)

Error: In content/preface/oops.coffee, Parse error on line 3: Unexpected 'UNARY'
 at Object.parseError (/usr/local/lib/node_modules/coffee-script/lib/coffee-script/
➥parser.js:470:11)
 at Object.parse (/usr/local/lib/node_modules/coffee-script/lib/coffee-script/
➥parser.js:546:22)
 at /usr/local/lib/node_modules/coffee-script/lib/coffee-script/coffee-script.
➥js:40:22
 at Object.run (/usr/local/lib/node_modules/coffee-script/lib/coffee-script/
➥coffee-script.js:68:34)
 at /usr/local/lib/node_modules/coffee-script/lib/coffee-script/command.js:135:29
 at /usr/local/lib/node_modules/coffee-script/lib/coffee-script/command.js:110:18
 at [object Object].<anonymous> (fs.js:114:5)
 at [object Object].emit (events.js:64:17)
 at afterRead (fs.js:1081:12)
 at Object.wrapper [as oncomplete] (fs.js:252:17)

How this Book is organized
In an effort to help you get the most from this book, I have split it into two distinct parts.

ptg8106388

xxii Programming in CoffeeScript

part i: core coffeescript
The first part of this book is designed to cover the entire CoffeeScript language from top to
bottom. By the end of this part of the book, you should be fully armed to attack any Coffee-
Script project that comes your way, including those in the second part of this book.

Chapter 1, “Getting Started,” introduces the various ways CoffeeScript can be compiled and
run. It also introduces the powerful coffee command-line utility and REPL that ships with
CoffeeScript.

In Chapter 2, “The Basics,” we start to explore what makes CoffeeScript different from
JavaScript. Talk of syntax, variables, scope, and more will lay a strong foundation for the rest
of the book.

Chapter 3, “Control Structures,” focuses on an important part of any language, control struc-
tures such as if and else. You will also learn the differences between some operators in
CoffeeScript and those in JavaScript.

Chapter 4, “Functions and Arguments,” covers the ins and outs of functions in CoffeeScript.
We’ll talk about defining functions, calling functions, and a few extras such as default argu-
ments and splats.

From arrays to objects, Chapter 5, “Collections and Iterations,” shows you how to use, manipu-
late, and iterate over collection objects in CoffeeScript.

Chapter 6, “Classes,” ends the first part of the book by covering classes in CoffeeScript. Define
new classes, extend existing classes, override functions in super classes, and more.

part ii: coffeescript in practice
The second part of this book focuses on using CoffeeScript in practical examples. Through
learning about some of the ecosystem that surrounds CoffeeScript, as well as building a full
application, by the end of Part II your CoffeeScript skills should be well honed.

Chapter 7, “Cake and Cakefiles,” covers the Cake tool that ships with CoffeeScript. You can
use this little tool for creating build scripts, test scripts, and more. We’ll cover all that it has to
offer.

Testing is a very important part of software development, and Chapter 8, “Testing with
Jasmine,” gives a quick tour through one of the more popular CoffeeScript/JavaScript testing
libraries, Jasmine. This chapter will exercise the popular pattern of test-driven development by
writing tests first for a calculator class.

Chapter 9, “Intro to Node.js,” is a quick introduction to the event-driven server-side frame-
work, Node.js. In this chapter we will use CoffeeScript to build a simple HTTP server that will
automatically compile CoffeeScript files into JavaScript files as they are requested by the web
browser.

ptg8106388

xxiiiPreface

In Chapter 10, “Example: Todo List Part 1 (Server-side),” we will be building the server-side part
of a todo list application. Building on Chapter 9, we will build an API using the Express.js web
framework and the Mongoose ORM for MongoDB.

In Chapter 11, “Example: Todo List Part 2 (Client-side w/ jQuery),” we will build a client for
the todo list API we built in Chapter 10 using the popular jQuery libary.

Finally, in Chapter 12, “Example: Todo List Part 3 (Client-side w/ Backbone.js),” we will rebuild
the client for the todo list application, this time forsaking jQuery in favor of the client-side
framework, Backbone.js.

installing coffeescript
I am not a big fan of having installation instructions in books, mostly because by the time
the book hits the shelf, the installation instructions are out of date. However, people—and by
people, I mean those who publish books—believe that there should be an installation section
for books. So this is mine.

Installing CoffeeScript is pretty easy. The easiest way to install it is to go to
http://www.coffeescript.org and look at the installation instructions there.

I believe the maintainers of projects like CoffeeScript and Node22 are the best people to keep
the installation instructions up to date for their projects, and their websites are a great place to
find those instructions.

At the time of writing, CoffeeScript was at version: 1.2.0. All examples in this book should work
on that version.

How to run the Examples
You will be able to find and download all the original source code for this book at https://
github.com/markbates/Programming-In-CoffeeScript. As you’ll see, all the examples tell you
which example file to look to. The example files will be in a folder relevant to their respective
chapter.

Unless otherwise indicated, you should be able to run the examples in your terminal, like so:

> coffee example.coffee

So now that you know how to run the examples in this book, as soon as you have CoffeeScript
installed, why don’t you meet me at Chapter 1 and we can get started? See you there.

http://www.coffeescript.org
https://github.com/markbates/Programming-In-CoffeeScript
https://github.com/markbates/Programming-In-CoffeeScript

ptg8106388

xxiv Programming in CoffeeScript

notes
 1. http://en.wikipedia.org/wiki/JavaScript

 2. http://en.wikipedia.org/wiki/Ajax_(programming)

 3. http://www.prototypejs.org/

 4. http://documentcloud.github.com/backbone/

 5. http://en.wikipedia.org/wiki/Model–view–controller

 6. http://www.adobe.com/

 7. http://www.apple.com/ios/

 8. http://www.coffeescript.org

 9. http://www.rubyonrails.org

 10. http://www.rubyinside.com/rails-3-1-adopts-coffeescript-jquery-sass-and-
controversy-4669.html

 11. http://en.wikipedia.org/wiki/Ruby_(programming_language)

 12. http://en.wikipedia.org/wiki/Python_(programming_language)

 13. http://en.wikipedia.org/wiki/Java_(programming_language)

 14. http://en.wikipedia.org/wiki/C%2B%2B

 15. http://en.wikipedia.org/wiki/Php

 16. http://en.wikipedia.org/wiki/.NET_Framework

 17. http://www.jquery.com

 18. https://github.com/madrobby/zepto

 19. http://documentcloud.github.com/backbone

 20. http://pivotal.github.com/jasmine/

 21. http://ruby-doc.org/docs/ProgrammingRuby/html/ref_c_object.html#Object.method_
missing

 22. http://nodejs.org

http://en.wikipedia.org/wiki/JavaScript
http://en.wikipedia.org/wiki/Ajax_(programming)
http://www.prototypejs.org/
http://documentcloud.github.com/backbone/
http://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller
http://www.adobe.com/
http://www.apple.com/ios/
http://www.coffeescript.org
http://www.rubyonrails.org
http://www.rubyinside.com/rails-3-1-adopts-coffeescript-jquery-sass-and-controversy-4669.html
http://www.rubyinside.com/rails-3-1-adopts-coffeescript-jquery-sass-and-controversy-4669.html
http://en.wikipedia.org/wiki/Ruby_(programming_language)
http://en.wikipedia.org/wiki/Python_(programming_language)
http://en.wikipedia.org/wiki/Java_(programming_language)
http://en.wikipedia.org/wiki/C%2B%2B
http://en.wikipedia.org/wiki/Php
http://en.wikipedia.org/wiki/.NET_Framework
http://www.jquery.com
https://github.com/madrobby/zepto
http://documentcloud.github.com/backbone
http://pivotal.github.com/jasmine/
http://ruby-doc.org/docs/ProgrammingRuby/html/ref_c_object.html#Object.method_missing
http://ruby-doc.org/docs/ProgrammingRuby/html/ref_c_object.html#Object.method_missing
http://nodejs.org

ptg8106388

Part I
Core CoffeeScript

In this first half of the book we are going to cover everything you’ve ever wanted to know, and
everything you’ll ever need to know, about CoffeeScript. By the end of this part of the book,
you should be ready to code in CoffeeScript, be comfortable with the toolset it provides, and
understand the ins and outs of the language itself.

We’ll start at the very beginning with the basics, such as learning how to run and compile a
CoffeeScript file; then we’ll move on to learn the syntax of CoffeeScript. After we feel comfort-
able with syntax, we’ll cover control structures, functions, collections, and, finally, classes.

Each chapter will build on what we’ve learned in previous chapters. Along the way you’ll learn
about all the great tricks that CoffeeScript has for helping you write fantastic JavaScript-based
applications. So come on, we’ve got a lot to cover—let’s get started!

ptg8106388

This page intentionally left blank

ptg8106388

1
Getting Started

Now that you’ve read the Preface and have CoffeeScript installed, what do you say we
actually start using it? In this chapter we walk through a few ways that CoffeeScript can be
executed and compiled.

I’m going to cover some good ways and some not so good ways to compile and execute your
code. Although we won’t be covering the inner workings of CoffeeScript in this chapter, it is
definitely an invaluable read as you start to work with CoffeeScript. Knowing the ins and outs
of the command-line tools that ship with CoffeeScript will make your life easier, not only as
you read this book, but as you start developing your first CoffeeScript applications.

Even if you have played around already with the CoffeeScript command-line tools, there is a
good chance you might learn something new in this chapter, so please take a few minutes to
read it before jumping straight to Chapter 2, “The Basics.”

The CoffeeScript REPL
CoffeeScript ships with a really powerful REPL1, otherwise known as an interactive console,
ready to go so you can start playing with CoffeeScript immediately.

Getting started with the REPL is incredibly easy. Simply type the following into your favorite
Terminal window:

> coffee

Then you should see a prompt that looks something like the following:

coffee>

If you see the coffee prompt, we are ready to start playing around with some CoffeeScript.

The alternative for starting the REPL is this:

> coffee -i

ptg8106388

4 Chapter 1 Getting Started

or if you really like typing a lot:

> coffee --interactive

Let’s start with a basic example. Type the following into the console:

coffee> 2 + 2

You should be presented with the following answer:

coffee> 4

Congratulations, you’ve just written your very first piece of CoffeeScript!

Okay, let’s try something a little more interesting—something more CoffeeScript-esque. We
won’t worry too much about what is happening in the following code (we’ll cover it all in
greater length later); let’s just get it to run.

Example: (source: repl1.coffee)

a = [1..10]
b = (x * x for x in a)
console.log b

Output: (source: repl1.coffee)

[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

Now that is a lot nicer chunk of CoffeeScript, isn’t it? Briefly, we created a new array and filled
it with the integers 1 to 10. Then we looped through the numbers in the array, a, multiplied
them by themselves and created a second array, b, containing those new values. Wow, eh? Like
I said, I’ll happily explain how all that works later; for now, simply bask in the glory of all the
lines of JavaScript you didn’t have to write. But in case you are curious as to what the JavaScript
would look like, here it is:

Example: (source: repl1.js)

(function() {
 var a, b, x;

 a = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10];

 b = (function() {
 var _i, _len, _results;
 _results = [];
 for (_i = 0, _len = a.length; _i < _len; _i++) {
 x = a[_i];
 _results.push(x * x);

ptg8106388

5The CoffeeScript REPL

 }
 return _results;
 })();

 console.log(b);

}).call(this);

As you can see, the REPL can be a fun way to play around and experiment with different ideas.
However, not everything is roses in the land of the CoffeeScript REPL. CoffeeScript, as you’ll
see, is designed around the concept of whitespace being significant. That leaves us with a bit of
a problem when trying to write multiline CoffeeScript in the REPL. The answer comes to us in
the form of the \ character.

Let’s try to write a simple function, add, that takes in two numbers and returns the sum of
those numbers. Enter the following code into the REPL line by line:

Example: (source: repl2.coffee)

add = (x, y)->\
 x + y
console.log add(1, 2)

Output: (source: repl2.coffee)

3

Notice how at the end of the first line we added a \. That tells the REPL that we want to add
more lines to that expression. It’s important that you keep adding the \ for every line you want
to add to the expression. The first line that doesn’t end with \ will be considered the end of the
expression, and the REPL will attempt to execute that expression.

It is also important to notice that we still had to indent the line after the \ so that CoffeeScript
was able to properly interpret that line of the expression and put it into its proper place.

Finally, to quit the REPL, simply press ctrl-C and the process will end.

The REPL is a powerful and quick way to try out a few ideas, but as we’ve seen it can get a
bit hard to use when dealing with more complex code. Later in this chapter, in the section
“Executing CoffeeScript Files,” we’ll discuss how to execute files containing CoffeeScript, which
is a more appropriate way of running complex code.

ptg8106388

6 Chapter 1 Getting Started

In-Browser Compilation
When developing web applications, a time will come when you want to write some
CoffeeScript directly inline in your HTML2 file. CoffeeScript does allow you to do this, and I
will show you how. However, I want to caution you against doing such a thing. First, there
is a very good reason why practices such as Unobtrusive JavaScript3 have become so popular
recently. Although being able to execute CoffeeScript in the browser is nifty, it really is not the
best compilation option available to us. By keeping your JavaScript in separate files and out of
the HTML layer, you are able to keep your code cleaner and degrade more gracefully in envi-
ronments that don’t support JavaScript.

At first, writing Unobtrusive JavaScript can be a bit confusing and difficult, but after a while it
becomes easier to write, more reusable, and more logical to do so. Using tools like jQuery, you
can wait for the page to load and attach all the appropriate JavaScript to the correct objects on
the page. However, sometimes you do have to prime the pump, so to speak. Usually this means
calling an init method, perhaps passing in some JSON4 to do so. I would encourage you to
write this tiny amount of code using pure JavaScript. However, should you really want to write
it in CoffeeScript, there is a way to let the browser compile it for you.

Let’s take a look at an HTML file with a bit of CoffeeScript embedded in it.

Example: (source: hello_world.html)

<html>
 <head>
 <title>Hello World</title>
 <script src='http://jashkenas.github.com/coffee-script/extras/coffee-script.js'
➥type='text/javascript'></script>
 </head>
 <body>
 <script type='text/coffeescript'>
 name = prompt "What is your name?"
 alert "Hello, #{name}"
 </script>
 </body>
</html>

Because browsers, at least at the time of this writing, don’t contain native support for
CoffeeScript compilation, you will need to include a compiler in your page to use. Fortunately,
the CoffeeScript team has one ready and waiting. To include it in your HTML file, add the
following line to the head of your HTML file:

<script src='http://jashkenas.github.com/coffee-script/extras/coffee-script.js'
type='text/javascript'></script>

You can, of course, pull down the contents of the coffee-script.js file and store it locally in
your project, should you wish.

ptg8106388

7Command-Line Compilation

The only other step in getting our inline CoffeeScript to compile in the browser is to make sure
that we set the appropriate type on our script tags, like so:

<script type='text/coffeescript'></script>

When the page loads, the CoffeeScript compiler in coffee-script.js will search your HTML
document for any script tags with a type of text/coffeescript, compile them into the
equivalent JavaScript form, and then execute the compiled JavaScript code.

Caveats
Now that you know how to compile CoffeeScript inline in your HTML document, I would
like to point out a few things. First, everything that we discuss in this book, in terms of scope,
anonymous function wrappers, and so on, all holds true when compiling CoffeeScript in this
fashion. So it’s important to keep this in mind when writing your code like this.

Second, and this is probably the big one to take away here, is that this is not a particularly
fast way of compiling your CoffeeScript. When deploying this to production, it means all your
users will have to download an extra 162.26KB file to compile your CoffeeScript. Then after the
page loads, the compiler has to go through the page looking for the text/coffeescript tags,
compile them, and then execute them. That’s not a very good user experience.

Armed with this knowledge, I’m hoping you choose the right path and compile your
CoffeeScript offline before deploying to production.

Command-Line Compilation
Although being able to execute CoffeeScript in the browser is useful and fairly easy, it really
is not the best compilation option available to us. We should be compiling our CoffeeScript
before we serve it up the on the Web. However, it is entirely possible that you are writing a
Node application or some other server-side application that won’t be in a browser, so browser
compilation won’t work there.

So how best should we compile our CoffeeScript? Great question. You will find a lot of third-
party libraries that will compile your CoffeeScript files for you (in different languages and on
various platforms), but it is important to understand how to do it yourself, so you can write
your own compilation scripts, should you need to.

The compile Flag
Let’s start with the most important flag to the coffee command, -c. The -c flag will take the
CoffeeScript file you pass to it and compile it out to a JavaScript file for you in the same loca-
tion. This is how I compiled the source code examples in this book.

ptg8106388

8 Chapter 1 Getting Started

Let’s go ahead and create a simple file called hello_world.coffee and make it look like this:

greeting = "Hello, World!"
console.log greeting

Now we can compile that file like so:

> coffee -c hello_world.coffee

That should compile our CoffeeScript file into a new JavaScript file in the same directory called
hello_world.js. The contents of hello_world.js should look like this:

(function() {
 var greeting;

 greeting = "Hello, World!";

 console.log(greeting);

}).call(this);

Our hello_world.js JavaScript file is ready for production! Time for a cup of tea.

The CoffeeScript CLI
We’ve played with the REPL and have learned how to compile our CoffeeScript using the
command line coffee tool, but the coffee command offers a few other interesting options
that we should quickly look at. To see a full list of what the coffee command has to offer,
enter the following into your terminal:

> coffee --help

You should see output similar to the following:

Usage: coffee [options] path/to/script.coffee

 -c, --compile compile to JavaScript and save as .js files
 -i, --interactive run an interactive CoffeeScript REPL
 -o, --output set the directory for compiled JavaScript
 -j, --join concatenate the scripts before compiling
 -w, --watch watch scripts for changes, and recompile
 -p, --print print the compiled JavaScript to stdout
 -l, --lint pipe the compiled JavaScript through JavaScript Lint
 -s, --stdio listen for and compile scripts over stdio
 -e, --eval compile a string from the command line
 -r, --require require a library before executing your script
 -b, --bare compile without the top-level function wrapper
 -t, --tokens print the tokens that the lexer produces

ptg8106388

9The CoffeeScript CLI

 -n, --nodes print the parse tree that Jison produces
 --nodejs pass options through to the "node" binary
 -v, --version display CoffeeScript version
 -h, --help display this help message

Let’s take a look at some of those options now.

The output Flag
Although compiling the JavaScript file in the same directory as the CoffeeScript is all right
when you are just playing around, chances are you probably want to keep the files in separate
directories. So how do we compile our hello_world.coffee file into, for instance, public/
javascripts?

The answer is simple: we need to add the -o to our terminal command:

> coffee -o public/javascripts -c hello_world.coffee

If you check your public/javascripts directory, you’ll find your newly compiled
hello_world.js file waiting there for you.

One thing that the -o flag does not let you do is change the name of the file. The compiled
JavaScript file will have the same name as the original CoffeeScript file, except with the .js
extension instead of the .coffee extension. Because you cannot rename the file using the
coffee command, you’ll either want to rename your original file or write a script that does
both the compilation of your CoffeeScript file and then renames them to something more to
your liking.

The bare Flag
As you’ll see later in the book, when CoffeeScript compiles, it wraps the generated JavaScript
in an anonymous function. Because we’ll cover this topic in more detail in Chapter 2, I won’t
go into it here. What follows is an example of that anonymous function being wrapped in the
generated JavaScript code:

Example: (source: hello_world.js)

(function() {
 var greeting;

 greeting = "Hello, World!";

 console.log(greeting);

}).call(this);

ptg8106388

10 Chapter 1 Getting Started

Now, at times, for whatever your reasons, you may not want that anonymous function
wrapper. In those cases we can pass the CoffeeScript compiler the -b flag.

> coffee -b -c hello_world.coffee

That will compile our CoffeeScript into the following JavaScript:

Example: (source: hello_world_bare.js)

var greeting;

greeting = "Hello, World!";

console.log(greeting);

Now that you know how to remove the anonymous wrapper, I want to caution you about
doing so. There are a lot of very good reasons as to why it is being generated in the first place. If
you’d like to find out more about this anonymous function, see Chapter 2.

The print Flag
Sometimes when you’re compiling your CoffeeScript files, what you really want is to see the
output of the file. Fortunately, the coffee command has you covered with the -p flag:

> coffee -p hello_world.coffee

This will print out to your terminal something like the following:

(function() {
 var greeting;

 greeting = "Hello, World!";

 console.log(greeting);

}).call(this);

This can be incredibly useful for debugging purposes or as a great learning tool with
CoffeeScript. By comparing your CoffeeScript against the compiled JavaScript (as we do in this
book), you can start to understand what CoffeeScript is doing under the covers. This was a
huge help for me when I was originally learning CoffeeScript. It has also helped me to become
a better JavaScript developer by investigating some of the choices that the complier has made.

The watch Flag
As you are developing your CoffeeScript projects, you’re not going to want to keep going to the
command line to keep compiling. To make this a little easier for you, CoffeeScript gives you the

ptg8106388

11The CoffeeScript CLI

optional -w parameter to the coffee command. With this parameter you can tell the coffee
command to keep watching your CoffeeScript files and if they change to recompile them. Here
is an example:

> coffee -w -c app/assets/coffeescript

With this command, anytime a .coffee file is touched5 in the app/assets/coffeescript
directory, or any subdirectories, it is automatically compiled.

As of CoffeeScript 1.2.0, the -w will watch for new files that have been added to a watched
directory. In my experience, however, it can be quite buggy because of some underlying Node
issues. Hopefully, these issues will be worked out by the time you read this. However, plenty
of third-party tools exist that are designed to listen to file system events, such as files being
added and removed. My personal favorite, as of the time of writing, is Guard.6 It’s a Ruby gem
that lets you listen for these types of events and execute some custom code, such as compiling
CoffeeScript files, when these events occur.

Tip
In addition to Guard, you might also want to check out Jitter7 by Trevor Burham. It accomplish-
es a similar goal of watching and compiling all your CoffeeScript files. It is also written using
CoffeeScript, so that’s not a bad thing.

Executing CoffeeScript Files
We’ve covered various ways to compile our CoffeeScript and have discussed some of the
options we can pass into the coffee command when compiling CoffeeScript, but what about
just executing the CoffeeScript file in question? Perhaps you are writing a web server using
CoffeeScript or even a simple script that does some basic number crunching. You could compile
our scripts using the tools you’ve already learned about, then link to them in an HTML file,
and finally, run them in a browser. That would work for a simple script, but not for something
more complex like a web server. Nor is it a practical idea.

To help with this situation, the coffee command lets us execute our CoffeeScript files like this:

> coffee hello_world.coffee

Most of the examples that we look at throughout this book can be run in just this fashion
(unless otherwise noted).

Other Options
There are a few other options such as -n and -t. Although these options can give you some
really interesting output and insight into how CoffeeScript compiles your code, they won’t
really be of help to us during the course of this book so I won’t be covering them here. I do,
however, encourage you to take some time to run the extra options to see what they produce.
You can find out more about these options by reading the annotated source8 for CoffeeScript
online.

ptg8106388

12 Chapter 1 Getting Started

Wrapping Up
In this chapter we’ve taken a tour of the different ways that we can compile and execute our
CoffeeScript code. We’ve looked at the pros and cons of the ways that CoffeeScript can be
compiled and are now armed with the knowledge we need to be able to play with the examples
in the rest of this book. Finally, we dug into the coffee command to learn the most important
options and parameters we can pass to it.

Notes
1. Read-eval-print loop - http://en.wikipedia.org/wiki/Read-eval-print_loop

2. http://en.wikipedia.org/wiki/Html

3. http://en.wikipedia.org/wiki/Unobtrusive_JavaScript

4. http://en.wikipedia.org/wiki/Json

5. Touching a file means lots of different things on different operating systems, but usually
just saving the file is enough of a “touch” to trigger the -w into doing its magic.

6. https://github.com/guard/guard

7. https://github.com/TrevorBurnham/jitter

8. http://jashkenas.github.com/coffee-script/documentation/docs/command.html

http://en.wikipedia.org/wiki/Read-eval-print_loop
http://en.wikipedia.org/wiki/Html
http://en.wikipedia.org/wiki/Unobtrusive_JavaScript
http://en.wikipedia.org/wiki/Json
https://github.com/guard/guard
https://github.com/TrevorBurnham/jitter
http://jashkenas.github.com/coffee-script/documentation/docs/command.html

ptg8106388

2
The Basics

Now that we’ve covered the boring stuff, like compiling and executing your CoffeeScript, we
will start covering how to actually write it. Let’s dive right in.

In this chapter we are going to examine the syntax of CoffeeScript. We’ll look at punctuation,
scope, variables, and a few other choice bits.

Syntax
Much of CoffeeScript’s press has been due to its syntax, in particular its lack of punctuation.
Punctuation such as curly braces and semicolons are extinct in the world of CoffeeScript, and
parentheses are an endangered species.

To illustrate this point, let’s take a look at a bit of JavaScript that most of you might be familiar
with. Here is a piece of jQuery code to make a remote AJAX request and do some work with the
results:

Example: (source: jquery_example.js)

$(function() {
 $.get('example.php', function(data) {
 if (data.errors != null) {
 alert("There was an error!");
 } else {
 $("#content").text(data.message);
 }
 }, 'json')
})

ptg8106388

14 Chapter 2 The Basics

CoffeeScript allows us to strip out a lot of the extra punctuation in that example. Here is what
the same code written in CoffeeScript would look like:

Example: (source: jquery_as_coffee.coffee)

$ ->
 $.get 'example.php', (data) ->
 if data.errors?
 alert "There was an error!"
 else
 $("#content").text data.message
 , 'json'

Later in this book we are going to get into greater detail on what most of the parts of that
example are doing, but for now let’s examine what we took out of the JavaScript example when
writing our CoffeeScript example.

Significant Whitespace
The first thing we did was to remove all curly braces and semicolons.

Example: (source: jquery.js)

$(function()
 $.get('example.php', function(data)
 if (data.errors != null)
 alert("There was an error!")
 else
 $("#content").text(data.message)
 , 'json')
)

How does this work? How does CoffeeScript know how to parse the code to make sense of it?
The answer is quite simple, and chances are it is something you are already doing every day:
whitespace! CoffeeScript, like Python, uses the concept of significant whitespace to tell it how
to parse expressions.

I’ve heard people grumble about significant whitespace before saying they don’t like it. I
find that to be an unusual argument. Would you write the same JavaScript example like the
following?

Example: (source: jquery.js)

$(function() {
$.get('example.php', function(data) {
if (data.errors != null) {

ptg8106388

15Syntax

alert("There was an error!");
} else {
$("#content").text(data.message);
}
}, 'json')
})

I should hope not! If you are writing JavaScript this way, I beg you to do your fellow develop-
ers a favor and take the extra second to make sure your code is properly indented. Readability
is key to maintenance. It is also the key to helping you convert your existing JavaScript to
CoffeeScript.

With significant whitespace, CoffeeScript knows that when you indent a line below your if
statement the compiler should position that line inside of the if block. The next time the
compiler sees indentation at the same level as that if statement, it knows that you are finished
writing your if statement and executes that line at the same level as the if statement.

Here is a brief example of the type of error you would get if you did not properly format your
CoffeeScript code:

Example: (source: whitespace.coffee)

for num in [1..3]
 if num is 1
 console.log num
 console.log num * 2
 if num is 2
 console.log num
 console.log num * 2

Output: (source: whitespace.coffee)

Error: In content/the_basics/whitespace.coffee, Parse error on line 4: Unexpected
➥'INDENT'
 at Object.parseError (/usr/local/lib/node_modules/coffee-script/lib/coffee-script/
➥parser.js:470:11)
 at Object.parse (/usr/local/lib/node_modules/coffee-script/lib/coffee-script/
➥parser.js:546:22)
 at /usr/local/lib/node_modules/coffee-script/lib/coffee-script/coffee-script.
➥js:40:22
 at Object.run (/usr/local/lib/node_modules/coffee-script/lib/coffee-script/
➥coffee-script.js:68:34)
 at /usr/local/lib/node_modules/coffee-script/lib/coffee-script/command.js:135:29
 at /usr/local/lib/node_modules/coffee-script/lib/coffee-script/command.js:110:18
 at [object Object].<anonymous> (fs.js:114:5)

ptg8106388

16 Chapter 2 The Basics

 at [object Object].emit (events.js:64:17)
 at afterRead (fs.js:1081:12)
 at Object.wrapper [as oncomplete] (fs.js:252:17)

Function Keyword
The next thing we did was eliminate that old function keyword. None of the CoffeeScript
code we will write will ever use the function keyword.

Example: (source: jquery.js)

$(()->
 $.get('example.php', (data)->
 if (data.errors != null)
 alert("There was an error!")
 else
 $("#content").text(data.message)
 , 'json')
)

Instead of the function keyword we can use an arrow, ->, to the right of the arguments list.
This is a little difficult to remember and get straight at first, I know, but it actually makes a lot
of sense if you think about the flow of the code and where the arguments are “pointing.”

Parentheses
Next we removed some, but not all, of our parentheses in the example code.

Example: (source: jquery.js)

$ ->
 $.get 'example.php', (data)->
 if data.errors != null
 alert "There was an error!"
 else
 $("#content").text data.message
 , 'json'

Why didn’t we remove all parentheses? In almost all cases, removing parentheses is optional.
The rules about when to use the parentheses can be a bit confusing, especially when we talk
about functions. Let’s take a look at our code to see why we left some in and took some out.

When we went to call the alert function, like this:

alert "There was an error!"

ptg8106388

17Syntax

we were able to remove the parentheses. The reason is that if a function is being passed argu-
ments, we can omit the parentheses. However, if a function is not being passed any arguments,
we need to supply the parentheses so that JavaScript knows that we are calling a function and
not a variable. Like I said: a bit confusing.

Tip
When in doubt, you can use the parentheses all the time if you feel it helps to make your code
cleaner and easier to read.

So, if we don’t need the parentheses when calling a function with arguments, why did we use
parentheses on this line?

$("#content").text data.message

Why didn’t we write it like this instead?

$ "#content" .text data.message

If we had done that, the compiled JavaScript would look like this for that line:

$("#content".text(data.message));

As you can see, CoffeeScript isn’t sure what you are calling the text function on, so it assumes
it is the string "#content". By leaving the parentheses in there, we are telling CoffeeScript
where exactly it needs to call the text method; in this case it’s on the jQuery object returned
by $("#content").

Before we move away from the subject of parentheses (don’t worry we’ll be talking about them
again when we talk about functions), I want to point out that parentheses can still be used for
logical grouping.

Example: (source: grouping.coffee)

if x is true and (y is true or z is true)
 console.log 'hello, world'

Example: (source: grouping.js)

(function() {

 if (x === true && (y === true || z === true)) console.log('hello, world');

}).call(this);

ptg8106388

18 Chapter 2 The Basics

Scope and Variables
In this section we talk about how scope and variables work and are defined in CoffeeScript. In
JavaScript this can be a tricky subject, often the source of confusion and bugs. In this section
we see how CoffeeScript tries to make bugs related to scope a thing of the past.

Variable Scope in JavaScript
When declaring variables in JavaScript, a lot of people, both experienced and beginner, do not
realize that there are two ways to declare variables. If they do know the two ways to declare
variables, they may not know the difference between the two. Because of that, let’s take a brief
second to look at the two ways and understand, at least on a basic level, what they do.

Look at the following code snippet:

Example: (source: js_variable_scope.js)

a = 'A';
myFunc = function() {
 a = 'AAA';
 var b = 'B';
}

If we were to run that code in a browser or another JavaScript engine, we would get the
following:

Output:

> console.log(a)
A
> myFunc();
> console.log(a)
AAA
> console.log(b)
ReferenceError: b is not defined

Chances are you probably were expecting that when trying to reference variable b it would
raise an error. However, you were probably not expecting variable a to return the value defined
in the myFunc function, were you? So why is that?

The answer is simple and goes to the heart of the difference between the way those two vari-
ables were defined.

When we defined variable a without using the var keyword, we were telling JavaScript to
create that variable in the global namespace. Because a variable called a already existed in the

ptg8106388

19Scope and Variables

global namespace, we clobbered our original variable and replaced it with the new one we
defined inside of myFunc. Oops.

The variable b was defined inside of the myFunc function using the keyword var, which told
JavaScript to create a variable named b and scope it to inside the function myFunc. Because
the variable b is scoped inside the function when we tried to access the variable outside of the
function, we got an error because JavaScript couldn’t find a variable named b defined in the
global namespace.

Tip
The example shown in the section “Variable Scope in JavaScript” demonstrates why you should
always use the keyword var when defining variables. This is definitely a best practice, and
CoffeeScript wants to help make sure you always do that.

Variable Scope in CoffeeScript
Now that we understand a little something about how variable scoping works in JavaScript,
let’s take a quick look at our example again, this time written in CoffeeScript:

Example: (source: coffeescript_variable_scope.coffee)

a = 'A'
myFunc = ->
 a = 'AAA'
 b = 'B'

Example: (source: coffeescript_variable_scope.js)

(function() {
 var a, myFunc;

 a = 'A';

 myFunc = function() {
 var b;
 a = 'AAA';
 return b = 'B';
 };

}).call(this);

Ignoring for a moment the anonymous wrapper function around our code (we will be talking
about that shortly), let’s look at the way CoffeeScript has declared our variables. Notice that

ptg8106388

20 Chapter 2 The Basics

each of our variables, including the variable pointing to our myFunc function, is declared with
the var keyword. CoffeeScript has our back to ensure sure we do the right thing in terms of
variable declaration.

One rather interesting thing to point out about this code is that although CoffeeScript helps us
with proper variable declaration, it still doesn’t prevent us from clobbering our original a vari-
able. The reason for this is that when CoffeeScript is compiling the JavaScript, it sees that there
was a previously defined variable named a and assumes that you intended to use that variable
inside of your function.

The Anonymous Wrapper Function
As you’ve seen, and should have noticed, all of our compiled JavaScript has been wrapped in
an anonymous, self-executing function. I know by now that you are wondering what that func-
tion is doing there. Let me tell you.

As we saw with our JavaScript variable scope examples, we were able to easily access variables
that were defined without the var keyword. When we defined those variables, they ended up
in a global namespace that is easily accessible by everyone.

When we defined our a variable, even using the var keyword, we were still defining it in the
global namespace. Why is that, you ask? The reason is quite simple—we defined it outside of
any functions. Because the variable was defined outside of a function scope, it is available to
the global namespace. That means that if another library you are using also defines a, then one
of the two variables will be clobbered by the one that was last to be defined. This, of course, is
true of any namespace, not just the global one.

So how do you define variables, and functions, outside of the global namespace so they are
accessible to your program and no one else’s? You do that by wrapping your code in an anony-
mous wrapper function. This is exactly what CoffeeScript is doing for you when it compiles
your code to JavaScript.

Now, this is the point where you should be thinking two things. The first is, “That’s clever, I
can do whatever I want in there and not have to worry about polluting the global namespace.”
The second thing you should be asking yourself is, “Wait, how do I expose the variables and
functions I want to the global namespace so I and others can access them?” Those are two very
important thoughts. Let’s address the second, because it’s the one that needs to be addressed.

If you were to write your entire program or library within the confines of an anonymous func-
tion, as CoffeeScript forces you to do, no other libraries or code in your application could
access your code. That might be just what you want to happen. However, if it is not what you
want, there are a few ways we can remedy this problem.

ptg8106388

21Scope and Variables

Here’s an example of one way we could share a function with the outside world:

Example: Exposing with window (source: expose_with_window.coffee)

window.sayHi = ->
 console.log "Hello, World!"

Example: Exposing with window (source: expose_with_window.js)

(function() {

 window.sayHi = function() {
 return console.log("Hello, World!");
 };

}).call(this);

In that example we are using the window object to expose our function. In a world where all
our code is being executed in the browser, this is a perfectly good way to expose the function.
However, with the success of Node.JS and other server-side JavaScript technologies, it is becom-
ing more and more popular to run JavaScript in environments other than that of the browser.
If we were to try to run this using the coffee command, we would get the following output:

Example: Exposing with window (source: expose_with_window.coffee.output)

ReferenceError: window is not defined
 at Object.<anonymous> (.../the_basics/expose_with_window.coffee:3:3)
 at Object.<anonymous> (.../the_basics/expose_with_window.coffee:7:4)
 at Module._compile (module.js:432:26)
 at Object.run (/usr/local/lib/node_modules/coffee-script/lib/coffee-script/
➥coffee-script.js:68:25)
 at /usr/local/lib/node_modules/coffee-script/lib/coffee-script/command.js:135:29
 at /usr/local/lib/node_modules/coffee-script/lib/coffee-script/command.js:110:18
 at [object Object].<anonymous> (fs.js:114:5)
 at [object Object].emit (events.js:64:17)
 at afterRead (fs.js:1081:12)
 at Object.wrapper [as oncomplete] (fs.js:252:17)

When running the coffee command, there is no window object to expose our function
through. So how do we solve this problem? The answer is very simple. When CoffeeScript
creates the anonymous function wrapper for us, it conveniently passes in this. We can easily
attach our function to this and expose it that way. Let’s look:

ptg8106388

22 Chapter 2 The Basics

Example: Exposing with this (source: expose_with_this.coffee)

this.sayHi = ->
 console.log "Hello, World!"

Example: Exposing with this (source: expose_with_this.js)

(function() {

 this.sayHi = function() {
 return console.log("Hello, World!");
 };

}).call(this);

If we were to execute that code in a browser, our function would be exposed to other JavaScript
code because this in the browser refers to the window object. In the coffee command or in a
Node.JS application this refers to the global object. By using this to expose your functions
and variables, you make your code both future and platform proof.

Now for the sake of completeness, there is an even simpler and, I think, cleaner way of expos-
ing your code, and that is like this:

Example: Exposing with @ (source: expose_with_at.coffee)

@sayHi = ->
 console.log "Hello, World!"

Example: Exposing with @ (source: expose_with_at.js)

(function() {

 this.sayHi = function() {
 return console.log("Hello, World!");
 };

}).call(this);

As you can see in the compiled JavaScript, the @ symbol in CoffeeScript got compiled out to
this.. In CoffeeScript, wherever you would use this. you can replace it with @ and expect it
to work the same way. Although using @ is optional, it is the preferred way in CoffeeScript, so I
will be using it exclusively throughout the book.

ptg8106388

23Interpolation

Interpolation
In this section we talk about string interpolation, heredocs, and comments in CoffeeScript.
String interpolation will let us easily build dynamic strings without having to worry about
annoying and error-prone concatenation syntax. Heredocs allow us to easily build nicely
formatted multiline strings. Comments, well, should be self-explanatory.

String Interpolation
One of my personal pet peeves in JavaScript is trying to build a dynamic string. Let me give you
an example. Let’s build an HTML text field in JavaScript that is using a few dynamic attributes:

Example: (source: javascript_concatenation.js)

var field, someId, someName, someValue;
someName = 'user[firstName]';
someId = 'firstName';
someValue = 'Bob Example';
field = "<input type='text' name='" + someName + "' id='" + someId + "' value='" +
➥(escape(someValue)) + "'>";
console.log(field);

Output: (source: javascript_concatenation.js)

<input type='text' name='user[firstName]' id='firstName' value='Bob%20Example'>

See how ugly, confusing, and potentially buggy that code is? Did I remember to properly
close all the ' around my tag attributes? Did I add the correct number of "? I think so, but it
certainly isn’t easy to see at a glance.

CoffeeScript has followed the lead of some of the more modern languages, like Ruby, and gives
us two different types of strings, interpolated and literal. Let’s look at them.

Interpolated Strings
To get rid of all the nasty concatenation we saw in our HTML text field example, CoffeeScript
lets us, instead, use string interpolation to solve the problem.

What is string interpolation? String interpolation is a way for us to inject arbitrary CoffeeScript
code inside of a string and have it executed at runtime. In our example, we want to stick a few
variables into our HTML string, and CoffeeScript lets us do that. Here’s how you could write
the same example, this time using CoffeeScript’s string interpolation:

ptg8106388

24 Chapter 2 The Basics

Example: (source: html_string_interpolation.coffee)

someName = 'user[firstName]'
someId = 'firstName'
someValue = 'Bob Example'

field = "<input type='text' name='#{someName}' id='#{someId}' value='#{escape
➥someValue}'>"

console.log field

Example: (source: html_string_interpolation.js)

(function() {
 var field, someId, someName, someValue;

 someName = 'user[firstName]';

 someId = 'firstName';

 someValue = 'Bob Example';

 field = "<input type='text' name='" + someName + "' id='" + someId + "' value='" +
➥(escape(someValue)) + "'>";

 console.log(field);

}).call(this);

Output: (source: html_string_interpolation.coffee)

<input type='text' name='user[firstName]' id='firstName' value='Bob%20Example'>

Doesn’t that code look better? That code is easier to read, write, and maintain.

In JavaScript, as you know, there is no such thing as interpolated strings. All strings are consid-
ered equal. In CoffeeScript, all strings are not created equal. Double-quoted strings, such as
the one we just used, tell the CoffeeScript compiler to process the string and turn it into a
concatenated JavaScript string, if necessary. Single-quoted strings are called literal strings in
CoffeeScript, and we’ll look at them in just a minute.

When we want to inject some CoffeeScript into a double-quoted string, we use the #{} syntax.
Everything between the two curly braces will be separated out by the compiler and then
concatenated to the string we are building. The code we put inside the curly braces can be any
valid CoffeeScript we would like:

ptg8106388

25Interpolation

Example: (source: string_interpolation_extra.coffee)

text = "Add numbers: #{1 + 1}"
console.log text

text = "Call a function: #{escape "Hello, World!"}"
console.log text

day = 'Sunday'
console.log "It's a beautiful #{if day is 'Sunday' then day else "Day"}"

Example: (source: string_interpolation_extra.js)

(function() {
 var day, text;

 text = "Add numbers: " + (1 + 1);

 console.log(text);

 text = "Call a function: " + (escape("Hello, World!"));

 console.log(text);

 day = 'Sunday';

 console.log("It's a beautiful " + (day === 'Sunday' ? day : "Day"));

}).call(this);

Output: (source: string_interpolation_extra.coffee)

Add numbers: 2
Call a function: Hello%2C%20World%21
It's a beautiful Sunday

Literal Strings
Literal strings are just what their name suggests, literal strings. That means that whatever you
put into the string is exactly what you get back from the string; this is how JavaScript behaves.

To build a literal string in CoffeeScript you need to use single quotes, '. Let’s revisit our previ-
ous example of building an HTML text field. This time, instead of using double quotes around
our string, let’s use single quotes and see what happens:

ptg8106388

26 Chapter 2 The Basics

Example: (source: html_string_literal.coffee)

someName = 'user[firstName]'
someId = 'firstName'
someValue = 'Bob Example'

field = '<input type=\'text\' name=\'#{someName}\'
➥id=\'#{someId}\' value=\'#{escape(someValue)}\'>'

console.log field

Example: (source: html_string_literal.js)

(function() {
 var field, someId, someName, someValue;

 someName = 'user[firstName]';

 someId = 'firstName';

 someValue = 'Bob Example';

 field = '<input type=\'text\' name=\'#{someName}\'
➥id=\'#{someId}\' value=\'#{escape(someValue)}\'>';

 console.log(field);

}).call(this);

Output: (source: html_string_literal.coffee)

<input type='text' name='#{someName}' id='#{someId}' value='#{escape(someValue)}'>

As we can tell by our output, we are not getting the desired outcome. This is because literal
strings do not support string interpolation. Instead of seeing our dynamic content mixed into
the string, we are just seeing the placeholders for that dynamic content. There are certainly
times when this would be the desired outcome; however, those times are few and far between.

Although literal strings won’t let you inject any dynamic content into them, they still do a
little bit of parsing and manipulation, the same as JavaScript. Literal strings in CoffeeScript still
let you use common escape characters. Take, for example, the following:

Example: (source: literal_string_with_escapes.coffee)

text = "Header\n\tIndented Text"
console.log text

ptg8106388

27Interpolation

Example: (source: literal_string_with_escapes.js)

(function() {
 var text;

 text = "Header\n\tIndented Text";

 console.log(text);

}).call(this);

Output: (source: literal_string_with_escapes.coffee)

Header
 Indented Text

As you can see, our newline character, \n, and our tab character, \t, were properly interrupted
and handled correctly in the output. CoffeeScript, like JavaScript, allows us to use double
back slashes to escape a single backslash, as seen here:

Example: (source: literal_string_with_backslash.coffee)

text = "Insert \\some\\ slashes!"
console.log text

Example: (source: literal_string_with_backslash.js)

(function() {
 var text;

 text = "Insert \\some\\ slashes!";

 console.log(text);

}).call(this);

Output: (source: literal_string_with_backslash.coffee)

Insert \some\ slashes!

In languages like Ruby a performance improvement can be had by using literal strings. The
runtime environment doesn’t need to parse the string and do the required manipulation on it
as the program is executing. However, because CoffeeScript compiles down to JavaScript, the
performance gain moves from runtime to compilation time.

ptg8106388

28 Chapter 2 The Basics

Tip
The performance gain found by using literal strings instead of interpolated strings is found only
at compilation time. I see no downside to using double-quoted, interpolated strings all the time.
Even if you are not using the power of interpolated strings right now, you make it easy to use at
a later date by making all your strings interpolated.

Heredocs
A heredoc1, or here document, lets you build a multiline string easily in CoffeeScript, while
preserving all the spaces and newlines of the multiline string. Heredoc strings follow the
same rules as interpolated and literal strings do. To build an interpolated heredoc string in
CoffeeScript, you use three double quotes at each end of the string. To build a literal heredoc
string, you would use three single quotes at each end of the string.

