
Jones
Freem

an
Visual

Companion
eBook Available

THE EXPERT’S VOICE® IN C#

Visual

C# 2010
Recipes
A Problem-Solution Approach

 Allen Jones and Adam Freeman

Quick answers and ready-to-use code to get
you more productive in C# 2010 development

7.5 x 9.25 spine = 1.90625" 1016 page countthis print for content only—size & color not accurate

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

 CYAN
 MAGENTA

 YELLOW
 BLACK

US $54.99

Shelve in:
.NET

User level:
Intermediate–Advanced

www.apress.com
SOURCE CODE ONLINE

Companion eBook

See last page for details

on $10 eBook version

ISBN 978-1-4302-2525-6

9 781430 225256

55499

Visual C# 2010 Recipes:
A Problem-Solution Approach
Dear Reader,

Whatever your situation, whatever the circumstance, one thing is certain: you
will always know what you want to do, but not necessarily how best to do it. C#
2010 development is no exception, and this book is an invaluable companion
when you are tackling a wide range of C# subjects:

• Application domains, reflection, and metadata
• Tasks, Threads, processes, and synchronization
• Files, directories, and I/O
• LINQ
• XML processing
• Windows Forms and Windows Presentation Foundation applications
• Database access using ADO.NET
• Networking and remoting
• Security and cryptography
• Unmanaged code interoperability
• Commonly used interfaces and patterns
• Windows integration

This book shows you how to solve the types of development problems you will
face every day. It contains hundreds of recipes, presented in a concise problem/
solution format so that you can find the answer to your question fast and get
on with your development. Each recipe provides working code that demon-
strates the solution, as well as additional information to give you a more in-depth
understanding of the classes and techniques used to solve the problem.

Allen Jones & Adam Freeman

Allen Jones, author of

WPF Recipes in C# 2010

Professional C# 2005

C# Programmers Cookbook

Programming .NET Security

Microsoft .NET XML Web
Services Step by Step

C# for Java Developers

Adam Freeman, author of

Programming .NET Security

Microsoft .NET XML Web
Services Step by Step

C# for Java Developers

THE APRESS ROADMAP

Pro WPF in
C# 2010

Pro LINQ
in C# 2010

Accelerated
C# 2010

Pro C# 2010 and
the .NET 4.0 Platform

Visual C#
2010 Recipes

C# 2010
Recipes

Visual C# 2010 Recipes
A Problem-Solution Approach

■ ■ ■

Allen Jones and Adam Freeman

Visual C# 2010 Recipes: A Problem-Solution Approach

Copyright © 2010 by Allen Jones and Adam Freeman

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-4302-2525-6

ISBN-13 (electronic): 978-1-4302-2526-3

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, we use the names only in an editorial fashion and to the benefit of
the trademark owner, with no intention of infringement of the trademark.

Publisher and President: Paul Manning
Lead Editor: Jonathan Hassell
Technical Reviewer: Mark Collins
Editorial Board: Clay Andres, Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell,

Jonathan Gennick, Jonathan Hassell, Michelle Lowman, Matthew Moodie, Duncan Parkes,
Jeffrey Pepper, Frank Pohlmann, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft,
Matt Wade, Tom Welsh

Coordinating Editor: Anne Collett
Copy Editor: Damon Larson
Production Support: Patrick Cunningham
Indexer: Julie Grady
Artist: April Milne
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our
Special Bulk Sales–eBook Licensing web page at www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall have
any liability to any person or entity with respect to any loss or damage caused or alleged to be caused
directly or indirectly by the information contained in this work.

The source code for this book is available to readers at www.apress.com.

mailto:ny@springer-sbm.com
http://www.springeronline.com
mailto:rights@apress.com
http://www.apress.com
http://www.apress.com/info/bulksales
http://www.apress.com

For my lovely wife Lena, and our three wonderful girls, Anya, Alexia, and Angelina. I love you all.

—Allen Jones

For my wife, Jacqui Griffyth, who I love a great deal.

—Adam Freeman

iv

Contents at a Glance

About the Author .. xx

About the Technical Reviewers ... xxi

Acknowledgments .. xxii

Introduction ... xxiii

■Chapter 1: Application Development ... 1

■Chapter 2: Data Manipulation .. 53

■Chapter 3: Application Domains, Reflection, and Metadata 103

■Chapter 4: Threads, Processes, and Synchronization ... 149

■Chapter 5: Files, Directories, and I/O ... 205

■Chapter 6: XML Processing ... 261

■Chapter 7: Windows Forms.. 307

■Chapter 8: Graphics, Multimedia, and Printing .. 369

■Chapter 9: Database Access .. 423

■Chapter 10: Networking ... 479

■Chapter 11: Security and Cryptography .. 543

■Chapter 12: Unmanaged Code Interoperability .. 597

 ■ CONTENTS AT A GLANCE

v

■Chapter 13: Commonly Used Interfaces and Patterns .. 619

■Chapter 14: Windows Integration .. 683

■Chapter 15: Parallel Programming .. 729

■Chapter 16: Using LINQ .. 749

■Chapter 17: Windows Presentation Foundation ... 789

Index ... 905

vi

Contents

About the Author .. xx

About the Technical Reviewers ... xxi

Acknowledgments .. xxii

Introduction ... xxiii

■Chapter 1: Application Development ... 1

1-1. Create a Console Application from the Command Line .. 2

1-2. Create a Windows-Based Application from the Command Line 5

1-3. Create and Use a Code Module .. 9

1-4. Create and Use a Code Library from the Command Line ... 11

1-5. Access Command-Line Arguments .. 12

1-6. Include Code Selectively at Build Time .. 14

1-7. Access a Program Element That Has the Same Name As a Keyword 18

1-8. Create and Manage Strongly Named Key Pairs .. 19

1-9. Give an Assembly a Strong Name .. 21

1-10. Verify That a Strongly Named Assembly Has Not Been Modified 23

1-11. Delay-Sign an Assembly .. 24

1-12. Sign an Assembly with an Authenticode Digital Signature 26

1-13. Create and Trust a Test Software Publisher Certificate ... 28

1-14. Manage the Global Assembly Cache .. 29

1-15. Prevent People from Decompiling Your Code ... 30

■ CONTENTS

vii

1-16. Manipulate the Appearance of the Console ... 31

1-17. Create a Static Class .. 34

1-18. Create an Anonymous Type .. 35

1-19. Create an ExpandoObject Dynamic Type.. 37

1-20. Define an Automatically Implemented Property ... 39

1-21. Overload an Operator ... 41

1-22. Define a Conversion Operator .. 44

1-23. Handle an Event with an Anonymous Function .. 46

1-24. Implement a Custom Indexer ... 48

■Chapter 2: Data Manipulation .. 53

2-1. Manipulate the Contents of a String Efficiently .. 54

2-2. Encode a String Using Alternate Character Encoding .. 56

2-3. Convert Basic Value Types to Byte Arrays .. 59

2-4. Base64 Encode Binary Data ... 61

2-5. Validate Input Using Regular Expressions .. 65

2-6. Use Compiled Regular Expressions .. 70

2-7. Create Dates and Times from Strings .. 72

2-8. Add, Subtract, and Compare Dates and Times... 74

2-9. Sort an Array or a Collection .. 77

2-10. Copy a Collection to an Array ... 79

2-11. Use a Strongly Typed Collection ... 81

2-12. Create a Generic Type .. 83

2-13. Store a Serializable Object to a File ... 87

2-14. Serialize an Object Using JSON .. 90

2-15. Read User Input from the Console.. 93

■ CONTENTS

viii

2-16. Using Large Integer Values .. 96

2-17. Select Collection or Array Elements ... 97

2-18. Remove Duplicate Items from an Array or Collection ... 100

■Chapter 3: Application Domains, Reflection, and Metadata 103

3-1. Create an Application Domain .. 104

3-2. Create Types That Can Be Passed Across Application Domain Boundaries 106

3-3. Avoid Loading Unnecessary Assemblies into Application Domains 109

3-4. Create a Type That Cannot Cross Application Domain Boundaries 111

3-5. Load an Assembly into the Current Application Domain .. 111

3-6. Execute an Assembly in a Different Application Domain.. 114

3-7. Instantiate a Type in a Different Application Domain ... 116

3-8. Pass Data Between Application Domains... 121

3-9. Unload Assemblies and Application Domains .. 124

3-10. Retrieve Type Information .. 125

3-11. Test an Object’s Type ... 127

3-12. Instantiate an Object Using Reflection ... 129

3-13. Create a Custom Attribute .. 133

3-14. Inspect the Attributes of a Program Element Using Reflection 136

3-15. Programmatically Discover the Members of a Type... 137

3-16. Invoke a Type Member Using Reflection .. 140

3-17. Dynamically Invoke a Type Member .. 142

3-18. Create a Custom Dynamic Type ... 143

■Chapter 4: Threads, Processes, and Synchronization ... 149

4-1. Execute a Method Using the Thread Pool ... 151

4-2. Execute a Method Asynchronously .. 154

■ CONTENTS

ix

4-3. Execute a Method Periodically ... 163

4-4. Execute a Method at a Specific Time ... 166

4-5. Execute a Method by Signaling a WaitHandle Object ... 167

4-6. Execute a Method Using a New Thread ... 169

4-7. Synchronize the Execution of Multiple Threads Using a Monitor 172

4-8. Synchronize the Execution of Multiple Threads Using an Event 178

4-9. Synchronize the Execution of Multiple Threads Using a Mutex 182

4-10. Synchronize the Execution of Multiple Threads Using a Semaphore 185

4-11. Synchronize Access to a Shared Data Value .. 187

4-12. Know When a Thread Finishes ... 190

4-13. Terminate the Execution of a Thread ... 191

4-14. Create a Thread-Safe Collection Instance .. 193

4-15. Start a New Process ... 195

4-16. Terminate a Process .. 199

4-17. Ensure That Only One Instance of an Application Can Execute Concurrently 201

■Chapter 5: Files, Directories, and I/O ... 205

5-1. Retrieve Information About a File, Directory, or Drive .. 206

5-2. Set File and Directory Attributes .. 211

5-3. Copy, Move, or Delete a File or Directory ... 213

5-4. Calculate the Size of a Directory .. 216

5-5. Retrieve Version Information for a File ... 217

5-6. Show a Just-in-Time Directory Tree in the TreeView Control 219

5-7. Read and Write a Text File ... 222

5-8. Read and Write a Binary File .. 224

5-9. Read a File Asynchronously ... 226

■ CONTENTS

x

5-10. Find Files That Match a Wildcard Expression... 230

5-11. Test Two Files for Equality ... 231

5-12. Manipulate Strings Representing File Names .. 233

5-13. Determine If a Path Is a Directory or a File .. 235

5-14. Work with Relative Paths ... 236

5-15. Create a Temporary File ... 238

5-16. Get the Total Free Space on a Drive ... 239

5-17. Show the Common File Dialog Boxes ... 241

5-18. Use an Isolated Store ... 243

5-19. Monitor the File System for Changes ... 246

5-20. Access a COM Port ... 248

5-21. Get a Random File Name .. 249

5-22. Manipulate the Access Control List of a File or Directory 250

5-23. Compress Data ... 253

5-24. Log Data to a File ... 254

5-25. Process a Log File .. 256

5-26. Communicate Between Processes ... 257

■Chapter 6: XML Processing ... 261

6-1. Show the Structure of an XML Document in a TreeView 261

6-2. Insert Nodes in an XML Document ... 266

6-3. Quickly Append Nodes in an XML Document ... 268

6-4. Find Specific Elements by Name .. 271

6-5. Get XML Nodes in a Specific XML Namespace... 272

6-6. Find Elements with an XPath Search ... 274

6-7. Read and Write XML Without Loading an Entire Document into Memory 278

■ CONTENTS

xi

6-8. Validate an XML Document Against a Schema .. 281

6-9. Use XML Serialization with Custom Objects ... 286

6-10. Create a Schema for a .NET Class .. 290

6-11. Generate a Class from a Schema ... 291

6-12. Perform an XSL Transform ... 292

6-13. Load XML with LINQ ... 296

6-14. Create a New XML Tree with LINQ ... 298

6-15. Query XML with LINQ.. 300

6-16. Modify an XML Tree with LINQ ... 303

■Chapter 7: Windows Forms.. 307

7-1. Add a Control Programmatically... 309

7-2. Store Data with a Control ... 311

7-3. Process All the Controls on a Form .. 314

7-4. Track the Visible Forms in an Application .. 315

7-5. Find All MDI Child Forms .. 319

7-6. Save Configuration Settings for a Form ... 322

7-7. Force a List Box to Scroll to the Most Recently Added Item................................... 325

7-8. Restrict a Text Box to Accept Only Specific Input .. 326

7-9. Use an Autocomplete Combo Box or Text Box ... 329

7-10. Sort a List View by Any Column.. 332

7-11. Lay Out Controls Automatically .. 335

7-12. Use Part of a Main Menu for a Context Menu ... 336

7-13. Make a Multilingual Form... 338

7-14. Create a Form That Cannot Be Moved .. 341

7-15. Make a Borderless Form Movable .. 343

■ CONTENTS

xii

7-16. Create an Animated System Tray Icon ... 346

7-17. Validate an Input Control .. 348

7-18. Use a Drag-and-Drop Operation ... 350

7-19. Update the User Interface in a Multithreaded Application 354

7-20. Display a Web Page in a Windows-Based Application ... 356

7-21. Display WPF Windows in a Windows Forms Application 360

7-22. Display WPF Controls in Windows Forms ... 363

■Chapter 8: Graphics, Multimedia, and Printing .. 369

8-1. Find All Installed Fonts ... 370

8-2. Perform Hit Testing with Shapes.. 372

8-3. Create an Irregularly Shaped Control ... 376

8-4. Create a Movable Sprite ... 379

8-5. Create a Scrollable Image .. 383

8-6. Perform a Screen Capture .. 385

8-7. Use Double Buffering to Increase Redraw Speed .. 386

8-8. Show a Thumbnail for an Image .. 389

8-9. Play a Simple Beep or System Sound .. 391

8-10. Play a WAV File ... 392

8-11. Play a Sound File .. 393

8-12. Play a Video .. 395

8-13. Retrieve Information About Installed Printers .. 398

8-14. Print a Simple Document.. 401

8-15. Print a Multipage Document ... 404

8-16. Print Wrapped Text ... 408

8-17. Show a Dynamic Print Preview .. 410

■ CONTENTS

xiii

8-18. Manage Print Jobs ... 412

8-19. Perform Text-to-Speech ... 417

8-20. Recognize Characters in an Image (OCR) ... 419

■Chapter 9: Database Access .. 423

9-1. Connect to a Database ... 425

9-2. Use Connection Pooling .. 428

9-3. Create a Database Connection String Programmatically 431

9-4. Store a Database Connection String Securely.. 433

9-5. Execute a SQL Command or Stored Procedure .. 436

9-6. Use Parameters in a SQL Command or Stored Procedure 441

9-7. Process the Results of a SQL Query Using a Data Reader 445

9-8. Obtain an XML Document from a SQL Server Query .. 448

9-9. Perform Asynchronous Database Operations Against SQL Server 452

9-10. Write Database-Independent Code .. 456

9-11. Discover All Instances of SQL Server on Your Network .. 460

9-12. Create an In-Memory Cache ... 462

9-13. Create a DataSet Programmatically ... 466

9-14. Perform a LINQ Query ... 468

9-15. Perform a LINQ Query with Entity Types .. 471

9-16. Compare LINQ DataSet Results .. 473

■Chapter 10: Networking ... 479

10-1. Obtain Information About the Local Network Interface .. 480

10-2. Detect Changes in Network Connectivity ... 484

10-3. Download Data over HTTP or FTP ... 486

10-4. Download a File and Process It Using a Stream ... 490

■ CONTENTS

xiv

10-5. Respond to HTTP Requests from Within Your Application.................................... 492

10-6. Get an HTML Page from a Site That Requires Authentication 497

10-7. Send E-mail Using SMTP .. 499

10-8. Resolve a Host Name to an IP Address .. 504

10-9. Ping an IP Address ... 507

10-10. Communicate Using TCP .. 510

10-11. Create a Multithreaded TCP Server That Supports Asynchronous
Communications .. 515

10-12. Communicate Using UDP .. 523

10-13. Create a SOAP-Based Web Service .. 526

10-14. Call a WCF Service Using a Dynamically Generated Service Proxy 532

10-15. Process the Content of an Atom or RSS Feed .. 534

10-16. Manipulate URIs ... 538

■Chapter 11: Security and Cryptography .. 543

11-1. Allow Partially Trusted Code to Use Your Strongly Named Assembly 544

11-2. Disable Code Access Security .. 547

11-3. Disable Execution Permission Checks ... 548

11-4. Ensure the Runtime Grants Specific Permissions to Your Assembly 549

11-5. Limit the Permissions Granted to Your Assembly .. 552

11-6. View the Permissions Required by an Assembly ... 554

11-7. Determine at Runtime If Your Code Has a Specific Permission 558

11-8. Restrict Who Can Extend Your Classes and Override Class Members 559

11-9. Inspect an Assembly’s Evidence .. 562

11-10. Determine If the Current User Is a Member of a Specific Windows Group......... 564

11-11. Restrict Which Users Can Execute Your Code .. 568

11-12. Impersonate a Windows User... 572

■ CONTENTS

xv

11-13. Create a Cryptographically Random Number ... 575

11-14. Calculate the Hash Code of a Password ... 577

11-15. Calculate the Hash Code of a File... 581

11-16. Verify a Hash Code ... 583

11-17. Ensure Data Integrity Using a Keyed Hash Code .. 586

11-18. Work with Security-Sensitive Strings in Memory ... 589

11-19. Encrypt and Decrypt Data Using the Data Protection API 592

■Chapter 12: Unmanaged Code Interoperability .. 597

12-1. Call a Function in an Unmanaged DLL.. 597

12-2. Get the Handle for a Control, Window, or File .. 601

12-3. Call an Unmanaged Function That Uses a Structure .. 603

12-4. Call an Unmanaged Function That Uses a Callback ... 606

12-5. Retrieve Unmanaged Error Information .. 608

12-6. Use a COM Component in a .NET Client ... 610

12-7. Release a COM Component Quickly ... 613

12-8. Use Optional Parameters .. 614

12-9. Use an ActiveX Control in a .NET Client .. 615

12-10. Expose a .NET Component Through COM ... 616

■Chapter 13: Commonly Used Interfaces and Patterns .. 619

13-1. Implement a Custom Serializable Type .. 620

13-2. Implement a Cloneable Type .. 626

13-3. Implement a Comparable Type .. 631

13-4. Implement an Enumerable Collection .. 636

13-5. Implement an Enumerable Type Using a Custom Iterator 640

13-6. Implement a Disposable Class ... 647

■ CONTENTS

xvi

13-7. Implement a Formattable Type .. 651

13-8. Implement a Custom Exception Class .. 655

13-9. Implement a Custom Event Argument .. 659

13-10. Implement the Singleton Pattern.. 661

13-11. Implement the Observer Pattern .. 663

13-12. Implement a Parallel Producer-Consumer Pattern ... 669

13-13. Perform Lazy Object Initialization ... 671

13-14. Use Optional Parameters .. 673

13-15. Add a Method to a Type Without Modifying It .. 675

13-16. Call an Object Member Dynamically .. 677

13-17. Create a Variant Generic Type .. 679

■Chapter 14: Windows Integration .. 683

14-1. Access Runtime Environment Information ... 684

14-2. Retrieve the Value of an Environment Variable .. 688

14-3. Write an Event to the Windows Event Log .. 690

14-4. Read and Write to the Windows Registry ... 692

14-5. Search the Windows Registry .. 695

14-6. Create a Windows Service ... 699

14-7. Create a Windows Service Installer.. 704

14-8. Create a Shortcut on the Desktop or Start Menu ... 706

14-9. Create a Windows 7 Jump List ... 709

14-10. Use Windows Search.. 711

14-11. Check Internet Connectivity ... 716

14-12. Display a Task Dialog ... 717

14-13. Write Custom Performance Counters ... 720

■ CONTENTS

xvii

14-14. Read Performance Counters .. 724

14-15. Obtain Elevated Privileges .. 726

■Chapter 15: Parallel Programming .. 729

15-1. Perform Simple Parallel Tasks ... 729

15-2. Return a Result from a Task ... 732

15-3. Wait for Tasks to Complete .. 734

15-4. Parallel Process a Collection .. 736

15-5. Chain Tasks Together ... 738

15-6. Write a Cooperative Algorithm ... 739

15-7. Handle Exceptions in Tasks.. 741

15-8. Cancel a Task ... 743

15-9. Share Data Between Tasks .. 745

■Chapter 16: Using LINQ .. 749

16-1. Perform a Simple LINQ Query ... 749

16-2. Filter Items from a Data Source ... 755

16-3. Filter a Data Source by Type .. 757

16-4. Filter Ranges of Elements .. 759

16-5. Select Multiple Member Values .. 760

16-6. Filter and Select from Multiple Data Sources... 762

16-7. Use Permutations of Data Sources ... 765

16-8. Concatenate Data Sources ... 767

16-9. Group Result Elements by Attribute ... 769

16-10. Sort Query Results.. 774

16-11. Compare Data Sources ... 776

16-12. Aggregate Data Sources... 778

■ CONTENTS

xviii

16-13. Share Values Within a Query .. 780

16-14. Create Custom LINQ Extension Methods .. 782

16-15. Convert from IEnumerable<> .. 784

■Chapter 17: Windows Presentation Foundation ... 789

17-1. Create and Use a Dependency Property ... 790

17-2. Create and Use an Attached Property .. 795

17-3. Define Application-Wide Resources ... 799

17-4. Debug Data Bindings Using an IValueConverter ... 801

17-5. Debug Bindings Using Attached Properties .. 803

17-6. Arrange UI Elements in a Horizontal or Vertical Stack ... 805

17-7. Dock UI Elements to the Edges of a Form .. 807

17-8. Arrange UI Elements in a Grid .. 809

17-9. Position UI Elements Using Exact Coordinates ... 811

17-10. Get Rich Text Input from a User ... 813

17-11. Display a Control Rotated ... 818

17-12. Create a User Control ... 820

17-13. Support Application Commands in a User Control ... 822

17-14. Create a Lookless Custom Control ... 826

17-15. Create a Two-Way Binding ... 833

17-16. Bind to a Command .. 836

17-17. Use Data Templates to Display Bound Data ... 844

17-18. Bind to a Collection with the Master-Detail Pattern ... 848

17-19. Change a Control’s Appearance on Mouseover.. 854

17-20. Change the Appearance of Alternate Items in a List .. 856

17-21. Drag Items from a List and Drop Them on a Canvas .. 858

■ CONTENTS

xix

17-22. Display the Progress of a Long-Running Operation
and Allow the User to Cancel It .. 862

17-23. Draw Two-Dimensional Shapes ... 866

17-24. Create Reusable Shapes .. 871

17-25. Draw or Fill a Shape Using a Solid Color .. 873

17-26. Fill a Shape with a Linear or Radial Color Gradient .. 875

17-27. Fill a Shape with an Image ... 879

17-28. Fill a Shape with a Pattern or Texture .. 882

17-29. Animate the Property of a Control .. 886

17-30. Animate Several Properties in Parallel ... 889

17-31. Create a Keyframe-Based Animation ... 892

17-32. Animate an Object Along a Path ... 894

17-33. Play a Media File .. 898

17-34. Query Keyboard State... 902

Index ... 905

xx

About the Authors

 ■Allen Jones has a master’s degree in software engineering from Oxford
University and 20 years industry experience covering a wide range of IT
disciplines. He has spent the last ten years leading the development of
innovative commercial software solutions in areas such as security, content
management, trading, portfolio management, strategic planning, and real-time
search. Allen is a partner at QuantumBlack, a design and technology studio that
applies visual analytics to help organizations make faster decisions and smarter
investments, and earn new revenues.

 ■Adam Freeman is an experienced IT professional who has held senior
positions at a range of companies, most recently as chief technology officer and
chief operating officer of a global bank. He started his career in programming
and still finds it one of the most engaging and interesting ways to spend a day.

xxi

About the Technical Reviewer

 ■Mark Collins has developed software for over 25 years, mostly using the
Microsoft stack. He has served many roles, including development manager,
architect, team lead, database administrator, and project manager. He has
extensive experience in retail (point-of-sale and inventory) and customer
relationship management (CRM) solutions. Mark currently serves as a senior
software engineer for a nonprofit organization, providing a custom CRM, mail
processing, and fulfillment system.

xxii

Acknowledgments

We would like to thank everyone at Apress for working so hard to bring this book to print. In particular,
we would like to thank Anne Collett and Jonathan Hassell. We would also like to thank Damon Larson
and Mark Collins, whose respective efforts as copy editor and technical reviewer made this book far
better than it would have been without them.

Allen Jones

Adam Freeman

xxiii

Introduction

Mastering the development of Microsoft .NET Framework applications in C# is less about knowing the
C# language and more about knowing how to use the functionality of the .NET Framework class library
most effectively. Visual C# 2010 Recipes explores the breadth of the .NET Framework class library and
provides specific solutions to common and interesting programming problems. Each solution (or recipe)
is presented in a succinct problem/solution format, and most are accompanied by working code
samples.

Visual C# 2010 Recipes is not intended to teach you how to program, nor to teach you C#. However,
if you have even the most rudimentary experience programming applications built on the .NET
Framework using C#, you will find this book to be an invaluable resource.

Ideally, when you are facing a problem, this book will contain a recipe that provides the solution, or
at least it will point you in the right direction. Even if you just want to broaden your knowledge of the
.NET Framework class library, Visual C# 2010 Recipes is the perfect resource to assist you.

However, you cannot become proficient with C# and the classes in the .NET Framework class library
merely by reading about them. Rather, you must use them and experiment with them by writing code,
code, and more code. The structure and content of this book and the real-world applicability of the
solutions it provides offer the perfect starting point from which to kick-start your own experimentation.

Allen Jones

Adam Freeman

C H A P T E R 1

■ ■ ■

1

Application Development

This chapter covers some of the fundamental activities you will need to perform when developing your
C# solutions. The recipes in this chapter describe how to do the following:

• Use the C# command-line compiler to build console and Windows Forms
applications (recipes 1-1 and 1-2)

• Create and use code modules and libraries (recipes 1-3 and 1-4)

• Access command-line arguments from within your applications (recipe 1-5)

• Use compiler directives and attributes to selectively include code at build time
(recipe 1-6)

• Access program elements built in other languages whose names conflict with C#
keywords (recipe 1-7)

• Give assemblies strong names and verify strong-named assemblies (recipes 1-8,
1-9, 1-10, and 1-11)

• Sign an assembly with a Microsoft Authenticode digital signature (recipes 1-12
and 1-13)

• Manage the shared assemblies that are stored in the global assembly cache (recipe
1-14)

• Prevent people from decompiling your assembly (recipe 1-15)

• Manipulate the appearance of the console (recipe 1-16)

• Create static, anonymous, and dynamically expandable types (recipes 1-17, 1-18,
and 1-19)

• Define automatically implemented properties (recipe 1-20)

• Overload an operator and implement a custom conversion operator (recipes 1-21
and 1-22)

• Handle an event with an anonymous function (recipe 1-23)

• Implement a customer indexer (recipe 1-24)

CHAPTER 1 ■ APPLICATION DEVELOPMENT

2

■ Note All the tools discussed in this chapter ship with the Microsoft .NET Framework or the .NET Framework
software development kit (SDK). The tools that are part of the .NET Framework are in the main directory for the
version of the framework you are running. For example, they are in the directory C:\WINDOWS\Microsoft.NET\
Framework\v4.0 (or C:\WINDOWS\Microsoft.NET\Framework64\v4.0 for 64-bit systems) if you install version
4.0 of the .NET Framework to the default location. The .NET installation process automatically adds this directory
to your environment path. The tools provided with the SDK are in the Bin subdirectory of the directory in which you
install the SDK, which is C:\Program Files\Microsoft SDKs\Windows\v7.0a\bin (or C:\Program
Files(x86)\Microsoft SDKs\Windows\v7.0a\bin on a 64-bit system) if you chose the default path during the
installation of Microsoft Visual Studio 2010. This directory is not added to your path automatically, so you must
manually edit your path in order to have easy access to these tools. Most of the tools support short and long forms
of the command-line switches that control their functionality. This chapter always shows the long form, which is
more informative but requires additional typing. For the shortened form of each switch, see the tool’s
documentation in the .NET Framework SDK.

1-1. Create a Console Application from the Command Line

Problem
You need to use the C# command-line compiler to build an application that does not require a Windows
graphical user interface (GUI) but instead displays output to, and reads input from, the Windows
command prompt (console).

Solution
In one of your classes, ensure you implement a static method named Main with one of the following
signatures:

public static void Main();
public static void Main(string[] args);
public static int Main();
public static int Main(string[] args);

Build your application using the C# compiler (csc.exe) by running the following command (where
HelloWorld.cs is the name of your source code file):

csc /target:exe HelloWorld.cs

CHAPTER 1 ■ APPLICATION DEVELOPMENT

3

■ Note If you own Visual Studio, you will most often use the Console Application project template to create new
console applications. However, for small applications, it is often just as easy to use the command-line compiler. It
is also useful to know how to build console applications from the command line if you are ever working on a
machine without Visual Studio and want to create a quick utility to automate some task.

How It Works
By default, the C# compiler will build a console application unless you specify otherwise. For this reason,
it’s not necessary to specify the /target:exe switch, but doing so makes your intention clearer, which is
useful if you are creating build scripts that will be used by others.

To build a console application consisting of more than one source code file, you must specify all the
source files as arguments to the compiler. For example, the following command builds an application
named MyFirstApp.exe from two source files named HelloWorld.cs and ConsoleUtils.cs:

csc /target:exe /main:HelloWorld /out:MyFirstApp.exe HelloWorld.cs ConsoleUtils.cs

The /out switch allows you to specify the name of the compiled assembly. Otherwise, the assembly
is named after the first source file listed—HelloWorld.cs in the example. If classes in both the HelloWorld
and ConsoleUtils files contain Main methods, the compiler cannot automatically determine which
method represents the correct entry point for the assembly. Therefore, you must use the compiler’s
/main switch to identify the name of the class that contains the correct entry point for your application.
When using the /main switch, you must provide the fully qualified class name (including the
namespace); otherwise, you will get a CS1555 compilation error: “Could not find ‘HelloWorld’ specified
for Main method.”

If you have a lot of C# code source files to compile, you should use a response file. This simple text
file contains the command-line arguments for csc.exe. When you call csc.exe, you give the name of this
response file as a single parameter prefixed by the @ character—for example:

csc @commands.rsp

To achieve the equivalent of the previous example, commands.rsp would contain this:

/target:exe /main:HelloWorld /out:MyFirstApp.exe HelloWorld.cs ConsoleUtils.cs

The Code
The following code lists a class named ConsoleUtils that is defined in a file named ConsoleUtils.cs:

using System;

namespace Apress.VisualCSharpRecipes.Chapter01
{
 public class ConsoleUtils
 {
 // A method to display a prompt and read a response from the console.

mailto:@commands.rsp

CHAPTER 1 ■ APPLICATION DEVELOPMENT

4

 public static string ReadString(string msg)
 {
 Console.Write(msg);
 return Console.ReadLine();
 }

 // A method to display a message to the console.
 public static void WriteString(string msg)
 {
 Console.WriteLine(msg);
 }

 // Main method used for testing ConsoleUtility methods.
 public static void Main()
 {
 // Prompt the reader to enter a name.
 string name = ReadString("Please enter your name : ");

 // Welcome the reader to Visual C# 2010 Recipes.
 WriteString("Welcome to Visual C# 2010 Recipes, " + name);
 }
 }
}

The HelloWorld class listed next uses the ConsoleUtils class to display the message “Hello, world” to
the console (HelloWorld is contained in the HelloWorld.cs file):

using System;

namespace Apress.VisualCSharpRecipes.Chapter01
{
 class HelloWorld
 {
 public static void Main()
 {
 ConsoleUtils.WriteString("Hello, world");

 Console.WriteLine("\nMain method complete. Press Enter.");
 Console.ReadLine();
 }
 }
}

Usage
To build HelloWorld.exe from the two source files, use the following command:

csc /target:exe /main:Apress.VisualCSharpRecipes.Chapter01.HelloWorld
/out:HelloWorld.exe ConsoleUtils.cs HelloWorld.cs

CHAPTER 1 ■ APPLICATION DEVELOPMENT

5

1-2. Create a Windows-Based Application from the
Command Line

Problem
You need to use the C# command-line compiler to build an application that provides a Windows Forms–
based GUI.

Solution
Create a class that extends the System.Windows.Forms.Form class. (This will be your application’s main
form.) In one of your classes, ensure you implement a static method named Main. In the Main method,
create an instance of your main form class and pass it to the static method Run of the System.Windows.
Forms.Application class. Build your application using the command-line C# compiler, and specify the
/target:winexe compiler switch.

■ Note If you own Visual Studio, you will most often use the Windows Application project template to create new
Windows Forms–based applications. Building large GUI-based applications is a time-consuming undertaking that
involves the correct instantiation, configuration, and wiring up of many forms and controls. Visual Studio
automates much of the work associated with building graphical applications. Trying to build a large graphical
application without the aid of tools such as Visual Studio will take you much longer, be extremely tedious, and
result in a greater chance of bugs in your code. However, it is also useful to know the essentials required to create
a Windows-based application using the command line in case you are ever working on a machine without Visual
Studio and want to create a quick utility to automate some task or get input from a user. In order to build a WPF
application from the command line, you must use the MSBuild tool—see the MSBuild reference in the .NET
Framework documentation.

How It Works
Building an application that provides a simple Windows GUI is a world away from developing a full-
fledged Windows-based application. However, you must perform certain tasks regardless of whether you
are writing the Windows equivalent of Hello World or the next version of Microsoft Word, including the
following:

CHAPTER 1 ■ APPLICATION DEVELOPMENT

6

• For each form you need in your application, create a class that extends the
System.Windows.Forms.Form class.

• In each of your form classes, declare members that represent the controls that will
be on that form, such as buttons, labels, lists, and text boxes. These members
should be declared private or at least protected so that other program elements
cannot access them directly. If you need to expose the methods or properties of
these controls, implement the necessary members in your form class, providing
indirect and controlled access to the contained controls.

• Declare methods in your form class that will handle events raised by the controls
contained by the form, such as button clicks or key presses when a text box is the
active control. These methods should be private or protected and follow the
standard .NET event pattern (described in recipe 13-11). It’s in these methods (or
methods called by these methods) where you will define the bulk of your
application’s functionality.

• Declare a constructor for your form class that instantiates each of the form’s
controls and configures their initial state (size, color, position, content, and so on).
The constructor should also wire up the appropriate event handler methods of
your class to the events of each control.

• Declare a static method named Main—usually as a member of your application’s
main form class. This method is the entry point for your application, and it can
have the same signatures as those mentioned in recipe 1-1. In the Main method,
call Application.EnableVisualStyles to allow Windows theme support, create an
instance of your application’s main form, and pass it as an argument to the static
Application.Run method. The Run method makes your main form visible and
starts a standard Windows message loop on the current thread, which passes the
user input (key presses, mouse clicks, and so on) to your application form as
events.

The Code
The Recipe01-02 class shown in the following code listing is a simple Windows Forms application that
demonstrates the techniques just listed. When run, it prompts a user to enter a name and then displays a
message box welcoming the user to Visual C# 2010 Recipes.

using System;
using System.Windows.Forms;

namespace Apress.VisualCSharpRecipes.Chapter01
{
 class Recipe01_02 : Form
 {
 // Private members to hold references to the form's controls.
 private Label label1;
 private TextBox textBox1;
 private Button button1;

 // Constructor used to create an instance of the form and configure

CHAPTER 1 ■ APPLICATION DEVELOPMENT

7

 // the form's controls.
 public Recipe01_02()
 {
 // Instantiate the controls used on the form.
 this.label1 = new Label();
 this.textBox1 = new TextBox();
 this.button1 = new Button();

 // Suspend the layout logic of the form while we configure and
 // position the controls.
 this.SuspendLayout();

 // Configure label1, which displays the user prompt.
 this.label1.Location = new System.Drawing.Point(16, 36);
 this.label1.Name = "label1";
 this.label1.Size = new System.Drawing.Size(148, 16);
 this.label1.TabIndex = 0;
 this.label1.Text = "Please enter your name:";

 // Configure textBox1, which accepts the user input.
 this.textBox1.Location = new System.Drawing.Point(172, 32);
 this.textBox1.Name = "textBox1";
 this.textBox1.TabIndex = 1;
 this.textBox1.Text = "";

 // Configure button1, which the user clicks to enter a name.
 this.button1.Location = new System.Drawing.Point(109, 80);
 this.button1.Name = "button1";
 this.button1.TabIndex = 2;
 this.button1.Text = "Enter";
 this.button1.Click += new System.EventHandler(this.button1_Click);

 // Configure WelcomeForm, and add controls.
 this.ClientSize = new System.Drawing.Size(292, 126);
 this.Controls.Add(this.button1);
 this.Controls.Add(this.textBox1);
 this.Controls.Add(this.label1);
 this.Name = "form1";
 this.Text = "Visual C# 2010 Recipes";

 // Resume the layout logic of the form now that all controls are
 // configured.
 this.ResumeLayout(false);
 }

 // Event handler called when the user clicks the Enter button on the
 // form.
 private void button1_Click(object sender, System.EventArgs e)
 {
 // Write debug message to the console.
 System.Console.WriteLine("User entered: " + textBox1.Text);

CHAPTER 1 ■ APPLICATION DEVELOPMENT

8

 // Display welcome as a message box.
 MessageBox.Show("Welcome to Visual C# 2010 Recipes, "
 + textBox1.Text, "Visual C# 2010 Recipes");
 }

 // Application entry point, creates an instance of the form, and begins
 // running a standard message loop on the current thread. The message
 // loop feeds the application with input from the user as events.
 [STAThread]
 public static void Main()
 {
 Application.EnableVisualStyles();
 Application.Run(new Recipe01_02());
 }
 }
}

Usage
To build the Recipe01-02 class into an application, use this command:

csc /target:winexe Recipe01-02.cs

The /target:winexe switch tells the compiler that you are building a Windows-based application. As

a result, the compiler builds the executable in such a way that no console is created when you run your
application. If you use the /target:exe switch to build a Windows Forms application instead of
/target:winexe, your application will still work correctly, but you will have a console window visible
while the application is running. Although this is undesirable for production-quality software, the
console window is useful if you want to write debug and logging information while you’re developing
and testing your Windows Forms application. You can write to this console using the Write and
WriteLine methods of the System.Console class.

Figure 1-1 shows the WelcomeForm.exe application greeting a user named Rupert. This version of the
application is built using the /target:exe compiler switch.

Figure 1-1. A simple Windows Forms application

CHAPTER 1 ■ APPLICATION DEVELOPMENT

9

1-3. Create and Use a Code Module

Problem
You need to do one or more of the following:

• Improve your application’s performance and memory efficiency by ensuring that
the runtime loads rarely used types only when they are required

• Compile types written in C# to a form you can build into assemblies being
developed in other .NET languages

• Use types developed in another language and build them into your C# assemblies

Solution
Build your C# source code into a module by using the command-line compiler and specifying the
/target:module compiler switch. To incorporate an existing module into your assembly, use the
/addmodule compiler switch.

