

Mark Horner

Pro .NET 2.0 Code and
Design Standards in C#

560-2 fm.qxd 10/27/05 4:30 PM Page i

Pro .NET 2.0 Code and Design Standards in C#

Copyright © 2006 by Torville Pty Ltd

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN (pbk): 1-59059-560-2

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Ewan Buckingham
Technical Reviewer: Jon Reid
Editorial Board: Steve Anglin, Dan Appleman, Ewan Buckingham, Gary Cornell, Tony Davis,

Jason Gilmore, Jonathan Hassell, Chris Mills, Dominic Shakeshaft, Jim Sumser
Associate Publisher: Grace Wong
Project Manager: Beckie Brand
Copy Edit Manager: Nicole LeClerc
Copy Editors: Freelance Editorial Services and Ami Knox
Assistant Production Director: Kari Brooks-Copony
Production Editor: Ellie Fountain
Compositor: Molly Sharp
Proofreader: Linda Seifert
Indexer: Toma Mulligan
Artist: Kinetic Publishing Services, LLC
Interior Designer: Van Winkle Design Group
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley,
CA 94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precau-
tion has been taken in the preparation of this work, neither the author(s) nor Apress shall have any
liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly
or indirectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Source Code section.

560-2 fm.qxd 10/27/05 4:30 PM Page ii

Contents at a Glance

iii

About the Author . xiii

About the Technical Reviewer . xv

Acknowledgments . xvii

Introduction . xix

PART 1 � � � Code Policy Standards
�CHAPTER 1 Code Policy . 3

�CHAPTER 2 Code Structure . 29

�CHAPTER 3 Code Development . 39

�CHAPTER 4 Code Documentation . 85

PART 2 � � � Design Policy Standards
�CHAPTER 5 Design Policy . 103

�CHAPTER 6 Design Structure . 119

�CHAPTER 7 Design Development . 141

�CHAPTER 8 Design Documentation . 159

PART 3 � � � Pattern Standards
�CHAPTER 9 Patterns . 171

�CHAPTER 10 Creational Patterns . 183

�CHAPTER 11 Structural Patterns . 203

�CHAPTER 12 Behavioral Patterns . 235

PART 4 � � � References
�APPENDIX A Environment Variables and Remote Proxy Example 257

�LIST OF STANDARDS . 269

�GLOSSARY . 287

�INDEX . 319

560-2 fm.qxd 10/27/05 4:30 PM Page iii

560-2 fm.qxd 10/27/05 4:30 PM Page iv

Contents

About the Author . xiii

About the Technical Reviewer . xv

Acknowledgments . xvii

Introduction . xix

PART 1 � � � Code Policy Standards

�CHAPTER 1 Code Policy . 3

Code Management . 4
Code Vision . 4
Code Objectives . 5

Code Plan . 6

Code Strategy . 7

Development Methodology . 7

Supplementary Development Policies . 10

Peer Review . 10

Unit Testing . 11

Refactoring . 12

Development Imperative . 12

Enterprise Imperative . 13

Domain Imperative . 13

Source-Code Control . 14

Code Obsolescence . 15

Code Style . 16

Code Notation . 17

Camel–Hungarian–Pascal Notation Standard 17

Camel–Pascal Notation Standard . 17

Pascal Notation . 18

Camel Notation . 19

Hungarian Notation . 20

Code Formatting . 24

Visual Studio Formatting Options . 24

v

560-2 fm.qxd 10/27/05 4:30 PM Page v

Supplementary Style Policy . 26

Case Sensitivity . 26

�CHAPTER 2 Code Structure . 29

Assembly . 29

Namespace . 30

Interface Type . 31

struct Type . 33

Class Type . 34

Partial Type (Introduced C# 2.0) . 35

Generic Type (Introduced C# 2.0) . 36

�CHAPTER 3 Code Development . 39

Development Perspectives . 39

Application Development Methods . 40

Top-Down Method . 41

Bottom-Up Method . 42

Application Architecture . 42

Class Development . 44

Composition . 46

Inheritance Fundamentals . 47

Class Inheritance . 47

Interface Inheritance . 48

Overriding . 49

Overloading . 50

abstract . 51

sealed . 52

new . 53

Accessibility . 54

private . 54

protected . 55

internal . 55

protected internal . 56

public . 57

static . 58

Accessibility Summary . 59

Class Fundamentals . 59

Attribute . 59

Class Header . 60

�CONTENTSvi

560-2 fm.qxd 10/27/05 4:30 PM Page vi

const . 61

delegate . 62

enum . 62

event . 63

Field . 64

Indexer . 65

Method . 66

Property . 67

Variable . 68

Flow Control . 70

if . 70

if-else . 70

Nested if . 71

switch and case . 72

break . 73

default . 74

continue . 75

goto . 76

throw Statement . 76

try-catch . 77

try-finally . 78

try-catch-finally . 79

Iteration . 80

do-while . 80

while . 81

for . 82

foreach . 83

�CHAPTER 4 Code Documentation . 85

Documentation Policy . 85

Documentation of Code . 86

Code Design Documentation . 87

Code Design Log . 87

Documentation of Code Development . 90

Line Comment . 90

Block Comment . 91

XML Comment . 92

Object Browser Comments . 93

XML and Line/Block Comments . 94

Visual Studio XML Comment Tool . 97

�CONTENTS vii

560-2 fm.qxd 10/27/05 4:30 PM Page vii

PART 2 � � � Design Policy Standards

�CHAPTER 5 Design Policy . 103

Design Objectives . 104

Design Style . 105

Architecture Framework . 106

Target Architecture . 106

Architecture Roadmap . 107

Architecture . 108

Enterprise Architecture . 109

Network Architecture . 109

Technical Architecture . 110

Application Architecture . 111

Data Architecture . 111

Deployment Architecture . 112

Integration Architecture . 113

Service-Oriented Architecture . 114

Business Architecture . 116

�CHAPTER 6 Design Structure . 119

Structural Design . 119

The Enterprise-Domain Dichotomy . 120

Modularity . 121

Coupling . 123

Layers . 124

Design Context . 125

Enterprise Design Framework . 127

Application Layer . 128

Application Design Types . 129

Domain Application . 129

Enterprise Application . 130

Services Application . 131

Application Design Architectures . 132

Two-Tier Design . 132

Three-Tier Design . 133

Five-Tier Design . 134

Application Integration Layer . 136

Enterprise Services Layer . 137

�CONTENTSviii

560-2 fm.qxd 10/27/05 4:30 PM Page viii

Communications Integration Layer . 139

Communications Infrastructure Layer . 139

�CHAPTER 7 Design Development . 141

Implementing Design in the Design Framework . 142

Implementing Design in Layers . 143

Design of Enterprise Services Layer . 144

Design of Application Integration Layer . 145

Design of Application Layer . 146

Horizontal and Vertical Design Methodologies . 146

Horizontal Design Development . 147

Vertical Design Development . 148

Object Collaboration . 150

The Abstract-Interface Dichotomy . 151

The Composition-Inheritance Dichotomy . 152

The Abstraction-Implementation Dichotomy . 154

Design Patterns . 155

Implementing Design in Applications . 156

Start-from-Scratch Application Solution . 157

Application Framework Solution . 157

�CHAPTER 8 Design Documentation . 159

Documentation Policy . 159

Application Specification Documentation . 160

Technical Specification Documentation . 161

Functional Specification Documentation . 162

Application Design Documentation . 163

Application Architecture Documentation . 165

Enterprise Framework Documentation . 167

PART 3 � � � Pattern Standards

�CHAPTER 9 Patterns . 171

Pattern Language . 171

Design Patterns . 171

Talking Patterns . 171

The Origins: Pattern Language and Design Patterns 172

�CONTENTS ix

560-2 fm.qxd 10/27/05 4:30 PM Page ix

Thinking and Talking in a Pattern Language . 173

Pattern Language in Computer Science . 174

Design Patterns . 174

MVC . 176

�CHAPTER 10 Creational Patterns . 183

Abstract Factory Pattern . 184

Factory Method Pattern . 192

Singleton Pattern . 199

�CHAPTER 11 Structural Patterns . 203

Proxy Pattern . 204

Proxy Pattern Examples . 204

Adapter Pattern . 218

Composite Pattern . 223

Facade Pattern . 229

�CHAPTER 12 Behavioral Patterns . 235

Chain of Responsibility Pattern . 236

Observer Pattern . 241

Strategy Pattern . 246

Template Method Pattern . 251

PART 4 � � � References

�APPENDIX A Environment Variables and Remote Proxy Example 257

Environment Variables . 257

Remote-Proxy Pattern Example: Using the Command Line 261

�LIST OF STANDARDS . 269

Code Policy Standards . 269

Code Structure Standards . 271

Code Development Standards . 272

Code Documentation Standards . 276

Design Policy Standards . 277

�CONTENTSx

560-2 fm.qxd 10/27/05 4:30 PM Page x

Design Structure Standards . 279

Design Development Standards . 281

Design Documentation Standards . 283

Pattern Standards . 283

Creational Pattern Standards . 284

Structural Pattern Standards . 284

Behavioral Pattern Standards . 285

�GLOSSARY . 287

�INDEX . 319

�CONTENTS xi

560-2 fm.qxd 10/27/05 4:30 PM Page xi

560-2 fm.qxd 10/27/05 4:30 PM Page xii

About the Author

�MARK HORNER is Principal Enterprise Architect and .NET Application
consultant with Torville Software. He is a 25-year veteran of the industry
and has worked with a host of blue-chip organizations, including
Citibank, NRMA Insurance, ANZ Banking Group, Unilever, Hewlett-
Packard, British Aerospace, and CPA Australia. You can contact him at
markhorner@hotmail.com.

xiii

560-2 fm.qxd 10/27/05 4:30 PM Page xiii

560-2 fm.qxd 10/27/05 4:30 PM Page xiv

About the Technical Reviewer

�JON REID is the Vice-President of Engineering for Indigo
Biosystems (www.indigobio.com), an independent software
vendor providing data management solutions for the life
sciences, where he writes tools using C#, Java, and XML. Jon
was editor of the Object Query Language and C++ Working
Groups of the Object Data Management Group (ODMG)
and has coauthored many books on .NET and C#, including
Beginning C# Databases: From Novice to Professional (Apress,

2004) and Pro Visual Studio .NET (Apress, 2004). Jon would like to thank his family, his col-
leagues, and the great group at Apress for supporting his writing efforts.

xv

560-2 fm.qxd 10/27/05 4:30 PM Page xv

560-2 fm.qxd 10/27/05 4:30 PM Page xvi

Acknowledgments

This book is a composite of teamwork, and there are so many contributions to acknowledge.
The book started off as a simple idea: I thought that the C# community needed “A catalog of
standard practices.” The idea quickly got the backing of Gary Cornell, Kylie Johnston, Ewan
Buckingham, and Dominic Shakeshaft; and veteran author Donald Xie shared his views in the
preliminary stages. The book was guided through the twists and turns of development by the
forever-alert “Becks” (Beckie Brand). Ewan Buckingham, as lead editor, expertly nurtured the
content of the book. The experience of fellow Apress author Jon Reid, in the role of technical
reviewer, was invaluable, while Angela Buckley of Freelance Editorial Services and Ami Knox
smoothed many of the rough edges. Thanks also to the rest of the team, including Grace
Wong, Nicole LeClerc, Kari Brooks-Copony, Ellie Fountain, Molly Sharp, Linda Seifert, Toma
Mulligan, Kinetic Publishing, Van Winkle Design Group, Kurt Krames, Tom Debolski, and
Matthew Mason for the photograph. Finally, a special thanks to the design team at Microsoft
for the C# language: Anders Hejlsberg, Scott Wiltamuth, Peter Golde, Peter Sollich, Eric Gun-
nerson, Peter Hallam, Shon Katzenberger, Todd Proebsting, Anson Horton, Don Syme, and
Andrew Kennedy.

xvii

560-2 fm.qxd 10/27/05 4:30 PM Page xvii

560-2 fm.qxd 10/27/05 4:30 PM Page xviii

Introduction

This is not a book that tells you what you should or shouldn’t do! So, in the immortal words
of Douglas Adams (www.douglasadams.com): “Don’t Panic!” Yes, it is a book on standards, but
the standards are not presented as a set of rules; rather, they are presented and explained as
a catalog of standard practices that are commonplace in the development community. My job
is to bring them to your attention, and it’s your choice whether you use them.

Generally, there are two categories of standards: internal and external. Internal standards
are those standards that are in-house standards, whereas external standards are standards
that are used between organizations to standardize a selection of industry practices (e.g.,
IEEE-1016 documentation for software design or IEEE-830 software requirements standard).

There are two leading organizations that develop external standards relevant to architects
and developers: IEEE and W3C. Whereas IEEE focuses on standards for a wide range of indus-
tries, including information technology, W3C has a sharper focus on Internet technology.

�Note IEEE-SA is an acronym for Institute of Electrical and Electronics Engineers Standards Association.
The association is the leading developer of international standards for a wide range of industries: infor-
mation technology, telecommunication, biomedical and health care, and power and energy, for example. It
offers a subscription service to access the standards; you can check out their website at www.ieee.org.
W3C is an acronym for the World Wide Web Consortium, which develops products and standards on Internet
technology (e.g., HTML, XML, and Encryption). It offers a nonsubscription service to access the standards;
you can check out their website at www.w3c.org.

This book is about internal standards only. Its role is to present to you a catalog of stan-
dards that are understood to be in the public domain and free to use and specialize for your
situation. Standards have been categorized as code, design, and patterns. Code standards dis-
cuss policy, structure, development, and documentation of code. Design standards discuss
code design from a policy, structure, development, and documentation perspective. Finally,
pattern standards discuss a subset of the design patterns catalogued by Drs. Gamma, Helm,
Johnson, and Vlissides (known as the “Gang of Four,” or “GoF”). It also acknowledges the con-
tribution to the pattern community by Professor Alexander, Professor Reenskaug, and GoF.

The Motivation: Why Do We Need Standards?
There are three key reasons to use standards: success, uniformity, and transparency. First, in an
industry as volatile as information technology, if a given code or design practice lasts for a few
seasons, then it tends to do so because it is successful. However, that success does not mean

xix

560-2 fm.qxd 10/27/05 4:30 PM Page xix

that the given practice is the only way to do a given task; often, there are successful alterna-
tives. By and large, the community tends to make standards out of practices that they know
are effective, efficient, and intuitive, and, in the main, disregard practices that may be the ideal
but that are complex or unintuitive. Second, by using a standard, an organization can design
and develop with uniformity. Conforming to a uniform way of designing and coding applica-
tions minimizes risks and problems associated with application architects and developers
switching projects, for example. Third, standards offer transparency: that assists governance
by making clear how design and code are developed in an organization.

The Choice of Standards
A common problem with wanting to follow standards is trying to find them! Although there are
organizations that offer standards and there are also a few books that discuss best practices,
they tend to specialize or generalize or theorize or in the case of an organization take years to
formally approve a standard—which is cool, when that is what you want. However, if you are
time-poor and need to put together an in-house standard for C# development, then you would
experience problems. So, this book does the work for you by cataloging a set of standards that
are common to the C# community and broad in scope: code, design, and design pattern stan-
dards. Code and design standards are presented from two perspectives: pure (policy) and
applied (structure and development). The pure and applied perspectives of code and design
merge in the presentation of design patterns. I am conscious that for you to adopt any stan-
dard, you will want to be convinced of its merit. So, rather than state the standard and give a
quick example, I have prepared the standards in a common format that makes it easy for you to
see if it is what you want, for your situation.

The Format of the Standards
The standards are presented using an intuitive format that has four sections: What, Where,
Why, and How. The What section identifies what the standard is; the Where section identifies
where to use it; the Why section identifies the motivation for using it; and the How section
identifies how to use it.

How to Use the Standards
The standards may be used in several ways, principally in the following manner: (1) as in-house
team standards; (2) as a template to develop in-house team standards; (3) by professionals
wanting to reference community standards; and (4) by students wanting to adopt community
standards in preparation for a career as a developer or application architect.

In addition to the introduction of each standard, there is a short statement that acknowl-
edges its use in the community—for example: “The standard acknowledges . . .” Note that the
statement does not begin with “The standard recommends . . .” It is not the intention of this
book to make recommendations; as previously mentioned, the book is simply a catalog of
standards. Determining the appropriate standard for your situation is for you to judge; you
know your circumstance. The choice is yours! However, only standards that are understood to
be accepted and in common use have been included. Although the catalog is not exhaustive,

�INTRODUCTIONxx

560-2 fm.qxd 10/27/05 4:30 PM Page xx

I have endeavored to collect a good base set of standards, in this first edition of the book, and
the catalog will grow in subsequent editions. Where a new feature has been introduced in ver-
sion 2.0 of the C# language, that fact is indicated by the use of square brackets after the name
of the standard. For example, Partial Types was introduced in C# 2.0, and its standard is indi-
cated as follows:

Partial Types [Introduced C# 2.0]

Otherwise, all standards were introduced in versions 1.0, or 1.1 of the language and do not
show square brackets. I shall now briefly introduce the chapters in the book.

Introducing the Chapters
The book is divided into four parts: code, design, patterns, and references. The code part of the
book discusses code policy, structure, development, and documentation. The design part of the
book discusses code from a design-policy, structure, development, and documentation per-
spective. In the patterns part of the book, design patterns are introduced and then discussed
within the traditional category of creational, structural, and behavioral design patterns. The ref-
erence part of the book includes an appendix, a standards index, and a glossary. Throughout
the book, the code examples are based on the fictitious Model T domain: a car manufacturing
plant that makes Model T cars.

Chapter 1: Code Policy
This chapter notes that successful code is written through code management and not by
chance. It introduces code style, which includes a discussion on code notation—for example,
what are Pascal, Camel, and Hungarian notation, and where they may be used.

Chapter 2: Code Structure
The discussion progresses to how code is structured strategically to maximize its visibility,
extensibility, and reusability. In so doing, this chapter examines program structure, name-
spaces, and the types that are commonly used to hold code, such as classes, interface types,
and the new partial type.

Chapter 3: Code Development
In this chapter, the focus is on the lexical features of the C# language, which includes a discus-
sion of code fundamentals that are categorized as class accessibility; class fundamentals;
inheritance; expression and statement; flow control; and iteration.

Chapter 4: Code Documentation
Code documentation is the first of a pair of chapters on documentation (the other is design
documentation). This chapter introduces documentation policy and identifies common ways
that code is documented.

�INTRODUCTION xxi

560-2 fm.qxd 10/27/05 4:30 PM Page xxi

Chapter 5: Design Policy
The discussion on code now finished, three chapters on design follow. This chapter examines
design objective and design style, and in so doing, it also discusses the architecture frame-
work, target architecture, architecture roadmap, and many of the architectures that are in
common use, including enterprise, application, and data architectures.

Chapter 6: Design Structure
In this chapter we start to apply the concepts that were discussed in the design policy by using
structural design. Architectures are mapped to layers or tiers that are commonly used to
develop enterprise functionality. The discussion includes the popular three- and five-tier
application designs.

Chapter 7: Design Development
The chapter on design development discusses the common ways that applications are devel-
oped and in so doing identifies a number of dilemmas, expressed as dichotomies, associated
with developing design. For example: when should we use an interface type rather than an
abstract class or prefer interface inheritance over class inheritance?

Chapter 8: Design Documentation
This is the second chapter on documentation, and here we examine how through a documen-
tation policy, design is documented. In so doing, we discuss application, application
architecture, and enterprise framework documentation.

Chapter 9: Patterns
Design patterns have a checkered history: they are extremely useful but are often difficult to
understand. This chapter introduces patterns and pattern language and explains the simpli-
fied approach that is used to demystifying design patterns. To commence the examination of
design patterns, we first look at the Model–View–Controller (MVC) pattern, which is arguably
the mother of all design patterns, before examining the patterns catalogued by GoF, in the
subsequent three chapters.

Chapter 10: Creational Patterns
Creational patterns are about strategically manipulating the instantiation of classes. In this
chapter and all the subsequent pattern chapters, the code is kept to a bare minimum, so that
we can strip the patterns of their mystery and focus on the bare basics of how they work. In
this chapter we examine the Abstract Factory, Factory Method, and Singleton patterns.

Chapter 11: Structural Patterns
This chapter examines structural patterns. Classes can be manipulated into a structure to
overcome design problems, and the most notable example is the Adapter pattern, which uses
an interposed class as a “go-between” to map two incompatible class interfaces. In addition to

�INTRODUCTIONxxii

560-2 fm.qxd 10/27/05 4:30 PM Page xxii

the Abstract pattern, we discuss two versions of the Proxy pattern (Surrogate and Remote-
Proxy), Composite and Facade patterns.

Chapter 12: Behavioral Patterns
This final chapter discusses behavioral patterns, which can be manipulated to leverage com-
munication, responsibility, and algorithms to help enhance behavior or overcome problems.
The patterns that are discussed are Chain of Responsibility, Observer, Strategy, and Template
Method.

Appendix A: Environment Variables and Remote Proxy Example
In structural patterns we simplified the Remote-Proxy pattern by developing the example out-
side of the comfort of the Visual Studio IDE. We did that so that we can work directly with the
C# compiler, to fully understand all aspects of the Remote-Proxy pattern and observe the role
of the compiler. To assist with that exercise, Appendix A includes an overview of environment
variables and details on how to use the command line to access the C# compiler directly and
code the example.

List of Standards
In the list of standards, we have listed all of the standards for your reference.

Glossary
The glossary includes an assortment of code, design, and general definitions that are included
in the book or are common day-to-day terms.

Reading the Book
The book has been prepared so that it may be read from start to finish or at random. I do,
however, suggest for the code part (Chapters 1 to 4) and the design part (Chapters 5 to 8) that
on first reading you read the respective chapters in sequence, to appreciate the effect that pol-
icy has on code and design implementation.

Errors in the Book
The editorial team at Apress pride themselves on catching authors’ errors, and they do an
excellent job! But sometimes, even the best-trained eyes miss errors. Missing an error is not
good at the best of times, and it is quite embarrassing in a book about standards. So, if any
errors get through the safety net, we apologize in advance. We would greatly appreciate it if you
find one to forward details to the Apress team via the support address (support@apress.com).
Please note that Visual Studio .NET 2005 Beta 2 and RC were used in the writing of this book
and not all of its functionality was in place at that time. It was necessary to use Visual Studio
2003 for the XML Comment Tool example in the Code Documentation chapter. That example
also includes a reference to a freeware XML Documentator tool.

�INTRODUCTION xxiii

560-2 fm.qxd 10/27/05 4:30 PM Page xxiii

�Note To contact us with a correction, please email us at support@apress.com. Or if you prefer, you can
email the author directly: markhorner@hotmail.com.

Suggest a Standard
We intend to release a new edition of this book in line with future editions of Microsoft’s C# lan-
guage, so we very much see the book as a living set of standards. If in the interim, you know of a
standard that has been omitted from this catalog, and it is commonplace in the C# community,
then please email the author (markhorner@hotmail.com) with the details. If it is included in the
next edition of the book, we will gratefully acknowledge your observation in a community con-
tributors list in the next edition. We very much want this book and subsequent editions to be an
accurate reflection of the current standards used in our community.

�INTRODUCTIONxxiv

560-2 fm.qxd 10/27/05 4:30 PM Page xxiv

Code Policy Standards

This part of the book discusses code policy standards by looking at code style, manage-

ment, structure, development, and documentation.

P A R T 1

� � �

560-2 ch01.qxd 10/27/05 4:15 PM Page 1

560-2 ch01.qxd 10/27/05 4:15 PM Page 2

Code Policy

A code policy encourages the development of successful and low-risk code. It does that
through a collection of policy statements that regulate the way code is developed. This chap-
ter discusses what a code policy is and presents an outline of its main features.

What
A code policy is an in-house plan that identifies important aspects of code development. Its scope
is limited to making definitive statements on those areas of development that impact code
quality, reliability, and viability. A code policy is regularly reviewed and updated (e.g., quarterly).

Where
The policy is applied to all code development across an enterprise. It may also extend to stake-
holder development.

Why
A code policy is an effective and efficient way to successfully manage code development, by
coordinating development across the enterprise.

How
A code policy doesn’t have a definitive structure; it is developed around what are considered
to be the key aspects of code development, such as (1) a code management policy, (2) a code
development methodology, and (3) code notation and formatting guidelines. Figure 1-1 illus-
trates a code policy that is a collection of in-house standards:

Figure 1-1. Code policy standards structure 3

C H A P T E R 1

� � �

560-2 ch01.qxd 10/27/05 4:15 PM Page 3

The Standard: Code Policy

The standard acknowledges that a code policy is an effective and efficient way to suc-

cessfully manage code development by coordinating development across the enterprise.

Code Management
Code, like any other valuable resource, benefits from being managed using successful man-
agement practices.

What
Code management refers to the way that code development is regulated. All major aspects of
development are managed through a code policy.

Where
Code is managed across the enterprise throughout its development and life cycle.

Why
Successful code is not written by chance; it is the result of managing a volatile creative
process.

How
Generally, a code policy will identify (1) a vision statement (e.g., “To become a 100% .NET
environment”), (2) a best practice development methodology (e.g., eXtreme Programming
or Rational Unified Process), and (3) a set of supplementary policies.

The Standard: Code Management

The standard acknowledges that code is a valuable resource that benefits from manage-

ment throughout its development and life cycle.

Code Vision
A code policy uses a code vision to articulate a statement that identifies a direction in which
code should be developed. The code vision is supported by code objectives, code plan, and
a code strategy; these will be discussed shortly.

CHAPTER 1 � CODE POLICY4

560-2 ch01.qxd 10/27/05 4:15 PM Page 4

What
A code vision is a bit like a mission statement but articulates the direction of code develop-
ment. For example, in recent years many organizations have adopted a “.NET vision” and are
using that vision to direct code development that progressively migrates and develops code
into .NET. They are re-positioning themselves by moving from a legacy state to a .NET state.

Where
A code vision forms part of the code policy.

Why
A code vision unites a development team and gives them a technical direction. Without a
shared vision, there is the risk that development may fragment or suffer from inertia.

How
A code vision or a set of code visions may be developed as statements. For example, a code
vision could read as follows: “We are committed to Microsoft technology and ensuring that all
functionality across the enterprise will be .NET technology or .NET compliant by June 2007.”

The Standard: Code Vision

The standard acknowledges that a code vision creates a sense of direction that unites a

development team to work toward a shared technical goal.

Code Objectives
Once a code vision(s) has been expressed, it needs to be implemented across all development
through a set of code objectives.

What
The code objectives identify what is necessary to achieve the code vision.

Where
A set of code objectives forms part of the code policy.

Why
Code objectives are important because they express in concrete terms what needs to be done
to realize the code vision. Or to paraphrase Jessie Liberty, “from clouds to code.”

CHAPTER 1 � CODE POLICY 5

560-2 ch01.qxd 10/27/05 4:15 PM Page 5

�Tip Jessie Liberty is one of the preeminent authors in the C# community. His first C# book (Programming
C#, by O’Reilly & Associates) was published in July 2001, and since then it has moved on to its fourth edi-
tion. You can check out Jessie’s website at www.libertyassociates.com.

How
A gap analysis is used to determine what is required to move from one state (e.g., code that is
a mix of legacy and .NET) to the vision state (e.g., code that is 100% .NET or .NET compliant).
The issues identified in the gap analysis are then expressed as objectives. For example:
Objective 1: Rewrite HTML/Javascript Web pages as ASP.NET/C# Web pages.

The Standard: Code Objective

The standard acknowledges that code objectives are an essential part of the develop-

ment process because they identify what aspects of the enterprise need to change to

realize a code vision.

Code Plan
Once a set of code objectives has been prepared, then a code plan is developed.

What
A code plan identifies a way to move the state of the code from its present one (e.g., a mix of
legacy and .NET) to that specified in the code vision (e.g., 100% .NET or .NET compliant).

Where
A code plan forms part of the code policy.

Why
It is necessary to identify how the objectives are to be achieved, by expressing them clearly
and concisely in a language that assists application architects and developers.

How
A code plan is developed as a project plan: it identifies the tasks that are necessary to achieve
each code objective and allocates resources.

CHAPTER 1 � CODE POLICY6

560-2 ch01.qxd 10/27/05 4:15 PM Page 6

The Standard: Code Plan

The standard acknowledges the use of a code plan to identify tasks and allocate

resources to progress code from its current state to its future state.

Code Strategy
Once a code plan has been prepared, then it is up to the technical team to determine how the
plan is to be implemented.

What
The strategy is the how statement: “This is how we are going to undertake the tasks in the
code plan.”

Where
A code strategy forms part of the code policy.

Why
It is not obvious how objectives are best achieved, from a technical perspective, so a strategy
is prepared to guide the development team. Often it is necessary to iterate a code strategy, as
early feedback may indicate problems implementing a given aspect of a code strategy. For
example, wrapping a given COM file as .NET may result in an unacceptable performance hit
and thus require that part of the file to be migrated into a C# code file.

How
A code strategy is developed by a technical team having examined the technical and func-
tional implications of the code plan and objectives. For example: A strategy to migrate HTML/
Javascript Web pages into ASP.NET/C# Web pages may involve abstracting common legacy
functionality into an enterprise services layer.

The Standard: Code Strategy

The standard acknowledges that a code strategy can be used to determine the best way

to implement a code plan and achieve a set of code objectives.

Development Methodology
A best-of-breed code development methodology is used to maximize the likelihood of devel-
oping successful code and to minimize risk.

CHAPTER 1 � CODE POLICY 7

560-2 ch01.qxd 10/27/05 4:15 PM Page 7

What
A code development methodology is a structured set of guidelines that control the way code is
developed. Popular methodologies include eXtreme Programming (XP) and Rational Unified
Process (RUP).

�Note You can find out more about XP and RUP by visiting their websites: XP (www.extremeprogramming.org)
and RUP (http://www-306.ibm.com/software/rational/).

Where
A code development methodology is used across the enterprise.

Why
There is too much that can go wrong when developing code, and a best-of-breed development
methodology standardizes development across applications and minimizes or prevents prob-
lems from occurring.

How
An organization evaluates a development methodology and then adopts it as part of its code
policy. A brief overview of RUP and XP methodologies now follows:

XP

eXtreme Programming articulates a programming process that is built around four core best
practices: planning, designing, coding, and testing. Some of the features of the best practices
include:

• Planning

• User stories.

• Release planning.

• Small release.

• Measuring project velocity.

• Iteration planning.

• Rotating team.

• A quick (stand-up) meeting at the start of each day.

• Fixing any XP methodology problems as they occur.

CHAPTER 1 � CODE POLICY8

560-2 ch01.qxd 10/27/05 4:15 PM Page 8

• Designing

• Simplicity.

• Creating spike solutions to reduce risk.

• Refactoring mercilessly (XP defines this as removing redundancy, eliminating
unused functionality, and rejuvenating obsolete designs throughout the whole
project life cycle).

• Coding

• The customer is always available.

• Writing code to agreed standards.

• Pair programming production code.

• Having only one pair integrate code at a time.

• Coding the unit test first.

• Integrating frequently.

• Collective ownership (XP defines this as allowing any developer to change any line
of code—there is no personal ownership of code).

• No overtime (developing code when in a tired state significantly increases the risk
of error).

• Testing

• All code is unit tested.

• All code must pass a unit test prior to release.

• When there are bugs, create a test.

• Acceptance tests are run frequently and the results are published, for all to see.

RUP

Rational Unified Process articulates a framework of iterative software design that is built
around core best practices, including the following:

• Develop software in iterations.

• Manage requirements.

• Favor component-based architecture.

• Model software visually.

• Verify the quality of software.

• Control changes to software.

CHAPTER 1 � CODE POLICY 9

560-2 ch01.qxd 10/27/05 4:15 PM Page 9

The preceding methodologies are favored choices among the community and share the
common theme of managing the development of low-risk code through a formal, structured,
and transparent methodology.

The Standard: Code Development Methodology

The standard acknowledges the use of code development methodologies such as XP and

RUP, which are used to maximize the likelihood of developing successful code.

Supplementary Development Policies
A code development methodology is not exhaustive, and it may rely on supplementary
development policies to ensure dependencies are in place (e.g., unit testing). Or there may
be additional development practices that need to be expressed in a supplementary policy:
conveniently, a set of in-house standards may be referenced as supplementary policies. We
discuss six standards that are generally included as supplementary development policies.

Peer Review
A common practice is to subject the code written by each developer to a peer review.

What
A peer review is an examination or review of the code that a team member has written, by his or
her peers (fellow team members or members from another team). The team studies the code to
identify strengths, weaknesses, opportunities, and inconsistencies with the code policy.

Where
A peer review is employed across all code development (e.g., application development; refac-
toring; maintenance; integration and reengineering).

Why
There are at least four key reasons why peer review is popular: (1) it improves the quality of
code development by improving the skills of the developer; (2) it is an effective way to share
knowledge; (3) it assists in ensuring that code policies are being implemented correctly; and
(4) it builds team cohesion.

How
A peer review can follow a continuous or periodic process. In a continuous peer review, a
developer codes with a partner and each partner continuously reviews the other’s code (refer
to XP “pair programming”). Or a periodic review may be undertaken at the end of an iteration,
for example.

CHAPTER 1 � CODE POLICY10

560-2 ch01.qxd 10/27/05 4:15 PM Page 10

�Note XP’s practice of “pair programming” is in effect a continuous peer review that happens while the
code is written.

The Standard: Peer Review

The standard acknowledges the benefits of peer review: (1) improvement of the quality

of code by improving the skills of the developer, (2) knowledge sharing, (3) compliance

with code policies, and (4) building team cohesion.

Unit Testing
It is high-risk not to unit test functionality when it is developed or released into production.

What
A unit test is a test of the functionality of a class: it passes data to its methods and verifies the
get and set functionality. If you adhere to an XP methodology, for example, then you develop
the unit tests before you develop the code and run tests during the development process.

Where
A unit test is performed against all class development and maintenance.

Why
If the actual functionality of an object differs from what is expected, then that may adversely
affect object collaboration, which in turn may affect stability and reliability of an application.

How
Unit tests are written within a test framework, and the framework is used to test class func-
tionality.

�Tip Most versions of Visual Studio 2005 come with a unit test framework that is accessible from the main
menu (i.e., Test menu). Otherwise, a unit test framework is available from Nunit (www.nunit.org)—it is
written in C#.

The Standard: Unit Testing

The standard acknowledges the importance of unit testing, which is used to examine the

reliability of calling the methods of an object.

CHAPTER 1 � CODE POLICY 11

560-2 ch01.qxd 10/27/05 4:15 PM Page 11

Refactoring
During the life cycle of an application, there is always code that needs tweaking to accommo-
date change or improve its quality.

What
Refactoring is a technique to transform code by altering its internal behavior without affecting
its external behavior.

Where
Refactoring is used where there is a need to make adjustments to code to accommodate
change or to improve the quality of code.

Why
Generally, code is refactored because it is cheaper and quicker to transform code that way,
rather than redesign it.

How
Code is progressively transformed, in small increments, to reduce the risk of affecting its
external behavior.

�Tip Martin Fowler is a leading authority on refactoring and manages a website dedicated to it:
www.refactoring.com.

The Standard: Refactoring

The standard acknowledges that refactoring is a useful tool to transform the internal

workings of an application without affecting its external workings.

Development Imperative
Generally, there are two ways to develop code: from an enterprise perspective or from a
domain perspective. Commonly, a supplementary policy is prepared to clarify when code is
to be written as enterprise or domain code. The decision is often not obvious and presents a
dilemma that may be settled by issuing a policy statement based on a general code rule such
as, “If it is assessed that code has a reasonable likelihood of being used in three or more situ-
ations, then it is developed as enterprise code and consumed by domain applications as an
enterprise service.” The enterprise–domain dilemma is discussed further as the “Enterprise–
Domain Dichotomy” in Chapter 6.

CHAPTER 1 � CODE POLICY12

560-2 ch01.qxd 10/27/05 4:15 PM Page 12

Enterprise Imperative
An enterprise imperative recognizes that many applications have similar functionality and
that resources may be more efficiently used by abstracting that functionality into a shared or
enterprise service.

What
Developing code with an enterprise imperative refers to the practice of identifying code that
has the potential for reuse and then developing it generically into class libraries to be pub-
lished as an enterprise service.

Where
An enterprise imperative may be used in developing any functionality, except where it is obvi-
ous that functionality is unlikely to be reused.

Why
Code developed from an enterprise perspective minimizes duplication and maintenance.
In theory, once there is a rich set of enterprise services, then domain applications may be
developed rapidly, because the amount of marginal development is minimal, as the domain
application leverages a repository of enterprise services.

How
The general approach is to identify what is enterprise functionality and develop it into a serv-
ices layer from where applications reference it. Candidates for enterprise functionality include
data access, business logic, user interfaces, controls, and integration functionality.

The Standard: Enterprise Imperative

The standard acknowledges that developing code with an enterprise imperative

improves efficiency by minimizing code duplication and maintenance.

Domain Imperative
Although it is great to leverage the benefits of enterprise code, it is not always practical or
politically acceptable to incur the upfront overhead costs of developing generic code and then
specializing it in a domain application.

What
Developing code with a domain imperative refers to developing code that is coupled to a
domain implementation.

CHAPTER 1 � CODE POLICY 13

560-2 ch01.qxd 10/27/05 4:15 PM Page 13

Where
A domain imperative is used where there is a domain requirement that is not common to the
enterprise, or where it is impractical or politically unacceptable to develop reusable code from
an enterprise perspective.

Why
The code is domain specific or there is insufficient opportunity or incentive to develop code
from an enterprise perspective. Commonly, much functionality is coupled to a domain
requirement and there is no advantage in developing it generically.

How
Code is developed solely to meet the requirements of the domain.

The Standard: Domain Imperative

The standard acknowledges that a domain imperative is used where a requirement is

tightly coupled to a domain or there is insufficient opportunity or incentive to develop it

otherwise.

Source-Code Control
A critical aspect of code development is making sure that the source code is protected by a
source-code control system.

What
Source-code control manages code that is developed by teams. It is a system that protects
source code from being accidentally overwritten or lost; backups code; and tracks changes.

�Tip If you don’t have access to Microsoft Visual SourceSafe (www.microsoft.com), then you may want
to review an open standard alternative: CVS (www.nongnu.org/cvs/).

Where
A source-code control system is used across the enterprise on all code development projects.

Why
A source-code control system protects code by reducing the risks associated with team devel-
opment (e.g., the risk of one developer’s code being overwritten by another developer’s code).

CHAPTER 1 � CODE POLICY14

560-2 ch01.qxd 10/27/05 4:15 PM Page 14

How
Developers check out a piece of code (e.g., a class) from a central repository into an allocated
folder (private workspace) where they make changes. While they are working on the code,
other developers are unaffected. When they have finished, they then check in the code to the
central repository.

The Standard: Source Code Control

The standard acknowledges that a source code security control reduces the risks associ-

ated with team development.

Code Obsolescence
Warning developers that functionality is flagged for depreciation saves a lot of problems—
which can easily be done by using the Obsolete attribute.

What
An Obsolete attribute is an attribute that signifies a type or members of a type are flagged for
depreciation.

Where
An Obsolete attribute is used in situations where it is known that functionality is scheduled to
be depreciated.

Why
It is bad practice to fail to give adequate warning that functionality has been scheduled for
obsolescence. Timely notification minimizes the risks associated with obsolescence.

How
Obsolescence may be signified with a special attribute: ObsoleteAttribute. The attribute may
be used with class, struct, enum, interface, delegate, method, constructor, property, field, and
event. For example:

...
[Obsolete("Obsolete – use XYZ() method")]
public void ABC()
{...}
...

�Tip It is considered that a notice period of one major version is a minimum period in which to notify that
functionality is to be depreciated. Apart from using the Obsolete attribute, in addition, consideration may
also be given to communicating planned depreciation through a developer’s blog and/or by email.

CHAPTER 1 � CODE POLICY 15

560-2 ch01.qxd 10/27/05 4:15 PM Page 15

The Standard: Obsolescence

The standard acknowledges the benefits of early warning of obsolescence. Notice should

be given in a timely manner: it is considered that a notice period of one major version is

a minimum.

Code Style
In this section we turn our attention to another aspect of code development that is controlled
by code policy: code style.

What
A code style is a set of guidelines that regulate the way developers write code. Code styles can
be simple or comprehensive; generally, simple code styles are more successful because they
tend to be more intuitive and easy to remember.

Where
A code style is used across all code development.

Why
A code style is adopted because it encourages uniformity or consistency in code develop-
ment—which improves understandability of code and makes it relatively easy to rotate
developers from project to project or from team to team.

How
The first thing to do is decide what is in scope. Then, once that is determined, a style guide or
manual is prepared and distributed to the development team; Visual Studio 2005 has signifi-
cantly simplified the process of controlling code style by including a wide range of formatting
styles that can be configured directly into the IDE. The IDE also includes a wide range of code
snippets that can be used to standardize style.

The Standard: Code Style

The standard acknowledges the use of a code style to encourage uniformity or consis-

tency in the way that code is written. It improves understandability of code and makes it

relatively easy to rotate developers from project to project or from team to team.

CHAPTER 1 � CODE POLICY16

560-2 ch01.qxd 10/27/05 4:15 PM Page 16

Code Notation
There are three common types of code notation: Pascal, Camel, and Hungarian. In recent years
there has been wide variation in the use of these notations, and this has led to a state of uncer-
tainty in the community. After much research I could not find a definitive and comprehensive
statement on how to notate C# code; I found it to be fragmented or specialized. (If you know
better, then please email me: markhorner@hotmail.com). What I have been able to piece
together is that there is a mix of Pascal and Camel, and that although Hungarian notation is
“politically incorrect,” it is still commonly used with variables to identify Web and Windows
control types. It is the use of Hungarian notation for controls that seems to cause the greatest
debate. One side of the argument is that Hungarian shouldn’t be used because the name of a
variable should indicate its semantics and not its type, and if you need to know the type of the
control, then you can hover the mouse over the variable (which presumes that you are not
reading from a hardcopy code listing, for example). On the other side of the argument is the
view that using Hungarian notation to identify the type of a control is ubiquitous and very con-
venient. My research of websites, weblogs, and computer books shows that there is substantial
support, in the C# community, for using Hungarian notation to identify the type of a Web/
Windows control. Acknowledging the respective arguments, I have put together two code nota-
tion standards:

Camel–Hungarian–Pascal Notation Standard

1. Instance member variables/fields and parameters: Use Camel notation (e.g.,
myVariable).

2. Web/Windows control variables: Use Hungarian notation (e.g., btnSubmit).

3. All other identifiers: Use Pascal (e.g., MyClass).

Camel–Pascal Notation Standard

1. Instance member variables/fields and parameters: Use Camel notation (e.g.,
myVariable).

2. Web/Windows controls variables: Use Camel notation (e.g., submit).

3. All other identifiers: Use Pascal (e.g., MyClass).

�Note Where case sensitivity is not relied on to distinguish a variable from its type, then the variable may
commonly be prefaced with an underscore (_myVariable)—refer to the section Supplementary Style Policy,
later in this chapter. The use of (_Variable) as a variable name would contravene Camel notation, whereas
the use of (_variable) complies with Camel notation and a policy that discourages differentiation of a vari-
able name and its type by relying on case sensitivity—however, using an underscore does look a bit odd
when selecting the variable in IntelliSense.

CHAPTER 1 � CODE POLICY 17

560-2 ch01.qxd 10/27/05 4:15 PM Page 17

Pascal Notation
Pascal notation is a code notation used to name identifiers.

What
In Pascal notation, the first letter of the identifier starts in uppercase, then drops to lowercase
until the start of the second word, if there is one, when it rises to uppercase for the first letter of
the second word and then drops down to lowercase for the remainder of the word, and so on.

Where
Pascal notation is used to identify class, constant, delegate, enum type, enum value, event,
event handler, exception, static member variable, interface, method, namespace, and prop-
erty. Table 1- lists the identifiers that use Pascal notation.

Table 1-1. Identifiers—Pascal Notation

Identifier Notation Example

Class Pascal Car

Constant Pascal MaximumValue

Delegate Pascal ChangeInformation

Enum Type Pascal ColorChoice

Enum Value Pascal OnlyBlack

Event (Delegate) Pascal ChangeDirection

Event Handler Pascal OnChangeDirection

Exception Pascal OutOfOrderException

Static Member Variable Pascal ThisValue

Interface Pascal IEngine

Method Pascal StopEngine()

Namespace Pascal Enterprise.BusinessRules

Property Pascal RadiatorCap

Why
Pascal notation represents identifiers that are significant, whereas Camel notation is used to
represent identifiers that are less significant and accessed through a method (e.g., instance
member variables and parameters).

How
Pascal notation is written as: “ThisIsPascal” (multiword) or “Pascal” (single word).

CHAPTER 1 � CODE POLICY18

560-2 ch01.qxd 10/27/05 4:15 PM Page 18

The Standard: Pascal Notation

The standard acknowledges the use of Pascal notation for class, constant, delegate,

enum type, enum value, event, event handler, exception, static member variable, inter-

face, method, namespace, and property.

Camel Notation
Camel notation is a code notation used to name identifiers.

What
In Camel notation, the first word of the identifier is lowercase, the first letter of the second
word of the identifier—if there is one—is uppercase, and the remainder of the word is lower-
case. The pattern used in the second word repeats for subsequent words.

Where
Camel is used to identify instance member variables and parameters.

Why
Camel notation represents identifiers that are less significant or accessed through a method.

How
Camel notation is written as “thisIsCamel” (multiword) or “camel” (single word). Table 1-2 lists
the identifiers that use Camel notation.

Table 1-2. Identifiers—Camel Notation

Identifier Notation Example

Instance Member Variable Camel carTire

Parameter Camel valueIn

The Standard: Camel Notation

The standard acknowledges the use of Camel notation for instance member variables

and parameters.

CHAPTER 1 � CODE POLICY 19

560-2 ch01.qxd 10/27/05 4:15 PM Page 19

Hungarian Notation
Hungarian notation is a code notation used to name identifiers.

What
In Hungarian notation, the first word or acronym (which may be a single letter, although none
are shown in the following table) of the identifier is lowercase and represents the Web/Windows
visual or user interface control type. In subsequent words of the identifier, the first letter is
uppercase and the remainder of the word in lowercase.

Where
Hungarian notation is used with variable identifiers that hold Web/Windows controls. Histori-
cally, it was common practice to use Hungarian notation to identify the types of all variables
(e.g., iAge or strName); however, that practice is no longer in vogue. There is still debate as to
whether Hungarian notation should be used at all, but, as previously mentioned, it has been
steadfastly supported for variable identifiers that hold Web/Windows visual or user interface
controls types.

Why
Hungarian notation is used because it is a longstanding convention and it is useful to identify
Web/Windows visual control types when reading code.

How
Hungarian notation is written as cmbEmployees or lstEmployees. Table 1-3 lists Web/Windows
visual controls that use Hungarian notation.

CHAPTER 1 � CODE POLICY20

Table 1-3. Identifiers—Hungarian Notation

Control # Control Category Control Type Prefix Example

1A ASP.NET AdRotator ar arName

2A ASP.NET Button btn btnName

3A ASP.NET Calendar clr clrName

4A ASP.NET CheckBox cb cbName

5A ASP.NET CheckedListBox clb clbName

6A ASP.NET CompareValidator cv cvName

7A ASP.NET CrystalReportViewer crv crvName

8A ASP.NET DataGrid dg dgName

9A ASP.NET DataGridColumn dgc dgcName

10A ASP.NET DataGridItem dgi dgiName

11A ASP.NET DataList dl dlName

12A ASP.NET DropDownList ddl ddlName

13A ASP.NET HyperLink hl hlName

560-2 ch01.qxd 10/27/05 4:15 PM Page 20

Control # Control Category Control Type Prefix Example

14A ASP.NET Image img imgName

15A ASP.NET ImageButton ib ibName

16A ASP.NET Label lbl lblName

17A ASP.NET LinkButton lbn lbnName

18A ASP.NET ListBox lbx lbxName

19A ASP.NET Literal ltl ltlName

20A ASP.NET MultiPage mp mpName

21A ASP.NET Panel pnl pnlName

22A ASP.NET PlaceHolder ph phName

23A ASP.NET RadioButton rb rbName

24A ASP.NET RadioButtonList rbl rblName

25A ASP.NET RangeValidator rv rvName

26A ASP.NET RegularExpressionValidator rev revName

27A ASP.NET Repeater rpr rprName

28A ASP.NET RepeaterItem rpi rpiName

29A ASP.NET RequiredValidator rv rvName

30A ASP.NET Table tbl tblName

31A ASP.NET TableCell tbc tbcName

32A ASP.NET TableRow tbr tbrName

33A ASP.NET TabStrip ts tsName

34A ASP.NET TextBox tb tbName

35A ASP.NET Toolbar tbr tbrName

36A ASP.NET TreeView tv tvName

37A ASP.NET ValidatorSummary vs vsName

38A ASP.NET Xml xml xmlName

1H HTML Button btn btnName

2H HTML CheckBox cb cbName

3H HTML DropDownList ddl ddlName

4H HTML FileField ff ffName

5H HTML FlowLayoutPanel flp flpName

6H HTML GridLayoutPanel glp glpName

7H HTML Hidden hdn hdnName

8H HTML HorizontalRule hr hrName

9H HTML Image img imgName

10H HTML Label lbl lblName

11H HTML ListBox lb lbName

12H HTML PasswordField pwf pwfName

13H HTML RadioButton rdb rdbName

Continued

CHAPTER 1 � CODE POLICY 21

560-2 ch01.qxd 10/27/05 4:15 PM Page 21

Table 1-3. Continued

Control # Control Category Control Type Prefix Example

14H HTML ResetButton rsb rsbName

15H HTML SubmitButton sbb sbbName

16H HTML Table tbl tblName

17H HTML TextBox tb tbName

18H HTML TextArea ta taName

1W WINDOWS Binding bdg bdgName

2W WINDOWS Bitmap bmp bmpName

3W WINDOWS Brush brh brhName

4W WINDOWS Button btn btnName

5W WINDOWS CheckBox cb cbName

6W WINDOWS CheckedBoxList cbl cblName

7W WINDOWS Color clr clrName

8W WINDOWS ColorPalette clrp clrpName

9W WINDOWS ComboBox cb cbName

10W WINDOWS ContextMenu ctm ctmName

11W WINDOWS CrystalReportViewer crv crvName

12W WINDOWS Cursor csr csrName

13W WINDOWS DataGrid dg dgName

14W WINDOWS DataGridColumn dgc dgcName

15W WINDOWS DateTimePicker dtp dtpName

16W WINDOWS DialogControl dc dcName

17W WINDOWS DirectoryEntry de deName

18W WINDOWS DirectorySearcher ds dsName

19W WINDOWS DomainDropDown ddd dddName

20W WINDOWS ErrorProvider ep epName

21W WINDOWS EventLog el elName

22W WINDOWS FileSystemWatcher fsw fswName

23W WINDOWS Font fnt fntName

24W WINDOWS Form frm frmName

25W WINDOWS Graphics gps gpsName

26W WINDOWS GraphicsPath gp gpName

27W WINDOWS GroupBox gb gbName

28W WINDOWS HelpProvider hp hpName

29W WINDOWS HorizontalScrollBar hsr hsrName

30W WINDOWS Icon ico icoName

31W WINDOWS Image img imgName

32W WINDOWS ImageList imgl imglName

CHAPTER 1 � CODE POLICY22

560-2 ch01.qxd 10/27/05 4:15 PM Page 22

Control # Control Category Control Type Prefix Example

33W WINDOWS Label lbl lblName

34W WINDOWS LinkLabel lnkl lnklName

35W WINDOWS ListBox lb lbName

36W WINDOWS ListView lv lvName

37W WINDOWS ListViewItem lvi lviName

38W WINDOWS MainMenu mmnu mmnuName

39W WINDOWS MenuItem mnui mnuiName

40W WINDOWS MaskEditBox meb mebName

41W WINDOWS MessageQueue msq msqName

42W WINDOWS MetaFile mf mfName

43W WINDOWS MonthCalendar mclr mclrName

44W WINDOWS NotifyIcon nico nicoName

45W WINDOWS NumericUpDown nud nudName

46W WINDOWS PageSettings pstg pstgName

47W WINDOWS Panel pnl pnlName

48W WINDOWS Pen pen penName

49W WINDOWS PeformanceCounter pfmc pfmcName

50W WINDOWS PictureBox picb picbName

51W WINDOWS Point pnt pntName

52W WINDOWS PrintController prtc prtcName

53W WINDOWS PrintDocument prtd prtdName

54W WINDOWS PrinterSettings prts prtsName

55W WINDOWS Process pcs pcsName

56W WINDOWS Rectangle rec recName

57W WINDOWS Region rgn rgnName

58W WINDOWS ReportDocument rptd rptdName

59W WINDOWS ServiceController srvc srvcName

60W WINDOWS Size sze szeName

61W WINDOWS Timer tmr tmrName

CHAPTER 1 � CODE POLICY 23

The Standard: Hungarian Notation

The standard acknowledges the debate about the use of Hungarian notation with

Web/Windows visual controls and notes it has steadfast and wide community support,

thus making its use, for a variable assigned a visual control, optional.

560-2 ch01.qxd 10/27/05 4:15 PM Page 23

Code Formatting
Visual Studio 2005 has introduced a comprehensive list of code formatting options that are
configurable within the IDE, as are code snippets. These features effectively eliminate the
need to manually prepare a set of formatting standards. The formatting options are listed in
the following sections, and all that remains for a development team is to agree the options,
configure the respective IDEs, and note them as in-house standards. Then those standards
may be referenced in a policy statement.

Visual Studio Formatting Options
Tabs

• Indenting

• None

• Block

• Smart

• Tab

• Tab size

• Indent size

• Insert spaces

• Keep tabs

Indentation

• Indent block contents

• Indent open and close braces

• Indent case contents

• Indent case labels

• Label indentation

• Place goto labels in leftmost column

• Place goto labels one indent less than current

• Indent labels normally

CHAPTER 1 � CODE POLICY24

560-2 ch01.qxd 10/27/05 4:15 PM Page 24

New Lines

• Braces

• Place open brace on new line for types

• Place open brace on new line for methods

• Place open brace on new lines for anonymous methods

• Place open brace on new lines for control blocks

• Keywords

• Place “else” on new line

• Place “catch” on new line

• Place “finally” on new line

Spacing

• Method declarations

• Insert space between method name and its opening parenthesis

• Insert space within argument list parentheses

• Insert space within empty argument list parentheses

• Method calls

• Insert space between method name and its opening parenthesis

• Insert space within argument list parenthesis

• Insert space within empty argument list parenthesis

• Set spacing for other

• Insert space after control flow keywords

• Insert space within parentheses of expressions

• Insert space within parentheses of type casts

• Insert space within flow control construct parentheses

• Insert space after cast

• Spacing for brackets

• Insert space before open square bracket

• Insert space within empty square brackets

• Insert spaces within square brackets

CHAPTER 1 � CODE POLICY 25

560-2 ch01.qxd 10/27/05 4:15 PM Page 25

• Spacing for delimiters

• Insert space after colon for base or interface in type declaration

• Insert space after comma

• Insert space after dot

• Insert space after semicolon in “for” statement

• Insert space before colon for base or interface in type declaration

• Insert space before comma

• Insert space before dot

• Insert space before semicolon in for statement

• Spacing for operators

• Insert space before and after binary operators

• Ignore spaces around binary operators

• Remove white space before and after binary operators

Wrapping

• Leave block on single line

• Leave statements and member declarations on the same line

Supplementary Style Policy
Case sensitivity is not a standard that fits within code notation or formatting policy, but it is
inserted into code policy as a supplementary style policy—as are other standards that are
appropriate.

Case Sensitivity
.NET comes with two types of development languages, case sensitive (e.g., C#) and case insen-
sitive (e.g., Visual Basic). This presents a bit of a problem for teams that support both language
types, and so there is always an option to accept a .NET standard, which rules against using
case sensitivity (e.g., in C# language).

What
Case sensitivity refers to a language that recognizes that code syntax can be differentiated
on case.

CHAPTER 1 � CODE POLICY26

560-2 ch01.qxd 10/27/05 4:15 PM Page 26

Where
Alpha characters are case sensitive in the C# language and are not in Visual Basic language.

Why
Case sensitivity is leveraged by developers for convenience and readability.

How
A variable name is differentiated by case; for example, in C# language the following variable
(car) is differentiated, by the compiler, from its type (Car):

Car car; (C#)

However, in Visual Basic the equivalent syntax would result in a compile error:

Dim car as Car (VB)

To maintain a consistent variable naming style across the languages, a common practice
is to (1) rule against the use of case sensitivity in C# code; or (2) prefix a variable with an
underscore in both languages, as in the following example:

Car _car; (C#)

Dim _car as Car (VB)

The Standard: Case Sensitivity

The standard acknowledges that where C# and Visual Basic are supported, for consistency

in naming variables, a choice is made between (1) ruling against the use of case sensitivity

in C# code; or (2) prefixing variables—in C# and VB code—with an underscore.