Let’s look at a simple example. Let’s take our previous HTML text field and add some more
HTML around it:

Example: (source: heredoc.coffee)

someName = 'user[firstName]'
someId = 'firstName'
someValue = 'Bob Example'

field = """

 <input type='text' name='#{someName}' id='#{someId}'
value='#{escape(someValue)}'>

 """

console.log field

Example: (source: heredoc.js)

(function() {
 var field, someId, someName, someValue;

 someName = 'user[firstName]';

 someId = 'firstName';

 someValue = 'Bob Example';

ptg8106388

29Interpolation

 field = "\n \n <input type='text' name='" + someName + "' id='" + someId
➥+ "' value='" + (escape(someValue)) + "'>\n \n";

 console.log(field);

}).call(this);

Output: (source: heredoc.coffee)

 <input type='text' name='user[firstName]' id='firstName' value='Bob%20Example'>

As you can see, our final output was nicely formatted, just like our original text. You can also
see that the original indentation level the heredoc begins with is maintained throughout,
making it easy to keep the code well formatted.

Comments
Every good language needs to supply more than one way to add comments, and CoffeeScript is
no different. There are two ways to write comments in CoffeeScript, and both ways have differ-
ent effects on the compiled JavaScript.

Inline Comments
The first type of comment is the inline comment. Inline comments are very simple. To create
an inline comment, you simply use a # symbol. Everything after the # symbol to the end of the
line will be ignored by the CoffeeScript compiler.

Example: (source: inline_comment.coffee)

Calculate the company payroll
calcPayroll()

payBils() # Pay the company's bills

Example: (source: inline_comment.js)

(function() {

 calcPayroll();

ptg8106388

30 Chapter 2 The Basics

 payBils();

}).call(this);

You can see that our comments do not make their way into the final JavaScript source. There
is some debate as to whether this is a good thing or a bad thing. It would be nice to have
the comment next to the JavaScript code. However, because there is not always a nice, direct
mapping from CoffeeScript to JavaScript, it makes it difficult for the compiler to always know
where the comment should go. On the plus side, our compiled JavaScript is lighter because it
is not peppered with comments, leaving us to comment our code fully without fear of bloating
the JavaScript.

Block Comments
The other type of comment that CoffeeScript gives us is a block comment. Block comments are
great for writing lengthy, multiline comments. Such comments can include license and version-
ing information, documentation of API usage, and so on. Unlike inline comments, CoffeeScript
does include block comments in the compiled JavaScript code.

Example: (source: block_comment.coffee)

###
My Awesome Library v1.0
Copyright: Me!
Released under the MIT License
###

Example: (source: block_comment.js)

/*
My Awesome Library v1.0
Copyright: Me!
Released under the MIT License
*/

(function() {

}).call(this);

Defining block comments, as you can see, is very similar to defining heredocs. Block comments
are defined by using three # symbols on both sides of the comment.

ptg8106388

31Extended Regular Expressions

Extended Regular Expressions
CoffeeScript and JavaScript are identical in how you define, use, and execute regular expres-
sions.2 CoffeeScript, however, does give a little help when you want to write those really long
and complex regular expressions.

We’ve all had that regular expression that gets a bit unwieldy. We would love to split it up over
several lines and comment each of the sections of the expression. Well, CoffeeScript is there to
help us out.

To define a multiline regular expression, we wrap the expression with three forward slashes on
either side of the expression, similar to heredocs and block comments.

Let’s look at an actual usage of this from the CoffeeScript compiler source code:

Example: (source: extended_regex.coffee)

REGEX = /// ^
 (/ (?! [\s=]) # disallow leading whitespace or equals signs
 [^ [/ \n \\]* # every other thing
 (?:
 (?: \\[\s\S] # anything escaped
 | \[# character class
 [^ \] \n \\]*
 (?: \\[\s\S] [^ \] \n \\]*)*
]
) [^ [/ \n \\]*
)*
 /) ([imgy]{0,4}) (?!\w)
///

Example: (source: extended_regex.js)

(function() {
 var REGEX;

 REGEX = /^(\/(?![\s=])[^[\/\n\\]*(?:(?:\\[\s\S]|\[[^\]\n\\]*(?:\\[\s\S]
➥[^\]\n\\]*)*])[^[\/\n\\]*)*\/)([imgy]{0,4})(?!\w)/;

}).call(this);

You can see how all the extra whitespace and the comments are removed from our JavaScript
output.

ptg8106388

32 Chapter 2 The Basics

Wrapping Up
Now that you understand the syntax of CoffeeScript, we can begin looking at more interest-
ing and detailed parts of the language. If you don’t understand anything we’ve covered so far,
please take a few minutes to go back and reread this chapter again. It’s important that you
understand all that we have discussed here because it forms the basis for everything you will be
learning throughout the rest of the book. When you’re comfortable with everything, let’s move
on to the next chapter!

Notes
1. http://en.wikipedia.org/wiki/Heredoc

2. http://en.wikipedia.org/wiki/Regular_expressions

http://en.wikipedia.org/wiki/Heredoc
http://en.wikipedia.org/wiki/Regular_expressions

ptg8106388

3
Control Structures

Almost all languages have the concept of operators1 and conditionals;2 JavaScript and
CoffeeScript are no different. Operators and conditionals work hand in hand to form an impor-
tant part of all programming languages. Operators let you do things such as add or subtract two
numbers, compare two objects, shift bytes in an object, and so on. Conditionals, on the other
hand, let us control the flow of our application based on certain predefined conditions. For
example if a user is not logged in then send them to the login screen, else show them the secret
page. That is a conditional statement.

In this chapter we take a look at both operators and conditionals and how they are defined in
CoffeeScript.

Operators and Aliases
For the most part, JavaScript and CoffeeScript play nicely in terms of the operators behaving
the same. However, in a few places CoffeeScript steps in to help make sure you don’t step on
some land mines that JavaScript has lurking about its innards. To make sure we understand
fully what all the operators do, let’s take a quick tour of the JavaScript operators, and I’ll point
out when they are different from their CoffeeScript counterparts. Before we continue, I want to
say that I am assuming you know what all the JavaScript operators do. If you don’t, now is a
good time to brush up on them. If you need a reference, I recommend http://en.wikibooks.org/
wiki/JavaScript/Operators. It offers a quick, but well written, overview of the operators available
in JavaScript.

Arithmetic
Here is a list of each of the arithmetic operators in JavaScript:

■ + Addition

■ - Subtraction

http://en.wikibooks.org/wiki/JavaScript/Operators
http://en.wikibooks.org/wiki/JavaScript/Operators

ptg8106388

34 Chapter 3 Control Structures

■ * Multiplication

■ / Division (returns a floating-point value)

■ % Modulus (returns the integer remainder)

■ + Unary conversion of string to number

■ - Unary negation (reverses the sign)

■ ++ Increment (can be prefix or postfix)

■ -- Decrement (can be prefix or postfix)

Now let’s take a look at how those operators translate in the CoffeeScript world:

Example: (source: arithmetic.coffee)

console.log "+ Addition: #{1 + 1}"

console.log "- Subtraction: #{10 - 1}"

console.log "* Multiplication: #{5 * 5}"

console.log "/ Division: #{100 / 10}"

console.log "% Modulus: #{10 % 3}"

console.log "+ Unary conversion of string to number: #{+'100'}"

console.log "- Unary negation: #{-50}"

i = 1
x = ++i
console.log "++ Increment: #{x}"

i = 1
x = --i
console.log "-- Decrement: #{x}"

Example: (source: arithmetic.js)

(function() {
 var i, x;

 console.log("+ Addition: " + (1 + 1));

 console.log("- Subtraction: " + (10 - 1));

ptg8106388

35Operators and Aliases

 console.log("* Multiplication: " + (5 * 5));

 console.log("/ Division: " + (100 / 10));

 console.log("% Modulus: " + (10 % 3));

 console.log("+ Unary conversion of string to number: " + (+'100'));

 console.log("- Unary negation: " + (-50));

 i = 1;

 x = ++i;

 console.log("++ Increment: " + x);

 i = 1;

 x = --i;

 console.log("-- Decrement: " + x);

}).call(this);

Output: (source: arithmetic.coffee)

+ Addition: 2
- Subtraction: 9
* Multiplication: 25
/ Division: 10
% Modulus: 1
+ Unary conversion of string to number: 100
- Unary negation: -50
++ Increment: 2
-- Decrement: 0

As we can see from the example, all our CoffeeScript arithmetic operators map directly to
JavaScript, so we won’t be losing any sleep at night trying to remember them.

Assignment
Now we’ll move on to the assignment operators in JavaScript, which are presented in the
following list:

ptg8106388

36 Chapter 3 Control Structures

■ = Assign

■ += Add and assign

■ -= Subtract and assign

■ *= Multiply and assign

■ /= Divide and assign

■ %= Modulus and assign

■ ?= Exists or assign

■ ||= Or or assign

■ &&= Assign if both are true

How do they map to CoffeeScript?

Example: (source: assignment.coffee)

console.log "= Assign:"
x = 10
console.log x

console.log "+= Add and assign:"
x += 25
console.log x

console.log "-= Subtract and assign:"
x -= 25
console.log x

console.log "*= Multiply and assign:"
x *= 10
console.log x

console.log "/= Divide and assign:"
x /= 10
console.log x

console.log "%= Modulus and assign:"
x %= 3
console.log x

console.log "?= Exists or assign:"
y ?= 3
console.log y
y ?= 100
console.log y

ptg8106388

37Operators and Aliases

console.log "||= Or or assign:"
z = null
z ||= 10
console.log z
z ||= 100
console.log z

console.log "&&= Assign if both are true:"
a = 1
b = 2
console.log a &&= b
console.log a

Example: (source: assignment.js)

(function() {
 var a, b, x, z;

 console.log("= Assign:");

 x = 10;

 console.log(x);

 console.log("+= Add and assign:");

 x += 25;

 console.log(x);

 console.log("-= Subtract and assign:");

 x -= 25;

 console.log(x);

 console.log("*= Multiply and assign:");

 x *= 10;

 console.log(x);

 console.log("/= Divide and assign:");

 x /= 10;

ptg8106388

38 Chapter 3 Control Structures

 console.log(x);

 console.log("%= Modulus and assign:");

 x %= 3;

 console.log(x);

 console.log("?= Exists or assign:");

 if (typeof y === "undefined" || y === null) y = 3;

 console.log(y);

 if (typeof y === "undefined" || y === null) y = 100;

 console.log(y);

 console.log("||= Or or assign:");

 z = null;

 z || (z = 10);

 console.log(z);

 z || (z = 100);

 console.log(z);

 console.log("&&= Assign if both are true:");

 a = 1;

 b = 2;

 console.log(a && (a = b));

 console.log(a);

}).call(this);

ptg8106388

39Operators and Aliases

Output: (source: assignment.coffee)

= Assign:
10
+= Add and assign:
35
-= Subtract and assign:
10
*= Multiply and assign:
100
/= Divide and assign:
10
%= Modulus and assign:
1
?= Exists or assign:
3
3
||= Or or assign:
10
10
&&= Assign if both are true:
2
2

Again, all the operators map directly. Isn’t life wonderful?

Comparison
Now let’s take a look at the comparison operators and see how they map between CoffeeScript
and JavaScript.

■ == Equal

■ != Not equal

■ > Greater than

■ >= Greater than or equal to

■ < Less than

■ <= Less than or equal to

■ === Identical (equal and of the same type)

■ !== Not identical

ptg8106388

40 Chapter 3 Control Structures

Okay, let’s take a peek and see how these operators behave in CoffeeScript:

Example: (source: comparison.coffee)

console.log "== Equal: #{1 == 1}"

console.log "!= Not equal: #{1 != 2}"

console.log "> Greater than: #{2 > 1}"

console.log ">= Greater than or equal to: #{1 >= 1}"

console.log "< Less than: #{1 < 2}"

console.log "<= Less than or equal to: #{1 < 2}"

console.log "=== Identical: #{'a' === 'a'}"

console.log "!== Not identical: #{1 !== 2}"

Output: (source: comparison.coffee)

Error: In content/control_structures/comparison.coffee, Parse error on line 13:
➥Unexpected '='
 at Object.parseError
➥(/usr/local/lib/node_modules/coffee-script/lib/coffee-script/parser.js:470:11)
 at Object.parse
➥ (/usr/local/lib/node_modules/coffee-script/lib/coffee-script/parser.js:546:22)
 at /usr/local/lib/node_modules/coffee-script/lib/coffee-script/
➥ coffee-script.js:40:22
 at Object.run
➥ /usr/local/lib/node_modules/coffee-script/lib/coffee-script/coffee-script.js:68:34)
 at /usr/local/lib/node_modules/coffee-script/lib/coffee-script/command.js:135:29
 at /usr/local/lib/node_modules/coffee-script/lib/coffee-script/command.js:110:18
 at [object Object].<anonymous> (fs.js:114:5)
 at [object Object].emit (events.js:64:17)
 at afterRead (fs.js:1081:12)
 at Object.wrapper [as oncomplete] (fs.js:252:17)

Well, that doesn’t look right, does it? Let’s look at what happened there and why our example
blew up. CoffeeScript does not allow the use of the === or !== operators. Hopefully, by the
time this book goes to print a better error message will be presented that is both clearer and
more informative. I can hear everyone crying out in horror because those are the comparison
operators we should be using the most, but don’t worry, CoffeeScript does have our backs here.
Let me explain.

ptg8106388

41Operators and Aliases

Let’s rebuild our example code; this time we’ll drop our === and !== examples:

Example: (source: comparison2.coffee)

console.log "== Equal: #{1 == 1}"

console.log "!= Not equal: #{1 != 2}"

console.log "> Greater than: #{2 > 1}"

console.log ">= Greater than or equal to: #{1 >= 1}"

console.log "< Less than: #{1 < 2}"

console.log "<= Less than or equal to: #{1 < 2}"

Example: (source: comparison2.js)

(function() {

 console.log("== Equal: " + (1 === 1));

 console.log("!= Not equal: " + (1 !== 2));

 console.log("> Greater than: " + (2 > 1));

 console.log(">= Greater than or equal to: " + (1 >= 1));

 console.log("< Less than: " + (1 < 2));

 console.log("<= Less than or equal to: " + (1 < 2));

}).call(this);

Output: (source: comparison2.coffee)

== Equal: true
!= Not equal: true
> Greater than: true
>= Greater than or equal to: true
< Less than: true
<= Less than or equal to: true

ptg8106388

42 Chapter 3 Control Structures

Great! Our examples didn’t blow up this time, but you should’ve noticed something very
interesting. Did you see how our == and != examples converted when compiled in JavaScript?
CoffeeScript compiled those examples into === and !== respectively. Why did CoffeeScript do
that? Let’s look at what happens in JavaScript when you use == and !=:

Example: (source: javascript_comparison.js)

x = 1;
y = '1';
console.log(x == y); // true

In the JavaScript example, 1 is equal to "1" despite the fact that they are different objects.
The reason is that when using the == comparison operator in JavaScript it will automatically
coerce the two objects to the same type of object and then do the comparison on it. The same
holds true for the != operator. This is the source of a great many JavaScript bugs. To get a true
comparison of two objects you must use the === operator.

If we look at the same example again, only this time using the === operator, you see that we
get false for our comparison instead of true:

Example: (source: javascript_comparison2.js)

x = 1;
y = '1';
console.log(x === y); // false

To make sure you don’t run into these sorts of bugs, CoffeeScript automatically converts any
== and != operators into === and !== for you. Isn’t that nice? CoffeeScript is helping you keep
your bugs to a minimum. You should send it a thank you card. There is another way to use the
=== and !== operators, which we’ll look at in a minute when we discuss aliases.

String
Finally, there are a few operators that work on strings.

■ + Concatenation

■ += Concatenate and assign

Here they are in CoffeeScript:

Example: (source: string_operators.coffee)

console.log "+ Concatenation: #{'a' + 'b'}"

x = 'Hello'

ptg8106388

43Operators and Aliases

x += " World"
console.log "+= Concatenate and assign: #{x}"

Example: (source: string_operators.js)

(function() {
 var x;

 console.log("+ Concatenation: " + ('a' + 'b'));

 x = 'Hello';

 x += " World";

 console.log("+= Concatenate and assign: " + x);

}).call(this);

Output: (source: string_operators.coffee)

+ Concatenation: ab
+= Concatenate and assign: Hello World

Fortunately, these operators work just like they do in JavaScript.

The Existential Operator
When I first discovered CoffeeScript, I immediately fell in love with the existential operator.
This operator lets you check, well, the existence of a variable or function, using a simple ?.

Let’s take a quick look:

Example: (source: existential1.coffee)

console.log x?

Example: (source: existential1.js)

(function() {

 console.log(typeof x !== "undefined" && x !== null);

}).call(this);

ptg8106388

44 Chapter 3 Control Structures

Output: (source: existential1.coffee)

false

As you can see in our example, CoffeeScript generates JavaScript that checks to see if the vari-
able x is defined; if it is, then it checks to see if it is not null. This can make writing condition-
als very powerful.

Example: (source: existential_if.coffee)

if html?
 console.log html

Example: (source: existential_if.js)

(function() {

 if (typeof html !== "undefined" && html !== null) console.log(html);

}).call(this);

The fun doesn’t stop there with the existential operator. Using the existential operator, we can
check the existence of something, and if it exists, call a function on it. My favorite example of
this is with the console object. For those of you unfamiliar with the console object, it exists
in most browsers as a way to write messages to the built-in JavaScript error console. Typically,
this is used by developers as a way of logging messages at certain points in the code for either
debugging or informational purposes. I’ve been using it in almost all the book examples as a
way to demonstrate the output of our examples.

The problem with the console object is that it isn’t always there (Internet Explorer, I’m
looking at you!). If you attempt to call a function or call a property on a variable that doesn’t
exist, the browser will raise an exception and your program will not execute properly. The exis-
tential operator can help us get around the problem of calling functions on objects that are not
defined, such as the console object in certain browsers.

First, let’s look at an example where we don’t use the existential operator:

Example: (source: existential2.coffee)

console.log "Hello, World"
console.log someObject.someFunction()
console.log "Goodbye, World"

ptg8106388

45Operators and Aliases

Example: (source: existential2.js)

(function() {

 console.log("Hello, World");

 console.log(someObject.someFunction());

 console.log("Goodbye, World");

}).call(this);

Output: (source: existential2.coffee)

Hello, World
ReferenceError: someObject is not defined
 at Object.<anonymous> (.../control_structures/existential2.coffee:5:15)
 at Object.<anonymous> (.../control_structures/existential2.coffee:9:4)
 at Module._compile (module.js:432:26)
 at Object.run
➥(/usr/local/lib/node_modules/coffee-script/lib/coffee-script/coffee-script.js:68:25)
 at /usr/local/lib/node_modules/coffee-script/lib/coffee-script/command.js:135:29
 at /usr/local/lib/node_modules/coffee-script/lib/coffee-script/command.js:110:18
 at [object Object].<anonymous> (fs.js:114:5)
 at [object Object].emit (events.js:64:17)
 at afterRead (fs.js:1081:12)
 at Object.wrapper [as oncomplete] (fs.js:252:17)

Well, that’s a nasty little error, isn’t it? Our example is blowing up because it cannot find an
object named someObject and we are attempting to call a function. Now, if we add the exis-
tential operator after someObject, let’s see what happens.

Example: (source: existential3.coffee)

console.log "Hello, World"
console.log someObject?.someFunction()
console.log "Goodbye, World"

Example: (source: existential3.js)

(function() {

 console.log("Hello, World");

ptg8106388

46 Chapter 3 Control Structures

 console.log(typeof someObject !== "undefined" && someObject !== null ?
➥someObject.someFunction() : void 0);

 console.log("Goodbye, World");

}).call(this);

Output: (source: existential3.coffee)

Hello, World
undefined
Goodbye, World

That is definitely better. Although we got an undefined message when we tried to access our
someObject variable, the program did fully execute. If this were a real-world example, we
might want to log a message or possibly raise some sort of alert, but for now I think we’ve done
our part to make our code a little safer.

Aliases
In an effort to make your code a little more user friendly, CoffeeScript has added a few aliases
for some of the more common operators. Some of these aliases make wonderful additions to
the language, but others are a little confusing. Table 3.1 shows the CoffeeScript aliases and their
JavaScript counterparts.

Table 3.1 CoffeeScript Aliases and Their JavaScript Counterparts

CoffeeScript JavaScript

is ===

isnt !==

not !

and &&

or ||

true, yes, on true

false, no, off false

@, this this

of in

in N/A

ptg8106388

47Operators and Aliases

Let’s take a look at all but the last two aliases. The last two aliases will be covered in Chapter 5,
“Collections and Iterations.”

The is and isnt Aliases
Here is an example of the is, isnt operator aliases in action:

Example: (source: is_aliases.coffee)

name = "mark"

console.log name is "mark"
console.log name isnt "bob"

Example: (source: is_aliases.js)

(function() {
 var name;

 name = "mark";

 console.log(name === "mark");

 console.log(name !== "bob");

}).call(this);

Output: (source: is_aliases.coffee)

true
true

As you can see, in our code the is alias mapped to the === and the isnt operator mapped
to the !==. As you recall from our earlier discussions in this chapter, the === and !== opera-
tors are the comparison operators CoffeeScript not only wants you to use, but insists you use.
CoffeeScript also would prefer you to use the is and isnt aliases. They are considered “the
CoffeeScript way.” Removing the == and != as legal operators from CoffeeScript and forcing the
use of the is and isnt operators only has been discussed. As of the time of this writing this
has not happened, but it is something you should be aware of. This particular caveat holds true
of all the aliases and their appropriate matching operator.

ptg8106388

48 Chapter 3 Control Structures

The not Alias
The not alias and I have a love/hate relationship. I love the way it makes my code look, but I
hate the way it doesn’t always behave the way I want it to. The idea of the not alias is the same
as the ! operator in JavaScript; it will “flip” the Boolean state of a variable. That means it will
make a true become false and vice versa.

Let’s take a look at how the not alias behaves:

Example: (source: not_alias.coffee)

userExists = false

if not userExists
 console.log "the user doesn't exist!"

Example: (source: not_alias.js)

(function() {
 var userExists;

 userExists = false;

 if (!userExists) console.log("the user doesn't exist!");

}).call(this);

Output: (source: not_alias.coffee)

the user doesn't exist!

As you can see, we have to make sure to place a space between the not alias and the variable
we are trying to “flip” Boolean states on.

So how does this get confusing? In CoffeeScript it is possible to write this code:

Example: (source: not_alias_wrong.coffee)

name = "mark"

console.log name isnt "bob"
console.log name is not "bob"

ptg8106388

49Operators and Aliases

Example: (source: not_alias_wrong.js)

(function() {
 var name;

 name = "mark";

 console.log(name !== "bob");

 console.log(name === !"bob");

}).call(this);

Output: (source: not_alias_wrong.coffee)

true
false

Although grammatically those couple of lines look correct, they are actually very different lines
of code. The line using the isnt alias is checking that the two objects are not equal. The line
using the is not alias is checking the equality of the first variable to the “flipped” Boolean
value of the second. This is an easy mistake to make, especially when you are first starting with
CoffeeScript.

The and and or Aliases
I love these aliases. The and and or aliases not only read well in your code, but they do just
what you would expect them to do! Here’s an example:

Example: (source: and_or.coffee)

if true and true
 console.log "true and true really is true"

if false or true
 console.log "something was true"

Example: (source: and_or.js)

(function() {

 if (true && true) console.log("true and true really is true");

 if (false || true) console.log("something was true");

}).call(this);

ptg8106388

50 Chapter 3 Control Structures

Output: (source: and_or.coffee)

true and true really is true
something was true

Like I said, they do just what you would expect them to do.

The Boolean Aliases
CoffeeScript supports not just true and false for Booleans, but also took a page from the book
of YAML3 and added a few other aliases to make your code nicer to read.

Let’s have a look:

Example: (source: boolean_operators.coffee)

myAnswer = true
console.log myAnswer is yes
console.log myAnswer is true

light = true
console.log light is on
console.log light is true

myAnswer = false
console.log myAnswer is no
console.log myAnswer is false

light = false
console.log light is off
console.log light is false

Example: (source: boolean_operators.js)

(function() {
 var light, myAnswer;

 myAnswer = true;

 console.log(myAnswer === true);

 console.log(myAnswer === true);

 light = true;

 console.log(light === true);

ptg8106388

51Operators and Aliases

 console.log(light === true);

 myAnswer = false;

 console.log(myAnswer === false);

 console.log(myAnswer === false);

 light = false;

 console.log(light === false);

 console.log(light === false);

}).call(this);

Output: (source: boolean_operators.coffee)

true
true
true
true
true
true
true
true

As you can see the yes, no, on, and off aliases can make your code fun and easy to read.

The @ Alias
The last alias we look at before we move on is the @ alias. We will revisit this alias from time
to time throughout the book as we talk about different areas of CoffeeScript. For now let’s talk
about its most basic, and common, use: as an alias for the JavaScript keyword this.

Here is a very simple example of the @ alias at work:

Example: (source: at_alias.coffee)

object = {
 name: 'mark'
 sayHi: ->
 console.log "Hello: #{@name}"
}

ptg8106388

52 Chapter 3 Control Structures

object.sayHi()

console.log @name

Example: (source: at_alias.js)

(function() {
 var object;

 object = {
 name: 'mark',
 sayHi: function() {
 return console.log("Hello: " + this.name);
 }
 };

 object.sayHi();

 console.log(this.name);

}).call(this);

Output: (source: at_alias.coffee)

Hello: mark
undefined

If you don’t understand how this scoping in JavaScript works, or even what this is, I urge
you to put this book down now and pick up a proper JavaScript book and read that first.

As you can see, if you compare our CoffeeScript example and its compiled JavaScript output,
all references to @ were replaced with this. when compiled. I find that my code is much easier
to read when using the @ symbol. I can easily distinguish between “local” variables, sometimes
referred to as instance variables, within a function and variables and functions that are defined
outside of the current function I’m working in.

If/Unless
In my travels as a developer, I have yet to meet a programming language that didn’t have the
concept of conditional statements. I’m sure somebody out there has written one, but I doubt
that it is heavily used outside of that person’s parent’s basement.

Conditionals allow our programs to become intelligent. They let us program applications that
can react to different situations. Is there a logged in user? If not, ask her to log in; otherwise,

ptg8106388

53If/Unless

show her the secret account page. Has the current user paid his bill? If he has, give him access
to his account; if not, tell him to pay. These are examples of conditional statements. The
program takes a different path through its execution based on the answers to these questions.

CoffeeScript, like almost every other programming language, offers conditionals. These condi-
tional statements will typically be used with the operators and aliases we’ve already seen in this
chapter to help the program make more intelligent decisions.

The if Statement
Already in this book, you have seen examples of the if statement at work. The structure is
pretty simple.

Example: (source: if.coffee)

if true
 console.log "the statement was true"

Example: (source: if.js)

(function() {

 if (true) console.log("the statement was true");

}).call(this);

Output: (source: if.coffee)

the statement was true

Our example, while incredibly contrived, illustrates the structure of an if statement. We follow
the keyword if with whatever our conditional statement is. If that statement returns true
we execute the block of code following it. If the conditional statement returns false we skip
execution of the code block.

Here is a slightly less-contrived example:

Example: (source: if2.coffee)

today = "Sunday"
if today is "Sunday"
 console.log "Today is Sunday"

ptg8106388

54 Chapter 3 Control Structures

Example: (source: if2.js)

(function() {
 var today;

 today = "Sunday";

 if (today === "Sunday") console.log("Today is Sunday");

}).call(this);

Output: (source: if2.coffee)

Today is Sunday

The if/else Statement
There are times when we want to execute some code if the conditional statement is true, and
there are times when we want to execute some other code if the statement is false. In these
cases we can use the if statement we know and the else keyword to define a block of code to
run, should the conditional statement be false.

For example:

Example: (source: if_else.coffee)

today = "Monday"
if today is "Sunday"
 console.log "Today is Sunday"
else
 console.log "Today is not Sunday"

Example: (source: if_else.js)

(function() {
 var today;

 today = "Monday";

 if (today === "Sunday") {
 console.log("Today is Sunday");
 } else {
 console.log("Today is not Sunday");
 }

}).call(this);

ptg8106388

55If/Unless

Output: (source: if_else.coffee)

Today is not Sunday

As you can see, in our example our conditional was false, so the block of code defined after the
else keyword was executed.

CoffeeScript does allow you to write this in a single line of code, which would look something
like this:

Example: (source: if_else_1_line.coffee)

today = "Monday"
console.log if today is "Sunday" then "Today is Sunday" else "Today is not Sunday"

Example: (source: if_else_1_line.js)

(function() {
 var today;

 today = "Monday";

 console.log(today === "Sunday" ? "Today is Sunday" : "Today is not Sunday");

}).call(this);

Output: (source: if_else_1_line.coffee)

Today is not Sunday

Tip

Personally, I think that the single line if else then statement is a bit wordy and hard to
read, so I would very rarely, if ever, use it.

In JavaScript you can use what is called the ternary operator4 to write that same example in
one line of code, which is what CoffeeScript compiles it down to. However, CoffeeScript does
not support the ternary operator, so any attempt to use it would result in some rather strange
compiled JavaScript. Take a look for yourself:

ptg8106388

56 Chapter 3 Control Structures

Example: (source: ternary.coffee)

today = "Monday"
console.log today is "Sunday" ? "Today is Sunday" : "Today is not Sunday"

Example: (source: ternary.js)

(function() {
 var today, _ref;

 today = "Monday";

 console.log((_ref = today === "Sunday") != null ? _ref : {
 "Today is Sunday": "Today is not Sunday"
 });

}).call(this);

Output: (source: ternary.coffee)

false

I’m not going to explain what happened there. Make a note to yourself to revisit this example
when you have finished this book to see if you can solve the riddle of why CoffeeScript gener-
ated that JavaScript.

The if/else if Statement
Let’s pretend for a moment that we are writing a very basic todo application. When we look at
the application we want it do one of three things. If today is Saturday, we want it to show us a
list of todos for the day. If it’s Sunday, we want it to tell us to relax and enjoy the day. Finally
if it’s neither Saturday nor Sunday, we want it tell us to get to work. How would we write that
using the knowledge we have so far? It would look something like this:

Example: (source: if_else_if_1.coffee)

today = "Monday"
if today is "Saturday"
 console.log "Here are your todos for the day..."
if today is "Sunday"
 console.log "Go watch football and relax!"
if today isnt "Saturday" and today isnt "Sunday"
 console.log "Get to work you lazy bum!"

ptg8106388

57If/Unless

Example: (source: if_else_if_1.js)

(function() {
 var today;

 today = "Monday";

 if (today === "Saturday") console.log("Here are your todos for the day...");

 if (today === "Sunday") console.log("Go watch football and relax!");

 if (today !== "Saturday" && today !== "Sunday") {
 console.log("Get to work you lazy bum!");
 }

}).call(this);

Output: (source: if_else_if_1.coffee)

Get to work you lazy bum!

Although that code does work, it isn’t the most efficient code. For a start we are checking each
if statement, even if the first one was true, and we still check the other if statements in
case they are also true, which we know will never be the case. Also, our last if statement is a
bit repetitive because we are asking similar questions already. Finally, it is also error prone. If
want to change from using full day names, like Sunday, to shortened ones, like Sun, we have to
make sure we update every reference to Sunday we find.

Using the else if statement, we can easily clean up this example. Here’s how:

Example: (source: if_else_if_2.coffee)

today = "Monday"
if today is "Saturday"
 console.log "Here are your todos for the day..."
else if today is "Sunday"
 console.log "Go watch football and relax!"
else
 console.log "Get to work you lazy bum!"

Example: (source: if_else_if_2.js)

(function() {
 var today;

 today = "Monday";

ptg8106388

58 Chapter 3 Control Structures

 if (today === "Saturday") {
 console.log("Here are your todos for the day...");
 } else if (today === "Sunday") {
 console.log("Go watch football and relax!");
 } else {
 console.log("Get to work you lazy bum!");
 }

}).call(this);

Output: (source: if_else_if_2.coffee)

Get to work you lazy bum!

Now doesn’t that look a lot better? It is also a lot more efficient when executed. If today were
Saturday, it would execute the first code block and then skip the rest of the else if and else
statements, because they are unnecessary.

Later in this chapter we will rewrite this example using the switch statement, which will clean
it up even further.

The unless Statement
The Ruby programming language has the concept of the unless statement, and the folks
behind CoffeeScript thought it was such a great idea they stole it.

What does the unless statement do? In short, it enables you to put the else before the if.
Now, I know you’re scratching your head. It is confusing at first, but it really is straightforward.

When using the unless we are checking to see if our conditional statement is false. If the state-
ment is false, we execute the code block defined below it. Here’s an example:

Example: (source: unless.\coffee)

today = "Monday"
unless today is "Sunday"
 console.log "No football today!"

Example: (source: unless.js)

(function() {
 var today;

 today = "Monday";

ptg8106388

59If/Unless

 if (today !== "Sunday") console.log("No football today!");

}).call(this);

Output: (source: unless.coffee)

No football today!

The same example could be written in any of the following ways:

Example: (source: unless_as_if.coffee)

today = "Monday"
unless today is "Sunday"
 console.log "No football today!"

if not (today is "Sunday")
 console.log "No football today!"

if today isnt "Sunday"
 console.log "No football today!"

Example: (source: unless_as_if.js)

(function() {
 var today;

 today = "Monday";

 if (today !== "Sunday") console.log("No football today!");

 if (!(today === "Sunday")) console.log("No football today!");

 if (today !== "Sunday") console.log("No football today!");

}).call(this);

Output: (source: unless_as_if.coffee)

No football today!
No football today!
No football today!

ptg8106388

60 Chapter 3 Control Structures

Of the three examples, I prefer the last example using the isnt alias. I find it to be a bit cleaner
and easier to read. The choice, however, is up to you. They are all valid ways of writing the
same code.

Inline Conditionals
In addition to the unless keyword, the CoffeeScript team copped the idea of inline condition-
als from Ruby. An inline conditional statement allows you to place both the conditional state-
ment and the code block to execute on the same line.

This is easily demonstrated with an example:

Example: (source: inline.coffee)

today = "Sunday"
console.log "Today is Sunday" if today is "Sunday"

Example: (source: inline.js)

(function() {
 var today;

 today = "Sunday";

 if (today === "Sunday") console.log("Today is Sunday");

}).call(this);

Output: (source: inline.coffee)

Today is Sunday

When used with the existential operator, which we covered earlier in this chapter, the inline
conditional can help to keep code clean.

Switch/Case Statements
Earlier when we talked about else if statements, I mentioned how we could clean up that
code using a switch statement.5 A switch statement lets us build a table of conditionals,
which we can then match an object against. Should one of the conditionals match, appropriate
code will be executed. We can also give our table an else clause to match, should none of the
other conditionals match.

ptg8106388

61Switch/Case Statements

Let’s take a look at our earlier else if example and rewrite it to use the switch statement in
CoffeeScript.

Example: (source: switch1.coffee)

today = "Monday"
switch today
 when "Saturday"
 console.log "Here are your todos for the day..."
 when "Sunday"
 console.log "Go watch football and relax!"
 else
 console.log "Get to work you lazy bum!"

Example: (source: switch1.js)

(function() {
 var today;

 today = "Monday";

 switch (today) {
 case "Saturday":
 console.log("Here are your todos for the day...");
 break;
 case "Sunday":
 console.log("Go watch football and relax!");
 break;
 default:
 console.log("Get to work you lazy bum!");
 }

}).call(this);

Output: (source: switch1.coffee)

Get to work you lazy bum!

As you can see, our today variable is checked against the defined case statements. Because
neither of the case statements matched the today variable we passed in, the program fell
through to the else statement we defined at the end of the switch statement. It’s worth
pointing out that we don’t need to define an else block at the end. If we didn’t define the
else in our example, nothing would have been printed out.

ptg8106388

62 Chapter 3 Control Structures

The more observant of you will have noticed the break keyword in the compiled JavaScript
output at the end of each of the case statements. In JavaScript it is possible to let the switch
statement keep falling through and keep matching more case statements. This is almost never
wanted, and is often the source of many bugs. The most common bug is that it matches a
case, executes the appropriate code, and ends up also executing the default code block at the
bottom. The break keyword will tell the switch to stop executing and to stop trying to match
other cases. This is another example of CoffeeScript trying to cover your back and help you
write code with fewer bugs.

The switch statement also enables us to pass a comma-separated list of values to match against
the case keyword. This makes it possible for us to execute the same code block for multiple
matches. Suppose we wanted a program that would check to see if today was a weekend day. If
it was indeed a weekend day, it would tell us to relax; otherwise, it would tell us to work. We
could do that like this:

Example: (source: switch2.coffee)

today = "Sunday"
switch today
 when "Saturday", "Sunday"
 console.log "Enjoy your #{today}!"
 else
 console.log "Off to work you go. :("

Example: (source: switch2.js)

(function() {
 var today;

 today = "Sunday";

 switch (today) {
 case "Saturday":
 case "Sunday":
 console.log("Enjoy your " + today + "!");
 break;
 default:
 console.log("Off to work you go. :(");
 }

}).call(this);

Output: (source: switch2.coffee)

Enjoy your Sunday!

ptg8106388

63Notes

With that, our exploration of the wonderful switch statement comes to a close. There is a lot
of debate among developers as to when, where, or if you should ever use switch statements.
They are not something I use on a day-to-day basis, but they definitely have their place. I’ll let
you decide when they are of use to you and your application.

Wrapping Up
In this chapter we’ve covered a lot of ground. We’ve discussed the various operators in
CoffeeScript and how, if at all, they map to JavaScript. We’ve seen a few of the places where
CoffeeScript tries to help us write better JavaScript code. Aliases showed us how to write
“prettier” code that reads more like English than “computer.” You’ve seen how to build condi-
tional statements to help make your programs more intelligent and to help execute the correct
bit of code depending on certain conditions. Finally, we explored how the switch statement
can help you clean up complex code.

In the original outline for this book, this chapter was originally part of Chapter 2, “The Basics,”
but I felt there was so much information here that it deserved its own chapter. This chapter
could have been called “The Basics—Part 2.” I’m telling you this because, armed with the
knowledge contained within this chapter and Chapter 2, we have covered the basic building
blocks of CoffeeScript. We can now start looking at the really fun stuff.

Notes
1. http://en.wikipedia.org/wiki/Operator_(programming)

2. http://en.wikipedia.org/wiki/Conditional_(programming)

3. http://www.yaml.org/spec/1.2/spec.html

4. http://en.wikipedia.org/wiki/Ternary_operation

5. http://en.wikipedia.org/wiki/Switch_statement

http://en.wikipedia.org/wiki/Operator_(programming)
http://en.wikipedia.org/wiki/Conditional_(programming)
http://www.yaml.org/spec/1.2/spec.html
http://en.wikipedia.org/wiki/Ternary_operation
http://en.wikipedia.org/wiki/Switch_statement

ptg8106388

This page intentionally left blank

ptg8106388

4
Functions and Arguments

In this chapter we are going to look at one of the most essential parts of any language, the
function. Functions allow us to encapsulate reusable and discrete code blocks. Without func-
tions our code would be one long, unreadable, and unmaintainable mess.

I wanted to give you an example of what JavaScript would look like if we were not able to
use or write functions, but I was unable to. Even the simplest example of taking a string and
making it lowercase requires the use of functions in JavaScript.

Because I can’t show you an example devoid of functions, I’ll show you an example of some
CoffeeScript code that could use the help of a function or two, so you can see how important
functions are to helping you keep your code manageable.

Example: (source: no_functions_example.coffee)

tax_rate = 0.0625

val = 100
console.log "What is the total of $#{val} worth of shopping?"
tax = val * tax_rate
total = val + tax
console.log "The total is #{total}"

val = 200
console.log "What is the total of $#{val} worth of shopping?"
tax = val * tax_rate
total = val + tax
console.log "The total is #{total}"

ptg8106388

66 Chapter 4 Functions and Arguments

Example: (source: no_functions_example.js)

(function() {
 var tax, tax_rate, total, val;

 tax_rate = 0.0625;

 val = 100;

 console.log("What is the total of $" + val + " worth of shopping?");

 tax = val * tax_rate;

 total = val + tax;

 console.log("The total is " + total);

 val = 200;

 console.log("What is the total of $" + val + " worth of shopping?");

 tax = val * tax_rate;

 total = val + tax;

 console.log("The total is " + total);

}).call(this);

Output: (source: no_functions_example.coffee)

What is the total of $100 worth of shopping?
The total is 106.25
What is the total of $200 worth of shopping?
The total is 212.5

In our example, we are calculating the total value of goods purchased in-state with certain sales
tax. Apart from the banality of the example, you can see that we are repeating our code to
calculate the total value with tax several times.

Let’s refactor our code a bit, add some functions, and try to clean it up.

ptg8106388

67Functions and Arguments

Example: (source: with_functions_example.coffee)

default_tax_rate = 0.0625

calculateTotal = (sub_total, rate = default_tax_rate) ->
 tax = sub_total * rate
 sub_total + tax

val = 100
console.log "What is the total of $#{val} worth of shopping?"
console.log "The total is #{calculateTotal(val)}"

val = 200
console.log "What is the total of $#{val} worth of shopping?"
console.log "The total is #{calculateTotal(val)}"

Example: (source: with_functions_example.js)

(function() {
 var calculateTotal, default_tax_rate, val;

 default_tax_rate = 0.0625;

 calculateTotal = function(sub_total, rate) {
 var tax;
 if (rate == null) rate = default_tax_rate;
 tax = sub_total * rate;
 return sub_total + tax;
 };

 val = 100;

 console.log("What is the total of $" + val + " worth of shopping?");

 console.log("The total is " + (calculateTotal(val)));

 val = 200;

 console.log("What is the total of $" + val + " worth of shopping?");

 console.log("The total is " + (calculateTotal(val)));

}).call(this);

ptg8106388

68 Chapter 4 Functions and Arguments

Output: (source: with_functions_example.coffee)

What is the total of $100 worth of shopping?
The total is 106.25
What is the total of $200 worth of shopping?
The total is 212.5

You probably don’t understand everything we just did there, but don’t worry, that’s what this
chapter is for. However, even without knowing the specifics of how functions are defined, and
work, in CoffeeScript, you can see how much cleaner our code is between the two examples.
In the refactored code, we are even able to pass in a different tax rate, should we need to. This
also helps us keep our code DRY1: Don’t Repeat Yourself. Not repeating your code makes for an
easier-to-manage code base with, hopefully, fewer bugs.

Function Basics
We’ll start with the very basics on how to define a function in CoffeeScript. The anatomy of a
very simple function looks like this:

Example: (source: simple_function.coffee)

myFunction = ()->
 console.log "do some work here"

myFunction()

Example: (source: simple_function.js)

(function() {
 var myFunction;

 myFunction = function() {
 return console.log("do some work here");
 };

 myFunction();

}).call(this);

In that example we gave the function a name, myFunction, and a code block to go with it.
The body of the function is the code that is indented below the ->, following the significant
whitespace rules we learned about in Chapter 2, “The Basics.”

The function does not accept any arguments. We know that by the empty parentheses prior to
the ->. When calling a function in CoffeeScript that has no arguments, we are required to use
parentheses, myFunction().

ptg8106388

69Function Basics

Because our function has no arguments, we can drop the parentheses entirely when defining it,
like so:

Example: (source: simple_function_no_parens.coffee)

myFunction = ->
 console.log "do some work here"

myFunction()

Example: (source: simple_function_no_parens.js)

(function() {
 var myFunction;

 myFunction = function() {
 return console.log("do some work here");
 };

 myFunction();

}).call(this);

There is one more way we can write this simple function. Because the body of our function is
on only one line, we can collapse the whole function definition to one, like this:

Example: (source: simple_function_one_line.coffee)

myFunction = -> console.log "do some work here"

myFunction()

Example: (source: simple_function_one_line.js)

(function() {
 var myFunction;

 myFunction = function() {
 return console.log("do some work here");
 };

 myFunction();

}).call(this);

All three of the previous code examples produce the same JavaScript and are called in the
same way.

ptg8106388

70 Chapter 4 Functions and Arguments

Tip
Although you can write function definitions on one line, I prefer not to. Personally, I don’t find
it that much cleaner or easier to read. Also, by keeping the body of the function on a separate
line, you make it easier to later augment your function with more code.

You should also notice that the last line of each function contains a return keyword.
CoffeeScript adds this automatically for you. Whatever the last line of your function is, that will
be the function’s return value. This is similar to languages such as Ruby. Because CoffeeScript
will automatically add the return for you in the compiled JavaScript, the use of the return
keyword in your CoffeeScript is optional.

Tip
I find that adding the return keyword can sometimes help make the meaning of your code a
bit clearer. Use it where you find it will help make your code easier to read and understand.

Tip
If you want your functions to not return the last line of the function, you’ll have to explicitly give
it a new last line to return. Something like return null or return undefined will do the
trick nicely.

Arguments
Just like in JavaScript, functions in CoffeeScript can also take arguments. Arguments let us pass
objects into the function so that the function can then perform calculations, data manipula-
tion, or whatever our little hearts desire.

In CoffeeScript, defining a function that takes arguments is not much different than in
JavaScript. Inside our parentheses we define a comma-separated list of the names of the argu-
ments we want the function to accept.

Example: (source: function_with_args.coffee)

calculateTotal = (sub_total, rate) ->
 tax = sub_total * rate
 sub_total + tax

console.log calculateTotal(100, 0.0625)

ptg8106388

71Arguments

Example: (source: function_with_args.js)

(function() {
 var calculateTotal;

 calculateTotal = function(sub_total, rate) {
 var tax;
 tax = sub_total * rate;
 return sub_total + tax;
 };

 console.log(calculateTotal(100, 0.0625));

}).call(this);

Output: (source: function_with_args.coffee)

106.25

As you can see in our example, we defined our function to take in two arguments and to do
some math with them to calculate a total value. When we called the function, we passed in the
two values we wanted it to use.

