iOS Recipes

Tips and Tricks for Awesome iPhone and iPad Apps

Matt Drance
Paul Warren

Edited by Jill Steinberg

1
x
cestB0 | s g e D ke OTRA T 0o VeA O (ot o e ©
3 ;‘\‘ it cea odges Dake i o \l)“‘\\\:‘. ote e SRl e 0 Lo \\/\c “\\‘b‘\ RGNS ‘N\\\\\‘ \\e,s\\{\\z
\) an > o \ o o o
¢ 0y y AT 7 \v beaten AR o O) oy \, O 2D %) 5
RV e O eI S A A02 T e S0 00 B NeT i e BN co iV IR ol et

What Readers Are Saying About
iOS Recipes

If I had to pick just one person to learn from, to learn the best ways to do things
in i0S, it would be Matt Drance. And the book doesn’t disappoint. I made use of
a couple recipes immediately, and I look forward to using more of them, especially
Paul’s fun graphics and animation recipes!

>» Brent Simmons
Developer, NetNewsWire

i0S Recipes is the book that commonly answers the “How did they do that?”
question. It is an essential book for anyone who wants to sprinkle little bits of
awesome in their app.

» Justin Williams
Crew chief, Second Gear

This is a great book for both beginners and experienced developers. It's packed
with useful up-to-date examples showing how to add professional-grade features
to your projects, with great explanations and a focus on the code.

» Michael Hay
Master developer, Black Pixel LLC

I highly recommend this book. So many of these tips and tricks, aka recipes, get
lost or become difficult to find. I would rather pull a book off the shelf (or iBooks)
and look for that snippet of code I knew I saw in there rather than search the In-
ternet in hope that the site I saw it on still has it. This book will definitely be in
that collection.

» Marcus S. Zarra
Owner, Zarra Studios LLC

If you use just one of these recipes in your app, that alone is worth the price of
this book. I quickly lost count of the recipes that I found immediately useful. If
you're getting paid to write iOS apps, or you just value your time, you'd be crazy
not to have this book within arm’s reach at all times.

» Mike Clark
Founder, Clarkware

iOS Recipes

Tips and Tricks for Awesome iPhone and iPad Apps

Matt Drance
Paul Warren

The Pragmatic Bookshelf

Dallas, Texas « Raleigh, North Carolina

Pr matic
ookshelf

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at http://pragprog.com.

The team that produced this book includes:

Jill Steinberg (editor)

Potomac Indexing, LLC (indexer)
Kim Wimpsett (copyeditor)
David J Kelly (typesetter)

Janet Furlow (producer)

Juliet Benda (rights)

Ellie Callahan (support)

Copyright © 2011 Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-13: 978-1-934356-74-6

Printed on acid-free paper.

Book version: P1.0—July 2011

http://pragprog.com

Contents

Foreword e e . . e ix
Introduction . . e . . . e . xi
Acknowledgments e XV
Ul Recipes . . . e . . . 1
Recipe 1. Add a Basic Splash Screen Transition

Recipe 2. Stylize Your Splash Screen Transition 10
Recipe 3. Animate a Custom Notification View 16
Recipe 4. Create Reusable Toggle Buttons 21
Recipe 5. Form Rounded Views with Textured Colors 26
Recipe 6. Put Together a Reusable Web View 29
Recipe 7. Customize Sliders and Progress Views 33
Recipe 8. Shape a Custom Gesture Recognizer 36
Recipe 9. Create Self-contained Alert Views 40
Recipe 10. Make a Label for Attributed Strings 46
Recipe 11. Scroll an Infinite Wall of Album Art 51
Recipe 12. Play Tracks from a Wall of Album Art 56
Recipe 13. Have Fun with Autoscrolling Text Views 62
Recipe 14. Create a Custom Number Control 66
Table and Scroll View Recipes e 73
Recipe 15. Simplify Table Cell Productlon 74
Recipe 16. Use Smart Table Cells in a Nib 78
Recipe 17. Locate Table Cell Subviews 83
Recipe 18. Organize Complex Table Views 86
Recipe 19. Produce Two-Tone Table Views 92
Recipe 20. Add Border Shadows for Table Views 97
Recipe 21. Place Static Content in a Zoomable Scroll View 104

Recipe 22. Build a Carousel Paging Scroll View 109

Graphics Recipes

Recipe 23.

Draw Gradient- Fllled Bezier Paths

Recipe 24.

Create Dynamic Images with Multiple Animations

Recipe 25.

Make Composited and Transformed Views

Recipe 26.

Animate a Gradient Layer

Recipe 27.

Reshape Shadows

Recipe 28.

Display Animated Views

Recipe 29.

Construct a Simple Emitter

Recipe 30.

Curl the Page to a New View

Networking Recipes

Recipe 31.

Tame the Network Act1v1ty Indlcator

Recipe 32.

Simplify Web Service Connections

Recipe 33.

Format a Simple HTTP POST

Recipe 34.

Upload Files Over HTTP

Runtime Recipes

Recipe 35.

Leverage Modern Ob]ectlve C Class Des1gn

Recipe 36.

Produce Intelligent Debug Output

Recipe 37.

Design Smarter User Defaults Access

Recipe 38.

Scan and Traverse View Hierarchies

Recipe 39.

Initialize a Basic Data Model

Recipe 40.

Store Data in a Category

® vii

113
115
121
124
127
131
134
138
143

149
150
153
157
162

171
172
176
181
185
192
197

® viii

Download from Wow! eBook <www.wowebook.com>

Foreword

iOS is an amazing platform to develop for. Its incredible touch screen and
interaction paradigms have opened up entirely new categories of applications.
We've already seen brilliant developers come up with software we could have
barely imagined a few short years ago. The portability of the iPhone, iPod
touch, and iPad means that we take them everywhere with us, and their
reasonable battery life means that we use them constantly. Quite sim-
ply—and with apologies to the 2007 vintage MacBook Pro running Snow
Leopard that I develop software and process my photos with—iOS is pointing
the way to the future. It's obvious that computing has changed and won’t
be going back to the way it was in 2005.

Heady stuff, that. Who wouldn’t want to develop software for these amazing
devices?

On the other hand, the reality is that we've had only a few short years to
start learning how to best develop software for the iOS and its touch-based
frameworks. Sure, some of you have been creating software for Mac OS X
and have a bit of a head start over the vast majority of you who have come
to i0S development from other platforms. Make no mistake, however. No
matter what your background, we all find ourselves in a new land when it
comes to writing for i0S. Even though I wrote my first Cocoa app more than
a decade ago and have written more than my share of books and articles
on Mac OS X development, I've had more than a few head-scratching sessions
as I've worked with iOS and dove through its documentation in Xcode.
There’s so much to figure out, including how to create perfect splash screens,
how to make table and scroll views do our bidding most efficiently, how to
access the many network services modern social applications use, and how
to work with the i0OS runtime instead of fighting against it.

Luckily, we don’t have to sort all of these things out on our own. Matt and
Paul—the authors of this book—have assembled a set of examples and in-
corporated the latest, most current iOS software development best practices

http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

in this book of recipes. The result gives you a great set of specific solutions
to targeted problems that you can dip in and out of as the need arises.

It’s better than that, however. Even though this book is a collection of dis-
crete sections that can stand on their own quite well, reading straight
through them all gives more than a few valuable insights into how Matt and
Paul approach their craft. As I read through a beta draft of the book myself,
it felt much the same as watching some of my favorite chefs making good
food in their kitchen and learning from the way they approached the task
at hand, even the simple tasks that I thought I already had mastered.

So, pull up a chair. Join two of my favorite iOS developers and learn a few
things. Then, go out and make the kind software you could only dream
about a few years ago.

James Duncan Davidson

April 2011

http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Introduction

Your goal as a programmer is to solve problems. Sometimes the problems
are hard, sometimes they’re easy, and sometimes they're even fun. Maybe
they’re not even “problems” in the colloquial sense of the word, but you are
there to discover solutions.

Our goal as authors is to help you solve your problems better and more
quickly than before—preferably in that order. We decided to write a recipe-
style book that focuses on a specific set of tasks and problems that we attack
explicitly, rather than discuss programming issues at a high level.

That’s not to say we're not about educating in this book. The blessing of a
recipe book is that it gives you trustworthy solutions to problems that you
don’t feel like discovering on your own. The curse of a recipe book is that
you might be tempted to copy and paste the solutions into your project
without taking the time to understand them. It's always great to save time
by writing less code, but it’s just as great to think and learn about how you
saved that time and how you can save more of it moving forward.

If you are familiar with the iOS SDK and are looking to improve the quality
and efficiency of your apps, then this book is for you. We don’t teach you
how to write apps here, but we hope that this book helps you make them
better. If you're more of an advanced developer, you may find that you save
yourself time and trouble by adopting some of the more sophisticated tech-
niques laid out in the pages that follow.

We wrote many of these recipes with maximum reusability in mind. We
weren’t after demonstrating a technique or a snippet of code that simply
gets the job done. Instead, we set out to build solutions that are ready for
you to integrate into whatever iPad and iPhone projects you're working on.
Some might find their way into your projects with zero changes, but you
should feel free to use this recipe book as you would a traditional cookbook.
When cooking food from a recipe, you might add or remove ingredients based
on what you like, or need, in a meal. When it comes to your own apps and

http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

® Xii

projects, this book is no different: you are invited to extend and edit the
projects that accompany these recipes to fit your specific needs.

The recipes in this book help you get from start to finish, but we hope they
also encourage you to think about when and why to choose a certain path.
There are often multiple options, especially in an environment like Cocoa.
With multiple options, of course, come multiple opinions. In the interest of
consistency, we made some decisions early on about certain patterns and
approaches to use in this book. Some of these techniques may be familiar
to you, some may be employed in a way you hadn’t considered, and some
may be brand new to you. Regardless, we’d like to explain some of our deci-
sions up front so that there are no surprises.

Formatting and Syntax

We had to format a few code snippets in this book to fit the page. A verbose
language like Objective-C doesn’t always play nicely with character limits,
so some of the code may sometimes look unusual. You may encounter terse
method or variable names, a seemingly excessive number of temporary
variables, and odd carriage returns. We tried to preserve the “spirit” of Cocoa
convention as much as possible, but in a few places the printed page won.
Don’t be alarmed if the coding style suddenly changes from time to time.

Categories

A fair number of recipes make use of categories on standard Apple classes
to accomplish tasks. Categories are an incredibly powerful feature of the
Objective-C programming language, and they tend to alienate new Cocoa
programmers. Categories can also quickly pollute namespaces and create
(or mask) unexpected behavior in complex class hierarchies. They aren’t to
be feared, but they are to be respected. When considering a category, do
the following:

e Ask yourself whether a subclass or a new class would be more appropri-
ate. As The Objective-C Programming Language from Apple states, “A
category is not a substitute for a subclass.”

» Always prefix category methods when extending a class you don't control
(for example, UlApplication) to avoid symbol collisions with future APIs. All
new category methods in this book use a prp_ prefix.

e Never override defined methods such as -drawRect: in a category. You'll
break the inheritance tree by masking the source class implementation.

http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

* xiii

Synthesized Instance Variables

You'll find few, if any, instance variable (ivar) declarations in the header files
and examples that accompany this book. We've chosen to exclusively use
Objective-C 2.0 properties, with the modern runtime’s ivar synthesis feature,
for declaring class storage. The result is less typing and less reading so we
can concentrate on the recipe itself. We explain this further in Recipe 35,
Leverage Modern Objective-C Class Design, on page 172.

Private Class Extensions

Private class extensions are another relatively new feature of Objective-C,
and we use them frequently in this book. Private extensions can increase
readability by minimizing header noise, and they also paint a much clearer
picture for adopters or maintainers of your code. In Recipe 35, Leverage
Modern Objective-C Class Design, on page 172 we introduce both private class
extensions and synthesized instance variables for anyone unfamiliar with
either technique.

Cleanup in -dealloc

In addition to releasing all relevant instance variables in the -dealloc, our ex-
amples set them to nil. This practice is one of the most hotly debated topics
among Cocoa programmers, and both sides of the argument hold weight.
This book is not meant to participate in the debate at all: we set them to nil,
but that doesn’t mean you have to do so. If you don’t like nil-in--dealloc, feel
free to leave it out of your own code.

Blocks vs. Delegation

Blocks are a new feature added to C and Objective-C in Mac OS X Snow
Leopard and iOS 4.0. Because of the relative youth of this feature, the debate
on when to use blocks or delegates remains heated. In the book we use both
at what we felt were appropriate times. You're more than welcome to add
blocks to a recipe that uses delegates, or vice versa. Our goal is ultimately
to help you find the simplest and most natural solutions you can.

Above all, this book is about reducing complexity and repetition in your
code. Rather than go for the quick fix to a problem, we opted for solutions
that will be readily available for the long haul. We hope that the ideas in
these pages assist you in your journey as an iOS developer.

http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

® Xiv

Online Resources

This book has its own web page, http://pragprog.com/titles/cdirec, where
you can find more information about the book and interact in the following

ways:

e Access the full source code for all the sample programs used in this
book

e Participate in a discussion forum with other readers, iOS developers,
and the authors

e Help improve the book by reporting errata, including content suggestions
and typos

Note: If you're reading the ebook, you can also click the gray-green rectangle
before the code listings to download that source file directly.

http://pragprog.com/titles/cdirec
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Acknowledgments

We had an all-star cast of reviewers for this book, and they all deserve
recognition for giving us even a tiny bit of their incredibly valuable time.
Colin Barrett, Mike Clark, Michael Hay, Daniel Steinberg, Justin Williams,
and Marcus Zarra were generous, forthcoming, and motivated in helping
us make this book as good as it could be. The feedback we received over
email, Twitter, iChat, lunches, and the forums at PragProg.com was just as
important in getting us to this point. Thank you all for your contributions
to this book.

Matt Drance

You don’t write a book like this unless you love the subject. This book’s
subject was born from the tireless effort of hundreds of gifted and passionate
people in Cupertino over the better part of the past decade. I must thank
my many friends and former colleagues at Apple for creating this wonderful
platform: engineers, product managers, evangelists, technical writers, sup-
port staff...everyone. You can’t produce something like iOS without all hands
on deck at all times.

Although Apple made this book possible, Dave, Andy, Susannah, and the
rest of the PragProg staff made it reality. Our editor, Jill Steinberg, has been
a truly fearless and patient leader while I ran off to day jobs and other dis-
tractions. Writing a book has always been a personal goal of mine, and I
am pleased to have done it so early in life. Thank you all for giving me the
chance.

The biggest thanks of all, however, go to my friends and family for supporting
me through this journey. My wonderful wife and son are the real reason I
do anything. This indie developer gig ain’t bad, but it doesn’t come close to
being a husband or a dad.

http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

® Xvi

Paul Warren

I'd like to add my appreciation for the work of the wonderful people at Apple
for building this amazing platform that is our daily playground. Also to Jill
and the team at PragProg.com for providing a delightfully nurturing experi-
ence. And to our extraordinary community of developers who share and
encourage in equal measure.

The phrase “What do you think of this?” will no doubt haunt the dreams of
my beautiful wife and daughters, who showed remarkable patience with a
fledgling author in the house. For that, and for filling my life with the sounds
and love of an amazingly supportive family, I will be continually amazed
and grateful.

http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

CHAPTER 1

Ul Recipes

We could easily write an entire book on UI recipes. After all, the iOS SDK
has a seemingly endless library of classes and patterns that are definitely
worth discussing. Ultimately we decided to focus on presenting good solu-
tions to some simple patterns and problems—the kinds of things you find
yourself doing over and over again without quite remembering how you did
it the last time.

In this section we introduce recipes on view transitions, web content, touch
handling, and even custom controls. These recipes are ready for you to use
and might just inspire you to think about making your own code ready for
reuse in your next inevitable project.

http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Add a Basic Splash Screen Transition ¢ 2

Recipe 1

Add a Basic Splash Screen Transition

Problem

A harsh transition from the default image to the live Ul on startup creates
a bad first impression for your users. You want the transition from your
app’s startup image to your initial Ul to be as smooth as possible, but you're
not sure how to go about this in the cleanest way.

Solution

The visual experience of an iOS app launching goes something like this:
1. User taps an app icon.

2. App’s default image scales onto the screen.

3. App’s initial Ul is loaded into memory.

4. Ul appears on-screen and replaces the default image.

If your default image is a branded banner or some other stylized picture,
your users might see a harsh transition to the live Ul. You want to introduce
a smooth transition from the splash screen to your running application.
There are plenty of ways to do this, but let’s start with a very simple approach
that should be usable from just about anywhere. We'll start by tackling an
iPhone app in portrait orientation and then move on to an iPad variant that
supports all orientations. You can see the initial screens in Figure 1, Splash
screen vs. initial Ul, on page 3.

The simplest possible “splash screen transition” is a fade between the default
image and the Ul It’s cheap and easy and can make a world of difference
for the user experience. Think about it: this is the very first thing your users
see. There’s no reason for this introduction to be anything but smooth.

To fade the default image offscreen, we need to first show a view that displays
the same image and then fade that view out. This is pretty easy to do: we're
going to build a simple view controller that’s usable from just about any
project. This view controller takes a custom splash image and defines a -hide
method that executes the fade.

http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Add a Basic Splash Screen Transition ¢ 3

. ATET 2 12:47 PM =
Cocoa Titles
iOS Recipes >
Drance, Warren
iPad Programming >
Steinberg, Freeman
iPhone SDK Development >
Dudney, Adamson
Cocoa Programming >
The Steinberg
Pragmatic . —

Bookshelf Core Animation N
Dudney
Core Data >
Zarra
Beginning Mac Programming >
Isted
TextMate >
Gray
Programming Cocoa With Ruby >
Marick

Figure 1—Splash screen vs. initial Ul

Download BasicSplashScreen/PRPSplashScreen.h
@interface PRPSplashScreen : UIViewController {}

@property (nonatomic, retain) UIImage *splashImage;
@property (nonatomic, assign) BOOL showsStatusBarOnDismissal;
@property (nonatomic, assign) IBOutlet id<PRPSplashScreenDelegate> delegate;

- (void)hide;
@end

The interface also has a delegate property, declared as an id <PRPSplashScreen-
Delegate>. That PRPSplashScreenDelegate protocol is defined in a separate header
for communicating the splash screen’s status to an interested party: when
the screen appears, when the transition begins, and when it ends.

You've surely acted as a delegate in plenty of places, but you may not have
defined one before. Take a look at the protocol declaration and note the
@optional keyword, which means the delegate does not have to implement all
of the declared methods. An object that wants to know the splash screen’s
state can now declare itself as conforming to PRPSplashScreenDelegate, implement
one or more of the delegate methods, and assign itself to the splash screen’s
delegate property.

http://media.pragprog.com/titles/cdirec/code/BasicSplashScreen/PRPSplashScreen.h
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Add a Basic Splash Screen Transition ¢ 4

Download BasicSplashScreen/PRPSplashScreenDelegate.h
@protocol PRPSplashScreenDelegate <NSObject>

@optional

- (void)splashScreenDidAppear: (PRPSplashScreen *)splashScreen;

- (void)splashScreenWillDisappear: (PRPSplashScreen *)splashScreen;
- (void)splashScreenDidDisappear: (PRPSplashScreen *)splashScreen;

@end

PRPSplashScreen builds its view in -loadView so you don’t have to drag a XIB file
around every time you need it. This makes it a little easier to drop into
projects. The view property is set to a single image view that fills the screen
and centers its image.

Download BasicSplashScreen/PRPSplashScreen.m
- (void)loadView {
UIImageView *iv = [[UIImageView alloc] initWithImage:self.splashImage];
iv.autoresizingMask = UIViewAutoresizingFlexibleWidth |
UIViewAutoresizingFlexibleHeight;
iv.contentMode = UIViewContentModeCenter;
self.view = iv;
[iv releasel;

}

Now let’s take a look at the splashimage property. It’'s writable, so if you want
to set a custom transition image, you can. But you may just want to use
Default.png as the splash image, since the whole point of this recipe is to create
a smooth transition. So, we write a lazy initializer that loads Default.png by
default. If you're transitioning from your default image, you don’t need to
touch this property. We use +[Ullmage imageNamed:] to ensure an image with
the appropriate scale (for example, Default@2x.png for Retina displays) is used.

Download BasicSplashScreen/PRPSplashScreen.m
- (UIImage *)splashImage {
if (splashImage == nil) {
self.splashImage = [UIImage imageNamed:@"Default.png"l;

}
return splashImage;

}

Setting up the splash screen is easy: just present it as a modal view controller
off your application’s root view controller. We'll do this at launch time, before
showing the main window but after adding the root view. This timing is
important: the root view controller won’'t properly present a modal view
controller if its own view isn’t in place. In the BasicSplashScreen project accom-
panying this recipe, we also specify a dissolve-style (fade) transition in the

http://media.pragprog.com/titles/cdirec/code/BasicSplashScreen/PRPSplashScreenDelegate.h
http://media.pragprog.com/titles/cdirec/code/BasicSplashScreen/PRPSplashScreen.m
http://media.pragprog.com/titles/cdirec/code/BasicSplashScreen/PRPSplashScreen.m
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Add a Basic Splash Screen Transition ¢ 5

code. Because the splash screen uses the launch image by default, we don’t
need to specify one ourselves.

Download BasicSplashScreen/iPhone/AppDelegate_iPhone.m
- (BOOL)application: (UIApplication *)application
didFinishLaunchingWithOptions: (NSDictionary *)launchOptions {
[self.window addSubview:self.navController.view];
self.splashScreen.showsStatusBarOnDismissal = YES;
self.splashScreen.modalTransitionStyle =
UIModalTransitionStyleCrossDissolve;
[self.navController presentModalViewController:splashScreen
animated:NO]J;

[self.window makeKeyAndVisible];
return YES;

}

If you open MainWindow_iPhone.xib, you’ll see a PRPSplashScreen object defined in
the XIB. (See Figure 2, Connecting the splash screen in Interface Builder, on
page 6.) This object is connected to the app delegate’s splashScreen property
in Interface Builder. The previous code references this property in order to
kick off the splash transition.

Once the window becomes visible, the splash screen view controller receives
the standard UlViewController messages, including -viewDidAppear :. This is the
cue to begin the transition, and it’s very simple. We first alert the delegate
that the splash view appeared, in case the delegate needs to prepare for the
transition. It’s important to first check whether the delegate has implemented
the appropriate methods, because we declared them as optional in our del-
egate protocol. After messaging the delegate, we send -hide to perform the
splash transition. Note that we use performSelector:withObject:afterDelay: here,
which gives the UIKit run loop an opportunity to finalize the viewDidAppear
machinery. Dismissing a view controller from within its own viewWillAppear:
or viewDidAppear: method can confuse the system—each action needs to be
separate and discrete.

Download BasicSplashScreen/PRPSplashScreen.m
- (void)viewDidAppear: (BOOL)animated {
[super viewDidAppear:animated];
SEL didAppearSelector = @selector(splashScreenDidAppear:);
if ([self.delegate respondsToSelector:didAppearSelector]) {
[self.delegate splashScreenDidAppear:self];
}
[self performSelector:@selector(hide) withObject:nil afterDelay:0];

}

The -hide method uses the standard -dismissModalViewControllerAnimated: method
to perform the transition, after checking whether it should show the status

http://media.pragprog.com/titles/cdirec/code/BasicSplashScreen/iPhone/AppDelegate_iPhone.m
http://media.pragprog.com/titles/cdirec/code/BasicSplashScreen/PRPSplashScreen.m
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Add a Basic Splash Screen Transition ¢ 6

ano [BasicSplashScreen - MainWindow_iPhone.xib —
'1 MainWindow_iPhonexib | +
mi| 4 » | [qBasicSp_ [| - MainWindow_iPhone.xib + () Splash Screen n 2 W 0|
Outlet:
() Placeholders s

delegate % App Delegate ®

File's Owner searchDisplayControlier

() First Responder view

Referencing Outlets
reen

Obijects ® App Delegate ®
App Delegate
‘Window

@ Navigation Controller View

= [e | “ir 0D {}|& = £

The splash screen is initialized from the respective MainWindow XIB file and
connected to the app delegate’s splashScreen property. The app delegate is also
connected as the splash screen’s delegate.

Figure 2—Connecting the splash screen in Interface Builder

bar while fading out. This is added in case you don’t want the status bar
shown at launch but do want it on the Ul. To enable this effect, set UlStatus-
BarHidden to YES in your app’s Info.plist file, and set the splash screen’s
showsStatusBarOnDismissal property to YES. The splash screen manages the status
bar’s reactivation so you don’t need to do it yourself in one of the delegate
methods (see Figure 3, Hiding the status bar on launch, on page 7).

Download BasicSplashScreen/PRPSplashScreen.m
- (void)hide {
if (self.showsStatusBarOnDismissal) {
UIApplication *app = [UIApplication sharedApplication];
[app setStatusBarHidden:NO withAnimation:UIStatusBarAnimationFade];
}
[self dismissModalViewControllerAnimated:YES];
}

The splash screen also keeps the delegate informed of the transition’s
progress by relaying the standard -viewWillDisappear: and -viewDidDisappear: view
controller methods. The app delegate uses the corresponding -splashScreenDid-
Disappear: delegate method to remove the splash screen once it’s not needed.

Download BasicSplashScreen/iPhone/AppDelegate_iPhone.m
- (void)splashScreenDidDisappear: (PRPSplashScreen *)splashScreen {
self.splashScreen = nil;

}

http://media.pragprog.com/titles/cdirec/code/BasicSplashScreen/PRPSplashScreen.m
http://media.pragprog.com/titles/cdirec/code/BasicSplashScreen/iPhone/AppDelegate_iPhone.m
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Add a Basic Splash Screen Transition ¢ 7

fNno [BasicSplashScreen - BasicSplashScreen.xcodeproj —
'1 BasicSplashScreen.xcodeproj] +
ui | 4 » | [BasicSplashScreen
PROJECT summary | Info Build Settings Build Phases Build Rules
»n, BasicSplashScreen Executable file String HEXECUTABLE_NAMEF
- Icon file String

TARGETS Bundle identifier String com.pragprog. S{PRODUCT_NAME:rfc 1034identifier}
InfoDictionary version String 6.0
Bundle name String ${PRODUCT_NAME} T
Bundle OS Type code String APPL |
Bundle creator OS Type code String bigd |
Bundle version String Lo ‘
Application requires iPhone environmer Boolean YES |
Main nib file base name String MainWindow_iPhene |
Main nib file base name (iPad) String MainWindow_iPad |
Status bar is initially hidden 4+ ©@ Boolean YES c |
Supported interface orientations Array (1 item) }
Supported interface crientations (iPad) Array (4 items) |
Document Types (0) \
Exported UTIs (0) |
Imported UTs (0) f
URL Types (0) v

© o
Add Target Add

Set the UlStatusBarHidden key to YES to hide the status bar on launch. If you
want to show it in your main UlI, set the splash screen’s showsStatusBarOnDis-
missal property to YES.

Figure 3—Hiding the status bar on launch

Run the BasicSplashScreen project, targeting iPhone, to see the transition from
splash screen to Ul. The delegate connection is set in MainWindow_iPhone.xib
and MainWindow_iPad.xib, which is why you don’t see the delegate property ac-
cessed anywhere in the code. The PRPWebViewController class, which we use to
display the book details, is explained in detail in Recipe 6, Put Together a
Reusable Web View, on page 29.

The solution so far performs a portrait-only transition, which is usually fine
for most iPhone apps. iPad apps, on the other hand, are often expected to
work in both portrait and landscape modes. Because UlViewController provides
autorotation behavior for free and PRPSplashScreen inherits from UlViewController,
supporting multiple orientations is fairly simple. We’'ll start by creating an
iPad-specific subclass of PRPSplashScreen that adds support for all orientations.

Download BasicSplashScreen/iPad/PRPSplashScreen_iPad.m
- (BOOL)shouldAutorotateToInterfaceOrientation:
(UIInterfaceOrientation)toInterfaceOrientation {
return YES;

http://media.pragprog.com/titles/cdirec/code/BasicSplashScreen/iPad/PRPSplashScreen_iPad.m
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Add a Basic Splash Screen Transition ¢ 8

i0S Recipes: Tips and Tricks =
for Awesome iPhone and iPad |~ st
Apps .

About this Book.

i0S Recipes: Tips and Tricks =
for Awesome iPhoneand iPad | <=t

Core Animation

Core Data

Beginning Mac Progr
TextMate

Programming Cocoa With Ruby

Figure 4—Multiple orientations on iPad

This is the only addition this subclass makes; all the other behavior from
PRPSplashScreen is unchanged.

The only thing left is to supply a new splash image. When supporting mul-
tiple launch orientations, you supply both portrait and landscape variants
of your default image, and UIKit chooses the right one for you. However,
your code has no way of knowing which image was used and therefore can’t
choose the right one for your splash screen view. We could detect the device
orientation from UlDevice or the status bar orientation from UlApplication, but
there’s an even easier way. Since our goal is to keep the logo centered, we
simply make a new splash image resized to 1024x1024 pixels. This size
meets the maximum screen size in both orientations and will remain centered
while also filling the screen, no matter how the device is rotated. It will even
stay centered if a live rotation occurs before the transition. We include this
image in the app and set it as the splash screen’s designated splash image,
using the splashimage property defined by PRPSplashScreen.

http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Add a Basic Splash Screen Transition ¢ 9

Download BasicSplashScreen/iPad/AppDelegate_iPad.m

}

(BOOL)application: (UIApplication *)application

didFinishLaunchingWithOptions: (NSDictionary *)launchOptions {
[self.window addSubview:self.splitViewController.view];

UIImage *splash = [UIImage imageNamed:@"splash background ipad.png"];
self.splashScreen.splashImage = splash;

self.splashScreen.showsStatusBarOnDismissal = YES;
self.splashScreen.modalTransitionStyle =
UIModalTransitionStyleCrossDissolve;
[self.splitViewController presentModalViewController:splashScreen
animated:NO]J;

[self.window makeKeyAndVisible];

return YES;

The rest of the initialization code is identical to the iPhone variant. Run Ba-
sicSplashScreen for the iPad, and observe the seamless transition in both portrait
and landscape modes, as you can see in Figure 4, Multiple orientations on
iPad, on page 8. We've now produced an easily reusable basic transition

from our stylized default image to our app’s initial Ul, on both the iPhone
and iPad.

http://media.pragprog.com/titles/cdirec/code/BasicSplashScreen/iPad/AppDelegate_iPad.m
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Stylize Your Splash Screen Transition ¢ 10

Recipe 2

Stylize Your Splash Screen Transition

Problem

It’'s one thing to create a clean splash screen transition, but sometimes it
would be nice to go beyond a basic fade and give the transition more finesse.

Solution

In Recipe 1, Add a Basic Splash Screen Transition, on page 2 we discussed
the importance of a splash screen transition and how it makes a world of
difference in the user experience. In that first recipe we were primarily
concerned with establishing a clean structure to implement the transition,
but the fade transition, though elegant, was the simplest we could use. Al-
though we still want this introduction to be smooth, we can produce some
attractive alternatives by exploring some masking techniques combined with
Core Animation.

As in the previous example, in order to transition the default image offscreen,
first we need to present a view that displays the default image, and then we
need to gradually remove that view, revealing the primary interface view
that lies behind (see Figure 5, The CircleFromCenter transition in action, on
page 11).

Though we explore several examples in this recipe, they share the same
basic masking technique. We use a mask to exclude part of the image and
then animate the mask’s scale until the image has been effectively removed.

Every view we create is backed by a layer, a graphic element that is directly
drawn by the graphics processor. The layer behaves as an image store, al-
lowing the view to be manipulated (moved, scaled, rotated) without the need
to be redrawn. We can modify the layer properties directly, which gives us
further options for modifying the presentation of the view. One of these
properties is the mask property, which allows us to specify a second layer
whose alpha channel will be used to mask the image of the layer. The alpha
channel of an image specifies those areas that have varying levels of trans-
parency, from O (Transparent) to 1 (Opaque). When a layer mask is added
to the view, any sections of the mask image that are opaque display the

http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Stylize Your Splash Screen Transition * 11

Font Families

Arial Hebrew
Zapfino
Oriya Sangam MN
Cochin
Baskerville
Palatino
Chalkboard SE

Gurmukhi MN

Figure 5—The CircleFromCenter transition in action

original image, but any areas that are transparent or partially transparent
show through some, or all, of the view that lies below (see Figure 6, The
maslk used for CircleFromCenter transition, on page 12).

We use predefined images to create the contents for the mask layer, each
with different areas of opacity to help create the effect we are seeking. We
then animate an increase in scale of the mask layer, effectively expanding
its size, to completely cover the view and render it transparent.

The anchorPoint of the mask layer is extremely important. When we change
the scale of the layer using a transform, the stretch effect will be centered
around the anchorPoint, so our anchorPoint needs to match the center of the
transparent portion of our mask. This gives the effect that the clear portion
of the mask is expanding, resulting in the gradual reveal of the view below.
(See Figure 7, The mask used for ClearFromCenter transition, on page 12.)

In the viewDidLoad method, we add the copy of the Default.png image; this helps
create the impression that the original splash screen has not been removed.
To avoid using an UllmageView, we directly fill the contents of the view’s layer,
while also setting the scale factor to match the device. To avoid the replace-
ment image being offset by the status bar, set the contentMode to UlViewContent-
ModeBottom; this keeps the image anchored to the bottom of the screen.

Download SplashScreenReveal/PRPSplashScreenViewController.m

- (void)viewDidLoad {
self.view.layer.contentsScale = [[UIScreen mainScreen] scale]l;
self.view.layer.contents = (id)self.splashImage.CGImage;
self.view.contentMode = UIViewContentModeBottom;
if (self.transition == 0) self.transition = ClearFromRight;

report erratum -« discuss

http://media.pragprog.com/titles/cdirec/code/SplashScreenReveal/PRPSplashScreenViewController.m
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Stylize Your Splash Screen Transition ¢ 12

Figure 6—The mask used for CircleFromCenter transition

Figure 7—The mask used for ClearFromCenter transition

http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Stylize Your Splash Screen Transition ¢ 13

In the viewDidAppear: method we use a Switch statement to match the Enum to
the transition type. We need adjust only two elements for each one: the
mask image and the associated anchorPoint. The performSelector:withObject:afterDelay:
method is useful here because it allows us to create a delay before we activate
the animate method and start the transition.

Download SplashScreenReveal/PRPSplashScreenViewController.m
- (void)viewDidAppear: (BOOL)animated {
if ([self.delegate respondsToSelector:@selector(splashScreenDidAppear:)]) {
[self.delegate splashScreenDidAppear:self];
}
switch (self.transition) {
case CircleFromCenter:
self.maskImageName = @"mask";
self.anchor = CGPointMake(0.5, 0.5);
break;
case ClearFromCenter:
self.maskImageName = @"wideMask";
self.anchor = CGPointMake (0.5, 0.5);
break;
case ClearFromLeft:
self.maskImageName = @"leftStripMask";
self.anchor = CGPointMake(0.0, 0.5);
break;
case ClearFromRight:
self.maskImageName = @"RightStripMask";
self.anchor = CGPointMake(1.0, 0.5);
break;
case ClearFromTop:
self.maskImageName = @"TopStripMask";
self.anchor = CGPointMake(0.5, 0.0);
break;
case ClearFromBottom:
self.maskImageName = @"BottomStripMask";
self.anchor = CGPointMake (0.5, 1.0);
break;
default:
return;

}

[self performSelector:@selector(animate)
withObject:nil
afterDelay:self.delay];

}

The only active part of our transition is the animation of the mask layer.
We need to increase the scale, effectively enlarging the layer, until we have
stretched the transparent portion of the mask to cover the whole view. The
toValue we use here contains a bit of fudge factor but is calculated to make

http://media.pragprog.com/titles/cdirec/code/SplashScreenReveal/PRPSplashScreenViewController.m
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Stylize Your Splash Screen Transition ¢ 14

the mask large enough to complete the reveal. If we were to significantly
modify the mask image, we might need to adjust this calculation.

Download SplashScreenReveal/PRPSplashScreenViewController.m
- (void)animate {
if ([self.delegate respondsToSelector:@selector(splashScreenWillDisappear:)]1) {
[self.delegate splashScreenWillDisappear:self];

}

[self setMaskLayerwithanchor];

CABasicAnimation *anim = [CABasicAnimation
animationWithKeyPath:@"transform.scale"];

anim.duration = DURATION;

anim.toValue = [NSNumber numberWithInt:self.view.bounds.size.height/8];

anim.fillMode = kCAFillModeBoth;

anim.removedOnCompletion = NO;

anim.delegate = self;

[self.view.layer.mask addAnimation:anim forKey:@"scale" 1;

}

In the setMaskLayerwithanchor method, we need to create the mask layer for our
effect, set its contents to the appropriate mask image, and set the correct
anchor point to ensure that the seed point of opacity on the mask coincides
with the anchor point.

Download SplashScreenReveal/PRPSplashScreenViewController.m
- (void)setMaskLayerwithanchor {

CALayer *maskLayer = [CALayer layer];
maskLayer.anchorPoint = self.anchor;
maskLayer.frame = self.view.superview.frame;
maskLayer.contents = (id)self.maskImage.CGImage;
self.view.layer.mask = maskLayer;

}

Based on the selected Enum, we need to fetch and set the correct mask image
for the required transition.

Download SplashScreenReveal/PRPSplashScreenViewController.m
- (UIImage *)maskImage {

if (maskImage != nil) [maskImage releasel;

NSString *defaultPath = [[NSBundle mainBundle]
pathForResource:self.maskImageName
ofType:@"png"1;

maskImage = [[UIImage alloc]

initWithContentsOfFile:defaultPath];

return maskImage;

http://media.pragprog.com/titles/cdirec/code/SplashScreenReveal/PRPSplashScreenViewController.m
http://media.pragprog.com/titles/cdirec/code/SplashScreenReveal/PRPSplashScreenViewController.m
http://media.pragprog.com/titles/cdirec/code/SplashScreenReveal/PRPSplashScreenViewController.m
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Stylize Your Splash Screen Transition ¢ 15

The animationDidStop delegate is called once the animation has finished
stretching the mask layer. The transitioned view now appears to have been
removed, so all we need to do here is remove it from the SuperView and notify
the delegate that the transition has completed.

Download SplashScreenReveal/PRPSplashScreenViewController.m
- (void)animationDidStop: (CAAnimation *)theAnimation finished: (BOOL)flag {

self.view.layer.mask = nil;
[self.view removeFromSuperview];
if ([self.delegate respondsToSelector:@selector(splashScreenDidDisappear:)]) {
[self.delegate splashScreenDidDisappear:self];
}
}

The gradual reveal transition adds a little more polish to the opening of your
app and is easily extended to provide more options. The shape of the
transparent area of the mask is maintained as it scales, so alternate shapes
could yield interesting effects—star shapes, for example. You could even
use more complex shapes, such as faces, but it may then be necessary to
add an additional fade animation to remove any residual visual elements.

http://media.pragprog.com/titles/cdirec/code/SplashScreenReveal/PRPSplashScreenViewController.m
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Animate a Custom Notification View ¢ 16

Recipe 3

Animate a Custom Notification View

Problem

Sometimes you need to signal that something has changed in your
app—perhaps the completion of a background task. The notification mech-
anisms Apple provides—UIAlertView, for example—are generally modal, which
is not always ideal because the notification pulls the user’s attention away
from the main app and requires a touch to dismiss. How can you create a
nonmodal mechanism that attracts attention but can be easily ignored?

Solution

You need a solution that is reasonably generic and doesn’t depend too much
on the layout of your app. There are several techniques to choose from, but
for this recipe we’ll use a UlView that slides onto the screen and can be dis-
missed with a touch or can remove itself after a set amount of time. Using
a slide animation should get the user’s attention but still be easy to ignore,
assuming we don’t cover too much of the screen with the animation.

We create a UlView subclass, SlideinView, which exposes two methods:
showWithTimer:inView:from:, which controls its appearance and timing, and
viewWithimage:, which is a class method that instantiates the view from a Ulim-
age. We can also create the view in Interface Builder, which allows for more
dynamic notifications that can include labels and images. By using labels,
we can reuse slideinViews by simply modifying the text in the label (see Figure
8, SlideInView sample app, on page 17).

Download SlidelnView/SlideInView.m
+ (id)viewWithImage: (UIImage *)SlideInImage {

SlideInView *SlideIn = [[[SlideInView alloc] init] autoreleasel];

SlideIn.imageSize = SlideInImage.size;

Slideln.layer.bounds = CGRectMake(0, 0, SlideIn.imageSize.width,
SlideIn.imageSize.height);

SlidelIn.layer.anchorPoint = CGPointMake(0, 0);

SlideIn.layer.position = CGPointMake(-SlideIn.imageSize.width, 0);

SlidelIn.layer.contents = (id)SlideInImage.CGImage;

return Slideln;

http://media.pragprog.com/titles/cdirec/code/SlideInView/SlideInView.m
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Animate a Custom Notification View ¢ 17

@ =

Cocoa -

I"rugrdmm:?*
Ak S e

Core Animation
for Mar (5 X and Lhe iIfone

-

Use Interface
builder to
create a more
complex view

E=. iPhone
3= Recipes Foe

Figure 8—SlidelnView sample app

The class method viewWithimage: instantiates the view and sets the contents
property of the underlying layer to point to the Ullmage. The view position is
set to be offscreen, but it will need to be adjusted again depending on the
direction and position of the animation.

Download SlidelnView/SlideInView.m
- (void)awakeFromNib {

self.imageSize = self.frame.size;

self.layer.bounds = CGRectMake(0, 0, self.imageSize.width,
self.imageSize.height);

self.layer.anchorPoint = CGPointMake (0, 0);

self.layer.position = CGPointMake(-self.imageSize.width, 0);

}

The awakeFromNib() method is called after the instance of SlidelnView has already
been unpacked, so we just need to ensure that the view is positioned off the
screen.

report erratum « discuss

http://media.pragprog.com/titles/cdirec/code/SlideInView/SlideInView.m
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Download SlidelnView/SlideInView.m
switch (side) {
case SlideInViewTop:

Animate a Custom Notification View ¢ 18

// align view and set adjustment value

self.adjustY = self.imageSize.height;
fromPos = CGPointMake(view.frame.size.width/2-self.imageSize.width/2,
-self.imageSize.height);

break;
case SlideInViewBot:

self.adjustY = -self.imageSize.height;
fromPos = CGPointMake(view.frame.size.width/2-self.imageSize.width/2,
view.bounds.size.height);

break;
case SlideInViewlLeft:

self.adjustX = self.imageSize.width;
fromPos = CGPointMake(-self.imageSize.width,
view.frame.size.height/2-self.imageSize.height/2);

break;
case SlideInViewRight:

self.adjustX = -self.imageSize.width;
fromPos = CGPointMake(view.bounds.size.width,
view.frame.size.height/2-self.imageSize.height/2);

break;
default:
return;

}

The showWithTimer:inView:from:bounce: method takes three parameters: the desti-
nation view, the enum representing the side to slide from, and the option to
add an additional bounce element to the slide animation. Based on the side
enum, we set the adjustX or adjustY value that is used to calculate the end point
of the animation, and we set the fromPos value for the view to start offscreen

on the selected side.

Download SlidelnView/SlideInView.m
CGPoint toPos = fromPos;
CGPoint bouncePos = fromPos;
bouncePos.x += (adjustX*1.2);
bouncePos.y += (adjustY*1.2);
toPos.x += adjustX;

toPos.y += adjustY;

CAKeyframeAnimation *keyFrame

keyFrame.values = [NSArray
[NSValue
[NSValue
[NSValue
[NSValue
[NSValue
nill;

= [CAKeyframeAnimation
animationWithKeyPath:@"position"];
arrayWithObjects:

valueWithCGPoint
valueWithCGPoint
valueWithCGPoint
valueWithCGPoint
valueWithCGPoint

:fromPos],
:bouncePos],
:toPos],
:bouncePos],
:toPos],

http://media.pragprog.com/titles/cdirec/code/SlideInView/SlideInView.m
http://media.pragprog.com/titles/cdirec/code/SlideInView/SlideInView.m
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Animate a Custom Notification View ¢ 19

keyFrame.keyTimes = [NSArray arrayWithObjects:
[NSNumber numberWithFloat:0],
[NSNumber numberWithFloat:.18],
[NSNumber numberWithFloat:.5],
[NSNumber numberWithFloat:.75],
[NSNumber numberWithFloat:1],
nil];

The bounce option triggers the use of keyframe animation, adding the extra
values and keyTimes necessary to give the impression of a small bounce in the
appropriate direction. Keyframe animation is a powerful and flexible tech-
nique for creating nonstandard animation curves. The keyTimes are unit values
that represent fractions of the total time for the animation and correspond
to the position values.

Download SlidelnView/SlideInView.m

CABasicAnimation *basic = [CABasicAnimation animationWithKeyPath:@"position"];
basic.fromValue = [NSValue valueWithCGPoint:fromPos];

basic.toValue = [NSValue valueWithCGPoint:toPos];

self.layer.position = toPos;

[self.layer addAnimation:basic forKey:@"basic"];

If the bounce option is set to NO, we use the simpler CABasicAnimation on the
layer to achieve our slide-into position.

Download SlidelnView/SlidelnView.m
popInTimer = [NSTimer scheduledTimerWithTimeInterval:timer
target:self
selector:@selector(popIn)
userInfo:nil
repeats:NOJ;

Because we want the notification to be able to remove itself, we add an
NSTimer object that calls the popin method after the selected time.

Download SlidelnView/SlideInView.m

[UIView beginAnimations:@"slideIn" context:nill];
self.frame = CGRectOffset(self.frame, -adjustX, -adjustY);
[UIView commitAnimations];

To dismiss the view, we don’t need to worry about which animation style to
use—we can use a UlView animation block to reposition the view offscreen.
We simply use the negative value of the adjustment variables we calculated
earlier to ensure we animate off the screen in the correct direction.

Download SlidelnView/SlideInView.m

- (void)touchesBegan: (NSSet *)touches withEvent: (UIEvent *)event {
[popInTimer invalidate];
[self popIn];

http://media.pragprog.com/titles/cdirec/code/SlideInView/SlideInView.m
http://media.pragprog.com/titles/cdirec/code/SlideInView/SlideInView.m
http://media.pragprog.com/titles/cdirec/code/SlideInView/SlideInView.m
http://media.pragprog.com/titles/cdirec/code/SlideInView/SlideInView.m
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Animate a Custom Notification View ¢ 20

A single touch to the SlidelnView, which then triggers the touchesBegan:withEvent
delegate method, is enough for us to cancel the timer and trigger the slide-
back animation.

The MainViewController class shows the use of SlidelnView objects from each of
the four possible directions. The IBSlideln instance was built in Interface
Builder and shows how you can create more interesting, and possibly dy-
namic, notifications using multi-element views.

You can easily modify this technique to use different transition effects such
as fades or flips or perhaps increase the visibility of the notification with
additional animation in the view itself.

http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Create Reusable Toggle Buttons ¢ 21

Recipe 4

Create Reusable Toggle Buttons

Problem

You want to create a custom button that can be toggled between an “on”
and “off” state, and UlISwitch doesn’t quite fit your design. You want this button
to be reusable, without the need to write state management code in every
view controller that uses it.