CHAPTER 1 � CODE POLICY 27

560-2 ch01.qxd 10/27/05 4:15 PM Page 27

560-2 ch01.qxd 10/27/05 4:15 PM Page 28

Code Structure

In this chapter I discuss structuring code and note that .NET has three levels of code structure:
assembly; namespace, and complex types. We can choose an assembly to structure specialist
functionality (e.g., security code) or structure functionality within a hierarchy of nested name-
spaces or structure functionality in an interface; struct; class; partial class; or generic type. The
choices that we make impact not only accessibility to our code, but they also impact the flexi-
bility and maintainability of the code; and the larger the application, the greater the impact!

Assembly
An assembly is used to control the way functionality is accessed and distributed.

What
An assembly is a repository that is used to store related functionality. There are two types of
assemblies: an executable (EXE) and a dynamic link library (DLL).

Where
An assembly is used where there is a need to partition or encapsulate functionality into a
logical unit.

Why
An assembly can be used to control the way that code is made accessible or distributed to
a client. For example, code distributed in an EXE assembly is accessible indirectly through
its functionality, whereas code that is in a DLL assembly is accessible directly through its
interface.

How
If we use our copy of Visual Studio 2005 as an example, we can see how an assembly is
leveraged to structure functionality. In the object browser we see that the core library func-
tionality (mscorlib.dll) is structured in a DLL assembly, as is the security functionality
(System.Security.dll). However, Visual Studio 2005 itself is structured in an EXE assembly
(devenv.exe), which illustrates how the code designers have used respective code structures

29

C H A P T E R 2

� � �

560-2 ch02.qxd 10/27/05 4:16 PM Page 29

to prepare code for different roles. As we know, assemblies are generally created as a Visual
Studio project type, although they may be created on the command line.

The Standard: Assembly

The standard acknowledges that an assembly may be used to partition specialized func-

tionality and to control distribution and accessibility to that functionality. The choices

made to structure code impact not only accessibility to code but also the flexibility and

maintainability of the code.

Namespace
A namespace resides in an assembly, and it is used as a tool to structure code.

What
A namespace is a compilation unit in which code can be structured. Implicitly, the visibility of
a namespace is public and its access modifier cannot be changed. An assembly may include
multiple namespaces where namespaces are commonly embedded in a hierarchy to enable
granular or strategic referencing of code.

Where
A namespace is used where there is a requirement to structure functionality within logical units.

Why
Code is more manageable when it is categorized into units of logically related functionality.
Namespaces may also be used to avoid conflict between classes or variables with the same
names (e.g., ThisNamespace.Class1 and ThatNamespace.Class1).

How
Namespaces are coded by using the namespace keyword followed by a block consisting of
opening and closing braces. Namespaces may be nested; the following example illustrates
the nesting of the EngineParts namespace within the Inventory namespace. The Piston class
may be referenced as Inventory.EngineParts.Piston.—it is accessible or visible within the
EngineParts namespace and not immediately within the Inventory namespace:

namespace Inventory
{
namespace EngineParts
{
class Piston
{ ...}

}
}

CHAPTER 2 � CODE STRUCTURE30

560-2 ch02.qxd 10/27/05 4:16 PM Page 30

The Standard: Namespace

The standard acknowledges the use of namespaces and embedded namespaces to

strategically structure code and to avoid naming conflicts.

Interface Type
An interface type offers flexibility in the way that code can be structured because of its sup-
port of multiple inheritance, it can be implemented at any level in a class hierarchy or in
another interface hierarchy.

What
An interface type is a complex reference type that may contain properties, methods, events,
and indexers. It exposes an interface without committing the derived type to an implementa-
tion. It supports multiple inheritance (implementation inheritance), unlike a class (in .NET)
that supports single class inheritance. It may be inherited by a class, a struct, or by another
interface type: Its role is structural and polymorphic—not code reuse.

Where
An interface type is used to enhance the interface of a class or struct—it is commonly used
to signify that a class or struct performs a given role, which is usually indicated in the name of
the interface, such as IDisposable or IBinarySerialize. As it can be inherited anywhere in a
class hierarchy, it can be used to enhance a design when it is most appropriate or convenient.

Why
In complex domains, the interface type overcomes the limitations of single class inheritance
and offers the opportunity to treat classes that are not part of the same class hierarchy as if they
were, by using polymorphism. A class designer may use an interface type to avoid having to
reengineer a base class or to enhance its interface through interface inheritance, particularly
when features of the interface are optional. For example, the concepts of sedan and tourer can
be treated as an embellishment to the car base class, rather than as an attribute of car. The use
of an interface type adds flexibility; for example, when new car concepts are introduced (e.g.,
station wagon or convertible), they can be simply implemented where convenient rather than
having to disturb the base class or class hierarchy.

How
An interface type is defined as follows:

namespace ModelT.Interfaces
{
interface ISedan
{
int Doors {get; set;}

CHAPTER 2 � CODE STRUCTURE 31

560-2 ch02.qxd 10/27/05 4:16 PM Page 31

void DoSomething();
}

interface ITourer
{
int Doors {get; set;}
void DoSomethingElse();

}
}

By using an interface type, we can keep the definition of car generic and inherit the
appropriate functionality using interface inheritance, as in the following example:

using System;
using ModelT.Interfaces; //reference namespace

namespace ModelTInterfaceExample
{
class Car: ISedan //inherit Sedan functionality
{
int _door;

//implement property
public int Door
{
get {return _door;}
set {_door = value;}

}

//implement method
public void DoSomething() {;}

}
}

From the previous code snippet, we can see the definition of interface types and the sub-
sequent use of them by a car type to embellish its interface with the interface of a sedan. Class
objects instantiated from this class may now be treated polymorphically as Car or Sedan type.
Although an interface type requires that its interface is implemented, by an inheriting class
or struct, this may be inconvenient; where only part of the interface type is required by a
class or struct, the unwanted part of the interface may be implemented as a stub. For example,
an inheriting class may implement a method without functionality, as shown here:

public void DoSomething()
{
; //code stub

}

CHAPTER 2 � CODE STRUCTURE32

560-2 ch02.qxd 10/27/05 4:16 PM Page 32

The Standard: Interface Type

The standard acknowledges that an interface type may be used to add flexibility to the

way that code is structured. It is commonly used to signify that a class or struct performs

a given role or to leverage its ability to support multiple inheritance.

struct Type
A struct is a lightweight alternative to a class and can be used to structure functionality
without incurring the overhead penalty of a reference type.

What
A struct is a complex value type that may contain constructors, fields, properties, methods,
nested types, operators, and indexers. A struct does not support inheritance itself (unlike a
class or interface type), but it may inherit from an interface type.

Where
A struct is used where there is a requirement for a lightweight complex type that isn’t required
to support class-inheritance or reference or instantiation semantics. For example, we could
use a struct type as a base type for a Car and specialize functionality through interface inheri-
tance. That would be useful in a situation where memory resource allocation is critical (i.e., a
program that has to run on a mobile device)—each active instance of a Car would consume
less memory if it was built as a struct rather than as a class type. Why? Because the struct is
a value type, it is more efficient because it resides on the stack and requires less memory than
a class, which is a complex type and resides on the heap.

How
The following code snippet illustrates the definition of a struct type, which inherits the ISedan
interface type.

struct myCar: ISedan
{
int _door;

//implement property
public int Door
{
get {return _door;}
set {_door = value;}

}

//implement method
public void DoSomething() {;}

}

CHAPTER 2 � CODE STRUCTURE 33

560-2 ch02.qxd 10/27/05 4:16 PM Page 33

If we compare the code structure of a sedan car defined by using the class and struct
types, we see that they are identical. However, the sedan car built with the struct type is more
resource efficient: it doesn’t have to be instantiated, and it doesn’t have the overhead of a ref-
erence type. It is a worthwhile alternative to a class when class inheritance is not required.

The Standard: struct Type

The standard acknowledges a struct type may be used as a lightweight alternative to a

class to structure code and leverage interface inheritance in situations where memory

allocation is scarce or class-inheritance and referencing are not required.

Class Type
A class is the most sophisticated type used to structure functionality; it supports class inheri-
tance and can be coded as an abstraction or as an implementation.

What
A class, which is a complex reference type, is the definition of an object. Once instantiated, the
class is known as a concrete class or object. It may be modified as abstract, which prevents it
from being instantiated, or it may be modified as sealed, preventing it from being extended
(i.e., inherited). It supports single class inheritance and multiple interface inheritance.

Where
A class is used where there is a requirement to support class-inheritance or instantiation
semantics, and the overhead of a reference type is not an issue. For example, we use a class
type as a base type where the benefits of inheriting functionality outweigh the additional
memory cost of supporting a reference type.

Why
A class is the richest data type in .NET through which all aspects of object-oriented design and
development are accessible (abstraction, encapsulation, inheritance, and polymorphism).

How
A class is defined, and then it may be instantiated into an object. However, it need not be
instantiated to access functionality if a member is modified as static. It may be extended
through class or interface inheritance. The following is an example of a class structure:

class myCar: ISedan
{
int _door;

//implement property
public int Door

CHAPTER 2 � CODE STRUCTURE34

560-2 ch02.qxd 10/27/05 4:16 PM Page 34

{
get {return _door;}
set {_door = value;}

}

//implement method
public void DoSomething() {;}

//class constructor
public myCar () {;}

}

The Standard: Class Type

The standard acknowledges the use of a class type where there is a requirement to sup-

port class-inheritance or reference semantics and the overhead of a reference type is not

an issue.

Partial Type (Introduced C# 2.0)

What
A partial type is a type that is permitted to use the partial modifier. There are three types
that may use the partial modifier: class, struct, and interface. Note that the partial modi-
fier is not permitted on the delegate class, however.

Where
A partial type is used where there is a requirement to split a type over multiple files. A conse-
quence of modifying a type as partial is that once the type is compiled, it cannot be extended.

Why
A partial type enables simultaneous development of different aspects of a type in different
files. Splitting development is convenient when team members have special skills; for exam-
ple, one developer may develop the properties that map a user interface, in one file, while
another developer may develop complex functionality in methods that reside in another file.
Or method development may be split between developers and files.

How
The type is modified with the partial modifier, and all parts must be declared with the partial
modifier and reside in the same namespace. Note that a partial type may be nested. The follow-
ing trivial example illustrates the concept of a partial type. Functionality for MyCar class is

CHAPTER 2 � CODE STRUCTURE 35

560-2 ch02.qxd 10/27/05 4:16 PM Page 35

developed in different code files by different developers. The two files reside in the same name-
space, and when the files are compiled, the functionality is combined by the compiler.

File1.cs

namespace ModelT
{
//part 1
public partial class MyCar
{
public void StartEngine() {;}

}
} //end namespace

File2.cs

namespace ModelT
{
//part 2
public partial class MyCar
{
public void StopEngine() {;}

}
} //end namespace

The Standard: Partial Type

The standard acknowledges the use of partial type where there is a requirement to split

a type over multiple files but cautions that once the type is compiled, it cannot be

extended.

Generic Type (Introduced C# 2.0)
Generics introduce a flexibility that combines type safety with the ability to avoid committing
to a type at design time.

What
Generics enable class, delegate, interface, and struct types, and methods to be created with
type parameters that are placeholder types, which can be substituted when the type is known.

Where
Generics are commonly used in data structures—for example, collections and arrays, or in
passing method parameters.

CHAPTER 2 � CODE STRUCTURE36

560-2 ch02.qxd 10/27/05 4:16 PM Page 36

Why
Generics overcome the overhead issues of casting and boxing between types, which adversely
affects performance.

How
Generics are specified within a pair of delimiters (“<” and “>”) placed after the respective type
or method name. When the type is known, it is substituted for the generic placeholder, as the
following code snippet illustrates. Note that the method GenericMethod is declared as generic,
as is its parameter. In the Main function, we vary the types of the method.

using System;
using System.Collections.Generic;
using System.Text;

namespace ModelT
{
public class ModelTGenerics
{
public static void GenericMethod<T>(T arg)
{
Console.WriteLine("Calling Model T generic method, " + arg.GetType());

}

public static void Main()
{
//Call the generic method passing different types:
GenericMethod<string>("Hallo Generics");
GenericMethod<double>(16.75);

}
}

}

The Standard: Generic Type

The standard acknowledges the use of generics to reduce overhead and increase type

flexibility while retaining the protection of type safety.

CHAPTER 2 � CODE STRUCTURE 37

560-2 ch02.qxd 10/27/05 4:16 PM Page 37

560-2 ch02.qxd 10/27/05 4:16 PM Page 38

Code Development

The previous chapter focused on how code can be structured into assembly, namespace, and
complex types. This chapter builds on that knowledge by focusing on how to develop the code
that will use those structures. The discussion will cover development perspectives, application
development methods, application architecture, class development, building a class interface,
accessibility, and class fundamentals.

Development Perspectives
There are two ways of looking at application code development: developing an application
or developing an enterprise. Generally, the immediate thought lies with developing an appli-
cation and its functionality. However, to stop there would result in an overly narrow view,
because an application is not an island: it is part of an enterprise that may host 50 or 5,000
applications, for example. The application may consume common functionality, or it may
contribute functionality that is published through an integration or services layer, which in
turn is consumed by other applications. So, to get the full picture of developing an applica-
tion, we need to look at it not from one but from two perspectives: application and enterprise.
Figure 3-1 illustrates a nonexhaustive set of issues we need to consider, and as you can see,
there is a lot to consider. It should be noted that perspectives are interdependent: what can
and can’t be done from an application perspective impacts what is possible from an enterprise
perspective, and, alternatively, what can and can’t be done from an enterprise perspective
impacts what is possible from an application perspective.

39

C H A P T E R 3

� � �

560-2 ch03.qxd 10/27/05 4:16 PM Page 39

Figure 3-1. Perspectives of code development

We now continue our code discussion by examining two commonly used application
development methods: top-down and bottom-up.

Application Development Methods
There are two methods for developing application code: top-down and bottom-up. Each
method offers a different development perspective, and determining which is most appropri-
ate is a case-by-case or application-by-application decision. It may be easier to develop a
particular application one way but develop another application with a different method.

CHAPTER 3 � CODE DEVELOPMENT40

560-2 ch03.qxd 10/27/05 4:16 PM Page 40

Essentially, the difference between the two methods is that the top-down method iterates
development by starting with the big picture of the domain (the top) and works downward by
decomposing the domain into assemblies, namespaces, and classes (the bottom). In contrast,
a bottom-up method, which is also an iterative process, starts at the class level (the bottom)
and works upward to the top, by composing classes, namespaces, and assemblies. Historically,
object-oriented design and development theorists have advocated decomposing a complex
domain into manageable units, which is a top-down method. However, many pragmatists
have since recognized that there are times when starting with a vague abstraction is counter-
productive and a more tangible approach (i.e., starting by developing classes) is preferred.

�Tip Two books that are most useful in understanding object-oriented development are (1) Object-Oriented
Analysis and Design with Applications, by Grady Booch (Addison-Wesley, 1994), which gives excellent cov-
erage of the theory of object-oriented analysis and design, and (2) Expert C# Business Objects, by Rockford
Lhotka (Apress 2003), which gives comprehensive and clear coverage of the applied aspects of object-
oriented design and development.

Top-Down Method
A top-down development method is one of two commonly used approaches to develop an
application (the other is the bottom-up method).

What
An application is developed as an iterative decomposition of the domain. The process starts
with a high-level abstraction (clouds) and works downward to implementation (code).

Where
A top-down method is used in developing domain or enterprise applications.

Why
The top-down approach is commonly used because it follows a traditional object-oriented
design, which advocates that complexity is best understood by starting with an abstraction
and decomposing it into smaller units. However, although that approach usually works, there
are times when working with an abstraction is problematic and it is more productive to start
with the basics and work upward (bottom-up method).

How
The domain is viewed from the big picture, and application development is commenced by
developing an architecture, then working through assemblies and namespaces to develop
classes. The architecture is prepared before code is developed, and it may be tweaked as code
development progresses.

CHAPTER 3 � CODE DEVELOPMENT 41

560-2 ch03.qxd 10/27/05 4:16 PM Page 41

The Standard: Top-Down Method

The standard acknowledges the use of the top-down development method to develop a

solution by developing an application by decomposing a domain problem.

Bottom-Up Method
A bottom-up development method is one of two commonly used approaches to developing
an application (the other is the top-down method).

What
An application is developed as an iterative composition of the domain.

Where
A bottom-up method is used in developing domain or enterprise applications.

Why
The bottom-up approach is used because it starts off more tangibly by developing small units
of functionality (classes) and incrementally composes the complexity from class level to
assembly level.

How
The domain is viewed from a detailed picture, and application development is commenced
by developing classes and working upward to develop the structure (e.g., namespaces and
assemblies). The architecture is prepared as part of code development; it evolves as a conse-
quence of assembling the solution.

The Standard: Bottom-Up Method

The standard acknowledges the use of the bottom-up development method to develop

an application by composing a domain solution.

Application Architecture
Whether a top-down or bottom-up development method is used, an application is developed
with an architecture: it may be prepared before code development (top-down) or it may
evolve during development (bottom-up).

What
An application architecture is a design or structural framework in which to organize applica-
tion functionality. An application may reuse an application framework or template for its

CHAPTER 3 � CODE DEVELOPMENT42

560-2 ch03.qxd 10/27/05 4:16 PM Page 42

architecture (see the section Application Framework Solution in Chapter 7, Design Develop-
ment) or develop it from scratch.

Where
An application architecture is used for all nontrivial application development. It is commonly
used where there is a need to structure development across layers or tiers of functionality
(e.g., a three-tier application architecture).

Why
By using an application architecture, the application is more able to accommodate volatility
within the domain and the enterprise.

How
Regardless of which development method is used, an application architecture has to be
pieced together. Figure 3-2 illustrates a nonexhaustive list of elements that are considered as
part of an application architecture.

Figure 3-2. Application architecture

There is no definitive process for assembling an application architecture; however, the follow-
ing is a guide.

• Structure: Decompose the domain through assemblies, then namespaces and classes.

• Object Collaboration: Determine how objects are expected to collaborate within the
architecture. An application functions through object collaboration, so objects that
need to collaborate are more efficient if they are in the same namespace or assembly.

• Data: Consider the most efficient way to organize an object’s access to data. What is at
first logical from an application perspective may have to be modified to be acceptable
from an enterprise perspective (e.g., to optimize a data load–balancing algorithm).

• Enterprise Integration: Determine how objects will interrelate with the enterprise—
determine whether they will consume and/or publish services through application
and enterprise integration layer.

CHAPTER 3 � CODE DEVELOPMENT 43

560-2 ch03.qxd 10/27/05 4:16 PM Page 43

• Deployment: Consider the most appropriate deployment architecture of assemblies, to
maximize efficiency, visibility, and maintainability.

• Volatility: Identify the likely sources of change, and design the architecture to minimize
the impact of volatility—for example, by separating that volatility from nonvolatile
functionality.

The previous guide is not exhaustive, and each item is not considered in isolation: often
when one item (for example, data) is considered, other, related items (e.g., classes, object col-
laboration, and deployment) are considered in concert as the architecture is tweaked.

The Standard: Application Architecture

The standard acknowledges the use of application architecture, observing that an

application developed using architecture is more likely to be efficient and maintain-

able, as well as better equipped to accommodate volatility within the domain and the

enterprise, than is an application that is not developed using architecture.

Class Development
The functionality in an application comes from the collaboration of concrete classes (objects),
so class development plays a key role in the success of the application.

What
Class development includes identifying a class’s role; determining the interface that it will
expose to collaborate with other concrete classes; identifying how it will acquire that interface
(internal functionality or through an association—composition and/or inheritance); and
building functionality using algorithms and so forth.

Where
Class development occurs within the application architecture and throughout the life cycle of
the application.

Why
The class is the application—so class development is fundamental to the success of the
application.

How
There is no standard way to develop classes. However, Figure 3-3 illustrates a number of the
aspects that need to be considered.

CHAPTER 3 � CODE DEVELOPMENT44

560-2 ch03.qxd 10/27/05 4:16 PM Page 44

Figure 3-3. Developing Application classes

The classes are developed within namespaces within the application framework. There are
many elements that need to be considered when developing classes, including the following:

• Build a Class as a Collaborative Object: Although a class is a template of an object, it is
not until the class is instantiated and collaborating with other objects that the effective-
ness and efficiency of the class is determined.

• Design Patterns: Consider whether design patterns will be of assistance in developing
creational, structural, or behavioral collaborative ability.

• Build an Interface: Determine what functionality each class will expose for other classes
to call—in other words, what collaborative role will a given concrete class play in the
application?

• Inheritance: Consider the role of class and interface inheritance in evolving an interface
and functionality of a class.

• Composition/Containment: Consider the role of composition or containment in evolv-
ing an interface and functionality of a class.

• Encapsulation/Accessibility: Consider the most appropriate way to encapsulate accessi-
bility to functionality through modifiers.

• State: Identify how classes will manage state.

CHAPTER 3 � CODE DEVELOPMENT 45

560-2 ch03.qxd 10/27/05 4:16 PM Page 45

• Functionality: Code the functionality—consider code techniques (e.g., encapsulate and
abstract volatility out of critical classes).

• Unit Test: Test the functionality exposed by the class.

• Collaboration Testing: Test the collaboration between the instance class and its collabo-
rators to identify if the relationship is working as envisaged.

• Iteration: Iterate the design and construction of the class.

These elements are not exhaustive and are not considered in isolation; often, when one
element—for example, functionality—is considered, other, related elements are considered
in concert as the class is designed and developed (e.g., interface, encapsulation accessibility,
design patterns, and inheritance and containment).

�Tip To advance your development skills, consider Code Complete, by Steve McConnell (Microsoft Press,
2004). It is widely acclaimed as the best book on practical software construction.

The Standard: Class Development
The standard acknowledges that class development is complex and is an iterative process in
which many elements have to be considered to build the most appropriate concrete classes,
including interface, encapsulation, accessibility, functionality, design patterns, inheritance,
containment, and state.

Composition
Although class inheritance is powerful, it comes at a cost: it is relatively inflexible compared
with composition, which offers flexibility at minimal cost.

What
Composition or containment refers to the practice of a concrete class acquiring functionality
from internal instances of other classes; in other words, an object is composed of other objects
and leverages their functionality rather than implementing or inheriting it.

Where
Composition is used where an object requires given functionality and that functionality (in
part or in full) is available in another object(s).

Why
Composition is cheap! It is easy to reuse existing functionality and relatively easy to alter the
functionality of a class by altering the composition of objects. Composition does, however,
rely on stability of the implementation and interface of the contained objects. It is favored

CHAPTER 3 � CODE DEVELOPMENT46

560-2 ch03.qxd 10/27/05 4:16 PM Page 46

over inheritance because of its flexibility and because its functionality can be readily modified
by varying the composition of objects—there is no hierarchy or base class to consider.

How
Composition may be specified as follows (note that the functionality is internalized and that
there may be methods or properties which wrap the functionality and expose it through its
interface—e.g., public methods and properties).

public class Automobile
{

private eng Engine;
private rad Radiator;

}

The Standard: Composition

The standard acknowledges the flexibility of composition in building a class interface

and that it is favored over inheritance.

Inheritance Fundamentals
We now consider the fundamentals of class and interface inheritance. A class and an
interface are reference types and offer different types of inheritance.

Class Inheritance
Class inheritance is the ability to strategically and progressively structure functionality, from
a root of abstraction through to a specialization or implementation.

What
.NET supports single class inheritance (that is to say, a class may inherit directly from only
one other class). The C# language is not alone in adopting single class inheritance; it follows
Objective-C and Java languages, for example. Class inheritance is transitive—in other words,
a third-generation class may inherit the class members directly from the second (its base
class) and indirectly from the first generation (note: a class may not inherit instance and
static constructors, nor destructors). Although all class members are inheritable, except for
the aforementioned exceptions, declared accessibility in a base class may prevent a subclass
from accessing an inherited member (e.g., private variables).

A class may extend its parent class by overriding or overloading existing functionality
(discussed shortly), or by adding new functionality. A class is nonvirtual by default, which
means that for a subclass to override inherited functionality (indexers, methods, or proper-
ties), the base class must modify the members as virtual.

CHAPTER 3 � CODE DEVELOPMENT 47

560-2 ch03.qxd 10/27/05 4:16 PM Page 47

Where
To participate in class inheritance, a subclass must reside in the same compilation space as a
parent class. Note, however, that if a class is modified as a partial type, once compiled it can-
not be extended (see the section Partial Types in Chapter 2).

Why
Class inheritance offers the opportunity to strategically and progressively extend and reuse
proven design and functionality.

How
Class inheritance may be specified as follows:

public class Car: Automobile
{;}

where class Car is the subclass (specialization) and Automobile is the base class (generalization
or abstraction). Note that commonly, the base class (root) is defined as an abstract class or an
interface type, both of which are pure abstractions. With a single class inheritance language,
care must be taken in the choice of root type: a common cause of reengineering is an inappro-
priate selection of a base type.

The Standard: Class Inheritance

The standard acknowledges the use of class inheritance and notes that it is used to

strategically and progressively extend and reuse design and functionality. It cautions

that inappropriate base type selection is a common cause of reengineering.

Interface Inheritance
Interface inheritance offers the ability to define an interface that may be implemented at any
level in an inheritance hierarchy (e.g., class or interface hierarchy).

What
Interface inheritance offers multiple inheritance of an interface (public members), but unlike
a class, it does not offer implementation—or looked at from another perspective, it does not
impose an implementation. An implementing entity must implement every member of an
interface type, unless the inheriting entity is another interface type.

Why
Interface inheritance offers the opportunity to extend and reuse design by publishing a class,
interface, or struct with a given interface. It is commonly used to signify that a type which
implements it performs a role, and it may be attached at any level of a class or interface
hierarchy.

CHAPTER 3 � CODE DEVELOPMENT48

560-2 ch03.qxd 10/27/05 4:16 PM Page 48

Where
To participate in interface inheritance, an implementing type must reside in the same compi-
lation space as the interface type.

How
Interface inheritance may be specified as follows:

//Convertible interface - note 'I' prefix
interface IConvertible
{

void OpenRoof();
}

//Car class inherits IConvertible interface
public class Car: IConvertible
{

//implementing OpenRoof()
void OpenRoof()
{//implement functionality}

}

The Standard: Interface Inheritance

The standard acknowledges the use of interface inheritance as a versatile means to

strategically implement an interface through using multiple interface inheritance, as

required.

Overriding
Overriding is the ability of a subclass to superimpose its own functionality over a virtual
method.

What
Overriding is a process in which a virtual method, in a base class, has its functionality super-
imposed or overridden by a method, in a subclass, which has the same name and signature.
A method signature comprises the method name and the number, modifiers, and types of its
parameters—it does not include the return type of the method.

Why
Base or parent functionality should be generic or generalized by default; overriding is used to
specialize the functionality in a given class implementation.

CHAPTER 3 � CODE DEVELOPMENT 49

560-2 ch03.qxd 10/27/05 4:16 PM Page 49

Where
Overriding is set up in the base class where a method is modified with the virtual keyword
and is effected in a subclass, where a method is modified with the override keyword.

How
Overriding may be specified as follows:

//code in the base-class
abstract class Automobile
{

//virtual or overridden member
virtual void Start()
{//generic start functionality for automobiles}

}

//code in the subclass
public class Car: Automobile
{

//overriding member
override void Start()
{//specialized start functionality for a car}

}

�Note The designer of the Automobile class intentionally gave the designers of derived classes (e.g.,
Car) a choice of whether to inherit generic Automobile start functionality or to override base functionality,
by specializing the Start() method.

The Standard: Overriding

The standard acknowledges the use of overriding to specialize generic functionality.

Overloading
Overloading is the ability to include more than one method, in the same class, with the same
name.

What
An overloaded method has the same name as another method, in the same class, but it has a
different method signature. A method signature comprises the method name and the number,
modifiers and types of its parameters—it does not include the return type of the method.

CHAPTER 3 � CODE DEVELOPMENT50

560-2 ch03.qxd 10/27/05 4:16 PM Page 50

Why
Overloading gives the class developer flexibility regarding how to implement functionality and
offers a low-risk way to vary or extend functionality, in an established class, without having to
reengineer existing functionality or compromise the interface of a class.

Where
Overloading may occur in a base class, subclass, or interface type. It is used where the over-
loaded methods implement flavors of similar functionality by using different types and
numbers of parameters.

How
Overloading may be specified as follows:

public class Car: Automobile
{

public void Start()
{;}

//this method overloads Start() method
public void Start(bool isColdStart)
{;}

}

The Standard: Overloading

The standard acknowledges the use of overloading as a low-risk way to vary or extend

functionality, where the overloaded methods implement similar functionality using dif-

ferent types and numbers of parameters.

abstract
A class or method may be modified as abstract, which defers implementation to a subclass.

What
The abstract modifier, when used on a class, signifies that the class cannot be instantiated,
and when used on a method, it signifies that the method must be implemented in a subclass.
A class that is not modified as abstract is by default abstract if it contains a method that is
modified as abstract.

Why
A class is commonly modified as abstract because it represents a concept or serves as a con-
tainer that holds common functionality, which may or may not be specialized by subclasses.
A method is commonly modified as abstract because there is some logical reason to defer

CHAPTER 3 � CODE DEVELOPMENT 51

560-2 ch03.qxd 10/27/05 4:16 PM Page 51

Where
The abstract modifier is used at class level or within a class at method level.

How
An abstract modifier may be specified as follows:

//an abstract class
abstract class Automobile
{

//an abstract method
abstract void Stop();

//note: an abstract class may contain a non-abstract method
override void Start()
{;}

}

The Standard: Abstract

The standard acknowledges that the role of an abstract class is to contain generalized

functionality or an interface and that the abstract method is used to defer implemen-

tation to a subclass.

sealed
The keyword sealed is used to indicate that a class cannot be inherited.

What
A sealed modifier signifies that a given class cannot be derived from or inherited.

Where
The sealed modifier is placed in the type declaration.

Why
A sealed modifier is used when it is necessary to indicate that it is not logical or not permissi-
ble to extend a class, in a given domain.

How
The sealed modifier may be specified as follows:

sealed class RubberTube {;}

CHAPTER 3 � CODE DEVELOPMENT52

560-2 ch03.qxd 10/27/05 4:16 PM Page 52

The Standard: sealed Modifier

The standard acknowledges the use of sealed to indicate that it is not logical or permis-

sible to extend a class.

new
The keyword new is both an operator and a modifier. In the role of an operator it is used to
instantiate a class; however, in the role of modifier, which is what we are interested in, it hides
a derived class method or delegate.

What
A new modifier signifies that a given method or delegate hides an inherited method or delegate
declared, respectively, with the same signature as a method or delegate in a base class.

Where
The new modifier is placed in the method or delegate declaration.

Why
Hiding part of an interface enables a type to evolve with its own specialization.

How
The new modifier may be specified as follows:

//class example
public class Car()
{ public Start(); }

public class ModelT : Car
{ new public Start(); }

//delegate example
public class Car()
{ protected delegate void DelegateX (int i); }

public class ModelT : Car
{ new delegate void DelegateX (double d); }

The Standard: new Modifier

The standard acknowledges the use of new modifier to hide a derived method or

delegate.

CHAPTER 3 � CODE DEVELOPMENT 53

560-2 ch03.qxd 10/27/05 4:16 PM Page 53

Accessibility
In Chapter 2, we saw how accessibility may be controlled physically or logically through the
use of assemblies, namespaces, and complex types; class accessibility takes that a step further.
A problem that application architects and developers face in developing an object-oriented
program is how to control object collaboration given that, natively, client code can call the
constructor of a class and access its functionality. However, to regulate a domain, accessibility
to class functionality needs to be controlled, so responsibility is used and encapsulated at
assembly, class, and class member levels.

Access modifiers are used to encapsulate that responsibility, and they have an additional
role: they also control the level of coupling. If client code were to become privy to the internal
workings of a program or a class, then such tight coupling and lack of modularity would impact
the level of flexibility of a program to accommodate change. For example, a minor change in a
domain requirement may require major reengineering or refactoring of code. Access to a class
and its members is controlled through declared accessibility. There are five accessibility decla-
rations: private, protected, internal, protected internal, and public.

private
The keyword private is an accessibility declaration used to modify visibility of a type.

What
A private modifier signifies that accessibility is limited to the containing type (class). A class
field, for example, is modified private, and its value is accessed indirectly through a class
property.

Where
The private modifier is placed in the type declaration.

Why
A private modifier limits visibility or access to class level. It is used to comply with the encapsu-
lation requirement of object-oriented programming, which requires that the internal workings
of a class be hidden.

How
The private modifier may be specified as follows:

public class Car
{

//private modifier
private string carColor;

}

CHAPTER 3 � CODE DEVELOPMENT54

560-2 ch03.qxd 10/27/05 4:16 PM Page 54

The Standard: private Modifier

The standard acknowledges the use of the private modifier where there is a requirement

to limit accessibility within a given class. Note that a class field should be modified

private and its value accessed through a class property, to comply with encapsulation.

protected
The keyword protected is an accessibility declaration used to modify visibility of a type.

What
A protected modifier signifies that accessibility is limited to the given class and to any class
derived from that class.

Where
The protected modifier is placed in the type declaration.

Why
A protected modifier extends accessibility to the level of class hierarchy.

How
The protected type modifier may be specified as follows:

public class Car
{

//protected modifier
protected string somePart;

}

The Standard: protected Modifier

The standard acknowledges the use of the protected modifier where there is a require-

ment to limit accessibility to a class hierarchy.

internal
The keyword internal is an accessibility declaration used to modify visibility of a type.

What
An internal modifier signifies that accessibility is limited to objects within the program.
Thus functionality cannot be accessed by client code outside of the assembly.

CHAPTER 3 � CODE DEVELOPMENT 55

560-2 ch03.qxd 10/27/05 4:16 PM Page 55

Where
The internal modifier is placed in the type declaration.

Why
An internal modifier extends accessibility to assembly or program level.

How
The internal type modifier may be specified as follows:

public class Car
{

//internal modifier
internal DoSomething()
{;}

}

The Standard: internal Modifier

The standard acknowledges the use of the internal modifier where there is a require-

ment to limit accessibility to other classes in the same program or assembly.

protected internal
The keyword protected internal is an accessibility declaration used to modify visibility of
a type.

What
A protected internal modifier signifies that accessibility is limited to a member(s) within a
given class, a class(es) derived from that class, and a nonderived class(es) in the same assem-
bly. The protected internal modifier yields protected or internal accessibility.

Where
The protected internal modifier is placed in the type declaration.

Why
A protected internal modifier offers a little more flexibility than protected by enabling objects
that are not part of the class hierarchy but are resident in the same assembly or program to
access functionality. It is commonly used to enable access within the given assembly yet allow
functionality to appear abstract to another assembly or program.

CHAPTER 3 � CODE DEVELOPMENT56

560-2 ch03.qxd 10/27/05 4:16 PM Page 56

How
The protected internal modifier may be specified as follows:

public class Car
{

//protected internal modifier
protected internal DoSomething()
{;}

}

The Standard: protected internal Modifier

The standard acknowledges the use of the protected internal modifier where there is a

requirement to limit accessibility to a class, a class(es) derived from that class, or other

classes in the same assembly.

public
The keyword public is an accessibility declaration used to declare that there is no limit to
accessibility or visibility of a type.

What
A public modifier signifies that there is no limit to accessibility.

Where
The public modifier is placed in the type declaration.

Why
A public modifier is used when there is no need to limit access to a class. It is commonly used
to define and publish the interface of the concrete class (object), which signifies how client
code can collaborate with it.

How
The public type modifier may be specified as follows:

public class Car
{

//public modifier
public DoSomething()
{;}

}

CHAPTER 3 � CODE DEVELOPMENT 57

560-2 ch03.qxd 10/27/05 4:16 PM Page 57

The Standard: public Modifier

The standard acknowledges the use of the public modifier where there is a requirement

not to limit accessibility to functionality by defining and publishing an interface

against which client code can collaborate.

static
The keyword static is a type modifier that is used to associate a type with a class.

What
A static type modifier signifies that a given type is a member of the class and not an instance
member.

Where
The static type modifier is placed in the type declaration.

Why
A static type modifier is used when it is necessary that a class has a member that may be
called independently of instantiation. A static member may be called from a class, without
the class having been instantiated. Although the most obvious example is the Main() method,
utility classes commonly are used to gain access to static functionality, saving the overhead
of instantiating classes (refer to the technique as used in the .NET Framework, for example:
System.Math).

How
The static type modifier may be specified as follows:

public class Client
{

//static type modifier
static void Main()
{;}

}

The Standard: static Modifier

The standard acknowledges the use of static to differentiate a class member from an

object member and also to leverage the ability to access class functionality without the

overhead of instantiation.

CHAPTER 3 � CODE DEVELOPMENT58

560-2 ch03.qxd 10/27/05 4:16 PM Page 58

Accessibility Summary
Table 3-1 summarizes .NET accessibility.

Table 3-1. .NET Accessibility

Item Modifier

Class abstract, internal, sealed, protected, private, and public.

Class members new, private, protected, internal, protected internal, and public.

Enumeration members Implicitly public (no access modifiers allowed on member
declaration).

Interface members Implicitly public (no access modifiers allowed on member
declaration).

Namespace Implicitly public (no access modifiers allowed on namespace
declaration).

Structure members Default is private, internal, and public (implicitly sealed).

Types Default is internal, public (applies to types declared in namespaces or
compilation units).

�Tip A class may contain an inner class, which may be modified as private or protected.

Class Fundamentals
We now consider the following class fundamentals: sealed and static modifiers, attribute class,
class header, and class members (field, constant, delegate, enumeration, event, constructor,
property, and method).

Attribute
The Attribute holds metadata that may be accessed programmatically, at runtime, to interro-
gate entities within an assembly.

What
An Attribute is a class that derives from class System.Attribute. It holds metadata or declar-
ative information that is accessible, through reflection. An Attribute may be inherited; if,
however, that is not desirable, then it may be modified as sealed. There are two types of
attributes: intrinsic and custom. Intrinsic attributes are part of the CLR (Common Language
Runtime)—for example, [serializable] or [assembly: AssemblyTitle("")]. Custom attrib-
utes are roll-your-own attributes.

CHAPTER 3 � CODE DEVELOPMENT 59

560-2 ch03.qxd 10/27/05 4:16 PM Page 59

Where
An Attribute may be applied to assembly, class, delegate, enum, event, field/member vari-
able, interface, method, module, parameter, property, return value, or struct.

Why
An Attribute is an adornment that is used to add information about an element which may
be accessed programmatically, at runtime.

How
Intrinsic attributes are the most commonly used attribute type, and they are specified as
follows:

[serializable]
class Car {;}

However, where there may be ambiguity, such as in the case of a method (method—
default value) or return value (return—default value), a default value is used with the
attribute to indicate which element the attribute references, as in the following example:

//declare a method with an attribute using the 'method' default attribute.
[method: ThatAttribute] int MethodTwo(int i)

//declare a return value with an attribute using the 'return' default attribute.
[return: OtherAttribute] int MethodThree(int i)

The Standard: Attribute

The standard acknowledges the use of Attribute, which may be used to enrich an entity

with metadata that may be accessed programmatically, at runtime.

Class Header
The class header is used to define the high-level domain features of the entity, for which it is
an abstraction.

What
A class header identifies the class: it contains the class modifier (e.g., public); the keyword
class; and the name of the class.

Where
The class header is placed at the top of the class block.

CHAPTER 3 � CODE DEVELOPMENT60

560-2 ch03.qxd 10/27/05 4:16 PM Page 60

Why
A class header is used to specify the visibility of the class through its modifier (public); that it
is a class type; and that an object instance may be referenced explicitly by its custom type
name (e.g., Car).

How
The class header may be specified as follows:

public class Car
{;}

The Standard: Class Header

The standard acknowledges the use of class header, which comprises the keyword class,

modifier, and class name. It is noted that consideration may be given to using a short

and generic class name that is appropriate to the domain.

const
The constant (const) is a class variable whose value is constant, and it is commonly used in
simple situations.

What
A const is a static modifier, which is a value type and used on local variables or member
fields; once its value is assigned, it can’t be changed at runtime. A const can be used with bool,
byte, char, decimal, double, enum, float, int, long, short, string, or a reference type.

Where
The const keyword is placed as the modifier in the type declaration.

Why
A const is a quick solution compared with an enum. It is commonly used in simple situations
where there are one or two constants. It may also be used in situations where the underlying
value of the constant needs to be a string type—an enum does not offer that functionality. In
more complex situations, where there are many constants that are related (e.g., colors), an
enum is commonly used.

How
A constant may be specified as follows:

const int wheels = 4;

CHAPTER 3 � CODE DEVELOPMENT 61

560-2 ch03.qxd 10/27/05 4:16 PM Page 61

The Standard: Constant

The standard acknowledges the use of const in simple situations or where the underly-

ing value has to be a string type.

delegate
The delegate is a convenient way to avoid explicitly committing code to call functionality
from a named object. It adds the flexibly to call methods with the same signature in different
objects, by delegating the collaboration to a delegate object.

What
A delegate is a class that is a reference to a method that has a given signature (parameter list
and return type) and wraps a method.

Where
The delegate keyword is placed after the modifier in the type declaration.

Why
A delegate offers an efficient way to access the functionality of another object. A given dele-
gate may be used, by a containing object to reference different methods from different class
types, as long as the signature of the methods is identical to the signature of the delegate. It
is commonly used to support events, which are based on a publisher-subscribe model.

How
The delegate may be specified as follows:

public delegate void Change (object sender, EventArgs e);

The Standard: Delegate

The standard acknowledges the use of delegate for programmatic efficiency and

flexibility.

enum
The enum (enumeration) is a convenient way to store, extend, and use related constant values.

What
An enum is a distinct value type that contains an enumerator list (a set of named numeric con-
stants). It supports the following underlying types: byte, sbyte, short, ushort, int, uint, long,
and ulong. By default its underlying type is int (Int32).

CHAPTER 3 � CODE DEVELOPMENT62

560-2 ch03.qxd 10/27/05 4:16 PM Page 62

Where
The enum is commonly used in complex situations where there are many constants that are
related (e.g., colors), or where there isn’t a requirement for the underlying value to be a string
type (in which case, use a const). It may be placed in the class file or in a separate code file,
within the same namespace or referenced.

Why
An enum is an intuitive and convenient way to manage and give context to constant values.
(It may also be used to harness the benefit of IntelliSense, in the Visual Studio IDE).

How
The enum may be specified as follows:

enum Radiator
{

Briscoe,
Detroit,
McCord

}

�Note Each constant value is ended with a comma, except for the last constant value.

The Standard: Enumeration

The standard acknowledges the use of enum in situations that are complex or where a

string type is not required as the underlying type of each constant value (otherwise, a

const may be used).

event
.NET adheres to an event model based on a publisher-subscriber architecture.

What
The event is a methodology by which a class may raise a notification. It is declared as a
delegate class and published by an object against which other objects subscribe by attaching
or registering an event handler of the same signature (parameter list and return type) as the
delegate type of the event.

Where
An event keyword is placed after the modifier in the type declaration.

CHAPTER 3 � CODE DEVELOPMENT 63

560-2 ch03.qxd 10/27/05 4:16 PM Page 63

Why
The event is a way by which objects may collaborate. Note: subscribers to an event may regis-
ter or deregister, at runtime.

How
An event may be specified as follows:

//declare a delegate
public delegate void Alarm (string location);

//declare event of type delegate
public event Alarm OnOverHeating (string location);

The Standard: Event

The standard acknowledges the use of event as a way for objects to collaborate.

Field
The field is a variable that has a type or class level association.

What
A field is associated with a class type or with an instance of a class (i.e., object). A field modi-
fied as static is a class field; otherwise, it is an instance field.

Where
The field is commonly placed immediately below the class header, in the body of the class. It is
used to hold the state of a property.

Why
Generally, a member field serves three purposes: it stores the underlying value of an object’s
property, in which case it is declared private; it is declared as static to hold a value for the
class; or it is used as a utility variable to service requirements of the class.

How
A member field may be specified as follows:

public class
{

int count;
}

CHAPTER 3 � CODE DEVELOPMENT64

560-2 ch03.qxd 10/27/05 4:16 PM Page 64

The Standard: Field

The standard acknowledges that a field is associated with a class and is commonly used

to store the underlying value of a property of an object, or if modified as static to store

a value for the class.

Indexer
In the C# language, an indexer is analogous to a default property.

What
The indexer is a special kind of property that enables an object to be indexed. This enables
a collection contained within the object to be accessed on the name of the object, using the
this keyword.

Where
An indexer is placed in the body of a class, as a special property.

Why
The indexer offers the efficiency of a default property.

How
An indexer may be specified as follows:

public class Car
{

private int[] myArray;

//specify indexer - note the use of this operator.
public int this[int index]
{

get{return myArray[index];}
set{myArray[index] = value;}

}
}

The Standard: Indexer

The standard acknowledges the use of indexer as a default property.

CHAPTER 3 � CODE DEVELOPMENT 65

560-2 ch03.qxd 10/27/05 4:16 PM Page 65

Method
The method is an object-oriented way for objects to collaborate, by sending messages (calling
methods) to access functionality of another object.

What
A method is a construct that encapsulates discrete functionality of the class or object. A class
may not have two methods with the same signature (method name; the number of parameters;
the modifiers of the parameters; and the types of the parameters). For efficiency, methods are
functional-specific and developed to minimize the overhead of chatty communication
between objects.

Where
The method is commonly placed immediately below the list of properties, within the body of
a class.

Why
A method represents functionality that can be accessed through the class or object. It is part of
a default interface that enables an object to perform a role in an object collaboration.

How
The method may be specified as follows:

1. Singleline, where the block commences and completes on the same line as the prop-
erty header.

public int Display (string a) {return Console.Write ("Display " + a);}

2. Sameline, where the block commences on the same line as the property header and
finishes on a line under the property header.

public int Display (string a){
return Console.Write ("Display " + a);

}

3. Underline, where the block commences and completes on lines under the property
header.

public string Display
{
return "Display " + a;

}

CHAPTER 3 � CODE DEVELOPMENT66

560-2 ch03.qxd 10/27/05 4:16 PM Page 66

�Tip Visual Studio 2005 introduces functionality within the Tools menu to format blocks and heaps of other
stuff —refer to Visual Studio or the section Visual Studio Formatting Options in Chapter 1.

The Standard: Method

The standard acknowledges the use of a method to support collaboration between

objects and notes for efficiency, methods are functional-specific and developed to mini-

mize the overhead of chatty communication between objects.

Property
The property is an object-oriented way to set and get the underlying state of an object.

What
A property is a construct that acts as a facade through which client code may access the under-
lying value or state, which is stored in a private member field. In the development community,
there is debate about whether a property may be substituted for a member field that is modi-
fied with public visibility. The two sides to the debate are:

1. The “pro public member field” argument:

• Properties are useful only when they include functionality other than merely set
and get the underlying value stored in the private member field (to which the
property is mapped).

• In cases where the role of the property is identical to a public member field, cod-
ing a property is inefficient use of a developer’s time.

2. The “anti public member field” argument:

• Using a public member field is contrary to encapsulation.

• If, at a latter stage, domain requirements change and value checking is required,
for example, then reengineering of the class is required—which may impact its
interface and affect client code.

Where
The property is placed immediately below the list of events, in the body of a class.

Why
A property implements the object-oriented pillar of encapsulation, which states that the inter-
nal workings of a class are to be hidden to external code; and it offers an opportunity to add
functionality (e.g., value checking). It is used where a class has state.

CHAPTER 3 � CODE DEVELOPMENT 67

560-2 ch03.qxd 10/27/05 4:16 PM Page 67

How
The property may be specified as follows, where _name is a private field of the class:

1. Singleline, where the block commences and completes on the same line as the prop-
erty header.

public int Name {get { return _name; } set { _name = value; }}

2. Sameline, where the block commences on the same line as the property header and
finishes on a line under the property header.

public int Name {
get
{

return _name;
}

set
{

_name = value;
}

}

3. Underline, where the block commences and completes on lines under the property
header.

public int Name
{

get {return _name;}
set {_name = value;}

}

�Tip Visual Studio 2005 introduces functionality within the Tools menu to format blocks and many other
things—refer to Visual Studio or the section Visual Studio Formatting Options in Chapter 1.

The Standard: Property

The standard acknowledges the preferred use of property over the use of a public mem-

ber field, in line with the object-oriented requirement to keep the internal workings of a

class or object hidden from client code.

Variable
The variable is a variable that has an association at procedure level.

CHAPTER 3 � CODE DEVELOPMENT68

560-2 ch03.qxd 10/27/05 4:16 PM Page 68

What
A variable is associated with a procedure. It may be categorized as a local variable in a proce-
dure (e.g., method); an element of an array; or an input parameter (as a reference or value
type) or an output parameter.

Where
A variable is placed according to its category; for example, a local variable is placed immedi-
ately below the procedure header, and an input parameter is placed within the parentheses of
a procedure, as an argument.

Why
The variable is required as a utility to hold a value or reference where there is an association at
procedure level.

How
A variable may be specified as follows:

//local variable
public Car()
{

int wheels;
}

//variable as an element in an array
int [] x = {2,4,7};

//variable as an input parameter
public Car (int wheels) {;}

//variable as an output parameter
static void DoThis(string firstName, string secondName, out string fullName)
{

fullName = firstName + " " + secondName;
}

The Standard: Variable

The standard acknowledges the definition of variable as a variable that has a proce-

dure-level association, as distinct from a member field, which is a variable that has a

type-level association. A variable may be categorized as a local variable in a procedure

(e.g., method); as an element of an array; or as an input or output parameter.

CHAPTER 3 � CODE DEVELOPMENT 69

560-2 ch03.qxd 10/27/05 4:16 PM Page 69

Flow Control
How objects collaborate and perform functionality is controlled by managing the flow of
execution of the program. The C# language offers a standard set of tools to manage flow con-
trol, including if, if-else, nested if, switch and case, break, default, continue, goto, throw,
try-catch, try-finally, and try-catch-finally.

if
The if statement is a flow control statement that contains a single condition.

What
An if statement is a conditional branching statement that redirects the flow of control only if
the condition is true.

Where
The if statement may be used in a code block—for example, within a method or Main func-
tion. It is used for simple branching.

Why
An if statement permits the conditional execution of functionality, which is a common
requirement of many domains.

How
The if statement may be specified as follows:

if (a == b)
{//do something}

The Standard: if

The standard acknowledges the use of if statement for simple branching.

if-else
The if-else statement is a flow control statement that contains a single condition which
explicitly identifies an alternative else statement.

What
An if-else statement is a conditional branching statement that redirects the flow of control
only if the condition is true and offers an option when the condition is false.

CHAPTER 3 � CODE DEVELOPMENT70

560-2 ch03.qxd 10/27/05 4:16 PM Page 70

Where
The if-else statement may be used in a code block—for example, within a method or Main
function.

Why
An if-else statement permits the conditional execution of functionality that is a common
requirement of many domains and offers an option when the condition is false.

How
The if-else statement may be specified as follows:

if (a == b)
{//do something}

else
{//do something different}

The Standard: if-else

The standard acknowledges the use of if-else statement where there is a requirement

to have a single condition that explicitly identifies an alternative.

Nested if
The nested if statement is a flow control statement that nests or contains more than one if
statement.

What
A nested if statement is the nesting of a series of if or if-else statements. If used excessively
it degrades readability and increases risk of logical errors—there is a preference to use a
switch statement.

Where
The nested if statement may be used in a code block—for example, within a method or Main
function.

Why
A nested if statement permits the layering of conditions of execution of functionality, which
is a common requirement of many domains, and coupled with an nested if-else statement,
it offers an option when a condition is false.

CHAPTER 3 � CODE DEVELOPMENT 71

560-2 ch03.qxd 10/27/05 4:16 PM Page 71

How
The nested if statement may be specified as follows:

if (a <10)
{//do something
if (a>=5)

{//do something extra}
}

The Standard: Nested if

The standard acknowledges the nested if statement. However, it is mindful of the

adverse effect that deep nesting has on readability and productivity. Where a nesting

exceeds two layers, consideration may be given to using a switch statement or encapsu-

lating the logic in a method.

switch and case
The switch and case statements are a partnership of flow control statements that elegantly
encapsulate a set of logical options. For efficiency, consider placing case statements in a logi-
cal hierarchy where the case statement most likely to execute is placed closest to the switch
statement (although with modern compilers, the efficiency gain may be negligible). The valid
types for the switch parameter are byte, char, enum-type, int, long, sbyte, short, string, uint,
ulong, and ushort.

What
A switch and a case statement are paired as an alternative to nesting of if statements, and it
is easily extensible without adding complexity or degrading readability. If a case statement
matches the parameter passed to the switch statement, then execution is transferred to that
block of code, within the case statement.

Where
The switch statement may be used in a code block—for example, within a method or Main
function—and it is partnered by a set of case statements.

Why
A switch and case statement offers flexibility to build granular layers of conditions, of execu-
tion of functionality, without loss of simplicity and readability.

CHAPTER 3 � CODE DEVELOPMENT72

560-2 ch03.qxd 10/27/05 4:16 PM Page 72

How
The switch-case statement may be specified as follows:

switch (noOfCars)
{

case 0:
//do something;
break;

case 1:
//do something else;
break;

default:
//if none of the above, then do this;

}

�Note The use of a break statement is to explicitly terminate execution within the case block, and the
use of the default label explicitly catches any condition that is not met.

The Standard: switch and case

The standard acknowledges the use of the switch and case statement as a conditional

execution statement in any scenario where there are two or more options or conditions.

break
The break statement is a flow control statement that stops execution in the current block,
starting from where execution moves to the next executable statement. It may be used in flow
control and in iteration statements.

What
A break statement is a jump statement that causes the flow of the program to exit from the
immediate code block.

Where
The break statement may be enclosed within switch, do, for, foreach, or while statements.

Why
A break statement transfers control of the program to the target of the statement (the next
element in a switch statement, for example).

CHAPTER 3 � CODE DEVELOPMENT 73

560-2 ch03.qxd 10/27/05 4:16 PM Page 73

How
The break statement may be specified as follows:

if (a == b) break;

or

try{
//do this
break;

}

The Standard: break

The standard acknowledges the use of a break statement in a switch block as an explicit

way to alter the flow of execution.

default
The default label is a flow control statement that partners a switch and case statement to
offer a default execution option.

What
A default label is a statement that offers an option of last resort in a switch block.

Where
The default label is placed as the last label in a switch block.

Why
The C# language does not permit “fall-through”; in other words, if there is no default label
and control of execution falls through to the end point of a switch block, a compile error will
result. Anyway, requiring a default statement makes the logic more readable.

How
A switch-case statement that shows the use of the default label may be specified as follows:

switch (noOfCars)
{

case 0:
//do something;
break;

case 1:
//do something else;

CHAPTER 3 � CODE DEVELOPMENT74

560-2 ch03.qxd 10/27/05 4:16 PM Page 74

break;
default:

//if none of the above then do this;
}

The Standard: default

The standard acknowledges the use of default label in a switch block to explicitly offer

an option of last resort and as a way to prevent fall-through—which would result in a

compile error.

continue
The continue statement is a flow control statement that stops execution in the current block,
starting from where execution moves to the next executable statement.

What
A continue statement is a jump statement that transfers the program flow to commence a new
iteration of the closest do, for, foreach, or while statement.

Where
The continue statement can be found enclosed within a do, for, foreach, or while statement.

Why
A continue statement is used when it is required to recommence a loop and avoid executing
the statements after the continue statement.

How
The continue statement may be specified as follows:

if (a == b)
{
Console.WriteLine("At: continue");
continue;

}

The Standard: continue

The standard acknowledges the use of continue statement to commence a new iteration

at the closest iteration statement.

CHAPTER 3 � CODE DEVELOPMENT 75

560-2 ch03.qxd 10/27/05 4:16 PM Page 75

goto
The goto statement is a legendary redirection statement—it is not for the fainthearted!

What
A goto statement redirects the flow of control to another statement, which is marked with a
label within the current code block: it transfers the control out of nested scope.

Where
The goto statement may be used in a code block—for example, within a switch statement.

Why
There are two situations in which having the ability to redirect the flow of control to a target is
accepted practice: redirecting the flow of control to a case statement or to a default label.

How
A goto statement may be specified as follows:

switch(a)
{

case 1:
//do something
break;

case 2:
//do something else
goto case 1;

case 3:
goto default;

default:
//do something different

break;
}

The Standard: goto

The standard acknowledges the reluctance to use the goto statement and notes two

accepted practices: using it within a switch statement to redirect the flow of control to a

case statement or to a default label.

throw Statement
The throw statement is used to raise an exception, and unconditionally the control flows to
the first catch clause in a try-catch block.

CHAPTER 3 � CODE DEVELOPMENT76

560-2 ch03.qxd 10/27/05 4:16 PM Page 76

What
A throw statement is a way to signify that there is an abnormal condition, or an exception, in
the program. Upon encountering the condition, the Common Language Runtime (CLR) pauses
execution of the program while it seeks an exception handler. If there is no exception handler,
then the CLR terminates the program.

Where
The throw statement is commonly found within a try statement, although it may be found in a
method.

Why
When a program encounters an abnormal condition or exception, it should be handled.
The throw statement is an opportunity to programmatically raise and handle exceptions in
a program.