How It Works
Modules are the building blocks of .NET assemblies. Modules consist of a single file that contains the
following:

• Microsoft Intermediate Language (MSIL) code created from your source code
during compilation

• Metadata describing the types contained in the module

• Resources, such as icons and string tables, used by the types in the module

Assemblies consist of one or more modules and an assembly manifest. When a single module exists,
the module and assembly manifest are usually built into a single file for convenience. When more than
one module exists, the assembly represents a logical grouping of more than one file that you must
deploy as a complete unit. In these situations, the assembly manifest is either contained in a separate file
or built into one of the modules.

By building an assembly from multiple modules, you complicate the management and deployment
of the assembly, but under some circumstances, modules offer significant benefits:

• The runtime will load a module only when the types defined in the module are
required. Therefore, where you have a set of types that your application uses
rarely, you can partition them into a separate module that the runtime will load
only if necessary. This offers the following benefits:

• Improving performance, especially if your application is loaded across a
network

• Minimizing the use of memory

CHAPTER 1 ■ APPLICATION DEVELOPMENT

10

• The ability to use many different languages to write applications that run on the
Common Language Runtime (CLR) is a great strength of the .NET Framework.
However, the C# compiler can’t compile your Microsoft Visual Basic .NET or
COBOL .NET code for inclusion in your assembly. To use code written in another
language, you can compile it into a separate assembly and reference it. But if you
want it to be an integral part of your assembly, then you must build it into a
module. Similarly, if you want to allow others to include your code as an integral
part of their assemblies, you must compile your code as modules. When you use
modules, because the code becomes part of the same assembly, members marked
as internal or protected internal are accessible, whereas they would not be if the
code had been accessed from an external assembly.

Usage
To compile a source file named ConsoleUtils.cs (see recipe 1-1 for the contents) into a module, use the
command csc /target:module ConsoleUtils.cs. The result is the creation of a file named
ConsoleUtils.netmodule. The netmodule extension is the default extension for modules, and the filename
is the same as the name of the C# source file.

You can also build modules from multiple source files, which results in a single file (module)
containing the MSIL and metadata for all types contained in all the source files. The command csc
/target:module ConsoleUtils.cs WindowsUtils.cs compiles two source files named ConsoleUtils.cs
and WindowsUtils.cs to create the module named ConsoleUtils.netmodule. The module is named after
the first source file listed unless you override the name with the /out compiler switch. For example, the
command csc /target:module /out:Utilities.netmodule ConsoleUtils.cs WindowsUtils.cs creates a
module named Utilities.netmodule.

To build an assembly consisting of multiple modules, you must use the /addmodule compiler switch.
To build an executable named MyFirstApp.exe from two modules named WindowsUtils.netmodule and
ConsoleUtils.netmodule and two source files named SourceOne.cs and SourceTwo.cs, use the command
csc /out:MyFirstApp.exe /target:exe /addmodule:WindowsUtils.netmodule,ConsoleUtils.netmodule
SourceOne.cs SourceTwo.cs. This command will result in an assembly consisting of the following files:

• MyFirstApp.exe, which contains the assembly manifest as well as the MSIL for the
types declared in the SourceOne.cs and SourceTwo.cs source files

• ConsoleUtils.netmodule and WindowsUtils.netmodule, which are now integral
components of the multifile assembly but are unchanged by this compilation
process

■ Caution If you attempt to run an assembly (such as MyFirstApp.exe) without any required netmodules present,
a System.IO.FileNotFoundException is thrown the first time any code tries to use types defined in the missing
code module. This is a significant concern because the missing modules will not be identified until runtime. You
must be careful when deploying multifile assemblies.

CHAPTER 1 ■ APPLICATION DEVELOPMENT

11

1-4. Create and Use a Code Library from the Command Line

Problem
You need to build a set of functionality into a reusable code library so that multiple applications can
reference and reuse it.

Solution
Build your library using the command-line C# compiler, and specify the /target:library compiler
switch. To reference the library, use the /reference compiler switch when you build your application,
and specify the names of the required libraries.

How It Works
Recipe 1-1 showed you how to build an application named MyFirstApp.exe from the two source files
ConsoleUtils.cs and HelloWorld.cs. The ConsoleUtils.cs file contains the ConsoleUtils class, which
provides methods to simplify interaction with the Windows console. If you were to extend the
functionality of the ConsoleUtils class, you could add functionality useful to many applications. Instead
of including the source code for ConsoleUtils in every application, you could build it into a library and
deploy it independently, making the functionality accessible to many applications.

Usage
To build the ConsoleUtils.cs file into a library, use the command csc /target:library
ConsoleUtils.cs. This will produce a library file named ConsoleUtils.dll. To build a library from
multiple source files, list the name of each file at the end of the command. You can also specify the name
of the library using the /out compiler switch; otherwise, the library is named after the first source file
listed. For example, to build a library named MyFirstLibrary.dll from two source files named
ConsoleUtils.cs and WindowsUtils.cs, use the command csc /out:MyFirstLibrary.dll
/target:library ConsoleUtils.cs WindowsUtils.cs.

Before distributing your library, you might consider strongly naming it so that nobody can modify
your assembly and pass it off as being the original. Strongly naming your library also allows people to
install it into the Global Assembly Cache (GAC), which makes reuse much easier. (Recipe 1-9 describes
how to strongly name your assembly, and recipe 1-14 describes how to install a strongly named
assembly into the GAC.) You might also consider signing your library with an Authenticode signature,
which allows users to confirm you are the publisher of the assembly—see recipe 1-12 for details on
signing assemblies with Authenticode.

To compile an assembly that relies on types declared within external libraries, you must tell the
compiler which libraries are referenced using the /reference compiler switch. For example, to compile
the HelloWorld.cs source file (from recipe 1-1) if the ConsoleUtils class is contained in the
ConsoleUtils.dll library, use the command csc /reference:ConsoleUtils.dll HelloWorld.cs.
Remember these four points:

CHAPTER 1 ■ APPLICATION DEVELOPMENT

12

• If you reference more than one library, separate each library name with a comma
or semicolon, but don’t include any spaces. For example, use
/reference:ConsoleUtils.dll,WindowsUtils.dll.

• If the libraries aren’t in the same directory as the source code, use the /lib switch
on the compiler to specify the additional directories where the compiler should
look for libraries. For example, use /lib:c:\CommonLibraries,c:\Dev\
ThirdPartyLibs.

• Note that additional directories can be relative to the source folder. Don’t forget
that at runtime, the generated assembly must be in the same folder as the
application that needs it except if you deploy it into the GAC.

• If the library you need to reference is a multifile assembly, reference the file that
contains the assembly manifest. (For information about multifile assemblies, see
recipe 1-3.)

1-5. Access Command-Line Arguments

Problem
You need to access the arguments that were specified on the command line when your application was
executed.

Solution
Use a signature for your Main method that exposes the command-line arguments as a string array.
Alternatively, access the command-line arguments from anywhere in your code using the static
members of the System.Environment class.

How It Works
Declaring your application’s Main method with one of the following signatures provides access to the
command-line arguments as a string array:

public static void Main(string[] args);
public static int Main(string[] args);

At runtime, the args argument will contain a string for each value entered on the command line
after your application’s name. Unlike C and C++, the application’s name is not included in the array of
arguments.

If you need access to the command-line arguments at places in your code other than the Main
method, you can use the System.Environment class, which provides two static members that return
information about the command line: CommandLine and GetCommandLineArgs.

The CommandLine property returns a string containing the full command line that launched the
current process. Depending on the operating system on which the application is running, path

CHAPTER 1 ■ APPLICATION DEVELOPMENT

13

information might precede the application name—older versions of Windows, such as Windows 98 and
Windows ME, include this information. The GetCommandLineArgs method returns a string array
containing the command-line arguments. This array can be processed in the same way as the string
array passed to the Main method, as discussed at the start of this section. Unlike the array passed to the
Main method, the first element in the array returned by the GetCommandLineArgs method is the file name
of the application.

The Code
To demonstrate the access of command-line arguments, the Main method in the following example steps
through each of the command-line arguments passed to it and displays them to the console. The
example then accesses the command line directly through the Environment class.

using System;
namespace Apress.VisualCSharpRecipes.Chapter01
{
 class Recipe01_05
 {
 public static void Main(string[] args)
 {
 // Step through the command-line arguments.
 foreach (string s in args)
 {
 Console.WriteLine(s);
 }

 // Alternatively, access the command-line arguments directly.
 Console.WriteLine(Environment.CommandLine);

 foreach (string s in Environment.GetCommandLineArgs())
 {
 Console.WriteLine(s);
 }

 // Wait to continue.
 Console.WriteLine("\nMain method complete. Press Enter.");
 Console.ReadLine();
 }
 }
}

Usage
If you execute the Recipe01-05 example using the following command:

Recipe01-05 "one \"two\" three" four 'five six'

the application will generate the following output on the console:

CHAPTER 1 ■ APPLICATION DEVELOPMENT

14

one "two" three

four

'five

six'

Recipe01-05 "one \"two\" three" four 'five six'

Recipe01-05

one "two" three

four

'five

six'

Main method complete. Press Enter.

Notice that the use of double quotes (") results in more than one word being treated as a single
argument, although single quotes (') do not. Also, you can include double quotes in an argument by
escaping them with the backslash character (\). Finally, notice that all spaces are stripped from the
command line unless they are enclosed in double quotes.

1-6. Include Code Selectively at Build Time

Problem
You need to selectively include and exclude sections of source code from your compiled assembly.

Solution
Use the #if, #elif, #else, and #endif preprocessor directives to identify blocks of code that should be
conditionally included in your compiled assembly. Use the System.Diagnostics.ConditionalAttribute
attribute to define methods that should be called conditionally only. Control the inclusion of the
conditional code using the #define and #undef directives in your code, or use the /define switch when
you run the C# compiler from the command line.

CHAPTER 1 ■ APPLICATION DEVELOPMENT

15

How It Works
If you need your application to function differently depending on factors such as the platform or
environment on which it runs, you can build runtime checks into the logic of your code that trigger
the variations in operation. However, such an approach can bloat your code and affect performance,
especially if many variations need to be supported or many locations exist where evaluations need to
be made.

An alternative approach is to build multiple versions of your application to support the different
target platforms and environments. Although this approach overcomes the problems of code bloat and
performance degradation, it would be an untenable solution if you had to maintain different source
code for each version, so C# provides features that allow you to build customized versions of your
application from a single code base.

The #if, #elif, #else, and #endif preprocessor directives allow you to identify blocks of code that
the compiler should include in your assembly only if specified symbols are defined at compile time.
Symbols function as on/off switches; they don’t have values—either the symbol is defined or it is not.
The #if..#endif construct evaluates #if and #elif clauses only until it finds one that evaluates to true,
meaning that if you define multiple symbols (winXP and win7, for example), the order of your clauses is
important. The compiler includes only the code in the clause that evaluates to true. If no clause
evaluates to true, the compiler includes the code in the #else clause.

You can also use logical operators to base conditional compilation on more than one symbol. Table
1-1 summarizes the supported operators.

Table 1-1. Logical Operators Supported by the #if..#endif Directive

Operator Example Description

== #if winXP == true Equality. Evaluates to true if the symbol winXP is defined. Equivalent
to #if winXP.

!= #if winXP != true Inequality. Evaluates to true if the symbol winXP is not defined.
Equivalent to #if !winXP.

&& #if winXP &&
release

Logical AND. Evaluates to true only if the symbols winXP and
release are defined.

|| #if winXP ||
release

Logical OR. Evaluates to true if either of the symbols winXP or release
are defined.

() #if (winXP ||
win7) && release

Parentheses allow you to group expressions. Evaluates to true if the
symbols winXP or win7 are defined and the symbol release is defined.

■ Caution You must be careful not to overuse conditional compilation directives and not to make your conditional
expressions too complex; otherwise, your code can quickly become confusing and unmanageable—especially as
your projects become larger.

CHAPTER 1 ■ APPLICATION DEVELOPMENT

16

To define a symbol, you can either include a #define directive in your code or use the /define
compiler switch. Symbols defined using #define are active until the end of the file in which they are
defined. Symbols defined using the /define compiler switch are active in all source files that are being
compiled. To undefine a symbol defined using the /define compiler switch, C# provides the #undef
directive, which is useful if you want to ensure a symbol is not defined in specific source files. All #define
and #undef directives must appear at the top of your source file before any code, including any using
directives. Symbols are case-sensitive.

A less flexible but more elegant alternative to the #if preprocessor directive is the attribute
System.Diagnostics.ConditionalAttribute. If you apply ConditionalAttribute to a method, the
compiler will ignore any calls to the method if the symbol specified by ConditionalAttribute is not
defined at the calling point.

Using ConditionalAttribute centralizes your conditional compilation logic on the method
declaration and means you can freely include calls to conditional methods without littering your code
with #if directives. However, because the compiler literally removes calls to the conditional method
from your code, your code can’t have dependencies on return values from the conditional method. This
means you can apply ConditionalAttribute only to methods that return void and do not use “out”
modifiers on their arguments.

The Code
In this example, the code assigns a different value to the local variable platformName based on whether
the winXP, win2000, winNT, or Win98 symbols are defined. The head of the code defines the symbols
win2000 and release (not used in this example) and undefines the win98 symbol in case it was defined on
the compiler command line. In addition, the ConditionalAttribute specifies that calls to the DumpState
method should be included in an assembly only if the symbol DEBUG is defined during compilation.

#define win7
#define release
#undef win2000

using System;
using System.Diagnostics;

namespace Apress.VisualCSharpRecipes.Chapter01
{
 class Recipe01_06
 {
 [Conditional("DEBUG")]
 public static void DumpState()
 {

CHAPTER 1 ■ APPLICATION DEVELOPMENT

17

 Console.WriteLine("Dump some state...");
 }

 public static void Main()
 {
 // Declare a string to contain the platform name
 string platformName;

 #if winXP // Compiling for Windows XP
 platformName = "Microsoft Windows XP";
 #elif win2000 // Compiling for Windows 2000
 platformName = "Microsoft Windows 2000";
 #elif win7 // Compiling for Windows 7
 platformName = "Microsoft Windows 7";
 #else // Unknown platform specified
 platformName = "Unknown";
 #endif

 Console.WriteLine(platformName);

 // Call the conditional DumpState method.
 DumpState();

 // Wait to continue.
 Console.WriteLine("\nMain method complete. Press Enter.");
 Console.Read();
 }
 }
}

Usage
To build the example and define the symbols winXP and DEBUG (not used in this example), use the
command csc /define:winXP;DEBUG ConditionalExample.cs.

Notes
You can apply multiple ConditionalAttribute instances to a method in order to produce logical OR
behavior. Calls to the following version of the DumpState method will be compiled only if the DEBUG or
TEST symbols are defined:

[System.Diagnostics.Conditional("DEBUG")]
[System.Diagnostics.Conditional("TEST")]
public static void DumpState() {//...}

Achieving logical AND behavior is not as clean and involves the use of an intermediate conditional

method, quickly leading to overly complex code that is hard to understand and maintain. The following
is a quick example that requires the definition of both the DEBUG and TEST symbols for the DumpState
functionality (contained in DumpState2) to be called:

CHAPTER 1 ■ APPLICATION DEVELOPMENT

18

[System.Diagnostics.Conditional("DEBUG")]
public static void DumpState() {
 DumpState2();
}

[System.Diagnostics.Conditional("TEST")]
public static void DumpState2() {//...}

■ Note The Debug and Trace classes from the System.Diagnostics namespace use ConditionalAttribute on
many of their methods. The methods of the Debug class are conditional on the definition of the symbol DEBUG, and
the methods of the Trace class are conditional on the definition of the symbol TRACE.

1-7. Access a Program Element That Has the Same Name As
a Keyword

Problem
You need to access a member of a type, but the type or member name is the same as a C# keyword.

Solution
Prefix all instances of the identifier name in your code with the at sign (@).

How It Works
The .NET Framework allows you to use software components developed in other .NET languages from
within your C# applications. Each language has its own set of keywords (or reserved words) and imposes
different restrictions on the names programmers can assign to program elements such as types,
members, and variables. Therefore, it is possible that a programmer developing a component in another
language will inadvertently use a C# keyword as the name of a program element. The at sign (@) enables
you to use a C# keyword as an identifier and overcome these possible naming conflicts.

The Code
The following code fragment instantiates an object of type operator (perhaps a telephone operator) and
sets its volatile property to true—both operator and volatile are C# keywords:

// Instantiate an operator object.
@operator Operator1 = new @operator();

CHAPTER 1 ■ APPLICATION DEVELOPMENT

19

// Set the operator's volatile property.
Operator1.@volatile = true;

1-8. Create and Manage Strongly Named Key Pairs

Problem
You need to create public and private keys (a key pair) so that you can assign strong names to your
assemblies.

Solution
Use the Strong Name tool (sn.exe) to generate a key pair and store the keys in a file or cryptographic
service provider (CSP) key container.

■ Note A CSP is an element of the Win32 CryptoAPI that provides services such as encryption, decryption, and
digital signature generation. CSPs also provide key container facilities, which use strong encryption and operating
system security to protect any cryptographic keys stored in the container. A detailed discussion of CSPs and
CryptoAPI is beyond the scope of this book. All you need to know for this recipe is that you can store your
cryptographic keys in a CSP key container and be relatively confident that it is secure as long as nobody knows
your Windows password. Refer to the CryptoAPI information in the platform SDK documentation for complete
details.

How It Works
To generate a new key pair and store the keys in the file named MyKeys.snk, execute the command sn -k
MyKeys.snk. (.snk is the usual extension given to files containing strongly named keys.) The generated
file contains both your public and private keys. You can extract the public key using the command sn -p
MyKeys.snk MyPublicKey.snk, which will create MyPublicKey.snk containing only the public key. Once
you have this file in hands, you can view the public key using the command sn -tp MyPublicKey.snk,
which will generate output similar to the (abbreviated) listing shown here:

mailto:Operator1.@volatile

CHAPTER 1 ■ APPLICATION DEVELOPMENT

20

Microsoft (R) .NET Framework Strong Name Utility Version 2.0.50727.42

Copyright (C) Microsoft Corporation. All rights reserved.

Public key is

07020000002400005253413200040000010001002b4ef3c2bbd6478802b64d0dd3f2e7c65ee

6478802b63cb894a782f3a1adbb46d3ee5ec5577e7dccc818937e964cbe997c12076c19f2d7

ad179f15f7dccca6c6b72a

Public key token is 2a1d3326445fc02a

The public key token shown at the end of the listing is the last 8 bytes of a cryptographic hash code
computed from the public key. Because the public key is so long, .NET uses the public key token for
display purposes and as a compact mechanism for other assemblies to reference your public key.
(Recipes 11-14 and 11-15 discuss cryptographic hash codes.)

As the name suggests, you don’t need to keep the public key (or public key token) secret. When you
strongly name your assembly (discussed in recipe 1-9), the compiler uses your private key to generate a
digital signature (an encrypted hash code) of the assembly’s manifest. The compiler embeds the digital
signature and your public key in the assembly so that any consumer of the assembly can verify the
digital signature.

Keeping your private key secret is imperative. People with access to your private key can alter your
assembly and create a new strong name—leaving your customers unaware that they are using modified
code. No mechanism exists to repudiate compromised strongly named keys. If your private key is
compromised, you must generate new keys and distribute new versions of your assemblies that are
strongly named using the new keys. You must also notify your customers about the compromised keys
and explain to them which versions of your public key to trust—in all, a very costly exercise in terms of
both money and credibility. You can protect your private key in many ways; the approach you use will
depend on several factors.

■ Tip Commonly, a small group of trusted individuals (the signing authority) has responsibility for the security of
your company’s strongly named signing keys and is responsible for signing all assemblies just prior to their final
release. The ability to delay-sign an assembly (discussed in recipe 1-11) facilitates this model and avoids the need
to distribute private keys to all development team members.

CHAPTER 1 ■ APPLICATION DEVELOPMENT

21

One feature provided by the Strong Name tool to simplify the security of strongly named keys is the
use of CSP key containers. Once you have generated a key pair to a file, you can install the keys into a key
container and delete the file. For example, to store the key pair contained in the file MyKeys.snk to a CSP
container named StrongNameKeys, use the command sn -i MyKeys.snk StrongNameKeys. (Recipe 1-9
explains how to use strongly named keys stored in a CSP key container.)

An important aspect of CSP key containers is that they include user-based containers and machine-
based containers. Windows security ensures each user can access only their own user-based key
containers. However, any user of a machine can access a machine-based container.

By default, the Strong Name tool uses machine-based key containers, meaning that anybody who
can log onto your machine and who knows the name of your key container can sign an assembly with
your strongly named keys. To change the Strong Name tool to use user-based containers, use the
command sn -m n, and to switch to machine-based stores, use the command sn -m y. The command sn
-m will display whether the Strong Name tool is currently configured to use machine-based or user-
based containers.

To delete the strongly named keys from the StrongNameKeys container (as well as delete the
container), use the command sn -d StrongNameKeys.

■ Tip You may need to start the command line with administrator privileges to use these tools, depending on the
configuration of your system. Right-click the Command Prompt item in the Start menu and select “Run as
administrator.”

1-9. Give an Assembly a Strong Name

Problem
You need to give an assembly a strong name for several reasons:

• So it has a unique identity, which allows people to assign specific permissions to
the assembly when configuring code access security policy

• So it can’t be modified and passed off as your original assembly

• So it supports versioning and version policy

• So it can be installed in the GAC and shared across multiple applications

Solution
When you build your assembly using the command-line C# compiler, use the /keyfile or /keycontainer
compiler switches to specify the location of your strongly named key pair. Use assembly-level attributes
to specify optional information such as the version number and culture for your assembly. The compiler
will strongly name your assembly as part of the compilation process.

CHAPTER 1 ■ APPLICATION DEVELOPMENT

22

■ Note If you are using Visual Studio, you can configure your assembly to be strongly named by opening the
project properties, selecting the Signing tab, and checking the Sign the Assembly box. You will need to specify the
location of the file where your strongly named keys are stored—Visual Studio does not allow you to specify the
name of a key container.

How It Works
To strongly named an assembly using the C# compiler, you need the following:

• A strongly named key pair contained either in a file or a CSP key container. (Recipe
1-8 discusses how to create strongly named key pairs.)

• Compiler switches to specify the location where the compiler can obtain your
strongly named key pair:

• If your key pair is in a file, use the /keyfile compiler switch and provide the
name of the file where the keys are stored. For example, use
/keyfile:MyKeyFile.snk.

• If your key pair is in a CSP container, use the /keycontainer compiler switch
and provide the name of the CSP key container where the keys are stored.
For example, use /keycontainer:MyKeyContainer.

• To optionally specify the culture that your assembly supports by applying the
attribute System.Reflection.AssemblyCultureAttribute to the assembly. (You
can’t specify a culture for executable assemblies because executable assemblies
support only the neutral culture.)

• To optionally specify the version of your assembly by applying the attribute
System.Reflection.AssemblyVersionAttribute to the assembly.

The Code
The executable code that follows (from a file named Recipe01-09.cs) shows how to use the optional
attributes (shown in bold text) to specify the culture and the version for the assembly:

using System;
using System.Reflection;

[assembly:AssemblyCulture("")]
[assembly:AssemblyVersion("1.1.0.5")]

namespace Recipe01_09
{
 class Recipe01_09
 {

CHAPTER 1 ■ APPLICATION DEVELOPMENT

23

 public static void Main()
 {
 Console.WriteLine("Welcome to Visual C# 2010 Recipes");

 // Wait to continue.
 Console.WriteLine("\nMain method complete. Press Enter.");
 Console.Read();
 }
 }
}

Usage
To create a strongly named assembly from the example code, create the strongly named keys and store
them in a file named MyKeyFile using the command sn -k MyKeyFile.snk. Then install the keys into the
CSP container named MyKeys using the command sn -i MyKeyFile.snk MyKeys. You can now compile
the file into a strongly named assembly using the command csc /keycontainer:MyKeys Recipe01-09.cs.

1-10. Verify That a Strongly Named Assembly Has Not Been
Modified

Problem
You need to verify that a strongly named assembly has not been modified after it was built.

Solution
Use the Strong Name tool (sn.exe) to verify the assembly’s strong name.

How It Works
Whenever the .NET runtime loads a strongly named assembly, the runtime extracts the encrypted hash
code that’s embedded in the assembly and decrypts it with the public key, which is also embedded in the
assembly. The runtime then calculates the hash code of the assembly manifest and compares it to the
decrypted hash code. This verification process will identify whether the assembly has changed after
compilation.

If an executable assembly fails strong name verification, the runtime will display an error message
or an error dialog box (depending on whether the application is a console or Windows application). If
executing code tries to load an assembly that fails verification, the runtime will throw a
System.IO.FileLoadException with the message “Strong name validation failed,” which you should
handle appropriately.

As well as generating and managing strongly named keys (discussed in recipe 1-8), the Strong Name
tool allows you to verify strongly named assemblies. To verify that the strongly named assembly
Recipe01-09.exe is unchanged, use the command sn -vf Recipe01-09.exe. The -v switch requests the

CHAPTER 1 ■ APPLICATION DEVELOPMENT

24

Strong Name tool to verify the strong name of the specified assembly, and the -f switch forces strong
name verification even if it has been previously disabled for the specified assembly. (You can disable
strong name verification for specific assemblies using the -Vr switch, as in sn -Vr Recipe01-09.exe; see
recipe 1-11 for details about why you would disable strong name verification.)

■ Tip You may need to start the command line with administrator privileges to use this tool, depending on the
configuration of your system. Right-click the Command Prompt item in the Start menu and select “Run as
administrator.”

If the assembly passes strong name verification, you will see the following output:

Microsoft (R) .NET Framework Strong Name Utility Version 2.0.50727.42

Copyright (C) Microsoft Corporation. All rights reserved.

Assembly 'Recipe01-09.exe' is valid

However, if the assembly has been modified, you will see this message:

Microsoft (R) .NET Framework Strong Name Utility Version 2.0.50727.42

Copyright (C) Microsoft Corporation. All rights reserved.

Failed to verify assembly --

Strong name validation failed for assembly 'Recipe01-09.exe'.

1-11. Delay-Sign an Assembly

Problem
You need to create a strongly named assembly, but you don’t want to give all members of your
development team access to the private key component of your strongly named key pair.

CHAPTER 1 ■ APPLICATION DEVELOPMENT

25

Solution
Extract and distribute the public key component of your strongly named key pair. Follow the
instructions in recipe 1-9 that describe how to give your assembly a strong name. In addition, specify the
/delaysign switch when you compile your assembly. Disable strong name verification for the assembly
using the -Vr switch of the Strong Name tool (sn.exe).

■ Note If you are using Visual Studio, you can configure your strongly named assembly to be delay-signed by
opening the project properties, selecting the Signing tab, and checking the Delay Sign Only box.

How It Works
Assemblies that reference strongly named assemblies contain the public key token of the referenced
assemblies. This means the referenced assembly must be strongly named before it can be referenced. In
a development environment in which assemblies are regularly rebuilt, this would require every
developer and tester to have access to your strongly named key pair—a major security risk.

Instead of distributing the private key component of your strongly named key pair to all members of
the development team, the .NET Framework provides a mechanism called delay-signing, with which you
can partially strongly name an assembly. The partially strongly named assembly contains the public key
and the public key token (required by referencing assemblies) but contains only a placeholder for the
signature that would normally be generated using the private key.

After development is complete, the signing authority (who has responsibility for the security and
use of your strongly named key pair) re-signs the delay-signed assembly to complete its strong name.
The signature is calculated using the private key and embedded in the assembly, making the assembly
ready for distribution.

To delay-sign an assembly, you need access only to the public key component of your strongly
named key pair. No security risk is associated with distributing the public key, and the signing authority
should make the public key freely available to all developers. To extract the public key component from
a strongly named key file named MyKeyFile.snk and write it to a file named MyPublicKey.snk, use the
command sn -p MyKeyFile.snk MyPublicKey.snk. If you store your strongly named key pair in a CSP key
container named MyKeys, extract the public key to a file named MyPublicKey.snk using the command sn
-pc MyKeys MyPublicKey.snk.

Once you have a key file containing the public key, you build the delay-signed assembly using the
command-line C# compiler by specifying the /delaysign compiler switch. For example, to build a delay-
signed assembly from a source file named Recipe01-11, use this command:

csc /delaysign /keyfile:MyPublicKey.snk Recipe01-11.cs

When the runtime tries to load a delay-signed assembly, the runtime will identify the assembly as
strongly named and will attempt to verify the assembly, as discussed in recipe 1-10. Because it doesn’t
have a digital signature, you must configure the runtime on the local machine to stop verifying the
assembly’s strong name using the command sn -Vr Recipe01-11.exe. Note that you need to do so on
every machine on which you want to run your application.

CHAPTER 1 ■ APPLICATION DEVELOPMENT

26

■ Tip When using delay-signed assemblies, it’s often useful to be able to compare different builds of the same
assembly to ensure they differ only by their signatures. This is possible only if a delay-signed assembly has been
re-signed using the -R switch of the Strong Name tool. To compare the two assemblies, use the command sn -D
assembly1 assembly2.

Once development is complete, you need to re-sign the assembly to complete the assembly’s strong
name. The Strong Name tool allows you to do this without changing your source code or recompiling the
assembly; however, you must have access to the private key component of the strongly named key pair.
To re-sign an assembly named Recipe01-11.exe with a key pair contained in the file MyKeys.snk, use the
command sn -R Recipe01-11.exe MyKeys.snk. If the keys are stored in a CSP key container named
MyKeys, use the command sn -Rc Recipe01-11.exe MyKeys.

Once you have re-signed the assembly, you should turn strong name verification for that assembly
back on using the -Vu switch of the Strong Name tool, as in sn -Vu Recipe01-11.exe. To enable
verification for all assemblies for which you have disabled strong name verification, use the command sn
-Vx. You can list the assemblies for which verification is disabled using the command sn -Vl.

■ Note If you are using the .NET Framework 1.0 or 1.1, the command-line C# compiler does not support the
/delaysign compiler switch. Instead, you must use the System.Reflection.AssemblyDelaySignAttribute
assembly-level attributes within your code to specify that you want the assembly delay-signed. Alternatively, use
the Assembly Linker tool (al.exe), which does support the /delaysign switch. Refer to the Assembly Linker
information in the .NET Framework SDK documentation for more details.

1-12. Sign an Assembly with an Authenticode Digital
Signature

Problem
You need to sign an assembly with Authenticode so that users of the assembly can be certain you are its
publisher and the assembly is unchanged after signing.

Solution
Use the Sign Tool (signtool.exe) to sign the assembly with your software publisher certificate (SPC).

CHAPTER 1 ■ APPLICATION DEVELOPMENT

27

How It Works
Strong names provide a unique identity for an assembly as well as proof of the assembly’s integrity, but
they provide no proof as to the publisher of the assembly. The .NET Framework allows you to use
Authenticode technology to sign your assemblies. This enables consumers of your assemblies to confirm
that you are the publisher, as well as confirm the integrity of the assembly. Authenticode signatures also
act as evidence for the signed assembly, which people can use when configuring code access security
policy.

To sign your assembly with an Authenticode signature, you need an SPC issued by a recognized
certificate authority (CA). A CA is a company entrusted to issue SPCs (along with many other types of
certificates) for use by individuals or companies. Before issuing a certificate, the CA is responsible for
confirming that the requesters are who they claim to be and also for making sure the requestors sign
contracts to ensure they don’t misuse the certificates that the CA issues them.

To obtain an SPC, you should view the Microsoft Root Certificate Program Members list at
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnsecure/html/
rootcertprog.asp. Here you will find a list of CAs, many of whom can issue you an SPC. For testing
purposes, you can create a test certificate using the process described in recipe 1-13. However, you can’t
distribute your software signed with this test certificate. Because a test SPC isn’t issued by a trusted CA,
most responsible users won’t trust assemblies signed with it.

Some CAs will issue your SPC as a Personal Information Exchange file, which has a .pfx suffix—this
is the file format that is needed to sign an assembly. Some CAs, however, will issue you with two files
(either a private key file (.pvk) and an SPC (.spc) file or a private key file and a certificate file (with a .cer
suffix)—if this is the case, you will have to convert your files to the PFX format—see the following usage
details for instructions.

Once you have a PFX file, you use the Sign Tool to Authenticode-sign your assembly. The Sign Tool
creates a digital signature of the assembly using the private key component of your SPC and embeds the
signature and the public part of your SPC in your assembly (including your public key). When verifying
your assembly, the consumer decrypts the encrypted hash code using your public key, recalculates the
hash of the assembly, and compares the two hash codes to ensure they are the same. As long as the two
hash codes match, the consumer can be certain that you signed the assembly and that it has not
changed since you signed it.

Usage
If your CA has not issued you with a Personal Information Exchange (PFX) file, then the first step is to
convert your certificate to the correct format using the pnk2pfx.exe tool. If you have received a PVK file
and a CER file, then you should type the following at the command prompt:

pvk2pfx -pvk MyPrivateKey.pvk -spc MyCertificate.cer -pfx MyCertificate.pfx

If you have received a PVK file and an SPC file, then type the following command:

pvk2pfx -pvk MyPrivateKey.pvk -spc MyCertificate.spc -pfx MyCertificate.pfx

Both of these commands create the MyCertificate.pfx file. To sign an assembly, you type the
following command at the command prompt:

signtool sign –f MyCertificate.pfx MyAssembly.exe

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnsecure/html

CHAPTER 1 ■ APPLICATION DEVELOPMENT

28

1-13. Create and Trust a Test Software Publisher Certificate

Problem
You need to create an SPC to allow you to test the Authenticode signing of an assembly.

Solution
Use the Certificate Creation tool (makecert.exe) to create a test X.509 certificate and the pvk2pfx.exe tool
to generate a PFX file from this X.509 certificate. Trust the root test certificate using the Set Registry tool
(setreg.exe).

How It Works
To create a test SPC for a software publisher named Allen Jones, create an X.509 certificate using the
Certificate Creation tool. The command makecert -n "CN=Allen Jones" -sk MyKeys
TestCertificate.cer creates a file named TestCertificate.cer containing an X.509 certificate and
stores the associated private key in a CSP key container named MyKeys (which is automatically created if
it does not exist). Alternatively, you can write the private key to a file by substituting the -sk switch with -
sv. For example, to write the private key to a file named PrivateKeys.pvk, use the command makecert -n
" CN=Allen Jones" -sv PrivateKey.pvk TestCertificate.cer. If you write your private key to a file, the
Certificate Creation tool will prompt you to provide a password with which to protect the private key file
(see Figure 1-2).

Figure 1-2. The Certificate Creation tool requests a password when creating file-based private keys.

CHAPTER 1 ■ APPLICATION DEVELOPMENT

29

The Certificate Creation tool supports many arguments, and Table 1-2 lists some of the more useful
ones. You should consult the .NET Framework SDK documentation for full coverage of the Certificate
Creation tool.

Table 1-2. Commonly Used Switches of the Certificate Creation Tool

Switch Description

-e Specifies the date when the certificate becomes invalid.

-m Specifies the duration in months that the certificate remains valid.

-n Specifies an X.500 name to associate with the certificate. This is the name of the software
publisher that people will see when they view details of the SPC you create.

-sk Specifies the name of the CSP key store in which to store the private key.

-ss Specifies the name of the certificate store where the Certificate Creation tool should store the
generated X.509 certificate.

-sv Specifies the name of the file in which to store the private key.

Once you have created your X.509 certificate with the Certificate Creation tool, you need to convert

it to a PFX file with the pvk2pfx.exe tool—this copies the public and private key information contained
in the PVK and CER files into a PFX file. To convert the certificate TestCertificate.cer to a PFX file, use
the following command:

pvk2pfx -pvk PrivateKey.pvk -spc TestCertificate.cer -pfx TestCertificate.pfx

The final step before you can use your test SPC is to trust the root test CA, which is the default issuer
of the test certificate. The Set Registry tool (setreg.exe) makes this a simple task with the command
setreg 1 true. When you have finished using your test SPC, you must remove trust of the root test CA
using the command setreg 1 false. You can now Authenticode sign assemblies with your test SPC
using the process described in recipe 1-12.

1-14. Manage the Global Assembly Cache

Problem
You need to add or remove assemblies from the GAC.

CHAPTER 1 ■ APPLICATION DEVELOPMENT

30

Solution
Use the Global Assembly Cache tool (gacutil.exe) from the command line to view the contents of the
GAC as well as to add and remove assemblies.

How It Works
Before you can install an assembly in the GAC, the assembly must have a strong name; see recipe 1-9 for
details on how to strongly name your assemblies. To install an assembly named SomeAssembly.dll into
the GAC, use the command gacutil /i SomeAssembly.dll. You can install different versions of the same
assembly in the GAC side by side to meet the versioning requirements of different applications.

To uninstall the SomeAssembly.dll assembly from the GAC, use the command gacutil /u
SomeAssembly. Notice that you don’t use the .dll extension to refer to the assembly once it’s installed in
the GAC. This will uninstall all assemblies with the specified name. To uninstall a particular version,
specify the version along with the assembly name; for example, use gacutil /u
SomeAssembly,Version=1.0.0.5.

To view the assemblies installed in the GAC, use the command gacutil /l. This will produce a long
list of all the assemblies installed in the GAC, as well as a list of assemblies that have been precompiled
to binary form and installed in the ngen cache. To avoid searching through this list to determine whether
a particular assembly is installed in the GAC, use the command gacutil /l SomeAssembly.

■ Note The .NET Framework uses the GAC only at runtime; the C# compiler won’t look in the GAC to resolve any
external references that your assembly references. During development, the C# compiler must be able to access a
local copy of any referenced shared assemblies. You can either copy the shared assembly to the same directory as
your source code or use the /lib switch of the C# compiler to specify the directory where the compiler can find
the required assemblies.

1-15. Prevent People from Decompiling Your Code

Problem
You want to ensure people can’t decompile your .NET assemblies.

Solution
Build server-based solutions where possible so that people don’t have access to your assemblies. If you
must distribute assemblies, you have no way to stop people from decompiling them. The best you can
do is use obfuscation and components compiled to native code to make your assemblies more difficult
to decompile.

CHAPTER 1 ■ APPLICATION DEVELOPMENT

31

How It Works
Because .NET assemblies consist of a standardized, platform-independent set of instruction codes and
metadata that describes the types contained in the assembly, they are relatively easy to decompile. This
allows decompilers to generate source code that is close to your original code with ease, which can be
problematic if your code contains proprietary information or algorithms that you want to keep secret.

The only way to ensure that people can’t decompile your assemblies is to stop people from getting
your assemblies in the first place. Where possible, implement server-based solutions such as Microsoft
ASP.NET applications and web services. With the security correctly configured on your server, nobody
will be able to access your assemblies, and therefore they won’t be able to decompile them.

When building a server solution is not appropriate, you have the following two options:

• Use an obfuscator to make it difficult to understand your code once it is
decompiled. Some versions of Visual Studio include the Community Edition of an
obfuscator named Dotfuscator, which can be started by selecting Dotfuscator
Software Services from the Visual Studio 2010 Tools menu. Obfuscators use a
variety of techniques to make your assembly difficult to decompile; principal
among these techniques are

• Renaming of private methods and fields in such a way that it’s difficult to
read and understand the purpose of your code

• Inserting control flow statements to make the logic of your application
difficult to follow

• Build the parts of your application that you want to keep secret in native DLLs or
COM objects, and then call them from your managed application using P/Invoke
or COM Interop. (See Chapter 12 for recipes that show you how to call unmanaged
code.)

Neither approach will stop a skilled and determined person from reverse engineering your code, but
both approaches will make the job significantly more difficult and deter most casual observers.

■ Note The risks of application decompilation aren’t specific to C# or .NET. A determined person can reverse
engineer any software if they have the time and the skill.