Solution

The UIButton class is extremely versatile, making it relatively easy to implement
this feature with a small amount of customization. As a subclass of UlControl,
UIButton supports multiple states including highlighted, enabled, and selected.
We can set custom images, text, and text colors for all of these states. This
flexibility gives us all we need to add toggle support to a standard UlButton.

Let’s take a look at what needs to be done. We need three button images:
normal (or “off”), selected (or “on”), and a darker “pressed” mode. Figure 9,
An image-based toggle button, on page 22 illustrates what these three states
might look like. To make the process of supporting these states easier, and
even automated, we’ll declare a subclass. This PRPToggleButton will take care
of all the state and image management for us, so we don’t have to litter our

controller code with image names and text colors every time a button is
tapped. We can even set up the button in Interface Builder (IB), which allows
the setting of per-state images, text, and colors.

The subclass declaration is very simple: it declares a boolean property to
control whether the button automatically toggles itself when tapped, and it
declares a convenience method for setting up and managing the various
button state images.

Download ToggleButton/Classes/PRPToggleButton.h
@interface PRPToggleButton : UIButton {}

// Defaults to YES
@property (nonatomic, getter=isOn) BOOL on;
@property (nonatomic, getter=isAutotoggleEnabled) BOOL autotoggleEnabled;

http://media.pragprog.com/titles/cdirec/code/ToggleButton/Classes/PRPToggleButton.h
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Create Reusable Toggle Buttons ¢ 22

Carrier & 5:20 PM

PPToggleButton from 1B

PRPToggleButton from code

Plain UlButton

A 4

A demonstration of our PRPToggleButton in its off, on, and highlighted (finger
down) states

Figure 9—An image-based toggle button

+ (id)buttonWithOnImage: (UIImage *)onImage
offImage: (UIImage *)offImage
highlightedImage: (UIImage *)highlightedImage;

- (BOOL)toggle;
@end

Since most toggle buttons tend to be image-based, we create a convenience
method that abstracts redundant calls to -setBackgroundimage:forState:; therefore,
our controller code does less work and has fewer potential bugs. It stores
the “on” and “off” images in properties, to be used based on the correspond-
ing button state.

Download ToggleButton/Classes/PRPToggleButton.m
+ (id)buttonWithOnImage: (UIImage *)onImage
offImage: (UIImage *)offImage
highlightedImage: (UIImage *)highlightedImage {

http://media.pragprog.com/titles/cdirec/code/ToggleButton/Classes/PRPToggleButton.m
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Create Reusable Toggle Buttons ¢ 23

PRPToggleButton *button;

button = [self buttonWithType:UIButtonTypeCustom];

button.onImage = onlImage;

button.offImage = offImage;

[button setBackgroundImage:offImage forState:UIControlStateNormall;

[button setBackgroundImage:highlightedImage
forState:UIControlStateHighlighted];

button.autotoggleEnabled = YES;

return button;

}

Note the autotoggle behavior is explicitly set to YES, since BOOL ivars default
to NO.

We perform autotoggling by peeking into UlControl’s standard construct for
tracking touch events. We do this to find out when the button has received
a proper tap; the built-in control logic remains unchanged.

Download ToggleButton/Classes/PRPToggleButton.m
- (void)endTrackingWithTouch: (UITouch *)touch withEvent: (UIEvent *)event {
[super endTrackingWithTouch:touch withEvent:event];
if (self.touchInside && self.autotoggleEnabled) {
[self togglel];
}
}

The -toggle method flips the button’s on property as a convenience; the real
work is done in the -setOn: accessor method. This is where we switch the
default background image based on the managed on/off state.

Download ToggleButton/Classes/PRPToggleButton.m
- (BOOL)toggle {

self.on = !self.on;

return self.on;

}

Download ToggleButton/Classes/PRPToggleButton.m
- (void)setOn: (BOOL)onBool {
if (on != onBool) {
on = onBool;
[self setBackgroundImage:(on ? self.onImage : self.offImage)
forState:UIControlStateNormall;

}

Adding IB support to this class is trivial. Since IB uses an archiver to load
its objects from the nib, the code in +buttonWithOnimage:Offimage: is never exe-
cuted. So, we implement the -awakeFromNib method to properly initialize the
autotoggle behavior.

http://media.pragprog.com/titles/cdirec/code/ToggleButton/Classes/PRPToggleButton.m
http://media.pragprog.com/titles/cdirec/code/ToggleButton/Classes/PRPToggleButton.m
http://media.pragprog.com/titles/cdirec/code/ToggleButton/Classes/PRPToggleButton.m
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Create Reusable Toggle Buttons ¢ 24

Download ToggleButton/Classes/PRPToggleButton.m

- (void)awakeFromNib {
self.autotoggleEnabled = YES;
self.onImage = [self backgroundImageForState:UIControlStateSelected];
self.offImage = [self backgroundImageForState:UIControlStateNormall;
[self setBackgroundImage:nil forState:UIControlStateSelected];

}

Using the toggle button from Interface Builder is now a snap. We just drag
a Button object from the Library into our parent view, select the Identity
inspector, and enter PRPToggleButton as the button’s class. If the class name
does not autocomplete this as we type, it’s possible the class was not found.
We'll know for sure when we run the project: if we see Unknown class PRPToggle-
Button in Interface Builder file in the console, then either the class is missing from
the compiled application or its name does not match what we entered in
the Custom Class field. We need to check our spelling in both places. Figure
10, Using PRPToggleButton in Interface Builder, on page 25 shows this XIB
configuration in Xcode 4.

Once we've configured the class identity, we select the Attributes inspector,
where we set our on, off, and highlighted images for the Selected, Default,
and Highlighted State Configurations, respectively. There is a small amount
of trickery here. Our PRPToggleButton merely switches two images in and out
of the Normal control state, but we need a place to put the “on” image in
IB. We temporarily use the Selected state for this and then clean up after
ourselves in -awakeFromNib. Take another look at that code to see how it works.

Run the application, and note that toggling is handled automatically; you
need to add a target and action only if your application logic needs to respond
to state changes as they happen. You can check the button’s on property at
any time to find out its toggle state.

That’s it! We now have built-in, reusable toggle support for any application,
from code or nib. If we were using a standard UlButton, we’d have to include
a significant amount of management code in every view controller that
wanted to do this. With all this logic factored away in our custom button,
our controller code becomes much cleaner.

Download ToggleButton/Classes/ToggleButtonViewController.m
self.toggleButton = [PRPToggleButton buttonWithOnImage:self.buttonOnImage
offImage:self.button0ffImage

highlightedImage:highlightedImage];

CGFloat buttonWidth = self.buttonOnImage.size.width;

CGFloat buttonHeight = self.buttonOffImage.size.height;

self.toggleButton.frame = CGRectMake(kButtonX, 100.0, buttonWidth, buttonHeight);

[self.view addSubview:toggleButton];

http://media.pragprog.com/titles/cdirec/code/ToggleButton/Classes/PRPToggleButton.m
http://media.pragprog.com/titles/cdirec/code/ToggleButton/Classes/ToggleButtonViewController.m
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Create Reusable Toggle Buttons ¢ 25

8n6n [ToggleButton - ToggleButtonViewController.xib:)
1 ToggleButtonViewController [
| 4 > | [ToggleButtan » [|Resources ' ToggleBurtonViewController.xib) | View » _ Toggle Button | DB B8 % ©

m ¥ Button

+

[Placeholders

Type | Custom B
File's Gwner a
@) First Responder [==) State Config |_Default B

i Objaces Title [Default Title
View PPToggleButton from 1B : Image | Default Image -
Label - PPToggleButto.. Background | off.png v
Font | Helvetica Bold 15.0 T
Text Color | IS |
Shadow Color [== | Default o+
Shadow Offset o) o|@)
Width Height
(] Highlight Reverses Direction
Drawing (] Shows Touch On Highlight
L # Highlighted Adjusts Image
Disabled Adjusts Image

Line Break |_Truncate Middle s
Edge | Content B

Inset ot

PRPToggleButton uses the standard button states and background images to
manage its on/off state, so we can set those right from IB. Remember to set
the custom class in the Identity inspector, or you'll end up with a plain
UlButton.

Figure 10—Using PRPToggleButton in Interface Builder

Responding to taps on PRPToggleButton is the same as it would be for any
other button: just add a target/action in your code, or from IB, and do
whatever is appropriate after checking the on property.

Download ToggleButton/Classes/ToggleButtonViewController.m
- (IBAction)toggleButtonTapped: (id)sender {
if ([sender isOn]) {
NSLog(@"Toggle button was activated!");
} else {
NSLog(@"Toggle button was deactivated!");
}
}

Be sure to look at the accompanying UlButton-based implementation alongside
this code in -[ToggleButtonViewController viewDidLoad] and -[ToggleButtonViewController
plainButtonTapped:] to see the how much effort is saved. Not only are we doing
less work with PRPToggleButton, but the controller’s role is now clearer: the
action code merely responds to the state change, rather than manages it.

http://media.pragprog.com/titles/cdirec/code/ToggleButton/Classes/ToggleButtonViewController.m
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Form Rounded Views with Textured Colors * 26

Recipe 5

Form Rounded Views with Textured Colors

Problem

The UlView subclasses, buttons, and labels you use look a little dull, and you
want to add some texture to the background—ideally with rounded edges
and a border.

Solution

In iOS all UlViews are layer-backed—meaning that a view or subview is built
on its own hardware-based layer. This is great for performance because you
can reposition, resize, and transform views, without having to redraw them.
But you can also directly manipulate the properties of a view’s underlying
layer for greater access to the inner workings of the view.

Each UlView, or subclass, exposes a layer property that is the read-only refer-
ence to its underlying layer, but all the properties of that layer can be
modified. The CALayer properties of interest here include backgroundColor, border-
Width, borderColor, and cornerRadius. Setting any of these on the CAlLayer of any
subview of UlView has a direct impact on the presentation of the view (see
Figure 11, Rounded views with texture, on page 27).

We can’t get the desired look—textured, with rounded edges and a bor-
der—simply by setting the backgroundColor of the layer; for that we need to use
the UlColor class method colorWithPatternimage:, which creates a repeating pattern
from any image. We do need to pick the images carefully, though; otherwise,
the joins in the repeats are too obvious. To avoid this problem, we can use
a larger image, perhaps closer in size to the view we plan to use it with. This
is especially important if we are using the pattern for the backgroundColor
property, because we will effectively be setting a background image for the
view. This is really easy to use because it’s still a UlColor, so any method or
property that expects a UlColor object will gladly accept the patterned image.

After creating our set of patterned colors, we instantiate a normal UlButton
object. We then modify the layer properties we need to give the desired effect,
setting the comerRadius to give a rounded rectangle with an 8-point border
width and using the patterned colors for the borderColor and the backgroundColor.

http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Form Rounded Views with Textured Colors * 27

'iPod @ 1:07 PM @ =

A Muchillonger: LLabel

Figure 11—Rounded views with texture

Setting up target/action pairs for the TouchDown and TouchUplnside events, with
alternate values for the borderColor and cornerRadius properties, gives clear
feedback to the user that the button has been touched.

Download RoundedView/Classes/RoundedViewViewController.m
// Defining the Textured colors from UIImages

thickColor = [UIColor colorWithPatternImage:
[UIImage imageNamed:@"thickColorGradient.png"1];

UIColor *grayGradient = [UIColor colorWithPatternImage:

[UIImage imageNamed:@"grayGradient.png"11;
UIColor *steelColor = [UIColor colorWithPatternImage:

[UIImage imageNamed:@"simpleSteel.png"11;
UIColor *steelTexture = [UIColor colorWithPatternImage:

[UIImage imageNamed:@"steelTexture.png"11;
UIColor *woodTexture = [UIColor colorWithPatternImage:

[UIImage imageNamed:@"woodTexture.png"11;

CGRect buttonFrame = CGRectMake (60, 60, 200,80);

UIButton *roundButton = [[UIButton alloc] initWithFrame:buttonFrame];
roundButton.layer.borderWidth = 8;

roundButton.layer.borderColor = thickColor.CGColor;

http://media.pragprog.com/titles/cdirec/code/RoundedView/Classes/RoundedViewViewController.m
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Form Rounded Views with Textured Colors * 28

roundButton.layer.backgroundColor = grayGradient.CGColor;
roundButton.layer.cornerRadius = roundButton.bounds.size.height/4;
[self.view addSubview:roundButton];

[roundButton addTarget:self action:@selector(buttonPressed:)
forControlEvents:UIControlEventTouchDown];

[roundButton addTarget:self action:@selector(buttonReleased:)
forControlEvents:UIControlEventTouchUpInside |

UIControlEventTouchUpOutside];

Here we are using a UlView with a UlLabel subview. The view’s layer is manip-
ulated like the button earlier to give an interesting background for the label.

Download RoundedView/Classes/RoundedViewViewController.m

UILabel *1labelA = [self centeredLabel:buttonFrame label:@"Colorful"];
labelA.font = [UIFont fontWithName:@"MarkerFelt-Thin" size:36];
labelA.textColor = thickColor;

[roundButton addSubview:labelA];

CGRect viewFrame = CGRectMake(30, 210, 260, 50);

UIView *steelView = [[UIView alloc] initWithFrame:viewFrame];
steelView.layer.borderWidth = 5;

steelView.layer.borderColor = steelColor.CGColor;

steelView. layer.backgroundColor = steelTexture.CGColor;
steelView. layer.cornerRadius = steelView.bounds.size.height/4;
[self.view addSubview:steelView];

UILabel *1labelB = [self centeredLabel:viewFrame label:@"Brushed Steel"];
labelB.font = [UIFont fontWithName:@"TrebuchetMS-Bold" size:28];
labelB.textColor = steelColor;

[steelView addSubview:labelB];

We could go even further and modify the same properties directly on the
UlLabel’s layer to achieve the same effect.

Download RoundedView/Classes/RoundedViewViewController.m
CGRect labelFrame = CGRectMake(10, 340, 300, 40);
UILabel *1label = [self centeredLabel:labelFrame

label:@"A Much Longer Label"];
label.frame = labelFrame;
label.font = [UIFont fontWithName:@"Thonburi-Bold" size:24];
label.textColor = steelColor;
label.shadowColor = [UIColor blackColor];
label.layer.borderWidth = 4;
label.layer.borderColor = steelColor.CGColor;
label.layer.backgroundColor = woodTexture.CGColor;
label.layer.cornerRadius = label.frame.size.height/2;
[self.view addSubview:label];

Other properties are exposed by the CAlayer class that are not available to
the UlView class, so it’s well worth checking out the iOS documentation to
see what other interesting effects you can achieve.

http://media.pragprog.com/titles/cdirec/code/RoundedView/Classes/RoundedViewViewController.m
http://media.pragprog.com/titles/cdirec/code/RoundedView/Classes/RoundedViewViewController.m
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Put Together a Reusable Web View ¢ 29

Recipe 6

Put Together a Reusable Web View

Problem

Some of the most elegant and customized native apps on the market still
rely on web content now and then, if only to open a URL without punting
to Safari. UlWebView is an elegant class that’s easy to use, but there’s a decent
amount of support code that goes into displaying even a single web page.

Solution

We can save ourselves time and effort over multiple projects by making a
basic web view that’s displayable either modally or as part of a navigation
stack. The controller takes a URL from the calling code and automatically
loads the content when the view is loaded. It displays an activity indicator
view while the page loads, and it performs a smooth transition once the
content is ready to be displayed. We fire up this controller, display it with
just a few lines of code, then get back to more important business. Figure
12, A reusable web view controller, on page 30 shows this view in action.

The PRPWebViewController class creates a basic, resizable root view containing
a UlWebView for displaying web content and creates a large white UlActivityindi-
catorView to tell the user that content is loading. We create the hierarchy in
code so we don’t need to move a xib file every time we reuse this class.

The activity indicator is centered within the main view at load time, and all
of the Margin autoresizing masks are set to ensure it will stay centered
whenever the main view is resized or rotated.

Download SmartWebView/PRPWebViewController.m

activityIndicator.autoresizingMask = UIViewAutoresizingFlexibleTopMargin |
UIViewAutoresizingFlexibleRightMargin |
UIViewAutoresizingFlexibleBottomMargin |
UIViewAutoresizingFlexibleLeftMargin;

CGRect aiFrame = self.activityIndicator.frame;

CGFloat originX = (self.view.bounds.size.width - aiFrame.size.width) / 2;

CGFloat originY = (self.view.bounds.size.height - aiFrame.size.height) /

aiFrame.origin.x = floorl(originX);

aiFrame.origin.y = floorl(originY);

self.activityIndicator.frame = aiFrame;

2;

http://media.pragprog.com/titles/cdirec/code/SmartWebView/PRPWebViewController.m
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Put Together a Reusable Web View ¢ 30

a1 ATET B 9:15 AM

{0S Recipes: Tips and Tricks "= serch 0

for Awesome iPhone and iPad ~ 0SRecis

more polished and more
maintainable than ever

Buy Now

Our web view controller initially shows an activity indicator and then fades
the web content on-screen when it's loaded.

Figure 12—A reusable web view controller

We flatten the calculated origin to avoid nonintegral coordinates, which can
blur a view’s appearance.

Our controller implements the standard UlWebViewDelegate methods to detect
when the request is finished. If the load was successful, it hides the activity
indicator and fades the web view on-screen. This gives a smoother transition
while the user waits for content to appear. The controller also pulls the title
element from the loaded HTML and sets that as its navigation title.

Download SmartWebView/PRPWebViewController.m
- (void)webViewDidFinishLoad: (UIWebView *)wv {
[self.activityIndicator stopAnimating];
[self fadeWebViewIn];
if (self.title == nil) {
NSString *docTitle = [self.webView
stringByEvaluatingJavaScriptFromString:@"document.title;"];
if ([docTitle length]l > 0) {
self.navigationItem.title = docTitle;
b
}
SEL sel didFinishLoading = @selector(webControllerDidFinishLoading:);
if ([self.delegate respondsToSelector:sel didFinishLoading]) {
[self.delegate webControllerDidFinishLoading:self];
}

http://media.pragprog.com/titles/cdirec/code/SmartWebView/PRPWebViewController.m
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Put Together a Reusable Web View ¢ 31

Depending on the content you load, UlWebView can be a bit unpredictable. If the page
you request contains iframes or dynamic content, your code may receive multiple
webViewDidFinishLoad: messages. Because every individual use case may have a different
definition of “finished,” this recipe does not do anything to audit or monitor these
multiple callbacks. You're free to tailor the class to your specific needs.

Note that if the view controller’s title property was already set, the code re-
spects that. So if you're using PRPWebViewController and you want a static
navigation title rather than one based on the web content, just set the title
property on the view controller when you create it.

A backgroundColor property is also exposed for easy customization of the view’s
appearance while loading.

Download SmartWebView/PRPWebViewController.m
- (void)setBackgroundColor: (UIColor *)color {
if (backgroundColor != color) {
[backgroundColor releasel];
backgroundColor = [color retain];
[self resetBackgroundColor];

}

Why create a special property for the background color? Why not just set
it on the view directly? Because depending on when we do that, we might
force the view to load prematurely. The resetBackgroundColor method sets the
color only if and when the view is loaded. Calling this method from setBack-
groundColor: and viewDidLoad respects both the caller’s wishes and UIKit’s lazy
loading mechanics.

Download SmartWebView/PRPWebViewController.m
- (void)resetBackgroundColor {
if ([self isViewLoaded]) {
UIColor *bgColor = self.backgroundColor;
if (bgColor == nil) {
bgColor = [UIColor whiteColor];
}

self.view.backgroundColor = bgColor;

}

There’s also a convenient BOOL property that generates a system Done button,
which is useful when presenting the controller modally. Bar button items
are among those things we create all the time but are rather verbose; in this
case, we've packaged one inside our reusable controller.

report erratum -« discuss

http://media.pragprog.com/titles/cdirec/code/SmartWebView/PRPWebViewController.m
http://media.pragprog.com/titles/cdirec/code/SmartWebView/PRPWebViewController.m
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Put Together a Reusable Web View ¢ 32

Download SmartWebView/PRPWebViewController.m
- (void)setShowsDoneButton: (BOOL)shows {
if (showsDoneButton != shows) {
showsDoneButton = shows;
if (showsDoneButton) {
UIBarButtonItem *done = [[UIBarButtonItem alloc]
initWithBarButtonSystemItem:UIBarButtonSystemItemDone
target:self
action:@selector(doneButtonTapped:)];
self.navigationItem.rightBarButtonItem = done;
[done release];
} else {
self.navigationItem.rightBarButtonItem = nil;

}
}

To do all this work on our behalf, PRPWebViewController needs to act as the web
view’s delegate. But what if our code cares about a load failure or needs to
know when the page finished loading? Delegation is a “one-to-one” relation-
ship, so we can’t just steal the UlWebViewDelegate role from PRPWebViewController
or we’ll break its functionality. So in this case, we'll declare a new PRPWeb-
ViewControllerDelegate delegate to echo relevant events to an interested party.

Download SmartWebView/PRPWebViewControllerDelegate.h
@class PRPWebViewController;

@protocol PRPWebViewControllerDelegate <NSObject>

@optional
- (void)webControllerDidFinishLoading: (PRPWebViewController *)controller;

- (void)webController: (PRPWebViewController *)controller
didFailLoadWithError: (NSError *)error;

- (BOOL)webController: (PRPWebViewController *)controller
shouldAutorotateToInterfaceOrientation: (UIInterfaceOrientation)orientation;
@end

The autorotation method allows you to dictate the controller’'s behavior
based on your own UI. All of these protocol methods are optional: you have
no responsibility to implement any of them. The PRPWebViewController can still
act completely on its own.

You now have a self-sufficient web view that presents a smooth transition
to users as its content loads. All you need to do to include web content in
your apps is create a PRPWebViewController, set a URL, and display it.

http://media.pragprog.com/titles/cdirec/code/SmartWebView/PRPWebViewController.m
http://media.pragprog.com/titles/cdirec/code/SmartWebView/PRPWebViewControllerDelegate.h
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Customize Sliders and Progress Views ¢ 33

Recipe 7

Customize Sliders and Progress Views

Problem

The standard look of UlSlider and UlProgressViews may not match the rest of
your app. Unfortunately, Interface Builder allows you to adjust only the
width. What can you do to give these elements a different look?

Solution

To go beyond the basics, we need to dip into code to explore some of the
available image properties and understand how to use stretchable Ulimages.

UlSlider has a set of properties that aren’t exposed by Interface Builder: current-
MaximumTrackimage, currentMinimumTrackimage, and currentThumbimage. These prop-
erties give a lot of flexibility by letting us specify alternate images for the
control. To get the most out of them, we need to understand how stretchable
Ullmages work (see Figure 13, Custom slider demo screen, on page 34).

We create a stretchable Ulimage from an image file just like any other image,
but we must also set the leftCapWidth and topCapHeight values. We do this by
calling the stretchablelmageWithLeftCapWidth:topCapHeight method to define the
length of the sections that will remain unstretched. If an image is 100 points
in width and we define the leftCapWidth as 49, then the 50th point would be
the one that is stretched (or duplicated), and the remaining 50 points would
remain fixed. If we then set the image length to 200, then 150 copies of the
stretched point are inserted to fill out the image. As you can see, we need
to pick the image and stretch points carefully so it still looks correct when
it is stretched. Check out the images in the sample code. The images appear
to be oddly shaped but achieve the look we want when they are stretched.

Download CustomSlider/Classes/CustomSliderViewController.m
UIImage* sunImage = [UIImage imageNamed:@"sun.png"l;
[customSlider setThumbImage:sunImage forState:UIControlStateNormal];

We can use the thumbimage property to set a new image for the draggable el-
ement of the slider. In this case, the sun image looks quite striking compared
to the default white dot but also serves to hide the join between the two
track images.

http://media.pragprog.com/titles/cdirec/code/CustomSlider/Classes/CustomSliderViewController.m
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Customize Sliders and Progress Views ¢ 34

liPod & @ =

Start Progress Timer

Figure 13—Custom slider demo screen

Download CustomSlider/Classes/CustomSliderViewController.m
customProgress.userInteractionEnabled = NO;

UIImage* sliderPoint = [UIImage imageNamed:@"sliderPoint.png"];
[customProgress setThumbImage:sliderPoint forState:UIControlStateNormall];

UIImage *leftStretch = [[UIImage imageNamed:@"leftImage.png"]
stretchableImageWithLeftCapWidth:10.0
topCapHeight:0.0];
[customProgress setMinimumTrackImage:leftStretch
forState:UIControlStateNormall;

UIImage *rightStretch = [[UIImage imageNamed:@"rightImage.png"]
stretchableImageWithLeftCapWidth:10.0
topCapHeight:0.0];
[customProgress setMaximumTrackImage:rightStretch
forState:UIControlStateNormall;

We are not creating a true UIProgressView here but instead are using a partly
disabled slider to achieve the same effect and in so doing gain the ability to
use the same styling technique as for the UlSlider. A subtle element here is
that the image we use for the thumb image is much smaller and effectively

Download from-Wow!-eBook-<www-wowebook.com> -
I’EpOI’t erratum - discuss

http://media.pragprog.com/titles/cdirec/code/CustomSlider/Classes/CustomSliderViewController.m
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Customize Sliders and Progress Views ¢ 35

acts as an end cap for the end of the minimum track image. With the userln-
teractionEnabled property set to NO and no obvious draggable element present,
the slider appears to be a stylized progress bar.

The demo app includes a timer, activated by the button at the top of the
screen, to demonstrate how you can easily create an animated progress bar
by modifying the value property of the UlSlider.

http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Shape a Custom Gesture Recognizer ¢ 36

Recipe 8

Shape a Custom Gesture Recognizer

Problem

Apple provides a set of basic gesture recognizers, but what if you want to
go further and recognize something more complex?

Solution

Introduced by Apple with iOS 3.2, gesture recognizers provide the best solu-
tion for all your touch recognition needs. They are easy to use, and you
don’t have to write any of the tedious code usually required to track the
various stages of touch input. You have recognizers at your disposal for all
of the basic gestures: tap, pinch, rotate, swipe, pan, and long press. But to
go further and recognize something more complex, like a circle, you need
to build a custom gesture recognizer.

We base our new class, PRPCircleGestureRecognizer, on the abstract class UlGestur-
eRecognizer, but we need to include UIKit/UIGestureRecognizerSubclass.h, because
this declares additional methods and properties we may need. We also need
to decide whether to make our gesture recognizer discrete or continuous.
A discrete recognizer triggers the delegate action only when the gesture has
been fully recognized, whereas the continuous gesture triggers the delegate
action for each of the touch events that it considers to be valid.

Choosing the appropriate recognizer type depends on how we want to recog-
nize a circle. Each touch point must lie close to the circumference, allowing
for a defined amount of deviation. Unfortunately, neither the center point
nor the radius of the circle is defined; therefore, the position of the circum-
ference is unknown. To solve this problem, each of the touch points must
be stored until the gesture is completed so that the extreme points of the
gesture can be used to calculate the diameter and, from that, establish the
position of the center point and radius. A circle gesture recognizer, therefore,
must be discrete, because it can validate the touch points only once the
user gesture has been completed.

The base class handles all touches and makes the required callbacks to the
delegate action, so we must include a call to Super in each of the delegate

http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Shape a Custom Gesture Recognizer ¢ 37

methods we implement. Equally important is the underlying state machine
that the base class monitors to track the recognition process. For a discrete
recognizer, the state property can be set to only one of these valid states: '

e UlGestureRecognizerStatePossible
e UlGestureRecognizerStateRecognized
e UlGestureRecognizerStateFailed

UlGestureRecognizerStatePossible is the initial state and indicates that the recogni-
tion process is ongoing. If recognition succeeds, then the state property will
be set to UlGestureRecognizerStateRecognized, and the delegate action selector will
be called. If, at any point, a touch point is found outside the calculated
bounds of the circle, the state property will be set to UlGestureRecognizerStateFailed,
triggering a call to the reset method to reinitialize the process and wait for a
new touch sequence.

Download CircleGestureRecognizer/PRPCircleGestureRecognizer.m
- (void)touchesBegan: (NSSet *)touches withEvent: (UIEvent *)event {
[super touchesBegan:touches withEvent:event];
if ([self numberOfTouches] !'= 1) {
self.state = UIGestureRecognizerStateFailed;
return;
}
self.points = [NSMutableArray arrayl];
CGPoint touchPoint = [[touches anyObject] locationInView:self.view];
lowX = touchPoint;

lowY = lowX;
if (self.deviation == 0) self.deviation = 0.4;
moved = NO;

}

The touchesBegan:withEvent: method acts as our initializer, and the mutable
array, which will hold our stored touch points, is instantiated. The first
touch point is then added, and the low X and Y values are set to the current
point so that they can be used later in calculating the longest line. If the
deviation property has not already been set, then a default value is assigned.

Download CircleGestureRecognizer/PRPCircleGestureRecognizer.m
- (void)touchesMoved: (NSSet *)touches withEvent: (UIEvent *)event {
[super touchesMoved:touches withEvent:event];
if ([self numberOfTouches] != 1) {
self.state = UIGestureRecognizerStateFailed;

}

1. A continuous recognizer actually requires more states. For the full list of states, refer
to the iPad developer guide at Apple.com.

http://media.pragprog.com/titles/cdirec/code/CircleGestureRecognizer/PRPCircleGestureRecognizer.m
http://media.pragprog.com/titles/cdirec/code/CircleGestureRecognizer/PRPCircleGestureRecognizer.m
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Shape a Custom Gesture Recognizer ¢ 38

if (self.state == UIGestureRecognizerStateFailed) return;
CGPoint touchPoint = [[touches anyObject] locationInView:self.view];

if (touchPoint.x > highX.x) highX = touchPoint;
else if (touchPoint.x < lowX.x) lowX = touchPoint;
if (touchPoint.y > highY.y) highY = touchPoint;
else if (touchPoint.y < lowY.y) lowY = touchPoint;
[self.points addObject:[NSValue valueWithCGPoint:touchPoint]];
moved = YES;

}

The touchesMoved:withEvent: method is called for each point tracked. Multiple
touches are considered invalid, and if these are identified, the state property
is set to UlGestureRecognizerStateFailed. At this stage, because the circumference
is not yet known, the touch point cannot yet be validated, so it is added to
the points array. To calculate the diameter, the outlying points on the x- and
y-axes need to be established. If the touch point exceeds one of the currently
stored outliers, its value is reset to the touch point. To avoid invalidly recog-
nizing a single point as a circle, the moved Boolean is set to YES to indicate
that the touchesMoved:withEvent: method has been called at least once.

Download CircleGestureRecognizer/PRPCircleGestureRecognizer.m
- (void)touchesEnded: (NSSet *)touches withEvent:(UIEvent *)event {
[super touchesEnded:touches withEvent:event];
if (self.state == UIGestureRecognizerStatePossible) {
if (moved && [self recognizeCircle]) {
self.state = UIGestureRecognizerStateRecognized;
} else {
self.state = UIGestureRecognizerStateFailed;

}

}

The touchesEnded:withEvent: method needs only to check that touches have
moved, and then it calls the recognizedCircle method to perform the meat of
the validation.

Download CircleGestureRecognizer/PRPCircleGestureRecognizer.m
- (BOOL) recognizeCircle {
CGFloat tempRadius;
CGPoint tempCenter;
CGFloat xLength = distanceBetweenPoints(highX, lowX);
CGFloat yLength = distanceBetweenPoints(highY, lowY);
if (xLength > yLength) {
tempRadius = xLength/2;
tempCenter = CGPointMake(lowX.x + (highX.x-lowX.x)/2,
lowX.y + (highX.y-lowX.y)/2);
} else {

http://media.pragprog.com/titles/cdirec/code/CircleGestureRecognizer/PRPCircleGestureRecognizer.m
http://media.pragprog.com/titles/cdirec/code/CircleGestureRecognizer/PRPCircleGestureRecognizer.m
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Shape a Custom Gesture Recognizer ¢ 39

tempRadius = ylLength/2;
tempCenter = CGPointMake(lowY.x + (highY.x-lowY.x)/2,
lowY.y + (highY.y-lowY.y)/2);

}

CGFloat deviant = tempRadius * self.deviation;

CGFloat endDistance =
distanceBetweenPoints([[self.points objectAtIndex:0] CGPointValuel,
[[self.points lastObject] CGPointValuel);
if (endDistance > deviant*2) {
return NO;

}

for (NSValue *pointValue in self.points) {
CGPoint point = [pointValue CGPointValue];
CGFloat pointRadius = distanceBetweenPoints(point, tempCenter);
if (abs(pointRadius - tempRadius) > deviant) {
return NO;
}
}
self.radius tempRadius;
self.center = tempCenter;
return YES;

}

The recognizedCircle method calculates the distance between the touch points
stored in the outlier variables LowX, HighX, LowY, and highY, the longest of these
being taken as the diameter. From this, the center point and radius are
easily calculated. A deviant value is then calculated based on the radius
and the deviation property. To ensure that a full circle was recognized, the
first and last touch points must not be too far apart (twice the deviant value);
if they are, the state property will be set to UlGestureRecognizerStateFailed. Each
of the points in a points array is validated by ensuring that the distance be-
tween the point and the circle center point is not more or less than the radius
plus or minus the deviant. If all our points are validated, then the radius
and center properties are set, and the return value is set to YES, signifying
success. The touchesEnded:withEvent: method then sets the state property to
UlGestureRecognizerStateRecognized.

When successful, the base class code triggers a call to the delegate action
selector, which is specified when the gesture recognizer is instantiated—in
this case, the circleFound method in mainViewControllerm. In our example here,
a smiley face, sized to match the radius and position of the recognized circle,
is drawn to the UlView that was attached to the recognizer.

Though the code here is specific to recognizing a circle gesture, you can
easily adapt this technique to recognize any type of gesture that you require.

http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Create Self-contained Alert Views * 40

Recipe 9

Create Self-contained Alert Views

Problem

The UlAlertView class gives you an easy, consistent interface for presenting
important information to your users. The logic for responding to user input
in those views, however, can be cumbersome and error-prone. Wouldn't it
be great to have a version of UlAlertView that is self-contained, easy to use,
and easy to interact with from any controller code?

Solution

UIKit has a generous library of Apple-designed controls that are ready to
use in any app, and UlAlertView is a great example: you get an Apple-designed
dialog with a title, message, and buttons, and it even dims the screen to
draw the user’s attention to the alert.

Creating an alert is easy enough: you initialize it and call show, and Apple
does the rest. If all you're doing is giving the user a message, with no action
to be taken, this is a straightforward flow. If you present the user with
choices, however, and need to respond to those choices, you have some
more work to do: set your code as the alert view’s delegate, and implement
one or more of the UlAlertViewDelegate protocol methods such as
-alertView:clickedButtonAtindex:.

It’s inside this delegate method where things can get not only cumbersome
but dangerous. You need to determine which button was tapped in order
to respond accordingly. But what’s the best way? You have a few choices:

¢ Do a hard-coded comparison/switch against the button indexes
e Send -buttonTitleAtindex to the alert view, and compare the strings

The buttonindex passed to your delegate method isn’t particularly useful, be-
cause you initially passed the button titles as varargs to the standard
-initWithTitle:message:... method. Perhaps you've recorded the indices as constants
elsewhere, but then you've introduced undesirable coupling into your code.

http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Create Self-contained Alert Views * 41

The second option—comparing button titles—is much less risky: provided
you've defined the strings as globals or localized strings, the code should
still work even after rearranging the button titles.

Either of these approaches carries some refactoring headaches and requires
a nontrivial amount of scaffolding every time you want to throw up an alert
view. It can get particularly ugly if your view controller presents multiple
alerts based on the situation: now it’s not just “which button,” but “which
button in which alert?”

Download PRPAlertView/ScrapCode.m
- (void)alertView: (UIAlertView *)alertView
willDismissWithButtonIndex: (NSInteger)buttonIndex {
NSString *buttonTitle = [alertView buttonTitleAtIndex:buttonIndex];
if (alertView == self.offlineAlertView) {
if ([buttonTitle isEqualToString:PRPOKTitle]) {

// ...

} else if ([buttonTitle isEqualToString:PRPCancelTitlel]) {
// ...

}

} else if (alertView == self.serverErrorAlertView) {

if ([buttonTitle isEqualToString:PRPTryAgainTitlel]) {
// ...

}

}

The delegate model is well-established in Cocoa Touch, but we can make
the whole process much nicer with the help of blocks. We're going to create
a subclass, PRPAlertView, that streamlines the process of presenting alerts.
Afterwords, you’'ll have a reusable component that does in one method what
used to require three or four. By using blocks, we can sidestep the delegate
code and define the desired behavior for each button at creation time—not
later, when the context of which-button-in-which-alert has been lost.

The subclass interface is very simple. We've avoided any initialization or
delegates and used class methods that show alerts immediately. The first
method takes a “cancel” or default button title, one other button title, and
respective blocks to invoke when each button is tapped. We also define a
simple block type (no return, no arguments) to make the code more readable.

Download PRPAlertView/PRPAlertView/PRPAlertView.h
+ (void)showWithTitle: (NSString *)title
message: (NSString *)message
cancelTitle: (NSString *)cancelTitle
cancelBlock: (PRPAlertBlock)cancelBlock
otherTitle: (NSString *)otherTitle
otherBlock: (PRPAlertBlock)otherBlock;

http://media.pragprog.com/titles/cdirec/code/PRPAlertView/ScrapCode.m
http://media.pragprog.com/titles/cdirec/code/PRPAlertView/PRPAlertView/PRPAlertView.h
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Create Self-contained Alert Views * 42

Download PRPAlertView/PRPAlertView/PRPAlertView.h
typedef void(”~PRPAlertBlock) (void);

There’s also a simplified “show and do nothing” convenience method for
when you just need to tell the user something but no response is needed.

Download PRPAlertView/PRPAlertView/PRPAlertView.h
+ (void)showWithTitle: (NSString *)title
message: (NSString *)message
buttonTitle: (NSString *)buttonTitle;

The implementation is straightforward: both of these convenience methods
create, show, and autorelease an alert using our newly defined -initWithTitle:...
method listed next. This method saves the passed blocks and button titles
into copy-style properties for comparison later. It also acts as its own dele-
gate—if one or more of the handler blocks is actually passed.

Download PRPAlertView/PRPAlertView/PRPAlertView.m
+ (void)showWithTitle: (NSString *)title
message: (NSString *)message
cancelTitle: (NSString *)cancelTitle
cancelBlock: (PRPAlertBlock)cancelBlk
otherTitle: (NSString *)otherTitle
otherBlock: (PRPAlertBlock)otherBlk {
[[[[self alloc] initWithTitle:title message:message
cancelTitle:cancelTitle cancelBlock:cancelBlk
otherTitle:otherTitle otherBlock:otherBlk]
autorelease] showl];

}

Download PRPAlertView/PRPAlertView/PRPAlertView.m
- (id)initWithTitle: (NSString *)title
message: (NSString *)message
cancelTitle: (NSString *)cancelTitle
cancelBlock: (PRPAlertBlock)cancelBlk
otherTitle: (NSString *)otherTitle
otherBlock: (PRPAlertBlock)otherBlk {

if ((self = [super initWithTitle:title
message:message
delegate:self
cancelButtonTitle:cancelTitle
otherButtonTitles:otherTitle, nil])) {

if (cancelBlk == nil && otherBlk == nil) {
self.delegate = nil;

}

self.cancelButtonTitle = cancelTitle;

self.otherButtonTitle = otherTitle;

self.cancelBlock = cancelBlk;

http://media.pragprog.com/titles/cdirec/code/PRPAlertView/PRPAlertView/PRPAlertView.h
http://media.pragprog.com/titles/cdirec/code/PRPAlertView/PRPAlertView/PRPAlertView.h
http://media.pragprog.com/titles/cdirec/code/PRPAlertView/PRPAlertView/PRPAlertView.m
http://media.pragprog.com/titles/cdirec/code/PRPAlertView/PRPAlertView/PRPAlertView.m
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Create Self-contained Alert Views ¢ 43

self.otherBlock = otherBlk;
}

return self;

}

The init method, as well as the properties, are tucked away in a private class
extension to simplify the interface defined in the header file. This increases
readability and encourages consumers to use only the convenience methods,
which is the easiest way to use the class.

Download PRPAlertView/PRPAlertView/PRPAlertView.m
@interface PRPAlertView ()

@property (nonatomic, copy
@property (nonatomic, copy
@property (nonatomic, copy
@property (nonatomic, copy

PRPAlertBlock cancelBlock;
PRPAlertBlock otherBlock;
NSString *cancelButtonTitle;
NSString *otherButtonTitle;

—_— — — —

- (id)initWithTitle: (NSString *)title
message: (NSString *)message
cancelTitle: (NSString *)cancelTitle
cancelBlock: (PRPAlertBlock)cancelBlock
otherTitle: (NSString *)otherTitle
otherBlock: (PRPAlertBlock)otherBlock;

@end

The no-response-necessary convenience method just calls the same code
with no handler blocks. The actual logic behind this class, then, is completely
isolated.

Download PRPAlertView/PRPAlertView/PRPAlertView.h
+ (void)showWithTitle: (NSString *)title
message: (NSString *)message
buttonTitle: (NSString *)buttonTitle;

So, how do these blocks help us avoid the delegate? As you saw earlier,
PRPAlertView acts as its own delegate and implements a UlAlertViewDelegate method
internally to match up the blocks with their respective button titles.

Download PRPAlertView/PRPAlertView/PRPAlertView.m
- (void)alertView: (UIAlertView *)alertView
willDismissWithButtonIndex: (NSInteger)buttonIndex {
NSString *buttonTitle = [alertView buttonTitleAtIndex:buttonIndex];
if ([buttonTitle isEqualToString:self.cancelButtonTitle]) {
if (self.cancelBlock) self.cancelBlock()
} else if ([buttonTitle isEqualToString:self.otherButtonTitle]) {
if (self.otherBlock) self.otherBlock();
}

http://media.pragprog.com/titles/cdirec/code/PRPAlertView/PRPAlertView/PRPAlertView.m
http://media.pragprog.com/titles/cdirec/code/PRPAlertView/PRPAlertView/PRPAlertView.h
http://media.pragprog.com/titles/cdirec/code/PRPAlertView/PRPAlertView/PRPAlertView.m
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Create Self-contained Alert Views * 44

On Blocks and Retain Cycles

This recipe uses convenience methods that obscure the created UlAlertView—the ini-
tializer is hidden in a private class extension. This reinforces the concept that alerts
are “temporary” elements and not really meant to stick around for very long. This
concept is more important now that we're using blocks to handle the buttons, be-
cause blocks retain any objects they reference. Imagine your view controller references
self from the cancelBlock passed to this class and then saves the alert in a property
for future reuse. You'd then have a view controller retaining an alert view...which
has a block property...which retains your view controller.

If your view controller is retained by the alert’s block, it won’t be deallocated until
the retained alert (and therefore its block) is explicitly released. The alert, though,
is stuck in a property on the view controller. This is called a retain cycle, and it can
lead to serious memory leaks. We avoid this problem altogether by never exposing
the autoreleased alert view we create so that nobody can retain it. Alert views are
short-lived and inexpensive to allocate, so there should be no need to hold onto
them.

You've probably noticed that this class allows only two buttons, which masks
the UlAlertView support for a vararg list of “otherButtonTitles.” This keeps the
code simpler, and let’s be honest: how many three-or-more-button alert
views have you seen out there? If you think you need more than two buttons,
you may well have a design problem to work out before you write any more
code. That said, it’s not too hard to add vararg support to this class (see
Recipe 36, Produce Intelligent Debug Output, on page 176 for an example) and
maintain the blocks and titles in a dictionary for easy lookup. We chose to
keep it simple—both technically and aesthetically.

With PRPAlertView in place, the controller code becomes much simpler. Here’s
what we had to do before PRPAlertView to show a two-button alert with respons-
es for each button:

Download PRPAlertView/ScrapCode.m
- (void)showAlert {
UIAlertView *alert = [[UIAlertView alloc] initWithTitle:@"Uh Oh"
message:@"Something bad happened."
delegate:self
cancelButtonTitle:PRPAlertButtonTitleRunAway
otherButtonTitles:PRPAlertButtonTitleOnward, nil];
[alert show];
[alert release];
}
(void)alertView: (UIAlertView *)alertView
willDismissWithButtonIndex: (NSInteger)buttonIndex {
NSString *buttonTitle = [alertView buttonTitleAtIndex:buttonIndex];

http://media.pragprog.com/titles/cdirec/code/PRPAlertView/ScrapCode.m
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Create Self-contained Alert Views * 45

if ([buttonTitle isEqualToString:PRPAlertButtonTitleAbort]) {

[self runAway];
} else if ([buttonTitle isEqualToString:PRPAlertButtonTitleOnward]) {

[self proceedOnward];
}
}

Here’s how it looks with PRPAlertView:

Download PRPAlertView/ScrapCode.m
- (void)showAlert {
[PRPAlertView showWithTitle:@"Uh Oh"
message:@"Something bad happened."
cancelTitle:PRPAlertButtonTitleAbort
cancelBlock:"(void) {
[self runAwayl];

}
otherTitle:PRPAlertButtonTitleOnward

otherBlock:”(void) {
[self proceedOnward];
}
1;

}
With this recipe, we no longer have to worry about memory management,
refactoring, coupling, or the complication of multiple interactive alerts that
use the same controller. Everything the alert ever needs to do is defined in
the very spot it’s created. It removes the ambiguity of what code responds
to the alert’s buttons, which saves you and whoever inherits your code the
trouble of finding where those old delegate methods might be living.

http://media.pragprog.com/titles/cdirec/code/PRPAlertView/ScrapCode.m
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Make a Label for Attributed Strings * 46

Recipe 10
Make a Label for Attributed Strings

Problem

The iOS label class cannot display an attributed string—that is, a string
that contains “rich text” formats such as underline, colors, or mixed fonts.

Solution

When Apple added the Core Text APIs to iOS for lower-level text rendering,
it also needed to include the NSAttributedString class, providing significantly
more power for formatting text. Although OS X has the ability to render at-
tributed strings through UI controls, iOS currently does not.

Core Text is a very deep API, dealing with glyphs and kerning, text runs,
and lines, so it would be nice if you could solve this problem without having
to dig too far.

Thankfully, Core Text does provide a very simple method that we can use
to create a line of attributed text. We can then take that line and draw it
into any graphics context (see Figure 14, TableView of attributed labels, on
page 47). It makes sense to make our new class, PRPAttributedLabel, a UlView
subclass because that provides the simplest way to get access to the
graphics context we need.

The drawRect: method contains only three lines of code that deal directly with
creating and rendering the attributed string. The majority of the code deals
with fetching a reference to the context, saving and restoring the context
state, and translating the context coordinates to match the inverted iOS
coordinate system.

The first method, CTLineCreateWithAttributedString, creates a very simple Core Text
line without the need for a typesetter object, because typesetting is done for
us under the hood. We then set the position for the line within the frame of
the view, using CGContextSetTextPosition. The current text position is in the
center of the frame, so we need to calculate the offsets relative to that; in
this simple case, we start at the left edge and move up one quarter of the
frame’s height from the bottom. None of this positioning takes into account

http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Make a Label for Attributed Strings ¢ 47

iPod 2 2:47 PM =

TSHITHO ™ oo

KannadaSangamMN
KannadaSangamMN-Bold
MalayalamSangamMN
MalayalamSangamMN-Bolc
MarkerFelt-Thin
MarkerFelt-Wide

N oteworthy-Bold

Noteworthy-Light

OriyaSangamMN
OriyaSangamMN-Bold

Figure 14—TableView of attributed labels

the attributes of the string, such as font size, so we will need to adjust our
label frame size to fit the fonts used in our attributed strings. Just as with
UlLabel, it may take a little trial and error to get the lines to fit well.