In Chapter 2 we discussed briefly the rules around parentheses in CoffeeScript. I want to reiter-
ate one of those rules. Because our function takes arguments, we are allowed to omit the paren-
theses when calling the function. This means we could also write our example like this:

Example: (source: function_with_args_no_parens.coffee)

calculateTotal = (sub_total, rate) ->
 tax = sub_total * rate
 sub_total + tax

console.log calculateTotal 100, 0.0625

Example: (source: function_with_args_no_parens.js)

(function() {
 var calculateTotal;

 calculateTotal = function(sub_total, rate) {
 var tax;
 tax = sub_total * rate;
 return sub_total + tax;
 };

ptg8106388

72 Chapter 4 Functions and Arguments

 console.log(calculateTotal(100, 0.0625));

}).call(this);

Output: (source: function_with_args_no_parens.coffee)

106.25

As you can see, CoffeeScript correctly compiled the JavaScript for us, putting those parentheses
back where they are needed.

Tip
The use of parentheses when calling functions is hotly contested in the CoffeeScript world.
Personally, I tend to use them. I think it helps make my code a bit more readable, and it cuts
down on potential bugs where parentheses were misplaced by the compiler. When in doubt,
use parentheses. You won’t regret it.

Default Arguments
In some languages, such as Ruby, it is possible to assign default values to arguments. This
means that if you do not pass in some arguments, for whatever reason, then reasonable default
values can be used in their place.

Let’s revisit our calculator example again. We’ll write it so that the tax rate is set to a default
value should one not be passed in:

Example: (source: default_args.coffee)

calculateTotal = (sub_total, rate = 0.05) ->
 tax = sub_total * rate
 sub_total + tax

console.log calculateTotal 100, 0.0625
console.log calculateTotal 100

Example: (source: default_args.js)

(function() {
 var calculateTotal;

 calculateTotal = function(sub_total, rate) {
 var tax;

ptg8106388

73Default Arguments

 if (rate == null) rate = 0.05;
 tax = sub_total * rate;
 return sub_total + tax;
 };

 console.log(calculateTotal(100, 0.0625));

 console.log(calculateTotal(100));

}).call(this);

Output: (source: default_args.coffee)

106.25
105

When defining our function, we told CoffeeScript to set the default value of the tax_rate
argument equal to 0.05. When we first call the calculateTotal function, we pass in a tax_
rate argument of 0.0625; the second time we omit the tax_rate argument altogether, and
the code does the appropriate thing and uses 0.05 in its place.

We can take default arguments a step further and have them refer to other arguments. Consider
this example:

Example: (source: default_args_referring.coffee)

href = (text, url = text) ->
 html = "#{text}"
 return html

console.log href("Click Here", "http://www.example.com")
console.log href("http://www.example.com")

Example: (source: default_args_referring.js)

(function() {
 var href;

 href = function(text, url) {
 var html;
 if (url == null) url = text;
 html = "" + text + "";
 return html;
 };

ptg8106388

74 Chapter 4 Functions and Arguments

 console.log(href("Click Here", "http://www.example.com"));

 console.log(href("http://www.example.com"));

}).call(this);

Output: (source: default_args_referring.coffee)

Click Here
http://www.example.com

Should no one pass in the url argument in our example, we will set it equal to the text argu-
ment that was passed in.

It is also possible to use functions as default values in the argument list. Because the default
value will be called only if there is no argument passed in, there is no performance concern.

Example: (source: default_args_with_function.coffee)

defaultRate = -> 0.05

calculateTotal = (sub_total, rate = defaultRate()) ->
 tax = sub_total * rate
 sub_total + tax

console.log calculateTotal 100, 0.0625
console.log calculateTotal 100

Example: (source: default_args_with_function.js)

(function() {
 var calculateTotal, defaultRate;

 defaultRate = function() {
 return 0.05;
 };

 calculateTotal = function(sub_total, rate) {
 var tax;
 if (rate == null) rate = defaultRate();
 tax = sub_total * rate;
 return sub_total + tax;
 };

ptg8106388

75Splats...

 console.log(calculateTotal(100, 0.0625));

 console.log(calculateTotal(100));

}).call(this);

Output: (source: default_args_with_function.coffee)

106.25
105

Tip
When using default arguments it is important to note that they must be at the end of the argu-
ment list. It is okay to have multiple arguments with defaults, but they all must be at the end.

Splats...
Sometimes when developing a function, we are not sure just how many arguments we are
going to need. Sometimes we might get one argument; other times we might get a hundred. To
help us easily solve this problem, CoffeeScript gives us the option of using splats when defining
the argument list for a function. Splatted arguments are denoted by placing an ellipsis (...)
after the method definition.

Tip
A great way to remember how to use splats is to treat the ... suffix as if you were saying
etc... Not only is that easy to remember, but if you use etc... in your code, you’ll look cool.

When would you use splats? Splats can be used whenever your function will be taking in a vari-
able number of arguments. Before we take a look at a detailed example, let’s look quickly at a
simple function that takes a splatted argument:

Example: (source: splats.coffee)

splatter = (etc...) ->
 console.log "Length: #{etc.length}, Values: #{etc.join(', ')}"

splatter()
splatter("a", "b", "c")

ptg8106388

76 Chapter 4 Functions and Arguments

Example: (source: splats.js)

(function() {
 var splatter,
 __slice = Array.prototype.slice;

 splatter = function() {
 var etc;
 etc = 1 <= arguments.length ? __slice.call(arguments, 0) : [];
 return console.log("Length: " + etc.length + ", Values: " + (etc.join(', ')));
 };

 splatter();

 splatter("a", "b", "c");

}).call(this);

Output: (source: splats.coffee)

Length: 0, Values:
Length: 3, Values: a, b, c

As you can see, whatever arguments we pass into our function automatically get put into an
array, and should we not send any arguments we get an empty array.

Tip
Splats are a great example of something that can be done in JavaScript but would require a lot
of boilerplate code to implement. Look at the JavaScript output of a CoffeeScript splatted argu-
ment and you’ll agree boilerplate code is no fun to write.

Unlike other languages that support a similar construct, CoffeeScript does not force you to
only use splats as the last argument in the argument list. In fact, splatted arguments can appear
anywhere in your argument list. A small caveat is that you can have only one splatted argu-
ment in the argument list.

To help illustrate how splats can be used in any part of the argument list, let’s write a method
that will take some arguments and spit out a string. When building this string, we make sure
that the first and last arguments are uppercased; any other arguments will be lowercased. Then
we’ll concatenate the string using forward slashes.

ptg8106388

77Splats...

Example: (source: splats_arg_join.coffee)

joinArgs = (first, middles..., last) ->
 parts = []

 if first?
 parts.push first.toUpperCase()

 for middle in middles
 parts.push middle.toLowerCase()

 if last?
 parts.push last.toUpperCase()

 parts.join('/')

console.log joinArgs("a")
console.log joinArgs("a", "b")
console.log joinArgs("a", "B", "C", "d")

Example: (source: splats_arg_join.js)

(function() {
 var joinArgs,
 __slice = Array.prototype.slice;

 joinArgs = function() {
 var first, last, middle, middles, parts, _i, _j, _len;
 first = arguments[0], middles = 3 <= arguments.length ? __slice.call(arguments, 1,
➥_i = arguments.length - 1) : (_i = 1, []), last = arguments[_i++];
 parts = [];
 if (first != null) parts.push(first.toUpperCase());
 for (_j = 0, _len = middles.length; _j < _len; _j++) {
 middle = middles[_j];
 parts.push(middle.toLowerCase());
 }
 if (last != null) parts.push(last.toUpperCase());
 return parts.join('/');
 };

 console.log(joinArgs("a"));

 console.log(joinArgs("a", "b"));

 console.log(joinArgs("a", "B", "C", "d"));

}).call(this);

ptg8106388

78 Chapter 4 Functions and Arguments

Output: (source: splats_arg_join.coffee)

A
A/B
A/b/c/D

I admit that is a bit of a heavy example, but it illustrates how splats work. When we call the
joinArgs function, the first argument we pass into the function call gets assigned to the first
variable, the last argument we pass in gets assigned to the last variable, and if any other argu-
ments are passed in between the first and the last arguments, those are put into an array and
assigned to the middles variable.

Tip
We could have written our function to just take a splatted argument and extract the first and
last elements from the middles array, but this function definition means we don’t have to write
all that code. Happy days.

Finally, when dealing with splats, you might have an array that you want passed in as indi-
vidual arguments. That is possible.

Let’s take a quick look at an example:

Example: (source: splats_array.coffee)

splatter = (etc...) ->
 console.log "Length: #{etc.length}, Values: #{etc.join(', ')}"

a = ["a", "b", "c"]
splatter(a)
splatter(a...)

Example: (source: splats_array.js)

(function() {
 var a, splatter,
 __slice = Array.prototype.slice;

 splatter = function() {
 var etc;
 etc = 1 <= arguments.length ? __slice.call(arguments, 0) : [];
 return console.log("Length: " + etc.length + ", Values: " + (etc.join(', ')));
 };

 a = ["a", "b", "c"];

ptg8106388

79Notes

 splatter(a);

 splatter.apply(null, a);

}).call(this);

Output: (source: splats_array.coffee)

Length: 1, Values: a,b,c
Length: 3, Values: a, b, c

Using our earlier splatter example, we can try first passing in an array, but as you can see,
the splatter function sees the array as a single argument, because that is what it is. However,
if we append ... to the array as we pass it into our function call, the CoffeeScript will split up
the array into separate arguments and pass them into the function.

Wrapping Up
There you have it—everything you’ve ever wanted to know about functions in CoffeeScript!
First we looked at how to define a simple function; in fact, we saw several ways to define a
function in CoffeeScript. We then took a look at how arguments to functions are defined and
how to call a function, including a recap of when and where you do and do not have to use
parentheses when calling a function. We also took a look at default arguments, one of my
favorite features of CoffeeScript.

Finally, we explored splats and how they help us write functions that take variable arguments.

With our nickel tour of functions and arguments over with, we can move on to the next stop,
Chapter 5, “Collections and Iterations.” So go grab a cold one, and we’ll meet there. Ready?

Notes
1. http://en.wikipedia.org/wiki/DRY

http://en.wikipedia.org/wiki/DRY

ptg8106388

This page intentionally left blank

ptg8106388

5
Collections and Iterations

Collections form an important part of almost any object-oriented programming language.
They let us easily store multiple values either in a list, such as an array, or using a key/value
pair, like objects in JavaScript. With objects we can represent an item, such as a book, and give
it values such as a title, author, and publication date. Using an array we can then store a list of
the book objects we create.

Along with collections come iterators. Iterators let us take our stored values, such as that list
of books, and loop through them one at a time, allowing us to print each one to the screen,
update some information on each book, or do whatever our application needs to do.

In the first half of this chapter we learn about arrays and objects in CoffeeScript. We’ll see how
they map to their JavaScript counterparts. Because this is CoffeeScript, we’ll also look at some
of the fun little hidden gems that are available to us with arrays and objects.

The second half of this chapter will focus on iterators. We’ll take what we’ve learned about
collections and learn how to loop through them and manipulate them.

Arrays
Without getting all geeky about how arrays are implemented in memory and such, let’s agree
that, for the premise of this book, arrays are simple data structures designed to store data in
a sequential list. New items, unless otherwise stated, are added to the last slot in that list. In
CoffeeScript, arrays don’t look any different from JavaScript. Arrays in CoffeeScript use a zero
index and are constructed in the same way as their JavaScript counterparts.

ptg8106388

82 Chapter 5 Collections and Iterations

Example: (source: array1.coffee)

myArray = ["a", "b", "c"]

console.log myArray

Example: (source: array1.js)

(function() {
 var myArray;

 myArray = ["a", "b", "c"];

 console.log(myArray);

}).call(this);

Output: (source: array1.coffee)

['a', 'b', 'c']

With the exception of a missing semicolon and var keyword, the CoffeeScript and JavaScript
array implementations are almost identical. Just because they look identical, though, it doesn’t
mean that CoffeeScript doesn’t have a few tricks up its sleeve when it comes to arrays.

In CoffeeScript we can declare the same array without the need for commas between each
element in the array simply by placing each item on its own line:

Example: (source: array2.coffee)

myArray = [
 "a"
 "b"
 "c"
]

console.log myArray

Example: (source: array2.js)

(function() {
 var myArray;

 myArray = ["a", "b", "c"];

ptg8106388

83Arrays

 console.log(myArray);

}).call(this);

Output: (source: array2.coffee)

['a', 'b', 'c']

In this case, that is definitely a longer way to write the same array, but occasionally you’ll find
that splitting up your array definition to multiple lines can make your code easier to read. A
combination of commas and new lines can also be used to make code more readable:

Example: (source: array3.coffee)

myArray = [
 "a", "b", "c"
 "d", "e", "f"
 "g", "h", "i"
]

console.log myArray

Example: (source: array3.js)

(function() {
 var myArray;

 myArray = ["a", "b", "c", "d", "e", "f", "g", "h", "i"];

 console.log(myArray);

}).call(this);

Output: (source: array3.coffee)

['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i']

Testing Inclusion
CoffeeScript arrays have the same functions available to them as JavaScript arrays do. There are
a few things that are a bit difficult to do with JavaScript arrays that CoffeeScript tries to help
you out with. We talk about a few of those things later in this chapter when we talk about

ptg8106388

84 Chapter 5 Collections and Iterations

ranges. Right now, however, I would like to talk about one area of working with arrays that
CoffeeScript makes a whole lot easier—determining whether an array contains a particular
value.

Example: (source: in_array.coffee)

myArray = ["a", "b", "c"]

if "b" in myArray
 console.log "I found 'b'."

unless "d" in myArray
 console.log "'d' was nowhere to be found."

Example: (source: in_array.js)

(function() {
 var myArray,
 __indexOf = Array.prototype.indexOf || function(item) { for (var i = 0, l =
➥this.length; i < l; i++) { if (i in this && this[i] === item) return i; }
➥return -1; };

 myArray = ["a", "b", "c"];

 if (__indexOf.call(myArray, "b") >= 0) console.log("I found 'b'.");

 if (__indexOf.call(myArray, "d") < 0) {
 console.log("'d' was nowhere to be found.");
 }

}).call(this);

Output: (source: in_array.coffee)

I found 'b'.
'd' was nowhere to be found.

As you can see, we can test an array to see if it contains a particular value using the in
keyword. In the compiled JavaScript, a function is being created that will loop through the
array and try to find the index of the value we’re looking for. If it finds that value, it will return
its index. Then the code checks to see if that returned index is greater than zero.

ptg8106388

85Arrays

Swapping Assignment
At some point in your coding career, you will have two or more variables that need their values
swapped. This can be more cumbersome in some languages than in others, but fortunately,
CoffeeScript is not cumbersome.

Let’s take a look at how this works by swapping the value of two variables:

Example: (source: swap_assignment.coffee)

x = "X"
y = "Y"

console.log "x is #{x}"
console.log "y is #{y}"

[x, y] = [y, x]

console.log "x is #{x}"
console.log "y is #{y}"

Example: (source: swap_assignment.js)

(function() {
 var x, y, _ref;

 x = "X";

 y = "Y";

 console.log("x is " + x);

 console.log("y is " + y);

 _ref = [y, x], x = _ref[0], y = _ref[1];

 console.log("x is " + x);

 console.log("y is " + y);

}).call(this);

ptg8106388

86 Chapter 5 Collections and Iterations

Output: (source: swap_assignment.coffee)

x is X
y is Y
x is Y
y is X

In CoffeeScript we use the array syntax to create two arrays and assign those arrays to each
other. In the first array, to the left of the =, we list the variables to which we would like to
assign new values. In the second array, to the right of the =, we place the new values we would
like our variables to have. CoffeeScript does the rest.

As we can see, when we print the values of our variables before and after the switch they have
indeed switched values.

Multiple Assignment aka Destructing Assignment
Sometimes we will have a function that returns an array of values, and we want to quickly
assign each element of that array to a variable for easier access later. Here is an example from
the Ruby world. In Ruby there is a very popular library called Rack1. Rack’s function is to
provide a simple interface between web servers and application frameworks. The specification is
pretty simple. Your framework must return an array. The first element of the array is an HTTP
status code. The second element is a hash of HTTP headers. The third, and final, element is the
body of the response. Now, that is a bit of an oversimplification of how Rack works, but it’s
good enough for our needs.

Now let’s try to write a function that returns an array that meets the Rack specification. Then
we’ll assign the elements of that array to some useful variables.

Example: (source: multiple_assignment.coffee)

rack = ->
 [200, {"Content-Type": "text/html"}, "Hello Rack!"]

console.log rack()

[status, headers, body] = rack()

console.log "status is #{status}"
console.log "headers is #{JSON.stringify(headers)}"
console.log "body is #{body}"

Example: (source: multiple_assignment.js)

(function() {
 var body, headers, rack, status, _ref;

ptg8106388

87Arrays

 rack = function() {
 return [
 200, {
 "Content-Type": "text/html"
 }, "Hello Rack!"
];
 };

 console.log(rack());

 _ref = rack(), status = _ref[0], headers = _ref[1], body = _ref[2];

 console.log("status is " + status);

 console.log("headers is " + (JSON.stringify(headers)));

 console.log("body is " + body);

}).call(this);

Output: (source: multiple_assignment.coffee)

[200, { 'Content-Type': 'text/html' }, 'Hello Rack!']
status is 200
headers is {"Content-Type":"text/html"}
body is Hello Rack!

Here we’re using the same pattern as we did when we talked about swapping assignment. We
have an array to the left of = containing the names of the variables that we want to assign
values to. On the right side of the = we call the function that then returns an array of values we
can use to assign to our variables.

Tip
Notice that with both swapping assignment and multiple assignment, we didn’t need to first
declare the names of the variables we wanted to use. CoffeeScript took care of that for us.

We can even use splats from Chapter 4, “Functions and Arguments,” to capture multiple
values:

ptg8106388

88 Chapter 5 Collections and Iterations

Example: (source: splat_assignment.coffee)

myArray = ["A", "B", "C", "D"]

[start, middle..., end] = myArray

console.log "start is #{start}"
console.log "middle is #{middle}"
console.log "end is #{end}"

Example: (source: splat_assignment.js)

(function() {
 var end, middle, myArray, start, _i,
 __slice = Array.prototype.slice;

 myArray = ["A", "B", "C", "D"];

 start = myArray[0], middle = 3 <= myArray.length ? __slice.call(myArray, 1, _i =
➥myArray.length - 1) : (_i = 1, []), end = myArray[_i++];

 console.log("start is " + start);

 console.log("middle is " + middle);

 console.log("end is " + end);

}).call(this);

Output: (source: splat_assignment.coffee)

start is A
middle is B,C
end is D

So what happens if you want to assign values to more variables than there are values? Well,
let’s take a look:

Example: (source: too_much_assignment.coffee)

myArray = ["A", "B"]

[a, b, c] = myArray

console.log "a is #{a}"
console.log "b is #{b}"
console.log "c is #{c}"

ptg8106388

89Arrays

Example: (source: too_much_assignment.js)

(function() {
 var a, b, c, myArray;

 myArray = ["A", "B"];

 a = myArray[0], b = myArray[1], c = myArray[2];

 console.log("a is " + a);

 console.log("b is " + b);

 console.log("c is " + c);

}).call(this);

Output: (source: too_much_assignment.coffee)

a is A
b is B
c is undefined

As you can see, our last variable was given the value of undefined because there was no value
in the array to assign to it.

If we don’t define enough variables for the amount of values in the array, such as in the follow-
ing example, we simply don’t assign the remaining values.

Example: (source: too_little_assignment.coffee)

myArray = ["A", "B", "C"]

[a, b] = myArray

console.log "a is #{a}"
console.log "b is #{b}"

Example: (source: too_little_assignment.js)

(function() {
 var a, b, myArray;

 myArray = ["A", "B", "C"];

ptg8106388

90 Chapter 5 Collections and Iterations

 a = myArray[0], b = myArray[1];

 console.log("a is " + a);

 console.log("b is " + b);

}).call(this);

Output: (source: too_little_assignment.coffee)

a is A
b is B

Ranges
Ranges in CoffeeScript enable us to easily populate an array with numbers ranging from a start
number to an end number. The syntax for building a range looks like so:

Example: (source: range1.coffee)

myRange = [1..10]
console.log myRange

Example: (source: range1.js)

(function() {
 var myRange;

 myRange = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10];

 console.log(myRange);

}).call(this);

Output: (source: range1.coffee)

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

By separating the start number and the end number with .. we will get an array filled with
numbers, starting with the first number and going up to and including the end number. If we
want to exclude the end number, we would use ... instead of ..:

ptg8106388

91Ranges

Example: (source: range2.coffee)

myRange = [1...10]
console.log myRange

Example: (source: range2.js)

(function() {
 var myRange;

 myRange = [1, 2, 3, 4, 5, 6, 7, 8, 9];

 console.log(myRange);

}).call(this);

Output: (source: range2.coffee)

[1, 2, 3, 4, 5, 6, 7, 8, 9]

As you can see, by using ... instead of .. we no longer have the number 10 in our array.

Using ranges, we can also build arrays of numbers in the reverse order:

Example: (source: range3.coffee)

myRange = [10..1]
console.log myRange

Example: (source: range3.js)

(function() {
 var myRange;

 myRange = [10, 9, 8, 7, 6, 5, 4, 3, 2, 1];

 console.log(myRange);

}).call(this);

Output: (source: range3.coffee)

[10, 9, 8, 7, 6, 5, 4, 3, 2, 1]

The same rules regarding .. versus ... apply when building reverse ranges.

ptg8106388

92 Chapter 5 Collections and Iterations

As you can see, CoffeeScript has been creating JavaScript that builds out the full array by filling
it with all the numbers we requested. The problem with this, although it is nice and simple,
is that what if we want a hundred numbers in the array, or a thousand? Is CoffeeScript going
to build a huge piece of JavaScript that is simply a list of a thousand numbers in between two
brackets? Of course not. If CoffeeScript sees that array is going to go over a certain number of
elements, it will switch to using a loop to build the elements of the range:

Example: (source: range4.coffee)

myRange = [1..50]
console.log myRange.join(", ")

Example: (source: range4.js)

(function() {
 var myRange, _i, _results;

 myRange = (function() {
 _results = [];
 for (_i = 1; _i <= 50; _i++){ _results.push(_i); }
 return _results;
 }).apply(this);

 console.log(myRange.join(", "));

}).call(this);

Output: (source: range4.coffee)

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22,
23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42,
43, 44, 45, 46, 47, 48, 49, 50

Tip
For those of you wondering what number of elements in a range CoffeeScript thinks is too big
to hard populate, that number is 22. I don’t know why that number is 22, but it is. If you don’t
believe me, try it for yourself. I did.

Slicing Arrays
Using the power of ranges, we can easily slice up arrays in a number of ways.

ptg8106388

93Ranges

Example: (source: slice_array1.coffee)

myArray = [1..10]

firstThree = myArray[0..2]
console.log firstThree

Example: (source: slice_array1.js)

(function() {
 var firstThree, myArray;

 myArray = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10];

 firstThree = myArray.slice(0, 3);

 console.log(firstThree);

}).call(this);

Output: (source: slice_array1.coffee)

[1, 2, 3]

We could also write the same example using 0...3, instead of 0..2:

Example: (source: slice_array2.coffee)

myArray = [1..10]

firstThree = myArray[0...3]
console.log firstThree

Example: (source: slice_array2.js)

(function() {
 var firstThree, myArray;

 myArray = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10];

 firstThree = myArray.slice(0, 3);

 console.log(firstThree);

}).call(this);

ptg8106388

94 Chapter 5 Collections and Iterations

Output: (source: slice_array2.coffee)

[1, 2, 3]

We don’t have to limit ourselves to getting only the first part of an array; we can get any part
of the array that we like:

Example: (source: slice_array3.coffee)

myArray = [1..10]

middle = myArray[4..7]
console.log middle

Example: (source: slice_array3.js)

(function() {
 var middle, myArray;

 myArray = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10];

 middle = myArray.slice(4, 8);

 console.log(middle);

}).call(this);

Output: (source: slice_array3.coffee)

[5, 6, 7, 8]

As you can see, we were able to grab the middle values from our array. Pretty cool stuff.

Replacing Array Values
We haven’t quite finished yet with the power of ranges and its syntax. We can use the range
syntax to replace the values of a section of an array.

Example: (source: replace_array.coffee)

myArray = [1..10]
console.log myArray

myArray[4..7] = ['a', 'b', 'c', 'd']
console.log myArray

ptg8106388

95Ranges

Example: (source: replace_array.js)

(function() {
 var myArray, _ref;

 myArray = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10];

 console.log(myArray);

 [].splice.apply(myArray, [4, 4].concat(_ref = ['a', 'b', 'c', 'd'])), _ref;

 console.log(myArray);

}).call(this);

Output: (source: replace_array.coffee)

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
[1, 2, 3, 4, 'a', 'b', 'c', 'd', 9, 10]

I bet you didn’t see that coming! That is definitely powerful.

Injecting Values
At times, you may want to inject the values of one array into the middle of another array at a
particular position. To do this we employ a technique similar to what we did when we wanted
to replace a range of values. The only difference is that instead of defining an end point in the
range, we use -1.

Example: (source: injecting_values.coffee)

myArray = [1..10]
console.log myArray

myArray[4..-1] = ['a', 'b', 'c', 'd']
console.log myArray

Example: (source: injecting_values.js)

(function() {
 var myArray, _ref;

 myArray = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10];

 console.log(myArray);

ptg8106388

96 Chapter 5 Collections and Iterations

 [].splice.apply(myArray, [4, -1 - 4 + 1].concat(_ref = ['a', 'b', 'c', 'd'])), _ref;

 console.log(myArray);

}).call(this);

Output: (source: injecting_values.coffee)

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
[1, 2, 3, 4, 'a', 'b', 'c', 'd', 5, 6, 7, 8, 9, 10]

As you can see, at the fifth slot of the first array, we injected the values from the second array.
The original values of the first array were shifted further down the array to make room for the
newly injected values.

Objects/Hashes
In JavaScript, objects are pretty simple. They are basically a holder of key/value pair informa-
tion. The values of these objects can be other objects, functions, numbers, strings, and so on.

Tip
What JavaScript and CoffeeScript call objects are typically given names such as hash tables,
hash maps, or, simply, hashes. Their title of ‘object,’ I think, is a bit of a misnomer because
there are other types of objects in JavaScript. I tend to think of them purely as a key/value pair
collection.

To create the most basic object possible in CoffeeScript, it would look like this:

Example: (source: basic_object.coffee)

obj = {}

console.log obj

Example: (source: basic_object.js)

(function() {
 var obj;

 obj = {};

 console.log(obj);

}).call(this);

ptg8106388

97Objects/Hashes

Output: (source: basic_object.coffee)

{}

Admittedly, that is not very exciting. We can spice that object up a bit by adding a few key/
value pairs to it:

Example: (source: basic_object2.coffee)

obj =
 firstName: "Mark"
 lastName: "Bates"

console.log obj

Example: (source: basic_object2.js)

(function() {
 var obj;

 obj = {
 firstName: "Mark",
 lastName: "Bates"
 };

 console.log(obj);

}).call(this);

Output: (source: basic_object2.coffee)

{ firstName: 'Mark', lastName: 'Bates' }

Notice that because we are listing our key/value pairs over several lines, we do not need to use
commas to separate the key/value pairs. We were also able to drop the curly braces around the
key/value pairs because we defined our object using the multiline syntax. We could also have
written that same object on a single line, like this:

Example: (source: basic_object2_single.coffee)

obj = { firstName: "Mark", lastName: "Bates" }

console.log obj

ptg8106388

98 Chapter 5 Collections and Iterations

Example: (source: basic_object2_single.js)

(function() {
 var obj;

 obj = {
 firstName: "Mark",
 lastName: "Bates"
 };

 console.log(obj);

}).call(this);

Output: (source: basic_object2_single.coffee)

{ firstName: 'Mark', lastName: 'Bates' }

Although that does save lines of code, we are forced to now use both curly braces and commas,
and we do lose some readability along the way.

If we want to add a function to our object, we can do that very easily:

Example: (source: basic_object3.coffee)

obj =
 firstName: "Mark"
 lastName: "Bates"
 fullName: ->
 "#{@firstName} #{@lastName}"

console.log obj

Example: (source: basic_object3.js)

(function() {
 var obj;

 obj = {
 firstName: "Mark",
 lastName: "Bates",
 fullName: function() {
 return "" + this.firstName + " " + this.lastName;
 }
 };

 console.log(obj);

}).call(this);

ptg8106388

99Objects/Hashes

Output: (source: basic_object3.coffee)

{ firstName: 'Mark', lastName: 'Bates', fullName: [Function] }

There is one more trick up CoffeeScript’s sleeve when it comes to creating new objects.
Occasionally we will have a few variables and we want to build an object using those variables,
and we want the keys for those variables to have the same name as those variables, like this:

Example: (source: object_keys1.coffee)

foo = 'FOO'
bar = 'BAR'

obj =
 foo: foo
 bar: bar

console.log obj

Example: (source: object_keys1.js)

(function() {
 var bar, foo, obj;

 foo = 'FOO';

 bar = 'BAR';

 obj = {
 foo: foo,
 bar: bar
 };

 console.log(obj);

}).call(this);

Output: (source: object_keys1.coffee)

{ foo: 'FOO', bar: 'BAR' }

Doesn’t that seem a bit redundant to you? Yeah, to me, too, and fortunately, CoffeeScript
agrees. We can instead write the same object definition like this:

ptg8106388

100 Chapter 5 Collections and Iterations

Example: (source: object_keys2.coffee)

foo = 'FOO'
bar = 'BAR'

obj = {
 foo
 bar
}

console.log obj

Example: (source: object_keys2.js)

(function() {
 var bar, foo, obj;

 foo = 'FOO';

 bar = 'BAR';

 obj = {
 foo: foo,
 bar: bar
 };

 console.log(obj);

}).call(this);

Output: (source: object_keys2.coffee)

{ foo: 'FOO', bar: 'BAR' }

The trade-off with that way to build objects is that you have to use curly braces; otherwise,
CoffeeScript gets a bit confused as to what you are trying to do.

Finally, if we are defining an object as part of a call to a function, curly braces are optional,
whether using multiline or single definitions:

Example: (source: objects_into_functions.coffee)

myFunc = (options) ->
 console.log options

myFunc(foo: 'Foo', bar: 'Bar')

ptg8106388

101Objects/Hashes

Example: (source: objects_into_functions.js)

(function() {
 var myFunc;

 myFunc = function(options) {
 return console.log(options);
 };

 myFunc({
 foo: 'Foo',
 bar: 'Bar'
 });

}).call(this);

Output: (source: objects_into_functions.coffee)

{ foo: 'Foo', bar: 'Bar' }

And that, ladies and gentlemen, is all the different ways we can build objects in CoffeeScript.

Getting/Setting Attributes
When working with objects you will most likely, at some point in your code, want to be able
to get access to some of the values that you stored in that object. Accessing those values in
CoffeeScript is no different than in JavaScript. We can access the attribute using dot notation,
or through the use of []s.

Example: (source: object_get_attributes.coffee)

obj =
 firstName: "Mark"
 lastName: "Bates"
 fullName: ->
 "#{@firstName} #{@lastName}"

console.log obj.firstName
console.log obj['lastName']
console.log obj.fullName()

ptg8106388

102 Chapter 5 Collections and Iterations

Example: (source: object_get_attributes.js)

(function() {
 var obj;

 obj = {
 firstName: "Mark",
 lastName: "Bates",
 fullName: function() {
 return "" + this.firstName + " " + this.lastName;
 }
 };

 console.log(obj.firstName);

 console.log(obj['lastName']);

 console.log(obj.fullName());

}).call(this);

Output: (source: object_get_attributes.coffee)

Mark
Bates
Mark Bates

The same goes for setting attributes:

Example: (source: object_set_attributes.coffee)

obj =
 firstName: "Mark"
 lastName: "Bates"
 fullName: ->
 "#{@firstName} #{@lastName}"

obj.firstName = 'MARK'
console.log obj.firstName
obj['lastName'] = 'BATES'
console.log obj['lastName']

ptg8106388

103Objects/Hashes

Example: (source: object_set_attributes.js)

(function() {
 var obj;

 obj = {
 firstName: "Mark",
 lastName: "Bates",
 fullName: function() {
 return "" + this.firstName + " " + this.lastName;
 }
 };

 obj.firstName = 'MARK';

 console.log(obj.firstName);

 obj['lastName'] = 'BATES';

 console.log(obj['lastName']);

}).call(this);

Output: (source: object_set_attributes.coffee)

MARK
BATES

Tip
The popular JavaScript validation framework, JSLint2, always recommends using dot notation for
accessing attributes in an object. I tend to agree with them. I find the dot notation a bit nicer to
read, and it’s certainly less code to write, which is always good.

Destructuring Assignment
Earlier, when we talked about arrays, we talked about pulling certain elements out of the array
and assigning them to variables. CoffeeScript lets us do the same thing with objects.

The syntax for extracting values from objects is not nearly as straightforward as it is for arrays.
The syntax looks almost like the syntax for defining an object, except that instead of key/value
pairs, you list the keys.

ptg8106388

104 Chapter 5 Collections and Iterations

An example would probably clear that up a bit:

Example: (source: object_destructuring.coffee)

book =
 title: "Distributed Programming with Ruby"
 author: "Mark Bates"
 chapter_1:
 name: "Distributed Ruby (DRb)"
 pageCount: 33
 chapter_2:
 name: "Rinda"
 pageCount: 40

{author, chapter_1: {name, pageCount}} = book

console.log "Author: #{author}"
console.log "Chapter 1: #{name}"
console.log "Page Count: #{pageCount}"

Example: (source: object_destructuring.js)

(function() {
 var author, book, name, pageCount, _ref;

 book = {
 title: "Distributed Programming with Ruby",
 author: "Mark Bates",
 chapter_1: {
 name: "Distributed Ruby (DRb)",
 pageCount: 33
 },
 chapter_2: {
 name: "Rinda",
 pageCount: 40
 }
 };

 author = book.author, (_ref = book.chapter_1, name = _ref.name, pageCount =
➥_ref.pageCount);

 console.log("Author: " + author);

 console.log("Chapter 1: " + name);

 console.log("Page Count: " + pageCount);

}).call(this);

ptg8106388

105Loops and Iteration

Output: (source: object_destructuring.coffee)

Author: Mark Bates
Chapter 1: Distributed Ruby (DRb)
Page Count: 33

Loops and Iteration
Being able to iterate over object keys and values and arrays in most applications is a must.
Perhaps we have a list of books we want to print out to the screen, or maybe we want to
mutate all the values in an object. Whatever it is, being able to iterate over these collections in
CoffeeScript is incredibly easy. Let’s see how it’s done.

Iterating Arrays
One of my least favorite things to do in JavaScript is iterate over an array. It’s messy and error
prone. CoffeeScript has implemented a simple loop structure similar to that of the for loop in
languages like Ruby.

Our for loop structure is very simple:

for <some name here> in <array here>

After we define our for loop, we use indentation to define the code we want to execute on
each iteration, just like we did with if and else statements in Chapter 3, “Control Structures.”

Let’s loop over an array of letters and print out their uppercased values:

Example: (source: iterating_arrays.coffee)

myLetters = ["a", "b", "c", "d"]

for letter in myLetters
 console.log letter.toUpperCase()

Example: (source: iterating_arrays.js)

(function() {
 var letter, myLetters, _i, _len;

 myLetters = ["a", "b", "c", "d"];

 for (_i = 0, _len = myLetters.length; _i < _len; _i++) {
 letter = myLetters[_i];
 console.log(letter.toUpperCase());
 }

}).call(this);

ptg8106388

106 Chapter 5 Collections and Iterations

Output: (source: iterating_arrays.coffee)

A
B
C
D

The by Keyword
Perhaps we have an array containing the letters of the alphabet, and we want to print out every
other letter from the list. To do that we can use the by keyword when defining our for loop:

Example: (source: iterating_arrays_by.coffee)

letters = ["a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o",
➥"p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z"]
for letter in letters by 2
 console.log letter

Example: (source: iterating_arrays_by.js)

(function() {
 var letter, letters, _i, _len, _step;

 letters = ["a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n",
➥"o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z"];

 for (_i = 0, _len = letters.length, _step = 2; _i < _len; _i += _step) {
 letter = letters[_i];
 console.log(letter);
 }

}).call(this);

Output: (source: iterating_arrays_by.coffee)

a
c
e
g
i
k
m
o
q

ptg8106388

107Loops and Iteration

s
u
w
y

We can use any number after the by keyword, and our for loop will step through the array
accordingly.

The when Keyword
Using the when keyword, we can attach a simple condition to our for loop.

Suppose we have an array that has 10 numbers, but we want to print out only the numbers
that are less than 5. We can write it like this:

Example: (source: iterating_with_when1.coffee)

a = [1..10]

for num in a
 if num < 5
 console.log num

Example: (source: iterating_with_when1.js)

(function() {
 var a, num, _i, _len;

 a = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10];

 for (_i = 0, _len = a.length; _i < _len; _i++) {
 num = a[_i];
 if (num < 5) console.log(num);
 }

}).call(this);

Output: (source: iterating_with_when1.coffee)

1
2
3
4

ptg8106388

108 Chapter 5 Collections and Iterations

We could also write the same example using the when keyword at the end of our for loop
definition:

Example: (source: iterating_with_when2.coffee)

a = [1..10]

for num in a when num < 5
 console.log num

Example: (source: iterating_with_when2.js)

(function() {
 var a, num, _i, _len;

 a = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10];

 for (_i = 0, _len = a.length; _i < _len; _i++) {
 num = a[_i];
 if (num < 5) console.log(num);
 }

}).call(this);

Output: (source: iterating_with_when2.coffee)

1
2
3
4

Iterating Objects
Iterating over objects in CoffeeScript is almost as straightforward as iterating over arrays.

The for loop syntax for iterating over objects looks like this:

for <key name here>, <value name here> of <object here>

Let’s look at an example:

Example: (source: iterating_objects.coffee)

person =
 firstName: "Mark"
 lastName: "Bates"

for key, value of person
 console.log "#{key} is #{value}"

ptg8106388

109Loops and Iteration

Example: (source: iterating_objects.js)

(function() {
 var key, person, value;

 person = {
 firstName: "Mark",
 lastName: "Bates"
 };

 for (key in person) {
 value = person[key];
 console.log("" + key + " is " + value);
 }

}).call(this);

Output: (source: iterating_objects.coffee)

firstName is Mark
lastName is Bates

There are two big differences between the for loop syntax with objects and arrays: First, we
need to define the names of two variables in the for loop for an object, one for the key and
the other for the value of the key/value pairs in the object. The other difference is instead of
using the keyword in, like we do for arrays, we use the keyword of.

The by Keyword
Unfortunately, the by keyword is not useable when looping through the key/value pairs of
objects, because there is no way to step over the key/value pairs in the object like you can with
elements of an array.

The when Keyword
Unlike the by keyword, we can use the when keyword when defining for loops for objects.

Here we want to print out key/value pairs only where the length of the value is less than five:

Example: (source: iterating_objects_with_when.coffee)

person =
 firstName: "Mark"
 lastName: "Bates"

ptg8106388

110 Chapter 5 Collections and Iterations

for key, value of person when value.length < 5
 console.log "#{key} is #{value}"

Example: (source: iterating_objects_with_when.js)

(function() {
 var key, person, value;

 person = {
 firstName: "Mark",
 lastName: "Bates"
 };

 for (key in person) {
 value = person[key];
 if (value.length < 5) console.log("" + key + " is " + value);
 }

}).call(this);

Output: (source: iterating_objects_with_when.coffee)

firstName is Mark

The own Keyword
In JavaScript it is possible to add functions or values on to all objects of the system using the
prototype3 function. This is how libraries such as jQuery are able to add special functions
onto arrays, strings, and so on.

Following is an example of this in action:

Example: (source: iterating_objects_without_own.coffee)

myObject =
 name: "Mark"

for key, value of myObject
 console.log "#{key}: #{value}"

Object.prototype.dob = new Date(1976, 7, 24)

for key, value of myObject
 console.log "#{key}: #{value}"

ptg8106388

111Loops and Iteration

anotherObject =
 name: "Bob"

for key, value of anotherObject
 console.log "#{key}: #{value}"

Example: (source: iterating_objects_without_own.js)

(function() {
 var anotherObject, key, myObject, value;

 myObject = {
 name: "Mark"
 };

 for (key in myObject) {
 value = myObject[key];
 console.log("" + key + ": " + value);
 }

 Object.prototype.dob = new Date(1976, 7, 24);

 for (key in myObject) {
 value = myObject[key];
 console.log("" + key + ": " + value);
 }

 anotherObject = {
 name: "Bob"
 };

 for (key in anotherObject) {
 value = anotherObject[key];
 console.log("" + key + ": " + value);
 }

}).call(this);

Output: (source: iterating_objects_without_own.coffee)

name: Mark
name: Mark
dob: Tue Aug 24 1976 00:00:00 GMT-0400 (EDT)
name: Bob
dob: Tue Aug 24 1976 00:00:00 GMT-0400 (EDT)

ptg8106388

112 Chapter 5 Collections and Iterations

When we first loop through the key/value pairs of myObject, we see only the name value that
we defined. However, after we add dob to the prototype of Object we now see dob print out
when we loop through the key/value pairs of myObject.

So what do we do if we want to see only the key/value pairs that explicitly belong to our
object? In JavaScript we would use the hasOwnProperty function to test to see if the key was
defined by that object or the global Object prototype. In CoffeeScript, however, we can change
our for loop to be a for own loop:

Example: (source: iterating_objects_with_own.coffee)

myObject =
 name: "Mark"

for own key, value of myObject
 console.log "#{key}: #{value}"

Object.prototype.dob = new Date(1976, 7, 24)

for own key, value of myObject
 console.log "#{key}: #{value}"

anotherObject =
 name: "Bob"

for own key, value of anotherObject
 console.log "#{key}: #{value}"

Example: (source: iterating_objects_with_own.js)

(function() {
 var anotherObject, key, myObject, value,
 __hasProp = Object.prototype.hasOwnProperty;

 myObject = {
 name: "Mark"
 };

 for (key in myObject) {
 if (!__hasProp.call(myObject, key)) continue;
 value = myObject[key];
 console.log("" + key + ": " + value);
 }

 Object.prototype.dob = new Date(1976, 7, 24);

ptg8106388

113Loops and Iteration

 for (key in myObject) {
 if (!__hasProp.call(myObject, key)) continue;
 value = myObject[key];
 console.log("" + key + ": " + value);
 }

 anotherObject = {
 name: "Bob"
 };

 for (key in anotherObject) {
 if (!__hasProp.call(anotherObject, key)) continue;
 value = anotherObject[key];
 console.log("" + key + ": " + value);
 }

}).call(this);

Output: (source: iterating_objects_with_own.coffee)

name: Mark
name: Mark
name: Bob

Perfect! Now we are only getting the key/value pairs that are defined for myObject.

while Loops
Occasionally we have the need as developers to have a section of code repeat while a particular
condition is true. Maybe we want to print something out n number of times, or maybe we want
to display some “Please wait” text while we load a file. Whatever it is you are trying to do, you
can do it using a while loop in CoffeeScript.

Let’s write a function that will execute a block of code n times:

Example: (source: while_loop.coffee)

times = (number_of_times, callback)->
 index = 0
 while index++ < number_of_times
 callback(index)
 return null

times 5, (index)->
 console.log index

ptg8106388

114 Chapter 5 Collections and Iterations

Example: (source: while_loop.js)

(function() {
 var times;

 times = function(number_of_times, callback) {
 var index;
 index = 0;
 while (index++ < number_of_times) {
 callback(index);
 }
 return null;
 };

 times(5, function(index) {
 return console.log(index);
 });

}).call(this);

Output: (source: while_loop.coffee)

1
2
3
4
5

In our times function, we have a while loop that will keep executing our callback function as
long as the index is less than the number_of_times argument.

Tip
In the while loop example, we see the code index++. For those of you who might be unfamil-
iar with what the ++ operator does, it increments the variable by 1 and returns the newly incre-
mented number. It is the equivalent of index = index + 1.

until Loops
As you might expect by its name, an until loop is the opposite of a while loop. A while loop
will keep executing its code block as long as the condition is true. An until loop will keep
executing its code block as long as the condition is false.

We can rewrite our while loop example like this, using an until loop:

ptg8106388

115Loops and Iteration

Example: (source: until_loop.coffee)

times = (number_of_times, callback)->
 index = 0
 until index++ >= number_of_times
 callback(index)
 return null

times 5, (index)->
 console.log index

Example: (source: until_loop.js)

(function() {
 var times;

 times = function(number_of_times, callback) {
 var index;
 index = 0;
 while (!(index++ >= number_of_times)) {
 callback(index);
 }
 return null;
 };

 times(5, function(index) {
 return console.log(index);
 });

}).call(this);

Output: (source: until_loop.coffee)

1
2
3
4
5

Tip
To help you remember which loop is which, think of it like this: A while loop runs while the
condition is true. An until loop runs until the condition is true. It may sound silly to some of
you, but a lot of people have trouble remembering which is which.

ptg8106388

116 Chapter 5 Collections and Iterations

Comprehensions
In a lot of our iterating examples, we’ve had very simple code blocks we wanted to execute, like
this one:

Example: (source: iterating_arrays.coffee)

myLetters = ["a", "b", "c", "d"]

for letter in myLetters
 console.log letter.toUpperCase()

Because we are using a single line code block with our for loop, we are able to take advantage
of what CoffeeScript calls comprehensions. Comprehensions are, essentially, loops and their code
blocks on the same line.