1-16. Manipulate the Appearance of the Console

Problem
You want to control the visual appearance of the Windows console.

CHAPTER 1 ■ APPLICATION DEVELOPMENT

32

Solution
Use the static properties and methods of the System.Console class.

How It Works
The .NET Framework gives you a high degree of control over the appearance and operation of the
Windows console. Table 1-3 describes the properties and methods of the Console class that you can use
to control the console’s appearance.

Table 1-3. Properties and Methods to Control the Appearance of the Console

Member Description

Properties

BackgroundColor Gets and sets the background color of the console using one of the values from
the System.ConsoleColor enumeration. Only new text written to the console will
appear in this color. To make the entire console this color, call the method Clear
after you have configured the BackgroundColor property.

BufferHeight Gets and sets the buffer height in terms of rows.

BufferWidth Gets and sets the buffer width in terms of columns.

CursorLeft Gets and sets the column position of the cursor within the buffer.

CursorSize Gets and sets the height of the cursor as a percentage of a character cell.

CursorTop Gets and sets the row position of the cursor within the buffer.

CursorVisible Gets and sets whether the cursor is visible.

ForegroundColor Gets and sets the text color of the console using one of the values from the
System.ConsoleColor enumeration. Only new text written to the console will
appear in this color. To make the entire console this color, call the method Clear
after you have configured the ForegroundColor property.

LargestWindowHeight Returns the largest possible number of rows based on the current font and
screen resolution.

LargestWindowWidth Returns the largest possible number of columns based on the current font and
screen resolution.

Title Gets and sets text shown in the title bar.

CHAPTER 1 ■ APPLICATION DEVELOPMENT

33

Member Description

WindowHeight Gets and sets the width in terms of character rows.

WindowWidth Gets and sets the width in terms of character columns.

Methods

Clear Clears the console.

ResetColor Sets the foreground and background colors to their default values as configured
within Windows.

SetWindowSize Sets the width and height in terms of columns and rows.

The Code
The following example demonstrates how to use the properties and methods of the Console class to
dynamically change the appearance of the Windows console:

using System;

namespace Apress.VisualCSharpRecipes.Chapter01
{
 public class Recipe01_16
 {
 static void Main(string[] args)
 {
 // Display the standard console.
 Console.Title = "Standard Console";
 Console.WriteLine("Press Enter to change the console's appearance.");
 Console.ReadLine();

 // Change the console appearance and redisplay.
 Console.Title = "Colored Text";
 Console.ForegroundColor = ConsoleColor.Red;
 Console.BackgroundColor = ConsoleColor.Green;
 Console.WriteLine("Press Enter to change the console's appearance.");
 Console.ReadLine();

 // Change the console appearance and redisplay.
 Console.Title = "Cleared / Colored Console";
 Console.ForegroundColor = ConsoleColor.Blue;
 Console.BackgroundColor = ConsoleColor.Yellow;
 Console.Clear();
 Console.WriteLine("Press Enter to change the console's appearance.");
 Console.ReadLine();

CHAPTER 1 ■ APPLICATION DEVELOPMENT

34

 // Change the console appearance and redisplay.
 Console.Title = "Resized Console";
 Console.ResetColor();
 Console.Clear();
 Console.SetWindowSize(100, 50);
 Console.BufferHeight = 500;
 Console.BufferWidth = 100;
 Console.CursorLeft = 20;
 Console.CursorSize = 50;
 Console.CursorTop = 20;
 Console.CursorVisible = false;
 Console.WriteLine("Main method complete. Press Enter.");
 Console.ReadLine();
 }
 }
}

1-17. Create a Static Class

Problem
You need to create a class that contains only static members.

Solution
Add the static keyword to your class declaration.

How It Works
A static class can contain only static members. You cannot instantiate the class using a constructor and
you must refer to the members through the class name. The compiler will warn you if you add an
instance member in the class (i.e., one that does not have the static keyword in its declaration)—you will
still be able to use the static class, but the non-static methods will be inaccessible.

The Code
The following example defines a static class and calls the method and property it contains:

using System;

namespace Apress.VisualCSharpRecipes.Chapter01
{
 public static class MyStaticClass
 {

CHAPTER 1 ■ APPLICATION DEVELOPMENT

35

 public static string getMessage()
 {
 return "This is a static member";
 }

 public static string StaticProperty
 {
 get;
 set;
 }

 }

 public class Recipe01_16
 {
 static void Main(string[] args)
 {
 // Call the static method and print out the result.
 Console.WriteLine(MyStaticClass.getMessage());

 // Set and get the property.
 MyStaticClass.StaticProperty = "this is the property value";
 Console.WriteLine(MyStaticClass.StaticProperty);

 Console.WriteLine("Main method complete. Press Enter.");
 Console.ReadLine();
 }
 }
}

1-18. Create an Anonymous Type

Problem
You need to use an anonymous type for short-term data manipulation.

Solution
Declare a variable using the special type var, and then define the type’s content using the new keyword.

How It Works
Anonymous types are convenient C# features that allow you to encapsulate a set of properties into a
single object without having to define a type beforehand. The types of the properties you define in an
anonymous type are inferred by the compiler and are read-only. The following fragment creates an
anonymous type with two properties—a string and an int.

CHAPTER 1 ■ APPLICATION DEVELOPMENT

36

var anon = new {
 Name = “Adam Freeman”,
 Age = 37;
};

The values of the properties can be accessed by calling anon.Name and anon.Age.
Anonymous types have some limitations. The properties are read-only, only properties (and not

methods) can be defined, and their scope is limited to the method in which they are created—they
cannot be passed as arguments to other methods. Anonymous types are often used in conjunction with
LINQ—see Chapter 16 for LINQ recipes.

The Code
The following example creates an anonymous type that itself contains a nested anonymous type, and
then prints out the various fields:

using System;

namespace Apress.VisualCSharpRecipes.Chapter01
{

 public class Recipe01_18
 {
 static void Main(string[] args)
 {

 // Create an anoymous type.
 var joe = new {
 Name = "Joe Smith",
 Age = 42,
 Family = new {
 Father = "Pa Smith",
 Mother = "Ma Smith",
 Brother = "Pete Smith"
 },
 };

 // Access the members of the anonymous type.
 Console.WriteLine("Name: {0}", joe.Name);
 Console.WriteLine("Age: {0}", joe.Age);
 Console.WriteLine("Father: {0}", joe.Family.Father);
 Console.WriteLine("Mother: {0}", joe.Family.Mother);
 Console.WriteLine("Brother: {0}", joe.Family.Brother);

 Console.WriteLine("Main method complete. Press Enter.");
 Console.ReadLine();
 }
 }
}

CHAPTER 1 ■ APPLICATION DEVELOPMENT

37

Running the example gives the following results:

Name: Joe Smith

Age: 42

Father: Pa Smith

Mother: Ma Smith

Brother: Pete Smith

Main method complete. Press Enter.

1-19. Create an ExpandoObject Dynamic Type

Problem
You need to create a type to contain a set of read-write properties.

Solution
Use the System.Dynamic.ExpandoObject class.

How It Works
In the previous recipe, we showed you how to encapsulate a set of properties using an anonymous type.
One of the limitations of anonymous types is that the encapsulated properties are read-only. You can
achieve a similar effect, but with properties that can be modified, using the
System.Dynamic.ExpandoObject class.

The ExpandoObject is part of the dynamic language support introduced in.NET 4.0. Chapter 13
includes a recipe for using dynamic types more generally, but much of the functionality that the
dynamic language support provides is not intended for use in C#. The most important thing to
remember about dynamic types is that the calls you make to them in your code are not checked by the
compiler, and you will not be able to see the impact of any misspelled method, parameter, property, or
type name until your code is executed.

The ExpandoObject is useful because you can dynamically add properties just by assigning values to
them. For example, the following fragment creates a new instance of ExpandoObject and creates a new
property called Name with a value of Joe Smith.

dynamic expando = new ExpandoObject();
expando.Name = "Joe Smith";

CHAPTER 1 ■ APPLICATION DEVELOPMENT

38

We can get or set the value of the Name property as for any other type. Note that we have declared the
instance of ExpandoObject using the dynamic keyword—if you declare the variable as an instance of
ExpandoObject (by calling ExpandoObject expando = new ExpandoObject(), for example), then you will
not be able to add any properties. You can define properties of any type, including other instances of
ExpandoObject—see the example code for this recipe for an illustration of this.

The Code
The following example creates an ExpandoObject and writes out the property values:

using System;
using System.Dynamic;

namespace Apress.VisualCSharpRecipes.Chapter01
{
 public class Recipe01_19
 {
 static void Main(string[] args)
 {
 // Create the expando.
 dynamic expando = new ExpandoObject();
 expando.Name = "Joe Smith";
 expando.Age = 42;
 expando.Family = new ExpandoObject();
 expando.Family.Father = "Pa Smith";
 expando.Family.Mother = "Ma Smith";
 expando.Family.Brother = "Pete Smith";

 // Access the members of the dynamic type.
 Console.WriteLine("Name: {0}", expando.Name);
 Console.WriteLine("Age: {0}", expando.Age);
 Console.WriteLine("Father: {0}", expando.Family.Father);
 Console.WriteLine("Mother: {0}", expando.Family.Mother);
 Console.WriteLine("Brother: {0}", expando.Family.Brother);

 // Change a value.
 expando.Age = 44;
 // Add a new property.
 expando.Family.Sister = "Kathy Smith";

 Console.WriteLine("\nModified Values");
 Console.WriteLine("Age: {0}", expando.Age);
 Console.WriteLine("Sister: {0}", expando.Family.Sister);

 Console.WriteLine("Main method complete. Press Enter.");
 Console.ReadLine();
 }
 }
}

CHAPTER 1 ■ APPLICATION DEVELOPMENT

39

1-20. Define an Automatically Implemented Property

Problem
You want to declare a property that requires no logic in its accessors.

Solution
Use an automatically implemented property and allow the runtime to manage the underlying variable
on your behalf.

How It Works
Many properties are defined simply to hold values and require no logic to process values in the
accessors—for these cases, the standard pattern of defining a backing variable in the parent class and
mapping access to it via the accessors is inelegant. For such properties, you can use the automatic
implementation feature, where the compiler creates the backing instance and you do not need to
provide any code in the accessors at all. The following fragment demonstrates an auto-implemented
string property:

public string MyAutoImplementedProperty
{
 get;
 set;
}

The compile will generate an error if you do not specify both the get and set accessors, but otherwise
automatically implemented properties can be used in just the same way as the regular kind.

The Code
The following example defines two static, automatically implemented properties and prints out the
default values of each of them. Values are then assigned and read back out again.

CHAPTER 1 ■ APPLICATION DEVELOPMENT

40

using System;

namespace Apress.VisualCSharpRecipes.Chapter01
{

 public class Recipe01_20
 {
 // Define a static string property.
 static string MyStaticProperty
 {
 get;
 set;
 }

 static int MyStaticIntProperty
 {
 get;
 set;
 }

 static void Main(string[] args)
 {
 // Write out the default values.
 Console.WriteLine("Default property values");
 Console.WriteLine("Default string property value: {0}", MyStaticProperty);
 Console.WriteLine("Default int property value: {0}", MyStaticIntProperty);

 // Set the property values.
 MyStaticProperty = "Hello, World";
 MyStaticIntProperty = 32;

 // Write out the changed values.
 Console.WriteLine("\nProperty values");
 Console.WriteLine("String property value: {0}", MyStaticProperty);
 Console.WriteLine("Int property value: {0}", MyStaticIntProperty);

 Console.WriteLine("\nMain method complete. Press Enter.");
 Console.ReadLine();
 }
 }
}

CHAPTER 1 ■ APPLICATION DEVELOPMENT

41

Running the program gives the following result:

Default property values

Default string property value:

Default int property value: 0

Property values

String property value: Hello, World

Int property value: 32

Main method complete. Press Enter.

1-21. Overload an Operator

Problem
You want to be able to use your types with the standard operators (+, -, *, etc.).

Solution
Overload one or more operators by defining static methods with the operator symbol as the method
name and using the operator keyword in the method declaration.

How It Works
To implement operators in your classes, you simply define static methods to overload the operator you
want to use—for example, the following fragment shows the declaration of a method that implements
the addition operator (+) to be used when adding together two instances of the type Word:

public static string operator +(Word w1, Word w2)

Adding and implementing this method to the Word class allows us to define what happens when we
use the addition operator on two instances of the Word type:

string result = word1 + word2;

CHAPTER 1 ■ APPLICATION DEVELOPMENT

42

Notice that the result of our addition is a string—you can return any type you choose. You can also
define the behavior for when operators are applied on different types, such as the following, which
declares a method that overrides the operator for when an instance of Word and an int are added
together:

public static Word operator +(Word w, int i)

The following fragment allows us to use the operator like this:

Word newword = word1 + 7;

Note that the order of the arguments is important—the previous fragment defines the behavior for a
Word + int operation, but not int + Word (i.e., the same types, but with their order reversed). We would
need to define another method to support both orderings.

See the code for this recipe for an example of how to use these operators and implementations for
the operator overloads we have referred to. You can override the following operators:

+, -, *, /, %, &, |, ^, <<, >>

The Code
The following example defines the type Word, which has two overridden addition operators: one that
inserts a space in between words when they are added together, and another for adding an int value to a
word.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Dynamic;

namespace Apress.VisualCSharpRecipes.Chapter01
{
 public class Word
 {
 public string Text
 {
 get;
 set;
 }

 public static string operator +(Word w1, Word w2)
 {
 return w1.Text + " " + w2.Text;
 }

 public static Word operator +(Word w, int i)
 {

CHAPTER 1 ■ APPLICATION DEVELOPMENT

43

 return new Word() { Text = w.Text + i.ToString()};
 }

 public override string ToString()
 {
 return Text;
 }
 }

 public class Recipe01_21
 {
 static void Main(string[] args)
 {

 // Create two word instances.
 Word word1 = new Word() { Text = "Hello" };
 Word word2 = new Word() { Text = "World" };

 // Print out the values.
 Console.WriteLine("Word1: {0}", word1);
 Console.WriteLine("Word2: {0}", word2);
 Console.WriteLine("Added together: {0}", word1 + word2);
 Console.WriteLine("Added with int: {0}", word1 + 7);

 Console.WriteLine("\nMain method complete. Press Enter.");
 Console.ReadLine();
 }
 }
}

Running the example produces the following results:

Word1: Hello

Word2: World

Added together: Hello World

Added with int: Hello7

Main method complete. Press Enter.

CHAPTER 1 ■ APPLICATION DEVELOPMENT

44

1-22. Define a Conversion Operator

Problem
You need to be able to convert from one type to another.

Solution
Implement implicit or explicit conversion operator methods.

How It Works
You can specify how your type is converted to other types and, equally, how other types are converted to
your type, by declaring conversion operators in your class. A conversion operator is a static method that
is named for the type that you wish to convert to and that has the type you wish to convert from. For
example, the following method fragment is a conversion operator from the Word type (taken from the
code for this recipe) that converts an instance of string to an instance of Word:

public static explicit operator Word(string str)
{
 return new Word() { Text = str };
}

Defining this member in the Word class allows us to perform conversions such as the following:

Word word = (Word)"Hello";

Note that we have had to explicitly cast the string to Word—this is because our conversion operator
included the explicit keyword. You can enable implicit conversion by using the implicit keyword, such
as this:

public static implicit operator Word(string str)
{
 return new Word() { Text = str };
}

With the implicit keyword, now both of the following statements would compile:

Word word = (Word)"Hello";
Word word = "Hello";

Conversion operators must always be static, and you must choose between an explicit and an
implicit conversion—you cannot define different conversion operators for the same pair of types but
with different keywords.

CHAPTER 1 ■ APPLICATION DEVELOPMENT

45

The Code
The following example defines and demonstrates implicit and explicit conversion operators for the Word
type.

using System;

namespace Apress.VisualCSharpRecipes.Chapter01
{
 public class Word
 {
 public string Text
 {
 get;
 set;
 }

 public static explicit operator Word(string str)
 {
 return new Word() { Text = str };
 }

 public static implicit operator string(Word w)
 {
 return w.Text;
 }

 public static explicit operator int(Word w)
 {
 return w.Text.Length;
 }

 public override string ToString()
 {
 return Text;
 }
 }

 public class Recipe01_22
 {
 static void Main(string[] args)
 {

 // Create a word instance.
 Word word1 = new Word() { Text = "Hello"};

 // Implicitly convert the word to a string.
 string str1 = word1;
 // Explicitly convert the word to a string.
 string str2 = (string)word1;

CHAPTER 1 ■ APPLICATION DEVELOPMENT

46

 Console.WriteLine("{0} - {1}", str1, str2);

 // Convert a string to a word.
 Word word2 = (Word)"Hello";

 // Convert a word to an int.
 int count = (int)word2;

 Console.WriteLine("Length of {0} = {1}", word2.ToString(), count);

 Console.WriteLine("\nMain method complete. Press Enter.");
 Console.ReadLine();
 }
 }
}

1-23. Handle an Event with an Anonymous Function

Problem
You need to handle an event, but don’t want to define a method in your class to do so.

Solution
Use an anonymous delegate or a lambda expression.

How It Works
You can create a delegate for an event handler anonymously, meaning that you do not have to define a
separate method for the delegate to call. To add an anonymous delegate, pass the method arguments to
the delegate keyword and implement the method body between braces. The following fragment
demonstrates how to register for an event using an anonymous delegate:

MyEvent += new EventHandler(delegate(object sender, EventArgs eventargs)
{
 ...implement method body...
});

Anonymous delegates simplify source code where you do not need to share an implementation
between handlers and where you do not need to unregister for the event—you cannot unregister
because you do not have a reference to unregister with when using anonymous delegates.

You can also handle events using a lambda expression, which is another form of the anonymous
function. Lambda expressions use the lambda operator, =>, which is read as “goes to.” On the left of the
expression, you list names for the variables that will be passed to your expression, and to the right, you
write the code that you want to execute, referring to the variables you defined as required. The following
fragment shows how to use a lambda expression to handle an event:

CHAPTER 1 ■ APPLICATION DEVELOPMENT

47

MyEvent += new EventHandler((sender, eventargs) =>
{
 ... implment method, referring to sender and eventargs if required...
});

With a lambda expression, the compiler works out what the types of the variables on the left of the
“goes to” sign should be, so you need only specify the names that you want to use.

The Code
The following example uses a named method to handle an event and illustrates how to do the same
thing using an anonymous delegate and a lambda expression:

using System;

namespace Apress.VisualCSharpRecipes.Chapter01
{
 public class Recipe01_23
 {
 public static EventHandler MyEvent;

 static void Main(string[] args)
 {
 // Use a named method to register for the event.
 MyEvent += new EventHandler(EventHandlerMethod);

 // Use an anonymous delegate to register for the event.
 MyEvent += new EventHandler(delegate(object sender, EventArgs eventargs)
 {
 Console.WriteLine("Anonymous delegate called");
 });

 // Use a lamda expression to register for the event.
 MyEvent += new EventHandler((sender, eventargs) =>
 {
 Console.WriteLine("Lamda expression called");
 });

 Console.WriteLine("Raising the event");
 MyEvent.Invoke(new object(), new EventArgs());

 Console.WriteLine("\nMain method complete. Press Enter.");
 Console.ReadLine();
 }

CHAPTER 1 ■ APPLICATION DEVELOPMENT

48

 static void EventHandlerMethod(object sender, EventArgs args)
 {
 Console.WriteLine("Named method called");
 }
 }
}

1-24. Implement a Custom Indexer

Problem
You need to be able to access data in your custom type like an array.

Solution
Implement a custom indexer.

How It Works
You can enable array-style indexing for you class by implementing a custom indexer. A custom indexer
is like a property, but the name of the property is the keyword this. You can choose any type to be used
as the index and any type to return as the result—the code for this recipe illustrates a custom indexer
that uses a string for the index and returns a custom type.

The Code
The following example demonstrates a class, WeatherForecast, which uses a custom string indexer in
order to perform calculations on the fly in order to generate a result:

using System;
using System.Collections.Generic;
using System.Linq;

namespace Apress.VisualCSharpRecipes.Chapter01
{
 public class WeatherReport
 {
 public int DayOfWeek
 {
 get;
 set;
 }

CHAPTER 1 ■ APPLICATION DEVELOPMENT

49

 public int DailyTemp
 {
 get;
 set;
 }

 public int AveTempSoFar
 {
 get;
 set;
 }
 }

 public class WeatherForecast
 {
 private int[] temps = { 54, 63, 61, 55, 61, 63, 58 };
 IList<string> daysOfWeek = new List<string>()
 {"Monday", "Tuesday", "Wednesday",
 "Thursday", "Friday", "Saturday", "Sunday"};

 public WeatherReport this[string dow]
 {
 get
 {
 // Get the day of the week index.
 int dayindex = daysOfWeek.IndexOf(dow);
 return new WeatherReport()
 {
 DayOfWeek = dayindex,
 DailyTemp = temps[dayindex],
 AveTempSoFar = calculateTempSoFar(dayindex)
 };
 }
 set
 {
 temps[daysOfWeek.IndexOf(dow)] = value.DailyTemp;
 }
 }

 private int calculateTempSoFar(int dayofweek)
 {
 int[] subset = new int[dayofweek + 1];
 Array.Copy(temps, 0, subset, 0, dayofweek + 1);
 return (int)subset.Average();
 }
 }

 public class Recipe01_24
 {
 static void Main(string[] args)
 {

CHAPTER 1 ■ APPLICATION DEVELOPMENT

50

 // Create a new weather forecast.
 WeatherForecast forecast = new WeatherForecast();

 // Use the indexer to obtain forecast values and write them out.
 string[] days = {"Monday", "Thursday", "Tuesday", "Saturday"};
 foreach (string day in days)
 {
 WeatherReport report = forecast[day];
 Console.WriteLine("Day: {0} DayIndex {1}, Temp: {2} Ave {3}", day,
 report.DayOfWeek, report.DailyTemp, report.AveTempSoFar);
 }

 // Change one of the temperatures.
 forecast["Tuesday"] = new WeatherReport()
 {
 DailyTemp = 34
 };

 // Repeat the loop.
 Console.WriteLine("\nModified results...");
 foreach (string day in days)
 {
 WeatherReport report = forecast[day];
 Console.WriteLine("Day: {0} DayIndex {1}, Temp: {2} Ave {3}", day,
 report.DayOfWeek, report.DailyTemp, report.AveTempSoFar);
 }

 Console.WriteLine("\nMain method complete. Press Enter.");
 Console.ReadLine();
 }
 }
}

CHAPTER 1 ■ APPLICATION DEVELOPMENT

51

Running the program gives the following results:

Day: Monday DayIndex 0, Temp: 54 Ave 54

Day: Thursday DayIndex 3, Temp: 55 Ave 58

Day: Tuesday DayIndex 1, Temp: 63 Ave 58

Day: Saturday DayIndex 5, Temp: 63 Ave 59

Modified results...

Day: Monday DayIndex 0, Temp: 54 Ave 54

Day: Thursday DayIndex 3, Temp: 55 Ave 51

Day: Tuesday DayIndex 1, Temp: 34 Ave 44

Day: Saturday DayIndex 5, Temp: 63 Ave 54

Main method complete. Press Enter

C H A P T E R 2

■ ■ ■

53

Data Manipulation

Most applications need to manipulate some form of data. The Microsoft .NET Framework provides
many techniques that simplify or improve the efficiency of common data manipulation tasks. The
recipes in this chapter describe how to do the following:

• Manipulate the contents of strings efficiently to avoid the overhead of automatic
string creation due to the immutability of strings (recipe 2-1)

• Represent basic data types using different encoding schemes or as byte arrays to
allow you to share data with external systems (recipes 2-2, 2-3, and 2-4)

• Validate user input and manipulate string values using regular expressions
(recipes 2-5 and 2-6)

• Create System.DateTime objects from string values, such as those that a user might
enter, and display DateTime objects as formatted strings (recipe 2-7)

• Mathematically manipulate DateTime objects in order to compare dates or
add/subtract periods of time from a date (recipe 2-8)

• Sort the contents of an array or an ArrayList collection (recipe 2-9)

• Copy the contents of a collection to an array (recipe 2-10)

• Use the standard generic collection classes to instantiate a strongly typed
collection (recipe 2-11)

• Use generics to define your own general-purpose container or collection class that
will be strongly typed when it is used (recipe 2-12)

• Serialize object state and persist it to a file (recipes 2-13 and 2-14)

• Read user input from the Windows console (recipe 2-15)

• Use large integer values (recipe 2-16)

• Select elements from an array or collection (recipe 2-17)

• Remove duplicate entries from an array or collection (recipe 2-18)

CHAPTER 2 ■ DATA MANIPULATION

54

2-1. Manipulate the Contents of a String Efficiently

Problem
You need to manipulate the contents of a String object and want to avoid the overhead of automatic
String creation caused by the immutability of String objects.

Solution
Use the System.Text.StringBuilder class to perform the manipulations and convert the result to a
String object using the StringBuilder.ToString method.

How It Works
String objects in .NET are immutable, meaning that once created their content cannot be changed. For
example, if you build a string by concatenating a number of characters or smaller strings, the Common
Language Runtime (CLR) will create a completely new String object whenever you add a new element to
the end of the existing string. This can result in significant overhead if your application performs
frequent string manipulation.

The StringBuilder class offers a solution by providing a character buffer and allowing you to
manipulate its contents without the runtime creating a new object as a result of every change. You can
create a new StringBuilder object that is empty or initialized with the content of an existing String
object. You can manipulate the content of the StringBuilder object using overloaded methods that
allow you to insert and append string representations of different data types. At any time, you can obtain
a String representation of the current content of the StringBuilder object by calling
StringBuilder.ToString.

Two important properties of StringBuilder control its behavior as you append new data: Capacity
and Length. Capacity represents the size of the StringBuilder buffer, and Length represents the length of
the buffer’s current content. If you append new data that results in the number of characters in the
StringBuilder object (Length) exceeding the capacity of the StringBuilder object (Capacity),
StringBuilder must allocate a new buffer to hold the data. The size of this new buffer is double the size
of the previous Capacity value. Used carelessly, this buffer reallocation can negate much of the benefit of
using StringBuilder. If you know the length of data you need to work with, or know an upper limit, you
can avoid unnecessary buffer reallocation by specifying the capacity at creation time or setting the
Capacity property manually. Note that 16 is the default Capacity property setting. When setting the
Capacity and Length properties, be aware of the following behavior:

• If you set Capacity to a value less than the value of Length, the Capacity property
throws the exception System.ArgumentOutOfRangeException. The same exception is
also thrown if you try to raise the Capacity setting above the value of the
MaxCapacity property. This should not be a problem unless you want to allocate
more that 2 gigabytes (GB).

• If you set Length to a value less than the length of the current content, the content
is truncated.

CHAPTER 2 ■ DATA MANIPULATION

55

• If you set Length to a value greater than the length of the current content, the
buffer is padded with spaces to the specified length. Setting Length to a value
greater than Capacity automatically adjusts the Capacity value to be the same as
the new Length value.

The Code
The ReverseString method shown in the following example demonstrates the use of the StringBuilder
class to reverse a string. If you did not use the StringBuilder class to perform this operation, it would be
significantly more expensive in terms of resource utilization, especially as the input string is made
longer. The method creates a StringBuilder object of the correct capacity to ensure that no buffer
reallocation is required during the reversal operation.

using System;
using System.Text;

namespace Apress.VisualCSharpRecipes.Chapter02
{
 class Recipe02_01
 {
 public static string ReverseString(string str)
 {
 // Make sure we have a reversible string.
 if (str == null || str.Length <= 1)
 {
 return str;
 }

 // Create a StringBuilder object with the required capacity.
 StringBuilder revStr = new StringBuilder(str.Length);

 // Loop backward through the source string one character at a time and
 // append each character to StringBuilder.
 for (int count = str.Length - 1; count > -1; count--)
 {
 revStr.Append(str[count]);
 }

 // Return the reversed string.
 return revStr.ToString();
 }

 public static void Main()
 {
 Console.WriteLine(ReverseString("Madam Im Adam"));

 Console.WriteLine(ReverseString(
 "The quick brown fox jumped over the lazy dog."));

CHAPTER 2 ■ DATA MANIPULATION

56

 // Wait to continue.
 Console.WriteLine("\nMain method complete. Press Enter");
 Console.ReadLine();
 }
 }
}

2-2. Encode a String Using Alternate Character Encoding

Problem
You need to exchange character data with systems that use character-encoding schemes other than
UTF-16, which is the character-encoding scheme used internally by the CLR.

Solution
Use the System.Text.Encoding class and its subclasses to convert characters between different encoding
schemes.

How It Works
Unicode is not the only character-encoding scheme, nor is UTF-16 the only way to represent Unicode
characters. When your application needs to exchange character data with external systems (particularly
legacy systems) through an array of bytes, you may need to convert character data between UTF-16 and
the encoding scheme supported by the other system.

The abstract class Encoding and its concrete subclasses provide the functionality to convert
characters to and from a variety of encoding schemes. Each subclass instance supports the conversion of
characters between UTF-16 and one other encoding scheme. You obtain instances of the encoding-
specific classes using the static factory method Encoding.GetEncoding, which accepts either the name or
the code page number of the required encoding scheme.

Table 2-1 lists some commonly used character-encoding schemes and the code page number you
must pass to the GetEncoding method to create an instance of the appropriate encoding class. The table
also shows static properties of the Encoding class that provide shortcuts for obtaining the most
commonly used types of encoding objects.

CHAPTER 2 ■ DATA MANIPULATION

57

Table 2-1. Character-Encoding Classes

Encoding Scheme Class Create Using

ASCII ASCIIEncoding GetEncoding(20127) or the ASCII property

Default Encoding GetEncoding(0) or the Default property

UTF-7 UTF7Encoding GetEncoding(65000) or the UTF7 property

UTF-8 UTF8Encoding GetEncoding(65001) or the UTF8 property

UTF-16 (big-endian) UnicodeEncoding GetEncoding(1201) or the BigEndianUnicode property

UTF-16 (little-endian) UnicodeEncoding GetEncoding(1200) or the Unicode property

Windows OS Encoding GetEncoding(1252)

Once you have an Encoding object of the appropriate type, you convert a UTF-16–encoded Unicode

string to a byte array of encoded characters using the GetBytes method. Conversely, you convert a byte
array of encoded characters to a string using the GetString method.

The Code
The following example demonstrates the use of some encoding classes:

using System;
using System.IO;
using System.Text;

namespace Apress.VisualCSharpRecipes.Chapter02
{
 class Recipe02_02
 {
 public static void Main()
 {
 // Create a file to hold the output.
 using (StreamWriter output = new StreamWriter("output.txt"))
 {
 // Create and write a string containing the symbol for pi.
 string srcString = "Area = \u03A0r^2";
 output.WriteLine("Source Text : " + srcString);

 // Write the UTF-16 encoded bytes of the source string.
 byte[] utf16String = Encoding.Unicode.GetBytes(srcString);
 output.WriteLine("UTF-16 Bytes: {0}",
 BitConverter.ToString(utf16String));

CHAPTER 2 ■ DATA MANIPULATION

58

 // Convert the UTF-16 encoded source string to UTF-8 and ASCII.
 byte[] utf8String = Encoding.UTF8.GetBytes(srcString);
 byte[] asciiString = Encoding.ASCII.GetBytes(srcString);

 // Write the UTF-8 and ASCII encoded byte arrays.
 output.WriteLine("UTF-8 Bytes: {0}",
 BitConverter.ToString(utf8String));
 output.WriteLine("ASCII Bytes: {0}",
 BitConverter.ToString(asciiString));

 // Convert UTF-8 and ASCII encoded bytes back to UTF-16 encoded
 // string and write.
 output.WriteLine("UTF-8 Text : {0}",
 Encoding.UTF8.GetString(utf8String));
 output.WriteLine("ASCII Text : {0}",
 Encoding.ASCII.GetString(asciiString));
 }

 // Wait to continue.
 Console.WriteLine("\nMain method complete. Press Enter");
 Console.ReadLine();
 }
 }
}

Usage
Running the code will generate a file named output.txt. If you open this file in a text editor that supports
Unicode, you will see the following content:

Source Text : Area = πr^2

UTF-16 Bytes: 41-00-72-00-65-00-61-00-20-00-3D-00-20-00-A0-03-72-00-5E-00-32-00

UTF-8 Bytes: 41-72-65-61-20-3D-20-CE-A0-72-5E-32

ASCII Bytes: 41-72-65-61-20-3D-20-3F-72-5E-32

UTF-8 Text : Area = πr^2

ASCII Text : Area = ?r^2

Notice that using UTF-16 encoding, each character occupies 2 bytes, but because most of the
characters are standard characters, the high-order byte is 0. (The use of little-endian byte ordering
means that the low-order byte appears first.) This means that most of the characters are encoded using
the same numeric values across all three encoding schemes. However, the numeric value for the symbol
pi (emphasized in bold in the preceding output) is different in each of the encodings. The value of pi

CHAPTER 2 ■ DATA MANIPULATION

59

requires more than 1 byte to represent. UTF-8 encoding uses 2 bytes, but ASCII has no direct equivalent
and so replaces pi with the code 3F. As you can see in the ASCII text version of the string, 3F is the symbol
for an English question mark (?).

■ Caution If you convert Unicode characters to ASCII or a specific code page–encoding scheme, you risk losing
data. Any Unicode character with a character code that cannot be represented in the scheme will be ignored.

Notes
The Encoding class also provides the static method Convert to simplify the conversion of a byte array
from one encoding scheme to another without the need to manually perform an interim conversion to
UTF-16. For example, the following statement converts the ASCII-encoded bytes contained in the
asciiString byte array directly from ASCII encoding to UTF-8 encoding:

byte[] utf8String = Encoding.Convert(Encoding.ASCII, Encoding.UTF8,asciiString);

2-3. Convert Basic Value Types to Byte Arrays

Problem
You need to convert basic value types to byte arrays.

Solution
The static methods of the System.BitConverter class provide a convenient mechanism for converting
most basic value types to and from byte arrays. An exception is the decimal type. To convert a decimal
type to or from a byte array, you need to use a System.IO.MemoryStream object.

How It Works
The static method GetBytes of the BitConverter class provides overloads that take most of the standard
value types and return the value encoded as an array of bytes. Support is provided for the bool, char,
double, short, int, long, float, ushort, uint, and ulong data types. BitConverter also provides a set of
static methods that support the conversion of byte arrays to each of the standard value types. These are
named ToBoolean, ToUInt32, ToDouble, and so on.

Unfortunately, the BitConverter class does not provide support for converting the decimal type.
Instead, write the decimal type to a MemoryStream instance using a System.IO.BinaryWriter object, and
then call the MemoryStream.ToArray method. To create a decimal type from a byte array, create a
MemoryStream object from the byte array and read the decimal type from the MemoryStream object using a
System.IO.BinaryReader instance.

CHAPTER 2 ■ DATA MANIPULATION

60

The Code
The following example demonstrates the use of BitConverter to convert a bool type and an int type to
and from a byte array. The second argument to each of the ToBoolean and ToInt32 methods is a zero-
based offset into the byte array where the BitConverter should start taking the bytes to create the data
value. The code also shows how to convert a decimal type to a byte array using a MemoryStream object and
a BinaryWriter object, as well as how to convert a byte array to a decimal type using a BinaryReader
object to read from the MemoryStream object.

using System;
using System.IO;

namespace Apress.VisualCSharpRecipes.Chapter02
{
 class Recipe02_03
 {
 // Create a byte array from a decimal.
 public static byte[] DecimalToByteArray (decimal src)
 {
 // Create a MemoryStream as a buffer to hold the binary data.
 using (MemoryStream stream = new MemoryStream())
 {
 // Create a BinaryWriter to write binary data to the stream.
 using (BinaryWriter writer = new BinaryWriter(stream))
 {
 // Write the decimal to the BinaryWriter/MemoryStream.
 writer.Write(src);

 // Return the byte representation of the decimal.
 return stream.ToArray();
 }
 }
 }

 // Create a decimal from a byte array.
 public static decimal ByteArrayToDecimal (byte[] src)
 {
 // Create a MemoryStream containing the byte array.
 using (MemoryStream stream = new MemoryStream(src))
 {
 // Create a BinaryReader to read the decimal from the stream.
 using (BinaryReader reader = new BinaryReader(stream))
 {
 // Read and return the decimal from the
 // BinaryReader/MemoryStream.
 return reader.ReadDecimal();
 }
 }
 }

 public static void Main()

CHAPTER 2 ■ DATA MANIPULATION

61

 {
 byte[] b = null;

 // Convert a bool to a byte array and display.
 b = BitConverter.GetBytes(true);
 Console.WriteLine(BitConverter.ToString(b));

 // Convert a byte array to a bool and display.
 Console.WriteLine(BitConverter.ToBoolean(b,0));

 // Convert an int to a byte array and display.
 b = BitConverter.GetBytes(3678);
 Console.WriteLine(BitConverter.ToString(b));

 // Convert a byte array to an int and display.
 Console.WriteLine(BitConverter.ToInt32(b,0));

 // Convert a decimal to a byte array and display.
 b = DecimalToByteArray(285998345545.563846696m);
 Console.WriteLine(BitConverter.ToString(b));

 // Convert a byte array to a decimal and display.
 Console.WriteLine(ByteArrayToDecimal(b));

 // Wait to continue.
 Console.WriteLine("Main method complete. Press Enter");
 Console.ReadLine();
 }
 }
}

■ Tip The BitConverter.ToString method provides a convenient mechanism for obtaining a String
representation of a byte array. Calling ToString and passing a byte array as an argument will return a String
object containing the hexadecimal value of each byte in the array separated by a hyphen—for example "34-A7-
2C". Unfortunately, there is no standard method for reversing this process to obtain a byte array from a string with
this format.

2-4. Base64 Encode Binary Data

Problem
You need to convert binary data into a form that can be stored as part of an ASCII text file (such as an
XML file) or sent as part of a text e-mail message.

CHAPTER 2 ■ DATA MANIPULATION

62

Solution
Use the static methods ToBase64CharArray and FromBase64CharArray of the System.Convert class to
convert your binary data to and from a Base64-encoded char array. If you need to work with the encoded
data as a string value instead of a char array, you can use the ToBase64String and FromBase64String
methods of the Convert class instead.

How It Works
Base64 is an encoding scheme that enables you to represent binary data as a series of ASCII characters
so that it can be included in text files and e-mail messages in which raw binary data is unacceptable.
Base64 encoding works by spreading the contents of 3 bytes of input data across 4 bytes and ensuring
each byte uses only the 7 low-order bits to contain data. This means that each byte of Base64-encoded
data is equivalent to an ASCII character and can be stored or transmitted anywhere ASCII characters are
permitted.

The ToBase64CharArray and FromBase64CharArray methods of the Convert class make it
straightforward to Base64 encode and decode data. However, before Base64 encoding, you must convert
your data to a byte array. Similarly, when decoding you must convert the byte array back to the
appropriate data type. See recipe 2-2 for details on converting string data to and from byte arrays and
recipe 2-3 for details on converting basic value types. The ToBase64String and FromBase64String
methods of the Convert class deal with string representations of Base64-encoded data.