Finally, we call the CTLineDraw method to draw the line into the graphics
context at the specified point.

Download coreText/Classes/PRPAttributedLabel.m
- (void)drawRect: (CGRect)rect {
if (self.attributedText == nil)
return;
CGContextRef context = UIGraphicsGetCurrentContext();
CGContextSaveGState(context);
CGContextTranslateCTM(context, self.bounds.size.width/2,
self.bounds.size.height);
CGContextScaleCTM(context, 1.0, -1.0);
CTLineRef line = CTLineCreateWithAttributedString((CFAttributedStringRef)
self.attributedText);
CGContextSetTextPosition(context, ceill(-self.bounds.size.width/2),
ceill(self.bounds.size.height/4));
CTLineDraw(line, context);
CGContextRestoreGState(context);
CFRelease(line);

http://media.pragprog.com/titles/cdirec/code/coreText/Classes/PRPAttributedLabel.m
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Make a Label for Attributed Strings ¢ 48

We are usually happy to let the @synthesize directive build our property setters
for us, but in this case we need to make sure that any changes to the at-
tributed string trigger a redraw so that the label is updated for every change.
To do that, we need to create a customized setter for the attributedString prop-
erty, which will contain the additional setNeedsDisplay call to force the redraw.

Download coreText/Classes/PRPAttributedLabel.m
- (void)setAttributedText: (NSAttributedString *)newAttributedText {
if (attributedText != newAttributedText) {
[attributedText release];
attributedText = [newAttributedText copyl;
[self setNeedsDisplay];

}

In the sample code we use a custom UlTableViewController to show a list of
available fonts. This is mostly boilerplate code, but in the tableView:cellForRowAtIn-
dex: delegate method we replace the standard label with our PRPAttributedLabel.
We set its size to match the full tableView width and height of the row.

Download coreText/Classes/FontsTableViewController.m
- (UITableViewCell *)tableView: (UITableView *)tableView
cellForRowAtIndexPath: (NSIndexPath *)indexPath {

static NSString *Cellldentifier = @"Cell";

UITableViewCell *cell =
[tableView dequeueReusableCellWithIdentifier:CellIdentifier];
if (cell == nil) {
cell = [[[UITableViewCell alloc] initWithStyle:UITableViewCellStyleDefault
reuseldentifier:Cellldentifier] autorelease];
CGRect frame = CGRectMake(10, 0, self.tableView.frame.size.width,
self.tableView. rowHeight);
PRPAttributedLabel *attLabel =
[[PRPAttributedLabel alloc] initWithFrame:frame]l;
attLabel.backgroundColor = [UIColor whiteColor];
attLabel.tag = 999;

[cell.contentView addSubview:attlLabell;
[attLabel releasel;

}

PRPAttributedLabel *attLabel = (id)[cell.contentView viewWithTag:999];
attLabel.attributedText =

[self.attributedFontNames objectAtIndex:indexPath.row];
return cell;

http://media.pragprog.com/titles/cdirec/code/coreText/Classes/PRPAttributedLabel.m
http://media.pragprog.com/titles/cdirec/code/coreText/Classes/FontsTableViewController.m
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Make a Label for Attributed Strings * 49

There are many ways to create attributed strings—often they are built from
retrieved XML data—but in this example we need a simple way to build
some from normal strings so that we have something to display in our new
label.

The illuminatedString method takes an input string and a font to create an at-
tributed string, the first character of which will be set to be slightly larger
and also bright red. The remainder of the string will be set to dark gray. We
build up the string attribute by attribute, setting the colors and their ranges
first and then adding the font with its various sizes.

Download coreText/Classes/FontsTableViewController.m
- (NSAttributedString *)illuminatedString: (NSString *)text
font: (UIFont *)AtFont{

int len = [text lengthl];

NSMutableAttributedString *mutaString =

[[[NSMutableAttributedString alloc] initWithString:text] autorelease];

[mutaString addAttribute: (NSString *) (kCTForegroundColorAttributeName)
value: (id) [UIColor darkGrayColor].CGColor
range:NSMakeRange(1, len-1)];

[mutaString addAttribute: (NSString *) (kCTForegroundColorAttributeName)
value: (id) [UIColor redColor].CGColor
range:NSMakeRange (0, 1)];

CTFontRef ctFont = CTFontCreateWithName((CFStringRef)AtFont. fontName,

AtFont.pointSize,
NULL) ;

[mutaString addAttribute: (NSString *) (kCTFontAttributeName)
value: (id)ctFont
range:NSMakeRange (0, 1)];

CTFontRef ctFont2 = CTFontCreateWithName((CFStringRef)AtFont.fontName,

AtFont.pointSize*0.8,
NULL) ;

[mutaString addAttribute: (NSString *) (kCTFontAttributeName)
value: (id)ctFont2
range:NSMakeRange(1, len-1)];

CFRelease(ctFont);

CFRelease(ctFont2);

return [[mutaString copy] autorelease];

}

The underlinedString method follows a very similar pattern but adds an underline
attribute for the first six characters using the kCTUnderlineStyleSingle attribute
identifier—again, a little artificial, but it demonstrates the effect quite nicely.

Download coreText/Classes/FontsTableViewController.m

[mutaString addAttribute: (NSString *) (kCTUnderlineStyleAttributeName)
value: [NSNumber numberWithInt:kCTUnderlineStyleSingle]
range:NSMakeRange (0, 6)1;

http://media.pragprog.com/titles/cdirec/code/coreText/Classes/FontsTableViewController.m
http://media.pragprog.com/titles/cdirec/code/coreText/Classes/FontsTableViewController.m
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Make a Label for Attributed Strings ¢ 50

As it stands, the PRPAttributedLabel class is not as fully featured as the UlLabel
class. If we wanted to enhance the features, to include better positioning
options perhaps, we would need to dig further into Core Text to extract the
line and glyph data. With that you could calculate the length and maximum
height of the line, in points, and adjust the line positioning to allow for op-
tions such as centering or left/right alignment.

http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Scroll an Infinite Wall of Album Art * 51

Recipe 11

Scroll an Infinite Wall of Album Art

Problem

Scroll views are naturally constrained by the size of the view that is being
scrolled. Scroll in any direction, and soon enough you’ll hit the edge of the
view and most likely bounce back. Currently, there is no easy way to make
the contents of a UlScrollView wrap and still keep the feel of a continuous scroll.

Solution

Instead of hitting an edge, it would be nice to have the view wrap back
around, for a more free-flowing experience. You could set up the scroll view
to snap back to one edge as you reach the other, but this would create a
visual jump and immediately stop any scrolling in progress. How then can
you create an infinitely wrapping scroll view?

One option is to use a scroll view containing a very large view. If the view
being scrolled is large enough, it will seem as if there are no boundaries at
all. However, filling a huge view with enough data to give the impression of
wrapping poses a problem with memory usage. When you write code for
mobile devices, you have the constant need to preserve memory. Even with
newer devices that have huge amounts of physical memory, multitasking
requires you to consider your app footprint even when it’s inactive.

What you need is a solution that instantiates a very large view and yet uses
minimal memory—not quite as impossible as it sounds thanks to CATiledLayer,
the class underlying the mapping APIs. Think of the Maps app as having
the exact features you are looking for: seemingly endless scrolling and with
the view filled with images on demand (see Figure 15, Example of wall of
album art, on page 53).

The CATiledLayer class breaks up its contents into tiles of fixed size. As one of
these tiles scrolls onto the display, it calls the drawRect method of the associ-
ated view with the rect parameter set to the size of the image to be drawn.
This means that only the tiled areas that are currently visible, or about to
be visible, need to be drawn, saving processing time and memory.

http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Scroll an Infinite Wall of Aloum Art ¢ 52

We are now a step closer to creating the continuous wrapping effect we are
after. Because each tile is drawn in our drawRect method, we can control the
image it contains. With a little math we can ensure that when we reach the
end of the list of available images we simply start again with the first.

In this recipe we use a rich source of graphics data that is often overlooked:
the iPod library. The only disadvantage is that the Xcode simulator does not
give us access to the library, which means we need a little extra code to
avoid an access error and to display an alternate image.

The MainViewController class contains the initialization code for the scroll view
and an instance of our PRPTiledView class. The scroll view is our window into
the tiled album view, so it just needs a frame no larger than the device
window. Its contentsize, on the other hand, must be set to the size of the album
view—in this case, a very large rect.

We want to steer clear of UlScrollViewDecelerationRateNormal—the default decelera-
tionRate for a scroll view. While providing smooth, fast scrolling, it would
cause a visible delay in the appearance of the album art, because the images
would need to be constantly refreshed. By using UlScrollViewDecelerationRateFast
instead, we can keep the scroll speed in check and ultimately provide a
better user experience.

As cool as it is to have a huge virtual view, it would be completely pointless
if the view started at the top-left corner, the default, because we would hit
an edge almost immediately. So, we need to set the contentOffset property, our
current distance from the top-left corner, to the center point of the view.
With that set, we could literally scroll around for hours and still not hit a
real edge. As with the contentsize, we need to set the frame size of the tiles view
to the same very large rect.

Download Infinitelmages/MainViewController.m
- (void)viewDidLoad {
[super viewDidLoad];

width = self.view.bounds.size.width;
height = self.view.bounds.size.height;
CGRect frameRect = CGRectMake(0, 0, width, height);

UIScrollView *infScroller = [[UIScrollView alloc]

initWithFrame: frameRect];
infScroller.contentSize = CGSizeMake(BIG, BIG);
infScroller.delegate = self;
infScroller.contentOffset = CGPointMake(BIG/2, BIG/2);
infScroller.backgroundColor = [UIColor blackColor];
infScroller.showsHorizontalScrollIndicator = NO;

http://media.pragprog.com/titles/cdirec/code/InfiniteImages/MainViewController.m
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Scroll an Infinite Wall of Aloum Art ¢ 53

LESPLUS CRINDSAITS DELAGUTARE o 00 8% 2

ol

Figure 15—Example of wall of album art

infScroller.showsVerticalScrollIndicator = NO;
infScroller.decelerationRate = UIScrollViewDecelerationRateFast;
[self.view addSubview:infScroller];

[infScroller release];

CGRect infFrame = CGRectMake(0, 0, BIG, BIG);
PRPTileView *tiles = [[PRPTileView alloc] initWithFrame:infFrame];

[infScroller addSubview:tiles];
[tiles release];
}

The PRPTiledView class is defined as a subclass of a standard UlView, but to
make it a tiling view we need to set its backing layer class to be a CATiledLayer.
In this case we actually use a subclass of CATiledLayer, for reasons we’ll look
at a bit later.

Download Infinitelmages/PRPTileView.m
+ (Class)layerClass {

return [PRPTiledLayer class];
}

report erratum -« discuss

http://media.pragprog.com/titles/cdirec/code/InfiniteImages/PRPTileView.m
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Scroll an Infinite Wall of Aloum Art * 54

The initWithFframe: method needs to handle three tasks: setting the tile size,
calculating the number of columns, and accessing the iTunes database to
create an array of the available albums. We must take into account the
possibility of a Retina Display being used on the target device, with its
greatly increased resolution. So, we need to use the contentScaleFactor property
to adjust the tile size, effectively doubling the size in this example. It is
possible that an empty array will be returned from the MPMediaQuery call, but
we will check for that later when we create the tile. If necessary, we can
draw a placeholder image to fill the gap.

Download Infinitelmages/PRPTileView.m
- (id)initWithFrame: (CGRect) frame

{
if ((self = [super initWithFrame:framel)) {
PRPTiledLayer *tiledLayer = (PRPTiledLayer *)[self layer];
CGFloat sf = self.contentScaleFactor;
tiledLayer.tileSize = CGSizeMake(SIZE*sf, SIZE*sf);
MPMediaQuery *everything = [MPMediaQuery albumsQuery];
self.albumCollections = [everything collections];
}
return self;
}

The drawRect: method needs to calculate the exact column and row of the
requested tile so that we can pass the position number to the tileAtPosition
method. The image we get back from that call is then drawn directly into
the specified rect of the tile layer.

Download Infinitelmages/PRPTileView.m
- (void)drawRect: (CGRect)rect {

int col = rect.origin.x / SIZE;

int row = rect.origin.y / SIZE;

int columns = self.bounds.size.width/SIZE;

UIImage *tile = [self tileAtPosition:row*columns+col];

[tile drawInRect:rect];

}

The tileAtPosition method finds the index of the albumsCollections that we need by
calculating the modulus of the position number and the number of albums.
Using the representativeltem method, the MPMedialtem class returns a media item
whose properties represent others in the collection. This ensures that we
get a single image for each album in cases where there are differing images
for each track.

http://media.pragprog.com/titles/cdirec/code/InfiniteImages/PRPTileView.m
http://media.pragprog.com/titles/cdirec/code/InfiniteImages/PRPTileView.m
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Scroll an Infinite Wall of Aloum Art ¢ 55

The MPMedialtemArtwork class has a convenient method, imageWithSize:, that re-
turns an instance of the album art at exactly the size we need, so we are
not required to do any additional scaling of the image to fit the rect. Not all
albums have art in the database, and in those cases we load a placeholder
image to fill the rect.

Download Infinitelmages/PRPTileView.m
- (UIImage *)tileAtPosition: (int)position

{
int albums = [self.albumCollections count];
if (albums == 0) {
return [UIImage imageNamed:@"missing.png"];
}
int index = position%albums;
MPMediaItemCollection *mCollection = [self.albumCollections
objectAtIndex:index];
MPMediaItem *mItem = [mCollection representativeltem];
MPMedialtemArtwork *artwork =
[mItem valueForProperty: MPMedialtemPropertyArtwork];
UIImage *image = [artwork imageWithSize: CGSizeMake(SIZE, SIZE)];
if (!image) image = [UIImage imageNamed:@"missing.png"l;
return image;
}

We didn’t use the CATiledLayer class earlier to override the layerClass of the view
because of a slightly odd feature of the CATiledLayer API. Tiles are normally
loaded on a background thread and fade into position over a set duration
that defaults to 0.25 seconds. Oddly, fadeDuration is not a property; it is defined
as a Class method, so it cannot be modified from the tile layer. To get around
this, we need to create a CATiledLayer subclass, PRPTiledLayer, overriding the
fadeDuration method, to return the value we want—in this case zero. This
makes the new tiles appear immediately but ultimately has little effect on
overall scrolling performance.

Download Infinitelmages/PRPTiledLayer.m

+ (CFTimelInterval)fadeDuration {
return 0.00;

}

The final effect is quite satisfying, with the album art wrapping in all direc-
tions without any impact on the responsiveness of scrolling. Rapid scrolling
causes images to lag behind a little, a side effect of using the tiled layer, but
in general performance is quite acceptable, even on Retina Display devices.

http://media.pragprog.com/titles/cdirec/code/InfiniteImages/PRPTileView.m
http://media.pragprog.com/titles/cdirec/code/InfiniteImages/PRPTiledLayer.m
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Play Tracks from a Wall of Aloum Art ¢ 56

Recipe 12

Play Tracks from a Wall of Aloum Art

Problem

You've used scroll views and tile layers to create a colorful wall of album art
that wraps in all directions. Now you want to select just one of the albums
and play some of the music from it. What do you need to do to extend Recipe
11, Scroll an Infinite Wall of Album Art, on page 51?

Solution

In the previous recipe, we explored scroll views and tile layers but mostly
used the album art from the iPod library to provide an attractive visual
background. You can do a lot more with the iPod library than just grab art;
you can build a playlist of songs, play and control songs, and access the
rich supply of metadata (see Figure 16, iPod playback control, on page 57).

Our first task is to modify the previous code so that we can detect which
album has been selected. The simplest way to do that is to use a UlTapGestur-
eRecognizer. We can add this in the MainViewController and then call the new
tapDetected method using the initWithTarget:action: method. We could add the
recognizer to several views, but by adding it to the tiles view, the touch loca-
tion that is returned to us is based on the coordinate system for that view,
which makes it much easier for us to work out which album was selected.

We will put most of the iPod library code in a new controller class, PRPMu-
sicViewController, so we create an instance of that, musicController, and set up its
frame as centered on the current view.

Download InfinitePlayback/MainViewController.m

UITapGestureRecognizer *tap = [[UITapGestureRecognizer alloc]
initWithTarget:self
action:@selector(tapDetected:)];

[tiles addGestureRecognizer:tapl];

[tap release];

musicController = [[PRPMusicViewController alloc]

initWithNibName:@"PRPMusicControllerView" bundle:nil];

CGFloat xPos = (width-musicController.view.frame.size.width)/2;

CGFloat yPos = (height-musicController.view.frame.size.height)/2;

musicController.view.frame = CGRectOffset(musicController.view.frame, xPos, yPos);

http://media.pragprog.com/titles/cdirec/code/InfinitePlayback/MainViewController.m
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Play Tracks from a Wall of Alboum Art ¢ 57

PAUL-SIMON
GRACELAND

Figure 16—iPod playback control

We mainly use the tapDetected method as a toggle to show or hide the music
controller. In this simple example, when the music controller is hidden, we
also stop the music. We could let the music play on, but because the con-
troller has already been dismissed, there is no way to control the music that
is currently playing. Before we can present the music controller, we need
to work out which album was selected. We call the collectionfromTouch method
in the PRPTileView class to convert the touch point into an MPMedialtemCollection
item. We can then set the mCollection property to a new playlist of all the
tracks in this album.

Because we are adding our musicController view as a subview of the main view,
the viewWillAppear: method will not be activated after it is loaded, so we need
to call it manually here to complete our playback initialization.

Download InfinitePlayback/MainViewController.m
- (void)tapDetected: (UITapGestureRecognizer *)tap {
PRPTileView *tiles = (PRPTileView *)tap.view;
if (showingAlbum) {
[musicController ZoomOutView];

http://media.pragprog.com/titles/cdirec/code/InfinitePlayback/MainViewController.m
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Play Tracks from a Wall of Album Art ¢ 58

[musicController.myPlayer stopl];
showingAlbum = NO;
} else {
CGPoint tapPoint = [tap locationInView:tiles];
MPMedialtemCollection *mCollection = [tiles
collectionFromTouch:tapPoint];
musicController.mCollection = [MPMediaIltemCollection
collectionWithItems: [mCollection items]];
[musicController viewWillAppear:NO];
[self.view addSubview:musicController.view];
[musicController ZoomInView];
showingAlbum = YES;

}

The collectionfromTouch method takes the touchPoint we detected, works out the
position in the CATiledLayer, and from there calculates the index into the array
of albumCollections. We can then pass the MPMedialtemCollection object, which
contains the tracks of the album, back to the calling code.

Download InfinitePlayback/PRPTileView.m
- (MPMediaItemCollection *)collectionFromTouch: (CGPoint)touchPoint {
int col = touchPoint.x / SIZE;
int row = touchPoint.y / SIZE;
int position = row*columns+col;
int index = position%albums;

MPMediaItemCollection *mCollection = [self.albumCollections
objectAtIndex:index];
return mCollection;

}

In the viewDidLoad method of our new PRPMusicViewController class we need to
create an instance of the MPMusicPlayerController, the object that allows us to
control playback of music from the iPod library. We also need to register for
the iPod music player notifications, which are essential to allow us to respond
to changes made by the MPMusicPlayerController itself, such as playing the next
track in a playlist or stopping play at the end of an album. In those cases,
we want to respond by changing the track information in the display or
switching the playback button image.

Download InfinitePlayback/PRPMusicViewController.m

- (void)viewDidLoad

{
[super viewDidLoad];
myPlayer = [[MPMusicPlayerController applicationMusicPlayer] retain];
NSNotificationCenter *notificationCenter = [NSNotificationCenter

defaultCenter];

[notificationCenter

http://media.pragprog.com/titles/cdirec/code/InfinitePlayback/PRPTileView.m
http://media.pragprog.com/titles/cdirec/code/InfinitePlayback/PRPMusicViewController.m
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Play Tracks from a Wall of Album Art ¢ 59

addObserver: self

selector: @selector (playingItemChanged:)

name: MPMusicPlayerControllerNowPlayingItemDidChangeNotification
object: myPlayer];

[notificationCenter

addObserver: self

selector: @selector (playbackStateChanged:)

name: MPMusicPlayerControllerPlaybackStateDidChangeNotification
object: myPlayer];

[myPlayer beginGeneratingPlaybackNotifications];

}

In the viewWillAppear: method, we need to extract the album art again and set
it as the background for our controller. In the XIB file for this view controller
we have a small view hierarchy that places the album art under a semitrans-
parent image of the classic CD case, with the playback controls added on
top. We need to set the playback queue to be the full list of tracks for this
album, and, in this simple case, we automatically play the first track.

Download InfinitePlayback/PRPMusicViewController.m

- (void) viewWillAppear: (BOOL)animated {
[super viewWillAppear:animated];
MPMediaItem *mItem = [self.mCollection representativeltem];
MPMediaIltemArtwork *artwork =
[mItem valueForProperty: MPMediaItemPropertyArtwork];
UIImage *image = [artwork imageWithSize: CGSizeMake (280, 280)];
if (!image) image = [UIImage imageNamed:@"missing.png"l;
self.albumCover.image = image;
[myPlayer setQueueWithItemCollection: self.mCollection];
[myPlayer playl];

}

To allow the Play button to work as a Play/Pause toggle, we can test the
playBackState property of the music controller to see whether the music is
playing or not and adjust the playback state accordingly. Because we have
registered for playbackStateChanged: notifications, there’s no need to make any
changes to the playback button image; this is taken care of by the code
handling the notification.

Download InfinitePlayback/PRPMusicViewController.m
- (IBAction)playButton: (UIButton *)sender {
if (myPlayer.playbackState == MPMoviePlaybackStatePlaying) {
[myPlayer pausel;
} else {
[myPlayer playl;
}

http://media.pragprog.com/titles/cdirec/code/InfinitePlayback/PRPMusicViewController.m
http://media.pragprog.com/titles/cdirec/code/InfinitePlayback/PRPMusicViewController.m
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Play Tracks from a Wall of Alboum Art ¢ 60

When a notification is triggered, it calls the method we selected. The playin-
gltemChanged: call allows us to update the track information in the display.
We can use the nowPlayingltem method to fetch the data for the currently
playing track and use the valueForProperty: method of the MPMedialtem class to
retrieve text for each item that we need. We can also check to see whether
the playBackState has changed and adjust the displayed text accordingly.

Download InfinitePlayback/PRPMusicViewController.m
- (void)playingItemChanged: (id) notification {
MPMedialtem *currentItem = [myPlayer nowPlayingItem];
albumName.text = [currentItem valueForProperty:
MPMediaIltemPropertyAlbumTitle];
trackName.text = [currentItem valueForProperty:
MPMediaIltemPropertyTitlel];
if (myPlayer.playbackState == MPMusicPlaybackStateStopped) {
trackName.text = @"PlayBack Complete";
}
}

By responding to the state changes, we can set the image on the Play button
to match the correct action—for example, Play when paused, and Pause
when playing.

Download InfinitePlayback/PRPMusicViewController.m
- (void)playbackStateChanged: (id) notification {
MPMusicPlaybackState playerState = [myPlayer playbackState];

if (playerState == MPMusicPlaybackStatePaused) {

[playPauseButton setImage:[UIImage imageNamed:
@"mediumPlayButton.png"]
forState:UIControlStateNormal];

} else if (playerState == MPMusicPlaybackStatePlaying) {

[playPauseButton setImage:[UIImage imageNamed:
@"mediumPauseButton.png"]
forState:UIControlStateNormal];

} else if (playerState == MPMusicPlaybackStateStopped) {

[playPauseButton setImage:[UIImage imageNamed:
@"mediumPlayButton.png"]
forState:UIControlStateNormall;

[myPlayer stopl;

}

To draw the attention of the user to the newly available control, it’s helpful
to provide a little animation when we add the control to the view. The effect
we use here is to “pop” the view onto the screen by using a scale transfor-
mation that gives the impression of the control zooming out toward us.
When the music control is dismissed, we use the reverse effect, reducing

http://media.pragprog.com/titles/cdirec/code/InfinitePlayback/PRPMusicViewController.m
http://media.pragprog.com/titles/cdirec/code/InfinitePlayback/PRPMusicViewController.m
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Play Tracks from a Wall of Album Art ¢ 61

the scale of the view to zero, so that the control zooms away from us. We
do not need to specify a duration for the animation because the default
value of 0.25 works nicely in this case. We only need to set the delegate for
the ZoomOutView method because, in that case, we need to remove the view
from its SuperView once the animation is complete.

Download InfinitePlayback/PRPMusicViewController.m
- (void)ZoomInView {

self.view.layer.transform = CATransform3DMakeScale(1l, 1, 1);
CABasicAnimation *anim = [CABasicAnimation animation];
anim.keyPath = @"transform.scale";

anim.fromValue = [NSNumber numberWithFloat:0];

anim.toValue = [NSNumber numberWithFloat:1.0];
[self.view.layer addAnimation:anim forKey:@"scaleIn"];

- (void)ZoomOutView {

CABasicAnimation *anim = [CABasicAnimation animation];
anim.keyPath = @"transform.scale";

anim.fromValue = [NSNumber numberWithFloat:1.0];
anim.toValue = [NSNumber numberWithFloat:0];

anim. removedOnCompletion = NO;

anim.fillMode = kCAFillModeBoth;

anim.delegate = self;

[self.view.layer addAnimation:anim forKey:@"scaleOut"];

}
- (void)animationDidStop: (CABasicAnimation *)anim finished: (BOOL)flag {

[self.view.layer removeAllAnimations];
[self.view removeFromSuperview];

}

Now you have a reasonably functional album track player. You could still
enhance the functionality by adding more controls, displaying more of the
track metadata, allowing the option to scan ahead or backward in a track,
or using a slider to control track playback position. All of those features
follow the same general pattern established here and would not be too diffi-
cult for you to implement.

http://media.pragprog.com/titles/cdirec/code/InfinitePlayback/PRPMusicViewController.m
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Have Fun with Autoscrolling Text Views ® 62

Recipe 13

Have Fun with Autoscrolling Text Views

Problem

Trying to make help screens or any other text view interesting can be a
challenge. You want to add a little something to give your app a touch of
style or to demonstrate that you, the developer, don’t necessarily take
yourself too seriously.

Solution

The sample app for this recipe, scrollingCredits, will make you either smile
or grimace (see Figure 17, Star-themed scrolling credits, on page 63). Though
it's meant to be quite lighthearted, this example contains some useful
techniques. The three elements that are worth discussing in detail are using
a transform for distorting the text, using Core Animation to make the text
view autoscroll, and using the AVAudio framework to play back some music.

Working with 3D transforms can be a little challenging, but in general we
create the matrices that produce the transformations using the library of
methods that are defined for us by Core Animation, for example, scale
(CATransform3DMakeScale), rotate (CATransform3DMakeRotation), and translate
(CATransform3DMakeTranslation). We can also directly access the individual ele-
ments of the matrices to create some really interesting effects.

In the following code, you can see that Core Animation uses the CATransform3D
type to hold the matrix; initially, we set this to CATransform3DIdentity, which is
effectively an empty matrix. We can then directly access the individual ele-
ments by referring to the element number—in this case, m24—which controls
the perspective scaling of the layer. We need to use relatively small numbers
here, because large numbers will create so much perspective distortion that
the majority of the layer will be offscreen. Here we simply want enough dis-
tortion to give the classic vanishing point-style effect.

Download ScrollingCredits/Classes/PRPScrollingTextViewController.m

CATransform3D trans = CATransform3DIdentity;
trans.m24 = -0.005;

http://media.pragprog.com/titles/cdirec/code/ScrollingCredits/Classes/PRPScrollingTextViewController.m
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Have Fun with Autoscrolling Text Views ¢ 63

iPod & 4:43 PM =

i0OS Recipes
Scrolling Credits

A new Book

The new iOS
Recipes Book

is simply one

of the best
resources fox

discovering

Figure 17—Star-themed scrolling credits

We now have the transformation matrix, but we haven’t actually applied it
to anything, so we need to set up the text view that we will use for our rolling
credits. The majority of this code is fairly straightforward and involves setting
the properties for how we want the text view to appear, for example the font
and color. We disable scrolling and editing because we do not need any user
input. We also apply our transform matrix to the text view’s layer to add
the perspective effect.

The most unusual part of the text view setup is that we set the contentOffset
to a large negative value for the y-axis. The result is that the text is set to
be well below the view but ready to scroll up the screen as the animation
starts. We set the animated property to NO because we will control the scrolling
manually in the viewDidAppear: method.

http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Have Fun with Autoscrolling Text Views * 64

Download ScrollingCredits/Classes/PRPScrollingTextViewController.m

CGFloat size = self.view.frame.size.height;

if (size > self.view.frame.size.width) size = self.view.frame.size.width;

CGRect frame = CGRectMake(self.view.frame.size.width/2 - size/4,
size/4,
size/2,
size/4*3);

textView = [[UITextView alloc] initWithFrame:frame];

self.textView.editable = NO;

self.textView.scrollEnabled = NO;

self.textView.font = [UIFont boldSystemFont0fSize:20];

self.textView.textAlignment = UITextAlignmentCenter;

self.textView.backgroundColor = [UIColor blackColor];

self.textView.textColor = [UIColor yellowColor];

self.textView.text = self.scrollText;

[self.view addSubview:self.textView];

self.textView.layer.transform = trans;
[self.textView setContentOffset:CGPointMake (0, -240) animated:NO];

We are using the viewDidAppear: method to trigger the animation because this
ensures that the animation does not start until the view is visible to the
user. Because we are animating a view property, contentOffset, we can use
UlView animation to scroll the text. Using the Block style of animation, which
was introduced in iOS 4.0, we specify the duration directly and the UlViewAn-
imationOptionCurvelinear animation curve as our only option. We set the final
contentOffset position we want in the animations block; this animates the text
to the top of the text view. There is no easy way to calculate the correct du-
ration of the animation to coordinate with the length of the text we want to
display, so we need to rely on a little experimentation to come up with a
suitable value.

Download ScrollingCredits/Classes/PRPScrollingTextViewController.m
[UIView animateWithDuration:35 delay:0
options:UIViewAnimationOptionCurvelLinear
animations:”~{[self.textView
setContentOffset:CGPointMake (0, 500)
animated:NO];}
completion:NULL];

The humorous effect that the scrolling view adds would be lost without
music to accompany it. Thankfully, the setup for playing a single piece of
audio is quite simple. We need to establish the path to the compressed audio
file so that we can create an instance of the AVAudioPLayer class that uses it.
We set the numberOfLoops to 1, which prompts the audio to play twice, and
we set the player to play. We could do a lot more with the AV audio player,

http://media.pragprog.com/titles/cdirec/code/ScrollingCredits/Classes/PRPScrollingTextViewController.m
http://media.pragprog.com/titles/cdirec/code/ScrollingCredits/Classes/PRPScrollingTextViewController.m
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Have Fun with Autoscrolling Text Views ® 65

but to keep this example simple, we're using the minimum amount of code
we need to play the music.

Download ScrollingCredits/Classes/PRPScrollingTextViewController.m

NSURL *url = [NSURL fileURLWithPath:
[NSString stringWithFormat:@"%@/HeliumWars.m4a",
[[NSBundle mainBundle] resourcePathl]];

NSError *error;

audioPlayer = [[AVAudioPlayer alloc]
initWithContentsOfURL:url error:&error];

audioPlayer.numberOfLoops = 1;

[audioPlayer play];

You now have a way of adding a small slice of whimsy to some of the more
mundane sections of your app. You have some flexibility in how you display
the text on the page—you can change the text, the music, and the scroll
speed.

http://media.pragprog.com/titles/cdirec/code/ScrollingCredits/Classes/PRPScrollingTextViewController.m
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Create a Custom Number Control * 66

Recipe 14

Create a Custom Number Control

Problem

You need a way to let your user select a numeric value—perhaps the diffi-
culty level or number of players in a game. You could use one of the Ul
components Apple provides, but its style might not fit the look and feel of
the rest of your app.

Solution

We can solve this problem in a number of ways, but our best bet is to create
a custom control that maximizes the use of the touch interface (see Figure
18, The custom number spin control, on page 67). Through table views we've
become accustomed to the dynamic feedback of our actions, with the mo-
mentum-based scrolling letting us “flick” our way through a whole set of
data. We could go with UlPickerView, but it has a very specific style and only
a few options for customization. What we'’re looking for is something with
similar mechanics but smaller in scope and more easily tailored to fit a
particular Ul style.

SWIZZLE, the free puzzle game in the App Store, uses just such a control
as a means of selecting the game’s difficulty level. Let’s use an updated
version of the code from that app, the SpinNumbers class, to walk through the
technique for creating this style of control.

Like most of the UIKit control classes, such as buttons and sliders, SpinNumbers
is a subclass of UlControl, which provides the methods we need to implement
the target/action mechanism. This is the process by which the controller
code can specify a selector to be called for a given event. Using the sendAc-
tionsForControlEvents: method, we can indirectly activate an action simply by
specifying the appropriate control event. The UlControl base class code calls
any selectors associated with that given event, so we don’t need to worry
about which events, if any, have actions defined.

Looking at our implementation, the primary task of the setup method is to
create the visual components of the control. These elements are based en-
tirely on transformed layers. We start by constructing a composite image of

http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Create a Custom Number Control ¢ 67

iPod = 12:05 PM

Figure 18—The custom number spin control

the background and the label and then add the result as the content of each
of the layers in turn. We apply an incrementing rotation transformation and
positional translation to each layer, effectively adding it at the next position
in a circle of layers.

To picture how this circle is constructed, imagine a playing card standing
upright and a penny about 4 inches behind it. The card is our layer, and
the penny is the center point of the circle we will create. Add another card
next to the first, edges touching, and rotate it a little so that it is perpendic-
ular to the penny. Repeat this until the cards form a complete circle around
the penny.

As we construct our circle, each layer is added to a base layer, transformed,
with a specific zPosition, equivalent to the radius of the circle, placing it at
the correct distance from the center of the base layer. When we later rotate
the base layer with a sublayer transform, the entire set of layers rotates as
a single unit.

http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Create a Custom Number Control ¢ 68

Say we want the control to have more of a three-dimensional appearance;
we just add two semitransparent layers on top of the circle and to either
side of the central layer. To give the impression of depth to the edges of the
circle, we use gradients, from opaque to transparent, for the layer im-
ages—making it appear as though the center is spotlighted.

Download NumberSpinControl/NumberSpinControl/SpinNumbers.m

- (void)setup

{
CGFloat width = self.bounds.size.width;
self.cubeSize self.bounds.size.height;
self.tileRect CGRectMake (0, 0, self.cubeSize, self.cubeSize);
self.transformed = [CALayer layer];
self.transformed.frame = self.bounds;
self.transformed.backgroundColor = [UIColor blackColor].CGColor;
[self.layer addSublayer:self.transformed];

CATransform3D t = CATransform3DMakeTranslation((width-self.cubeSize)/2, 0,

for (int i =STARTNUM; i <= NUM ; i++) {
self.label.text = [NSString stringWithFormat:@"%d",il;
[self.transformed addSublayer:[self makeSurface:t]];
t = CATransform3DRotate(t, RADIANS(self.rotAngle), 0, 1, 0);
t CATransform3DTranslate(t, self.cubeSize, 0, 0);

}

self.currentAngle = 0;
self.currentTileNum = 0;

CALayer *leftFade = [CALayer layer];

leftFade.frame = CGRectMake(0, 0, width/2-5, self.cubeSize);
leftFade.contents = (id)[UIImage imageNamed:@"leftFade.png"].CGImage;
leftFade.opacity = 0.5;

[self.layer addSublayer:leftFadel];

CALayer *rightFade = [CALayer layer];
rightFade.frame = CGRectMake(width/2+5, 0, width/2, self.cubeSize);
rightFade.contents = (id)[UIImage imageNamed:@"rightFade.png"].CGImage;
rightFade.opacity = 0.5;
[self.layer addSublayer:rightFade];

}

The makeSurface method creates and composites the new layer and applies
the specified transform. The method needs to calculate the zPosition, the
radius of our circle, based on the number of sides and the size of the layer.

Download NumberSpinControl/NumberSpinControl/SpinNumbers.m
- (CALayer*)makeSurface: (CATransform3D)t
{

self.rotAngle = CIRCLE/NUM;

CALayer *imagelLayer = [CALayer layer];

http://media.pragprog.com/titles/cdirec/code/NumberSpinControl/NumberSpinControl/SpinNumbers.m
http://media.pragprog.com/titles/cdirec/code/NumberSpinControl/NumberSpinControl/SpinNumbers.m
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Create a Custom Number Control ¢ 69

imagelLayer.anchorPoint = CGPointMake(1l, 1);

float factor = (cos(RADIANS(self.rotAngle/2))/sin(RADIANS(self.rotAngle/2)))/2;
imagelLayer.zPosition = self.cubeSize*factor;

imagelLayer.frame = self.tileRect;

imagelLayer.transform = t;

imagelLayer.contents = (id)[self.backImage PRPCompositeView].CGImage;

return imagelayer;

}

To set up the features of the numeral we need—such as font size, alignment,
and color—the getter for the label property contains a lazy initializer. Now
we just need to update the text value as each layer’s content is composited.

Download NumberSpinControl/NumberSpinControl/SpinNumbers.m
- (UILabel *)label
{
if (!label) {
label = [[UILabel alloc] initWithFrame:self.tileRect];
label.textAlignment = UITextAlignmentCenter;
label.font = [UIFont systemFontOfSize:self.cubeSize/1.4];
label.backgroundColor = [UIColor clearColorl];
label.textColor = [UIColor whiteColor];
label.shadowColor = [UIColor blackColor];
}
return label;

}

The backimage property is implemented in a similar way as the label. Note
that the background color must be opaque and match the color of the
background view. If the background color is set to clearColor, the layers now
in the background become partly visible, which is probably undesirable.

Download NumberSpinControl/NumberSpinControl/SpinNumbers.m
- (UIImageView *)backImage

{
if (!backImage) {
backImage = [[UIImageView alloc] initWithImage:
[UIImage imageNamed:@"redBackground.png"l1];
backImage.frame = self.tileRect;
backImage.backgroundColor = [UIColor blackColorl];
[backImage addSubview:self.labell];
}
return backImage;
}

The beginTrackingWithTouch:withEvent: method initializes the touch recognition
process by storing the initial touch position, which it uses for later compar-
ison to the next touch.

http://media.pragprog.com/titles/cdirec/code/NumberSpinControl/NumberSpinControl/SpinNumbers.m
http://media.pragprog.com/titles/cdirec/code/NumberSpinControl/NumberSpinControl/SpinNumbers.m
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Create a Custom Number Control ¢ 70

Download NumberSpinControl/NumberSpinControl/SpinNumbers.m
(BOOL)beginTrackingWithTouch: (UITouch*)touch withEvent: (UIEvent*)event

{

CGPoint location = [touch locationInView:self];

self.flick = 0;

self.previousXPosition = location.x;

self.beganLocation = location.x;

newAngle = self.currentAngle;

[self sendActionsForControlEvents:UIControlEventTouchDown];
return YES;
}

As the user manipulates the control, the continueTrackingWithTouch:withEvent:
method is called continuously. For each horizontal touch movement, we
calculate the effective change in angle of the circle of layers and apply that
as a rotation to the transformed parent layer. It is this transformation, based
on the movement of the touch point, that provides the visual feedback to
the user. The flick property is calculated to be a measure of velocity between
the current touch point and the previous one.

Download NumberSpinControl/NumberSpinControl/SpinNumbers.m
- (BOOL)continueTrackingWithTouch: (UITouch *)touch withEvent: (UIEvent *)event

{
CGPoint location = [touch locationInView:self];
NSTimeInterval time = [touch timestamp];
CGFloat locationDiff = self.beganLocation - location.x;
self.flick = (self.previousXPosition-location.x)/(time-self.prevousTimeStamp);
self.previousXPosition = location.x;
self.prevousTimeStamp = time;
self.newAngle = self.currentAngle - locationDiff/300*160;
if (self.newAngle >= CIRCLE) self.newAngle -= CIRCLE;
else if (self.newAngle < 0) self.newAngle += CIRCLE;
[CATransaction setDisableActions:YES];
self.transformed.sublayerTransform =

CATransform3DMakeRotation (RADIANS (newAngle), 0, 1, 0);

return YES;

}

The endTrackingWithTouch:withEvent: method uses the flick value to calculate which
of the layers is predicted to be in front at the final position of the control
after an appropriate amount of momentum. The real “trick” to making it
appear as if the control has momentum is to animate the rotation of the
ring of layers to the predicted number, over a fixed duration. If the flick value
is high, then the change in number is greater, and the result is a larger ro-
tation over the fixed time, showing the apparent speed. The animation uses

http://media.pragprog.com/titles/cdirec/code/NumberSpinControl/NumberSpinControl/SpinNumbers.m
http://media.pragprog.com/titles/cdirec/code/NumberSpinControl/NumberSpinControl/SpinNumbers.m
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Create a Custom Number Control ¢ 71

the default easeout timing function, which adds a natural deceleration effect
to the rotation before it stops at the predicted number.

Download NumberSpinControl/NumberSpinControl/SpinNumbers.m
(void)endTrackingWithTouch: (UITouch *)touch withEvent: (UIEvent *)event

{
CGPoint location = [touch locationInView:self];
CGFloat halfWidth = self.bounds.size.width/2;
int newNum = 0;
if (self.flick == 0)
{
if (location.x > halfWidth + self.cubeSize/2) newNum = -1;
if (location.x < halfWidth - self.cubeSize/2) newNum = 1;
} else {
newNum = self.flick / ACCELERATIONFACTOR;
if (newNum > 150) newNum = 150;
if (newNum < -150) newNum = -150;
}
self.newAngle = self.newAngle-newNum;
if (self.newAngle < 0) self.newAngle = CIRCLE+self.newAngle;
int tileNum = self.rotAngle/2;
tileNum += self.newAngle;
tileNum = tileNum%CIRCLE;
tileNum = tileNum/self.rotAngle;
tileNum = abs(tileNum-NUM)%NUM;
[self moveToNewNumber:tileNum];
}

The moveToNewNumber method is called after the final touch or by the controller
code to animate the control to a new value. We set up the rotation of the
circle of layers and call sendActionsForControlEvents: with the UlControlEventVal-
ueChanged event to trigger any associated actions for that event.

Download NumberSpinControl/NumberSpinControl/SpinNumbers.m
- (void)moveToNewNumber: (int)newNumber

{
self.newAngle = CIRCLE-newNumber*self.rotAngle;
[CATransaction setValue:[NSNumber numberWithFloat:.5]

forKey:kCATransactionAnimationDuration];
self.transformed.sublayerTransform =
CATransform3DMakeRotation (RADIANS (self.newAngle), 0, 1, 0);

self.currentTileNum = newNumber;
self.currentAngle = self.newAngle;
[self sendActionsForControlEvents: UIControlEventValueChanged];

}

Accessing the currentNumber property triggers the calculation of the real value
of the control based on the relative position of the front-facing layer and the
STARTNUM.

http://media.pragprog.com/titles/cdirec/code/NumberSpinControl/NumberSpinControl/SpinNumbers.m
http://media.pragprog.com/titles/cdirec/code/NumberSpinControl/NumberSpinControl/SpinNumbers.m
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Create a Custom Number Control ¢ 72

Download NumberSpinControl/NumberSpinControl/SpinNumbers.m
- (int)currentNumber

{
return self.currentTileNum+STARTNUM;

}

Now that the SpinNumbers class is complete, let’s look at how we would use
it. We can add an instance directly to the NumberSpinControlViewController XIB in
Interface Builder by adding a base UlView, setting its size and position as re-
quired, and then specifying the SpinNumbers class as the custom class in the
Identity inspector. By linking the view to an IBOutlet in the NumberSpinControlView-
Controller.m, we can set up the target/action mechanism to call our preferred
method, numberChanged, when UlControlEventValueChanged has been detected.

Download NumberSpinControl/NumberSpinControl/NumberSpinControlViewController.m
- (void)viewDidLoad

{
[super viewDidLoad];
[numbers addTarget:self action:@selector(numberChanged)
forControlEvents:UIControlEventValueChanged];
[numbers moveToNewNumber:2];
}

We know that the UlControlEventValueChanged event is triggered only when we
have detected an end to touches on the control and established the extent
of the control rotation. We are able to access the derived value of the current-
Number property value and use that to update the label accordingly. It's worth
noting that the value appears to change before the rotational momentum
of the control has stopped. This is because it is triggered before the half-
second animation that we use to imply the frictional slowdown of the
spinning wheel. We could experiment a little here and alter the effect by
triggering an additional event at the end of the momentum animation and
using that to update the label.

Download NumberSpinControl/NumberSpinControl/NumberSpinControlViewController.m
- (void)numberChanged

{

numLabel.text = [NSString stringWithFormat:@"%d", numbers.currentNumber];

}

Though complete in itself, the code we’'ve worked through here really covers
only the basic elements of a control; we could add many enhancements to
make it more configurable. You could increase the number of external
properties, color, and images, for example; allow for both vertical and hori-
zontal presentation; or allow for different sequences, such as letters or
symbols. The options are limited only by your imagination!

http://media.pragprog.com/titles/cdirec/code/NumberSpinControl/NumberSpinControl/SpinNumbers.m
http://media.pragprog.com/titles/cdirec/code/NumberSpinControl/NumberSpinControl/NumberSpinControlViewController.m
http://media.pragprog.com/titles/cdirec/code/NumberSpinControl/NumberSpinControl/NumberSpinControlViewController.m
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

CHAPTER 2

Table and Scroll View Recipes

UlScrollView and its popular subclass UlTableView are two powerful and versatile
tools for iOS developers. They mask an incredible amount of complexity and
save you the time and heartache of having to make a comparable solution
yourself—exactly what any API should do.

As the iOS platform has matured, a number of patterns have emerged that
have led to redundant work done in many (if not all) projects. The recipes
in this section aim to identify and tackle those areas where things could be
a little simpler. They're designed to save you time and effort while staying
out of the way of whatever you're planning to do. Most of the traditional
patterns laid out by UIKit are preserved in order to make these recipes easy
for you to understand.

http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Simplify Table Cell Production ¢ 74

Recipe 15

Simplify Table Cell Production

Problem

UIKit provides an efficient reuse mechanism for table view cells, keeping
overhead low and minimizing costly allocations that slow down scrolling,.
Although this mechanism works well to curb resource consumption, it tends
to be verbose, repetitive, and, most of all, error prone. This common pattern
begs for a solution that minimizes controller code and maximizes reuse
across multiple views or even applications.