How
A throw statement may be specified as follows:

try
{

//do something
throw new System.Exception();

}

The Standard: throw

The standard acknowledges the use of the throw statement to programmatically raise an

exception to be handled.

try-catch
The try-catch statement or block is used to handle an exception that has been thrown.

What
The try-catch statement or block is a simple exception handler in which executable code may
be tried and an exception(s) may be specified and subsequently handled, if applicable. Where
there are several catch statements, for efficiency, it is preferred to arrange them in a descending
hierarchy of likelihood (i.e., most likely catch statement is placed closest to the try statement).

Where
A try-catch statement is located in a class code block—for example, in a method.

CHAPTER 3 � CODE DEVELOPMENT 77

560-2 ch03.qxd 10/27/05 4:16 PM Page 77

Why
When there is the likelihood of an abnormal condition, for example, a connection to a data-
base server may be temporarily unavailable, and then an appropriate exception may be
thrown and subsequently handled (e.g., switch to another database server). To handle differ-
ent types of abnormalities or exceptions, the action (e.g., connection to server) is wrapped in
a try statement, and then code to handle specific types of exceptions may be placed in the
catch statement.

How
The try-catch statement or block may be specified as follows:

try
{

//do something

catch (Type1Exception e)
{//code to handle exception}

catch (Type2Exception e)
{//code to handle exception}

catch (Type3Exception e)
{//code to handle exception}

}

The Standard: try-catch

The standard acknowledges the use of the try-catch statement or block where there is

not a requirement for the guarantee of a finally statement. It is mindful of the extra

resources necessary to support the catch statement and the benefit of arranging them in

descending likelihood of occurrence.

try-finally
The try-finally statement or block is a way to ensure that a block of code that is located in a
finally block is run when execution leaves the try block.

What
A try-finally statement or block is a mechanism in which an action may be tried, without a
specific catch statement, when code is placed in a finally statement that is guaranteed, by
the CLR, to run, irrespective of whether an exception is thrown or not.

Where
, in a method.

CHAPTER 3 � CODE DEVELOPMENT78

560-2 ch03.qxd 10/27/05 4:16 PM Page 78

Why
Given the context, it may not be appropriate to code a catch statement and the try-finally
statement or block may be sufficient. The try-finally statement or block is suitable in situa-
tions where executable code is wrapped in a try statement and it is necessary to run code, in
the finally statement, regardless of whether or not an exception is thrown.

How
A try-finally statement or block may be specified as follows:

try
{//do something}

finally
{//run some code}

The Standard: try-finally

The standard acknowledges the use of the try-finally statement as a mechanism

where it is necessary to attempt to execute a block of code (in the try block) and, regard-

less of the outcome, execute a subsequent code block (in the finally block).

try-catch-finally
The try-catch-finally statement or block is a comprehensive way to handle an exception
that has been thrown.

What
A try-catch-finally statement or block is a rich exception handler that facilities the wrapping
of executable code in a try statement; the catching of a specific exception, in a catch state-
ment, against which specific handler code may be written; and a finally statement in which
code must run even in the event that there is no exception thrown. Where there are several
catch statements, for efficiency, it is preferred to arrange them in a descending hierarchy of
likelihood (i.e., most likely the catch statement is placed closest to the try statement).

Where
The try-catch-finally statement or block is located in a code block—for example, in a
method.

Why
A try-catch-finally statement or block is used where there is the requirement to handle
exceptions in a comprehensive manner, when a try-catch or a try-finally are inadequate.

CHAPTER 3 � CODE DEVELOPMENT 79

560-2 ch03.qxd 10/27/05 4:16 PM Page 79

How
The try-catch-finally statement or block may be specified as follows:

try
{

//do something

catch (Type1Exception e)
{//code to handle exception}

catch (Type2Exception e)
{//code to handle exception}

catch (Type3Exception e)
{//code to handle exception}

finally
{//run some code}

}

The Standard: try-catch-finally

The standard acknowledges the use of try-catch-finally statement or block where a

comprehensive exception handling methodology is a requirement. It is mindful of the

extra resources necessary to support catch statements and the benefit of arranging them

descending in likelihood of occurrence.

Iteration
One of the ways that functionality is managed is through iteration of a given block of code or
a set of controls. There is a short list of tools we can use to iterate code and controls: do-while,
while, for, and foreach.

do-while
The do-while statement is a pair of iteration statements that combine to iterate a block of
code at least once.

What
A do-while iterative statement manages the conditional looping or execution of an embedded
statement(s) until the loop evaluates to false.

CHAPTER 3 � CODE DEVELOPMENT80

560-2 ch03.qxd 10/27/05 4:16 PM Page 80

Where
The do-while statement is placed in a code block, with the do statement placed at the head of
the iteration block, and the while statement placed at the tail of the iteration block.

Why
A do-while statement is used when there is a need to restrict the flow of code to iterate a set of
statements at least once, until a given condition is met.

How
The do statement may be specified as follows:

int i = 0;

do
{

//do something
i++;

}

while (i < 3);
{

//do something else
}

The Standard: do-while

The standard acknowledges the use of the do-while statement where there is a require-

ment to iterate an iteration block at least once.

while
The while statement is an iteration statement that iterates zero or more times.

What
A while iterative statement loops through an embedded statement. It may be used on its own
or paired with a do statement.

Where
The while iterative statement is placed in a code block at the head or tail of an iteration block.
A while iterative statement is used where there is a need to restrict the flow of code to iterate a
set of statements until a given condition is met.

CHAPTER 3 � CODE DEVELOPMENT 81

560-2 ch03.qxd 10/27/05 4:16 PM Page 81

Why
If the while statement is placed at the top of an iteration block, it will iterate zero or more
times; however, if it is put at the tail of an iteration block (e.g., when a do is placed at the head
of the iteration block), it will run at least once.

How
The while statement may be specified as follows:

int i = 0;

while (i < 3) //while at head of iteration block
{

//do something
i++;

}

or refer to the do statement, discussed previously, for an example of while at the tail of an iter-
ation block.

The Standard: while

The standard acknowledges the use of while statement where there is a requirement for

iterative flexibility: to iterate zero or more times (place while at the head of an iteration

block) or at least once (place a while statement at the tail of an iteration block and a do

statement at the head of the iteration block).

for
The for statement is an iteration statement that evaluates a set of initialization expressions
and then may iterate an iteration block.

What
A for iteration statement tests for a value before entering into a loop and iterates until a con-
dition is no longer true.

Where
The for statement is placed in a code block, with the for statement placed at the head of an
iteration block.

Why
A for statement is used when there is a requirement to test a value before deciding whether or
not to commence an iteration, and it uses a variable to record the number of iterations within
the block.

CHAPTER 3 � CODE DEVELOPMENT82

560-2 ch03.qxd 10/27/05 4:16 PM Page 82

How
The for statement may be specified as follows:

for (int i=0; i<10; i++)
{

//do something
}

The Standard: for

The standard acknowledges the use of the for statement where there is a requirement to

test a condition, by using the value in the index variable, before entering an embedded

code block.

foreach
The foreach statement is an iteration statement that enumerates a collection.

What
A foreach iterative statement enumerates each element in a collection and executes the
embedded statement for each of the elements.

Where
The foreach statement is placed in a code block at the head of an iteration block.

Why
A foreach statement is useful when there is a requirement to loop through a collection of
items (e.g., objects or controls).

How
The foreach statement may be specified as follows:

foreach (Tire t in Car)
{

AirPump.StartPumping();
}

The Standard: foreach

The standard acknowledges the use of the foreach statement where there is a require-

ment to iterate a collection—for example, objects or controls.

CHAPTER 3 � CODE DEVELOPMENT 83

560-2 ch03.qxd 10/27/05 4:16 PM Page 83

560-2 ch03.qxd 10/27/05 4:16 PM Page 84

Code Documentation

This chapter is one of a pair of chapters that look at documentation: this chapter focuses
on standards for documenting code, and Chapter 8 is about documenting application design.
Code documentation is managed through a documentation policy; the policy seeks to ensure
that procedures are in place to assist code stakeholders (e.g., architects and developers) and to
protect the organization’s investment in software assets. The major risk that documentation
seeks to minimize is knowledge degradation: (1) knowledge goes with the developers when
they leave the team, and (2) over time, we forget the details about code that we wrote two,
three, or four projects ago!

Documentation Policy
A documentation policy is a statement that contains a set of guidelines or rules to manage the
documentation of code.

What
The policy seeks to coordinate and standardize code documentation across all development
by requiring developers to follow a set of common guidelines or rules. Devising an imple-
mentable policy can be a difficult task because the policy has to balance two countervailing
issues: the time demands on developers to develop code, against the time demands on them
to document that development. However, to some degree the two tasks need not be mutually
exclusive if documentation is performed as an integral part of designing and developing code,
rather than as a discrete after-the-fact task. The following is a template of issues that may be
considered as part of a documentation policy:

Documentation Policy Template

• Agree the scope and nature of the documentation.

• Develop a uniform documentation policy for all development.

• Review the policy regularly (e.g., every six months).

• Develop and distribute a documentation manual (online and/or hardcopy).

• Engage the whole team in developing the documentation policy.

85

C H A P T E R 4

� � �

560-2 ch04.qxd 10/27/05 4:16 PM Page 85

• Require all developers to be trained in documentation.

• Consider incorporating documentation as part of the design and development phases
of a project.

• Sign off on documentation and subject it to peer group and or an independent techni-
cal review (e.g., by an external IT auditor).

• Categorize documentation as code design and code development documentation.
(Note that development includes code maintenance.)

• Consider housing the documentation where it is accessible to application architects
and developers (e.g., Visual Studio solution) and stored safely (e.g., Visual SourceSafe).

�Tip Write a policy as a set of pragmatic statements rather than as a lengthy dialog.

Where
A code documentation policy is used by all of the development teams.

Why
A documentation policy minimizes the risk of knowledge degradation.

How
A policy is the result of a consultation process among stakeholders (project managers, application
architects, and developers). Once agreed on, it may be distributed as part of a documentation
manual (online and/or manual).

The Standard: Development Documentation Policy

The standard acknowledges the importance of knowledge retention and that a docu-

mentation policy may be used to minimize the risk of knowledge degradation.

Documentation of Code
When documenting, code is separated into two categories: (1) code design and (2) code devel-
opment. The separation recognizes the inadequacy of relying solely on code comments;
although they do document code development, however, they do not document the underly-
ing code design strategy, rationale, and structure.

CHAPTER 4 � CODE DOCUMENTATION86

560-2 ch04.qxd 10/27/05 4:16 PM Page 86

Code Design Documentation
Documenting code design refers to identifying how and why the code has been designed the
way that it has been.

What
Documentation of code design discusses code from a design perspective. It briefly explains
the underlying strategy, rationale, and structure used in developing the code and highlights
critical aspects of the design. What items are documented is a matter of site policy—for exam-
ple, critical aspects only; identify design patterns used; identify important classes and their
respective roles; explain design choices; identify critical dependencies; identify code fragility;
and list key assumptions, and so forth. What is best documented will evolve over time, and in
that regard, the adequacy of documentation may be discussed regularly in team meetings
(including a discussion of a program to verify the adequacy of respective documentation).

Where
Code design documentation should be readily accessible for developers and application
architects.

Why
Code design documentation enables a team to retain and share critical design knowledge that
identifies and explains the underlying intention of the developers and application architects.

How
Design documentation may be written in a log file (see the section Code Design Log, later in
this chapter), which may be a txt, html, or xml file and stored in a Visual Studio solution, for
example. To ensure format consistency, the log may be copied from a template.

The Standard: Code Design Documentation

The standard acknowledges the importance of documenting code design so that it read-

ily identifies and explains key aspects of the underlying code design strategy, rationale,

and structure.

Code Design Log
A code design log is a simple form of documentation that is readily accessible to be referenced
and updated.

What
A design log is a register in which key design information is stored. It contains documentation
about modification history, assumptions, fragility, and a profile of key classes and types, for

CHAPTER 4 � CODE DOCUMENTATION 87

560-2 ch04.qxd 10/27/05 4:16 PM Page 87

example. It may be used at solution level or folder level (e.g., UI Class folder and Utility Class
folder would each contain a code design log, which documents the classes within each respec-
tive folder).

Where
A design log resides in each Visual Studio solution and/or folder that stores code.

Why
A design log is an intuitive and quick method to document design; it supports a note format
that minimizes the time demands on developers and application architects. It puts the docu-
mentation where it is most convenient for application architects and developers to reference.

How
A template is prepared as a txt, xml, or html file and copied to each Visual Studio folder in
which code is written. The following is a template of the contents of a code design log; it may
be modified to suit the requirements of a development team (subject to policy):

Code Design Log

Log Header

Log Filename: AlgorithmAssembly
VS Solution: ModelT.Enterprise
Log Purpose: List major issues
Note: Item format: Number, [Date of Entry; Author's email address], Comment.

Modification History

1. [01/10/05; petern@modelt.com] Code classes: A,B,C,D,E.
2. ...

Overview

[01/10/05; stevek@modelt.com] All algorithms are coded in "algorithm" classes, which
are subsequently contained in client classes.
2. ...

Assumptions

1. [01/10/05; andrewb@modelt.com] Monetary precision is to the nearest dollar.
2. ...

CHAPTER 4 � CODE DOCUMENTATION88

560-2 ch04.qxd 10/27/05 4:16 PM Page 88

Type Roles and Relationships

1. [01/10/05; billb@modelt.com] EngineAssemblyAlgorithm has seven classes which
participate in this algorithm (A,B,C,D,E,F,G). Class C is the controller
class, while class A and B ...
2. ...

Design Patterns

1. [01/10/05; sammyc@modelt.com] Strategy Pattern (Classes A,B,C..F);
(Class A, B, C, D, E);
2. ...

Types

Classes

1. [01/10/05; sammyc@modelt.com] Class 'AC' is an abstract controller class (MVC). A
controller
class is used to manage algorithm worker classes and view and data requirements.
2. ...

Structs

1. [01/10/05; sammyc@modelt.com] Struct 'B' represents the attributes which comprise
an
engine. An abstract class has not been used in this instance because...
2. ...

Interface

1. [01/10/05; billb@modelt.com] IAccessory represents the base interface for the
hierarchy
of accessory types.
2. ...

...

CHAPTER 4 � CODE DOCUMENTATION 89

560-2 ch04.qxd 10/27/05 4:16 PM Page 89

The Standard: Code Design Log

The standard acknowledges the use of a code design log as an intuitive and quick

method to document code design. It may be prepared as a txt, xml, or html template and

stored inside a folder within a Visual Studio solution, for example.

Documentation of Code Development
There are four types of documentation of code development commonly used: line comments,
block comments, XML comments, and object browser comments.

Line Comment
A line comment uses a delimiter (e.g., "//") to signify that the line of code is a comment line
and is not part of the compilation.

What
The line comment is a comment that takes up all or part of a single line in a code module (e.g.,
class or code file). Where a comment requires more than one line, several line comments may
be stacked line after line, as an alternative to a block comment.

Where
A line comment is placed above a line of code with no line space between the comment and
the code, and one or no spaces between the delimiter and the start of the comment. A line
comment may also be placed at the end of a line of code.

Why
The line comment is a convenient way for a developer to document or signify something that
is noteworthy about a line or block of code.

How
A line comment may be placed above a line of code, specified as:

// Note: integer is used and not double.
int noTires;

or a line comment may continue over multiple lines:

// Note: integer is used and not double -- car has five tires,
// which includes the spare tire. Write Property setter code to limit
// the number of tires to five, per car.
int noTires;

CHAPTER 4 � CODE DOCUMENTATION90

560-2 ch04.qxd 10/27/05 4:16 PM Page 90

or a line comment may be placed at the end of the line of code:

int noTires = 0; // always assign a default value

The Standard: Line Comment

The standard acknowledges the use of the line comment, which may be used as a single

line comment, a multiline comment, or an end-of-line comment.

Block Comment
A block comment uses an opening and closing delimiter to identify a block of comments.

What
The block comment is a multiline comment used for large comments running over multiple
consecutive lines.

Where
A block comment is placed above the block of code with no line spacing between the last line
of the comment block and the first line of the code.

Why
The block comment is a convenient way for a developer to document or signify something
that is noteworthy about a block of code.

How
A block comment uses opening ("/*") and closing ("*/") delimiters, which may be specified as:

/*
The following block of code manages data access to a SQL Server database. The
code, below, is wiring which leverages the data access classes, which are
referenced from the ModelT.Enterprise.DataManager DLL. Note that data access
classes rely on the file ConnectionString.XML which resides in the 'Data' folder.
If you need to modify the connection string, then do so using that file.
*/
DataSet ds = new ModelT.Enterprise.DataManager.Open("DS", "spSalesHistory");
...

The Standard: Block Comment

The standard acknowledges the use of the block comment where documentation is

extensive. However, it notes that Visual Studio’s line comment tool may be a more con-

venient method to comment blocks.

CHAPTER 4 � CODE DOCUMENTATION 91

560-2 ch04.qxd 10/27/05 4:16 PM Page 91

XML Comment
An XML comment is a supplement to the line and block code comments. Using an add-in tool
(e.g., Visual Studio XML Documentator), XML comments can be published to an HTML page
and object browser.

�Caution Visual Studio 2005 Beta 2 and RC were used in preparing this book. At that time the XML
Documentator tool was not available. The discussion and following example use the tool in an earlier
version of Visual Studio. It is noted, however, that a freeware XML Documentator tool is available at
http://ndoc.sourceforge.net.

What
The XML comment is a single line or block of XML comments, visible within or external to a
code module—unlike a line or block comment, which is not visible outside of the code module.

Where
An XML comment is placed above a line or block of code with no line spacing between the
XML comment and the first line of code.

Why
The XML comment is a convenient way for a developer to publish documentation externally.
Note, however, that XML comments can be verbose.

How
An XML comment uses a comment delimiter, which may be specified as:

/// <summary>
/// Note: integer is used and not double -- car has 4 tires.
/// </summary>
int noTires;

or a line comment to carry a comment over more than one line:

/// <summary>
/// Note: integer is used and not double -- car has five tires,
/// which includes the spare tire. Write Property setter code to limit
/// the number of tires to five, per car.
/// </summary>
int noTires;

CHAPTER 4 � CODE DOCUMENTATION92

560-2 ch04.qxd 10/27/05 4:16 PM Page 92

�Note Visual Studio automatically inserts “<summary>” and “</summary>” tags, when you key in the
xml delimiter ("///").

The Standard: XML Comments

The standard acknowledges the use of XML comments as a form of internal and exter-

nal code documentation.

Object Browser Comments
An object browser comment is a comment that resides in Visual Studio’s object browser
window (refer to Figure 4-5 for a screenshot of object browser comments).

What
The object browser comments is a type of documentation that Visual Studio automatically
publishes in object browser as part of the process of using the XML Documentator tool.

Where
An XML comment is placed immediately above the signature of a type or a member of a
complex type.

Why
An object browser comment is a valuable form of type documentation because it publishes
the documentation in the IDE, which makes it readily accessible for developers and applica-
tion architects.

How
An XML comment is placed immediately above the signature of a type or a member of a
complex type definition. An object browser comment uses an XML delimiter, which may be
specified as:

/// <summary>
/// Note: integer is used and not double -- car has 5 tires.
/// </summary>
int noTires;

or over more than one line:

/// <summary>
/// Note: integer is used and not double -- car has five tires,
/// which includes the spare tire. Write Property setter code to limit
/// the number of tires to five, per car.
/// </summary>

CHAPTER 4 � CODE DOCUMENTATION 93

560-2 ch04.qxd 10/27/05 4:16 PM Page 93

The Standard: Object Browser Comments

The standard acknowledges the use of object browser comments as a form of internal

and external type documentation, and notes that it conveniently publishes the docu-

mentation in the Visual Studio IDE, which makes it readily accessible for developers

and application architects.

XML and Line/Block Comments
Should XML comments replace line/block comments? Although XML comments have great
advantages (e.g., they are easy to publish to object browser or HTML pages), they do have a
minor downside: they can be verbose—which may or may not be okay—and they cannot be
tagged onto the end of a code line. So, there will be situations where you may want to use all
three comment tools rather than put everything in an XML comment.

What
XML and line/block comments are documentation methods that serve different purposes
(discussed earlier). When used in a partnership, they offer the developer a rich choice of tools.

Where
XML comments may be used whenever documentation needs to be published externally; oth-
erwise line/block comments may be more convenient.

Why
Because XML comments tend to be verbose, there are times when line/block comments are a
more appropriate choice for a small comment (e.g., at the end of a code line).

How
XML and line/block comments may be combined to document code development, as in the
following example:

namespace ModelT.Enterprise.Vehicle
{
/**
In this code file is the definition of
enumerators,
Car and Radiator.
**/
// Enumerators - leave a blank line else the XML comment
// is ignored by Visual Studio

/// <summary>
/// Note: that there is only one color
/// on offer.

CHAPTER 4 � CODE DOCUMENTATION94

560-2 ch04.qxd 10/27/05 4:16 PM Page 94

enum CarColor
{
Black

}

/// <summary>
/// Car class is used to instantiate a Model T
/// car, regardless of model type.
/// </summary>
public class Car
{
// Private fields
int _wheels;

}

public class Radiator
{
// Private fields
private double radiatorCapacity;

// Methods

/// <summary>
/// Call FitRadiatorCap() to
/// fit the radiator cap to the
/// radiator.
/// </summary>
public void FitRadiatorCap()
{
;

}

// Properties

/// <summary>
/// Radiator capacity, represents
/// maximum number of pints of water.
/// </summary>
public double RadiatorCapacity
{
get {return radiatorCapacity;}
set {radiatorCapacity = value;}

}

}

CHAPTER 4 � CODE DOCUMENTATION 95

560-2 ch04.qxd 10/27/05 4:16 PM Page 95

Code Comment Template
Consider copying a code documentation template (shown next) into a class or code file tem-
plate, and then when the class or code file template is reused, the outline of the documentation
is automatically available to the developer.

namespace ModelT.Enterprise.Vehicle
{

/**
* namespace header section
* --
*
* place comments here
***/

/**
* interface section
* --
*
* place comments here
***/

/**
* struct section
* --
*
* place comments here
***/
/// <summary>
/// struct comments go here
/// </summary>
struct Engine
{
// private fields
private int _piston;
private int _valve;

//properties
/// <summary>
/// Piston comments go here
/// </summary>]
public int Piston
{
get{ return _piston; }

CHAPTER 4 � CODE DOCUMENTATION96

560-2 ch04.qxd 10/27/05 4:16 PM Page 96

set{ _piston = value; }

}

/// <summary>
/// Valve comments go here
/// </summary>
public int Valve
{
get{return _valve; }
set{ _valve = value; }

}

}

/**
* class section
* --
*
* place comments here
***/

/* **
* ...
* --
*
* place comments here
***/

}//end namespace ModelT.Enterprise.Vehicle

The Standard: XML and Line/Block Comments

The standard acknowledges the partnership of XML and line/block comments in docu-

menting code.

Visual Studio XML Comment Tool
Publishing XML comments as HTML pages and as type descriptions in object browser is done
using Visual Studio. If you do not have a version of Visual Studio with the XML Comment Tool
(Build Comment Web Pages), which is accessed via the Tools menu, then you may want to
download a freeware tool (http://ndoc.sourceforge.net/).

CHAPTER 4 � CODE DOCUMENTATION 97

560-2 ch04.qxd 10/27/05 4:16 PM Page 97

The following screenshots walk you through the process of using the in-built functionality
of Visual Studio, to develop HTML files that can be used outside of Visual Studio (perhaps in a
developer portal) and documentation that is automatically added to the object browser.

�Note Visual Studio 2005 Beta 2 and RC were used in preparing this book. At that time the XML Docu-
mentator tool was not available. The following example uses Visual Studio 2003. (Obviously, this anticipates
that the XML Comment tool will be included in the final release—fingers crossed. If not, then consider
the freeware tool mentioned previously.) Also note that the following example is an illustration and is not
included with the code download for the book. To experiment with the XML Documentator tool, develop a
simple test application and use it.

1. Select “Build Comment Web Pages” from the Tools menu (see Figure 4-1).

Figure 4-1. Build Comment Web Pages

2. Accept the default “Build for entire Solution” option. Selecting this option will create
a set of external HTML files at your default location, or if you prefer you can create a
documentation folder on your C drive or at a server location (I have chosen to create a
folder on the C drive, for illustrative purposes). Note that the HTML file will open up
automatically, in Visual Studio, once you have finished Step 2 (see Figure 4-2).

CHAPTER 4 � CODE DOCUMENTATION98

560-2 ch04.qxd 10/27/05 4:16 PM Page 98

Figure 4-2. Build for entire Solution

3. On the HTML page, click the ModelT.Enterprise.Vehicle project hyperlink (see
Figure 4-3).

Figure 4-3. Click Project hyperlink

CHAPTER 4 � CODE DOCUMENTATION 99

560-2 ch04.qxd 10/27/05 4:16 PM Page 99

4. Select the Radiator struct type, which is resident in the ModelT.Enterprise.Vehicle
namespace, and you will see XML comments under the “Description” heading (see
Figure 4-4).

Figure 4-4. Select Radiator structure

5. Notice that the XML comments have been published to the “Summary” section,
in the Object Browser window (see Figure 4-5).

Figure 4-5. The “Summary” section in the Object Browser window

CHAPTER 4 � CODE DOCUMENTATION100

560-2 ch04.qxd 10/27/05 4:16 PM Page 100

Design Policy
Standards

This part of the book discusses design policy standards by looking at design style,

code management, structure, development, and documentation.

P A R T 2

� � �

560-2 ch05.qxd 10/27/05 4:17 PM Page 101

560-2 ch05.qxd 10/27/05 4:17 PM Page 102

Design Policy

Chapter 1 contained a discussion of code policy, which is used to manage the important
aspects of code. This chapter examines policy as it relates to design and identifies how archi-
tecture is used to manage the enterprise.

What
A design policy is a plan that is used to identify and manage the important aspects of
architecture—it expresses how an enterprise will be configured to support the technical
and functional objectives implicit in an organization’s business strategy.

Where
A design policy is applied across the enterprise, and it may extend to stakeholders.

Why
A policy is an effective and efficient way to coordinate the management of a range of interre-
lated architectures (e.g., enterprise, application, data, and network architectures), each with
different dynamics.

How
A design policy, like a code policy, doesn’t have a definitive structure; it is developed around how
best to coordinate the enterprise, which will vary on a case-by-case basis. A structure may be
developed around a set of design objectives and use a design style to implement them. Figure 5-1
illustrates a design policy that licenses the open-source architecture framework (TOGAF) stan-
dard and uses a set of in-house standards that complement the architecture framework.

�Note TOGAF is a methodology that uses an architectural framework to manage a set of architectures across
an enterprise. TOGAF is open-source technology that is available from The Open Group (www.opengroup.org)
through a public licensing arrangement. Members of The Open Group include IBM, HP, SAP, Intel, OMG, Apple
Computer, Oracle, Computer Associates International, Sun Microsystems, NASA, the U.S. Department of
Defense, and Citigroup.

103

C H A P T E R 5

� � �

560-2 ch05.qxd 10/27/05 4:17 PM Page 103

Figure 5-1. Design policy structure

The Standard: Design Policy

The standard acknowledges that a design policy is an effective and efficient way to coor-

dinate the management of a range of interrelated architectures that have different

dynamics.

Design Objectives
A design policy relies on a set of objectives to express how it is implemented across the
enterprise.

What
Design objectives identify what is necessary to satisfy the requirements of the design policy.

Where
Design objectives form part of the design policy.

Why
Objectives are important because they express how a policy statement will be realized in con-
crete terms.

How
Each policy statement is considered in terms of architecture—what needs to be done to fulfill
a given policy statement. For example, a policy statement might say: “The enterprise is to be
designed to maximize loose coupling.” From that statement one considers the implications
and prepares a set of objectives, such as the following:

CHAPTER 5 � DESIGN POLICY104

560-2 ch05.qxd 10/27/05 4:17 PM Page 104

• Objective # 020: Implement a service-oriented architecture (enterprise services)

• Objective # 030: Integrate applications through an application integration layer

• Objective # . . .: etc.

The Standard: Design Objectives

The standard acknowledges that design objectives are an essential part of managing the

design of an enterprise because they identify in concrete terms what needs to be done.

Design Style
This section discusses design style, which refers to the arrangement of architecture.

What
A design style describes the use of an architecture framework and architectures (e.g., data and
network architectures) to style an enterprise.

Where
A design style is used across the enterprise, and it may extend to stakeholders.

Why
A design style coordinates architecture decision making, across all architectures, to ensure
that the enterprise is and remains structured in a way that complements an organization’s
(dynamic) business strategy.

How
Developing a design style involves several key steps: (1) choose an architecture framework (e.g.,
TOGAF)—a methodology to manage a set of architectures; (2) identify a target architecture—
how the enterprise will look in 12 to 24 months; (3) prepare a gap analysis—what needs to be
done to get from the present situation to the target or destination architecture; (4) develop a
roadmap; (5) develop a migration plan; and (6) implement the roadmap.

The Standard: Design Style

The standard acknowledges the use of design style, which seeks to ensure that the enter-

prise is and remains structured in a way that complements an organization’s (dynamic)

business strategy.

CHAPTER 5 � DESIGN POLICY 105

560-2 ch05.qxd 10/27/05 4:17 PM Page 105

Architecture Framework
An enterprise is managed through architecture. An architecture framework orchestrates a set
of architectures that manage the specialist technical areas of an enterprise (e.g., software,
data, or network development).

What
An architecture framework is a tool that defines and strategically aligns specialist architectures
(e.g., network, application, integration, and data architectures). A small set of architecture
framework tools are recognized as international standards, including Zachman, C4ISR/DoDAF,
FEAF, and TOGAF.

Where
An architecture framework sits across the enterprise.

Why
An enterprise needs to be strategically managed, in line with a business strategy, and an
architecture framework is a tool that can be used to regulate the enterprise consistent with
the technical and functional requirements implicit in a business strategy.

How
An architecture framework is selected from a set of recognized international standards and
implemented. Implementation includes defining a target architecture, undertaking a gap
analysis, preparing an architecture roadmap, and applying an architecture development
methodology.

The Standard: Architecture Framework

The standard acknowledges the use of an architecture framework to strategically use

architecture to manage an enterprise.

Target Architecture
The framework manages architectural change through the definition of its target architecture,
which expresses the future structure of the enterprise.

What
A target architecture is the architecture that an organization wants to have at a future point in
time, to support a business strategy.

Where
A target architecture is part of the architecture framework.

CHAPTER 5 � DESIGN POLICY106

560-2 ch05.qxd 10/27/05 4:17 PM Page 106

Why
A design policy has to accommodate the changes in a business strategy that impact func-
tional and technical objectives, and this often means that an architecture needs to adapt.
The target architecture encapsulates and coordinates change as a version or iteration of the
enterprise and avoids the high risk associated with implementing structural change in an
impulsive or ad hoc manner.

How
The architecture framework defines the target architecture and manages the impact of techni-
cal and functional change across an enterprise.

The Standard: Target Architecture

The standard acknowledges that the target architecture encapsulates and coordinates

change as a version or iteration of the enterprise and avoids the high risk associated

with implementing structural change in an impulsive or ad hoc manner.

Architecture Roadmap
To move an existing architecture to a target architecture, the technical team follows an archi-
tectural roadmap.

What
An architectural roadmap identifies the when, what, and how of an existing architecture being
migrated to a target architecture.

Where
An architecture roadmap is part of the architecture framework.

Why
A roadmap acts as a guide by which tasks can be readily identified and sequenced.

How
An enterprise architecture or team of architects, in consultation with technical staff (e.g.,
application developers and network and data administrators), defines a roadmap in which
tasks are identified, sequenced to be progressively iterated, as milestones, to eventually arrive
at the target architecture.

The Standard: Architecture Roadmap

The standard acknowledges the use of an architecture roadmap as a guide to migrating

an existing architecture to a target architecture.

CHAPTER 5 � DESIGN POLICY 107

560-2 ch05.qxd 10/27/05 4:17 PM Page 107

Architecture
An architecture is a structure that organizes artifacts into a cohesive system.

What
An architecture is defined as “the fundamental organization of a system, embodied in its com-
ponents, their relationships to each other and the environment, and the principles governing
its design and evolution” (ANSI/IEEE Std 1471–2000).

Where
An architecture resides within an architecture framework. Common types of architectures
presented as standards are as follows:

• Enterprise architecture—defines the technology structure that represents the organiza-
tion; it may cross stakeholder domains.

• Network architecture—defines the structure of a network of servers within an enter-
prise.

• Technical architecture—defines middleware software.

• Application architecture—defines application design, development, and integration.

• Data architecture—defines the structure of physical and logical data; how it is stored,
accessed, and distributed within the enterprise.

• Deployment architecture—defines the deployment of applications on network nodes
within the enterprise, or it may cross stakeholder domains (e.g., remoting).

• Integration architecture—describes how applications that are internal and external of
the enterprise share functionality and data.

• Service-oriented architecture—defines a type of integration architecture premised on
loose coupling, which distributes functionality and data as published services.

• Business architecture—defines business and technical objectives, and IT governance
and business processes.

Why
An architecture is an efficient and effective way to manage the artifacts of an enterprise, as it
wraps complexity by presenting a simple interface through which activity may be coordinated.

How
An architecture is prepared in the context of its role (e.g., a service-oriented architecture has
an integration-services role) within an architecture framework, which is determined by the
technical and functional objectives of a business strategy.

CHAPTER 5 � DESIGN POLICY108

560-2 ch05.qxd 10/27/05 4:17 PM Page 108

The Standard: Architecture

The standard acknowledges the use of architecture to manage enterprise artifacts in line

with technical and functional objectives.

Enterprise Architecture
Defines the structure that represents the enterprise, which may cross stakeholder domains.

What
An enterprise architecture is an architecture that coordinates technology, across the enter-
prise, in line with a given business strategy.

Where
An enterprise architecture resides within an architecture framework and spans an organiza-
tion or across organizations.

Why
Technology is complex, particularly when it expands not only an organization’s domain but
across stakeholder domains. An enterprise architecture is an efficient and effective way to
manage technology in line with a business strategy.

How
An enterprise architecture is prepared in the context of its role within an architecture frame-
work, which is determined by the technical and functional objectives of a business strategy.

The Standard: Enterprise Architecture

The standard acknowledges the use of enterprise architecture as an efficient and effec-

tive way to manage technology, across an enterprise, in line with a business strategy.

Network Architecture
A network architecture is an artifact of an enterprise architecture.

What
Network architecture defines the structure of a network of servers within an enterprise.

Where
A network architecture resides within an architecture framework and spans an organization or
across organizations.

CHAPTER 5 � DESIGN POLICY 109

560-2 ch05.qxd 10/27/05 4:17 PM Page 109

Why
A network of servers needs to be structured and managed in a manner that supports the
software, technology, data, and deployment architecture, and this can be done through
architecture.

How
A network architecture is designed and maintained on the basis of the support requirements
of software, technology, data, and deployment architectures.

The Standard: Network Architecture

The standard acknowledges the use of network architecture as a tool to support the

strategic requirements of software, technology, data, and deployment architectures,

within the context of an architecture framework.

Technical Architecture
A technical architecture is an artifact of an enterprise architecture.

What
A technical architecture comprises middleware software, which is software that performs the
role of an intermediary between two discrete artifacts. Commonly the Model–View–Controller
(MVC) design pattern is used as an architecture design pattern to implement decoupling
between architectures. MVC is discussed in Chapter 9.

Where
A technical architecture resides within an architecture framework and spans an organization
or across organizations.

Why
The use of middleware promotes loose coupling and minimizes the risk of duplicating func-
tionality, by abstracting the functionality into a central service to which artifacts may
subscribe.

How
Functionality is published as a service and not duplicated and coupled to an application’s
implementation. For example: rather than write similar data functionality in many Web pages
that couple the pages directly to the interface of a database, the functionality is abstracted to
data service middleware, which acts as an intermediary between the pages and the data source.
In the event of change to the interface of the database, the maintenance is confined to the
relationship between the middleware and the database, leaving the interface exposed by the

CHAPTER 5 � DESIGN POLICY110

560-2 ch05.qxd 10/27/05 4:17 PM Page 110

middleware to its clients (the Web pages) unchanged. Generally, it costs less to maintain
middleware than multiple clients.

The Standard: Technical Architecture

The standard acknowledges the use of technical architecture as an efficient and effective

way to maximize decoupling and minimize duplication, within the context of an archi-

tecture framework.

Application Architecture
A software or application architecture is an artifact of an enterprise architecture.

What
An application architecture is a blueprint for application design, development, and integra-
tion.

Where
An application architecture resides within an architecture framework and spans an enterprise.

Why
An application architecture ensures applications are designed, developed, and integrated
consistently, which minimizes the risk of nonconformity and exposure to additional costs of
maintenance and reengineering.

How
Application architectures are commonly designed as application frameworks or templates
from which applications are developed as implementations of the framework or template. The
framework contains prebuilt common enterprise functionality, which reduces development to
adding specific application functionality and specializing enterprise functionality, as required.

The Standard: Software or Application Architecture

The standard acknowledges the use of application architecture as an efficient and effec-

tive way to manage application design and development within the context of an

architecture framework.

Data Architecture
Data architecture is an artifact of an enterprise architecture.

CHAPTER 5 � DESIGN POLICY 111

560-2 ch05.qxd 10/27/05 4:17 PM Page 111

What
Data architecture defines the structure of physical and logical data and how it is stored,
accessed, and distributed within and across domains (e.g., nontransactional data is denor-
malized and stored in a warehouse [OLAP], and it may be published as Web services).

Where
A data architecture resides within an architecture framework and spans an enterprise or
across enterprises.

Why
A data architecture is an efficient and effective way to manage and protect the investment in
data and information.

How
Data is modeled physically and logically and stored in repositories (e.g., database and ware-
house), from where it is distributed in a timely and efficient manner to clients.

The Standard: Data Architecture

The standard acknowledges the use of data architecture as an efficient and effective way

to support information requirements within the context of an architecture framework.

Deployment Architecture
A deployment architecture is an artifact of an enterprise architecture.

What
Deployment architecture defines the deployment of applications or functionality and data
on network nodes. For example, although it may be logical to deploy functionality and data
to a given server, owing to high transaction volumes it may be more efficient (e.g., respon-
sive) to replicate or split functionality and data across multiple servers to better balance peak
workloads.

Where
A deployment architecture resides within an architecture framework; it spans a domain net-
work or may cross stakeholder domains.

Why
A deployment architecture plays an important role in defining distribution and accessibility
to enterprise functionality and data.

CHAPTER 5 � DESIGN POLICY112

560-2 ch05.qxd 10/27/05 4:17 PM Page 112

How
A deployment architecture is designed to complement the requirements of an enterprise
architecture by deploying functionality in an optimal manner that promotes efficiency, relia-
bility, and security.

The Standard: Deployment Architecture

The standard acknowledges the use of deployment architecture as an efficient and effec-

tive way to deploy functionality and data throughout an enterprise within the context

of an architecture framework.

Integration Architecture
Integration architecture is a methodology by which artifacts within a domain or across
domains are integrated.

What
Integration architecture describes how applications share functionality and data. Commonly,
there are two types of integration architecture: synchronous and asynchronous. Hub-n-spoke
(including Web services) is synchronous, and integration is tightly coupled to an interface. A
message bus is an example of asynchronous integration that is loosely coupled (the consumer
of the service does not know the source of the functionality—it only has to know the message
protocol and which queue to send the message to).

Where
An integration architecture resides within an architecture framework; it spans a domain net-
work or may cross stakeholder domains.

Why
Integration architecture is critical because it defines how application functionality and data
are moved within and across domains. The choice of integration architecture (synchronous
and asynchronous) may significantly impact the efficiency and effectiveness of an enterprise
to meet the requirements of a business strategy.

How
Asynchronous integration acts through an interim layer or middleware that decouples the
client from the provider. By contrast, with hub-n-spoke integration the client integrates
directly with the provider. Commonly the Model–View–Controller (MVC) design pattern is
used as an architecture design pattern to implement decoupling between architectures. MVC
is discussed in Chapter 9.

CHAPTER 5 � DESIGN POLICY 113

560-2 ch05.qxd 10/27/05 4:17 PM Page 113

The Standard: Integration Architecture

The standard acknowledges the use of integration architecture as an efficient and effec-

tive way to manage the integration of functionality and data throughout an enterprise

within the context of an architecture framework.

Service-Oriented Architecture
Service-oriented architecture (SOA) is premised on providing or publishing functionality or
data as a service against which clients subscribe.

What
SOA is synonymous with Enterprise Application Integration (EAI) and is a type of integration
architecture that is loosely coupled and through middleware supports asynchronous and syn-
chronous communication between publisher and subscriber.

Where
SOA resides within an architecture framework; it spans a domain network or may cross stake-
holder domains.

Why
SOA offers an enterprise the opportunity to integrate using either asynchronous or synchro-
nous communication. In domains where there are large transaction volumes or complex
transactions, SOA’s ability to support asynchronous communication has a lower risk profile
than synchronous transaction support.

How
SOA may be designed as follows: hub-n-spoke, Web service, or message bus. The hub-n-spoke
model (Figure 5-2) is the traditional synchronous model used to share functionality, where the
hub is a server and the entities are client applications. Although functionality is reused, access
is limited to a LAN/WAN architecture. The entities (clients) are coupled to the interface of the
server (hub); using a hub in peak times may impact performance.

A Web service model (Figure 5-3) is a variation of the hub-n-spoke model, as it, too, is a
synchronous model; however, it is not restrained by LAN/WAN, as it leverages Internet tech-
nology to distribute services. The entities (clients) are coupled to the interface of the Web
service.

CHAPTER 5 � DESIGN POLICY114

560-2 ch05.qxd 10/27/05 4:17 PM Page 114

Figure 5-2. Hub-n-spoke

CHAPTER 5 � DESIGN POLICY 115

560-2 ch05.qxd 10/27/05 4:17 PM Page 115

The message bus (Figure 5-4) is an asynchronous model which leverages queues and mes-
sages, where functionality is accessed by sending and receiving messages via a given message
queue. The entities (clients) are not coupled to an interface—they do not know the source of
the functionality, they only know about a message format and a queue.

Figure 5-4. Message bus

The Standard: Service-Oriented Architecture

The standard acknowledges the use of service-oriented architecture as an efficient and

effective way to manage the publication and subscription of functionality and data

throughout an enterprise within the context of an architecture framework.

Business Architecture
The business architecture identifies business and technical objectives, and defines IT gover-
nance and business processes.

What
A business architecture describes the business and technical artifacts that are expressed
through a hierarchy of architectures.

Where
A business architecture resides within an architecture framework.

CHAPTER 5 � DESIGN POLICY116

560-2 ch05.qxd 10/27/05 4:17 PM Page 116

Why
A business architecture identifies the strategic purpose that unites and coordinates the set of
architectures used to manage and safeguard the enterprise.

How
A business architecture is developed by a software development committee, an architecture
committee, and an IT governance committee. The software development and architecture
committees are responsible for supervising the implementation and management of the busi-
ness architecture; however, they are accountable to the IT governance committee for its
performance.

The Standard: Business Architecture

The standard acknowledges the use of business architecture to identify a strategic pur-

pose to unite and coordinate a set of architectures to manage and safeguard the

enterprise.

CHAPTER 5 � DESIGN POLICY 117

560-2 ch05.qxd 10/27/05 4:17 PM Page 117

560-2 ch05.qxd 10/27/05 4:17 PM Page 118

Design Structure

The previous chapter introduced the concept of managing design strategically using a pol-
icy that seeks to coordinate design across an enterprise to marshal resources in line with the
business strategy of the organization. We now look at how strategy is applied in the way we
structure design across an enterprise. That is done by discussing structural design and the
underlying concepts, such as the Enterprise-Domain design dichotomy, modularity, cou-
pling, and layers. Design is given a context and structure with a framework.

Structural Design
Structural design is concerned with managing the design of a large structure that is a com-
posite of smaller structures, which themselves may be composite structures. Given that an
enterprise can be very large and complex, we use structure to decompose the complexity into
units or modules of specialty, which are orchestrated towards a shared objective. We are famil-
iar with the concept of structural design, but in a smaller way, in user interface development.
When we design a page class as a container of other classes (e.g., text boxes and buttons), we
structurally design for a specific role: for example, we use structural design when we design a
page class as a container to hold other classes specific to a login page of a website. However, in
the matter before us, the container is instead an enterprise architecture, which is an abstrac-
tion of the enterprise, and the controls are smaller architectures, which are represented by
layers or tiers that contain artifacts, such as applications and servers.

What
Structural design is a methodology that is used to design a container structure and its con-
stituent substructures.

Where
In situations where there is complexity, structure is used to decompose that complexity by
encapsulating related functionality (e.g., applications or network servers) into containers or
layers, for example.

119

C H A P T E R 6

� � �

560-2 ch06.qxd 10/27/05 4:17 PM Page 119

Why
Structures are organized or designed as a system of orchestrated structures, so that they may
achieve a given objective in an efficient and effective manner.

How
Structural design is guided by a design policy, which encourages coordinating the design of a
set of structures within a context using a framework.

The Standard: Structural Design

The standard acknowledges the design and management of an enterprise through the

use of a structural design methodology.

The Enterprise-Domain Dichotomy
An everyday question is when is functionality better designed and exposed as an enterprise
service or encapsulated as domain functionality? For example, is it better to access data from
a database by developing generic enterprise functionality and then permit variability by over-
riding that functionality in an application, or should each application manage the whole data
access process itself?

What
The enterprise-domain dichotomy recognizes the design dilemma that architects and devel-
opers grapple with: What functionality is better defined as enterprise or domain functionality?

Where
The dichotomy is present throughout the enterprise wherever the same or similar functional-
ity is required by multiple applications, or similar functionality is required within a given
application.

Why
It is not always obvious when functionality has an enterprise implication. Often, with hind-
sight, it may have been better to design an application not as a domain application, but as
abstract functionality in the enterprise services layer or platform. However, using an enter-
prise or services option consumes more design and development resources, and the last thing
that we want to do is waste resources by cluttering enterprise services with functionality that
turns out not to be sufficiently enterprise in nature. On the other hand, while “domain” func-
tionality that turns out to have an “enterprise” role may be migrated from the domain to the
enterprise services layer, which is a common practice, that may be expensive and disruptive.

CHAPTER 6 � DESIGN STRUCTURE120

560-2 ch06.qxd 10/27/05 4:17 PM Page 120

How
The ways that the dichotomy is handled may be classified using the following terminology:
proactive code review, reactive code review, and passive code review. A proactive code review
requires that all proposed functionality is reviewed to determine whether there is an enter-
prise implication, as a preliminary to design and development. Often, an “in-house” cutoff
rule may be used as a measure to determine whether functionality is a candidate for an
enterprise service; for example, if there is a reasonable likelihood that given functionality
may be used three or more times (in one or multiple applications), then it qualifies to be
designed and developed as enterprise functionality. A reactive code review requires that if
functionality fails the proactive review (i.e., it was considered that it would be used once or
twice), then it is developed as domain code, where maximum use is made of variable or dis-
cretionary coupling (see the section “Coupling” later in this chapter) and maximum use is
made of generalization (i.e., programming against abstract classes and interface types).
Then, if subsequently it emerges that the functionality has been used three times, consider
migrating the functionality into the services layer and referencing it by the domain applica-
tion. Finally, a passive code review is the extreme high-risk option: don’t review code from an
enterprise perspective (in other words, ignore the dichotomy). That option exposes the
organization to the cost of duplication, likelihood of application lock-ins, and reengineering
or application replacement in the future. The terminology is summarized as follows:

• Proactive code review: Prior to development, review all new functionality and apply a
cutoff reuse rule: for example, where functionality is likely to be used three or more
times, then develop it as an enterprise service (e.g., develop a regex enterprise class).

• Reactive code review: Subsequent to a proactive code review, if code is duplicated three
times, then review code and consider reengineering the functionality as an enterprise
service (e.g., develop a regex domain class and subsequently reengineer or refactor it as
regex enterprise functionality).

• Passive code review: Exclude code from a proactive or reactive review (e.g., develop
similar or duplicate regex classes) with domain coupling and without generalization.

The Standard: Design Dichotomy

The standard acknowledges that consideration may be given to determine whether

functionality has an enterprise or a limited domain role. The earlier the consideration is

made, the better.

Modularity
Implicit in an information technology structure is the componentization of software and
hardware, which is encapsulated within layers and coordinated into a seamless system of
functionality.

CHAPTER 6 � DESIGN STRUCTURE 121

560-2 ch06.qxd 10/27/05 4:17 PM Page 121

What
Modularity refers to the ability to encapsulate functionality into a unit, which exposes an
interface against which other modules may connect. A module may be independent or rely
on a dependency. The Unified Modeling Language (UML) notation has a module (e.g., class)
shared in two types of dependencies or associations (e.g., aggregation and composition) with
other modules of functionality.

�Note An aggregation association is one where two modules may exist independently; however, they may
form a relationship to make up a whole. For example, a garage may be used independently, as may a car;
however, they may form an association that enables the car to be parked in the garage. A composition associ-
ation, which is a form of an aggregation association, is one where there is an independent and a dependent
party. For example, a car tire is independent of a car—it may be used on a trailer; however, the car is depend-
ent on a tire (or several of them), because a car is composed of tires (and other components).

Where
Modularity is used across the enterprise framework, from an architecture layer to a class
module.

Why
Modularity is premised on cohesion and self-responsibility, which are attributes essential to
designing, developing, and maintaining composite structures (e.g., software and hardware
structures). The importance of modularity to structural design further underscores the value
of development using a first class object-oriented development tool, such as C#.

How
There are many implementations of modularity, for example, class module, namespace,
assembly, layer, and architecture. To encapsulate modularity, the unit must also expose an
interface through which it may participate in an association with other modules, in order to
form a composite or super structure. To minimize maintenance and maximize longevity, the
interface should be sufficiently abstract, loosely coupled, and appropriately deployed.

The Standard: Modularity

The standard acknowledges the use of modularity as a method to design, build, and

maintain complex structures.

CHAPTER 6 � DESIGN STRUCTURE122

560-2 ch06.qxd 10/27/05 4:17 PM Page 122

Coupling
A tenet of good design is that artifacts are loosely coupled, yet coupling is ambivalent: it repre-
sents an association and detachment.

What
Coupling represents the association between two or more artifacts; for example, a business
object is coupled to the schema of a database table. Or an application is coupled to an oper-
ating system. There are two aspects to coupling: it has fixed and variable attributes. Fixed
coupling refers to that part of the association over which, within a given context, there is
no discretion. For example, if a business object represents an employee and all employee
data is held in tblEmployee table, then the business object has a fixed coupling with the
table. Variable or discretionary coupling refers to how a fixed coupling is implemented. A
business object, for example, may access employee data indirectly through an interposed
data-controller object, or it may access the data directly. If the object was to directly access
the data from tblEmployee, then it would be a tightly coupled association; however, if it
accessed the data through an interposed object, then it would be loosely coupled, relative to
tblEmployee. It is only through recognizing a fixed and a variable attribute that we are able
to explain the ambivalence of coupling.

Where
Coupling is present throughout the enterprise framework; it is unavoidable where there are
associations.

Why
Coupling is a necessary part of associations or collaborations. It recognizes that artifacts have
specialized roles and that to compose functionality, artifacts have to be able to associate or
collaborate directly to indirectly with other artifacts.

How
The key to coupling is to manage it appropriately. The strategy is to exercise discretion where
the consequence of fixed coupling, which is tight coupling, is problematic. For example, when
an employee object is tightly coupled to tblEmployee, then if there is change in the schema of
tblEmployee, the use of the object is impacted and it will need to be reengineered. However,
if the interface of the object is loosely coupled to the tblEmployee through middleware, then
change may have no effect on the object, because the change may be accommodated within
the middleware, leaving the interface between the employee object and the middleware
unchanged. In this case, the coupling is loosened by exercising discretion and designing an
association with an interposed party (e.g., middleware). The rationale for using an interposed
party is that it is preferable to form a direct association or coupling with a party that is less
demanding when circumstances change. The point is illustrated when comparing a three-tier

CHAPTER 6 � DESIGN STRUCTURE 123

560-2 ch06.qxd 10/27/05 4:17 PM Page 123

and a five-tier application design (refer to the section “Application Design Architectures” later
in this chapter). The five-tier design differs from the three-tier design, because the business
layer is interposed by UI and data integration layers, which directly manage the relationship
between the presentation and data source tiers, respectively. The loose coupling shelters the
business layer from those underlying layers. The interposed integration layers may fully or
substantially accommodate a change in circumstances (e.g., supplementing a Web interface
with a Windows interface or changing a data schema). The consequences may be absorbed in
the interposed layers, leaving the business layer unaffected or having to accommodate mini-
mal change. The endpoint of decoupling is that the cost associated with change can be more
efficiently managed, thereby lowering cost of ownership and safeguarding longevity of an
application.

The Standard: Coupling

The standard acknowledges the appropriate management of coupling and the value of

decoupling where the exercise of discretion effects a net positive return on investment.

Layers
Layers are tiers, which are a convenient way to encapsulate, decompose complexity, and mar-
shal specialty while recognizing the value of a sphere of responsibility.

What
A layer is an abstract or concrete composition of modularity, for example, a business object
layer or a network services layer.

Where
Throughout an enterprise architecture, there are layers of functionality. Layering may be used
to structure functionality within an application framework (e.g., UI, BO, and DB layers) or to
represent architectures within an enterprise framework.

Why
An efficient and effective way to design, develop, maintain, and manage complex and large
structures is to decompose them into smaller units that exhibit a defining characteristic (e.g.,
integration or security layer). Layers encourage the development of specialized skills, which in
turn encourages the development of expertise.

How
Defining a layer is situation dependent: a large site has more options than a small site, or
what works in theory may not work in practice in a given situation. Unfortunately, layering is

CHAPTER 6 � DESIGN STRUCTURE124

560-2 ch06.qxd 10/27/05 4:17 PM Page 124

not easily reversed, and to do so may require expensive reengineering or replacement. How-
ever, as organizations are dynamic, a key to defining layers is to design them cohesively and
flexibly, and do it early. Layering is a two-edged sword: on one hand, it is extremely useful in
decomposing and managing complexity; yet on the other hand, each layer is an overhead
that the network and the budget have to support. The art is in striking the right balance for
the situation: in other words, how layers are implemented, in a given situation, is a matter
of considered judgment. Often, the structure of layers tends to follow industry lines, where
common business objectives are deterministic.

The Standard: Layers

The standard acknowledges the use of layers as an efficient and effective way to design,

develop, maintain, and manage complex and large structures.

Design Context
The role of the design context is to give the design policy a context in which it is applied.

What
The design context defines the workspace or domain in which the design policy is to be imple-
mented. For example, certain enterprise functionality may be excluded from an enterprise
design context because it is legacy and flagged for depreciation, or domain functionality may
be excluded because it is managed by a functional department (e.g., Microsoft Access applica-
tions and spreadsheets in the marketing department).

Where
A design context is used, for example, by an enterprise architecture framework as the concep-
tual foundation (or land) on which the framework is to be built. A design context may be
limited to a given layer or architecture, however.

Why
The workspace has to be identified so that appropriate resources may be organized. In prac-
tice, not all of the functionality of an enterprise may be included within an enterprise context,
for example. Commonly, organizations are iterating architecture towards a target architecture
and may include or exclude functionality flagged for redundancy from the context of a struc-
tural design.

How
The design context is defined as the workspace to be structured. In Figure 6-1, the design con-
text is defined as the enterprise architecture workspace, as identified within the design policy.

CHAPTER 6 � DESIGN STRUCTURE 125

560-2 ch06.qxd 10/27/05 4:17 PM Page 125

Figure 6-1. Design context

The Standard: Design Context

The standard acknowledges that the design workspace has to be identified, so that

appropriate resources may be organized. In practice, not all of the functionality of an

enterprise may be included within an enterprise context.

CHAPTER 6 � DESIGN STRUCTURE126

560-2 ch06.qxd 10/27/05 4:17 PM Page 126

Enterprise Design Framework
While the design context defines the workspace, it is the framework that transposes the con-
cept of architecture into concrete layers (e.g., application or enterprise services layer) in which
to design a composition of interrelated modules of functionality.

�Note The tiers or layers of the enterprise framework may follow industry best practices, which, for
example, are articulated in the Open Groups’ Architecture Framework (TOGAF 8.1 Enterprise Edition). TOGAF
derives from TAFIM, an architecture framework developed by the U.S. Department of Defense. You can
review TOGAF at www.opengroup.org/architecture.

What
An enterprise design framework is a blueprint that defines the structures or layers of an enter-
prise. The structures or layers map conceptually, although not always physically, to a given
architecture.

Where
The enterprise design framework is used where there are many structures that need to be
blended or unified into a systematic whole.

Why
Enterprise design embodies purpose and discipline, so it requires a framework on which to
guide it to that end.

�Note The design framework is itself a design that evolves from a synthesis of community ideas and prac-
tices. Once an idea or practice becomes accepted, then it is inevitable that it will find favor in a design policy.