Here’s what that same example would look like using comprehensions:

Example: (source: iterating_arrays_comprehension.coffee)

myLetters = ["a", "b", "c", "d"]

console.log letter.toUpperCase() for letter in myLetters

Example: (source: iterating_arrays_comprehension.js)

(function() {
 var letter, myLetters, _i, _len;

 myLetters = ["a", "b", "c", "d"];

 for (_i = 0, _len = myLetters.length; _i < _len; _i++) {
 letter = myLetters[_i];
 console.log(letter.toUpperCase());
 }

}).call(this);

Output: (source: iterating_arrays_comprehension.coffee)

A
B
C
D

ptg8106388

117Comprehensions

As you can see, we took the code block off of its own line and placed it before the for loop on
the same line.

We also can use comprehensions to help us capture the results of a for loop. Using our same
example let’s capture the results of the uppercased letters into a new array:

Example: (source: iterating_arrays_comprehension_capture.coffee)

myLetters = ["a", "b", "c", "d"]

upLetters = (letter.toUpperCase() for letter in myLetters)

console.log upLetters

Example: (source: iterating_arrays_comprehension_capture.js)

(function() {
 var letter, myLetters, upLetters;

 myLetters = ["a", "b", "c", "d"];

 upLetters = (function() {
 var _i, _len, _results;
 _results = [];
 for (_i = 0, _len = myLetters.length; _i < _len; _i++) {
 letter = myLetters[_i];
 _results.push(letter.toUpperCase());
 }
 return _results;
 })();

 console.log(upLetters);

}).call(this);

Output: (source: iterating_arrays_comprehension_capture.coffee)

['A', 'B', 'C', 'D']

By wrapping our comprehension statement in parentheses, we can capture the results of the
iteration into another variable. It should be noted that we can also capture the results of a for
loop even if you are using the multiline version:

ptg8106388

118 Chapter 5 Collections and Iterations

Example: (source: iterating_arrays_capture.coffee)

myLetters = ["a", "b", "c", "d"]

upLetters = for letter in myLetters
 letter.toUpperCase()

console.log upLetters

Example: (source: iterating_arrays_capture.js)

(function() {
 var letter, myLetters, upLetters;

 myLetters = ["a", "b", "c", "d"];

 upLetters = (function() {
 var _i, _len, _results;
 _results = [];
 for (_i = 0, _len = myLetters.length; _i < _len; _i++) {
 letter = myLetters[_i];
 _results.push(letter.toUpperCase());
 }
 return _results;
 })();

 console.log(upLetters);

}).call(this);

Output: (source: iterating_arrays_capture.coffee)

['A', 'B', 'C', 'D']

Tip
I’m not necessarily advocating everything I just showed you in this section. CoffeeScript touts
the “power” of comprehensions a lot. I agree they can be powerful, but I think they can also
be very hard to read and even harder to maintain. Use them where you see fit and the need is
warranted.

ptg8106388

119The do Keyword

The do Keyword
Scope, as we discussed in Chapter 2, “The Basics,” in JavaScript can be a real pain to deal with
sometimes—no more so than in loops. Because of the asynchronous nature of JavaScript, it
is possible that we have lost the scope of a variable while we’re doing something as simple as
looping through a few numbers.

Let’s look at an example. In this example we want to loop through a few numbers and print
them out. However, before we print them out we want to wait one second.

Example: (source: do.coffee)

for x in [1..5]
 setTimeout ->
 console.log x
 , 1

Example: (source: do.js)

(function() {
 var x;

 for (x = 1; x <= 5; x++) {
 setTimeout(function() {
 return console.log(x);
 }, 1);
 }

}).call(this);

Output: (source: do.coffee)

6
6
6
6
6

Wow! That wasn’t at all what we wanted! We were hoping to print out the numbers 1 through
5. Instead we got the number 6 printed out 5 times. What happened? The answer is that we
lost track of the scope of the variable x.

While we waited the second to print out the number, the variable was being incremented in
the loop. The reason we saw the number 6 is because the last time through the loop it incre-
mented it up to 6, which is greater than 5, so the loop didn’t execute.

ptg8106388

120 Chapter 5 Collections and Iterations

So how do we prevent this from happening and keep track of the variable’s value that we actu-
ally want? We can do this using the do keyword:

Example: (source: do2.coffee)

for x in [1..5]
 do (x) ->
 setTimeout ->
 console.log x
 , 1

Example: (source: do2.js)

(function() {
 var x, _fn;

 _fn = function(x) {
 return setTimeout(function() {
 return console.log(x);
 }, 1);
 };
 for (x = 1; x <= 5; x++) {
 _fn(x);
 }

}).call(this);

Output: (source: do2.coffee)

1
2
3
4
5

The do keyword will create a wrapper function around the code we want to execute, and it will
take in, and hold onto, the variable at the time we called it. Very useful, indeed!

Wrapping Up
Well, there we have it—everything you’ve always wanted to know about collections and iterat-
ing in CoffeeScript.

ptg8106388

121Notes

We first looked at arrays and what makes them tick in CoffeeScript. We looked at a few fun
tricks CoffeeScript makes possible when dealing with arrays: testing to see if a value is in an
array, swapping assignment of variables, and, finally, capturing the elements of an array easily
into variables.

Next we looked at ranges. We saw how to construct arrays of numbers using the range syntax.
We also looked at how ranges can be used to manipulate existing arrays by grabbing sections of
the array and even replacing sections of an array with other values.

After ranges, we moved on to objects in CoffeeScript. We looked at the different rules around
constructing objects. We looked at how to set and get attributes on the objects we create. Using
a modified object syntax, we saw how we could pull out deeply nested attributes in an object
and assign them to variables.

Next came iterations. We looked at how to iterate over the elements of an array and how to
iterate over the key/value pairs of an object. We looked at the by and when keywords to help
us write cleaner loops. Then we examined how while and until loops worked and how they
differ from each other.

We looked at the comprehensions syntax for helping us write single line loops and code blocks.

Finally, we looked at how the do keyword can help us keep track of the scope of our variables
while doing things such as looping through a collection.

With collections now behind us, we can next look at a different type of collection, the class.

Notes
1. http://rack.rubyforge.org/

2. http://www.jslint.com/

3. http://en.wikipedia.org/wiki/JavaScript#Prototype-based

http://rack.rubyforge.org/
http://www.jslint.com/
http://en.wikipedia.org/wiki/JavaScript#Prototype-based

ptg8106388

This page intentionally left blank

ptg8106388

6
Classes

Classes1 are essentially a blueprint for creating new instances of an object with predefined
functions and variables. These instances can then store state related to that individual instance.
Over the years, JavaScript has constantly come under attack for its lack of any real support for
classes.

In Chapter 5, “Collections and Iterations,” we looked at objects in JavaScript. In each example
we hand rolled a brand new object and gave that new object a set of functions and values. This
works great for the occasional simple object, but what if we wanted to have a more complex
data model? More importantly, what if we wanted to have more than one of those complex
data models? That is typically where classes come in.

Fortunately, CoffeeScript steps up to the plate with full class support. So if JavaScript does not
have any real support for classes, how does CoffeeScript solve the problem? The short answer is
through the use of some clever scoping and the use of functions and objects. The long answer
is, read the rest of this chapter.

Defining Classes
Defining classes in CoffeeScript can be as simple and as straightforward as one line:

Example: (source: simple_class1.coffee)

class Employee

Example: (source: simple_class1.js)

(function() {
 var Employee;

 Employee = (function() {

ptg8106388

124 Chapter 6 Classes

 function Employee() {}

 return Employee;

 })();

}).call(this);

With that, we have defined a simple new class called Employee. We can instantiate new
instances of that object like so:

Example: (source: simple_class2.coffee)

class Employee

emp1 = new Employee()
emp2 = new Employee()

Example: (source: simple_class2.js)

(function() {
 var Employee, emp1, emp2;

 Employee = (function() {

 function Employee() {}

 return Employee;

 })();

 emp1 = new Employee();

 emp2 = new Employee();

}).call(this);

We call the new keyword before the name of our class, and we get a brand-new instance of that
object to do with as we like.

Tip

When creating new instances of objects with the new keyword, it isn’t required to put the paren-
theses at the end, as we do in our examples, but I find it looks nice and makes the code a bit
easier to read. Do whatever feels right to you.

ptg8106388

125Defining Functions

Defining Functions
When defining functions on our classes we follow the same rules, and syntax, that we would if
we were defining a function on a simple object—because that is exactly what we are doing.

Example: (source: simple_class_with_function.coffee)

class Employee

 dob: (year = 1976, month = 7, day = 24)->
 new Date(year, month, day)

emp1 = new Employee()
console.log emp1.dob()
emp2 = new Employee()
console.log emp2.dob(1979, 3, 28)

Example: (source: simple_class_with_function.js)

(function() {
 var Employee, emp1, emp2;

 Employee = (function() {

 function Employee() {}

 Employee.prototype.dob = function(year, month, day) {
 if (year == null) year = 1976;
 if (month == null) month = 7;
 if (day == null) day = 24;
 return new Date(year, month, day);
 };

 return Employee;

 })();

 emp1 = new Employee();

 console.log(emp1.dob());

 emp2 = new Employee();

 console.log(emp2.dob(1979, 3, 28));

}).call(this);

ptg8106388

126 Chapter 6 Classes

Output: (source: simple_class_with_function.coffee)

Tue, 24 Aug 1976 04:00:00 GMT
Sat, 28 Apr 1979 05:00:00 GMT

The constructor Function
CoffeeScript lets us define a function called constructor that will be called when we create a
new instance of an object. The constructor is like every other function we’ve talked about.
The only thing special about the constructor function is that it will be called automatically
when we instantiate a new instance of an object without us having to call it explicitly.

Tip

I told a little white lie earlier when I said that the constructor function gets called automati-
cally when we create a new instance of an object. In reality, when we create a new instance of
an object like this, new Employee(), we are calling that constructor function directly. It’s
just renamed.

Example: (source: simple_class3.coffee)

class Employee

 constructor: ->
 console.log "Instantiated a new Employee object"

 dob: (year = 1976, month = 7, day = 24)->
 new Date(year, month, day)

emp1 = new Employee()
console.log emp1.dob()

emp2 = new Employee()
console.log emp2.dob(1979, 3, 28)

Example: (source: simple_class3.js)

(function() {
 var Employee, emp1, emp2;

 Employee = (function() {

 function Employee() {
 console.log("Instantiated a new Employee object");

ptg8106388

127Scope in Classes

 }

 Employee.prototype.dob = function(year, month, day) {
 if (year == null) year = 1976;
 if (month == null) month = 7;
 if (day == null) day = 24;
 return new Date(year, month, day);
 };

 return Employee;

 })();

 emp1 = new Employee();

 console.log(emp1.dob());

 emp2 = new Employee();

 console.log(emp2.dob(1979, 3, 28));

}).call(this);

Output: (source: simple_class3.coffee)

Instantiated a new Employee object
Tue, 24 Aug 1976 04:00:00 GMT
Instantiated a new Employee object
Sat, 28 Apr 1979 05:00:00 GMT

As you can see in our example, every time we create a new Employee object, it will print a
message out to the console to let us know that it’s been created.

As we’ll see in this chapter, the constructor function can provide an easy way to quickly set
up your new object with any custom data for that object.

Scope in Classes
At their heart, classes in CoffeeScript are just glorified objects that produce a lot of boilerplate
JavaScript code to let them do the things they do. Because classes are just plain objects—
granted, objects with a lot of window dressing—scope of variables, attributes, and functions
behave the same as they do in regular objects.

Let’s investigate by taking our Employee class again. Employees in real life have names, so let’s
make sure our Employee class can reflect it. When we create a new instance of the Employee

ptg8106388

128 Chapter 6 Classes

class, we want to have the name passed in and assigned to an attribute that is scoped to the
instance of the new Employee object.

Example: (source: class_scope.coffee)

class Employee

 constructor: (name)->
 @name = name

 dob: (year = 1976, month = 7, day = 24)->
 new Date(year, month, day)

emp1 = new Employee("Mark")
console.log emp1.name
console.log emp1.dob()

emp2 = new Employee("Rachel")
console.log emp2.name
console.log emp2.dob(1979, 3, 28)

Example: (source: class_scope.js)

(function() {
 var Employee, emp1, emp2;

 Employee = (function() {

 function Employee(name) {
 this.name = name;
 }

 Employee.prototype.dob = function(year, month, day) {
 if (year == null) year = 1976;
 if (month == null) month = 7;
 if (day == null) day = 24;
 return new Date(year, month, day);
 };

 return Employee;

 })();

 emp1 = new Employee("Mark");

 console.log(emp1.name);

ptg8106388

129Scope in Classes

 console.log(emp1.dob());

 emp2 = new Employee("Rachel");

 console.log(emp2.name);

 console.log(emp2.dob(1979, 3, 28));

}).call(this);

Output: (source: class_scope.coffee)

Mark
Tue, 24 Aug 1976 04:00:00 GMT
Rachel
Sat, 28 Apr 1979 05:00:00 GMT

As we discussed earlier, the constructor function is no different from any other function, so
the same scope and definition rules apply. Knowing that we are now passing in an argument
called name, we set the name argument onto an attribute on the object instance using @name =
name. Remember from Chapter 3, “Control Structures,” that the @ alias is equal to this.

With the attribute set on the object instance, we can then call it like any other attribute on the
object.

There is an even easier and cleaner way to achieve the same goal, and it’s quite possibly one of
my favorite features of CoffeeScript (and one I wish other languages would implement). We can
trim our constructor down by doing the following:

Example: (source: class_scope1.coffee)

class Employee

 constructor: (@name)->

 dob: (year = 1976, month = 7, day = 24)->
 new Date(year, month, day)

emp1 = new Employee("Mark")
console.log emp1.name
console.log emp1.dob()

emp2 = new Employee("Rachel")
console.log emp2.name
console.log emp2.dob(1979, 3, 28)

ptg8106388

130 Chapter 6 Classes

Example: (source: class_scope1.js)

(function() {
 var Employee, emp1, emp2;

 Employee = (function() {

 function Employee(name) {
 this.name = name;
 }

 Employee.prototype.dob = function(year, month, day) {
 if (year == null) year = 1976;
 if (month == null) month = 7;
 if (day == null) day = 24;
 return new Date(year, month, day);
 };

 return Employee;

 })();

 emp1 = new Employee("Mark");

 console.log(emp1.name);

 console.log(emp1.dob());

 emp2 = new Employee("Rachel");
 console.log(emp2.name);
 console.log(emp2.dob(1979, 3, 28));

}).call(this);

Output: (source: class_scope1.coffee)

Mark
Tue, 24 Aug 1976 04:00:00 GMT
Rachel
Sat, 28 Apr 1979 05:00:00 GMT

By adding the @ operator in front of the definition of the name argument, we tell CoffeeScript
that we want it to generate JavaScript that will assign that argument to an attribute with the
same name, in this case called name.

We can also easily access that attribute in the other functions of the class. Let’s update the
example again, this time to add a method that prints out the employee’s name and birth date:

ptg8106388

131Scope in Classes

Example: (source: class_scope2.coffee)

class Employee

 constructor: (@name)->

 dob: (year = 1976, month = 7, day = 24)->
 new Date(year, month, day)

 printInfo: (year = 1976, month = 7, day = 24)->
 console.log "Name: #{@name}"
 console.log "DOB: #{@dob(year, month, day)}"

emp1 = new Employee("Mark")
emp1.printInfo(1976, 7, 24)

emp2 = new Employee("Rachel")
emp2.printInfo(1979, 3, 28)

Example: (source: class_scope2.js)

(function() {
 var Employee, emp1, emp2;

 Employee = (function() {

 function Employee(name) {
 this.name = name;
 }

 Employee.prototype.dob = function(year, month, day) {
 if (year == null) year = 1976;
 if (month == null) month = 7;
 if (day == null) day = 24;
 return new Date(year, month, day);
 };

 Employee.prototype.printInfo = function(year, month, day) {
 if (year == null) year = 1976;
 if (month == null) month = 7;
 if (day == null) day = 24;
 console.log("Name: " + this.name);
 return console.log("DOB: " + (this.dob(year, month, day)));
 };

 return Employee;

ptg8106388

132 Chapter 6 Classes

 })();

 emp1 = new Employee("Mark");

 emp1.printInfo(1976, 7, 24);

 emp2 = new Employee("Rachel");

 emp2.printInfo(1979, 3, 28);

}).call(this);

Output: (source: class_scope2.coffee)

Name: Mark
DOB: Tue Aug 24 1976 00:00:00 GMT-0400 (EDT)
Name: Rachel
DOB: Sat Apr 28 1979 00:00:00 GMT-0500 (EST)

I would be remiss if we left this section with the code looking like that. I don’t want to have to
keep passing in the year, month, and day every time I want to print out the employee’s infor-
mation. I want to pass a birth date into the constructor function and then access it whenever
I want. So let’s do that:

Example: (source: class_scope_refactor_1.coffee)

class Employee

 constructor: (@name, @dob)->

 printInfo: ->
 console.log "Name: #{@name}"
 console.log "DOB: #{@dob}"

emp1 = new Employee("Mark", new Date(1976, 7, 24))
emp1.printInfo()

emp2 = new Employee("Rachel", new Date(1979, 3, 28))
emp2.printInfo()

Example: (source: class_scope_refactor_1.js)

(function() {
 var Employee, emp1, emp2;

 Employee = (function() {

ptg8106388

133Scope in Classes

 function Employee(name, dob) {
 this.name = name;
 this.dob = dob;
 }

 Employee.prototype.printInfo = function() {
 console.log("Name: " + this.name);
 return console.log("DOB: " + this.dob);
 };

 return Employee;

 })();

 emp1 = new Employee("Mark", new Date(1976, 7, 24));

 emp1.printInfo();

 emp2 = new Employee("Rachel", new Date(1979, 3, 28));

 emp2.printInfo();

}).call(this);

Output: (source: class_scope_refactor_1.coffee)

Name: Mark
DOB: Tue Aug 24 1976 00:00:00 GMT-0400 (EDT)
Name: Rachel
DOB: Sat Apr 28 1979 00:00:00 GMT-0500 (EST)

That is certainly cleaner and a little more DRY.2 Therefore, when I see two arguments for a
function I start asking the question, will there be more arguments? If the answer is yes, I recon-
sider how I’m defining my function; in this case I’m concerned about the constructor func-
tion. What happens when we need to pass in other information, such as salary, department,
manager, and so on? Let’s do a bit more refactoring:

Example: (source: class_scope_refactor_2.coffee)

class Employee

 constructor: (@attributes)->

 printInfo: ->
 console.log "Name: #{@attributes.name}"
 console.log "DOB: #{@attributes.dob}"

ptg8106388

134 Chapter 6 Classes

 if @attributes.salary
 console.log "Salary: #{@attributes.salary}"
 else
 console.log "Salary: Unknown"

emp1 = new Employee
 name: "Mark"
 dob: new Date(1976, 7, 24)
 salary: "$1.00"

emp1.printInfo()

emp2 = new Employee
 name: "Rachel"
 dob: new Date(1979, 3, 28)

emp2.printInfo()

Example: (source: class_scope_refactor_2.js)

(function() {
 var Employee, emp1, emp2;

 Employee = (function() {

 function Employee(attributes) {
 this.attributes = attributes;
 }

 Employee.prototype.printInfo = function() {
 console.log("Name: " + this.attributes.name);
 console.log("DOB: " + this.attributes.dob);
 if (this.attributes.salary) {
 return console.log("Salary: " + this.attributes.salary);
 } else {
 return console.log("Salary: Unknown");
 }
 };

 return Employee;

 })();

 emp1 = new Employee({
 name: "Mark",
 dob: new Date(1976, 7, 24),

ptg8106388

135Scope in Classes

 salary: "$1.00"
 });

 emp1.printInfo();
 emp2 = new Employee({
 name: "Rachel",
 dob: new Date(1979, 3, 28)
 });

 emp2.printInfo();

}).call(this);

Output: (source: class_scope_refactor_2.coffee)

Name: Mark
DOB: Tue Aug 24 1976 00:00:00 GMT-0400 (EDT)
Salary: $1.00
Name: Rachel
DOB: Sat Apr 28 1979 00:00:00 GMT-0500 (EST)
Salary: Unknown

Now we can pass any arguments we want into the Employee class, and they’ll be available to us
through the attributes attribute on the object. That is definitely a lot nicer, and it certainly is
more extensible down the line.

As you can see with the first employee, we passed in a third attribute, salary, that we didn’t
pass in for the second employee. We could pass in a hundred different attributes to our
Employee class now and our code doesn’t have to change.

One last thing before we leave this section. Some of you might have come up with what you
think of as a great idea. What if you use the knowledge you gained in Chapter 5, “Collections
and Iterations,” about looping through the attributes argument and assigning each key/
value pair directly to the object so you don’t have to keep calling @attributes everywhere in
the code?

Well, let’s see how you would do that, and we can also see why that could be a very bad idea:

Example: (source: class_scope_refactor_3.coffee)

class Employee

 constructor: (@attributes)->
 for key, value of @attributes
 @[key] = value

ptg8106388

136 Chapter 6 Classes

 printInfo: ->
 console.log "Name: #{@name}"
 console.log "DOB: #{@dob}"
 if @salary
 console.log "Salary: #{@salary}"
 else
 console.log "Salary: Unknown"

emp1 = new Employee
 name: "Mark"
 dob: new Date(1976, 7, 24)
 salary: "$1.00"

emp1.printInfo()

emp2 = new Employee
 name: "Rachel",
 dob: new Date(1979, 3, 28)
 printInfo: ->
 console.log "I've hacked your code!"

emp2.printInfo()

Example: (source: class_scope_refactor_3.js)

(function() {
 var Employee, emp1, emp2;

 Employee = (function() {

 function Employee(attributes) {
 var key, value, _ref;
 this.attributes = attributes;
 _ref = this.attributes;
 for (key in _ref) {
 value = _ref[key];
 this[key] = value;
 }
 }

 Employee.prototype.printInfo = function() {
 console.log("Name: " + this.name);
 console.log("DOB: " + this.dob);
 if (this.salary) {
 return console.log("Salary: " + this.salary);
 } else {
 return console.log("Salary: Unknown");
 }

ptg8106388

137Extending Classes

 };

 return Employee;

 })();

 emp1 = new Employee({
 name: "Mark",
 dob: new Date(1976, 7, 24),
 salary: "$1.00"
 });

 emp1.printInfo();

 emp2 = new Employee({
 name: "Rachel",
 dob: new Date(1979, 3, 28),
 printInfo: function() {
 return console.log("I've hacked your code!");
 }
 });

 emp2.printInfo();

}).call(this);

Output: (source: class_scope_refactor_3.coffee)

Name: Mark
DOB: Tue Aug 24 1976 00:00:00 GMT-0400 (EDT)
Salary: $1.00
I've hacked your code!

Uh-oh! We were easily able to override the printInfo function when we passed in the list
of attributes for our second employee. The code is definitely easier to read, but it’s also easier
to hack, and who wants that? JavaScript is easy enough to modify on its own, so why should
we make it even easier? With that said, let’s move on, pretending we didn’t just do that last
refactor.

Extending Classes
When writing object-oriented programs, developers often come across the need for inheri-
tance.3 Inheritance lets us take a class, such as our Employee class, and create a variant on that
class.

ptg8106388

138 Chapter 6 Classes

In a business, everyone is an employee, but not everybody is a manager. So let’s define a
Manager class that inherits, or extends, from our Employee class:

Example: (source: manager1.coffee)

class Employee

 constructor: (@attributes)->

 printInfo: ->
 console.log "Name: #{@attributes.name}"
 console.log "DOB: #{@attributes.dob}"
 console.log "Salary: #{@attributes.salary}"

class Manager extends Employee

employee = new Employee
 name: "Mark"
 dob: new Date(1976, 7, 24)
 salary: 50000

employee.printInfo()

manager = new Manager
 name: "Rachel"
 dob: new Date(1979, 3, 28)
 salary: 100000

manager.printInfo()

Example: (source: manager1.js)

(function() {
 var Employee, Manager, employee, manager,
 __hasProp = Object.prototype.hasOwnProperty,
 __extends = function(child, parent) { for (var key in parent) { if
(__hasProp.call(parent, key)) child[key] = parent[key]; } function ctor() {
this.constructor = child; } ctor.prototype = parent.prototype; child.prototype =
new ctor; child.__super__ = parent.prototype; return child; };

 Employee = (function() {
 function Employee(attributes) {
 this.attributes = attributes;
 }

 Employee.prototype.printInfo = function() {
 console.log("Name: " + this.attributes.name);

ptg8106388

139Extending Classes

 console.log("DOB: " + this.attributes.dob);
 return console.log("Salary: " + this.attributes.salary);
 };

 return Employee;

 })();

 Manager = (function(_super) {

 __extends(Manager, _super);

 function Manager() {
 Manager.__super__.constructor.apply(this, arguments);
 }

 return Manager;

 })(Employee);

 employee = new Employee({
 name: "Mark",
 dob: new Date(1976, 7, 24),
 salary: 50000
 });

 employee.printInfo();

 manager = new Manager({
 name: "Rachel",
 dob: new Date(1979, 3, 28),
 salary: 100000
 });

 manager.printInfo();

}).call(this);

Output: (source: manager1.coffee)

Name: Mark
DOB: Tue Aug 24 1976 00:00:00 GMT-0400 (EDT)
Salary: 50000
Name: Rachel
DOB: Sat Apr 28 1979 00:00:00 GMT-0500 (EST)
Salary: 100000

ptg8106388

140 Chapter 6 Classes

Tip
In the real world we would probably use roles to define different types of employees, but for
the sake of discussion let’s pretend that this is the best way to solve our problem of different
types of employees.

The basic definition of our Manager class was simple, class Manager, but by using the
keyword extends and giving it the name of the class we wanted to extend, Employee, we were
able to gain all the functionality from the Employee class in our Manager class.

Let’s take it a step further and learn about how to override methods in subclasses. Let’s add
a function, bonus, to our Employee class that returns 0. Regular employees apparently don’t
get bonuses. Managers, however, get a 10% bonus, so we want to make sure when we call the
bonus function on managers we get the right value.

Example: (source: manager2.coffee)

class Employee

 constructor: (@attributes)->

 printInfo: ->
 console.log "Name: #{@attributes.name}"
 console.log "DOB: #{@attributes.dob}"
 console.log "Salary: #{@attributes.salary}"
 console.log "Bonus: #{@bonus()}"

 bonus: ->
 0

class Manager extends Employee

 bonus: ->
 @attributes.salary * .10

employee = new Employee
 name: "Mark"
 dob: new Date(1976, 7, 24)
 salary: 50000

employee.printInfo()

manager = new Manager
 name: "Rachel"
 dob: new Date(1979, 3, 28)
 salary: 100000

manager.printInfo()

ptg8106388

141Extending Classes

Example: (source: manager2.js)

(function() {
 var Employee, Manager, employee, manager,
 __hasProp = Object.prototype.hasOwnProperty,
 __extends = function(child, parent) { for (var key in parent) { if
(__hasProp.call(parent, key)) child[key] = parent[key]; } function ctor() {
this.constructor = child; } ctor.prototype = parent.prototype; child.prototype =
new ctor; child.__super__ = parent.prototype; return child; };

 Employee = (function() {

 function Employee(attributes) {
 this.attributes = attributes;
 }

 Employee.prototype.printInfo = function() {
 console.log("Name: " + this.attributes.name);
 console.log("DOB: " + this.attributes.dob);
 console.log("Salary: " + this.attributes.salary);
 return console.log("Bonus: " + (this.bonus()));
 };

 Employee.prototype.bonus = function() {
 return 0;
 };

 return Employee;

 })();

 Manager = (function(_super) {
 __extends(Manager, _super);

 function Manager() {
 Manager.__super__.constructor.apply(this, arguments);
 }

 Manager.prototype.bonus = function() {
 return this.attributes.salary * .10;
 };

 return Manager;

 })(Employee);

ptg8106388

142 Chapter 6 Classes

 employee = new Employee({
 name: "Mark",
 dob: new Date(1976, 7, 24),
 salary: 50000
 });

 employee.printInfo();

 manager = new Manager({
 name: "Rachel",
 dob: new Date(1979, 3, 28),
 salary: 100000
 });

 manager.printInfo();

}).call(this);

Output: (source: manager2.coffee)

Name: Mark
DOB: Tue Aug 24 1976 00:00:00 GMT-0400 (EDT)
Salary: 50000
Bonus: 0
Name: Rachel
DOB: Sat Apr 28 1979 00:00:00 GMT-0500 (EST)
Salary: 100000
Bonus: 10000

Overriding functions on the subclass is as simple as redefining the function again with new
functionality. But what about if we want to call the original function and maybe add a little bit
to it. Here’s an example.

Employees get really upset when they see their bonus amount as 0 in the printInfo, so we’re
going to take it out entirely, but we still want managers to see that information when we call
printInfo. We can do this using the super keyword:

Example: (source: manager3.coffee)

class Employee

 constructor: (@attributes)->

 printInfo: ->
 console.log "Name: #{@attributes.name}"
 console.log "DOB: #{@attributes.dob}"
 console.log "Salary: #{@attributes.salary}"

ptg8106388

143Extending Classes

 bonus: ->
 0

class Manager extends Employee

 bonus: ->
 @attributes.salary * .10

 printInfo: ->
 super
 console.log "Bonus: #{@bonus()}"

employee = new Employee
 name: "Mark"
 dob: new Date(1976, 7, 24)
 salary: 50000

employee.printInfo()

manager = new Manager
 name: "Rachel"
 dob: new Date(1979, 3, 28)
 salary: 100000

manager.printInfo()

Example: (source: manager3.js)

(function() {
 var Employee, Manager, employee, manager,
 __hasProp = Object.prototype.hasOwnProperty,
 __extends = function(child, parent) { for (var key in parent) { if
(__hasProp.call(parent, key)) child[key] = parent[key]; } function ctor() {
this.constructor = child; } ctor.prototype = parent.prototype; child.prototype =
new ctor; child.__super__ = parent.prototype; return child; };

 Employee = (function() {

 function Employee(attributes) {
 this.attributes = attributes;
 }

 Employee.prototype.printInfo = function() {
 console.log("Name: " + this.attributes.name);
 console.log("DOB: " + this.attributes.dob);
 return console.log("Salary: " + this.attributes.salary);
 };

ptg8106388

144 Chapter 6 Classes

 Employee.prototype.bonus = function() {
 return 0;
 };

 return Employee;

 })();

 Manager = (function(_super) {

 __extends(Manager, _super);

 function Manager() {
 Manager.__super__.constructor.apply(this, arguments);
 }

 Manager.prototype.bonus = function() {
 return this.attributes.salary * .10;
 };

 Manager.prototype.printInfo = function() {
 Manager.__super__.printInfo.apply(this, arguments);
 return console.log("Bonus: " + (this.bonus()));
 };

 return Manager;

 })(Employee);

 employee = new Employee({
 name: "Mark",
 dob: new Date(1976, 7, 24),
 salary: 50000
 });

 employee.printInfo();

 manager = new Manager({
 name: "Rachel",
 dob: new Date(1979, 3, 28),
 salary: 100000
 });

 manager.printInfo();

}).call(this);

ptg8106388

145Class-Level Functions

Output: (source: manager3.coffee)

Name: Mark
DOB: Tue Aug 24 1976 00:00:00 GMT-0400 (EDT)
Salary: 50000
Name: Rachel
DOB: Sat Apr 28 1979 00:00:00 GMT-0500 (EST)
Salary: 100000
Bonus: 10000

In the printInfo function we defined in the Manager class, we first called super. When we
call super, that will call the original printInfo function from the Employee class with any
arguments that might have come into the function. After we call super we then print out the
bonus information for the manager.

Tip

The call to super can be called at any point in the function that is overriding it; it doesn’t have
to be first (as in some languages). Subsequently, you don’t have to call the super method
at all.

Tip

When calling super we do not need to explicitly pass in arguments. By default, any arguments
that come into the function that is overriding super will be passed to super when called. You
can, however, explicitly pass any arguments you want when calling super. This can be useful if
you want to augment or mutate the arguments before they go to the super method.

Class-Level Functions
Class-level functions are functions that don’t require an instance of the class in order to be
called. These functions can be incredibly useful. One of the best uses is to provide a sort of
namespacing for your functions. An example of this in JavaScript is Math.random(). You don’t
need to instantiate a new Math object to get a random number. But by hanging the random
function off of the Math class, you avoid the risk that there is another function called random
that might override your function.

Tip

In reality, Math isn’t a class; it’s just a plain object that is used for namespacing. Occasionally
I twist the truth a little bit to help get my point across.

You can also use class-level functions to do things that might affect multiple instances of a
class, like search for them in a database.

ptg8106388

146 Chapter 6 Classes

We could write a couple of class-level functions on the Employee class. Since we don’t have a
full database at our disposal, we’ll just keep track of how many employee instances we create
and report that number. To keep track of which employees we hire, we create a class-level func-
tion called hire that will take the newly hired employees and add them to an array that will
act as our impromptu database. We’ll also add a total class-level function that will return the
total number of employees we have in our faux database.

Example: (source: class_level.coffee)

class Employee

 constructor: ->
 Employee.hire(@)

 @hire: (employee) ->
 @allEmployees ||= []
 @allEmployees.push employee

 @total: ->
 console.log "There are #{@allEmployees.length} employees."
 @allEmployees.length

new Employee()
new Employee()
new Employee()

Employee.total()

Example: (source: class_level.js)

(function() {
 var Employee;

 Employee = (function() {

 function Employee() {
 Employee.hire(this);
 }

 Employee.hire = function(employee) {
 this.allEmployees || (this.allEmployees = []);
 return this.allEmployees.push(employee);
 };

 Employee.total = function() {
 console.log("There are " + this.allEmployees.length + " employees.");

ptg8106388

147Class-Level Functions

 return this.allEmployees.length;
 };

 return Employee;

 })();

 new Employee();

 new Employee();

 new Employee();

 Employee.total();

}).call(this);

Output: (source: class_level.coffee)

There are 3 employees.

So how did we create those class-level functions? By prepending the function name with @ we
are telling CoffeeScript that we want that function to be at the class level. In the JavaScript
world this works because when we replace @ with this. the this context is that of the
Employee class, not an instance of that class.

The inside class-level functions scope is limited to other class-level functions and attributes.

Tip
I routinely create class definitions that are nothing but a bunch of class-level methods. This is
great for building utility packages and to make sure that I have nicely scoped functions. And, if
I ever want to, or need to, I can inherit from these classes and override certain functions for a
particular need.

The use of super is limited, however, when dealing with class-level functions and attributes.
You can use super when you want to call the original function that you have overridden in
the subclass. However, and this is big, if the function you are calling using super tries to make
reference to any class-level attributes, you’ll get a big fat error.

Let’s take a look at what happens when we override the total class-level function in the
Manager class and then try to call super:

ptg8106388

148 Chapter 6 Classes

Example: (source: class_level_super.coffee)

class Employee

 constructor: ->
 Employee.hire(@)

 @hire: (employee) ->
 @allEmployees ||= []
 @allEmployees.push employee

 @total: ->
 console.log "There are #{@allEmployees.length} employees."
 @allEmployees.length

class Manager extends Employee

 @total: ->
 console.log "There are 0 managers."
 super

new Employee()
new Employee()
new Employee()

Manager.total()

Example: (source: class_level_super.js)

(function() {
 var Employee, Manager,
 __hasProp = Object.prototype.hasOwnProperty,
 __extends = function(child, parent) { for (var key in parent) { if
(__hasProp.call(parent, key)) child[key] = parent[key]; } function ctor() {
this.constructor = child; } ctor.prototype = parent.prototype; child.prototype =
new ctor; child.__super__ = parent.prototype; return child; };

 Employee = (function() {

 function Employee() {
 Employee.hire(this);
 }

 Employee.hire = function(employee) {
 this.allEmployees || (this.allEmployees = []);
 return this.allEmployees.push(employee);
 };

ptg8106388

149Class-Level Functions

 Employee.total = function() {
 console.log("There are " + this.allEmployees.length + " employees.");
 return this.allEmployees.length;
 };

 return Employee;

 })();

 Manager = (function(_super) {

 __extends(Manager, _super);

 function Manager() {
 Manager.__super__.constructor.apply(this, arguments);
 }

 Manager.total = function() {
 console.log("There are 0 managers.");
 return Manager.__super__.constructor.total.apply(this, arguments);
 };

 return Manager;

 })(Employee);

 new Employee();

 new Employee();

 new Employee();

 Manager.total();

}).call(this);

Output: (source: class_level_super.coffee)

There are 0 managers.
TypeError: Cannot read property 'length' of undefined
 at Function.<anonymous> (.../classes/class_level_super.coffee:18:51)
 at Function.total (.../classes/class_level_super.coffee:36:50)
 at Object.<anonymous> (.../classes/class_level_super.coffee:49:11)
 at Object.<anonymous> (.../classes/class_level_super.coffee:51:4)
 at Module._compile (module.js:432:26)
 at Object.run (/usr/local/lib/node_modules/coffee-script/lib/coffee-script/
➥coffee-script.js:68:25)

ptg8106388

150 Chapter 6 Classes

 at /usr/local/lib/node_modules/coffee-script/lib/coffee-script/command.js:135:29
 at /usr/local/lib/node_modules/coffee-script/lib/coffee-script/command.js:110:18
 at [object Object].<anonymous> (fs.js:114:5)
 at [object Object].emit (events.js:64:17)

As you can see, when we tried to call length on the @allEmployees attribute we got the
following error:

TypeError: Cannot read property 'length' of undefined

The reason for this is straightforward, but it might take a minute for it to sink in. Because
JavaScript doesn’t have true inheritance, CoffeeScript has to cheat and do some magic, as we
talked about earlier, to give the illusion of classes and inheritance. Because of this, the subclass
Manager is a different object from the Employee class, and because the attributes are being set
on the Employee class and not the Manager class, the Manager class doesn’t have access to
them. I told you it was a bit to wrap your head around.

Tip

I find it best to try to avoid using super at the class level. I also try to keep all my class-level
functions self-contained so I don’t run into these sorts of issues.

Prototype Functions
In JavaScript, you can add functions and attributes to all instances of an object by adding those
functions and attributes to the object’s prototype using the aptly named prototype attribute.

In CoffeeScript we can do this using the :: operator. Let’s add a size function to all instances
of array. We want the size function to return the length of the array.

Example: (source: prototypes.coffee)

myArray = [1..10]

try
 console.log myArray.size()
catch error
 console.log error

Array::size = -> @length
console.log myArray.size()

myArray.push(11)
console.log myArray.size()

ptg8106388

151Binding (-> Versus =>)

Example: (source: prototypes.js)

(function() {
 var myArray;

 myArray = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10];

 try {
 console.log(myArray.size());
 } catch (error) {
 console.log(error);
 }

 Array.prototype.size = function() {
 return this.length;
 };

 console.log(myArray.size());

 myArray.push(11);

 console.log(myArray.size());

}).call(this);

Output: (source: prototypes.coffee)

[TypeError: Object 1,2,3,4,5,6,7,8,9,10 has no method 'size']
10
11

The first time we try to call the size function on our array we get an error because the func-
tion doesn’t exist. However, after we add the size function to the Array class’s prototype, it
behaves just as we hoped it would the next couple of times we call it.

Tip

The :: operator is there for convenience. You can still access the prototype attribute directly,
but I find that typing all those extra characters isn’t worth it.

Binding (-> Versus =>)
JavaScript is an asynchronous4 or “evented” programming language. In non-asynchronous
programming, each time a function is called execution of the rest of the program would be
halted until the aforementioned function has returned. In JavaScript, this is not necessarily the

ptg8106388

152 Chapter 6 Classes

case. It is quite common for the program to continue executing after calling a function, even
though the function has yet to return. If it helps, think of this style of programming as “fire
and forget;” the program fires off a call to a function and then forgets all about it. Let’s look at
a quick example of how an asynchronous program runs.

Example: (source: fire_and_forget.coffee)

fire = (msg, wait)->
 setTimeout ->
 console.log msg
 , wait

fire("Hello", 3000)
fire("World", 1000)

Example: (source: fire_and_forget.js)

(function() {
 var fire;

 fire = function(msg, wait) {
 return setTimeout(function() {
 return console.log(msg);
 }, wait);
 };

 fire("Hello", 3000);

 fire("World", 1000);

}).call(this);

Output: (source: fire_and_forget.coffee)

World
Hello

As you can see, our program first said “World” and then “Hello.” In non-asynchronous
programming we would have first seen the word “Hello” followed a few seconds later by the
word “World.” Asynchronous programming can be incredibly powerful but can also be a bit
cumbersome and confusing. Let’s look at how things can start to get a bit muddled up.

Let’s write a log method. This method will log to the console that we are about to execute a
callback function; then it will execute the callback; and finally, it will log to the console that
we have executed the function.

ptg8106388

153Binding (-> Versus =>)

Example: (source: unbound.coffee)

class User

 constructor: (@name) ->

 sayHi: ->
 console.log "Hello #{@name}"

bob = new User('bob')
mary = new User('mary')

log = (callback)->

 console.log "about to execute callback..."
 callback()
 console.log "...executed callback"

log(bob.sayHi)
log(mary.sayHi)

Example: (source: unbound.js)

(function() {
 var User, bob, log, mary;

 User = (function() {

 function User(name) {
 this.name = name;
 }

 User.prototype.sayHi = function() {
 return console.log("Hello " + this.name);
 };

 return User;

 })();

 bob = new User('bob');

 mary = new User('mary');

 log = function(callback) {
 console.log("about to execute callback...");
 callback();
 return console.log("...executed callback");

ptg8106388

154 Chapter 6 Classes

 };

 log(bob.sayHi);

 log(mary.sayHi);

}).call(this);

Output: (source: unbound.coffee)

about to execute callback...
Hello undefined
...executed callback
about to execute callback...
Hello undefined
...executed callback

Well, I’m pretty sure that code was not supposed to say hello to undefined. So what happened
there? When the log function called the callback function we passed in, that callback had lost
the original context from which it came. The callback no longer had reference to the name vari-
able we set in our class. This type of problem is quite common in JavaScript, particularly when
using libraries like jQuery when making AJAX requests or binding to events.

So how do we fix this? How do we give our callback back its context? The answer is to use =>,
also known as the fat arrow, instead of -> when defining our sayHi function in the User class.
Here is the same example, only this time I changed sayHi: -> to sayHi: =>. Let’s see what
happens:

Example: (source: bound.coffee)

class User

 constructor: (@name) ->

 sayHi: =>
 console.log "Hello #{@name}"

bob = new User('bob')
mary = new User('mary')

log = (callback)->
 console.log "about to execute callback..."
 callback()
 console.log "...executed callback"

log(bob.sayHi)
log(mary.sayHi)

ptg8106388

155Binding (-> Versus =>)

Example: (source: bound.js)

(function() {
 var User, bob, log, mary,
 __bind = function(fn, me){ return function(){ return fn.apply(me, arguments); }; };

 User = (function() {

 function User(name) {
 this.name = name;
 this.sayHi = __bind(this.sayHi, this);
 }

 User.prototype.sayHi = function() {
 return console.log("Hello " + this.name);
 };

 return User;

 })();

 bob = new User('bob');

 mary = new User('mary');

 log = function(callback) {
 console.log("about to execute callback...");
 callback();
 return console.log("...executed callback");
 };

 log(bob.sayHi);

 log(mary.sayHi);

}).call(this);

Output: (source: bound.coffee)

about to execute callback...
Hello bob
...executed callback
about to execute callback...
Hello mary
...executed callback

ptg8106388

156 Chapter 6 Classes

Amazing! One simple character did so much there. Let’s compare the JavaScript output of our
unbound and bound examples to better understand what that one character did to our code:

Example: (source: unbound.js)

(function() {
 var User, bob, log, mary;

 User = (function() {

 function User(name) {
 this.name = name;
 }

 User.prototype.sayHi = function() {
 return console.log("Hello " + this.name);
 };

 return User;

 })();

 bob = new User('bob');

 mary = new User('mary');

 log = function(callback) {
 console.log("about to execute callback...");
 callback();
 return console.log("...executed callback");
 };

 log(bob.sayHi);

 log(mary.sayHi);
}).call(this);

Example: (source: bound.js)

(function() {
 var User, bob, log, mary,
 __bind = function(fn, me){ return function(){ return fn.apply(me, arguments); }; };

 User = (function() {

 function User(name) {

ptg8106388

157Binding (-> Versus =>)

 this.name = name;
 this.sayHi = __bind(this.sayHi, this);
 }

 User.prototype.sayHi = function() {
 return console.log("Hello " + this.name);
 };

 return User;

 })();

 bob = new User('bob');

 mary = new User('mary');

 log = function(callback) {
 console.log("about to execute callback...");
 callback();
 return console.log("...executed callback");
 };

 log(bob.sayHi);

 log(mary.sayHi);

}).call(this);

I will explain some of what is going on here, but if you don’t understand what the apply func-
tion does, I suggest reading up on it in a JavaScript book. There are two differences between the
two JavaScript files. The first is the existence of the __bind function found in our => example.
This function accepts two parameters, the first being the function that you would like to bind,
and the second being the context to which you would like to bind the function. The __bind
will return a new function that will call the original function using apply and passing in the
context you provided.

The next difference is in the constructor for the User class. We are redefining the sayHi func-
tion by calling __bind and passing in the original definition of sayHi and the context of the
class instance we are in.

If all that just confused you, don’t worry—you are not alone. Context and binding are very
confusing subjects in JavaScript. If you don’t understand it, I recommend two things: First, get
a good JavaScript book, and second, read “Understanding JavaScript Function Invocation and
‘this.’”5 Yehuda does a great job explaining it all in a couple-page blog post.

If you do understand the JavaScript that is going on here, you are probably smiling right now,
knowing that you don’t have to deal with troublesome binding anymore. You can use => and

ptg8106388

158 Chapter 6 Classes

your life will instantly be better. You’ll see this in action in Chapter 11, “Example: Todo List
Part 2 (Client-side w/ jQuery).”

Wrapping Up
Well, wasn’t that fun? Classes in CoffeeScript are, for me at least, one of the biggest selling
points of the language. I hope this chapter helped to sell you on them.