Solution

A basic UlTableView layout, as seen in the iPod and Contacts applications, is
simple enough to re-create without causing too many headaches: the cells
all use the same boilerplate UlTableViewCellStyle. Once we venture outside of
this comfort zone, however, our code can get messy rather quickly. Consider
a custom cell with two images and a text label. Our -tableView:cellForRowAtIndex-
Path: method may start off like this:

static NSString *CellID = @"CustomCell";

UITableViewCell *cell = [tableView
dequeueReusableCellWithIdentifier:CellID];
if (cell == nil) {
cell = [[[UITableViewCell alloc]
initWithStyle:UITableViewCellStyleDefault
reuseldentifier:CellID]

autorelease];
UIImage *rainbow = [UIImage imageNamed:@"rainbow.png"];
UIImageView *mainImageView = [[UIImageView alloc] initWithImage:rainbow];

UIImageView *otherImageView = [[UIImageView alloc] initWithImage:rainbow];
CGRect iconFrame = (CGRect) { { 12.0, 4.0 }, rainbow.size };
mainImageView.frame = iconFrame;

iconFrame.origin.x = CGRectGetMaxX(iconFrame) + 9.0;

altImageView.frame = iconFrame;

[cell.contentView addSubview:mainImageView];
[cell.contentView addSubview:otherImageView];

UILabel *label = [[UILabel alloc] initWithFrame:labelFrame];
[cell.contentView addSubview:label];

http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Simplify Table Cell Production ¢ 75

[mainIcon release];
[otherIcon releasel];
[label release];

}
return cell;

Note we haven’'t even configured the cell yet! When reusing a cell, how do
we get at those now-anonymous subviews that were added during creation?
We have two options: set tag literals on the subviews, which we then use to
fish them back out at reuse time; or write a UlTableViewCell subclass with ex-
plicit properties. Going the subclass route is much more attractive because
it does the following:

e Defines a contract (properties) for accessing the subviews

¢ Avoids the danger of tag collisions in the cell hierarchy (multiple subviews
with the same tag)

e Decouples the cell’s layout from the view controller, enabling code reuse
across views and projects

By using a subclass, we get a number of other opportunities to simplify the
table-building process. Every table view data source inevitably has the same
cell dequeue/alloc code in it. This code is not just redundant; it’s also fragile:
a misspelled cell identifier, a single instead of a double equals in our nil
check—subtle errors lead to performance hits and wasted debugging time.
If we didn’t have to constantly copy and paste this redundant code, or even
look at it, our routine for building table views would be much less tedious.

Enter PRPSmartTableViewCell: a foundational subclass of UlTableViewCell that
eliminates clutter in our table view controllers and prevents costly bugs in
our scattered cell boilerplate. The class’s primary task is to abstract away
that boilerplate so that, ideally, we never have to worry about it again. The
class has a special initializer method and two convenience methods, which
we’ll explore next.

Download SmarterTableCells/Classes/PRPSmartTableViewCell.h
@interface PRPSmartTableViewCell : UITableViewCell {}

+ (id)cellForTableView: (UITableView *)tableView;
+ (NSString *)cellldentifier;

- (id)initWithCellIdentifier: (NSString *)celllID;

@end

http://media.pragprog.com/titles/cdirec/code/SmarterTableCells/Classes/PRPSmartTableViewCell.h
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Simplify Table Cell Production ¢ 76

The +cellForTableView: class method handles cell reuse for a table view that’s
passed by the caller—our table view controller.

Download SmarterTableCells/Classes/PRPSmartTableViewCell.m
+ (id)cellForTableView: (UITableView *)tableView {
NSString *cellID = [self cellldentifier];
UITableViewCell *cell = [tableView
dequeueReusableCellWithIdentifier:cellID];
if (cell == nil) {
cell = [[[self alloc] initWithCellIdentifier:cellID] autorelease];
}

return cell;

}

This code should look familiar: it’s nearly identical to the reuse code you've
surely written dozens (if not hundreds) of times as an iOS developer. Note,
however, that the cell identifier string is obtained from another class method:
+cellldentifier. This method uses the cell’'s class name as the identifier by de-
fault, even for subclasses of PRPSmartTableViewCell you write. Now, whenever
we decide to write a custom cell class, we're guaranteed a unique cell iden-
tifier for free. Note that the identifier is not marked static as you've seen in
most sample code, so there is some extra allocation going on in the default
implementation. If you find this to be a problem, you can always override
(or edit) +cellldentifier to change its behavior.

Download SmarterTableCells/Classes/PRPSmartTableViewCell.m
+ (NSString *)cellldentifier {
return NSStringFromClass([self class]);

}

Finally, we use a new designated initializer, -initWithCellldentifier:, to set up the
cell and its layout. This is where we’d put the verbose layout code that would
otherwise live in our controller.

Download SmarterTableCells/Classes/PRPSmartTableViewCell.m
- (id)initWithCellIdentifier: (NSString *)cellID {
return [self initWithStyle:UITableViewCellStyleSubtitle
reuseldentifier:cellID];

}

With this new pattern, here’s how we’d write and use our table cell subclass:
1. Create a subclass of PRPSmartTableViewCell.

2. Override -initWithCellldentifier:.

3. Call +cellForTableView: from our table view controller.

http://media.pragprog.com/titles/cdirec/code/SmarterTableCells/Classes/PRPSmartTableViewCell.m
http://media.pragprog.com/titles/cdirec/code/SmarterTableCells/Classes/PRPSmartTableViewCell.m
http://media.pragprog.com/titles/cdirec/code/SmarterTableCells/Classes/PRPSmartTableViewCell.m
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Simplify Table Cell Production ¢ 77

Now let’s take a look at our table view controller code for producing a custom
PRPSmartTableViewCell:
Download SmarterTableCells/Classes/PRPRainbowTableViewController.m

- (UITableViewCell *)tableView: (UITableView *)tableView
cellForRowAtIndexPath: (NSIndexPath *)indexPath {

PRPDoubleRainbowCell *cell [PRPDoubleRainbowCell
cellForTableView:tableView];
cell.mainLabel.text = [self.quotes objectAtIndex:indexPath.row];

return cell;

}

The controller code is significantly reduced and much more readable—it
now contains only the customization of the cell for that particular view. All
the cell’s characteristic logic and layout is hidden away in the cell class, al-
lowing it to be easily reused anywhere else in this or another project. If you
were planning to write a UlTableViewCell subclass, this additional code could
save you a lot of work in the long run. If you're writing a basic table view
with one of the standard cell types, it could be overkill.

This pattern pays especially large dividends when you're writing a heavily
customized table view with assorted types of cells. We'll explore this further
in Recipe 18, Organize Complex Table Views, on page S6.

You can also easily extend this pattern to use custom cells created in Inter-
face Builder, as you'll see in the next recipe.

http://media.pragprog.com/titles/cdirec/code/SmarterTableCells/Classes/PRPRainbowTableViewController.m
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Use Smart Table CellsinaNib ¢ 78

Recipe 16
Use Smart Table Cells in a Nib

Problem

The previous recipe, Recipe 15, Simplify Table Cell Production, on page 74,
showed you how to create a complex custom table cell with ease while sig-
nificantly reducing the amount of controller code you have to write. What
if you prefer to create your cells in Interface Builder?

Solution

The “smart table cell” pattern we just explored is easily adaptable to nib-
based cells. As is usually the case when using Interface Builder (IB), we end
up saving even more code than before. We’'ll apply the same core principle
of abstracting the reuse labor away from the controller, but the controller
does need to contribute a little more than it did last time. Specifically, we’ll
ask the controller to manage the nib.

Our PRPNibBasedTableViewCell seems very familiar if you've reviewed PRPSmartTable-
ViewCell: it has a +cellldentifier method that returns a custom reuse identifier,
and it has a convenience method for the typical dequeue-or-instantiate
dance we do for every table cell we create.

Download SmarterTableCellsNib/Shared/PRPNibBasedTableViewCell.m
+ (NSString *)cellldentifier {
return NSStringFromClass([self class]);

}

Download SmarterTableCellsNib/Shared/PRPNibBasedTableViewCell.m
+ (id)cellForTableView: (UITableView *)tableView fromNib: (UINib *)nib {
NSString *cellID = [self cellldentifier];
UITableViewCell *cell = [tableView
dequeueReusableCellWithIdentifier:celllID];
if (cell == nil) {
NSArray *nibObjects = [nib instantiateWithOwner:nil options:nil];

NSAssert2(([nibObjects count] > 0) &&
[[nibObjects objectAtIndex:0] isKindOfClass:[self class]l],
@"Nib '%@' does not appear to contain a valid %@",
[self nibName], NSStringFromClass([self class]));

http://media.pragprog.com/titles/cdirec/code/SmarterTableCellsNib/Shared/PRPNibBasedTableViewCell.m
http://media.pragprog.com/titles/cdirec/code/SmarterTableCellsNib/Shared/PRPNibBasedTableViewCell.m
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Use Smart Table CellsinaNib ¢ 79

cell = [nibObjects objectAtIndex:0];
}

return cell;

}

Note the generation method is a little different here: it takes a second param-
eter for a UINib object. UINib is a new class designed to minimize overhead
when rapidly instantiating views from a nib file. Rather than calling -[NSBundle
loadNibNamed:owner:options:], we hold onto our UINib object and call -instantiateWith-
Owner:options: to get a fresh copy of our nib objects.

In this recipe, we ask the calling code—presumably a UlTableViewDataSource—to
hold onto that nib, but we still make it easy as possible to get one. The +nib
and +nibName methods provide easy access to the nib that hosts our custom
cell.

Download SmarterTableCellsNib/Shared/PRPNibBasedTableViewCell.m
+ (UINib *)nib {
NSBundle *classBundle = [NSBundle bundleForClass:[self classl];
return [UINib nibWithNibName:[self nibName] bundle:classBundle];
}

+ (NSString *)nibName {
return [self cellldentifier];

}

The methods are straightforward enough: +nib looks in the class’s bundle,
using the name returned by +nibName. By default, +nibName relies on +celllden-
tifier, which defaults to the classname. This default behavior should scale to
any number of subclasses, as long as we configure our files accordingly.

Let’s take a look at this pattern in practice. Open the SmarterTableCellsNib project
and navigate to the PRPComplexTableViewCell class. This class inherits from the
PRPNibBasedTableViewCell class. Note that there’s hardly any code—just properties
representing some of the cell’s subviews, which are in the nib. PRPComplexTable-
ViewCell has a few important characteristics that make it work:

e It subclasses PRPNibBasedTableViewCell.

¢ [ts XIB filename matches the class name (PRPComplexTableViewCell.xib).
e Its cell identifier matches the class name (PRPComplexTableViewCell).

e The table cell is the first object in the nib.

That last part is important. Taking a closer look at the implementation of
+cellForTableView:fromNib:, we note that it throws an explanatory error if our nib
contains something other than an instance of our cell subclass at the top.

http://media.pragprog.com/titles/cdirec/code/SmarterTableCellsNib/Shared/PRPNibBasedTableViewCell.m
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Use Smart Table Cellsina Nib ¢ 80

Whether or not you use this recipe, remember to set the Identifier attribute for every
table view cell you create in Interface Builder. (See Figure 19, Reuse identifiers in

Interface Builder, on page 81.) This is a common oversight when using Interface
Builder to create a table cell; you may fool yourself into thinking you've done it
when you write the standard reuse code. You haven't!

This careless mistake has huge performance implications. Always check your work
by either setting a breakpoint or adding a log statement to your cell creation logic.
You shouldn’t be instantiating any new cell objects after the initial burst when the
table view is shown. If you're instantiating cells indefinitely, the identifier set in
your nib most likely does not match the identifier you're using to produce the cell.

We name the files and attributes accordingly to match the behavior inherited
from PRPNibBasedTableViewCell. If we write our own subclass with a name that
does not match the accompanying xib filename and/or cell identifier, no
problem: we just override +cellldentifier and +nibName in the subclass to return
the appropriate strings.

As explained earlier, the calling code holds onto the generated nib. The
SmarterTableCellsNib project includes a TestViewController class demonstrating how
to do this.

1. Declare a property for the nib.

2. Create a lazy initializer to make the nib available on demand for any
use case.

3. Clean up the property in -viewDidUnload and -dealloc.

Download SmarterTableCellsNib/Shared/TestViewController.h
@interface TestViewController : UITableViewController {}

@property (nonatomic, retain) UINib *complexCellNib;

@end

Download SmarterTableCellsNib/Shared/TestViewController.m
- (UINib *)complexCellNib {
if (complexCellNib == nil) {
self.complexCellNib = [PRPComplexTableViewCell nib];
b

return complexCellNib;

report erratum -« discuss

http://media.pragprog.com/titles/cdirec/code/SmarterTableCellsNib/Shared/TestViewController.h
http://media.pragprog.com/titles/cdirec/code/SmarterTableCellsNib/Shared/TestViewController.m
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Use Smart Table Cellsina Nib ¢ 81

D BB ® = ©

¥ Custom Class

Class PRPComplexTableViewCell o j

¥ ldentity

Label Xcode Specific Label

Object ID

kad

Lock | Inherited - (Nothing) I

4k
p—

Motes || Show With Selection

Figure 19—Reuse identifiers in Interface Builder

Download SmarterTableCellsNib/Shared/TestViewController.m
- (void)viewDidUnload {
[super viewDidUnload];
self.complexCellNib = nil;

}

- (void)dealloc {
[complexCellNib release], complexCellNib = nil;
[super dealloc];

}

Once we have a valid nib, we pass it to +cellForTableView:fromNib: from our
-tableView:cellForRowAtIndexPath: method. The default implementation takes it
from there.

Download SmarterTableCellsNib/Shared/TestViewController.m
- (UITableViewCell *)tableView: (UITableView *)tableView
cellForRowAtIndexPath: (NSIndexPath *)indexPath {
PRPComplexTableViewCell *cell =
[PRPComplexTableViewCell cellForTableView:tableView
fromNib:self.complexCellNib];

cell.titlelLabel.text = [NSString stringWithFormat:@"Cell #%d",
indexPath.row];

report erratum -« discuss

http://media.pragprog.com/titles/cdirec/code/SmarterTableCellsNib/Shared/TestViewController.m
http://media.pragprog.com/titles/cdirec/code/SmarterTableCellsNib/Shared/TestViewController.m
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Use Smart Table Cellsina Nib ¢ 82

cell.dateLabel.text =
[NSDateFormatter localizedStringFromDate:[NSDate date]
dateStyle:NSDateFormatterNoStyle

timeStyle:NSDateFormatterMediumStylel;

cell.locationLabel.text = @"Places unknown";

return cell;

}
And we're done. With this recipe in place, you have two highly reusable

techniques for rapid, clean use of custom table cells.

http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Locate Table Cell Subviews ¢ 83

Recipe 17

Locate Table Cell Subviews

Problem

We all inevitably work on projects that require custom table view cell layouts.
If these cells include controls or buttons, figuring out which row contains
a given button can be difficult. How can you find an arbitrary button’s parent
cell in a way that works for any layout or project?

Solution

Finding the row that hosts a custom view or control is not particularly hard.
The problem is, it’'s easy to do wrong.

Let’s say each of our table cells has a button that uses our table view con-
troller as a target. When the user taps any one of these buttons, the same
single action is called. What if our table has 100 rows? We need to distin-
guish one row from another to know which button or row the user tapped.

- (IBAction)cellButtonTapped: (id)sender {
// Which table row is this button in?

}

Figure 20, What's the index path for a given button?, on page 84 illustrates
the problem at hand. There’s no easy or obvious way for your code to tell

one cell button from another.

The tempting course of action would be to just walk right up the tree to the
hosting table cell and ask the table view which row that cell corresponds
to. After all, we know our own cell’s hierarchy.

- (IBAction)cellButtonTapped: (id)sender {
// Go get the enclosing cell manually
UITableViewCell *parentCell = [[sender superview] superview];
NSIndexPath *pathForButton = [self.tableView
indexPathForCell:parentCell];

}

This approach is probably the quickest, but it’s far from ideal, for a few
reasons. First, it’s fragile. The previous code assumes the cell hierarchy
won’'t change. But if we move this button up or down one level, this code

http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Locate Table Cell Subviews ¢ 84

9)

i AT&T 9:35 AM

Tap here | Row 0

Tap here | Row 1

Tap here | Row 2
Tap here | Row 3
Tap here | Row 4

Tap here | Row 5

Tap here | Row 6

Tap here | Row 7

Tap here | Row 8

- na. A

Figure 20—What's the index path for a given button?

immediately breaks—and we may not remember why, or even notice, until
the worst possible moment. Walking up the tree iteratively until we find a
UlTableViewCell is not a whole lot better. We want something short, sweet, and
minimally error-prone.

Second, the previous solutions aren’t portable. The work we do here is
likely to be done again for our next fancy interactive table. It would be great
to have a solution we could drop into any project.

Let’s start by talking about a cleaner way to find the view’s enclosing row.
UlView has some handy methods that allow us to translate points on the
screen from one view’s coordinates to another’s. We can use this -convert-
Point:toView: method to figure out where in our table view the tapped button
resides; we’ll bypass the cell entirely. Once we have that adjusted point,
we'll pass it to -[UlTableView indexPathForRowAtPoint:] and get our row index.

Download CellSubviewLocation/Classes/RootViewController.m
- (IBAction)cellButtonTapped: (id)sender {
UIButton *button = sender;
CGPoint correctedPoint =
[button convertPoint:button.bounds.origin toView:self.tableView];
NSIndexPath *indexPath =
[self.tableView indexPathForRowAtPoint:correctedPoint];
NSLog(@"Button tapped in row %d", indexPath.row);

http://media.pragprog.com/titles/cdirec/code/CellSubviewLocation/Classes/RootViewController.m
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Locate Table Cell Subviews ¢ 85

This doesn’t involve any more code than the earlier “lazy” approaches, and
it’s safer and more portable. We can make it even more portable if we want.
Those two lines of code are hardly difficult to move around, but the convertPoint:
methods are subtle enough that revisiting them months later can lead to
some head-scratching. It'd be nice to solve this problem once and get back
to business.

To do that, we'll place this logic in a UlTableView category. We'll have to make
some adjustments because the work is now being done by the table view
instead of the table view controller, but the idea is the same.

Download CellSubviewLocation/Classes/UlTableView+PRPSubviewAdditions.m
@implementation UITableView (PRPSubviewAdditions)

- (NSIndexPath *)prp indexPathForRowContainingView: (UIView *)view {
CGPoint correctedPoint = [view convertPoint:view.bounds.origin
toView:self];
return [self indexPathForRowAtPoint:correctedPoint];

}
@end

Now that we've abstracted the busywork of converting the point to an index
path, our table view controller just passes the relevant view and gets back
the source index path.

- (IBAction)cellButtonTapped: (id)sender {
NSIndexPath *pathForButton =
[self.tableView prp_indexPathForRowContainingView:sender];

}

This recipe gives us a clean solution to tracing the origin of embedded table
cell controls, no matter how the table or the cell is laid out.

http://media.pragprog.com/titles/cdirec/code/CellSubviewLocation/Classes/UITableView+PRPSubviewAdditions.m
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Organize Complex Table Views * 86

Recipe 18

Organize Complex Table Views

Credit

This recipe was inspired in no small part by Fraser Speirs’ excellent article,
“A technique for using UlTableView and retaining your sanity,” at speirs.org.

Problem

Working with UlTableView is easy when you have a uniform dataset. Once you
need to do something special in a particular section or row, however, things
can get out of hand quickly. How can you cleanly build a table view with
diverse rows, like the one seen in the Settings application?

Solution

This kind of problem can sneak up on us. Let’s say we have some in-app
settings to manage or a few high-level navigation options that are always
present. We start with a simple table with identical rows for each of the
choices. Easy enough: create an array for the intended titles and use that
to build the table’s rows.

-(void)viewDidLoad {
self.rowTitles = [NSArray arrayWithObjects:@"Favorite Team",
@"Favorite Color",
@"Alerts", nil];

}

- (NSInteger)numberOfSectionsInTableView: (UITableView)tableView {
return 1;

}

- (NSInteger)tableView: (UITableView)tableView

numberOfRowsInSection: (NSInteger)section {

return [self.rowTitles count];

}

Looks good, right? We use the array to determine the number of rows and
now just index the array in -tableView:cellForRowAtindexPath: to get our cell titles.

cell.textlLabel.text = [self.rowTitles objectAtIndex:indexPath.row];

http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Organize Complex Table Views ¢ 87

So, each of these cells, when tapped, performs a completely different task.
It's not like Contacts, where we just present the person detail screen with
the selected data. Each row will push its own unique detail interface. Now
things get complicated, starting with -tableView:didSelectCellForRowAtindexPath:.

switch (indexPath.row) {

case 0:
// Push the team selection view controller
break;

case 1:
// Push the color selection view controller
break;

case 2:
// Push the alerts view controller
break;

default:

NSLog (@"GAME OVER, MAN! GAME OVER!");
break;

}

The use of magic numbers here is an immediate red flag. We could declare
constants to use here instead, but that’s really just masking the problem:
our logic for creating the rows (a switch statement tied to literals) has been
decoupled from our logic for setting them up (the array).

Let’'s make things more complicated. Our designer tells us the alerts row
should have a different appearance. Now we need to add a similar switch
statement blob to -tableView:cellForRowAtindexPath:, which until now was relatively
clean. We may even be looking at multiple reuse identifiers to represent the
new cell layouts.

It gets worse. We've decided that “favorite color” should come before “favorite
team” in the list. Now we have to reorder your array and shuffle around every
piece of code that checks the row index. Right now, that’s just cell creation
and selection. What if we decide to customize the cell height? The background
color? What if we have a table where some cells are editable and others
aren’'t? Each of these scenarios yields yet another data source or delegate
method relying on this fragile technique. If we forget to change one area or
type the wrong number, we end up with misplaced behavior or even excep-
tions because of an out-of-bounds index.

Actually, scratch that: alerts should be in a different section. Now we need
a two-dimensional switch statement—one for sections, one for rows—and
a two-dimensional array for all the row titles. If we forget to increase the
hard-coded number of sections, data will disappear. If we later reduce the

http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Organize Complex Table Views ¢ 88

. ATET & 8:51 AM =
Favorite Team Mets >
Favorite Color Blue >
Favorite City New York >
Alerts OFF

Unstructured data can be difficult to manage with UlTableView. Note how each
row in the first section is unique, and each section has an explicit number
and order of rows.

Figure 21—Heterogeneous table view layout

number of sections, we have exposed ourselves to another out-of-bounds
exception from stale indexing logic.

How did it come to this? Everything was so simple at first. The (allegedly)
final design can be seen in Figure 21, Heterogeneous table view layout, on
page 88.

Your interface doesn’t always line up with a basic data structure where each
row is bound to an item in an array. Forcing the issue won’'t change anything:
we're developing a specialized view, so we need a specialized solution.

The only real value of the array in this example is to give us an abstracted
row count. We can get that, as well as readable, flexible row indexes, by
using enumerations. We start by enumerating all the sections we want. The
first element is initialized to zero, which is the first valid section and row
index in a table view.

http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Organize Complex Table Views * 89

Download OrganizedTableView/Classes/RootViewController.m

enum PRPTableSections {
PRPTableSectionFavorites = 0,
PRPTableSectionAlerts,
PRPTableNumSections,

}

Note that the final PRPTableNumSections value is not a section identifier. It’'s a
natural count of the sections in our table view, since it follows the last sec-
tion. This is very convenient for -numberOfSectionsinTableView:.

Download OrganizedTableView/Classes/RootViewController.m
- (NSInteger)numberOfSectionsInTableView: (UITableView *)tableView {
return PRPTableNumSections;

}

We do the same for our table rows, declaring a separate enum for each
section to ensure the indexes will be right. The system immediately begins
to pay off when returning the number of rows in each section: we've elimi-
nated the magic numbers and also made the code more readable for future
maintenance.

Download OrganizedTableView/Classes/RootViewController.m

enum PRPFavoritesRows {
PRPTableSecFavoritesRowTeam = 0,
PRPTableSecFavoritesRowColor,
PRPTableSecFavoritesRowCity,
PRPTableSecFavoritesNumRows,

};

enum PRPAlertsRows {
PRPTableSecAlertsRowAlerts = 0,
PRPTableSecAlertsNumRows,

};

Download OrganizedTableView/Classes/RootViewController.m
switch (section) {
case PRPTableSectionFavorites:
return PRPTableSecFavoritesNumRows;
case PRPTableSectionAlerts:
return PRPTableSecAlertsNumRows;
default:
NSLog (@"Unexpected section (%d)", section);
break;

}

The -tableView:cellForRowAtIndexPath: method combines the enums and produces
the appropriate content. It starts by checking the requested section against
the PRPTableSections enum and then the row against the corresponding row
enum for that section.

http://media.pragprog.com/titles/cdirec/code/OrganizedTableView/Classes/RootViewController.m
http://media.pragprog.com/titles/cdirec/code/OrganizedTableView/Classes/RootViewController.m
http://media.pragprog.com/titles/cdirec/code/OrganizedTableView/Classes/RootViewController.m
http://media.pragprog.com/titles/cdirec/code/OrganizedTableView/Classes/RootViewController.m
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Organize Complex Table Views * 90

Download OrganizedTableView/Classes/RootViewController.m
switch (indexPath.section) {
case PRPTableSectionFavorites:
cell = [PRPBasicSettingsCell cellForTableView:tableView];
switch (indexPath.row) {
case PRPTableSecFavoritesRowTeam:
cell.textLabel.text = @"Favorite Team";
cell.detailTextLabel.text = @"Mets";
break;
case PRPTableSecFavoritesRowColor:
cell.textLabel.text = @"Favorite Color";
cell.detailTextLabel.text = @"Blue";
break;
case PRPTableSecFavoritesRowCity:
cell.textLabel.text = @"Favorite City";
cell.detailTextLabel.text = @"New York";
break;
default:
NSAssertl(NO, @"Unexpected row in Favorites section: %d",
indexPath.row);
break;
}

break;

Download OrganizedTableView/Classes/RootViewController.m
case PRPTableSectionAlerts:
switch (indexPath.row) {
case PRPTableSecAlertsRowAlerts: {
PRPSwitchSettingsCell *alertCell =
[PRPSwitchSettingsCell cellForTableView:tableView];

alertCell.textLabel.text = @"Alerts";
alertCell.cellSwitch.on = NO;
cell = alertCell;

}
break;
default:
NSAssertl(NO, @"Unexpected row in Alerts section: %d",
indexPath.row);
break;
}
break;
default:
NSAssertl(NO, @"Unexpected section (%d)", indexPath.section);
break;

So, our table has a structured, predictable, readable flow. Now let’s talk
about those pesky design changes. Our Favorites section has three rows:
Favorite Team, Color, and City. You decide that City should come before
Color, not after. To solve this problem for the entire class, you just rearrange
the enum

http://media.pragprog.com/titles/cdirec/code/OrganizedTableView/Classes/RootViewController.m
http://media.pragprog.com/titles/cdirec/code/OrganizedTableView/Classes/RootViewController.m
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Organize Complex Table Views * 91

The OrganizedTableView project accompanying this recipe uses subclasses to obscure
the standard table cell reuse mechanism. If your table view has a small number of
cells, it may be more appropriate to simply store each individual cell in properties
and avoid table cell reuse altogether. Review “The Technique for Static Row Content”
in Apple’s Table View Programming Guide for iOS document before deciding how
to store and generate your table cells.

enum PRPFavoritesRows {
PRPTableSecFavoritesRowTeam = 0,
PRPTableSecFavoritesRowCity,
PRPTableSecFavoritesRowColor,
PRPTableSecFavoritesNumRows,

}i

Every piece of code in this class checks against the enum declaration, so
now City comes before Color in all our rows, and all the behavior—cell cre-
ation, selection, height, background, editing style—still matches up. The
beautiful thing is that we didn’t need to touch or even look at any of it.

What if you want to remove the City row altogether? Easy: move it to the
end of the enum, below PRPTableSecFavoritesNumRows, or just comment it out.
We have simultaneously removed the City row from the usable list and de-
creased the total number of rows, with no other code changes. All the logic
to create and handle the City row are still there, but it will just never be hit.
It's hard to believe, but try it. We've now made a risk-free change to our
design that we can change right back in seconds. No more copies, pastes,
undos, or source control reverts.

There’s something else going on here. The project uses multiple cell styles;
where are the cell identifiers? The -dequeueReusableCellWithldentifier: messages?
They're hidden away in PRPSmartTableViewCell subclasses, building on the ear-
lier Recipe 15, Simplify Table Cell Production, on page 74. Think about how
much more code there would be without employing this additional technique,
especially as the table’s complexity increases.

With this recipe, we've shown you a technique for writing a complex table
view in a way that won’t make your head spin when you come back to it six
months later. We hope it will also reduce the amount of work you need to
do when it’s time to change things up.

report erratum -« discuss

http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Produce Two-Tone Table Views ¢ 92

Recipe 19

Produce Two-Tone Table Views

Problem

You like the two-tone appearance of the App Store and other apps, but
UlTableView lets you set only a single background color. How do you produce
a smooth, easy table with different colors for the top and bottom?

Solution

UlTableView offers an incredible amount of customization through its data
source and delegate protocol methods, its header and footer views, and the
versatile UlTableViewCell. None of these options, however, gets us a table with
different “background” colors on each end. To do this, we’ll write a clever
UlTableView subclass that’s also easy to reuse and customize. Figure 22, Two-
tone table view layout, on page 93 illustrates the effect this recipe produces.

Let’s look at the problem first. We can set the backgroundColor property on a
table view easily enough, which colors the empty space that appears while
scrolling beyond the table’s bounds. However, backgroundColor also affects the
color of the table cells by default, so that’s not an ideal solution. We can
view this effect by running the TwoToneTables project and tapping the
Custom Background row.

So, how do we make the top a slightly different color from the rest of the
table? That’s easy: we just set a table header. We can do this using a special
PRPGradientView class that exposes the handy capabilities of CAGradientLayer.
Now our header makes a smooth transition from the main background color
to a slightly darker color up top.

Download TwoToneTables/Classes/DemoTableViewController.m
- (void)installHeader {
CGRect headerFrame = CGRectMake(0, 0, self.tableView.frame.size.width,
50.0);
PRPGradientView *header = [[PRPGradientView alloc]
initWithFrame:headerFrame];
[header setGradientColors:[NSArray arrayWithObjects:
(id) [self altBackgroundColor].CGColor,
(id)self.tableView.backgroundColor.CGColor,
nilll;

http://media.pragprog.com/titles/cdirec/code/TwoToneTables/Classes/DemoTableViewController.m
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Produce Two-Tone Table Views ¢ 93

. ATET & 10:11 AM o ATET 2 10:11 AM
" Tables Two Tone Tables Two Tone
Row 3
Row 4
Row 5
Row 1
Row 6
Row 2
Row 7
Row 3
Row 8
Row 4
Row 9
Row 5
Row 10
Row 6

The solution we’re seeking displays different colors at either end of the table,
as illustrated in these two screenshots. The table has a white gradient on
top and a red background on the bottom. A traditional table view displays
only a single background color beyond the top and bottom content edges.

(Please don’t ship an app with clashing colors like this. We're only using
them here to make the contrast obvious.)

Figure 22—Two-tone table view layout

self.tableView.tableHeaderView = header;
header.backgroundColor = [self demoBackgroundColor];
[header release];

}

This looks great—until we pull down on the table. That smooth gradient
ends abruptly, and the lighter table background reappears above it. How
do we make that darker color persist at the top while keeping the lighter
color everywhere else? A table footer view won't help for the same reason a
header didn’t. We need to get a little more creative than that.

A UlTableView subclass called PRPTwoToneTableView solves this problem. It declares
topColor and bottomColor properties to be set by the caller—our view controller,
for example. Using these top and bottom properties, plus the backgroundColor
property, we can even make a three-tone table view if we want.

report erratum -« discuss

http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Produce Two-Tone Table Views ¢ 94

Download TwoToneTables/Classes/PRPTwoToneTableView.h
@interface PRPTwoToneTableView : UITableView {}

@property (nonatomic, retain) UIColor *topColor;
@property (nonatomic, retain) UIColor *bottomColor;

@end

These “colors” are really two “stretcher” subviews that our table adds auto-
matically. These views let us customize the edge colors while still using our
own table header and footer views. Note that we're still using the gradient
view for a table header just as we were before. We declare them as properties
in a private class extension and tie them to the public color properties in
custom setter methods.

Download TwoToneTables/Classes/PRPTwoToneTableView.m
@interface PRPTwoToneTableView ()

@property (nonatomic, retain) UIView *topStretcher;
@property (nonatomic, retain) UIView *bottomStretcher;

@end

Download TwoToneTables/Classes/PRPTwoToneTableView.m
- (void)setTopColor: (UIColor *)color {
if (self.topStretcher == nil) {
topStretcher = [[UIView alloc] initWithFrame:CGRectZerol;
[self addSubview:self.topStretcherl];
}

if (self.topStretcher.backgroundColor !'= color) {
self.topStretcher.backgroundColor = color;
}
}

How do these new subviews solve the problem? How do they not interfere
with normal table view behavior? The answer lies in the -layoutSubviews method,
which any UIView subclass can implement. UlTableView already does a great
deal of work in this method, and PRPTwoToneTableView simply builds on that.

Our custom -layoutSubviews method simulates a different “background” color
on either end of the table by stretching the new subviews to fill the space
left when scrolling past either end. We adjust the appropriate stretcher view
according to the table’s current contentOffset—think “scroll point”—and we're
done. This works because each incremental scroll affects a scroll or table
view’s bounds, which produces a -layoutSubviews message for our table.

http://media.pragprog.com/titles/cdirec/code/TwoToneTables/Classes/PRPTwoToneTableView.h
http://media.pragprog.com/titles/cdirec/code/TwoToneTables/Classes/PRPTwoToneTableView.m
http://media.pragprog.com/titles/cdirec/code/TwoToneTables/Classes/PRPTwoToneTableView.m
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Produce Two-Tone Table Views ¢ 95

First things first: when overriding layoutSubviews on a class like UlTableView,
don’t forget to call [super layoutSubviews] before doing your own work. If you
prevent UlTableView from performing its own layout operations, you won’t have
much of a table view: comment out the message to super in -[PRPTwoToneTableView
layoutSubviews], and you’ll notice that none of the cells appears.

When we pull down on a table that’s already at the top, the table’s contentOff-
set.y value becomes negative. We check for this when deciding to show and
adjust our top stretcher to fill the gap. This produces the top “background”
color.

Download TwoToneTables/Classes/PRPTwoToneTableView.m
- (void)layoutSubviews {
[super layoutSubviews];
if (self.topStretcher) {
if (self.contentOffset.y > 0) {
self.topStretcher.hidden = YES;
} else {
self.topStretcher.frame = CGRectMake(0, self.contentOffset.y,
self.frame.size.width,
-self.contentOffset.y);
self.topStretcher.hidden = NO;

}

We handle the bottom stretcher in a similar fashion, but it’s a little more
complicated. The bottom of the view is not exactly a fixed value like the top
is, so first we have to find out whether the bottom is on-screen. From there,
we show the bottom stretcher if appropriate and adjust it to fill the gap.

Download TwoToneTables/Classes/PRPTwoToneTableView.m
CGFloat contentBottom = (self.contentSize.height - self.contentOffset.y);
CGFloat bottomGap = self.frame.size.height - contentBottom;
if ((bottomGap > 0) && self.bottomStretcher) {
if (self.contentOffset.y < 0) {
self.bottomStretcher.hidden = YES;
} else {
self.bottomStretcher.frame = CGRectMake(0, self.contentSize.height,
self.frame.size.width,
bottomGap) ;
self.bottomStretcher.hidden = NO;
}
} else {
self.bottomStretcher.hidden = YES;
}

More often than not, we can accomplish a two-tone appearance by setting
the standard background color, which extends to the bottom automatically,

http://media.pragprog.com/titles/cdirec/code/TwoToneTables/Classes/PRPTwoToneTableView.m
http://media.pragprog.com/titles/cdirec/code/TwoToneTables/Classes/PRPTwoToneTableView.m
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Produce Two-Tone Table Views * 96

and then setting a custom topColor on our new subclass. We’d set bottomColor
only if we wanted a three-tone table with different top, middle, and bottom
colors.

We could do a good amount of this work in UlScrollViewDelegate methods on
our table view controller, but we’d have to move that code around to every
controller we wrote. By overriding -layoutSubviews in a subclass of UlTableView,
we've dramatically simplified the process of creating this two-tone effect.
We don’t need to remember to implement or connect anything in our con-
troller code—we just create a PRPTwoToneTableView and set our colors, and we
can be on our way.

In the next recipe, Recipe 20, Add Border Shadows for Table Views, on page
97, we take this technique to the next level by automatically adding drop
shadows to the borders of a table view.

http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Add Border Shadows for Table Views ¢ 97

Recipe 20
Add Border Shadows for Table Views

Problem

You want to add some depth to your table views. How do you get an effect
like the one you see in the Clock app, in a way that is both easy and
reusable?

Solution

In a number of Apple apps, table views are decorated with border shadows
to give some depth and character to their appearance. The most visible ex-
amples are the World Clock, Alarm, and Stopwatch tabs in the Clock app.
If the tables fill the screen, they look like a plain old table view. But if we
scroll them past their top or bottom bounds, we’ll notice a total of four
shadows: two on the outer boundaries of the view and two more tracking
the top and bottom table cells. We're going to make a reusable table view
that creates this same effect. Figure 23, Table view border shadows, on page
98 shows the look we're after.

Like in Recipe 19, Produce Two-Tone Table Views, on page 92, to do the job
we’ll override -layoutSubviews in a UlTableView subclass. This time, though, we’ll
write a different layout algorithm to coordinate the shadows in all the appro-

priate places in the table.

The PRPShadowedTableView is a bit more complicated than the two-tone table
we built previously: in that example, we had only two views to manage, and
we simply stretched them to fill any gap made while scrolling beyond the
top or bottom content bounds. Here, we're coordinating four subviews rep-
resenting the shadows, with different conditions affecting each shadow.

Once again we're inserting subviews to represent the shadows. Why wouldn’t
we just set the shadows as part of the standard table header and footer?
Well, first of all, doing this would affect the table’s content size. If we set the
bottom shadow as the table footer, for example, the table would include
room at the bottom for the content shadow so that it was always visible.
That isn’'t what we want: we want the shadows to have no effect on the ac-
tual content size and to be visible only when the respective top or bottom

http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Add Border Shadows for Table Views ¢ 98

o ATRT & 10:14 AM

o)
W,

Row 1
Row 2
Row 3
Row 4
Row 5

Row 6

Figure 23—Table view border shadows

ends of the content are exposed. Second, we want this class to support
custom headers and footers without affecting their layout or behavior. Using
subviews that are independent of the other content gives us the greatest
flexibility and safety.

We start with a common initializer that is called whether the table is created
in code or in Interface Builder. This -commoninit method installs the four
shadow views and performs some additional initialization.

Download ShadowedTables/Classes/PRPShadowedTableView.m
- (void)commonInit {

[self installShadows];
}

The previously shown screenshot has a table view that doesn’t fill the screen,
making the bottom two shadows always visible. In the screenshot, the table
is also pulled down past the top of its content, revealing the two top shadows
as well. This shadow placement creates an appearance that resembles the
Clock app.

report erratum -« discuss

http://media.pragprog.com/titles/cdirec/code/ShadowedTables/Classes/PRPShadowedTableView.m
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Add Border Shadows for Table Views ¢ 99

The -installShadows method invoked by -commoninit initializes the four shadow
views to use one of two shadow images. Both images are 1 pixel wide and
safely stretchable to the left or right without any modifications. Each shadow
view is then set up by the -installShadow: method for use in our table view. This
step makes the shadows adaptable to any screen—iPhone, iPad, or whatever
else comes along in the future.

Download ShadowedTables/Classes/PRPShadowedTableView.m
UIImage *upShadow = [UIImage imageNamed:@"shadowUp.png"1;
UIImage *downShadow = [UIImage imageNamed:@"shadowDown.png"];

Download ShadowedTables/Classes/PRPShadowedTableView.m

- (void)installShadow: (UIImageView *)shadowView {
shadowView.autoresizingMask = UIViewAutoresizingFlexibleWidth;
CGRect contentFrame = shadowView. frame;
contentFrame.size.width = self.frame.size.width;
shadowView.frame = contentFrame;
[self repositionShadow:shadowView];

}

Now that the shadow subviews are installed, we can work on positioning
them. The easiest shadow to manage is the shadow above the top of the ta-
ble’s content. This shadow should freely move with the rest of the content
but stay above the top while not actually affecting the content size. We ac-
complish this by setting a negative Y origin on the shadow. Since this never
changes, we need to do it only once, so it’s done early on from -installShadows.

Download ShadowedTables/Classes/PRPShadowedTableView.m

if (contentTopShadow == nil) {
contentTopShadow = [[UIImageView alloc] initWithImage:upShadow];
[self installShadow:contentTopShadow];
CGRect topShadowFrame = contentTopShadow. frame;
topShadowFrame.origin.y = -topShadowFrame.size.height;
contentTopShadow. frame = topShadowFrame;

}

The fixed shadows at the top and bottom of the table view require some
more work. When the user scrolls a scroll view or table view, all of the sub-
views move accordingly, unless we do something special in -layoutSubviews.
Our -layoutSubviews implementation first passes the message on to super to
preserve the default UlTableView behavior and then sends -updateShadows to
adjust the other three shadow views as needed.

Download ShadowedTables/Classes/PRPShadowedTableView.m
- (void)layoutSubviews {

[super layoutSubviews];

[self updateShadows];

http://media.pragprog.com/titles/cdirec/code/ShadowedTables/Classes/PRPShadowedTableView.m
http://media.pragprog.com/titles/cdirec/code/ShadowedTables/Classes/PRPShadowedTableView.m
http://media.pragprog.com/titles/cdirec/code/ShadowedTables/Classes/PRPShadowedTableView.m
http://media.pragprog.com/titles/cdirec/code/ShadowedTables/Classes/PRPShadowedTableView.m
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Add Border Shadows for Table Views * 100

First we update the fixed shadow at the top of the table. Because this subview
would normally scroll with the rest of the content, we need to actively
reposition it based on the scroll offset. We add an optimization to change
the top shadow’s position only if it’s visible—that is, if the table’s content
offset is negative. A negative contentOffset.y value means we are pulling down
on the table past the top edge.

Download ShadowedTables/Classes/PRPShadowedTableView.m
BOOL topShowing = (self.contentOffset.y < 0);
if (topShowing) {
CGRect topFrame = self.topShadow. frame;
topFrame.origin.y = self.contentOffset.y;
self.topShadow.frame = topFrame;
[self repositionShadow:self.topShadow];
self.topShadow.hidden = NO;

[self repositionShadow:self.contentTopShadow];
self.contentTopShadow.hidden = NO;

} else {
self.topShadow.hidden = YES;
self.contentTopShadow.hidden = YES;

}

The next step, adjusting the bottom shadows, is a little trickier. Because
table views receive -layoutSubviews so frequently, we only want to bother ad-
justing the shadows if they're showing. How do we know if the bottom
shadows are exposed? We need to find out where the bottom of the table
content is. “That’s easy,” you might be thinking. “Just get the last cell in
the last section and get its frame; if it’s nil, then the bottom clearly isn’t
showing.” But what if the last section has no rows? What if we have twenty
sections and the last three sections are empty? We could iterate backward
until we find the row that is definitively last in the table, but doing this inside
every call to -layoutSubviews is excessive.

OK, so using the “last cell” may not be reliable. What about the table’s con-
tentSize? If the table runs off the screen, contentSize.y is a valid metric. But it
turns out that, depending on a table’s contents, its contentSize may be the
height of the table itself—even if the actual content is much smaller. So if
we have a 460-pixel-high table with a search bar and a single 44-pixel row,
contentSize.y could be reported as 460, not 44 as we might expect. See Figure
24, Determining a table’s content height, on page 101 to understand the
problem at hand.

It turns out UIKit already performs this measurement for us when it positions
the table footer. If we have a table footer, we can just query its frame to find
out the table’s bottom Y coordinate.

http://media.pragprog.com/titles/cdirec/code/ShadowedTables/Classes/PRPShadowedTableView.m
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Add Border Shadows for Table Views ¢ 101

a_ AT&T = 10:58 AM =

Row 1
Row 2
Row 3 — 309px
Row 4
— 416px
Row 5

Row 6

A table view’s content height is always at least the height of the view itself.
This table’s contentSize.height is not 309 pixels as you might expect but rather
416. This makes determining the bottom shadow placement a little more
difficult.

Figure 24—Determining a table’s content height

What if we don’t have a table footer? Easy: we insert one by overriding the
-tableFooterView getter as a lazy initializer. If a footer is already installed, we
just use that by messaging the superclass. If a footer is not installed, we
insert a hidden, zero-height view as the footer. The setter is unchanged, so
our view controller can replace the placeholder with a custom footer at any
time. This gives us a dependable reference for the table’s proper content
height under any circumstances. If we need the placeholder, it's created
only once, and not until the first -layoutSubviews message is received. This
gives the calling code a chance to set a custom footer before the placeholder
is created unnecessarily. Setting a footer also prevents placeholder separator
lines from being drawn to the end of the view. You can see the effects in
Figure 25, Table footers to the rescue, on page 102.

Download ShadowedTables/Classes/PRPShadowedTableView.m
- (UIView *)tableFooterView {
UIView *footer = [super tableFooterView];
if (footer == nil) {
if (self.placeholderFooter == nil) {
CGRect footerFrame = self.frame;
footerFrame.size.height = 0;
placeholderFooter = [[UIView alloc] initWithFrame:footerFrame];

http://media.pragprog.com/titles/cdirec/code/ShadowedTables/Classes/PRPShadowedTableView.m
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Add Border Shadows for Table Views ¢ 102

L ATET 2 9:12 AM = w ATET 9:10 AM =
| Shadows @ Shadews
Q I (Q
Row 1 Row 1
Row 2 Row 2
Row 3 Row 3
Row 4 Row 4

The presence of a table footer gives us reliable information on the end of a
table’s content so we know where to place our shadow. It also eliminates
the “filler” separator lines drawn by plain table views.

Figure 25—Table footers to the rescue
}

self.placeholderFooter.hidden = YES;
footer = self.tableFooterView = self.placeholderFooter;

}

return footer;

}

Once we know where the bottom of the table is, we decide whether to show
or hide the bottom shadows and place them according to the gap between
the table’s static bottom and the bottom of the table’s content.

Download ShadowedTables/Classes/PRPShadowedTableView.m
CGFloat footerMaxY = CGRectGetMaxY(self.tableFooterView.frame);
CGFloat bottomY = footerMaxY - self.contentOffset.y;
BOOL bottomShowing = (bottomY < self.frame.size.height);
if (bottomShowing) {
CGFloat tableBottom = CGRectGetMaxY (self.frame);
CGRect bottomFrame = self.bottomShadow.frame;
CGFloat yOffset = (bottomFrame.size.height - self.contentOffset.y);
CGFloat bottomY = tableBottom - yOffset;
bottomFrame.origin.y = bottomY;
self.bottomShadow.frame = bottomFrame;

report erratum -« discuss

http://media.pragprog.com/titles/cdirec/code/ShadowedTables/Classes/PRPShadowedTableView.m
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Add Border Shadows for Table Views ¢ 103

The table in this recipe is intended for read-only table views. Adding or deleting
rows, either programmatically or in response to user-editing actions, is not addressed
by the recipe. Properly handling edits requires you to anticipate the “new bottom”
of the table, which adds a significant amount of complexity as this chapter suggests.
We made a conscious decision for this book to keep the code simple and clean by
only solving the noneditable case, which is still very common.