How
The framework is mapped to layers or tiers of functionality. For practical purposes, the deploy-
ment architecture is shown conceptually, although it is a concrete layer on which all other
concrete layers are deployed. The enterprise architecture remains a concept that acts as the
outer boundary of the framework. Figure 6-2 illustrates an enterprise design framework. Note
that it shows the mapping of respective architectures to layers (except for the deployment).
The framework is implemented in various summarized forms, where typically reference is
limited to layers or tiers of “architecture” that exclude reference to the surrounding architec-
tures (e.g., deployment and enterprise); the framework is commonly summarized as an
“n-tier” architecture.

CHAPTER 6 � DESIGN STRUCTURE 127

560-2 ch06.qxd 10/27/05 4:17 PM Page 127

Figure 6-2. Enterprise design framework

The Standard: Enterprise Design Framework

The standard acknowledges the use of an enterprise design framework where there are

many structures that need to be managed as a cohesive composite.

Application Layer
An application layer represents the software functionality of an enterprise. It may comprise
in-house and outsourced functionality that is seamlessly presented to a user.

What
The application layer is a conceptual repository of applications that may be deployed across
many networks and accessible locally, regionally, or globally. For example, a Web application
would reside in the application layer, and it may through an application services layer con-

ise services layer.

CHAPTER 6 � DESIGN STRUCTURE128

560-2 ch06.qxd 10/27/05 4:17 PM Page 128

Where
The application layer resides in an enterprise framework and leverages an integration layer to
access enterprises services (or platform services).

Why
The design, development, and maintenance of software is a specialized skill with its own set of
dynamics. Encapsulating software into a layer is an efficient and convenient way to manage
the special needs of application development.

How
An application layer is built up as a composite of domain applications. Application integration
and common functionality are abstracted into application integration and enterprise services
layers, respectively. That has several benefits: it maximizes decoupling, minimizes the effect of
change, and minimizes development in a domain application.

The Standard: Application Layer

The standard acknowledges that the design, development, and maintenance of software

is a specialized skill with its own set of dynamics. Encapsulating domain software into a

layer is an efficient and convenient way to manage the special needs of application

development.

Application Design Types
Essentially, there are three application design types: domain, enterprise, and services. The dif-
ferent application design types complement the nature of the business, which is classified as
domain and enterprise. A domain dynamic is functionality that originates from within the
organization and is custom to a given domain, whereas an enterprise dynamic is common
throughout an industry, or common throughout industry generally. While it is obvious what
constitutes a services application, the same cannot be said about a domain or enterprise
application. The following tip illustrates what constitutes “enterprise applications.”

�Tip Martin Fowler gives some good examples of what he considers to be “enterprise applications,”
including payroll, accounting, and customer service applications. He considers that the following types of
applications are not “enterprise applications”: automobile fuel injection, operating systems, compilers, and
games. Refer to Martin Fowler, Patterns of Enterprise Application Architecture (Addison-Wesley, 2003), p. 3.

Domain Application
Organizations and their departments require applications to manage domain-specific func-

CHAPTER 6 � DESIGN STRUCTURE 129

560-2 ch06.qxd 10/27/05 4:17 PM Page 129

What
A domain application is an application that fulfills the custom requirements of a given domain
(e.g., an organization or department or activity). For example, a domain application may be
one developed in-house to meet the requirements of the assembly line domain, or it may be a
new game for the domain of game enthusiasts.

Where
A domain application resides within the enterprise framework, in the application layer. (Note
this refers to a domain within an organization rather than an activity domain, such as game
domain.)

Why
Domain applications cater to requirements that are not universal and fulfill domain
requirements.

How
Domain applications are developed according to requirements that are not universal; in other
words, they are quite specific to a given domain. For example, Model T production managers
have a domain requirement for an application that monitors production efficiently at each
stage of their mass-production assembly lines.

�Note A domain application can cross over and become an enterprise application if the functionality
becomes universal.

The Standard: Domain Application

The standard acknowledges the design and development of domain applications to

service the custom or non-universal requirements of a domain.

Enterprise Application
While organizations are different in many respects, they are similar in other respects: an
enterprise application fulfills common industry or multiple industry standard requirements.

What
An enterprise application is an application that encapsulates functionality common or stan-
dard to an industry type or industry in general (e.g., a payroll application).

Where
An enterprise application resides within the enterprise framework in the application layer.

CHAPTER 6 � DESIGN STRUCTURE130

560-2 ch06.qxd 10/27/05 4:17 PM Page 130

Why
A significant part of an organization’s functionality is routine and without a domain impera-
tive. In such a circumstance, it is often preferable to adopt a successful industry application
than to develop the functionality as a “domain” application by “reinventing the wheel.”

How
Generally, an enterprise application is developed by a vendor to meet industry or multi-
industry requirements. They are commonly developed as Web or Windows application types,
which follow a three-tier or five-tier design architecture (refer to the section “Application
Design Architectures” later in this chapter). Examples of an enterprise application include
payroll or accounting applications.

The Standard: Enterprise Application

The standard acknowledges the use of enterprise applications to provide functionality

that is routine or universal and is without a domain imperative.

Services Application
A feature of an enterprise framework is the abstraction of common functionality into a pub-
lished service (e.g., user authentication or application integration services).

What
A services application is an application that publishes functionality or services that is made
available to other applications or services.

Where
A service application is commonly found in an application integration layer, enterprise serv-
ices layer (or platform), network services layer, or communications integration layer.

Why
Encapsulating functionality as services to distribute throughout an enterprise is an effective
and efficient way to manage functionality.

How
Functionality is encapsulated into assemblies and deployed as published services located on a
server (LAN, WAN, or Web server).

The Standard: Services Application

The standard acknowledges the use of services applications to distribute functionality

across an enterprise as an effective and efficient way to manage functionality.

CHAPTER 6 � DESIGN STRUCTURE 131

560-2 ch06.qxd 10/27/05 4:17 PM Page 131

Application Design Architectures
In this section, we discuss application design architecture and examine the following: two-tier,
three-tier, five-tier, and enterprise architectures. Is one design architecture better than the other?
While there is much debate, the more relevant issue is when is one design architecture more
appropriate than another. The essence of good design is to match the most appropriate solution
to the requirements. Thus, on a site, much can be gained by using a range of design architec-
tures, rather than shoe-horning all applications into one architecture type. For example, in a
given situation, it may be inappropriate to be conservative and use a three-tier architecture
when a more expensive five-tier architecture has a lower total cost of ownership. On the other
hand, unnecessary cost and overhead may result from developing functionality as a three-tier
application when a two-tier application would have been equally technically appropriate.

Two-Tier Design
We commence our reexamination of application design architectures by examining the two-
tier architecture, which is a simple C# application.

�Note The simplest application design is the one-tier application (e.g., many Windows and Console
applications)—that design has not been illustrated in this chapter. Its distinguishing characteristic is that
all functionality resides in one layer or tier.

What
A two-tier design is an application architecture that compacts all of the functionality or appli-
cation logic into a single tier that resides on one server, while data resides on a second tier
(e.g., a database server). The two-tier design is suitable for Web and Windows applications.

Where
Where there is a requirement for an application that features low overhead and high perform-
ance, then the two-tier application is a common solution. It may, however, present integration
inefficiencies, scalability issues, and maintenance overhead.

Why
The two-tier design can be built rapidly, offers high performance, and may be a cost-effective
solution.

How
All of the functionality is encapsulated in one layer, which resides on one server (see Figure 6-3),
and the data on a second server. Commonly, websites or Windows applications have used this
design to rapidly develop functionality and to minimize performance overhead. However, the
tight coupling between the UI, business, and data classes, which is implicit in the design, may
be problematic if there is a change to data schema, for example. In this case, a solution may be
to use an Adapter design pattern (refer to Chapter 11) as a short-term solution.

CHAPTER 6 � DESIGN STRUCTURE132

560-2 ch06.qxd 10/27/05 4:17 PM Page 132

Figure 6-3. Two-tier design structure

The Standard: Two-Tier Design

The standard acknowledges the use of a two-tier design where there is a need for rapid

development and high performance. It does caution, however, that over the medium to

long term the design may encounter integration inefficiencies, and scalability, coupling,

and maintenance issues.

Three-Tier Design
The three-tier design is generally considered to be the most popular design architecture in use
today.

What
A three-tier design is an application architecture that separates functionality into two tiers
(UI and business) that reside on separate servers, while access to data is via a third server. The
three-tier design is suitable for Web and Windows applications.

Where
Where there is a requirement for an application that features high performance with a
medium-to-long life expectancy, then the three-tier application is a popular solution. It sup-
ports integration efficiencies, scalability, and stability, and carries a relatively low maintenance
overhead, while mildly reducing coupling concerns.

Why
The three-tier design is an alternative to a two-tier or five-tier design: it has a good mix of
the advantages of the two- and five-tier architectures, but with relatively inferior de-coupling
design features compared with a five-tier solution. While in theory, the user interface may be
swapped between presentation types (Web or Windows), in practice, however, that is easier
said than done. Commonly, problems arise because the user interface is coupled to the busi-

er.

CHAPTER 6 � DESIGN STRUCTURE 133

560-2 ch06.qxd 10/27/05 4:17 PM Page 133

How
The functionality is divided over three layers (see Figure 6-4) with each layer residing on a
separate server. Each layer is readily accessible, extensible, and maintainable.

Figure 6-4. Three-tier design structure

The Standard: Three-Tier Design

The standard acknowledges the use of a three-tier design where there is a requirement for

an application that features high performance with a medium-to-long life expectancy. It

cautions, however, that the business and data classes may be tightly coupled implemen-

tations to the user interface and datastore, which may cause future concern.

Five-Tier Design
The five-tier design is the elegant solution that overcomes the disadvantages of the three-tier
model.

What
A five-tier design is an application architecture that separates functionality over four tiers that
reside on two servers: a presentation tier resides on one server, while the UI, business, and data
classes reside on a second server, and the fifth tier—the data source—is accessed via a third
server. The cost of extra layers may be offset by the gain from encapsulating the UI, business,
and data classes on the one server (which compares with the two-tier design and contrasts with
the three-tier design). The five-tier design is suitable for Web and Windows applications.

CHAPTER 6 � DESIGN STRUCTURE134

560-2 ch06.qxd 10/27/05 4:17 PM Page 134

Where
Where there is a requirement for an application that features high performance with a long life
expectancy, then the five-tier application is a solution. It supports integration efficiencies,
scalability, stability, and loose coupling, and carries a relatively low maintenance overhead.

Why
The five-tier design has all of the advantages of the three-tier design, but with a solution to the
problem of coupling the business and data classes to the implementation of the user interface
and data source. These benefits are supported by the merging of the logic functionality on to
one server. However, developing a five-tier application may be more expensive than a three-
tier application.

How
The functionality is divided over five layers (see Figure 6-5) with a presentation layer on its
own server and the UI, business, and data classes residing on the same server, a feature that
not only assists in decoupling, but also aids performance, as most of the grunt work is done on
the same server. The data source is accessible via a third server. With this design, the function-
ality classes are decoupled from the presentation and data source. The UI classes are able to
cater to the special needs of Web or Windows representation, and the data classes shelter the
business functionality from changes to the underlying data source.

CHAPTER 6 � DESIGN STRUCTURE 135

560-2 ch06.qxd 10/27/05 4:17 PM Page 135

The Standard: Five-Tier Design

The standard acknowledges the use of a five-tier design where there is a requirement for

an application that requires high performance, presentation, and data source flexibility

with a long life expectancy.

Application Integration Layer
A further safeguard of using an enterprise framework to manage design is that it mandates
that integration be a design consideration implicit not only in application design, but also in
the design of services and communication layers.

What
An application integration layer is a common layer through which applications are integrated.
Commonly, applications are members of a system in which they must integrate and cooperate.
Application integration design recognizes that integration is a systematic design consideration
and is better managed through a common layer than discretely at application level.

Where
Application integration design resides within an enterprise design framework to encapsulate
the task of managing connectivity between applications and services.

Why
It is more efficient, economic, and flexible to delegate the management of the integration of
applications to a specialist layer, rather than require an application to self-manage integration.
A major risk posed by self-management of integration is that it complicates a system by neces-
sitating point-to-point integration, which exposes the organization to high maintenance, tight
coupling, and duplication costs.

How
Within the context of the enterprise architecture framework, application integration is
managed as a service to which applications subscribe. There are commonly four application
integration designs that leverage an integration layer: XML messaging, dynamic link libraries
(DLL), remoting, and XML Web services. The design of an application integration layer is one
of the most critical stages in preparing an enterprise framework for longevity and extensibility.

XML Messaging

Messaging relies on a message bus to act as a conduit through which applications integrate to
publish and subscribe to functionality, using open-standard XML messages. It offers ubiquity
and asynchronous integration (refer to “Service-Oriented Architecture” in Chapter 5).

CHAPTER 6 � DESIGN STRUCTURE136

560-2 ch06.qxd 10/27/05 4:17 PM Page 136

Dynamic Link Libraries

Application integration may be designed using DLLs (assemblies) that are deployed centrally on
servers and referenced by subscribing applications. It is a synchronous binary solution; however,
it is generally considered in situations that favor efficiency at the expense of integration ubiquity.
DLLs commonly support a hub-and-spoke architecture (refer to “Service-Oriented Architecture”
in Chapter 5).

Remoting

Application integration that uses remoting is an extension of the use of DLLs to integrate,
with the added feature that integration outside of the immediate domain is managed
through the partnership of a remotely deployed DLL acting as a proxy to communicate
through a transport protocol to a server DLL, with a little help from .NET CLR at either end
(refer to “Remote-Proxy Pattern Code” in Chapter 11).

XML Web Services

Web services is a solution for application integration that leverages Internet distribution
functionality to offer synchronous and ubiquitous integration (refer to “Service-Oriented
Architecture” in Chapter 5).

The Standard: Application Integration Layer

The standard acknowledges the use of an application integration layer to avoid the cost

of high maintenance, duplication, and tight coupling.

Enterprise Services Layer
An enterprise services layer exposes or publishes common functionality that is accessible
across the enterprise.

What
The enterprise services layer is a common layer through which enterprise functionality is
published. It refers to a portfolio of services that act as an application platform from which
applications are serviced, through an interposed integration layer, with common functionality.

Where
The enterprise services layer is located between the application integration layer and network
services layer within an enterprise framework.

Why
Enterprise services enable an organization to manage application resources that are common.
The objective is to standardize resource availability, usability, adaptability, and stability, while
preventing or removing duplication and redundancy of functionality.

CHAPTER 6 � DESIGN STRUCTURE 137

560-2 ch06.qxd 10/27/05 4:17 PM Page 137

How
The enterprise services layer (see Figure 6-6) is the engine room of an enterprise framework;
how it is designed is influenced by a range of factors, including implied requirements of the
design policy, decisions made in terms of the enterprise-domain dichotomy (refer to the sec-
tion “The Standard: Design Dichotomy” earlier in this chapter), the size of the organization,
the nature of the industry, and the requirements of stakeholders. The choice of design centers
around what services are defined as enterprise and what services are native to a domain. Gen-
erally, enterprise services include services that are more efficiently or effectively utilized, from
an organizational perspective, outside of a domain, for example, security services, application
services, data management and warehouse services, transaction management services, oper-
ating system services, and network management services.

Figure 6-6. Enterprise services

The Standard: Enterprise Services Design

The standard acknowledges the use of enterprise services that seek to standardize

resource availability, usability, adaptability, and stability while preventing or removing

duplication and redundancy.

CHAPTER 6 � DESIGN STRUCTURE138

560-2 ch06.qxd 10/27/05 4:18 PM Page 138

Communications Integration Layer
The previously discussed standards relate very much to software services; however, software
needs to run on fixed hardware and the ever-increasing array of mobile communication
devices.

What
A communication integration layer encapsulates or abstracts to an interface layer the respon-
sibility to integrate the enterprise services layer (the application platform) with the hardware
and communication functionality.

Where
The communications integration layer lies in between the enterprise services layer and the
communication layer in an enterprise framework.

Why
The wisdom of a communication integration layer mirrors that of an application integration
layer by centralizing and coordinating the integration of multiple artifacts that may enable a
more efficient, maintainable, and loosely coupled solution.

How
The integration focuses on the development of core functionality that commonly wrap
IP-based networks, which enables connectivity between the enterprise services layer and
Internet and other communication channels.

The Standard: Communications Integration Layer

The standard acknowledges the use of a communication’s integration layer to centralize

and coordinate the integration of multiple artifacts that may enable a more efficient,

maintainable, and loosely coupled solution.

Communications Infrastructure Layer
The portfolio of services that enable the interconnection or communication between systems
is referred to as a communications infrastructure.

What
The communications infrastructure represents the local and extended software and hardware
transport components, which enable data exchange and network switching. The design of the
infrastructure will be driven by the requirements of the application, integration, and enter-
prise services layers and the deployment architecture.

CHAPTER 6 � DESIGN STRUCTURE 139

560-2 ch06.qxd 10/27/05 4:18 PM Page 139

Where
The communications infrastructure is accessed through the communications integration
layer that houses in the enterprise framework.

Why
To participate in the benefits of network computing, be it a Local Area Network (LAN), Wide
Area Network (WAN), Virtual Private Network (VPN), or Internet network, an enterprise
requires a hardware layer to manage and encapsulate communication functionality within an
enterprise framework.

How
A portfolio of hardware artifacts is assembled as a network of communication devices that
plug in to other communication systems to access and expose functionality.

The Standard: Communication Infrastructure Layer

The standard acknowledges the use of a communication infrastructure layer to manage

and encapsulate communication functionality within an enterprise framework.

CHAPTER 6 � DESIGN STRUCTURE140

560-2 ch06.qxd 10/27/05 4:18 PM Page 140

Design Development

The previous chapter discussed using structural design techniques to develop a framework—
the enterprise design framework—to structure the design of the enterprise. The framework
was then transformed from representing architectures (e.g., application architecture) to repre-
senting layers (e.g., application layer). In this chapter, the focus is on developing designs of
functionality that reside within three of those layers: the application, application integration,
and enterprise services layers. When talking about “design development,” reference is made
to implementing design through code, and as you shall see, each of the layers serves different
roles, and note that requires code to follow different design imperatives. For example, in the
application layer, you may design specialized code to meet specific requirements of a domain,
whereas in the enterprise services layer, you design generalized code to meet the generic
demands of domains.

As discussed in the previous chapter, there is an enterprise-domain dilemma: Which
functionality is enterprise and which is domain? While it was noted that an organization may
determine a rule, it was also noted that addressing the question early (proactively), rather
than later (reactively), was preferable. In this chapter, we explore the way that we perceive
design, and discuss how it may impact our ability to pick functionality, which should be writ-
ten generically as enterprise functionality. Commonly, two methodologies are used to design
functionality: design it from a layer or tier perspective (horizontally) or from an application
perspective (vertically). With layer or tier development (horizontal development), it is an
intuitive part of the design process to consider whether design should be generalized or
specialized; however, that is not the case when developing design from an application per-
spective (vertical development), where intuitively design is developed from a specialized
domain perspective.

The text then progresses to discussing the important role that object collaboration plays
in developing design, and in so doing, identifies a number of problems. The problems are
presented as three dichotomies: abstract-interface dichotomy, composition-inheritance
dichotomy, and abstraction-implementation dichotomy. The abstract-interface dichotomy
recognizes the dilemma of choosing between an abstract class and an interface type. The
composition-inheritance dichotomy recognizes the dilemma of choosing between objects that
acquire an interface through composition or inheritance. And the abstraction-implementation
dichotomy recognizes the dilemma of choosing between programming against an interface
(abstract class) or an implementation (concrete class). The choices made will impact the
usability, maintainability, and longevity of the design, by affecting the flexibility of objects to
adapt to changes made in the domain. A solution to the problem of inflexibility is to leverage
design patterns, which will be briefly introduced.

141

C H A P T E R 7

� � �

560-2 ch07.qxd 10/27/05 4:18 PM Page 141

�Note Design patterns are comprehensively discussed in Chapters 9 through 12.

Finally, the chapter concludes by discussing two methodologies for implementing
design in applications: start-from-scratch and frameworks. As you know, a start-from-scratch
approach is, as the name implies, an application that is designed and developed from scratch
using an empty solution, whereas a framework approach leverages a partly prebuilt solution
or application template that contains application integration and enterprise services func-
tionality. Now, let’s kick off the chapter by implementing the design framework introduced in
the previous chapter.

Implementing Design in the Design Framework
In the last chapter, we developed an enterprise design framework that transposed the archi-
tectures into layers, as presented again in Figure 7-1.

Figure 7-1. Enterpise design framework

CHAPTER 7 � DESIGN DEVELOPMENT142

560-2 ch07.qxd 10/27/05 4:18 PM Page 142

We now want to narrow our focus to those layers that are of immediate interest to C#
architects and developers: the application, application integration, and enterprise services
layers. Refer to Figure 7-2, where the layers that are out of scope for our discussion have been
crossed through.

Figure 7-2. Enterprise design framework—in scope

Implementing Design in Layers
We know that each layer has a different role and dynamics; for example, the application layer
contains applications or functionality that are enterprise applications (e.g., payroll) or domain
applications (e.g., ModelT website), while the enterprise services layer contains functionality
that provides support to the application software (enterprise and domain). These two layers
are isolated by an integration layer that decouples applications from the services. The enter-
prise services layer is the first layer to be discussed.

CHAPTER 7 � DESIGN DEVELOPMENT 143

560-2 ch07.qxd 10/27/05 4:18 PM Page 143

Design of Enterprise Services Layer
As mentioned previously, the enterprise services layer is designed to service the common
functionality requirements of applications.

What
The enterprise services layer contains the code or functionality that is considered common
across applications or common within a given application; in other words, it acts as a platform—
hence the layer is commonly referred to as a platform. It includes application services, for
example, security services, data management and warehouse services, and transactions man-
agement services, etc.

Where
An enterprise services layer is located in the enterprise design framework.

Why
The centralization of common functionality leads to efficiencies, because it significantly
reduces the duplication of functionality and it is easier to extend and maintain.

�Note While the enterprise services layer is highly visible, it is accessed through the application integra-
tion layer, rather than directly by applications and other enterprise services. That enables the enterprise
services to remain abstract and not itself become coupled to an implementation.

How
Enterprise services code is developed with a high degree of generalization so that it may be
consumed by as many clients are required. The code is not developed for a given implementa-
tion. In fact, the enterprise services layer is unaware of the ultimate clients; it deals exclusively
with the application integration layer, which subsequently manages integration with clients.
Typically, enterprise services functionality is developed within namespaces that are deployed
in nonlocal assemblies to a network server, .NET’s General Assembly Cache (GAC), Microsoft’s
Internet Information Server (IIS), or enterprise Windows or ASP.NET server controls.

The Standard: Design of Enterprise Services Layer

The standard acknowledges the design of an enterprise services layer and its role to pub-

lish generic functionality that is highly visible and accessible to enable functionality to

be managed more effectively and efficiently throughout the enterprise.

CHAPTER 7 � DESIGN DEVELOPMENT144

560-2 ch07.qxd 10/27/05 4:18 PM Page 144

Design of Application Integration Layer
The application integration layer code serves the functionality requirements of applications
that may reside within the enterprise or externally (e.g., stakeholders).

What
All applications that are integrated into the environment do so through code residing in the
application integration layer. The code in this layer directly accesses the enterprise services
layer on behalf of subscribing applications that reside within the applications layer or are
external to the environment.

�Tip An application integration layer not only acts to integrate applications that reside within the enterprise,
but it also acts as an integration channel through which vendor and stakeholder functionality integrates into
the enterprise. Centralizing integration into a common layer simplifies the complexity associated with design-
ing code that has multiple integration requirements.

Where
An application integration layer is located in an enterprise design framework, as an interposed
layer between enterprise services and application layers.

Why
The integration of functionality requires transparency and enterprise visibility. It is more
effectively and efficiently managed as a central service that is accessible to in-house, vendor,
and stakeholder applications.

How
Integration code is written that consumes enterprise services and customizes it, where neces-
sary, for a domain or enterprise application requirement, and then republishes it, making it
accessible to applications in the applications layer or accessible externally. It is also the layer
in which vendor functionality is accessible for integration. Functionality may be accessed
through COM+ services, GAC, and web services, for example.

�Note While stakeholder functionality is external to an organization, it is commonly included as part of the
organization’s enterprise. However, there is a contrary view, which argues that functionality should only be
shown as part of the enterprise where the organization has some form of control over design or develop-
ment or a legal right.

CHAPTER 7 � DESIGN DEVELOPMENT 145

560-2 ch07.qxd 10/27/05 4:18 PM Page 145

The Standard: Design of Application Integration Layer

The standard acknowledges the design of an application integration layer, and its role is

to satisfy domain and vendor requirements by providing a service that offers integration

functionality that is customizable, transparent, and highly visible.

Design of Application Layer
The application layer is designed to represent the code encapsulated in domain and enter-
prise applications.

What
The application layer designs code to be coupled to the implementation of the application
(domain or enterprise). Generally, code is designed specifically or specialized for a given
application.

Where
An application layer is located in an enterprise design framework.

Why
By segregating application code from integration and services code, tight coupling is limited,
which maximizes portability and minimizes the impact of change.

How
Application code is written or purchased to meet domain or enterprise requirements.
Commonly, functionality may be accessed through ASP.NET, Windows, and Console appli-
cation types.

The Standard: Design of Application Layer

The standard acknowledges the design of an application layer and that its role enables

isolation of application code from integration and services code, which maximizes

portability and minimizes the impact of change.

Horizontal and Vertical Design Methodologies
As discussed in the previous chapter, there is an enterprise-domain dilemma: Which function-
ality is enterprise and which is domain? While it was noted that an organization may determine
a rule, it was also noted that addressing the question early (proactively), rather than later

CHAPTER 7 � DESIGN DEVELOPMENT146

560-2 ch07.qxd 10/27/05 4:18 PM Page 146

(reactively), was preferable. Maybe the dilemma is associated with the way that we approach
design. Generally, there are two ways to design functionality: from a layer or tier perspective
(horizontally) and subsequently referenced by an application, or from an application perspec-
tive (vertically) and subsequently migrated through the layer hierarchy, where appropriate.
With layer or horizontal design development, it is an intuitive part of the design process to
consider whether design should be generalized or specialized; however, that is not the case
when developing design from an application perspective, which is done vertically, where it is
intuitive to design from a domain perspective. Perhaps a key to maximizing design and code
reuse is to favor horizontal in preference to vertical design?

Horizontal Design Development
Horizontal design development refers to developing functionality within layers or tiers: each
layer is seen as a distinct yet coordinated development.

What
Horizontal design development supports the notion that each layer is autonomous and col-
laborates with other layers through an interface. While functionality in all layers is designed to
ultimately support applications, nevertheless an application is seen as a facade or a container
through which layer functionality is accessed by clients.

Where
Horizontal design development occurs along each layer: the application, application integra-
tion, and enterprise services layers (and the other three layers, which have been excluded for
convenience—see Figure 7-2 earlier).

Why
By regulating design development through layers, each layer may remain true to its inherent
purpose and avoid becoming biased or coupled to any given application implementation or
interface.

How
Typically, the driving force for development comes from the domains; however, the design
and development of each of the layers is managed by developers who specialize in a given
layer. As horizontal design follows a layer imperative, a domain application, for example, is
seen as a consumer of services or client. Although layer developers are not developing for a
given implementation, they need to be conscious that their development not only has to
enable application developers to easily access functionality, but also needs to be presented in
such a way that consuming layer functionality improves development efficiency. Figure 7-3
illustrates the autonomous nature of the layers that are developed horizontally and that an
application is a facade through which functionality from the layers is accessed.

CHAPTER 7 � DESIGN DEVELOPMENT 147

560-2 ch07.qxd 10/27/05 4:18 PM Page 147

Figure 7-3. Horizontal design development

The Standard: Horizontal Design Development

The standard acknowledges horizontal design development as a method to regulate

design development through layers, which seeks to ensure that the inherent purpose of

the layer does not become biased or coupled to an application implementation.

Vertical Design Development
Vertical design development recognizes that functionality can be developed across layers to
fulfill the requirements of a domain or enterprise application.

What
Vertical design development supports the notion that development commences in the applica-
tion layer and progresses through the other layers, as appropriate. In other words, the layers are
developed as part of, or as a consequence of, an application project and not autonomously.

Where
Vertical code development occurs across layers: the application, application integration, and
enterprise services layers.

CHAPTER 7 � DESIGN DEVELOPMENT148

560-2 ch07.qxd 10/27/05 4:18 PM Page 148

Why
By regulating design development from an application perspective, applications may be
developed more quickly, and only functionality that is known to have an integration or enter-
prise value is migrated to those respective layers.

�Caution An inherent risk in developing code in the application layer and then migrating it to the applica-
tion integration and enterprise services layers is that the code may be too coupled to the domain. Excessive
domain coupling is often quoted as a reason why so many applications are developed from scratch, because
the code that is developed in applications commits the design to an implementation, and it is not viable to
transpose it to an abstraction so that it may be reused.

How
An application is developed from a domain perspective with functionality being added or
migrated to the application integration and enterprise services tiers, as appropriate. Gener-
ally, functionality is commenced in the application layer and moves up the hierarchy (see
Figure 7-4). However, design development could commence in the enterprise services layer
and progress downward. In such cases, it would mimic horizontal development and address
the issue of excessive domain coupling or bias, which may improve design and code reuse.

CHAPTER 7 � DESIGN DEVELOPMENT 149

560-2 ch07.qxd 10/27/05 4:18 PM Page 149

The Standard: Vertical Design Development

The standard acknowledges vertical design development as a method to regulate

domain development, but cautions that code and design may be excessively coupled to

a domain, which may make it a poor candidate to migrate to other layers for reuse.

Object Collaboration
Designing applications is really about designing collaborations between objects; it is collabo-
rating objects that perform the requirements of a domain.

�Note Professor Trygve Reenskaug presents a most interesting discussion on the role of object collaboration;
refer to the “Role Modeling” and “UML-VM” discussions (http://heim.ifi.uio.no/~trygver/index.html).

What
The functionality of an application may be expressed as a set of collaborations between
objects. The ability of an object to collaborate is determined by its interface and its implemen-
tation, which impact its ability to form associations or relationships with other objects.

Where
Object collaboration occurs across and along application, application integration, and enter-
prise services layers.

Why
Collaboration is important because it is the exchange of messages, between objects, that yields
the functionality of an application. Collaboration makes developing applications easier because,
for example, a domain application developer can develop domain objects that leverage the
functionality of security services objects without having to know the security implementation,
only how to program against the interface exposed by the security services objects.

How
Collaboration between objects is developed through managing interface and implementation.
Objects communicate through methods that are exposed in an interface and that provide
functionality for a client object to consume. Often, we can overcome or negate problems that
arise because an interface may be an impediment to a desired collaboration. For example, the
Adapter design pattern uses an interposed object to overcome incompatible object interfaces
and enables two incompatible objects to collaborate. Or consider the Chain of Responsibility
design pattern, which enables objects to be arranged so that they may collaborate in a previ-
ously unforeseen manner: as an authoritative or specialized hierarchy.

CHAPTER 7 � DESIGN DEVELOPMENT150

560-2 ch07.qxd 10/27/05 4:18 PM Page 150

�Note The Adapter and Chain of Responsibility design patterns are discussed in Chapters 10 and 12,
respectively.

The Standard: Object Collaboration

The standard acknowledges the importance of the role of object collaboration because it

is the collaboration of exchanging messages between objects that yields the functional-

ity of an application.

The Abstract-Interface Dichotomy
Often it is not obvious when to use class or interface inheritance to design the interface of an
object: Why should we use an interface type when it has no functionality?

What
The dichotomy recognizes the problem that arises when designing code for objects that collab-
orate: Do we develop the interface as an abstract class or as an interface type? The dilemma is a
manifestation of the underlying problem of choosing between class and interface inheritance.

Where
The dilemma occurs across application, application integration, and enterprise services layers.

Why
In nontrivial situations, it is not obvious whether an abstract class or an interface type is the
best candidate for a base type: this really requires a case-by-case evaluation. The problem is
complicated by the fact that C# supports single class inheritance, which means that in any hier-
archy there can only be one base or super class. That contrasts with an interface type, which
supports multiple inheritance, but does not implement functionality. There is a tendency to
favor an abstract class, which may implement functionality, only to discover subsequently that
the choice is inappropriate because it becomes too inflexible and cannot accommodate the
collaborative demands of other types.

�Note Abstract classes cannot be instantiated. They are conceptual; however, they may define functional-
ity that a derived class may implement or specialize.

How
A key to the dilemma lies first in understanding the purpose of an interface type within the con-
text of object collaboration. Once that is understood, then the role of the abstract class becomes

ole that an object can perform, which

CHAPTER 7 � DESIGN DEVELOPMENT 151

560-2 ch07.qxd 10/27/05 4:18 PM Page 151

is encapsulated in a list of generic methods that do not impose an implementation, and are
therefore able to be utilized by a wide range of objects. For example, in the Model T domain,
we may introduce an IServiceable interface that lists service functionality. A wide range of
objects may inherit that role, for example, Engine, Radiator, and Brakes, and each service
interface will be implemented differently. By analyzing collaborative roles, we can get a feel
for the roles which are generic; a generic role suggests that the functionality is suited to be
encapsulated in an interface type. Conversely, functionality that is dominate or common to
a given class type is a likely candidate to be encapsulated in an abstract class.

The Standard: Object Collaboration (Abstract-Interface Dichotomy)

The standard acknowledges that it is not always obvious when to use class or interface

inheritance to design the interface of an object. A key to the dilemma is that an interface

type is used to signify a role that an object can perform—an interface type is suitable to

perform generic roles.

The Composition-Inheritance Dichotomy
While objects are abstractions of real-life or logical entities and expose an interface through
which other objects can collaborate, it is not always obvious how they should acquire that
interface: through composition or inheritance.

What
The dichotomy recognizes the problem that arises when designing objects because there are
two ways to acquire an interface, i.e., through composition or inheritance (an example is
shown in the upcoming “How” section), and commonly it is not obvious which method to use.

Where
The dilemma occurs across application, application integration, and enterprise services layers.

Why
The dilemma arises because of the different abilities of class inheritance and composition to
accommodate change in a domain. Class inheritance is more sensitive to change: it is stati-
cally defined at design time, and because a subclass implements functionality of the class
hierarchy, it is additionally exposed to changes higher in the hierarchy. Composition, however,
is less sensitive to change: it is defined at run time, and a consuming object may replace an
object, at runtime, with a more suitable object.

How
A key to the dilemma is to be aware that, generally, class inheritance is more sensitive to
change than is composition. GoF propose a principle: “Favor object composition over class
inheritance.”1

CHAPTER 7 � DESIGN DEVELOPMENT152

1. Gamma, Helm, Johnson, and Vlissides, Design Patterns: Elements of Reusable Object-Oriented Software

560-2 ch07.qxd 10/27/05 4:18 PM Page 152

Listing 7-1 and Listing 7-2 demonstrate the difference between acquiring functionality
through composition and inheritance, respectively.

Listing 7-1. Composition

class ModelT
{
...
//Model T is composed of these two objects
private object aObject;
private object bObject;
...

//ModelT leverages functionality
//of contained objects
public string MethodOne()
{
return aObject.DoSomething();

}

public string MethodTwo()
{
return bObject.DoSomethingElse();

}
}

Listing 7-2. Inheritance

class Automobile
{

//functionality is developed within
//the class hierarchy
public string MethodOne()
{
return "...";

}

}

class Car: Automobile
{

public string MethodTwo()
{

CHAPTER 7 � DESIGN DEVELOPMENT 153

560-2 ch07.qxd 10/27/05 4:18 PM Page 153

return "...";
}

.
}

class ModelT: Car
{

//ModelT inherits functionality
//from the class hierarchy
this.MethodOne();
this.MethodTwo();

}

In either example, the ModelT acquires the same functionality; however, it is the ease with
which composition manages change that distinguishes it from inheritance. For example, to
add new functionality, a ModelT built on composition merely adds another specialist object to
do the new work; however, the ModelT built on inheritance requires the inheritance hierarchy
to be modified. That may be problematic, as a change to a hierarchy has to consider all
derived types that use the hierarchy and not just the ModelT.

The Standard: Object Collaboration (Composition-Inheritance Dichotomy)

The standard acknowledges that there is a dilemma when designing objects because

there are two ways to acquire an interface: through composition or inheritance. A key to

the dilemma is that class inheritance is more sensitive to change than is composition.

GoF propose a principle: “Favor object composition over class inheritance.”

The Abstraction-Implementation Dichotomy
It is beneficial to use class inheritance to leverage the “free” functionality of a hierarchy; how-
ever, as the composition-inheritance dichotomy illustrated, class inheritance is sensitive to
change. This, unfortunately, gives rise to another dilemma: When is it appropriate to reference
a type as an abstract (interface) or as a concrete class (implementation)?

What
The dichotomy recognizes the problem that is associated with deciding whether to commit to
reference a type through its interface (abstract class) or through its implementation (concrete
class).

Where
The dilemma occurs across application, application integration, and enterprise services layers.

CHAPTER 7 � DESIGN DEVELOPMENT154

560-2 ch07.qxd 10/27/05 4:18 PM Page 154

Why
The dilemma arises because at some point in time a design has to commit to an implementa-
tion; however, it needs to balance the cost of commitment against the need for flexibility in a
dynamic domain.

How
A key to the dilemma lies in using polymorphism, which enables an object to be treated as
an object (implementation) or as a member of its type (interface) at run time. Polymorphism
preserves flexibility after an interface has committed to an implementation. The solution is
articulated by GoF in a principle: “Program to an interface, not an implementation.”2 It works
like this: a variable is declared as an abstract class or type (e.g., Mammal) and instantiated as a
given subclass (e.g., Dog) of the type:

Mammal majorBarker = new Dog();

rather than

Dog majorBarker = new Dog();

This aids flexibility because it enables the object (majorBarker) to be referenced as an
implementation (Dog) or through its interface (Mammal). Additionally, the concrete class (Dog)
may be substituted by any class of the same type, for example, by a quiet Cat.

The Standard: Object Collaboration (Abstraction-Implementation Dichotomy)

The standard acknowledges that problems arise because at some point a design has to

commit to an implementation; however, it needs to balance the cost of commitment

against the need for flexibility in a dynamic domain. A key to the dilemma lies in using

polymorphism, which enables an object to be treated as an implementation or as an

interface at run time. GoF propose a principle: “Program to an interface, not an imple-

mentation.”

Design Patterns
It is not easy to orchestrate a society of objects in a collaboration; there are always problems at
design time and run time, after an application has been deployed. Design patterns are com-
monly used as a design and maintenance tool to solve collaborative problems.

What
A design pattern is a methodology that cleverly arranges class interfaces and implementations
to overcome collaborative problems.

CHAPTER 7 � DESIGN DEVELOPMENT 155

2. Gamma, et al., Design Patterns, p. 18.

560-2 ch07.qxd 10/27/05 4:18 PM Page 155

�Tip There are hundreds of design patterns—GoF cataloged only 23. Acknowledged authorities
on design patterns include Martin Fowler, Gregor Hohpe, and Bobby Woolf. These authors commonly
use Java and C# examples. You can check out their websites for more information: Martin Fowler’s
site is at www.martinfowler.com and Gregor Hohpe and Bobby Woolf’s is at
www.enterpriseintegrationpatterns.com.

Where
Design patterns may be used across application, application integration, and enterprise serv-
ices layers. They have become particularly useful in overcoming enterprise issues in enterprise
application architecture (refer to Fowler) and enterprise integration (refer to Hohpe and Woolf).

Why
Design patterns are a structured, efficient, and universal way to design object collaborations.

How
A design pattern solves a problem within a given context; therefore it is necessary to identify a
problem type and apply the appropriate design pattern. Generally, patterns are written gener-
ically and are not constrained by layers.

�Note Chapters 10 through 12 discuss many contextual problems that the GoF design patterns solve.

Design patterns are successful in solving problems because they are able to manage
interfaces and implementations in such a way that they remove an impediment in an object
collaboration.

The Standard: Collaborative Code (Design Patterns)

The standard acknowledges the role that design patterns play in solving problems of

objects collaborating in a dynamic domain.

Implementing Design in Applications
There are two common ways that applications are designed: using the start-from-scratch
method or using an application framework. An application that is started from scratch is,
as the name implies, an empty solution (an empty Visual Studio template solution, e.g., an
ASP.NET template). An application framework, on the other hand, is a partially built Visual

CHAPTER 7 � DESIGN DEVELOPMENT156

560-2 ch07.qxd 10/27/05 4:18 PM Page 156

Studio solution that includes wiring to functionality that will be used by the application (e.g.,
application integration and enterprise services functionality).

Start-from-Scratch Application Solution
Commonly, where an organization does not leverage an enterprise development framework,
applications are developed from scratch. There are two reasons cited: an application may be a
“one-off,” or the pressures of Rapid Application Development (RAD) may be unsympathetic to
the time required to develop and maintain an infrastructure of common functionality.

What
A start-from-scratch application solution is a methodology whereby functionality is developed
as new functionality (green fields), and reuse of existing functionality is nonexistent or trivial.
The methodology is inefficient: it maximizes development time; and it condones duplication,
high maintenance, and uncertainty.

Where
Start-from-scratch applications are developed in the application layer.

Why
To reuse functionality, it has to be written generically and be relevant to a wide range of appli-
cation requirements; however, the reality is that the pressures of RAD development work
against developing generic functionality and commit developers to developing functionality
that is tightly coupled to the domain implementation. Consequently, there is very little code
that may be reused, and so developers start from scratch.

How
An empty Visual Studio template solution will be used, and functionality for a given domain
project will be added in accordance with the technical and functional specifications. Com-
monly, code reuse, if there is any, is limited to trivial data access and business functionality.

The Standard: Start-from-Scratch Application Solution

The standard acknowledges that a start-from-scratch application is used where there is

very little code to reuse, and so developers start from scratch. It cautions that such a

practice is generally inefficient as it may result in duplication of functionality and

higher maintenance (compared with the use of a framework).

Application Framework Solution
To overcome the inefficiencies of starting an application from scratch, organizations invest in
developing generic functionality that can be specifically implemented in application frame-
works or solution templates.

CHAPTER 7 � DESIGN DEVELOPMENT 157

560-2 ch07.qxd 10/27/05 4:18 PM Page 157

What
An application framework is a prebuilt template that includes integration and enterprise serv-
ices functionality or wiring. There are two common categories of application frameworks:
domain and project frameworks. A domain framework is one that is prebuilt to accommodate
domain requirements: for example, an eCommerce website framework or inventory frame-
work. A project framework is a framework that is prebuilt to accommodate an application
project type: for example, an ASP.NET or Windows application project. While implementing
an application within an application framework avoids the problems of starting from scratch
every time and should significantly reduce development time, it does however, require an
up-front and continuous investment in infrastructure.

Where
Application frameworks may be used across application, application integration, and enter-
prise services layers.

Why
Application frameworks are an efficient and effective way to reuse proven design and func-
tionality. They have many benefits, including minimizing development time by reducing the
functionality that has to be developed; and reducing maintenance costs, duplication, and
uncertainty. However, the net benefit is subject to the amount of reuse of the infrastructure.

How
A type of framework is defined, for example, a corporate intranet application template. It is
developed in Visual Studio and wired up with the necessary enterprise and integration func-
tionality. The framework is copied, and copies are made available to domain developers.

The Standard: Frameworks Application Solution

The standard acknowledges the use of application frameworks, which are partially pre-

built solution templates, as an efficient and effective way to reuse proven design and

functionality.

CHAPTER 7 � DESIGN DEVELOPMENT158

560-2 ch07.qxd 10/27/05 4:18 PM Page 158

Design Documentation

In this chapter we examine standards on documenting application design. It is one of a pair
of chapters on documentation; the other is Chapter 4. Design documentation is managed
through a documentation policy, which seeks to ensure that procedures are in place to safe-
guard an investment in software.

Documentation Policy
A documentation policy is a statement that contains a set of rules and controls that manage
the way design is documented. It covers documenting application specifications, application
architecture, and enterprise (framework) architecture.

What
The policy seeks to harmonize documentation across all development by requiring architects
and developers to follow a set of common guidelines. Devising a policy can be a difficult task
because the policy has to balance the time demands on application architects and developers;
however, that difficulty may be addressed by making documentation an integral part of devel-
opment and not a discrete task. The following is a template of a documentation policy based
on the policy presented in Chapter 4; it may be modified to suit your situation.

Design Documentation Policy Template

• The policy is the responsibility of the IT governance committee.

• There is one design documentation policy for all development.

• The policy is reviewed every six months.

• A documentation manual (hardcopy or online) is developed and distributed.

• All architects and developers are to be trained in design documentation and made
familiar with the in-house documentation policy.

• Documentation is not delegated but incorporated into the design and development
tasks of architects and developers. The exception is application specification docu-
mentation that is prepared before development commences and may limit architects
and developers to a consultation role. Specification documentation may be the

159

C H A P T E R 8

� � �

560-2 ch08.qxd 10/27/05 4:18 PM Page 159

responsibility of project management, or shared between development and analyst
teams, for example. Documenting an application has three aspects: documenting the
technical and functional requirements; documenting the application from a code
design perspective; and documenting the application from the perspective of how it
fits within the enterprise.

• Documentation is to be signed off and subject to peer group or independent auditor
review.

• Documentation is to be housed where it is accessible to stakeholders (e.g., on an
intranet portal or in a hierarchy of folders on the network), with appropriate read/write
permissions.

Where
A design documentation policy is appropriate for all development sites.

Why
A design documentation policy minimizes the risk of knowledge degradation and all that it
encompasses. For example: developers may introduce bugs because the intention of the
founding developers was not explicit or documented.

How
A policy is the result of a consultation process between stakeholders (IT governance; develop-
ment managers, architects, analysts, and developers). Once agreed on, it may be distributed
as part of a documentation manual (hardcopy or online).

The Standard: Application Design Documentation Policy

The standard acknowledges the implementation of a single application design docu-

mentation policy across all projects within a given site.

Application Specification Documentation
There are two types of specifications that are documented—technical and functional specifica-
tions—but it is not quite clear who has the responsibility of developing the documentation.
Obviously, the answer will vary according to in-house policy, yet it is likely that in all scenarios
the developers and architects will play a significant role in the development or consultation
process. Technical and functional specification documentation is a rather unusual type of doc-
umentation, in that it is prepared long before development commences, and in reality such
documentation drives the design and development process. Commonly, application specifica-
tion forms part of the contract between the software development team (or organization) and
the client. Although a breach of an in-house “contract” made between an IT department and a
functional department may have fewer implications than a legally enforceable contract with an

CHAPTER 8 � DESIGN DOCUMENTATION160

560-2 ch08.qxd 10/27/05 4:18 PM Page 160

external client, which may impose financial penalties, nevertheless, any type of breach reflects
poorly on the team.

As technical and functional specifications may form part of a legally enforceable contract,
they are not to be taken lightly. The form of the specifications will be determined by your situ-
ation. In the following two standards, there are template outlines that illustrate the type of
content found in such specifications.

Technical Specification Documentation
An application requires technology to be configured to its requirements, and a technical spec-
ification details that requirement in technical terms.

What
A technical specification is a document that precisely details the minimum technical require-
ments for an application to meet its functional specifications.

Where
Technical specification documentation should be readily accessible to architects, developers,
network and database administrators, testers, and project managers. It may be written in text
and graphical format and stored in a development and/or project portal or in a set of folders
on the network.

Why
A technical specification is relied on by application architects and developers in designing and
coding an application. It establishes the technical environment that is necessary to support—
or restrain—the functionality of an application. It is also relied on by clients to configure their
environment or to evaluate an application (and other stakeholders).

How
There is no set way to document a technical specification; however, it is of most value when pre-
sented using precise technical terminology. The following template illustrates a brief outline.

Technical Specification for XYZ Application

• Hardware requirements

• Processor and memory (e.g., processor Intel 2.20 GHz; memory 512 MB)

• Disk space (e.g., minimum 50 MB to maximum 350 MB)

• Screen (e.g., resolution SVGA 800 x 600; size 17")

• Printers

• Devices

• PDAs

CHAPTER 8 � DESIGN DOCUMENTATION 161

560-2 ch08.qxd 10/27/05 4:18 PM Page 161

• Software requirements

• Word processor (e.g., Microsoft Word 2003)

• Internet browser (e.g., Microsoft Internet Explorer 4+)

• Database (e.g., Microsoft SQL Server 2000+)

The Standard: Technical Specification Documentation

The standard acknowledges the role of technical specification documentation and its

importance in supporting the functional specification of an application.

Functional Specification Documentation
An application represents a set of functional requirements and is specified in terms of user
requirements.

What
A functional specification is a document that precisely details the functionality and tolerances
of an application.

Where
Functional specification documentation should be readily accessible to business analysts,
architects, developers, testers, and project managers. It may be written in text and graphical
format and stored in a development and/or project portal or in a set of folders on the network.

Why
A functional specification is relied on by business analysts, application architects, and devel-
opers in application development. It establishes the functional requirements against which
the design and the application are measured. It is also relied on by clients to evaluate and ver-
ify the suitability of an application to meet their requirements.

How
There is no set way to document a functional specification, but it is of most value when pre-
sented using precise functional terminology; when it is contextually categorized; and when
requirements are clearly identified—for example, by using a requirements numbering system.
The following template illustrates a brief outline:

• Functional overview

• Lists of feature requirements

• List of use case (user functionality) requirements

• List of performance requirements and tolerances

CHAPTER 8 � DESIGN DOCUMENTATION162

560-2 ch08.qxd 10/27/05 4:18 PM Page 162

• List of scalability requirements and tolerances

• List of load requirements and tolerances

• List of user interface requirements

• List of middleware requirements

• List of interface requirements (e.g., software and hardware)

• List of security requirements

• List of quality requirements (e.g., downtime)

• List of assumptions, dependencies, and constraints

• Definitions, acronyms, and abbreviations

The Standard: Functional Specification Documentation

The standard acknowledges the role of functional specification documentation and its

importance in directing the design and development of an application and in evaluat-

ing and verifying that an application meets client requirements.

Application Design Documentation
In documenting an application design, the focus is on documenting the architecture of
the application and how the application fits into the enterprise (e.g., enterprise design
framework). Documenting application design differs from documenting code: (1) code is
documented by developers, whereas design is documented by an application architect and a
technical lead developer; (2) application design focuses on code from an abstract or strategic
perspective (e.g., identifying architecture strategies); and (3) application design documenta-
tion targets a wider technical audience—for example, project sponsors, project managers,
enterprise architects, application architects, lead developers, developers, network architects,
database administrators, business analysts, testers, and technical auditors. By contrast, code
documentation has a more limited audience, including application architects, lead develop-
ers, developers, and technical auditors.

What
Application design documentation documents the architecture of an application and how the
application fits within the enterprise (e.g., enterprise design framework). Figure 8-1 illustrates
where application design is in the documentation hierarchy.

CHAPTER 8 � DESIGN DOCUMENTATION 163

560-2 ch08.qxd 10/27/05 4:18 PM Page 163

Figure 8-1. Application design documentation

Where
Application design documentation should be readily accessible to architects and developers.
It may be written in text and graphical format and stored in a development portal or in a set of
folders on the network.

Why

Application design documentation enables a team to retain and share critical applica-

tion design knowledge that identifies and explains the underlying intention of the

architects and development team. The standard acknowledges the role of technical

specification documentation and its importance in supporting the functional specifica-

tion of an application.

CHAPTER 8 � DESIGN DOCUMENTATION164

560-2 ch08.qxd 10/27/05 4:18 PM Page 164

How
The documentation is written by application architects and technical lead developers. It is
written in document format and in four stages: preapplication development; application devel-
opment; postapplication development; and life-cycle development. In the preapplication
development stage, the application architecture is prepared based on the technical and func-
tional specifications, by the application architect and lead developer in consultation with the
enterprise architect. During the application development stage, the documentation is prepared
and modified as the implementation realities are identified. Modifications to architecture are
prepared in consultation with the enterprise architect, project manager, and, if necessary, the
project sponsor. In the postapplication development stage (i.e., once the application has been
developed and released), any additional documentation is added, such as documentation
relating to testing and subsequent modification. The final phase of documentation refers to
life-cycle documentation, that is, documenting service packs and versions of the application.
It is updated for as long as the application is supported.

The Standard: Application Design Documentation

The standard acknowledges the documentation of application design and observes that

it should be readily accessible to architects and developers.

Application Architecture Documentation
Documenting an application architecture requires the systematic arrangement of informa-
tion, which provides an overview and a detailed explanation of the structure of an application.
If an organization uses an application framework, then the focus of the documentation is lim-
ited to explaining the specialization of the architecture within the framework (an application
framework is documented as a separate application).

What
Application architecture documentation is a living document that identifies and explains
the key aspects of the architecture of a given application, in summary and detail formats.
It is a technical document, composed of text, figures, and tables, and written for a technical
audience.

Where
Application architecture documentation forms part of application design architecture and
design documentation; it should be readily accessible to architects and developers—for
example, in a development portal or in a set of folders on the network.

Why
Application architecture documentation enables a team to retain and share critical architec-
ture design knowledge that identifies and explains the underlying intention of the application
architect and the lead developer.

CHAPTER 8 � DESIGN DOCUMENTATION 165

560-2 ch08.qxd 10/27/05 4:18 PM Page 165

How
An effective way to produce application architecture documentation is by developing it from
a template. An example template is illustrated next. The template may be conveniently pre-
pared as a set of HTML pages and graphics posted to a portal, or alternatively as a set of Word
documents and graphics stored within a hierarchy of folders on a network.

1. Preliminaries

a. Objective—identify the object of the document

b. Ownership—identify ownership and responsibilities

c. Version history—list version history

d. Outline—prepare a document index

2. Document overview—prepare a brief overview of the document

3. Specifications

a. Functional—prepare a summary of functional specifications

b. Technical—prepare a summary of technical specifications

4. Architecture strategy—prepare a description of the key design decisions, reasons, and
compromises, as well as insights into key features of the architecture; identify extensi-
bility, vulnerabilities, and constraints, etc.

5. Application architecture

a. Application layers—identify and explain layers: e.g., five layers or tiers

• Summary

• Detail

b. Enterprise layer mapping—identify and explain mapping or interfacing of applica-
tion architecture layers to layers within the enterprise application framework
(application integration layer)

6. Design topology

a. Methodology—identify and explain methodologies, e.g., development sequence;
reuse of enterprise services functionality

b. Dependencies and assumptions—identify architecture dependencies (e.g., enter-
prise services accessed via the application integration layer) and key assumptions
(e.g., critical statements made in functional and technical specifications)

c. Risks—identify risks and tolerances, etc.

7. . . . (more content)

CHAPTER 8 � DESIGN DOCUMENTATION166

560-2 ch08.qxd 10/27/05 4:18 PM Page 166

8. Glossary

a. Terms—define key terms used in the document

b. Acronyms—define acronyms used in the document

9. . . . (more references)

The Standard: Application Architecture Documentation

The standard acknowledges the documentation of application architecture and that it

should be readily accessible to architects and developers. Documentation enables a

team to retain and share critical architecture design knowledge that identifies and

explains the underlying intention of the application architect and lead developer.

Enterprise Framework Documentation
Documentation of an application architecture doesn’t end with the documentation of
the application; it is also necessary to document how it fits within the enterprise design
framework.

What
Although the application architecture also documents the interface between the application
and the application integration layer, it is also necessary to understand its relationship with
other layers within the enterprise design framework (e.g., network services and communica-
tion layers)—which is the purpose of enterprise framework documentation.

Where
Enterprise framework documentation forms part of application design architecture and
design documentation and should be readily accessible to architects and developers—for
example, in a development portal or in a set of folders on the network.

Why
Enterprise framework documentation and application architecture documentation enable a
team to retain and share critical knowledge of how an application integrates and impacts an
enterprise.

How
An effective way to produce enterprise framework documentation is by developing it from a
template. An example template is illustrated next. It may be conveniently prepared as a set of

CHAPTER 8 � DESIGN DOCUMENTATION 167

560-2 ch08.qxd 10/27/05 4:18 PM Page 167

HTML pages and graphics posted to a portal, or alternatively as a set of Word documents and
graphics stored within a hierarchy of folders on a network.

1. Preliminaries

a. Objective—identify the object of the document

b. Ownership—identify ownership and responsibilities

c. Version history—list version history

d. Outline—prepare a document index

2. Document overview—prepare a brief overview of the document

3. Enterprise integration

a. Summary

b. Detail

• Application integration layer

• Enterprise services dependencies—identify enterprise services dependencies
(e.g., security functionality)

• Network layer—identify deployment architecture; network impact analysis, etc.

• Communication layer

• Assumptions—list key assumptions (e.g., critical statements made in functional
and technical specifications)

• Risks—identify risks and tolerances, etc.

4. Glossary

a. Terms—define key terms used in the document

b. Acronyms—define acronyms used in the document

5. . . . (more references)

The Standard: Enterprise Framework Documentation

The standard acknowledges the documentation of application design as it relates to the

enterprise architecture and that it should be readily accessible to architects and devel-

opers. Documentation enables a team to retain and share critical architecture design

knowledge that identifies and explains the underlying intention of the enterprise and

application architects and lead developer.