The Code
The example shown here demonstrates how to Base64 encode and decode a byte array, a Unicode string,
an int type, and a decimal type using the Convert class. The DecimalToBase64 and Base64ToDecimal
methods rely on the ByteArrayToDecimal and DecimalToByteArray methods listed in recipe 2-3.

using System;
using System.IO;
using System.Text;

namespace Apress.VisualCSharpRecipes.Chapter02
{
 class Recipe02_04
 {
 // Create a byte array from a decimal.
 public static byte[] DecimalToByteArray (decimal src)
 {
 // Create a MemoryStream as a buffer to hold the binary data.
 using (MemoryStream stream = new MemoryStream())
 {
 // Create a BinaryWriter to write binary data the stream.
 using (BinaryWriter writer = new BinaryWriter(stream))
 {
 // Write the decimal to the BinaryWriter/MemoryStream.
 writer.Write(src);

CHAPTER 2 ■ DATA MANIPULATION

63

 // Return the byte representation of the decimal.
 return stream.ToArray();
 }
 }
 }

 // Create a decimal from a byte array.
 public static decimal ByteArrayToDecimal (byte[] src)
 {
 // Create a MemoryStream containing the byte array.
 using (MemoryStream stream = new MemoryStream(src))
 {
 // Create a BinaryReader to read the decimal from the stream.
 using (BinaryReader reader = new BinaryReader(stream))
 {
 // Read and return the decimal from the
 // BinaryReader/MemoryStream.
 return reader.ReadDecimal();
 }
 }
 }

 // Base64 encode a Unicode string.
 public static string StringToBase64 (string src)
 {
 // Get a byte representation of the source string.
 byte[] b = Encoding.Unicode.GetBytes(src);

 // Return the Base64-encoded string.
 return Convert.ToBase64String(b);
 }

 // Decode a Base64-encoded Unicode string.
 public static string Base64ToString (string src)
 {
 // Decode the Base64-encoded string to a byte array.
 byte[] b = Convert.FromBase64String(src);

 // Return the decoded Unicode string.
 return Encoding.Unicode.GetString(b);
 }

 // Base64 encode a decimal.
 public static string DecimalToBase64 (decimal src)
 {
 // Get a byte representation of the decimal.
 byte[] b = DecimalToByteArray(src);

 // Return the Base64-encoded decimal.
 return Convert.ToBase64String(b);
 }

CHAPTER 2 ■ DATA MANIPULATION

64

 // Decode a Base64-encoded decimal.
 public static decimal Base64ToDecimal (string src)
 {
 // Decode the Base64-encoded decimal to a byte array.
 byte[] b = Convert.FromBase64String(src);

 // Return the decoded decimal.
 return ByteArrayToDecimal(b);
 }

 // Base64 encode an int.
 public static string IntToBase64 (int src)
 {
 // Get a byte representation of the int.
 byte[] b = BitConverter.GetBytes(src);

 // Return the Base64-encoded int.
 return Convert.ToBase64String(b);
 }

 // Decode a Base64-encoded int.
 public static int Base64ToInt (string src)
 {
 // Decode the Base64-encoded int to a byte array.
 byte[] b = Convert.FromBase64String(src);

 // Return the decoded int.
 return BitConverter.ToInt32(b,0);
 }

 public static void Main()
 {
 // Encode and decode a general byte array. Need to create a char[]
 // to hold the Base64-encoded data. The size of the char[] must
 // be at least 4/3 the size of the source byte[] and must be
 // divisible by 4.
 byte[] data = { 0x04, 0x43, 0x5F, 0xFF, 0x0, 0xF0, 0x2D, 0x62, 0x78,
 0x22, 0x15, 0x51, 0x5A, 0xD6, 0x0C, 0x59, 0x36, 0x63, 0xBD, 0xC2,
 0xD5, 0x0F, 0x8C, 0xF5, 0xCA, 0x0C};

CHAPTER 2 ■ DATA MANIPULATION

65

 char[] base64data =
 new char[(int)(Math.Ceiling((double)data.Length / 3) * 4)];

 Console.WriteLine("\nByte array encoding/decoding");
 Convert.ToBase64CharArray(data, 0, data.Length, base64data, 0);
 Console.WriteLine(new String(base64data));
 Console.WriteLine(BitConverter.ToString(
 Convert.FromBase64CharArray(base64data, 0, base64data.Length)));

 // Encode and decode a string.
 Console.WriteLine(StringToBase64
 ("Welcome to Visual C# Recipes from Apress"));
 Console.WriteLine(Base64ToString("VwBlAGwAYwBvAG0AZQAgAHQAbwA" +
 "gAFYAaQBzAHUAYQBsACAAQwAjACAAUgBlAGMAaQBwAGUAcwAgAGYAcgB" +
 "vAG0AIABBAHAAcgBlAHMAcwA="));

 // Encode and decode a decimal.
 Console.WriteLine(DecimalToBase64(285998345545.563846696m));
 Console.WriteLine(Base64ToDecimal("KDjBUP07BoEPAAAAAAAJAA=="));

 // Encode and decode an int.
 Console.WriteLine(IntToBase64(35789));
 Console.WriteLine(Base64ToInt("zYsAAA=="));

 // Wait to continue.
 Console.WriteLine("\nMain method complete. Press Enter");
 Console.ReadLine();
 }
 }
}

■ Caution If you Base64 encode binary data for the purpose of including it as MIME data in an e-mail message,
be aware that the maximum allowed line length in MIME for Base64-encoded data is 76 characters. Therefore, if
your data is longer than 76 characters, you must insert a new line. For further information about the MIME
standard, consult RFCs 2045 through 2049, which can be found at www.ietf.org/rfc.html.

2-5. Validate Input Using Regular Expressions

Problem
You need to validate that user input or data read from a file has the expected structure and content. For
example, you want to ensure that a user enters a valid IP address, telephone number, or e-mail address.

http://www.ietf.org/rfc.html

CHAPTER 2 ■ DATA MANIPULATION

66

Solution
Use regular expressions to ensure that the input data follows the correct structure and contains only
valid characters for the expected type of information.

How It Works
When a user inputs data to your application or your application reads data from a file, it’s good practice
to assume that the data is bad until you have verified its accuracy. One common validation requirement
is to ensure that data entries such as e-mail addresses, telephone numbers, and credit card numbers
follow the pattern and content constraints expected of such data. Obviously, you cannot be sure the
actual data entered is valid until you use it, and you cannot compare it against values that are known to
be correct. However, ensuring the data has the correct structure and content is a good first step to
determining whether the input is accurate. Regular expressions provide an excellent mechanism for
evaluating strings for the presence of patterns, and you can use this to your advantage when validating
input data.

The first thing you must do is figure out the regular expression syntax that will correctly match the
structure and content of the data you are trying to validate. This is by far the most difficult aspect of
using regular expressions. Many resources exist to help you with regular expressions, such as The
Regulator (http://osherove.com/tools), and RegExDesigner.NET, by Chris Sells
(www.sellsbrothers.com/tools/#regexd). The RegExLib.com web site (www.regxlib.com) also provides
hundreds of useful prebuilt expressions.

Regular expressions are constructed from two types of elements: literals and metacharacters.
Literals represent specific characters that appear in the pattern you want to match. Metacharacters
provide support for wildcard matching, ranges, grouping, repetition, conditionals, and other control
mechanisms. Table 2-2 describes some of the more commonly used regular expression metacharacter
elements. (Consult the .NET SDK documentation for a full description of regular expressions. A good
starting point is http://msdn.microsoft.com/en-us/library/system.text.regularexpressions.
regex.aspx.)

Table 2-2. Commonly Used Regular Expression Metacharacter Elements

Element Description

. Specifies any character except a newline character (\n)

\d Specifies any decimal digit

\D Specifies any nondigit

\s Specifies any whitespace character

\S Specifies any non-whitespace character

\w Specifies any word character

\W Specifies any nonword character

http://osherove.com/tools
http://www.sellsbrothers.com/tools/#regexd
http://www.regxlib.com
http://msdn.microsoft.com/en-us/library/system.text.regularexpressions

CHAPTER 2 ■ DATA MANIPULATION

67

Element Description

^ Specifies the beginning of the string or line

\A Specifies the beginning of the string

$ Specifies the end of the string or line

\z Specifies the end of the string

| Matches one of the expressions separated by the vertical bar (pipe symbol); for example,
AAA|ABA|ABB will match one of AAA, ABA, or ABB (the expression is evaluated left to right)

[abc] Specifies a match with one of the specified characters; for example, [AbC] will match A, b, or C,
but no other characters

[^abc] Specifies a match with any one character except those specified; for example, [^AbC] will not
match A, b, or C, but will match B, F, and so on

[a-z] Specifies a match with any one character in the specified range; for example, [A-C] will match
A, B, or C

() Identifies a subexpression so that it’s treated as a single element by the regular expression
elements described in this table

? Specifies one or zero occurrencesof the previous character or subexpression; for example, A?B
matches B and AB, but not AAB

* Specifies zero or more occurrences of the previous character or subexpression; for example,
A*B matches B, AB, AAB, AAAB, and so on

+ Specifies one or more occurrences of the previous character or subexpression; for example,
A+B matches AB, AAB, AAAB, and so on, but not B

{n} Specifies exactly n occurrences of the preceding character or subexpression; for example, A{2}
matches only AA

{n,} Specifies a minimum of n occurrences of the preceding character or subexpression; for
example, A{2,} matches AA, AAA, AAAA, and so on, but not A

{n, m} Specifies a minimum of n and a maximum of m occurrences of the preceding character; for
example, A{2,4} matches AA, AAA, and AAAA, but not A or AAAAA

The more complex the data you are trying to match, the more complex the regular expression syntax

becomes. For example, ensuring that input contains only numbers or is of a minimum length is trivial,
but ensuring a string contains a valid URL is extremely complex. Table 2-3 shows some examples of
regular expressions that match against commonly required data types.

CHAPTER 2 ■ DATA MANIPULATION

68

Table 2-3. Commonly Used Regular Expressions

Input Type Description Regular Expression

Numeric input The input consists of one or more decimal digits; for
example, 5 or 5683874674.

^\d+$

Personal
identification
number (PIN)

The input consists of four decimal digits; for example,
1234.

^\d{4}$

Simple password The input consists of six to eight characters; for example,
ghtd6f or b8c7hogh.

^\w{6,8}$

Credit card
number

The input consists of data that matches the pattern of
most major credit card numbers; for example,
4921835221552042 or 4921-8352-2155-2042.

^\d{4}-?\d{4}-
?\d{4}-?\d{4}$

E-mail address The input consists of an Internet e-mail address. The [\w-
]+ expression indicates that each address element must
consist of one or more word characters or hyphens; for
example, somebody@adatum.com.

^[\w-]+@([\w-
]+\.)+[\w-]+$

HTTP or HTTPS
URL

The input consists of an HTTP-based or HTTPS-based
URL; for example, http://www.apress.com.

^https?://([\w-
]+\.)+ [\w-]+(/[\w-
./?%=]*)?$

Once you know the correct regular expression syntax, create a new System.Text.

RegularExpressions.Regex object, passing a string containing the regular expression to the Regex
constructor. Then call the IsMatch method of the Regex object and pass the string that you want to
validate. IsMatch returns a bool value indicating whether the Regex object found a match in the string.
The regular expression syntax determines whether the Regex object will match against only the full string
or match against patterns contained within the string. (See the ^, \A, $, and \z entries in Table 2-2.)

The Code
The ValidateInput method shown in the following example tests any input string to see if it matches a
specified regular expression.

using System;
using System.Text.RegularExpressions;

namespace Apress.VisualCSharpRecipes.Chapter02
{
 class Recipe02_05
 {

mailto:somebody@adatum.com
http://www.apress.com

CHAPTER 2 ■ DATA MANIPULATION

69

 public static bool ValidateInput(string regex, string input)
 {
 // Create a new Regex based on the specified regular expression.
 Regex r = new Regex(regex);

 // Test if the specified input matches the regular expression.
 return r.IsMatch(input);
 }

 public static void Main(string[] args)
 {
 // Test the input from the command line. The first argument is the
 // regular expression, and the second is the input.
 Console.WriteLine("Regular Expression: {0}", args[0]);
 Console.WriteLine("Input: {0}", args[1]);
 Console.WriteLine("Valid = {0}", ValidateInput(args[0], args[1]));

 // Wait to continue.
 Console.WriteLine("\nMain method complete. Press Enter");
 Console.ReadLine();
 }
 }
}

Usage
To execute the example, run Recipe02-05.exe and pass the regular expression and data to test as
command-line arguments. For example, to test for a correctly formed e-mail address, type the following:

Recipe02-05 ^[\w-]+@([\w-]+\.)+[\w-]+$ myname@mydomain.com

The result would be as follows:

Regular Expression: ^[\w-]+@([\w-]+\.)+[\w-]+$

Input: myname@mydomain.com

Valid = True

Notes
You can use a Regex object repeatedly to test multiple strings, but you cannot change the regular
expression tested for by a Regex object. You must create a new Regex object to test for a different pattern.
Because the ValidateInput method creates a new Regex instance each time it’s called, you do not get the
ability to reuse the Regex object. As such, a more suitable alternative in this case would be to use a static
overload of the IsMatch method, as shown in the following variant of the ValidateInput method:
// Alternative version of the ValidateInput method that does not create

mailto:myname@mydomain.com
mailto:myname@mydomain.com

CHAPTER 2 ■ DATA MANIPULATION

70

// Regex instances.
public static bool ValidateInput(string regex, string input)
{
 // Test if the specified input matches the regular expression.
 return Regex.IsMatch(input, regex);
}

2-6. Use Compiled Regular Expressions

Problem
You need to minimize the impact on application performance that arises from using complex regular
expressions frequently.

Solution
When you instantiate the System.Text.RegularExpressions.Regex object that represents your regular
expression, specify the Compiled option of the System.Text.RegularExpressions.RegexOptions
enumeration to compile the regular expression to Microsoft Intermediate Language (MSIL).

How It Works
By default, when you create a Regex object, the regular expression pattern you specify in the constructor
is compiled to an intermediate form (not MSIL). Each time you use the Regex object, the runtime
interprets the pattern’s intermediate form and applies it to the target string. With complex regular
expressions that are used frequently, this repeated interpretation process can have a detrimental effect
on the performance of your application.

By specifying the RegexOptions.Compiled option when you create a Regex object, you force the .NET
runtime to compile the regular expression to MSIL instead of the interpreted intermediary form. This
MSIL is just-in-time (JIT) compiled by the runtime to native machine code on first execution, just like
regular assembly code. You use a compiled regular expression in the same way as you use any Regex
object; compilation simply results in faster execution.

However, a couple downsides offset the performance benefits provided by compiling regular
expressions. First, the JIT compiler needs to do more work, which will introduce delays during JIT
compilation. This is most noticeable if you create your compiled regular expressions as your application
starts up. Second, the runtime cannot unload a compiled regular expression once you have finished with
it. Unlike as with a normal regular expression, the runtime’s garbage collector will not reclaim the
memory used by the compiled regular expression. The compiled regular expression will remain in
memory until your program terminates or you unload the application domain in which the compiled
regular expression is loaded.

As well as compiling regular expressions in memory, the static Regex.CompileToAssembly method
allows you to create a compiled regular expression and write it to an external assembly. This means that
you can create assemblies containing standard sets of regular expressions, which you can use from
multiple applications. To compile a regular expression and persist it to an assembly, take the following
steps:

CHAPTER 2 ■ DATA MANIPULATION

71

1. Create a System.Text.RegularExpressions.RegexCompilationInfo array large
enough to hold one RegexCompilationInfo object for each of the compiled
regular expressions you want to create.

2. Create a RegexCompilationInfo object for each of the compiled regular
expressions. Specify values for its properties as arguments to the object
constructor. The following are the most commonly used properties:

• IsPublic, a bool value that specifies whether the generated regular
expression class has public visibility

• Name, a String value that specifies the class name

• Namespace, a String value that specifies the namespace of the class

• Pattern, a String value that specifies the pattern that the regular expression
will match (see recipe 2-5 for more details)

• Options, a System.Text.RegularExpressions.RegexOptions value that
specifies options for the regular expression

3. Create a System.Reflection.AssemblyName object. Configure it to represent the
name of the assembly that the Regex.CompileToAssembly method will create.

4. Execute Regex.CompileToAssembly, passing the RegexCompilationInfo array
and the AssemblyName object.

This process creates an assembly that contains one class declaration for each compiled regular
expression—each class derives from Regex. To use the compiled regular expression contained in the
assembly, instantiate the regular expression you want to use and call its method as if you had simply
created it with the normal Regex constructor. (Remember to add a reference to the assembly when you
compile the code that uses the compiled regular expression classes.)

The Code
This line of code shows how to create a Regex object that is compiled to MSIL instead of the usual
intermediate form:

Regex reg = new Regex(@"[\w-]+@([\w-]+\.)+[\w-]+", RegexOptions.Compiled);

The following example shows how to create an assembly named MyRegEx.dll, which contains two
regular expressions named PinRegex and CreditCardRegex:

using System;
using System.Reflection;
using System.Text.RegularExpressions;

namespace Apress.VisualCSharpRecipes.Chapter02
{
 class Recipe02_06
 {

CHAPTER 2 ■ DATA MANIPULATION

72

 public static void Main()
 {
 // Create the array to hold the Regex info objects.
 RegexCompilationInfo[] regexInfo = new RegexCompilationInfo[2];

 // Create the RegexCompilationInfo for PinRegex.
 regexInfo[0] = new RegexCompilationInfo(@"^\d{4}$",
 RegexOptions.Compiled, "PinRegex", "", true);

 // Create the RegexCompilationInfo for CreditCardRegex.
 regexInfo[1] = new RegexCompilationInfo(
 @"^\d{4}-?\d{4}-?\d{4}-?\d{4}$",
 RegexOptions.Compiled, "CreditCardRegex", "", true);

 // Create the AssemblyName to define the target assembly.
 AssemblyName assembly = new AssemblyName();
 assembly.Name = "MyRegEx";

 // Create the compiled regular expression
 Regex.CompileToAssembly(regexInfo, assembly);
 }
 }
}

2-7. Create Dates and Times from Strings

Problem
You need to create a System.DateTime instance that represents the time and date specified in a string.

Solution
Use the Parse or ParseExact method of the DateTime class.

■ Caution Many subtle issues are associated with using the DateTime class to represent dates and times in your
applications. Although the Parse and ParseExact methods create DateTime objects from strings as described in
this recipe, you must be careful how you use the resulting DateTime objects within your program. See the article
titled “Coding Best Practices Using DateTime in the .NET Framework,” at http://msdn.microsoft.com/
netframework/default.aspx?pull=/library/en-us/dndotnet/html/datetimecode.asp, for details about the
problems you may encounter.

http://msdn.microsoft.com

CHAPTER 2 ■ DATA MANIPULATION

73

How It Works
Dates and times can be represented as text in many different ways. For example, 1st June 2005, 1/6/2005,
6/1/2005, and 1-Jun-2005 are all possible representations of the same date, and 16:43 and 4:43 p.m. can
both be used to represent the same time. The static DateTime.Parse method provides a flexible
mechanism for creating DateTime instances from a wide variety of string representations.

The Parse method goes to great lengths to generate a DateTime object from a given string. It will even
attempt to generate a DateTime object from a string containing partial or erroneous information and will
substitute defaults for any missing values. Missing date elements default to the current date, and missing
time elements default to 12:00:00 a.m. After all efforts, if Parse cannot create a DateTime object, it throws
a System.FormatException exception.

The Parse method is both flexible and forgiving. However, for many applications, this level of
flexibility is unnecessary. Often, you will want to ensure that DateTime parses only strings that match a
specific format. In these circumstances, use the ParseExact method instead of Parse. The simplest
overload of the ParseExact method takes three arguments: the time and date string to parse, a format
string that specifies the structure that the time and date string must have, and an IFormatProvider
reference that provides culture-specific information to the ParseExact method. If the IFormatProvider
value is null, the current thread’s culture information is used.

The time and date must meet the requirements specified in the format string, or else ParseExact will
throw a System.FormatException exception. You use the same format specifiers for the format string as
you use to format a DateTime object for display as a string. This means that you can use both standard
and custom format specifiers.

The Code
The following example demonstrates the flexibility of the Parse method and the use of the ParseExact
method. Refer to the documentation for the System.Globalization.DateTimeFormatInfo class in the .NET
Framework SDK document for complete details on all available format specifiers.

using System;

namespace Apress.VisualCSharpRecipes.Chapter02
{
 class Recipe02_07
 {
 public static void Main(string[] args)
 {
 string ds1 = "Sep 2005";
 string ds2 = "Monday 5 September 2005 14:15:33";
 string ds3 = "5,9,5";
 string ds4 = "5/9/2005 14:15:33";
 string ds5 = "2:15 PM";

 // 1st September 2005 00:00:00
 DateTime dt1 = DateTime.Parse(ds1);

 // 5th September 2005 14:15:33
 DateTime dt2 = DateTime.Parse(ds2);

CHAPTER 2 ■ DATA MANIPULATION

74

 // 5th September 2005 00:00:00
 DateTime dt3 = DateTime.Parse(ds3);

 // 5th September 2005 14:15:33
 DateTime dt4 = DateTime.Parse(ds4);

 // Current Date 14:15:00
 DateTime dt5 = DateTime.Parse(ds5);

 // Display the converted DateTime objects.
 Console.WriteLine("String: {0} DateTime: {1}", ds1, dt1);
 Console.WriteLine("String: {0} DateTime: {1}", ds2, dt2);
 Console.WriteLine("String: {0} DateTime: {1}", ds3, dt3);
 Console.WriteLine("String: {0} DateTime: {1}", ds4, dt4);
 Console.WriteLine("String: {0} DateTime: {1}", ds5, dt5);

 // Parse only strings containing LongTimePattern.
 DateTime dt6 = DateTime.ParseExact("2:13:30 PM", "h:mm:ss tt", null);

 // Parse only strings containing RFC1123Pattern.
 DateTime dt7 = DateTime.ParseExact(
 "Mon, 05 Sep 2005 14:13:30 GMT", "ddd, dd MMM yyyy HH':'mm':'ss 'GMT'",
null);

 // Parse only strings containing MonthDayPattern.
 DateTime dt8 = DateTime.ParseExact("September 05", "MMMM dd", null);

 // Display the converted DateTime objects.
 Console.WriteLine(dt6);
 Console.WriteLine(dt7);
 Console.WriteLine(dt8);

 // Wait to continue.
 Console.WriteLine("\nMain method complete. Press Enter");
 Console.ReadLine();
 }
 }
}

2-8. Add, Subtract, and Compare Dates and Times

Problem
You need to perform basic arithmetic operations or comparisons using dates and times.

CHAPTER 2 ■ DATA MANIPULATION

75

Solution
Use the DateTime and TimeSpan structures, which support standard arithmetic and comparison
operators.

How It Works
A DateTime instance represents a specific time (such as 4:15 a.m. on September 5, 1970), whereas a
TimeSpan instance represents a period of time (such as 2 hours, 35 minutes). You may want to add,
subtract, and compare TimeSpan and DateTime instances.

Internally, both DateTime and TimeSpan use ticks to represent time. A tick is equal to 100
nanoseconds (ns). TimeSpan stores its time interval as the number of ticks equal to that interval, and
DateTime stores time as the number of ticks since 12:00:00 midnight on January 1 in 0001 CE. (CE stands
for Common Era and is equivalent to AD in the Gregorian calendar.) This approach and the use of
operator overloading makes it easy for DateTime and TimeSpan to support basic arithmetic and
comparison operations. Table 2-4 summarizes the operator support provided by the DateTime and
TimeSpan structures.

Table 2-4. Operators Supported by DateTime and TimeSpan

Operator TimeSpan DateTime

Assignment (=) Because TimeSpan is a structure,
assignment returns a copy, not a
reference

Because DateTime is a structure,
assignment returns a copy, not a
reference

Addition (+) Adds two TimeSpan instances Adds a TimeSpan instance to a DateTime
instance

Subtraction (-) Subtracts one TimeSpan instance from
another TimeSpan instance

Subtracts a TimeSpan instance or a
DateTime instance from a DateTime
instance

Equality (==) Compares two TimeSpan instances and
returns true if they are equal

Compares two DateTime instances and
returns true if they are equal

Inequality (!=) Compares two TimeSpan instances and
returns true if they are not equal

Compares two DateTime instances and
returns true if they are not equal

Greater than (>) Determines if one TimeSpan instance is
greater than another TimeSpan instance

Determines if one DateTime instance is
greater than another DateTime instance

Greater than or
equal to (>=)

Determines if one TimeSpan instance is
greater than or equal to another
TimeSpan instance

Determines if one DateTime instance is
greater than or equal to another
DateTime instance

CHAPTER 2 ■ DATA MANIPULATION

76

Operator TimeSpan DateTime

Less than (<) Determines if one TimeSpan instance is
less than another TimeSpan instance

Determines if one DateTime instance is
less than another DateTime instance

Less than or
equal to (<=)

Determines if one TimeSpan instance is
less than or equal to another TimeSpan

Determines if one DateTime instance is
less than or equal to another DateTime
instance

Unary negation
(-)

Returns a TimeSpan instance with a
negated value of the specified TimeSpan
instance

Not supported

Unary plus (+) Returns the TimeSpan instance specified Not supported

The DateTime structure also implements the AddTicks, AddMilliseconds, AddSeconds, AddMinutes,

AddHours, AddDays, AddMonths, and AddYears methods. Each of these methods allows you to add (or
subtract using negative values) the appropriate element of time to a DateTime instance. These methods
and the operators listed in Table 2-4 do not modify the original DateTime; instead, they create a new
instance with the modified value.

The Code
The following example demonstrates the use of operators to manipulate the DateTime and TimeSpan
structures:

using System;

namespace Apress.VisualCSharpRecipes.Chapter02
{
 class Recipe02_08
 {
 public static void Main()
 {
 // Create a TimeSpan representing 2.5 days.
 TimeSpan timespan1 = new TimeSpan(2, 12, 0, 0);

 // Create a TimeSpan representing 4.5 days.
 TimeSpan timespan2 = new TimeSpan(4, 12, 0, 0);

 // Create a TimeSpan representing 3.2 days.
 // using the static convenience method
 TimeSpan timespan3 = TimeSpan.FromDays(3.2);

 // Create a TimeSpan representing 1 week.
 TimeSpan oneWeek = timespan1 + timespan2;

CHAPTER 2 ■ DATA MANIPULATION

77

 // Create a DateTime with the current date and time.
 DateTime now = DateTime.Now;

 // Create a DateTime representing 1 week ago.
 DateTime past = now - oneWeek;

 // Create a DateTime representing 1 week in the future.
 DateTime future = now + oneWeek;

 // Display the DateTime instances.
 Console.WriteLine("Now : {0}", now);
 Console.WriteLine("Past : {0}", past);
 Console.WriteLine("Future: {0}", future);

 // Use the comparison operators.
 Console.WriteLine("Now is greater than past: {0}", now > past);
 Console.WriteLine("Now is equal to future: {0}", now == future);

 // Wait to continue.
 Console.WriteLine("\nMain method complete. Press Enter");
 Console.ReadLine();
 }
 }
}

2-9. Sort an Array or a Collection

Problem
You need to sort the elements contained in an array or a collection.

Solution
Use the static System.Linq.Enumerable.OrderBy method to sort generic collections and arrays. For other
collections, use the Cast method to convert to a generic collection and then use Enumerable.OrderBy. Use
ArrayList.Sort for ArrayList objects.

How It Works
The static Enumerable.OrderBy method takes an implementation of the IEnumerable interface and a
function delegate (which can be a lambda expression). The generic collection classes all implement
IEnumerable and they, as well as arrays, can be sorted. The function delegate allows you to specify
which property or method will be used to sort the data—the parameter is a data element from the
collection or array and the return value is what you wish to represent that value in the sort operation.
So, for example, if you wish to sort a collection of MyType instances using the myProperty property for
sorting, you would call

CHAPTER 2 ■ DATA MANIPULATION

78

 List<MyType> list = new List<MyType>();
 Enumerable.OrderBy(list, x => x.myProperty);

Enumerable.OrderBy returns an instance of IOrderedEnumerable, which you can use to enumerate the
sorted data (for example, in a foreach loop) or use to create a new sorted collection, by calling the
ToArray, ToDictionary, or ToList method.

Nongeneric collections (those that are created without the <type> syntax) must be converted to
generic collections using the Cast<> method. You must either ensure that all of the items in your
collection are of the type specified or use Cast<object>() to obtain a collection that will work with any
type that is contained.

The ArrayList collection is an exception in that it cannot be used with the generic syntax. For
instances of ArrayList, use the ArrayList.Sort() method.

The Code
The following example demonstrates how to sort an array, a generic List, and an ArrayList:

using System;
using System.Collections;
using System.Collections.Generic;
using System.Linq;

namespace Apress.VisualCSharpRecipes.Chapter02
{
 class Recipe02_09
 {
 public static void Main()
 {
 // Create a new array and populate it.
 int[] array = { 4, 2, 9, 3 };

 // Created a new, sorted array
 array = Enumerable.OrderBy(array, e => e).ToArray<int>();

 // Display the contents of the sorted array.
 foreach (int i in array) {
 Console.WriteLine(i);
 }

 // Create a list and populate it.
 List<string> list = new List<string>();
 list.Add("Michael");
 list.Add("Kate");
 list.Add("Andrea");
 list.Add("Angus");

CHAPTER 2 ■ DATA MANIPULATION

79

 // Enumerate the sorted contents of the list.
 Console.WriteLine("\nList sorted by content");
 foreach (string person in Enumerable.OrderBy(list, e => e))
 {
 Console.WriteLine(person);
 }

 // Sort and enumerate based on a property.
 Console.WriteLine("\nList sorted by length property");
 foreach (string person in Enumerable.OrderBy(list, e => e.Length))
 {
 Console.WriteLine(person);
 }

 // Create a new ArrayList and populate it.
 ArrayList arraylist = new ArrayList(4);
 arraylist.Add("Michael");
 arraylist.Add("Kate");
 arraylist.Add("Andrea");
 arraylist.Add("Angus");

 // Sort the ArrayList.
 arraylist.Sort();

 // Display the contents of the sorted ArrayList.
 Console.WriteLine("\nArraylist sorted by content");
 foreach (string s in list) {
 Console.WriteLine(s);
 }

 // Wait to continue.
 Console.WriteLine("\nMain method complete. Press Enter");
 Console.ReadLine();
 }
 }
}

2-10. Copy a Collection to an Array

Problem
You need to copy the contents of a collection to an array.

Solution
Use the ICollection.CopyTo method implemented by all collection classes, or use the ToArray method
implemented by the ArrayList, Stack, and Queue collections.

CHAPTER 2 ■ DATA MANIPULATION

80

How It Works
The ICollection.CopyTo method and the ToArray method perform roughly the same function: they
perform a shallow copy of the elements contained in a collection to an array. The key difference is that
CopyTo copies the collection’s elements to an existing array, whereas ToArray creates a new array before
copying the collection’s elements into it.

The CopyTo method takes two arguments: an array and an index. The array is the target of the copy
operation and must be of a type appropriate to handle the elements of the collection. If the types do not
match, or no implicit conversion is possible from the collection element’s type to the array element’s
type, a System.InvalidCastException exception is thrown. The index is the starting element of the array
where the collection’s elements will be copied. If the index is equal to or greater than the length of the
array, or the number of collection elements exceeds the capacity of the array, a
System.ArgumentException exception is thrown.

The ArrayList, Stack, and Queue classes and their generic versions also implement the ToArray
method, which automatically creates an array of the correct size to accommodate a copy of all the
elements of the collection. If you call ToArray with no arguments, it returns an object[] array, regardless
of the type of objects contained in the collection. For convenience, the ArrayList.ToArray method has
an overload to which you can pass a System.Type object that specifies the type of array that the ToArray
method should create. (You must still cast the returned strongly typed array to the correct type.) The
layout of the array’s contents depends on which collection class you are using. For example, an array
produced from a Stack object will be inverted compared to the array generated by an ArrayList object.

The Code
This example demonstrates how to copy the contents of an ArrayList structure to an array using the
CopyTo method, and then shows how to use the ToArray method on the ArrayList object.

using System;
using System.Collections;

namespace Apress.VisualCSharpRecipes.Chapter02
{
 class Recipe02_10
 {
 public static void Main()
 {
 // Create a new ArrayList and populate it.
 ArrayList list = new ArrayList(5);
 list.Add("Brenda");
 list.Add("George");
 list.Add("Justin");
 list.Add("Shaun");
 list.Add("Meaghan");

 // Create a string array and use the ICollection.CopyTo method
 // to copy the contents of the ArrayList.
 string[] array1 = new string[list.Count];
 list.CopyTo(array1, 0);

CHAPTER 2 ■ DATA MANIPULATION

81

 // Use ArrayList.ToArray to create an object array from the
 // contents of the collection.
 object[] array2 = list.ToArray();

 // Use ArrayList.ToArray to create a strongly typed string
 // array from the contents of the collection.
 string[] array3 = (string[])list.ToArray(typeof(String));

 // Display the contents of the three arrays.
 Console.WriteLine("Array 1:");
 foreach (string s in array1)
 {
 Console.WriteLine("\t{0}",s);
 }

 Console.WriteLine("Array 2:");
 foreach (string s in array2)
 {
 Console.WriteLine("\t{0}", s);
 }

 Console.WriteLine("Array 3:");
 foreach (string s in array3)
 {
 Console.WriteLine("\t{0}", s);
 }

 // Wait to continue.
 Console.WriteLine("\nMain method complete. Press Enter");
 Console.ReadLine();
 }
 }
}

2-11. Use a Strongly Typed Collection

Problem
You need a collection that works with elements of a specific type so that you do not need to work with
System.Object references in your code.

Solution
Use the appropriate collection class from the System.Collections.Generic namespace. When you
instantiate the collection, specify the type of object the collection should contain using the generics
syntax.

CHAPTER 2 ■ DATA MANIPULATION

82

How It Works
The generics functionality makes it easy to create type-safe collections and containers (see recipe 2-12).
To meet the most common requirements for collection classes, the System.Collections.Generic
namespace contains a number of predefined generic collections, including the following:

• Dictionary

• LinkedList

• List

• Queue

• Stack

When you instantiate one of these collections, you specify the type of object that the collection will
contain by including the type name in angled brackets after the collection name; for example,
List<System.Reflection.AssemblyName>. As a result, all members that add objects to the collection
expect the objects to be of the specified type, and all members that return objects from the collection
will return object references of the specified type. Using strongly typed collections and working directly
with objects of the desired type simplifies development and reduces the errors that can occur when
working with general Object references and casting them to the desired type.

The Code
The following example demonstrates the use of generic collections to create a variety of collections
specifically for the management of AssemblyName objects. Notice that you never need to cast to or from
the Object type.

using System;
using System.Reflection;
using System.Collections.Generic;

namespace Apress.VisualCSharpRecipes.Chapter02
{
 class Recipe02_11
 {
 public static void Main(string[] args)
 {
 // Create an AssemblyName object for use during the example.
 AssemblyName assembly1 = new AssemblyName("com.microsoft.crypto, " +
 "Culture=en, PublicKeyToken=a5d015c7d5a0b012, Version=1.0.0.0");

 // Create and use a Dictionary of AssemblyName objects.
 Dictionary<string,AssemblyName> assemblyDictionary =
 new Dictionary<string,AssemblyName>();

 assemblyDictionary.Add("Crypto", assembly1);

 AssemblyName a1 = assemblyDictionary["Crypto"];

CHAPTER 2 ■ DATA MANIPULATION

83

 Console.WriteLine("Got AssemblyName from dictionary: {0}", a1);

 // Create and use a List of Assembly Name objects.
 List<AssemblyName> assemblyList = new List<AssemblyName>();

 assemblyList.Add(assembly1);

 AssemblyName a2 = assemblyList[0];

 Console.WriteLine("\nFound AssemblyName in list: {0}", a1);

 // Create and use a Stack of Assembly Name objects.
 Stack<AssemblyName> assemblyStack = new Stack<AssemblyName>();

 assemblyStack.Push(assembly1);

 AssemblyName a3 = assemblyStack.Pop();

 Console.WriteLine("\nPopped AssemblyName from stack: {0}", a1);

 // Wait to continue.
 Console.WriteLine("\nMain method complete. Press Enter");
 Console.ReadLine();
 }
 }
}

2-12. Create a Generic Type

Problem
You need to create a new general-purpose type such as a collection or container that supports strong
typing of the elements it contains.

Solution
Define your class using the .NET Framework generics syntax.

How It Works
You can leverage the generics capabilities of the .NET Framework in any class you define. This allows
you to create general-purpose classes that can be used as type-safe instances by other programmers.
When you declare your type, you identify it as a generic type by following the type name with a pair of
angled brackets that contain a list of identifiers for the types used in the class. Here is an example:

public class MyGenericType<T1, T2, T3>

CHAPTER 2 ■ DATA MANIPULATION

84

This declaration specifies a new class named MyGenericType, which uses three generic types in its
implementation (T1, T2, and T3). When implementing the type, you substitute the generic type names
into the code instead of using specific type names. For example, one method might take an argument of
type T1 and return a result of type T2, as shown here:

public T2 MyGenericMethod(T1 arg)

When other people use your class and create an instance of it, they specify the actual types to use as
part of the instantiation. Here is an example:

MyGenericType<string,Stream,string> obj = new MyGenericType<string,Stream,string>();

The types specified replace T1, T2, and T3 throughout the implementation, so with this instance,
MyGenericMethod would actually be interpreted as follows:

public Stream MyGenericMethod(string arg)

You can also include constraints as part of your generic type definition. This allows you to make
specifications such as the following:

• Only value types or only reference types can be used with the generic type.

• Only types that implement a default (empty) constructor can be used with the
generic type.

• Only types that implement a specific interface can be used with the generic type.

• Only types that inherit from a specific base class can be used with the
generic type.

• One generic type must be the same as another generic type (for example, T1 must
be the same as T3).

For example, to specify that T1 must implement the System.IDisposable interface and provide a
default constructor, that T2 must be or derive from the System.IO.Stream class, and that T3 must be the
same type as T1, change the definition of MyGenericType as follows:

public class MyGenericType<T1, T2, T3>
 where T1 : System.IDisposable, new()
 where T2 : System.IO.Stream
 where T3 : T1
{ * ...Implementation... *\ }

The Code
The following example demonstrates a simplified bag implementation that returns those objects put
into it at random. A bag is a data structure that can contain zero or more items, including duplicates of
items, but does not guarantee any ordering of the items it contains.

using System;
using System.Collections.Generic;

CHAPTER 2 ■ DATA MANIPULATION

85

namespace Apress.VisualCSharpRecipes.Chapter02
{
 public class Bag<T>
 {
 // A List to hold the bags's contents. The list must be
 // of the same type as the bag.
 private List<T> items = new List<T>();

 // A method to add an item to the bag.
 public void Add(T item)
 {
 items.Add(item);
 }

 // A method to get a random item from the bag.
 public T Remove()
 {
 T item = default(T);

 if (items.Count != 0)
 {
 // Determine which item to remove from the bag.
 Random r = new Random();
 int num = r.Next(0, items.Count);

 // Remove the item.
 item = items[num];
 items.RemoveAt(num);
 }
 return item;
 }

 // A method to provide an enumerator from the underlying list
 public IEnumerator<T> GetEnumerator()
 {
 return items.GetEnumerator();
 }

 // A method to remove all items from the bag and return them
 // as an array
 public T[] RemoveAll()
 {
 T[] i = items.ToArray();
 items.Clear();
 return i;
 }
 }

CHAPTER 2 ■ DATA MANIPULATION

86

 public class Recipe02_12
 {
 public static void Main(string[] args)
 {
 // Create a new bag of strings.
 Bag<string> bag = new Bag<string>();

 // Add strings to the bag.
 bag.Add("Darryl");
 bag.Add("Bodders");
 bag.Add("Gary");
 bag.Add("Mike");
 bag.Add("Nigel");
 bag.Add("Ian");

 Console.WriteLine("Bag contents are:");
 foreach (string elem in bag)
 {
 Console.WriteLine("Element: {0}", elem);
 }

 // Take four strings from the bag and display.
 Console.WriteLine("\nRemoving individual elements");
 Console.WriteLine("Removing = {0}", bag.Remove());
 Console.WriteLine("Removing = {0}", bag.Remove());
 Console.WriteLine("Removing = {0}", bag.Remove());
 Console.WriteLine("Removing = {0}", bag.Remove());

 Console.WriteLine("\nBag contents are:");
 foreach (string elem in bag)
 {
 Console.WriteLine("Element: {0}", elem);
 }

 // Remove the remaining items from the bag.
 Console.WriteLine("\nRemoving all elements");
 string[] s = bag.RemoveAll();

 Console.WriteLine("\nBag contents are:");
 foreach (string elem in bag)
 {
 Console.WriteLine("Element: {0}", elem);
 }

 // Wait to continue.
 Console.WriteLine("\nMain method complete. Press Enter");
 Console.ReadLine();
 }
 }
}

CHAPTER 2 ■ DATA MANIPULATION

87

2-13. Store a Serializable Object to a File

Problem
You need to store a serializable object and its state to a file, and then deserialize it later.