[self repositionShadow:self.bottomShadow];
self.bottomShadow.hidden = NO;

CGRect cbFrame = self.contentBottomShadow. frame;
cbFrame.origin.y = footerMaxY;
self.contentBottomShadow.frame = cbFrame;
[self repositionShadow:self.contentBottomShadow];
self.contentBottomShadow.hidden = NO;

} else {
self.bottomShadow.hidden = YES;
self.contentBottomShadow.hidden = YES;

}

Finally, we send every shadow to the back in the -repositionShadow: method.
We do this because as table cells are reused, their z-order varies. Pushing
the shadows to the back ensures there won’'t be any strange cases where
the shadow shows above normal table content. We additionally safeguard
against the shadows clobbering table content by hiding them altogether
based on the scroll position. Note that this code also accounts for the optional
backgroundView property introduced in iOS 4.0.

Download ShadowedTables/Classes/PRPShadowedTableView.m
- (void)repositionShadow: (UIImageView *)shadowView {
if (self.backgroundView) {
[self insertSubview:shadowView aboveSubview:self.backgroundView];
} else {
[self insertSubview:shadowView atIndex:0];

}
}

This self-contained class is ready for reuse from any view controller or
codebase. You can set background colors, headers, and footers and still get
all four shadows for free. As you've now seen in two examples, the -layoutSub-
views method can help manage the situation with a small amount of code.

report erratum -« discuss

http://media.pragprog.com/titles/cdirec/code/ShadowedTables/Classes/PRPShadowedTableView.m
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Place Static Content in a Zoomable Scroll View ¢ 104

Recipe 21

Place Static Content in a Zoomable Scroll View

Problem

You want to create a zoomable scroll view with points that do not zoom with
the main content, like the pins in the Maps app. This is not as straightfor-
ward as it sounds: depending on where you place your “pins,” they either
zoom with the content or move across the screen as the zoom scale changes.

Solution

UlScrollView makes it fairly easy to support arbitrary scrolling and zooming of
content in your apps. This is all you have to do:

1. Set the minimum and maximum zoom scales to different values.
2. Set a delegate that specifies a content view for zooming.

Although simple, those steps are worth mentioning because they're often
forgotten. Forgetting either one of them disables zooming for that scroll view.
But that’s not why we're here. We're here because we want to create static
“pins,” on our scroll view, just like Maps and MKMapView do. Figure 26, Non-
zooming scroll view content, on page 105 shows an example of this effect.

Sounds simple, right? Not exactly. Let’s take a look at our options, illustrated
in the ScrollViewPins project. The ScrollViewPinsViewController includes a scroll
view, for which it serves as the delegate. It returns an instance of PRPGrid-
View—a simple class that draws a grid using UlBezierPath—as the view for
zooming. This is all we need to enable zooming in our scroll view.

Download ScrollViewPins/Classes/Demo View Controllers/ScrollViewPinsViewController.m
- (UIView *)viewForZoomingInScrollView: (UIScrollView *)scrollView {
return self.gridView;

}

All of the relevant connections between the views and view controller, as
well as the required minimumZoomScale and maximumZoomScale values, are con-
figured in ScrollViewPinsViewController.xib.

Now let’s add some subviews. The project presents three tabs, each with a
different subclass of ScrollViewPinsViewController that exhibits slightly different

http://media.pragprog.com/titles/cdirec/code/ScrollViewPins/Classes/Demo View Controllers/ScrollViewPinsViewController.m
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Place Static Content in a Zoomable Scroll View ¢ 105

Moving Pins Zooming Pins Static Pins Moving Pins Zooming Pins Static Pins

This recipe keeps select subviews in the same place and, at the same size,
whenever the containing scroll view is zoomed.

Figure 26—Nonzooming scroll view content

behavior. Each view controller adds the same generated “pin view” to the
screen but in significantly different ways. Run the project and take a look
at how each tab differs, using two fingers (or drag in the Simulator with the
option key held down) to zoom in and out.

The first tab adds the pin as a subview of the scroll view, independent of
the grid we're zooming. This sounds intuitive because, as stated before, we
want the pin to keep its dimensions as the grid content scales. Select the
Moving Pins tab to see for yourself. Unfortunately, there’s a wrinkle: the
pin’s size doesn’t change as we zoom (good), but it does fly off the screen
(bad). This “movement” occurs because the pin sits in the scroll view’s coor-
dinate space, which changes as zooming occurs.

Let’s move on to the second tab, which adds the pin as a subview of the grid
view—the view we're zooming within the scroll view. Select the Zooming Pins
tab to see this view in action. We now have the opposite problem: the red
pin no longer moves as the grid scales, but it now scales its size while
zooming. This isn’t what we want either. The scaling occurs because it was
added as a subview of the grid, and the grid itself was scaled.

http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Place Static Content in a Zoomable Scroll View ¢ 106

What we want is for the pin to stay still and stay the same size at all times.
What's left to try?

First, let’s discuss what happens when zooming occurs in a scroll view. As
the user zooms on a scroll view, the scroll view’s zoomScale property changes.
As a result, the “zooming view” returned by -viewForZoominginScrollView: receives
a corresponding change to its transform property. The trick with transforms
is that their effects are naturally inherited by subviews. This is why the pin
in the Zooming Pins tab was scaling: our grid view, as the view for zooming,
received a new transform that affected the pin’s own scale.

Another thing that changes as zooming occurs is the scroll view’s contentSize:
larger as we zoom in; smaller as we zoom out. When the pin was a subview
of the scroll view, set to an origin of, say, (10,10), that origin became a much
less substantial dent in the content area as zooming occurred and the con-
tent size increased. This made it look like the pin in the Moving Pins tab
was moving offscreen, when in fact we were simply focusing on a finer, more
distant section of the scroll view’s content.

So, how do we solve this problem? How do we get the benefits of both ap-
proaches but none of the drawbacks? The trick lies in the transform we
mentioned earlier. If we could just invert the grid’s transform and apply that
inversion to the pins, then we could force the pins to stay their original size.
Luckily, the CGAffineTransform API lets us do just that. So, we’ll keep the pins
as subviews of the grid and adjust its transform on the fly while zooming
occurs.

But wait a minute. What if we have a complex hierarchy in our zooming
view and we want only some of them to behave this way while the rest scale
up and down along with everything else? We'll need a way to identify the
nonzooming subviews. This is where PRPGridView’'s superclass, PRPScrollCon-
tentView, comes in. It’s a very basic view that defines a set of subviews we
want to keep static. These special “nonscaling” views will still be added as
subviews, but they’ll also be added to a set so we can keep track of which
views we need to adjust.

Download ScrollViewPins/Classes/PRPScrollContentView.h
@interface PRPScrollContentView : UIView {}

@property (nonatomic, readonly, retain) NSMutableSet *nonScalingSubviews;
- (void)addNonScalingSubview: (UIView *)view;

@end

http://media.pragprog.com/titles/cdirec/code/ScrollViewPins/Classes/PRPScrollContentView.h
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Place Static Content in a Zoomable Scroll View ¢ 107

A convenience setter method, -addNonScalingSubview:, both adds the passed
view to the hierarchy and flags it for exclusion from scaling, so our calling
code doesn’t need to remember both steps.

Download ScrollViewPins/Classes/PRPScrollContentView.m

- (void)addNonScalingSubview: (UIView *)view {
[self.nonScalingSubviews addObject:view];
[self addSubview:view];

}

With our subset of special views clearly defined, we go to work by overriding
-setTransform: to call an adjustment routine for all of our nonscaling subviews.

Download ScrollViewPins/Classes/PRPScrollContentView.m

- (void)setTransform: (CGAffineTransform)transform {
[super setTransform:transform];
[self adjustSubviewsForTransform:transform];

}

This adjustment process is simple: invert the container’s transform, which
was set as a result of zooming, and apply that inverted transform to each
subview we don’t want scaled.

Download ScrollViewPins/Classes/PRPScrollContentView.m
- (void)adjustSubviewsForTransform: (CGAffineTransform)transform {
CGAffineTransform inversion = CGAffineTransformInvert(transform);
for (UIView *subview in self.nonScalingSubviews) {
subview.transform = inversion;
}
}

We wire up this new functionality by passing the pin view to -addNonScalingSub-
view: instead of -addSubview:. You can see this in the StaticPinsViewController class,
and you can see the results by selecting the Static Pins tab in the demo

app.

Download ScrollViewPins/Classes/Demo View Controllers/StaticPinsViewController.m
@implementation StaticPinsViewController

- (void)viewDidLoad {
[super viewDidLoad];
[self.gridView addNonScalingSubview: [self pinView]];

}
@end

Look closely as we zoom the view in this third tab: the pin does not resize
itself, and it remains glued to its original point on the grid. How and why
does this work? Well, let’s say the scroll view was zoomed to 2x. This would

http://media.pragprog.com/titles/cdirec/code/ScrollViewPins/Classes/PRPScrollContentView.m
http://media.pragprog.com/titles/cdirec/code/ScrollViewPins/Classes/PRPScrollContentView.m
http://media.pragprog.com/titles/cdirec/code/ScrollViewPins/Classes/PRPScrollContentView.m
http://media.pragprog.com/titles/cdirec/code/ScrollViewPins/Classes/Demo View Controllers/StaticPinsViewController.m
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Place Static Content in a Zoomable Scroll View ¢ 108

apply a 2x scale transform to the grid view and, by association, all of its
subviews. Inverting that transform gives us a one-half (0.5x) scale. By apply-
ing the 0.5x scale to our pins, we have an effective 1x scale (2.0 from the
superview, multiplied by 0.5 from our adjustment code).

There are some other cool benefits to this solution that you might not appre-
ciate. First, the pin remains centered along its original position. This is due
to the fact that transforms applied to views (and their underlying layers)
work off the center rather than the origin. Second, the transform inversion
works in both directions, zooming both in and out. It even works during the
“bounce” animation when we exceed the scroll view’s minimum or maximum
scale.

There are also some limitations. When using any of the animated UlScrollView
zoom APIs, namely, -setZoomScale:animated: and -zoomToRect:animated:, the pins
will not keep up with the animation—they momentarily scale along with the
scroll view and quickly correct themselves when scrolling is over. This is
because we don’t have direct access to the animation machinery inside UIS-
crollView and therefore can’t easily synchronize our own actions with it. This
is a very small compromise that may not even be relevant to your application.

http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Build a Carousel Paging Scroll View * 109

Recipe 22

Build a Carousel Paging Scroll View

Problem

You want to mimic the “carousel,” round-robin paging behavior in Apple’s
Stocks app. You have a scroll view with a finite number of horizontal pages
and need it to jump back around when scrolling past the end.

Solution

Jumping back around to the beginning or end of a list or array is pretty
simple: just do some modulo arithmetic while adjusting your index, and
you’ll come back around once you move out of bounds. Applying this behav-
ior to UlScrollView, and making that behavior work “infinitely,” is a bit more
complicated.

We'll solve this problem by building on top of Apple’s PhotoScroller sample
code from WWDC 2010. PhotoScroller demonstrates a number of interesting
techniques on its own, including custom on-the-fly scroll view layout, tiled
images, and reusable content views that work in a very similar fashion to
table view cells. It’s a great starting foundation for the work we need to do.

PhotoScroller comes with three images, each with its own dedicated “page”
in the scroll view gallery. However, it displays those photos in a linear
slideshow fashion. You can’t scroll “backward” past the first image or “for-
ward” beyond the last. In this recipe, we’ll apply some extra logic to circle
back around when scrolling past either end of the collection. This will create
an “infinite” scrolling effect similar to what we see in the built-in Stocks app
on iPhone. Figure 27, Carousel behavior in a scroll view, on page 110 illus-

trates this behavior.

Before we get into the logic of circling around, we need to figure out how to
create the illusion of infinite horizontal scrolling. The key word here is illu-
sion. Since scrolling is determined by our scroll view’s contentSize property,
we must have some finite value in place. What we’ll do, then, is choose a
particularly large value that the user is unlikely to scroll to either end of in
casual usage. We've chosen a value of 500,000, stored it in a macro for this

http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Build a Carousel Paging Scroll View * 110

When paging past the last page, the scroll view comes right back around to
the other side. It never stops at either end.

Figure 27—Carousel behavior in a scroll view

recipe, and used it in the modified -contentSizeForPagingScrollView method. This
gives us about 1,000 pages of horizontal scrolling space.

Download PhotoCarousel/Classes/PhotoViewController.m
- (CGSize)contentSizeForPagingScrollView {

CGRect bounds = pagingScrollView.bounds;

return CGSizeMake(kContentWidth, bounds.size.height);
}

The next thing we need to do is initialize our scroll view to start from the
center, to prevent the user from hitting either the beginning or the end of
the scroll boundaries anytime soon. We do this in -viewDidLoad by simply di-
viding the content width in half and setting that to a new contentOffset.

Download PhotoCarousel/Classes/PhotoViewController.m
recycledPages = [[NSMutableSet alloc] init];
visiblePages = [[NSMutableSet alloc] init];

pagingScrollView.contentSize = [self contentSizeForPagingScrollView];
CGFloat pageOffset = floorf(kContentWidth / 2);
pagingScrollView.contentOffset = CGPointMake(pageOffset, 0);

With these two changes in place, our scroll view now has infinite paging
behavior. Feel free to enable the scroll view’s horizontal scroll indicators to
get a feel for just how much space we're working with: the indicator barely
moves as you switch from page to page.

Now that our scroll area is sufficiently padded, it’s time to tackle the primary
task of circling the scroll view back around when we scroll past either end
of our picture collection. We start with a small change to the -tilePages method.

http://media.pragprog.com/titles/cdirec/code/PhotoCarousel/Classes/PhotoViewController.m
http://media.pragprog.com/titles/cdirec/code/PhotoCarousel/Classes/PhotoViewController.m
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Build a Carousel Paging Scroll View * 111

PhotoScroller Sample Code

The PhotoCarousel project included with this book is a modified version of Apple’s
PhotoScroller sample. You can explore the original PhotoScroller project by
searching for it in your Xcode documentation window and clicking Open Project.

In the original sample, the lastNeededPagelndex variable was compared to the
last index of our image array to prevent us from running out of bounds.
This is no longer a concern, since we're scrolling indefinitely and ultimately
adjusting back around to the beginning of the array. But we definitely don’t
want to run past the edge of the scroll view, so we've done some quick math
to make sure that doesn’t happen.

Download PhotoCarousel/Classes/PhotoViewController.m
NSUInteger maxPage = (pagingScrollView.contentSize.width / visibleWidth);
lastNeededPageIndex = MIN(lastNeededPageIndex, maxPage);

The next step is to figure out which of the three images to display when
we're at, say, page 652 of our huge scroll view. We do this with a very basic
change to the configurePage:forindex: method. The original version of this method
used the passed page index directly, and we simply do some modulo arith-
metic on that (now huge) index before pulling one of our three images. This
translates our arbitrarily large page index to something within the bounds
of our image array.

Download PhotoCarousel/Classes/PhotoViewController.m

NSUInteger imageIndex = index % [self imageCount];

[page displayTiledImageNamed:[self imageNameAtIndex:imageIndex]
size:[self imageSizeAtIndex:imageIndex]];

Build and run PhotoCarousel to see these changes in action. We can now
page left or right to our heart’s content. When we go past the third image,
we come back to the first. If we scroll backward beyond the first, we come
back to the third. This goes on and on, seemingly forever. (It’s not actually
forever, but we’d have to page about 500 times in a single direction before
realizing that.)

While playing with this project, you might notice the functional page control
at the bottom of the screen. It updates accordingly as we move from page
to page, and tapping on either side jumps backward and forward as we
would expect. Let’s see how that’s wired up.

The page control is part of the XIB file and is set up as an IBOutlet in our
PhotoViewController. The control is initially set up in -viewDidLoad right after the

http://media.pragprog.com/titles/cdirec/code/PhotoCarousel/Classes/PhotoViewController.m
http://media.pragprog.com/titles/cdirec/code/PhotoCarousel/Classes/PhotoViewController.m
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Build a Carousel Paging Scroll View * 112

scroll view is initialized. We set the control’s number of pages to the size of
our image array and start it at page O.

Download PhotoCarousel/Classes/PhotoViewController.m
pageControl.number0fPages = [self imageCount];
pageControl.currentPage = 0;

[self scrollToPageIndex:0 animated:NO];

Note the -scrollToPagelndex:animated: message there. This method does some
simple arithmetic to figure out the scroll view’s current content offset and
then conforms it to something that fits the requested image index. We send
this message from -viewDidLoad and again in -pageControlTapped:, which is the
action message we receive to handle taps on the page control. We can send
this message at any other time to programmatically display one of our images
at will.

Download PhotoCarousel/Classes/PhotoViewController.m
- (void)scrollToPageIndex: (NSInteger)pageIndex animated: (BOOL)animated
{
CGPoint scrollOffset = pagingScrollView.contentOffset;
CGFloat pageWidth = pagingScrollView.bounds.size.width;
NSInteger currentPage = floorf(scroll0ffset.x / pageWidth);
NSInteger adjustedPage = currentPage % [self imageCount];
NSInteger destinationPage = currentPage + (pageIndex - adjustedPage);
scroll0ffset.x = destinationPage * pageWidth;
[pagingScrollView setContentOffset:scroll0ffset animated:animated];

}
- (IBAction)pageControlTapped: (id)sender

{

[self scrollToPageIndex:pageControl.currentPage animated:YES];

}

Finally, we need to programmatically update the page control’s index in re-
sponse to manual scrolling. We do this in -tilePages but not until a given page
has filled the screen. We know this happens when the firstNeededPagelndex and
lastNeededPagelndex variables are the same—in other words, when only one
page is visible.
Download PhotoCarousel/Classes/PhotoViewController.m
if (firstNeededPageIndex == lastNeededPageIndex) {

pageControl.currentPage = firstNeededPageIndex % [self imageCount];

}

There you have it: a paging scroll view that keeps on going, round and round,
just like the Stocks app. The PhotoCarousel project, like its PhotoScroller
predecessor, includes only three images, but you can easily add more to
increase the number of displayable pages. You can also add your own custom
views that do something completely different in each page.

http://media.pragprog.com/titles/cdirec/code/PhotoCarousel/Classes/PhotoViewController.m
http://media.pragprog.com/titles/cdirec/code/PhotoCarousel/Classes/PhotoViewController.m
http://media.pragprog.com/titles/cdirec/code/PhotoCarousel/Classes/PhotoViewController.m
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

CHAPTER 3

Graphics Recipes

The Graphics section presents recipes that focus primarily on a single appli-
cation: Graphics Garden. Even though this is a simplistic example, we will
explore techniques that you can apply to any application that requires dy-
namic visual components. Along the way, we take a look at the CAlLayer class
and Core Animation libraries, which help you create dynamic and efficient
visual effects.

The first six recipes in this section share sample code in the Graphics Garden
application. Each recipe gradually moves you through the process of creating
simple custom UlView objects, leading to more complex composite UlimageViews
and eventually to a scene of multiple animated elements (see Figure 28, The
Jull Graphics Garden app, on page 114). Wherever possible, we use Objective-
C methods, but occasionally we need to drop down to C functions to access
the lower-level Core Graphics libraries.

The last two recipes delve deeper into Core Animation, using the replicator
layer to create a simple emitter and building an advanced transition using
the power of sublayer transformation.

http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

* 114

iPod = 4:42 PM @ =

Figure 28—The full Graphics Garden app

report erratum « discuss

http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Draw Gradient-Filled Bezier Paths * 115

Recipe 23

Draw Gradient-Filled Bezier Paths

Problem

To get the best-quality image at any size, you want to use Core Graphics to
draw your objects. But Core Graphics C-based APIs can be cryptic and dif-
ficult to work with. Is there another way?

Solution

Before we dig into the code to draw our objects, it’s worth taking a moment
to review drawing in iOS. Custom drawing code is usually added to the
drawRect: method of a UlView subclass. The drawRect: method is unusual in that
it is never called directly from your code. It is triggered by the system to re-
draw the view contents whenever it thinks it is necessary, which in iOS is
not often, because the views are backed by hardware-based layers. We can
force a redraw by calling the setNeedsDisplay method. However, the redraw will
not actually happen until the end of the run loop. A nice advantage of putting
our drawing code in drawRect: is that we don’t have to worry about initializing
the graphics context (or drawing surface), though we can easily get a refer-
ence to it if we need it by calling the C function UlGraphicsGetCurrentContext.

The Core Graphics library provides a set of C functions that allows us to
modify the graphic context properties, such as color and line thickness, and
also to create points, lines, or curves that can then be stroked or drawn to
the graphics context. We can also fill the area inside any drawn shape with
the current color.

UlBezierPath, introduced in iOS 3.2, encapsulates much of the Core Graphics
drawing functions into Cocoa methods and in doing so largely obviates the
need to reference and manipulate graphics contexts. Unfortunately, in iOS,
gradients still live very much in the world of C functions and contexts, but
it is possible to make the two techniques work together (see Figure 29,
Shapes made from bezier curves, on page 116).

We can use the UlBezierPath class to create a path from a series of lines or
curves. An initial point is added first, and then each line is added to the
end of the previous one. If we intend to fill the path, we must ensure that

http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Draw Gradient-Filled Bezier Paths * 116

'iPod @ 8:37 AM @ =

Bezier shapes with Gradient fill

Figure 29—Shapes made from bezier curves

it is closed, either by adding a line that leads back to the start point or by
using the closePath method. The really powerful feature of the UlBezierPath class
is, as its name implies, the bezier curves. There are two methods we can
use: addCurveToPoint:controlPointl:controlPoint2: and addQuadCurveToPoint:controlPoint:.
As you can see, the QuadCurve, or quadratic bezier, is the simpler of the
two and requires only a single control point, whereas the default Curve, or
cubic bezier, needs two control points but can create significantly more
complex curves.'

A clipping path defines the area where the contents of the graphics context
will be visible; anything outside of the path will not be rendered to the screen.
A UlBezierPath can be made to act as a clipping path by calling the addClip
method. In using this technique, a gradient, which would otherwise cover
the entire view, will be rendered only inside the clip region defined by the
edges of our shape.

1. For more on how bezier curves work, check out the UlBezierPath section of the iPad
Programming Guide on http://developer.apple.com.

report erratum -« discuss

http://developer.apple.com
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Draw Gradient-Filled Bezier Paths * 117

Download GraphicsGarden/PRPShapedView.m
- (CGGradientRef) gradientWithColor: (UIColor *)color
toColor: (UIColor *)color2
count: (CGFloat)colorCount

const CGFloat *colorParts = CGColorGetComponents(color.CGColor);
CGFloat red = colorParts[0];

CGFloat green = colorParts[1];

CGFloat blue = colorParts[2];

const CGFloat *color2Parts = CGColorGetComponents(color2.CGColor);
CGFloat red2 = color2Parts[0];

CGFloat green2 = color2Parts[1];

CGFloat blue2 = color2Parts[2];

CGFloat graduations[] =

{
red, green, blue, 1.0,
red2, green2, blue2, 1.0,
red, green, blue, 1.0

+

CGColorSpaceRef rgb = CGColorSpaceCreateDeviceRGB();
CGGradientRef gradient =
CGGradientCreateWithColorComponents(rgb,

graduations,
NULL,
colorCount);

CGColorSpaceRelease(rgb);

[(id)gradient autorelease];

return gradient;

}

Each of our shapes shares a common set of attributes and methods, so it
makes sense to break those elements out into a base class, PRPShapedView.
This class declares several properties—IineThickness and strokeColor—as well as
innerColor and outerColor properties, which are needed when we create the gra-
dient. It also defines the gradientWithColor method, which creates the CGGradient
based on the innerColor and outerColor properties.

The gradientWithColor method breaks up the UlColors into their RGB components
and creates a C array containing three sets of components. (The fourth ele-
ment of each set is the opacity, which we set to 1, opaque.) The first and
third elements use the color parameter, and the middle element is set to color2.
This gives us the flexibility to use the count to specify a gradient of the first
two colors or three colors using the primary color as both the start and end
color. From the CGGradient returned, each subclass can choose to render a
linear or radial gradient in the view.

http://media.pragprog.com/titles/cdirec/code/GraphicsGarden/PRPShapedView.m
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Draw Gradient-Filled Bezier Paths

Download GraphicsGarden/PRPetal.m
- (void)drawRect: (CGRect)rect {

}

CGFloat halfHeight = self.bounds.size.height/2;
CGFloat halfWidth = self.bounds.size.width/2;
CGFloat fullHeight = self.bounds.size.height;
CGFloat fullwidth = self.bounds.size.width;

CGPoint startPoint = CGPointMake(halfWidth, 3);

CGPoint midPoint = CGPointMake(halfWidth, halfHeight*1.6);
CGPoint endPoint = CGPointMake(halfWidth, fullHeight);
CGPoint corner = CGPointMake(fullwidth, 0);

CGPoint leftCtrl = CGPointMake(-halfWidth, halfHeight/3);
CGPoint rightCtrl = CGPointMake(fullwidth*1.5, halfHeight/3);

UIBezierPath *pPath = [UIBezierPath bezierPath];
[pPath moveToPoint:startPoint];

[pPath addCurveToPoint:endPoint
controlPointl:leftCtrl
controlPoint2:midPoint];

[pPath addCurveToPoint:startPoint
controlPointl:midPoint
controlPoint2:rightCtrl];

[pPath addClip];

CGGradientRef gradient = [self gradientWithColor:self.innerColor
toColor:self.outerColor
count:3];
CGContextRef context = UIGraphicsGetCurrentContext();
CGContextDrawLinearGradient(context,
gradient,
CGPointZero,
corner,
0);
pPath.lineWidth = self.lineThickness;
[self.strokeColor setStrokel;
[pPath stroke];

* 118

Because the PRPetal class inherits from the base class PRPShapedView, we only
need to override the drawRect: method. We build up the UIBezierPath from two
cubic bezier curves that form the closed shape that we need to become a
clipping Rect. The CGContextDrawLinearGradient function draws the gradient we
created from the base class gradientWithColor method. Only then do we stroke
the bezier path, clipping the gradient beneath it to match its shape.

http://media.pragprog.com/titles/cdirec/code/GraphicsGarden/PRPetal.m
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Draw Gradient-Filled Bezier Paths * 119

Download GraphicsGarden/PRPSmile.m
- (void)drawRect: (CGRect)rect {

CGFloat halfHeight = self.bounds.size.height/2;

CGFloat halfWidth = self.bounds.size.width/2;

CGFloat fullHeight = self.bounds.size.height;

CGFloat fullwidth = self.bounds.size.width;

CGFloat radius = (halfWidth > halfHeight) ? halfHeight : halfWidth;
CGPoint midPoint = CGPointMake(halfWidth, halfHeight);

UIBezierPath *pPath = [UIBezierPath
bezierPathWithArcCenter: midPoint
radius: radius
startAngle: 0
endAngle: M PI*2
clockwise: YES];
[pPath addClipl];

CGGradientRef gradient = [self gradientWithColor:self.innerColor
toColor:self.outerColor
count:2];

CGContextRef context = UIGraphicsGetCurrentContext();

CGContextDrawRadialGradient(context, gradient,
midPoint, 0,
midPoint, radius, 0);

pPath.lineWidth = self.lineThickness*1.7;
[self.strokeColor setStroke];
[pPath stroke];

// Eyes and Smile

[pPath removeAllPoints];

pPath.lineWidth = self.lineThickness;

[pPath moveToPoint:CGPointMake (halfWidth/2, halfHeight*1.3)1;

[pPath addQuadCurveToPoint:CGPointMake(halfWidth*1.5, halfHeight*1.3)
controlPoint:CGPointMake (halfWidth, fullHeight*.91)];

[pPath stroke];

pPath = [UIBezierPath
bezierPathWithOvalInRect:CGRectMake(fullwidth/3-halfWidth*.1,

fullHeight/3,
halfWidth*.2,
halfHeight*.3)1;

pPath.lineWidth = self.lineThickness;

[pPath fill];

[pPath strokel;

http://media.pragprog.com/titles/cdirec/code/GraphicsGarden/PRPSmile.m
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Draw Gradient-Filled Bezier Paths * 120

pPath = [UIBezierPath
bezierPathWithOvalInRect:CGRectMake(fullwidth/3*2-halfWidth*.1,

fullHeight/3,
halfWidth*.2,
halfHeight*.3)1;

pPath.lineWidth = self.lineThickness;

[pPath fill];

[pPath strokel;

}

The PRPSmile class follows the pattern of the PRPetal class, except that we use
an arc to draw a clipping circle, and we use the CGContextDrawRadialGradient
function to create a radial gradient (colors radiate out from the center). The
additional drawing code simply adds the eyes and smile to the graduated
circle.

Now you have several views that you can use as building blocks for larger,
more complex objects. In the next recipe, Recipe 24, Create Dynamic Images
with Multiple Animations, on page 121, that’s exactly what we’ll do.

http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Create Dynamic Images with Multiple Animations * 121

Recipe 24

Create Dynamic Images with Multiple Animations

Problem

Core Animation simplifies the process of animating an object, making it
move, rotate, or change size. But now you want to combine those techniques
to create a more complex effect. Where do you start?

Solution

Making an object pulse and spin may not be something you need to do every
day, but the technique here demonstrates how you can easily create complex
effects by applying multiple animations to a single object (see Figure 30,
Petals rotating and pulsing around the sun, on page 122).

Download GraphicsGarden/PRPSunshine.m

UIView *shineView = [[UIView alloc] initWithFrame:self.bounds];
self.shinelLayer = shineView.layer;

[self addSubview:shineView];

[shineView release];

for (CGFloat i = M PI/10; i < M PI*2; i += M PI/7.5) {
PRPetal *petal = [[PRPetal alloc] initWithFrame:petalRect];
petal.outerColor = [UIColor yellowColor];
petal.innerColor = [UIColor colorWithRed:1 green:.8 blue:.2 alpha:1];
petal.lineThickness = 40;
petal.strokeColor = [UIColor whiteColor];

[shineView addSubview:petall;

[petal releasel];

petal.layer.anchorPoint = CGPointMake(.5, 2);
petal.transform = CGAffineTransformMakeRotation(i);

}

[self addRotationAnimation];

PRPSmile *sunCenter = [[PRPSmile alloc] initWithFrame:sunRect];
sunCenter.innerColor = [UIColor yellowColor];

sunCenter.outerColor = [UIColor colorWithRed:1 green:.8 blue:.2 alpha:1];
[self addSubview:sunCenter];

[sunCenter release];

The PRPSunshine class creates the sun from the same components used in the
previous recipes, PRPetal and PRPSmile. We modify the colors slightly for a

http://media.pragprog.com/titles/cdirec/code/GraphicsGarden/PRPSunshine.m
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Create Dynamic Images with Multiple Animations ¢ 122

11:21 AM 11:23 AM

Figure 30—Petals rotating and pulsing around the sun

“sunnier” look and use a much thinner Rect for the petals. Here we also add
the petals to a secondary UlView: shineView. shineView covers the same area as
the main UlView but is used only to contain the petals. This allows us to add
animation to the underlying layer without affecting the PRPSmile.

To create the circle of petals, we iterate through each of the required angles
of rotation, in radians. A view will always rotate around its anchorPoint, which
is usually set to the center of the Rect (0.5, 0.5). Because we need the petal
to rotate around the center of the flower, rather than its own center, we
need to set the anchorPoint to be below the lower edge of the Rect (0.5, 2). After
that, a call to the CGAffineTransformMakeRotation method with the current radian
value will ensure that the petal is positioned in the correct part of the flower
and at the correct angle.

Download GraphicsGarden/PRPSunshine.m

CABasicAnimation *animation=[CABasicAnimation
animationWithKeyPath:@"transform.rotation"];

animation.duration=10;

animation.speed = self.animationSpeed;

animation.repeatCount = MAXFLOAT;

animation.fromValue=[NSNumber numberWithFloat:0];

animation.toValue= [NSNumber numberWithFloat:M PI*2];

[self.shineLayer addAnimation:animation forKey:@"rotate"];

animation.keyPath = @"opacity";
animation.duration=.5;

animation.autoreverses = YES;
animation.fromValue=[NSNumber numberWithFloat:0.7];

http://media.pragprog.com/titles/cdirec/code/GraphicsGarden/PRPSunshine.m
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Create Dynamic Images with Multiple Animations ¢ 123

animation.toValue= [NSNumber numberWithFloat:1.0];
[self.shineLayer addAnimation:animation forKey:@"fade"];

animation.keyPath = @"transform.scale";

animation. fromValue=[NSNumber numberWithFloat:.9];
animation.toValue= [NSNumber numberWithFloat:1.1];
[self.shineLayer addAnimation:animation forKey:@"scale"];

The three animations we are building in the addRotationAnimation method share
many attributes, which means we can reuse the same animation object by
simply modifying the properties that differ. Two of the animations are actu-
ally transformations that make use of CATransform3D, but because we are using
Key-Path extensions, we do not need to construct the transformations our-
selves. We can simply set the “from” and “to” values as NSNumbers, and the
animation will construct the transformations for us. Using the Key-Path
extensions comes with the added benefit of allowing the rotation to repeat-
edly turn a full circle. If we had used CATransform3D values for the rotation
with the same angles, it would not have animated, because the starting
angle and ending angle, O and 2*pi, respectively, would be effectively the
same.

Adding the animation to a CAlLayer creates its own copy and further changes
to that animation object have no effect on the CALayer. You can change any
of the animation properties simply by adding an updated version. As long
as you use the same key name for the new animation, you won’t need to re-
move the old copy of the animation from the CALayer.

http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Make Composited and Transformed Views ¢ 124

Recipe 25

Make Composited and Transformed Views

Problem

You want to build an image from components that you have already built,
transforming some of the individual elements to get the look you want. How
can you do that and still allow the resulting image to be efficiently animated?

Solution

The hierarchy of UlViews allows us to layer multiple components to build up
an image. We can create complex results by modifying the properties of each
of the independent subviews. Once all of the UlViews are in place, we can
then use a few lines of Core Graphics code to composite those UlViews into
a single image.

As part of the Graphics Garden app, we use this technique to construct the
flower image. We create the flower by using the basic elements we built in
Recipe 23, Draw Gradient-Filled Bezier Paths, on page 115. It consists of a
ring of petals with a central smiley face and a short stem, with two additional
petals shaded green to indicate leaves growing out from the stem.

This code constructs the composite UlView piece by piece from the component
classes we have already created.

Download GraphicsGarden/PRPFlower.m
CGFloat halfHeight = self.bounds.size.height/2;
CGFloat halfWidth = self.bounds.size.width/2;
CGFloat fullHeight = self.bounds.size.height;
CGFloat fullwidth = self.bounds.size.width;
CGRect smileRect = CGRectMake(halfWidth/2, halfHeight/4*.9,
halfwidth, halfHeight);
CGRect petalRect = CGRectMake(halfWidth-fullwidth/10, fullHeight/5,
fullwidth/5, fullwidth/2);
CGRectMake (halfWidth-fullwidth/12, fullHeight*.84,
fullwidth/5, fullwidth/2);
CGRect stemRect = CGRectMake(halfWidth-fullwidth/8, halfHeight*1.3,
fullwidth/4, halfHeight*.8);

CGRect leafRect

PRPStem *stem = [[PRPStem alloc] initWithFrame:stemRect];
stem.outerColor = [UIColor colorWithRed:® green:.5 blue:0 alpha:1];
stem.innerColor = [UIColor colorWithRed:0.3 green:1 blue:.2 alpha:1];

http://media.pragprog.com/titles/cdirec/code/GraphicsGarden/PRPFlower.m
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Make Composited and Transformed Views ¢ 125

[self addSubview:stem];
[stem release];

for (CGFloat i = M PI/10; i <M PI*2; i += M PI/7.5) {
PRPetal *petal = [[PRPetal alloc] initWithFrame:petalRect];
petal.outerColor = [UIColor purpleColor];
petal.innerColor = [UIColor colorWithRed:1 green:0 blue:1 alpha:1];
[self addSubview:petall];
[petal releasel];
petal.layer.anchorPoint = CGPointMake(.5, 1);
petal.transform = CGAffineTransformMakeRotation(i);

for (CGFloat i = -M PI/5; i <M PI/5; i += M PI/5%2) {
PRPetal *leaf = [[PRPetal alloc] initWithFrame:leafRect];
leaf.outerColor = [UIColor colorWithRed:0 green:.5 blue:0 alpha:1];
leaf.innerColor = [UIColor colorWithRed:0.3 green:1 blue:.2 alpha:1];
[self addSubview:leaf];
[leaf release];
leaf.layer.anchorPoint = CGPointMake(.5, 1);
leaf.transform = CGAffineTransformMakeRotation(i);

}

PRPSmile *smile = [[PRPSmile alloc] initWithFrame:smileRect];
smile.innerColor = [UIColor yellowColor];

smile.outerColor = [UIColor colorWithRed:1 green:.4 blue:0 alpha:1];
[self addSubview:smile];

[smile release];

To keep the process simple, we add the subviews, starting from the rearmost
UlView, and build up the flower as each part is added. In this case, the stem
is added first based on the PRPStem class. The outer ring of the flower is
formed as each petal is added to the UlView, pointing up from the center, and
transformed using CGAffineTransformMakeRotation with an incrementing angle of
rotation (specified here as a fraction of Pi). The anchorPoint property is crucial
here, because that defines the center of rotation for our transformation. The
two leaves are then added using the same technique but with a much
smaller range of rotation and an offset starting angle. Finally, the PRPSmile
object is added to the UlView with its center set to match the center of rotation
of the petals.

Now that we have the code to create the flower, we could use it to create all
the flowers we need in our scene, but that would result in numerous UlViews.
Apart from the large memory footprint, the total time needed to instantiate
so many UlViews would be quite significant.

Only one PRPFLower object is created here, even though we are placing sixty
flowers in our scene, because an image is created from that object using
the new category method PRPCompositeView.

http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Make Composited and Transformed Views * 126

Download GraphicsGarden/MainViewController.m

PRPFlower *flower = [[PRPFlower alloc] initWithFrame:flowerRect];
UIImage *compositeFlower = [flower PRPCompositeView];

[flower release];

for (int 1 = 0; i < 60; i++) {

int size = height/12;

CGFloat flowerSize = arc4random()%size+size;

CGRect flowerRect = CGRectMake(arc4random()%(int)width*0.9,
arc4random()%pos+2*pos ,
flowerSize*0.7,
flowerSize);

UIImageView *compView = [[UIImageView alloc] initWithFrame:flowerRect];

compView.image = compositeFlower;

compView.layer.zPosition = flowerRect.origin.y+flowerSize;

[self.view addSubview:compView];

[compView release];

[self growUp:compView forDuration:arc4random()%100/25.0+4];

}

We can then build out our scene by creating UllmageViews based on our new
image. With each flower being a single entity, they can be individually ani-
mated, which wouldn’t have been possible had it still been a hierarchy of
UlViews.

Here’s the code for the category method we need to composite our image
from multiple UlViews:

Download GraphicsGarden/UIView+PRPCompositedView.m
UIGraphicsBeginImageContextWithOptions(self.layer.bounds.size, NO, 0);
[self.layer renderInContext:UIGraphicsGetCurrentContext()];

UIImage *compoundImage = UIGraphicsGetImageFromCurrentImageContext();
UIGraphicsEndImageContext();

return compoundImage;

The CALayer method renderinContext is key, because it renders all sublayers into
the graphics context, effectively flattening our hierarchy into a single element.
The C method UlGraphicsGetimageFromCurrentimageContext() uses the bitmap data
from the graphics context and builds the new Ulimage.

By using rotation transformation, we avoid the need to create more complex
components for our image. Compositing our UlViews into a single Ullmage allows
us to reduce memory usage, increase performance, and animate the flower.

http://media.pragprog.com/titles/cdirec/code/GraphicsGarden/MainViewController.m
http://media.pragprog.com/titles/cdirec/code/GraphicsGarden/UIView+PRPCompositedView.m
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Animate a Gradient Layer ¢ 127

Recipe 26

Animate a Gradient Layer

Problem

Adding background gradients can greatly improve the presentation of a view
that would otherwise be rendered in a single solid color. But you want to
go further and give your gradients a dynamic element to indicate a change
of state or to show that the app is responding to user input.

Solution

The CALayer family of classes has grown in the last few releases of i0S, pulling
in many of the classes previously found only in Mac OS X. With iOS 3.0,
Apple introduced CAGradientLayer, making it easy for you to generate a gradu-
ated background for any UlView. The greatest advantage of using this class
comes from the animatable properties, which can create extremely fast,
hardware-based effects. Animation even extends to the arrays of colors used
to build the gradients, so you can create a smooth, interpolated, cross-fade
of gradients (see Figure 31, Animated gradient layer, on page 128). The only
downside of CAGradientLayer is that currently you can use only an axial, or
linear, gradient.’

Using this technique yields a nicely animated opening fade-in of a multicol-
ored graduated background, demonstrated in the context of the Graphics
Garden sample app. You could apply this to create an animated sunrise-
sunset effect, for example.

Although we are using CAGradientLayer, we add our code to a UlView subclass.
That may not seem intuitive, but remember that each UlView is backed by a
CAlLayer, and by overriding the layerClass method we can ensure this view is
backed by a CAGradientLayer.

Download GraphicsGarden/GradientView.m
+ (Class)layerClass {
return [CAGradientLayer class];

}

2. The Core Graphics libraries can create a radial, or circular, gradient, so there may
be hope for the future.

http://media.pragprog.com/titles/cdirec/code/GraphicsGarden/GradientView.m
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Animate a Gradient Layer ¢ 128

Figure 31—Animated gradient layer

Overriding the layerClass method is a technique more often used for OpenGL-
backed UlViews, but it works just as well for creating the gradient-backed
Ulview we need here.

First we set up the initial color array to reflect how we want the gradient to
look at the end of the animation. This code initializes the values that fix the
three main colors to their relative positions in the UlView to give the overall
effect we want. Without these control values, the generated gradient would
have the colors spaced evenly throughout the layer.

Download GraphicsGarden/GradientView.m
- (void)didMoveToSuperview {
self.backgroundColor = [UIColor blackColorl];
CGColorRef color = [UIColor blackColor].CGColor;
UIColor *colorl = [UIColor colorWithRed:0.01 green:0.20 blue:0.80

alpha:1.0];
UIColor *color2 = [UIColor colorWithRed:1.00 green:0.50 blue:0.00

alpha:1.01];
UIColor *color3 = [UIColor colorWithRed:0.35 green:0.74 blue:0.11

alpha:1.0];

NSArray *colors = [NSArray arrayWithObjects:(id)[colorl CGColor],
[color2 CGColor],
[color3 CGColor],
nill;

CAGradientLayer *glLayer = (CAGradientLayer *)self.layer;
gLayer.colors = colors;
gLayer.locations = [NSArray arrayWithObjects:

[NSNumber numberWithFloat:0.0],

report erratum « discuss

http://media.pragprog.com/titles/cdirec/code/GraphicsGarden/GradientView.m
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Animate a Gradient Layer * 129

[NSNumber numberWithFloat:0.4],
[NSNumber numberWithFloat:0.9],
nil];
gLayer.startPoint = CGPointMake (0.5, 0);
gLayer.endPoint = CGPointMake (0.5, 1);

The animation code should be starting to look familiar; it follows the standard
pattern of a CABasicAnimation setup. We could have used a CAAnimationGroup to
ensure that the two animations run concurrently, but the result would be
the same because they share the same duration and timing function.

Download GraphicsGarden/GradientView.m
CABasicAnimation *anim = [CABasicAnimation animationWithKeyPath:
@"startPoint"];

anim.fromValue = [NSValue valueWithCGPoint:CGPointMake(0.5, 1)];

anim.duration = Duration

anim.timingFunction = [CAMediaTimingFunction
functionWithName:kCAMediaTimingFunctionEaseOut];

[gLayer addAnimation:anim forKey:@"start"];

anim = [CABasicAnimation animationWithKeyPath:@"colors"];

anim.fromValue = [NSArray arrayWithObjects:(id)color, color, color, nil];

anim.duration = Duration;

anim.timingFunction = [CAMediaTimingFunction
functionWithName:kCAMediaTimingFunctionEaseOut];

[gLayer addAnimation:anim forKey:@"colors"];

The first animation object applies to the Startpoint property, which sets the
start position of the gradient, specified in unit coordinates, transitioning
from 1.0 (bottom of view) to O (top of view). This produces the effect of a
gradual rise up the screen. Adding a kCAMediaTimingFunctionEaseOut timing
function causes the animation to start quickly and then transition to a
slower stop.

The second animation block drives the change of color. When the animation
object is built, only the fromValue needs to be set to the array of colors from
which we want the transition to begin—in this case, all black. The animation
object interpolates to the colors currently stored in the layer. This technique
would not work if we were adding the animation object after the view had
already been rendered, because the gradient would appear in full, then
disappear, and then animate back into view.

Download GraphicsGarden/MainViewController.m

GradientView *gradView = [[GradientView alloc] initWithFrame:
self.view.bounds];

[self.view addSubview:gradView];

[gradView release];

http://media.pragprog.com/titles/cdirec/code/GraphicsGarden/GradientView.m
http://media.pragprog.com/titles/cdirec/code/GraphicsGarden/MainViewController.m
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Animate a Gradient Layer ¢ 130

Adding the GradientView to the main view, as shown here, does two things.
First, the GradientView becomes a subview of the main background view, and
second, it triggers the initialization and animation of the underlying gradient
layer. We get this result because we placed the code for those functions in
the didMoveToSuperview delegate method. This method is called only when the
addSubview method is called—the advantage being that the instantiation of
the gradientView is separated from its activation, so we avoid any issues with
timing the animation. If we had added gradient code to the initWithFrame
method, it’s possible that the animation would have started before the view
was rendered.

You can use this technique to create quite complex gradients, because you
can specify as many colors and control points as you want. By modifying
the animation timing, along with the start or end color arrays, you can
produce a variety of eye-catching effects.

Could you have done this another way? Filling a view with a gradient is
relatively simple, as you saw in Recipe 23, Draw Gradient-Filled Bezier Paths,
on page 115. But without this technique, animating that gradient, especially
getting the cross-fade effect, would require a lot more code and be a great
deal more processor-intensive.

http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Reshape Shadows ¢ 131

Recipe 27

Reshape Shadows

Problem

You can add the impression of depth to any view simply by including a
shadow, and in most cases that addition is all you need to produce the de-
sired effect. But what if you want to render a shadow that doesn’t follow the
shape of the image in the view, perhaps to imply the angle of the source of
light or to render the shape of the ground the shadow is passing over. How
can you modify the shadow’s shape to create these or similar effects?

Solution

You can define a CALayer to display a shadow that follows its nontransparent
shape, offset from the image contents, to give the effect of the view being
shown in relief, set apart from the background. Apple introduced a new
property in iOS 3.2 that defines a shadowPath. This path does not need to
follow the shape of the CAlLayer contents, so we can be a little more creative
and go beyond the default relief shadow. In this case, we will build a cloud
image that appears to cast its flattened shadow on the ground as it floats
across the screen.