We covered a lot in this chapter. We looked at what a class is in CoffeeScript and how to define
the most basic class possible.

Next, we looked at the “special” constructor function and talked a lot about scope in our
classes.

We talked about how to extend classes in CoffeeScript using the extends keyword. We also
learned how super can help us extend the original functionality of a super class’s function in
a subclass.

After that, we talked in depth about class-level functions and prototype functions. We also
learned about the trouble super can cause at the class level if we’re not careful.

We ended the chapter by looking at the rather complex, but insanely powerful, concept of
bound functions using =>, also known as the fat arrow.

At this point you have learned pretty much all there is to learn about CoffeeScript.
Congratulations! You are ready to leave the temple. This ends Part I of this book, “Core
CoffeeScript.” Part II, “CoffeeScript in Practice,” will take all that we’ve learned from Part I and
put it into practice using a few popular JavaScript libraries.

Notes
1. http://en.wikipedia.org/wiki/Class_(computer_programming)

2. http://en.wikipedia.org/wiki/DRY

3. http://en.wikipedia.org/wiki/Inheritance_(computer_science)

4. http://en.wikipedia.org/wiki/Asynchronous_I/O

5. http://yehudakatz.com/2011/08/11/understanding-javascript-function-invocation-
and-this/

http://en.wikipedia.org/wiki/Class_(computer_programming)
http://en.wikipedia.org/wiki/DRY
http://en.wikipedia.org/wiki/Inheritance_(computer_science)
http://en.wikipedia.org/wiki/Asynchronous_I/O
http://yehudakatz.com/2011/08/11/understanding-javascript-function-invocation-and-this/
http://yehudakatz.com/2011/08/11/understanding-javascript-function-invocation-and-this/

ptg8106388

Part II
CoffeeScript in Practice

In this half of the book, we’re going to take all that great CoffeeScript knowledge you’ve
learned and put it into practical use. This will help reinforce what you’ve learned, and hope-
fully you’ll pick up a few tips and tricks along the way. We’ll do this using some of the more
popular tools that are commonly used with CoffeeScript.

We’ll build Cakefiles so we can run common tasks in our applications. We’ll see how easy it
is to test our CoffeeScript using CoffeeScript with the Jasmine test framework. Then we’ll take
a quick tour of Node.js and build a small application server to compile CoffeeScript as it’s
requested.

Finally, we’re going to build a full application, the canonical “todo” application. We’ll build the
todo application over three chapters. First, we’ll build the backend application needed to serve
up our todos and persist them. Second, we’ll build the front end of the application using the
popular library jQuery. Third, we’ll replace our handcrafted jQuery1 code with the Backbone.
js2 framework. We’re going to use some fun libraries with this application: jQuery, Backbone.js,
Mongoose3, Express4, and, of course, CoffeeScript.

As we look at these different technologies and build our application and examples, we’re not
going to do a deep dive into these libraries. Instead, we’ll touch on the highlights and those
parts that are necessary to the job at hand. So, with all that said, this is the fun part of the
book! Let’s go!

Notes
1. http://jquery.com

2. http://documentcloud.github.com/backbone/

3. http://mongoosejs.com/

4. http://expressjs.com/

http://jquery.com
http://documentcloud.github.com/backbone/
http://mongoosejs.com/
http://expressjs.com/

ptg8106388

This page intentionally left blank

ptg8106388

7
Cake and Cakefiles

CoffeeScript offers a simple build tool, called Cake, that is very similar in nature to Ruby’s
Rake1 tool. Cake enables you to define simple tasks to help with your CoffeeScript projects.
Perhaps you need a task to run your tests or a task to build your files. Cake lets you define
those tasks easily in a file called a Cakefile.

In this chapter you’ll learn how to define and execute Cake tasks, and of course, we’ll be doing
it all using CoffeeScript.

Tip
“Wait a minute, how do we install Cake?” You don’t have to! When you installed CoffeeScript,
the installer also installed Cake and its command-line tool, aptly named cake. You don’t have
to do anything extra to get access to this tool.

Getting Started
Before we write our first Cake task, it’s important that we understand a few things about how
Cake works. The first thing we need to know about Cake is that all tasks must live in a file
named Cakefile and that this file must live in the directory in which you want to run your
Cake tasks. Typically, this is the root directory of your project.

The only other thing you need to know about Cake and Cakefiles is that the Cakefile must be
written in CoffeeScript. Cakefiles also have a few special functions already available to help you
write your tasks. We’ll see those in action as we build some Cake tasks.

ptg8106388

162 Chapter 7 Cake and Cakefiles

Creating Cake Tasks
Let’s build our first Cake task—a simple “hello world” task:

Example: (source: example1/Cakefile)

task "greet", "Say hi to the nice people", ->
 console.log "Hello, World!"

Example: (source: example1/Cakefile.js)

(function() {

 task("greet", "Say hi to the nice people", function() {
 return console.log("Hello, World!");
 });

}).call(this);

Tip
Although you will never see the JavaScript that is generated under the covers for Cakefiles,
I decided to still include its output in this chapter to better help you further grasp what your
CoffeeScript is doing.

To define our Cake task, we have to call the task function that gets automatically added to
every Cakefile. The first argument is the name of the task; this is what we will use on the
command line to execute the task. The second argument, which is optional, is a description of
the task. If supplied, the description will appear when we print out a list of tasks that are avail-
able to us. The last argument we pass into the task function is a function that will be executed
when we execute the task. This function is where the heavy lifting of our task is done.

To print out which tasks are available, we can use the cake command-line tool:

> cake

If we were to run that against our Cakefile, we would get the following output:

Output: (source: example1/Cakefile)

Cakefile defines the following tasks:

cake greet # Say hi to the nice people

As you can see in the output, we see the name of the task we defined, preceded with the cake
command, as well as the description we gave to the task.

ptg8106388

163Using Options

Tip
Being able to get a list of available tasks is incredibly useful if you start requiring libraries that
may have their own built-in Cake tasks.

Running Cake Tasks
Now that we’ve created our first task, how do we run it? Easy. When I ran the cake command
against our example, it told us to run our task. Simply type in cake followed by the name of
the task you would like to run, like this:

> cake greet

That will run our greet Cake task.

Output:

Hello, World!

Using Options
We have our first task written, and we know how to execute it, but what if we want to pass
some arguments into it? For example, what if we want our greet task to accept an option so
we can customize who we greet? Let’s look at how Cake lets us do that.

The first step in being able to pass options to our tasks is to define the option. We do this
using the special option function that Cake gives us. This function takes three arguments. The
first argument is the “short” form of the option, the second argument is the “long” form of
the option, and the final argument is a simple description of what the option does. Let’s take
a look at our greet task again, and this time let’s define an option so we can customize the
greeting.

Tip
When I talk about the “long” or “short” form of an option, I really am talking about how much
typing the user has to do. For example, -n is a short option and --name is a long option.

Example: (source: example2/Cakefile)

option '-n', '--name [NAME]', 'name you want to greet'
task "greet", "Say hi to someone", (options)->
 message = "Hello, "
 if options.name?
 message += options.name

ptg8106388

164 Chapter 7 Cake and Cakefiles

 else
 message += "World"
 console.log message

Example: (source: example2/Cakefile.js)

(function() {

 option('-n', '--name [NAME]', 'name you want to greet');

 task("greet", "Say hi to someone", function(options) {
 var message;
 message = "Hello, ";
 if (options.name != null) {
 message += options.name;
 } else {
 message += "World";
 }
 return console.log(message);
 });

}).call(this);

As you can see, before our task definition we called the option function and passed it the
three arguments it expects. The first argument is -n, the short form of the option. The second
is --name, the long form of the option. Notice that in the example, as part of the long form
option, I have also put [NAME], which tells Cake that you are expecting a value there. If you
do not put something like [NAME], Cake will raise an error if you try to pass in a value with
the option, the last argument being the description.

Tip

Although all three arguments are required for the option function, only the last two arguments
are truly necessary. You have to provide both the long form option as well as the description,
but the short form of the option is not required. If you don’t want to have a short form for the
option, either pass in an empty string or null as the first parameter.

Now when we run the cake command to see the list of available tasks, we should see this:

Output: (source: example2/Cakefile)

Cakefile defines the following tasks:

cake greet # Say hi to someone

 -n, --name name you want to greet

ptg8106388

165Using Options

At the bottom of the output we can see the list of available options for the tasks.

Tip
I want to point out what I feel to be a shortcoming of Cake options. Options are not defined for
a specific task; instead, they are available for all tasks. If, in addition to our greet task, we
were to have a second task, both tasks would accept the name option we defined. Although
this isn’t the end of the world, it does mean that some care does need to be taken when nam-
ing the options and providing their descriptions.

If we look at our greet task again, we can see that we are passing an object, options, into the
function that will be executed when the task is executed:

Example: (source: example2/Cakefile)

option '-n', '--name [NAME]', 'name you want to greet'
task "greet", "Say hi to someone", (options)->
 message = "Hello, "
 if options.name?
 message += options.name
 else
 message += "World"
 console.log message

Example: (source: example2/Cakefile.js)

(function() {

 option('-n', '--name [NAME]', 'name you want to greet');

 task("greet", "Say hi to someone", function(options) {
 var message;
 message = "Hello, ";
 if (options.name != null) {
 message += options.name;
 } else {
 message += "World";
 }
 return console.log(message);
 });

}).call(this);

With the options object, we can determine if someone has called the task with the name
option. If the task is run with the name option, we will greet that name; if not, we will use a
generic greeting.

ptg8106388

166 Chapter 7 Cake and Cakefiles

We can run our greet task with the name option like this:

> cake -n Mark greet

Output: (source: example2a/Cakefile)

Hello, Mark

If you want an option to be required, you would have to do that manually in the task defini-
tion itself by checking the existence of the option and throwing an error if it doesn’t exist:

Example: (source: example2a/Cakefile)

option '-n', '--name [NAME]', 'name you want to greet'
task "greet", "Say hi to someone", (options)->
 throw new Error("[NAME] is required") unless options.name?
 console.log "Hello, #{options.name}"

Example: (source: example2a/Cakefile.js)

(function() {

 option('-n', '--name [NAME]', 'name you want to greet');

 task("greet", "Say hi to someone", function(options) {
 if (options.name == null) throw new Error("[NAME] is required");
 return console.log("Hello, " + options.name);
 });

}).call(this);

Output: (source: example2a/Cakefile)

node.js:201
 throw e; // process.nextTick error, or 'error' event on first tick
 ^
Error: [NAME] is required
 at Object.action (.../cake/example2a/Cakefile:6:37)
 at /usr/local/lib/node_modules/coffee-script/lib/coffee-script/cake.js:39:26
 at Object.run (/usr/local/lib/node_modules/coffee-script/lib/coffee-script/
➥cake.js:62:21)
 at Object.<anonymous> (/usr/local/lib/node_modules/coffee-script/bin/cake:7:38)
 at Module._compile (module.js:432:26)
 at Object..js (module.js:450:10)
 at Module.load (module.js:351:31)
 at Function._load (module.js:310:12)
 at Array.0 (module.js:470:10)
 at EventEmitter._tickCallback (node.js:192:40)

ptg8106388

167Invoking Other Tasks

Tip
When running a Cake task with options, it is important to note that all options must be placed
before the name of the task. If the options are placed after the task, you will be greeted with a
rather unfriendly error. To me this seems backward. I would prefer cake greet -n Mark, but,
unfortunately, at the time of writing that’s not possible.

Invoking Other Tasks
There will come a time when you want to execute other tasks from inside another task. Here’s
an example: Two common tasks you might have in a project would be a task to clean up your
build directories and another task to compile and build your project. Let’s write these two tasks:

Example: (source: example3/Cakefile)

task "clean", "Clean up build directories", ->
 console.log "cleaning up..."

task "build", "Build the project files", ->
 console.log "building..."

Example: (source: example3/Cakefile.js)

(function() {

 task("clean", "Clean up build directories", function() {
 return console.log("cleaning up...");
 });

 task("build", "Build the project files", function() {
 return console.log("building...");
 });

}).call(this);

Output: (source: example3/Cakefile)

Cakefile defines the following tasks:

cake clean # Clean up build directories
cake build # Build the project files

After using these tasks for a while, you realize that you are always running the clean task and
then the build task. You can run both tasks with one command, like this:

> cake clean build

ptg8106388

168 Chapter 7 Cake and Cakefiles

That will run both tasks for you. But what if want to have a third task, package, that will
package up your project for you? Before you can neatly package up your project, you want to
first make sure you build it—and before you build it, you want to make sure that the build
directories are clean. You could do it like this:

> cake clean build package

The problem is that this approach is error prone. What if you forget to call the build or clean
tasks first? What happens? Fortunately, Cake lets us invoke other tasks from inside a task. To
do that, we can call the invoke function that Cake provides for us and give it the name of the
task we want to call:

Example: (source: example4/Cakefile)

task "clean", "Clean up build directories", ->
 console.log "cleaning up..."

task "build", "Build the project files", ->
 console.log "building..."

task "package", "Clean, build, and package the project", ->
 invoke "clean"
 invoke "build"
 console.log "packaging..."

Example: (source: example4/Cakefile.js)

(function() {

 task("clean", "Clean up build directories", function() {
 return console.log("cleaning up...");
 });

 task("build", "Build the project files", function() {
 return console.log("building...");
 });

 task("package", "Clean, build, and package the project", function() {
 invoke("clean");
 invoke("build");
 return console.log("packaging...");
 });

}).call(this);

ptg8106388

169Wrapping Up

Output: (source: example4/Cakefile)

Cakefile defines the following tasks:

cake clean # Clean up build directories
cake build # Build the project files
cake package # Clean, build, and package the project

Now we can call the package task and see that both the clean and build tasks are also being
executed:

> cake package

Output: (source: example4/Cakefile)

cleaning up...
building...
packaging...

Tip
It’s important to note that when invoking other tasks, they will be run asynchronously. So in our
example, there is no guarantee that the clean task will be finished before the build task is
run. This could potentially cause issues, so be careful. The same is true of executing them by
chaining them to a single cake command on the command line. Caveat emptor.

Wrapping Up
In this chapter we dug through the build tool that ships with CoffeeScript, called Cake. You
learned how to define new tasks and see which tasks are available. You saw how to execute
tasks, give them options, and run multiple tasks at once. You might feel as though you didn’t
really learn much about writing useful Cake tasks. The reason is that this is all that Cake offers.
It is up to you to fill those tasks with what you need. The Node.js2 project, which I talk about
in Chapter 9, “Intro to Node.js,” is a great place to start when looking for useful modules you
can use to read and write files and directories, compile CoffeeScript files, make HTTP requests,
and more. Other chapters will include Cakefiles to do things such as run tests, so be on the
lookout for those examples.

Although Cake is a good tool, and it’s nice to have it automatically installed with CoffeeScript,
I do find it a bit too weak with too many awkward idiosyncrasies for it to be useful for most
tasks I want to write. When combined with modules from Node3 and other available modules,
it can be quite powerful, but I still find myself falling back to my Ruby roots and using Rake
because it’s much more polished than Cake.

ptg8106388

170 Chapter 7 Cake and Cakefiles

However, I highly encourage you to give it a shot. It might be exactly the right tool for you,
especially if you’re limited in what languages you can use and have installed; then it’s a
no-brainer.

Notes
1. https://github.com/jimweirich/rake

2. http://nodejs.org/

3. http://nodejs.org/

https://github.com/jimweirich/rake
http://nodejs.org/
http://nodejs.org/

ptg8106388

8
Testing with Jasmine

To me there is no greater sin than writing code that doesn’t have tests. It is my belief that
testing is not an option.1 Testing is required. I feel so strongly in that statement that I practice
what is known as TDD.2 TDD, or test-driven development, is a philosophy of writing code
that states you should always write your tests first and your code last. By practicing TDD you
can sleep well at night, knowing that your code is well tested and that should anything crop
up, you can quickly and easily fix it with the comfort and knowledge that you haven’t broken
anything else.

The art of TDD can be daunting; a lot of people don’t know where to begin. If you need some
guidance on how to become a test-driven developer, might I recommend a little blog post
written by yours truly, titled “How to Become a Test-driven Developer.”3

In this chapter I want to take a quick look at what I consider to be one of the best testing tools
out there for testing JavaScript applications—Jasmine.4

Tip
Jasmine isn’t the only testing tool for JavaScript; in fact, there are quite a few. I think Jasmine
is one of the nicest ones around because it emulates my favorite Ruby testing framework,
RSpec.5 Other JavaScript testing frameworks to check out include QUnit,6 JsTestDriver,7 and
YUI Test.8

I won’t be covering Jasmine in great detail here. You can find a number of great articles and
videos on the Internet covering Jasmine in more detail. Instead, I want to show you how to use
Jasmine with CoffeeScript and to give you a feel for what it can do.

ptg8106388

172 Chapter 8 Testing with Jasmine

Installing Jasmine
Typically, as you may remember from the beginning of this book, I don’t like to cover installa-
tion of tools in a book. The reason is pretty obvious—the instructions tend to be out of date by
the time I finish typing, let alone by the time the book goes to print. The same is true here.

With that out of the way, I will point out what I consider to be the best way to install and set
up Jasmine with CoffeeScript support. That would be to use the jasmine-headless-webkit9 Ruby
gem. Because this is a Ruby gem it requires Ruby to be installed. It also features a few other
dependencies. The link in the footnote has detailed instructions on how to get it set up.

There are ways of setting up Jasmine that aren’t as tricky. However, they don’t have native
CoffeeScript support and require all sorts of precompilation of both your source files and your
tests, and let’s be honest, who wants to deal with all of that?

If you don’t want to use jasmine-headless-webkit and instead use another version of Jasmine,
that’s fine. For this chapter we will be using jasmine-headless-webkit, so I would recommend
using that if you plan to follow along.

Setting Up Jasmine
I’m going to assume that you have installed Jasmine and are ready to go. So let’s get started.

In this chapter we are going to build a simple calculator project. It will do the basic stuff that
calculators do: add, subtract, multiply, and divide. Create a new folder for the project. Inside
the project folder run the following command to set up Jasmine:

> jasmine init

When you do that, Jasmine should create a bunch of new files and folders in the project direc-
tory that look something like this:

public/
 javascripts/
 Player.js
 Song.js
Rakefile
spec/
 javascripts/
 helpers/
 SpecHelper.js
 PlayerSpec.js
 support/
 jasmine.yml
 jasmine_config.rb
 jasmine_runner.rb

ptg8106388

173
Setting Up Jasmine

Jasmine throws a few example files in there to give us a feeling for how Jasmine works and to
help us make sure that it has been set up and configured correctly. Let’s test that now:

> jasmine-headless-webkit -c

With any luck you should see output similar to the following:

Running Jasmine specs...
.....
PASS: 5 tests, 0 failures, 0.009 secs.

Great! We now have Jasmine up and running. Things look good. Well, everything except that
awful command we have to execute on the command line whenever we want to run our tests.
Let’s use what we learned in Chapter 7, “Cake and Cakefiles,” and write up a quick Cake task to
help keep things simple.

First, I’ll show you the Cakefile and then I’ll explain it.

Example: (source: calc.1/Cakefile)

exec = require('child_process').exec

task "test", (options) =>
 exec "jasmine-headless-webkit -c", (error, stdout, stderr)->
 console.log stdout

Example: (source: calc.1/Cakefile.js)

(function() {
 var exec,
 _this = this;

 exec = require('child_process').exec;

 task("test", function(options) {
 return exec("jasmine-headless-webkit -c", function(error, stdout, stderr) {
 return console.log(stdout);
 });
 });

}).call(this);

Output: (source: calc.1/Cakefile)

Cakefile defines the following tasks:

cake test

ptg8106388

174 Chapter 8 Testing with Jasmine

This is definitely not the most complex Cakefile or Cake task you’ll ever see, but it does deserve
a bit of explaining. The real magic of this Cake task is happening in the first line. In this line
we import the child_process module from the Node.js10 toolset. Don’t worry if you don’t
understand what it’s doing or how it works; we’ll cover importing modules a bit more in
Chapter 9, “Intro to Node.js.”

What we get with the child_process module, in particular, is the exec function. The exec
function lets us send commands to the console and then capture the output of that command
when it finishes, which is exactly what we’re doing with our Cake task.

We’ve created a Cake task called test that sends our command, jasmine-headless-webkit
-c, to the command line, where the tests are run. When the tests have finished, our callback
function is executed, and the results of the tests print out to the console.

Now if you type the following in the console:

> cake test

you should see the results of the tests, just like we did earlier.

With the command line cleaned up a bit, let’s do some final configuration of our project before
we dive into writing some tests.

First, we’ll clean up the project a bit and get rid of all those example files that were generated
for us that we don’t want. You should delete files and directories until your project directory
looks like this:

src/
Rakefile
spec/
 javascripts/
 helpers/
 support/
 jasmine.yml
 jasmine_config.rb
 jasmine_runner.rb

Okay, we are almost there. The last thing we need to do is configure the spec/javascripts/
support/jasmine.yml file to give it the specifics of our project:

Example: (source: calc.2/spec/javascripts/support/jasmine.yml)

src_files:
 - "**/*.coffee"

helpers:
 - "helpers/**/*.coffee"

spec_files:
 - /**/*_spec.coffee

ptg8106388

175Introduction to Jasmine

src_dir: "src"

spec_dir: spec/javascripts

Now we are finally ready to start looking at Jasmine code!

Introduction to Jasmine
So what does a Jasmine test look like? Let’s build a simple one and you’ll see.

In our spec directory, let’s create a new file called calculator_spec.coffee. This file is where
we will build all the tests, or specs as they’re sometimes known, for our calculator. Let’s first see
what our simple test will look at, and then we’ll dissect it to understand better what it’s doing.

Example: (source: calc.3/spec/javascripts/calculator_spec.coffee)

describe "Calculator", ->

 it "does something", ->
 expect(1 + 1).toEqual 2
 expect(1 + 1).not.toEqual 3

Example: (source: calc.3/spec/javascripts/calculator_spec.js)

(function() {

 describe("Calculator", function() {
 return it("does something", function() {
 expect(1 + 1).toEqual(2);
 return expect(1 + 1).not.toEqual(3);
 });
 });

}).call(this);

First, we need to create what is called a “describe” block. This is where we tell Jasmine what
the “noun” is that we are going to be testing. We usually describe classes or functions. In this
case we want to describe the Calculator class we’re going to build. The first argument to the
describe function is a string that represents the noun “Calculator.” The second argument is
going to be a function that will contain all the tests associated with that noun.

Inside the callback function we give to the describe function we can define “it” blocks. An
“it” block, which is just a function, is similar to the “describe” function, or block, in that it
takes two arguments. The first argument is a string that represents what we plan on testing

ptg8106388

176 Chapter 8 Testing with Jasmine

now. In this short example we want to test that the “Calculator” “does something.” The second
argument is a function that contains the assertions to prove what it is we are testing.

In our “does something” test, we are asserting that 1 + 1 equals 2. We are also rather trium-
phantly asserting that 1 + 1 does not equal 3. We did these tests using what are called match-
ers; in this case we used the toEqual matcher. Matchers have one simple rule: if the matcher
returns true the test passes; otherwise, the test fails.

So what does the expect function do and why do we need it? The expect function takes as
its argument the statement you want to test, so for us it would be 1 + 1, and returns a special
object that has the matcher functions on it. In a nutshell, it’s there to make Jasmine’s life a
little easier. It also helps the readability of your tests a bit.

Tip
Jasmine ships with a handful of matchers that you can use to test almost anything. You can
find a list of these matchers on the documentation11 site for Jasmine.

Unit Testing
Now that we have a basic understanding of how to write a Jasmine test, let’s flesh out what the
tests are going to look like for our Calculator class. We’ll start by removing our example test
and adding four describe blocks to test addition, subtraction, multiplication, and division:

Example: (source: calc.4/spec/javascripts/calculator_spec.coffee)

describe "Calculator", ->

 describe "#add", ->

 it "adds two numbers", ->

 describe "#subtract", ->

 it "subtracts two numbers", ->

 describe "#multiply", ->

 it "multiplies two numbers", ->

 describe "#divide", ->

 it "divides two numbers", ->

ptg8106388

177Unit Testing

Example: (source: calc.4/spec/javascripts/calculator_spec.js)

(function() {

 describe("Calculator", function() {
 describe("#add", function() {
 return it("adds two numbers", function() {});
 });
 describe("#subtract", function() {
 return it("subtracts two numbers", function() {});
 });
 describe("#multiply", function() {
 return it("multiplies two numbers", function() {});
 });
 return describe("#divide", function() {
 return it("divides two numbers", function() {});
 });
 });

}).call(this);

After looking at that code, you are probably wondering why there are multiple “describe”
blocks under our initial “describe.” We do that because we are going to be writing tests for each
of the four functions we’re going to have on our Calculator class. Each of these functions is
a noun that we are going to be testing. Below each of those nouns are the “it” blocks that state
what we will be testing.

We can run our tests with this:

> cake test

The output of our tests should look like this:

Running Jasmine specs...
...
PASS: 4 tests, 0 failures, 0.02 secs.

Tip

There is a # before each of the function names in our test because that is a common testing
style that indicates that function is an instance-level function. If we were to describe class-level
functions, we would preface the function name with . instead of #.

Our tests all pass because there is nothing inside of the “it” blocks. Let’s flesh them all out
a bit:

ptg8106388

178 Chapter 8 Testing with Jasmine

Example: (source: calc.5/spec/javascripts/calculator_spec.coffee)

describe "Calculator", ->

 describe "#add", ->

 it "adds two numbers", ->
 calculator = new Calculator()
 expect(calculator.add(1, 1)).toEqual 2

 describe "#subtract", ->

 it "subtracts two numbers", ->
 calculator = new Calculator()
 expect(calculator.subtract(10, 1)).toEqual 9

 describe "#multiply", ->

 it "multiplies two numbers", ->
 calculator = new Calculator()
 expect(calculator.multiply(5, 4)).toEqual 20

 describe "#divide", ->

 it "divides two numbers", ->
 calculator = new Calculator()
 expect(calculator.divide(20, 5)).toEqual 4

Example: (source: calc.5/spec/javascripts/calculator_spec.js)

(function() {

 describe("Calculator", function() {
 describe("#add", function() {
 return it("adds two numbers", function() {
 var calculator;
 calculator = new Calculator();
 return expect(calculator.add(1, 1)).toEqual(2);
 });
 });
 describe("#subtract", function() {
 return it("subtracts two numbers", function() {
 var calculator;
 calculator = new Calculator();
 return expect(calculator.subtract(10, 1)).toEqual(9);
 });
 });

ptg8106388

179Unit Testing

 describe("#multiply", function() {
 return it("multiplies two numbers", function() {
 var calculator;
 calculator = new Calculator();
 return expect(calculator.multiply(5, 4)).toEqual(20);
 });
 });
 return describe("#divide", function() {
 return it("divides two numbers", function() {
 var calculator;
 calculator = new Calculator();
 return expect(calculator.divide(20, 5)).toEqual(4);
 });
 });
 });

}).call(this);

Now we’re starting to get somewhere. We have nice looking tests that describe and test the four
functions we’re going to have on our Calculator class, so what happens if we run the tests?

Running Jasmine specs...
FFFF

Calculator #add adds two numbers.
➥(../jasmine/calc.5/spec/javascripts/calculator_spec.coffee:5)
 ReferenceError: Can't find variable: Calculator in ../jasmine/calc.5/spec/
➥ javascripts/calculator_spec.coffee (line ~6)

Calculator #subtract subtracts two numbers.
➥ (../jasmine/calc.5/spec/javascripts/calculator_spec.coffee:11)
 ReferenceError: Can't find variable: Calculator in ../jasmine/calc.5/spec/
➥ javascripts/calculator_spec.coffee (line ~13)

Calculator #multiply multiplies two numbers.
➥ (../jasmine/calc.5/spec/javascripts/calculator_spec.coffee:17)
 ReferenceError: Can't find variable: Calculator in ../jasmine/calc.5/spec/
➥ javascripts/calculator_spec.coffee (line ~20)

Calculator #divide divides two numbers.
➥ (../jasmine/calc.5/spec/javascripts/calculator_spec.coffee:23)
 ReferenceError: Can't find variable: Calculator in ../jasmine/calc.5/spec/
➥ javascripts/calculator_spec.coffee (line ~27)

FAIL: 4 tests, 4 failures, 0.017 secs.

ptg8106388

180 Chapter 8 Testing with Jasmine

All tests are now failing, and they’re failing for a very good reason—we haven’t written our
Calculator class yet! So let’s do that; it’s a pretty simple class:

Example: (source: calc.6/src/calculator.coffee)

class @Calculator

 add: (a, b) ->
 a + b

 subtract: (a, b) ->
 a - b

 multiply: (a, b) ->
 a * b

 divide: (a, b) ->
 a / b

Example: (source: calc.6/src/calculator.js)

(function() {

 this.Calculator = (function() {

 function Calculator() {}

 Calculator.prototype.add = function(a, b) {
 return a + b;
 };

 Calculator.prototype.subtract = function(a, b) {
 return a - b;
 };

 Calculator.prototype.multiply = function(a, b) {
 return a * b;
 };

 Calculator.prototype.divide = function(a, b) {
 return a / b;
 };

 return Calculator;

 })();

}).call(this);

ptg8106388

181Before and After

Now when we run our tests again we should see them all passing:

Running Jasmine specs...
....
PASS: 4 tests, 0 failures, 0.021 secs.

Before and After
Our tests look pretty good now, but a lot of duplication occurs in each test. In each test we are
creating a new instance of our Calculator class. Jasmine will help us clean that up a bit using
the beforeEach function.

Tip

As you might guess, there is also an afterEach function. The afterEach is great for resetting
databases, files, or other fixture data back to where it was before the test was run.

Let’s move the creation of an instance of the Calculator class to a beforeEach call. We do
that by passing a function to the beforeEach function that will be called before each “it” block
in the current “describe” block, as well as any subsequent “describe” blocks.

Example: (source: calc.7/spec/javascripts/calculator_spec.coffee)

describe "Calculator", ->

 beforeEach ->
 @calculator = new Calculator()

 describe "#add", ->

 it "adds two numbers", ->
 expect(@calculator.add(1, 1)).toEqual 2

 describe "#subtract", ->

 it "subtracts two numbers", ->
 expect(@calculator.subtract(10, 1)).toEqual 9

 describe "#multiply", ->

 it "multiplies two numbers", ->
 expect(@calculator.multiply(5, 4)).toEqual 20

 describe "#divide", ->

 it "divides two numbers", ->
 expect(@calculator.divide(20, 5)).toEqual 4

ptg8106388

182 Chapter 8 Testing with Jasmine

Example: (source: calc.7/spec/javascripts/calculator_spec.js)

(function() {

 describe("Calculator", function() {
 beforeEach(function() {
 return this.calculator = new Calculator();
 });
 describe("#add", function() {
 return it("adds two numbers", function() {
 return expect(this.calculator.add(1, 1)).toEqual(2);
 });
 });
 describe("#subtract", function() {
 return it("subtracts two numbers", function() {
 return expect(this.calculator.subtract(10, 1)).toEqual(9);
 });
 });
 describe("#multiply", function() {
 return it("multiplies two numbers", function() {
 return expect(this.calculator.multiply(5, 4)).toEqual(20);
 });
 });
 return describe("#divide", function() {
 return it("divides two numbers", function() {
 return expect(this.calculator.divide(20, 5)).toEqual(4);
 });
 });
 });

}).call(this);

Tip

The scope of beforeEach and afterEach calls can be a bit confusing. It helps to try to think
of it a bit like a waterfall. The calls trickle down from the current “describe” block scope to all
“describe” blocks that are nested below. It does this for as many levels of “describe” blocks
there are.

When writing beforeEach functions, it’s important to know that you can have as many as you
want, and they can be at any level of your tests as you need. Let’s see this in action with our
Calculator class.

Let’s add a flag to our Calculator that tells the calculator whether it should operate in
scientific mode.

ptg8106388

183Before and After

Example: (source: calc.8/src/calculator.coffee)

class @Calculator

 constructor: (@scientific = false)->

 add: (a, b) ->
 a + b

 subtract: (a, b) ->
 a - b

 multiply: (a, b) ->
 a * b

 divide: (a, b) ->
 a / b

Example: (source: calc.8/src/calculator.js)

(function() {

 this.Calculator = (function() {

 function Calculator(scientific) {
 this.scientific = scientific != null ? scientific : false;
 }

 Calculator.prototype.add = function(a, b) {
 return a + b;
 };

 Calculator.prototype.subtract = function(a, b) {
 return a - b;
 };

 Calculator.prototype.multiply = function(a, b) {
 return a * b;
 };

 Calculator.prototype.divide = function(a, b) {
 return a / b;
 };

 return Calculator;

 })();

}).call(this);

ptg8106388

184 Chapter 8 Testing with Jasmine

Next, let’s add a test that asserts that its default state is not scientific mode:

Example: (source: calc.8/spec/javascripts/calculator_spec.coffee)

describe "Calculator", ->

 beforeEach ->
 @calculator = new Calculator()

 it "is not in scientific mode by default", ->
 expect(@calculator.scientific).toBeFalse()

 describe "#add", ->

 it "adds two numbers", ->
 expect(@calculator.add(1, 1)).toEqual 2

 describe "#subtract", ->

 it "subtracts two numbers", ->
 expect(@calculator.subtract(10, 1)).toEqual 9

 describe "#multiply", ->

 it "multiplies two numbers", ->
 expect(@calculator.multiply(5, 4)).toEqual 20

 describe "#divide", ->

 it "divides two numbers", ->
 expect(@calculator.divide(20, 5)).toEqual 4

Example: (source: calc.8/spec/javascripts/calculator_spec.js)

(function() {

 describe("Calculator", function() {
 beforeEach(function() {
 return this.calculator = new Calculator();
 });
 it("is not in scientific mode by default", function() {
 return expect(this.calculator.scientific).toBeFalse();
 });
 describe("#add", function() {
 return it("adds two numbers", function() {
 return expect(this.calculator.add(1, 1)).toEqual(2);

ptg8106388

185Before and After

 });
 });
 describe("#subtract", function() {
 return it("subtracts two numbers", function() {
 return expect(this.calculator.subtract(10, 1)).toEqual(9);
 });
 });
 describe("#multiply", function() {
 return it("multiplies two numbers", function() {
 return expect(this.calculator.multiply(5, 4)).toEqual(20);
 });
 });
 return describe("#divide", function() {
 return it("divides two numbers", function() {
 return expect(this.calculator.divide(20, 5)).toEqual(4);
 });
 });
 });

}).call(this);

Running Jasmine specs...
....
PASS: 5 tests, 0 failures, 0.021 secs.

Now we’ll write another “describe” block to describe our Calculator class when it’s in scien-
tific mode and we’ll add a beforeEach call in that describe block to create a new Calculator
that is in scientific mode. Let’s also write a test to assert that when we tell it to be in scientific
mode, it actually is:

Example: (source: calc.9/spec/javascripts/calculator_spec.coffee)

describe "Calculator", ->

 beforeEach ->
 @calculator = new Calculator()

 it "is not in scientific mode by default", ->
 expect(@calculator.scientific).toBeFalse()

 describe "scientific mode", ->

 beforeEach ->
 @calculator = new Calculator(true)

ptg8106388

186 Chapter 8 Testing with Jasmine

 it "is in scientific mode when set", ->
 expect(@calculator.scientific).toBeTruth()

 describe "#add", ->

 it "adds two numbers", ->
 expect(@calculator.add(1, 1)).toEqual 2

 describe "#subtract", ->

 it "subtracts two numbers", ->
 expect(@calculator.subtract(10, 1)).toEqual 9

 describe "#multiply", ->

 it "multiplies two numbers", ->
 expect(@calculator.multiply(5, 4)).toEqual 20

 describe "#divide", ->

 it "divides two numbers", ->
 expect(@calculator.divide(20, 5)).toEqual 4

Example: (source: calc.9/spec/javascripts/calculator_spec.js)

(function() {

 describe("Calculator", function() {
 beforeEach(function() {
 return this.calculator = new Calculator();
 });
 it("is not in scientific mode by default", function() {
 return expect(this.calculator.scientific).toBeFalse();
 });
 describe("scientific mode", function() {
 beforeEach(function() {
 return this.calculator = new Calculator(true);
 });
 return it("is in scientific mode when set", function() {
 return expect(this.calculator.scientific).toBeTruth();
 });
 });
 describe("#add", function() {
 return it("adds two numbers", function() {
 return expect(this.calculator.add(1, 1)).toEqual(2);
 });
 });

ptg8106388

187Custom Matchers

 describe("#subtract", function() {
 return it("subtracts two numbers", function() {
 return expect(this.calculator.subtract(10, 1)).toEqual(9);
 });
 });
 describe("#multiply", function() {
 return it("multiplies two numbers", function() {
 return expect(this.calculator.multiply(5, 4)).toEqual(20);
 });
 });
 return describe("#divide", function() {
 return it("divides two numbers", function() {
 return expect(this.calculator.divide(20, 5)).toEqual(4);
 });
 });
 });

}).call(this);

Running Jasmine specs...
......
PASS: 6 tests, 0 failures, 0.017 secs.

Custom Matchers
Before we wrap up the development of our Calculator class, we can clean up our tests a bit
more by using a custom matcher to test whether the calculator in question is in scientific
mode. Jasmine provides a nice, simple way of letting us define our own matchers.

In our spec/javascripts/helpers directory, let’s create a file called to_be_scientific.
coffee.

Tip

The names of the files in the spec/javascripts/helpers directory don’t really matter, but I
like to make sure they’re fairly descriptive. Using the name of the matcher we’re going to write
in that file is a great way to easily find it later when you need to make changes to it.

Let’s add the following to that file:

Example: (source: calc.10/spec/javascripts/helpers/to_be_scientific.coffee)

beforeEach ->
 @addMatchers
 toBeScientific: ->
 @actual.scientific is true

ptg8106388

188 Chapter 8 Testing with Jasmine

Example: (source: calc.10/spec/javascripts/helpers/to_be_scientific.js)

(function() {

 beforeEach(function() {
 return this.addMatchers({
 toBeScientific: function() {
 return this.actual.scientific === true;
 }
 });
 });

}).call(this);

Tip
Custom matchers don’t need to be placed into their own files. You could define them all in one
helper file. I like to write one per file. I find it makes my code base a littler cleaner and saner.
You can also write one-off matchers in a “describe” block for a particular test should the whim
strike you.

To write our custom matcher, the first thing we need to do is add a beforeEach call that will
get called before every test in our entire test suite. Inside of that beforeEach call we want to
call the built-in Jasmine function, addMatchers, that does just what its name says. It takes an
object that contains the names of the matchers you want to add and the function that repre-
sents each of those custom matchers. It is important that the custom matcher returns either
true or false as the result. Remember earlier in the chapter when I said that in Jasmine if an
assertion returns true the test passes; otherwise, the test fails? This is where you define that
behavior.

In our matcher, toBeScientific, we are going to assert whether the Calculator instance we
are testing has the scientific flag set on it and return true or false based on that flag.

With our custom matcher in place, we can update our tests to use it like so:

Example: (source: calc.10/spec/javascripts/calculator_spec.coffee)

describe "Calculator", ->

 beforeEach ->
 @calculator = new Calculator()

 it "is not in scientific mode by default", ->
 expect(@calculator).not.toBeScientific()

 describe "scientific mode", ->

ptg8106388

189Custom Matchers

 beforeEach ->
 @calculator = new Calculator(true)

 it "is in scientific mode when set", ->
 expect(@calculator).toBeScientific()

 describe "#add", ->

 it "adds two numbers", ->
 expect(@calculator.add(1, 1)).toEqual 2

 describe "#subtract", ->

 it "subtracts two numbers", ->
 expect(@calculator.subtract(10, 1)).toEqual 9

 describe "#multiply", ->

 it "multiplies two numbers", ->
 expect(@calculator.multiply(5, 4)).toEqual 20

 describe "#divide", ->

 it "divides two numbers", ->
 expect(@calculator.divide(20, 5)).toEqual 4

Example: (source: calc.10/spec/javascripts/calculator_spec.js)

(function() {

 describe("Calculator", function() {
 beforeEach(function() {
 return this.calculator = new Calculator();
 });
 it("is not in scientific mode by default", function() {
 return expect(this.calculator).not.toBeScientific();
 });
 describe("scientific mode", function() {
 beforeEach(function() {
 return this.calculator = new Calculator(true);
 });
 return it("is in scientific mode when set", function() {
 return expect(this.calculator).toBeScientific();
 });
 });
 describe("#add", function() {

ptg8106388

190 Chapter 8 Testing with Jasmine

 return it("adds two numbers", function() {
 return expect(this.calculator.add(1, 1)).toEqual(2);
 });
 });
 describe("#subtract", function() {
 return it("subtracts two numbers", function() {
 return expect(this.calculator.subtract(10, 1)).toEqual(9);
 });
 });
 describe("#multiply", function() {
 return it("multiplies two numbers", function() {
 return expect(this.calculator.multiply(5, 4)).toEqual(20);
 });
 });
 return describe("#divide", function() {
 return it("divides two numbers", function() {
 return expect(this.calculator.divide(20, 5)).toEqual(4);
 });
 });
 });

}).call(this);

See how much cleaner that looks? Our custom matcher is pretty simple, but we could easily put
a lot more logic in there to clean up several lines of code. For example, if our Calculator class
had a GUI, we could test in our toBeScientific matcher that the scientific flag was set
and the GUI keyboard had switched to a scientific keyboard instead of the standard one.

Wrapping Up
There you have it—a very quick and dirty whirlwind tour of the Jasmine test framework. In this
chapter we talked a bit about why testing is important and how test-driven development can
make your life a little bit nicer. I hope that I was able to show you that TDD is easy to do and
can be worthwhile.

We talked briefly about a few of the ways to install Jasmine, as well as how to configure it for
the way we want to work, in particular using Jasmine with CoffeeScript. After we had Jasmine
set up and running, we looked at what makes up a Jasmine test.

Next we defined our tests for our Calculator class and saw them all fail because we had yet
to write our implementation of the class itself. After we wrote the implementation, we saw our
tests all pass.

Finally we did several iterations of our specs and learned how to use beforeEach hooks and
how to write custom matchers that are more expressive for our code base.

ptg8106388

191Notes

I hope you enjoyed this quick tour of Jasmine. There are plenty of third-party libraries that can
help you to write better tests, including ones that help you test your UI elements effectively. A
quick search of GitHub12 will help you find some great little libraries that inspire your tests.

One last thing before I end this chapter: I want you to promise me right here and now that
you will write tests for all of your code, whether that code is written in CoffeeScript, JavaScript,
Java, ColdFusion, or Cobalt. Hold up your hand and say the following oath:

"
 I solemnly swear to test all of my code.
 I will not test just part of my code, but rather all of it.
 I understand that failure to test my code
 will result in Mark finding me and beating me with my own shoes.
 I do this, not just for me,
 but for all developers who have to work with my code base.
 I also pledge to make other developers take this pledge.
 Should they refuse to take this pledge I will tell Mark
 and he will beat them with their own shoes.
 Viva La Tests!
"

Congratulations. Now go forth and test!

Notes
1. http://www.metabates.com/2010/07/01/testing-is-not-an-option/

2. http://en.wikipedia.org/wiki/Test-driven_development

3. http://www.metabates.com/2010/10/12/how-to-become-a-test-driven-developer/

4. http://pivotal.github.com/jasmine/

5. https://github.com/rspec/rspec

6. http://docs.jquery.com/QUnit

7. http://code.google.com/p/js-test-driver/

8. http://yuilibrary.com/yui/docs/test/

9. http://johnbintz.github.com/jasmine-headless-webkit/

10. http://nodejs.org

11. https://github.com/pivotal/jasmine/wiki/Matchers

12. http://github.com

http://www.metabates.com/2010/07/01/testing-is-not-an-option/
http://en.wikipedia.org/wiki/Test-driven_development
http://www.metabates.com/2010/10/12/how-to-become-a-test-driven-developer/
http://pivotal.github.com/jasmine/
https://github.com/rspec/rspec
http://docs.jquery.com/QUnit
http://code.google.com/p/js-test-driver/
http://yuilibrary.com/yui/docs/test/
http://johnbintz.github.com/jasmine-headless-webkit/
http://nodejs.org
https://github.com/pivotal/jasmine/wiki/Matchers
http://github.com

ptg8106388

This page intentionally left blank

ptg8106388

9
Intro to Node.js

Over the past year or so, a platform written by Joyent1 has been taking the web development
world by storm. This platform is called Node.js,2 commonly referred to as Node (and will be
from here on).

Tip
If you don’t believe that Node is taking the web development world by storm, just ask compa-
nies like LinkedIn,3 who announced in 2011 that it had rewritten its API from Ruby on Rails4 to
Node. That’s a pretty big endorsement.

So what is Node exactly, and why are we talking about it in a CoffeeScript book? In this
chapter, you’ll find out.

What Is Node.js?
Node is an implementation of server-side JavaScript that sits atop Google’s V85 JavaScript
engine. Node is part framework, runtime, and language. Because of that, people are sometimes
confused about what exactly Node is and when and why they should use it.

Node’s main goal in life is to help developers write evented, asynchronous applications. In
Node every request is handled asynchronously, and almost all I/O is nonblocking. Because
of this, a Node application is very efficient in terms of memory and can handle very large
numbers of “concurrent” connections.

There are three reasons why we are covering Node.js in a book about CoffeeScript. First, because
Node applications are written using JavaScript, we can write those same applications using
CoffeeScript instead and enjoy all that CoffeeScript has to offer. Second, the coffee command
we’ve been using throughout this book uses Node under the covers for some of its magic, so
CoffeeScript and Node already enjoy a kinship. Third, Node ships with a package management
system, NPM.6 NPM lets developers package up and distribute bundles of code that can later be
imported into other Node applications. These NPM modules are incredibly helpful even when

ptg8106388

194 Chapter 9 Intro to Node.js

not building a Node application; for example, by importing them into a Cakefile to help us
perform certain tasks.