Solution
Use a formatter to serialize the object and write it to a System.IO.FileStream object. When you need to
retrieve the object, use the same type of formatter to read the serialized data from the file and deserialize
the object. The .NET Framework class library includes the following formatter implementations for
serializing objects to binary or SOAP format:

• System.Runtime.Serialization.Formatters.Binary.BinaryFormatter

• System.Runtime.Serialization.Formatters.Soap.SoapFormatter

How It Works
Using the BinaryFormatter and SoapFormatter classes, you can serialize an instance of any serializable
type. (See recipe 13-1 for details on how to make a type serializable.) The BinaryFormatter class
produces a binary data stream representing the object and its state. The SoapFormatter class produces a
SOAP document.

Both the BinaryFormatter and SoapFormatter classes implement the interface
System.Runtime.Serialization.IFormatter, which defines two methods: Serialize and Deserialize.
The Serialize method takes a System.IO.Stream reference and a System.Object reference as arguments,
serializes the Object, and writes it to the Stream. The Deserialize method takes a Stream reference as an
argument, reads the serialized object data from the Stream, and returns an Object reference to a
deserialized object. You must cast the returned Object reference to the correct type.

■ Note You will need to reference the System.Runtime.Serialization.Formatters.Soap assembly in order to
use SoapFormatter. The BinaryFormatter class is contained in the core assembly and requires no additional
project references

The Code
The example shown here demonstrates the use of both BinaryFormatter and SoapFormatter to serialize a
System.Collections.ArrayList object containing a list of people to a file. The ArrayList object is then
deserialized from the files and the contents displayed to the console.

CHAPTER 2 ■ DATA MANIPULATION

88

using System;
using System.IO;
using System.Collections;
using System.Runtime.Serialization.Formatters.Soap;
using System.Runtime.Serialization.Formatters.Binary;

namespace Apress.VisualCSharpRecipes.Chapter02
{
 class Recipe02_13
 {
 // Serialize an ArrayList object to a binary file.
 private static void BinarySerialize(ArrayList list)
 {
 using (FileStream str = File.Create("people.bin"))
 {
 BinaryFormatter bf = new BinaryFormatter();
 bf.Serialize(str, list);
 }
 }

 // Deserialize an ArrayList object from a binary file.
 private static ArrayList BinaryDeserialize()
 {
 ArrayList people = null;

 using (FileStream str = File.OpenRead("people.bin"))
 {
 BinaryFormatter bf = new BinaryFormatter();
 people = (ArrayList)bf.Deserialize(str);
 }
 return people;
 }

 // Serialize an ArrayList object to a SOAP file.
 private static void SoapSerialize(ArrayList list)
 {
 using (FileStream str = File.Create("people.soap"))
 {
 SoapFormatter sf = new SoapFormatter();
 sf.Serialize(str, list);
 }
 }

 // Deserialize an ArrayList object from a SOAP file.
 private static ArrayList SoapDeserialize()
 {
 ArrayList people = null;

CHAPTER 2 ■ DATA MANIPULATION

89

 using (FileStream str = File.OpenRead("people.soap"))
 {
 SoapFormatter sf = new SoapFormatter();
 people = (ArrayList)sf.Deserialize(str);
 }
 return people;
 }

 public static void Main()
 {
 // Create and configure the ArrayList to serialize.
 ArrayList people = new ArrayList();
 people.Add("Graeme");
 people.Add("Lin");
 people.Add("Andy");

 // Serialize the list to a file in both binary and SOAP form.
 BinarySerialize(people);
 SoapSerialize(people);

 // Rebuild the lists of people from the binary and SOAP
 // serializations and display them to the console.
 ArrayList binaryPeople = BinaryDeserialize();
 ArrayList soapPeople = SoapDeserialize();

 Console.WriteLine("Binary people:");
 foreach (string s in binaryPeople)
 {
 Console.WriteLine("\t" + s);
 }

 Console.WriteLine("\nSOAP people:");
 foreach (string s in soapPeople)
 {
 Console.WriteLine("\t" + s);
 }

 // Wait to continue.
 Console.WriteLine("\nMain method complete. Press Enter");
 Console.ReadLine();
 }
 }
}

The SOAP file that the example produces is show following. The binary file is not human-readable.

CHAPTER 2 ■ DATA MANIPULATION

90

<SOAP-ENV:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:SOAP-

ENC="http://schemas.xmlsoap.org/soap/encoding/" xmlns:SOAP-

ENV="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:clr="http://schemas.microsoft.com/soap/encoding/clr/1.0" SOAP-

ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

<SOAP-ENV:Body>

<a1:ArrayList id="ref-1" xmlns:a1="http://schemas.microsoft.com/clr/ns/System.Collections">

<_items href="#ref-2"/>

<_size>3</_size>

<_version>3</_version>

</a1:ArrayList>

<SOAP-ENC:Array id="ref-2" SOAP-ENC:arrayType="xsd:anyType[4]">

<item id="ref-3" xsi:type="SOAP-ENC:string">Graeme</item>

<item id="ref-4" xsi:type="SOAP-ENC:string">Lin</item>

<item id="ref-5" xsi:type="SOAP-ENC:string">Andy</item>

</SOAP-ENC:Array>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

2-14. Serialize an Object Using JSON

Problem
You need to serialize an object to or from JavaScript Object Notation (JSON).

http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema
http://schemas.xmlsoap.org/soap/encoding
http://schemas.xmlsoap.org/soap/envelope
http://schemas.microsoft.com/soap/encoding/clr/1.0
http://schemas.xmlsoap.org/soap/encoding
http://schemas.microsoft.com/clr/ns/System.Collections
http://schemas.xmlsoap.org/soap/encoding
http://schemas.xmlsoap.org/soap/envelope

CHAPTER 2 ■ DATA MANIPULATION

91

Solution
Create a Stream that either writes to the destination you wish to serialize to or is the source of the data
you wish to deserialize from. Create an instance of DataContractJsonSerializer, using the type of the
object that you wish to serialize or deserialize as the constructor argument. Call WriteObject (to
serialize) or ReadObject (to deserialize) using the object you wish to process as a method argument.

How It Works
The DataContractJsonSerializer class is part of the wider .NET data contract support, which allows you
to create a formal contract between a client and a service about the way in which data will be exchanged.
For our purposes, we need only know that Microsoft has included data contract support for most .NET
data types (including collections), allowing easy serialization to and from JSON.

■ Note You will need to reference the System.ServiceModel.Web and System.Runtime.Serialization
assemblies in order to use DataContractJsonSerializer.

When creating an instance of DataContractJsonSerializer, you must supply the type of the object
that you are going to serialize or deserialize as a constructor argument—you can obtain this by calling
the GetType method on any object. To serialize an object, call the WriteObject method using the object
you wish to serialize and the Stream you wish to serialize it to as method arguments. The WriteObject
method will throw an exception if you try to serialize an object that does not match the type you used in
the constructor.

To deserialize an object, call the ReadObject method using a Stream that contains the JSON data you
wish to process—if you have received the JSON data as a string, you can use the MemoryStream class (see
the code following for an illustration of this technique). The ReadObject method returns an object, and
so you must cast to your target type.

To serialize a data type that you have created, use the [Serializable] annotation as follows:

 [Serializable]
 class MyJSONType
 {
 public string myFirstProperty { get; set;}
 public string mySecondProperty { get; set; }
 }

Using [Serializable] will serialize all of the members of your class. If you wish to be selective about
which members are included in the JSON data, then use the [DataContract] annotation at the class
level, and mark each member you wish to be included with the [DataMember] annotation, as follows:

CHAPTER 2 ■ DATA MANIPULATION

92

 [DataContract]
 class MyJSONType
 {
 [DataMember]
 public string myFirstProperty { get; set;}
 public string mySecondProperty { get; set; }
 }

For the simple class shown, this will result in the myFirstProperty member being included in the
JSON output and mySecondProperty excluded.

The Code
The following example serializes a List of strings using a MemoryStream, prints out the resulting JSON,
and then deserializes the List in order to print out the contents.

using System;
using System.Collections.Generic;
using System.Runtime.Serialization.Json;
using System.IO;
using System.Text;

namespace Apress.VisualCSharpRecipes.Chapter02
{
 class Recipe02_14
 {
 public static void Main()
 {

 // Create a list of strings.
 List<string> myList = new List<string>()
 {
 "apple", "orange", "banana", "cherry"
 };

 // Create memory stream - we will use this
 // to get the JSON serialization as a string.
 MemoryStream memoryStream = new MemoryStream();

 // Create the JSON serializer.
 DataContractJsonSerializer jsonSerializer
 = new DataContractJsonSerializer(myList.GetType());

 // Serialize the list.
 jsonSerializer.WriteObject(memoryStream, myList);

 // Get the JSON string from the memory stream.
 string jsonString = Encoding.Default.GetString(memoryStream.ToArray());

CHAPTER 2 ■ DATA MANIPULATION

93

 // Write the string to the console.
 Console.WriteLine(jsonString);

 // Create a new stream so we can read the JSON data.
 memoryStream = new MemoryStream(Encoding.Default.GetBytes(jsonString));

 // Deserialize the list.
 myList = jsonSerializer.ReadObject(memoryStream) as List<string>;

 // Enumerate the strings in the list.
 foreach (string strValue in myList)
 {
 Console.WriteLine(strValue);
 }

 // Wait to continue.
 Console.WriteLine("\nMain method complete. Press Enter");
 Console.ReadLine();
 }
 }
}

2-15. Read User Input from the Console

Problem
You want to read user input from the Windows console, either a line or character at a time.

Solution
Use the Read or ReadLine method of the System.Console class to read input when the user presses Enter.
To read input without requiring the user to press Enter, use the Console.ReadKey method.

How It Works
The simplest way to read input from the console is to use the static Read or ReadLine methods of the
Console class. These methods will both cause your application to block, waiting for the user to enter
input and press Enter. In both instances, the user will see the input characters in the console. Once the
user presses Enter, the Read method will return an int value representing the next character of input
data, or -1 if no more data is available. The ReadLine method will return a string containing all the data
entered, or an empty string if no data was entered.

The .NET Framework includes the Console.ReadKey method, which provides a way to read input
from the console without waiting for the user to press Enter. The ReadKey method waits for the user to
press a key and returns a System.ConsoleKeyInfo object to the caller. By passing true as an argument to
an overload of the ReadKey method, you can also prevent the key pressed by the user from being echoed
to the console.

CHAPTER 2 ■ DATA MANIPULATION

94

The returned ConsoleKeyInfo object contains details about the key pressed. The details are
accessible through the properties of the ConsoleKeyInfo class (summarized in Table 2-5).

Table 2-5. Properties of the ConsoleKeyInfo Class

Property Description

Key Gets a value of the System.ConsoleKey enumeration representing the key pressed. The
ConsoleKey enumeration contains values that represent all of the keys usually found on a
keyboard. These include all the character and function keys; navigation and editing keys
like Home, Insert, and Delete; and more modern specialized keys like the Windows key,
media player control keys, browser activation keys, and browser navigation keys.

KeyChar Gets a char value containing the Unicode character representation of the key pressed.

Modifiers Gets a bitwise combination of values from the System.ConsoleModifiers enumeration that
identifies one or more modifier keys pressed simultaneously with the console key. The
members of the ConsoleModifiers enumeration are Alt, Control, and Shift.

The KeyAvailable method of the Console class returns a bool value indicating whether input is

available in the input buffer without blocking your code.

The Code
The following example reads input from the console one character at a time using the ReadKey method. If
the user presses F1, the program toggles in and out of “secret” mode, where input is masked by asterisks.
When the user presses Esc, the console is cleared and the input the user has entered is displayed. If the
user presses Alt+X or Alt+x, the example terminates.

using System;
using System.Collections.Generic;

namespace Apress.VisualCSharpRecipes.Chapter02
{
 class Recipe02_15
 {
 public static void Main()
 {
 // Local variable to hold the key entered by the user.
 ConsoleKeyInfo key;

 // Control whether character or asterisk is displayed.
 bool secret = false;

 // Character List for the user data entered.
 List<char> input = new List<char>();

CHAPTER 2 ■ DATA MANIPULATION

95

 string msg = "Enter characters and press Escape to see input." +
 "\nPress F1 to enter/exit Secret mode and Alt-X to exit.";

 Console.WriteLine(msg);

 // Process input until the user enters "Alt+X" or "Alt+x".
 do
 {
 // Read a key from the console. Intercept the key so that it is not
 // displayed to the console. What is displayed is determined later
 // depending on whether the program is in secret mode.
 key = Console.ReadKey(true);

 // Switch secret mode on and off.
 if (key.Key == ConsoleKey.F1)
 {
 if (secret)
 {
 // Switch secret mode off.
 secret = false;
 }
 else
 {
 // Switch secret mode on.
 secret = true;
 }
 }

 // Handle Backspace.
 if (key.Key == ConsoleKey.Backspace)
 {
 if (input.Count > 0)
 {
 // Backspace pressed, remove the last character.
 input.RemoveAt(input.Count - 1);

 Console.Write(key.KeyChar);
 Console.Write(" ");
 Console.Write(key.KeyChar);
 }
 }
 // Handle Escape.
 else if (key.Key == ConsoleKey.Escape)
 {
 Console.Clear();
 Console.WriteLine("Input: {0}\n\n",
 new String(input.ToArray()));
 Console.WriteLine(msg);
 input.Clear();
 }
 // Handle character input.

CHAPTER 2 ■ DATA MANIPULATION

96

 else if (key.Key >= ConsoleKey.A && key.Key <= ConsoleKey.Z)
 {
 input.Add(key.KeyChar);
 if (secret)
 {
 Console.Write("*");
 }
 else
 {
 Console.Write(key.KeyChar);
 }
 }
 } while (key.Key != ConsoleKey.X
 || key.Modifiers != ConsoleModifiers.Alt);

 // Wait to continue.
 Console.WriteLine("\n\nMain method complete. Press Enter");
 Console.ReadLine();
 }
 }
}

2-16. Using Large Integer Values

Problem
You need to work with an integer value that exceeds the size of the default numeric types.

Solution
Use the System.Numerics.BigInteger class.

How It Works
Numeric values in the .NET Framework have maximum and minimum values based on how much
memory is allocated by the data type. The System.Numerics.BigInteger class has no such limits, and can
be used to perform operations on very large integer values.

Instances of BigInteger are immutable, and you perform operations using the static methods of the
BigInteger class, each of which will return a new instance of BigInteger as the result—see the code in
this recipe for an example.

The Code
The following example creates a BigInteger with a value that is twice the maximum value of Int64 and
then adds another Int64.MaxValue.

CHAPTER 2 ■ DATA MANIPULATION

97

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Numerics;

namespace Apress.VisualCSharpRecipes.Chapter02
{
 class Recipe2_16
 {
 static void Main(string[] args)
 {
 // Create a new big integer.
 BigInteger myBigInt = BigInteger.Multiply(Int64.MaxValue, 2);
 // Add another value.
 myBigInt = BigInteger.Add(myBigInt, Int64.MaxValue);
 // Print out the value.
 Console.WriteLine("Big Integer Value: {0}", myBigInt);

 // Wait to continue.
 Console.WriteLine("\n\nMain method complete. Press Enter");
 Console.ReadLine();
 }
 }
}

2-17. Select Collection or Array Elements

Problem
You need to select elements from a collection or an array.

Solution
Use the basic features of Language-Integrated Query (LINQ).

How It Works
LINQ allows you to select elements from a collection based on characteristics of the elements contained
within the collection. The basic sequence for querying a collection or array using LINQ is as follows:

CHAPTER 2 ■ DATA MANIPULATION

98

1. Start a new LINQ query using the from keyword.

2. Identify the conditions to use in selecting elements with the where keyword.

3. Indicate what value will be added to the result set from each matching element
using the select keyword.

4. Specify the way you want the results to be sorted using the orderby keyword.

The output of a LINQ query is an instance of IEnumerable containing the collection/array elements
that meet your search criteria—you can use IEnumerable to walk through the matching elements using a
foreach loop, or as the data source for further LINQ queries. The following is an example of a LINQ query
against a string array—we select the first character of any entry longer than four characters and order
the results based on length:

IEnumerable<char> linqResult
= from e in stringArray where e.Length > 4 orderby e.Length select e[0];

Queries can also be written using lambda expressions and the methods available on the collections
classes and array types. The preceding query would be as follows with lambda expressions:

IEnumerable<char> linqResult
= stringArray.Where(e => e.Length > 4).OrderBy(e => e.Length).Select(e => e[0]);

For large collections and arrays, you can use Parallel LINQ (PLINQ), which will partition your query
and use multiple threads to process the data in parallel. You enable PLINQ by using the AsParallel
method on your collection or array—for example:

IEnumerable<char> linqResult
= from e in stringArray.AsParallel() where e.Length > 4 orderby e.Length select e[0];

LINQ is a rich and flexible feature and provides additional keywords to specify more complex
queries—see Chapter 16 for further LINQ recipes.

The Code
The following example defines a class Fruit, which has properties for the name and color of a type of
fruit. A List is created and populated with fruits, which are then used as the basis of a LINQ query—the
query is performed using keywords and then repeated using lambda expressions.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Apress.VisualCSharpRecipes.Chapter02
{
 class Recipe02_17
 {
 static void Main(string[] args)
 {

CHAPTER 2 ■ DATA MANIPULATION

99

 // Create a list of fruit.
 List<Fruit> myList = new List<Fruit>() {
 new Fruit("apple", "green"),
 new Fruit("orange", "orange"),
 new Fruit("banana", "yellow"),
 new Fruit("mango", "yellow"),
 new Fruit("cherry", "red"),
 new Fruit("fig", "brown"),
 new Fruit("cranberry", "red"),
 new Fruit("pear", "green")
 };

 // Select the names of fruit that isn't red and whose name
 // does not start with the letter "c."
 IEnumerable<string> myResult = from e in myList where e.Color

!= "red" && e.Name[0] != 'c' orderby e.Name select e.Name;
 // Write out the results.
 foreach (string result in myResult)
 {
 Console.WriteLine("Result: {0}", result);
 }

 // Perform the same query using lambda expressions.
 myResult = myList.Where(e => e.Color != "red" && e.Name[0]

!= 'c').OrderBy(e => e.Name).Select(e => e.Name);
 // Write out the results.
 foreach (string result in myResult)
 {
 Console.WriteLine("Lambda Result: {0}", result);
 }

 // Wait to continue.
 Console.WriteLine("\n\nMain method complete. Press Enter");
 Console.ReadLine();
 }
 }

 class Fruit
 {
 public Fruit(string nameVal, string colorVal)
 {
 Name = nameVal;
 Color = colorVal;
 }
 public string Name { get; set; }
 public string Color { get; set; }
 }
}

CHAPTER 2 ■ DATA MANIPULATION

100

2-18. Remove Duplicate Items from an Array or Collection

Problem
You need to remove duplicate entries from an array or collection.

Solution
Use the Distinct method available in array and collection types.

How It Works
The Distinct method is part of the LINQ feature of the .NET Framework, which we used in the previous
recipe to select items from a collection. The Distinct method returns an instance of IEnumerable, which
can be converted into an array or collection with the ToArray, ToList, and ToDictionary methods. You
can provide an instance of IEqualityComparer as an argument to the Distinct method in order to
provide your rules for identifying duplicates.

The Code
The following example removes duplicates from a List<Fruit> using a custom implementation of
IEqualityComparer passed to the List.Distinct method and prints out the unique items:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Apress.VisualCSharpRecipes.Chapter02
{
 class Recipe02_18
 {
 static void Main(string[] args)
 {

 // Create a list of fruit, including duplicates.
 List<Fruit> myList = new List<Fruit>() {
 new Fruit("apple", "green"),
 new Fruit("apple", "red"),
 new Fruit("orange", "orange"),
 new Fruit("orange", "orange"),
 new Fruit("banana", "yellow"),
 new Fruit("mango", "yellow"),
 new Fruit("cherry", "red"),
 new Fruit("fig", "brown"),
 new Fruit("fig", "brown"),

CHAPTER 2 ■ DATA MANIPULATION

101

 new Fruit("fig", "brown"),
 new Fruit("cranberry", "red"),
 new Fruit("pear", "green")
 };

 // Use the Distinct method to remove duplicates
 // and print out the unique entries that remain.
 foreach (Fruit fruit in myList.Distinct(new FruitComparer()))
 {
 Console.WriteLine("Fruit: {0}:{1}", fruit.Name, fruit.Color);
 }

 // Wait to continue.
 Console.WriteLine("\n\nMain method complete. Press Enter");
 Console.ReadLine();
 }
 }

 class FruitComparer : IEqualityComparer<Fruit>
 {
 public bool Equals(Fruit first, Fruit second)
 {
 return first.Name == second.Name && first.Color == second.Color;
 }

 public int GetHashCode(Fruit fruit)
 {
 return fruit.Name.GetHashCode() + fruit.Name.GetHashCode();
 }
 }

 class Fruit
 {
 public Fruit(string nameVal, string colorVal)
 {
 Name = nameVal;
 Color = colorVal;
 }
 public string Name { get; set; }
 public string Color { get; set; }
 }
}

C H A P T E R 3

■ ■ ■

103

Application Domains, Reflection,
and Metadata

The power and flexibility of the Microsoft .NET Framework is enhanced by the ability to inspect and
manipulate types and metadata at runtime. The recipes in this chapter describe how to use application
domains, reflection, and metadata. Specifically, the recipes in this chapter describe how to do the
following:

• Create application domains into which you can load assemblies that are isolated
from the rest of your application (recipe 3-1)

• Create types that have the capability to cross application domain boundaries
(recipe 3-2) and types that are guaranteed to be unable to cross application
domain boundaries (recipe 3-4)

• Control the loading of assemblies and the instantiation of types in local and
remote application domains (recipes 3-3, 3-5, 3-6, and 3-7)

• Pass simple configuration data between application domains (recipe 3-8)

• Unload application domains, which provides the only means through which you
can unload assemblies at runtime (recipe 3-9)

• Inspect and test the type of an object using a variety of mechanisms built into the
C# language and capabilities provided by the objects themselves (recipes 3-10 and
3-11)

• Dynamically instantiate an object and execute its methods at runtime using
reflection (recipe 3-12)

• Create custom attributes (recipe 3-13), allowing you to associate metadata with
your program elements and inspect the value of those custom attributes at
runtime (recipe 3-14)

• Use reflection to discover type members and to invoke a member at runtime
(recipes 3-15 and 3-16)

CHAPTER 3 ■ APPLICATION DOMAINS, REFLECTION, AND METADATA

104

• Use dynamic types to simplify invoking a member using reflection (recipe 3-17)

• Create custom dynamic types (recipe 3-18)

3-1. Create an Application Domain

Problem
You need to create a new application domain.

Solution
Use the static method CreateDomain of the System.AppDomain class.

How It Works
The simplest overload of the CreateDomain method takes a single string argument specifying a human-
readable name (friendly name) for the new application domain. Other overloads allow you to specify
evidence and configuration settings for the new application domain. You specify evidence using a
System.Security.Policy.Evidence object, and you specify configuration settings using a
System.AppDomainSetup object.

The AppDomainSetup class is a container of configuration information for an application domain.
Table 3-1 lists some of the properties of the AppDomainSetup class that you will use most often when
creating application domains. These properties are accessible after creation through members of the
AppDomain object. Some have different names, and some are modifiable at runtime; refer to the .NET
Framework’s software development kit (SDK) documentation on the AppDomain class for a
comprehensive discussion.

Table 3-1. Commonly Used AppDomainSetup Properties

Property Description

ApplicationBase The directory where the CLR will look during probing to resolve private
assemblies. (Recipe 3-5 discusses probing.) Effectively, ApplicationBase is
the root directory for the executing application. By default, this is the
directory containing the assembly. This is readable after creation using the
AppDomain.BaseDirectory property.

ConfigurationFile The name of the configuration file used by code loaded into the application
domain. This is readable after creation using the AppDomain.GetData method
with the key APP_CONFIG_FILE. By default, the configuration file is stored in
the same folder as the application EXE file, but if you set ApplicationBase, it
will be in that same folder.

CHAPTER 3 ■ APPLICATION DOMAINS, REFLECTION, AND METADATA

105

Property Description

DisallowPublisherPolicy Controls whether the publisher policy section of the application
configuration file is taken into consideration when determining which
version of a strongly named assembly to bind to. Recipe 3-5 discusses
publisher policy.

PrivateBinPath A semicolon-separated list of directories that the runtime uses when
probing for private assemblies. These directories are relative to the directory
specified in ApplicationBase. This is readable after application domain
creation using the AppDomain.RelativeSearchPath property.

The Code
The following code demonstrates the creation and initial configuration of an application domain:

using System;

namespace Apress.VisualCSharpRecipes.Chapter03
{
 class Recipe03_01
 {
 public static void Main()
 {
 // Instantiate an AppDomainSetup object.
 AppDomainSetup setupInfo = new AppDomainSetup();

 // Configure the application domain setup information.
 setupInfo.ApplicationBase = @"C:\MyRootDirectory";
 setupInfo.ConfigurationFile = "MyApp.config";
 setupInfo.PrivateBinPath = "bin;plugins;external";

 // Create a new application domain passing null as the evidence
 // argument. Remember to save a reference to the new AppDomain as
 // this cannot be retrieved any other way.
 AppDomain newDomain =
 AppDomain.CreateDomain("My New AppDomain",null, setupInfo);

 // Wait to continue.
 Console.WriteLine("\nMain method complete. Press Enter.");
 Console.ReadLine();
 }
 }
}

CHAPTER 3 ■ APPLICATION DOMAINS, REFLECTION, AND METADATA

106

3-2. Create Types That Can Be Passed Across Application
Domain Boundaries

Problem
You need to pass objects across application domain boundaries as arguments or return values.

Solution
Use marshal-by-value or marshal-by-reference objects.

How It Works
The .NET Remoting system (discussed in Chapter 10) makes passing objects across application domain
boundaries straightforward. However, to those unfamiliar with .NET Remoting, the results can be very
different from those expected. In fact, the most confusing aspect of using multiple application domains
stems from the interaction with .NET Remoting and the way objects traverse application domain
boundaries.

All types fall into one of three categories: nonremotable, marshal-by-value (MBV), or marshal-by-
reference (MBR). Nonremotable types cannot cross application domain boundaries and cannot be used
as arguments or return values in cross-application domain calls. Recipe 3-4 discusses nonremotable
types.

MBV types are serializable types. When you pass an MBV object across an application domain
boundary as an argument or a return value, the .NET Remoting system serializes the object’s current
state, passes it to the destination application domain, and creates a new copy of the object with the same
state as the original. This results in a copy of the MBV object existing in both application domains. The
content of the two instances are initially identical, but they are independent; changes made to one
instance are not reflected in the other instance (this applies to static members as well). This often causes
confusion as you try to update the remote object but are in fact updating the local copy. If you actually
want to be able to call and change an object from a remote application domain, the object needs to be
an MBR type.

MBR types are those classes that derive from System.MarshalByRefObject. When you pass an
MBR object across an application domain boundary as an argument or a return value, the .NET
Remoting system creates a proxy in the destination application domain that represents the remote MBR
object. To any class in the destination application domain, the proxy looks and behaves like the remote
MBR object that it represents. In reality, when a call is made against the proxy, the .NET Remoting
system transparently passes the call and its arguments to the remote application domain and issues the
call against the original object. Any results are passed back to the caller via the proxy. Figure 3-1
illustrates the relationship between an MBR object and the objects that access it across application
domains via a proxy.

CHAPTER 3 ■ APPLICATION DOMAINS, REFLECTION, AND METADATA

107

Figure 3-1. An MBR object is accessed across application domains via a proxy.

The Code
The following example highlights (in bold) the fundamental difference between creating classes that are
passed by value (Recipe03_02MBV) and those passed by reference (Recipe03_02MBR). The code creates a
new application domain and instantiates two remotable objects in it (discussed further in recipe 3-7).
However, because the Recipe03_02MBV object is an MBV object, when it is created in the new application
domain, it is serialized, passed across the application domain boundary, and deserialized as a new
independent object in the caller’s application domain. Therefore, when the code retrieves the name of
the application domain hosting each object, Recipe03_02MBV returns the name of the main application
domain, and Recipe03_02MBR returns the name of the new application domain in which it was created.

using System;

namespace Apress.VisualCSharpRecipes.Chapter03
{
 // Declare a class that is passed by value.
 [Serializable]
 public class Recipe03_02MBV
 {

Application Domain 2

Application Domain 1

Object

MBR Object

Proxy

CHAPTER 3 ■ APPLICATION DOMAINS, REFLECTION, AND METADATA

108

 public string HomeAppDomain
 {
 get
 {
 return AppDomain.CurrentDomain.FriendlyName;
 }
 }
 }

 // Declare a class that is passed by reference.
 public class Recipe03_02MBR: MarshalByRefObject
 {
 public string HomeAppDomain
 {
 get
 {
 return AppDomain.CurrentDomain.FriendlyName;
 }
 }
 }

 public class Recipe03_02
 {
 public static void Main(string[] args)
 {
 // Create a new application domain.
 AppDomain newDomain =
 AppDomain.CreateDomain("My New AppDomain");

 // Instantiate an MBV object in the new application domain.
 Recipe03_02MBV mbvObject =
 (Recipe03_02MBV)newDomain.CreateInstanceFromAndUnwrap(
 "Recipe03-02.exe",
 "Apress.VisualCSharpRecipes.Chapter03.Recipe03_02MBV");

 // Instantiate an MBR object in the new application domain.
 Recipe03_02MBR mbrObject =
 (Recipe03_02MBR)newDomain.CreateInstanceFromAndUnwrap(
 "Recipe03-02.exe",
 "Apress.VisualCSharpRecipes.Chapter03.Recipe03_02MBR");

 // Display the name of the application domain in which each of
 // the objects is located.
 Console.WriteLine("Main AppDomain = {0}",
 AppDomain.CurrentDomain.FriendlyName);
 Console.WriteLine("AppDomain of MBV object = {0}",
 mbvObject.HomeAppDomain);
 Console.WriteLine("AppDomain of MBR object = {0}",
 mbrObject.HomeAppDomain);

CHAPTER 3 ■ APPLICATION DOMAINS, REFLECTION, AND METADATA

109

 // Wait to continue.
 Console.WriteLine("\nMain method complete. Press Enter.");
 Console.ReadLine();
 }
 }
}

■ Note Recipe 13-1 provides more details on creating serializable types, and recipe 10-16 describes how to
create remotable types.

3-3. Avoid Loading Unnecessary Assemblies into Application
Domains

Problem
You need to pass an object reference across multiple application domain boundaries; however, to
conserve memory and avoid impacting performance, you want to ensure that the Common Language
Runtime (CLR) loads only the object’s type metadata into the application domains where it is required
(that is, where you will actually use the object).

Solution
Wrap the object reference in a System.Runtime.Remoting.ObjectHandle, and unwrap the object reference
only when you need to access the object.

How It Works
When you pass an MBV object across application domain boundaries, the runtime creates a new
instance of that object in the destination application domain. This means the runtime must load the
assembly containing that type metadata into the application domain. Passing MBV references across
intermediate application domains can result in the runtime loading unnecessary assemblies into
application domains. Once loaded, these superfluous assemblies cannot be unloaded without unloading
the containing application domain. (See recipe 3-9 for more information.)

The ObjectHandle class allows you to wrap an object reference so that you can pass it between
application domains without the runtime loading additional assemblies. When the object reaches the
destination application domain, you can unwrap the object reference, causing the runtime to load the
required assembly and allowing you to access the object as usual.

CHAPTER 3 ■ APPLICATION DOMAINS, REFLECTION, AND METADATA

110

The Code
The following code contains some simple methods that demonstrate how to wrap and unwrap a
System.Data.DataSet using an ObjectHandle:

using System;
using System.Data;
using System.Runtime.Remoting;

namespace Apress.VisualCSharpRecipes.Chapter03
{
 class Recipe03_03
 {
 // A method to wrap a DataSet.
 public static ObjectHandle WrapDataSet(DataSet ds)
 {
 // Wrap the DataSet.
 ObjectHandle objHandle = new ObjectHandle(ds);

 // Return the wrapped DataSet.
 return objHandle;
 }

 // A method to unwrap a DataSet.
 public static DataSet UnwrapDataSet(ObjectHandle handle)
 {
 // Unwrap the DataSet.
 DataSet ds = (System.Data.DataSet)handle.Unwrap();

 // Return the wrapped DataSet.
 return ds;
 }

 public static void Main()
 {
 DataSet ds = new DataSet();
 Console.WriteLine(ds.ToString());

 ObjectHandle oh = WrapDataSet(ds);
 DataSet ds2 = UnwrapDataSet(oh);
 Console.WriteLine(ds2.ToString());

 // Wait to continue.
 Console.WriteLine("\nMain method complete. Press Enter.");
 Console.ReadLine();
 }
 }
}

CHAPTER 3 ■ APPLICATION DOMAINS, REFLECTION, AND METADATA

111

3-4. Create a Type That Cannot Cross Application Domain
Boundaries

Problem
You need to create a type so that instances of the type are inaccessible to code in other application
domains.

Solution
Ensure the type is nonremotable by making sure it is not serializable and it does not derive from the
MarshalByRefObject class.

How It Works
On occasion, you will want to ensure that instances of a type cannot transcend application domain
boundaries. To create a nonremotable type, ensure that it isn’t serializable and that it doesn’t derive
(directly or indirectly) from the MarshalByRefObject class. If you take these steps, you ensure that an
object’s state can never be accessed from outside the application domain in which the object was
instantiated—such objects cannot be used as arguments or return values in cross–application domain
method calls.

Ensuring that a type isn’t serializable is easy because a class doesn’t inherit the ability to be
serialized from its parent class. To ensure that a type isn’t serializable, make sure it does not have
System.SerializableAttribute applied to the type declaration.

Ensuring that a class cannot be passed by reference requires a little more attention. Many classes in
the .NET class library derive directly or indirectly from MarshalByRefObject; you must be careful you
don’t inadvertently derive your class from one of these. Commonly used base classes that derive from
MarshalByRefObject include System.ComponentModel.Component, System.IO.Stream, System.IO.
TextReader, System.IO.TextWriter, System.NET.WebRequest, and System.Net.WebResponse. (Check the
.NET Framework SDK documentation on MarshalByRefObject. The inheritance hierarchy listed for the
class provides a complete list of classes that derive from it.)

3-5. Load an Assembly into the Current Application Domain

Problem
You need to load an assembly at runtime into the current application domain.

Solution
Use the static Load method or the LoadFrom method of the System.Reflection.Assembly class.

CHAPTER 3 ■ APPLICATION DOMAINS, REFLECTION, AND METADATA

112

How It Works
The CLR will only load the assemblies identified at build time as being referenced by your assembly
when the metadata for their contained types is required. However, you can also explicitly instruct the
runtime to load assemblies. The Load and LoadFrom methods both result in the runtime loading an
assembly into the current application domain, and both return an Assembly instance that represents the
newly loaded assembly. The differences between each method are the arguments you must provide to
identify the assembly to load and the process that the runtime undertakes to locate the specified
assembly.

The Load method provides overloads that allow you to specify the assembly to load using one of the
following:

• A string containing the fully or partially qualified display name of the assembly

• A System.Reflection.AssemblyName containing details of the assembly

• A byte array containing the raw bytes that constitute the assembly

A fully qualified display name contains the assembly’s text name, version, culture, and public key
token, separated by commas (for example, System.Data, Version=2.0.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089). To specify an assembly that doesn’t have a strong name, use
PublicKeyToken=null. You can also specify a partial display name, but as a minimum, you must specify
the assembly name (without the file extension).

In response to the Load call, the runtime undertakes an extensive process to locate and load the
specified assembly. The following is a summary; consult the section “How the Runtime Locates
Assemblies” in the .NET Framework SDK documentation for more details:

1. If you specify a strongly named assembly, the Load method will apply the
version policy and publisher policy to enable requests for one version of an
assembly to be satisfied by another version. You specify the version policy in
your machine or application configuration file using <bindingRedirect>
elements. You specify the publisher policy in special resource assemblies
installed in the Global Assembly Cache (GAC).

2. Once the runtime has established the correct version of an assembly to use, it
attempts to load strongly named assemblies from the GAC.

3. If the assembly is not strongly named or is not found in the GAC, the runtime
looks for applicable <codeBase> elements in your machine and application
configuration files. A <codeBase> element maps an assembly name to a file or a
uniform resource locator (URL). If the assembly is strongly named, <codeBase>
can refer to any location, including Internet-based URLs; otherwise,
<codeBase> must refer to a directory relative to the application directory. If the
assembly doesn’t exist at the specified location, Load throws a
System.IO.FileNotFoundException.

4. If no <codeBase> elements are relevant to the requested assembly, the runtime
will locate the assembly using probing. Probing looks for the first file with the
assembly’s name (with either a .dll or an .exe extension) in the following
locations:

CHAPTER 3 ■ APPLICATION DOMAINS, REFLECTION, AND METADATA

113

• The application root directory

• Directories under the application root that match the assembly’s name and
culture

• Directories under the application root that are specified in the private
binpath

The Load method is the easiest way to locate and load assemblies but can also be expensive in terms
of processing if the runtime needs to start probing many directories for a weakly named assembly. The
LoadFrom method allows you to load an assembly from a specific location. If the specified file isn’t found,
the runtime will throw a FileNotFoundException. The runtime won’t attempt to locate the assembly in
the same way as the Load method—LoadFrom provides no support for the GAC, policies, <codebase>
elements, or probing.