Download GraphicsGarden/PRPCloud.m
- (void)drawRect: (CGRect)rect {
CGFloat fullHeight = self.bounds.size.height;
CGPoint top = CGPointMake(0, 0);
CGPoint bottom = CGPointMake (0, fullHeight);
UIBezierPath *pPath = [self CreatePathWithHeight:
self.bounds.size.height];
[pPath addClip];
CGGradientRef gradient = [self gradientWithColor:self.innerColor
toColor:self.outerColor
count:2];
CGContextRef context = UIGraphicsGetCurrentContext();
CGContextDrawLinearGradient(context,
gradient,
top,
bottom,
0);
pPath.lineWidth = self.lineThickness;

http://media.pragprog.com/titles/cdirec/code/GraphicsGarden/PRPCloud.m
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

}

Reshape Shadows * 132

[self.strokeColor setStrokel;

[pPath stroke];

pPath = [self CreatePathWithHeight:self.bounds.size.height/2.0];
self.layer.shadowPath = pPath.CGPath;

if (!self.shadowDistance) shadowDistance = self.bounds.size.height*1.8;
self.alpha = 0.9;

self.layer.shadowOffset = CGSizeMake(0, self.shadowDistance);
self.layer.shadowOpacity = 0.4;

PRPCloud is a subclass of PRPShapedView and therefore follows the same pattern
as all the simple view objects in the Graphics Garden application. In the
drawRect method, we build our cloud image using a UIBezierPath that is created
in CreatePathWithHeight (shown next) from a C array of relative points. The Cre-
atePathWithHeight method uses the height parameter to adjust the position of
the points as the path is built.

Download GraphicsGarden/PRPCloud.m
- (UIBezierPath *) CreatePathWithHeight: (CGFloat)h {

CGFloat w = self.bounds.size.width;
CGFloat points[] =
{

(<]

(<]

A NN DO OO
[clcoNoNoNoNoNoR NN

[clcoNoNoNoNoNoNo)
N =N Ul 00 © 0 U
[clcoNoNoNoNoNoNo)
N U1l oo ©O© o0 Ul N =
N B O OO BN

}i

CGPoint point;
CGPoint cPoint;
UIBezierPath *pPath = [UIBezierPath bezierPath];

point = CGPointMake(points[0@]*w, points[1l]*h);
[pPath moveToPoint:point];

for (int i = 2; i < sizeof(points)/sizeof(float); i+=4) {
cPoint = CGPointMake(points[i]l*w, points[i+1]*h);
point = CGPointMake(points[i+2]*w, points[i+3]1*h);

[pPath addQuadCurveToPoint:point controlPoint:cPoint];
}
[pPath closePathl];

return pPath;

http://media.pragprog.com/titles/cdirec/code/GraphicsGarden/PRPCloud.m
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Reshape Shadows ¢ 133

Consequently, we need to call the CreatePathWithHeight in two places—first to
create the path for the cloud and then for the shadowPath property but with
half the original height. The shadowOffset of the layer is set to the value of the
shadowDistance property of the cloud view, placing it far enough below the
cloud to give the impression that it's at ground level.

You could also create a shadow using an additional CALayer, but that would
require the extra step of synchronizing the position of the two layers when-
ever you needed to move or animate them.

http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Display Animated Views ¢ 134

Recipe 28

Display Animated Views

Problem

You can use Core Graphics to create a series of UllmageViews that represent
various stages of a moving object. How do you display them in sequence to
create a looping animation?

Solution

We've addressed animation in some detail in the recipes in this section,
working mostly with manipulating the position or rotation of layers. Classic
cell animation, like the kind seen in cartoons, uses a different technique
that involves displaying a sequence of images that fool the brain into seeing
continuous movement. We can create the same visual effect by providing
an instance of the UllmageView class with an array of images. Normally, we
create these images offline and then load them from file, but in this case,
we will follow our previous examples and create our images using the now-
familiar Core Graphics techniques.

To keep the artwork simple, we will build the classic line-drawn seagull
animation, with the two wings seeming to flap up and down as the body
bounces between them (see Figure 32, Frames of the seagull animation, on

page 135). To render the wings of our bird, we just need a pair of quadratic
bezier curves.

The PRPBird class extends the UllimageView class to build and assign our array
of images.

Download GraphicsGarden/PRPBird.m
- (void)didMoveToSuperview {

if (!self.animationImages) {
self.animationImages = [self arrayOfFrames];
}
}

To ensure that the UllmageView has been added to the main view before we
build our images, we override the didMoveToSuperview method to assign the
array to the animationimages property.

http://media.pragprog.com/titles/cdirec/code/GraphicsGarden/PRPBird.m
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Display Animated Views ¢ 135

N VT A N

Figure 32—Frames of the seagull animation

Download GraphicsGarden/PRPBird.m
- (NSArray *)arrayOfFrames {

}

NSMutableArray *imageArray = [NSMutableArray arrayWithCapacity:COUNT];

for (CGFloat i = LOWWING; i < HIGHWING; i+=STEPS) {
[imageArray addObject:[self animationFrame:ill;

}

for (CGFloat i = HIGHWING; i > LOWWING; i-=STEPS) {
[imageArray addObject:[self animationFrame:ill;

}

return [NSArray arrayWithArray:imageArray];

The arrayOfframes method builds up the NSMutableArray of images by looping
through two sets of calls to the animationframe, where the wings are drawn.
The parameter i relates to the height of the edge of each wing. We use two
separate loops here because we need to generate all of the frames for our
animation—both the wings flapping downward and the wings flapping back
up again. Because the animation automatically repeats, it will give the im-
pression of continuous movement.

Download GraphicsGarden/PRPBird.m
- (UIImage *)animationFrame: (CGFloat)frameNum {

CGFloat width = self.bounds.size.width;
CGFloat height = self.bounds.size.height;

UIGraphicsBeginImageContextWithOptions (CGSizeMake (width, height),
NO, 0);
UIBezierPath *path = [UIBezierPath bezierPath];

[path moveToPoint:CGPointMake (0, frameNum)];

[path addQuadCurveToPoint:CGPointMake (0.5, 0.6-frameNum/3)
controlPoint:CGPointMake(0.25, 0.25)];

[path addQuadCurveToPoint:CGPointMake(1l, frameNum)
controlPoint:CGPointMake(0.75, 0.25)1];

http://media.pragprog.com/titles/cdirec/code/GraphicsGarden/PRPBird.m
http://media.pragprog.com/titles/cdirec/code/GraphicsGarden/PRPBird.m
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Display Animated Views ¢ 136

[path applyTransform:CGAffineTransformMakeScale(width, height)];

path.lineWidth = height/30;
[path strokel];

UIImage *frameImage = UIGraphicsGetImageFromCurrentImageContext();
UIGraphicsEndImageContext();

return frameImage;

}

With our recipes so far, we've always placed drawing code in the drawRect:
method, but here we're actually building a series of fixed images, so we need
to use a different technique. We will create our own graphics context by
calling the Core Graphics function, UlGraphicsBeginimageContextWithOptions().
UlBezierPath uses the default context, in this case the one we just created. The
two curves are added to the path, varying the start points and end points
a little for each frame. Using the UlGraphicsGetimageFromCurrentimageContext()
method, a Ullmage is built from our context and passed back to be added to
the array.

Download GraphicsGarden/MainViewController.m

CGRect rect = CGRectMake(-width/5, width/8, width/8, height/8);
PRPBird *bird = [[PRPBird alloc] initWithFrame:rect];
[self.view addSubview:bird];

[bird release];

bird.animationDuration = 1.0;

[bird startAnimating];

CABasicAnimation *birdAnim = [CABasicAnimation animation];
birdAnim.keyPath = @"position";

CGPoint birdPos = CGPointMake(width, bird.center.y*2);
birdAnim.toValue = [NSValue valueWithCGPoint:birdPos];
birdAnim.duration = DURATION/2;

birdAnim. repeatCount = MAXFLOAT;

[bird.layer addAnimation:birdAnim forKey:@"pos"];

Using the PRPBird class is no different from using a regular UlimageView, except
that the animation array is prepopulated. The animationDuration property con-
trols the speed of our animation, and there are methods to start and stop
it as required. To give the impression that our seagull is flying, we create
an animation object to animate its position from one side of the main view
to the other.

By using your own graphics context, you're able to draw the objects you
need and easily build a series of images that can be animated in sequence.

http://media.pragprog.com/titles/cdirec/code/GraphicsGarden/MainViewController.m
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Display Animated Views ¢ 137

Discussion

Could you get the same result some other way? Sure—you could use an
NSTimer, changing the contents of the view each time the timer fires, but be-
cause the timer is triggered by the run loop, the potential for delays is greater
than with UlView animation, which runs in its own thread.

http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Construct a Simple Emitter ¢ 138

Recipe 29

Construct a Simple Emitter

Problem

A particle emitter has various uses in a graphical application—for example,
as a background visual or as a dynamic component of a larger view. It would
be nice if a particle emitter were available on iOS, but currently this feature
is available only on Mac OS X. If you wanted to build one yourself, you would
normally need to descend into OpenGL. Is it possible to create a simple
emitter using only Core Animation?

Solution

We can create a simple emitter using Core Animation, but to get reasonable
performance, we need to consider how best to do it. An emitter is usually
required to handle a large number of particles, each of them being a distinct
graphic element. Though we could use Core Animation to create a layer for
each particle, this would be very expensive in terms of both memory and
GPU time. The processor time needed to instantiate a large number of layers
could also be a limiting factor.

An alternate solution then would be for us to use a combination of the
CAReplicatorLayer class and CABasicAnimation. The CAReplicatorLayer class is a little-
used subclass of CALayer that uses the GPU to create exact duplicates of the
contents of the original layer, while varying some of the properties by small
incremental changes as each copy is rendered. Only the sublayers of the
replicator layer are duplicated, so we must always include a source layer,
or layers, that contains the visual elements.

For example, using a CAReplicatorLayer, we could create a line of images, each
an exact copy of the original, by setting the contents of the main sublayer
to the image; setting the instanceTransform to, say, 10 points of X translation;
and setting the instanceCount to 10. This would create a line of 10 duplicate
images all 10 points apart—useful, but not quite what we want (see Figure
33, Four separate instances of the simple emitter, on page 139).

To create the emitter effect, we need to animate the position of the image
sublayer. As the sublayer moves, each of its duplicates also moves so that

http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Construct a Simple Emitter ¢ 139

iPod & 8:51 PM

Figure 33—Four separate instances of the simple emitter

we now have a moving line of images. By adding another component, in-
stanceDelay, we can really augment this effect because each duplicate element
is added only after that specified delay. A fraction of a second is enough to
create the kind of effect we want.

We create a new class, PRPSimpleEmitterLayer, which is a subclass of CAReplicator-
Layer, to add the coordinated animation to the base class. In the init method,
we add our sublayer and set its contents to the default image, in this case
a small bright spark.

Download SimpleEmitter/SimpleEmitter/PRPSimpleEmitterLayer.m
- (id)init {

self = [super init];

if (self) {

}

self.count = 1;
self.instanceColor = [UIColor whiteColor].CGColor;
imagelLayer = [CALayer layer];
self.imagelayer.contents =

(id) [UIImage imageNamed:@"tspark.png"].CGImage;
[self addSublayer:self.imagelayer];

return self;

http://media.pragprog.com/titles/cdirec/code/SimpleEmitter/SimpleEmitter/PRPSimpleEmitterLayer.m
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Construct a Simple Emitter ¢ 140

The start method configures the properties for the imageLayer and the replicator
layer, based on any modified properties from the view controller. We calculate
the instanceDelay from the cycleTime and the count, spreading out the duplicated
elements evenly for the duration of the animation.

The incremental property, rotator, is the angle of rotation added to each
subsequent replicated imagelayer and will result in spiraling the particles as
they are emitted, giving quite a nice effect. We rotate the imagelayer itself by
angle degrees (in radians) so that we can emit the particles in any desired
direction.

Download SimpleEmitter/SimpleEmitter/PRPSimpleEmitterLayer.m
- (void)start {

self.imagelLayer.frame = self.bounds;
self.imagelayer.opacity = 1.0;
self.instanceCount = count;
self.instanceDelay = cycleTime/count;
CATransform3D t = CATransform3DMakeRotation(self.rotator, 0, 0, 1);
self.instanceTransform = CATransform3DTranslate(t,
xAdjust,
yAdjust, 0);
self.transform = CATransform3DMakeRotation(angle, 0, 0, 1);

[self animate];

}

We use a now-familiar CABasicAnimation object to animate the position of the
imagelayer. We only need be concerned with distance of movement at this
point, because we later rotate the imagelayer to point the emitted particles in
any direction we want. So, the newPoint value need only be based on the length
property.

Download SimpleEmitter/SimpleEmitter/PRPSimpleEmitterLayer.m
-(void)animate {

CGPoint newPoint = CGPointMake(0, length);
CABasicAnimation *basic = [CABasicAnimation animation];
basic.keyPath = @"position";

basic.toValue = [NSValue valueWithCGPoint:newPoint];
basic.duration = self.cycleTime;

basic.repeatCount = MAXFLOAT;

[imagelLayer addAnimation:basic forKey:@"position"];

}

Stopping the emitter simply involves removing the animation and setting
the imagelayer opacity to zero.

http://media.pragprog.com/titles/cdirec/code/SimpleEmitter/SimpleEmitter/PRPSimpleEmitterLayer.m
http://media.pragprog.com/titles/cdirec/code/SimpleEmitter/SimpleEmitter/PRPSimpleEmitterLayer.m
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Construct a Simple Emitter ¢ 141

Download SimpleEmitter/SimpleEmitter/PRPSimpleEmitterLayer.m
- (void)stop {

self.imagelayer.opacity = 0;
self.instanceCount = 0;
[self.imagelLayer removeAllAnimations];

}

Setting up an emitter from the view controller looks a lot more complicated
than it is. We instantiate the layer just like any other and set its origin to
act as the center of the emitter and its frame size to the size of the particle.
With the combination of the properties from the replicator layer and the
new properties on the simple emitter layer, we have a lot of values we can
play with to create different effects. In the SimpleEmitterViewController class, we
have a set of emitter methods, each of which produces quite different results.
emitterl produces a spiral effect because it defines an incremental rotator
angle, which needs to be quite small because we have 100 “particles.” We
also modify the color slightly for each particle by setting the instanceGreenOffset
property to a small negative value, slowly reducing the green element of the
color; we do the same for the red and blue elements.

Download SimpleEmitter/SimpleEmitter/SimpleEmitterViewController.m
- (PRPSimpleEmitterLayer *)emitterl {

CGFloat w = self.view.frame.size.width;

CGFloat h = self.view.frame.size.height;

PRPSimpleEmitterLayer *emitter =
[PRPSimpleEmitterLayer layerl];

emitter.frame = CGRectMake(w/4, h/2, 16,16);

emitter.rotator = -M PI*4/50;

emitter.length = w/4;

emitter.count = 100;

emitter.angle = 2.5;

emitter.cycleTime = 1.0;

emitter.instanceGreenOffset = -0.1/emitter.count;
emitter.instanceRedOffset = -0.5/emitter.count;
emitter.instanceBlueOffset = -0.1/emitter.count;

[self.view.layer addSublayer:emitter];
return emitter;

}

In the emitterd method, we also override the instanceColor value to set the particle
to red and set the sublayer image to a BrightBlob image instead of the default
spark.

http://media.pragprog.com/titles/cdirec/code/SimpleEmitter/SimpleEmitter/PRPSimpleEmitterLayer.m
http://media.pragprog.com/titles/cdirec/code/SimpleEmitter/SimpleEmitter/SimpleEmitterViewController.m
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Construct a Simple Emitter ¢ 142

Download SimpleEmitter/SimpleEmitter/SimpleEmitterViewController.m
- (PRPSimpleEmitterLayer *)emitterd4 {

CGFloat w = self.view.frame.size.width;
CGFloat h = self.view.frame.size.height;
PRPSimpleEmitterLayer *emitter =
[PRPSimpleEmitterLayer layer];

emitter.frame = CGRectMake(0, h, 16,16);
emitter.rotator = 0.02;
emitter.length = w;
emitter.count = 6;
emitter.angle = 4.0;
emitter.cycleTime = 1.6;
emitter.instanceColor = [UIColor redColor].CGColor;
emitter.imagelLayer.contents =

(id) [UIImage imageNamed:@"brightBlob.png"].CGImage;

[self.view.layer addSublayer:emitter];
return emitter;

}

The four samples in the view controller show how making small changes to
the various properties of the emitter creates dramatically different effects:
spirals, pulsing, and simulated gunfire. You could create more effects by
adding additional rotation animation to the emitter or by adding additional
replicator layers as sublayers to the main layer and animating those inde-
pendently. While you wait for CAEmitterLayer to move down to iOS from OS X,
this simple emitter can provide some of that functionality.

http://media.pragprog.com/titles/cdirec/code/SimpleEmitter/SimpleEmitter/SimpleEmitterViewController.m
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Curl the Page to a New View * 143

Recipe 30

Curl the Page to a New View

Problem

Simulating a page turn is a popular visual technique, often used in book-
or magazine-reading apps. Creating a realistic effect, such as the one used
in iBooks, requires detailed knowledge of OpenGL. Is it possible to create a
similar effect using only the higher-level Core Animation APIs?

Solution

The Core Animation APIs encompass a great deal of functionality including
layer manipulation and various styles of animation, but hidden in their
depths is a relatively unknown feature called sublayer transformation. We've
shown in several recipes how you can transform a layer in many
ways—through scaling, rotation, and translation. Sublayer transformation
gives us the same level of control but over the entire layer hierarchy. If you
combine this technique with rotations that take into account depth in the
z-axis, you can effectively control objects in a 3D space. This is the technique
we will use to implement our transition (see Figure 34, A partial page curl

transition, on page 145).

We first need to split the transitioning view into a series of layer strips; by
making use of the PRPCompositedView category, we can ensure that the view
and any subviews it may have get composited into a single image before we
break it into strips.

We also need to create a second set of layers the same size as the image
strips but initially without any contents so they will be completely transpar-
ent. We attach this set of strips as sublayers to our transforming layer. Each
of these strips is added with an incrementing amount of rotation and
translation applied, effectively creating a multisided tube. If we were to look
at this tube in cross section, the center point of the multisided shape would
match the center point of the parent layer. By using sublayer transformation,
rotating the parent layer will result in the tube rotating about its center. If
we simultaneously animate the tube from one side of the screen to the other
while gradually replacing the contents of the strips with the image strips of

http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Curl the Page to a New View ¢ 144

the original view, it will appear as if the view is curling away from the
background.

It’s probably worth running the sample app at this point to get a sense of
how the transition works, but we will need to dig into the code to really
understand the mechanics of the process.

The viewWithView class method creates the instance of the PRPViewTransition class
and uses the PRPCompositedView category to composite the specified view with
its subViews into a single image that can be split into the requested number
of strips.

Download ViewTransition/PRPViewTransition.m
+ (PRPViewTransition *) viewWithView: (UIView *)view splitInto: (int)parts {
PRPViewTransition *tempView = [[PRPViewTransition alloc]
initWithFrame:view. framel;
tempView.numLayers = parts;
[tempView cutLayersFromImage:[view PRPCompositeView]];

return [tempView autorelease];

}

The transition view initially acts as a static copy of the original view that it
replaces and needs to be at the front of the main view hierarchy. When the
MainViewController adds it to the view, the didMoveToSuperview delegate method is
called. At this point we can start the transition process by creating the ro-
tating tube of layers and then starting the switching animation process.

Download ViewTransition/PRPViewTransition.m
- (void)didMoveToSuperview {
[self createRotatinglayers];
[self SwitchLayers];
}

The numLayers property directly affects the size of the strips we create, and
the transition effect can be made to look quite different by specifying different
values. A high number creates quite narrow strips, resulting in a slower,
tighter rotating tube; conversely, a low number creates wider strips that
can result in the curl being too open and visually less effective.

The contentsRect property is the key to splitting up the image. We set the
contents of each layer to contain the complete image, but by varying the
contentsRect, we can constrain each subsequent strip to display only the por-
tion of the image we want. By laying out each of the strips in a row, they
appear identical to the original view. We use the parent layer here, stripLayer,
only to contain our row of strips; it has no visible contents of its own.

http://media.pragprog.com/titles/cdirec/code/ViewTransition/PRPViewTransition.m
http://media.pragprog.com/titles/cdirec/code/ViewTransition/PRPViewTransition.m
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Curl the Page to a New View ¢ 145

iPod % 10:58 AM @ =
Safari
ine Google >
Names and Passwords >
w Bookmarks Bar m:
ing [o
when visiting fraudulent websites.
ups [ov
. kies From visited >
>
Clear History
Clear Cookies
Clear Cache

b3

Figure 34—A partial page curl transition

Download ViewTransition/PRPViewTransition.m
- (void)cutLayersFromImage: (UIImage *)image {

width = self.bounds.size.width/numLayers;

height = self.bounds.size.height;

unitSize = 1.0/numLayers;

stripLayer = [CALayer layerl];

[self.layer addSublayer:stripLayerl];

for (int i = 0; i < numLayers; i++) {
CALayer *layer [CALayer layer];
layer.contents = (id)image.CGImage;
CGRect posRect = CGRectMake(width*i, 0, width, height);
layer.contentsRect = CGRectMake(unitSize*i, 0, unitSize, 1);
layer.frame = posRect;
[stripLayer addSublayer:layer];

}

The process involved in the createRotatingLayers method can be a little hard to
picture but ultimately creates a multisided “tube” of transparent layers that
are equal in size to the image strips we created earlier. The trick to building

report erratum -« discuss

http://media.pragprog.com/titles/cdirec/code/ViewTransition/PRPViewTransition.m
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Curl the Page to a New View ¢ 146

the tube is to add each of the “side” layers while gradually incrementing
both the rotation and the translation transformation with a zPosition—the
point around which the layer rotates, set to be equal to the radius of the
tube cross section. To try to visualize this process in action, imagine building
a tube out of identical strips of paper and adding each strip as a new side,
rotated a little from the previous one, until we complete the circle.

Each of these tube layers is added to the transform layer, which then lets us
use sublayer transformation to rotate the tube of layers as a single unit.

Download ViewTransition/PRPViewTransition.m
- (void) createRotatingLayers {
transform = [CALayer layer];
transform.frame = CGRectMake(self.bounds.size.width-width/2, 0, 1, 1);
transform.backgroundColor = [UIColor whiteColor].CGColor;
[self.layer addSublayer:transform];
CATransform3D t = CATransform3DMakeTranslation(-width/2, 0, 0);
for (int i=0; i < SIDES ; i++) {
CALayer *rotLayer = [CALayer layer];
rotLayer.anchorPoint = CGPointMake(1l, 1);
rotLayer.frame = CGRectMake(0, 0, width, height);
rotLayer.zPosition = -width*0.866;
rotLayer.transform t;
[transform addSublayer:rotLayer];

t = CATransform3DRotate(t, -M PI*2/SIDES, 0, 1, 0);

t = CATransform3DTranslate(t, width, 0, 0);
}
count = 0;
layerNum = 0;

}

There are two components to the animation of the transition, but both use
sublayer transformation to animate the tube as a whole. The rotation ani-
mation and the translation animation are coordinated to effectively rotate
the tube like a pencil rolling across the screen, but only to the point that
the next side of the tube has rotated enough to be parallel with the view.

Download ViewTransition/PRPViewTransition.m

- (void) animatelLayers {
CABasicAnimation *anim = [CABasicAnimation

animationWithKeyPath:@"sublayerTransform.rotation.y"];

anim.fromValue = [NSNumber numberWithFloat:-M PI*2/SIDES*count];
anim.toValue = [NSNumber numberWithFloat:-M PI*2/SIDES*(count+1)];
anim.duration = duration/numLayers;
anim. removedOnCompletion = NO;
anim.fillMode = kCAFillModeBoth;
anim.delegate = self;
[transform addAnimation:anim forKey:@"subRot"];

http://media.pragprog.com/titles/cdirec/code/ViewTransition/PRPViewTransition.m
http://media.pragprog.com/titles/cdirec/code/ViewTransition/PRPViewTransition.m
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Curl the Page to a New View ¢ 147

anim = [CABasicAnimation
animationWithKeyPath:@"sublayerTransform.translation.x"];

anim. fromValue = [NSNumber numberWithFloat:-width*count];

anim.toValue = [NSNumber numberWithFloat:-width*(count+1)];

anim.duration = duration/numLayers*0.98;

anim. removedOnCompletion = NO;

anim.fillMode = kCAFillModeBoth;

[transform addAnimation:anim forKey:@"subTrans"];

count++;

}

The SwitchLayers method coupled with the animationDidStop delegate is the heart
of the curl, or roll, effect. At each turn of the tube we swap the contents
(strip of the original image) of the stripLayer with the layer of the tube now
laying over it, almost as if it were now glued on. We then remove that strip
from the stripLayer, and on the next rotation that layer appears to curl up
toward us, as if peeling away from the backing view.

Download ViewTransition/PRPViewTransition.m
- (void) SwitchLayers {
CALayer *oldLayer = [stripLayer.sublayers objectAtIndex:
numLayers-count-1];
CALayer * tlLayer = [transform.sublayers objectAtIndex:layerNum];
[CATransaction setValue: (id)kCFBooleanTrue
forKey:kCATransactionDisableActions];
tLayer.contents = oldLayer.contents;
[oldLayer removeFromSuperlayer];
tLayer.contentsRect = CGRectMake(unitSize*(numLayers-count-1),
0, unitSize, 1);
[self animatelayers];
layerNum- -;
if (layerNum < 0) layerNum = SIDES-1;
}

The animationDidStop delegate controls the sequence of turns of the tube, be-
cause it gradually “picks” up the layers of the backing image. At the end of
the loop, we add an additional turn of the tube to make sure it is off the
screen and then remove the tube from the view—its task complete.

Download ViewTransition/PRPViewTransition.m
- (void)animationDidStop: (CAAnimation *)theAnimation finished: (BOOL)flag {
if (count < numLayers) {
[self SwitchLayers];
} else if (count == numLayers) {
[self animatelayers];
} else { // Reached the end
[self removeFromSuperview];

}

http://media.pragprog.com/titles/cdirec/code/ViewTransition/PRPViewTransition.m
http://media.pragprog.com/titles/cdirec/code/ViewTransition/PRPViewTransition.m
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Curl the Page to a New View ¢ 148

To give the sample app a feel similar to a book-reading app, we use a
UlSwipeGestureRecognizer to trigger the transition, alternating between three
sample images. All the hard work is done in the PRPViewTransition class, so the
setup to implement it is quite simple. We create an instance of the class
specifying the view to be transitioned and the number of images splits. We
then set the duration of the transition and add it as a subview of the ViewCon-
troller. Because the initializer of the transView has already made a copy of the
original view, split into layers, we can now remove the original view from
the viewController. The process of adding the view calls the didMoveToSuperview
delegate and kicks off the transition animation.

Download ViewTransition/MainViewController.m
- (void)swiped: (UISwipeGestureRecognizer *)sender {
NSString *splashImage;

loop++;
switch (loop) {
case 1:
splashImage = @"settings.png";
break;
case 2:
splashImage = @"BackImage.jpg";
break;
default:
splashImage = @"Default.png";
loop = 0;
break;
}

UIImageView *newView = [[UIImageView alloc] initWithImage:
[UIImage imageNamed:splashImage]l];

newView.userInteractionEnabled = YES;

newView.frame = self.view.bounds;

[self.view addSubview:newView];

PRPViewTransition *transView = [PRPViewTransition
viewWithView:self.currentView
splitInto:4];

transView.duration = 0.8;

[self.view addSubview:transView];

[self.currentView removeFromSuperview];

self.currentView = newView;

[newView releasel];

}

The final transition is a reasonable simulation of a page turn, though by
adjusting the number of slices it’s also possible to create an effect closer to
rolling the page away from the view. Currently the sample app works only
in a single direction, but it shouldn’t be too difficult to implement the reverse
of the process—to curl a page back over the current view.

http://media.pragprog.com/titles/cdirec/code/ViewTransition/MainViewController.m
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

CHAPTER 4

Networking Recipes

A great number of mobile apps rely on web services for their core experience.
The iOS SDK gives you the tools to connect to just about any type of service
you need but at a relatively low level. There are plenty of standard interac-
tions and operations that every networked app needs to make, and many
of them require more code than you might expect.

The recipes in this section illustrate some reusable solutions for a few of
these common situations. They’re ready to use as is and easily extended to
either go further or address your own requirements more directly.

http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Tame the Network Activity Indicator ¢ 150

Recipe 31

Tame the Network Activity Indicator

Problem

Your application performs downloads and uploads in multiple places,
queuing or parallelizing them under heavy user activity. You need to reliably
display network status without actively tracking every network operation.

Solution

We can use the networkActivitylndicatorVisible property on UlApplication to convenient-
ly show and hide the network “spinner” in the status bar. This binary switch
has no context, however. If we write an application that performs concurrent
uploads and downloads, it quickly becomes hard to accurately report ongoing
activity. Showing the indicator when every transaction starts is easy, but
how do we know when to hide it? Whether we're using NSURLConnection or
NSStream, our networking code should not necessarily be responsible for
maintaining the context required to manage the network activity indicator.
We'll solve this problem with a category on UlApplication that tracks network
connections, automatically showing the indicator when activity begins and
hiding it when it is finished. By using a category, we can call the existing
UlApplication instance rather than managing another object. This especially
makes sense since the activity indicator itself is managed by UlApplication.

This PRPNetworkActivity category maintains a read-only count of active connec-
tions. Two methods, -prp_pushNetworkActivity and -prp_popNetworkActivity, allow any
code to notify the application of network activity. A -prp_resetNetworkActivity
method clears the current state and starts from scratch.

Download NetworkActivityCenter/Classes/UlApplication+PRPNetworkActivity.h
@interface UIApplication (PRPNetworkActivity)

@property (nonatomic, assign, readonly) NSInteger prp networkActivityCount;
- (void)prp pushNetworkActivity;
- (void)prp popNetworkActivity;

- (void)prp_resetNetworkActivity;

@end

http://media.pragprog.com/titles/cdirec/code/NetworkActivityCenter/Classes/UIApplication+PRPNetworkActivity.h
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Tame the Network Activity Indicator ¢ 151

Remember that because this is a category, it’s important to prefix all of the
method names to ensure they don’t conflict with any methods Apple adds
to UlApplication in future SDK releases.

The implementation is very simple: we declare a static prp_networkActivityCount
variable, which the -prp_pushNetworkActivity and -prp_popNetworkActivity methods
respectively increment and decrement. A simple getter method exposes the
count in a read-only fashion.

Download NetworkActivityCenter/Classes/UlApplication+PRPNetworkActivity.m
- (NSInteger)prp networkActivityCount {
@synchronized(self) {
return prp networkActivityCount;

}
}
- (void)prp pushNetworkActivity {
@synchronized(self) {
prp_networkActivityCount++;
}
[self prp refreshNetworkActivityIndicator];
}

- (void)prp popNetworkActivity {
@synchronized(self) {
if (prp_networkActivityCount > 0) {
prp_networkActivityCount--;
} else {
prp_networkActivityCount = 0;
NSLog(@"%s Unbalanced network activity: count already 0.",
~ PRETTY_FUNCTION_);
}
}
[self prp _refreshNetworkActivityIndicator];

}
A few notes about this approach:

e We use a global to store the activity count, but our category methods
operate on an instance of UlApplication. Always be careful when sharing
statics between object instances. An ideal solution might use the asso-
ciated object approach explained in Recipe 40, Store Data in a Category,
on page 197, but since there is only a single UlApplication instance in a given
app, we stuck with the global in the interest of simplicity.

e The methods listed earlier access the activity count while synchronizing
on self, which is the shared application instance since we've written a
category on UlApplication. We have added this synchronization because

http://media.pragprog.com/titles/cdirec/code/NetworkActivityCenter/Classes/UIApplication+PRPNetworkActivity.m
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Tame the Network Activity Indicator ¢ 152

networking code that uses these category methods is likely to run on
multiple threads. There is more than one way to synchronize Objective-
C code, so we've chosen what we saw as the clearest solution.

The -prp_refreshNetworkActivitylndicator method sets the standard networkActivityIndi-
catorVisible property on UlApplication according to the current activity count: if
the count is positive, the network activity indicator is shown; when it goes
back down to O, the indicator is hidden. Because most of the UIKit is not
understood to be thread-safe and the networkActivitylndicatorVisible property is
not explicitly documented as such, we write a check to ensure the network
activity indicator is touched only from the main thread.

Download NetworkActivityCenter/Classes/UlApplication+PRPNetworkActivity.m
- (void)prp refreshNetworkActivityIndicator {
if (![NSThread isMainThread]) {
SEL sel refresh = @selector(prp refreshNetworkActivityIndicator);
[self performSelectorOnMainThread:sel refresh
withObject:nil
waitUntilDone:NO];
return;

}

BOOL active = (self.prp_networkActivityCount > 0);
self.networkActivityIndicatorVisible = active;

}

We now have reliable network state management accessible from anywhere
in our application and completely decoupled from the rest of our code. Just
call -prp_pushNetworkActivity whenever starting a connection, and call -prp_popNet-
workActivity whenever the connection terminates.

The NetworkActivityCenter sample project demonstrates this code in action. We've
modified the PRPDownload class from an earlier recipe to push and pop activity
based on the status of each download. Neither these download objects nor
the test app’s view controller has any idea of one another, let alone what
each is doing with the network. Each object reports its state to the UlApplication
category methods, which decide when the network activity indicator should
be activated or deactivated.

This project illustrates an application of the asynchronous PRPConnection
mechanism from Recipe 32, Simplify Web Service Connections, on page 153.
We've tied a download to each row in the table and modified the PRPConnection
class to use the category methods from this recipe. The network activity
indicator shows as soon as downloads begin and automatically hides when
the last download is finished or interrupted. The code you see in this class
stays the same whether 1 or 100 downloads are in progress.

http://media.pragprog.com/titles/cdirec/code/NetworkActivityCenter/Classes/UIApplication+PRPNetworkActivity.m
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Simplify Web Service Connections * 153

Recipe 32

Simplify Web Service Connections

Problem

You want to download data from a web service with minimal code and
complexity. Where do you start?

Solution

The NSURLConnection class included with the iPhone SDK provides a clean,
flexible interface for downloading web-based data of any type or size. It also
requires a lot of repetitive setup code everywhere we intend to use it. Most
of the time, we just want to kick off a download in the background and get
our file or data back when it’s completed.

We can minimize the work necessary for each download and save ourselves
a lot of repetition by wrapping a simpler interface around NSURLConnection.
This class, PRPConnection, manages the temporary data structure and tracks
progress that our own controller object would normally be responsible for
so that the calling code needs to respond only when the download is complete
and the data is ready. We'll also create an optional hook for monitoring
download progress.

The class contains an NSURLConnection object (of course), as well as numerous
other pieces of information not provided by NSURLConnection:

¢ Destination URL
¢ Originating NSURLRequest
e Expected download size

e Download completion (percent) to date

Download SimpleDownload/Classes/PRPConnection.h

@property (nonatomic, copy, readonly) NSURL *url;

@property (nonatomic, copy, readonly) NSURLRequest *urlRequest;
@property (nonatomic, assign, readonly) NSInteger contentLength;
@property (nonatomic, retain, readonly) NSMutableData *downloadData;
@property (nonatomic, assign, readonly) float percentComplete;
@property (nonatomic, assign) NSUInteger progressThreshold;

http://media.pragprog.com/titles/cdirec/code/SimpleDownload/Classes/PRPConnection.h
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Simplify Web Service Connections ¢ 154

We create the connection by simply passing the destination URL and optional
Objective-C blocks for handling connection progress, completion, or failure.
A convenience method for passing your own NSURLRequest is also there, which
will come in handy once we discuss HTTP POST uploads in the next two
chapters.

Download SimpleDownload/Classes/PRPConnection.h
+ (id)connectionWithURL: (NSURL *)requestURL
progressBlock: (PRPConnectionProgressBlock)progress
completionBlock: (PRPConnectionCompletionBlock)completion;

+ (id)connectionWithRequest: (NSURLRequest *)request
progressBlock: (PRPConnectionProgressBlock)progress
completionBlock: (PRPConnectionCompletionBlock)completion;

Unlike NSURLConnection, we don’t start the connections immediately. This is
so we can further configure the connection before proceeding, as you'll see
momentarily. Explicit -start and -stop methods are provided to explicitly begin
or cancel the connection.

So let’s take a closer look at the blocks. We've defined two: one for reporting
incremental progress and another for reporting completion or failure. The
completion block’s error parameter is passed on from the NSURLConnection del-
egate method -connection:didFailWithError:. If the connection finished successfully,
the error is nil.

Download SimpleDownload/Classes/PRPConnection.h

typedef void ("“PRPConnectionProgressBlock) (PRPConnection *connection);

typedef void (~PRPConnectionCompletionBlock) (PRPConnection *connection,
NSError *error);

Since PRPConnection is a wrapper around NSURLConnection, it acts as the NSURL-
Connection’s delegate, saving data incrementally as the download progresses.
As this happens, the progress block is invoked for every 1 percent change
in progress. You can customize this frequency by setting the progressThreshold
property. A value of 5, for example, means the block is invoked for every 5
percent change in progress. This allows you to easily present PRPConnection
progress in a number of different ways. If you don’t care about progress,
just pass a nil progress block when creating the connection.

The contentLength property represents the Content-Length value in the response
header of the connection. This value is set when we receive the standard
-connection:didReceiveResponse: NSURLConnection delegate method.

Download SimpleDownload/Classes/PRPConnection.m

- (void)connection: (NSURLConnection *)connection
didReceiveResponse: (NSURLResponse *)response {

http://media.pragprog.com/titles/cdirec/code/SimpleDownload/Classes/PRPConnection.h
http://media.pragprog.com/titles/cdirec/code/SimpleDownload/Classes/PRPConnection.h
http://media.pragprog.com/titles/cdirec/code/SimpleDownload/Classes/PRPConnection.m
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Simplify Web Service Connections ¢ 155

Our completion block checks the passed NSError parameter for nil in order to determine
success. This is safe because the error is a known quantity; it is only non-nil when
received in -connection:didFailWithError:, an explicit error condition.

This is very different from passing an NSError object by reference to an Apple API
such as -[NSManagedObjectContext executeFetchRequest:error:]. In those cases, you must
check the return value before inspecting the NSError object, as explained in the refer-
ence documentation for the API in question.

if ([response isKindOfClass:[NSHTTPURLResponse class]]) {
NSHTTPURLResponse *httpResponse = (NSHTTPURLResponse *)response;
if ([httpResponse statusCode] == 200) {
NSDictionary *header = [httpResponse allHeaderFields];
NSString *contentlLen = [header valueForKey:@"Content-Length"];
NSInteger length = self.contentLength = [contentLen integerValue];
self.downloadData = [NSMutableData dataWithCapacity:lengthl];

}

We use this value, along with the latest size of the downloaded data, to
compute the percentComplete property.

Download SimpleDownload/Classes/PRPConnection.m
- (float)percentComplete {

if (self.contentLength <= 0) return 0;

return (([self.downloadData length] * 1.0f) / self.contentLength) * 100;
}

We invoke the progress block whenever percentComplete reaches a multiple of
the specified threshold.

Download SimpleDownload/Classes/PRPConnection.m
- (void)connection: (NSURLConnection *)connection
didReceiveData: (NSData *)data {
[self.downloadData appendData:datal;
float pctComplete = floor([self percentCompletel);
if ((pctComplete - self.previousMilestone) >= self.progressThreshold) {
self.previousMilestone = pctComplete;
if (self.progressBlock) self.progressBlock(self);

}

Using PRPConnection is easy: create one by calling +downloadWithURL:progress-
Block:completionBlock:, and then call -start. PRPConnection takes care of all the heavy
lifting, leaving us to handle only the events we care about. When the
download is finished, just access the downloadData property. You can also

report erratum -« discuss

http://media.pragprog.com/titles/cdirec/code/SimpleDownload/Classes/PRPConnection.m
http://media.pragprog.com/titles/cdirec/code/SimpleDownload/Classes/PRPConnection.m
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Simplify Web Service Connections * 156

check the length of the downloadData’s bytes array if you want to display that
information to the user as the download progresses.

Explore the SimpleDownloadViewController class implementation provided with
the SimpleDownloads test project, and note how few lines of code are
needed to handle the actual download: nearly all the work is limited to ma-
nipulation of the user interface. This abstraction of NSURLConnection allows us
to keep our controller code clean and focused on its important, higher-level
tasks. We can use it to acquire RSS feeds, get JSON responses from web
services, and even download media.

Note that for large downloads, you’ll want to wire this up to an NSinputStream
and write the data to disk as it comes down in order to avoid memory pres-
sure. Downloading a 500MB video directly to an NSData object in memory,
for example, will inevitably crash your app.

http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Format a Simple HTTP POST ¢ 157

Recipe 33
Format a Simple HTTP POST

Problem

New web service APIs pop up every day. Sooner or later one of them will re-
quire an HTTP POST instead of a plain old GET. How do you format such a
request? How do you make it easy for every project that needs it?

Solution

If you've used (or coded for) the Web, you're no stranger to POST methods.
When filling out a form on a web page with basic drop-downs and text fields,
followed by some kind of “submit” action, that form probably produces a
“form” or “URL encoded” POST. On the Web, however, the browser does the
dirty work. What's a Cocoa programmer to do?

The good news is we can do a POST with the same NSURLConnection API we've
used for other more basic web requests (usually GET methods). Submitting
a POST involves a few simple additions:

e Setting the request method to POST
e Identifying the type of POST we're submitting
¢ Adding form data to the request body

The connection itself is unchanged; it's the supporting NSURLRequest that
needs modification. To do this, we’ll write a subclass of NSMutableURLRequest,
PRPFormEncodedPOSTRequest, which supports a dictionary of parameters to be
used in the POST method. We subclass NSMutableURLRequest so we can add
the form data to the HTTP body.

Download BasicHTTPPost/PRPFormEncodedPOSTRequest.h
@interface PRPFormEncodedPOSTRequest : NSMutableURLRequest {}

+ (id)requestWithURL: (NSURL *)url formParameters:(NSDictionary *)params;
- (id)initWithURL: (NSURL *)url formParameters:(NSDictionary *)params;

- (void)setFormParameters: (NSDictionary *)params;

@end

http://media.pragprog.com/titles/cdirec/code/BasicHTTPPost/PRPFormEncodedPOSTRequest.h
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Format a Simple HTTP POST ¢ 158

The first two steps outlined earlier are simple: set the HTTP method to POST,
and set the content type to application/x-www-form-urlencoded. We can do this work
at initialization time.

Download BasicHTTPPost/PRPFormEncodedPOSTRequest.m
- (id)initWithURL: (NSURL *)url formParameters: (NSDictionary *)params {
if ((self = [super initWithURL:url])) {
[self setHTTPMethod:@"POST"];
[self setValue:@"application/x-www-form-urlencoded"
forHTTPHeaderField:@"Content-Type"1;
[self setFormParameters:params];

}

return self;

}

That -setFormParameters: method is the remaining piece of the puzzle. In the
case of our -initWithURL:formParameters: method, the parameters are passed at
creation time, but we could also set them after creating the object, so it’s
broken out into a separate method.

Form parameters look a lot like a URL query string, but instead of being
appended to the URL, they're placed in the HTTP body. So, if we are submit-
ting a form that includes your name and age, the composed body string
might look like this:

name=Lucas+Drance&age=1.5

Each parameter’s name and value are connected with an equal sign (=), and
the pairs are connected with an ampersand (&). In this recipe, we use %20
to escape spaces, rather than the plus (+) characters specified by RFC 2616.
In practice, many servers accept either, but unfortunately many popular
web services don’t support the plus sign. Always test your project with
whitespace content to make sure the server you're talking to is behaving as
expected.

So, given a set of name-value pairs, our Cocoa code needs to tie them togeth-
er, as explained earlier. This is what -setFormParameters: does for us. An NSString
category handles any necessary escaping.

Download BasicHTTPPost/PRPFormEncodedPOSTRequest.m
- (void)setFormParameters: (NSDictionary *)params {
NSStringEncoding enc = NSUTF8StringEncoding;
NSMutableString *postBody = [NSMutableString string];
for (NSString *paramKey in params) {
if ([paramKey length] > 0) {
NSString *value = [params objectForKey:paramKey];
NSString *encodedValue =
[value prp URLEncodedFormStringUsingEncoding:enc];

http://media.pragprog.com/titles/cdirec/code/BasicHTTPPost/PRPFormEncodedPOSTRequest.m
http://media.pragprog.com/titles/cdirec/code/BasicHTTPPost/PRPFormEncodedPOSTRequest.m
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Format a Simple HTTP POST ¢ 159

NSUInteger length = [postBody length];
NSString *paramFormat = (length == 0 ? @"%@=%@" : @"&%@=%@");
[postBody appendFormat:paramFormat, paramKey, encodedValuel;
}
}
NSLog(@"postBody is now %@", postBody);
[self setHTTPBody: [postBody dataUsingEncoding:enc]];

}

Simple, right? Actually, we need to do a bit more work to account for reserved
characters.

The standard -[NSString stringByAddingPercentEscapesUsingEncoding:] method claims
to “convert the receiver into a legal URL string.” This sounds promising, but
we need more than that. What happens if the actual user input contains
one of our reserved characters (+, & =)? Nothing. These characters are
technically “legal,” so NSString leaves them alone. However, a server might
mistake a user-entered + for a space. Worse, user-entered ampersands will
prematurely signal a new parameter. So although these characters are legal,
they are not safe for our use. We need to escape them manually, and that’s
where our category methods come in.

Our first category method, -prp_URLEncodedFormStringUsingEncoding:, is used by
our request class to construct the HTTP body. It escapes the aforementioned
reserved characters and then replaces each space with a plus (+). Order is
important here: if we replace the spaces first, then our escape procedure
will escape all of our pluses. We want only the user-entered pluses escaped,
so we replace the spaces last.

Download BasicHTTPPost/NSString+PRPURLAdditions.m
- (NSString *)prp URLEncodedFormStringUsingEncoding: (NSStringEncoding)enc {
NSString *escapedStringWithSpaces =
[self prp percentEscapedStringWithEncoding:enc
additionalCharacters:@"&=+"
ignoredCharacters:nil];
return escapedStringWithSpaces;

}

The string conversion is done by our second category method, -prp_URLEncod-
edFormStringUsingEncoding:additionalCharacters:ignoredCharacters:. It takes two sets of
characters: those that should be escaped (the reserved characters) and those
that shouldn’t (the spaces—at least not right away). We've already determined
that NSString can’t solve our problems, so we need to head down beneath
Cocoa to its C counterpart, Core Foundation. A call to CFURLCreateStringByAdding-
PercentEscapes performs the specialized substitution we need, using our addi-
tionalCharacters and ignoredCharacters for custom behavior.

http://media.pragprog.com/titles/cdirec/code/BasicHTTPPost/NSString+PRPURLAdditions.m
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Format a Simple HTTP POST ¢ 160

Download BasicHTTPPost/NSString+PRPURLAdditions.m
- (NSString *)prp_percentEscapedStringWithEncoding: (NSStringEncoding)enc
additionalCharacters: (NSString *)add
ignoredCharacters: (NSString *)ignore {
CFStringEncoding convertedEncoding =
CFStringConvertNSStringEncodingToEncoding(enc);
return [(NSString *)CFURLCreateStringByAddingPercentEscapes (
kCFAllocatorDefault,
(CFStringRef)self,
(CFStringRef)ignore,
(CFStringRef)add,
convertedEncoding)
autoreleasel;

}

Let’s review what’s going on here. The built-in behavior of Core Foundation
(and thus Cocoa) is to escape only characters that are fundamentally illegal
for use in URLs. Our POST use case, however, requires that some technically
legal characters still be escaped. We accomplish that by passing &=+ for
additionalCharacters.