CHAPTER 8 � DESIGN DOCUMENTATION168

560-2 ch08.qxd 10/27/05 4:18 PM Page 168

Pattern Standards

In this part of the book we discuss pattern standards by looking at a selection of design

patterns that were cataloged by Drs. Gamma, Helm, Johnson, and Vlissides (GoF). They are

presented in Chapters 10 to 12; however, before we discuss them we introduce pattern

language and design patterns.

P A R T 3

� � �

560-2 ch09.qxd 10/27/05 4:19 PM Page 169

560-2 ch09.qxd 10/27/05 4:19 PM Page 170

Patterns

In this chapter we introduce patterns and discuss the role they play in solving recurring soft-
ware problems. There are three aspects of patterns of interest to us: pattern language, design
patterns, and talking patterns.

Pattern Language
A pattern language is a technical vocabulary that we use to communicate design problems
and solutions in a given domain. It has a simple grammar that consists of problem and solu-
tion types (as we shall soon see, a design pattern is a solution type). In other words, a pattern
language is an intelligent way to discuss and solve problems: it is structured, efficient, and
universal.

Design Patterns
A design pattern is a generic or template solution to a given problem type or genre, in a given
context. In a domain, when a new problem exhibits distinctive characteristics, it is identified
as a problem type; for example, in a road management pattern language, the problem of cars
colliding at an uncontrolled intersection is identified as problem type: uncontrolled intersec-
tion. After considering the uncontrolled intersection problem, a generic solution is identified,
tested, and proven; the result of this process is the creation of the intersection controller design
pattern, which is then applied to solve the given problem.

A design pattern is a generic solution because it will be implemented in a variety of ways;
for example, in the previous scenario, we applied the intersection controller design pattern to
solve an uncontrolled intersection problem, in which cars collided. However, if we had another
uncontrolled intersection problem that involved cars and trains, then we would implement the
intersection controller design pattern differently: in the car scenario, we might implement four
sets of traffic lights, whereas in the car–train scenario we might implement four sets of traffic
lights and a set of crossing gates.

Talking Patterns
Patterns are not monuments that we place on a pedestal and admire from afar. They need to
be part of our everyday working vocabulary; they allow us to map our thoughts and skills into

171

C H A P T E R 9

� � �

560-2 ch09.qxd 10/27/05 4:19 PM Page 171

structured solutions. To become articulate we have to talk in patterns habitually—that is, talk
about problems and solutions in terms of design patterns.

Earlier, it was said that a pattern language is structured, efficient, and universal. From the
intersection scenarios discussed in the previous section, we can see the efficiency of a struc-
ture that frames problems and maps them to solutions (a given design pattern). Once the
grammar of the pattern language is understood by people working in the given domain, then
it can be used universally; for example, management can talk with developers and be under-
stood, which would be a refreshing novelty.

If we were asked to design and develop a computer traffic program that simulated the
intersection scenarios, then by learning the pattern language we would be talking design
very quickly and successfully. An architect could converse with a developer at a high level of
abstraction without ever knowing anything about code and yet be understood. For example,
the architect might say to the lead developer: “In this application we have two uncontrolled
intersection problems, one with cars only and the other with cars and trains. So, please
implement an intersection controller for each problem.” From this brief dialogue, the lead
developer will know exactly what the architect wants and can leave the meeting with a clear
vision of the problem and solution.

From this introduction we can already see great value in using a pattern language:

• It requires us to articulate problems and solutions in a structured format.

• It is universal.

• It helps us to communicate in an efficient manner.

• It enables us to discuss low-level implementation in a high-level, abstract manner.

• It enables us to apply a proven solution (design pattern).

• It is expandable—a domain can create new design patterns for new problem types.

Using a pattern language and design patterns is a relatively new practice in computer
science, and they have their origins in building architecture and city planning.

The Origins: Pattern Language and Design
Patterns
In 1995, a pattern language and a catalog of design patterns were articulated by Drs. Gamma,
Helm, Johnson, and Vlissides—commonly known as the “Gang of Four” (GoF)—in their book
Design Patterns: Elements of Reusable Object-Oriented Software (Addison-Wesley, 1995). In the
book they discuss a foundation set of 23 design patterns that they observed were commonly
found in software development. The GoF adapted the ideas of Dr. Christopher Alexander and
others, who had applied the concept in the fields of city planning and building architecture.
In 1975, Alexander authored The Oregon Experiment, which was followed in 1977 by A Pattern
Language, coauthored with S. Ishikawa, M. Silverstein, M. Jacobson, I. Fiksdahl-King, and
S. Angel. And in 1979, Alexander authored The Timeless Way of Building.

CHAPTER 9 � PATTERNS172

560-2 ch09.qxd 10/27/05 4:19 PM Page 172

�Note The works of Christopher Alexander may be reviewed at his website: www.patternlanguage.com.

It is understood that the first sighting of a design pattern in computer science was in
1978–79, when Professor Trygve Reenskaug, while at Xerox PARC, articulated the design pattern:
Model-View–Controller (MVC). Subsequently, a version of the MVC pattern was implemented
by Jim Althoff and others in the Smalltalk-80 class library. As history has unfolded, MVC has
turned out to be not only a design pattern, but with its ability to efficiently manage coupling,
it is also considered to be an architecture pattern. We will revisit MVC at the end of this chapter
and use it as a fitting way to bridge this brief historical introduction and lead us into subsequent
chapters, in which we examine many of the design patterns cataloged by GoF.

�Note The works of Professor Reenskaug may be reviewed at his website: http://heim.ifi.uio.no/
~trygver/index.html.

In his books, Alexander observes that in architecture throughout the world, there is a
regularity with which design problems are solved by variations of a common set of design pat-
terns. He articulates a language that uses building patterns as a grammar to enable architects
and builders to discuss design problems and solutions. It is worthwhile to spend a little time
familiarizing ourselves with Alexander’s concept so that we can see how the pattern language
works in its original setting. To appreciate a pattern language, we need to think and talk in the
language.

Thinking and Talking in a Pattern Language
In The Timeless Way of Building, Alexander asserts that the design of a building or town needs
to be “alive” and that this can be achieved by defining a sequence of patterns that gives “life”
to the building or town. Alexander refers to this concept as a “quality without a name.” For
example, a town can be given life by structuring it around a town center or marketplace from
which narrow cobblestone lanes can be affixed and adorned with quaint shops. Such a design
enables people to have a pleasant walk through atmospheric narrow lanes, passing one quaint
shop after another to arrive at a marketplace abuzz with activity.

In this vision, the town center or marketplace, narrow cobblestone lanes, and quaint shops
are design patterns that have been carefully sequenced to create a town with a life, which is
timeless and abuzz with pleasant activities. That “timeless way of building” is an obvious solu-
tion to the problem of an anti-shopping attitude, which bugs many consumers when shopping
in enclosed shopping centers surrounded by acres of parking lots.

From this brief introduction, we can see how easy it is for us to visualize the same problem
domain as we both think and talk in the pattern language—it’s little wonder that Alexander’s
ideas have excited so many people!

CHAPTER 9 � PATTERNS 173

560-2 ch09.qxd 10/27/05 4:19 PM Page 173

In computer science it is a little more difficult to become fluent and visualize problems
and solutions, yet, as in learning any language, this short-term bump is soon smoothed over
with persistence and practice.

�Tip To appreciate pattern languages and design patterns, it is beneficial to read the original material.
Much can be learned from reading A Pattern Language or The Timeless Way of Building and the GoF’s
Design Patterns: Elements of Reusable Object-Oriented Software. (Note: the GoF’s book does not show .NET
language examples, and the models predate UML.)

Pattern Language in Computer Science
In the 26 years since the arrival of MVC, design patterns have substantially influenced com-
puter science. MVC, for example, has been implemented in Smalltalk, NextSTEP, OPENSTEP,
Cocoa, Java Swing library, Jakarta Struts, and Microsoft Foundation Classes (MFC). Design
patterns have also found their way into many other implementations, including the .NET
Framework. For example, the Facade pattern is used in ADO.NET—in the DataAdapter
class—to hide the complexity of dealing with different database types. This means that the
DataAdapter class is presented to us as a simple and consistent interface regardless of data-
base type: SQL Server, Oracle, MySQL, and so forth.

Unfortunately, many .NET professionals have found design patterns to be complex, so in
this book we have sought to address the problem by applying our own little Facade design pat-
tern to simplify the “learning interface” of design patterns. Each design pattern is presented
using the same simple format that presents the following brief sections: “What,” “Where,”
“Why,” and “How.” These sections are followed by a Model T example that includes a discussion
of the problem, a UML diagram, a list of Key Code Ingredients, code listing with explanations,
and a printout of the console output. A copy of the full code listings is available as a download
from Apress (www.apress.com/book/download.html).

Design Patterns
Design patterns have been cataloged by GoF into three categories of problem types:
creational, structural, and behavioral.

• A creational pattern refers to the design of a given entity. For example, a template
method is a creational pattern that we use to make copies of a given design. We could
use a creational pattern to make jeans or shoes or iPods.

• A structural pattern refers to the shape of a given design. For example, a Mac Mini com-
puter is designed to ship without a keyboard or mouse or monitor, whereas a PC has a
different structure and is designed to ship with a box, keyboard, mouse, and monitor.

• A behavioral pattern refers to the recurrence of a given behavior, usually in response to
an action or stimulus. For example, when you feel a hunger pang (stimulus), you get
something to eat (behavior).

CHAPTER 9 � PATTERNS174

560-2 ch09.qxd 10/27/05 4:19 PM Page 174

In this book, we present a subset of 12 of 23 design patterns from the GoF catalog, plus the
classic MVC pattern. We have limited our focus to the design patterns that we understand are
the most commonly used in the C# community. One popular pattern that has been omitted is
the Iterator pattern, because C# 2.0 introduces its own iterator. The C# 2.0 Iterator implementa-
tion is relatively simple compared with the design pattern: it does not require an enumerator
for each type, and it leverages generics and the new yield statement in the Iterator block, which
returns to the calling foreach statement. The Observer pattern varies from that articulated by
GoF and is simplified by leveraging a delegate class, which is a feature of the C# language and
was not available to GoF. We have also divided the Proxy pattern into Surrogate-Proxy and
Remote-Proxy design patterns to acknowledge the two distinct ways that a proxy is used in the
workplace.

As with any language, a pattern language is fluid, which means that a conversation is
characterized by a discussion that links patterns into a “sentence,” as was shown in the earlier
example of the town vision. Advanced design-pattern practitioners will converse about includ-
ing a number of design patterns in an application. However, in this book, our goal is to lower
the design-patterns learning curve, which means that our focus is on standards that communi-
cate the basics of design patterns, from which you can advance. The subset of design patterns
we discuss are as follows:

Creational Patterns

• Abstract Factory

• Abstract Method

• Singleton

Structural Patterns

• Surrogate-Proxy

• Remote-Proxy

• Adapter

• Composite

• Facade

Behavioral Patterns

• Chain of Responsibility

• Observer

• Strategy

• Template Method

CHAPTER 9 � PATTERNS 175

560-2 ch09.qxd 10/27/05 4:19 PM Page 175

Design Patterns: Tricks of the Trade
There are a few tricks to working with design patterns:

• Think in terms of design problems and solutions (remember the earlier example about
the uncontrolled intersection problem and traffic-light controller design pattern or
solution).

• Think about a pattern in terms of how it overcomes a given problem in a given context.

• Familiarize yourself with a category of design patterns before moving to the next cate-
gory—for example, understand all of the behavioral patterns before moving on to
structural patterns. Otherwise, it is very easy to become disoriented.

• Start with the category of design patterns that best suits you.

• Practice drawing and coding the design patterns presented in this book until they
become second nature, and then substitute the examples for scenarios in your workplace.

• Actively think about patterns—get into a pattern habit!

We now continue by introducing the MVC pattern, as a forerunner to the following three
chapters on design patterns. The MVC is arguably the mother of all design patterns.

�Note To run the Console application, if you press F5 in Visual Studio 2005, the Quick Console will
appear; if you press Ctrl+F5, then the Windows Console will appear. It is only in the Windows Console
that you will see the Press any key to continue notice, at the bottom of the Console window.

MVC
An MVC pattern encapsulates a design feature where controller objects play a decoupling role
by enabling clients to choose a view of information, while minimizing or preventing change to
the model, which outputs the information in one format only. In everyday life, examples of a
MVC pattern include a translation tool that translates code from Java to C#, or an integration
layer that interposes two layers of architecture.

What
The MVC pattern is a design that seeks to minimize the impact that results from fulfilling the
requirements of clients to control how they view information from the model.

Where
An MVC is used where there is a requirement to vary perspectives or views (output) without
disturbing, or while minimizing the disruption to, the underlying information source (model)
that publishes the information used in the views. It may be used not only in an information-
view scenario, but also in architecture—for example, to offer platform independence.

CHAPTER 9 � PATTERNS176

560-2 ch09.qxd 10/27/05 4:19 PM Page 176

A platform controller object (controller) may be used to transpose functionality of an applica-
tion (model) that runs on an incompatible platform to an application (view) running on
another platform. The pattern may natively be extended to include multiple controllers.

Why
MVC prevents the model from being coupled to an expensive association with clients,
while maintaining a relatively low-cost association between the model and the respective
controllers—who return the view to the client(s). In other words, the technical and economic
rationale is that it is more manageable and less expensive to encapsulate change in a set of
controller objects than it is to disfigure the model object through constant reengineering. In
many domains clients want to have control over the way information is presented to them,
but this presents a problem because it would place additional responsibility on the object that
publishes the information, in one standard format, and would directly couple many views to
that one publisher (model).

How
The MVC overcomes the multiview problem by encapsulating the client requirements in a
controller object that transposes the information from the model object into the variety of
formats required by the client. The client gets what it wants, and the model is left undisturbed
or requires relatively minor reengineering. We do this by creating a model object (model) and
a view interface (IView), or abstract class, if you prefer; then deriving any number of views
(AmericanView and NorwegianView classes) from the interface; then creating a controller
object (controller), to represent each view; and then wiring up the functionality. The client
accesses the views it wants from the controllers, and the model may be none the wiser or only
a little inconvenienced. In a nontrivial example, unlike the following, the controller would
normally associate with the model through a publisher–subscriber relationship. The model
would publish an event against which the controller would subscribe or register. So, scaling
the MVC may require minimal change to the model, if new events are required for new views.

�Caution Although it may be tempting to encapsulate the control of all views within one controller object,
it is a design that doesn’t scale and that is contrary to object-oriented design best practices.

Pattern Example
In the Model T domain, we have an application that is used to look up the price of spare parts.
The problem that we have is that the information is displayed to the screen in only the English
language: it was unforeseen when the application was designed that there would ever be a
need for another display language. But now the men in suits have decided to permit dealers
from other countries to access the system and look up the price in their native language. To
accommodate this, we are required to come up with yet another cunning little plan, this time
a design that permits the application to display the text in various languages, while quoting
the price in U.S. dollars.

CHAPTER 9 � PATTERNS 177

560-2 ch09.qxd 10/27/05 4:19 PM Page 177

The part of the problem we are focusing on is how to add variability to client views with-
out reengineering the object that returns the content of that view (i.e., the price of the part).
Given that we are expected to add 35 languages (or views), we have decided to develop a proof
of concept using two language view controllers (American and Norwegian).

We shall now look at the MVC pattern (see Figure 9-1) in a UML diagram and then imple-
ment the pattern in code.

UML

Figure 9-1. MVC pattern

Key Code Ingredients

The code for MVC has the following key ingredients:

• A Model class (Model)—with some functionality.

• A View interface type (IView).

• A set of controller classes that implement the IView interface (AmericanController and
NorwegianController classes), for each view.

• Client code (Client) that decides which views are called.

Now let’s code the MVC pattern.

CHAPTER 9 � PATTERNS178

560-2 ch09.qxd 10/27/05 4:19 PM Page 178

Pattern Code
The essence of the design lies in delegating responsibility and managing the placement of
coupling. The Model is an independent class; it just returns a price when asked—it is decou-
pled. Two ordinary classes (AmericanController and NorwegianController) implement the
IController interface, making them controller types. They are coupled to the Model class, and
the client (Client) is, in turn, lightly coupled to the controller objects (AmericanController and
NorwegianController). We have made the controllers inherit from an interface type rather
than an abstract class to illustrate the flexibility of interface types: a class can implement
many interfaces. Alternatively, we could have used a controller abstract class and overridden
the DisplayPrice() method. However, the trade-off between the two methodologies is that by
using an interface type we do more wiring (i.e., cut–paste and tweak) for the benefit of avoid-
ing the restriction of using a Controller class as a base class. (The choice of a base class is a
big issue with single class inheritance; perhaps there is a better candidate for a base class, in
the domain, other than a Controller class?) It is the respective controller objects that manage
the responsibility of preparing respective views for the client (Client). It is ultimately the
client who chooses which view to display—in this situation, both views have been displayed
to prove the concept.

Model Class

public class Model
{
public double Price()
{
return 100;

}
}

IController Interface

interface IController
{
void DisplayPrice();

}

AmericanController Class

public class AmericanController: IController
{
private Model mod;

public void DisplayPrice()
{
//get price from model and add US margin
double cost = mod.Price()*1.1;

CHAPTER 9 � PATTERNS 179

560-2 ch09.qxd 10/27/05 4:19 PM Page 179

String message = "Price: USD " + cost.ToString();
Console.WriteLine(message);

}

public AmericanController()
{
mod = new Model();

}
}

NorwegianController Class

public class NorwegianController: IController
{
private Model mod;

public void DisplayPrice()
{
//get price from model and add Norwegian margin
double cost = mod.Price() * 1.15;
String message = "Pris: USD " + cost.ToString();
Console.WriteLine(message);

}

public NorwegianController()
{

mod = new Model();
}

}

Client Code

In the client code we see the MVC pattern at work. We test the effectiveness of the design pat-
tern by creating instances of two controllers that return an American and Norwegian view of
the price of a spare part. Each view is illustrated in English and Norwegian languages, respec-
tively. (The price differential reflects the additional costs associated with European orders.)

public class Client
{
static void Main(string[] args)
{
AmericanController viewUS = new AmericanController();
viewUS.DisplayPrice();
NorwegianController viewNorway = new NorwegianController();
viewNorway.DisplayPrice();

}
}

CHAPTER 9 � PATTERNS180

560-2 ch09.qxd 10/27/05 4:19 PM Page 180

Console Output

Price: USD 110
Pris: USD 115
Press any key to continue . . .

The Standard: MVC Pattern

The standard acknowledges the use of the MVC design pattern where there is a require-

ment to vary perspectives or views (output) without disturbing—or while minimizing

the disruption to—the underlying information source (model) that publishes the

information.

CHAPTER 9 � PATTERNS 181

560-2 ch09.qxd 10/27/05 4:19 PM Page 181

560-2 ch09.qxd 10/27/05 4:19 PM Page 182

Creational Patterns

Creational patterns encapsulate a design feature where the focus is on strategically manip-
ulating the instantiation of classes. They empower design by augmenting the act of class
instantiation so that it can affect the behavior of a class, as well. In everyday life, examples of
a creational pattern include a bank check that can be instantiated only once, or a web appli-
cation that dynamically creates a set of controls compatible with a given web browser.

What
In software design, creational patterns give the software designer a tool that can be used to
bring subtlety to the creation or instantiation of classes by isolating what objects get instanti-
ated, where, when, and how.

Where
Creational patterns are used where a design needs to exhibit flexibility of control over the
creational behavior of a set of classes in a given domain.

Why
In many domains there is a requirement to configure behavioral characteristics that go beyond
the bounds of encapsulating functionality in a class and require flexibility over what, where,
when, and how classes are created. In most domains this requirement presents a problem, so
to overcome the problem a creational pattern is incorporated into the design of the program.

How
There are commonly four features that identify how a given creational pattern is implemented:
identify what gets created, where it gets created, when it gets created, and how it gets created.
The functionality of a given creational pattern lies with these four features: they usually reside
in one or two classes and client code.

In the Model T domain, we present three examples of creational patterns: Abstract Factory,
Abstract Method, and Singleton.

183

C H A P T E R 1 0

� � �

560-2 ch10.qxd 10/27/05 4:19 PM Page 183

�Note To run the respective Console applications, if you press F5 in Visual Studio 2005, the Quick Con-
sole will appear; if you press Ctrl+F5, then the Windows Console will appear. It is only in the Windows
Console that you will see the Press any key to continue notice, at the bottom of the Console window.

Abstract Factory Pattern
An Abstract Factory pattern encapsulates a design feature where a client associates with an
abstract factory, which in turn creates a set of related objects—this enables the client to indi-
rectly control object creation while distancing itself from coupling to a set or family of object
implementations. In everyday life, examples of an Abstract Factory pattern include a human
resource analyst who creates departmental job positions without needing to know the details
of the incumbents; or a web application that renders a set of controls appropriate for a given
web browser type or version.

What
An Abstract Factory pattern is a design that enables a client to deal with a high-level abstrac-
tion while leaving the factory abstraction to deal with coupling the implementation.

Where
An Abstract Factory pattern is used where there is a requirement not to couple the client to an
implementation that creates sets or families of objects. The pattern enables the client to com-
mit to an interface and avoid commitment to an implementation.

Why
In many domains there is a requirement for client code to avoid committing to an implemen-
tation; this design requirement enhances the client’s ability to switch between a set or family
of objects. In some domains switching presents a major reengineering problem, so to prevent
or overcome the problem, the Abstract Factory pattern is incorporated into the design of the
program.

How
Client code has an association at a high level with the interface of the factory class. It is the
role of the factory objects to commit to creating the sets of objects that are indirectly manipu-
lated by client code through the factory interface.

Pattern Example
In the Model T domain, there is client code that manages the supply of radiators fitted to the
car. The part of the problem we are focusing on is how to isolate the client from the code that
implements the creation of radiators and caps, yet enable the client code to indirectly control
the build process.

CHAPTER 10 � CREATIONAL PATTERNS184

560-2 ch10.qxd 10/27/05 4:19 PM Page 184

To code this routine, we let client code deal through a factory abstraction that acts as a
medium through which it can manipulate the creation of different sets of radiators and caps
from different factories. In the client, a work order is used to give the build process a context;
it is passed to an abstract factory that is called on to create a set of factory implementations or
types (Briscoe, Detroit, and McCord). In turn, the set of factory implementations create sets of
product implementations or types (Radiator and RadiatorCap). This design pattern ensures
that the client can avoid coupling to an implementation and yet indirectly control the creation
of objects. That is the Abstract Factory pattern!

We shall now look at the Abstract Factory pattern in a UML diagram (see Figure 10-1) and
then implement the pattern in code.

UML

Figure 10-1. Abstract Factory pattern

Key Code Ingredients
The code for the Abstract Factory pattern has the following key ingredients:

• An abstract RadiatorFactory class

• A number of RadiatorFactory objects derived from the abstract RadiatorFactory class

• An abstract Radiator class

CHAPTER 10 � CREATIONAL PATTERNS 185

560-2 ch10.qxd 10/27/05 4:19 PM Page 185

• A number of Radiator objects derived from the abstract Radiator class

• An abstract RadiatorCap class

• A number of RadiatorCap objects derived from the abstract Radiator class

• A WorkOrder class

• Client code that, through passing a set of abstract factories to an instance of a WorkOrder,
is able to indirectly control the creation of sets of factories (Briscoe, Detroit, and McCord)
that build sets of products (Radiators and RadiatorCaps)

Now let’s code the Abstract Factory pattern.

Pattern Code
The essence of the design lies in the way in which the abstract RadiatorFactory class leverages
abstract classes (Radiator and RadiatorCap), delegating or deferring implementation and cou-
pling to RadiatorFactory objects. The WorkOrder class plays the role of a context that enables
the client to distance itself from the build process. Notice that it is when the RadiatorFactory
class is implemented or instantiated that there is the first commitment to a set of factories
types (Briscoe, Detroit, and McCord). In turn, these factory types commit to an implementa-
tion of a set of product types (Radiators and RadiatorCaps). Observe the regimentation of
control throughout the design: the sets of like products are encapsulated within a given fac-
tory, which itself is treated as an abstraction through which the client indirectly manipulates
the whole process without being coupled to factory or product types.

RadiatorFactory Class

public abstract class RadiatorFactory
{

public abstract Radiator BuildRadiator();
public abstract RadiatorCap BuildRadiatorCap();

}

BriscoeRadiatorFactory Class

public class BriscoeRadiatorFactory: RadiatorFactory
{

public override Radiator BuildRadiator()
{
Radiator rad = new BriscoeRadiator();
rad.RadiatorBrand();
return rad;

}

CHAPTER 10 � CREATIONAL PATTERNS186

560-2 ch10.qxd 10/27/05 4:19 PM Page 186

public override RadiatorCap BuildRadiatorCap()
{
RadiatorCap cap = new BriscoeRadiatorCap();
cap.RadiatorCapBrand();
return cap;

}

public BriscoeRadiatorFactory() {;}
}

DetroitRadiatorFactory Class

public class DetroitRadiatorFactory: RadiatorFactory
{

public override Radiator BuildRadiator()
{
Radiator rad = new DetroitRadiator();
rad.RadiatorBrand();
return rad;

}

public override RadiatorCap BuildRadiatorCap()
{
RadiatorCap cap = new DetroitRadiatorCap();
cap.RadiatorCapBrand();
return cap;

}

public DetroitRadiatorFactory() {;}
}

McCordRadiatorFactory Class

public class McCordRadiatorFactory: RadiatorFactory
{

public override Radiator BuildRadiator()
{
Radiator rad = new McCordRadiator();
rad.RadiatorBrand();
return rad;

}

public override RadiatorCap BuildRadiatorCap()

CHAPTER 10 � CREATIONAL PATTERNS 187

560-2 ch10.qxd 10/27/05 4:19 PM Page 187

{
RadiatorCap cap = new McCordRadiatorCap();
cap.RadiatorCapBrand();
return cap;

}

public McCordRadiatorFactory() {;}
}

Radiator Class

public abstract class Radiator
{

public abstract void RadiatorBrand();

}

BriscoeRadiator Class

public class BriscoeRadiator: Radiator
{

public override void RadiatorBrand()
{
Console.WriteLine ("Briscoe Radiator.");

}

public BriscoeRadiator() {;}

}

DetroitRadiator Class

public class DetroitRadiator:Radiator
{

public override void RadiatorBrand()
{
Console.WriteLine ("Detroit Radiator.");

}

public DetroitRadiator() {;}

}

CHAPTER 10 � CREATIONAL PATTERNS188

560-2 ch10.qxd 10/27/05 4:19 PM Page 188

McCordRadiator Class

public class McCordRadiator: Radiator
{

public override void RadiatorBrand()
{
Console.WriteLine ("McCord Radiator.");

}

public McCordRadiator() {;}

}

RadiatorCap Class

public abstract class RadiatorCap
{

public abstract void RadiatorCapBrand();
}

BriscoeRadiatorCap Class

public class BriscoeRadiatorCap: RadiatorCap
{

public override void RadiatorCapBrand()
{
Console.WriteLine("Briscoe Radiator cap.");

}

public BriscoeRadiatorCap() {;}

}

DetroitRadiatorCap Class

public class DetroitRadiatorCap: RadiatorCap
{

public override void RadiatorCapBrand()
{
Console.WriteLine("Detroit Radiator cap.");

}

CHAPTER 10 � CREATIONAL PATTERNS 189

560-2 ch10.qxd 10/27/05 4:19 PM Page 189

public DetroitRadiatorCap() {;}
}

McCordRadiatorCap Class

public class McCordRadiatorCap: RadiatorCap
{

public override void RadiatorCapBrand()
{
Console.WriteLine("McCord Radiator cap.");

}

public McCordRadiatorCap() {;}

}

WorkOrder Class

public class WorkOrder
{

public void AssembleRadiator(Factory fact)
{
Radiator rad = fact.BuildRadiator();
RadiatorCap cap = fact.BuildRadiatorCap();
this.Assemble();

}

private void Assemble()
{
Console.WriteLine ("Assembling Radiator and cap.");
Console.WriteLine();

}

public WorkOrder() {;}

}

Client Code

In the client code, we see the Abstract Factory pattern at work. We test the effectiveness of the
design pattern, which enables client code to indirectly control the build process through a set
of factories and a set of products, while ensuring that it is decoupled from factory and product
implementations.

CHAPTER 10 � CREATIONAL PATTERNS190

560-2 ch10.qxd 10/27/05 4:19 PM Page 190

class Client
{

static void Main(string[] args)
{
Factory factoryOne = new BriscoeRadiatorFactory();
WorkOrder workOne = new WorkOrder();
workOne.AssembleRadiator(factory1);

/* With the Abstract Factory pattern,
The Model T domain can easily
switch suppliers. It simply stops calling
the Briscoe Radiator
factory, and commences calling the Detroit
and McCord Radiator
factories, to supply radiators. For each
new supplier, respective
Radiator, Cap and Factory classes need to
be added. Which is a good
thing, because shortly after changing from
Briscoe, The Model T
domain made a further change and began
to fit only Ford radiators.*/

Factory factoryTwo = new DetroitRadiatorFactory();
WorkOrder workTwo = new WorkOrder();
workTwo.AssembleRadiator(factoryTwo);

Factory factoryThree = new McCordRadiatorFactory();
WorkOrder workThree = new WorkOrder();
workThree.AssembleRadiator(factoryThree);

}

}

Console Output

Briscoe Radiator.
Briscoe Radiator cap.
Assembling Radiator and cap.

Detroit Radiator.
Detroit Radiator cap.
Assembling Radiator and cap.

CHAPTER 10 � CREATIONAL PATTERNS 191

560-2 ch10.qxd 10/27/05 4:19 PM Page 191

McCord Radiator.
MsCord Radiator cap.
Assembling Radiator and cap.

Press any key to continue

The Standard: Abstract Factory Design Pattern

The standard acknowledges the use of the Abstract Factory design pattern when there is

a requirement not to couple the client to an implementation that creates sets or families

of object, yet to let the client indirectly control the build process.

Factory Method Pattern
A Factory Method pattern encapsulates a design feature when a class can’t foresee what
objects it will be required to create and so delegates the task to subclasses. In everyday life,
examples of a factory pattern include a translation service that delegates the task of translat-
ing news stories to a variety of specialist language translators; or a visual display controller
that delegates the task of displaying data to display objects, which in turn display data in text
or graphic format.

What
A Factory Method pattern is a design that defines an interface for creating objects but dele-
gates the choice of what objects to create to subclasses.

Where
A Factory Method pattern is used where there is a design problem where a creator class is
required to be decoupled from creating specific objects.

Why
In many domains there is a requirement for flexibility in creating a variety of objects and to
localize the functionality to a set of specialized subclasses.

How
The creator class delegates to its subclasses, which override its factory method to create spe-
cific types, which in turn create content objects.

CHAPTER 10 � CREATIONAL PATTERNS192

560-2 ch10.qxd 10/27/05 4:19 PM Page 192

Pattern Example
In the Model T domain, there is client code that manages composing two publications: a new
car catalog and an owners’ technical manual.

The part of the problem we are focusing on is how to efficiently coordinate the tasks of
creating different content and different arrangements in different publications: a page in a
catalog is arranged with features and picture content, whereas a page in a technical manual is
arranged with technical, picture, and instruction content.

To code this routine, we create an abstract page class (Page) that includes an abstract factory
method (AddContent()) that the subclasses (CatalogPage and ManualPage) will override as they
make a choice on which content to add to the respective page. An abstract Content class offers an
interface to manage the creation of content by subclasses (FeaturesContent, InstructionContent,
PictureContent, and TechnicalContent). The factory method (AddContent()), which resides in
the Page sub-classes (CatalogPage and ManualPage), makes the choice of what Content classes
to instantiate in the respective page. That is the Factory Method pattern!

We shall now look at the Factory Method pattern in a UML diagram (see Figure 10-2) and
then implement the pattern in code.

UML

Figure 10-2. Factory Method pattern

CHAPTER 10 � CREATIONAL PATTERNS 193

560-2 ch10.qxd 10/27/05 4:19 PM Page 193

Key Code Ingredients
The code for the Factory Method pattern has the following key ingredients:

• An abstract Content class

• Several classes that derive from Content class

• FeaturesContent class

• InstructionContent class

• PictureContent class

• TechnicalContent class

• An abstract Page class

• An abstract factory method

• Several classes that derive from Page class

• CatalogPage class

• An override of the factory method

• ManualPage class

• An override of the factory method

• Client class

• A call to the factory method of an instantiated Page class

Now let’s code the Factory Method pattern.

Pattern Code
The essence of the design lies in the Page class, where the factory method (AddContent()) is
modified as abstract, which enables flexibility in the design of subclasses. Notice the role of
Content class: it merely acts as an interface from which specialized content is derived (picture
content and technical content, etc.). The subclasses (CatalogPage and ManualPage) specialize
the class by choosing content and sequencing the arrangement of content on the page.

Content Class

public abstract class Content
{
public abstract void SomeContent();

}

CHAPTER 10 � CREATIONAL PATTERNS194

560-2 ch10.qxd 10/27/05 4:19 PM Page 194

FeaturesContent Class

public class FeaturesContent: Content
{

public override void SomeContent()
{
Console.WriteLine("Technical content.");

}

public FeaturesContent() {;}

}

InstructionContent Class

public class InstructionContent: Content
{

public override void SomeContent()
{
Console.WriteLine("Instruction content.");

}

public InstructionContent() {;}

}

PictureContent Class

public class PictureContent: Content
{

public override void SomeContent()
{

Console.WriteLine("Picture content.");
}

public PictureContent() {;}

}

CHAPTER 10 � CREATIONAL PATTERNS 195

560-2 ch10.qxd 10/27/05 4:19 PM Page 195

TechnicalContent Class

public class TechnicalContent: Content
{

public override void SomeContent()
{
Console.WriteLine("Technical content.");

}

public TechnicalContent() {;}

}

Page Class

public abstract class Page
{

//A page compositor arranges the content on the page
protected ArrayList pageCompositor = new ArrayList();

//This is the Factory method
public abstract void AddContent();

//Method to display page content
public abstract void DisplayPage();

}

CatalogPage Class

public class CatalogPage: Page
{

//This is the Factory method
public override void AddContent()
{
this.pageCompositor.Clear();
this.pageCompositor.Add(new FeaturesContent());
this.pageCompositor.Add(new PictureContent());

}

//Method to display page content
public override void DisplayPage()
{

CHAPTER 10 � CREATIONAL PATTERNS196

560-2 ch10.qxd 10/27/05 4:19 PM Page 196

Console.WriteLine("Catalog page contains:");
foreach(Content c in this.pageCompositor)
c.SomeContent();

Console.WriteLine();
}

public CatalogPage()
{
this.AddContent();

}
}

ManualPage Class

public class ManualPage: Page
{

//This is the Factory method
public override void AddContent()
{
this.pageCompositor.Clear();
this.pageCompositor.Add(new TechnicalContent());
this.pageCompositor.Add(new PictureContent());
this.pageCompositor.Add(new InstructionContent());

}

//Method to display page content
public override void DisplayPage()
{
Console.WriteLine("Manual page contains:");
foreach(Content c in this.pageCompositor)
c.SomeContent();

Console.WriteLine();
}

public ManualPage() {;}

}

Client Code

In the client code, we see the Factory Method pattern at work. We test the effectiveness of the
design pattern, which shelters client code from the details of page composition—it is required

CHAPTER 10 � CREATIONAL PATTERNS 197

560-2 ch10.qxd 10/27/05 4:19 PM Page 197

only to create an instance of the respective Page types and call their respective factory
methods (AddContent()) to set in motion the creation of different content, page types, and
arrangements.

class Client
{

static void Main(string[] args)
{
//1. Compose content on a page of a Catalog
Page p = new CatalogPage();
p.AddContent(); //calling the Factory method
p.DisplayPage();

//2. Compose content on a page of a Manual
p = new ManualPage();
p.AddContent(); //calling the Factory method
p.DisplayPage();

}

}

Console Output

Catalog page contains:
Technical content.
Picture content.

Manual page contains:
Technical content.
Picture content.
Instruction content.

Press any key to continue

The Standard: Factory Method Design Pattern

The standard acknowledges the use of the Factory Method design pattern where there is

a design problem when a creator class is required to be decoupled from creating specific

objects.

CHAPTER 10 � CREATIONAL PATTERNS198

560-2 ch10.qxd 10/27/05 4:19 PM Page 198

Singleton Pattern
A Singleton pattern encapsulates a design feature when something can be done only once or
when there can be only one instance of an object. In everyday life, examples of a Singleton
pattern include a bank check that can be instantiated only once; or a game of tennis, where
there can be only one winner.

What
A Singleton pattern is a design that ensures a given class is instantiated only once.

Where
A Singleton pattern is used where there is a design problem when there can be only one
instance of a given object and where there is a requirement for client code to trigger the cre-
ation of the object.

Why
In many domains it is illogical to have more than one instance of an entity. A class has a
design constraint: its constructor is natively scoped public, which means that the class can’t
control how many times its constructor is called. In some domains this constraint presents a
problem, so to overcome the problem the Singleton pattern is incorporated into the design of
the program.

How
In a given class, its constructor is scoped private, which is placed in a public method in which
it is wrapped in an if statement. This ensures that no matter how many times client code calls
the public method, only one instance of the class is created.

Pattern Example
In the Model T domain, there is client code that manages the task of installing the engine into
the car. The process requires that only one engine is created per car.

The part of the problem we are focusing on is how to prevent more than one engine from
being returned to client code (note: there is other code that manages the task of matching the
engine to the car).

To code this routine, we need to answer two questions: How do we prevent client code call-
ing the engine constructor more than once? and which piece of code should be responsible for
controlling the quantity that is returned to client code? In “normal” class design, the construc-
tor can be called many times by client code—the class can’t, natively, restrict client code from
calling it more than once. The answer to the first question lies in creating an “abnormal” class
design that restricts the use of the class constructor. Given that, we can then answer the second
question: we assign the responsibility for controlling the quantity to the engine class itself.

We modify the engine constructors’ visibility to private, so that it can’t be called by
client code, then we wrap the private constructor (private Engine()) in a public method

CHAPTER 10 � CREATIONAL PATTERNS 199

560-2 ch10.qxd 10/27/05 4:19 PM Page 199

(e.g., public GetEngine()), which can be called by client code. Then, in the public method
(GetEngine()), we write code that prevents the private constructor from being called, by
internal code, more than once. This ensures that the engine is created once by client code,
regardless of how many times it calls the GetEngine() method. That is the Singleton pattern!

We shall now look at the Singleton pattern in a UML diagram (see Figure 10-3) and then
implement the pattern in code.

UML

Figure 10-3. Singleton pattern

Key Code Ingredients
The code for the Singleton pattern has the following key ingredients:

• A class modified as sealed

• A private member variable that acts as a flag

• A private constructor

• A public static member that holds the private constructor

• An if statement that sets the flag to false once it has called the constructor

Now let’s code the Singleton pattern

Pattern Code
The essence of the design lies in manipulating the control of the Engine constructor. Notice that
the Engine() constructor is scoped private and how the static public method GetEngine()
uses an if statement to prevent the constructor from being called more than once, while offer-
ing client code one opportunity to indirectly create an Engine. The Engine is modified sealed to
prevent cloneability from being added in a subclass.

//note: sealed - prevent cloning
sealed class Engine
{
//flag used in constructor: set to false when constructor
//has not been called then set to true when called first time.

CHAPTER 10 � CREATIONAL PATTERNS200

560-2 ch10.qxd 10/27/05 4:19 PM Page 200

private static bool instanceFlag = false;

//Uses 'if' to set instanceFlag to truefirst time GetEngine()
//called. Subsequent calls fail to return an engine as InstanceFlag
//been re-set from false to true.
public static Engine GetEngine()
{
if (!instanceFlag)
{
instanceFlag = true;
return new Engine();
}
else
{
throw new Exception("An engine has already
been created!");

}
}

private Engine()
{
Console.WriteLine("An Engine");

}
}

Client Code
In the client code, we see the Singleton pattern at work. We test the effectiveness of the design
pattern by instructing the client code to attempt to return two engines. On the first attempt an
engine is returned; however, on the second attempt an exception is returned to the client,
from the Engine class, informing it of the error.

class Client
{

static void Main(string[] args)
{
// 1st attempt to get an engine
Console.WriteLine("Attempting to get first engine");
try
{
Engine eng = Engine.GetEngine();

}
catch (Exception e)
{
Console.WriteLine(e.Message);

CHAPTER 10 � CREATIONAL PATTERNS 201

560-2 ch10.qxd 10/27/05 4:19 PM Page 201

// 2nd attempt to get an engine
Console.WriteLine("Attempting to get second engine");
try
{
Engine eng = Engine.GetEngine();

}

catch (Exception e)
{
Console.WriteLine(e.Message);

}

}
}

Console Output

Attempting to get first engine
An Engine
Attempting to get second engine
An engine has already been created!
Press any key to continue

The Standard: Singleton Design Pattern

The standard acknowledges the use of the Singleton design pattern where there is a

design problem when there can only be one instance of a given object and where there is

a requirement for client code to trigger the creation of the object.

CHAPTER 10 � CREATIONAL PATTERNS202

560-2 ch10.qxd 10/27/05 4:19 PM Page 202

Structural Patterns

Structural patterns encapsulate a design feature such that the focus is on the strategic
manipulation of classes into a structure. They leverage a design where the structure of the
class enables it to represent (e.g., Proxy pattern) or to integrate (e.g., Adapter pattern) with
another structure, for example. In everyday life, examples of a structural pattern include a
reservation sign, placed on a restaurant table, that acts as a placeholder until the patrons
arrive; or an adapter that enables a U.S.-compliant electricity plug to make use of a European-
compliant power point.

What
In software design, structural patterns give the software designer a tool that can be used to
enhance classes: behavior or functionality may be varied by manipulating the structure of
participating classes.

Where
Structural patterns are used where a design needs to vary or enhance the behavior of classes.
For example, arranging classes in a strategic structure (e.g., Remote-Proxy pattern) enables
communication across a domain.

Why
In some domains there is a requirement to reconfigure structures to give effect to behavioral
characteristics that are not native to a given design or arrangement of classes. In those domains,
that requirement presents a problem, so to overcome the problem, structural patterns are
incorporated into the design of the program.

How
Commonly, a structural pattern is a manipulation process that centers around the implemen-
tation of an interface.

�Note To run the respective Console applications, if you press F5 in Visual Studio 2005, the Quick Con-
sole will appear; if you press Ctrl+F5, then the Windows Console will appear. It is only in the Windows
Console that you will see the Press any key to continue notice, at the bottom of the Console window.

203

C H A P T E R 1 1

� � �

560-2 ch11.qxd 10/27/05 4:20 PM Page 203

Pattern Examples
In the Model T domain, we present five examples of structural patterns: Proxy (Surrogate and
Remote), Adapter, Composite, and Facade.

Proxy Pattern
A Proxy pattern encapsulates a design feature where a placeholder or surrogate is used to rep-
resent or regulate access to a principal. In everyday life, examples of a proxy pattern include
an icon on a Web page that acts as a placeholder while an image is being downloaded, or an
ambassador who represents or regulates access to a head of state in a foreign country.

What
A Proxy pattern is a design that represents or regulates access to a principal that is scarce or
remote.

Where
A Proxy pattern is used where there is a design problem such that access to a principal (e.g.,
scarce resource) needs to be regulated or access to a principal needs to be distributed through
representation (e.g., remote access).

Why
In many domains, it is, or soon becomes, problematic to allow client code unfettered access
to a given resource; additionally, in some situations remote access to functionality is desirable.
To accommodate these requirements, the Proxy pattern is incorporated into the design of the
program.

How
A principal class is enriched with functionality, then a proxy class is derived from the same
base class as the principal class. The proxy class uses composition—it creates a member
instance of the principal—to expose the functionality of the principal through a set of wrapper
methods or properties. The client code creates an instance of the proxy class that regulates or
distributes access to the functionality of the principal.

Proxy Pattern Examples
Over time, the community has taken a shine to the Proxy pattern, so much so that there is
now a small commune of variants. Two popular types of Proxy patterns are the Surrogate-
Proxy and the Remote-Proxy patterns: they fulfill similar yet distinct roles. The Surrogate-Proxy
pattern, articulated by GoF, plays the role of regulating access to the principal, whereas the
Remote-Proxy pattern plays the role of distributing access to the principal, through remote
representation. Full examples of the Surrogate- and Remote-Proxy patterns follow.

Pattern Example: Surrogate-Proxy
In the Model T domain, we have client code that manages the task of responding to technical

 major dealers. Generally, some technical

CHAPTER 11 � STRUCTURAL PATTERNS204

560-2 ch11.qxd 10/27/05 4:20 PM Page 204

queries deal with matters more advanced than those covered in manuals and require expert
knowledge. To accommodate this requirement, it has been decided to permit the major deal-
ers, for a limited time, to have access to the chief design engineer to ask advanced technical
queries. The part of the problem we are focusing on is how to regulate access to the chief
design engineer and channel the queries in a systematic manner.

To code this requirement, we build a design engineer interface (IDesignEngineer), which
is inherited and enriched by the chief design engineer (ChiefDesignEngineer) through imple-
menting a set of inherited knowledge methods (DesignKnowledge(), StressTestKnowledge(),
MechanicalKnowledge(), and PerformanceKnowledge()). Then we create a proxy chief design
engineer (ChiefDesignEngineer), which also implements the IDesignEngineer interface.
Within the proxy chief design engineer we use composition—to create a private member
instance of the chief design engineer—and override the knowledge methods by wrapping
them around the methods of the member instance of the ChiefDesignEngineer object. How-
ever, as the proxy seeks to filter the non-advanced or run-of-the-mill questions from going to
the principal (ChiefDesignEngineer), it has not wrapped all of the knowledge methods of the
member instance; instead it has substituted default answers (refer: PerformanceKnowledge()
and MechanicalKnowledge() in ProxyChiefEngineer) to handle them. That is the Surrogate-
Proxy pattern, or one variant of it!

We shall now look at the Surrogate-Proxy pattern in a UML diagram (see Figure 11-1) and
then implement the pattern in code.

UML

CHAPTER 11 � STRUCTURAL PATTERNS 205

560-2 ch11.qxd 10/27/05 4:20 PM Page 205

Key Code Ingredients
The code for the Surrogate-Proxy pattern has the following key ingredients:

• An interface type (IDesignEngineer).

• A principal class (ChiefDesignEngineer) that implements IDesignEngineer interface.

• A proxy class (ProxyChiefDesignEngineer) that also implements the IDesignEngineer
interface, which

• has a member instance of the principal class (ChiefDesignEngineer).

• implements the methods inherited from IDesignEngineer that wrap the methods
of the member instance of the principal class (ChiefDesignEngineer) and further
specializes two of them (PerformanceKnowledge() and MechanicalKnowledge()).

• Client code that instantiates the proxy class (ProxyChiefDesignEngineer), then calls the
methods of the ProxyChiefDesignEngineer class.

Now let’s code the Surrogate-Proxy pattern.

Surrogate-Proxy Pattern Code
The essence of the design lies in the way that a proxy class (ProxyChiefDesignEngineer)
selects composition or containment rather than inheritance to regulate access to the func-
tionality of the principal (ChiefDesignEngineer). Notice that the IDesignEngineer interface
type provides the interface, which is inherited and implemented by ChiefDesignEngineer and
ProxyChiefDesignerEngineer classes. The proxy class (ProxyChiefDesignEngineer) wraps the
methods of the principal class (ProxyChiefDesignEngineer), except where it wants to shield
the principal from the nonadvanced or run-of-the-mill questions, in which case it provides
its own implementation (see PerformanceKnowledge() and MechanicalKnowledge() methods).

DesignEngineer Interface

public interface IDesignEngineer
{
string DesignKnowledge();
string StressTestKnowledge();
string MechanicalKnowledge();
string PerformanceKnowledge();

}

ChiefDesignEngineer Class

public class ChiefDesignEngineer: IDesignEngineer
{

public string DesignKnowledge()
{
return "The Model T is designed to...";

CHAPTER 11 � STRUCTURAL PATTERNS206

560-2 ch11.qxd 10/27/05 4:20 PM Page 206

}

public string StressTestKnowledge()
{
return "We found in stress-testing, the...";

}

public string MechanicalKnowledge()
{
return "The mechanical features include...";

}

public string PerformanceKnowledge()
{
return "The performance characteristics include...";

}

public ChiefDesignEngineer() {;}
}

ProxyChiefDesignEngineer Class

public class ProxyChiefDesignEngineer: IDesignEngineer
{
private ChiefDesignEngineer chief;

public string DesignKnowledge()
{
return this.chief.DesignKnowledge();

}

public string StressTestKnowledge()
{
return this. chief.StressTestKnowledge();

}

//The proxy can also be used to save "over-use" of the principal,
//by encapsulating a means to handle queries internally.
public string MechanicalKnowledge()
{
return "A supplement has been added to the mechanical manual.";

public string PerformanceKnowledge()
{
return "Performance information is in the manual.";

}

CHAPTER 11 � STRUCTURAL PATTERNS 207

560-2 ch11.qxd 10/27/05 4:20 PM Page 207

//constructor - instantiates local copy of ChiefDesignEngineer.
public ProxyChiefDesignEngineer()
{
this.chief = new ChiefDesignEngineer();

}

}

Client Code

In the client code, we can see the Surrogate-Proxy design pattern at work. We test the effective-
ness of the design pattern by instructing the client code to deal directly through two proxies of
the principal (caProxyChief and nyProxyChief). Although the client has access to the principal,
it does so through the proxies, which act as surrogates for the principal (ChiefDesignEngineer).

public class Client
{

static void Main(string[] args)
{
//Create a proxy ChiefDesignEngineer
//to handle Californian State technical queries
ProxyChiefDesignEngineer caProxyChief = ➥

new ProxyChiefDesignEngineer();

//Setup the console
Console.WriteLine("*** Answer(s) for CA State ***");

//Ask a stress-test question of the ProxyChief
Console.WriteLine(caProxyChief.StressTestKnowledge());

//Ask a performance question of the ProxyChief
Console.WriteLine(caProxyChief.PerformanceKnowledge());

//Create a proxy ChiefDesignEngineer
//to handle NewYork State technical queries
ProxyChiefDesignEngineer nyProxyChief = ➥

new ProxyChiefDesignEngineer();

//Setup console
Console.WriteLine();
Console.WriteLine("*** Answer(s) for NY State ***");

//Ask a mechnical question of the ProxyChief
Console.WriteLine(nyProxyChief.MechanicalKnowledge());

}
}

CHAPTER 11 � STRUCTURAL PATTERNS208

560-2 ch11.qxd 10/27/05 4:20 PM Page 208

Console Output

*** Answer(s) for CA State ***
We found in stress-testing, the . . .
Performance information is in the manual.

*** Answer(s) for NY State ***
A supplement has been added to the mechnical manual.
Press any key to continue

The Standard: Surrogate-Proxy Design Pattern

The standard acknowledges the use of the Surrogate-Proxy design pattern where there

is a design problem such that access to a principal (e.g., scarce resource) needs to be

regulated.

Pattern Example: Remote-Proxy
In the Model T domain, the policy of allowing workshop managers to ask advanced questions
of the chief design engineer has been so successful that the policy is to be extended, for a lim-
ited time, to major dealers in the United Kingdom (UK). We have been asked to do the wiring.

The part of the problem we are focusing on is how to extend access to the remote UK
workshop managers so they can channel their queries in a systematic manner to the chief
design engineer and receive the answers. The solution requires implementing an architecture
that relies on TCP transport protocol and .NET Remoting. The following code example extends
the business case introduced in the Surrogate-Proxy example, although it is a self-contained
example. We will reuse IDesignEngineer, which is inherited by ChiefDesignEngineer and
ProxyChiefDesignEngineer; however, we also make the two classes inherit from the
MarshallByRef class, so that they can be transported using TCP. The multiple inheritance is
not a problem: .NET permits single class inheritance to be combined with (multiple) interface
inheritance.

�Note In Appendix A, there is a step-by-step example on setting up this pattern using the command line.
Preferably, you may continue to read through this discussion, get an overview of the pattern, and then go to
the appendix and set up the example. (Use the download code or key in the code, as there are respective
code listings following.) Also, to do the example you will need to know a little bit about environment variables
and command-line programming—primers can be found in Appendix A, if you need them (see “Environment
Variables” and “Remote-Proxy Pattern Example—Using the Command Line”).

CHAPTER 11 � STRUCTURAL PATTERNS 209

560-2 ch11.qxd 10/27/05 4:20 PM Page 209

Architecture
This pattern has a server and a remote client, which reside in separate domains and are con-
nected using transport protocol (TCP). The following diagram (Figure 11-2) illustrates the
architecture. Note that both domains have a local copy of RemoteProxyServer.dll and access
to .NET Remoting (from the .NET Framework).

Figure 11-2. Remote-Proxy architecture

Code
We code two sets of functionality (server and client), and both sets will have access, within
their respective domains, to a copy of the same class library (ProxyRemoteServer.dll), that
defines the actors (e.g., ProxyChiefDesignEngineer). The client needs a local copy of the class
library so that it can create an association with the ProxyChiefDesignEngineer. Let’s now
examine each of the new classes in turn.

ProxyRemoteServer.cs

This class plays the role of an “interface” class; it is through this class that the client will inter-
face with the ChiefDesignEngineer. (This class will eventually be compiled into a class library
file—ProxyRemoteServer.dll.)

Server.cs

ProxyRemoteServer is an “interface” class, whereas the Server class fulfils the role of a server
“plumber” class: it encapsulates all of the functionality to create a TCP Server Channel. In the
code, use is made of port 1234; this number is chosen because it is a Well Known Port. The
.NET Remoting configuration is used to register a Well Known Service and it is passed the
name of the proxy class (ProxyChiefDesignerEngineer), a service name (“RemoteProxy”), and
uses the SingleCall option of the Well Known Object Mode. The code writes a message to the
console and stays open waiting for a call from the client application (which is discussed next).

CHAPTER 11 � STRUCTURAL PATTERNS210

560-2 ch11.qxd 10/27/05 4:20 PM Page 210

Client.cs

The Client class plays two roles: it acts as a client “plumber” class, mirroring the role of
Server, and it also fires off questions to the ProxyChiefDesignerEngineer. We register a TCP
channel with .NET channel services, and then we configure .NET’s remoting to register use
of the RegisterWellKnownClientType configuration option. .NET’s remoting configuration is
passed the type of proxy object (ProxyChiefDesignerEngineer) and the address of the service
(tcp://localhost:1234/RemoteProxy). If we were to use this service outside of the example
environment, then we would modify the localhost setting.

Having made connection through the transport protocol, the code then instantiates a
local proxy instance of the ProxyChiefDesignEngineer class, through which .NET Remoting
calls on the ProxyChiefDesignEngineer object, located on the remote server, to call the meth-
ods of the ChiefDesignEngineer object (also located on the remote server). The response is
seen on the client console. We shall now look at the Remote-Proxy pattern in a UML diagram
(see Figure 11-3) and then discuss the code.

UML

Figure 11-3. Remote-Proxy pattern

CHAPTER 11 � STRUCTURAL PATTERNS 211

560-2 ch11.qxd 10/27/05 4:20 PM Page 211

Key Code Ingredients
The code for the Remote-Proxy pattern has the following key ingredients:

• An interface type (IDesignEngineer).

• A principal class (ChiefDesignEngineer) that inherits from MarshalByRefObject class,
so that it can be transported across a domain, and that implements IDesignEngineer
interface.

• A proxy class (ProxyChiefDesignEngineer) that inherits from MarshalByRefObject class,
so that it can be transported across a domain, and that implements the IDesignEngineer
interface.

• A member instance of the principal class (ChiefDesignEngineer).

• Implements the methods inherited from IDesignEngineer, which wrap the methods
of the member instance of the principal class (ChiefDesignEngineer), and further
specializes two of them (PerformanceKnowledge() and MechanicalKnowledge()).

• Server code (Server.cs) that handles the transport plumbing, from the server
perspective.

• Client code (Client.cs) that handles the transport plumbing, from the client perspec-
tive; instantiates a local proxy class (ProxyChiefDesignEngineer), and through this
interface calls the methods of the remote ProxyChiefDesignEngineer class (which is
located on the server).

Now let’s code the Remote-Proxy pattern.

Remote-Proxy Pattern Code
The essence of the design lies in the way that an instance of class (ProxyChiefDesignEngineer),
which is resident on the server, is marshaled by reference by .NET Remoting using TCP trans-
port and a remote proxy interface (ProxyChiefDesignEngineer), located on the client, through
which the client (Client.exe) accesses the remote functionality. Behind the scenes, .NET
Remoting manages transporting the functionality via a TCP port (port 1234 on the localhost),
shielding us from that complexity.

ProxyRemoteServer Class

The ProxyRemoteServer class is a container class that stores the interface type and classes:
IDesignEngineer, ChiefDesignEngineer, and ProxyChiefDesignEngineer. The ProxyRemoteServer
class will be complied into a class library (ProxyRemoteServer.dll).