In this chapter we build a simple web server that will serve static files out of a directory. It will
also compile any CoffeeScript assets in real-time and return the compiled JavaScript to the
browser. Of course, we are going to write this server using CoffeeScript.

Installing Node
I think by now you probably know that I have a penchant for pushing you off to a vendor’s
site for installation instructions. So, to learn how to install Node on your platform of choice, I
recommend that you check out Node’s installation page, http://nodejs.org/#download. I will let
you in on a little secret, if you’ve been following along with the code in this book and trying it
out for yourself; there’s a good chance you already have Node installed. Even if you do, this is a
great chance to upgrade to the latest and greatest version.

With Node installed, let’s give it a little spin. We can fire up a Node REPL like so:

> node

Then, inside the Node REPL, we can execute any JavaScript we’d like:

node> 1 + 1

In addition to the Node REPL we can also execute JavaScript files, much the same way we did
CoffeeScript files. Take this JavaScript file for example:

Example: (source: example.js)

(function() {
 var sayHi;

 sayHi = function(name) {
 if (name == null) name = 'World';
 return console.log("Hello, " + name);
 };

 sayHi('Mark');

}).call(this);

We would run that file like this:

> node example.js

http://nodejs.org/#download

ptg8106388

195Getting Started

And we should get this output:

Output: (source: example.js)

Hello, Mark

Getting Started
Now that we have Node installed and we know how to run JavaScript using it, let’s write a little
“Hello, World” server using Node. I’ll show you the code for the server and then we’ll go over
it in more detail.

Example: (source: server.1/server.coffee)

http = require('http')

port = 3000
ip = "127.0.0.1"

server = http.createServer (req, res) ->
 data = "Hello World!"
 res.writeHead 200,
 "Content-Type": "text/plain"
 "Content-Length": Buffer.byteLength(data, "utf-8")
 res.write(data, "utf-8")
 res.end()

server.listen(port, ip)

console.log "Server running at http://#{ip}:#{port}/"

Example: (source: server.1/server.js)

(function() {
 var http, ip, port, server;

 http = require('http');

 port = 3000;

 ip = "127.0.0.1";

 server = http.createServer(function(req, res) {
 var data;
 data = "Hello World!";

ptg8106388

196 Chapter 9 Intro to Node.js

 res.writeHead(200, {
 "Content-Type": "text/plain",
 "Content-Length": Buffer.byteLength(data, "utf-8")
 });
 res.write(data, "utf-8");
 return res.end();
 });

 server.listen(port, ip);

 console.log("Server running at http://" + ip + ":" + port + "/");

}).call(this);

Before I explain our little server, let’s first fire up the server to see what happens:

> coffee server.1/server.coffee

Now, if you navigate to http://127.0.0.1:3000 you should be properly greeted.

So, let’s start with the obvious question: Why did we run our file with the coffee command
and not the node command we just learned about? The reason is that the node command does
not know how to compile or execute CoffeeScript. If we were to try to run our CoffeeScript file
using the node command, it would blow up in a most extraordinary fashion. Fortunately, the
coffee command sits on top of Node, so we can achieve the desired results that way.

Tip
If we really wanted to, we could precompile our CoffeeScript file in JavaScript and then execute
that using the node command, but why go through that extra step when we can use the
coffee command?

Let’s dissect our server and find out what exactly is making it tick.

The first thing we need to do is to import the http Node module. That will give us everything
we need to both receive and handle HTTP requests. To do that we can use the require func-
tion that Node provides. Next, we create some variables to represent the port and the IP address
we want to bind our server to.

Then we define the actual bulk of our server using the aptly named createServer function
in the http module. We pass the createServer function a callback function that will be
executed each time a new request comes in. The nice part of this is that the callback function
we pass in only gets called when a request comes in; the rest of the time the server sits idle
and uses very little resources. Let’s skip over the callback function for just a minute and finish
looking at the rest of the file. All that is left to do is to tell the server which port and IP address
to listen on for requests.

ptg8106388

197Streaming Responses

Inside our callback function, we are expecting two arguments. The first argument represents the
request and the last argument is the response we are going to send back. The request object,
our req argument, is filled with a tremendous amount of useful data—the page requested, the
browser type, the query string, and so on.

Tip

I recommend that you put a console.log statement in the callback function to print the
request out to the screen and see exactly what data is in there. It’s a quick and easy way to
know what you have access to for each request.

When a request comes in to our server, our callback will be called with the corresponding
request and an object we can use to handle the response. The first thing we want to do is
define a variable named data to hold our response. In this case our response will be a simple
“Hello World!”

Now that we know what we want to say, we can start writing that response back to the client.
To do so we must first write our headers and our response code; for that we will use the write-
Head function on the response. The first argument that writeHead takes is an HTTP status
code. In this case 200 is appropriate because everything went well. The second argument is an
object representing any HTTP headers we want to send back. In our case we want to send back
two headers. The first header is Content-Type, which for this example is text/plain because
we’re not sending any binary data or HTML. The second header we need to send back is
Content-Length. This header tells the client just how big, in bytes, our response will be. Node
provides a nice little utility to do this: Buffer.byteLength. Simply pass in the data we want to
know the byte length of, and it will take care of the rest.

With our status code and headers written out to the client, we can actually write our data back
to the client using the write function.

With our data written to the client, we can finally call the end function, which does exactly
what its name implies—it ends the response. With that we have built our first very simple
Node server. Congratulations.

Streaming Responses
When writing a Node application, it’s important to note that you are not limited to calling the
write function only once in your response. You can call it as many times as you want before
you call the end function. This is a great way to write streaming APIs for your application. Let’s
take a quick look at what this would look like.

We’ll write a simple server that prints out the classic line from The Shining,7 “All work and no
play makes Jack a dull boy.” Let’s print that line out to the browser for 30 seconds and then
stop.

ptg8106388

198 Chapter 9 Intro to Node.js

Example: (source: streaming/server.coffee)

http = require('http')

port = 3000
ip = "127.0.0.1"

server = http.createServer (req, res) ->
 res.writeHead 200,
 "Content-Type": "text/plain"
 setInterval ->
 res.write("All work and no play makes Jack a dull boy. ")
 , 10
 setTimeout ->
 res.end()
 , 30000

server.listen(port, ip)

console.log "Server running at http://#{ip}:#{port}/"

Example: (source: streaming/server.js)

(function() {
 var http, ip, port, server;

 http = require('http');

 port = 3000;

 ip = "127.0.0.1";

 server = http.createServer(function(req, res) {
 res.writeHead(200, {
 "Content-Type": "text/plain"
 });
 setInterval(function() {
 return res.write("All work and no play makes Jack a dull boy. ");
 }, 10);
 return setTimeout(function() {
 return res.end();
 }, 30000);
 });

 server.listen(port, ip);

 console.log("Server running at http://" + ip + ":" + port + "/");

ptg8106388

199Building a CoffeeScript Server

}).call(this);

> coffee streaming/server.coffee

If you navigate your browser to http://127.0.0.1:3000, you should see our creepy message
being printed to the screen and then stopping after 30 seconds. If this was a nonstreaming
application, we would be looking at a blank screen for 30 seconds wondering whether our
application was working before we got hit with a huge response all of a sudden.

In our callback function we set up a setInterval loop to write our message out to the
response every 10 milliseconds. Then we wrote a setTimeout block to end our response after
30 seconds.

All in all, it is pretty easy to set a streaming server using Node. If you want to see something
really cool, open up multiple browser windows and navigate to our server. You’ll see that
Node easily serves up the streaming request to each of the browsers with no extra-special code
handling.

Building a CoffeeScript Server
Let’s build something that might be useful to us—an app server. Our spec for our server is
going to be pretty simple. It’s going to look at the requests that come in and then do one of
three things. If the file requested is a JavaScript file, it is going to look in the src directory for
the corresponding CoffeeScript file, compile that file into JavaScript, and return that. If the
requested file or path is not JavaScript, the server will find the corresponding file in the public
directory and serve up that file. Finally, if there is no matching CoffeeScript in the src direc-
tory or no matching file in the public directory, the server should respond with a simple
404 page.

We know what we want to build, but before we build it, you should know that the code we will
build in this section is going to get a bit big, and we’re going to be iterating over it. Because of
this, I am not going to show you the compiled JavaScript until we have finished writing our
server. Trust me, you will thank me for it. Now, let’s get building.

Thinking ahead, I know that this is going to be too much code to go in a simple callback func-
tion. So let’s put it all into a class and go from there. We’ll write our callback function for our
server as if we’ve coded the class that’s going to do all the work, so we can get a feel for what
we want that class to look like.

Example: (source: server.2/server.coffee)

http = require('http')

port = 3000
ip = "127.0.0.1"

http://127.0.0.1:3000

ptg8106388

200 Chapter 9 Intro to Node.js

server = http.createServer (req, res) ->
 app = new Application(req, res)
 app.process()

server.listen(port, ip)

console.log "Server running at http://#{ip}:#{port}/"

Tip
By not putting all our code in the callback function, we are also getting another great benefit
from it: easier testing. If we create a couple of classes to process our requests, we can easily
use what we learned in Chapter 8, “Testing with Jasmine,” to test each of the files to make
sure they’re doing just what we want them to, and we don’t need to run a server in the back-
ground to test them.

If we tried to run that code, it wouldn’t run because we don’t actually have an Application
class, so let’s stub out the class based off of what we just wrote:

Example: (source: server.3/server.coffee)

http = require('http')

class Application

 constructor: (@req, @res) ->

 process: ->

port = 3000
ip = "127.0.0.1"

server = http.createServer (req, res) ->
 app = new Application(req, res)
 app.process()

server.listen(port, ip)

console.log "Server running at http://#{ip}:#{port}/"

That is a nice stub of an Application class. Now let’s put a little more flesh on its bones.

ptg8106388

201Building a CoffeeScript Server

Example: (source: server.4/server.coffee)

http = require('http')
url = require('url')

class Application

 constructor: (@req, @res) ->
 @pathInfo = url.parse(@req.url, true)

 process: ->
 if /^\/javascripts\//.test @pathInfo.pathname
 new JavaScriptProcessor(@req, @res, @pathInfo).process()
 else
 new PublicProcessor(@req, @res, @pathInfo).process()

port = 3000
ip = "127.0.0.1"

server = http.createServer (req, res) ->
 app = new Application(req, res)
 app.process()

server.listen(port, ip)

console.log "Server running at http://#{ip}:#{port}/"

First we need to import the url Node module. This module provides a few helper functions,
which we can use to split up the requested path into its various components. In the constructor
of the Application class we are doing just that.

In our process function, things really start to get interesting. We first need to detect what kind
of a request it is and then handle it accordingly. We know from our spec that we are going to
handle two types of requests: JavaScript files and everything else. So let’s write two classes, one
that will handle all our JavaScript files and another to handle the files from the public direc-
tory. A very simple regular expression test on the path will tell us which kind of request we are
dealing with. We can then call the correct class to handle that request type.

Tip
It’s worth noting that if this was a real application, I would highly recommend splitting these
class definitions into their own separate files, but for right now, let’s just make life easier.

Next, let’s stub out the functions we are going to need on our different processors. We can
probably guess that both our JavascriptProcessor and our PublicProcessor class are going
to have some common functionality, and because of that we should probably create a parent

ptg8106388

202 Chapter 9 Intro to Node.js

class for them both to extend to get that common functionality. So with that in mind let’s stub
out the parent class, Processor, as well as JavascriptProcessor and PublicProcessor:

Example: (source: server.5/server.coffee)

http = require('http')
url = require('url')

class Application

 constructor: (@req, @res) ->
 @pathInfo = url.parse(@req.url, true)

 process: ->
 if /^\/javascripts\//.test @pathInfo.pathname
 new JavaScriptProcessor(@req, @res, @pathInfo).process()
 else
 new PublicProcessor(@req, @res, @pathInfo).process()

class Processor

 constructor: (@req, @res, @pathInfo) ->

 contentType: ->
 throw new Error("must be implemented!")

 process: ->
 throw new Error("must be implemented!")

 pathname: ->

 write: (data, status = 200, headers = {}) ->

class JavaScriptProcessor extends Processor

 contentType: ->

 process: ->

class PublicProcessor extends Processor

 contentType: ->
 process: ->

port = 3000
ip = "127.0.0.1"

server = http.createServer (req, res) ->

ptg8106388

203Building a CoffeeScript Server

 app = new Application(req, res)
 app.process()

server.listen(port, ip)

console.log "Server running at http://#{ip}:#{port}/"

Looking at our Processor class first, it looks like there are five functions that we’ll need. The
first is the constructor function. The constructor will take the request, response, and the
object that represents the requested path details.

The next two functions, contentType and process, need to be implemented by the subclasses.
The contentType function will return the appropriate content type of the file for the headers
when we go to write the response back to the client. The process function will do the heavy
lifting of either reading the file from the public directory or compiling the CoffeeScript file
that was requested.

The next method, pathname, will be used to calculate the name of the file on disk that we’ll
be looking for. This will be optional for the subclasses to implement because we can put in a
simple default value that maps to the requested path, as we’ll see in a few minutes.

The final method, write, will do all the heavy lifting of writing out the response status,
headers, and body for the processors. As you can see, we’ve set a default status value of 200
and are setting an empty object as the default for our response headers. When we fill out this
method in a few minutes, we’ll set some pretty good default values on that headers object.

Before we move on to the JavascriptProcessor and PublicProcessor classes, let’s finish
implementing our parent class, Processor.

Example: (source: server.6/server.coffee)

http = require('http')
url = require('url')

class Application

 constructor: (@req, @res) ->
 @pathInfo = url.parse(@req.url, true)

 process: ->
 if /^\/javascripts\//.test @pathInfo.pathname
 new JavaScriptProcessor(@req, @res, @pathInfo).process()
 else
 new PublicProcessor(@req, @res, @pathInfo).process()

class Processor

 constructor: (@req, @res, @pathInfo) ->

ptg8106388

204 Chapter 9 Intro to Node.js

 contentType: ->
 throw new Error("must be implemented!")

 process: ->
 throw new Error("must be implemented!")

 pathname: ->
 @pathInfo.pathname

 write: (data, status = 200, headers = {}) ->
 headers["Content-Type"] ||= @contentType()
 headers["Content-Length"] ||= Buffer.byteLength(data, "utf-8")
 @res.writeHead(status, headers)
 @res.write(data, "utf-8")
 @res.end()

class JavaScriptProcessor extends Processor

 contentType: ->

 process: ->

class PublicProcessor extends Processor

 contentType: ->

 process: ->

port = 3000
ip = "127.0.0.1"

server = http.createServer (req, res) ->
 app = new Application(req, res)
 app.process()
server.listen(port, ip)

console.log "Server running at http://#{ip}:#{port}/"

All we needed to do here was to set the default return value of the pathname function to match
that of the path that was requested by the client. The implementation of the write function
was also pretty straightforward and not too dissimilar to what we’ve already talked about earlier
in this chapter.

ptg8106388

205Building a CoffeeScript Server

Let’s implement the more interesting of the two processors, the JavascriptProcessor class.
To implement this class, we are going to need to override three functions from our super class
and include two more Node modules. Let’s take a look:

Example: (source: server.7/server.coffee)

http = require('http')
url = require('url')
fs = require('fs')
CoffeeScript = require('coffee-script')

class Application

 constructor: (@req, @res) ->
 @pathInfo = url.parse(@req.url, true)

 process: ->
 if /^\/javascripts\//.test @pathInfo.pathname
 new JavaScriptProcessor(@req, @res, @pathInfo).process()
 else
 new PublicProcessor(@req, @res, @pathInfo).process()

class Processor

 constructor: (@req, @res, @pathInfo) ->

 contentType: ->
 throw new Error("must be implemented!")

 process: ->
 throw new Error("must be implemented!")

 pathname: ->
 @pathInfo.pathname

 write: (data, status = 200, headers = {}) ->
 headers["Content-Type"] ||= @contentType()
 headers["Content-Length"] ||= Buffer.byteLength(data, "utf-8")
 @res.writeHead(status, headers)
 @res.write(data, "utf-8")
 @res.end()

class JavaScriptProcessor extends Processor

 contentType: ->
 "application/x-javascript"

ptg8106388

206 Chapter 9 Intro to Node.js

 pathname: ->
 file = (/\/javascripts\/(.+)\.js/.exec(@pathInfo.pathname))[1]
 return "#{file}.coffee"

 process: ->
 fs.readFile "src/#{@pathname()}", "utf-8", (err, data) =>
 if err?
 @write("", 404)
 else
 @write(CoffeeScript.compile(data))

class PublicProcessor extends Processor

 contentType: ->

 process: ->

port = 3000
ip = "127.0.0.1"

server = http.createServer (req, res) ->
 app = new Application(req, res)
 app.process()

server.listen(port, ip)

console.log "Server running at http://#{ip}:#{port}/"

We first need to require the fs Node module. This rather vaguely named module gives us func-
tions that let us access the file system. We are going to need to access the file system so we can
read our CoffeeScript files from the disk before we compile them. We are also going to need to
read the files in our public directory later when we implement the PublicProcessor class.

The next module we have to include is the coffee-script module. I know, we’re getting a bit
meta here, aren’t we? We need this module so we can compile our CoffeeScript source files into
JavaScript when they’re requested.

Tip

The coffee-script module gives us more than just a compile function, but that’s all we
need here. I highly recommend you dig into it a bit and see what else it can do.

With our required modules in place, we can start to implement the necessary functions for the
JavascriptProcessor class. Implementing the contentType function is straightforward as we
know that the content type for JavaScript is application/x-javascript.

ptg8106388

207Building a CoffeeScript Server

Tip
If you are having some troubles with the content type, chances are you are using certain ver-
sions of Internet Explorer. Try changing the content type to text/javascript; that should do
the trick for you.

Implementing the pathname function wasn’t as straightforward as the contentType
function, but it isn’t overly complex either. We can use a regular expression to strip off the
javascripts/ and .js parts of the requested path, leaving us with what’s in the middle. For
example, if the path requested was javascripts/foo.js, our regular expression would leave
us with just foo. With that, all we need to do is return the captured part of path along with
.coffee and we are good to go.

Finally, we needed to implement the process function. In some ways I think this is more self-
explanatory and straightforward than the pathname function we just implemented. Using the
readFile function from the fs module, we attempt to read in the CoffeeScript file from the
src directory. The readFile function will then execute our callback function we pass in.

The callback function we passed into readFile has two arguments. The first is an object that
represents any errors that may have occurred while trying to read the file, such as the file not
existing. The second argument is the actual data from the file that was read.

In the callback function, if there is an error, we check for this using the ? existential operator
we learned about in Chapter 3, “Control Structures,” and then we call the write function from
our super class, passing it an empty body and a status code of 404. If there aren’t any errors,
we call the compile function from the coffee-script module, passing it the contents of our
CoffeeScript file we just read off disk. This function will return the compiled JavaScript code.
We can then pass that compiled JavaScript code into our write function to be written back to
the client. Pretty nifty, eh?

All that is left now is to implement the same three functions on the PublicProcessor class,
and we’ll have our completed server.

Example: (source: final/server.coffee)

http = require('http')
url = require('url')
fs = require('fs')
CoffeeScript = require('coffee-script')

class Application

 constructor: (@req, @res) ->
 @pathInfo = url.parse(@req.url, true)

 process: ->
 if /^\/javascripts\//.test @pathInfo.pathname
 new JavaScriptProcessor(@req, @res, @pathInfo).process()

ptg8106388

208 Chapter 9 Intro to Node.js

 else
 new PublicProcessor(@req, @res, @pathInfo).process()

class Processor

 constructor: (@req, @res, @pathInfo) ->

 contentType: ->
 throw new Error("must be implemented!")

 process: ->
 throw new Error("must be implemented!")

 pathname: ->
 @pathInfo.pathname

 write: (data, status = 200, headers = {}) ->
 headers["Content-Type"] ||= @contentType()
 headers["Content-Length"] ||= Buffer.byteLength(data, "utf-8")
 @res.writeHead(status, headers)
 @res.write(data, "utf-8")
 @res.end()

class JavaScriptProcessor extends Processor

 contentType: ->
 "application/x-javascript"

 pathname: ->
 file = (/\/javascripts\/(.+)\.js/.exec(@pathInfo.pathname))[1]
 return "#{file}.coffee"
 process: ->
 fs.readFile "src/#{@pathname()}", "utf-8", (err, data) =>
 if err?
 @write("", 404)
 else
 @write(CoffeeScript.compile(data))

class PublicProcessor extends Processor

 contentType: ->
 ext = (/\.(.+)$/.exec(@pathname()))[1].toLowerCase()
 switch ext
 when "png", "jpg", "jpeg", "gif"
 "image/#{ext}"
 when "css"
 "text/css"

ptg8106388

209Building a CoffeeScript Server

 else
 "text/html"

 process: ->
 fs.readFile "public/#{@pathname()}", "utf-8", (err, data) =>
 if err?
 @write("Oops! We couldn't find the page you were looking for.", 404)
 else
 @write(data)

 pathname: ->
 unless @_pathname
 if @pathInfo.pathname is "/" or @pathInfo.pathname is ""
 @pathInfo.pathname = "index"
 unless /\..+$/.test @pathInfo.pathname
 @pathInfo.pathname += ".html"
 @_pathname = @pathInfo.pathname
 return @_pathname

port = 3000
ip = "127.0.0.1"

server = http.createServer (req, res) ->
 app = new Application(req, res)
 app.process()

server.listen(port, ip)

console.log "Server running at http://#{ip}:#{port}/"

Example: (source: final/server.js)

(function() {
 var Application, CoffeeScript, JavaScriptProcessor, Processor, PublicProcessor, fs,
➥http, ip, port, server, url,
 __hasProp = Object.prototype.hasOwnProperty,
 __extends = function(child, parent) { for (var key in parent) { if
(__hasProp.call(parent, key)) child[key] = parent[key]; } function ctor()
{ this.constructor = child; } ctor.prototype = parent.prototype; child.prototype =
new ctor; child.__super__ = parent.prototype; return child; };

 http = require('http');

 url = require('url');

 fs = require('fs');

ptg8106388

210 Chapter 9 Intro to Node.js

 CoffeeScript = require('coffee-script');

 Application = (function() {

 function Application(req, res) {
 this.req = req;
 this.res = res;
 this.pathInfo = url.parse(this.req.url, true);
 }

 Application.prototype.process = function() {
 if (/^\/javascripts\//.test(this.pathInfo.pathname)) {
 return new JavaScriptProcessor(this.req, this.res, this.pathInfo).process();
 } else {
 return new PublicProcessor(this.req, this.res, this.pathInfo).process();
 }
 };

 return Application;

 })();

 Processor = (function() {
 function Processor(req, res, pathInfo) {
 this.req = req;
 this.res = res;
 this.pathInfo = pathInfo;
 }

 Processor.prototype.contentType = function() {
 throw new Error("must be implemented!");
 };

 Processor.prototype.process = function() {
 throw new Error("must be implemented!");
 };

 Processor.prototype.pathname = function() {
 return this.pathInfo.pathname;
 };

 Processor.prototype.write = function(data, status, headers) {
 if (status == null) status = 200;
 if (headers == null) headers = {};
 headers["Content-Type"] || (headers["Content-Type"] = this.contentType());
 headers["Content-Length"] || (headers["Content-Length"] =
➥Buffer.byteLength(data, "utf-8"));

ptg8106388

211Building a CoffeeScript Server

 this.res.writeHead(status, headers);
 this.res.write(data, "utf-8");
 return this.res.end();
 };

 return Processor;

 })();

 JavaScriptProcessor = (function(_super) {

 __extends(JavaScriptProcessor, _super);

 function JavaScriptProcessor() {
 JavaScriptProcessor.__super__.constructor.apply(this, arguments);
 }

 JavaScriptProcessor.prototype.contentType = function() {
 return "application/x-javascript";
 };

 JavaScriptProcessor.prototype.pathname = function() {
 var file;
 file = (/\/javascripts\/(.+)\.js/.exec(this.pathInfo.pathname))[1];
 return "" + file + ".coffee";
 };

 JavaScriptProcessor.prototype.process = function() {
 var _this = this;
 return fs.readFile("src/" + (this.pathname()), "utf-8", function(err, data) {
 if (err != null) {
 return _this.write("", 404);
 } else {
 return _this.write(CoffeeScript.compile(data));
 }
 });
 };

 return JavaScriptProcessor;

 })(Processor);

 PublicProcessor = (function(_super) {

 __extends(PublicProcessor, _super);

ptg8106388

212 Chapter 9 Intro to Node.js

 function PublicProcessor() {
 PublicProcessor.__super__.constructor.apply(this, arguments);
 }

 PublicProcessor.prototype.contentType = function() {
 var ext;
 ext = (/\.(.+)$/.exec(this.pathname()))[1].toLowerCase();
 switch (ext) {
 case "png":
 case "jpg":
 case "jpeg":
 case "gif":
 return "image/" + ext;
 case "css":
 return "text/css";
 default:
 return "text/html";
 }
 };
 PublicProcessor.prototype.process = function() {
 var _this = this;
 return fs.readFile("public/" + (this.pathname()), "utf-8", function(err, data) {
 if (err != null) {
 return _this.write("Oops! We couldn't find the page you were looking for.",
➥404);
 } else {
 return _this.write(data);
 }
 });
 };

 PublicProcessor.prototype.pathname = function() {
 if (!this._pathname) {
 if (this.pathInfo.pathname === "/" || this.pathInfo.pathname === "") {
 this.pathInfo.pathname = "index";
 }
 if (!/\..+$/.test(this.pathInfo.pathname)) {
 this.pathInfo.pathname += ".html";
 }
 this._pathname = this.pathInfo.pathname;
 }
 return this._pathname;
 };

 return PublicProcessor;

 })(Processor);

ptg8106388

213Building a CoffeeScript Server

 port = 3000;

 ip = "127.0.0.1";

 server = http.createServer(function(req, res) {
 var app;
 app = new Application(req, res);
 return app.process();
 });

 server.listen(port, ip);

 console.log("Server running at http://" + ip + ":" + port + "/");

}).call(this);

Implementing the process function for PublicProcessor wasn’t much different from the
process function we wrote for the JavascriptProcessor class. The two big differences are
that instead of sending an empty string if there was an error, we are sending a nice message
instead, and we don’t need to compile our data before we send it.

The contentType method gets a little more confusing because we want to be able to handle
HTML files as well as a few image file types. First, we have to use a regular expression to get the
extension of the path being requested. Then we use a switch statement, shown in Chapter 3,
to map the extensions to the appropriate file type.

Tip
I want to point out at this juncture, in case it wasn’t clear, that this server is not meant for any
production applications, but merely for educational purposes. There are a lot of holes in it and
things I kind of just swept aside, such as proper error handling and detection of content types.
Please don’t send me nasty letters about this failing for you in production.

That leaves us with implementing the pathname function. Strangely, this is probably the most
complex function in this whole example because we have three cases we need to deal with. The
first case is handling fully formed paths, such as index.html or ‘images/foo.png’. These paths
are fine and should be returned unchanged.

The second case is that of paths without extensions, such as index or users/1. Because these
paths are lacking a file extension, we want to add a default extension, .html, to each of them.
These paths will be transformed into index.html and users/1.html.

The last case is the default path of /. This path needs to be transformed into index.html so we
can find it in the public directory.

You should notice that I am caching the results of all this into a variable, @_pathname, so that I
need to do this work only once, the first time the function is called.

ptg8106388

214 Chapter 9 Intro to Node.js

Trying Out the Server
With our server all built, what do you say we give it a whirl? Let’s first create a src directory
that contains a single file, application.coffee, with these contents:

Example: (source: final/src/application.coffee)

$ ->
 $("body").html("Hello from jQuery and Node!!")

Example: (source: final/src/application.js)

(function() {

 $(function() {
 return $("body").html("Hello from jQuery and Node!!");
 });

}).call(this);

For those of you who aren’t big jQuery8 folks, this code will replace the body of the HTML file
with “Hello from jQuery and Node!!” after the DOM9 has been loaded.

Now, in our public directory let’s create an index.html file:

Example: (source: final/public/index.html)

<!DOCTYPE html>
<html>
 <head>
 <title>Welcome to Node.js</title>
 <script src="http://ajax.googleapis.com/ajax/libs/jquery/1.7.1/jquery.min.js"
➥type="text/javascript"></script>
 <script src="/javascripts/application.js" type="text/javascript"></script>
 </head>
 <body>
 Hello from Node!!
 </body>
</html>

The HTML file is pretty simple. In the head of the HTML we are requesting two JavaScript files.
The first is jQuery and the second is from our server, /javascripts/application.js, which
should map to src/application.coffee, assuming all went well. In the body of the HTML
file we are printing out “Hello from Node!!”

ptg8106388

215Notes

Fire up the server and navigate to http://127.0.0.1:3000.

> coffee finale/server.coffee

You should be greeted not with “Hello from Node!!” but rather “Hello from jQuery and Node!!”

Wrapping Up
There you have it—a lightning quick tour of Node.js. We learned what Node is and what its
basic capabilities are. We also learned how you can very easily implement a streaming server
using Node.

We also built a fun little server that will automatically compile our CoffeeScript for us when it
is requested.

Node.js is a fun platform on which to build really scalable evented applications. You can build
more than just HTTP servers with it. Any application that deals with sockets is a prime candi-
date, from Telnet to chat applications—it’s all possible. It’s also possible to reverse the stream-
ing paradigm that we talked about. Instead of streaming to a client, why not stream from a
client? Imagine being able to process files while they’re being uploaded! It’s very doable with
Node.js.

There are plenty of great in-depth tutorials and screencasts out there on Node, and I highly
recommend you check them out to find out more about what it can do.

Notes
1. http://www.joyentcloud.com/

2. http://nodejs.org/

3. http://www.linkedin.com

4. http://www.rubyonrails.org

5. http://code.google.com/p/v8/

6. http://npmjs.org/

7. http://www.imdb.com/title/tt0081505/

8. http://jquery.com/

9. http://en.wikipedia.org/wiki/Document_Object_Model

http://www.joyentcloud.com/
http://nodejs.org/
http://www.linkedin.com
http://www.rubyonrails.org
http://code.google.com/p/v8/
http://npmjs.org/
http://www.imdb.com/title/tt0081505/
http://jquery.com/
http://en.wikipedia.org/wiki/Document_Object_Model

ptg8106388

This page intentionally left blank

ptg8106388

10
Example: Todo List Part 1

(Server-side)

In the first part of this book you learned the ins and outs of CoffeeScript. We covered every
last detail of how the language works, how it maps to JavaScript, and how it can help make
writing your applications cleaner and more secure. In the last few chapters we’ve looked at a
few of the projects that surround the CoffeeScript ecosystem. Now, for the final three chapters
of this book, I’d like us to put what we’ve learned into actual use.

Personally, I learn best from seeing things work. Seeing contrived examples of some feature or
library goes only so far in actually teaching me what that library is supposed to be doing, but
when I see it in action, that’s another story. I can start to see how it fits into my daily develop-
ment life. In short, it comes alive for me. That’s what we’re, hopefully, going to do in these last
few chapters.

The application we are going to build in these last few chapters is the canonical todo list
application. We’ve all written them, and we’ve all seen them in action as demo applications.
The reason for this is everyone knows what a todo list application is and how it works. It’s big
enough in scope to let us exercise the libraries and tools we are talking about, but not too big
that it becomes an overwhelming project we can’t tackle in a relatively short span of time.

In this chapter, we are going to build the back end to our application. We need a server that
can serve up the todo list page, our assets, and most importantly, serve up the todos themselves
and provide a way for us to persist those todos to a data store.

In the two subsequent chapters, we will pick up where we leave off here and build the front
end of our application. We will need a way to display the todos on our page, create new todos,
update existing todos, and destroy todos.

Finally, at this point I think you’ve seen enough JavaScript, so from here on out, we aren’t
going to be looking at the generated JavaScript that CoffeeScript produces. If you really want to
see the JavaScript, I recommend either that you compile it yourself or visit the GitHub project
for this book.1

ptg8106388

218 Chapter 10 Example: Todo List Part 1 (Server-side)

Installing and Setting Up Express
The first order of business on the road to building the best todo list application ever is getting
a web server/framework in place to handle our backend requests. To do this we are going to use
the most popular Node framework out there, Express.2 Express is easy to install and get up and
running fairly quickly, and it has a vibrant development community, which makes it a great
choice for the task at hand.

In a nice, fresh directory, let’s create a new file, app.coffee, that will be the starting point for
our Express backend. Right now, let’s just leave that file blank while we install Express.

Express ships as an NPM,3 Node Package Manager, module. We briefly mentioned NPM in
Chapter 9, “Intro to Node.js.” NPM modules are bundles of code that are packaged up and
distributed and can then be installed, included, and required into Node applications. If you
have Node installed, you should already have NPM installed.

Installing Express is a simple one liner:

> npm install express

You should see output similar to this:

express@2.5.2 ./node_modules/express
—— mime@1.2.4
—— mkdirp@0.0.7
—— qs@0.4.0
—— con 2nect@1.8.3

You should also now see a new folder called node_modules in the application directory. This is
where NPM stores the modules we install. We will be installing more modules in this directory
later.

Tip

NPM modules can be installed globally as well by using the -g flag: npm install -g
express. I prefer to install the modules into the project so I can check them into SCM. It
makes deployment a lot easier and cuts down on potential version conflicts.

With Express now fully installed, let’s add some meat to the bones of that app.coffee file we
created earlier.

Example: (source: app.1/app.coffee)

Setup Express.js:
global.express = require('express')
global.app = app = express.createServer()
require("#{__dirname}/src/configuration")

Set up a routing for our homepage:

ptg8106388

219Installing and Setting Up Express

require("#{__dirname}/src/controllers/home_controller")

Start server:
app.listen(3000)
console.log("Express server listening on port %d in %s mode", app.address().port,
➥app.settings.env)

So what is going on there? Let’s take a quick look. First we require the express module. Then
we call the createServer function. It will do just what its name describes. We then assign that
newly created server to two variables: a local variable, app, and a global variable, also called app.

Tip

In Node, the global object references the global scope of the application, similar to the win-
dow object in a browser. By setting objects on the global object, we are able to reference
them everywhere in our application.

Next we need to configure Express. We are going to do that in a separate file, src/configura-
tion.coffee:

Example: (source: app.1/src/configuration.coffee)

Configure Express.js:
app.configure ->
 app.use(express.bodyParser())
 app.use(express.methodOverride())
 app.use(express.cookieParser())
 app.use(express.session(secret: 'd19e19fd62f62a216ecf7d7b1de434ad'))
 app.use(app.router)
 app.use(express.static(__dirname + '../public'))
 app.use(express.errorHandler(dumpExceptions: true, showStack: true))

We tell our app to use some pretty basic things, such as sessions, cookies, routing, error
handling, and parsing of HTTP bodies. We also tell the app where it can find any static assets
we might have, such as images and HTML files.

Tip

In Node the __dirname variable will return the directory from which the calling file resides. This
variable is great for building paths to other files.

Next, we need to set up a route for handling our home page. We will do that in a file called
src/controllers/home_controller.coffee. The home_controller.coffee file will get
pulled into app.coffee using Node’s require function, which will let us load other files into
our application.

ptg8106388

220 Chapter 10 Example: Todo List Part 1 (Server-side)

Example: (source: app.1/src/controllers/home_controller.coffee)

Set up a routing for our homepage:
app.get '/', (req, res) ->
 res.send "Hello, World!"

On our app object, which was assigned to the global scope of the application, we need to map
a routing for when someone comes to the home page of our application. To do that, we can
use the get function on the app object. There are functions that map to each of the four HTTP
verbs, get, post, put, delete. Because we expect people to make a GET request when they hit
the home page, that’s where we are going to map our route of /.

In addition to the URL we want to match, /, the get function is also expecting a callback func-
tion that will be executed when that URL is requested. That callback function will be passed
the request, req, and the response, res, for us to do with as we please. In this case, we want to
send the string Hello, World! back on the response.

With our default route in place for the home page, all that is left to do in app.coffee is to
tell the server which port to bind to and to have it start the server when we execute the
app.coffee file.

Now let’s start ‘er up!

> coffee app.coffee

Next, navigate to http://localhost:3000 and you should be greeted with the familiar greet-
ing of “Hello, World!”

Congratulations, you now have an Express application up and running!

With the application now up and running, let’s add a proper template engine to it so we don’t
have to put all our HTML in the home_controller.coffee file. We can have it in a file all to
itself. To do this we need to install the ejs NPM module so we can embed JavaScript into our
templates:

> npm install ejs

You should see output similar to this:

ejs@0.6.1 ./node_modules/ejs

Tip

We could easily serve up plain HTML files with what we have, but having the ejs template
engine means we can easily embed dynamic content in our HTML pages. It could, and usually
does, prove useful.

Next we have to tell Express where it can find our templates and that it should process those
templates with the ejs module. To do that, we need to add two lines to the bottom of the
src/configuration.coffee file:

ptg8106388

221Installing and Setting Up Express

Example: (source: app.2/src/configuration.coffee)

Configure Express.js:
app.configure ->
 app.use(express.bodyParser())
 app.use(express.methodOverride())
 app.use(express.cookieParser())
 app.use(express.session(secret: 'd19e19fd62f62a216ecf7d7b1de434ad'))
 app.use(app.router)
 app.use(express.static(__dirname + '../public'))
 app.use(express.errorHandler(dumpExceptions: true, showStack: true))
 app.set('views', "#{__dirname}/views")
 app.set('view engine', 'ejs')

Let’s create a new file, src/views/index.ejs. This file will be the landing page for our appli-
cation when people visit the route we already defined. We’ll make this page fairly simple and
have it also say “Hello, World!”—but let’s embed a little bit of dynamic content to make sure it
works:

Example: (source: app.2/src/views/index.ejs)

<!DOCTYPE html>
<html>
 <head>
 <title>Todos</title>
 </head>
<body>
 <h1>Hello, World!</h1>
 <h2>The date/time is: <%= new Date() %></h2>
</body>
</html>

Finally, we need to update the home_controller.coffee file to use our new index.ejs file.

Example: (source: app.2/src/controllers/home_controller.coffee)

Set up a routing for our homepage:
app.get '/', (req, res) ->
 res.render 'index', layout: false

All we had to do was get rid of the send call on the response object and replace it with a call to
the render function, passing it the name of the template we wanted to use. We are also telling
it to not look for a layout template.

ptg8106388

222 Chapter 10 Example: Todo List Part 1 (Server-side)

Tip

It is very important to note that any dynamic content you put into an ejs template is to be writ-
ten in JavaScript, not CoffeeScript. Trust me, that will bite you at some point. It has me! There
are quite a few good CoffeeScript-based templating engines out there, but they require a bit
more setup work. I recommend checking out Eco4 and CoffeeKup.5

Fire up the server and you should see our new home page, complete with the current date and
time.

Let’s move on to the next step, setting up a database.

Setting Up MongoDB Using Mongoose
We need to be able to persist our todos for our application somewhere, and so we are going to
use MongoDB.6 MongoDB, also known simply as Mongo, is a popular NoSQL document object
store. It’s similar to a relational database in that you can store and retrieve data, but it’s more
fluid in that it doesn’t require a traditional schema, meaning we can just start using it without
writing a bunch of table creation scripts. That makes it a great choice for us because it means
we don’t have to jump through a lot of hoops just building tables and the like. We can simply
start throwing todos into the store.

I’m going to make the assumption here that you have MongoDB installed. If you don’t, feel
free to go7 to do that now and come back when you’re done.

So what do we need to do to get Mongo up and running with our application? First, we need to
install Mongoose,8 a popular object relational mapping (ORM) framework for Node that works
with Mongo. Mongoose is conveniently available as an NPM:

> npm install mongoose

mongoose@2.4.7 ./node_modules/mongoose
--- hooks@0.1.9
--- colors@0.5.1
--- mongodb@0.9.7-2-1

Tip
Technically, Mongoose isn’t an ORM, because MongoDB isn’t a relational database but rather
a document store. However, the term ORM has become a bit overloaded these days to include
tools such as Mongoose, so I’m going to run with it.

With Mongoose installed, we need to set it up for the application. This is incredibly easy to do.
First create a file, src/models/database.coffee. The src/models directory is where we will
put all the code that deals with our database.

ptg8106388

223Setting Up MongoDB Using Mongoose

Here’s what that file should look like:

Example: (source: app.3/src/models/database.coffee)

Configure Mongoose (MongoDB):
global.mongoose = require('mongoose')
global.Schema = mongoose.Schema
global.ObjectId = Schema.ObjectId
mongoose.connect("mongodb://localhost:27017/csbook-todos")

In that file we are first requiring Mongoose and then setting a few of its properties to the
global object so that we can easily access them later from other parts of our code.

Last, in that file we are telling Mongoose where to find our Mongo server and which database it
should use. This line may change on your system depending on how you have things set up.

All that is left to get Mongoose set up in our system is to require the src/models/database.
coffee file we just created in our app.coffee file, like so:

Example: (source: app.3/app.coffee)

Setup Express.js:
global.express = require('express')
global.app = app = express.createServer()
require("#{__dirname}/src/configuration")

Set up the Database:
require("#{__dirname}/src/models/database")

Set up a routing for our homepage:
require("#{__dirname}/src/controllers/home_controller")

Start server:
app.listen(3000)
console.log("Express server listening on port %d in %s mode", app.address().port,
➥app.settings.env)

With Mongoose up and running, let’s finish up this section by creating a Todo model. The
Todo model doesn’t have to be anything fancy. It should have a title, an ID, a state (so we
know whether it’s pending or completed), and a date so we know when it was created.

In Mongoose we create new models using the model function and passing it a new Schema
object. That Schema object will tell Mongoose and Mongo what type of data we expect our
Todo models to have.

ptg8106388

224 Chapter 10 Example: Todo List Part 1 (Server-side)

Example: (source: app.3/src/models/todo.coffee)

The Todo Mongoose model:
global.Todo = mongoose.model 'Todo', new Schema
 id: ObjectId
 title:
 type: String
 validate: /.+/
 state:
 type: String
 default: 'pending'
 created_at:
 type: Date
 default: Date.now

The Schema for our Todo model looks pretty much like we wanted it to. It’s very self-describing.
For the state and created_at properties, we defined some helpful default attributes. For the
title property we set a very simple validation on it, insisting that it has at least one character
in it before we save it.

Tip
Mongoose is capable of letting you write some pretty sophisticated validators. Check out the
extensive documentation9 for more information.

Finally, we need to update our app.coffee file to require the Todo model we just created.

Example: (source: app.3/app.coffee)

Setup Express.js:
global.express = require('express')
global.app = app = express.createServer()
require("#{__dirname}/src/configuration")

Set up the Database:
require("#{__dirname}/src/models/database")

Set up a routing for our homepage:
require("#{__dirname}/src/controllers/home_controller")

Start server:
app.listen(3000)
console.log("Express server listening on port %d in %s mode", app.address().port,
➥app.settings.env)

ptg8106388

225Writing the Todo API

With that, the database and models are all set up ready to go to work. In the next section you’ll
see how we interact with the Todo model when we write the controller to handle the requests
for our todos.

Writing the Todo API
All that is left on the server side of our todo application is to write an API to access our todo
resources from the client side code we’ll write in the next chapter. Let’s start by adding a file to
handle all the requests we expect for our API:

Example: (source: app.4/src/controllers/todos_controller.coffee)

This 'controller' will handle the server requests
for the Todo resource

Get a list of the todos:
app.get '/api/todos', (req, res) ->
 res.json [{}]

Create a new todo:
app.post '/api/todos', (req, res) ->
 res.json {}

Get a specific todo:
app.get '/api/todos/:id', (req, res) ->
 res.json {}

Update a specific todo:
app.put "/api/todos/:id", (req, res) ->
 res.json {}

Destroy a specific todo:
app.delete '/api/todos/:id', (req, res) ->
 res.json {}

The first thing you should note is that for right now, we have stubbed out all the responses to
API by rendering empty JSON10 objects. We will add some substance to those responses in just
a minute, but I would like to first talk a little bit about what we have so far and what it’s doing.

Earlier in this chapter I mentioned how Express provides a function to map requests using each
of the four HTTP verbs: get, post, put, and delete. In the todos_controller.coffee file we
are using all those functions so that our API conforms to the REST11 approach.

ptg8106388

226 Chapter 10 Example: Todo List Part 1 (Server-side)

Tip

We could use just GET and POST requests, but to me that makes our API more confusing. The
REST approach lets us better, and more clearly, define our intent in the API.

We are going to need to perform five actions on our todos.

The first action is getting a list of all of the todos in our database. That is what the first route
we defined will be for.

The second action is to create a new todo. We will use the post function to do this.

The third action we will need is the capability to retrieve a specific todo from the database. Our
third route mapping will be where we do this. Because we need to know which todo we want
to pull from the database, we need to know the ID of that todo. Express lets us create mappings
that have placeholders in them. We can then retrieve these placeholders inside of the callback
function. Here we are doing that with the :id part of the path we mapped. We will be able to
retrieve the value of :id later by using the param function off of the req object to which we
have access. We will use this same technique again when we need to update or delete a todo.

The fourth action we need to handle is the updating of a todo. This will use the put function,
which maps to the PUT http verb.

Our last mapping and action is to delete a specific todo.

All the mappings and actions are going to render out JSON as the response. Conveniently,
Express offers a json method on the response to help us with that. Without the json method
we would have to write our responses something like this:

res.send JSON.stringify({})

With stubs in place, you can test that things are working as expected by starting the applica-
tion and going to http://localhost:3000/api/todos. You should see the following printed
to the screen:

[{}]

That means it is hitting our API for listing all the todos successfully.