The Code
The following code demonstrates various forms of the Load and LoadFrom methods. Notice that unlike the
Load method, LoadFrom requires you to specify the extension of the assembly file.

using System;
using System.Reflection;
using System.Globalization;

namespace Apress.VisualCSharpRecipes.Chapter03
{
 class Recipe03_05
 {
 public static void ListAssemblies()
 {
 // Get an array of the assemblies loaded into the current
 // application domain.
 Assembly[] assemblies = AppDomain.CurrentDomain.GetAssemblies();

 foreach (Assembly a in assemblies)
 {
 Console.WriteLine(a.GetName());
 }
 }

 public static void Main()
 {
 // List the assemblies in the current application domain.
 Console.WriteLine("**** BEFORE ****");
 ListAssemblies();

 // Load the System.Data assembly using a fully qualified display name.
 string name1 = "System.Data,Version=2.0.0.0," +
 "Culture=neutral,PublicKeyToken=b77a5c561934e089";
 Assembly a1 = Assembly.Load(name1);

CHAPTER 3 ■ APPLICATION DOMAINS, REFLECTION, AND METADATA

114

 // Load the System.Xml assembly using an AssemblyName.
 AssemblyName name2 = new AssemblyName();
 name2.Name = "System.Xml";
 name2.Version = new Version(2, 0, 0, 0);
 name2.CultureInfo = new CultureInfo(""); //Neutral culture.
 name2.SetPublicKeyToken(
 new byte[] {0xb7, 0x7a, 0x5c, 0x56, 0x19, 0x34, 0xe0, 0x89});
 Assembly a2 = Assembly.Load(name2);

 // Load the SomeAssembly assembly using a partial display name.
 Assembly a3 = Assembly.Load("SomeAssembly");

 // Load the assembly named c:\shared\MySharedAssembly.dll.
 Assembly a4 = Assembly.LoadFrom(@"c:\shared\MySharedAssembly.dll");

 // List the assemblies in the current application domain.
 Console.WriteLine("\n\n**** AFTER ****");
 ListAssemblies();

 // Wait to continue.
 Console.WriteLine("\nMain method complete. Press Enter.");
 Console.ReadLine();
 }
 }
}

3-6. Execute an Assembly in a Different Application Domain

Problem
You need to execute an assembly in an application domain other than the current one.

Solution
Call the ExecuteAssembly or ExecuteAssemlyByName method of the AppDomain object that represents the
application domain, and specify the file name of an executable assembly.

How It Works
If you have an executable assembly that you want to load and run in an application domain, the
ExecuteAssembly or ExecuteAssemblyByName methods provides the easiest solution. The ExecuteAssembly
method provides several overloads. The simplest overload takes only a string containing the name of
the executable assembly to run; you can specify a local file or a URL. Other overloads allow you to specify
arguments to pass to the assembly’s entry point (equivalent to command-line arguments).

The ExecuteAssembly method loads the specified assembly and executes the method defined in
metadata as the assembly’s entry point (usually the Main method). If the specified assembly isn’t

CHAPTER 3 ■ APPLICATION DOMAINS, REFLECTION, AND METADATA

115

executable, ExecuteAssembly throws a System.MissingMethodException. The CLR doesn’t start execution
of the assembly in a new thread, so control won’t return from the ExecuteAssembly method until the
newly executed assembly exits. Because the ExecuteAssembly method loads an assembly using partial
information (only the file name), the CLR won’t use the GAC or probing to resolve the assembly. (See
recipe 3-5 for more information.)

The ExecuteAssemblyByName method provides a similar set of overloads and takes the same
argument types, but instead of taking just the file name of the executable assembly, it gets passed the
display name of the assembly. This overcomes the limitations inherent in ExecuteAssembly as a result of
supplying only partial names. Again, see recipe 3-5 for more information on the structure of assembly
display names.

The Code
The following code demonstrates how to use the ExecuteAssembly method to load and run an assembly.
The Recipe03-06 class creates an AppDomain and executes itself in that AppDomain using the
ExecuteAssembly method. This results in two copies of the Recipe03-06 assembly loaded into two
different application domains.

using System;

namespace Apress.VisualCSharpRecipes.Chapter03
{
 class Recipe03_06
 {
 public static void Main(string[] args)
 {
 // For the purpose of this example, if this assembly is executing
 // in an AppDomain with the friendly name "NewAppDomain", do not
 // create a new AppDomain. This avoids an infinite loop of
 // AppDomain creation.
 if (AppDomain.CurrentDomain.FriendlyName != "NewAppDomain")
 {
 // Create a new application domain.
 AppDomain domain = AppDomain.CreateDomain("NewAppDomain");

 // Execute this assembly in the new application domain and
 // pass the array of command-line arguments.
 domain.ExecuteAssembly("Recipe03-06.exe", args);
 }

 // Display the command-line arguments to the screen prefixed with
 // the friendly name of the AppDomain.
 foreach (string s in args)
 {
 Console.WriteLine(AppDomain.CurrentDomain.FriendlyName + " : " + s);
 }

CHAPTER 3 ■ APPLICATION DOMAINS, REFLECTION, AND METADATA

116

 // Wait to continue.
 if (AppDomain.CurrentDomain.FriendlyName != "NewAppDomain")
 {
 Console.WriteLine("\nMain method complete. Press Enter.");
 Console.ReadLine();
 }
 }
 }
}

Usage
If you run Recipe03-06 using the following command:

Recipe03-06 Testing AppDomains

you will see that the command-line arguments are listed from both the existing and new application
domains:

NewAppDomain : Testing

NewAppDomain : AppDomains

Recipe03-06.exe : Testing

Recipe03-06.exe : AppDomains

3-7. Instantiate a Type in a Different Application Domain

Problem
You need to instantiate a type in an application domain other than the current one.

Solution
Call the CreateInstance method or the CreateInstanceFrom method of the AppDomain object that
represents the target application domain.

How It Works
The ExecuteAssembly method discussed in recipe 3-6 is straightforward to use, but when you are
developing sophisticated applications that use application domains, you are likely to want more control

CHAPTER 3 ■ APPLICATION DOMAINS, REFLECTION, AND METADATA

117

over loading assemblies, instantiating types, and invoking object members within the application
domain.

The CreateInstance and CreateInstanceFrom methods provide a variety of overloads that offer fine-
grained control over the process of object instantiation. The simplest overloads assume the use of a
type’s default constructor, but both methods implement overloads that allow you to provide arguments
to use any constructor.

The CreateInstance method loads a named assembly into the application domain using the process
described for the Assembly.Load method in recipe 3-5. CreateInstance then instantiates a named type
and returns a reference to the new object wrapped in an ObjectHandle (described in recipe 3-3). The
CreateInstanceFrom method also instantiates a named type and returns an ObjectHandle-wrapped object
reference; however, CreateInstanceFrom loads the specified assembly file into the application domain
using the process described in recipe 3-5 for the Assembly.LoadFrom method.

AppDomain also provides two convenience methods named CreateInstanceAndUnwrap and
CreateInstanceFromAndUnwrap that automatically extract the reference of the instantiated object from the
returned ObjectHandle object; you must cast the returned object to the correct type.

■ Caution Be aware that if you use CreateInstance or CreateInstanceFrom to instantiate MBV types in another
application domain, the object will be created, but the returned object reference won’t refer to that object.
Because of the way MBV objects cross application domain boundaries, the reference will refer to a copy of the
object created automatically in the local application domain. Only if you create an MBR type will the returned
reference refer to the object in the other application domain. (See recipe 3-2 for more details about MBV and MBR
types.)

A common technique to simplify the management of application domains is to use a controller
class. A controller class is a custom MBR type. You create an application domain and then instantiate
your controller class in the application domain using CreateInstance. The controller class implements
the functionality required by your application to manipulate the application domain and its contents.
This could include loading assemblies, creating further application domains, cleaning up prior to
deleting the application domain, or enumerating program elements (something you cannot normally do
from outside an application domain). It is best to create your controller class in an assembly of its own to
avoid loading unnecessary classes into each application domain. You should also be careful about what
types you pass as return values from your controller to your main application domain to avoid loading
additional assemblies.

The Code
The following code demonstrates how to use a simplified controller class named PluginManager. When
instantiated in an application domain, PluginManager allows you to instantiate classes that implement
the IPlugin interface, start and stop those plug-ins, and return a list of currently loaded plug-ins.

using System;
using System.Reflection;
using System.Collections;

CHAPTER 3 ■ APPLICATION DOMAINS, REFLECTION, AND METADATA

118

using System.Collections.Generic;
using System.Collections.Specialized;

namespace Apress.VisualCSharpRecipes.Chapter03
{
 // A common interface that all plug-ins must implement.
 public interface IPlugin
 {
 void Start();
 void Stop();
 }

 // A simple IPlugin implementation to demonstrate the PluginManager
 // controller class.
 public class SimplePlugin : IPlugin
 {
 public void Start()
 {
 Console.WriteLine(AppDomain.CurrentDomain.FriendlyName +
 ": SimplePlugin starting...");
 }

 public void Stop()
 {
 Console.WriteLine(AppDomain.CurrentDomain.FriendlyName +
 ": SimplePlugin stopping...");
 }
 }

 // The controller class, which manages the loading and manipulation
 // of plug-ins in its application domain.
 public class PluginManager : MarshalByRefObject
 {
 // A Dictionary to hold keyed references to IPlugin instances.
 private Dictionary<string, IPlugin> plugins =
 new Dictionary<string, IPlugin> ();

 // Default constructor.
 public PluginManager() { }

 // Constructor that loads a set of specified plug-ins on creation.
 public PluginManager(NameValueCollection pluginList)
 {
 // Load each of the specified plug-ins.
 foreach (string plugin in pluginList.Keys)
 {
 this.LoadPlugin(pluginList[plugin], plugin);
 }
 }

 // Load the specified assembly and instantiate the specified

CHAPTER 3 ■ APPLICATION DOMAINS, REFLECTION, AND METADATA

119

 // IPlugin implementation from that assembly.
 public bool LoadPlugin(string assemblyName, string pluginName)
 {
 try
 {
 // Load the named private assembly.
 Assembly assembly = Assembly.Load(assemblyName);

 // Create the IPlugin instance, ignore case.
 IPlugin plugin = assembly.CreateInstance(pluginName, true)
 as IPlugin;

 if (plugin != null)
 {
 // Add new IPlugin to ListDictionary.
 plugins[pluginName] = plugin;

 return true;
 }
 else
 {
 return false;
 }
 }
 catch
 {
 // Return false on all exceptions for the purpose of
 // this example. Do not suppress exceptions like this
 // in production code.
 return false;
 }
 }

 public void StartPlugin(string plugin)
 {
 try
 {
 // Extract the IPlugin from the Dictionary and call Start.
 plugins[plugin].Start();
 }
 catch
 {
 // Log or handle exceptions appropriately.
 }
 }

CHAPTER 3 ■ APPLICATION DOMAINS, REFLECTION, AND METADATA

120

 public void StopPlugin(string plugin)
 {
 try
 {
 // Extract the IPlugin from the Dictionary and call Stop.
 plugins[plugin].Stop();
 }
 catch
 {
 // Log or handle exceptions appropriately.
 }
 }

 public ArrayList GetPluginList()
 {
 // Return an enumerable list of plug-in names. Take the keys
 // and place them in an ArrayList, which supports marshal-by-value.
 return new ArrayList(plugins.Keys);
 }
 }

 class Recipe03_07
 {
 public static void Main()
 {
 // Create a new application domain.
 AppDomain domain1 = AppDomain.CreateDomain("NewAppDomain1");

 // Create a PluginManager in the new application domain using
 // the default constructor.
 PluginManager manager1 =
 (PluginManager)domain1.CreateInstanceAndUnwrap("Recipe03-07",
 "Apress.VisualCSharpRecipes.Chapter03.PluginManager");

 // Load a new plugin into NewAppDomain1.
 manager1.LoadPlugin("Recipe03-07",
 "Apress.VisualCSharpRecipes.Chapter03.SimplePlugin");

 // Start and stop the plug-in in NewAppDomain1.
 manager1.StartPlugin(
 "Apress.VisualCSharpRecipes.Chapter03.SimplePlugin");
 manager1.StopPlugin(
 "Apress.VisualCSharpRecipes.Chapter03.SimplePlugin");

 // Create a new application domain.
 AppDomain domain2 = AppDomain.CreateDomain("NewAppDomain2");

 // Create a ListDictionary containing a list of plug-ins to create.
 NameValueCollection pluginList = new NameValueCollection();
 pluginList["Apress.VisualCSharpRecipes.Chapter03.SimplePlugin"] =
 "Recipe03-07";

CHAPTER 3 ■ APPLICATION DOMAINS, REFLECTION, AND METADATA

121

 // Create a PluginManager in the new application domain and
 // specify the default list of plug-ins to create.
 PluginManager manager2 = (PluginManager)domain1.CreateInstanceAndUnwrap(
 "Recipe03-07", "Apress.VisualCSharpRecipes.Chapter03.PluginManager",
 true, 0, null, new object[] { pluginList }, null, null);

 // Display the list of plug-ins loaded into NewAppDomain2.
 Console.WriteLine("\nPlugins in NewAppDomain2:");
 foreach (string s in manager2.GetPluginList())
 {
 Console.WriteLine(" - " + s);
 }

 // Wait to continue.
 Console.WriteLine("\nMain method complete. Press Enter.");
 Console.ReadLine();
 }
 }
}

3-8. Pass Data Between Application Domains

Problem
You need a simple mechanism to pass general configuration or state data between application domains.

Solution
Use the SetData and GetData methods of the AppDomain class.

How It Works
You can pass data between application domains as arguments and return values when you invoke the
methods and properties of objects that exist in other application domains. However, at times it is useful
to pass data between application domains in such a way that the data is easily accessible by all code
within the application domain.

Every application domain maintains a data cache that contains a set of name/value pairs. Most of
the cache content reflects configuration settings of the application domain, such as the values from the
AppDomainSetup object provided during application domain creation. (See recipe 3-1 for more
information.) You can also use this data cache as a mechanism to exchange data between application
domains or as a simple state storage mechanism for code running within the application domain.

The SetData method allows you to associate a string key with an object and store it in the
application domain’s data cache. The GetData method allows you to retrieve an object from the data
cache using the key. If code in one application domain calls the SetData method or the GetData method
to access the data cache of another application domain, the data object must support MBV or MBR

CHAPTER 3 ■ APPLICATION DOMAINS, REFLECTION, AND METADATA

122

semantics, or a System.Runtime.Serialization.SerializationException will be thrown. (See recipe 3-3
for details on the characteristics required to allow objects to transcend application domain boundaries.)

When using the SetData or GetData methods to exchange data between application domains, you
should avoid using the following keys, which are already used by the .NET Framework:

• APP_CONFIG_FILE

• APP_NAME

• APPBASE

• APP_CONFIG_BLOB

• BINPATH_PROBE_ONLY

• CACHE_BASE

• CODE_DOWNLOAD_DISABLED

• DEV_PATH

• DYNAMIC_BASE

• DISALLOW_APP

• DISALLOW_APP_REDIRECTS

• DISALLOW_APP_BASE_PROBING

• FORCE_CACHE_INSTALL

• LICENSE_FILE

• PRIVATE_BINPATH

• SHADOW_COPY_DIRS

The Code
The following example demonstrates how to use the SetData and GetData methods by passing a
System.Collections.ArrayList between two application domains. After passing a list of pets to a second
application domain for modification, the application displays both the original and modified lists.
Notice that the code running in the second application domain does not modify the original list because
ArrayList is a pass-by-value type, meaning that the second application domain only has a copy of the
original list. (See recipe 3-2 for more details.)

using System;
using System.Reflection;
using System.Collections;

namespace Apress.VisualCSharpRecipes.Chapter03
{
 public class ListModifier
 {

CHAPTER 3 ■ APPLICATION DOMAINS, REFLECTION, AND METADATA

123

 public ListModifier()
 {
 // Get the list from the data cache.
 ArrayList list = (ArrayList)AppDomain.CurrentDomain.GetData("Pets");

 // Modify the list.
 list.Add("turtle");
 }
 }

 class Recipe03_08
 {
 public static void Main()
 {
 // Create a new application domain.
 AppDomain domain = AppDomain.CreateDomain("Test");

 // Create an ArrayList and populate with information.
 ArrayList list = new ArrayList();
 list.Add("dog");
 list.Add("cat");
 list.Add("fish");

 // Place the list in the data cache of the new application domain.
 domain.SetData("Pets", list);

 // Instantiate a ListModifier in the new application domain.
 domain.CreateInstance("Recipe03-08",
 "Apress.VisualCSharpRecipes.Chapter03.ListModifier");

 // Display the contents of the original list.
 Console.WriteLine("Original list contents:");
 foreach (string s in list)
 {
 Console.WriteLine(" - " + s);
 }

 // Get the list and display its contents.
 Console.WriteLine("\nModified list contents:");
 foreach (string s in (ArrayList)domain.GetData("Pets"))
 {
 Console.WriteLine(" - " + s);
 }

 // Wait to continue.
 Console.WriteLine("\nMain method complete. Press Enter.");
 Console.ReadLine();
 }
 }
}

CHAPTER 3 ■ APPLICATION DOMAINS, REFLECTION, AND METADATA

124

3-9. Unload Assemblies and Application Domains

Problem
You need to unload assemblies or application domains at runtime.

Solution
You have no way to unload individual assemblies from a System.AppDomain. You can unload an entire
application domain using the static AppDomain.Unload method, which has the effect of unloading all
assemblies loaded into the application domain.

How It Works
The only way to unload an assembly is to unload the application domain in which the assembly is
loaded. Unfortunately, unloading an application domain will unload all the assemblies that have been
loaded into it. This might seem like a heavy-handed and inflexible approach, but with appropriate
planning of your application domain, the assembly loading structure, and the runtime dependency of
your code on that application domain, it is not overly restrictive.

You unload an application domain using the static AppDomain.Unload method and passing it an
AppDomain reference to the application domain you want to unload. You cannot unload the default
application domain created by the CLR at startup.

The Unload method stops any new threads from entering the specified application domain and calls
the Thread.Abort method on all threads currently active in the application domain. If the thread calling
the Unload method is currently running in the specified application domain (making it the target of a
Thread.Abort call), a new thread starts in order to carry out the unload operation. If a problem is
encountered unloading an application domain, the thread performing the unload operation throws a
System.CannotUnloadAppDomainException.

While an application domain is unloading, the CLR calls the finalization method of all objects in the
application domain. Depending on the number of objects and nature of their finalization methods, this
can take an variable amount of time. The AppDomain.IsFinalizingForUnload method returns true if the
application domain is unloading and the CLR has started to finalize contained objects; otherwise, it
returns false.

The Code
This code fragment demonstrates the syntax of the Unload method:

// Create a new application domain.
AppDomain newDomain = AppDomain.CreateDomain("New Domain");

// Load assemblies into the application domain.
...

// Unload the new application domain.
AppDomain.Unload(newDomain);

CHAPTER 3 ■ APPLICATION DOMAINS, REFLECTION, AND METADATA

125

3-10. Retrieve Type Information

Problem
You need to obtain a System.Type object that represents a specific type.

Solution
Use one of the following:

• The typeof operator

• The static GetType method of the System.Type class

• The GetType method of an existing instance of the type

• The GetNestedType or GetNestedTypes method of the Type class

• The GetType or GetTypes method of the Assembly class

• The GetType, GetTypes, or FindTypes method of the System.Reflection.Module
class

How It Works
The Type class provides a starting point for working with types using reflection. A Type object allows you
to inspect the metadata of the type, obtain details of the type’s members, and create instances of the
type. Because of its importance, the .NET Framework provides a variety of mechanisms for obtaining
references to Type objects.

One method of obtaining a Type object for a specific type is to use the typeof operator shown here:

System.Type t1 = typeof(System.Text.StringBuilder);

The type name is not enclosed in quotes and must be resolvable by the compiler (meaning you must
reference the assembly using a compiler switch). Because the reference is resolved at compile time, the
assembly containing the type becomes a static dependency of your assembly and will be listed as such in
your assembly’s manifest.

An alternative to the typeof operator is the static method Type.GetType, which takes a string
containing the type name. Because you use a string to specify the type, you can vary it at runtime, which
opens the door to a world of dynamic programming opportunities using reflection (see recipe 3-12). If
you specify just the type name, the runtime must be able to locate the type in an already loaded
assembly. Alternatively, you can specify an assembly-qualified type name. Refer to the .NET Framework
SDK documentation for the Type.GetType method for a complete description of how to structure
assembly-qualified type names. Table 3-2 summarizes some other methods that provide access to Type
objects.

CHAPTER 3 ■ APPLICATION DOMAINS, REFLECTION, AND METADATA

126

Table 3-2. Methods That Return Type Objects

Method Description

Type.GetNestedType Gets a specified type declared as a nested type within the existing Type object.

Type.GetNestedTypes Gets an array of Type objects representing the nested types declared within the
existing Type object.

Assembly.GetType Gets a Type object for the specified type declared within the assembly.

Assembly.GetTypes Gets an array of Type objects representing the types declared within the
assembly.

Module.GetType Gets a Type object for the specified type declared within the module. (See recipe
1-3 for a discussion of modules.)

Module.GetTypes Gets an array of Type objects representing the types declared within the module.

Module.FindTypes Gets a filtered array of Type objects representing the types declared within the
module. The types are filtered using a delegate that determines whether each
Type should appear in the final array.

The Code
The following example demonstrates how to use typeof and the GetType method to return a Type object
for a named type and from existing objects:

using System;
using System.Text;

namespace Apress.VisualCSharpRecipes.Chapter03
{
 class Recipe03_10
 {
 public static void Main()
 {
 // Obtain type information using the typeof operator.
 Type t1 = typeof(StringBuilder);
 Console.WriteLine(t1.AssemblyQualifiedName);

 // Obtain type information using the Type.GetType method.
 // Case-sensitive, return null if not found.
 Type t2 = Type.GetType("System.String");
 Console.WriteLine(t2.AssemblyQualifiedName);

CHAPTER 3 ■ APPLICATION DOMAINS, REFLECTION, AND METADATA

127

 // Case-sensitive, throw TypeLoadException if not found.
 Type t3 = Type.GetType("System.String", true);
 Console.WriteLine(t3.AssemblyQualifiedName);

 // Case-insensitive, throw TypeLoadException if not found.
 Type t4 = Type.GetType("system.string", true, true);
 Console.WriteLine(t4.AssemblyQualifiedName);

 // Assembly-qualifed type name.
 Type t5 = Type.GetType("System.Data.DataSet,System.Data," +
 "Version=2.0.0.0,Culture=neutral,PublicKeyToken=b77a5c561934e089");
 Console.WriteLine(t5.AssemblyQualifiedName);

 // Obtain type information using the Object.GetType method.
 StringBuilder sb = new StringBuilder();
 Type t6 = sb.GetType();
 Console.WriteLine(t6.AssemblyQualifiedName);

 // Wait to continue.
 Console.WriteLine("\nMain method complete. Press Enter.");
 Console.ReadLine();
 }
 }
}

3-11. Test an Object’s Type

Problem
You need to test the type of an object.

Solution
Use the inherited Object.GetType method to obtain a Type for the object. You can also use the is and as
operators to test an object’s type.

How It Works
All types inherit the GetType method from the Object base class. As discussed in recipe 3-10, this method
returns a Type reference representing the type of the object. The runtime maintains a single instance of
Type for each type loaded, and all references for this type refer to this same object. This means you can
compare two type references efficiently. For convenience, C# provides the is operator as a quick way to
check whether an object is a specified type. In addition, is will return true if the tested object is derived
from the specified class.

Both of these approaches require that the type used with the typeof and is operators be known and
resolvable at compile time. A more flexible (but slower) alternative is to use the Type.GetType method to

CHAPTER 3 ■ APPLICATION DOMAINS, REFLECTION, AND METADATA

128

return a Type reference for a named type. The Type reference is not resolved until runtime, which causes
the performance hit but allows you to change the type comparison at runtime based on the value of a
string.

Finally, you can use the as operator to perform a safe cast of any object to a specified type. Unlike a
standard cast, which triggers a System.InvalidCastException if the object cannot be cast to the specified
type, the as operator returns null. This allows you to perform safe casts that are easy to verify, but the
compared type must be resolvable at runtime.

■ Note The runtime will usually maintain more than one instance of each type depending on how assemblies are
loaded into application domains. Usually, an assembly will be loaded into a specific application domain, meaning a
Type instance will exist in each application domain in which the assembly is loaded. However, assemblies can also
be loaded by a runtime host in a domain-neutral configuration, which means the assembly’s type metadata (and
Type instances) is shared across all application domains. By default, only the mscorlib assembly is loaded in a
domain-neutral configuration.

The Code
The following example demonstrates the various type-testing alternatives described in this recipe:

using System;
using System.IO;

namespace Apress.VisualCSharpRecipes.Chapter03
{
 class Recipe03_11
 {
 // A method to test whether an object is an instance of a type
 // or a derived type.
 public static bool IsType(object obj, string type)
 {
 // Get the named type, use case-insensitive search, throw
 // an exception if the type is not found.
 Type t = Type.GetType(type, true, true);

 return t == obj.GetType() || obj.GetType().IsSubclassOf(t);
 }

 public static void Main()
 {
 // Create a new StringReader for testing.
 Object someObject = new StringReader("This is a StringReader");

CHAPTER 3 ■ APPLICATION DOMAINS, REFLECTION, AND METADATA

129

 // Test if someObject is a StringReader by obtaining and
 // comparing a Type reference using the typeof operator.
 if (typeof(StringReader) == someObject.GetType())
 {
 Console.WriteLine("typeof: someObject is a StringReader");
 }

 // Test if someObject is, or is derived from, a TextReader
 // using the is operator.
 if (someObject is TextReader)
 {
 Console.WriteLine(
 "is: someObject is a TextReader or a derived class");
 }

 // Test if someObject is, or is derived from, a TextReader using
 // the Type.GetType and Type.IsSubclassOf methods.
 if (IsType(someObject, "System.IO.TextReader"))
 {
 Console.WriteLine("GetType: someObject is a TextReader");
 }

 // Use the "as" operator to perform a safe cast.
 StringReader reader = someObject as StringReader;
 if (reader != null)
 {
 Console.WriteLine("as: someObject is a StringReader");
 }

 // Wait to continue.
 Console.WriteLine("\nMain method complete. Press Enter.");
 Console.ReadLine();
 }
 }
}

■ Tip The static method GetUnderlyingType of the System.Enum class allows you to retrieve the underlying type
of an enumeration.

3-12. Instantiate an Object Using Reflection

Problem
You need to instantiate an object at runtime using reflection.

CHAPTER 3 ■ APPLICATION DOMAINS, REFLECTION, AND METADATA

130

Solution
Obtain a Type object representing the type of object you want to instantiate, call its GetConstructor
method to obtain a System.Reflection.ConstructorInfo object representing the constructor you want to
use, and execute the ConstructorInfo.Invoke method.

How It Works
The first step in creating an object using reflection is to obtain a Type object that represents the type you
want to instantiate. (See recipe 3-10 for details.) Once you have a Type instance, call its GetConstructor
method to obtain a ConstructorInfo representing one of the type’s constructors. The most commonly
used overload of the GetConstructor method takes a Type array argument and returns a ConstructorInfo
representing the constructor that takes the number, order, and type of arguments specified in the Type
array. To obtain a ConstructorInfo representing a parameterless (default) constructor, pass an empty
Type array (use the static field Type.EmptyTypes or new Type[0]); don’t use null, or else GetConstructor
will throw a System.ArgumentNullException. If GetConstructor cannot find a constructor with a signature
that matches the specified arguments, it will return null.

Once you have the desired ConstructorInfo, call its Invoke method. You must provide an object
array containing the arguments you want to pass to the constructor. Invoke instantiates the new object
and returns an object reference to it, which you must cast to the appropriate type.

Reflection functionality is commonly used to implement factories in which you use reflection to
instantiate concrete classes that either extend a common base class or implement a common interface.
Often, both an interface and a common base class are used. The abstract base class implements the
interface and any common functionality, and then each concrete implementation extends the base
class.

No mechanism exists to formally declare that each concrete class must implement constructors
with specific signatures. If you intend third parties to implement concrete classes, your documentation
must specify the constructor signature called by your factory. A common approach to avoiding this
problem is to use a default (empty) constructor and configure the object after instantiation using
properties and methods.

The Code
The following code fragment demonstrates how to instantiate a System.Text.StringBuilder object using
reflection and how to specify the initial content for the StringBuilder (a string) and its capacity (an
int):

using System;
using System.Text;
using System.Reflection;

namespace Apress.VisualCSharpRecipes.Chapter03
{
 class Recipe03_12
 {
 public static StringBuilder CreateStringBuilder()
 {

CHAPTER 3 ■ APPLICATION DOMAINS, REFLECTION, AND METADATA

131

 // Obtain the Type for the StringBuilder class.
 Type type = typeof(StringBuilder);

 // Create a Type[] containing Type instances for each
 // of the constructor arguments - a string and an int.
 Type[] argTypes = new Type[] { typeof(System.String),
 typeof(System.Int32) };

 // Obtain the ConstructorInfo object.
 ConstructorInfo cInfo = type.GetConstructor(argTypes);

 // Create an object[] containing the constructor arguments.
 object[] argVals = new object[] { "Some string", 30 };

 // Create the object and cast it to StringBuilder.
 StringBuilder sb = (StringBuilder)cInfo.Invoke(argVals);

 return sb;
 }
 }
}

The following code demonstrates a factory to instantiate objects that implement the IPlugin
interface (first used in recipe 3-7):

using System;
using System.Reflection;

namespace Apress.VisualCSharpRecipes.Chapter03
{
 // A common interface that all plug-ins must implement.
 public interface IPlugin
 {
 string Description { get; set; }
 void Start();
 void Stop();
 }

 // An abstract base class from which all plug-ins must derive.
 public abstract class AbstractPlugin : IPlugin
 {
 // Hold a description for the plug-in instance.
 private string description = "";

 // Sealed property to get the plug-in description.
 public string Description
 {
 get { return description; }
 set { description = value; }
 }

CHAPTER 3 ■ APPLICATION DOMAINS, REFLECTION, AND METADATA

132

 // Declare the members of the IPlugin interface as abstract.
 public abstract void Start();
 public abstract void Stop();
 }

 // A simple IPlugin implementation to demonstrate the PluginFactory class.
 public class SimplePlugin : AbstractPlugin
 {
 // Implement Start method.
 public override void Start()
 {
 Console.WriteLine(Description + ": Starting...");
 }

 // Implement Stop method.
 public override void Stop()
 {
 Console.WriteLine(Description + ": Stopping...");
 }
 }

 // A factory to instantiate instances of IPlugin.
 public sealed class PluginFactory
 {
 public static IPlugin CreatePlugin(string assembly,
 string pluginName, string description)
 {
 // Obtain the Type for the specified plug-in.
 Type type = Type.GetType(pluginName + ", " + assembly);

 // Obtain the ConstructorInfo object.
 ConstructorInfo cInfo = type.GetConstructor(Type.EmptyTypes);

 // Create the object and cast it to StringBuilder.
 IPlugin plugin = cInfo.Invoke(null) as IPlugin;

 // Configure the new IPlugin.
 plugin.Description = description;

 return plugin;
 }

 public static void Main(string[] args)
 {
 // Instantiate a new IPlugin using the PluginFactory.
 IPlugin plugin = PluginFactory.CreatePlugin(
 "Recipe03-12", // Private assembly name
 "Apress.VisualCSharpRecipes.Chapter03.SimplePlugin",
 // Plug-in class name.
 "A Simple Plugin" // Plug-in instance description
);

CHAPTER 3 ■ APPLICATION DOMAINS, REFLECTION, AND METADATA

133

 // Start and stop the new plug-in.
 plugin.Start();
 plugin.Stop();

 // Wait to continue.
 Console.WriteLine("\nMain method complete. Press Enter.");
 Console.ReadLine();
 }
 }
}

■ Tip The System.Activator class provides two static methods named CreateInstance and
CreateInstanceFrom that instantiate objects based on Type objects or strings containing type names. The key
difference between using GetConstructor and Activator is that the constructor used by Activator is implied by
the constructor arguments you pass to CreateInstance or CreateInstanceFrom. Using GetConstructor, you
can determine exactly which constructor you want to use to instantiate the object. See the description of the
Activator class in the .NET Framework SDK documentation for more details.

3-13. Create a Custom Attribute

Problem
You need to create a custom attribute.

Solution
Create a class that derives from the abstract base class System.Attribute. Implement constructors,
fields, and properties to allow users to configure the attribute. Use System.AttributeUsageAttribute to
define the following:

• Which program elements are valid targets of the attribute

• Whether you can apply more than one instance of the attribute to a program
element

• Whether the attribute is inherited by derived types

How It Works
Attributes provide a mechanism for associating declarative information (metadata) with program
elements. This metadata is contained in the compiled assembly, allowing programs to retrieve it through
reflection at runtime without creating an instance of the type. (See recipe 3-14 for more details.) Other

CHAPTER 3 ■ APPLICATION DOMAINS, REFLECTION, AND METADATA

134

programs, particularly the CLR, use this information to determine how to interact with and manage
program elements.

To create a custom attribute, derive a class from the abstract base class System.Attribute. Custom
attribute classes by convention should have a name ending in Attribute (but this is not essential). A
custom attribute must have at least one public constructor—the automatically generated default
constructor is sufficient. The constructor parameters become the attribute’s mandatory (or positional)
parameters. When you use the attribute, you must provide values for these parameters in the order they
appear in the constructor. As with any other class, you can declare more than one constructor, giving
users of the attribute the option of using different sets of positional parameters when applying the
attribute. Any public nonconstant writable fields and properties declared by an attribute are
automatically exposed as named parameters. Named parameters are optional and are specified in the
format of name/value pairs where the name is the property or field name. The following example will
clarify how to specify positional and named parameters.

To control how and where a user can apply your attribute, apply the attribute
AttributeUsageAttribute to your custom attribute. AttributeUsageAttribute supports the one
positional and two named parameters described in Table 3-3. The default values specify the value that is
applied to your custom attribute if you do not apply AttributeUsageAttribute or do not specify a value
for that particular parameter.

Table 3-3. Members of the AttributeUsage Type

Parameter Type Description Default

ValidOn Positional A member of the System.AttributeTargets
enumeration that identifies the program
elements on which the attribute is valid

AttributeTargets.All

AllowMultiple Named Whether the attribute can be specified more than
once for a single element

False

Inherited Named Whether the attribute is inherited by derived
classes or overridden members

True

The Code
The following example shows a custom attribute named AuthorAttribute, which you can use to identify
the name and company of the person who created an assembly or a class. AuthorAttribute declares a
single public constructor that takes a string containing the author’s name. This means users of
AuthorAttribute must always provide a positional string parameter containing the author’s name. The
Company property is public, making it an optional named parameter, but the Name property is read-only—
no set accessor is declared—meaning that it isn’t exposed as a named parameter.

using System;

namespace Apress.VisualCSharpRecipes.Chapter03
{
 [AttributeUsage(AttributeTargets.Class | AttributeTargets.Assembly,
 AllowMultiple = true, Inherited = false)]

CHAPTER 3 ■ APPLICATION DOMAINS, REFLECTION, AND METADATA

135

 public class AuthorAttribute : System.Attribute
 {
 private string company; // Creator's company
 private string name; // Creator's name

 // Declare a public constructor.
 public AuthorAttribute(string name)
 {
 this.name = name;
 company = "";
 }

 // Declare a property to get/set the company field.
 public string Company
 {
 get { return company; }
 set { company = value; }
 }

 // Declare a property to get the internal field.
 public string Name
 {
 get { return name; }
 }
 }
}

Usage
The following example demonstrates how to decorate types with AuthorAttribute:

using System;

// Declare Allen as the assembly author. Assembly attributes
// must be declared after using statements but before any other.
// Author name is a positional parameter.
// Company name is a named parameter.
[assembly: Apress.VisualCSharpRecipes.Chapter03.Author("Allen",
 Company = "Apress")]

namespace Apress.VisualCSharpRecipes.Chapter03
{
 // Declare a class authored by Allen.
 [Author("Allen", Company = "Apress")]
 public class SomeClass
 {
 // Class implementation.
 }

CHAPTER 3 ■ APPLICATION DOMAINS, REFLECTION, AND METADATA

136

 // Declare a class authored by Lena.
 [Author("Lena")]
 public class SomeOtherClass
 {
 // Class implementation.
 }
}

3-14. Inspect the Attributes of a Program Element Using
Reflection

Problem
You need to use reflection to inspect the custom attributes applied to a program element.

Solution
All program elements implement the System.Reflection.ICustomAttributeProvider interface. Call the
IsDefined method of the ICustomAttributeProvider interface to determine whether an attribute is
applied to a program element, or call the GetCustomAttributes method of the ICustomAttributeProvider
interface to obtain objects representing the attributes applied to the program element.

How It Works
All the classes that represent program elements implement the ICustomAttributeProvider interface. This
includes Assembly, Module, Type, EventInfo, FieldInfo, PropertyInfo, and MethodBase. MethodBase has two
further subclasses: ConstructorInfo and MethodInfo. If you obtain instances of any of these classes, you
can call the method GetCustomAttributes, which will return an object array containing the custom
attributes applied to the program element. The object array contains only custom attributes, not those
contained in the .NET Framework base class library.

The GetCustomAttributes method provides two overloads. The first takes a bool that controls
whether GetCustomAttributes should return attributes inherited from parent classes. The second
GetCustomAttributes overload takes an additional Type argument that acts as a filter, resulting in
GetCustomAttributes returning only attributes of the specified type.

Alternatively, you can call the IsDefined method. IsDefined provides a single overload that takes
two arguments. The first argument is a System.Type object representing the type of attribute you are
interested in, and the second is a bool that indicates whether IsDefined should look for inherited
attributes of the specified type. IsDefined returns a bool indicating whether the specified attribute is
applied to the program element, and is less expensive than calling the GetCustomAttributes method,
which actually instantiates the attribute objects.

CHAPTER 3 ■ APPLICATION DOMAINS, REFLECTION, AND METADATA

137

The Code
The following example uses the custom AuthorAttribute declared in recipe 3-13 and applies it to the
Recipe03-14 class. The Main method calls the GetCustomAttributes method, filtering the attributes so
that the method returns only AuthorAttribute instances. You can safely cast this set of attributes to
AuthorAttribute references and access their members without needing to use reflection.

using System;

namespace Apress.VisualCSharpRecipes.Chapter03
{
 [Author("Lena")]
 [Author("Allen", Company = "Apress")]
 class Recipe03_15
 {
 public static void Main()
 {
 // Get a Type object for this class.
 Type type = typeof(Recipe03_15);

 // Get the attributes for the type. Apply a filter so that only
 // instances of AuthorAttribute are returned.
 object[] attrs =
 type.GetCustomAttributes(typeof(AuthorAttribute), true);

 // Enumerate the attributes and display their details.
 foreach (AuthorAttribute a in attrs) {
 Console.WriteLine(a.Name + ", " + a.Company);
 }

 // Wait to continue.
 Console.WriteLine("\nMain method complete. Press Enter.");
 Console.ReadLine();
 }
 }
}

3-15. Programmatically Discover the Members of a Type

Problem
You need to determine the members of a type at runtime.

CHAPTER 3 ■ APPLICATION DOMAINS, REFLECTION, AND METADATA

138

Solution
Obtain the System.Type for the type you need to reflect on, and call the GetMembers method to get
information about all of the members of the type, or call the GetConstructors, GetMethods, and
GetProperties methods to get information about specific categories of a member.

How It Works
You can get details of the members of a given type through the System.Type class. You can get an
instance of Type by calling the GetType method on any object or by using the typeof keyword. Once you
have a Type instance, the GetMembers method returns information about all members, while the
GetConstructors, GetMethods, and GetProperties methods return just constructors, methods, and
properties, respectively. The Type class also contains methods to get less commonly used member types
(such as events) and interfaces that the type implements.

The GetMembers method returns an array of System.Reflection.MemberInfo instances, one for each
member in the type you are reflecting on. You can differentiate between different categories of member
using the MemberInfo.MemberType property, as shown by the following fragment:

MemberInfo[] members = myType.GetMembers();
foreach (MemberInfo member in members)
{
 switch (member.MemberType)
 {
 case MemberTypes.Constructor:
 // Do something.
 break;
 case MemberTypes.Method:
 // Do something.
 break;
 }
}

The other System.Type methods return arrays of classes from the System.Reflection namespace
specific to the member category—for example, GetConstructors returns an array of
System.Reflection.ConstructorInfo and GetMethods returns an array of System.Reflection.MethodInfo.