DesignEngineer Interface

public interface IDesignEngineer
{
string DesignKnowledge();
string StressTestKnowledge();
string MechanicalKnowledge();

CHAPTER 11 � STRUCTURAL PATTERNS212

560-2 ch11.qxd 10/27/05 4:20 PM Page 212

ChiefDesignEngineer Class

public class ChiefDesignEngineer: MarshalByRefObject, IDesignEngineer
{
public string DesignKnowledge()
{
return "The Model T is designed to...";

}

public string StressTestKnowledge()
{
return "We found in stress-testing, the...";

}

public string MechanicalKnowledge()
{
return "The mechanical features include...";

}

public string PerformanceKnowledge()
{
return "The performance characteristics include...";

}

public ChiefDesignEngineer() {;}
}

ProxyChiefDesignEngineer Class

public class ProxyChiefDesignEngineer: MarshalByRefObject, IDesignEngineer
{

private ChiefDesignEngineer chief;

public string DesignKnowledge()
{
return this.chief.DesignKnowledge();

}

public string StressTestKnowledge()
{
return this.chief.StressTestKnowledge();

}

//The proxy can also be used to save "over-use" of the principal,
//by encapsulating a means to handle queries internally.
public string MechanicalKnowledge()

CHAPTER 11 � STRUCTURAL PATTERNS 213

560-2 ch11.qxd 10/27/05 4:20 PM Page 213

{
return "A supplement has been added to the mechanical manual.";

}

public string PerformanceKnowledge()
{
return "Performance information is in the manual.";

}

//constructor - instantiates local copy of ChiefDesignEngineer.
public ProxyChiefDesignEngineer()
{
this.chief = new ChiefDesignEngineer();

}

}

Here is the complete code listing of ProxyRemoteServer.cs, which will be compiled into
ProxyRemoteServer.dll:

using System;

namespace Patterns.ProxyRemoteServer
{
public interface IDesignEngineer
{
string DesignKnowledge();
string StressTestKnowledge();
string MechanicalKnowledge();
string PerformanceKnowledge();

}

public class ChiefDesignEngineer: MarshalByRefObject, IDesignEngineer
{
public string DesignKnowledge()
{
return "The Model T is designed to...";

}

public string StressTestKnowledge()
{
return "We found in stress-testing, the...";

}

public string MechanicalKnowledge()
{
return "The mechanical features include...";

}

CHAPTER 11 � STRUCTURAL PATTERNS214

560-2 ch11.qxd 10/27/05 4:20 PM Page 214

public string PerformanceKnowledge()
{
return "The performance characteristics include...";

}

public ChiefDesignEngineer() {;}
}

public class ProxyChiefDesignEngineer: MarshalByRefObject, IDesignEngineer
{
private ChiefDesignEngineer chief;

public string DesignKnowledge()
{
return this.chief.DesignKnowledge();

}

public string StressTestKnowledge()
{
return this.chief.StressTestKnowledge();

}

//The proxy can also be used to save "over-use" of the principal,
//by encapsulating a means to handle queries internally.
public string MechanicalKnowledge()
{
return "A supplement has been added to the mechanical manual.";

}

public string PerformanceKnowledge()
{
return "Performance information is in the manual.";

}

//constructor - instantiates local copy of ChiefDesignEngineer.
public ProxyChiefDesignEngineer()
{
this.chief = new ChiefDesignEngineer();

}

}
}// end namespace

CHAPTER 11 � STRUCTURAL PATTERNS 215

560-2 ch11.qxd 10/27/05 4:20 PM Page 215

Server Class

The Server class initiates the service (RemoteProxy), making it available to client code.

public class Server
{
static void Main(string[] args)
{
TcpServerChannel channel = new TcpServerChannel (1234);
ChannelServices.RegisterChannel (channel);

RemotingConfiguration.RegisterWellKnownServiceType
(typeof (ProxyChiefDesignEngineer), "RemoteProxy", ➥

WellKnownObjectMode.SingleCall);

Console.WriteLine ("Press [Enter] to terminate server...");
Console.ReadLine();

}
}

Here is the complete code listing of Server.cs, which will be compiled into Server.exe:

using System;
using System.Runtime.Remoting;
using System.Runtime.Remoting.Channels;
using System.Runtime.Remoting.Channels.Tcp;
using Patterns.ProxyRemoteServer;

public class Server
{
static void Main(string[] args)
{
TcpServerChannel channel = new TcpServerChannel (1234);
ChannelServices.RegisterChannel (channel);

RemotingConfiguration.RegisterWellKnownServiceType ➥

(typeof (ProxyChiefDesignEngineer), "RemoteProxy", ➥

WellKnownObjectMode.SingleCall);

Console.WriteLine ("Press [Enter] to terminate server...");
Console.ReadLine();

}
}

Client Code

In the client code, we see the Remote-Proxy pattern at work. We test the effectiveness of the
design pattern by instructing the client code to deal through the ProxyChiefDesignEngineer

CHAPTER 11 � STRUCTURAL PATTERNS216

560-2 ch11.qxd 10/27/05 4:20 PM Page 216

interface while .NET Remoting manages the transporting of the query to the server and the
response from the proxy chief design engineer.

public class Client
{
static void Main(string[] args)
{
TcpClientChannel channel = new TcpClientChannel ();
ChannelServices.RegisterChannel (channel);

RemotingConfiguration.RegisterWellKnownClientType ➥

(typeof(ProxyChiefDesignEngineer), "tcp://localhost:1234/RemoteProxy");

ProxyChiefDesignEngineer ukProxyChief = new ProxyChiefDesignEngineer();

Console.WriteLine("*** Answer for UK Dealers from ➥

US Chief Design Engineer ***");
Console.WriteLine("Question: Not on an advanced topic - ➥

filtered to Proxy US Chief Design Engineer");
Console.WriteLine("Answer:" + ukProxyChief.PerformanceKnowledge());
Console.WriteLine("Question: Was on an advanced topic - ➥

answered by the US Chief Design Engineer");
Console.WriteLine("Answer:" + ukProxyChief.DesignKnowledge());
Console.WriteLine("Press [Enter] to terminate client...");
Console.ReadLine();

}
}

Here is the complete code listing of Client.cs, which will be compiled into Client.exe:

using System;
using System.Runtime.Remoting;
using System.Runtime.Remoting.Channels;
using System.Runtime.Remoting.Channels.Tcp;

//Note that Client.cs is placed in the ProxyRemoteServer namespace.
namespace Patterns.ProxyRemoteServer
{
public class Client
{
static void Main(string[] args)
{
TcpClientChannel channel = new TcpClientChannel();
ChannelServices.RegisterChannel(channel);

RemotingConfiguration.RegisterWellKnownClientType
(typeof (ProxyChiefDesignEngineer), "tcp://localhost:1234/RemoteProxy");
ProxyChiefDesignEngineer ukProxyChief = new ProxyChiefDesignEngineer();

CHAPTER 11 � STRUCTURAL PATTERNS 217

560-2 ch11.qxd 10/27/05 4:20 PM Page 217

Console.WriteLine("*** Answer for UK Dealers from US Chief ➥

Design Engineer ***");
Console.WriteLine("Question: Not on an advanced topic filtered ➥

to Proxy US Chief Design Engineer");
Console.WriteLine("Answer: " + ukProxyChief.PerformanceKnowledge());
Console.WriteLine("Question: Was on an advanced topic - answered ➥

by the US Chief Design Engineer");
Console.WriteLine("Answer: " + ukProxyChief.DesignKnowledge());
Console.WriteLine("Press [Enter] to terminate client...");
Console.ReadLine();

}
}

}//end namespace

There are two sets of console output in this example. First, we run Server.exe:

Console Output: Server.exe

Press [Enter] to terminate server . . .

And second, we run Client.exe.

Console Output: Client.exe

*** Answer for UK Dealers from US Chief Design Engineer ***
Question: Not on an advanced topic – filtered to Proxy US Chief Design Engineer
Answer: Performance information is in the manual.
Question: Was on an advanced topic – answered by the US Chief Design Engineer
Answer: The Model T is designed to . . .
Press [Enter] to terminate client . . .

The Standard: Remote-Proxy Design Pattern

The standard acknowledges the use of the Remote-Proxy design pattern where there

is a design problem such that access to a principal needs to be distributed through rep-

resentation.

Adapter Pattern
An Adapter pattern encapsulates a design feature where an interface can be supplemented
to comply with the interface expected by another entity. In everyday life, examples of an
Adapter pattern include an electric plug adapter that enables a U.S.-compliant electricity

CHAPTER 11 � STRUCTURAL PATTERNS218

560-2 ch11.qxd 10/27/05 4:20 PM Page 218

plug to make use of an European power point; or a pair of pliers that enables a hand to pick
up minute screws.

What
An Adapter pattern is a design that enables a noncompliant interface to be superimposed by
an intermediary, which manages an adaptation process to effect compliance.

Where
An Adapter pattern is used where there is a requirement to integrate with a noncompliant
interface or where there is a requirement for one design to leverage the functionality of
another design.

Why
In many domains, it is advantageous to reuse or integrate existing functionality, or there may
be a change in business requirements that necessitates reengineering design or functionality.
In those domains this presents a problem, so to overcome the problem the Adapter pattern is
incorporated into the design.

How
An intermediary class or set of classes is used to map the desired functionality from the source
interface to that required by the target interface.

Pattern Example
In the Model T domain, the purchasing department has some client code that is now required
to handle the task of converting U.S. dollars into foreign currencies. The enterprise architect
is on notice to maximize opportunities to reuse reliable code. The enterprise architect has
advised us that the accounting department has a class (ForeignExchange) that has most of the
functionality we require; however, it has an incompatible interface.

The part of the problem we are focusing on is to prepare a solution that maps as much
functionality as possible, from ForeignExchange into our class (FX). In the design meeting the
enterprise architect informed us that ForeignExchange was sealed—it cannot be derived
from—and so the adapter will need to use composition.

�Tip Composition acquires functionality from member objects rather than from class inheritance—in best
practices, composition is favored over class inheritance.

We have identified in ForeignExchange that we can leverage two methods: UStoUK() and
UStoCAN(). (With FX we plan on a different naming convention, based on purpose and cur-
rency code—for example, FX_USD_XXX()). This requirement impacts the interface, as does the
requirement to support an extra currency: the Australian dollar.

CHAPTER 11 � STRUCTURAL PATTERNS 219

560-2 ch11.qxd 10/27/05 4:20 PM Page 219

To code this routine, we need to design the FX interface, then compare it with the inter-
face of the source class (ForeignExchange). We will then prepare an adapter (Adapter) to map
the source interface and add any enrichments (e.g., code to handle U.S. to Australian conver-
sion). The target interface (FX) will then be implemented using an Adapter object to map the
functionality to the required interface. That is the Adapter pattern!

We shall now look at the Adapter pattern in a UML diagram (see Figure 11-4) and then
implement the pattern in code.

UML

Figure 11-4. Adapter pattern

Key Code Ingredients
The code for the Adapter pattern has the following key ingredients:

• A source interface (ForeignExchange) from which functionality is to be leveraged

• A target interface (FX) that seeks to leverage functionality of the source interface
(ForeignExchange)

• An adapter class (Adapter) that encapsulates the mapping of the interfaces between
the source (ForeignExchange) and target (FX) interfaces

Now let’s code the Adapter pattern.

Adapter Pattern Code
The essence of the design lies in creating an adapter class (Adapter) that uses composition or
containment to include an instance of the source interface (ForeignExchange), which wraps the
methods into an implementation expected by the target interface (FX). Notice how the source
interface (ForeignExchange) is incompatible with the target interface (FX): the method names

CHAPTER 11 � STRUCTURAL PATTERNS220

560-2 ch11.qxd 10/27/05 4:20 PM Page 220

are different and the source interface (ForeignExchange) doesn’t have a method for converting
Australian dollars to U.S. dollars. However, it does have functionality to convert British pounds
and Canadian dollars to U.S. dollars. Notice in the adapter class (Adapter) how the source inter-
face (ForeignExchange) is mapped into the interface required by the target interface (FX).

ForeignExchange Class (Source Interface)

public sealed class ForeignExchange
{
public string UStoUK()
{
return "USD to GBP is...";

}

public string UStoCAN()
{
return "USD to CND is...";

}

public ForeignExchange() {;}
}

FX Class (Target Interface)

public class FX
{
private Adapter adapt;

public string FX_USD_GBP()
{
return this.adapt.USD_GBP();

}

public string FX_USD_CND()
{
return this.adapt.USD_CND();

}

public string FX_USD_AUD()
{
return this.adapt.USD_AUD();

}

public FX()
{
adapt= new Adapter();

}

CHAPTER 11 � STRUCTURAL PATTERNS 221

560-2 ch11.qxd 10/27/05 4:20 PM Page 221

Adapter Class

public class Adapter
{
private ForeignExchange sourceCode;

public string USD_GBP ()
{
return "Conversion " +this.sourceCode.UStoUK();

}

public string USD_CND()
{
return "Conversion " + this.sourceCode.UStoCAN();

}

public string USD_AUD()
{
return "Conversion USD to AUD is...";

}

public string USD_JPY()
{
return "Conversion USD to JNY is...";

}

public Adapter()
{
sourceCode= new ForeignExchange();

}
}

Client Code
In the client code, we see the Adapter design pattern at work. We test the effectiveness of the
design pattern by instructing the client code to use the interface of the FX class. The client
code calls the FX class and is unaware that its functionality is sourced through an adaptation
process.

public class Client
{

static void Main(string[] args)
{
FX afx = new FX();
Console.WriteLine(afx.FX_USD_GBP());
Console.WriteLine(afx.FX_USD_CND());

CHAPTER 11 � STRUCTURAL PATTERNS222

560-2 ch11.qxd 10/27/05 4:20 PM Page 222

Console.WriteLine(afx.FX_USD_AUD());
}

}

Console Output

Conversion USD to GBP is . . .
Conversion USD to CND is . . .
Conversion USD to AUD is . . .
Press any key to continue

The Standard: Adapter Design Pattern

The standard acknowledges the use of the Adapter design pattern where there is a design

problem, where there is a requirement to integrate with a noncompliant interface, or

where there is a requirement for one design to leverage the functionality from one design

into another design.

Composite Pattern
A Composite pattern encapsulates a design feature where all entities in a hierarchy expose the
same interface regardless of whether the entity is a single entity or a composite. In everyday
life, examples of a Composite pattern include a society in which citizens are organized as indi-
viduals and as groups, or a treeview control that is organized as individual and parent nodes.

What
A Composite pattern is a design that ensures that an entity and a composite of entities expose
the same interface.

Where
A Composite pattern is used where there is a hierarchy of entities and a requirement for a sim-
ple, nonconditional methodology to manage single and composite entities.

Why
In many domains there is a requirement to organize entities into hierarchies. Hierarchies con-
tain single entities and composite entities, both of which need to be managed and iterated. In
some domains this presents a problem, so to overcome the problem the Composite pattern is
incorporated into the design of the program.

How
A common interface is inherited by a composite and an entity, with each implementing the

CHAPTER 11 � STRUCTURAL PATTERNS 223

560-2 ch11.qxd 10/27/05 4:20 PM Page 223

Pattern Example
In the Model T domain, we have client code that manages the task of presenting a hierarchy
that represents the offices that handle Model T sales inquiries. The part of the problem that
we are focusing on is how to manage (add, remove, and iterate) through a hierarchy of single
offices and branches, which are a composition of offices.

To code this routine we need to ensure that the Office and Branch classes implement the
same interface and yet allow the Branch class to be composed of Office classes and prevent an
Office class from being added or removed from Office—which would be illogical. We derive
Office and Branch from the same interface (Entity), and the trick to overcome the issue of
treating an Office, which is not a composite of other Offices, in the same manner as a Branch,
which is a composite of Offices, lies in the way the GetChild() method is overridden—and to
a lesser extent in the way that the Add() and Remove() methods are overridden. In the Branch
class, the GetChild() method is implemented using a ListArray object to manage the adding
and removing of Office objects. The Office class, by contrast, implements the GetChild()
method without an array and relies simply on leveraging name in the base class (Entity) to
return its name. Also, in the Office class the Add() and Remove() methods are stubs with no
functionality, which differs from the way that Branch implements these methods. That is the
Composite pattern!

We shall now look at the Composite pattern in a UML diagram (see Figure 11-5) and then
implement the pattern in code.

UML

CHAPTER 11 � STRUCTURAL PATTERNS224

560-2 ch11.qxd 10/27/05 4:20 PM Page 224

Key Code Ingredients
The code for the Composite pattern has the following key ingredients:

• An interface (Entity class) with some default behavior (name)

• A node class (Office) that derives from Entity and implements the interface

• A node composite class (Branch) that derives from Entity and implements the interface
and stores a collection of node (Office) objects

• Client code that manages the hierarchy of nodes and composite nodes

Now let’s code the Composite pattern.

Composite Pattern Code
The essence of the design lies in deriving the Office and Entity classes from the same interface
(Entity) and then varying the way that each implements the common interface; this enables
them to be treated in the same manner by client code yet behave appropriately. Notice how
the Entity class defines the interface that is inherited and implemented by Office and Branch.
The Entity class also includes some default behavior (setting name). Also note that in the Entity
class, the use of name has its accessor set to protected—this enables the subclasses to use this
default functionality rather than having to implement it.

Contrast the Office class with the Branch class: the Branch class may hold a composite of
Office classes, so it includes an array (node) to hold these objects. However, as the Office class
is a single entity, it has no need for an array. Also note how the Remove() and Add() methods in
the Office class are implemented as stub code—it is illogical for an Office to add or remove
an Office. The stub code feature is one of the consequences of implementing a common
interface across a class that is a composite and a class that is not: it is a small price to pay
for enabling client code to avoid the complication of conditionally treating nodes pending
whether or not they are composites.

Entity Class

public abstract class Entity
{
protected string name;
public abstract void Add(Entity e);
public abstract void Remove(Entity e);
public abstract void GetChild(int level);

public Entity(string name)
{
this.name = name;

}
}

CHAPTER 11 � STRUCTURAL PATTERNS 225

560-2 ch11.qxd 10/27/05 4:20 PM Page 225

Office Class

public class Office: Entity
{
public override void Add (Entity c)
{
Console.WriteLine("Can't use 'Add' in Office!");

}

public override void Remove (Entity e)
{
Console.WriteLine("Can't use 'Remove' in Office! ");

}

public override void GetChild (int level)
{
Console.WriteLine(new string ('*', level) + this.name);

}

public Office(string name): base (name) {;}
}

Branch Class

using System.Text;
using System.Collections;

public class Branch: Entity
{
private ArrayList node = new ArrayList();

public override void Add (Entity e)
{
node.Add(e);

}

public override void Remove (Entity e)
{
node.Remove(e);

}

public override void GetChild (int level)
{
Console.WriteLine(new String ('#', level) + this.name);
foreach (Entity e in this.node)
e.GetChild(level + 1);

CHAPTER 11 � STRUCTURAL PATTERNS226

560-2 ch11.qxd 10/27/05 4:20 PM Page 226

}

public Branch (string name) : base (name) {;}
}

Client Code
In the client code, we see the Composite pattern at work. We test the effectiveness of the
design pattern by instructing the client code to manage the adding and removing of offices
and branches that expose the same interface. Notice how we attempt to add a dummy Office
to another Office, which is illogical; however, we have coded the Office class to handle this
eventuality. When displaying name, note that the Branch class has implemented iteration func-
tionality (foreach statement), whereas the Office, which is a single entity, has no need to
iterate.

public class Client
{
static void Main(string[] args)
{
//build a hierarchy from a root
Branch root = new Branch("US (Root)");

Office ny = new Office("New York Office (Entity)");
Office ca = new Office("California Office (Entity)");

//add an entity, in the same way as a branch
root.Add(ny);
root.Add(ca);

//add a branch to the root, in the same way as an entity
Branch rootHawaii = new Branch("Hawaii Branch (Branch)");
root.Add(rootHawaii);

//build and add another branch and add to offices (entities)
Branch branchUK = new Branch("UK Branch (Branch)");
Office ldnc = new Office("London City Office (Entity)");
Office ldnw = new Office("London West Office (Entity)");
branchUK.Add(ldnc);
branchUK.Add(ldnw);
//add branch to the root
root.Add(branchUK);

//we now try to add an dummy office to another office - which is
//illogical so we should get a warning message.
Office dummy = new Office("Dummy Office - we should not see this!");
lndc.Add(dummy);

CHAPTER 11 � STRUCTURAL PATTERNS 227

560-2 ch11.qxd 10/27/05 4:20 PM Page 227

//get root level and all branches and offices
root.GetChild(0);

//remove a branch in the same way as a entity
root.Remove(rootHawaii);
//remove a entity in the same way as a branch
branchUK.Remove(ldnc);
Console.WriteLine();
Console.WriteLine("Remove Hawaii branch and London City office");
Console.WriteLine();
root.GetChild(0); //get first level

}
}

Console Output

Can't use 'Add' in Office!
US (Root)
*New York Office (Entity)
*California Office {Entity)
#Hawaii Branch (Branch)
#UK Branch (Branch)
**London City Office (Entity)
**London West Office (Entity)

Remove Hawaii branch and London City office

US (Root)
*New York Office (Entity)
*California Office (Entity)
#UK Branch (Branch)
**London West Office (Entity)
Press any key to continue

The Standard: Composite Design Pattern

The standard acknowledges the use of the Composite design pattern where there is a

design problem where there is a hierarchy of entities and a requirement for a simple

nonconditional methodology to manage single and composite entities.

CHAPTER 11 � STRUCTURAL PATTERNS228

560-2 ch11.qxd 10/27/05 4:20 PM Page 228

Facade Pattern
A Facade pattern encapsulates a design feature where there is a simple interface that acts as a
central point of reference for many interfaces. In everyday life, examples of a Facade pattern
include a travel-agent clerk who manages the booking of several holiday services (e.g., airline
booking, rental-car booking, hotel booking, and insurance) or a website portal that acts a cen-
tral point from which to access many other websites.

What
A Facade pattern is a design that ensures the complexity of many interfaces is hidden behind a
simple and uniform interface.

Where
A Facade pattern is used where there is a requirement, by client code, for a high-level abstrac-
tion that is simple to use.

Why
In many domains, software becomes complex as it seeks to interact with many interfaces, sys-
tems, or subsystems. When complexity is thrust upon a client, it puts at risk the usability of the
software. In most domains this presents a problem, so to overcome the problem, the Facade
pattern is incorporated into the design of the program.

How
The complexity of managing multiple interfaces is delegated to a facade class that hides the
complexity from client code and instead presents it with a simple interface.

Pattern Example
In the Model T domain, we have client code that manages information associated with the
acquisition of a Model T; presently, a dealer has to interact with six of our departments to get
all of the information for a customer. The part of the problem that we are focusing on is how to
simplify the process for the dealer.

To code this routine, we need to push the complexity from the dealer to a dealer representa-
tive, which takes on the role of the facade class. We build a facade class (DealerRepresentative)
and assign it the burden of interacting with the six departments. This results in client code (the
dealer) merely having to call on the one-method DealerRepresentative to get all of the infor-
mation from the six departments. That is the Facade pattern!

We shall now look at the Facade pattern in a UML diagram (see Figure 11-6) and then
implement the pattern in code.

CHAPTER 11 � STRUCTURAL PATTERNS 229

560-2 ch11.qxd 10/27/05 4:20 PM Page 229

UML

Figure 11-6. Facade pattern

CHAPTER 11 � STRUCTURAL PATTERNS230

560-2 ch11.qxd 10/27/05 4:20 PM Page 230

Key Code Ingredients
The code for the Facade pattern has the following key ingredients:

• A facade class that interacts with multiple interfaces and exposes a simple interface to
client code

• Multiple interfaces (e.g., VehicleDeliverySystem and VehicleFinanceSystem, etc.)

Now let’s code the Facade pattern.

Facade Pattern Code
The essence of the Facade pattern is simplifying the interface presented to a client by delegat-
ing the task of managing the complexity to a facade class (DealerRepresentative class). Notice
how the DealerRepresentative class acts as a facade that shelters the client from the burden of
dealing with six systems: the DealerRepresentative class exposes a simple interface (one
method—GetCarUpdate()) to client code.

VehicleDeliverySystem Class

public class VehicleDeliverySystem
{
public void GetDeliveryStuff()
{
Console.WriteLine ("Vehicle Delivery stuff.");

}

public VehicleDeliverySystem() {;}
}

public class VehicleFinanceSystem
{
public void GetVehicleFinanceStuff()
{
Console.WriteLine("Vehicle Finance stuff.");

}

public VehicleFinanceSystem() {;}
}

VehicleInsuranceSystem Class

public class VehicleInsuranceSystem
{
public void GetVehicleInsuranceStuff()
{

Console.WriteLine("Vehicle Insurance stuff.");

CHAPTER 11 � STRUCTURAL PATTERNS 231

560-2 ch11.qxd 10/27/05 4:20 PM Page 231

}

public VehicleInsuranceSystem() {;}
}

VehicleOrderSystem Class

public class VehicleOrderSystem
{
public void GetVehicleOrderStuff()
{
Console.WriteLine("Vehicle Order stuff.");

}

public VehicleOrderSystem() {;}
}

VehicleRegistrationSystem Class

public class VehicleRegistrationSystem
{

public void GetVehicleRegistrationStuff()
{
Console.WriteLine("Vehicle Registration stuff.");

}

public VehicleRegistrationSystem() {;}
}

VehicleServiceSystem Class

public class VehicleServiceSystem
{

public void GetVehicleServiceStuff()
{
Console.WriteLine("Vehicle Service stuff.");

}

public VehicleServiceSystem() {;}
}

CHAPTER 11 � STRUCTURAL PATTERNS232

560-2 ch11.qxd 10/27/05 4:20 PM Page 232

DealerRepresentative Class

public class DealerRepresentative
{
private VehicleDeliverySystem delivery;
private VehicleFinanceSystem finance;
private VehicleInsuranceSystem insurance;
private VehicleOrderSystem order;
private VehicleRegistrationSystem registration;
private VehicleServiceSystem service;

public void GetCarUpdate()
{
this.delivery.GetDeliveryStuff();
this.finance.GetVehicleFinanceStuff();
this.insurance.GetVehicleInsuranceStuff();
this.order.GetVehicleOrderStuff();
this.registration.GetVehicleRegistrationStuff();
this.service.GetVehicleServiceStuff(); }

public DealerRepresentative()
{
delivery = new VehicleDeliverySystem();
finance = new VehicleFinanceSystem();
insurance = new VehicleInsuranceSystem();
order = new VehicleOrderSystem();
registration = new VehicleRegistrationSystem();
service = new VehicleServiceSystem();

}
}

Client Code
In the client code, we see the Facade design pattern at work. We test the effectiveness of the
design pattern by examining the simple interface exposed to the client and the way in which
the facade class (DealerRepresentative) shelters the client code from complexity and offers it
a simple central point from which to gain access to six systems.

public class Client
{
static void Main(string[] args)
{
DealerRepresentative gopher = new DealerRepresentative();
gopher.GetCarUpdate();

}
}

CHAPTER 11 � STRUCTURAL PATTERNS 233

560-2 ch11.qxd 10/27/05 4:20 PM Page 233

Console Output

Vehicle Delivery stuff.
Vehicle Finance stuff.
Vehicle Insurance stuff.
Vehicle Order stuff.
Vehicle Registration stuff.
Vehicle Service stuff.
Press any key to continue

The Standard: Facade Design Pattern

The standard acknowledges the use of the Facade design pattern where there is a

requirement, by client code, for a high-level abstraction that is simple to use.

CHAPTER 11 � STRUCTURAL PATTERNS234

560-2 ch11.qxd 10/27/05 4:20 PM Page 234

Behavioral Patterns

Behavioral patterns encapsulate a design feature that focuses on communication, respon-
sibility, and algorithm. In everyday life, examples of a behavioral pattern include a football
team, on which responsibility is assigned according to skill or task specialty; or a university
that administers a course entrance strategy based on a set of business rules.

What
In software design, behavioral patterns orchestrate objects, enriching them with behavioral
traits to enable them to participate in an intelligent, purposeful, and cohesive society of
objects.

Where
Behavioral patterns are used where a design needs objects to exhibit the intelligent traits of
coordination and cooperation.

Why
In many domains there is a requirement to simulate intelligence, among objects, by introduc-
ing communication, responsibility, and algorithm variation. In these domains this requirement
presents a problem, so to overcome the problem, behavioral patterns are incorporated into the
design of the program.

How
Commonly, a behavioral pattern is identified by classes coordinating or cooperating in an intel-
ligent manner. It is likely that client code may play an active role in the intellectual process. For
example, in the Chain of Responsibility pattern, client code identifies the start of the chain and
determines the hierarchy of objects.

�Note To run the respective Console applications, if you press F5 in Visual Studio 2005, the Quick Con-
sole will appear; if you press Ctrl+F5, then the Windows Console will appear. It is only in the Windows
Console that you will see the Press any key to continue notice, at the bottom of the Console window.

235

C H A P T E R 1 2

� � �

560-2 ch12.qxd 10/27/05 4:20 PM Page 235

Behavioral Pattern Examples
In the Model T domain, we present four examples of behavioral patterns: Chain of Responsi-
bility, Observer, Strategy, and Template Method.

Chain of Responsibility Pattern
A Chain of Responsibility pattern encapsulates a design feature in which a set of responsibili-
ties or links joins to form a chain of responsibility, and each link is presented as an object that is
responsible for a given task. A client requirement is passed along the chain until a link (object)
in the chain can handle the requirement. In everyday life, examples of a Chain of Responsibility
pattern include a call center or a corporate hierarchy, in which responsibility is assigned accord-
ing to specialty or rank.

What
A Chain of Responsibility pattern is a replication of the business or functional process of dele-
gating responsibility within a hierarchy.

Where
A Chain of Responsibility pattern is used where there is a requirement to manage tasks by
coordinating objects and have them cooperate within a hierarchical structure.

Why
In many domains, it is convenient to manage responsibilities or activities by lines of authority
or specialty that are delegated to a set of participating individuals or entities. In object-oriented
development, this arrangement presents a problem because a class is not natively aware of its
responsibility or place in a hierarchy. To overcome the problem, the Chain of Responsibility
pattern incorporates responsibility and hierarchy into the design of the program.

How
An abstract class that represents a participant or link is subclassed into a set of links, and
then the subclassed links implement the functionality that represents their limit of responsi-
bility and they can trigger the passing on of a requirement, if it is outside their responsibility
or specialty. The client determines the hierarchy among the links and initiates passing the
requirement to the chain.

Pattern Example
In the Model T domain, we have client code that handles the requirements arising from cus-
tomer inquiries. The part of the problem we are focusing on is how to model a business policy
that advocates customer requirements being managed by a hierarchy of specialized staff, yet
avoid burdening the customers with having to know which specialist they need to deal with,
in the customer department. In other words, the customer department needs to have the

CHAPTER 12 � BEHAVIORAL PROBLEMS236

560-2 ch12.qxd 10/27/05 4:20 PM Page 236

intelligence to know what requirements it is responsible for and which specialist is responsi-
ble for servicing the requirement of a given customer.

To code this routine, we need to establish a chain of responsibility that passes the cus-
tomer requirement up the chain until it is dealt with by the appropriate customer specialist.
We instantiate a set of links that forms a chain of responsibility, making each Link object
aware of its responsibility and of which is the next Link object in the chain. If a Link object is
passed a requirement outside of its responsibility, which is determined using a switch state-
ment, then it passes the requirement to the next Link object, higher in the chain, and so on
until the requirement is handled. The client code determines the order of the Link objects in
the chain of responsibility and passes the requirement to the first Link object, and then leaves
it to the chain to manage the process. That is the Chain of Responsibility pattern!

We shall now look at the Chain of Responsibility pattern in a UML diagram (see Figure 12-1)
and then implement the pattern in code.

UML

Figure 12-1. Chain of Responsibility pattern

CHAPTER 12 � BEHAVIORAL PROBLEMS 237

560-2 ch12.qxd 10/27/05 4:20 PM Page 237

Key Code Ingredients
The code for the Chain of Responsibility pattern has the following key ingredients:

• An abstract Link class.

• An abstract method (DealWithRequirement(string requirement)) that deals with a
requirement that is implemented in subclasses.

• A method to assign the next Link in the chain (NextInChain()).

• A number of Link objects.

• Each Link object overrides the DealWithRequirement(string requirement) method and
implements functionality within a given delegated authority (encapsulated in a switch
statement).

• Client code that

• instantiates the Link objects;

• assigns the chain hierarchy;

• submits requirements to the chain.

Now let’s code the Chain of Responsibility pattern.

Chain of Responsibility Pattern Code
The essence of the design lies in the intelligence of each Link class, which is aware of its respon-
sibility, via a switch statement, and of which Link is next in the chain of responsibility. The client
code is relied on to establish the hierarchy and pass the requirement to the chain. Notice how
the Link class, which is abstract, houses an abstract method (DealWithRequirement(string
requirement)), which subclasses (StaffLink, ManagerLink, and SeniorManagerLink) will over-
ride. The Link class also houses a method (NextInChain(Link next)), which is inherited by
subclasses that implement functionality to assign the next Link in the chain.

The client code creates an instance of the objects, determines the hierarchy of the links,
and initiates a series of requirements.

Link Class

public abstract class Link
{

protected Link theNextInChain;
public abstract void DealWithRequirement(string requirement);

public void NextInChain(Link next)
{
this.theNextInChain = next;

}

CHAPTER 12 � BEHAVIORAL PROBLEMS238

560-2 ch12.qxd 10/27/05 4:20 PM Page 238

StaffLink Class

public class StaffLink: Link
{
public override void DealWithRequirement(string requirement)
{
switch (requirement)
{
case "Commercial Corporates":
Console.WriteLine ("{0} has managed the Commercial Corporate ➥

requirement.", this);
break;

default:
if (theNextInChain != null)
theNextInChain.DealWithRequirement(requirement);
break;

}
}

}

ManagerLink Class

public class ManagerLink: Link
{
public override void DealWithRequirement(string requirement)
{
switch (requirement)
{
case "Dealers":
Console.WriteLine ("{0} has managed the Dealer requirement.", this);
break;

default:
if (theNextInChain != null)
theNextInChain.DealWithRequirement(requirement);
break;

}
}

}

SeniorManagerLink Class

public class SeniorManagerLink: Link
{
public override void DealWithRequirement(string requirement)
{
switch (requirement)
{

CHAPTER 12 � BEHAVIORAL PROBLEMS 239

560-2 ch12.qxd 10/27/05 4:20 PM Page 239

default: Console.WriteLine("{0} has managed the " + requirement + ➥

" requirement.", this);
break;

}
}

public SeniorManagerLink() {;}

}

Client Code

In the client code we see the Chain of Responsibility pattern at work. We test the effectiveness
of the design pattern by instructing the client code to submit four customer requirements to
the chain. Two of the requirements (Commercial Corporates and Dealers) have specialist cus-
tomer representatives (StaffLink and ManagerLink), which deal with the appropriate customer
requirement. Also note that there are two customer requirements from two previously unknown
customer groups (Not For Profit Corporates and Government Agency), which by default are
attended to by the SeniorManager.

class Client
{
static void Main(string[] args)
{
//Build the links
Link staff = new StaffLink();
Link manager = new ManagerLink();
Link seniorManager = new SeniorManagerLink();

//Assign chain hierarchy
staff.NextInChain(manager);
manager.NextInChain(seniorManager);

//submit four requirements to be dealt with by the chain
staff.DealWithRequirement("Not For Profit Corporates");
staff.DealWithRequirement("Commercial Corporates");
staff.DealWithRequirement("Dealers");
staff.DealWithRequirement("Government Agency");

}
}

Console Output

Patterns.ChainOfResponsibility.SeniorMangerLink has managed ➥

the Not For Profit Corporates requirement.
Patterns.ChainOfResponsibility.StaffLink has managed the ➥

CHAPTER 12 � BEHAVIORAL PROBLEMS240

560-2 ch12.qxd 10/27/05 4:20 PM Page 240

Commercial Corporate requirement.
Patterns.ChainOfResponsibility.ManagerLink has managed ➥

the Dealer requirement.
Patterns.ChainOfResponsibility.SeniorMangerLink has managed ➥

the Government Agency requirement.
Press any key to continue

The Standard: Chain of Responsibility Design Pattern

The standard acknowledges the use of the Chain of Responsibility design pattern where

there is a requirement to manage tasks by coordinating objects and have them cooper-

ate within a hierarchical structure.

Observer Pattern
An Observer pattern encapsulates a subscriber–publisher relationship where a subscriber (an
observer object) registers, with a publisher, an interest in being notified when the publisher
(a subject object) fires a given event. In everyday life, examples of an Observer pattern include
when we register with a website to send us an SMS message of the final football scores; or a
cruise control system which clicks in when the car has reached a given speed.

What
An Observer pattern is a design based on a one-to-many relationship, where one is a publisher
that publishes an event against which many subscribers register an interest.

Where
An Observer pattern is used where there is a requirement to initiate and manage communica-
tions among a society of objects.

Why
In domains, objects need to communicate or collaborate. The Observer pattern is a way to
programmatically establish and manage a set of relationships among objects at run time. The
Observer pattern allows us to mimic dynamic relationships such that object relationships can
be managed in an elegant and efficient manner.

How
Create a subject object (publisher) and any number of observer objects (subscribers), and
then wire an event handler in the observer objects to an event in the subject object. In .NET
we use a delegate event-handling model to wire the observer objects to the publisher's
event—delegates simplify the architecture articulated by GoF.

CHAPTER 12 � BEHAVIORAL PROBLEMS 241

560-2 ch12.qxd 10/27/05 4:20 PM Page 241

Pattern Example
In the Model T domain, we have a car delivery department and car dealers that are interested
in knowing when cars roll off the assembly line. The car delivery department wants to be
informed when all cars roll off the assembly line, so that it can send a truck to collect the cars
and deliver them to car dealers. However, a given car dealer wants to be notified only when a
car that they have ordered rolls off the assembly line. When the given car has rolled off the
assembly line and the car dealer has been notified, then the dealer wants to deregister its
interest in the event until it places another order.

The part of the problem we are focusing on is how to standardize the way in which we
handle the communication between the observer objects (car dealers and car delivery depart-
ment) and the subject object (assembly line). The subject object will need to publish an event
against which the observer objects can register and deregister: to do this we create a delegate
type event (Changed) that is fired or published by a subject object (ObservedAssemblyLine) and
subscribed to by many observer objects (ObserverCarDealer and ObserverDelivery). The dele-
gate event can be registered and deregistered, programmatically, at run time.

Let’s look at the Observer pattern in a UML diagram (see Figure 12-2) and then implement
the pattern in code.

UML

Figure 12-2. Observer pattern

CHAPTER 12 � BEHAVIORAL PROBLEMS242

560-2 ch12.qxd 10/27/05 4:20 PM Page 242

Key Code Ingredients
The code for the Observer pattern has the following key ingredients:

• A Delegate class.

• A Subject class, comprising

• an event of type delegate;

• a method to invoke the event;

• a property to hold data.

• An Observer class, which comprises

• a property to hold data;

• an event handler with the same signature as the delegate;

• a method to attach to the event of the Subject;

• a method to detach from the event of the Subject.

• A Client code, which comprises

• a Subject class;

• two Observer classes;

• calls to the respective methods of the Subject and Observer objects.

Now let’s code the Observer pattern.

Observer Pattern Code
The essence of the design lies in the delegate class model, which programmatically enables
an observer object (Observer) to register and deregister an interest in an event (Changed) pub-
lished by a subject object (Subject). Notice that the delegate class is placed in the same code
file (Subject.cs) as the Subject class; this is done for programmatic convenience. Also note
its unique class signature (it has no braces). While looking at the Subject class, study the rela-
tionship between the InterestingData property and the OnChanged event. It is when the set
accessor method of the InterestingData property is called that it triggers the calling of the
OnChanged event, which is logical because the InterestingData has changed. Also note, in the
Observer class, the elegant way in which .NET’s delegate allows registration (Attach() method)
and deregistration (Detach() method) of the event (OnChanged) in the Subject class.

Delegate Class and Subject Class

//delegate class included in same code (cs) file as Subject class, for convenience
public delegate void ChangedEventHandler(object sender, EventArgs e);

public class Subject
{

CHAPTER 12 � BEHAVIORAL PROBLEMS 243

560-2 ch12.qxd 10/27/05 4:20 PM Page 243

private string data;
public event ChangedEventHandler Changed;

public string InterestingData
{
get{return data;}
set
{
data = value;
this.OnChanged(EventArgs.Empty);

}
}

protected virtual void OnChanged (EventArgs e)
{
if (Changed !=null)
this.Changed(this, e);

}

public Subject() {;}
}

Observer Class

public class Observer
{
private Subject data;
private string observerName;

public Subject ObservedObject
{
get {return data;}
set {data = value;}

}

private void DataChanged (object sender, EventArgs e)
{
Console.WriteLine("Notification to {0}, the car {1}",➥

observerName, data.InterestingData);
}

public void Attach()
{
data.Changed += new ChangedEventHandler(DataChanged);

}

public void Detach()

CHAPTER 12 � BEHAVIORAL PROBLEMS244

560-2 ch12.qxd 10/27/05 4:20 PM Page 244

{
data.Changed -= new ChangedEventHandler(DataChanged);

}

public Observer (string name)
{
observerName = name;

}
}

Client Code

In the client code, we see the Observer pattern at work. We test the effectiveness of the design
by instructing the client code to create a subject and two observer objects.

The client code creates instances of the subject object (ObservedAssemblyLine) and two
observer objects (ObserverCarDealer and ObserverDelivery)—in this example, we create
two observer objects so that we can we can show the effect of deregistering one of them.
Then the client code assigns the instance of the subject object (ObservedAssemblyLine) to
the ObservedObject property of the respective observer objects (ObserverCarDealer and
ObserverDelivery). The observer objects’ ObservedObject property is required to be called
by the client code, so that it knows which object is being observed.

Next, the client code calls the Attach() method of the observer objects (ObserverCarDealer
and ObserverDelivery), and this step registers the event handler (ChangedEventHandler)
with the delegate event (Changed) of the subject object (ObservedAssemblyLine). Then the
client code assigns some new data to the InterestingData property of the subject object
(ObservedAssemblyLine). Code within the InterestingData property fires the event (Changed)
and passes it some new data. As the event handler (ChangedEventHandler) of the observer
objects (ObserverCarDealer and ObserverDelivery) have been registered against the event
(Changed), they are both notified of the event.

Following that, the client code calls the Detach() method of one of the observer objects
(ObserverCarDealer), which causes its event handler (ChangedEventHandler) to be detached
from the event (Changed); that is done because the car which the dealer is interested in has
since rolled off the assembly line, and it is no longer interested in being notified of the event.
Finally, the client code passes a second set of interesting data to the InterestingData property
of the subject object (ObservedAssemblyLine), which will illustrate that the remaining observer
object (ObserverDelivery), which is registered with the subject object (ObservedAssemblyLine),
is notified of the second event.

�Tip By the way, you may have noticed that when the second car rolls off the assembly line, there is
no car dealer interested in the event, which in reality wouldn’t happen, as there are always car dealers
waiting for cars to roll off the assembly line. To keep the example simple, we haven’t added a second
ObserverCarDealer object; however, if you like, you can extend the code in the client to include a sec-
ond ObserverCarDealer object. To do that, just repeat the code for ObserverCarDealer, giving the
variable a different name (e.g., ObserverCarDealer2), of course.

CHAPTER 12 � BEHAVIORAL PROBLEMS 245

560-2 ch12.qxd 10/27/05 4:20 PM Page 245

class Client
{
static void Main(string[] args)
{
Subject observedAssemblyLine = new Subject();
Observer observerCarDealer = new ➥

Observer("CarDealer Observer");
Observer observerDelivery = new Observer("Delivery Observer");
observerCarDealer.ObservedObject = ObservedAssemblyLine; ➥

observerDelivery.ObservedObject = ObservedAssemblyLine;
observerCarDealer.Attach();
observerDelivery.Attach();
observedAssemblyLine.InterestingData = "# 001 ➥

is now finished!";
observerCarDealer.Detach();
observedAssemblyLine.InterestingData = "# 002 ➥

is now finished!";
}

}

Console Output

Notification to CarDealer Observer, the car # 001 is now finished!
Notification to Delivery Observer, the car # 001 is now finished!
Notification to Delivery Observer, the car # 002 is now finished!
Press any key to continue

The Standard: Observer Design Pattern

The standard acknowledges the use of the Observer design pattern where there is a

requirement to initiate and manage communications among a society of objects.

Strategy Pattern
A Strategy pattern encapsulates a design feature where there is a need to contextually manage
different implementations of a concept. In everyday life, examples of a Strategy pattern
include a chain of international hotels that applies a regional decor strategy; or a university
that administers a course entrance strategy based on a set of business rules.

CHAPTER 12 � BEHAVIORAL PROBLEMS246

560-2 ch12.qxd 10/27/05 4:20 PM Page 246

What
A Strategy pattern is a design that presents a family of algorithms or business rules encapsu-
lated in classes that can be swapped, polymorphically, within a context, which is independent
of the client.

Where
A Strategy pattern is used where there is a design problem that requires the contextual imple-
mentation of different algorithms or business rules without the use of conditional code.

Why
In many domains there is a need to contextually apply a set of algorithms or business rules,
and over time, as business requirements change, code that manages the choice and the
implementation of algorithms or business rules can evolve into a tangled mess. The Strategy
pattern prevents or overcomes this problem by presenting a design that separates the choice
of algorithm or business rule from its implementation and delegates the contextual choice of
algorithm or business rule to client code.

How
Design an abstract strategy class that includes an abstract method from which an algorithm
may be called. For each strategy, subclass it from the abstract strategy class, then implement
an appropriate algorithm in each of the concrete strategy classes. Prepare a context class to
contain an abstract strategy class and then code the client to choose the strategy and inform
the context class of the choice of strategy. Note that the context class acts as a liaison between
the client and the strategy classes.

Pattern Example
In the Model T domain, there is client code that manages the task of handling inquiries
regarding credit policy. For illustrative purposes, there is a credit policy context within which
operates a credit strategy that seeks to offer favorable terms to volume purchasers (dealer and
corporate customers). There are two different business rules or algorithms—one for each
strategy (a corporate and a dealer strategy).

The part of the problem we are focusing on is how to apply the Strategy pattern to pre-
vent the business rules from becoming intertwined in the choice of present and future
strategies. This is tackled by implementing business rules in instances of strategy classes
(objects), passing them, polymorphically, to a context class, which leverages composition
to access the functionality of a strategy object. This allows client code to make the choice of
which strategy to call or instantiate. That is the Strategy pattern!

We shall now look at the Strategy pattern in a UML diagram (see Figure 12-3) and then
implement the pattern in code.

CHAPTER 12 � BEHAVIORAL PROBLEMS 247

560-2 ch12.qxd 10/27/05 4:20 PM Page 247

UML

Figure 12-3. Strategy pattern

Key Code Ingredients
The code for the Strategy pattern has the following key ingredients:

• An abstract strategy class (Strategy), which contains an abstract or virtual method
(CreditBusinessRule) to access the algorithm or business rule

• A number of strategy classes derived from the abstract strategy class

• An override, in the strategy classes (CorporateStrategy and DealerStrategy), of the
method (CreditBusinessRule) that contains the algorithm or business rule

• A context class (CreditSalesContext), which includes

• a member variable that is of type abstract strategy class;

• a method that represents an algorithm or business rule of a strategy that can be
accessed by client code;

• a constructor that is passed a strategy type.

• Client code that makes the choice of which strategy to call or instantiate.

CHAPTER 12 � BEHAVIORAL PROBLEMS248

560-2 ch12.qxd 10/27/05 4:20 PM Page 248

Strategy Pattern Code
The essence of the design lies in specializing a set of Strategy classes that can be passed poly-
morphically—because they all derive from Strategy—to a context class. It is the client which
determines the context, by calling a given Context class. Notice that the Strategy class is
abstract and that its only method (CreditBusinessRule()) is also abstract; that signifies that
there is no default implementation in the abstract class, although that need not be the case.
There may be default behavior implemented in the abstract class, but the business rule needs
to be abstract or virtual so that it can be overridden in each Strategy subclass. In the case of a
virtual method, if it is not overridden by any subclass, then this indicates that the Strategy pat-
tern is an inappropriate design solution—the Strategy pattern is a design solution appropriate
to situations where there is variation in business rules (algorithms).

Strategy Class

public abstract class Strategy
{

//abstract method which subclasses will
//implement to enable access to the strategy functionality
public abstract void CreditBusinessRule();
public Strategy() {;}

}

CorporateStrategy Class

public class CorporateStrategy: Strategy
{
public override void CreditBusinessRule()
{
Console.WriteLine("Corporates: Allow 30 days credit.");

}

public CorporateStrategy() {;}
}

DealerStrategy Class

public class DealerStrategy: Strategy
{
public override void CreditBusinessRule()
{
Console.WriteLine("Dealers: Allow 90 days credit.");

}

public DealerStrategy() {;}
}

CHAPTER 12 � BEHAVIORAL PROBLEMS 249

560-2 ch12.qxd 10/27/05 4:20 PM Page 249

CreditSalesContext Class

public class CreditSalesContext
{
Strategy aStrategy;

public CreditSalesContext (Strategy crStrategy)
{
this.aStrategy = crStrategy;

}

public void BusinessRule()
{
this.aStrategy.CreditBusinessRule();

}
}

Client Code

In the client code, we see the Strategy pattern at work. We test the effectiveness of the design
pattern by enabling the client code to choose a strategy in a given context.

class Client
{
static void Main(string[] args)
{
//Client makes choice to call the Corporate Strategy - there
//is an inquiry from a potential corporate customer regarding
//the credit terms.
CreditSalesContext cr = new CreditSalesContext(new CorporateStrategy());
cr.BusinessRule();

}
}

Console Output

Corporates: Allow 30 days credit.
Press any key to continue

The Standard: Strategy Design Pattern

The standard acknowledges the use of the Strategy design pattern where there is a design

problem that requires the contextual implementation of different algorithms or busi-

ness rules without the use of conditional code.

CHAPTER 12 � BEHAVIORAL PROBLEMS250

560-2 ch12.qxd 10/27/05 4:20 PM Page 250

Template Method Pattern
A Template Method pattern encapsulates a design feature, in an abstract class, which contains
a template of an algorithm, part of which is left to be implemented by the subclass. In every-
day life, examples of a Template Method pattern include a bank account application form,
such that different accounts include a mix of standard questions and a few account-specific
questions; or a book binder who binds all books in a given way but varies the algorithm or
technique on limited editions.

What
A Template Method pattern ensures that the same structure can be subclassed to house differ-
ent implementations of an algorithm and defer part of the implementation to the subclass.

Where
A Template Method pattern is used where there is a requirement for a common structure to
house an algorithm, while offering some flexibility to vary the implementation of the algorithm.

Why
In many domains, there is a requirement for client code to call a common interface with a
default implementation that has the flexibility for a subclass to vary the underlying algorithm
within the implementation.

How
An abstract class exposes a Template Method that wraps a set of functionality or methods, part
of which is overridden by a subclass.

Pattern Example
In the Model T domain, we have client code that manages the task of calling code to arrange
the clock faces of different types of clocks that are fitted by a coachbuilder to the car. A require-
ment of the client code is that it wants a standard way to deal with this process regardless of the
clock type—it simply wants to instantiate a clock type and call one method (SetupClockFace()).
However, a design problem lies with the fact that not all clock faces are assembled in the same
way; for example, a deluxe clock face has a label affixed to it, requiring one more step than
needed to prepare a standard clockface, which doesn’t have a label.

The part of the problem we are focusing on is how to satisfy the requirements of a com-
mon code structure, which the client code expects, and yet permit the clock itself to implement
its own functionality.

To code this routine we develop an abstract clock class—the clock needs to perform two
steps to set up the clock face. The first step is to set the clock hands to seven, which is a require-
ment of all clocks (seven is an arbitrary number). The second step is to position a label on the
clock face. The Standard clock face does not require a label; however, to accommodate this
variability, the Clock class declares the method PositionLabel() as abstract, which requires a
subclass to provide an implementation. In this example, the Deluxe clock will provide an imple-
mentation, whereas the Standard clock will provide a code stub (empty code). The method that

CHAPTER 12 � BEHAVIORAL PROBLEMS 251

560-2 ch12.qxd 10/27/05 4:20 PM Page 251

acts as a template is SetupClockFace(), which resides in the Clock class. Notice that Step 1 is a
fixed task that is handled for the subclasses by the base class Clock, but Step 2 is delegated to
the subclasses to implement. That is the Template Method pattern!

We shall now look at the Template Method pattern in a UML diagram (see Figure 12-4)
and then implement the pattern in code.

UML

Figure 12-4. Template Method pattern

Key Code Ingredients
The code for the Template Method pattern has the following key ingredients:

• An abstract base class (Clock)

• An abstract method (PositionLabel())

• A template method (SetupClockFace()), which resides in the base class and wraps sev-
eral steps or other methods of the class

• Any number of subclasses (ClockDeluxe and ClockStandard) that override the abstract
method (PositionLabel()) called by the template method (SetupClockFace()) from the
base class

Now let’s code the Template Method pattern.

CHAPTER 12 � BEHAVIORAL PROBLEMS252

560-2 ch12.qxd 10/27/05 4:20 PM Page 252

Template Method Code
The essence of the design lies in the use of inheritance to subclass a common interface and
the structure of the algorithm contained within the template method (SetupClockFace())
in the base class (Clock). Notice that in the template method there is default behavior in
the algorithm; however, within the algorithm lies the flexibility to vary an element of the
algorithm—PositionLabel().

Clock Class

public abstract class Clock
{
// an abstract method that all sub-classes need to code a full
// implementation of functionality
public abstract void PositionLabel();

//the template method
public void SetupClockFace()
{
//step 1. set hands to 7 o'clock - this could be represented as a method
Console.WriteLine("Clock hands set at 7 o'clock");

//step 2. position the label on the clockface
this.PositionLabel();

}

public Clock() {;}
}

Deluxe Clock Class

public class ClockDeluxe: Clock
{

public override void PositionLabel()
{Console.WriteLine("Deluxe clock, position the label bottom center.");}
public ClockDeluxe() {;}

}

Standard Clock Class

public class ClockStandard: Clock
{
//A Standard clock has no label, so the code that positions a label is not required
public override void PositionLabel() {;}

public ClockStandard() {;}
}

CHAPTER 12 � BEHAVIORAL PROBLEMS 253

560-2 ch12.qxd 10/27/05 4:20 PM Page 253

Client Code

In the client code, we see the Template Method pattern at work. We test the effectiveness of
the design pattern by instructing the client code to instantiate a standard clock and a deluxe
clock, and to call their respective SetupClockFace() methods. The template code, which
resides in the base class (Clock), is implemented differently by the algorithm contained in the
template method (SetupClockFace()) of the two subclasses (ClockDeluxe and ClockStandard).

class Client
{
static void Main(string[] args)
{
//create an instance of the deluxe clock
//and set up the clockface
Console.WriteLine("** A DELUXE CLOCK **");
Clock delClock = new ClockDeluxe();
delClock.SetupClockFace();

//create an instance of the standard clock
//and set up the clockface
Console.WriteLine("** A STANDARD CLOCK **");
Clock stdClock = new ClockStandard();
stdClock.SetupClockFace();

}
}

Console Output

** A DELUXE CLOCK **
Clock hands set at 7 o'clock
Deluxe clock, position the label bottom center.
** A STANDARD CLOCK **
Clock hands set at 7 o'clock
Press any key to continue

The Standard: Template Method Design Pattern

The standard acknowledges the use of the Template Method design pattern where there

is a requirement for a common structure to house an algorithm while offering some

flexibility to vary the implementation of the algorithm.

CHAPTER 12 � BEHAVIORAL PROBLEMS254

560-2 ch12.qxd 10/27/05 4:20 PM Page 254

References

This part of the book includes the appendix, standards index, glossary, and index.

P A R T 4

� � �

560-2 appa.qxd 10/27/05 4:21 PM Page 255

560-2 appa.qxd 10/27/05 4:21 PM Page 256

Environment Variables and
Remote Proxy Example

Environment Variables
To be able to call the C# compiler from the command line, you need to make your environ-
ment settings aware of the existence of the compiler (csc.exe). You can tell whether your
computer recognizes the compiler by typing “csc” at the command prompt (accessing the
command prompt is discussed in the section “Remote-Proxy Pattern Example—Using the
Command Line,” later in this appendix). If your settings have not been configured, then
you should get a message advising that the system doesn’t recognize csc, at the command
prompt. If your settings have been configured, then you will get a different message advising
that “no inputs have been specified,” but a few lines above this you will see that the csc has
been called and at least it is recognized by environmental settings, so you need take no fur-
ther action.

�Note In this example, we set up the environment variables to globally recognize the C# compiler
(csc.exe) so that we can use it from the command prompt. However, you can access the command
prompt through Visual Studio (Start ➤ All Programs ➤ Microsoft Visual Studio 2005 ➤ Visual Studio
Tools ➤ Visual Studio 2005 Command Prompt), in the file location where Visual Studio resides—so you
could set up the example that way. However, this example has been written using Visual Studio 2005
Beta 2 (running on Windows XP Version 5.1.2600), and that functionality was not wired at the time of
writing. We have gone back to basics and set up the environment variables so that we run the example
outside of Visual Studio. Although it is laborious, you do get to set all that the compiler does, which is
quite interesting.