Querying with Mongoose
All that is left to do for this chapter, and before we move on to putting a nice front end on this
bad boy, is flesh out each of the actions we’ve mapped for our API.

ptg8106388

227Querying with Mongoose

Finding All Todos
Let’s start with getting all of the todos in the database:

Example: (source: app.5/src/controllers/todos_controller.coffee)

This 'controller' will handle the server requests
for the Todo resource

Get a list of the todos:
app.get '/api/todos', (req, res) ->
 Todo.find {}, [], {sort: [["created_at", -1]]}, (err, @todos) =>
 if err?
 res.json(err, 500)
 else
 res.json @todos

Create a new todo:
app.post '/api/todos', (req, res) ->
 res.json {}

Get a specific todo:
app.get '/api/todos/:id', (req, res) ->
 res.json {}

Update a specific todo:
app.put "/api/todos/:id", (req, res) ->
 res.json {}

Destroy a specific todo:
app.delete '/api/todos/:id', (req, res) ->
 res.json {}

Mongoose provides a bunch of helpful and easy-to-use class-level functions for helping us find
the exact records we want in the database. In our case, we want all the records in the database.

Tip
Mongoose has some incredible documentation. I highly recommend that you check out the
Mongoose pages on finding documents12 and on building complicated queries.13

To find all the records, we could simply call the find function and pass it a callback function
that will be executed when the query returns or fails. For our application, we would like to add
a sort so that our todos come back with the latest todo first and the oldest last. To do that, we
must first pass in an object that contains the details of that sort. This is where it gets a little
tricky. We can do this one of two ways: we can either break this into several lines, building up

ptg8106388

228 Chapter 10 Example: Todo List Part 1 (Server-side)

a query as we go and then executing that query, or we can do what we have here, which is pass
in a few empty arguments before we pass in the argument containing the details of the sort.
The first object would represent any clauses you would want to put on the query. In our case,
we don’t want to limit our results using a specific query. The second array is where you would
specify any specific fields you want to retrieve. We want all the fields, so we’ll leave this blank.

Tip

Why the nested arrays when defining the sort in our find call? That is actually a MongoDB-
ism hard at work. If we wanted to sort by multiple fields, we would do something like {sort:
[["created_at", -1], ["updated_at", 1]]}. The inner arrays are a group representing
each sort we want to add. The first element of the array is the attribute name, and the second
is the direction, -1 for descending and 1 for ascending. In my opinion it could have been done
a little nicer and cleaner, but it is what it is.

As I already mentioned, the callback function we pass into the find function will get executed
regardless of whether the query was successful. This means that we must do our own error
handling.

The callback function will be called with two arguments. The first argument will be an Error
object, if there is an error, or null if there was no error. The second argument will represent
the result of our query, in this case an array of Todo objects. If the query fails and there is an
error, the second argument will be null.

Inside our callback function we should first check to see if there was an error. We can do so
using the existential operator that CoffeeScript provides, aka ?. Using the existential operator,
we are checking to see if the err object is not undefined or null. If there was an error, we call
the json function, passing it the error and the status code of 500. This will let our front end
respond appropriately to the error that occurred.

If there is no error, we can pass the list of todos we received from our query, @todos, into the
json function, and Express will take care of the rest.

Tip

You might have noticed that we are using => when defining our callback function. We are doing
that because we need to make sure that we have access to the req and res objects. All the
Mongoose calls are asynchronous, which means the program could have moved on in execution
before the callback function gets called, and it may no longer have access to the scope with
the req and res objects.

Creating New Todos
Moving on, let’s flesh out the creating of a new todo.

ptg8106388

229Querying with Mongoose

Example: (source: app.6/src/controllers/todos_controller.coffee)

This 'controller' will handle the server requests
for the Todo resource

Get a list of the todos:
app.get '/api/todos', (req, res) ->
 Todo.find {}, [], {sort: [["created_at", -1]]}, (err, @todos) =>
 if err?
 res.json(err, 500)
 else
 res.json @todos

Create a new todo:
app.post '/api/todos', (req, res) ->
 @todo = new Todo(req.param('todo'))
 @todo.save (err) =>
 if err?
 res.json(err, 500)
 else
 res.json @todo

Get a specific todo:
app.get '/api/todos/:id', (req, res) ->
 res.json {}

Update a specific todo:
app.put "/api/todos/:id", (req, res) ->
 res.json {}

Destroy a specific todo:
app.delete '/api/todos/:id', (req, res) ->
 res.json {}

The code for creating a new todo is pretty simple. First, we instantiate a new instance of the
Todo class and pass in an object that represents the values we want to set on our new todo.
Where are we getting those values? We are getting them from the parameters that are sent with
the POST request of the action we have mapped.

Express lets us retrieve parameters via its param function on the req object. We pass in the
name of the parameter we want, and it will either return the value of that parameter or null if
it does not exist.

In our action we are looking for the todo parameter, which we are assuming will be an object
containing the key/value pairs necessary to create a new todo, something like this:

ptg8106388

230 Chapter 10 Example: Todo List Part 1 (Server-side)

{
 todo: {
 title: "My Todo Title",
 state: "pending"
 }
}

To save our new todo, we call the save function that Mongoose provides and pass it a callback
function. This function takes one argument that represents an error, should one have occurred.
Our callback function has similar logic to the one we already saw when we were getting a list
of todos. We first check to see if there is an error. If there is an error, we respond with the error
and a status of 500; if not, we send back the JSON of our new created todo.

Tip
Technically, if we were supporting the REST protocol exactly, we should return a status code of
201 (“successfully created”) when we create a new todo. However, Express’s default response
status code of 200 (“success”) is good enough for our purposes. I leave it up to you to try to
implement the 201 status code.

Getting, Updating, and Destroying a Todo
The three remaining actions we need to have our todo API perform are all very similar in
nature, so we can cover them all here fairly quickly.

Example: (source: app.7/src/controllers/todos_controller.coffee)

This 'controller' will handle the server requests
for the Todo resource

Get a list of the todos:
app.get '/api/todos', (req, res) ->
 Todo.find {}, [], {sort: [["created_at", -1]]}, (err, @todos) =>
 if err?
 res.json(err, 500)
 else
 res.json @todos

Create a new todo:
app.post '/api/todos', (req, res) ->
 @todo = new Todo(req.param('todo'))
 @todo.save (err) =>
 if err?
 res.json(err, 500)
 else

ptg8106388

231Querying with Mongoose

 res.json @todo

Get a specific todo:
app.get '/api/todos/:id', (req, res) ->
 Todo.findById req.param('id'), (err, @todo) =>
 if err?
 res.json(err, 500)
 else
 res.json @todo

Update a specific todo:
app.put "/api/todos/:id", (req, res) ->
 Todo.findById req.param('id'), (err, @todo) =>
 if err?
 res.json(err, 500)
 else
 @todo.set(req.param('todo'))
 @todo.save (err) =>
 if err?
 res.json(err, 500)
 else
 res.json @todo

Destroy a specific todo:
app.delete '/api/todos/:id', (req, res) ->
 Todo.findById req.param('id'), (err, @todo) =>
 if err?
 res.json(err, 500)
 else
 @todo.remove()
 res.json @todo

The first thing we need to do with each of these actions is to find the specific todo we’re
looking for using the id parameter we mapped in the paths with the :id keyword. We can do
this in Mongoose by using the findById class-level function and passing it the id parameter.

The findById function takes a callback function that receives two arguments. As always, the
first argument is an error if one exists, and the second argument is the todo if one was found.

What we do with our found todo depends on which of the three actions we are looking at. For
the action where we just want to show the todo, all we have to do is return the JSON of the
todo.

For the action where we want to update the action, we can use the set function, passing it
any attributes we want to update. This is not too dissimilar from when we created a new todo
earlier.

ptg8106388

232 Chapter 10 Example: Todo List Part 1 (Server-side)

Finally, for the action where we want to destroy the todo, we simply need to call the remove
function on the todo to destroy it in the database.

Cleaning Up the Controller
In case you haven’t noticed, our controller is rife with duplicated code. Because this is an
example application, we could just leave it, but why not clean it up a bit? It will give us a
chance to play with classes a bit more.

Tip
In reality, the clean-up code I’m about to show you might be overkill or could be even further
refactored, but I think it’s still fun to see how we could refactor it if we so desired.

To clean up our controller, we are going to create a few classes that will handle each of the
actions we have mapped. We’ll also use some inheritance to cut down on duplicated code,
especially around the error-handling part of our actions where most of the code duplication is
happening.

Let’s start by building a base class, Responder, from which all our other classes will inherit.
This class will handle our default and common functionality.

Example: (source: app.8/src/controllers/responders/responder.coffee)

class global.Responder

 respond: (@req, @res) =>
 @complete(null, {})

 complete: (err, result = {}) =>
 if err?
 @res.json(err, 500)
 else
 @res.json result

The first thing you should notice is that we are defining the Responder class on the global
object. This will allow us to easily access it throughout the rest of our application.

Next up, we will add a default function called respond. This function will be what is passed
to the mappings we define in our todos_controller.coffee file. The respond function will
take in two arguments, the request object and the response object. We automatically assign
those to the scope of the class, by prefixing them with @, so that we can have access to them in
our functions.

The respond function will most likely be overridden by our subclasses, but just in case we will
provide a default behavior. The default behavior we give it is to call the complete function.

ptg8106388

233Querying with Mongoose

The complete function is where we are wrapping up all that duplicated error handling and
response logic we’ve been writing.

With our super class written, let’s start writing our child classes that will handle each of the
actions. Let’s start with the class to handle the action where we get all of the todos.

Example: (source: app.8/src/controllers/responders/index_responder.coffee)

require "#{__dirname}/responder"

class Responder.Index extends Responder

 respond: (@req, @res) =>
 Todo.find {}, [], {sort: [["created_at", -1]]}, @complete

First, we need to require the Responder class we just wrote using the require function Node
provides us.

When we define our class we could assign it to the global object, like we did with Responder,
but it’s good practice to try to namespace things and not put everything directly on the global
object, so that’s what we’ll do here. We also need to make sure our Responder.Index class
extends Responder using CoffeeScript’s extend keyword.

Tip
In a real application, we would want to namespace the classes we build better so that it is
clear they are dealing with the Todo resource. If we have multiple resources, it could prove
problematic or confusing.

All that is left to do is to write a custom respond method. In that method we’ll have the query
we saw earlier for finding all of the todos. The big difference, compared to what we had already
written, is that for our callback function we will pass in a reference to the complete function
we wrote in the Responder super class.

Now let’s build a class to handle the create new todos action.

Example: (source: app.8/src/controllers/responders/create_responder.coffee)

require "#{__dirname}/responder"

class Responder.Create extends Responder

 respond: (@req, @res) =>
 todo = new Todo(@req.param('todo'))
 todo.save(@complete)

ptg8106388

234 Chapter 10 Example: Todo List Part 1 (Server-side)

The Responder.Create class is very similar to the Responder.Index class we just built. In the
respond function, we are creating our new todo and passing the complete function as the call-
back function to the save call we are making.

Example: (source: app.8/src/controllers/responders/show_responder.coffee)

require "#{__dirname}/responder"

class Responder.Show extends Responder

 respond: (@req, @res) =>
 Todo.findById @req.param('id'), @complete

Again, the Responder.Show class is like the first two classes; we’re just changing out the
innards of the respond function. We will use the Responder.Show class as the super class for
our final two classes that we will write. Let’s take a look.

Example: (source: app.8/src/controllers/responders/update_responder.coffee)

require "#{__dirname}/show_responder"

class Responder.Update extends Responder.Show

 complete: (err, result = {}) =>
 if err?
 super
 else
 result.set(@req.param('todo'))
 result.save(super)

Because the action to update a todo also needs to find the todo in question, we can extend the
Responder.Show class instead of the Responder class itself, because the Responder.Show class
has all the functionality we need to find the todo.

In the Responder.Update class we are not going to write a new respond function, because
we want to use the one we inherited from Responder.Show. Instead, we are going to write a
custom complete function.

The first thing we need to do in our new complete function is to check the existence of an
error. If there is an error, we call super, which will call the original complete function from
the Responder class, and that will handle the error appropriately for us.

If there is no error, we can proceed with setting the attributes we want to update and then
calling the save function. When we call the save function, we are going to pass in super,
again the original complete function from the Responder class. This will handle any errors
and respond with the appropriate JSON.

The class we need to build for the action to destroy a todo is very similar to the one we just
built for updating the todo.

ptg8106388

235Querying with Mongoose

Example: (source: app.8/src/controllers/responders/destroy_responder.coffee)

require "#{__dirname}/show_responder"

class Responder.Destroy extends Responder.Show

 complete: (err, result = {}) =>
 unless err?
 result.remove()
 super

Again we are extending the Responder.Show class, and like the Responder.Update class, we
are going to write a new complete function.

First, in the complete function, we need to check for any errors that may have arisen from
trying to find the todo. If there are no errors, we call the remove function on the todo, which
will destroy it in the database.

Finally, we call the super function to handle any errors and respond correctly.

All that is left now is to update our todos_controller.coffee to use the new classes we
have built:

Example: (source: app.8/src/controllers/todos_controller.coffee)

require all of our responders:
for name in ["index", "create", "show", "update", "destroy"]
 require("#{__dirname}/responders/#{name}_responder")

This 'controller' will handle the server requests
for the Todo resource

Get a list of the todos:
app.get '/api/todos', new Responder.Index().respond

Create a new todo:
app.post '/api/todos', new Responder.Create().respond

Get a specific todo:
app.get '/api/todos/:id', new Responder.Show().respond

Update a specific todo:
app.put "/api/todos/:id", new Responder.Update().respond

Destroy a specific todo:
app.delete '/api/todos/:id', new Responder.Destroy().respond

At the top of the file, we need to require all the classes we have built.

ptg8106388

236 Chapter 10 Example: Todo List Part 1 (Server-side)

Tip
We could have just written out the require statements for each file, because there are only a
few of them, but I like to create an array and loop through it to build the require statements.
It’s cleaner, and to add another require just means typing a few characters into our array
instead of copying and pasting a big line of code.

With the classes all required, we can pull out the original callback functions we had mapped for
all the actions and replace them with a new instance of the appropriate class and the respond
function for that class.

Now our todos_controller.coffee file is much cleaner, and we have extracted out all the
common functionality for all our actions. This means that should we ever want to change the
way we handle errors, or add other common functionality, we can do it all in one file.

Wrapping Up
In this chapter we built the server-side portion of an application to manage todos. We set up an
Express application, added MongoDB support using Mongoose, and refactored it all into a nice
clean backend.

In the next chapter we will take what we’ve built here and put a sexy14 front end on it. We’re
going to get to play with jQuery to enable us to interact with our beautiful server-side code.

Notes
1. https://github.com/markbates/Programming-In-CoffeeScript

2. http://expressjs.com/

3. http://npmjs.org/

4. https://github.com/sstephenson/eco

5. http://coffeekup.org/

6. http://www.mongodb.org/

7. http://www.mongodb.org/

8. http://mongoosejs.com/

9. http://mongoosejs.com/docs/validation.html

10. http://www.json.org/

11. http://en.wikipedia.org/wiki/REST

12. http://mongoosejs.com/docs/finding-documents.html

13. http://mongoosejs.com/docs/query.html

14. Yes, I’m being a bit sarcastic here as anyone who knows me will tell you “sexy” front
ends aren’t my specialty.

https://github.com/markbates/Programming-In-CoffeeScript
http://expressjs.com/
http://npmjs.org/
https://github.com/sstephenson/eco
http://coffeekup.org/
http://www.mongodb.org/
http://www.mongodb.org/
http://mongoosejs.com/
http://mongoosejs.com/docs/validation.html
http://www.json.org/
http://en.wikipedia.org/wiki/REST
http://mongoosejs.com/docs/finding-documents.html
http://mongoosejs.com/docs/query.html

ptg8106388

11
Example: Todo List Part 2

(Client-side w/ jQuery)

In Chapter 10, “Example: Todo List Part 1 (Server-side),” we had just finished writing the
server-side components needed for us to write a todo list application. In this chapter we will
write a front end for that application that will run in a browser. We’re going to do this using
some pretty fun technology, such as Bootstrap1 from Twitter2 and jQuery.

Priming the HTML with Twitter Bootstrap
Let’s start by setting up some basic styles and HTML for our application. To help get our CSS
and styling off to a good start, we are going to use the Bootstrap project from Twitter. Bootstrap
is a simple set of CSS and JavaScript files to help you, well, bootstrap your application. It gives
you a simple grid to use to help align the elements on the page. It also provides some nice
styling for forms, buttons, lists, and much more. I highly recommend that you check out the
project for full details about what it can offer you, because we are using only a tiny portion of
it for this application.

The first thing we need to do is update our src/views/index.ejs to use Bootstrap, as well as
our own CSS, so we can make the few tweaks necessary for our application.

Example: (source: app.1/src/views/index.ejs)

<!DOCTYPE html>
<html>
 <head>
 <title>Todos</title>
 <link rel="stylesheet"
href="http://twitter.github.com/bootstrap/1.4.0/bootstrap.min.css">
 <%- css('/application') %>

ptg8106388

238 Chapter 11 Example: Todo List Part 2 (Client-side w/ jQuery)

 </head>
<body>

</body>
</html>

As you can see, we linked to the CSS file that Bootstrap offers us. We also have a rather unusual
bit of dynamic code in there, a function called css, to which we are passing /application.
That is how we will be adding our custom CSS, and later our CoffeeScript, into our application.

To do this we are going to use the connect-assets NPM module by Trevor Burnham.3 This
will provide a couple of hooks by which we automatically find our CSS and CoffeeScript files
and add them into the HTML. In the case of CoffeeScript, it automatically converts them to
JavaScript for us, saving us a step of compiling the files manually ourselves.

Tip

For those of you familiar with the asset-pipeline in Ruby on Rails, the connect-assets module
attempts to mimic that in an Express application.

For connect-assets to find our assets, we need to place them in a folder called assets at the
root of our application. So let’s do that now, and while we’re at it, let’s place a little bit of CSS
in there to help pretty up the HTML we’re going to write.

Example: (source: app.1/assets/application.css)

#todos li {
 margin-bottom: 20px;
}

#todos li .todo_title {
 width: 800px;
}

#todos li .completed {
 text-decoration: line-through;
}

#todos #new_todo .todo_title{
 width: 758px;
}

Because this is not a book on CSS, I’m not going to explain the little CSS that we did there.
If you are really curious, you can easily comment it out later and see how it affects the
application.

ptg8106388

239Priming the HTML with Twitter Bootstrap

Now we need to install the connect-assets module so that what we just wrote will work.

> npm install connect-assets

connect-assets@2.1.6 ./node_modules/connect-assets
__ connect-file-cache@0.2.4
__ underscore@1.1.7
__ mime@1.2.2
__ snockets@1.3.3

Finally, we need to tell Express to use the connect-assets module to serve up our assets. We
can do that by adding a line to the end of the configuration.coffee file:

Example: (source: app.1/src/configuration.coffee)

Configure Express.js:
app.configure ->
 app.use(express.bodyParser())
 app.use(express.methodOverride())
 app.use(express.cookieParser())
 app.use(express.session(secret: 'd19e19fd62f62a216ecf7d7b1de434ad'))
 app.use(app.router)
 app.use(express.static(__dirname + '../public'))
 app.use(express.errorHandler(dumpExceptions: true, showStack: true))
 app.set('views', "#{__dirname}/views")
 app.set('view engine', 'ejs')
 app.use(require('connect-assets')())

If we were to start up the application right now, we would be greeted by a rather dull, blank,
white page on http://localhost:3000, which is what we want to see. If you see anything,
something isn’t right.

Let’s finish up this section by adding a form so we can create a new Todo. This will prove espe-
cially useful because we don’t have any todos in our database right now, and this will be a great
way of getting some in there.

Example: (source: app.2/src/views/index.ejs)

<!DOCTYPE html>
<html>
 <head>
 <title>Todos</title>
 <link rel="stylesheet" href="http://twitter.github.com/bootstrap/1.4.0/bootstrap.
➥min.css">
 <%- css('/application') %>
 </head>
<body>

ptg8106388

240 Chapter 11 Example: Todo List Part 2 (Client-side w/ jQuery)

<div class="container">
 <h1>Todo List</h1>
 <ul id='todos' class='unstyled'>
 <li id='new_todo'>
 <div class="clearfix">
 <div class="input">
 <div class="input-prepend">
 New Todo
 <input class="xlarge todo_title" size="50" type="text"
➥placeholder="Enter your new Todo here..." />
 </div>
 </div>
 </div>

</div>

</body>
</html>

Now if we were to start up our application and browse to it, we would see a nicely styled form
in which to enter a new todo. That form doesn’t do anything yet, but we’ll take care of that in
a minute. In case you were wondering where all those CSS classes came from in the HTML—
they all come from Bootstrap, which we set up just a minute ago.

Interacting with jQuery
Now that we have a form, let’s hook it up and see what happens. To do that let’s start by using
jQuery, that wonderful library that almost everyone on the Internet seems to love. To me
there is no more powerful tool set in the JavaScript eco system than that of jQuery. Originally
released in 2006 by John Resig,4 jQuery is now used on 49% of the top 10,0005 websites in
the world and is currently one of the most popular JavaScript libraries available. jQuery is a
JavaScript library that lets you write clean and concise code for manipulating the HTML DOM,
executing AJAX requests, and handling events and simple animations. It does all this and is
cross-platform, meaning it supports most major browsers and operating systems.

Tip
In the dark old days of the Web, developers had to write multiple versions of the same
JavaScript. One version would work for Internet Explorer, another version would work in
Netscape, and so on. Nowadays, jQuery lets us write our code once and trust that it will work
the way it should on most modern browsers.

ptg8106388

241Interacting with jQuery

Adding jQuery to our application is simple; we just need to require it in our index.ejs file:

Example: (source: app.3/src/views/index.ejs)

<!DOCTYPE html>
<html>
 <head>
 <title>Todos</title>
 <script src="http://ajax.googleapis.com/ajax/libs/jquery/1.7.1/jquery.min.js"
➥type="text/javascript"></script>
 <%- js('/application') %>

 <link rel="stylesheet" href="http://twitter.github.com/bootstrap/1.4.0/
➥bootstrap.min.css">
 <%- css('/application') %>
 </head>
<body>

<div class="container">
 <h1>Todo List</h1>
 <ul id='todos' class='unstyled'>
 <li id='new_todo'>
 <div class="clearfix">
 <div class="input">
 <div class="input-prepend">
 New Todo
 <input class="xlarge todo_title" size="50" type="text"
➥placeholder="Enter your new Todo here..." />
 </div>
 </div>
 </div>

</div>

</body>
</html>

Tip
In real-world applications, I tend to frown on linking to external libraries, like we have just done.
It’s possible that those libraries could get updated and introduce bugs in your application; or
worse, the external reference could be removed or not available and then your application no
longer works. I like to serve up local copies. However, just linking them here is easy for our
purposes.

ptg8106388

242 Chapter 11 Example: Todo List Part 2 (Client-side w/ jQuery)

Hooking Up the New Todo Form
In addition to adding jQuery into our app, I used the js function provided by connect-
assets to include an application file, which we can place into assets/application.
coffee.

Example: (source: app.3/assets/application.coffee)

#= require_tree "jquery"

The application.coffee file is pretty small, and we’re going to keep it that way. To help us
do that, we are going to use a feature of connect-assets that lets us require other CoffeeScript
or JavaScript files. In this case, we are requiring a directory called jquery. This means that
every file we create under this directory will be required automatically for us.

In the assets folder, create a new folder called jquery, and within that folder create a new file
called new_todo_form.coffee. It’s in the new_todo_form.coffee file that we will place all
the code that handles the new todo form we have in our HTML. Let’s take a quick run at that
code now.

Before we start writing the code to handle the new todo form, let’s talk about what we want to
happen. When a person types a todo into the form and presses the Enter key, we want to first
test to make sure that the todo is valid, in that it has at least one non-whitespace character. If
it’s invalid, we want to raise an error letting the user know what the problem was. If the todo
is valid, we want to post that data back to our API. If the response from the API is a success, we
want to add the new todo to our list of todos on the page and reset the form. If the response
from the server is an error, we want to show that message back to the user. Here’s the code:

Example: (source: app.3/assets/jquery/new_todo_form.coffee)

$ ->
 # Focus the new todo form when the page loads:
 $('#new_todo .todo_title').focus()

 # Handle the keypress in the new todo form:
 $('#new_todo .todo_title').keypress (e) ->
 # we're only interested in the 'enter' key:
 if e.keyCode is 13
 todo = {title: $(e.target).val()}
 if !todo.title? or todo.title.trim() is ""
 alert "Title can't be blank"
 else
 request = $.post "/api/todos", todo: todo
 request.fail (response) =>
 message = JSON.parse(response.responseText).message
 alert message

ptg8106388

243Hooking Up the New Todo Form

 request.done (todo) =>
 $('#new_todo').after("#{JSON.stringify(todo)}")
 $(e.target).val("")

The first thing we do after the page has loaded is focus the new todo form. This is a nice thing
to do because it allows the user to start typing todos right away, without having to manually
navigate to the form.

Tip

In jQuery you can pass a function into the $ variable that aliases to jQuery, and everything in
that function will be executed after the page is fully loaded. You can do this as many times as
you need. Handy.

Next, we attach a function to the form that will get executed every time someone presses a key
(event) in the form. This can get a little noisy, especially if we are looking for only one particu-
lar key, the Enter key. The Enter key has a numeric code of 13, so using that we can look at the
keyCode attribute of the event we receive from jQuery. If the key code is 13 we continue on; if
we get something other than 13 we simply ignore the event.

Knowing that we are looking at the right event, we can continue. Next, we want to capture
the value of the form. That will be the title attribute of the todo we are hoping to create. We
then create an object that will represent all the data we want to send back to the server.

With the proposed title of the todo, we can now proceed to do some local validation of it.
This is nice because it is faster, and therefore a nicer user experience, than posting it back to
the server, waiting for the validations there to execute, and then coming back to the client with
any errors.

Tip
There are a lot of ways to share validations across both the server and client side so you don’t
have to write them twice. If you find one that works for you, that’s great. It’s not always possi-
ble, though, to have validations that work both on the client and the server side the same way.
A great example of this is username validation, which usually needs to hit a server to check for
uniqueness. You can do that by using AJAX and hitting an API call, or you can validate that the
username is not blank in the form and let the server side do the validation later.

Assuming the validations pass locally, we can proceed to posting the data back to the API. We
create a new AJAX request using the post function that jQuery provides. We provide the url,
/api/todos, and an object that represents the data we want to send. We assign the return
value of the post function to a variable called request, which we can use in a minute to hang
callbacks on when the request does certain things.

ptg8106388

244 Chapter 11 Example: Todo List Part 2 (Client-side w/ jQuery)

Tip
In jQuery 1.5 deferred objects were introduced. Before deferred objects, you would have to
include any callbacks inside the original call to the post, or ajax, function when you originally
call it. That was quite limiting. With deferred objects you can attach callbacks anytime, even
after the request has finished processing. This makes it easier to write more isolated code that
hangs on a request.

In our case, we want to add two callbacks to our request. The first callback function will be
called if the request fails for any reason. The function will be passed a response object. Off
that response object, we will need to get the responseText, which is JSON, parse it, extract
the error message, and display it to the screen.

The second callback will be executed on successful completion of the request, in our case the
creation of a new todo in the database. Because we haven’t yet written a nice template for
printing out our todos nicely, we’ll print out the JSON representation of the todo inside of a li
tag and append it to our list of todos just after the new todo form, so that the newest todos are
always at the top.

If you fire up the application and try to create a new todo, you should see something similar to
the following appear below the form:

{"title":"My New Todo","_id":"4efa82bdf65049000000001a","created_at":"2011-12-
➥28T02:45:17.992Z","state":"pending"}

Cleaning Up the Todo List with Underscore.js Templates
There are quite a few templating systems out there for JavaScript applications, and choosing
the right one for your application is really a matter of taste. Because our needs here are quite
simple, I’m going to make our choice of templating systems just as simple. We will use the
templating system that ships with the library underscore.js.6 Why did I choose this templat-
ing system over all the other ones out there? Simple, underscore.js is a dependency of the
Backbone.js library we will be using later, so because we have to include it then as a depen-
dency, we might as well use it now.

Tip

My personal favorite templating system is eco,7 which lets you embed CoffeeScript in your
templates. A couple of other popular templating systems include Handlebars,8 Mustache,9 and
Jade.10 The template plug-in11 for jQuery was quite a popular choice for a while, but has been
deprecated and is no longer under active development, so if you were planning on using that, I
would strongly suggest you look elsewhere for your templating needs.

ptg8106388

245Hooking Up the New Todo Form

Let’s update the index.ejs file to add in the dependency on underscore.js:

Example: (source: app.4/src/views/index.ejs)

<!DOCTYPE html>
<html>
 <head>
 <title>Todos</title>
 <script src="http://ajax.googleapis.com/ajax/libs/jquery/1.7.1/jquery.min.js"
➥type="text/javascript"></script>
 <script src="http://documentcloud.github.com/underscore/underscore-min.js"
➥type="text/javascript"></script>
 <%- js('/application') %>

 <link rel="stylesheet" href="http://twitter.github.com/bootstrap/1.4.0/
➥bootstrap.min.css">
 <%- css('/application') %>
 </head>
<body>

<div class="container">
 <h1>Todo List</h1>
 <ul id='todos' class='unstyled'>
 <li id='new_todo'>
 <div class="clearfix">
 <div class="input">
 <div class="input-prepend">
 New Todo
 <input class="xlarge todo_title" size="50" type="text"
➥placeholder="Enter your new Todo here..." />
 </div>
 </div>
 </div>

</div>

</body>
</html>

That’s one less thing we need to do later when we talk about Backbone.

Next let’s create a new file, assets/templates.coffee, that will hold our templates for the
application.

ptg8106388

246 Chapter 11 Example: Todo List Part 2 (Client-side w/ jQuery)

Example: (source: app.4/assets/templates.coffee)

Change the syntax for underscore.js templates.
The pattern is now {{some_var}} instead of <%= some_var %>
_.templateSettings =
 interpolate : /\{\{(.+?)\}\}/g

@Templates = {}

Templates.list_item_template = """
<div class="clearfix">
 <div class="input">
 <div class="input-prepend">
 <label class="add-on active"><input type="checkbox"
➥class="todo_state" /></label>
 <input class="xlarge todo_title" size="50" type="text" value="{{title}}" />
 <button class='btn danger'>X</button>
 </div>
 </div>
</div>
"""

The first thing we are going to do in this file is to change the default settings for how under-
score.js interpolates dynamic data in the template. The reason for this is that I find {{ }}
easier to type than <%= %>. This is also a popular convention among some of the other
templating systems out there, so if you should want to port to one of them later it will be
easier.

All that is left to do is define the template. To do this we are going to create a new Templates
object and assign a property named list_item_template to the HTML template we want to
use, using CoffeeScript’s heredoc support that we learned about in Chapter 2, “The Basics.”

The template is fairly simple; all we are going to dynamically push into the template is the
title of the todo. We will update the state of the check box outside of the template. Let’s create
a new file, todo_item.coffee, under the assets/jquery folder. In this file we will create a
function that lets us append a new todo to our list using the template we just created.

Example: (source: app.4/assets/jquery/todo_item.coffee)

@TodoApp ||= {}

TodoApp.appendTodo = (todo) ->
 li = $("#{_.template(Templates.list_item_template)(todo)}")
 $('#new_todo').after(li)

First, we create a new variable that is accessible outside of this file called TodoApp. By prepend-
ing the declaration of the variable TodoApp with @, we are telling CoffeeScript we want to

ptg8106388

247Listing Existing Todos

attach that variable to the this object, which in this case is the window object in a browser.
After it is attached to the window object, the TodoApp variable will be available to any scope
that has access to the window scope.

Next we need to create a function that will take in a todo and print out to the screen using
our template. When we required the underscore library, it gave us a variable named _ and off
that variable is a function called template. Here we call that function, passing in the HTML
template we want to use and the JSON representation of the todo we want to have access to in
that template. The underscore library does the rest and returns back the appropriate HTML we
want. We then append that HTML to our list of todos right after the new todo form.

Now let’s update new_todo_form.coffee to use this new function when we create a new todo.

Example: (source: app.4/assets/jquery/new_todo_form.coffee)

$ ->
 # Focus the new todo form when the page loads:
 $('#new_todo .todo_title').focus()

 # Handle the keypress in the new todo form:
 $('#new_todo .todo_title').keypress (e) ->
 # we're only interested in the 'enter' key:
 if e.keyCode is 13
 todo = {title: $(e.target).val()}
 if !todo.title? or todo.title.trim() is ""
 alert "Title can't be blank"
 else
 request = $.post "/api/todos", todo: todo
 request.fail (response) =>
 message = JSON.parse(response.responseText).message
 alert message
 request.done (todo) =>
 TodoApp.appendTodo(todo)
 $(e.target).val("")

In the request.done callback function, we replace the line where we print out the JSON
representation of the todo we got from the server with a call to the new TodoApp.appendTodo
function.

Restart the application, add a new todo, and you should see it add a nicely styled todo to
your list.

Listing Existing Todos
Now that we have a way of creating new todos in our database, and we have a way of printing
out those new todos to our list when we create them, we need a way to display the todos that

ptg8106388

248 Chapter 11 Example: Todo List Part 2 (Client-side w/ jQuery)

are already in the database when we load the page. Right now, if you were to add a few todos
using our application and you reloaded the page, those todos would seem to have disappeared.
In reality, they are safe and sound in our database, but because we haven’t written any code to
fetch them from our API and print them out, we don’t see them. Fortunately, this is a relatively
simple piece of code to write.

Example: (source: app.5/assets/jquery/retrieve_existing_todos.coffee)

$ ->
 request = $.get('/api/todos')
 request.done (todos) ->
 for todo in todos.reverse()
 TodoApp.appendTodo(todo)

First we need to wait until the page has been fully loaded before we retrieve the todos from
the API. Then we create a new request that points to our API for retrieving the todos, and
add a callback that will get executed when the response comes back with our todos. In that
callback we are reversing the order of the todos and then passing them individually into the
appendTodo function we wrote. Why are we reversing the order of the todos? The answer is
as simple as it is annoying. The todos are actually coming back from the server in the correct
order. However, the way our appendTodo function works is to append each todo at the top
of the list, which would effectively place the todos in the wrong order on the page. We could
change the way the API works, but it’s behaving correctly; it’s our client that isn’t. We could
write another function that places them in the right order, or add some sort of conditional in
the appendTodo function, but at the end of the day this is probably the cleanest solution, and
the least likely to cause issues.

If we were to reload our application now we should see all the existing todos that we have
created in the database.

Updating Todos
With the ability to create new todos and to list our existing todos, it would stand to reason
that we might want to make some changes to those todos at some point. In our application, we
want to be able to update the title attribute of the todo as well as toggle the state of the todo.

We are going to do this by adding two functions. The first function will watch the check box
and the text field associated with each todo. If there are changes to either of those, it will call
the second function, which will send the updates back to the API.

Example: (source: app.6/assets/jquery/watch_todo_for_changes.coffee)

@TodoApp ||= {}

Watch the todo for changes:
TodoApp.watchForChanges = (li, todo) ->

ptg8106388

249Updating Todos

 # If the checkbox is checked/unchecked:
 $('.todo_state', li).click (e) =>
 TodoApp.updateTodo(li, todo)
 # If someone hits "enter" in the title field:
 $('.todo_title', li).keypress (e) =>
 if e.keyCode is 13
 TodoApp.updateTodo(li, todo)

The watchForChanges will do what its name implies—it will watch the specified li for the
todo, and if the check box is checked/unchecked, or if the “enter” key is pressed in the title
text field, the updateTodo function will be called. To make sure that the watchForChanges
function gets called, we’ll update the appendTodo function to call it when we append a new
todo:

Example: (source: app.6/assets/jquery/todo_item.coffee)

@TodoApp ||= {}

TodoApp.appendTodo = (todo) ->
 li = $("#{_.template(Templates.list_item_template)(todo)}")
 $('#new_todo').after(li)
 TodoApp.watchForChanges(li, todo)

The todos are now being watched like a hawk. Let’s write the updateTodo function so we can
save those changes.

Example: (source: app.6/assets/jquery/update_todo.coffee)

@TodoApp ||= {}

Update the todo:
TodoApp.updateTodo = (li, todo) ->
 todo.title = $('.todo_title', li).val()
 if !todo.title? or todo.title.trim() is ""
 alert "Title can't be blank"
 else
 if $('.todo_state', li).attr('checked')?
 todo.state = 'completed'
 else
 todo.state = 'pending'
 request = $.post "/api/todos/#{todo._id}",
 todo: todo
 _method: 'put'
 request.fail (response) =>
 message = JSON.parse(response.responseText).message
 alert message

ptg8106388

250 Chapter 11 Example: Todo List Part 2 (Client-side w/ jQuery)

The updateTodo function is similar to the code we wrote for creating a new todo. There are,
however, a few important differences. First, we get the value of the title text field and do a
simple validation on it to make sure it’s not blank. If it passes the validation, we need to build
the rest of the data we want to send back to the server. In this case we need to update the
state attribute of the todo based on whether the check box is checked.

Next we create the request to the API. Because we want to update a specific todo, we have to
make sure to include the ID of the todo as part of the API URL. Now, the more observant of
you might have noticed that we are actually using POST to send this data to the server when,
in fact, our API requires that it be sent via PUT. There are a couple of reasons for this. The first
is that historically not all browsers support HTTP verbs beyond GET and POST; the same holds
true of jQuery. To get around this limitation, a lot of frameworks, such as Express and Ruby on
Rails, have taken to looking for a specially named parameter, _method. The frameworks will
then consider the request to be of whatever type is set on that parameter. In our case we are
sending along the value of PUT for the _method parameter, so Express will consider this not as
a POST request, but rather a PUT request.

Finally we will look to see if there are error messages from the server because of our update.
If there are errors, we display them; otherwise, we just let the users get on with their todo
activities.

We do have a small problem here, however. If we were to mark a todo as completed and
refresh the page, it would appear as though it was still pending because the check box wouldn’t
be checked and none of the completed styles would be applied to the todo to let the users
know they’ve completed that task. Let’s write a function that will update these styles as
appropriate:

Example: (source: app.7/assets/jquery/style_by_state.coffee)

@TodoApp ||= {}

Update the style based on the state:
TodoApp.styleByState = (li, todo) ->
 if todo.state is "completed"
 $('.todo_state', li).attr('checked', true)
 $('label.active', li).removeClass('active')
 $('.todo_title', li).addClass('completed').attr('disabled', true)
 else
 $('.todo_state', li).attr('checked', false)
 $('label', li).addClass('active')
 $('.todo_title', li).removeClass('completed').attr('disabled', false)

This function is very simple. When it is called, it will check the state of the todo, and if it’s
marked as completed it will apply the necessary CSS classes to the elements. If it is not, it
will remove those styles. One of the nice things about jQuery is that it lets us write code like
this, without having to first check to see if the element in question already has the CSS class.

ptg8106388

251Updating Todos

If it already has the class, it ignores the request. The same goes for removing the class; if the
element doesn’t have the class in question applied to it, then it fails silently—just the behavior
we were looking for.

All that is left to do now is call the styleByState function in the few places we need to make
sure that we apply the correct styles. The first place we need to do that is in the appendTodo
function. If an existing todo is passed into the appendTodo function, we want to make sure it
gets styled appropriately.

Example: (source: app.7/assets/jquery/todo_item.coffee)

@TodoApp ||= {}

TodoApp.appendTodo = (todo) ->
 li = $("#{_.template(Templates.list_item_template)(todo)}")
 $('#new_todo').after(li)
 TodoApp.watchForChanges(li, todo)
 TodoApp.styleByState(li, todo)

The other place we need to make sure we update the classes associated with the todo is when a
todo is updated. We can do that by adding a callback to the request object in the updateTodo
function:

Example: (source: app.7/assets/jquery/update_todo.coffee)

@TodoApp ||= {}

Update the todo:
TodoApp.updateTodo = (li, todo) ->
 todo.title = $('.todo_title', li).val()
 if !todo.title? or todo.title.trim() is ""
 alert "Title can't be blank"
 else
 if $('.todo_state', li).attr('checked')?
 todo.state = 'completed'
 else
 todo.state = 'pending'
 request = $.post "/api/todos/#{todo._id}",
 todo: todo
 _method: 'put'
 request.fail (response) =>
 message = JSON.parse(response.responseText).message
 alert message
 request.done (todo) ->
 TodoApp.styleByState(li, todo)

ptg8106388

252 Chapter 11 Example: Todo List Part 2 (Client-side w/ jQuery)

Deleting Todos
Our application is almost complete. All that is left is to hook up the delete button so users can
delete their unwanted todos. At this point, this code should be pretty simple for you to write,
but let’s quickly look at it.

We will start by writing a deleteTodo function:

Example: (source: final/assets/jquery/delete_todo.coffee)

@TodoApp ||= {}

Delete the todo:
TodoApp.deleteTodo = (li, todo) ->
 if confirm "Are you sure?"
 request = $.post "/api/todos/#{todo._id}", _method: 'delete'
 request.done =>
 li.remove()

The deleteTodo function makes a request back to the API using the DELETE HTTP verb, via the
special _method parameter we discussed earlier. If the request to destroy the todo is successful,
we remove the todo from the page—nice, clean, and simple.

Now we need to hook up the delete button and we are done. We can do this in the watch-
ForChanges function we wrote earlier:

Example: (source: final/assets/jquery/watch_todo_for_changes.coffee)

@TodoApp ||= {}

Watch the todo for changes:
TodoApp.watchForChanges = (li, todo) ->
 # If the checkbox is checked/unchecked:
 $('.todo_state', li).click (e) =>
 TodoApp.updateTodo(li, todo)
 # If someone hits "enter" in the title field:
 $('.todo_title', li).keypress (e) =>
 if e.keyCode is 13
 TodoApp.updateTodo(li, todo)
 $('button.danger', li).click (e) =>
 e.preventDefault()
 TodoApp.deleteTodo(li, todo)

That’s it! Our application is now finished! Congratulations.

ptg8106388

253Notes

Wrapping Up
There you have it. We have used jQuery to write an interactive web client for our todo list
application. It was pretty simple, and you can see how CoffeeScript can help us write some very
nice looking jQuery.

The approach we took in this chapter, from a code “architecture” perspective, is that of what a
lot of jQuery developers probably would have done. Write a bunch of functions, pass around
some objects, and do what is necessary. We could have taken another approach to this appli-
cation, which would have involved writing classes that managed each of the todos and more
cleanly wrapped the HTML elements and their events to the todo itself.

So why didn’t I show you the second approach? I did this for two reasons. The first I have
already stated; the approach we have shown here is one that is common of someone writing
plain old JavaScript and jQuery, so I wanted to give you a feel for what that would look like in
CoffeeScript. The second reason I didn’t write our code in the “class” style is because doing so
would mean we would have reinvented the wheel that is Backbone.js.

Backbone.js is a simple framework that lets us write views that bind to elements of a page and
associate those views with models, such as our todos, and have them easily listen to each other
and respond to events accordingly. As a matter of fact, thinking about it, why don’t we see
Backbone in action? Turn the page to Chapter 12, “Example: Todo List Part 3 (Client-side w/
Backbone.js)” and let’s get started!

By the way, if you are curious to see what the jQuery example would look like if we had written
it using classes instead of the approach we took here, I happen to have it already written for
you. Enjoy!12

Notes
1. http://twitter.github.com/bootstrap/

2. http://twitter.com

3. https://github.com/trevorBurnham/connect-assets

4. http://en.wikipedia.org/wiki/John_Resig

5. http://en.wikipedia.org/wiki/Jquery

6. http://documentcloud.github.com/underscore

7. https://github.com/sstephenson/eco

8. http://www.handlebarsjs.com/

9. https://github.com/janl/mustache.js/

10. http://jade-lang.com/

11. https://github.com/jquery/jquery-tmpl

12. https://github.com/markbates/Programming-In-CoffeeScript/tree/master/todo2/alt-final

http://twitter.github.com/bootstrap/
http://twitter.com
https://github.com/trevorBurnham/connect-assets
http://en.wikipedia.org/wiki/John_Resig
http://en.wikipedia.org/wiki/Jquery
http://documentcloud.github.com/underscore
https://github.com/sstephenson/eco
http://www.handlebarsjs.com/
https://github.com/janl/mustache.js/
http://jade-lang.com/
https://github.com/jquery/jquery-tmpl
https://github.com/markbates/Programming-In-CoffeeScript/tree/master/todo2/alt-final

ptg8106388

This page intentionally left blank

ptg8106388

12
Example: Todo List Part 3

(Client-side w/ Backbone.js)

In Chapter 11, “Example: Todo List Part 2 (Client-side w/ jQuery)” we wrote a client-side front
end for a todo list application using the jQuery library. At the end of that chapter I talked
about how we could have written that code somewhat differently, but doing so would have
meant that we basically rewrote the Backbone.js1 framework. Because I’m not typically in favor
of reinventing the wheel, I thought we could, instead, see what our application would look like
if we used Backbone instead of jQuery to write our client-side code.

What Is Backbone.js?
Backbone is a client-side MVC2 framework written in JavaScript by Jeremy Ashkenas,3 the
creator of a little language known as CoffeeScript.4 Backbone helps us to write highly respon-
sive client-side applications using JavaScript, or in our case, CoffeeScript.

Backbone has three separate parts. The first is the View layer. Views let us wrap up the render-
ing of elements on the screen and then watch those elements for changes and respond accord-
ingly. Views can also listen for events on other objects and update themselves based on those
events.

The second part of Backbone is models and collections. A model maps to a single instance of
an object. In our case it would be a Todo. That model object can then communicate with a data
store to persist itself. It can also contain other functions that can be helpful when dealing with
an object, such as a function to concatenate a first and last name into a single string. A collec-
tion is what its name suggests. It is a collection of model objects, so in this application it would
be a collection of Todo models. A collection in Backbone also has the capability to talk to a
data store, such as our API.