The Code
The following example uses reflection on its own type to enumerate the constructors, methods and
properties.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Reflection;

CHAPTER 3 ■ APPLICATION DOMAINS, REFLECTION, AND METADATA

139

namespace Apress.VisualCSharpRecipes.Chapter03
{
 class Recipe03_15
 {
 static void Main(string[] args)
 {

 // Get the type we are interested in.
 Type myType = typeof(Recipe03_15);

 // Get the constructor details.
 Console.WriteLine("\nConstructors...");
 foreach (ConstructorInfo constr in myType.GetConstructors())
 {
 Console.Write("Constructor: ");
 // Get the paramters for this constructor.
 foreach (ParameterInfo param in constr.GetParameters())
 {
 Console.Write("{0} ({1}), ", param.Name, param.ParameterType);
 }
 Console.WriteLine();
 }

 // Get the method details.
 Console.WriteLine("\nMethods...");
 foreach (MethodInfo method in myType.GetMethods())
 {
 Console.Write(method.Name);
 // Get the paramters for this constructor.
 foreach (ParameterInfo param in method.GetParameters())
 {
 Console.Write("{0} ({1}), ", param.Name, param.ParameterType);
 }
 Console.WriteLine();
 }

 // Get the property details.
 Console.WriteLine("\nProperty...");
 foreach (PropertyInfo property in myType.GetProperties())
 {
 Console.Write("{0} ", property.Name);
 // Get the paramters for this constructor.
 foreach (MethodInfo accessor in property.GetAccessors())
 {
 Console.Write("{0}, ", accessor.Name);
 }
 Console.WriteLine();
 }

CHAPTER 3 ■ APPLICATION DOMAINS, REFLECTION, AND METADATA

140

 // Wait to continue.
 Console.WriteLine("\nMain method complete. Press Enter.");
 Console.ReadLine();
 }

 public string MyProperty
 {
 get;
 set;
 }

 public Recipe03_15(string param1, int param2, char param3)
 {

 }
 }
}

3-16. Invoke a Type Member Using Reflection

Problem
You need to invoke a method on a type.

Solution
Use the InvokeMember method of System.Type or the Invoke method on the MemberInfo class or its derived
types (MethodInfo, PropertyInfo, etc.).

How It Works
You can call a member directly on a Type, using the InvokeMember method, to which you must supply the
name of the method you wish to call, the instance of the type you wish to call against, and an array of
objects containing the parameters you wish to pass to the member. You must also provide a value from
the BindingFlags enumeration that specifies what kind of call should be made—values exist for invoking
a method (BindingFlags.InvokeMethod), getting and setting properties (BindingFlags.GetProperty and
BindingFlags.SetProperty), and so on.

You can obtain an instance of MemberInfo or one of its derived types (such as MethodInfo for
methods, PropertyInfo for properties, etc.) and call the Invoke method. See the code for this recipe for
an example of both approaches.

The Code
The following example calls a method using the InvokeMember method of System.Type and calls it again
through the MemberInfo class:

CHAPTER 3 ■ APPLICATION DOMAINS, REFLECTION, AND METADATA

141

using System;
using System.Reflection;

namespace Apress.VisualCSharpRecipes.Chapter03
{
 class Recipe03_16
 {
 static void Main(string[] args)
 {

 // Create an instance of this type.
 object myInstance = new Recipe03_16();

 // Get the type we are interested in.
 Type myType = typeof(Recipe03_16);

 // Get the method information.
 MethodInfo methodInfo = myType.GetMethod("printMessage",
 new Type[] { typeof(string), typeof(int), typeof(char) });

 // Invoke the method using the instance we created.
 myType.InvokeMember("printMessage", BindingFlags.InvokeMethod,
 null, myInstance, new object[] { "hello", 37, 'c' });

 methodInfo.Invoke(null, BindingFlags.InvokeMethod, null,
 new object[] { "hello", 37, 'c' }, null);

 // Wait to continue.
 Console.WriteLine("\nMain method complete. Press Enter.");
 Console.ReadLine();
 }

 public static void printMessage(string param1, int param2, char param3)
 {
 Console.WriteLine("PrintMessage {0} {1} {2}", param1, param2, param3);
 }
 }
}

CHAPTER 3 ■ APPLICATION DOMAINS, REFLECTION, AND METADATA

142

Running the program gives the following results:

PrintMessage hello 37 c

PrintMessage hello 37 c

PrintMessage hello 37 c

Main method complete. Press Enter.

3-17. Dynamically Invoke a Type Member

Problem
You want to invoke a member dynamically.

Solution
Declare your object using the special type dynamic.

How It Works
Recipe 3-16 illustrated how to use reflection to invoke a member on a type. An alternative approach to
the same problem is to use the dynamic runtime support introduced in .NET 4.0. The net results are the
same—you are responsible for ensuring that the member you want to call exists and that your
parameters are of the right type—but the source code required to invoke the member is much simpler.

Simply declare your object as the special type dynamic and then invoke the members directly—the
C# compiler will not check to see that the member you have called exists or that you have supplied the
correct parameters. See the code for this recipe for an illustration.

The Code
The following example calls the same method as in the previous recipe, but does so dynamically:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Reflection;

CHAPTER 3 ■ APPLICATION DOMAINS, REFLECTION, AND METADATA

143

namespace Apress.VisualCSharpRecipes.Chapter03
{
 class Recipe03_17
 {
 static void Main(string[] args)
 {
 // Create an instance of this type.
 dynamic myInstance = new Recipe03_17();

 // Call the method dynamically.
 myInstance.printMessage("hello", 37, 'c');

 // Wait to continue.
 Console.WriteLine("\nMain method complete. Press Enter.");
 Console.ReadLine();
 }

 public void printMessage(string param1, int param2, char param3)
 {
 Console.WriteLine("PrintMessage {0} {1} {2}", param1, param2, param3);
 }
 }
}

3-18. Create a Custom Dynamic Type

Problem
You need to create a type with custom behavior when dynamic member invocations are performed.

Solution
Extend the System.Dynamic.DynamicObject class and override one or more of the instance methods in
that class that begin with Try, such as TrySetMember and TryGetMember.

How It Works
The previous recipe showed how to invoke a method dynamically. The System.Dynamic.DynamicObject
class puts you on the other side of that equation and allows you to create a dynamic type with custom
behavior.

When deriving a type from DynamicObject, you can implement members as you would usually and
override one or more of the TryXXX methods, such as TrySetMember and TryGetMember. When you
instantiate and call a member of your type, the runtime will look for a member you have implemented,
and if it cannot find one, it will call the appropriate TryXXX method. Table 3-4 lists the TryXXX methods.

CHAPTER 3 ■ APPLICATION DOMAINS, REFLECTION, AND METADATA

144

Table 3-4. Useful Methods from the System.Dynamic.DynamicObject Class

Method Description

TryBinaryOperation Called for binary operations such as addition and multiplication

TryConvert Called for operations that convert from one type to another

TryCreateInstance Called when the type is instantiated

TryGetIndex Called when a value is requested via an array-style index

TryGetMember Called when a value is requested via a property

TryInvokeMember Called when a method is invoked

TrySetIndex Called when a value is set via an array-style index

TrySetMember Called when a property value is set

Each of the TryXXX methods defines arguments that allow you to determine what member the caller

has called and the arguments or values that have been passed to you. For example, to implement custom
behavior for getting a property value, we would implement the TryGetMember method, which is declared
as follows:

public override bool TryGetMember(GetMemberBinder binder, out object result)

The GetMemberBinder class provides us with information about the property that the caller has
requested—the most useful member being Name, which returns the name of the property that the caller
wants—remember that dynamic types allow the caller to request any property, not just the ones we have
implemented. You set the value of the result parameter to whatever you want to return to the caller and
use the bool returned from the method to indicate whether you are willing to support the property that
has been requested. For example, the following fragment uses the GetMemberBinder parameter to
determine which property the caller has asked for, and will only return a value for those properties that
begin with the letter a:

public override bool TryGetMember(GetMemberBinder binder, out object result)
{
 if (binder.Name.StartsWith("A"))
 {
 result = "Hello";
 return true;
 } else {
 result = null;
 return false;
 }
}

CHAPTER 3 ■ APPLICATION DOMAINS, REFLECTION, AND METADATA

145

Returning false from a TryXXX method will cause a runtime exception to be thrown to the caller—
see the example code for this recipe for an example of this. Note that you must assign a value to the
result parameter even if you are returning false from the method.

You must declare an instance of your type using the dynamic keyword—if you do not, the compiler
will perform static checking, and you will only be able to access the members you have defined and the
TryXXX members of the DynamicObject class.

The Code
The following example extends the DynamicObject class to create a wrapper around a dictionary such
that calls to get and set properties on the dynamic type are mapped to the key/value pairs contained in
the dictionary:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Reflection;
using System.Dynamic;

namespace Apress.VisualCSharpRecipes.Chapter03
{
 class Recipe03_18
 {
 static void Main(string[] args)
 {

 dynamic dynamicDict = new MyDynamicDictionary();
 // Set some properties.
 Console.WriteLine("Setting property values");
 dynamicDict.FirstName = "Adam";
 dynamicDict.LastName = "Freeman";

 // Get some properties.
 Console.WriteLine("\nGetting property values");
 Console.WriteLine("Firstname {0}", dynamicDict.FirstName);
 Console.WriteLine("Lastname {0}", dynamicDict.LastName);

 // Call an implemented member.
 Console.WriteLine("\nGetting a static property");
 Console.WriteLine("Count {0}", dynamicDict.Count);

 Console.WriteLine("\nGetting a non-existent property");
 try
 {
 Console.WriteLine("City {0}", dynamicDict.City);
 }

CHAPTER 3 ■ APPLICATION DOMAINS, REFLECTION, AND METADATA

146

 catch (Microsoft.CSharp.RuntimeBinder.RuntimeBinderException e)
 {
 Console.WriteLine("Caught exception");
 }

 // Wait to continue.
 Console.WriteLine("\nMain method complete. Press Enter.");
 Console.ReadLine();
 }
 }
 class MyDynamicDictionary : DynamicObject
 {
 private IDictionary<string, object> dict = new Dictionary<string, object>();

 public int Count
 {
 get
 {
 Console.WriteLine("Get request for Count property");
 return dict.Count;
 }
 }

 public override bool TryGetMember(GetMemberBinder binder, out object result)
 {
 Console.WriteLine("Get request for {0}", binder.Name);
 return dict.TryGetValue(binder.Name, out result);
 }

 public override bool TrySetMember(SetMemberBinder binder, object value)
 {
 Console.WriteLine("Set request for {0}, value {1}", binder.Name, value);
 dict[binder.Name] = value;
 return true;
 }

 }
}

CHAPTER 3 ■ APPLICATION DOMAINS, REFLECTION, AND METADATA

147

Running the example gives the following results:

Setting property values

Set request for FirstName, value Adam

Set request for LastName, value Freeman

Getting property values

Get request for FirstName

Firstname Adam

Get request for LastName

Lastname Freeman

Getting a static property

Get request for Count property

Count 2

Getting a non-existent property

Get request for City

Caught exception

Main method complete. Press Enter.

C H A P T E R 4

■ ■ ■

149

Threads, Processes, and
Synchronization

One of the strengths of the Microsoft Windows operating system is that it allows many programs
(processes) to run concurrently and allows each process to perform many tasks concurrently (using
multiple threads). When you run an executable application, a new process is created. The process
isolates your application from other programs running on the computer. The process provides the
application with its own virtual memory and its own copies of any libraries it needs to run, allowing your
application to execute as if it were the only application running on the machine.

Along with the process, an initial thread is created that runs your Main method. In single-threaded
applications, this one thread steps through your code and sequentially performs each instruction. If an
operation takes time to complete, such as reading a file from the Internet or doing a complex
calculation, the application will be unresponsive (will block) until the operation is finished, at which
point the thread will continue with the next operation in your program.

To avoid blocking, the main thread can create additional threads and specify which code each
should start running. As a result, many threads may be running in your application’s process, each
running (potentially) different code and performing different operations seemingly simultaneously. In
reality, unless you have multiple processors (or a single multicore processor) in your computer, the
threads are not really running simultaneously. Instead, the operating system coordinates and schedules
the execution of all threads across all processes; each thread is given a tiny portion (or time slice) of the
processor’s time, which gives the impression they are executing at the same time.

The difficulty of having multiple threads executing within your application arises when those
threads need to access shared data and resources. If multiple threads are changing an object’s state or
writing to a file at the same time, your data will quickly become corrupt. To avoid problems, you must
synchronize the threads to make sure they each get a chance to access the resource, but only one at a
time. Synchronization is also important when waiting for a number of threads to reach a certain point of
execution before proceeding with a different task, and for controlling the number of threads that are at
any given time actively performing a task—perhaps processing requests from client applications.

.NET 4.0 includes two mechanisms for creating multithreaded applications. The “classic” approach
is the one that has been included in .NET since version 1.0, in which the programmer takes
responsibility for creating and managing threads directly. The Task Parallel Library is newly added and
manages threads automatically but reduces the developer’s control over the application.

For information about the Task Parallel Library, please see Chapter 15. This chapter describes how
to control processes and threads using the classic techniques, which are more complex, but offer a
greater degree of control. Specifically, the recipes in this chapter describe how to do the following:

CHAPTER 4 ■ THREADS, PROCESSES, AND SYNCHRONIZATION

150

• Execute code in independent threads using features including the thread pool,
asynchronous method invocation, and timers (recipes 4-1 through 4-6)

• Synchronize the execution of multiple threads using a host of synchronization
techniques including monitors, events, mutexes, and semaphores (recipes 4-7 and
4-11)

• Terminate threads and know when threads have terminated (recipes 4-12 and 4-
13)

• Create thread-safe instances of the .NET collection classes (recipe 4-14)

• Start and stop applications running in new processes (recipes 4-15 and 4-16)

• Ensure that only one instance of an application is able to run at any given time
(recipe 4-17)

As you will see in this chapter, delegates are used extensively in multithreaded programs to wrap the
method that a thread should execute or that should act as a callback when an asynchronous operation is
complete. Prior to C# 2.0, it was necessary to

1. Declare a method that matches the signature of the required delegate

2. Create a delegate instance of the required type by passing it the name of the
method

3. Pass the delegate instance to the new thread or asynchronous operation

C# 2.0 added two important new features that simplify the code you must write when using
delegates:

• First, you no longer need to create a delegate instance to wrap the method you
want to execute. You can pass a method name where a delegate is expected, and
as long as the method signature is correct, the compiler infers the need for the
delegate and creates it automatically. This is a compiler enhancement only—the
intermediate language (IL) generated is as if the appropriate delegate had been
instantiated. Recipes 4-1 and 4-2 (along with many others) demonstrate how to
use this capability.

• Second, you no longer need to explicitly declare a method for use with the
delegate. Instead, you can provide an anonymous method wherever a delegate is
required. In effect, you actually write the method code at the point where you
would usually pass the method name (or delegate instance). The only difference is
that you use the keyword delegate instead of giving the method a name. This
approach can reduce the need to implement methods solely for use as callbacks
and event handlers, which reduces code clutter, but it can quickly become
confusing if the anonymous method is longer than a couple of lines of code.
Recipes 4-3 and 4-4 demonstrate how to use anonymous methods.

CHAPTER 4 ■ THREADS, PROCESSES, AND SYNCHRONIZATION

151

4-1. Execute a Method Using the Thread Pool

Problem
You need to execute a task using a thread from the runtime’s thread pool.

Solution
Declare a method containing the code you want to execute. The method’s signature must match that
defined by the System.Threading.WaitCallback delegate; that is, it must return void and take a single
object argument. Call the static method QueueUserWorkItem of the System.Threading.ThreadPool class,
passing it your method name. The runtime will queue your method and execute it when a thread-pool
thread becomes available.

How It Works
Applications that use many short-lived threads or maintain large numbers of concurrent threads can
suffer performance degradation because of the overhead associated with the creation, operation, and
destruction of threads. In addition, it is common in multithreaded systems for threads to sit idle a large
portion of the time while they wait for the appropriate conditions to trigger their execution. Using a
thread pool provides a common solution to improve the scalability, efficiency, and performance of
multithreaded systems.

The .NET Framework provides a simple thread-pool implementation accessible through the
members of the ThreadPool static class. The QueueUserWorkItem method allows you to execute a method
using a thread-pool thread by placing a work item on a queue. As a thread from the thread pool becomes
available, it takes the next work item from the queue and executes it. The thread performs the work
assigned to it, and when it is finished, instead of terminating, the thread returns to the thread pool and
takes the next work item from the work queue.

■ Tip If you need to execute a method with a signature that does not match the WaitCallback delegate, then you
must use one of the other techniques described in this chapter. See recipe 4-2 or 4-6.

The Code
The following example demonstrates how to use the ThreadPool class to execute a method named
DisplayMessage. The example passes DisplayMessage to the thread pool twice, first with no arguments
and then with a MessageInfo object, which allows you to control which message the new thread will
display:

CHAPTER 4 ■ THREADS, PROCESSES, AND SYNCHRONIZATION

152

using System;
using System.Threading;

namespace Apress.VisualCSharpRecipes.Chapter04
{
 class Recipe04_01
 {

 // A private class used to pass data to the DisplayMessage method when it is
 // executed using the thread pool.
 private class MessageInfo
 {
 private int iterations;
 private string message;

 // A constructor that takes configuration settings for the thread.
 public MessageInfo(int iterations, string message)
 {
 this.iterations = iterations;
 this.message = message;
 }

 // Properties to retrieve configuration settings.
 public int Iterations { get { return iterations; } }
 public string Message { get { return message; } }
 }

 // A method that conforms to the System.Threading.WaitCallback delegate
 // signature. Displays a message to the console.
 public static void DisplayMessage(object state)
 {
 // Safely cast the state argument to a MessageInfo object.
 MessageInfo config = state as MessageInfo;

 // If the config argument is null, no arguments were passed to
 // the ThreadPool.QueueUserWorkItem method; use default values.
 if (config == null)
 {
 // Display a fixed message to the console three times.
 for (int count = 0; count < 3; count++)
 {
 Console.WriteLine("A thread pool example.");

 // Sleep for the purpose of demonstration. Avoid sleeping
 // on thread-pool threads in real applications.
 Thread.Sleep(1000);
 }

 }
 else
 {

CHAPTER 4 ■ THREADS, PROCESSES, AND SYNCHRONIZATION

153

 // Display the specified message the specified number of times.
 for (int count = 0; count < config.Iterations; count++)
 {
 Console.WriteLine(config.Message);

 // Sleep for the purpose of demonstration. Avoid sleeping
 // on thread-pool threads in real applications.
 Thread.Sleep(1000);
 }
 }
 }

 public static void Main()
 {
 // Execute DisplayMessage using the thread pool and no arguments.
 ThreadPool.QueueUserWorkItem(DisplayMessage);

 // Create a MessageInfo object to pass to the DisplayMessage method.
 MessageInfo info = new MessageInfo(5,
 "A thread pool example with arguments.");

 // Set the max number of threads.
 ThreadPool.SetMaxThreads(2, 2);

 // Execute DisplayMessage using the thread pool and providing an
 // argument.
 ThreadPool.QueueUserWorkItem(DisplayMessage, info);

 // Wait to continue.
 Console.WriteLine("Main method complete. Press Enter.");
 Console.ReadLine();
 }
 }
}

Notes
Using the runtime’s thread pool simplifies multithreaded programming dramatically; however, be aware
that the implementation is a simple, general-purpose thread pool. Before deciding to use the thread
pool, consider the following points:

• Each process has one thread pool, which supports by default a maximum of 25
concurrent threads per processor. You can change the maximum number of
threads using the method ThreadPool.SetMaxThreads, but some runtime hosts
(Internet Information Services [IIS] and SQL Server, for example) will limit the
maximum number of threads and may not allow the default value to be changed
at all.

CHAPTER 4 ■ THREADS, PROCESSES, AND SYNCHRONIZATION

154

• As well as allowing you to use the thread pool to execute code directly, the runtime
uses the thread pool for other purposes internally. This includes the asynchronous
execution of methods (see recipe 4-2), execution of timer events (see recipes 4-3
and 4-4), and execution of wait-based methods (see recipe 4-5). All of these uses
can lead to heavy contention for the thread-pool threads, meaning that the work
queue can become very long. Although the work queue’s maximum length is
limited only by the amount of memory available to the runtime’s process, an
excessively long queue will result in long delays before queued work items are
executed. The ThreadPool.GetAvailableThreads method returns the number of
threads currently available in the thread pool. This can be useful in determining
whether your application is placing too much load on the thread pool, indicating
that you should increase the number of available threads using the
ThreadPool.SetMaxThreads method.

• Where possible, avoid using the thread pool to execute long-running processes.
The limited number of threads in the thread pool means that a handful of threads
tied up with long-running processes can significantly affect the overall
performance of the thread pool. Specifically, you should avoid putting thread-pool
threads to sleep for any length of time.

• Thread-pool threads are background threads. You can configure threads as either
foreground threads or background threads. Foreground and background threads
are identical except that a background thread will not keep an application process
alive. Therefore, your application will terminate automatically when the last
foreground thread of your application terminates.

• You have no control over the scheduling of thread-pool threads, and you cannot
prioritize work items. The thread pool handles each work item in the sequence in
which you add it to the work queue.

• Once a work item is queued, it cannot be canceled or stopped.

• Do not try to use thread-pool threads to directly update or manipulate Windows
Forms controls, because they can be updated only by the thread that created
them. Instead, use the controls’ Dispatcher property—see the .NET Framework
documentation for details.

4-2. Execute a Method Asynchronously

Problem
You need to start execution of a method and continue with other tasks while the method runs on a
separate thread. After the method completes, you need to retrieve the method’s return value.

Solution
Declare a delegate with the same signature as the method you want to execute. Create an instance of the
delegate that references the method. Call the BeginInvoke method of the delegate instance to start

CHAPTER 4 ■ THREADS, PROCESSES, AND SYNCHRONIZATION

155

executing your method. Use the EndInvoke method to determine the method’s status as well as obtain
the method’s return value if complete.

How It Works
Typically, when you invoke a method, you do so synchronously, meaning that the calling code blocks
until the method is complete. Most of the time, this is the expected, desired behavior because your code
requires the operation to complete before it can continue. However, sometimes it is useful to execute a
method asynchronously, meaning that you start the method in a separate thread and then continue with
other operations.

The .NET Framework implements an asynchronous execution pattern that allows you to call any
method asynchronously using a delegate. When you declare and compile a delegate, the compiler
automatically generates two methods that support asynchronous execution: BeginInvoke and EndInvoke.
When you call BeginInvoke on a delegate instance, the method referenced by the delegate is queued for
asynchronous execution. Control returns to the caller immediately, and the referenced method executes
in the context of the first available thread-pool thread.

The signature of the BeginInvoke method includes the same arguments as those specified by the
delegate signature, followed by two additional arguments to support asynchronous completion. These
additional arguments are as follows:

• A System.AsyncCallback delegate instance that references a method that the
runtime will call when the asynchronous method completes. The method will be
executed by a thread-pool thread. Passing null means no method is called and
means you must use another mechanism (discussed later in this recipe) to
determine when the asynchronous method is complete.

• A reference to an object that the runtime associates with the asynchronous
operation for you. The asynchronous method does not use or have access to this
object, but it is available to your code when the method completes, allowing you
to associate useful state information with an asynchronous operation. For
example, this object allows you to map results against initiated operations in
situations where you initiate many asynchronous operations that use a common
callback method to perform completion.

The EndInvoke method allows you to retrieve the return value of a method that was executed
asynchronously, but you must first determine when it has finished. If your asynchronous method threw
an exception, it will be rethrown so that you can handle it when you call EndInvoke. Here are the four
techniques for determining whether an asynchronous method has finished:

• Blocking stops the execution of the current thread until the asynchronous method
completes execution. In effect, this is much the same as synchronous execution.
However, you have the flexibility to decide exactly when your code enters the
blocked state, giving you the opportunity to perform some additional processing
before blocking.

CHAPTER 4 ■ THREADS, PROCESSES, AND SYNCHRONIZATION

156

• Polling involves repeatedly testing the state of an asynchronous method to
determine whether it is complete. This is a simple technique and is not
particularly efficient from a processing perspective. You should avoid tight loops
that consume processor time; it is best to put the polling thread to sleep for a
period using Thread.Sleep between completion tests. Because polling involves
maintaining a loop, the actions of the waiting thread are limited, but you can
easily update some kind of progress indicator.

• Waiting depends on the AsyncWaitHandle property of the IAsyncResult returned
by BeginInvoke. This object derives from the System.Threading.WaitHandle class
signals when the asynchronous method completes. Waiting is a more efficient
version of polling, and in addition allows you to wait for multiple asynchronous
methods to complete. You can also specify timeout values to allow your waiting
thread to notify a failure if the asynchronous method takes too long or if you want
to periodically update a status indicator.

• A callback is a method that the runtime calls when an asynchronous operation
completes. The calling code does not have to take any steps to determine when
the asynchronous method is complete and is free to continue with other
processing. Callbacks provide the greatest flexibility but also introduce the
greatest complexity, especially if you have many asynchronous operations active
concurrently that all use the same callback. In such cases, you must use
appropriate state objects as the last parameter of BeginInvoke to match the
completed methods against those you initiated.

■ Caution Even if you do not want to handle the return value of your asynchronous method, you should call
EndInvoke; otherwise, you risk leaking memory each time you initiate an asynchronous call using BeginInvoke.

The Code
The following code demonstrates how to use the asynchronous execution pattern. It uses a delegate
named AsyncExampleDelegate to execute a method named LongRunningMethod asynchronously.
LongRunningMethod simulates a long-running method using a configurable delay (produced using
Thread.Sleep). The example contains the following five methods, which demonstrate the various
approaches to handling asynchronous method completion:

• The BlockingExample method executes LongRunningMethod asynchronously and
continues with a limited set of processing. Once this processing is complete,
BlockingExample blocks until LongRunningMethod completes. To block,
BlockingExample calls the EndInvoke method of the AsyncExampleDelegate delegate
instance. If LongRunningMethod has already finished, EndInvoke returns
immediately; otherwise, BlockingExample blocks until LongRunningMethod
completes.

CHAPTER 4 ■ THREADS, PROCESSES, AND SYNCHRONIZATION

157

• The PollingExample method executes LongRunningMethod asynchronously and
then enters a polling loop until LongRunningMethod completes. PollingExample
tests the IsCompleted property of the IAsyncResult instance returned by
BeginInvoke to determine whether LongRunningMethod is complete; otherwise,
PollingExample calls Thread.Sleep.

• The WaitingExample method executes LongRunningMethod asynchronously and
then waits until LongRunningMethod completes. WaitingExample uses the
AsyncWaitHandle property of the IAsyncResult instance returned by BeginInvoke to
obtain a WaitHandle and then calls its WaitOne method. Using a timeout allows
WaitingExample to break out of waiting in order to perform other processing or to
fail completely if the asynchronous method is taking too long.

• The WaitAllExample method executes LongRunningMethod asynchronously multiple
times and then uses an array of WaitHandle objects to wait efficiently until all the
methods are complete.

• The CallbackExample method executes LongRunningMethod asynchronously and
passes an AsyncCallback delegate instance (that references the CallbackHandler
method) to the BeginInvoke method. The referenced CallbackHandler method is
called automatically when the asynchronous LongRunningMethod completes,
leaving the CallbackExample method free to continue processing.

■ Note For the purpose of demonstrating the various synchronization techniques, the example performs several
tasks that should be avoided when using the thread pool, including putting thread-pool threads to sleep and calling
long-running methods. See recipe 4-1 for more suggestions on using the thread pool appropriately.

using System;
using System.Threading;
using System.Collections;

namespace Apress.VisualCSharpRecipes.Chapter04
{
 class Recipe04_02
 {
 // A utility method for displaying useful trace information to the
 // console along with details of the current thread.
 private static void TraceMsg(DateTime time, string msg)
 {
 Console.WriteLine("[{0,3}/{1}] - {2} : {3}",
 Thread.CurrentThread.ManagedThreadId,
 Thread.CurrentThread.IsThreadPoolThread ? "pool" : "fore",
 time.ToString("HH:mm:ss.ffff"), msg);
 }

 // A delegate that allows you to perform asynchronous execution of
 // LongRunningMethod.

CHAPTER 4 ■ THREADS, PROCESSES, AND SYNCHRONIZATION

158

 public delegate DateTime AsyncExampleDelegate(int delay, string name);

 // A simulated long-running method.
 public static DateTime LongRunningMethod(int delay, string name)
 {
 TraceMsg(DateTime.Now, name + " example - thread starting.");

 // Simulate time-consuming processing.
 Thread.Sleep(delay);

 TraceMsg(DateTime.Now, name + " example - thread stopping.");

 // Return the method's completion time.
 return DateTime.Now;
 }

 // This method executes LongRunningMethod asynchronously and continues
 // with other processing. Once the processing is complete, the method
 // blocks until LongRunningMethod completes.
 public static void BlockingExample()
 {
 Console.WriteLine(Environment.NewLine +
 "*** Running Blocking Example ***");

 // Invoke LongRunningMethod asynchronously. Pass null for both the
 // callback delegate and the asynchronous state object.
 AsyncExampleDelegate longRunningMethod = LongRunningMethod;

 IAsyncResult asyncResult = longRunningMethod.BeginInvoke(2000,
 "Blocking", null, null);

 // Perform other processing until ready to block.
 for (int count = 0; count < 3; count++)
 {
 TraceMsg(DateTime.Now,
 "Continue processing until ready to block...");

 Thread.Sleep(200);
 }

 // Block until the asynchronous method completes.
 TraceMsg(DateTime.Now,
 "Blocking until method is complete...");

 // Obtain the completion data for the asynchronous method.
 DateTime completion = DateTime.MinValue;

 try
 {
 completion = longRunningMethod.EndInvoke(asyncResult);
 }

CHAPTER 4 ■ THREADS, PROCESSES, AND SYNCHRONIZATION

159

 catch
 {
 // Catch and handle those exceptions you would if calling
 // LongRunningMethod directly.
 }

 // Display completion information.
 TraceMsg(completion,"Blocking example complete.");
 }

 // This method executes LongRunningMethod asynchronously and then
 // enters a polling loop until LongRunningMethod completes.
 public static void PollingExample()
 {
 Console.WriteLine(Environment.NewLine +
 "*** Running Polling Example ***");

 // Invoke LongRunningMethod asynchronously. Pass null for both the
 // callback delegate and the asynchronous state object.
 AsyncExampleDelegate longRunningMethod = LongRunningMethod;

 IAsyncResult asyncResult = longRunningMethod.BeginInvoke(2000,
 "Polling", null, null);

 // Poll the asynchronous method to test for completion. If not
 // complete, sleep for 300 ms before polling again.
 TraceMsg(DateTime.Now, "Poll repeatedly until method is complete.");

 while (!asyncResult.IsCompleted)
 {
 TraceMsg(DateTime.Now, "Polling...");
 Thread.Sleep(300);
 }

 // Obtain the completion data for the asynchronous method.
 DateTime completion = DateTime.MinValue;

 try
 {
 completion = longRunningMethod.EndInvoke(asyncResult);
 }
 catch
 {
 // Catch and handle those exceptions you would if calling
 // LongRunningMethod directly.
 }

 // Display completion information.
 TraceMsg(completion, "Polling example complete.");
 }

CHAPTER 4 ■ THREADS, PROCESSES, AND SYNCHRONIZATION

160

 // This method executes LongRunningMethod asynchronously and then
 // uses a WaitHandle to wait efficiently until LongRunningMethod
 // completes. Use of a timeout allows the method to break out of
 // waiting in order to update the user interface or fail if the
 // asynchronous method is taking too long.
 public static void WaitingExample()
 {
 Console.WriteLine(Environment.NewLine +
 "*** Running Waiting Example ***");

 // Invoke LongRunningMethod asynchronously. Pass null for both the
 // callback delegate and the asynchronous state object.
 AsyncExampleDelegate longRunningMethod = LongRunningMethod;

 IAsyncResult asyncResult = longRunningMethod.BeginInvoke(2000,
 "Waiting", null, null);

 // Wait for the asynchronous method to complete. Time out after
 // 300 ms and display status to the console before continuing to
 // wait.
 TraceMsg(DateTime.Now, "Waiting until method is complete...");

 while (!asyncResult.AsyncWaitHandle.WaitOne(300, false))
 {
 TraceMsg(DateTime.Now, "Wait timeout...");
 }

 // Obtain the completion data for the asynchronous method.
 DateTime completion = DateTime.MinValue;

 try
 {
 completion = longRunningMethod.EndInvoke(asyncResult);
 }
 catch
 {
 // Catch and handle those exceptions you would if calling
 // LongRunningMethod directly.
 }

 // Display completion information.
 TraceMsg(completion, "Waiting example complete.");
 }

 // This method executes LongRunningMethod asynchronously multiple
 // times and then uses an array of WaitHandle objects to wait
 // efficiently until all of the methods are complete. Use of
 // a timeout allows the method to break out of waiting in order
 // to update the user interface or fail if the asynchronous
 // method is taking too long.

CHAPTER 4 ■ THREADS, PROCESSES, AND SYNCHRONIZATION

161

 public static void WaitAllExample()
 {
 Console.WriteLine(Environment.NewLine +
 "*** Running WaitAll Example ***");

 // An ArrayList to hold the IAsyncResult instances for each of the
 // asynchronous methods started.
 ArrayList asyncResults = new ArrayList(3);

 // Invoke three LongRunningMethods asynchronously. Pass null for
 // both the callback delegate and the asynchronous state object.
 // Add the IAsyncResult instance for each method to the ArrayList.
 AsyncExampleDelegate longRunningMethod = LongRunningMethod;

 asyncResults.Add(longRunningMethod.BeginInvoke(3000,
 "WaitAll 1", null, null));

 asyncResults.Add(longRunningMethod.BeginInvoke(2500,
 "WaitAll 2", null, null));

 asyncResults.Add(longRunningMethod.BeginInvoke(1500,
 "WaitAll 3", null, null));

 // Create an array of WaitHandle objects that will be used to wait
 // for the completion of all the asynchronous methods.
 WaitHandle[] waitHandles = new WaitHandle[3];

 for (int count = 0; count < 3; count++)
 {
 waitHandles[count] =
 ((IAsyncResult)asyncResults[count]).AsyncWaitHandle;
 }

 // Wait for all three asynchronous method to complete. Time out
 // after 300 ms and display status to the console before continuing
 // to wait.
 TraceMsg(DateTime.Now, "Waiting until all 3 methods are complete...");

 while (!WaitHandle.WaitAll(waitHandles, 300, false))
 {
 TraceMsg(DateTime.Now, "WaitAll timeout...");
 }

 // Inspect the completion data for each method, and determine the
 // time at which the final method completed.
 DateTime completion = DateTime.MinValue;

CHAPTER 4 ■ THREADS, PROCESSES, AND SYNCHRONIZATION

162

 foreach (IAsyncResult result in asyncResults)
 {
 try
 {
 DateTime time = longRunningMethod.EndInvoke(result);
 if (time > completion) completion = time;
 }
 catch
 {
 // Catch and handle those exceptions you would if calling
 // LongRunningMethod directly.
 }
 }

 // Display completion information.
 TraceMsg(completion, "WaitAll example complete.");
 }

 // This method executes LongRunningMethod asynchronously and passes
 // an AsyncCallback delegate instance. The referenced CallbackHandler
 // method is called automatically when the asynchronous method
 // completes, leaving this method free to continue processing.
 public static void CallbackExample()
 {
 Console.WriteLine(Environment.NewLine +
 "*** Running Callback Example ***");

 // Invoke LongRunningMethod asynchronously. Pass an AsyncCallback
 // delegate instance referencing the CallbackHandler method that
 // will be called automatically when the asynchronous method
 // completes. Pass a reference to the AsyncExampleDelegate delegate
 // instance as asynchronous state; otherwise, the callback method
 // has no access to the delegate instance in order to call
 // EndInvoke.
 AsyncExampleDelegate longRunningMethod = LongRunningMethod;

 IAsyncResult asyncResult = longRunningMethod.BeginInvoke(2000,
 "Callback", CallbackHandler, longRunningMethod);

 // Continue with other processing.
 for (int count = 0; count < 15; count++)
 {
 TraceMsg(DateTime.Now, "Continue processing...");
 Thread.Sleep(200);
 }
 }

 // A method to handle asynchronous completion using callbacks.
 public static void CallbackHandler(IAsyncResult result)
 {

CHAPTER 4 ■ THREADS, PROCESSES, AND SYNCHRONIZATION

163

 // Extract the reference to the AsyncExampleDelegate instance
 // from the IAsyncResult instance. This allows you to obtain the
 // completion data.
 AsyncExampleDelegate longRunningMethod =
 (AsyncExampleDelegate)result.AsyncState;

 // Obtain the completion data for the asynchronous method.
 DateTime completion = DateTime.MinValue;

 try
 {
 completion = longRunningMethod.EndInvoke(result);
 }
 catch
 {
 // Catch and handle those exceptions you would if calling
 // LongRunningMethod directly.
 }

 // Display completion information.
 TraceMsg(completion, "Callback example complete.");
 }

 public static void Main()
 {
 // Demonstrate the various approaches to asynchronous method completion.
 BlockingExample();
 PollingExample();
 WaitingExample();
 WaitAllExample();
 CallbackExample();

 // Wait to continue.
 Console.WriteLine(Environment.NewLine);
 Console.WriteLine("Main method complete. Press Enter.");
 Console.ReadLine();
 }
 }
}

4-3. Execute a Method Periodically

Problem
You need to execute a method in a separate thread periodically.

CHAPTER 4 ■ THREADS, PROCESSES, AND SYNCHRONIZATION

164

Solution
Declare a method containing the code you want to execute periodically. The method’s signature
must match that defined by the System.Threading.TimerCallback delegate; in other words, it must
return void and take a single object argument. Create a System.Threading.Timer object and pass it the
method you want to execute along with a state object that the timer will pass to your method when the
timer expires. The runtime will wait until the timer expires and then call your method using a thread
from the thread pool.

■ Tip If you are implementing a timer in a Windows Forms application, you should consider using the
System.Windows.Forms.Timer, which also provides additional support in Visual Studio that allows you to drag the
timer from your toolbox onto your application. For server-based applications where you want to signal multiple
listeners each time the timer fires, consider using the System.Timers.Timer class, which notifies listeners using
events.

How It Works
It is often useful to execute a method at regular intervals. For example, you might need to clean a data
cache every 20 minutes. The Timer class makes the periodic execution of methods straightforward,
allowing you to execute a method referenced by a TimerCallback delegate at specified intervals. The
referenced method executes in the context of a thread from the thread pool. (See recipe 4-1 for notes on
the appropriate use of thread-pool threads.)

When you create a Timer object, you specify two time intervals. The first value specifies the
millisecond delay until the Timer first executes your method. Specify 0 to execute the method
immediately, and specify System.Threading.Timeout.Infinite to create the Timer in an unstarted state.
The second value specifies the interval in milliseconds; then the Timer will repeatedly call your method
following the initial execution. If you specify a value of 0 or Timeout.Infinite, the Timer will execute the
method only once (as long as the initial delay is not Timeout.Infinite). You can specify the time
intervals as int, long, uint, or System.TimeSpan values.