257

A P P E N D I X A

� � �

560-2 appa.qxd 10/27/05 4:21 PM Page 257

However, for people who need to set the environment variable in environmental settings,
here we go.

1. Click the Start button, select Control Panel, and then select System.

2. In the System Properties dialog, click the Advanced tab, which should look like
Figure A-1.

Figure A-1. System Properties dialog

3. Click the Environment Variables button, which will take you to the Environment Vari-
ables dialog. In the “System variables” list box, select “Path,” as shown in Figure A-2.

APPENDIX A � ENVIRONMENT VARIABLES AND REMOTE PROXY EXAMPLE258

560-2 appa.qxd 10/27/05 4:21 PM Page 258

Figure A-2. Environment Variables dialog

�Caution Before editing Environment Variables (Path), make a local backup copy of the Path (refer to
step 4).

4. We will shortly change the Path variable, but before proceeding we will make a backup
copy of the current Path setting. While Path is highlighted, in the “System variables” list
box, click the Edit button, then hold down the Ctrl button and press “C” to copy the
Path to the clipboard. Now create a folder on your C drive and call it “Environment
Variables” (C:\Environment Variables). Open up Notepad and press Ctrl-V; the Path
variable should now be in Notepad. Save the Notepad file with a useful name: “Envi-
ronVariablesPath_09_12_2005.”

5. You can do a search (Start ➤ Search ➤ All files and folders) and type in “csc.exe”
and note where your csc.exe is located. It should be located under “Windows\
Microsoft.NET\Framework\version number.” (Note: Your search will likely find multi-
ple copies of csc.exe.)

• Now move back to the Environment Variables dialog (you should still have the Path
variable highlighted). Click on the Edit button in the Environment Variables dialog,
and the Edit System Variable dialog appears (see Figure A-3). Click the path in the
“Variable value” text box, and click on the text in the text box to de-highlight the
variable.

APPENDIX A � ENVIRONMENT VARIABLES AND REMOTE PROXY EXAMPLE 259

560-2 appa.qxd 10/27/05 4:21 PM Page 259

• Now press the right-arrow keyboard button (or hit the End keyboard button) until
you come to the end of the path, and then place a “;” immediately after the last
variable (i.e., there should be no spaces between variables).

• Now enter the path where the csc.exe file is located. The following is the path that
I have for v2.0 Beta 2, which I have added after the “;” C:\WINDOWS\Microsoft.NET\
Framework\v2.0.50215\. (Select the V2.0 version of csc.exe, just in case an older
version causes unexpected results.) As this is the last variable in the list, it is not
followed by a “;”, which Figure A-3 illustrates.

Figure A-3. Edit System Variable dialog

6. Click OK, OK, and OK to exit the remaining dialogs. Make sure you also close any open
command windows.

7. Now open up a fresh command window and key in “csc,” and hopefully csc will be rec-
ognized; however, you should receive an error message advising that “no inputs have
been specified.” If you don’t get this message, but the previous message about csc not
being recognized, then you can try a few things: revisit the entry that you keyed in the
Path variable and verify that it points to where csc.exe is located on your disk; ensure
that you have typed the address correctly; check to see that there are no spaces between
the previous variable and the variable you entered; or try rebooting your computer.
Note: csc will need to be recognized by Windows before you can advance to using the
command line.

APPENDIX A � ENVIRONMENT VARIABLES AND REMOTE PROXY EXAMPLE260

560-2 appa.qxd 10/27/05 4:21 PM Page 260

Remote-Proxy Pattern Example: Using the
Command Line
In the Remote-Proxy pattern, we have chosen to use TCP as a protocol, which requires us to
develop a server application (Server.exe) and not rely on IIS as the server. We are running the
example outside of Visual Studio (VS). By doing it this way—even though it is laborious—we
get to experience everything that is happening.

In the example, our endpoint is to have the Server.exe application run in one domain and
expose the “Question-Answer service” (ProxyRemote) and have that service called by the
Client.exe application, which runs in another domain. Using this setup, we can mimic what
would happen if we were running the example on two computers. Now we will slowly walk
through all the steps.

1. The command line is the prompt “>”, which is located in the command box, which is
found by clicking the Start button and then “Run . . .” on the menu. After this, the Run
dialog box should appear, as shown in Figure A-4; then key in “cmd” and click OK to
open the command box.

Figure A-4. Run dialog

2. You should now be looking at the command box with its flashing cursor. Before we
continue, however, do the following:

• Open up two instances of Windows Explorer (one for each work area: “US” and
“UK”) and create two folders: “C:\ModelT\US_Server” and “C:\ModelT\UK_Client.”

• In the “US_Server” folder, place a copy of ProxyRemoteServer.cs and Server.cs.

• In the “UK_Client” folder, place a copy of Client.cs.

�Tip If you want to key the code into the above files, the full script appears under the respective class
heading in the discussion of the Remote-Proxy pattern. To enter code outside of VS, enter the script into a
Notepad file and then, for example, save as: “ProxyRemoteServer.cs”—include the quote marks to prevent
Notepad from saving the file as a “txt” rather than as a “cs” file.

APPENDIX A � ENVIRONMENT VARIABLES AND REMOTE PROXY EXAMPLE 261

560-2 appa.qxd 10/27/05 4:21 PM Page 261

3. When trying to understand what is going on, it is a good idea to open up a window
for each work area. We will be working in three work areas: the US_Server folder, the
UK_Client folder, and the command box. Now arrange the two instances of Windows
Explorer and the command box as shown in Figure A-5.

Figure A-5. Setup of work areas

4. Before we go any further, let’s get oriented by looking at Figure A-5. We have the
Client.cs resident in the UK_Client folder and ProxyRemoteServer.cs and Server.cs
files resident in the US_Server folder, below which we have the command box, in
which we will key in commands. Now we will key commands on the command line,
and after each command we will see new files appear in the respective folders.

5. At this point I am assuming that the prompt in your command box is not within the
C:\modelt\ root directory; if it is, then omit the c:\modelt\ part of the following com-
mand. We want to get the command line to point to the US_Server folder. In the
command box, at the prompt enter the following:

cd c:\modelt\us_server

and then press Enter. Note that the command line is not case sensitive, so you can use
lowercase rather than exact syntax, if you prefer. The command prompt should now be
pointing at the US_Server folder, as Figure A-6 shows.

APPENDIX A � ENVIRONMENT VARIABLES AND REMOTE PROXY EXAMPLE262

560-2 appa.qxd 10/27/05 4:21 PM Page 262

Figure A-6. US_Server folder dialog

6. If you look in the ProxyRemoteServer.cs file (open it using Notepad), you will
find that there are three class definitions: IDesignEngineer, ChiefDesignEngineer,
and ProxyChiefDesignEngineer. Also note that they are all part of the Patterns.
ProxyRemoteServer namespace (which is indicated at the top of the file). The “cs” file
is really just a convenient way for a developer to maintain the concept of a class defini-
tion; however, the csc allows us to place one or dozens of classes in the same file. When
a cs file is compiled into Intermediate Language (IL), the cs file context is dispensed
with by the complier, and the Common Language Runtime (CLR) manages classes
and other types within the context of namespaces (e.g., Patterns.ProxyRemoteServer.
IDesignEngineer), which reside in a given assembly (DLL). Note that once we build the
ProxyRemoteServer DLL, we will no longer use any of the cs files (all of the functionality
will be compiled and accessible from the ProxyRemoteServer DLL).

7. We are now ready to use the C# compiler (csc.exe) to build the ProxyRemoteServer DLL
(or assembly). With the command prompt pointing at c:\modelt\us_server, key in the
following:

csc /t:library proxyremoteserver.cs

and then press Enter. This will build the DLL, which you should see appear in the
US_Server folder. If you missed it but would like to see it, you can delete the DLL and
rerun the command line.

APPENDIX A � ENVIRONMENT VARIABLES AND REMOTE PROXY EXAMPLE 263

560-2 appa.qxd 10/27/05 4:21 PM Page 263

�Tip If you don’t want to retype the command line (and who does?), then simply press the function key F8,
and the command line which was entered previously will reappear. You will have to scroll the cursor to the
end of the line by pressing the right arrow, and once at the end of the command line, press Enter to run the
command again. Alternatively, if you use the up-arrow keyboard button, it lets you go back several com-
mands, and the down-arrow lets you go the other way.

By the way, if you want to see all the available switch statements (e.g., /t), then key “csc /help” at the
command-line prompt.

8. Okay, so what exactly does csc /t:library proxyremoteserver.cs mean? This is a com-
mand that calls the C# compiler. The csc invokes the C# compiler (the csc stands for
c sharp compiler). The compiler is passed a switchkey “/” followed by “t:library,” which
tells the compiler to build a DLL out of the target file, which is proxyremoteserver.cs.
(To effect this in VS, you have to open a class library project, define your classes,
and select the Build command from the menu—VS calls the C# compiler and puts
a copy of the compiled DLL in the bin directory.) Your screen should now show the
ProxyRemoteServer DLL in the US_Server folder, as shown in Figure A-7.

Figure A-7. ProxyRemoteServer.cs dialog

APPENDIX A � ENVIRONMENT VARIABLES AND REMOTE PROXY EXAMPLE264

560-2 appa.qxd 10/27/05 4:21 PM Page 264

9. We now need to register the ProxyRemoteServer DLL against Server.cs. If you look inside
Server.cs, you will see that it has the statement using Patterns.ProxyRemoteServer;
this statement refers to ProxyRemoteServer DLL. Server.cs needs to reference the
DLL to gain access to the functionality of IDesignEngineer, ChiefDesignEngineer, and
ProxyChiefDesignEngineer. To register the DLL, we need to use the command line
(which should still be pointing to the US_Server folder, as per Figure A-7). Key the
following into the command line:

csc /r:proxyremoteserver.dll server.cs

and press Enter. This time the compiler has done two things instead of just one. The
compiler (csc) is passed /r:proxyremoteserver.dll, which means reference the meta-
data in the file proxyremoteserver.dll with server.cs file. This is all well and good, but
in the US_Server folder we now have a fourth file, Server.exe, so where does that come
from? Having referenced the DLL with Server.cs, the compiler then simply compiles
Server.cs into an executable file, as shown in Figure A-8.

Figure A-8. ProxyRemoteServer.dll dialog

10. So from the perspective of the US_Server folder, our task now is complete. We have
an executable server program (Server.exe) that references all the functionality in
ProxyRemoteServer.dll.

APPENDIX A � ENVIRONMENT VARIABLES AND REMOTE PROXY EXAMPLE 265

560-2 appa.qxd 10/27/05 4:21 PM Page 265

11. We now need to point the command box to UK_Client folder, so on the command line
key in

cd ..\uk_client

and press Enter. For the client to have an association with the server functionality, it
needs to know about the ProxyChiefDesignEngineer—open up Client.cs and note that
an instance of ProxyChiefDesignEngineer needs to be created and two of its “knowl-
edge methods” will be called. Presently, there is nothing in the UK_Client folder to
help Client.cs access ProxyChiefDesignEngineer. Herein lies the trick: make a copy
of ProxyRemoteServer DLL, which is located in the US_Server folder, and place it in the
UK_Client folder. We now need to associate Client.cs with the DLL and also compile
it into Client.exe. This will all be done at the same time when we enter the following
command on the command line:

csc /r:proxyremoteserver.dll client.cs.

You should now have three files in the UK_Client folder: Client.cs,
ProxyRemoteServer.dll, and Client.exe, as shown in Figure A-9.

Figure A-9. UK_Client folder dialog

12. We have now set up both the server and client applications, so you can close the two
instances of Windows Explorer that pointed to the respective folders. By the way,
although this example is contrived, because we are working on a single PC, it need not
be; we need only alter the TCP address in Client.cs from tcp://localhost:1234/
RemoteProxy to whatever address we choose, to allow remote client code to access the

ity permissions, etc.).

APPENDIX A � ENVIRONMENT VARIABLES AND REMOTE PROXY EXAMPLE266

560-2 appa.qxd 10/27/05 4:21 PM Page 266

13. Now we are about to let the client call the service exposed by the server. Open up a sec-
ond instance of the command box (see previous instructions). Align the two instances
of the command boxes as shown in Figure A-10.

Figure A-10. US_Server and UK_Client dialog

14. We need to start up the service that will allow the UK technical guys to ask some ques-
tions. We do this by running server.exe from the command line. Key server.exe onto
the command line that is pointed at US_Server. Calling server.exe will start the server
application, as shown in Figure A-11.

Figure A-11. Server.exe dialog

APPENDIX A � ENVIRONMENT VARIABLES AND REMOTE PROXY EXAMPLE 267

560-2 appa.qxd 10/27/05 4:21 PM Page 267

15. We now fire up the client application. Go to the command box that points to the
UK_Client, and on the command line enter:

client.exe

which will start the client and immediately pose the questions to the US server. The
answers will appear in the UK_client command box, as shown in Figure A-12.

�Note If server.exe is not currently running, then a SocketException will be thrown.

Figure A-12. Server.exe and Client.exe dialog

16. In the UK_Client command box, notice that the first question has been answered by
ProxyChiefDesignEngineer, because it was not an advanced question, whereas the sec-
ond question was advanced and was answered by the ChiefDesignEngineer (refer to
the code in ProxyChiefDesignEngineer to confirm this observation).

APPENDIX A � ENVIRONMENT VARIABLES AND REMOTE PROXY EXAMPLE268

560-2 appa.qxd 10/27/05 4:21 PM Page 268

List of Standards

This is a list of the standards that are catalogued in the respective chapters of the book.

Code Policy Standards
The following standards are the code policy standards that appear in Chapter 1.

Code Policy
The standard acknowledges that a code policy is an effective and efficient way to success-
fully manage code development by coordinating development across the enterprise.

Code Management
The standard acknowledges that code is a valuable resource that benefits from manage-
ment throughout its development and life cycle.

Code Vision
The standard acknowledges that a code vision creates a sense of direction that unites a
development team to work toward a shared technical goal.

Code Objective(s)
The standard acknowledges that code objectives are an essential part of the development
process because they identify what aspects of the enterprise need to change to realize a
code vision.

Code Plan
The standard acknowledges the use of a code plan to identify tasks and allocate resources
to progress code from its current state to its future state.

Code Strategy
The standard acknowledges that a code strategy can be used to determine the best way to
implement a code plan and achieve a set of code objectives.

Code Development Methodology
The standard acknowledges the use of code development methodologies such as XP and
RUP, which are used to maximize the likelihood of developing successful code.

269

560-2 standards.qxd 10/27/05 4:21 PM Page 269

Peer Review
The standard acknowledges the benefits of peer review: (1) improvement of the quality of
code by improving the skills of the developer, (2) knowledge sharing, (3) compliance with
code policies, and (4) building team cohesion.

Unit Testing
The standard acknowledges the importance of unit testing, which is used to examine the
reliability of calling the methods of an object.

Refactoring
The standard acknowledges that refactoring is a useful tool to transform the internal work-
ings of an application without affecting its external workings.

Enterprise Imperative
The standard acknowledges that developing code with an enterprise imperative improves
efficiency by minimizing code duplication and maintenance.

Domain Imperative
The standard acknowledges that a domain imperative is used where a requirement is
tightly coupled to a domain or there is insufficient opportunity or incentive to develop it
otherwise.

Source Code Control
The standard acknowledges that a source code security control reduces the risks associated
with team development.

Obsolescence
The standard acknowledges the benefits of early warning of obsolescence. Notice should
be given in a timely manner: it is considered that a notice period of one major version is a
minimum.

Code Style
The standard acknowledges the use of a code style to encourage uniformity or consistency
in the way that code is written. It improves understandability of code and makes it rela-
tively easy to rotate developers from project to project or from team to team.

Pascal Notation
The standard acknowledges the use of Pascal notation for class, constant, delegate, enum
type, enum value, event, event handler, exception, static member variable, interface,
method, namespace, and property.

Camel Notation
The standard acknowledges the use of Camel notation for instance member variables and
parameters.

LIST OF STANDARDS270

560-2 standards.qxd 10/27/05 4:21 PM Page 270

Hungarian Notation
The standard acknowledges the debate about the use of Hungarian notation with
Web/Windows visual controls and notes it has steadfast and wide community support,
thus making its use, for a variable assigned a visual control, optional.

Case Sensitivity
The standard acknowledges that where C# and Visual Basic are supported, for consistency in
naming variables, a choice is made between (1) ruling against the use of case sensitivity in
C# code; or (2) prefixing variables—in C# and VB code—with an underscore.

Code Structure Standards
The following standards are the code structure standards that appear in Chapter 2.

Assembly
The standard acknowledges that an assembly may be used to partition specialized func-
tionality and to control distribution and accessibility to that functionality. The choices
made to structure code impact not only accessibility to code but also the flexibility and
maintainability of the code.

Namespace
The standard acknowledges the use of namespaces and embedded namespaces to strategi-
cally structure code and to avoid naming conflicts.

Interface Type
The standard acknowledges the use of namespaces and embedded namespaces to strategi-
cally structure code and to avoid naming conflicts.

struct Type
The standard acknowledges a struct type may be used as a lightweight alternative to a class
to structure code and leverage interface inheritance in situations where memory allocation
is scarce or class-inheritance and referencing are not required.

Class Type
The standard acknowledges the use of a class type where there is a requirement to support
class-inheritance or reference semantics and the overhead of a reference type is not an issue.

Partial Type
The standard acknowledges the use of partial type where there is a requirement to split a
type over multiple files but cautions that once the type is compiled, it cannot be extended.

Generic Type
The standard acknowledges the use of generics to reduce overhead and increase type flexi-
bility while retaining the protection of type safety.

LIST OF STANDARDS 271

560-2 standards.qxd 10/27/05 4:21 PM Page 271

Code Development Standards
The following standards are the code development standards that appear in Chapter 3.

Top-Down Method
The standard acknowledges the use of the top-down development method to develop a
solution by developing an application by decomposing a domain problem.

Bottom-Up Method
The standard acknowledges the use of the bottom-up development method to develop an
application by composing a domain solution.

Application Architecture
The standard acknowledges the use of application architecture, observing that an applica-
tion developed using architecture is more likely to be efficient and maintainable, as well as
better equipped to accommodate volatility within the domain and the enterprise, than is
an application that is not developed using architecture.

Class Development
The standard acknowledges that class development is complex and is an iterative process
in which many elements have to be considered to build the most appropriate concrete
classes, including interface, encapsulation accessibility, functionality, design patterns,
inheritance, containment, and state.

Composition
The standard acknowledges the flexibility of composition in building a class interface and
that it is favored over inheritance.

Class Inheritance
The standard acknowledges the use of class inheritance and notes that it is used to strate-
gically and progressively extend and reuse design and functionality. It cautions that
inappropriate base type selection is a common cause of reengineering.

Interface Inheritance
The standard acknowledges the use of interface inheritance as a versatile means to strategi-
cally implement an interface through using multiple interface inheritance, as required.

Overriding
The standard acknowledges the use of overriding to specialize generic functionality.

Overloading
The standard acknowledges the use of overloading as a low-risk way to vary or extend func-
tionality, where the overloaded methods implement similar functionality using different
types and numbers of parameters.

LIST OF STANDARDS272

560-2 standards.qxd 10/27/05 4:21 PM Page 272

abstract Modifier
The standard acknowledges that the role of an abstract class is to contain generalized
functionality or an interface and that the abstract method is used to defer implementation
to a subclass.

sealed Modifier
The standard acknowledges the use of sealed to indicate that it is not logical or permissible
to extend a class.

new Modifier
The standard acknowledges the use of new modifier to hide a derived method or delegate.

private Modifier
The standard acknowledges the use of the private modifier where there is a requirement
to limit accessibility within a given class. Note that a class field should be modified private
and its value accessed through a class property, to comply with encapsulation.

protected Modifier
The standard acknowledges the use of the protected modifier where there is a requirement
to limit accessibility to a class hierarchy.

internal Modifier
The standard acknowledges the use of the internal modifier where there is a requirement
to limit accessibility to other classes in the same program or assembly.

protected internal Modifier
The standard acknowledges the use of the protected internal modifier where there is a
requirement to limit accessibility to a class, a class(es) derived from that class, or other
classes in the same assembly.

public Modifier
The standard acknowledges the use of the public modifier where there is a requirement not
to limit accessibility to functionality by defining and publishing an interface against which
client code can collaborate.

static Modifier
The standard acknowledges the use of static to differentiate a class member from an
object member and also to leverage the ability to access class functionality without the
overhead of instantiation.

Attribute
The standard acknowledges the use of Attribute, which may be used to enrich an entity
with metadata that may be accessed programmatically, at runtime.

LIST OF STANDARDS 273

560-2 standards.qxd 10/27/05 4:21 PM Page 273

Class Header
The standard acknowledges the use of class header, which comprises the keyword class,
modifier, and class name. It is noted that consideration may be given to using a short and
generic class name that is appropriate to the domain.

const
The standard acknowledges the use of const in simple situations or where the underlying
value has to be a string type.

delegate
The standard acknowledges the use of delegate for programmatic efficiency and flexibility.

enum
The standard acknowledges the use of enum in situations that are complex or where a
string type is not required as the underlying type of each constant value (otherwise, a
const may be used).

event
The standard acknowledges the use of event as a way for objects to collaborate.

Field
The standard acknowledges that a field is associated with a class and is commonly used
to store the underlying value of a property of an object, or if modified as static to store a
value for the class.

Indexer
The standard acknowledges the use of indexer as a default property.

Method
The standard acknowledges the use of a method to support collaboration between objects
and notes for efficiency, methods are functional-specific and developed to minimize the
overhead of chatty communication between objects.

Property
The standard acknowledges the preferred use of property over the use of a public member
field, in line with the object-oriented requirement to keep the internal workings of a class
or object hidden from client code.

Variable
The standard acknowledges the definition of variable as a variable that has a procedure-
level association, as distinct from a member field, which is a variable that has a type-level
association. A variable may be categorized as a local variable in a procedure (e.g., method);
as an element of an array; or as an input or output parameter.

LIST OF STANDARDS274

560-2 standards.qxd 10/27/05 4:21 PM Page 274

if
The standard acknowledges the use of if statement for simple branching.

if-else
The standard acknowledges the use of if-else statement where there is a requirement to
have a single condition that explicitly identifies an alternative.

Nested if
The standard acknowledges the nested if statement. However, it is mindful of the adverse
effect that deep nesting has on readability and productivity. Where a nesting exceeds two
layers, consideration may be given to using a switch statement or encapsulating the logic
in a method.

switch and case
The standard acknowledges the use of the switch and case statement as a conditional exe-
cution statement in any scenario where there are two or more options or conditions.

break
The standard acknowledges the use of a break statement in a switch block as an explicit
way to alter the flow of execution.

default
The standard acknowledges the use of default label in a switch block to explicitly offer an
option of last resort and as a way to prevent fall-through—which would result in a compile
error.

continue
The standard acknowledges the use of continue statement to commence a new iteration at
the closest iteration statement.

goto
The standard acknowledges the reluctance to use the goto statement and notes two
accepted practices: using it within a switch statement to redirect the flow of control to
a case statement or to a default label.

throw
The standard acknowledges the use of the throw statement to programmatically raise an
exception to be handled.

try-catch
The standard acknowledges the use of the try-catch statement or block where there is not
a requirement for the guarantee of a finally statement. It is mindful of the extra resources
necessary to support the catch statement and the benefit of arranging them in descending
likelihood of occurrence.

LIST OF STANDARDS 275

560-2 standards.qxd 10/27/05 4:21 PM Page 275

try-finally
The standard acknowledges the use of the try-finally statement as a mechanism where it
is necessary to attempt to execute a block of code (in the try block) and, regardless of the
outcome, execute a subsequent code block (in the finally block).

try-catch-finally
The standard acknowledges the use of try-catch-finally statement or block where a
comprehensive exception handling methodology is a requirement. It is mindful of the
extra resources necessary to support catch statements and the benefit of arranging them
descending in likelihood of occurrence.

do-while
The standard acknowledges the use of the do-while statement where there is a requirement
to iterate an iteration block at least once.

while
The standard acknowledges the use of while statement where there is a requirement for
iterative flexibility: to iterate zero or more times (place while at the head of an iteration
block) or at least once (place a while statement at the tail of an iteration block and a do
statement at the head of the iteration block).

for
The standard acknowledges the use of the for statement where there is a requirement to
test a condition, by using the value in the index variable, before entering an embedded
code block.

foreach
The standard acknowledges the use of the foreach statement where there is a requirement
to iterate a collection—for example, objects or controls.

Code Documentation Standards
The following standards are the code documentation standards that appear in Chapter 4.

Development Documentation Policy
The standard acknowledges the importance of knowledge retention and that a documenta-
tion policy may be used to minimize the risk of knowledge degradation.

Code Design Documentation
The standard acknowledges the importance of documenting code design so that it readily
identifies and explains key aspects of the underlying code design strategy, rationale, and
structure.

LIST OF STANDARDS276

560-2 standards.qxd 10/27/05 4:21 PM Page 276

Code Design Log
The standard acknowledges the use of a code design log as an intuitive and quick method
to document code design. It may be prepared as a txt, xml, or html template and stored
inside a folder within a Visual Studio solution, for example.

Line Comment
The standard acknowledges the use of the line comment, which may be used as a single
line comment, a multiline comment, or an end-of-line comment.

Block Comment
The standard acknowledges the use of the block comment where documentation is exten-
sive. However, it notes that Visual Studio’s line comment tool may be a more convenient
method to comment blocks.

XML Comments
The standard acknowledges the use of XML comments as a form of internal and external
code documentation.

Object Browser Comments
The standard acknowledges the use of object browser comments as a form of internal and
external type documentation, and notes that it conveniently publishes the documentation
in the Visual Studio IDE, which makes it readily accessible for developers and application
architects.

XML and Line/Block Comments
The standard acknowledges the partnership of XML and line/block comments in docu-
menting code.

Design Policy Standards
The following standards are the design policy standards that appear in Chapter 5.

Design Policy
The standard acknowledges that a design policy is an effective and efficient way to coordi-
nate the management of a range of interrelated architectures that have different dynamics.

Design Objectives
The standard acknowledges that design objectives are an essential part of managing the
design of an enterprise because they identify in concrete terms what needs to be done.

Design Style
The standard acknowledges the use of design style, which seeks to ensure that the enter-
prise is and remains structured in a way that complements an organization’s (dynamic)
business strategy.

LIST OF STANDARDS 277

560-2 standards.qxd 10/27/05 4:21 PM Page 277

Architecture Framework
The standard acknowledges the use of an architecture framework to strategically use archi-
tecture to manage an enterprise.

Target Architecture
The standard acknowledges that the target architecture encapsulates and coordinates
change as a version or iteration of the enterprise and avoids the high risk associated with
implementing structural change in an impulsive or ad hoc manner.

Architecture Roadmap
The standard acknowledges the use of an architecture roadmap as a guide to migrating an
existing architecture to a target architecture.

Architecture
The standard acknowledges the use of architecture to manage enterprise artifacts in line
with technical and functional objectives.

Enterprise Architecture
The standard acknowledges the use of enterprise architecture as an efficient and effective
way to manage technology, across an enterprise, in line with a business strategy.

Network Architecture
The standard acknowledges the use of network architecture as a tool to support the strate-
gic requirements of software, technology, data, and deployment architectures, within the
context of an architecture framework.

Technical Architecture
The standard acknowledges the use of technical architecture as an efficient and effective
way to maximize decoupling and minimize duplication, within the context of an architec-
ture framework.

Software or Application Architecture
The standard acknowledges the use of application architecture as an efficient and effective
way to manage application design and development within the context of an architecture
framework.

Data Architecture
The standard acknowledges the use of data architecture as an efficient and effective way
to support information requirements within the context of an architecture framework.

Deployment Architecture
The standard acknowledges the use of deployment architecture as an efficient and effective
way to deploy functionality and data throughout an enterprise within the context of an
architecture framework.

LIST OF STANDARDS278

560-2 standards.qxd 10/27/05 4:21 PM Page 278

Integration Architecture
The standard acknowledges the use of integration architecture as an efficient and effective
way to manage the integration of functionality and data throughout an enterprise within
the context of an architecture framework.

Service-Oriented Architecture
The standard acknowledges the use of service-oriented architecture as an efficient and
effective way to manage the publication and subscription of functionality and data
throughout an enterprise within the context of an architecture framework.

Business Architecture
The standard acknowledges the use of business architecture to identify a strategic purpose
to unite and coordinate a set of architectures to manage and safeguard the enterprise.

Design Structure Standards
The following standards are the design structure standards that appear in Chapter 6.

Structural Design
The standard acknowledges the design and management of an enterprise through the use
of a structural design methodology.

Design Dichotomy
The standard acknowledges that consideration may be given to determine whether func-
tionality has an enterprise or a limited domain role. The earlier the consideration is made,
the better.

Modularity
The standard acknowledges the use of modularity as a method to design, build, and main-
tain complex structures.

Coupling
The standard acknowledges the appropriate management of coupling and the value of
decoupling where the exercise of discretion effects a net positive return on investment.

Layers
The standard acknowledges the use of layers as an efficient and effective way to design,
develop, maintain, and manage complex and large structures.

Design Context
The standard acknowledges that the design workspace has to be identified, so that appro-
priate resources may be organized. It practice, not all of the functionality of an enterprise
may be included within an enterprise context.

LIST OF STANDARDS 279

560-2 standards.qxd 10/27/05 4:21 PM Page 279

Enterprise Design Framework
The standard acknowledges the use of an enterprise design framework where there are
many structures that need to be managed as a cohesive composite.

Application Layer
The standard acknowledges that the design, development, and maintenance of software
is a specialized skill with its own set of dynamics. Encapsulating domain software into
a layer is an efficient and convenient way to manage the special needs of application
development.

Domain Application
The standard acknowledges the design and development of domain applications to service
the custom or non-universal requirements of a domain.

Enterprise Application
The standard acknowledges the use of enterprise applications to provide functionality that
is routine or universal and is without a domain imperative.

Services Application
The standard acknowledges the use of services applications to distribute functionality
across an enterprise as an effective and efficient way to manage functionality.

Two-Tier Design
The standard acknowledges the use of a two-tier design where there is a need for rapid
development and high performance. It does caution, however, that over the medium to
long term the design may encounter integration inefficiencies, and scalability, coupling,
and maintenance issues.

Three-Tier Design
The standard acknowledges the use of a three-tier design where there is a requirement for
an application that features high performance with a medium-to-long life expectancy. It
cautions, however, that the business and data classes may be tightly coupled implementa-
tions to the user interface and datastore, which may cause future concern.

Five-Tier Design
The standard acknowledges the use of a five-tier design where there is a requirement for an
application that requires high performance, presentation, and data source flexibility with a
long life expectancy.

Application Integration Layer
The standard acknowledges the use of an application integration layer to avoid the cost of
high maintenance, duplication, and tight coupling.

LIST OF STANDARDS280

560-2 standards.qxd 10/27/05 4:21 PM Page 280

Enterprise Services Design
The standard acknowledges the use of enterprise services that seek to standardize resource
availability, usability, adaptability, and stability while preventing or removing duplication
and redundancy.

Communications Integration Layer
The standard acknowledges the use of a communication’s integration layer to centralize
and coordinate the integration of multiple artifacts that may to enable a more efficient,
maintainable, and loosely coupled solution.

Communication Infrastructure Layer
The standard acknowledges the use of a communication infrastructure layer to manage
and encapsulate communication functionality within an enterprise framework.

Design Development Standards
The following standards are the design development standards that appear in Chapter 7.

Design of Enterprise Services Layer
The standard acknowledges the design of an enterprise services layer and its role to publish
generic functionality that is highly visible and accessible to enable functionality to be man-
aged more effectively and efficiently throughout the enterprise.

Design of Application Integration Layer
The standard acknowledges the design of an application integration layer, and its role is to
satisfy domain and vendor requirements by providing a service that offers integration func-
tionality that is customizable, transparent, and highly visible.

Design of Application Layer
The standard acknowledges the design of an application layer and that its role enables iso-
lation of application code from integration and services code, which maximizes portability
and minimizes the impact of change.

Horizontal Design Development
The standard acknowledges horizontal design development as a method to regulate design
development through layers, which seeks to ensure that the inherent purpose of the layer
does not become biased or coupled to an application implementation.

Vertical Design Development
The standard acknowledges vertical design development as a method to regulate domain
development, but cautions that code and design may be excessively coupled to a domain,
which may make it a poor candidate to migrate to other layers for reuse.

LIST OF STANDARDS 281

560-2 standards.qxd 10/27/05 4:21 PM Page 281

Object Collaboration
The standard acknowledges the importance of the role of object collaboration because it is
the collaboration of exchanging messages between objects that yields the functionality of
an application.

Object Collaboration (Abstract-Interface Dichotomy)
The standard acknowledges that it is not always obvious when to use class or interface
inheritance to design the interface of an object. A key to the dilemma is that an interface
type is used to signify a role that an object can perform—an interface type is suitable to
perform generic roles.

Object Collaboration (Composition-Inheritance Dichotomy)
The standard acknowledges that there is a dilemma when designing objects because there
are two ways to acquire an interface: through composition or inheritance. A key to the
dilemma is that class inheritance is more sensitive to change than is composition. GoF
propose a principle: “Favor object composition over class inheritance.”

Object Collaboration (Abstraction-Implementation Dichotomy)
The standard acknowledges that problems arise because at some point a design has to
commit to an implementation; however, it needs to balance the cost of commitment
against the need for flexibility in a dynamic domain. A key to the dilemma lies in using
polymorphism, which enables an object to be treated as an implementation or as an
interface at run time. GoF propose a principle: “Program to an interface, not an imple-
mentation.”

Collaborative Code (Design Patterns)
The standard acknowledges the role that design patterns play in solving problems of
objects collaborating in a dynamic domain.

Start-from-Scratch Application Solution
The standard acknowledges that a start-from-scratch application is used where there
is very little code to reuse, and so developers start from scratch. It cautions that such a
practice is generally inefficient as it may result in duplication of functionality and higher
maintenance (compared with the use of a framework).

Application Frameworks Solution
The standard acknowledges the use of application frameworks, which are partially pre-
built solution templates, as an efficient and effective way to reuse proven design and
functionality.

LIST OF STANDARDS282

560-2 standards.qxd 10/27/05 4:21 PM Page 282

Design Documentation Standards
The following standards are the design documentation standards that appear in Chapter 8.

Application Design Documentation Policy
The standard acknowledges the implementation of a single application design documenta-
tion policy across all projects within a given site.

Application Specification Documentation
The standard acknowledges the role of technical specification documentation and its
importance in supporting the functional specification of an application.

Functional Specification Documentation
The standard acknowledges the role of functional specification documentation and its
importance in directing the design and development of an application and in evaluating
and verifying that an application meets client requirements.

Application Design Documentation
The standard acknowledges the documentation of application design and observes that it
should be readily accessible to architects and developers.

Application Architecture Documentation
The standard acknowledges the documentation of application architecture and that it
should be readily accessible to architects and developers. Documentation enables a team
to retain and share critical architecture design knowledge that identifies and explains the
underlying intention of the application architect and lead developer.

Enterprise Framework Documentation
The standard acknowledges the documentation of application design as it relates to the
enterprise architecture and that it should be readily accessible to architects and develop-
ers. Documentation enables a team to retain and share critical architecture design
knowledge that identifies and explains the underlying intention of the enterprise and
application architects and lead developer.

Pattern Standards
The following standard is the MVC design pattern standard that appears in Chapter 9—note
that the other pattern standards, articulated by GoF, are in subsequent chapters.

MVC Design Pattern
The standard acknowledges the use of the MVC design pattern where there is a require-
ment to vary perspectives or views (output) without disturbing—or while minimizing the
disruption to—the underlying information source (model) that publishes the information.

LIST OF STANDARDS 283

560-2 standards.qxd 10/27/05 4:21 PM Page 283

Creational Pattern Standards
The following standards are the creational pattern standards that appear in Chapter 10.

Abstract Factory Design Pattern
The standard acknowledges the use of the Abstract Factory design pattern when there is a
requirement not to couple the client to an implementation that creates sets or families of
object, yet to let the client indirectly control the build process.

Factory Method Design Pattern
The standard acknowledges the use of the Factory Method design pattern where there is
a design problem when a creator class is required to be decoupled from creating specific
objects.

Singleton Design Pattern
The standard acknowledges the use of the Singleton design pattern where there is a design
problem when there can only be one instance of a given object and where there is a
requirement for client code to trigger the creation of the object.

Structural Pattern Standards
The following standards are the structural pattern standards that appear in Chapter 11.

Surrogate-Proxy Design Pattern
The standard acknowledges the use of the Surrogate-Proxy design pattern where there is a
design problem such that access to a principal (e.g., scarce resource) needs to be regulated.

Remote-Proxy Design Pattern
The standard acknowledges the use of the Remote-Proxy design pattern where there is a
design problem such that access to a principal needs to be distributed through representa-
tion.

Adapter Design Pattern
The standard acknowledges the use of the Adapter design pattern where there is a design
problem, where there is a requirement to integrate with a noncompliant interface, or where
there is a requirement for one design to leverage the functionality from one design into
another design.

Composite Design Pattern
The standard acknowledges the use of the Composite design pattern where there is a
design problem where there is a hierarchy of entities and a requirement for a simple non-
conditional methodology to manage single and composite entities.

LIST OF STANDARDS284

560-2 standards.qxd 10/27/05 4:21 PM Page 284

Facade Design Pattern
The standard acknowledges the use of the Facade design pattern where there is a require-
ment, by client code, for a high-level abstraction that is simple to use.

Behavioral Pattern Standards
The following standards are the behavioral pattern standards that appear in Chapter 12.

Chain of Responsibility Design Pattern
The standard acknowledges the use of the Chain of Responsibility design pattern where
there is a requirement to manage tasks by coordinating objects and have them cooperate
within a hierarchical structure.

Observer Design Pattern
The standard acknowledges the use of the Observer design pattern where there is a require-
ment to initiate and manage communications among a society of objects.

Strategy Design Pattern
The standard acknowledges the use of the Strategy design pattern where there is a design
problem that requires the contextual implementation of different algorithms or business
rules without the use of conditional code.

Template Method Design Pattern
The standard acknowledges the use of the Template Method design pattern where there is a
requirement for a common structure to house an algorithm while offering some flexibility
to vary the implementation of the algorithm.

LIST OF STANDARDS 285

560-2 standards.qxd 10/27/05 4:21 PM Page 285

560-2 standards.qxd 10/27/05 4:21 PM Page 286

\\
Escape character: backslash.

!
Documentation generation ID string for
“Error string.”

!
An operator meaning “not.”

!=
An operator meaning “not equal.”

"
Double quotes.

#
An operator: examine preprocessor
directive.

#define
A preprocessor directive statement that
defines a preprocessor identifier.

#elif
A preprocessor directive statement that
indicates an “else if” condition.

#else
A preprocessor directive statement that
indicates an “else” condition.

#endif
A preprocessor directive statement that
indicates the end of an “if” preprocessor
directive.

#if
A preprocessor directive statement that
indicates the commencement of an “if”
statement.

#region
A preprocessor directive statement that
indicates a comment area of text.

#undef
A preprocessor directive statement that
indicates the end of a preprocessor define
(#define) statement.

%
A symbol used to signify modulus or mod
operator.

%=
An assignment operator that assigns the
modulus.

&&
The “and” operator.

&=
The Boolean assignment operator.

'
Single quote—not a comment (“//” or
“/*…*/”).

()
Parentheses.

*
An operator: multiply.

Glossary

287

560-2 glossary.qxd 10/27/05 4:21 PM Page 287

*=
An assignment operator: multiply.

+
An operator: addition.

++
An operator: increment.

+=
An assignment operator: addition.

–
Operator: subtract.

–=
Assignment operator: subtract.

.aspx.cs
A file suffix denoting the ASP.NET code-
behind file is a C# code file.

.cs
A file suffix that denotes that a file holds
C# code.

/
An operator: division.

/*…*/
A code comment: block.

//
A code comment: line.

///
An XML comment for C#.

/=
An assignment operator: divide.

/?
A compilation option: lists compiler
options (same as “/help”).

:
Colon: used to call constructor of a base
class.

;
Semicolon: indicates an end of a
statement.

<
An operator: less than.

<=
An operator: less than or equal to.

<c></c>
A tag used to format text in code-style
font.

<code></code>
A tag used to format code in a font.

<example></example>
A tag used to illustrate how a library
member of method can be used.

<exception></exception>
A tag used to document exceptions.

<include></include>
A tag used to include an external XML
document located in another code file.

<item></item>
A tag used to define an item in a list (used
with <list> and <listheader> tags).

<list></list>
A tag used to define a list of items (used
with <listheader> and <item> tags).

�GLOSSARY288

560-2 glossary.qxd 10/27/05 4:21 PM Page 288

<listheader></listheader>
A tag used to define a header (used with
<list> and <item> tags).

<para></para>
A tag used to define a paragraph (used
embedded in <return> or <remark> tags).

<param></param>
A tag used to describe a constructor
parameter, an indexer parameter, or a
method parameter.

<paramref></paramref>
A tag used to signify text that represents a
parameter.

<permission></permission>
A tag used to permit documentation of
the security access of a member.

<remarks></remarks>
A tag used to define global or overview
information about a type.

<returns></returns>
A tag used to describe a method’s return
value.

<see></see>
A tag used to define a link in the text.

<seealso></seealso>
A tag used to define additional links
in text.

<summary></summary>
A tag used to describe a member for
a type.

<value></value>
A tag used to describe a property.

=
Assignment operator.

==
An operator: equals.

>
An operator: greater than.

>=
An operator: greater than or equal to.

?:
An operator: tunary.

@
Verbatim: used for a string literal.

[]
Square brackets.

\
Backslash for escape characters.

\"
Escape character: double quotes.

\'
Escape character: single quote.

\0
Escape character: null.

\a
Escape character: alert.

\b
Escape character: backspace.

\f
Escape character: formfeed.

�GLOSSARY 289

560-2 glossary.qxd 10/27/05 4:21 PM Page 289

\n
Escape character: newline.

\r
Escape character: carriage return.

\t
Escape character: horizontal tab.

\v
Escape character: vertical tab.

^
An operator—logical: XOR.

^=
A Boolean assignment operator, e.g., int1
^= int2: int1 is assigned the result of
int1^int2.

{}
Braces.

|=
A Boolean assignment operator, e.g., int1
|= int2: int1 is assigned the result of
int1|int2.

||
An operator: OR.

abstract class
A class that can’t be instantiated and can
only be derived from.

Abstract Factory pattern
A type of design pattern that enables a
client to deal with a high-level abstraction
while leaving the factory abstraction to
deal with coupling the implementation.

abstract method
A method that has no implementation; if
a class has an abstract method, then the
class is abstract as well.

abstract-interface dichotomy
The problem that arises when designing
code for objects that collaborate with
other objects: Do we encapsulate the
interface to access the functionality as an
abstract class or as an interface type?

abstraction
Conceptualization of a real entity.

abstraction-implementation dichotomy
The problem associated with deciding
whether to commit to reference a type
through its interface (abstract class) or
through its implementation (concrete
class).

access modifier
A modifier that identifies scope.

Adapter pattern
A type of design pattern that enables
a noncompliant interface to be super-
imposed by an intermediary which
manages an adaptation process to effect
compliance.

anonymous method
A method that permits blocks of code to
be written inline in place of a delegate
value (C# 2.0 feature).

API
Application Programming Interface: a
public interface that is programmed
against.

�GLOSSARY290

560-2 glossary.qxd 10/27/05 4:21 PM Page 290

application architecture
A blueprint for application design,
development, and integration.

application architecture documentation
Documentation that identifies and
explains the key aspects of the architec-
ture of a given application in summary
and detail formats.

application design documentation
Documentation of the architecture of an
application and how the application fits
within the enterprise (e.g., enterprise
design framework).

application framework
An application development methodol-
ogy in which a prebuilt template includes
integration and enterprise services func-
tionality.

application integration layer
A common layer through which applica-
tions are integrated.

application layer
A conceptual repository of applications
that may be deployed across many net-
works and accessible locally, regionally,
or globally.

architecture framework
A tool that defines and strategically aligns
specialist architectures (e.g., network,
software, and data).

architecture roadmap
Roadmap that identifies when, what,
and how an existing architecture can
be migrated to a target architecture.

argument
A parameter passed to a method or
a parameter declaration.

array
A collection of same-type variables or
elements identified with an index.

ArrayList
A dynamic array class: (1.) has a default
capacity of 16 objects, (2.) automatically
increases in size, (3.) holds any type of
object reference. When accessing the
objects, they need to be cast to the appro-
priate type.

as
An operator used to cast the left-side
operand to the type of the right-side
operand.

ASCII
American Standard Code for Information
Interchange: a binary code that defines a
set of characters.

ASCII 0
ASCII control code: null.

ASCII 1
ASCII control code: start of heading.

ASCII 2
ASCII control code: start of text.

ASCII 3
ASCII control code: end of text.

ASCII 4
ASCII control code: end of transmit.

ASCII 5
ASCII control code: inquiry.

ASCII 6
ASCII control code: acknowledge.

�GLOSSARY 291

560-2 glossary.qxd 10/27/05 4:21 PM Page 291

ASCII 7
ASCII control code: audible bell.

ASCII 8
ASCII control code: backspace.

ASCII 10
ASCII control code: line feed.

ASCII 11
ASCII control code: vertical tab.

ASCII 12
ASCII control code: form feed.

ASCII 13
ASCII control code: carriage return.

ASCII 14
ASCII control code: shift out.

ASCII 15
ASCII control code: shift in.

ASCII 16
ASCII control code: data link escape.

ASCII 17
ASCII control code: device control 1.

ASCII 18
ASCII control code: device control 2.

ASCII 19
ASCII control code: device control 3.

ASCII 20
ASCII control code: device control 4.

ASCII 21
ASCII control code: neg. acknowledge.

ASCII 22
ASCII control code: synchronous idle.

ASCII 23
ASCII control code: end transaction
block.

ASCII 24
ASCII control code: cancel.

ASCII 25
ASCII control code: end of medium.

ASCII 26
ASCII control code: substitution.

ASCII 27
ASCII control code: escape.

ASCII 28
ASCII control code: file separator.

ASCII 29
ASCII control code: group separator.

ASCII 30
ASCII control code: record separator.

ASCII 31
ASCII control code: unit separator.

ASCII 32
ASCII control code: blank space.

ASCII 33
ASCII code: !

ASCII 34
ASCII code: "

ASCII 35
ASCII code: #

�GLOSSARY292

560-2 glossary.qxd 10/27/05 4:21 PM Page 292

ASCII 36
ASCII code: $

ASCII 37
ASCII code: %

ASCII 38
ASCII code: &

ASCII 39
ASCII code: '

ASCII 40
ASCII code: (

ASCII 41
ASCII code:)

ASCII 42
ASCII code: *

ASCII 43
ASCII code: +

ASCII 44
ASCII code: ,

ASCII 45
ASCII code: -

ASCII 46
ASCII code: .

ASCII 47
ASCII code: /

ASCII 48
ASCII code: 0

ASCII 49
ASCII code: 1

ASCII 50
ASCII code: 2

ASCII 51
ASCII code: 3

ASCII 52
ASCII code: 4

ASCII 53
ASCII code: 5

ASCII 54
ASCII code: 6

ASCII 55
ASCII code: 7

ASCII 56
ASCII code: 8

ASCII 57
ASCII code: 9

ASCII 58
ASCII code: :

ASCII 59
ASCII code: ;

ASCII 60
ASCII code: <

ASCII 61
ASCII code: =

ASCII 62
ASCII code: >

ASCII 63
ASCII code: ?

�GLOSSARY 293

560-2 glossary.qxd 10/27/05 4:21 PM Page 293

ASCII 64
ASCII code: @

ASCII 65
ASCII code: A

ASCII 66
ASCII code: B

ASCII 67
ASCII code: C

ASCII 68
ASCII code: D

ASCII 69
ASCII code: E

ASCII 70
ASCII code: F

ASCII 71
ASCII code: G

ASCII 72
ASCII code: H

ASCII 73
ASCII code: I

ASCII 74
ASCII code: J

ASCII 75
ASCII code: K

ASCII 76
ASCII code: L

ASCII 77
ASCII code: M

ASCII 78
ASCII code: N

ASCII 79
ASCII code: O

ASCII 80
ASCII code: P

ASCII 81
ASCII code: Q

ASCII 82
ASCII code: R

ASCII 83
ASCII code: S

ASCII 84
ASCII code: T

ASCII 85
ASCII code: U

ASCII 86
ASCII code: V

ASCII 87
ASCII code: W

ASCII 88
ASCII code: X

ASCII 89
ASCII code: Y

ASCII 9
ASCII control code: horizontal tab.

ASCII 90
ASCII code: Z

�GLOSSARY294

560-2 glossary.qxd 10/27/05 4:21 PM Page 294

ASCII 91
ASCII code: [

ASCII 92
ASCII code: \

ASCII 93
ASCII code:]

ASCII 94
ASCII code: ^

ASCII 95
ASCII code: _

ASCII 96
ASCII code: `

ASCII 97
ASCII code: a

ASCII 98
ASCII code: b

ASCII 99
ASCII code: c

ASCII 100
ASCII code: d

ASCII 101
ASCII code: e

ASCII 102
ASCII code: f

ASCII 103
ASCII code: g

ASCII 104
ASCII code: h

ASCII 105
ASCII code: i

ASCII 106
ASCII code: j

ASCII 107
ASCII code: k

ASCII 108
ASCII code: l

ASCII 109
ASCII code: m

ASCII 110
ASCII code: n

ASCII 111
ASCII code: o

ASCII 112
ASCII code: p

ASCII 113
ASCII code: q

ASCII 114
ASCII code: r

ASCII 115
ASCII code: s

ASCII 116
ASCII code: t

ASCII 117
ASCII code: u

ASCII 118
ASCII code: v

�GLOSSARY 295

560-2 glossary.qxd 10/27/05 4:21 PM Page 295

ASCII 119
ASCII code: w

ASCII 120
ASCII code: x

ASCII 121
ASCII code: y

ASCII 122
ASCII code: z

ASCII 123
ASCII code: {

ASCII 124
ASCII code: |

ASCII 125
ASCII code: }

ASCII 126
ASCII code: ~

ASCII 127
ASCII code: del

assembly
A repository (e.g., .dll or .exe) to store
multiple and related code constructs or
functionality.

assembly metadata
An assembly’s contents—also referred to
as a manifest.

AssemblyInfo.cs
A file created by Visual Studio that holds
assembly attributes.

assignment operator
An operator used to assign a type on the
right-hand side to the left-hand side:
assignment operator is “=.”

asynchronous
A process that can’t run simultaneously
(e.g., a request and the wait for a
response).

attribute class
A class that derives from class System.
Attribute. It holds metadata or declarative
information that is accessible, through
reflection, in the assembly.

backslash
Identifier for a “\”.

backward compatibility
Indicates that a successor entity is com-
patible with an ancestor entity.

base
Keyword used to access functionality of a
parent class.

base class
A parent class.

behavioral pattern
A category of design patterns that encap-
sulate a design feature where the focus is
on communications, responsibilities, and
algorithms.

binary files
File format used to store strings of bits
(e.g., images).

binary operator
An operator that performs on two
operands (+, -, *, /, %, &, |, ^, <<, >>).

binding type
A process by which a variable is declared
as a data type. Types are late or early
bound.

�GLOSSARY296

560-2 glossary.qxd 10/27/05 4:21 PM Page 296

bit
Binary digit.

bitwise
An operator used to perform on a set of
bits in a variable.

block comment
A multilined comment format used for
large comments running over multiple
lines.

blocking
A term used in threading to describe a
thread that has been placed into a wait
state; used in conjunction with synchro-
nization.

bool
Data type: true or false.

boolean
Form of logic devised by the English
mathematician George Boole.

bootstrapper
A program that executes prior to the
running of a main application program.

boxing
A process that forces a value type to act
as a reference type—boxed inside an
Object type.

braces
Identifier for “{ }”.

brackets
Identifier for “[]”.

branching
The process of conditional code execu-
tion: an “if” statement is an example of
branching.

break
A jump statement that causes the flow of
the program to exit from the immediate
code block.

break mode
A program debugging technique entered
by pausing a program’s execution.

breakpoint
A program debugging technique that
marks a point in code to enter break
mode.

business architecture
The business and technical artifacts
expressed through a hierarchy of archi-
tectures.

byte
Data type: unsigned values 0–255.

cache
An area of memory or disk that is used to
accelerate data retrieval or execution of
instructions: pronounced “cash.”

Camel notation
Code notation in which first letter of the
first word of a variable name is lowercase
and subsequently the first letter is upper-
case—e.g., thisIsCamel.

capacity
The maximum number of items that can
be held in a collection.

case
Reference to uppercase or lowercase for-
mats.

case statement
A statement that describes a branching
condition in a switch statement.

�GLOSSARY 297

560-2 glossary.qxd 10/27/05 4:21 PM Page 297

case-insensitive
Insensitive to case: an uppercase “A” is the
same as a lowercase “a.”

case-sensitive
Sensitive to case: an uppercase “A” is dif-
ferent from a lowercase “a.”

cast
A programming technique that forces one
type to be another type: cast short to byte,
for example.

catch
The part of a “try-catch-finally” block that
handles a thrown exception.

Chain of Responsibility pattern
A type of design pattern in which a set of
responsibilities or links joins to form a
chain of responsibility and each link is
presented as an object that is responsible
for a given task.

char
Data type: Unicode character that holds
values 0–65,535.

checked
Keyword that sets an expression’s over-
flow checking context.

child
A derived class or subclass.

class
A complex reference type that is the defi-
nition of an object. Once instantiated, the
class is known as a concrete class or an
object.

class derivation
A process by which a class is derived from
another class.

class header
Identifies the class; it contains the class
modifier (e.g., public), the keyword class,
and the name of the class.

class inheritance
Enables one class to derive functionality
from a base or parent class.

class member
Valid members include fields or variables,
methods, properties, and events.

class polymorphism
Object-oriented concept whereby a spe-
cialized class (child) may be passed as an
instance of a generalized class (parent or
ancestor).

closed type
A type that is not an open type; in other
words, it does not involve type parame-
ters (C# 2.0 feature).

code design log
A register in which key design informa-
tion is stored.

code documentation
Identification of how and why code is
developed in a given way.

code policy
A methodology through which to regulate
the development of code. It encourages
the design and development of low-risk
code.

code strategy
The how statement: This is how we are
going to implement the code plan.

�GLOSSARY298

560-2 glossary.qxd 10/27/05 4:21 PM Page 298

collection
A type of class that holds objects; e.g., an
array is a collection.

colon
Identifier (:) used to signify inheritance.

comments
Documentation text added to code that is
ignored by a compiler.

communications infrastructure
Represents the local and extended
software and hardware transport compo-
nents that enable data exchange and
network switching.

communications integration layer
Encapsulates or abstracts to an interface
layer the responsibility of integrating the
enterprise services layer (the application
platform) with the hardware and commu-
nication functionality.

comparison operator
An operator that compares values (= =,
! =, < >,< =, >=).

compiler
An executable program that sets the rules
for a given language and examines code
to see that it is valid (the C# compiler is
“csc.exe”).

complex type
Variable type (array, structure, and
enumeration).

complex types
Data types that are reference types—e.g.,
classes.

component
Executable subprogram—e.g., DLL.

composite pattern
A type of design pattern in which all
entities in a hierarchy expose the same
interface regardless of whether the entity
is a single entity or a composite.

composition-inheritance dichotomy
The problem that arises when designing
objects, because there are two ways to
acquire an interface (i.e., through compo-
sition or inheritance), and commonly it is
not obvious which method to use.

comprehensive namespace
Method of arranging a namespace where
a hierarchy of program structures is used,
commonplace in frameworks.

concurrency
A circumstance in which there are
attempts to access an object simulta-
neously.

conditional operator
Logical operator that returns a boolean—
also referred to as a ternary operator.

configuration files (.NET)
XML-formatted files for an assembly that
hold rules for the .NET runtime.

const
A static modifier used on local variables
or member fields; once its value is
assigned, it can’t be changed at runtime.

constant
Indicates that a variable’s value cannot be
changed: keyword—const.

constructor
A special method that instantiates a class
into an object.

�GLOSSARY 299

560-2 glossary.qxd 10/27/05 4:21 PM Page 299

containment
When a field of a class holds a reference
to an object, the object is said to be con-
tained in the class of the field.

context switching
Happens when a processor stops actively
executing a thread to commence another
thread; the immediate thread is paused
and the subsequent thread is com-
menced.

continue
A jump statement that transfers the pro-
gram flow to commence a new iteration
of the closest do, for, foreach, or while
statement.

copy constructor
Instantiates an object with the values
copied from an existing same-type object.

CORBA
Common Object Request Broker Archi-
tecture (see www.omg.org).

coupling
The association between two or more
artifacts; for example, a business object
is coupled to the schema of a database
table.

creational patterns
A category of design patterns that encap-
sulate a design feature where the focus is
on strategically manipulating the instan-
tiation of classes.