Models and collections in Backbone also emit all sorts of events when different actions happen
to those objects. For example, when a new model is added to a collection the collection trig-
gers an add event. These events can be listened to by other objects, such as views. In the case

ptg8106388

256 Chapter 12 Example: Todo List Part 3 (Client-side w/ Backbone.js)

of a view object, it might listen to a collection for an add event and when one is triggered, it
will render the model to the screen in the appropriate way. We will see how this works in just a
little bit.

The final part of Backbone is the router. Routers in Backbone let us listen to and respond
to changes in the URL of the browser. When the URL changes and there is an appropriate
mapping in the router, the code associated with that mapping will be executed. This is similar
to what we did in our Express application when we built our API. We won’t be using routers
at all in this chapter, but that doesn’t mean they aren’t useful. Our particular application just
doesn’t have any need for them.

All that, of course, is a very quick overview of what Backbone is. We will go into a bit more
detail throughout this chapter, but this chapter is not going to be a full tutorial on Backbone.
We are just going to look into the parts of Backbone that are appropriate for our application.

Cleaning Up
Before we move on to rebuilding our application, we need to first do a bit of house cleaning in
our application to make sure it is ready for us to start incorporating Backbone into it.

The first thing we can do to clean up our application is to delete the assets/jquery folder.

Second, we need to remove the reference to that directory from the assets/application.
coffee file:

Example: (source: app.1/assets/application.coffee)

#= require "templates"

And we’re done! If we were to restart our application now, we would be left with just the new
todo form, and it would do nothing. Let’s start to rebuild the application.

Setting Up Backbone.js
Getting Backbone installed into our application is fairly painless. It has only one dependency:
underscore.js.5 Despite there being only one “hard” dependency, Backbone is not very useful
unless we give it a library to do DOM manipulation or AJAX persistence; this is where jQuery
(or Zepto6) come in. Fortunately, we already have both jQuery and underscore.js in our index.
ejs file, so all we need to do is add Backbone itself and we are basically done:

Example: (source: app.1/src/views/index.ejs)

<!DOCTYPE html>
<html>
 <head>
 <title>Todos</title>

ptg8106388

257Setting Up Backbone.js

 <script src="http://ajax.googleapis.com/ajax/libs/jquery/1.7.1/jquery.min.js"
➥type="text/javascript"></script>
 <script src="http://documentcloud.github.com/underscore/underscore-min.js"
➥type="text/javascript"></script>
 <script src="http://documentcloud.github.com/backbone/backbone-min.js"
➥type="text/javascript"></script>
 <%- js('/application') %>

 <link rel="stylesheet"
➥href="http://twitter.github.com/bootstrap/1.4.0/bootstrap.min.css">
 <%- css('/application') %>
 </head>
<body>

<div class="container">
 <h1>Todo List</h1>
 <ul id='todos' class='unstyled'>
 <li id='new_todo'>
 <div class="clearfix">
 <div class="input">
 <div class="input-prepend">
 New Todo
 <input class="xlarge todo_title" size="50" type="text" placeholder="Enter
➥your new Todo here..." />
 </div>
 </div>
 </div>

</div>

</body>
</html>

That is all that is really needed to get Backbone installed into your application and up and
running. I am, however, going to add one more file to our setup. I wasn’t going to add this
until we start writing our Todo model, but this seems like a good time to get all of the prep
work out of the way.

When Backbone communicates with our API, by default it will want to send data like this:

{title: 'My New Todo'}

But, if you remember, our API is expecting our data to be namespaced like this:

todo: {title: 'My New Todo'}

ptg8106388

258 Chapter 12 Example: Todo List Part 3 (Client-side w/ Backbone.js)

To do this we are going to “borrow” a file from the Ruby gem, backbone-rails,7 that will
monkey patch Backbone to do this for us. So here is that file:

Example: (source: app.2/assets/backbone_sync.js)

// Taken from https://github.com/codebrew/backbone-rails.
// This namespaces the JSON sent back to the server under the model name.
// IE: {todo: {title: 'Foo'}}
(function() {
 var methodMap = {
 'create': 'POST',
 'update': 'PUT',
 'delete': 'DELETE',
 'read' : 'GET'
 };

 var getUrl = function(object) {
 if (!(object && object.url)) return null;
 return _.isFunction(object.url) ? object.url() : object.url;
 };

 var urlError = function() {
 throw new Error("A 'url' property or function must be specified");
 };

 Backbone.sync = function(method, model, options) {
 var type = methodMap[method];

 // Default JSON-request options.
 var params = _.extend({
 type: type,
 dataType: 'json',
 beforeSend: function(xhr) {
 var token = $('meta[name="csrf-token"]').attr('content');
 if (token) xhr.setRequestHeader('X-CSRF-Token', token);

 model.trigger('sync:start');
 }
 }, options);

 if (!params.url) {
 params.url = getUrl(model) || urlError();
 }

 // Ensure that we have the appropriate request data.
 if (!params.data && model && (method == 'create' || method == 'update')) {
 params.contentType = 'application/json';

ptg8106388

259Setting Up Backbone.js

 var data = {}

 if(model.paramRoot) {
 data[model.paramRoot] = model.toJSON();
 } else {
 data = model.toJSON();
 }

 params.data = JSON.stringify(data)
 }

 // Don't process data on a non-GET request.
 if (params.type !== 'GET') {
 params.processData = false;
 }

 // Trigger the sync end event
 var complete = options.complete;
 options.complete = function(jqXHR, textStatus) {
 model.trigger('sync:end');
 if (complete) complete(jqXHR, textStatus);
 };

 // Make the request.
 return $.ajax(params);
 }

}).call(this);

I don’t really expect you to understand just what it is doing, especially because we haven’t
gotten to talking about models yet, but believe me, it’ll make our lives a little easier and nicer.
So just accept that it is helping us and thank it for being there. To add it to our application, we
should first place the code in a file under the assets directory called backbone_sync.js and
then require the backbone_sync.js file in the assets/application.coffee file:

Example: (source: app.2/assets/application.coffee)

#= require "backbone_sync"
#= require "templates"
#= require_tree "models"

Now, with all of those necessary preliminaries out of the way we are ready to start writing some
Backbone!

ptg8106388

260 Chapter 12 Example: Todo List Part 3 (Client-side w/ Backbone.js)

Writing our Todo Model and Collection
The first part of this application that we’ll look at is the Todo model. This model will represent
an individual todo that we get back from our API.

In the assets directory, let’s create a new folder called models. In that folder we will put the
Todo model as well as the Todos collection.

Example: (source: app.2/assets/models/todo.coffee)

The Todo model for the Backbone client:
class @Todo extends Backbone.Model
 # namespace JSON under 'todo' see backbone_sync.js
 paramRoot: 'todo'

 # Build the url, appending _id if it exists:
 url: ->
 u = "/api/todos"
 u += "/#{@get("_id")}" unless @isNew()
 return u

 # The default Backbone isNew function looks for 'id',
 # Mongoose returns "_id", so we need to update it accordingly:
 isNew: ->
 !@get("_id")?

When writing a Backbone model, it is important that we extend the Backbone.Model class;
otherwise, we won’t get any of the functionality we expect of a Backbone-based model.

Because we are using backbone_sync.js, we need to set the name we want our data to be
nested under when it is sent back to the server. We do that by setting paramRoot to todo.

Next, we need to tell Backbone what URL this model will use to talk to the API. We do this
by creating a url function. Backbone will automatically look for this function later and tell
it where our API is located. When we have a new Todo object, it won’t have an ID associated
with it, so we want to append it only if the object isn’t new. The isNew function built in to
Backbone will return true or false based on whether the object is “new” or not.

Tip

If you want to retrieve an attribute on a Backbone object, such as the title or _id attribute,
you have to use the get function to do that. That is because all attributes on a Backbone
model are stored in a variable called attributes to prevent any sort of clashing between the
Backbone attributes and functions and your attributes.

The isNew function in Backbone does its magic by looking to see if the object has an id attri-
bute. If it does, it considers the object not to be new. Unfortunately, MongoDB8 does not

ptg8106388

261Writing our Todo Model and Collection

return an id attribute, but rather an _id attribute. Because of this, we need to rewrite the
isNew function to behave the way we want it to.

Tip

Like the isNew function, we had to write a custom url function because MongoDB uses _id
instead of id. If we had an _id attribute, we could have set the url attribute (not function)
equal to /api/todos in the Todo model, and Backbone would have automatically appended
the id attribute to the url attribute for us. But, as it is, here we are.

With the Todo model written, let’s write the associated collection, Todos. A collection, as we
mentioned earlier, is a list, similar to an array, that holds many Todo models. In this applica-
tion we will use the Todos initially to fetch all the existing todos from our API.

Tip
Personally, I find it a little annoying that I have to have a separate class to manage a collection
of models, but it’s a very small price to pay for the features and functionality you get from this.
It’s just something you learn to live with. As a side note, I usually place the collection class
definition in the same file as the model definition. It makes it easier to find and change later.
In this case, I have them separated because it makes it easier to show you the code.

The Todos collection class is going to be really simple:

Example: (source: app.2/assets/models/todos.coffee)

The Todos collection for the Backbone client:
class @Todos extends Backbone.Collection
 model: Todo

 url: "/api/todos"

The Todos class needs to extend Backbone.Collection for the magic to happen. After that we
just need to define two attributes of our collection.

The first is the model attribute, which we set to Todo. This tells the collection that when it
fetches data from the server, or data is given to it, that data should be turned into Todo objects.

The second attribute is the url attribute. Because this is a collection, we don’t have to concern
ourselves with any IDs on the URL. So it’s pretty straightforward.

With that, the Todos collection is completed.

Let’s update the assets/application.coffee file to require the models directory we have
created here:

ptg8106388

262 Chapter 12 Example: Todo List Part 3 (Client-side w/ Backbone.js)

Example: (source: app.2/assets/application.coffee)

#= require "backbone_sync"
#= require "templates"
#= require_tree "models"

If you’re anything like me, you are probably eager to see this work in action. Okay, let’s quickly
use the Todos collection and the Todo model to fetch the existing todos from the API and print
them out using the template we wrote in the previous chapter.

We can do this quite simply by adding a few lines to the assets/application.coffee file,
like such:

Example: (source: app.3/assets/application.coffee)

#= require "backbone_sync"
#= require "templates"
#= require_tree "models"

$ ->
 template = _.template(Templates.list_item_template)
 todos = new Todos()
 todos.fetch
 success: ->
 todos.forEach (todo) ->
 $('#todos').append("#{template(todo.toJSON())}")

When the DOM is loaded, we will create a new instance of the template, so we can use it to
render each todo out after we fetch them.

Next, we create a new instance of the Todos collection and assign it to a variable named todos.

With an instance of the Todos collection ready, we can call the fetch function. The fetch
function will use the url attribute we set on the Todos collection to talk back to the server and
fetch a list of todos for us. If the fetch is successful, it will call the success callback we passed
into the fetch function.

The success callback, if executed, will call the forEach function on the todos object to iterate
over the list of Todo models it retrieved from the server. We then render the template using
each todo and write them to the screen.

The result of all this is that you should see your existing todos nicely printed to the screen
when you reload your application. Don’t expect to be able to update or destroy the todos yet.
We’ll get to that later. In the next section, we are going to write our first Backbone view to
replace that display code we just wrote.

ptg8106388

263Listing Todos Using a View

Listing Todos Using a View
The previous code we wrote works, but it can definitely be made a lot cleaner and more flex-
ible. That’s where Backbone.View classes come in. Let’s replace what we’ve already written
with a Backbone.View class to clean it up.

First create a views folder under the assets folder. That is where all the view files will live. In
that file, let’s create todo_list_view.coffee and fill it with the following:

Example: (source: app.4/assets/views/todo_list_view.coffee)

The 'main' Backbone view of the application
class @TodoListView extends Backbone.View

 el: '#todos'

 initialize: ->
 @template = _.template(Templates.list_item_template)
 @collection.bind("reset", @render)
 @collection.fetch()

 render: =>
 @collection.forEach (todo) =>
 $(@el).append("#{@template(todo.toJSON())}")

So what is going on with this code? Great question. The first thing we do is create a new class,
TodoListView, and have it extend Backbone.View. By extending the Backbone.View class we
get access to some helpful functions and features that we’ll be using throughout the rest of this
chapter.

Tip

Notice that, like the Todo and Todos classes, we are defining the TodoListView class with
a prefixed @ symbol. The @ will make sure the classes are available outside of the automatic
wrapper function CoffeeScript writes around each .coffee file. If we didn’t do this, we wouldn’t
have access to these classes outside of their respective .coffee files.

Next, we tell the view that the element on the page we want to associate this view with is the
#todos element. We do this by setting the el attribute. If we didn’t do this, Backbone would
create a new div object for the el attribute, and you would be responsible for placing that
element on the page yourself. We will see this in action in a little bit.

We move on next to the initialize function. The initialize function is a special func-
tion that will be called by Backbone after an instance of the view object has been initialized.
You definitely do not want to write a constructor function in your view classes. This can

ptg8106388

264 Chapter 12 Example: Todo List Part 3 (Client-side w/ Backbone.js)

potentially override all the rich chocolaty goodness that Backbone is trying to create for you.
If you need to have things happen when the view is instantiated, the initialize function is
definitely the way to go.

As it happens, we have a few things we do want to do when the TodoListView class is instan-
tiated. In particular, we have a few things we want to do with the @collection object. Your
first question should be, Where did that variable come from? Backbone has a few “magic”
variables and attributes and @collection and @model are two of them. In a minute we will see
that when we create an instance of the TodoListView class, we are going to pass it an object
that contains a collection key that has a value of new Todos(). That will then get assigned
to the @collection object, in the TodoListView, giving us access to the Todos collection.
When we look at the necessary changes to the application.coffee file shortly, this should
all become a bit clearer.

What do we need to do with the @collection object, also known as a Todos collection? First,
we are going to call the bind function and tell it that whenever the collection triggers a reset
event, we want to call the @render function in the TodoListView instance we have.

How does a collection object trigger a reset event? One of the ways, and probably the most
common in Backbone, is through the fetch function. When called, the fetch function will
get the full list of todos from the API, as we saw earlier. Because we need those todos, we call
the fetch function as the last line of the initialize function. The calling of the fetch func-
tion will, in turn, trigger a reset event, which will then call the @render function.

The @render function is where we will print out the list of todos in the collection to the page.
The @render function shouldn’t look too different from the original code we had in applica-
tion.coffee to render each todo on the screen. The big differences are that we are calling the
forEach function directly on the @collection object, instead of through a success callback.
The other difference is that we no longer have to refer to the #todos element directly; instead,
we can use @el which will point there for us. Using @el instead of the name of the element
directly is great should we ever have to refactor our code. We just change the value of @el and
don’t have to change the rest of the code base.

Tip
The @render function is declared using the => syntax instead of the -> so that when it is
called after the reset event has been triggered, the @render function knows its context and
has access to the rest of the class. If a -> was used, this code would result in an
error similar to TypeError: 'undefined' is not an object (evaluating 'this.
collection.forEach') because @render would not have access to the @collection
object. If we really wanted to use the -> syntax, we would have to have manually bound
the function ourselves in the initialize function by using the bindAll function in the
Underscore library. _.bindAll(@, "render"). I would rather just use the => syntax.

All that is left now is to clean up the application.coffee file to use the new TodoListView
class instead of our old code:

ptg8106388

265Creating New Todos

Example: (source: app.4/assets/application.coffee)

#= require "backbone_sync"
#= require "templates"
#= require_tree "models"
#= require_tree "views"

$ ->
 # Start Backbone.js App:
 new TodoListView(collection: new Todos())

As you can see, we had to first make sure we required the views directory so that it would
pick up all the views we are going to write there. After that, when the page is loaded, all we
have to do is create a new instance of the TodoListView class, passing it a new instance of the
Todos collection. With that we are done with the application.coffee file for the rest of this
chapter.

Creating New Todos
With our code to display existing todos to the screen working nicely, let’s move on to hooking
up our form so we can create new todos. To accomplish this, we need a view to manage the
form and handle when people press the Enter key when typing their todos, so we can save
them to the server and then display them to the screen.

The NewTodoView class we need should look like this:

Example: (source: app.5/assets/views/new_todo_view.coffee)

The view to handle creating new Todos:
class @NewTodoView extends Backbone.View

 el: '#new_todo'

 events:
 'keypress .todo_title': 'handleKeypress'

 initialize: ->
 @collection.bind("add", @resetForm)
 @$('.todo_title').focus()

 handleKeypress: (e) =>
 if e.keyCode is 13
 @saveModel(e)

 resetForm: (todo) =>
 @$('.todo_title').val("")

ptg8106388

266 Chapter 12 Example: Todo List Part 3 (Client-side w/ Backbone.js)

 saveModel: (e) =>
 e?.preventDefault()
 model = new Todo()
 model.save {title: @$('.todo_title').val()},
 success: =>
 @collection.add(model)
 error: (model, error) =>
 if error.responseText?
 error = JSON.parse(error.responseText)
 alert error.message

It’s a bit longer than the TodoListView class we just wrote, but most of that is the saveModel
function, which, by now, should be pretty old hat to you. However, we’ll discuss it briefly in
just a second.

The TodoListView needs to associate itself with the #new_todo element on the page, so again,
we can set this via the el attribute.

Next, we have to tell the NewTodoView class to listen for certain events and respond to those
events when they happen. Backbone lets us easily map those using the events object attribute.
Mapping events using the events attributes is a little weird, though. The key for the event
you want to create is a compound key. The first part is the event you are waiting for, click,
submit, keypress, and so on, that is then followed by the CSS selector you want to watch for
the event. The value of the mapping is the function you want to call when that event on that
CSS selector happens. In our case, we are watching for a keypress event on the .todo_title,
and when that happens, we want to call the handleKeypress function.

Tip

There are two important things to note about the events mapping in Backbone. The first is
that the CSS selector is scoped to the el attribute you set. The second is that we pass in a
string with the function name, not a reference to the function, like we do when binding to col-
lections, as we saw earlier. I’m not sure about the reason for this mismatch, but that’s just the
way it is. This is something to look for if things aren’t working quite as expected.

In the initialize function we want to bind the resetForm function to the add event on the
@collection object, which we will pass in when we create the instance of the NewTodoView
class. Later in the saveModel function, when we get an acknowledgement from the API that we
have successfully created the new todo, we will add it to the @collection. That will trigger the
add event, which will call the resetForm function. The resetForm function, as you can see,
cleans up the form to its original state before the user typed in the todo.

Also in the initialize function, we want to set the .todo_title element in the form to
have focus when the page loads. Here we can use a special function on the Backbone.View
class, @$. The @$ function lets us write jQuery CSS selectors that are already scoped to the @el
element we are watching in the view. Without this special function, we would have to write
something like $('#new_todo .todo_title') to get access to the same element.

ptg8106388

267Creating New Todos

The handleKeypress function should look pretty familiar to you. We are going to check that
the key the user pressed is the Enter key; if it is, it will call the @saveModel function to do the
heavy lifting of saving the model back to the API.

Tip

I could have saved the model directly in the handleKeypress function, but down the line if we
ever wanted to add a save button, we can wire that button up directly to the saveModel func-
tion, using the events attribute, without having to duplicate any code.

The saveModel should mostly look like the other functions we’ve written that do something
similar. First, we create a new instance of the Todo class. Then we collect a list of attributes,
in this case just the title, and pass it to the save class along with a success callback and an
error callback.

Tip

Why did I write e?.preventDefault() instead of e.preventDefault()? The reason is that
sometimes there might be reasons why we would call this function and not pass in an event
object. By using the existential operator in CoffeeScript, we can guarantee that the prevent-
Default function will be called only if there is an event passed into the function. It’s a nice
habit to get into.

The real magic, for us, happens in the success callback when the todo has been successfully
saved to the database via the API. At that point we are going to call the add function on the @
collection object and pass in the newly created todo. When we do so, the resetForm func-
tion will be called because we told the @collection to call that function when the add event
is triggered.

If we were to fire up the application right now and try this, nothing would happen because
we haven’t created a new instance of the NewTodoView class yet. To do this, let’s modify the
TodoListView class a little bit to not only create the new NewTodoView instance, but also to
handle when new todos are added to the @collection and display them properly to the page.

Example: (source: app.5/assets/views/todo_list_view.coffee)

The 'main' Backbone view of the application
class @TodoListView extends Backbone.View

 el: '#todos'

 initialize: ->
 @template = _.template(Templates.list_item_template)
 @collection.bind("reset", @render)
 @collection.fetch()
 @collection.bind("add", @renderAdded)
 new NewTodoView(collection: @collection)

ptg8106388

268 Chapter 12 Example: Todo List Part 3 (Client-side w/ Backbone.js)

 render: =>
 @collection.forEach (todo) =>
 $(@el).append("#{@template(todo.toJSON())}")

 renderAdded: (todo) =>
 $("#new_todo").after("#{@template(todo.toJSON())}")

In the initialize function of the TodoListView class we added two new lines. The first new
line adds another listener for the add event on the @collection object, this time telling it to
trigger the renderAdded function in the TodoListView class.

The second line we added in the initialize function of the TodoListView class creates a
new instance of the NewTodoView and passes it the @collection object.

The renderAdded function in the TodoListView class will be called when a new todo is added
to the @collection object, being passed the newly minted todo. With that new todo in hand,
we can easily add it to the list of todos being displayed on the page.

Tip

We could have written this code so that the render function did all the heavy lifting, and we
wouldn’t have needed a renderAdded function. There are a few reasons why I didn’t do that.
First, if we rerendered the whole list of todos, that’s a lot more time consuming than just add-
ing one more todo to the page. Second, we would have had to write a bit more logic in the
render function to first clear out the list of todos already on the page, so we don’t end up with
duplicates.

A View per Todo
Our application has come a long way since we threw out all the jQuery code we wrote in
Chapter 11, “Example: Todo List Part 2 (Client-side w/ jQuery),” but we’re not there yet. We
can create new todos and display them, along with existing todos to the page, but we can’t
edit or delete existing todos yet. Before we get to that, we need to do a little bit of clean up of
the code we have already written. We are going to need a view to manage each of the todos on
the page so we can watch them for changes, such as someone editing the title, marking it as
“complete,” or wanting to delete the todo.

For right now, let’s update our code to use a new view, TodoListItemView, for each of the
todos on the page. So let’s create that class:

Example: (source: app.6/assets/views/todo_list_item_view.coffee)

The view for each todo in the list:
class @TodoListItemView extends Backbone.View

 tagName: 'li'

ptg8106388

269A View per Todo

 initialize: ->
 @template = _.template(Templates.list_item_template)
 @render()

 render: =>
 $(@el).html(@template(@model.toJSON()))
 if @model.get('state') is "completed"
 @$('.todo_state').attr('checked', true)
 @$('label.active').removeClass('active')
 @$('.todo_title').addClass('completed').attr('disabled', true)
 return @

The TodoListItemView class doesn’t map to an existing element on the page, so we don’t
need to set the el attribute. By default, in a Backbone.View class the el will default to a
div tag. However, in our case we want it to be an li tag. To set that we can set the tagName
attribute.

In the initialize function in the TodoListItemView class, we are setting up a @template
variable to hold the template we want to use when we render the todo out to the screen. After
that, we call the @render function.

The render function will set the HTML of the @el, in this case an li element, to that of the
template using the @model object. Where did @model come from? The @model object will
be passed in when we instantiate new instances of the TodoListItemView class, as we’ll see
shortly.

After we render the template in the render function, we need to update the HTML to use the
correct styling should the todo be marked as “completed.”

Finally, the render function will return the instance of the TodoListItemView class. This
is not necessary, but is somewhat of a convention in the Backbone world because it enables
people to easily chain calls together on the object.

With the TodoListItemView class written, we can update the TodoListView to make use of it,
and to eliminate the need for doing the template rendering there.

Example: (source: app.6/assets/views/todo_list_view.coffee)

The 'main' Backbone view of the application
class @TodoListView extends Backbone.View

 el: '#todos'

 initialize: ->
 @collection.bind("reset", @render)
 @collection.fetch()
 @collection.bind("add", @renderAdded)
 new NewTodoView(collection: @collection)

ptg8106388

270 Chapter 12 Example: Todo List Part 3 (Client-side w/ Backbone.js)

 render: =>
 @collection.forEach (todo) =>
 $(@el).append(new TodoListItemView(model: todo).el)

 renderAdded: (todo) =>
 $("#new_todo").after(new TodoListItemView(model: todo).el)

In both the render and renderAdded functions of TodoListView, we are able to replace
the HTML we had wrapping the templating in favor of creating a new instance of the
TodoListItemView class and getting the el attribute on that class. Remember that the el attri-
bute had its HTML defined in the render function of the TodoListItemView class.

Now when we restart our application, we should see all the todos nicely listed out, and any
that had previously been marked as “complete” should now have the appropriate CSS styling
applied to them.

Updating and Validating Models from Views
Now that we have a view, TodoListItemView, that is associated with each todo on the page,
we have a nice central place to put logic to watch for changes on that todo and act appro-
priately. Let’s start by watching for changes to the todo. There are two changes someone can
make to the todo. They can edit the title or they can check or uncheck the check box, therefore
changing the state of the todo. We will cover destroying the todo in the next section.

Example: (source: app.7/assets/views/todo_list_item_view.coffee)

The view for each todo in the list:
class @TodoListItemView extends Backbone.View

 tagName: 'li'

 events:
 'keypress .todo_title': 'handleKeypress'
 'change .todo_state': 'saveModel'

 initialize: ->
 @template = _.template(Templates.list_item_template)
 @model.bind("change", @render)
 @model.bind("error", @modelSaveFailed)
 @render()

 render: =>
 $(@el).html(@template(@model.toJSON()))
 if @model.get('state') is "completed"
 @$('.todo_state').attr('checked', true)

ptg8106388

271A View per Todo

 @$('label.active').removeClass('active')
 @$('.todo_title').addClass('completed').attr('disabled', true)
 return @

 handleKeypress: (e) =>
 if e.keyCode is 13
 @saveModel(e)

 saveModel: (e) =>
 e?.preventDefault()
 attrs = {title: @$('.todo_title').val()}
 if @$('.todo_state').attr('checked')?
 attrs.state = 'completed'
 else
 attrs.state = 'pending'
 @model.save attrs

 modelSaveFailed: (model, error) =>
 if error.responseText?
 error = JSON.parse(error.responseText)
 alert error.message
 @$('.todo_title').val(@model.get('title'))

The first thing we need to do is to add a few events. The first is for when a keypress event
happens on the .todo_title field. Just like in the NewTodoView class, we are going to call
a handleKeypress function, which will check to see if the key pressed was Enter. If it is, the
saveModel function will be called. We will also be looking for a change event on the .todo_
state check box. Any change to the check box will result in the saveModel function being
called directly.

In the initialize function we are going to tell the @model object that we are interested in
two events. The first is the change event. If the model should change at all, we want to call the
render function again to make sure that we are displaying the most recent version of the todo.
This comes in handy when someone checks the check box to change the state of the todo and
we need to add/remove CSS styles accordingly.

The other event we are listening to is the error event. This will get called if there are any
errors when trying to save the todo to the API. If there are errors, we want to call the model-
SaveFailed function, which will present any errors back to the user.

Finally, we need a saveModel function, because we already told Backbone to call it should
someone try to update the todo. This function shouldn’t need explaining by this point. Simply
grab the appropriate attributes we want to update and pass them to the save function.

ptg8106388

272 Chapter 12 Example: Todo List Part 3 (Client-side w/ Backbone.js)

Tip

In the NewTodoView class, we are passing in success and error callbacks to the save-
Model function, but in the TodoListItemView class we are not. The reason is that we are
listening for events on the @model object that are going to, essentially, do that for us. We
didn’t use this approach in the NewTodoView class because we are constantly creating new
Todo instances, so we would have to keep binding the events. It’s just easier there to add the
callbacks.

With all of this, we should be able to update the title and the state of the todo and have them
persist back to the server and render appropriately when they’ve been updated.

Validation
Before we move off of updating the todos, let’s add some simple, client-side validation to the
Todo class so we don’t have to keep going back to the server to validate the object. In particu-
lar, we are concerned with whether the title attribute is blank.

Because our Todo class inherits from Backbone.Model, we have access to a very simple vali-
dation system. The way it works is this: When the save function is called on a Backbone.
Model, it checks to see if there is a function called validate. If the validate function exists,
an object is passed into it that contains all the changed attributes. If the validate function
returns a value other than null, the save function stops immediately and returns whatever
value the validate function returned.

Let’s add a validate function to the Todo model:

Example: (source: app.7/assets/models/todo.coffee)

The Todo model for the Backbone client:
class @Todo extends Backbone.Model
 # namespace JSON under 'todo' see backbone_sync.js
 paramRoot: 'todo'

 # Build the url, appending _id if it exists:
 url: ->
 u = "/api/todos"
 u += "/#{@get("_id")}" unless @isNew()
 return u

 # The default Backbone isNew function looks for 'id',
 # Mongoose returns "_id", so we need to update it accordingly:
 isNew: ->
 !@get("_id")?

ptg8106388

273Deleting Models from Views

 # Validate the model before saving:
 validate: (attrs) ->
 if !attrs.title? or attrs.title.trim() is ""
 return message: "Title can't be blank"

As you can see, it’s pretty simple. We check to make sure that not only is there a title attri-
bute but that it is also not a blank string. If it doesn’t exist, or it is blank, we return an object
that contains the key message that has a value of "Title can't be blank".

That’s it! Try it out. If you enter a blank value for the title of either an existing todo or a new
todo, you should be presented with an alert that reads “Title can’t be blank.” All the code up
to this point has been written to handle the validate method right out of the box. There was
nothing more we needed to add.

Deleting Models from Views
All that is left to do now is to hook up the Delete button, and our application will be complete.
This is incredibly easy. We need to update the TodoListItemView and tell it to listen for a
click on the button, and then have it call the appropriate function to destroy the todo and
remove it from the page.

Example: (source: final/assets/views/todo_list_item_view.coffee)

The view for each todo in the list:
class @TodoListItemView extends Backbone.View

 tagName: 'li'

 events:
 'keypress .todo_title': 'handleKeypress'
 'change .todo_state': 'saveModel'
 'click .danger': 'destroy'

 initialize: ->
 @template = _.template(Templates.list_item_template)
 @model.bind("change", @render)
 @model.bind("error", @modelSaveFailed)
 @render()

 render: =>
 $(@el).html(@template(@model.toJSON()))
 if @model.get('state') is "completed"
 @$('.todo_state').attr('checked', true)

ptg8106388

274 Chapter 12 Example: Todo List Part 3 (Client-side w/ Backbone.js)

 @$('label.active').removeClass('active')
 @$('.todo_title').addClass('completed').attr('disabled', true)
 return @

 handleKeypress: (e) =>
 if e.keyCode is 13
 @saveModel(e)

 saveModel: (e) =>
 e?.preventDefault()
 attrs = {title: @$('.todo_title').val()}
 if @$('.todo_state').attr('checked')?
 attrs.state = 'completed'
 else
 attrs.state = 'pending'
 @model.save attrs

 modelSaveFailed: (model, error) =>
 if error.responseText?
 error = JSON.parse(error.responseText)
 alert error.message
 @$('.todo_title').val(@model.get('title'))

 destroy: (e) =>
 e?.preventDefault()
 if confirm "Are you sure you want to destroy this todo?"
 @model.destroy
 success: =>
 $(@el).remove()

With another addition to the events attribute, we just need to write a destroy function that
will destroy the todo through the API and remove it from the page when it’s done. That’s
exactly what the destroy function we wrote here does. Before we call the destroy function
on the Todo model, another built-in Backbone function, we are going to be polite and ask the
users if they are sure they really want to destroy the todo.

When the todo is successfully destroyed from the server, we use jQuery and its remove function
to remove the @el for the todo from the page. With that, the application is done!

Tip
There are a few events we can listen for when a model is destroyed. For example, on the col-
lection we could have listened for the destroy event and then rerendered the list of todos.
I didn’t do this for the same reasons I didn’t rerender the list of todos when a new one was
added. It’s just nice to know that you can listen for those events, should you need them.

ptg8106388

275Notes

Wrapping Up
In this chapter we ripped out the jQuery we wrote in Chapter 11, “Example: Todo List Part 2
(Client-side w/ jQuery),” and replaced it with the Backbone.js framework. This seems like a
great place to remind you that should you want to download the code from this chapter, as
well as the code from Chapter 11 to see how they compare, you can find all the code from this
book on Github.com.9

We learned about Backbone’s models and collections. Then we learned how to use views and
events to manage the elements on our page and how they interact with each other.

This chapter just scratches the surface of what Backbone.js has to offer in terms of writing
highly responsive, well-organized front ends for your applications. I encourage you to seek out
some of the great tutorials, blog posts, and screencasts on Backbone to learn more about it.

Notes
1. http://documentcloud.github.com/backbone/

2. http://en.wikipedia.org/wiki/Model–view–controller

3. https://github.com/jashkenas/

4. Seriously, I’m not just plugging Backbone in this chapter because Jeremy also wrote
CoffeeScript. I really do love it and use it all the time.

5. http://documentcloud.github.com/underscore

6. http://zeptojs.com

7. https://github.com/codebrew/backbone-rails

8. http://www.mongodb.org/

9. https://github.com/markbates/Programming-In-CoffeeScript

http://documentcloud.github.com/backbone/
http://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller
https://github.com/jashkenas/
http://documentcloud.github.com/underscore
http://zeptojs.com
https://github.com/codebrew/backbone-rails
http://www.mongodb.org/
https://github.com/markbates/Programming-In-CoffeeScript

ptg8106388

This page intentionally left blank

ptg8106388

Index

@ alias, 51-52

=> (fat arrow), 154-156

\ (back slashes), 5

/ (forward slashes), 76

A
adding

compilers to browsers, 6-7

form to client-side todo list
application, 242-247

jQuery to client-side todo list
application, 240-241

views to todo list application,
268-273

aliases, 46-47

@ alias, 51-52

and alias, 49-50

Boolean aliases, 50-51

not alias, 48-49

or alias, 49-50

and alias, 49-50

anonymous wrapper function, 20-22

APIs, writing todo API, 225-226

app server

building with Node.js, 199-213

testing with Node.js, 214-215

ptg8106388

278 arguments

arguments, 70-72

default arguments, 72-75

splats, 75-79

arithmetic operators, 33-35

arrays, 81-90

destructing assignment, 86-90

iterating, 105-106

slicing, 92-94

swapping assignment, 85-86

testing inclusion, 83-84

values

injecting, 95-96

replacing, 94-95

Ashkenas, Jeremy, 255

assignment operators, 35-39

asynchronous programming, 151-154

attributes, retrieving from objects,
101-103

B
back slashes (\), 5

Backbone, 255-256

configuring for todo list
application, 256-259

todo model, writing, 256-259

todos

creating, 265-268

listing with view, 263-265

bare flag, 9-10

beforeEach function, 181-187

binding, 151-158

block comments, 30

Boolean aliases, 50-51

Bootstrap, building client-side todo list
application, 237-240

browsers, in-browser compilation, 6-7

build task (Cake), 167

building

objects, 96-101

todo list application

client-side, 237-252

controller, cleaning up, 232-236

Express, setting up, 218-222

MongoDB, setting up, 222-225

server-side, 217

todo API, writing, 225-226

by keyword, 106-107

C
Cake, 161

tasks

invoking, 167-169

options, 163-167

running, 163

writing, 162-163

Cakefiles, 161

calling functions, 68-70

classes

defining, 123-124

extending, 137-145

inheritance, 137-145

scope, 127-137

class-level functions, 145-150

clean task (Cake), 167

cleaning up todo list application
controller, 232-236

client-side todo list application, building,
237-252

closing REPL, 5

ptg8106388

279Express, building todo list application

code, not repeating, 68

coffee command, 8-9

CoffeeScript, declaring variables, 19-20

collections

arrays

destructing assignment, 86-90

injecting values, 95-96

iterating, 105-106

replacing values, 94-95

slicing, 92-94

swapping assignment, 85-86

testing inclusion, 83-84

ranges, reverse ranges, 91-92

command-line compilation, 7-8

comments, 29-30

block comments, 30

inline comments, 29-30

comparison operators, 39-42

compile flag, 7-8

compiling

command-line compilation, 7-8

in-browser compilation, 6-7

comprehensions, 116-118

concatenation, forward slashes (/), 76

conditional statements

if statement, 53-54

if/else if statement, 56-58

if/else statement, 54-56

inline conditionals, 60

switch case statements, 60-63

unless statement, 58-60

configuring

Backbone for todo list application,
256-259

Jasmine, 172-175

constructor function, 126-127

creating objects, 96-101

custom matchers (Jasmine), defining,
187-190

D
declaring variables

in CoffeeScript, 19-20

in JavaScript, 18-19

default arguments, 72-75

defining

Cake tasks, 162-163

classes, 123-124

functions, 68-70

arguments, 70-72

default arguments, 72-75

parentheses, 72

matchers (Jasmine), 187-190

regular expressions, 31

deleting

models from views (todo list
application), 273-274

todos in client-side todo list
application, 252

“describe” block (Jasmine), writing, 175

destructing assignment, 86-90

do keyword, 119-120

dot notation, 101

E
executing CoffeeScript files, 11

existential operator, 43-46

Express, building todo list application,
218-222

ptg8106388

280 extended regular expressions

extended regular expressions, 31

extending classes, 137-145

F
fat arrow (=>), 154-156

flags

bare flag, 9-10

compile flag, 7-8

output flag, 9

print flag, 10

watch flag, 10-11

for loops

by keyword, 106-107

when keyword, 107, 109-110

form, adding to client-side todo list
application, 242-247

function keyword, 16

functions, 65-68

anonymous wrapper function,
20-22

arguments, 70-72

default arguments, 72-75

splats, 75-79

beforeEach, 181-187

binding, 151-158

class-level, 145-150

constructor, 126-127

defining, 68-70, 125-126

overriding, 142-145

prototype functions, 110, 150-151

G-H
Hello World program, Node.js, 195-197

heredocs, 28-29

HTML files in-browser compilation, 6-7

I
if statement, 53-54

if/else if statement, 56-58

if/else statement, 54-56

in-browser compilation, 6-7

inheritance, 137-145

injecting array values, 95-96

inline comments, 29-30

inline conditionals, 60

installing

Jasmine, 172

Node.js, 194-195

interpolation, string interpolation, 23-25

iterating arrays, 105-106

J-K
Jasmine

“describe” block, writing, 175

installing, 172

matchers, defining, 187-190

setting up, 172-175

testing with, 175-176

beforeEach function, 181-187

unit testing, 176-181

ptg8106388

281overriding functions

new keyword, 124

Node.js, 193-194

app server

building, 199-213

testing, 214-215

Hello World program, 195-197

installing, 194-195

streaming APIs, writing, 197-199

NPM (Node Package Management), 193

Express, setting up, 218-222

O
objects

attributes, retrieving, 101-103

building, 96-101

destructing assignment, 103-105

iterating, 108-113

operators

aliases, 46-47

@ alias, 51-52

and alias, 49-50

Boolean aliases, 50-51

not alias, 48-49

or alias, 49-50

arithmetic operators, 33-35

assignment operators, 35-39

comparison operators, 39-42

existential operator, 43-46

string operators, 42-43

options for Cake tasks, 163-167

or alias, 49-50

output flag, 9

overriding functions, 142-145

JavaScript

Backbone, 255-256

todo model, writing, 256-259

todos, listing with a view,
263-265

Node.js, 193-194

app server, building, 199-213

app server, testing, 214-215

Hello World program, 195-197

installing, 194-195

streaming APIs, writing, 197-199

variables, declaring, 18-19

jQuery, adding to client-side todo list
application, 240-241

keywords, var, 19

L
listing existing todos in todo list

application, 247-248

literal strings, 25-28

long options, 163

loops

comprehensions, 116-118

do keyword, 119-120

for loops

by keyword, 106-107

when keyword, 107, 109-110

until loops, 114-115

while loops, 113-114

M-N
MongoDB, setting up, 222-225

Mongoose, finding todos in todo list
application, 227-228

ptg8106388

282 parentheses

P
parentheses, 16-17

comprehensions, 117

functions, calling, 72

print flag, 10

prototype function, 110

prototype functions, 150-151

Q-R
querying todo list application, 227-228

quitting REPL, 5

ranges, 90-96

reverse ranges, 91-92

regular expressions, extended regular
expressions, 31

REPL, 3-5

\ (back slashes), 5

Node.js, 194

quitting, 5

replacing array values, 94-95

retrieving attributes from objects,
101-103

reverse ranges, 91-92

running Cake tasks, 163

S
scope in classes, 127-137

servers (Node.js), creating, 195-197

server-side, building todo list
application, 217

setting up Jasmine, 172-175

short options, 163

significant whitespace, 14-16

slicing arrays, 92-94

splats, 75-79

streaming APIs, writing with Node.js,
197-199

string interpolation, 23-25

string operators, 42-43

strings

heredocs, 28-29

literal strings, 25-28

switch case statements, 60-63

synchronous programming, 151

syntax

function keyword, 16

parentheses, 16-17

ranges, 90

significant whitespace, 14-16

T
tasks

Cake

invoking, 167-169

options, 163-167

running, 163

writing, 162-163

TDD (test-driven development), 171

terminating REPL, 5

testing

with Jasmine, 175-176

beforeEach function, 181-187

matchers, defining, 187-190

TDD, 171

unit testing, 176-181

testing inclusion, Node.js app server,
214-215

ptg8106388

283

U
unit testing with Jasmine, 176-181

unless statement, 58-60

until loops, 114-115

updating

todo list application, 230-232

todos in client-side todo list
application, 248-251

V
var keyword, 19

variables, declaring

in CoffeeScript, 19-20

in JavaScript, 18-19

views

adding to todo list application,
268-273

models, deleting from (todo list
application), 273-274

W-X-Y-Z
watch flag, 10-11

when keyword, 109-110

while loops, 113-114

writing

Cake tasks, 162-163

“describe” block (Jasmine), 175

todo API, 225-226

todo model with Backbone,
256-259

todo list application

Backbone

configuring, 256-259

todos, creating, 265-268

todos, listing with a view,
263-265

client-side

building, 237-252

exisiting todos, listing, 247-248

form, creating, 242-247

jQuery, adding, 240-241

todos, deleting, 252

todos, updating, 248-251

controller, cleaning up, 232-236

server-side

building, 217

todo API, writing, 225-226

todos

creating, 228-230

finding, 227-228

updating, 230-232

views

adding, 268-273

deleting models from, 273-274

todo list application, building

Express, setting up, 218-222

MongoDB, setting up, 222-225

Twitter Bootstrap

todo list application

client-side, building, 237-240

ptg8106388

This page intentionally left blank

	Table of Contents
	Dedication
	Acknowledgments
	About the Author
	Preface
	What Is CoffeeScript?
	Who Is This Book For?
	How to Read This Book
	How This Book Is Organized
	Part I: Core CoffeeScript
	Part II: CoffeeScript in Practice

	Installing CoffeeScript
	How to Run the Examples
	Notes

	Part I: Core Coffeescript
	1 Getting Started
	The CoffeeScript REPL
	In-Browser Compilation
	Caveats
	Command-Line Compilation
	The CoffeeScript CLI
	Wrapping Up
	Notes

	2 The Basics
	Syntax
	Scope and Variables
	Interpolation
	Extended Regular Expressions
	Wrapping Up
	Notes

	3 Control Structures
	Operators and Aliases
	If/Unless
	Switch/Case Statements
	Wrapping Up
	Notes

	4 Functions and Arguments
	Function Basics
	Arguments
	Default Arguments
	Splats...
	Wrapping Up
	Notes

	5 Collections and Iterations
	Arrays
	Ranges
	Objects/Hashes
	Loops and Iteration
	Comprehensions
	The do Keyword
	Wrapping Up
	Notes

	6 Classes
	Defining Classes
	Defining Functions
	The constructor Function
	Scope in Classes
	Extending Classes
	Class-Level Functions
	Prototype Functions
	Binding (-> Versus =>)
	Wrapping Up
	Notes

	Part II: CoffeeScript in Practice
	7 Cake and Cakefiles
	Getting Started
	Creating Cake Tasks
	Running Cake Tasks
	Using Options
	Invoking Other Tasks
	Wrapping Up
	Notes

	8 Testing with Jasmine
	Installing Jasmine
	Setting Up Jasmine
	Introduction to Jasmine
	Unit Testing
	Before and After
	Custom Matchers
	Wrapping Up
	Notes

	9 Intro to Node.js
	What Is Node.js?
	Installing Node
	Getting Started
	Streaming Responses
	Building a CoffeeScript Server
	Trying Out the Server
	Wrapping Up
	Notes

	10 Example: Todo List Part 1 (Server-side)
	Installing and Setting Up Express
	Setting Up MongoDB Using Mongoose
	Writing the Todo API
	Querying with Mongoose
	Wrapping Up
	Notes

	11 Example: Todo List Part 2 (Client-side w/ jQuery)
	Priming the HTML with Twitter Bootstrap
	Interacting with jQuery
	Hooking Up the New Todo Form
	Listing Existing Todos
	Updating Todos
	Deleting Todos
	Wrapping Up
	Notes

	12 Example: Todo List Part 3 (Client-side w/ Backbone.js)
	What Is Backbone.js?
	Setting Up Backbone.js
	Writing our Todo Model and Collection
	Listing Todos Using a View
	Creating New Todos
	A View per Todo
	Deleting Models from Views
	Wrapping Up
	Notes

	Index
	A
	B
	C
	D
	E
	F
	G-H
	I
	J-K
	L
	M-N
	O
	P
	Q-R
	S
	T
	U
	V
	W-X-Y-Z