Finally: a well-formed POST body string! Now we just get the data as UTF-
8 (or whatever encoding your server requires) and set it as the request body.
With the request in place, all we need to do now is create an NSURLConnection
with our special request and submit it.

Download BasicHTTPPost/PRPURLEncodedPostViewController.m

NSURL *postURL = [NSURL URLWithString:URLString];

NSURLRequest *postRequest;

postRequest = [PRPFormEncodedPOSTRequest requestWithURL:postURL
formParameters:params];

NSURLResponse *response = nil;
NSError *error = nil;
NSData *responseData = [NSURLConnection sendSynchronousRequest:postRequest
returningResponse:&response
error:&error];

Now you just need to test all this work. The BasicHTTPPost project includes
a simple WEBrick servlet' that will receive POST methods and echo the
output back. To run it, just navigate to the directory containing webserver.rb
and type ruby webserver.rb. You should see some output indicating the server
has started. To verify the server is running, drag the local form.htm| file into
a browser, fill out the form, submit it, and check the response. Once you've
verified the static HTML form works, run BasicHTTPPost and see what
happens when you enter the same information into the iPhone app.

1. Special thanks to Mike Clark for contributing this recipe’s test server code.

http://media.pragprog.com/titles/cdirec/code/BasicHTTPPost/NSString+PRPURLAdditions.m
http://media.pragprog.com/titles/cdirec/code/BasicHTTPPost/PRPURLEncodedPostViewController.m
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Format a Simple HTTP POST ¢ 161

The BasicHTTPPost project accompanying this chapter uses a synchronous connec-
tion to demonstrate the POST. This is merely to demonstrate the solution with as
few lines as possible, since the focus is on building the request itself. Apple
strongly recommends using NSURLConnection in asynchronous mode.

So there you have it...a straightforward and reusable mechanism for building
form-based POST requests on demand.

Download from-Wow! eBook-<www.wowebook.com> -
report erratum - discuss

http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Upload Files Over HTTP ¢ 162

Recipe 34
Upload Files Over HTTP

Problem

In the previous chapter, we discussed submitting form data in an HTTP
POST using NSURLConnection and a custom NSMutableURLRequest subclass that
hosted the HTTP body. With file/photo/video sharing on the rise, however,
simple forms won’t always cut it. So, how do we upload a file to a website
from Cocoa?

Solution

If we adopt a web API that accepts files, we're almost certainly going to be
asked to perform a multipart POST. This still involves setting data (lots of
it being text) to the HTTP body, but it is much more complicated than
posting a simple URL-encoded body string.

As RFC 1867 and RFC 1341° explain, a multipart body involves a combina-
tion of traditional form fields and binary file data, separated by an arbitrary
“boundary” string. Here’s what a multipart body for a username, password,
and JPEG upload might look like:

--dOntcr055t3h57r33m2
Content-Disposition: form-data; name="username"

tyler
--dOntcre55t3h57r33m2
Content-Disposition: form-data; name="password"

durden

--dOntcre55t3h57r33m2

Content-Disposition: form-data; name="media"; filename="fo0o0.jpg
Content-Type: image/jpeg

<data from foo.jpg>
--dOntcro055t3h57r33m2

2. http://tools.ietf.org/html/rfc1867
3. http://www.w3.org/Protocols/rfc1341/7_2_Multipart.html

http://tools.ietf.org/html/rfc1867
http://www.w3.org/Protocols/rfc1341/7_2_Multipart.html
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Upload Files Over HTTP ¢ 163

We've cut out the actual JPEG data, but as you can imagine, it’s quite noisy.
This giant string is our HTTP body. The boundary string, dOntcr055t3h57r33m2,
is defined in the request header. Formatting this body with the boundary,
the content-disposition headers, the line breaks, and the data itself is our respon-
sibility. This can get very messy very quickly, and one wrong piece can spoil
the entire upload.

Our goal is to add some sanity to this process so we don’t have to reinvent
the wheel every time we're ready to upload a file.

Once again, we declare a subclass of NSMutableURLRequest—this time called
PRPMultipartPOSTRequest. The class declares a dictionary for traditional key-value
form parameters, which you can configure as you need. There’s also an
HTTP boundary property for use in the POST body. You should always set
a fairly unique boundary when performing a multipart upload.

Download MultipartHTTPPost/PRPMultipartPOSTRequest.h
@property (nonatomic, copy) NSString *HTTPBoundary;
@property (nonatomic, retain) NSDictionary *formParameters;

Next, we have a method for setting the file to upload. It requires a content
type, a form variable name, and a destination filename on the server.

Download MultipartHTTPPost/PRPMultipartPOSTRequest.h
- (void)setUploadFile: (NSString *)path
contentType: (NSString *)type

nameParam: (NSString *)nameParam

filename: (NSString *)fileName;

Finally, there’s a method to prepare the HTTP body for upload. It takes two
blocks: one for successful completion and the other for any error that oc-
curred while constructing the body. We’ll explain why these blocks are
necessary (as opposed to a simple return value) shortly.

Download MultipartHTTPPost/PRPMultipartPOSTRequest.h
- (void)prepareForUploadwWithCompletionBlock: (PRPBodyCompletionBlock)completion
errorBlock: (PRPBodyErrorBlock)error;

The complete flow for using PRPMultipartPOSTRequest is as follows:
1. Create a request object.

2. Set a custom boundary.

3. Set basic form parameters (if needed).

4. Add an upload file.
5

Prepare the request for submission.

http://media.pragprog.com/titles/cdirec/code/MultipartHTTPPost/PRPMultipartPOSTRequest.h
http://media.pragprog.com/titles/cdirec/code/MultipartHTTPPost/PRPMultipartPOSTRequest.h
http://media.pragprog.com/titles/cdirec/code/MultipartHTTPPost/PRPMultipartPOSTRequest.h
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Upload Files Over HTTP ¢ 164

This chapter covers uploading a single file with a multipart/form-data content type.
Other servers and APIs may require a combination of multipart/form-data and multi-

part/mixed data. Between the examples in RFC 1867 and ideally the server's documented
requirements, it should be easy to extend this code to fit your needs.

The file and parameter steps are interchangeable. As we saw in the earlier
example, any basic form data is presented as "Content-Disposition: form-data;" with
the parameter name, followed by two line breaks and the value. The binary
data for the file attachment is similarly structured in the body but also in-
cludes a content type and the aforementioned filename.

So, we have all the pieces we need; now we just have to glue it all together.
This is where -prepareForUploadWithCompletionBlock:errorBlock: comes in: it takes
any previously set parameters and the upload file and prepares a full multi-
part body from them.

We start by identifying the HTTP body as a multipart POST. We also set a
temporary filename for the body content itself. Since this body is more
complicated, and potentially much larger, than our basic POST, saving the
body to a file makes it easier to recover from errors, interruptions, or app
termination. It also prevents us from potentially running out of memory by
managing all of this data in memory.

Download MultipartHTTPPost/PRPMultipartPOSTRequest.m
- (void)startRequestBody {
if (!self.started) {
self.started = YES;

[self setHTTPMethod:@"POST"];

NSString *format = @"multipart/form-data; boundary=%@";

NSString *contentType = [NSString stringWithFormat:format,
self.HTTPBoundary];

[self setValue:contentType forHTTPHeaderField:@"Content-Type"];

CFUUIDRef uuid = CFUUIDCreate(kCFAllocatorDefault);

CFStringRef uuidStr = CFUUIDCreateString(kCFAllocatorDefault, uuid);

NSString *extension = @"multipartbody";

NSString *bodyFileName = [(NSString *)uuidStr
stringByAppendingPathExtension:extension];

CFRelease(uuidStr);

CFRelease(uuid);

self.pathToBodyFile = [NSTemporaryDirectory()
stringByAppendingPathComponent:bodyFileName];

report erratum -« discuss

http://media.pragprog.com/titles/cdirec/code/MultipartHTTPPost/PRPMultipartPOSTRequest.m
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Upload Files Over HTTP ¢ 165

This recipe saves the body to the temp directory with a randomized filename. The
system cleans out the temp directory automatically at unspecified intervals, so if
you want to manage the files yourself, save them to caches, documents, or some
other directory in your app’s sandbox. Remember, though, that you will then be
responsible for deleting the body file when it's no longer neeeded.

NSString *bodyPath = self.pathToBodyFile;
self.bodyFileOutputStream = [NSOutputStream
outputStreamToFileAtPath:bodyPath
append:YES];

[self.bodyFileOutputStream open];

}

The form parameters are prepared in a similar fashion to what we did for
Recipe 33, Format a Simple HTTP POST, on page 157, except we don’t need
to escape the values. Following the pattern in the sample body shown earlier,
each parameter is preceded by the HTTP boundary and a Content-Disposition
identifier. We build all the parameters as a single string that’s written out
to the body as UTF-8 bytes. The UTF-8 conversion is done in the -appendBodyS-
tring: method.

Download MultipartHTTPPost/PRPMultipartPOSTRequest.m

NSMutableString *params = [NSMutableString stringl;

NSArray *keys = [self.formParameters allKeys];

for (NSString *key in keys) {
NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];
[params appendString:[self preparedBoundary]];
NSString *fmt = @"Content-Disposition: form-data; name=\"%@\"\r\n\r\n";
[params appendFormat:fmt, key];
[params appendFormat:@"%@", [self.formParameters objectForKey:key]];
[pool releasel];

}
if ([params length]) {
if ([self appendBodyString:params] == -1) {
self.prepErrorBlock(self, [self.bodyFileOutputStream streamError]);
return;
}
}

Next up is the media file we're uploading. Easily handled: just append its
data to the working body, right? Wrong! What if the file is a 10MB image or
a 100MB movie? We can’t just load that into memory as an NSData ob-
ject—we’re sure to run out of memory and crash. But we need to merge this

report erratum -« discuss

http://media.pragprog.com/titles/cdirec/code/MultipartHTTPPost/PRPMultipartPOSTRequest.m
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Upload Files Over HTTP ¢ 166

file data into our HTTP body somehow. We’'ll accomplish that by using an
input stream. An input stream operates on a run loop and allows us to in-
crementally load segments of data so we avoid exhausting resources. By
setting ourselves as the input stream’s delegate, we can find out when it is
ready to read more data. It’s a very similar flow to the asynchronous mode
of NSURLConnection.

Download MultipartHTTPPost/PRPMultipartPOSTRequest.m
if (self.fileToUpload) {
NSMutableString *str = [[NSMutableString alloc] init];
[str appendString:[self preparedBoundaryll];
[str appendString:@"Content-Disposition: form-data; "1;
[str appendFormat:@"name=\"%@\"; ", self.fileToUpload.nameParam];
[str appendFormat:@"filename=\"%@\"\r\n", self.fileToUpload.fileName];
NSString *contentType = self.fileToUpload.contentType;
[str appendFormat:@"Content-Type: %@\r\n\r\n", contentTypel;
[self appendBodyString:strl];

NSLog(@"Preparing to stream %@", self.fileToUpload.localPath);

NSString *path = self.fileToUpload.localPath;

NSInputStream *medialnputStream = [[NSInputStream alloc]
initWithFileAtPath:pathl];

self.uploadFileInputStream = mediaInputStream;

[mediaInputStream releasel];

[self.uploadFileInputStream setDelegate:self];
[self.uploadFileInputStream scheduleInRunLoop: [NSRunLoop currentRunLoop]
forMode :NSDefaultRunLoopMode];
[self.uploadFileInputStream open];
} else {
[self handleStreamCompletion];

}

The media is piped into our body file by the -stream:handleEvent: delegate
method. We'll receive this message indefinitely as long as the stream has
more data to read; when we do, we just take that data and send it right to
our body file. When the input stream reaches the end, we finalize the body
by calling -handleStreamCompletion.

Download MultipartHTTPPost/PRPMultipartPOSTRequest.m

case NSStreamEventHasBytesAvailable:
len = [self.uploadFileInputStream read:buf maxLength:1024];

if (len) {
[self.bodyFileOQutputStream write:buf maxLength:len];
} else {

NSLog(@"Buffer finished; wrote to %@", self.pathToBodyFile);
[self handleStreamCompletion];
}

break;

http://media.pragprog.com/titles/cdirec/code/MultipartHTTPPost/PRPMultipartPOSTRequest.m
http://media.pragprog.com/titles/cdirec/code/MultipartHTTPPost/PRPMultipartPOSTRequest.m
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Upload Files Over HTTP ¢ 167

The stream code you see in this recipe might seem like overkill for simple image
uploads. However, it works perfectly fine and more importantly works exactly the
same for extremely large files.

Run the MultipartHTTPPOST project under the Activity Monitor instrument to see
how much memory is consumed with the supplied JPEG file. Then add a large file
(for example, a 50MB movie). You should see little to no change in the app’s mem-
ory consumption at runtime, despite a much larger upload. This is the power of
streams, and it’s invaluable on a platform like iOS.

The input stream’s asynchronous behavior is why we use blocks to notify
the caller of completion or errors: unlike the basic POST recipe, preparing
this HTTP body is not a synchronous operation. The caller needs to wait
over multiple run loop iterations for the input stream to finish its job.

At the end of the process, we tear down the media input stream and then
write one last HTTP boundary to the body file. Remember, this body file is
even larger than the media we just streamed, so it may not be safe to load
this into memory either. Rather than set body data as we did for the basic
POST recipe, we set an input stream to the body file we've created. When
everything is done, we invoke the completion block that was passed on to
-prepareForUploadWithCompletionBlock:errorBlock:.

Download MultipartHTTPPost/PRPMultipartPOSTRequest.m
- (void)handleStreamCompletion {
[self finishMedialInputStream];
[self finishRequestBody];
self.prepCompletionBlock(self);
}

- (void)finishMediaInputStream {
[self.uploadFileInputStream closel];
[self.uploadFileInputStream removeFromRunLoop: [NSRunLoop currentRunLoop]
forMode:NSDefaultRunLoopModel;
self.uploadFileInputStream = nil;
}

Our multipart POST request is now complete. The calling code then creates
an NSURLConnection using the prepared request and awaits news of completion.
The MultipartHTTPPost project reviews how this whole process works from
start to finish.

report erratum -« discuss

http://media.pragprog.com/titles/cdirec/code/MultipartHTTPPost/PRPMultipartPOSTRequest.m
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Upload Files Over HTTP ¢ 168

Download MultipartHTTPPost/iPhone/AppDelegate_iPhone.m
- (void)upload: (id)sender {

}

NSString *URLString = @"http://localhost:3000/upload";
self.request = [PRPMultipartPOSTRequest
requestWithURL: [NSURL URLWithString:URLString]];

self.request.HTTPBoundary = @"dOntcr@55t3h57r33m2";
NSMutableDictionary *params;
params = [NSMutableDictionary dictionaryWithObjectsAndKeys:

@"Tyler", @"name",

@"Soap salesman", @"occupation",

nill;
self.request.formParameters = params;

NSString *imgFile = [[NSBundle mainBundle]
pathForResource:@"pic" ofType:@"jpg"1;
[self.request setUploadFile:imgFile
contentType:@"image/jpeg"
nameParam:@"filedata"
filename:@"uploadedPic.jpg"1;

PRPBodyCompletionBlock completionBlock;
completionBlock = ~(PRPMultipartPOSTRequest *req) {
NSLog(@"Completion Block!");
NSURLResponse *response = nil;
NSError *error = nil;
NSData *responseData;
responseData = [NSURLConnection sendSynchronousRequest:request
returningResponse:&response
error:&error];
if ([responseData length] > 0) {
NSLog(@"Upload response: %@",
[NSString stringWithCString:[responseData bytes]
encoding:NSUTF8StringEncoding]);
} else {
NSLog(@"Bad response (%@)", responseData);
}
+
PRPBodyErrorBlock errBlk = ~(PRPMultipartPOSTRequest *req,
NSError *error) {
NSLog(@"ERROR BLOCK (%@)", error);
+

[self.request prepareForUploadWithCompletionBlock:completionBlock
errorBlock:errBlk];

Like the basic POST recipe, this project includes a simple WEBrick servlet
to test this code.” To run it, navigate to the directory containing webserver.rb

4.

Special thanks to Mike Clark for contributing this recipe’s test server code.

http://media.pragprog.com/titles/cdirec/code/MultipartHTTPPost/iPhone/AppDelegate_iPhone.m
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Upload Files Over HTTP ¢ 169

and type ruby webserver.rb. You should see some output indicating the server
has started. To verify the server is running, drag the local form.htm| file into
a browser, fill out the form, submit it, and check the response. Once you've
verified the static HTML form works, move on to verify the MultipartHTTPPost
project.

Between this recipe and the earlier basic POST recipe, you should be well
prepared to support a variety of web service uploads.

http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

We've left this page blank to
make the page numbers the
same in the electronic and
paper books.

We tried just leaving it out,
but then people wrote us to
ask about the missing pages.

Anyway, Eddy the Gerbil
wanted to say “hello.”

Download from Wow! eBook <www.wowebook.com>

CHAPTER 5

Runtime Recipes

These recipes cover a broad range of iOS topics including UIKit, Core Data,
and the Objective-C runtime. They illustrate techniques that can help you
gather information during an inevitable troubleshooting session and bring
order to potentially chaotic areas of your project, or they introduce you to
newer features of the Objective-C language that you may not be using. In
all cases, the goal is to help you be a smarter, more efficient iOS developer.

http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Leverage Modern Objective-C Class Design * 172

Recipe 35

Leverage Modern Objective-C Class Design

Problem

Objective-C has a long history and an extremely deep set of frameworks.
The language’s traditionally verbose nature can lead to noisy header files
and implementations that are hard to read or maintain. How do you keep
your interfaces clean and readable without compromising functionality?

Solution

Many of the recipes in this book take advantage of recent developments in
Objective-C and Clang to keep the code lean and readable. It’s worth dis-
cussing these techniques up front so you can understand their motivations
and ideally find ways of using them to make your own projects easier to
manage and maintain.

Let’s start with a simple Cocoa class representing a book that defines some
private, read-only data wrapped in properties. It’s a contrived example but
sufficient for the goals of this recipe.

Download ClassExtension/PRPBook.h
@interface PRPBook : NSObject {
@private

NSString *title;

NSArray *authors;

BOOL inStock;
}

@property (nonatomic, copy, readonly) NSString *title;
@property (nonatomic, copy, readonly) NSArray *authors;

@property (nonatomic, assign, readonly, getter=isInStock) BOOL inStock;

@end

It’'s a shame that those private instance variables (ivars) are visible in the
header for everyone to see. It’s also redundant to have the properties and
the ivars listed. Well, as of the iOS 4.0 SDK, we can eliminate this redun-
dancy and just declare the properties: the tools and runtime synthesize the

http://media.pragprog.com/titles/cdirec/code/ClassExtension/PRPBook.h
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Leverage Modern Objective-C Class Design * 173

underlying ivar for us. This means that we can type less, have less to read,
and, more importantly, not have private data in a public header.

Our new header file reads much better without the redundant ivar declara-
tions, protects our ivars from external access, and gives our poor hands and
wrists a break.

Download ClassExtension/PRPModernBook.h
@interface PRPModernBook : NSObject {}

@property (nonatomic, copy) NSString *title;
@property (nonatomic, copy) NSArray *authors;

@property (nonatomic, assign, readonly, getter=isInStock) BOOL inStock;

@end

Now let’s look at the implementation. We of course synthesize our properties,
and we also have an internal method for refreshing the book’s in-stock or
out-of-stock status. The calling code should never have to worry about re-
freshing the object, so we want to leave this method out of the header.

Download ClassExtension/PRPBook.m

- (id)init {
if ((self = [super init])) {
[self refreshStock];
}
return self;
}
- (void)refreshStock {
// ...
}

When we build this code, the compiler throws a warning because -refreshStock
is referenced in -init but defined below it. The compiler reads from the top
down, so we can fix this problem either by declaring -refreshStock in the
header or by moving it up above -init. Neither option is desirable, however,
because we want it to be private—not displayed in the header. And we don’t
want the compiler dictating the structure of our code. So, how do we make
both ourselves and the compiler happy?

The answer lies in private class extensions, a new feature of Objective-C
2.0. Class extensions are effectively private interfaces to the class you're
writing, typically defined alongside your standard implementation. These
extensions look very much like categories, but they are significantly different.

http://media.pragprog.com/titles/cdirec/code/ClassExtension/PRPModernBook.h
http://media.pragprog.com/titles/cdirec/code/ClassExtension/PRPBook.m
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Leverage Modern Objective-C Class Design * 174

The iOS device runtime has always been able to synthesize ivars; it's the iPhone
Simulator runtime that required explicitly declared ivars. With the 4.0 SDK, the
simulator has been brought up to speed, and we can omit ivar declarations where
a property exists.

You define a private class extension by declaring an interface with the same
name as your class, followed by empty parentheses. You then fill that inter-
face with any methods you don’t want in the header but need to formally
declare for correctness.

@interface PRPModernBook ()
- (void)refreshStock;

@end

Again, this looks just like a category. But the big difference here is that this
extension is treated as a formal component of the class. So, the compiler
actually complains if it does not find matching implementations. (That’s not
so for categories.) This policy protects you at compile time from making po-
tentially harmful omissions or typos.

The other big difference is that you can declare new storage (synthesized
properties) in a class extension. Categories, by contrast, only support the
addition of functionality (methods). So if we have a property that we want
to use internally, and not expose in the header, we can now do that with a
class extension. Combined with synthesized ivars, the private data is com-
pletely absent from the header.

@interface PRPModernBook ()

@property (nonatomic, retain) id privateContext;

- (void)refreshStock;

@end

It gets better. The inStock property is naturally defined in the header as read-
only, since we don’'t want an arbitrary caller modifying that state. But
wouldn'’t it be nice if internal code could use the property to set the state

over time? Class extensions allow this too. So although the public property
in the header is readonly:

@property (nonatomic, assign, readonly, getter=isInStock) BOOL inStock;

report erratum -« discuss

http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Leverage Modern Objective-C Class Design * 175

our class extension enables private readwrite access. Here, now, is the full
private class extension for PRPModernBook:

Download ClassExtension/PRPModernBook.m
@interface PRPModernBook ()

@property (nonatomic, retain) id privateContext;
@property (nonatomic, assign, readwrite, getter=isInStock) BOOL inStock;

- (void)refreshStock;

@end

We've done a whole lot here: made a much clearer contract with whoever
reads the headers, obscured private data and API from the reader, and given
private callers enhanced property access over public callers. We've even re-
duced the amount of code we have to write!

The Objective-C 2.0 modern runtime and class extensions can help you
write more readable, structured, and maintainable code. You'll see them
used frequently in this book; we hide boring details and private features in
class extensions (and eliminate redundant ivars altogether) so that the
headers are very clear about how the class should be used. As a class gets
larger over time, this technique only becomes more valuable.

http://media.pragprog.com/titles/cdirec/code/ClassExtension/PRPModernBook.m
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Produce Intelligent Debug Output * 176

Recipe 36

Produce Intelligent Debug Output

Problem

You litter your source with printf and NSLog statements during development
and spend hours commenting them out when it’s time to ship. Extraneous
log statements hurt performance and can reduce the life span of a device’s
solid-state drive. You're looking for a way to simplify the process of removing
this log output.

Solution

A good 90 percent of log output, maybe even more, exists only to aid us
during the development process. Error reporting is still necessary in produc-
tion code, but most of the log statements we write will eventually need to
go away. Xcode makes it easy to support conditional logging based on a
project’s build configuration. With just a few lines of code and a single
change to our target or scheme settings, we can have log statements that
magically disappear for our Release and Distribution builds.

When it comes to basic logging, Cocoa’s NSLog() function is handy, but it’s
both unconditional and not very customizable. Here we’ll create a logging
function that allows us to fine-tune the information logged with each call
and also turn itself off when running in nondebug configurations.

We start by writing the new logging function, PRPDebug(). This function takes
a format string with variable arguments, just like NSLog(). With every call, it
additionally prints the following:

e Timestamp
¢ Process name

e Originating filename and line number

Download DebugOutput/Classes/PRPDebug.m

void PRPDebug(const char *fileName, int lineNumber, NSString *fmt, ...) {
va_list args;
va_start(args, fmt);

http://media.pragprog.com/titles/cdirec/code/DebugOutput/Classes/PRPDebug.m
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Produce Intelligent Debug Output * 177

static NSDateFormatter *debugFormatter = nil;
if (debugFormatter == nil) {
debugFormatter = [[NSDateFormatter alloc] init];
[debugFormatter setDateFormat:@"yyyyMMdd.HH:mm:ss"1;
}

NSString *msg = [[NSString alloc] initWithFormat:fmt arguments:args];
NSString *filePath = [[NSString alloc] initWithUTF8String:fileName];
NSString *timestamp = [debugFormatter stringFromDate:[NSDate date]];

NSDictionary *info = [[NSBundle mainBundle] infoDictionary];
NSString *appName = [info objectForKey: (NSString *)kCFBundleNameKey];
fprintf(stdout, "%s %s[%s:%d] %s\n",

[timestamp UTF8Stringl,

[appName UTF8String],

[[filePath lastPathComponent] UTF8String],

lineNumber,

[msg UTF8Stringl);

va_end(args);

[msg release];

[filePath release];
}

The timestamp and process name resemble information provided by NSLog,
though formatted a bit differently so the two styles can be easily distin-
guished. The debugFormatter object is statically allocated because initializing
an NSDateFormatter object is very expensive. If we created a new formatter with
each call, heavy use of PRPDebug() could significantly affect our application’s
performance. iOS 4.0 introduces new class methods on NSDateFormatter that
relieve us of this optimization burden, but since this recipe is particularly
useful, we decided to keep it compatible with 3.0 and later.

The filename and line number are very valuable: they tell us exactly where
in our code a particular log statement is coming from. We’ll see how that
information is generated in a moment.

So, we've written a function called PRPDebug. You may have noticed, however,
that the code in DebugOutputAppDelegate calls PRPLog. What is PRPLog? It is, in
fact, a macro. This is what we use to enable conditional execution of the log
statements.

Download DebugOutput/Classes/PRPDebug.h

#ifdef PRPDEBUG

#define PRPLog(format...) PRPDebug(FILE , LINE , format)
#else

#define PRPLog(format...)

#endif

http://media.pragprog.com/titles/cdirec/code/DebugOutput/Classes/PRPDebug.h
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Produce Intelligent Debug Output * 178

enn ™ DebugOutput — DebugOutput.xcodeproj (e

(»)(m) & (Sl [m[=Ix)

TARGETS

By setting this flag only for the Debug configuration, you automatically omit
the PRPDebug() output from any other configurations you create (for example,
Release or App Store).

Figure 35—Conditionally enabling debug output

The PRPLog macro looks for a PRPDEBUG definition: if PRPDEBUG exists, PRPLog
passes its varargs, along with the aforementioned filename and line number,
to PRPDebug. Since it uses the _FILE_ and _LINE_ preprocessor macros, this
information is always correct, wherever we may copy and paste these
statements.

If PRPDEBUG does not exist, PRPLog evaluates to a nop at build time. This is an
important distinction; because we are using a macro, the debug code does
not even make it into the binary when PRPDEBUG is undefined. There is
therefore no performance hit when logging is disabled.

So, how and where is PRPDEBUG defined? In your Xcode project build settings.
Select your project or target in the Groups & Files pane, and then click the
Build tab. Find the Other C Flags setting under GCC 4.2 - Language (you
can use the search field to find it), and type -DPRPDEBUG. Confirm that the
flag is listed only under the Debug configuration and that your Release
configuration does not include it. This flag triggers the appropriate macro
definition for PRPLog and effectively enables or disables logging. The -D is im-
portant if you're using Other C Flags; you can omit the -D if you'd rather
use the Preprocessor Macros build setting. Either approach works for this
exercise. When you're done, you should see something like the screenshot
in Figure 35, Conditionally enabling debug output, on page 178.

Build and run the DebugOutput project under both Debug and Release to
see the difference in output. The “This is a PRPLog...” output should be
visible in the console only when building and running the Debug configura-

http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Produce Intelligent Debug Output * 179

| DebugOutput ¥ li2@3n ﬂ 3

Scheme Destination Breakpoints

| Build | Info | Arguments Diagnostics
1 target

™ bebug Build Configuration | Debug

= Test
Debug Executable | A DebugOutput.app

Profile DebugOutp...
Release

& 2 &

Debugger | GDB

. Analyze

Debug Launch @ Automatically

Archive () wait for DebugOutput.app ta launch

“ Release Use this option if you will manually launch your application.

Working Directory [_] Use custom working directory

Ul Resolution [Enable display scaling

1.0 125 15 20 3.0

(' Duplicate Scheme) [Manage Schemes...)

Double-check your schemes in Xcode 4 to make sure the build configurations
you expect are in use. The Run operation uses the Debug build configuration
by default.

Figure 36—Schemes and build configurations

tion; Release builds should not display any PRPLog output. You can switch
between build configurations in Xcode 4 either by editing your current
scheme or by creating a new one and editing its Run operation. Figure 36,
Schemes and build configurations, on page 179 shows how to change build
configurations for a given scheme operation.

Note that, in the example, the current class and method name are passed
to PRPLog as part of the format string:

Download DebugOutput/Classes/DebugOutputAppDelegate.m

PRPLog(@"This is a PRPLog sent from -[%@ %@]",
NSStringFromClass([self class]),
NSStringFromSelector(cmd));

Note also the use of [self class] and c¢md, which, like FILE_ and _LINE_, are
also dynamic and therefore future-proof. Including hard-coded class or
method names in your logging statements is usually asking for trouble down
the road; the alternative demonstrated here is just too easy to ignore. You
can even define macros to reduce the necessary typing:

#define CMD STR NSStringFromSelector(_cmd)
#define CLS_STR NSStringFromClass([self class])

We can also print a full signature at once using the _PRETTY_FUNCTION__ macro,
which produces a C string (represented in NSLog() or PRPLog() format strings

http://media.pragprog.com/titles/cdirec/code/DebugOutput/Classes/DebugOutputAppDelegate.m
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Produce Intelligent Debug Output * 180

by a %s). In this case, we opted to use the source line number instead of the
method name.

There is one case where use of [self class] could be misleading: if the method
in question is called on an instance of a subclass, it returns the subclass
rather than the class where the implementation resides. The use of _FILE__
in every PRPLog should clear that up.

With PRPLog() and a simple build setting configured to the appropriate scheme
in Xcode, your shipping apps will never have stray output again.

http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Design Smarter User Defaults Access * 181

Recipe 37

Design Smarter User Defaults Access

Problem

NSUserDefaults is the preferred method for storing lightweight user settings
and application state, but its key-value system opens up your code to redun-
dancy and careless bugs. You want to protect yourself from the dangers of
string literals and repetition while maintaining the ease of use that
NSUserDefaults provides.

Solution

You're probably used to declaring keys, which we use to read and write a
lightweight object value to the user defaults. For example, here’s how we
might store a username in the user defaults:

NSString *username = @"groucho"

NSUserDefaults *defaults = [NSUserDefaults standardUserDefaults];
[defaults setObject:username forKey:@"prp username"];

[defaults synchronize];

Reading the value requires us to use the same key in a different spot:

NSUserDefaults *defaults = [NSUserDefaults standardUserDefaults];
NSString *username = [defaults stringForKey:"@prp username"];

We already have a problem here: we're tossing string literals around. We
can’t easily refactor this, and Xcode can’t help us get it right through auto-
completion. You might also notice that the @ symbol is misplaced in the
second example. We can solve these problems by declaring a constant to
represent the key:

NSString *const PRPDefaultsKeyUsername = @"prp_username";
NSUserDefaults *defaults = [NSUserDefaults standardUserDefaults];

[defaults setObject:username forKey:PRPDefaultsKeyUsernamel;

NSString *username = [defaults stringForKey:PRPDefaultsKeyUsernamel];

http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Design Smarter User Defaults Access * 182

This approach is much safer. First, it gives us the benefit of compiler enforce-
ment if we spell the key wrong. (Misspelled literals, by contrast, will simply
fail in unpredictable ways at runtime.) Second, if we use formal variables,
Xcode will autocomplete the names when we type them. Using constants
makes it much harder to pass the wrong key by accident.

But wouldn’t it be great if our NSUserDefaults instance behaved more like a
concrete class? If each of our preferences or keys was represented by a
concrete API, enforceable by the compiler and autocompleted by Xcode? We
can accomplish this by using an Objective-C category.

A category on NSUserDefaults lets us get at the defaults the traditional way but
now with a more formal contract for each of our preference keys. We'll define
standard getters and setters to represent our keys, but rather than storing
the values, the methods just pass them on to the standard key-value user
defaults implementation.

Download SmartUserDefaults/NSUserDefaults+PRPAdditions.m
- (NSString *)prp_username {
return [self stringForKey:PRPDefaultsKeyUsername];

- (void)prp _setUsername: (NSString *)username {
[self setObject:username forKey:PRPDefaultsKeyUsername];

}

Note the prp_ prefix on the method names once again. This is important
whenever we use categories: it reduces the likelihood of accidentally overrid-
ing any methods Apple adds to a class in the future. It’s not very likely that
a -setUsername method will show up in NSUserDefaults any time soon, but prefixing
category methods is very cheap insurance. Make a habit of it.

We can even represent these new methods as properties in order to use
them with dot syntax. We need custom getter and setter attributes so we
can properly prefix the accessor methods.

Download SmartUserDefaults/NSUserDefaults+PRPAdditions.h
@interface NSUserDefaults (PRPAdditions)

@property (assign, getter=prp isAutolLoginEnabled,

setter=prp_setAutolLoginEnabled:) BOOL prp autolLoginEnabled;
@property (assign, getter=prp isCachingEnabled,

setter=prp setCachingEnabled:) BOOL prp cachingEnabled;
@property (assign, getter=prp username,

setter=prp_setUsername:) NSString *prp username;

@end

http://media.pragprog.com/titles/cdirec/code/SmartUserDefaults/NSUserDefaults+PRPAdditions.m
http://media.pragprog.com/titles/cdirec/code/SmartUserDefaults/NSUserDefaults+PRPAdditions.h
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Design Smarter User Defaults Access * 183

But user defaults can still be tricky, especially with scalars like booleans
and integers; undefined values still evaluate to something (specifically NO
or 0). How can we tell whether the user actually set a value of O or whether
the default simply doesn’t exist? What if we want an explicit default value
when nothing has been set by the user? Let’s say we have a boolean to de-
termine whether we should enable a data cache:

BOOL useCache = YES;
NSUserDefaults *defaults = [NSUserDefaults standardUserDefaults];
if ([defaults objectForKey:PRPDefaultsKeyCachingl) {
useCache = [self boolForKey:PRPDefaultsKeyCaching];
}

This code declares a local boolean and sets it to the desired default behavior
of YES to enable caching. It then checks for the existence of an object for the
PRPDefaultsKeyCaching key, and if one exists, it uses that boolean value. If we
blindly called -[NSUserDefaults boolForKey:], then useCache would evaluate to NO in
the case of an empty setting, which is not what we want.

So, enforcing default behavior for user defaults is not a lot of work. But once
we have to reference this value from multiple places, the previous logic needs
to be duplicated, which opens the door for careless bugs and refactoring
challenges. If we decide to change the default behavior, we need to hunt
down every place this code is used. We can solve this problem with the
-[NSUserDefaults registerDefaults] method, which allows you to pass some baseline
values for any desired keys. This way, your consumer code isn’t burdened
with nil checks when fetching a specific key.

Note that -registerDefaults is part of Apple’s API: you can use it with or without
the category technique discussed in this recipe. In the SmartUserDefaults project
accompanying this chapter, it is sent from -applicationDidFinishLaunching:. The
defaults are loaded from a property list—DefaultPrefs.plist—that is bundled inside
the app.

Download SmartUserDefaults/iPad/AppDelegate_iPad.m
- (BOOL)application: (UIApplication *)application
didFinishLaunchingWithOptions: (NSDictionary *)launchOptions {

[super registerDefaults];
[window makeKeyAndVisible];

return YES;

http://media.pragprog.com/titles/cdirec/code/SmartUserDefaults/iPad/AppDelegate_iPad.m
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Design Smarter User Defaults Access ¢ 184

If you use -registerDefaults to set baseline values for your user defaults, make sure
you do it very early. The first line of your application delegate’s application:didFinish-
LaunchingWithOptions: method is a good place for that, but even that may not be as soon
as you think. Objects in your MainWindow.xib file, for example, may be initialized before
your app delegate receives that message. If those objects expect the defaults to be
in place, you could run into problems. Test thoroughly to make sure none of these
surprises lies waiting in your application.

Download SmartUserDefaults/Shared/DemoAppDelegate.m

- (void)registerDefaults {
NSString *prefs = [[NSBundle mainBundle] pathForResource:@"Prefs"

ofType:@"plist"];

NSDictionary *dict = [NSDictionary dictionaryWithContentsOfFile:prefs];
NSDictionary *defaults = [dict valueForKey:@"defaults"];
[[NSUserDefaults standardUserDefaults] registerDefaults:defaults];
[[NSUserDefaults standardUserDefaults] synchronize];

}

You can see the effects of this step by launching the SmartUserDefaults
project. Note that on first launch, the “Caching” switch is set to on, even
though the view controller code merely reads from the user defaults to set
the switch. This is because the dictionary we passed to -registerDefaults had a
default value of YES for prp_cachingEnabled. Any changes made to the switches
or text field (after hitting the Return key) are recorded in the user defaults
so you can compare your settings to the original values.

Download SmartUserDefaults/Shared/DemoViewController.m
self.cacheSwitch.on = defaults.prp cachingEnabled;

Download SmartUserDefaults/NSUserDefaults+PRPAdditions.m
- (BOOL)prp isCachingEnabled {

return [self boolForKey:PRPDefaultsKeyCaching];
}

This recipe gets you started on the right foot with NSUserDefaults with every
project, centralizing and formalizing your logic so it can be hunted down,
refactored, and debugged easily and predictably.

report erratum -« discuss

http://media.pragprog.com/titles/cdirec/code/SmartUserDefaults/Shared/DemoAppDelegate.m
http://media.pragprog.com/titles/cdirec/code/SmartUserDefaults/Shared/DemoViewController.m
http://media.pragprog.com/titles/cdirec/code/SmartUserDefaults/NSUserDefaults+PRPAdditions.m
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Scan and Traverse View Hierarchies ¢ 185

Recipe 38

Scan and Traverse View Hierarchies

Problem

You have a complex view hierarchy that you want to visualize and explore
very simply in order to understand it better before making any changes.
You want to see the hierarchy tree—whether it came from a nib, your code,
or someone else’s—and you want to reliably find subviews of a certain type
that may lie within.

Solution

Apple’s Technical Note TN2239, “i0OS Debugging Magic,” introduces a hidden
API on UlView called -recursiveDescription, which can be used from the debugger
to see an ASCII visualization of a particular view’s hierarchy. This is useful
for understanding the structure and layout of your UI at a given point in
time, which makes it a very valuable debugging tool.

But -recursiveDescription can be overwhelming for complex hierarchies, both
because a view’s description is verbose and because there may be a lot of
views. Figure 37, Analyzing view hierarchies, on page 186 shows an example
of a hierarchy you may not want to see fully printed out in the console. This
recipe explores the technique behind producing a customized “ASCII tree”
for inspection during development and debugging. We'll do this in a UlView
category so it can be called on any UlView or subclass of UlView—even views
we didn’t create. We'll also declare a method that searches the hierarchy
for views matching a given Objective-C class in case we want to isolate a
certain type of view while inspecting our UL

Let’s take a look at the first two methods our category declares:

Download PrintSubviews/Classes/UIView+PRPSubviewTraversal.h
- (void)prp _printSubviews;
- (void)prp printSubviewsWithIndentString: (NSString *)indentString;

It contains a few supporting methods, but the first one we want to explore
is -prp_printSubviewsWithindentString:. This method works recursively through the
view’s entire hierarchy, modifying the indentString parameter with each pass
to increase the indentation for the next hierarchy level.

http://media.pragprog.com/titles/cdirec/code/PrintSubviews/Classes/UIView+PRPSubviewTraversal.h
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Scan and Traverse View Hierarchies ¢ 186

L ATRT & 10:02 AM =

[Print View Hierarchy }

BTN Label Label Label Label

Line 1
Line 2 Q
Line 1
Line 2 g

Deep hierarchies can be tough to manage, especially if they're constructed
dynamically. How can you get insight on the layout to see what you might
be missing?

Figure 37—Analyzing view hierarchies

The -prp_printSubviewsWithindentString: method starts by ensuring the passed in-
dentString is valid for printing; if we're deep into the hierarchy, then this string
is a combination of spaces and pipes constructed by prior invocations. The
string is prepended to a description of the current view. In this example, we
simply use the class name, but we could add more information such as the
view’s frame or number of subviews.

Download PrintSubviews/Classes/UIView+PRPSubviewTraversal.m

if (indentString == nil) indentString = @"";

NSString *viewDescription = NSStringFromClass([self class]);

printf("%s+-%s\n", [indentString UTF8String],
[viewDescription UTF8Stringl]);

report erratum -« discuss

http://media.pragprog.com/titles/cdirec/code/PrintSubviews/Classes/UIView+PRPSubviewTraversal.m
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Scan and Traverse View Hierarchies ¢ 187

Next, we prepare the indentString for the next hierarchy level (if there is one).
If the current view has siblings, we want to draw a line connecting them,
so we add a pipe character that will appear directly below the string that
was just printed. If there are no siblings, we just add a space so the inden-
tation remains consistent.

Download PrintSubviews/Classes/UIView+PRPSubviewTraversal.m
if (self.subviews) {
NSArray *siblings = self.superview.subviews;
if ([siblings count] > 1 &&
([siblings index0fObject:self] < [siblings count]-1)) {
indentString = [indentString stringByAppendingString:@"| "1;
} else {
indentString = [indentString stringByAppendingString:@" "I;
}

With the indent string fully prepared for the next hierarchy level, we pass
it to -prp_printSubviewsWithindentString: for each of the subviews. This continues
generating the recursive printout of the hierarchy. When the algorithm hits
a leaf in the tree, the subviews property is empty and the recursion ends.

Download PrintSubviews/Classes/UIView+PRPSubviewTraversal.m
for (UIView *subview in self.subviews) {
[subview prp printSubviewsWithIndentString:indentString];

}

The parameter-less -prp_printSubviews method is included as a convenience. If
we pass a custom indentString to our initial call, it appears at the beginning
of every line of output.

Download PrintSubviews/Classes/UIView+PRPSubviewTraversal.m
- (void)prp printSubviews {

[self prp printSubviewsWithIndentString:nil];
}

Remember that UWindow is a subclass of UlView, so sending [view.window
prp_printSubviews] will print the full hierarchy of a view’s enclosing window.

Review the following sample output. The output from this method instantly
shows how deep and broad our current hierarchy is. This information can
help us manage layout complexity, understand the path of touch events
through our Ul, and more.

It is worth noting that views at a certain level are printed in z-order: a sibling
that appears later in the output is technically above its prior siblings. This
is important information for overlapping views, because the ordering could
affect drawing or touch event handling.

http://media.pragprog.com/titles/cdirec/code/PrintSubviews/Classes/UIView+PRPSubviewTraversal.m
http://media.pragprog.com/titles/cdirec/code/PrintSubviews/Classes/UIView+PRPSubviewTraversal.m
http://media.pragprog.com/titles/cdirec/code/PrintSubviews/Classes/UIView+PRPSubviewTraversal.m
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Scan and Traverse View Hierarchies ¢ 188

+-UIView

+-UIScrollView

| +-PRPCustomView
| +-PRPCustomView

+-PRPCustomView

+-UIView
+-UIView
+-UIView

UIImageView
UIImageView
ITableView
UITableViewCell
+-UIGroupTableViewCellBackground
+-UITableViewCellContentView
| +-UILabel
| +-UITableViewLabel
+-UIButton
+-UIImageView
ITableViewCell
-UIGroupTableViewCellBackground
+-UIView
-UITableViewCellContentView

+-UILabel
+-UITableViewLabel
UIButton
+-UIImageView
UIImageView
| +-UIImageView
+-UIRoundedRectButton
| +-UIButtonLabel
+-UISwitch
| +-UIView
| +-UIView
+-UIView
+-PRPLabel
+-PRPLabel
+-PRPLabel
+-PRPLabel

-U
+

I
+

I

I
+

|

||
[
[
||
| +
| +
+-U
| +
[
[
||
||
[
[
| +
||
[
[
||
[
[
||
| +

We can now see at will how our view hierarchies are laid out, which can
help us figure out why a certain view is (or isn’t) showing on-screen when
or where we might expect it to be. Perhaps it's been added to the wrong
superview, or perhaps we've forgotten to clean up views we created under
specific runtime conditions.

Next, we add some methods for locating a certain type of view within a given
hierarchy. Cocoa Touch provides -[UIView viewWithTag:] to conveniently access
one explicit view instance we know we’re looking for, but this doesn’t scale
well for dynamically constructed hierarchies. It also doesn’t allow for multiple

http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Scan and Traverse View Hierarchies ¢ 189

matches. Our solution meets both of these additional needs with the final
three category methods.

Download PrintSubviews/Classes/UIView+PRPSubviewTraversal.h
- (NSArray *)prp_subviewsMatchingClass: (Class)aClass;
- (NSArray *)prp_subviewsMatchingOrInheritingClass: (Class)aClass;
- (void)prp_populateSubviewsOfClass: (Class)aClass
inArray: (NSMutableArray *)array
exactMatch: (BOOL)exactMatch;

The core method, prp_populateSubviewsMatchingClass:inArray:exactMatch:, recurses
the tree in a similar fashion to -printSubviewsWithindentString:. Instead of printing
every view, however, it checks each subview’s class against the passed Class
and adds matches to the passed array, which is passed along to the next
recursive call. The exactMatch parameter determines whether subclasses of
the specified class should be considered when searching.

Download PrintSubviews/Classes/UIView+PRPSubviewTraversal.m
- (void)prp_populateSubviewsMatchingClass: (Class)aClass
inArray: (NSMutableArray *)array
exactMatch: (BOOL)exactMatch {
if (exactMatch) {
if ([self isMemberOfClass:aClass]) {
[array addObject:self];
}
} else {
if ([self isKindOfClass:aClass]) {
[array addObject:self];
}
}
for (UIView *subview in self.subviews) {
[subview prp_populateSubviewsMatchingClass:aClass
inArray:array
exactMatch:exactMatch];

}

To make things a little more accessible, we define two clearer and less ver-
bose variants, which handle the exactMatch details and return the final array
of matches instead of requiring the caller to supply one.