CSV
Comma-separated values: used to delimit
strings.

custom exception
An exception that has been created by a
developer by deriving a class from Sys-
tem.Exception class.

custom namespace
Methodology of arranging a namespace
where it wraps custom development
and separates it from code generated by
an IDE.

data architecture
The structure of physical and logical data
and how it is stored, accessed, and dis-
tributed within and across layers or tiers.

data binding
Methodology by which a control is bound
to a data source. .NET offers dynamic data
controls and data binding at runtime.

decimal
Fixed and decimal point precision to
28 digits.

declaration
Simply declares the name and the type
of a field or variable.

declare
Process by which a variable is given a
name and type—it may or may not be
assigned a value or reference.

decouple
To remove the association between two
or more artifacts.

deep copying
A technique that describes copying an
object variable into another variable by
value rather than by reference.

�GLOSSARY300

560-2 glossary.qxd 10/27/05 4:21 PM Page 300

default
A statement that offers an option of last
resort in a switch block.

default constructor
The constructor of the parent or base
class.

delegate
A class that is a reference to a method
that has a given signature (parameter list
and return type).

deployment architecture
The deployment of architecture artifacts
on network nodes.

deserialize
To reconstruct from one data format to its
original format (e.g., from a binary stream
back to a C# object).

design context
The workspace or domain in which the
design policy is to be implemented (e.g.,
the design context may be an enterprise
or a given domain).

design documentation
Refers to identifying how and why design
is developed in a given way.

design objective
An abstract statement that expresses the
design policy of an enterprise.

design pattern
A methodology that cleverly arranges
class interfaces and implementations to
overcome a problem that affects the abil-
ity of an object to collaborate with other
objects.

design policy
A plan that manages the design, integra-
tion, and deployment of functionality and
data across an enterprise.

destructor
Method declaration to terminate an
object—e.g., ~aClass(): used with
Finalize().

dictionary
Collection with a key and value
association.

DLL
Dynamic Link Library: a code assembly,
compiled from a class library, that is
encapsulated as a component and com-
monly used by other assemblies (.dll or
.exe files).

DNS
Domain Name Service: translates
an IP address (000.000.0.0) to a URL
(http://www.myhome.com/myhomepage.htm).

do
Loop statement that iterates inside a
block until a condition is met; commonly
referred to as a “do loop."

documentation policy
A statement that contains a set of rules
and controls that manage the way code is
documented.

DOM
Document Object Model: a hierarchy of
elements that usually models an XML
document.

domain application
An application that fulfills the custom or
strategic requirements of a given domain
(e.g., an organization or department).

�GLOSSARY 301

560-2 glossary.qxd 10/27/05 4:21 PM Page 301

double
Double precision floating point:
+/--5.0*10 pow -324 to +/-1.7*10 pow
308 with 15 to 16 significant figures.

DTD
Document Type Definition: a methodol-
ogy to define the elements and attributes
of an XML document. A non-XML syntax
that does not permit specification of an
element or attributes data type.

E
Documentation generation ID string for
“Event”.

early binding
Methodology whereby binding is deter-
mined as design time.

element
Entry in an array or XML document.

else
A statement that is executed only when
the head “if” expression is false.

else if
A statement that combines two state-
ments “else” and “if”: only when the head
“if” expression is false (else), then evalu-
ate this “if” statement.

enterprise application
An application that encapsulates func-
tionality that is common to an industry
type, or an industry in general.

enterprise architecture
An architecture that coordinates technol-
ogy across the enterprise in line with a
given business strategy.

enterprise design framework
A blueprint that defines the structures or
layers of an enterprise. The structures or
layers map conceptually, although not
always physically, to a given architecture.

enterprise framework documentation
Documentation of how an application
architecture document fits within the
enterprise design framework.

enterprise services layer
A common layer through which enter-
prise functionality is published.

enterprise services layer
A layer that contains the code or func-
tionality considered common across
applications or common within a given
application.

enterprise-domain dichotomy
The design dilemma that architects and
developers grapple with: When is func-
tionality better defined as enterprise or
as domain functionality?

enum
A value type that contains an enumerator
list (a set of named numeric constants).
Enumeration list of named constants:
enum keyword or value type that holds
a quantity of named numeric constants
(byte, sbyte, short, ushort, long, ulong,
int, unit).

error
Avoidable occurrence that has not been
avoided.

escape sequence
A methodology of substituting a charac-
ter to escape a sequence of characters
(" = \").

�GLOSSARY302

560-2 glossary.qxd 10/27/05 4:21 PM Page 302

event
A methodology by which a class may raise
a notification.

exception
Occurrence that is not normal or breaks
a rule: it may be caused by an error, but it
cannot cause an error.

explicit conversion
Manually coded by a developer when a
valid type is assigned to another valid
type that is outside of its range of values:
it is assisted by a type cast or using the
Convert class.

expression
A statement that evaluates to a value:
comprises an operand(s) and an opera-
tor(s) that evaluate to a value.

expression statement
Evaluates an expression; if any value is
merely computed then it is discarded
(e.g., y == 7; merely computes a value,
unlike y = 7;, which assigns the value “7”
to y and thus evaluates to “7”).

extern
Modifies a method, indicating that
unmanaged code is used to implement it.

F
Documentation generation ID string for
“Field”.

Facade pattern
A type of design pattern that ensures that
the complexity of many interfaces is hid-
den behind a simple, uniform interface.

Factory Method pattern
A type of design pattern that defines an
interface for creating objects but dele-
gates the choice of what objects to create
to subclasses.

false
Boolean value.

field or member field
A variable that is part of a type or class.

finally
The section of a “try-catch-finally” state-
ment that will always execute once
control passes from the try or catch
statement.

five-tier architecture
An application architecture that separates
functionality over four tiers that reside on
two servers—a presentation tier on one
server; and UI, Business, and Data tiers
on a second server—and in which the
data source (fifth tier) resides on a third
server.

fixed
A statement that prevents the GC from
collecting a reference type during pointer
arithmetic operation.

float
Keyword—a primitive type of 32 bits
(IEEE754 to IEEE754).

flow control
The process of controlling program flow.

for
An iteration statement that evaluates a
set of initialization expressions and then
may iterate an iteration block.

�GLOSSARY 303

560-2 glossary.qxd 10/27/05 4:21 PM Page 303

foreach
An iterative statement that enumerates
each element in a collection and executes
the embedded statement for each of the
elements.

form
Two contextual meanings: in Windows, a
windows form (UI window); in HTML, an
HTML tag.

forward compatibility
Compatibility of an ancestor entity with a
successor entity.

function
Procedure that returns a value: a method
is a function.

function signature
Consists of the return type and parameter
list of a function.

GAC
Global Assembly Cache: a directory
that holds .NET Framework system and
shared assemblies.

generic method
A method that accepts type parameters
(C# 2.0 feature).

generics
Methodologies that enable class, delegate,
interface, struct types, and methods to be
created with type parameters, which are
“placeholder” types that can be substi-
tuted when the type is known (C# 2.0
feature).

get
An accessor that returns the value of a
property of an object.

goto
A statement that redirects the flow of
control to another statement, which is
marked with a label within the current
code block: it transfers the control out of
nested scope.

hashtable
Dictionary that is tweaked for speedy
retrieval.

hidden—base class
A base class member is said to be “hid-
den” if it is overridden in a derived class.

hidden—global variable
A global variable is said to be “hidden” if
a local variable has the same name.

horizontal design development
Development of functionality within lay-
ers or tiers: each layer is seen as a distinct
yet coordinated development.

Hungarian notation
A code notation in which a variable is
prefixed with a lowercase representation
of its type, e.g., iCount—an integer type.

identifier
Name given to variables, types, methods,
etc.: must start with underscore or letter.

if
A conditional branching statement that
redirects the flow of control only if the
condition is true.

if-else
A conditional branching statement that
redirects the flow of control if the condi-
tion is true and offers an option when the
condition is false.

�GLOSSARY304

560-2 glossary.qxd 10/27/05 4:21 PM Page 304

immutable
Unchangeable: a string may appear to
change, but a method merely returns a
modified string object.

implicit conversion
Conversion performed by a compiler
when a valid type is assigned to another
valid type that is within its range of
values.

in
An operator used with looping and itera-
tion statements.

indexer
A special kind of property that enables an
object to be indexed. This enables a col-
lection contained within the object to be
accessed on the name of the object, using
the this keyword.

inheritance
Methodology in which functionality is
inherited (class and interface type).

inheritance—implementation
Referred to as implementation inheri-
tance, visual inheritance, class
inheritance, or inheritance or subclass-
ing: generally permits a derived class to
inherit the implementation of a parent’s
(base class) state and functionality.

inheritance—interface
Referred to as interface inheritance:
generally enables a class to inherit the
unimplemented definition of an interface
type.

initializer
Act of setting the value of a variable
without use of a constructor: public
double dValue = 50;.

inner class
A class that is nested inside another
(outer) class.

instance members
Fields (variables), methods, properties,
and events of a class instance (object).

instantiate
To create an instance of a class, the result
of which is an object of that class.

int
A data type: –2,147,483,648 to
2,147,483,647.

integration architecture
A methodology by which artifacts within a
domain or across domains are integrated.

interface—default
The nonprivate attributes of a class.

interface inheritance
Offers multiple inheritance of an inter-
face (public members); however, it does
not offer implementation, unlike a class.
An implementing entity must implement
every member of an interface type,
unless the inheriting entity is another
interface type.

interface type
A complex reference type that may con-
tain properties, methods, events, and
indexers.

internal
A modifier that signifies that accessibility
is limited to the given assembly.

�GLOSSARY 305

560-2 glossary.qxd 10/27/05 4:21 PM Page 305

internal abstract
A modifier that indicates that a class can’t
be instantiated, it can only be derived
from, and has scope within the current
project.

IP
Internet Protocol is a unique address by
which a website is identified. It has a
four-number sequence (e.g., 000.00.00.0);
a DNS translates an IP address to a URL.

is
An operator that verifies if two types are
compatible: <MyOperand> is <type>.

Iterator
A method used to compute increments of
sequential values (C# 2.0 feature).

jagged array
A multidimensional array where the rows
are of varying sizes: an array is comprised
of elements that are themselves arrays.

JIT
Just In Time compiler: converts source
code or intermediate code into machine
immediately prior to the running of a
program.

JPEG
Joint Photographic Experts Group: a
graphics file type.

key
An encryption key created by running
sn.exe (strong name). See symmetric key.

late binding
A methodology in which binding is deter-
mined at runtime.

layer
An abstract or concrete composition of
modularity: for example, a business
object layer or a network service, also
known as a tier.

legacy
An entity that has been superseded: a
program or control, for example (see
backward compatibility).

LHS
Left Hand Side: generally refers to a type
on the left-hand side of an assignment
operator.

line comment
A comment that takes up all or part of a
single line.

linked list
A data structure that has a series of con-
nected nodes.

linked list—circular
Linked list: the last node (tail node) in a
list, node “Z,” has a reference to the first
node (head node) in a list, node “A.”

linked list—double link
Linked list: node “B” has a reference to
node “C,” the node that follows it in the
list, and a reference to node “A,” the node
that precedes it in the list.

linked list—head
First node in a linked list.

linked list—single link
Linked list: node “B” has a reference
to node “C,” the node that follows it in
the list.

�GLOSSARY306

560-2 glossary.qxd 10/27/05 4:21 PM Page 306

linked list—tail
Last node in a linked list.

linked list—type of
Three common types of linked list are
unsorted, sorted, single link, double link,
and circular link.

literal value
A value that is fixed unless changed; dif-
fers from a reference. In assigning a value
to an integer variable, one assigns a literal
value, as distinct from assigning another
variable that may have its underlying
value change.

local variable
A variable that has scope in the immedi-
ate function or method only.

lock
Statement that assists cooperation
between multiple threads by placing
a “lock” on a reference type.

long
An integer data type:
–9,223,372,036,854,775,808 to
9,223,372,036,854,775,808.

looping
The process of repeated code execution:
a “do loop” statement is an example of
looping.

loosely coupled
The degree of association between two
parties, often used in the context of data-
bases—a loosely coupled connection is
easier to change than a tightly coupled
association between a database and an
application.

M
Documentation generation ID string for
“Method.”

Main()
A function that is the entry of an applica-
tion program.

manifest
An assembly’s contents; it is also referred
to as assembly metadata.

MDI
Multiple Document Interfaces: a style of
GUI development in which several win-
dows or dialogs are housed inside a
parent window or dialog.

metadata
Data that is self-describing: describes the
data in an assembly.

method
A construct that encapsulates discrete
functionality of the class or object. A class
may not have two methods with the same
signature (method name, the number of
parameters, the modifiers of the parame-
ters, and the types of the parameters).

Model–View–Controller
A type of a design pattern that seeks to
minimize the impact of fulfilling the
requirement of clients to control how
they view information of a model.

modularity
The ability to encapsulate functionality
into a unit, which exposes an interface,
against which other modules may
connect.

�GLOSSARY 307

560-2 glossary.qxd 10/27/05 4:21 PM Page 307

multidimensional array
An array with multiple dimensions (rows
and columns). C# has two: jagged and
rectangular.

multicasting
A technique that involves implementing
two or more methods through one
delegate.

N
Documentation generation ID string for
“Namespace.”

namespace
A .NET code encapsulation methodology.

nested class
A class that contains another class—an
inner class.

nested statement
The nesting of a series of if or if-else
statements.

nesting
Code-style technique whereby blocks
of code reside within each other.

network architecture
The structure of a network of servers
within an enterprise.

new
A keyword that calls a class’s constructor.

new-line block
Style of arranging a code block where
code commences on a new line after
block header.

null
Literal reference type that signifies that
no object is currently referenced.

object
A reference type that is an instantiated
class.

object browser comment
A type of documentation that Visual
Studio automatically publishes in object
browser as part of the process of using
the XML Documentator tool.

object collaboration
Functionality of an application may be
expressed as a set of collaborations
between objects.

Observer pattern
A type of design pattern that encapsu-
lates a subscriber-publisher relationship
where a subscriber (an observer object)
registers with a publisher an interest in
being notified when the publisher (a sub-
ject object) fires a given event.

obsolete attribute
An attribute that indicates that a type of
members are obsolete or flagged to be
obsolete.

one-line block
A style of arranging code block where
block is on one line.

OOD
Object-Oriented Design.

OOP
Object-Oriented Programming.

open type
A type that leverages type parameters
(C# 2.0 feature).

�GLOSSARY308

560-2 glossary.qxd 10/27/05 4:21 PM Page 308

operator
A modifier keyword that is a method that
overloads an operator.

operator overloading
A technique whereby an operator is over-
loaded to give a class the functionality of
the operator.

operator precedence
In an expression, operators are evaluated
in predetermined sequence.

operators
A methodology used to make an effect:
“+” is a mathematical operator that
effects the addition of two values. There
are three categories: unary, binary, and
ternary.

out of scope
Location in which a type is not accessible
(not visible).

outer class
A class that contains an inner class.

overloading
The ability to include more than one
method in the same class with the same
name.

override
A method modifier that prevails over an
inherited method.

overriding
When a virtual method in a base class has
its functionality superimposed or overrid-
den by a method in a subclass, which has
the same name and signature.

P
Documentation generation ID string for
“Property.”

param
Indicates that the attribute applies to the
parameter.

parameter
An argument passed to a method.

parameter array
In a method that has a variable quantity
of parameters, the parameter array is the
last parameter in a method, so signified
by the params modifier, which permits
the parameter to be an array.

params
Parameter modifier that identifies that a
method’s last parameter may hold multi-
ple parameters of the same type.

parent
A class that is the base class of a subclass
or a child class.

parenthesis precedence
The order of execution as controlled by
parentheses: inner parenthesis first to
outer parenthesis.

partial type
A type that is permitted to use the partial
modifier, of which there are three permit-
ted types: class, struct, and interface.
Note that the partial modifier is not per-
mitted on the delegate class.

Pascal notation
A code notation in which the first letter of
each word in a variable name is upper-
case: e.g., ThisIsPascal.

�GLOSSARY 309

560-2 glossary.qxd 10/27/05 4:21 PM Page 309

passing by reference
Reference types are passed to a calling
method by reference—a reference to a
memory location (“the heap”) is passed
rather than a copy of the type (contrast
passing by value).

passing by value
Value types are passed to a calling
method by way of a copy of the underly-
ing value type—altering the copy does
not alter the underlying (original) value
type. Passing by value occurs on the stack
(contrast with passing by reference).

pattern language
A vocabulary that is composed of design
patterns.

peer review
A process in which code and design are
reviewed by other professionals.

pel
The smallest element in a coordinate
system used by software and hardware
to display: an acronym for “picture ele-
ment,” also known as a pixel.

pixel
The smallest element in a coordinate
system used by software and hardware
to display: an acronym for “picture ele-
ment,” also known as a pel.

point-to-point integration
A type of integration architecture wherein
the client directly integrates with the
provider.

pointer
A “point” in memory or an address
in memory where a reference type is
located.

polymorphism
Object-oriented concept whereby a
specialized class may be passed as an
instance of a generalized class (class
polymorphism): also refers to methods
of a class (method polymorphism).

preprocessor directive
A program that runs prior to compilation
of code: preprocessor searches precom-
piled code for preprocessor directives
prefixed with “#”.

private
Modifier that signifies that accessibility is
limited to the containing type (class). A
class field, for example, should be modi-
fied private and its value accessed
through a class property.

private assembly (.NET)
Assembly that is located in the same
directory as an application.

private constructor
Prevents a class from being instantiated:
used in utility classes that have only static
members.

process
Allocation of memory and resources that
enable an application to run.

property
A construct that acts as a facade through
which client code may access the under-
lying value or state which is stored in a
private member field.

protected
Modifier that signifies that accessibility is
limited to the given class and to any class
derived from that class.

�GLOSSARY310

560-2 glossary.qxd 10/27/05 4:21 PM Page 310

protected internal
Modifier that signifies accessibility is lim-
ited to a member(s) within a given class, a
class(es) derived from that class, and to a
nonderived class(es) in the same assem-
bly. The protected internal modifier yields
protected or internal accessibility.

proxy
An object that provides a local represen-
tation of a remote object.

Proxy pattern
A type of design pattern that represents
or regulates access to a principal that is
scarce or remote.

public
A modifier that signifies that there is no
limit to accessibility.

publisher
An object “publishes” an event for other
classes to subscribe.

queue
A representation of a set, where the first
into the set is the first out of the set.

readonly
Keyword used to declare that a class
member variable is read-only and can’t
be edited at runtime.

rectangular array
A form of multidimensional array with
two or more dimensions that has rows
of the same length (contrast with jagged
array).

ref
A pointer to a memory location: a param-
eter may be passed by reference, in which
case a reference to a memory location is
passed rather than a value.

reference type
Holds a reference to a memory location
on the heap that holds content. Consists
of classes, arrays, and delegates.

refactoring
A technique to transform code by altering
its internal behavior without affecting its
external behavior.

regex
An abbreviation for a regular expression.

regular expression
A language that describes and manipulates
string types—its use results in the return of
a modified string version of the original
string (string types are immutable).

re-throw exception
An exception once thrown may be
re-thrown or consequentially a new
exception may be thrown, or the
original exception may be wrapped in
a new exception and thrown.

return
Statement that returns a type and then
exits from a method.

RHS
Right Hand Side: generally refers to a type
on the right-hand side of an assignment
operator.

RPC
Remote Procedure Call.

RUP (Rational Unified Process)
A process of iterative software design that
is built around core best practices, which
include the following: develop software in
iterations, manage requirements, favor
component-based architecture, model
software visually, and verify quality.

�GLOSSARY 311

560-2 glossary.qxd 10/27/05 4:21 PM Page 311

same-line block
A style of arranging a code block where
code commences on the same line as
block header.

sbyte
Signed byte: –128 to 127.

scope
Location in which a type is accessible
(visible).

SDI
Single Document Interface: a style of GUI
development in which there is only one
window or dialog.

sealed
A modifier that signifies that a given con-
crete class cannot be derived from or
inherited.

service-oriented architecture
Synonymous with Enterprise Application
Integration (EAI): a type of integration
architecture that is loosely coupled and
through middleware supports asynchro-
nous and synchronous communication
between publisher and subscriber.

services application
An application that publishes functional-
ity or services and that is made available
to other applications or services.

shallow
A technique that copies an object variable
into another variable by value rather than
by reference.

short
Signed integer: –32,768 to 32,767.

signature—method
The name, number, and types of
parameters.

signed
Used in two contexts: (1) in cryptography
it indicates that an assembly is associated
with a signature of an cryptographic key,
and (2) in data types it indicates that a
type is not “unsigned”—e.g., int (signed
integer) and uint (unsigned integer).

simple types
Elementary data types—e.g., numbers
and boolean values.

single namespace
Method of arranging a namespace where
all functionality is in one namespace in
an assembly.

singleton pattern
A type of design pattern that ensures that
a given class is instantiated only once.

sizeof
Operator that returns the size of a struct
in bytes.

sn.exe
Executable that creates an encryption key
(strong name).

SOAP
Single Object Access Protocol: a method-
ology for invoking objects over the
Internet or Intranet.

specialization
The act of deriving a class from a base
class—the derived class seeks to special-
ize (override or extend) attributes of the
base class.

�GLOSSARY312

560-2 glossary.qxd 10/27/05 4:21 PM Page 312

stackalloc
Operator that returns a pointer to a spe-
cific quantity of value types that are
allocated on the stack.

start-from-scratch application
An application development methodol-
ogy in which functionality is developed as
new functionality (green fields) and reuse
of existing functionality is nonexistent or
trivial.

state
The property values of an object, which
represent the underlying values in fields
or variables.

statement
A set of program instructions.

static
A modifier that signifies that a given type
is member of the class and not a member
of an instance of a class (object).

static delegate
A delegate class type that may be called
without the need to instantiate it before
being called.

static members
Fields (or variables), methods, and prop-
erties of a class that are static.

Stop
A method that causes an action to termi-
nate—used to stop Web animations or
browser navigation, for example.

Strategy pattern
A type of design pattern that presents a
family of algorithms or business rules
encapsulated in classes that can be
swapped polymorphically within a con-
text, which is independent of the client.

stream
An abstraction of a serial device used to
read or write data in a linear manner, a
byte at a time.

String class
.NET Framework class System.String.

string type
Keyword that is an alias for System.String
class—note that it is immutable.

strong name
A unique composite of assembly name,
assembly version, and encryption key
(uses sn.exe).

struct
A complex value type that may contain
constructors, fields, properties, methods,
nested types, operators, and indexers. A
struct does not support inheritance itself
(unlike a class or interface type); however,
it may inherit an interface type.

struct function
A function that resides in a struct type.

structural design
Design method concerned with manag-
ing the design of a large structure that is a
composite of a smaller structures which
themselves may be composite structures.

structural pattern
A category of design pattern that encap-
sulate a design feature where the focus is
on the strategic manipulation of classes
into a structure.

subscriber
An object subscribes or registers to an
event that is published by the publisher
object using a delegate class.

�GLOSSARY 313

560-2 glossary.qxd 10/27/05 4:21 PM Page 313

switch
A statement that executes code condi-
tionally.

switch-case statement
A switch and a case statement are paired
as an elegant alternative to a nested “if”
statement, which is easily extensible
without adding complexity or degrading
readability.

synchronization
Concept whereby one activity is blocked
to allow another activity to be active.

syntax
Valid arrangement or composition of
code for a compiler (csc.exe).

syntax error
Response from the compiler to an invalid
arrangement or composition of code.

T
Documentation generation ID string for
“Type.”

target architecture
The architecture that an organization
wants to have in the future to comple-
ment a given business strategy.

technology architecture
Middleware software, which is software
that performs as an intermediary
between two discrete architectural
artifacts.

template method
A type of design pattern that ensures
the same structure can be subclassed to
house different implementations of an
algorithm and defer part of the imple-
mentation to the subclass.

ternary operators
Operators that perform on three operands
(<test> ? <ifTrue>: <ifFalse>).

text files
File format used to store text data.

this
Keyword that refers to the current object.

thread
A lightweight process that is used for
multitasking within one application.

three-tier architecture
An application architecture that separates
functionality into two tiers (UI and Busi-
ness), which reside on separate servers,
with access to data via a third tier and
server.

throw
A statement used to raise an exception;
unconditionally the control flows to the
first catch clause in a try-catch block.

tightly coupled
Refers to degree of association between
two parties: a tightly coupled association
is harder to change than is a loosely cou-
pled association (e.g., use of an abstract
class is loose coupling, whereas use of a
concrete class is tight coupling).

trees
Refers to a hierarchy (tree)—used to
describe class inheritance (trees), XML
trees (roots and branches), and controls
(TreeView), for example.

true
Boolean literal.

�GLOSSARY314

560-2 glossary.qxd 10/27/05 4:21 PM Page 314

try
A block of code that may throw an
exception(s).

try-catch
A statement or code block that is a simple
exception handler in which executable
code may be tried and an exception(s)
may be specified and subsequently
handled, if applicable.

try-finally
A statement or code block that is a mech-
anism through which an action may be
tried, without a specific catch statement,
where code is placed in a finally state-
ment that is guaranteed by the CLR to
run, regardless of whether an exception
is thrown or not.

two-tier architecture
An application architecture that com-
pacts all of the functionality into a single
tier that resides on one server, with access
to data (second tier) via a second server.

type
A kind of value or reference.

type conversion
Casting one type to another type.

type member
Methods, properties, fields (variables),
events, or other classes are all type mem-
bers of a class, for example.

typed dataset
Dataset associated with a defined XML
schema: faster and more efficient than
untyped dataset because the schema is
defined and does not require runtime
type identification when run.

typeof
Operator that identifies the type of an
operand.

ulong
Unsigned long type: 0 to
18,446,744,073,709,551,615.

UML
Unified Modeling Language: used to
model software applications—see
www.uml.org.

unary operator
Operator that performs on one operand
(true, false, +, –, !, ~, ++, --).

unboxing
Process of no longer boxing inside an
Object or treating a value type as a refer-
ence type.

unchecked
Keyword to unset an expression’s over-
flow checking context.

unhandled exception
An exception that has no handle (catch)
statement.

Unicode
Character encoding that uses two bytes
per character rather than one byte, as
does ASCII; this permits it to handle
65,536 character combinations compared
with 256 for ASCII (www.unicode.org).

uint
Unsigned integer type: 0 to 4,294,967,295.

unsafe
Statement or method modifier that allows
pointer arithmetic in a given block.

�GLOSSARY 315

560-2 glossary.qxd 10/27/05 4:21 PM Page 315

unsigned
Absence of a signature of a cryptographic
key.

unsigned type
Indicates that a type can’t hold a negative
value.

untyped dataset
A dataset that is not associated with an
XML schema: slower and less efficient
than typed dataset because when run it
needs to create a schema and requires
runtime type identification.

URI
Uniform Resource Identifier: a Web
address—e.g., www.myhome.com.

URL
Uniform Resource Locator: is a Web page
address—e.g., http://www.myhome.com/
myhomepage.htm.

user-defined type
Type defined by a user or developer.

ushort
Unsigned short type: 0 to 65,535.

using
Keyword statement that identifies that
references to types in a namespaces may
be referred to without a full name qualifi-
cation.

valid
Indicates whether code is syntactically or
conditionally acceptable.

value
Keyword that refers to a “value” passed to
a property or the methodology by which a
function calls parameters. Passing by
value has the same effect as passing a
copy of a variable.

value type
Data that is stored in a variable: value
types are stored with their contents on
the stack. Consists of structures, primi-
tives, and enumerations.

variable
Associated with a procedure. It may be
categorized as a local variable in a proce-
dure (e.g., method); an element of an
array; an input parameter (as a reference
or value type); or an output parameter.

variable scope
Location in which a variable is accessible
(visible).

version—AssemblyVersion attribute
An attribute located in an assembly view-
able using ildasm.exe.

version number
Version of a .NET assembly that has four
parts: Major, Minor, Build No, Revision.

vertical design development
Recognizes that functionality can be
developed across layers to fulfill the
requirements of a domain application.

virtual
Keyword that indicates that a method
may be overridden.

virtual indexer
An indexer that is allowed to be over-
ridden.

�GLOSSARY316

560-2 glossary.qxd 10/27/05 4:21 PM Page 316

void
A modifier that signifies that there is no
return type.

volatile
Term used to indicate that a member field
may be altered by a thread or by the oper-
ating system.

wait state
Term used to describe a thread that is
dormant or has nothing to do.

whitespace
Spaces, newlines, and tabs: generally
ignored, except when part of a string, for
example.

wrapper
Name given to an assembly that wraps
around unmanaged code from another
era and enables the code to be accessed
as if it was from the current era.

xcopy
Process by which an application may be
deployed by copying assemblies without
requiring registry entries.

XDR schema
XML-Data Reduced schema.

XML attribute
A characteristic of an element: name
and ID are attributes of an element, for
example.

XML comment
A single line or block of XML comments,
visible within or external to a code mod-
ule—unlike line or block comments,
which are not visible outside of the code
module.

XML document
File or string in memory that comprises
a set of XML data.

XML element
Holds data in an XML document; com-
posed of an opening tag, an element
name, data, and a closing tag.

XML file
File format that is extensible, self-
describing, and able to store data in
a hierarchical and relational represen-
tation.

XOR boolean comparison operator
Operand: exclusive OR.

XP (eXtreme Programming)
A programming process built around four
core best practices (plan, design, code,
and test) that code and test every day.

�GLOSSARY 317

560-2 glossary.qxd 10/27/05 4:21 PM Page 317

560-2 glossary.qxd 10/27/05 4:21 PM Page 318

�A
Abstract Factory pattern

client code, 190–92
defined, 184
implementing, 184
pattern code, 186–90
pattern code, key ingredients, 185–86
pattern example, 184–85
purpose of, 184
standard, defined, 192
uses for, 184

abstract modifier
defined, 51
specifying, 52
standard, defined, 52
use on a class, 51
use on a method, 51

abstract–interface dichotomy
abstract class, purpose of, 151
C# and single class inheritance, 151
defined, 151
interface type, multiple inheritance and,

151
interface type, purpose of, 151
standard, defined, 152

abstraction–implementation dichotomy
cause of, 155
defined, 154
polymorphism and, 155
standard, defined, 155

Adapter pattern
client code, 222–23
composition and class inheritance, 219
defined, 219
implementing, 219
pattern code, 220–22
pattern code, key ingredients, 220
pattern example, 219–20
purpose of, 219
standard, defined, 223
uses for, 219

Alexander, Christopher, 172
Pattern Language, A, 172, 174
Timeless Way of Building, The, 172–74
website of, 173

Althoff, Jim, 173
application architecture

benefits of, 43

design of, 111
elements of, 43
guide to assembling, 44
guide to creating, 43
purpose of, 111
standard, defined, 44, 111
uses for, 43

application architecture documentation
accessibility of, 165
defined, 165
implementing, 166
purpose of, 165
standard, defined, 167
template for, 166–67

application code development
bottom-up method, 40
top-down method, 40

application design architectures, 132
application design documentation

accessibility of, 164
compared to code documentation, 163
defined, 163
implementing, 165
purpose of, 164
standard, defined, 165

application design types, 129
application framework solution

benefits of, 158
defined, 158
domain framework, 158
implementing, 158
project framework, 158
standard, defined, 158

application integration layer
defined, 136, 145
developing code for, 145
dynamic link libraries (DLLs), 136–37
enterprise services layer and, 145
purpose of, 136, 145
remoting, 136–37
risks of self-managed integration, 136
standard, defined, 137, 146
XML Web services, 136–37

application layer
benefits of, 129, 146
code development for, 146
defined, 128, 146
purpose of, 129
standard, defined, 129, 146

Index

319

560-2 Index.qxd 10/27/05 4:22 PM Page 319

application specification documentation
developers and architects, role of, 160
functional specification, 160
technical specification, 160

architectural roadmap
defined, 107
implementing, 107
purpose of, 107
standard, defined, 107

architecture
defined, 108
purpose of, 108
standard, defined, 109
types of, 108

architecture framework
application of, 106
defined, 106
implementing, 106
purpose of, 106
standard, defined, 106

assembly
application of, 29
defined, 29
dynamic link library (DLL) assembly, 29
executable (EXE) assembly, 29
Microsoft Visual Studio 2005 and, 29
multiple namespaces and, 30
standard, defined, 30

Attribute class
Common Language Runtime (CLR), 59
custom attributes, 59
defined, 59
intrinsic attributes, 59
specifying, 60
standard, defined, 60
uses for, 60

�B
behavioral patterns

Chain of Responsibility pattern, 236
defined, 235
implementing, 235
Observer pattern, 236
purpose of, 235
Strategy pattern, 236
Template Method pattern, 236
uses for, 235

block comment
defined, 91
delimiter use, example of, 91
placement of, 91
standard, defined, 91

Booch, Grady, 41
break statement

defined, 73
specifying, 74

standard, defined, 74
use within other statements, 73
uses for, 73

business architecture
application of, 116
defined, 116
development of, 117
purpose of, 117
standard, defined, 117

�C
C# 2.0

generic type, 36
partial type, 35

C# compiler (csc.exe)
calling from the command line, 257
environment variables, setup procedure,

258–60
Microsoft Visual Studio and, 257

Camel notation
defined, 19
example of, 19
identifiers, use of, 18–19
naming convention in, 19
standard, defined, 19
use of, 19

case sensitivity
approaches to consistent use, 27
C# and, 27
defined, 26
examples of, 27
standard, defined, 27
Visual Basic and, 27

Chain of Responsibility pattern
client code, 240–41
defined, 236
implementing, 236
pattern code, 238–40
pattern code, key ingredients, 238
pattern example, 236–37
purpose of, 236
standard, defined, 241
uses for, 236

class accessibility, 54
class development

application success and, 44
defined, 44
elements and aspects of, 45–46
role of, in application development, 44
standard, defined, 46

class fundamentals, 59
class header

defined, 60
specifying, 61
standard, defined, 61
uses for, 61

�INDEX320

560-2 Index.qxd 10/27/05 4:22 PM Page 320

class inheritance
benefits of, 48
defined, 47
inappropriate base type selection, 48
single class inheritance in .NET and C#, 47
specifying, 48
standard, defined, 48
subclass participation in, 48

class type
application of, 34
defined, 34
example of, 34–35
modified as abstract, sealed, or static, 34
object-oriented design and, 34
partial type and, 35
standard, defined, 35

code design documentation
accessibility of, 87
benefits of, 87
defined, 87
standard, defined, 87
written as a log file, 87

code design log
benefits of, 88
contents of, 87
defined, 87
location of, 88
Microsoft Visual Studio and, 88
standard, defined, 90
template example, 88–89

code development
application perspective and, 39
enterprise perspective and, 39

code development methodology
defined, 8
eXtreme Programming, 8–9
purpose of, 8
Rational Unified Process (RUP), 8–10
standard, defined, 10

code documentation
documentation policy and, 85
minimizing knowledge loss through, 85
template example, 96–97

code documentation policy
benefits of, 86
code stakeholders and, 85
defined, 85
difficulties in implementing, 85
distribution of, 86
issues template, 85–86
Microsoft Visual SourceSafe, 86
standard, defined, 86

code management
application of, 4
benefits of, 4
defined, 4
standard, defined, 4

code notation
Camel notation, 17, 19
Camel–Hungarian–Pascal notation

standard, 17
Camel–Pascal notation standard, 17
Hungarian notation, 17, 20, 23

use with controls, 17
Pascal notation, 17–19
variable naming and case sensitivity, 17

code objectives
defined, 5
gap analysis, 6
purpose of, 5
standard, defined, 6

code obsolescence
defined, 15
depreciation, communicating, 15
notification of, 15
Obsolete attribute, use of, 15
standard, defined, 16

code plan
defined, 6
purpose of, 6
standard, defined, 7

code policy
application of, 3
aspects of, 3
code objectives, 5
code plan and, 6
code strategy and, 7
code vision, use of, 4
defined, 3
enterprise development and, 3
scope of, 4
standard, defined, 4

code strategy
defined, 7
developing, 7
implementing, 7
standard, defined, 7

code structure
assembly, 29
complex types, 29
namespace, 29

code style
benefits of, 16
defined, 16
Microsoft Visual Studio 2005 and, 16
standard, defined, 16
style guide, creating, 16

code vision
code objectives, 4
code plan, 4
code strategy, 4
defined, 5
purpose of, 5
r-positioning and, 5
standard, defined, 5

�INDEX 321

560-2 Index.qxd 10/27/05 4:22 PM Page 321

communications infrastructure layer
defined, 139
implementing, 140
purpose of, 140
standard, defined, 140

communications integration layer
defined, 139
IP-based networks and, 139
purpose of, 139
standard, defined, 139

Composite pattern
client code, 227
defined, 223
implementing, 223
pattern code, 225–28
pattern code, key ingredients, 225
pattern example, 224
purpose of, 223
standard, defined, 228
uses for, 223

composition
advantages of, 46
defined, 46
specifying, 47
standard, defined, 47

composition–inheritance dichotomy
class inheritance, benefits of, 152, 154
class inheritance, example of, 153–54
composition, benefits of, 152, 154
composition, example of, 153
defined, 152
standard, defined, 154

const
compared to enum, 61
defined, 61
specifying, 61
standard, defined, 62
string type and, 61
uses for, 61

continue statement
defined, 75
specifying, 75
standard, defined, 75
uses for, 75

coupling
advantages of decoupling, 124
ambivalence of, 123
defined, 123
fixed coupling, 123
purpose of, 123
standard, defined, 124
variable or discretionary coupling, 123

creational patterns
Abstract Factory pattern, 183
Abstract Method pattern, 183
defined, 183
implementing, 183

purpose of, 183
Singleton pattern, 183
uses for, 183

�D
data architecture

application of, 112
data modeling and, 112
defined, 112
purpose of, 112
standard, defined, 112

default label
defined, 74
preventing fall-through, 74
specifying, 74
standard, defined, 75
uses for, 74

delegate
defined, 62
specifying, 62
standard, defined, 62
uses for, 62

deployment architecture
application of, 112
defined, 112
deployment of, 113
purpose of, 112
standard, defined, 113

design architecture, five-tier
benefits of, 135
defined, 134
implementing, 135
relative cost of, 135
standard, defined, 136

design architecture, three-tier
benefits of, 133
defined, 133
standard, defined, 134
user interface and, 133

design architecture, two-tier
Adapter design pattern, 132
advantages/disadvantages of, 132
defined, 132
implementing, 132
standard, defined, 133

design context
defined, 125
identifying the workspace, 125
standard, defined, 126
uses for, 125

design development
abstract–interface dichotomy, 141
abstraction–implementation dichotomy,

141
composition–inheritance dichotomy, 141
defined, 141
enterprise–domain dilemma, 141, 146

�INDEX322

560-2 Index.qxd 10/27/05 4:22 PM Page 322

frameworks methodology, 142, 156
horizontal development, 141, 147
object collaboration and, 141
start-from-scratch methodology, 142, 156
vertical development, 141, 147

design objectives
defined, 104
examples of, 104
purpose of, 104
standard, defined, 105

design patterns
Althoff, Jim, 173
applying, 156
behavioral pattern, 174–75
categories of, 176
conceptualizing, 176
creational pattern, 174–75
defined, 155, 171
Facade pattern, in ADO.NET, 174
fluidity and linking of, 175
as a generic solution, 171
Iterator pattern and C# 2.0, 175
Model–View–Controller (MVC), 173, 176
Observer pattern, 175
problem type and, 171
Proxy pattern, 175
Remote-Proxy pattern, 175
standard, defined, 156
structural pattern, 174–75
Surrogate-Proxy pattern, 175
uses for, 156

design policy
application of, 103
defined, 103
design objectives and, 103
design style and, 103
developing a structure for, 103
purpose of, 103
standard, defined, 104

design style
application of, 105
defined, 105
procedural steps for implementing, 105
purpose of, 105
standard, defined, 105

development method, bottom-up
developing classes before architecture, 42
iterative composing of a domain solution,

42
purpose of, 42
standard, defined, 42

development method, top-down
iterative decomposing of a domain

problem, 41
preparing architecture before code, 41
purpose of, 41
standard, defined, 42

do-while statement
defined, 80
specifying, 81
standard, defined, 81
uses for, 81

documentation policy
defined, 159
purpose of, 159–60
standard, defined, 160
template for implementing, 159–60
uses for, 160

domain application
defined, 130
purpose of, 130
requirements of, 130
standard, defined, 130

domain imperative, defined, 13

�E
enterprise application

defined, 130
examples of, 131
standard, defined, 131
vendor development of, 131

enterprise architecture
application of, 109
defined, 109
purpose of, 109
standard, defined, 109

enterprise design framework
defined, 127
implementing, 127
standard, defined, 128
uses for, 127

enterprise framework documentation
accessibility of, 167
defined, 167
implementing, 167
purpose of, 167
standard, defined, 168
template for, 167–68

enterprise imperative
applications of, 13
benefits of, 13
defined, 13
disadvantages of, 13
implementing, 14
standard, defined, 13–14

enterprise services layer
application integration layer and, 144
ASP.NET server controls, 144
benefits of, 144
defined, 137, 144
design of, 138
developing code for, 144
Internet Information Server (IIS), 144

�INDEX 323

560-2 Index.qxd 10/27/05 4:22 PM Page 323

.NET’s General Assembly Cache (GAC),
144

purpose of, 137
standard, defined, 138, 144

enterprise–domain dichotomy
code review, 121
defined, 120
domain coupling, 121
migrating from domain to enterprise, 120
regex domain class, 121
regex enterprise class, 121
standard, defined, 121

enum
compared to const, 63
defined, 62
enumerator list, 62
specifying, 63
standard, defined, 63
uses for, 63

event
defined, 63
.NET event model, 63
registering/deregistering at runtime, 64
specifying, 64
standard, defined, 64
uses for, 64

eXtreme Programming (XP)
code development methodology and, 8
coding stage, 9
collective ownership, defined, 9
defined, 8
designing stage, 9
“pair programming,” 10
planning stage, 8
refactoring, defined, 9
testing stage, 9

�F
Facade pattern

client code, 233–34
defined, 229
implementing, 229
pattern code, 231–33
pattern code, key ingredients, 231
pattern example, 229
purpose of, 229
standard, defined, 234
uses for, 229

Factory Method pattern
client code, 197–98
defined, 192
implementing, 192
pattern code, 194–97
pattern code, key ingredients, 194
pattern example, 193
purpose of, 192
standard, defined, 198

field
class field, 64
defined, 64
instance field, 64
purpose of, 64
specifying, 64
standard, defined, 65
uses for, 64

flow control, 70
for statement

defined, 82
specifying, 83
standard, defined, 83
uses for, 82

foreach statement
defined, 83
specifying, 83
standard, defined, 83
uses for, 83

Fowler, Martin, 12, 129, 156
functional specification documentation

accessibility of, 162
defined, 162
implementing, 162
purpose of, 162
standard, defined, 163
template for, 162–63

�G
Gamma, Erich, 169, 172
“Gang of Four” (GoF), 169, 172, 174
gap analysis, 6
generic type

advantages of, 37
data structures and, 36
defined, 36
delimiters and, 37
example of, 37
standard, defined, 37

goto statement
case statement, accepted use with, 76
default label, accepted use with, 76
defined, 76
specifying, 76
standard, defined, 76

�H
Helm, Richard, 169, 172
Hohpe, Gregor, 156
horizontal design development

defined, 147
functionality of layers, 147
implementing, 147
layer imperative and, 147
purpose of, 147
standard, defined, 148

Hungarian notation
defined, 20
example of, 20

�INDEX324

560-2 Index.qxd 10/27/05 4:22 PM Page 324

identifiers, table of, 20, 22–23
naming convention in, 20
standard, defined, 23
use of, 20
Web/Windows visual controls and, 20

�I–J
if statement

defined, 70
specifying, 70
standard, defined, 70
uses for, 70

if statement, nested
defined, 71
specifying, 72
standard, defined, 72
switch statement as alternative, 71
uses for, 71

if-else statement
defined, 70
specifying, 71
standard, defined, 71
uses for, 71

indexer
analogous use in C#, 65
defined, 65
specifying, 65
standard, defined, 65
this keyword and, 65
uses for, 65

integration architecture
application of, 113
asynchronous integration, 113
defined, 113
Model–View–Controller (MVC) design

pattern, 113
purpose of, 113
standard, defined, 114
synchronous integration, 113

interface inheritance
contrasted with a class, 48
defined, 48
multiple inheritance and, 48
specifying, 49
standard, defined, 49
uses for, 48

interface type
class hierarchy and, 31
defined, 31
example of, 31–32
multiple inheritance, support for, 31
partial type and, 35
purpose of, 31
single class inheritance and, 31
standard, defined, 33
struct type and, 33

internal modifier
defined, 55

standard, defined, 56
uses for, 56

iteration, 80
Johnson, Ralph, 169, 172

�L
layers

benefits of, 125
defined, 124
purpose of, 124
standard, defined, 125
uses of, 124

Lhotka, Rockford, 41
Liberty, Jessie, 5
line comment

defined, 90
delimiter use in, 90
example of, 90
placement of, 90
standard, defined, 91

�M
McConnell, Steve, 46
method

defined, 66
specifying, 66
standard, defined, 67
uses for, 66

Microsoft Visual SourceSafe, 14, 86
Microsoft Visual Studio, 63, 86–88, 90–94,

157, 257
XML Comment Tool, using, 97–98, 100
XML Documentator, 92–93

Microsoft Visual Studio 2003, 98
Microsoft Visual Studio 2005, 11, 67–68, 92,

98, 184
code formatting options, 24–26
core library functionality (mscorlib.dll), 29
development teams and, 24
as EXE assembly (devenv.exe), 29
IDE, 16
security functionality

(System.Security.dll), 29
Model–View–Controller (MVC)

Althoff, Jim, 173
benefits of, 177
client code, 180
computer language implementations of,

174
controller objects in, 176–77
defined, 176
implementing, 177
model object in, 176–77
origins of, 173
pattern code, 179–80
pattern code, key ingredients, 178
pattern example, 177

�INDEX 325

560-2 Index.qxd 10/27/05 4:22 PM Page 325

Reenskaug, Trygve, 173
standard, defined, 181
uses for, 176
view interface (IView), 177

modularity
aggregation association, 122
application of, 122
composition association, 122
defined, 122
implementing, 122
standard, defined, 122
Unified Modeling Language (UML), 122

�N
namespace

application of, 30
classes, avoiding conflicts among, 30
defined, 30
namespace keyword, 30
nesting of, 30
standard, defined, 31
variables, avoiding conflicts among, 30
visibility as public, 30

.NET
accessibility of, summarized, 59
development languages and case

sensitivity, 26
network architecture

application of, 109
defined, 109
design and maintenance of, 110
purpose of, 110
standard, defined, 110

new modifier
defined, 53
specifying, 53
standard, defined, 53
uses for, 53

Nunit, 11

�O
object browser comment

defined, 93
example of XML delimiter use, 93
as a form of type documentation, 93
Microsoft Visual Studio and, 93
placing an XML comment within, 93
standard, defined, 94

object collaboration
Adapter design pattern, 150
benefits of, 150
Chain of Responsibility design pattern,

150
defined, 150
implementing, 150
standard, defined, 151

Observer pattern
client code, 245–46
defined, 241
implementing, 241
pattern code, 243–45
pattern code, key ingredients, 243
pattern example, 242
purpose of, 241
standard, defined, 246
uses for, 241

overloading
benefits of, 51
defined, 50
specifying, 51
standard, defined, 51
uses for, 51

overriding
defined, 49
method signature, 49
override keyword, 50
specifying, 50
standard, defined, 50
uses for, 49
virtual keyword, 50

�P
partial type

application of, 35
defined, 35
delegate class and, 35
example of, 35–36
nesting of, 35
splitting team development with, 35
standard, defined, 36

Pascal notation
defined, 18
example of, 18
identifiers, use of, 18
naming convention in, 18
standard, defined, 19
use of, 18

pattern language
Alexander, Christopher, 172
benefits of, 172
computer science and, 174
defined, 171
“Gang of Four” (GoF) and, 172
as a grammar for communicating

problems, 172
mapping problems to structured

solutions, 171
Model–View–Controller (MVC) design

pattern, 173
origins of, 172
problem type, 171
Reenskaug, Trygve, 173
solution type, 171
thinking and talking in, 173

�INDEX326

560-2 Index.qxd 10/27/05 4:22 PM Page 326

peer review
code policy and, 10
defined, 10
implementing, 10
scope of, 10
standard, defined, 11

private modifier
defined, 54
specifying, 54
standard, defined, 55
uses for, 54

property
defined, 67
encapsulation and, 67
private member field, 67
public member field, debate over, 67
specifying, 68
standard, defined, 68
uses for, 67

protected internal modifier
defined, 56
specifying, 57
standard, defined, 57
uses for, 56

protected modifier
defined, 55
specifying, 55
standard, defined, 55
uses for, 55

Proxy pattern
architecture (Remote-Proxy), 210
client code (Remote-Proxy), 216–18
client code (Surrogate-Proxy), 208–9
code (Remote-Proxy), 210–11
command-line example (Remote-Proxy),

261–68
composition, use of, 204–5
defined, 204
implementing, 204
.NET Remoting, 209
pattern code (Remote-Proxy), 212–16
pattern code (Remote-Proxy), key

ingredients, 212
pattern code (Surrogate-Proxy), 206–8
pattern code (Surrogate-Proxy), key

ingredients, 206
pattern example (Remote-Proxy), 209
pattern example (Surrogate-Proxy), 204–5
purpose of, 204
Remote-Proxy pattern, 204
standard (Remote-Proxy), defined, 218
standard (Surrogate-Proxy), defined, 209
Surrogate-Proxy pattern, 204
TCP transport protocol, 209
uses for, 204

public modifier
defined, 57
specifying, 57
standard, defined, 58
uses for, 57

�R
Rational Unified Process (RUP)

code development methodology and, 8
core best practices, 9
defined, 9

Reenskaug, Trygve, 150, 173
website of, 173

refactoring
application of, 12
benefits of, 12
defined, 12
Fowler, Martin, 12
standard, defined, 12

�S
sealed modifier

defined, 52
specifying, 52
standard, defined, 53
uses for, 52

Service-oriented architecture (SOA)
application of, 114
defined, 114
Enterprise Application Integration (EAI),

114
hub-n-spoke model, 114
message bus model, 114, 116
purpose of, 114
standard, defined, 116
Web service model, 114

services application
defined, 131
development of, 131
purpose of, 131
standard, defined, 131

Singleton pattern
client code, 201–2
defined, 199
implementing, 199
pattern code, 200–201
pattern code, key ingredients, 200
pattern example, 199–200
purpose of, 199
standard, defined, 202
uses for, 199

source-code control
benefits of, 14
CVS, 14
defined, 14
developer use of, 15

�INDEX 327

560-2 Index.qxd 10/27/05 4:22 PM Page 327

implementing, 14
Microsoft Visual SourceSafe and, 14
standard, defined, 15

start-from-scratch application solution
defined, 157
implementing, 157
Rapid Application Development (RAD),

157
standard, defined, 157

static type modifier
defined, 58
specifying, 58
standard, defined, 58
uses for, 58
utility classes and, 58

Strategy pattern
client code, 250
defined, 247
implementing, 247
pattern code, 249–50
pattern code, key ingredients, 248
pattern example, 247
purpose of, 247
standard, defined, 250
uses for, 247

struct type
application of, 33
as class alternative, 34
defined, 33
example of, 33–34
inheritance and, 33
interface type and, 33
memory resource allocation and, 33
partial type and, 35
standard, defined, 34
as value type, 33

structural design
defined, 119
purpose of, 120
standard, defined, 120
uses for, 119

structural patterns
defined, 203
implementing, 203
pattern examples, 204
purpose of, 203
uses for, 203

supplementary development policies
code development methodology and, 10
in-house standards and, 10

switch-case statement
break statement within, 73
default label within, 73
defined, 72
specifying, 73
standard, defined, 73

switch parameter, valid types of, 72
uses for, 72

�T
target architecture

defined, 106
purpose of, 107
standard, defined, 107

technical architecture
application of, 110
defined, 110
implementing, 110
middleware software and, 110
Model–View–Controller (MVC) design

pattern, 110
purpose of, 110
standard, defined, 111

technical specification documentation
accessibility of, 161
defined, 161
implementing, 161
purpose of, 161
standard, defined, 162
template for, 161–62

Template Method pattern
client code, 254
defined, 251
implementing, 251
pattern code, 253
pattern code, key ingredients, 252
pattern example, 251–52
purpose of, 251
standard, defined, 254
uses for, 251

throw statement
Common Language Runtime (CLR), 77
defined, 77
specifying, 77
standard, defined, 77
try-catch block and, 76
uses for, 77

TOGAF
defined, 103
Open Group and, 103, 127

try-catch statement
defined, 77
finally statement and, 78
specifying, 78
standard, defined, 78
uses for, 78

try-catch-finally statement
defined, 79
specifying, 80
standard, defined, 80
uses for, 79

�INDEX328

560-2 Index.qxd 10/27/05 4:22 PM Page 328

try-finally statement
defined, 78
specifying, 79
standard, defined, 79
try-catch statement and, 79
uses for, 79

�U
unit test

class functionality and, 11
code development and, 11
defined, 11
object functionality and, 11
standard, defined, 11
unit test framework, 11

�V
variable

defined, 69
specifying, 69
standard, defined, 69
uses for, 69

vertical design development
benefits of, 149
defined, 148

developing across layers, 148
implementing, 149
standard, defined, 150

Vlissides, John, 169, 172

�W
while statement

defined, 81
specifying, 82
standard, defined, 82
uses for, 82

Woolf, Bobby, 156

�X
XML comment

advantages/disadvantages of, 94
defined, 92
example with line/block comments, 94–95
example of delimiter use, 92
Microsoft Visual Studio XML

Documentator, 92
placement of, 92
standard, defined, 93

�INDEX 329

560-2 Index.qxd 10/27/05 4:22 PM Page 329

560-2 Index.qxd 10/27/05 4:22 PM Page 330

560-2 Index.qxd 10/27/05 4:22 PM Page 331

560-2 Index.qxd 10/27/05 4:22 PM Page 332

560-2 Index.qxd 10/27/05 4:22 PM Page 333

560-2 Index.qxd 10/27/05 4:22 PM Page 334

560-2 Index.qxd 10/27/05 4:22 PM Page 335

forums.apress.com
FOR PROFESSIONALS BY PROFESSIONALS™

JOIN THE APRESS FORUMS AND BE PART OF OUR COMMUNITY. You’ll find discussions that cover topics

of interest to IT professionals, programmers, and enthusiasts just like you. If you post a query to one of our

forums, you can expect that some of the best minds in the business—especially Apress authors, who all write

with The Expert’s Voice™—will chime in to help you. Why not aim to become one of our most valuable partic-

ipants (MVPs) and win cool stuff? Here’s a sampling of what you’ll find:

DATABASES

Data drives everything.

Share information, exchange ideas, and discuss any database
programming or administration issues.

INTERNET TECHNOLOGIES AND NETWORKING

Try living without plumbing (and eventually IPv6).

Talk about networking topics including protocols, design,
administration, wireless, wired, storage, backup, certifications,
trends, and new technologies.

JAVA

We’ve come a long way from the old Oak tree.

Hang out and discuss Java in whatever flavor you choose:
J2SE, J2EE, J2ME, Jakarta, and so on.

MAC OS X

All about the Zen of OS X.

OS X is both the present and the future for Mac apps. Make
suggestions, offer up ideas, or boast about your new hardware.

OPEN SOURCE

Source code is good; understanding (open) source is better.

Discuss open source technologies and related topics such as
PHP, MySQL, Linux, Perl, Apache, Python, and more.

PROGRAMMING/BUSINESS

Unfortunately, it is.

Talk about the Apress line of books that cover software
methodology, best practices, and how programmers interact with
the “suits.”

WEB DEVELOPMENT/DESIGN

Ugly doesn’t cut it anymore, and CGI is absurd.

Help is in sight for your site. Find design solutions for your
projects and get ideas for building an interactive Web site.

SECURITY

Lots of bad guys out there—the good guys need help.

Discuss computer and network security issues here. Just don’t let
anyone else know the answers!

TECHNOLOGY IN ACTION

Cool things. Fun things.

It’s after hours. It’s time to play. Whether you’re into LEGO®

MINDSTORMS™ or turning an old PC into a DVR, this is where
technology turns into fun.

WINDOWS

No defenestration here.

Ask questions about all aspects of Windows programming, get
help on Microsoft technologies covered in Apress books, or
provide feedback on any Apress Windows book.

HOW TO PARTICIPATE:

Go to the Apress Forums site at http://forums.apress.com/.

Click the New User link.

BOB_Forums7x925 8/18/03 Page 336

	Pro .NET 2.0 Code and Design Standards in C#
	Table of Content
	PART 1 Code Policy Standards
	Chapter 1 Code Policy
	Chapter 2 Code Structure
	Chapter 3 Code Development
	Chapter 4 Code Documentation

	PART 2 Design Policy Standards
	Chapter 5 Design Policy
	Chapter 6 Design Structure
	Chapter 7 Design Development
	Chapter 8 Design Documentation

	PART 3 Pattern Standards
	Chapter 9 Patterns
	Chapter 10 Creational Patterns
	Chapter 11 Structural Patterns
	Chapter 12 Behavioral Patterns

	PART 4 References
	Appendix A Environment Variables and Remote Proxy Example

	List of Standards
	Glossary
	Index