Download PrintSubviews/Classes/UIView+PRPSubviewTraversal.m
- (NSArray *)prp_subviewsMatchingClass:(Class)aClass {
NSMutableArray *array = [NSMutableArray array];
[self prp populateSubviewsMatchingClass:aClass
inArray:array
exactMatch:YES];
return array;

http://media.pragprog.com/titles/cdirec/code/PrintSubviews/Classes/UIView+PRPSubviewTraversal.h
http://media.pragprog.com/titles/cdirec/code/PrintSubviews/Classes/UIView+PRPSubviewTraversal.m
http://media.pragprog.com/titles/cdirec/code/PrintSubviews/Classes/UIView+PRPSubviewTraversal.m
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Scan and Traverse View Hierarchies ¢ 190

Download PrintSubviews/Classes/UIView+PRPSubviewTraversal.m
- (NSArray *)prp_subviewsMatchingOrInheritingClass: (Class)aClass {
NSMutableArray *array = [NSMutableArray array];
[self prp populateSubviewsMatchingClass:aClass
inArray:array
exactMatch:NOJ;
return array;

}
These two methods are the ones that should be used by consumers.

Using these methods is now straightforward: when you pass [UIScrollView class]]
to -subviewsMatchingClass:, you get an array of UlScrollView objects, while -prp_sub-
viewsMatchingOrinheritingClass: returns an array of UIScrollView, UlTableView, UlTextView,
and any other object whose class is a subclass of UlScrollView.

Let’s look at this in practice. The accompanying PrintSubviews project includes
a busy hierarchy that for the sake of this demo was constructed in Interface
Builder. Many of the elements are standard buttons, views, and labels, but
we've put a few custom view and label subclasses in there as well. For
something this deep, especially if it was constructed dynamically, it would
be great to get a quick snapshot of its current layout to see where everything
sits. Using the methods we’ve constructed in this category, we can even get
information on a given type of view if we want.

Download PrintSubviews/Classes/PrintSubviewsViewController.m
- (IBAction)printView: (id)sender {
Class labelClass = [UILabel class];
NSArray *uilabels = [self.view
prp_subviewsMatchingClass:labelClass];
Class PRPLabelClass = [PRPLabel class];
NSArray *prpLabels = [self.view
prp_subviewsMatchingClass:PRPLabelClass];
NSArray *alllLabels = [self.view
prp_subviewsMatchingOrInheritingClass:labelClass];
Class PRPCustomViewClass = [PRPCustomView class];
NSArray *customViews = [self.view
prp_subviewsMatchingClass:PRPCustomViewClass];

NSLog(@"%d UILabels", [uilLabels count]);
NSLog(@"%d PRPLabels", [prpLabels count]);
NSLog(@"%d UILabels", [allLabels count]);
NSLog(@"%d PRPCustomViews", [customViews count]);

[self.view prp printSubviews];

}

Run the PrintSubviews and tap the Print View Hierarchy button to see the rel-
evant output presented to the console. The resulting output demonstrates

http://media.pragprog.com/titles/cdirec/code/PrintSubviews/Classes/UIView+PRPSubviewTraversal.m
http://media.pragprog.com/titles/cdirec/code/PrintSubviews/Classes/PrintSubviewsViewController.m
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Scan and Traverse View Hierarchies ¢ 191

a number of interesting details. We see, for example, that there are nine
UlLabel objects in this view, but only two of them are actually instances of
UlLabel; the other seven are a combination of four PRPLabel objects, plus in-
stances of another unknown subclass (presumably from the table cells you
see on the screen).

2011-04-06 10:10:05.087 PrintSubviews[13538:207] 2 UILabels

2011-04-06 10:10:05.089 PrintSubviews[13538:207] 4 PRPLabels

2011-04-06 10:10:05.090 PrintSubviews[13538:207] 9 UILabels + subclasses
2011-04-06 10:10:05.091 PrintSubviews[13538:207] 3 PRPCustomViews

Using this category alongside the -recursiveDescription method allows you to
study your hierarchies closely and find out where you may have some dead
code or elements that we've forgotten to remove. Note that this is neither
the same as nor a replacement for Instruments, which gives you a full report
of all objects of a given type that have been allocated (or leaked) in the entire
app. With the utilities in this recipe, you can drill down to a specific view
hierarchy you're interested in studying.

A final note: like -recursiveDescription, these methods are meant to be debugging
tools only. Blindly traversing subviews and printing out large ASCII trees
can get very expensive; you don’'t want to perform any of these tasks in a
shipping application. But for development and debugging, where we spend
most of our time, they can be very valuable tools.

http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Initialize a Basic Data Model ¢ 192

Recipe 39

Initialize a Basic Data Model

Problem

Every project you start inevitably involves copying and pasting administrative
Core Data code from previous work or from Apple sample code templates.
You need a solid, droppable starting point for every new project.

Solution

Core Data does a wonderful job of reducing the amount of database code
we need to write. However, there is still a good deal of redundant work in
every project that uses Core Data. We need to set up our persistent store,
model, and managed object context, making sure we that support migration
between model versions. This code can create unwanted clutter and depen-
dencies in our project if done in the wrong place.

This recipe introduces a basic data model that takes care of the standard
initialization nearly every Core Data-based app goes through. You can eas-
ily edit or subclass the model class to tailor its behavior to meet your own
application’s needs.

The first job of this basic data model is to abstract away the low-level initial-
ization every Core Data-based application needs to perform: it initializes
the managed object model, loads a persistent store coordinator, and creates
a default managed object context. This class uses a SQLite store by default.

The read-only managedObjectModel property is lazily initialized and points to a
single model file, which defaults to a .momd with the last component of the
app’s bundle identifier as its filename. For example, a bundle identifier of
com.pragprog.BasicDataModel results in a model name of BasicDataModel.momd. We
can configure the model file’s name and path by editing or overriding -model-
Name and -pathToModel, respectively.

Download BasicDataModel/Shared/PRPBasicDataModel.m
- (NSManagedObjectModel *)managedObjectModel {
if (managedObjectModel == nil) {
NSURL *storeURL = [NSURL fileURLWithPath:[self pathToModell]];
managedObjectModel = [[NSManagedObjectModel alloc]
initWithContentsOfURL:storeURL];

http://media.pragprog.com/titles/cdirec/code/BasicDataModel/Shared/PRPBasicDataModel.m
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Initialize a Basic Data Model ¢ 193

If you're working with Core Data, it pays to use a versioned model from day one. If
you start with an explicit .mom file then move to a versioned .momd folder, you can
end up with stale, conflicting files in your project. This can cause hard-to-track
errors during development, especially when using mergedModelFromBundes: to create
your model. These headaches might be passed along to your users if you make this
transition between version 1.0 and 2.0 of your product. Ship a .momd file from the
beginning.

This recipe uses the more explicit -[NSManagedObjectModel initWithContentsOfURL:] precisely
because you may end up having more models in your bundle than you thought.
The templates that ship with Xcode 4 are built this way, but older projects may not
be. Take a look at your projects to make sure you're ready for a version migration.

}

return managedObjectModel;

}

Download BasicDataModel/Shared/PRPBasicDataModel.m
- (NSString *)modelName {
return [[[NSBundle mainBundle] bundleIdentifier] pathExtension];

}
- (NSString *)pathToModel {
NSString *filename = [self modelName];
NSString *localModelPath = [[NSBundle mainBundle] pathForResource:filename
ofType:@"momd"];
NSAssertl(localModelPath, @"Could not find '%@.momd'", filename);
return localModelPath;
}

The read-only persistentStoreCoordinator property is lazily initialized and precon-
figured to perform automatic lightweight migration between model versions.
This way, if we add new versions of our model with small changes that
support lightweight migration, we don’t need to do any additional work.

Keep in mind that migration isn’t always easy. Basic changes to a Core
Data model, such as new or renamed attributes, can usually be migrated
automatically. However, there are plenty of cases where a model change is
too complex to be automigrated. Before making changes to a model you've
already shipped, read Apple’s Core Data Model Versioning and Data Migra-
tion Programming Guide on the iOS Dev Center. And be sure to add a
model version in Xcode before making changes. Never edit a model version
that’s in the wild!

report erratum -« discuss

http://media.pragprog.com/titles/cdirec/code/BasicDataModel/Shared/PRPBasicDataModel.m
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Initialize a Basic Data Model ¢ 194

Download BasicDataModel/Shared/PRPBasicDataModel.m
NSURL *storeURL = [NSURL fileURLWithPath:[self pathToLocalStorel];
NSPersistentStoreCoordinator *psc;
psc = [[NSPersistentStoreCoordinator alloc]
initWithManagedObjectModel:self.managedObjectModel];
NSDictionary *options = [NSDictionary dictionaryWithObjectsAndKeys:
[NSNumber numberWithBool:YES],
NSMigratePersistentStoresAutomaticallyOption,
[NSNumber numberWithBool:YES],
NSInferMappingModelAutomaticallyOption,
nill;
NSError *error = nil;
if (![psc addPersistentStoreWithType:NSSQLiteStoreType
configuration:nil
URL:storeURL
options:options
error:&error]) {
NSDictionary *userInfo = [NSDictionary dictionaryWithObject:error
forKey:NSUnderlyingErrorKeyl;
NSException *exc = nil;
NSString *reason = @"Could not create persistent store.";
exc = [NSException exceptionWithName:NSInternalInconsistencyException
reason:reason
userInfo:userInfo];
@throw exc;

}

persistentStoreCoordinator = psc;

The code also supports “preinstallation” of an existing database shipped
with the application if one does not already exist. We do this before creating
the model’s persistent store so we can present the user with some placeholder
data in our app on a first-time launch. This part is optional, and there’s no
need to disable the code. If you don’t want a placeholder, don’t supply a
preinstalled database file.

Download BasicDataModel/Shared/PRPBasicDataModel.m

NSString *pathToLocalStore = [self pathTolLocalStore];

NSString *pathToDefaultStore = [self pathToDefaultStorel;

NSError *error = nil;

NSFileManager *fileManager = [NSFileManager defaultManager];

BOOL noLocalDBExists = ![fileManager fileExistsAtPath:pathToLocalStore];

BOOL defaultDBExists = [fileManager fileExistsAtPath:pathToDefaultStorel;

if (noLocalDBExists && defaultDBExists) {

if (![[NSFileManager defaultManager] copyItemAtPath:pathToDefaultStore
toPath:pathToLocalStore
error:&error]) {
NSLog(@"Error copying default DB to %@ (%@)",
pathToLocalStore, error);

http://media.pragprog.com/titles/cdirec/code/BasicDataModel/Shared/PRPBasicDataModel.m
http://media.pragprog.com/titles/cdirec/code/BasicDataModel/Shared/PRPBasicDataModel.m
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Initialize a Basic Data Model ¢ 195

Per Apple’s NSPersistentStore reference and general Cocoa convention, NSError arguments
passed to a specific API should not be inspected directly unless the API returns a
value indicating an error state—often nil or NO. Failing to heed this guidance can
lead to subtle but serious bugs in your code.

Locations for the various files behind this data model—the model file, the
working database, and the preinstalled “default” database—are abstracted
into accessor methods, which you can edit or override to customize the
paths.

e -storefileName returns the name of the SQLite database, named similarly
to the model (.momd) file: if the model is BasicDataModel.momd, then the store
file is BasicDataModel.sqlite.

e -pathToLocalStore returns a path to the active database in the app’s sandbox.
It defaults to ~/Documents/<storeFileName>.

* -pathToDefaultStore returns the path to a default database in the app bundle
for preinstallation.

Download BasicDataModel/Shared/PRPBasicDataModel.m
- (NSString *)storeFileName {

return [[self modelName] stringByAppendingPathExtension:@"sqlite"];
}

- (NSString *)pathToLocalStore {

NSString *storeName = [self storeFileName];

NSString *docPath = [self documentsDirectoryl];

return [docPath stringByAppendingPathComponent:storeName];
}

- (NSString *)pathToDefaultStore {
NSString *storeName = [self storeFileName];
return [[NSBundle mainBundle] pathForResource:storeName ofType:nil];

}

The NSManagedObjectContext class is the main interface to most Core Data oper-
ations. Our basic data model lazily creates a single “main” context for all of
its queries. Since this is a basic model, it doesn’t bother with multiple context
or thread support. If you need to use multiple contexts, you can easily
modify the class to generate fresh ones or just create them on the fly using
the main context’s persistent store coordinator.

report erratum -« discuss

http://media.pragprog.com/titles/cdirec/code/BasicDataModel/Shared/PRPBasicDataModel.m
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Initialize a Basic Data Model * 196

[sle » B o> D B B % « 0O \
Qutlets
dataModel % Basic Data Model ® ‘
File's Owner window x Window @
1) First Respander Referencing Outlets
‘delegate x File's Owner O]
Objects New Referencing Outlet o)
Referencing Outlet Collections
New Referencing Outlet Collection

[T Placeholders

Window
Basic Data Model

We can instantiate a BasicDataModel in code or in Interface Builder where it
is easily recognized and connected to the app delegate’s dataModel property.

Figure 38—Initializing the model from Interface Builder

Download BasicDataModel/Shared/PRPBasicDataModel.m
- (NSManagedObjectContext *)mainContext {
if (mainContext == nil) {
mainContext = [[NSManagedObjectContext alloc] init];
NSPersistentStoreCoordinator *psc =
self.persistentStoreCoordinator;
[mainContext setPersistentStoreCoordinator:pscl;

return mainContext;

}

The BasicDataModel project accompanying this recipe creates the model and
connects it to the app delegate from Interface Builder, as seen in Figure 38,
Initializing the model from Interface Builder, on page 196. Either the model or
an NSManagedObjectContext from the model can be passed to other objects that
need access to the model data, depending on your desired approach. Remem-
ber that a new managed object context can be created using another context’s
persistent store coordinator, so you don’t need to reference the model any-
where but the app delegate if that’'s what you prefer.

Using Core Data in your apps means you’ll be doing a certain amount of
redundant work. Isolating that code in one place for easy reuse results in
less effort and fewer careless bugs in each project.

http://media.pragprog.com/titles/cdirec/code/BasicDataModel/Shared/PRPBasicDataModel.m
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Store Data in a Category ¢ 197

Recipe 40

Store Data in a Category

Problem

Objective-C categories let you add new behavior to any existing class in the
Cocoa frameworks. One thing you can’'t do with a category, however, is de-
clare stored instance variables and properties.

Solution

The Objective-C runtime allows us to add methods to any class—even
classes we don’t own, like Apple’s—by declaring a category. The various
drawing methods on NSString, for example, are category methods declared by
UIKit in UlIStringDrawing.h.

These categories simply add behavior to their corresponding classes.
UlStringDrawing declares methods, but no category can introduce new stor-
age—properties or instance variables that are created and retained, and
ultimately released, in the class’s -dealloc method.

As of Mac OS X Snow Leopard and iPhone OS (now iOS) 3.1, that’s no longer
true. A new feature of the Objective-C runtime, called associative references,
lets us link two objects together using a very basic key-value format. With
this feature, we can create the effect of a category that adds new storage to
an existing class.

Consider UlTouch as an example. Whether we're writing a custom view, view
controller, or gesture recognizer, it’s incredibly handy to know the original
point of origin for a given touch source. That information, however, is lost
after receiving -touchesBegan:withEvent. Our class can keep track of that, but
once we begin managing multiple touch sources, it becomes difficult. Plus,
any code we write to track this state is stuck in that view, view controller,
or gesture recognizer—we have to port it over to any other class we write
later. It makes much more sense for the touch object itself to keep track of
its point of origin."

1. Thanks to Colin Barrett for some late-night help deciding on a good example for this
recipe.

http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Store Data in a Category ¢ 198

A category on UlTouch called PRPAdditions will handle this by declaring two
methods: one for storing the initial point and another for fetching it within
the coordinates of the requested view.

Download TouchOrigin/UITouch+PRPAdditions.h
@interface UITouch (PRPAdditions)

- (void)prp_saveOrigin;

- (CGPoint)prp originInView: (UIView *)view;
@end

Remember, categories do not let us declare storage on the class they extend;
only methods do. This is where associative references come in. We start by
fetching the current touch’s location to global screen coordinates, which
protects us against any changes to the view hierarchy that might occur over
the touch object’s life span. We then store the point in an NSValue object and
save that value to our UlTouch instance as an associative reference using the
objc_setAssociatedObject() runtime function.

Download TouchOrigin/UITouch+PRPAdditions.m
- (void)prp saveOrigin {
CGPoint windowPoint = [self locationInView:nil];
CGPoint screenPoint = [self.window convertPoint:windowPoint toWindow:nill];
objc setAssociatedObject(self,
&nameKey,
[NSValue valueWithCGPoint:screenPoint],
0BJC_ASSOCIATION RETAIN NONATOMIC);
}

It’s worth discussing the point conversion we do here prior to storing the
value. Every UlTouch object has a window property, which refers to the window
where the touch began. We get the touch’s origin by sending [self locationin-
View:nill. Per Apple’s documentation, this provides the location in the window’s
coordinate space—we could also have passed selfwindow if we wanted. We
then pass this point to -convertPoint:toWindow:, passing nil for the final parameter.
The UlWindow reference explains that passing nil converts the point “to the
logical coordinate system of the screen,” which is exactly what we want.

The OBJC_ASSOCIATION_RETAIN_NONATOMIC parameter passed to objc_setAssociatedOb-
ject() defines the storage policy—in this case, we want to retain the NSValue.
We can also set a policy of assign or copy, just as with traditional Objective-
C properties. The nameKey argument is used internally to store the value and
must be unique. This ensures that no other associative references conflict
with ours. The required type is void *, so the simplest solution is to declare
a static char variable and pass its address, which is guaranteed to be unique.

Download TouchOrigin/UITouch+PRPAdditions.m
static char nameKey;

http://media.pragprog.com/titles/cdirec/code/TouchOrigin/UITouch+PRPAdditions.h
http://media.pragprog.com/titles/cdirec/code/TouchOrigin/UITouch+PRPAdditions.m
http://media.pragprog.com/titles/cdirec/code/TouchOrigin/UITouch+PRPAdditions.m
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Store Data in a Category ¢ 199

Fetching the origin point is simple: we pass the address of our nameKey to
objc_getAssociatedObject() and extract the CGPoint struct from the returned NSValue,
reversing the coordinate conversion we performed in prp_saveOrigin. We first
check to see whether the passed view has a window; otherwise, we could end
up with a garbage return value.

Download TouchOrigin/UITouch+PRPAdditions.m
- (CGPoint)prp _originInView: (UIView *)view {
NSAssert((view.window != nil),
@"-prp_originInView: 'view' parameter is not in a window");

NSValue *valueObject = objc getAssociatedObject(self, &nameKey);
CGPoint screenPoint = [valueObject CGPointValue];
screenPoint = [view.window convertPoint:screenPoint fromWindow:nil];

return [view convertPoint:screenPoint fromView:nil];

}

We can now make every UlTouch object in our app remember where it started.
We no longer have to manage this in our own controller code, and more
importantly, that context is preserved no matter where the touch object
happens to be passed.

Our code does, however, still need to set the initial point. We’'ll do this, of
course, in -touchesBegan:withEvent:. The accompanying TouchOrigin project does
this in its PRPTrackingViewController class.

Download TouchOrigin/PRPTrackingViewController.m
- (void)touchesBegan: (NSSet *)touches withEvent: (UIEvent *)event {
for (UITouch *touch in touches) {
NSLog(@"Touch %p began at %@", touch,
NSStringFromCGPoint([touch locationInView:touch.view]));
[touch prp saveOrigin];

}

Once we set the origin point, we can use it again at any time. Subsequent
touch events continue to use the same UlTouch object, so the origin we set
earlier will still be there.

Download TouchOrigin/PRPTrackingViewController.m
- (void)touchesMoved: (NSSet *)touches withEvent:(UIEvent *)event {
for (UITouch *touch in touches) {
NSLog (@"Touch %p moved from %@ to %@", touch,
NSStringFromCGPoint([touch prp originInView:touch.view]),
NSStringFromCGPoint([touch locationInView:touch.view]));

http://media.pragprog.com/titles/cdirec/code/TouchOrigin/UITouch+PRPAdditions.m
http://media.pragprog.com/titles/cdirec/code/TouchOrigin/PRPTrackingViewController.m
http://media.pragprog.com/titles/cdirec/code/TouchOrigin/PRPTrackingViewController.m
http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Store Data in a Category ¢ 200

- (void)touchesEnded: (NSSet *)touches withEvent: (UIEvent *)event {
for (UITouch *touch in touches) {
NSLog(@"Touch %p ended at %@; started at %@", touch,
NSStringFromCGPoint([touch locationInView:touch.view]),
NSStringFromCGPoint([touch prp originInView:touch.view]));

}

}

- (void)touchesCancelled: (NSSet *)touches withEvent: (UIEvent *)event {
for (UITouch *touch in touches) {

NSLog(@"Touch %p cancelled at %@; started at %@", touch,
NSStringFromCGPoint([touch locationInView:touch.view]),
NSStringFromCGPoint([touch prp originInView:touch.view]));

}
}

Run the TouchOrigin project from Xcode and watch the console to see a com-
parison of the touch’s origin point with its current location on each event.
This example uses a view controller to listen for touch events, but you could
follow this same pattern in a custom gesture recognizer or view as well.

We've done two very cool things in this recipe: added valuable context to
UlTouch objects and explored a powerful new language feature that makes
Objective-C categories more useful than ever.

http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

A

activity indicator, 29, 150-
152

addClip method, 116

addCurveToPoint: method, 115

addQuadCurveToPoint: method,
115
album art
playing from, 56-61
scrolling, 51-55
alerts, self-contained, 40-45
alpha channel, masking with,
10
anchorPoint property
mask layer, 11, 14
rotation, 122, 125
animating
composited and trans-
formed views, 124-126
gradient layer, 127-130
loops, 134-137
momentum, 70, 72
multiple pulsing and
spinning, 121-123
notifications, 16-20
page curl, 143-148
particle emitter, 138-142
progress bars, 35
scrolling text, 62-65
scrolling with static con-
tent, 108
spinning numbers, 66-72
animationDuration property, 136
animationimages property, 134
art, album
playing from, 56-61
scrolling, 51-55
ASCII tree hierarchy, 185-191

associative references, 197

asynchronous networking,
161

attributes, labels for strings,
46-50

autorotation, 7, 32
autoscrolling text, 62-65
autotoggling buttons, 23
AVAudio, 62, 64
awakeFromNib method, 17, 23

B

backgroundColor property
textures, 26
two-tone table views, 92—

96
web views, 31

backgroundView property, 103

backgrounds

animated gradient, 127-
130

color, 26, 69, 92-96,
127-130

spinning number con-
trols, 66, 69

table borders, 103

toggle buttons, 22

two-tone table views, 92—
96

web views, 31

Barrett, Colin, 197
beginTrackingWithTouch:withEvent:
method, 69
bezier curves and paths
gradient-filled, 115-120
seagull animation, 134

Index

blocks

about, xiii

retain cycles, 44
booleans

system done button, 31

toggle button, 21

user defaults, 183
borderColor property, 26
borderWidth property, 26
borders

rounded views, 26-28

shadows in tables, 97—
103
boundary strings, 162
buttons
determining which is
pressed, 40-45
Done, 31
index paths of table cells,
83-85
reusable toggle, 21-25
titles, 41-44

C

CABasicAnimation
gradient, 129
notifications, 19
particle emitter, 138, 140
CAGradientLayer
background animation,
127-130
two-tone table views, 92

CALayer
animation, 123, 127-130
rendering, 126
replicator, 138
shadows, 131-133
textured colors, 26-28

CAReplicatorLayer, 138

http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

carousel paging scroll view,
109-112

categories
about, xii, 173
prefixing, 182
storing data in, 197-200
CATiledLayer, 51-55
CATransform3D
autoscrolling text, 62-64
spinning and rotating,
123
cell identifiers, 78-82
cells, see table cells
CFURLCreateStringByAddingPer-
centEscapes(), 159
CGAffineTransform
rotation, 122, 125
scrolling with static con-
tent, 106
CGContextDrawLinearGradient(), 118
CGContextSetTextPosition(), 46
CGGradient, 117
CGPoint, 199
characters
escape, 158
reserved, 159
CircleFromCenter transition,
12
circles, gesture recognizer,
36-39
Clark, Mike, 160, 168
class design in Objective-C,
xii, 172-175
class extensions, xiii, 173—
175
class storage, 174
ClearFromCenter transition,
12
clipping, 116, 118
Clock app, 97
cloud image, 131-133
_cmd in logging statements,
179
Cocoa
code formatting in book,
xii
formatting simple HTTP
POST, 157-161
multipart POST, 162-169
NSLog() function, 176
Objective-C class design,
172-175

searching hierarchies,
188
storing data in categories,
197-200
colorWithPatternimage: method,
26
colors
background, 26, 31, 92—
96, 127-130
emitter particles, 141
labels, 46
spinning number con-
trols, 69
textured for rounded
views, 26-28
two-tone table views, 92—
96
web views, 31
composited and transformed
views, 124-126
conditional logging, 176-180
connection:didFailWithError:
method, 154
connection:didReceiveResponse:
method, 154
constants, key, 181
content-disposition header, 163
contentOffset property
carousel paging, 110
scrolling album art, 52
scrolling text, 63
two-tone table views, 94
contentScaleFactor property, 54
contentSize property
album view, 52
carousel paging, 109
scrolling with static con-
tent, 106
table height, 100
contentsRect property, 144
contexts, multiple, 195
continueTrackingWithTouch:withEvent:
method, 70
continuous movement anima-
tion, 134-137
continuous wrapping, 51-55
convertPoint:toView: method, 84
convertPoint:toWindow: method,
198
Core Animation
autoscrolling text, 62-65
page curl transition, 143-
148

* 202

particle emitter, 138-142
spinning and pulsing
multiples, 121-123
Core Data and initializing ba-
sic data models, 192-196
Core Data Model Versioning
and Data Migration Pro-
gramming Guide, 193
Core Graphics
composited and trans-
formed views, 124-126
gradient-filled bezier
paths, 115-120
looping animation, 134-
137
radial gradients, 127
Core Text, 46-50
cornerRadius property, 26
corners, 26, 52
cross-fade, 127-130
CTLineCreateWithAttributedString(),
46
CTLineDraw(), 47
cubic bezier, 115
curling page transition, 143-
148
curves, bezier, 115-120, 134

D
data models, initializing, 192—
196
data storage in categories,
197-200
dealloc method, xiii, 197
debugging
output, 176-180
scanning hierarchies
while, 185-191
deceleration effect, 70
defaults, user, 181-184
delaying
particle emitter, 138
splash screen transitions,
13

delegate methods, about, xiii

didMoveToSuperview method,
130, 134, 144, 148

dismissModalViewControllerAnimated:
method, 5

distorting perspective in text
views, 62-65

Done button, 31

http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

downloading, see also net-
working
activity indicator, 150-
152
simplifying, 153-156
drawRect: method
about, 115
cloud image, 132
labels for attributed
strings, 46
scrolling tiles, 51-55
drawing gradient-filled bezier
paths, 115-120
duplicating layers, 138
dynamic images with multiple
animations, 121-123

E
easeout timing function, 70
edges
rounded, 26-28
scrolling album art, 52

emitter, particle, 138-142

endTrackingWithTouch:withEvent:
method, 70

enumerations, 88-91
escape characters, 158

extensions, see class exten-
sions

F
fadeDuration method, 55
fading
gradient backgrounds,
127-130
notifications, 20
splash screen transitions,
2-9
tiles, 55
filename in logging state-
ments, 176
flicking number controls, 66—
72
flips, 20
flowers, 124-126
fonts, label, 46-50
footers, 100-103
form parameters, 163
formatting HTTP POST, 157-
169
forms
multipart POST, 162-169
simple POST, 157-161

frames, animation, 135
fromValue property, 129

G

gesture recognizers
circle, 36-39
origin point storage, 200
page curl transition, 148
playback from album art,

56

types, 36

gradientWithColor method, 117

gradients
animating background,
127-130
bezier paths, 115-120
clipping, 116, 118
radial, 120
spinning number con-
trols, 68
two-tone table views, 92
gradual reveal transitions,
10-15
Graphics Garden app
animation loops, 134-137
background gradient,
127-130
composited and trans-
formed views, 124-126
gradient-filled bezier
paths, 115-120
reshaping shadows, 131-
133
spinning and pulsing ani-
mations, 121-123
grids and static content while
zooming, 104-108

H
headers
private data, 172-175
two-tone table, 92-94
hierarchies, traversing, 185—
191
HTTP
multipart POST, 162-169
POST, 157-161

I
“i0S Debugging Magic”, 185
iPod library
playback, 56-61
scrolling album art, 51—
55
imageWithSize: method, 55

indentation and analyzing hi-
erarchies, 185-188

* 203

index path of table cells, 83—
85

index path of table view cells,
152

indicator, see activity indica-
tor

infinite scrolling, 109-112
infinite wrapping, 51-55
initWithFrame: method, scrolling
album art, 54
initWithTarget:action: method, 56

initializing basic data models,
192-196

input streams, 165, 167

instance variables, xiii, 172,
197-200

instanceColor property, 141
instanceCount property, 138
instanceDelay property, 138
instanceTransform property, 138

instantiateWithOwner:options:
method, 79
Instruments, 191
Interface Builder
animating notifications,
20
cell identifiers, 80
custom toggle buttons,
21-25
initializing data models,
196
reusing table cells, 78-82
spinning number con-
trols, 72

ivars, see instance variables

J
JSON, 156

K
kCAMediaTimingFunctionEaseOut,
129

Key-Path extensions, 123

key-value form parameters,
163

keyTimes, 19
KeyFrame animation, 19

L
labels
attributed strings, 46-50
spinning number con-
trols, 66, 69, 72

layers

http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

duplicating, 138
screen transitions, 10
spinning number con-
trols, 66-71
layoutSubviews method, 94, 97—
103
line number in logging state-
ments, 176
lineThickness property, 117
loadView method, 4
logging function, 176-180
looping animation, 134-137

M
map pins, 104-108
masks, splash screen transi-
tions, 10-15
memory
composite views, 126
downloads, 156
input streams, 165, 167
multipart POST, 164
scrolling views, 51
mergedModelFromBundles: method,
193
migration and data models,
192
modal view controller, fading
splash screen, 4
models, initializing, 192-196
momentum in rotation, 70,
72
MPMedialtem, 54
MPMedialtemArtwork, 55
MPMedialtemCollection, 57
MPMusicPlayerController, 58
multipart POST, 162-169
multiple contexts, 195
music playback, 56-61, 64

N
networkActivitylndicatorVisible
property, 150-152
networking
activity indicator, 150-
152
basic POST, 157-161
multipart POST, 162-169
simplifying downloads,
153-156
nibs
cell identifiers, 78-82
notifications, 17
reusing table cells, 78-82

nonscaling views, 106
notifications
animating, 16-20
iPod, 58
nowPlayingltem property, 60
NSError, 154-155, 195
NSLog(), 176
NSManagedObjectContext, 195
NSMutableArray, 135
NSMutableURLRequest, 157, 163
NSNumbers, 123
NSString, escaping with, 158
NSTimer object, 19, 137
NSURLConnection
multipart POST, 167
simplifying downloads,
153-156
URL-encoded POST, 157-
161
NSURLRequest, 157
NSUserDefaults, 181-184
NSValue, 198
number controls, spinning,
66-72
numberOfSectionsinTableView:
method, 89

(0)
OBJC_ASSOCIATION_RETAIN_NONATOM-
IC, 198
objc_getAssociatedObject(), 199
objc_setAssociatedObject(), 198
Objective-C
class design, xii, 172-175
code formatting in book,
xii
searching view hierar-
chies, 185
storing data in categories,
197-200
offset, see contentOffset
property
online resources, xiv
opacity
gradients, 68, 117
masking with, 10
particle emitter, 140
organizing complex table
views, 86-91
orientation, splash screen
transitions, 7-9

* 204

origin point, storing, 36, 197-
200, see also touch points

overriding defined methods,
Xii

P

page control, 111-112

page curl transition, 143-148
paging scroll view, 109-112
particle emitter, 138-142
patterned images, 26

performSelector:withObject:afterDelay:
method, 5, 13

persistent store coordinator,
192-194
petals, 118, 121, 124
PhotoScroller, 109-112
pins, map, 104-108
playback
AVAudio, 64
from album art, 56-61
point conversion, 198
point of origin, storing, 36,
197-200, see also touch
points
positional translation, 66

POST
formatting simple, 157-
161
multipart, 162-169
prefixing category methods,
xii, 182
_ PRETTY_FUNCTION__ in logging
statements, 179

private class extensions, xiii,
173-175

process name in logging
statements, 176

progress views
custom, 33-35
downloading, 153-156

properties, storing, 197-200
prp_ prefix, 182

pulsing animation, 121-123,
142

Q

QuadCurve, 115

quadratic bezier curves, 115,
134

R

radian values, 122

http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

recognizers, see gesture recog-
nizers

recursiveDescription method,
185, 191

registerDefaults method, 183—
184

renderinContext: method, 126

replicating layers, 138

representativeltem property, 54

reshaping shadows, 131-133

resources online, xiv

retain cycles, 44

Retina Display, 54-55

RFC 1341, 162

RFC 1867, 162, 164

RFC 2616, 158

root view controller, fading
splash screen, 4

rotation
3D transforms, 62
emitter particles, 140
flower image, 122, 125
momentum in, 70, 72
multiple animations,
121-123
page curl transition, 143-
148
spinning number con-
trols, 66
splash screen, 7
web views, 29, 32
round-robin paging, 109-112
rounded views with textured
colors, 26-28

row index, 83-85, 88-91
RSS, 156

S

scaling, in scrolling with stat-
ic content, 105

scanning view hierarchies,
185-191

scrolling
album art, 51-55
carousel paging view,
109-112
with static content, 104-
108
text, 62-65

seagull animation, 134-137
[self class] in logging state-
ments, 179

self-contained alert views, 40—
45

sendActionsForControlEvents:
method, 66-72

setBackgroundimage:forState:
method, 22

setNeedsDisplay method, 48, 115

setZoomScale:animated: method,
108

settings, user, 181-184
shadowOffset property, 133
shadowPath property, 131
shadows
reshaping, 131-133
table borders, 97-103
siblings in hierarchies, 187
sliders, custom, 33-35
smart table cells, 78-82
smiles, 120-121, 125
Speirs, Fraser, 86
spinning animation, 121-123
spinning number controls,
66-72
spiraling particles, 140
splash screen transitions
basic, 2-9
stylized (gradual reveal),
10-15
star themed scrolling credits,
62-65
state property for recognizers,
36
static content in scrolling
views, 104-108
static table cells, 91
statics, sharing, 151
status bar
network activity indica-
tor, 150
splash screen transitions,
5-7, 11
stems, 124
Stocks app, 109
storage, class, 174
store coordinator, persistent,
192-194
storing data in categories,
197-200
streams, input, 165, 167
stretching
sliders and progress
views, 33-35
two-tone table views, 94
strings
attributed, 46-50

* 205

boundary, 162
POST, 158-160
strips, page curling, 143-148
strokeColor property, 117
stroking, 115, 118
sublayers
duplicating, 138
rendering in context, 126
transformation, 143-148
subviews
composited and trans-
formed views, 124-126
scrolling with static con-
tent, 104
stretcher, 94
table borders shadows,
97-103
table cells, 75, 83-85
sunshine animation, 121

SWIZZLE, 66
T

table cells, see also table
views
download progress, 152
nib-based, 78-82
pinpointing, 83-85
reusing, 74-82
static, 91
table headers, 92-94
table views, see also table
cells
border shadows, 97-103
enumerations, 88-91
height, 100
organizing complex, 86—
91
two-tone, 92-96
tableView:cellForRowAtIndexPath:
method, 81, 86-89
tableView:didSelectCellForRowAtIndex-
Path: method, 87
tag collisions, 75
“The Technique for Static Row
Content”, 91
"A technique for using
UlTableView and retaining
your sanity”, 86
temporary files, 165
textured colors, 26-28
thread-safety, 151
thumbimage property, 33
tiles, scrolling, 51-55
timestamp in logging state-
ments, 176

http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

timing functions, 70, 129
titles
buttons, 41-44
navigation, 31
toggle buttons, reusable, 21—
25
toggling, music controller, 57

touch points
circle gestures, 36
conversion, 198
spinning number con-
trols, 70
storing origin point, 197-
200
touchesBegan:withEvent: method,
199
animating notifications,
20
gesture recognizers, 37
touchesEnded:withEvent: method,
38

touchesMoved:withEvent: method,
38
transforms
autoscrolling text, 62-64
composited and trans-
formed views, 124-126
flower image, 125
with Key-Path extensions,
123
page curl transition, 143-
148
scrolling with static con-
tent, 106-108
spinning numbers con-
trols, 66-71
transitions, see splash screen
transitions
transparency
gradients, 68
masking with, 10
traversing view hierarchies,
185-191
tube, page curling transition,
143-148

two-tone table views, 92-96

u
UlActivityIndicatorView, 29
UlAlertView, 40-45

UlBezierPath
cloud image, 132

gradient-filled bezier
paths, 115-120
grid drawing, 104
seagull animations, 136
UlButton, 21-25
UlControl
spinning numbers, 66-72
togglebuttons, 21-25
UlGraphicsBeginimageContextWithOp-
tions(), 136
UlGraphicsGetimageFromCurrentim-
ageContext(), 126, 136

Ulimage
animating notifications,
16
compositing, 126
looping animations, 134—
137
stretchable, 33-35
UllmageView, 126
UllmageViews, 134-137
UlLabel, background textures,
28
UINib, 79
UlScrollView, album art, 51-55
UiSlider, 33-35
UISwipeGestureRecognizer, 148
UlTableView
index paths, 84
nib-based cells, 79-82
organizing complex table
views, 86-91
reusable cells, 74-77
two-tone table views, 92—
96
UlTapGestureRecognizer, 56
UlTouch, storing origin point,
197-200
UlView
animating background
gradients, 127-130
animating notifications,
16-20
animating scrolling, 64
animating spinning and
rotating, 121
composited and trans-
formed views, 124-126
index paths, 84
rounded views with tex-
ture, 26-28
UlWebView, 29-32
UlWindow, 198

* 206

underlining, 46, 49

updating, track information,
60

user defaults, 181-184
UTF-8 conversion, 165

Vv
valueForProperty: method, 60
vanishing point effect, 62-65
versioned models, 193
view controller, fading with,
2
viewDidAppear: method
scrolling text, 63
splash screen transitions,
5, 13
viewDidDisappear: method, 6
viewDidLoad method
background color, 31
carousel paging, 110
music controller, 58
page control, 111
splash screen transitions,
11
viewWillAppear: method, 57
viewWillDisappear: method, 6
views, layers, 10

W

wall of album art
playing from, 56-61
scrolling, 51-55
web views, reusable, 29-32
webViewDidFinishLoad: method, 31
WEBTrick servlets, 160, 168
wrapping, continuous, 51-55

X
Xcode
conditional logging, 176-
180
iPod library, 52
user defaults, 181

Z

z-order, 103, 187
zPosition property, 67, 145
zoomScale property, 106

zoomToRect:animated: method,
108

zooming, static content while,
104-108

http://pragprog.com/titles/cdirec/errata/add
http://forums.pragprog.com/forums/cdirec

Learn a New Language This Year

Want to be a better programmer? Each new programming language you learn teaches you
something new about computing. Come see what you're missing.

You should learn a programming language every year,
as recommended by The Pragmatic Programmer. But
if one per year is good, how about Seven Languages in

Seven Weelcs? In this book you'll get a hands-on tour Seven Languages
of Clojure, Haskell, Io, Prolog, Scala, Erlang, and Ruby. in Seven Weeks
Whether or not your favorite language is on that list, & Pragmatic ; 3

you’ll broaden your perspective of programming by Progrnghing
examining these languages side-by-side. You'll learn
something new from each, and best of all, you'll learn

how to learn a language quickly. Bruce A. Tate

Bated by Jacquelyn Carter

Bruce A. Tate
(300 pages) ISBN: 9781934356593. $34.95
http:/ / pragmaticprogrammer.com/ titles / btlang

Bill Karwin has helped thousands of people write better
SQL and build stronger relational databases. Now he’s
sharing his collection of antipatterns—the most com-

mon errors he’s identified out of those thousands of SQL Antipatter;

requests for help. e o lt
Most developers aren’t SQL experts, and most of the

SQL that gets used is inefficient, hard to maintain, and \ -
sometimes just plain wrong. This book shows you all - e

the common mistakes, and then leads you through oo @

the best fixes. What's more, it shows you what's behind \ -
these fixes, so you'll learn a lot about relational it AR
databases along the way. -

Bill Karwin
(352 pages) ISBN: 9781934356555. $34.95
http:/ / pragmaticprogrammer.com/titles / bkksqla

http://pragmaticprogrammer.com/titles/btlang
http://pragmaticprogrammer.com/titles/bksqla

Welcome to the New Web

The world isn’t quite ready for the new web standards, but you can be. Get started with
HTML5, CSS3, and a better JavaScript today.

CoffeeScript is JavaScript done right. It provides all of
JavaScript’s functionality wrapped in a cleaner, more
succinct syntax. In the first book on this exciting new

language, CoffeeScript guru Trevor Burnham shows ff, .

T
you how to hold onto all the power and flexibility of CoifeeSc R;Eizse@ef
JavaScript while writing clearer, cleaner, and safer Development
code.

Trevor Burnham
(136 pages) ISBN: 9781934356784. $29
http:/ / pragmaticprogrammer.com/ titles / tbcoffee

Trevor Burnham
Foreword by Jeremy Ashkenas
edited by Michael Swatne

HTML5 and CSS3 are the future of web development,
but you don’t have to wait to start using them. Even
though the specification is still in development, many

modern browsers and mobile devices already support HTML5 & CSS3
HTML5 and CSS3. This book gets you up to speed on S Ty

the new HTML5 elements and CSS3 features you can
use right now, and backwards compatible solutions
ensure that you don’t leave users of older browsers
behind.

Brian P. Hogan
(280 pages) ISBN: 9781934356685. $33
http:/ / pragmaticprogrammer.com/titles/ bhh5 Drant e

Bt by Susanno Dusson e

http://pragmaticprogrammer.com/titles/tbcoffee
http://pragmaticprogrammer.com/titles/bhh5

Be Agile

Don’t just “do” agile; you want be agile. We’ll show you how.

The best agile book isn’t a book: Agile in a Flash is a Pt
unique deck of index cards that fit neatly in your]

ic
rammers

Agile in a Flash
. . Speed-Learning Agile
out on your project table. Get stains on them over Software Development

lunch. These cards are meant to be used, not just read. —_—— Ag:; Stk

pocket. You can tape them to the wall. Spread them

Jeff Langr and Tim Ottinger
(110 pages) ISBN: 9781934356715. $15
http:/ / pragmaticprogrammer.com/titles / olag

Jeff Langr and
Tim Ottinger

Here are three simple truths about software develop- Fhifate

ment:

1. You can’t gather all the requirements up front. 2.

The requirements you do gather will change. 3. There The Agﬂe Samurai

is always more to do than time and money will allow. How Aglle Masters

Deliver
Great Software y‘\

Those are the facts of life. But you can deal with those \
facts (and more) by becoming a fierce software-delivery ~ ¢
professional, capable of dispatching the most dire of

software projects and the toughest delivery schedules
with ease and grace.

Jonathan Rasmusson
Jonathan Rasmusson [Ee————

(280 pages) ISBN: 9781934356586. $34.95
http:/ / pragmaticprogrammer.com/titles /jtrap

http://pragmaticprogrammer.com/titles/olag
http://pragmaticprogrammer.com/titles/jtrap

The Pragmatic Bookshelf

The Pragmatic Bookshelf features books written by developers for developers. The titles
continue the well-known Pragmatic Programmer style and continue to garner awards and
rave reviews. As development gets more and more difficult, the Pragmatic Programmers will
be there with more titles and products to help you stay on top of your game.

Visit Us Online

This Book’s Home Page
http:/ / pragprog.com/titles / cdirec
Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates
http:/ /pragprog.com/updates
Be notified when updates and new books become available.

Join the Community

http:/ / pragprog.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact with
our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy
http:/ /pragprog.com/news
Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book

If you liked this eBook, perhaps you'd like to have a paper copy of the book. It's available
for purchase at our store: http://pragprog.com/titles/cdirec

Contact Us

Online Orders: http:/ /pragprog.com/catalog
Customer Service: support@pragprog.com
International Rights: translations@pragprog.com
Academic Use: academic@pragprog.com

Write for Us: http:/ / pragprog.com/ write-for-use
Or Call: +1 800-699-7764

http://pragprog.com/titles/cdirec
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
http://pragprog.com/titles/cdirec
http://pragprog.com/catalog
support@pragprog.com
translations@pragprog.com
academic@pragprog.com
http://pragprog.com/write-for-use

	Cover
	Table of Contents
	Foreword
	Introduction
	Formatting and Syntax
	Categories
	Synthesized Instance Variables
	Private Class Extensions
	Cleanup in -dealloc
	Blocks vs. Delegation
	Online Resources

	Acknowledgments
	Matt Drance
	Paul Warren

	1. UI Recipes
	Recipe 1. Add a Basic Splash Screen Transition
	Recipe 2. Stylize Your Splash Screen Transition
	Recipe 3. Animate a Custom Notification View
	Recipe 4. Create Reusable Toggle Buttons
	Recipe 5. Form Rounded Views with Textured Colors
	Recipe 6. Put Together a Reusable Web View
	Recipe 7. Customize Sliders and Progress Views
	Recipe 8. Shape a Custom Gesture Recognizer
	Recipe 9. Create Self-contained Alert Views
	Recipe 10. Make a Label for Attributed Strings
	Recipe 11. Scroll an Infinite Wall of Album Art
	Recipe 12. Play Tracks from a Wall of Album Art
	Recipe 13. Have Fun with Autoscrolling Text Views
	Recipe 14. Create a Custom Number Control

	2. Table and Scroll View Recipes
	Recipe 15. Simplify Table Cell Production
	Recipe 16. Use Smart Table Cells in a Nib
	Recipe 17. Locate Table Cell Subviews
	Recipe 18. Organize Complex Table Views
	Recipe 19. Produce Two-Tone Table Views
	Recipe 20. Add Border Shadows for Table Views
	Recipe 21. Place Static Content in a Zoomable Scroll View
	Recipe 22. Build a Carousel Paging Scroll View

	3. Graphics Recipes
	Recipe 23. Draw Gradient-Filled Bezier Paths
	Recipe 24. Create Dynamic Images with Multiple Animations
	Recipe 25. Make Composited and Transformed Views
	Recipe 26. Animate a Gradient Layer
	Recipe 27. Reshape Shadows
	Recipe 28. Display Animated Views
	Recipe 29. Construct a Simple Emitter
	Recipe 30. Curl the Page to a New View

	4. Networking Recipes
	Recipe 31. Tame the Network Activity Indicator
	Recipe 32. Simplify Web Service Connections
	Recipe 33. Format a Simple HTTP POST
	Recipe 34. Upload Files Over HTTP

	5. Runtime Recipes
	Recipe 35. Leverage Modern Objective-C Class Design
	Recipe 36. Produce Intelligent Debug Output
	Recipe 37. Design Smarter User Defaults Access
	Recipe 38. Scan and Traverse View Hierarchies
	Recipe 39. Initialize a Basic Data Model
	Recipe 40. Store Data in a Category

	Index