Once you have created a Timer object, you can modify the intervals used by the timer using the
Change method, but you cannot change the method that is called. When you have finished with a Timer
object, you should call its Dispose method to free system resources held by the timer. Disposing of the
Timer object cancels any method that is scheduled for execution.

The Code
The TimerExample class shown next demonstrates how to use a Timer object to call a method named
TimerHandler. Initially, the Timer object is configured to call TimerHandler after 2 seconds and then at 1-
second intervals. The example allows you to enter a new millisecond interval in the console, which is
applied using the Timer.Change method.

CHAPTER 4 ■ THREADS, PROCESSES, AND SYNCHRONIZATION

165

using System;
using System.Threading;

namespace Apress.VisualCSharpRecipes.Chapter04
{
 class Recipe04_03
 {
 public static void Main()
 {
 // Create the state object that is passed to the TimerHandler
 // method when it is triggered. In this case, a message to display.
 string state = "Timer expired.";

 Console.WriteLine("{0} : Creating Timer.",
 DateTime.Now.ToString("HH:mm:ss.ffff"));

 // Create a timer that fires first after 2 seconds and then every
 // second. Use an anonymous method for the timer expiry handler.
 using (Timer timer =
 new Timer(delegate(object s)
 {Console.WriteLine("{0} : {1}",
 DateTime.Now.ToString("HH:mm:ss.ffff"),s);
 }
 , state, 2000, 1000))
 {
 int period;

 // Read the new timer interval from the console until the
 // user enters 0 (zero). Invalid values use a default value
 // of 0, which will stop the example.
 do
 {
 try
 {
 period = Int32.Parse(Console.ReadLine());
 }
 catch (FormatException)
 {
 period = 0;
 }

 // Change the timer to fire using the new interval starting
 // immediately.
 if (period > 0) timer.Change(0, period);
 } while (period > 0);
 }

CHAPTER 4 ■ THREADS, PROCESSES, AND SYNCHRONIZATION

166

 // Wait to continue.
 Console.WriteLine("Main method complete. Press Enter.");
 Console.ReadLine();
 }
 }
}

4-4. Execute a Method at a Specific Time

Problem
You need to execute a method in a separate thread at a specific time.

Solution
Declare a method containing the code you want to execute. The method’s signature must match that
defined by the System.Threading.TimerCallback delegate; that is, it must return void and take a single
object argument. Create a System.Threading.Timer object, and pass it the method you want to execute
along with a state object that the timer will pass to your method when the timer expires. Calculate the
time difference between the current time and the desired execution time, and configure the Timer object
to fire once after this period of time.

How It Works
Executing a method at a particular time is often useful. For example, you might need to back up data at 1
a.m. daily. Although primarily used for calling methods at regular intervals, the Timer object also
provides the flexibility to call a method at a specific time.

When you create a Timer object, you specify two time intervals. The first value specifies the
millisecond delay until the Timer first executes your method. To execute the method at a specific time,
you should set this value to the difference between the current time (System.DateTime.Now) and the
desired execution time. The second value specifies the interval after which the Timer will repeatedly call
your method following the initial execution. If you specify a value of 0,
System.Threading.Timeout.Infinite, or TimeSpan(-1), the Timer object will execute the method only
once. If you need the method to execute at a specific time every day, you can easily set this figure using
TimeSpan.FromDays(1), which represents the number of milliseconds in 24 hours.

The Code
The following code demonstrates how to use a Timer object to execute a method at a specified time:

using System;
using System.Threading;
using System.Globalization;

CHAPTER 4 ■ THREADS, PROCESSES, AND SYNCHRONIZATION

167

namespace Apress.VisualCSharpRecipes.Chapter04
{
 class Recipe04_04
 {
 public static void Main(string[] args)
 {
 // Create a 30-second timespan.
 TimeSpan waitTime = new TimeSpan(0, 0, 30);

 // Create a Timer that fires once at the specified time. Specify
 // an interval of -1 to stop the timer executing the method
 // repeatedly. Use an anonymouse method for the timer expiry handler.
 new Timer(delegate(object s)
 {
 Console.WriteLine("Timer fired at {0}",
 DateTime.Now.ToString("HH:mm:ss.ffff"));
 }
 , null, waitTime, new TimeSpan(-1));

 Console.WriteLine("Waiting for timer. Press Enter to terminate.");
 Console.ReadLine();
 }
 }
}

4-5. Execute a Method by Signaling a WaitHandle Object

Problem
You need to execute one or more methods automatically when an object derived from
System.Threading.WaitHandle is signaled.

Solution
Declare a method containing the code you want to execute. The method’s signature must match that
defined by the System.Threading.WaitOrTimerCallback delegate. Using the static
ThreadPool.RegisterWaitForSingleObject method, register the method to execute and the WaitHandle
object that will trigger execution when signaled.

How It Works
You can use classes derived from the WaitHandle class to trigger the execution of a method. Using the
RegisterWaitForSingleObject method of the ThreadPool class, you can register a WaitOrTimerCallback
delegate instance for execution by a thread-pool thread when a specified WaitHandle-derived object
enters a signaled state. You can configure the thread pool to execute the method only once or to
automatically reregister the method for execution each time the WaitHandle is signaled. If the WaitHandle

CHAPTER 4 ■ THREADS, PROCESSES, AND SYNCHRONIZATION

168

is already signaled when you call RegisterWaitForSingleObject, the method will execute immediately.
The Unregister method of the System.Threading.RegisteredWaitHandle object returned by the
RegisterWaitForSingleObject method is used to cancel a registered wait operation.

The class most commonly used as a trigger is AutoResetEvent, which automatically returns to an
unsignaled state after it is signaled. However, you can also use the ManualResetEvent, Mutex, and
Semaphore classes, which require you to change the signaled state manually.

The Code
The following example demonstrates how to use an AutoResetEvent to trigger the execution of a method
named EventHandler. (The AutoResetEvent class is discussed further in recipe 4-8.)

using System;
using System.Threading;

namespace Apress.VisualCSharpRecipes.Chapter04
{
 class Recipe04_05
 {
 // A method that is executed when the AutoResetEvent is signaled
 // or the wait operation times out.
 private static void EventHandler(object state, bool timedout)
 {
 // Display appropriate message to the console based on whether
 // the wait timed out or the AutoResetEvent was signaled.
 if (timedout)
 {
 Console.WriteLine("{0} : Wait timed out.",
 DateTime.Now.ToString("HH:mm:ss.ffff"));
 }
 else
 {
 Console.WriteLine("{0} : {1}",
 DateTime.Now.ToString("HH:mm:ss.ffff"), state);
 }
 }

 public static void Main()
 {
 // Create the new AutoResetEvent in an unsignaled state.
 AutoResetEvent autoEvent = new AutoResetEvent(false);

 // Create the state object that is passed to the event handler
 // method when it is triggered. In this case, a message to display.
 string state = "AutoResetEvent signaled.";

 // Register the EventHandler method to wait for the AutoResetEvent to
 // be signaled. Set a timeout of 10 seconds, and configure the wait
 // operation to reset after activation (last argument).

CHAPTER 4 ■ THREADS, PROCESSES, AND SYNCHRONIZATION

169

 RegisteredWaitHandle handle = ThreadPool.RegisterWaitForSingleObject(
 autoEvent, EventHandler, state, 10000, false);

 Console.WriteLine("Press ENTER to signal the AutoResetEvent" +
 " or enter \"Cancel\" to unregister the wait operation.");

 while (Console.ReadLine().ToUpper() != "CANCEL")
 {
 // If "Cancel" has not been entered into the console, signal
 // the AutoResetEvent, which will cause the EventHandler
 // method to execute. The AutoResetEvent will automatically
 // revert to an unsignaled state.
 autoEvent.Set();
 }

 // Unregister the wait operation.
 Console.WriteLine("Unregistering wait operation.");
 handle.Unregister(null);

 // Wait to continue.
 Console.WriteLine("Main method complete. Press Enter.");
 Console.ReadLine();
 }
 }
}

4-6. Execute a Method Using a New Thread

Problem
You need to execute code in its own thread, and you want complete control over the thread’s state and
operation.

Solution
Declare a method containing the code you want to execute. The method’s signature must match that
defined by the System.Threading.ThreadStart or System.Threading.ParameterizedThreadStart delegate.
Create a new System.Threading.Thread object and pass the method as an argument to its constructor.
Call the Thread.Start method to start the execution of your method.

How It Works
For maximum control and flexibility when creating multithreaded applications, you need to take a direct
role in creating and managing threads. This is the most complex approach to multithreaded
programming, but it is the only way to overcome the restrictions and limitations inherent in the
approaches using thread-pool threads, as discussed in the preceding recipes. The Thread class provides

CHAPTER 4 ■ THREADS, PROCESSES, AND SYNCHRONIZATION

170

the mechanism through which you create and control threads. To create and start a new thread, follow
this process:

1. Define a method that matches the ThreadStart or ParameterizedThreadStart
delegate. The ThreadStart delegate takes no arguments and returns
void. This means you cannot easily pass data to your new thread. The
ParameterizedThreadStart delegate also returns void but takes a single object as
an argument, allowing you to pass data to the method you want to run. (The
ParameterizedThreadStart delegate is a welcome addition to .NET 2.0.) The
method you want to execute can be static or an instance method.

2. Create a new Thread object and pass your method as an argument to the
Thread constructor. The new thread has an initial state of Unstarted (a member
of the System.Threading.ThreadState enumeration) and is a foreground thread
by default. If you want to configure it to be a background thread, you need to
set its IsBackground property to true.

3. Call Start on the Thread object, which changes its state to
ThreadState.Running and begins execution of your method. If you need to pass
data to your method, include it as an argument to the Start call. If you call
Start more than once, it will throw a System.Threading.ThreadStateException.

The Code
The following code demonstrates how to execute a method in a new thread and shows you how to pass
data to the new thread:

using System;
using System.Threading;

namespace Apress.VisualCSharpRecipes.Chapter04
{
 class Recipe04_06
 {

 // A utility method for displaying useful trace information to the
 // console along with details of the current thread.
 private static void TraceMsg(string msg)
 {
 Console.WriteLine("[{0,3}] - {1} : {2}",
 Thread.CurrentThread.ManagedThreadId,
 DateTime.Now.ToString("HH:mm:ss.ffff"), msg);
 }

 // A private class used to pass initialization data to a new thread.
 private class ThreadStartData
 {
 public ThreadStartData(int iterations, string message, int delay)
 {
 this.iterations = iterations;

CHAPTER 4 ■ THREADS, PROCESSES, AND SYNCHRONIZATION

171

 this.message = message;
 this.delay = delay;
 }

 // Member variables hold initialization data for a new thread.
 private readonly int iterations;
 private readonly string message;
 private readonly int delay;

 // Properties provide read-only access to initialization data.
 public int Iterations { get { return iterations; } }
 public string Message { get { return message; } }
 public int Delay { get { return delay; } }
 }

 // Declare the method that will be executed in its own thread. The
 // method displays a message to the console a specified number of
 // times, sleeping between each message for a specified duration.
 private static void DisplayMessage(object config)
 {
 ThreadStartData data = config as ThreadStartData;

 if (data != null)
 {
 for (int count = 0; count < data.Iterations; count++)
 {
 TraceMsg(data.Message);

 // Sleep for the specified period.
 Thread.Sleep(data.Delay);
 }
 }
 else
 {
 TraceMsg("Invalid thread configuration.");
 }
 }

 public static void Main()
 {
 // Create a new Thread object specifying DisplayMessage
 // as the method it will execute.
 Thread thread = new Thread(DisplayMessage);
 // Make this a foreground thread - this is the
 // default - call used for example purposes.
 thread.IsBackground = false;

 // Create a new ThreadStartData object to configure the thread.
 ThreadStartData config =
 new ThreadStartData(5, "A thread example.", 500);
 TraceMsg("Starting new thread.");

CHAPTER 4 ■ THREADS, PROCESSES, AND SYNCHRONIZATION

172

 // Start the new thread and pass the ThreadStartData object
 // containing the initialization data.
 thread.Start(config);

 // Continue with other processing.
 for (int count = 0; count < 13; count++)
 {
 TraceMsg("Main thread continuing processing...");
 Thread.Sleep(200);
 }

 // Wait to continue.
 Console.WriteLine(Environment.NewLine);
 Console.WriteLine("Main method complete. Press Enter.");
 Console.ReadLine();
 }
 }
}

4-7. Synchronize the Execution of Multiple Threads Using a
Monitor

Problem
You need to coordinate the activities of multiple threads within a single process to ensure the efficient
use of shared resources or to ensure that several threads are not updating the same shared resource at
the same time. (See recipe 4-9 for details of coordination between processes.)

Solution
Identify an appropriate object to use as a mechanism to control access to the shared resource/data. Use
the static method Monitor.Enter to acquire a lock on the object, and use the static method Monitor.Exit
to release the lock so another thread may acquire it.

How It Works
The greatest challenge in writing a multithreaded application is ensuring that the threads work in
concert. This is commonly referred to as thread synchronization, and includes the following:

• Ensuring that threads access shared objects and data correctly so that they do not
cause corruption

• Ensuring that threads execute only when they are meant to and cause minimum
overhead when they are idle

CHAPTER 4 ■ THREADS, PROCESSES, AND SYNCHRONIZATION

173

The most commonly used synchronization mechanism is the System.Threading.Monitor class. The
Monitor class allows a single thread to obtain an exclusive lock on an object by calling the static method
Monitor.Enter. By acquiring an exclusive lock prior to accessing a shared resource or shared data, you
ensure that only one thread can access the resource concurrently. Once the thread has finished with the
resource, release the lock to allow another thread to access it. A block of code that enforces this behavior
is often referred to as a critical section.

■ Note Monitors are managed-code synchronization mechanisms that do not rely on any specific operating
system primitives. This ensures that your code is portable should you want to run it on a non-Windows platform.
This is in contrast to the synchronization mechanisms discussed in recipes 4-8, 4-9, and 4-10, which rely on
Win32 operating system–based synchronization objects.

You can use any object to act as the lock; it is common to use the keyword this to obtain a lock on
the current object, but it is better to use a separate object dedicated to the purpose of synchronization.
The key point is that all threads attempting to access a shared resource must try to acquire the same lock.
Other threads that attempt to acquire a lock using Monitor.Enter on the same object will block (enter a
WaitSleepJoin state), and will be added to the lock’s ready queue until the thread that owns the lock
releases it by calling the static method Monitor.Exit. When the owning thread calls Exit, one of the
threads from the ready queue acquires the lock. If the owner of a lock does not release it by calling Exit,
all other threads will block indefinitely. Therefore, it is important to place the Exit call within a finally
block to ensure that it is called even if an exception occurs. To ensure that threads do not wait
indefinitely, you can specify a timeout value when you call Monitor.Enter.

■ Tip Because Monitor is used so frequently in multithreaded applications, C# provides language-level support
through the lock statement, which the compiler translates to the use of the Monitor class. A block of code
encapsulated in a lock statement is equivalent to calling Monitor.Enter when entering the block and
Monitor.Exit when exiting the block. In addition, the compiler automatically places the Monitor.Exit call in a
finally block to ensure that the lock is released if an exception is thrown.

Using Monitor.Enter and Monitor.Exit is often all you will need to correctly synchronize access to a
shared resource in a multithreaded application. However, when you are trying to coordinate the
activation of a pool of threads to handle work items from a shared queue, Monitor.Enter and
Monitor.Exit will not be sufficient. In this situation, you want a potentially large number of threads to
wait efficiently until a work item becomes available without putting unnecessary load on the central
processing unit (CPU). This is where you need the fine-grained synchronization control provided by the
Monitor.Wait, Monitor.Pulse, and Monitor.PulseAll methods.

The thread that currently owns the lock can call Monitor.Wait, which will release the lock and place
the calling thread on the lock’s wait queue. Threads in a wait queue also have a state of WaitSleepJoin,
and will continue to block until a thread that owns the lock calls either the Monitor.Pulse method or the
Monitor.PulseAll method. Monitor.Pulse moves one of the waiting threads from the wait queue to the

CHAPTER 4 ■ THREADS, PROCESSES, AND SYNCHRONIZATION

174

ready queue, and Monitor.PulseAll moves all threads. Once a thread has moved from the wait queue to
the ready queue, it can acquire the lock the next time the lock is released. It is important to understand
that threads on a lock’s wait queue will not acquire a released lock; they will wait indefinitely until you
call Monitor.Pulse or Monitor.PulseAll to move them to the ready queue.

So, in practice, when your pool threads are inactive, they sit on the wait queue. As a new work item
arrives, a dispatcher obtains the lock and calls Monitor.Pulse, moving one worker thread to the ready
queue where it will obtain the lock as soon as the dispatcher releases it. The worker thread takes the
work item, releases the lock, and processes the work item. Once the worker thread has finished with the
work item, it again obtains the lock in order to take the next work item, but if there is no work item to
process, the thread calls Monitor.Wait and goes back to the wait queue.

The Code
The following example demonstrates how to synchronize access to a shared resource (the console) and
the activation of waiting threads using the Monitor.Wait, Monitor.Pulse, and Monitor.PulseAll methods.
The example starts three worker threads that take work items from a queue and processes them. When
the user presses Enter the first two times, work items (strings in the example) are added to the work
queue, and Monitor.Pulse is called to release one waiting thread for each work item. The third time the
user presses Enter, Monitor.PulseAll is called, releasing all waiting threads and allowing them to
terminate.

using System;
using System.Threading;
using System.Collections.Generic;

namespace Apress.VisualCSharpRecipes.Chapter04
{
 class Recipe04_07
 {
 // Declare an object for synchronization of access to the console.
 // A static object is used because you are using it in static methods.
 private static object consoleGate = new Object();

 // Declare a Queue to represent the work queue.
 private static Queue<string> workQueue = new Queue<string>();

 // Declare a flag to indicate to activated threads that they should
 // terminate and not process more work items.
 private static bool processWorkItems = true;

 // A utility method for displaying useful trace information to the
 // console along with details of the current thread.
 private static void TraceMsg(string msg)
 {
 lock (consoleGate)
 {

CHAPTER 4 ■ THREADS, PROCESSES, AND SYNCHRONIZATION

175

 Console.WriteLine("[{0,3}/{1}] - {2} : {3}",
 Thread.CurrentThread.ManagedThreadId,
 Thread.CurrentThread.IsThreadPoolThread ? "pool" : "fore",
 DateTime.Now.ToString("HH:mm:ss.ffff"), msg);
 }
 }

 // Declare the method that will be executed by each thread to process
 // items from the work queue.
 private static void ProcessWorkItems()
 {
 // A local variable to hold the work item taken from the work queue.
 string workItem = null;

 TraceMsg("Thread started, processing items from queue...");

 // Process items from the work queue until termination is signaled.
 while (processWorkItems)
 {
 // Obtain the lock on the work queue.
 Monitor.Enter(workQueue);

 try
 {
 // Pop the next work item and process it, or wait if none
 // is available.
 if (workQueue.Count == 0)
 {
 TraceMsg("No work items, waiting...");

 // Wait until Pulse is called on the workQueue object.
 Monitor.Wait(workQueue);
 }
 else
 {
 // Obtain the next work item.
 workItem = workQueue.Dequeue();
 }
 }
 finally
 {
 // Always release the lock.
 Monitor.Exit(workQueue);
 }

 // Process the work item if one was obtained.
 if (workItem != null)
 {

CHAPTER 4 ■ THREADS, PROCESSES, AND SYNCHRONIZATION

176

 // Obtain a lock on the console and display a series
 // of messages.
 lock (consoleGate)
 {
 for (int i = 0; i < 5; i++)
 {
 TraceMsg("Processing " + workItem);
 Thread.Sleep(200);
 }
 }

 // Reset the status of the local variable.
 workItem = null;
 }
 }

 // This will be reached only if processWorkItems is false.
 TraceMsg("Terminating.");
 }

 public static void Main()
 {
 TraceMsg("Starting worker threads.");

 // Add an initial work item to the work queue.
 lock (workQueue)
 {
 workQueue.Enqueue("Work Item 1");
 }

 // Create and start three new worker threads running the
 // ProcessWorkItems method.
 for (int count = 0; count < 3; count++)
 {
 (new Thread(ProcessWorkItems)).Start();
 }

 Thread.Sleep(1500);

 // The first time the user presses Enter, add a work item and
 // activate a single thread to process it.
 TraceMsg("Press Enter to pulse one waiting thread.");
 Console.ReadLine();

 // Acquire a lock on the workQueue object.
 lock (workQueue)
 {
 // Add a work item.
 workQueue.Enqueue("Work Item 2.");

CHAPTER 4 ■ THREADS, PROCESSES, AND SYNCHRONIZATION

177

 // Pulse one waiting thread.
 Monitor.Pulse(workQueue);
 }

 Thread.Sleep(2000);

 // The second time the user presses Enter, add three work items and
 // activate three threads to process them.
 TraceMsg("Press Enter to pulse three waiting threads.");
 Console.ReadLine();

 // Acquire a lock on the workQueue object.
 lock (workQueue)
 {
 // Add work items to the work queue, and activate worker threads.
 workQueue.Enqueue("Work Item 3.");
 Monitor.Pulse(workQueue);
 workQueue.Enqueue("Work Item 4.");
 Monitor.Pulse(workQueue);
 workQueue.Enqueue("Work Item 5.");
 Monitor.Pulse(workQueue);
 }

 Thread.Sleep(3500);

 // The third time the user presses Enter, signal the worker threads
 // to terminate and activate them all.
 TraceMsg("Press Enter to pulse all waiting threads.");
 Console.ReadLine();

 // Acquire a lock on the workQueue object.
 lock (workQueue)
 {
 // Signal that threads should terminate.
 processWorkItems = false;

 // Pulse all waiting threads.
 Monitor.PulseAll(workQueue);
 }

 Thread.Sleep(1000);

 // Wait to continue.
 TraceMsg("Main method complete. Press Enter.");
 Console.ReadLine();
 }
 }
}

CHAPTER 4 ■ THREADS, PROCESSES, AND SYNCHRONIZATION

178

4-8. Synchronize the Execution of Multiple Threads Using an
Event

Problem
You need a mechanism to synchronize the execution of multiple threads in order to coordinate their
activities or access to shared resources.

Solution
Use the EventWaitHandle, AutoResetEvent, and ManualResetEvent classes from the System.Threading
namespace.

How It Works
The EventWaitHandle, AutoResetEvent, and ManualResetEvent classes provide similar functionality.
EventWaitHandle is the base class from which the AutoResetEvent and ManualResetEvent classes are
derived. (EventWaitHandle inherits from System.Threading.WaitHandle and allows you to create named
events.) All three event classes allow you to synchronize multiple threads by manipulating the state of
the event between two possible values: signaled and unsignaled.

Threads requiring synchronization call static or inherited methods of the WaitHandle abstract base
class (summarized in Table 4-1) to test the state of one or more event objects. If the events are signaled
when tested, the thread continues to operate unhindered. If the events are unsignaled, the thread enters
a WaitSleepJoin state, blocking until one or more of the events become signaled or when a given timeout
expires.

Table 4-1. WaitHandle Methods for Synchronizing Thread Execution

Method Description

WaitOne Causes the calling thread to enter a WaitSleepJoin state and wait for a specific
WaitHandle-derived object to be signaled. You can also specify a timeout value. The
WaitingExample method in recipe 4-2 demonstrates how to use the WaitOne method.

WaitAny A static method that causes the calling thread to enter a WaitSleepJoin state and wait
for any one of the objects in a WaitHandle array to be signaled. You can also specify a
timeout value.

WaitAll A static method that causes the calling thread to enter a WaitSleepJoin state and wait
for all the WaitHandle objects in a WaitHandle array to be signaled. You can also specify a
timeout value. The WaitAllExample method in recipe 4-2 demonstrates how to use the
WaitAll method.

CHAPTER 4 ■ THREADS, PROCESSES, AND SYNCHRONIZATION

179

Method Description

SignalAndWait A static method that causes the calling thread to signal a specified event object and
then wait on a specified event object. The signal and wait operations are carried out as
an atomic operation. You can also specify a timeout value. SignalAndWait is new to
.NET 2.0.

The key differences between the three event classes are how they transition from a signaled to an

unsignaled state, and their visibility. Both the AutoResetEvent and ManualResetEvent classes are local to
the process in which they are declared. To signal an AutoResetEvent class, call its Set method, which will
release only one thread that is waiting on the event. The AutoResetEvent class will then automatically
return to an unsignaled state. The code in recipe 4-4 demonstrates how to use an AutoResetEvent class.

The ManualResetEvent class must be manually switched back and forth between signaled and
unsignaled states using its Set and Reset methods. Calling Set on a ManualResetEvent class will set it to a
signaled state, releasing all threads that are waiting on the event. Only by calling Reset does the
ManualResetEvent class become unsignaled.

You can configure the EventWaitHandle class to operate in a manual or automatic reset mode,
making it possible to act like either the AutoResetEvent class or the ManualResetEvent class. When you
create the EventWaitHandle, you pass a value of the System.Threading.EventResetMode enumeration to
configure the mode in which the EventWaitHandle will function; the two possible values are AutoReset
and ManualReset. The unique benefit of the EventWaitHandle class is that it is not constrained to the local
process. When you create an EventWaitHandle class, you can associate a name with it that makes it
accessible to other processes, including unmanaged Win32 code. This allows you to synchronize the
activities of threads across process and application domain boundaries and synchronize access to
resources that are shared by multiple processes. To obtain a reference to an existing named
EventWaitHandle, call the static method EventWaitHandle.OpenExisting and specify the name of the
event.

The Code
The following example demonstrates how to use a named EventWaitHandle in manual mode that is
initially signaled. A thread is spawned that waits on the event and then displays a message to the
console—repeating the process every 2 seconds. When you press Enter, you toggle the event between a
signaled and a unsignaled state. This example uses the Thread.Join instance method, which we describe
in recipe 4-12.

using System;
using System.Threading;

namespace Apress.VisualCSharpRecipes.Chapter04
{
 class Recipe04_08
 {
 // Boolean to signal that the second thread should terminate.
 static bool terminate = false;

 // A utility method for displaying useful trace information to the
 // console along with details of the current thread.

CHAPTER 4 ■ THREADS, PROCESSES, AND SYNCHRONIZATION

180

 private static void TraceMsg(string msg)
 {
 Console.WriteLine("[{0,3}] - {1} : {2}",
 Thread.CurrentThread.ManagedThreadId,
 DateTime.Now.ToString("HH:mm:ss.ffff"), msg);
 }

 // Declare the method that will be executed on the separate thread.
 // The method waits on the EventWaitHandle before displaying a message
 // to the console and then waits two seconds and loops.
 private static void DisplayMessage()
 {
 // Obtain a handle to the EventWaitHandle with the name "EventExample".
 EventWaitHandle eventHandle =
 EventWaitHandle.OpenExisting("EventExample");

 TraceMsg("DisplayMessage Started.");

 while (!terminate)
 {
 // Wait on the EventWaitHandle, time out after 2 seconds. WaitOne
 // returns true if the event is signaled; otherwise, false. The
 // first time through, the message will be displayed immediately
 // because the EventWaitHandle was created in a signaled state.
 if (eventHandle.WaitOne(2000, true))
 {
 TraceMsg("EventWaitHandle In Signaled State.");
 }
 else
 {
 TraceMsg("WaitOne Timed Out -- " +
 "EventWaitHandle In Unsignaled State.");
 }
 Thread.Sleep(2000);
 }

 TraceMsg("Thread Terminating.");
 }

 public static void Main()
 {
 // Create a new EventWaitHandle with an initial signaled state, in
 // manual mode, with the name "EventExample".
 using (EventWaitHandle eventWaitHandle =
 new EventWaitHandle(true, EventResetMode.ManualReset,
 "EventExample"))
 {

CHAPTER 4 ■ THREADS, PROCESSES, AND SYNCHRONIZATION

181

 // Create and start a new thread running the DisplayMesssage
 // method.
 TraceMsg("Starting DisplayMessageThread.");
 Thread trd = new Thread(DisplayMessage);
 trd.Start();

 // Allow the EventWaitHandle to be toggled between a signaled and
 // unsignaled state up to three times before ending.
 for (int count = 0; count < 3; count++)
 {
 // Wait for Enter to be pressed.
 Console.ReadLine();

 // You need to toggle the event. The only way to know the
 // current state is to wait on it with a 0 (zero) timeout
 // and test the result.
 if (eventWaitHandle.WaitOne(0, true))
 {
 TraceMsg("Switching Event To UnSignaled State.");

 // Event is signaled, so unsignal it.
 eventWaitHandle.Reset();
 }
 else
 {
 TraceMsg("Switching Event To Signaled State.");

 // Event is unsignaled, so signal it.
 eventWaitHandle.Set();
 }
 }

 // Terminate the DisplayMessage thread, and wait for it to
 // complete before disposing of the EventWaitHandle.
 terminate = true;
 eventWaitHandle.Set();
 trd.Join(5000);
 }

 // Wait to continue.
 Console.WriteLine(Environment.NewLine);
 Console.WriteLine("Main method complete. Press Enter.");
 Console.ReadLine();
 }
 }
}

CHAPTER 4 ■ THREADS, PROCESSES, AND SYNCHRONIZATION

182

4-9. Synchronize the Execution of Multiple Threads Using a
Mutex

Problem
You need to coordinate the activities of multiple threads (possibly across process boundaries) to ensure
the efficient use of shared resources or to ensure that several threads are not updating the same shared
resource at the same time.

Solution
Use the System.Threading.Mutex class.

How It Works
The Mutex has a similar purpose to the Monitor discussed in recipe 4-7—it provides a means to ensure
that only a single thread has access to a shared resource or section of code at any given time. However,
unlike the Monitor, which is implemented fully within managed code, the Mutex is a wrapper around an
operating system synchronization object. This, and because Mutexes can be given names, means you can
use a Mutex to synchronize the activities of threads across process boundaries, even with threads running
in unmanaged Win32 code.

Like the EventWaitHandle, AutoResetEvent, and ManualResetEvent classes discussed in recipe 4-8, the
Mutex is derived from System.Threading.WaitHandle and enables thread synchronization in a similar
fashion. A Mutex is in either a signaled state or an unsignaled state. A thread acquires ownership of the
Mutex at construction or by using one of the methods listed in Table 4-1. If a thread has ownership of the
Mutex, the Mutex is unsignaled, meaning other threads will block if they try to acquire ownership.
Ownership of the Mutex is released by the owning thread calling the Mutex.ReleaseMutex method, which
signals the Mutex and allows another thread to acquire ownership. A thread may acquire ownership of a
Mutex any number of times without problems, but it must release the Mutex an equal number of times to
free it and make it available for another thread to acquire. If the thread with ownership of a Mutex
terminates normally, the Mutex becomes signaled, allowing another thread to acquire ownership.

The Code
The following example demonstrates how to use a named Mutex to limit access to a shared resource (the
console) to a single thread at any given time:

using System;
using System.Threading;

namespace Apress.VisualCSharpRecipes.Chapter04
{
 class Recipe04_09
 {

CHAPTER 4 ■ THREADS, PROCESSES, AND SYNCHRONIZATION

183

 // Boolean to signal that the second thread should terminate.
 static bool terminate = false;

 // A utility method for displaying useful trace information to the
 // console along with details of the current thread.
 private static void TraceMsg(string msg)
 {
 Console.WriteLine("[{0,3}] - {1} : {2}",
 Thread.CurrentThread.ManagedThreadId,
 DateTime.Now.ToString("HH:mm:ss.ffff"), msg);
 }

 // Declare the method that will be executed on the separate thread.
 // In a loop the method waits to obtain a Mutex before displaying a
 // message to the console and then waits 1 second before releasing the
 // Mutex.
 private static void DisplayMessage()
 {
 // Obtain a handle to the Mutex with the name "MutexExample".
 // Do not attempt to take ownership immediately.
 using (Mutex mutex = new Mutex(false, "MutexExample"))
 {
 TraceMsg("Thread started.");

 while (!terminate)
 {
 // Wait on the Mutex.
 mutex.WaitOne();

 TraceMsg("Thread owns the Mutex.");

 Thread.Sleep(1000);

 TraceMsg("Thread releasing the Mutex.");

 // Release the Mutex.
 mutex.ReleaseMutex();

 // Sleep a little to give another thread a good chance of
 // acquiring the Mutex.
 Thread.Sleep(100);
 }

 TraceMsg("Thread terminating.");
 }
 }

CHAPTER 4 ■ THREADS, PROCESSES, AND SYNCHRONIZATION

184

 public static void Main()
 {
 // Create a new Mutex with the name "MutexExample".
 using (Mutex mutex = new Mutex(false, "MutexExample"))
 {
 TraceMsg("Starting threads -- press Enter to terminate.");

 // Create and start three new threads running the
 // DisplayMesssage method.
 Thread trd1 = new Thread(DisplayMessage);
 Thread trd2 = new Thread(DisplayMessage);
 Thread trd3 = new Thread(DisplayMessage);
 trd1.Start();
 trd2.Start();
 trd3.Start();

 // Wait for Enter to be pressed.
 Console.ReadLine();

 // Terminate the DisplayMessage threads, and wait for them to
 // complete before disposing of the Mutex.
 terminate = true;
 trd1.Join(5000);
 trd2.Join(5000);
 trd3.Join(5000);
 }

 // Wait to continue.
 Console.WriteLine(Environment.NewLine);
 Console.WriteLine("Main method complete. Press Enter.");
 Console.ReadLine();
 }
 }
}

■ Note Recipe 4-17 demonstrates how to use a named Mutex as a means to ensure that only a single instance of
an application can be started at any given time.

CHAPTER 4 ■ THREADS, PROCESSES, AND SYNCHRONIZATION

185

4-10. Synchronize the Execution of Multiple Threads Using a
Semaphore

Problem
You need to control the number of threads that can access a shared resource or section of code
concurrently.

Solution
Use the System.Threading.Semaphore class.

How It Works
The Semaphore is another synchronization class derived from the System.Threading.WaitHandle class and
will be familiar to those with Win32 programming experience. The purpose of the Semaphore is to allow a
specified maximum number of threads to access a shared resource or section of code concurrently.

As with the other synchronization classes derived from WaitHandle (discussed in recipe 4-8 and
recipe 4-9), a Semaphore is either in a signaled state or an unsignaled state. Threads wait for the Semaphore
to become signaled using the methods described in Table 4-1. The Semaphore maintains a count of the
active threads it has allowed through and automatically switches to an unsignaled state once the
maximum number of threads is reached. To release the Semaphore and allow other waiting threads the
opportunity to act, a thread calls the Release method on the Semaphore object. A thread may acquire
ownership of the Semaphore more than once, reducing the maximum number of threads that can be
active concurrently, and must call Release the same number of times to fully release it.

The Code
The following example demonstrates how to use a named Semaphore to limit access to a shared resource
(the console) to two threads at any given time. The code is similar to that used in recipe 4-9 but
substitutes a Semaphore for the Mutex.

using System;
using System.Threading;

namespace Apress.VisualCSharpRecipes.Chapter04
{
 class Recipe04_10
 {
 // Boolean to signal that the second thread should terminate.
 static bool terminate = false;

CHAPTER 4 ■ THREADS, PROCESSES, AND SYNCHRONIZATION

186

 // A utility method for displaying useful trace information to the
 // console along with details of the current thread.
 private static void TraceMsg(string msg)
 {
 Console.WriteLine("[{0,3}] - {1} : {2}",
 Thread.CurrentThread.ManagedThreadId,
 DateTime.Now.ToString("HH:mm:ss.ffff"), msg);
 }

 // Declare the method that will be executed on the separate thread.
 // In a loop the method waits to obtain a Semaphore before displaying a
 // message to the console and then waits 1 second before releasing the
 // Semaphore.
 private static void DisplayMessage()
 {
 // Obtain a handle to the Semaphore with the name "SemaphoreExample".
 using (Semaphore sem = Semaphore.OpenExisting("SemaphoreExample"))
 {
 TraceMsg("Thread started.");

 while (!terminate)
 {
 // Wait on the Semaphore.
 sem.WaitOne();

 TraceMsg("Thread owns the Semaphore.");

 Thread.Sleep(1000);

 TraceMsg("Thread releasing the Semaphore.");

 // Release the Semaphore.
 sem.Release();

 // Sleep a little to give another thread a good chance of
 // acquiring the Semaphore.
 Thread.Sleep(100);
 }

 TraceMsg("Thread terminating.");
 }
 }

 public static void Main()
 {
 // Create a new Semaphore with the name "SemaphoreExample". The
 // Semaphore can be owned by up to two threads at the same time.
 using (Semaphore sem = new Semaphore(2,2,"SemaphoreExample"))
 {
 TraceMsg("Starting threads -- press Enter to terminate.");

CHAPTER 4 ■ THREADS, PROCESSES, AND SYNCHRONIZATION

187

 // Create and start three new threads running the
 // DisplayMesssage method.
 Thread trd1 = new Thread(DisplayMessage);
 Thread trd2 = new Thread(DisplayMessage);
 Thread trd3 = new Thread(DisplayMessage);
 trd1.Start();
 trd2.Start();
 trd3.Start();

 // Wait for Enter to be pressed.
 Console.ReadLine();

 // Terminate the DisplayMessage threads and wait for them to
 // complete before disposing of the Semaphore.
 terminate = true;
 trd1.Join(5000);
 trd2.Join(5000);
 trd3.Join(5000);
 }

 // Wait to continue.
 Console.WriteLine(Environment.NewLine);
 Console.WriteLine("Main method complete. Press Enter.");
 Console.ReadLine();
 }
 }
}

4-11. Synchronize Access to a Shared Data Value

Problem
You need to ensure operations on a numeric data value are executed atomically so that multiple threads
accessing the value do not cause errors or corruption.

Solution
Use the static members of the System.Threading.Interlocked class.

How It Works
The Interlocked class contains several static methods that perform some simple arithmetic and
comparison operations on a variety of data types and ensure the operations are carried out atomically.
Table 4-2 summarizes the methods and the data types on which they can be used. Note that the
methods use the ref keyword on their arguments to allow the method to update the value of the actual
value type variable passed in. If the operations you want to perform are not supported by the

CHAPTER 4 ■ THREADS, PROCESSES, AND SYNCHRONIZATION

188

Interlocked class, you will need to implement your own synchronization using the other approaches
described in this chapter.

■ Caution The atomicity of 64-bit interlocked operations on 32-bit platforms are guaranteed only when the data
value is accessed through the Interlocked class—i.e., that the variable is not accessed directly.

Table 4-2. Interlocked Methods for Synchronizing Data Access

Method Description

Add Adds two int or long values and sets the value of the first argument to the sum of the
two values.

CompareExchange Compares two values; if they are the same, sets the first argument to a specified
value. This method has overloads to support the comparison and exchange of int,
long, float, double, object, and System.IntPtr.

Decrement Decrements an int or long value.

Exchange Sets the value of a variable to a specified value. This method has overloads to support
the exchange of int, long, float, double, object, and System.IntPtr.

Increment Increments an int or a long value.

The Code
The following simple example demonstrates how to use the methods of the Interlocked class. The
example does not demonstrate Interlocked in the context of a multithreaded program and is provided
only to clarify the syntax and effect of the various methods.

using System;
using System.Threading;

namespace Apress.VisualCSharpRecipes.Chapter04
{
 class Recipe04_11
 {
 public static void Main()
 {
 int firstInt = 2500;
 int secondInt = 8000;

CHAPTER 4 ■ THREADS, PROCESSES, AND SYNCHRONIZATION

189

 Console.WriteLine("firstInt initial value = {0}", firstInt);
 Console.WriteLine("secondInt initial value = {0}", secondInt);

 // Decrement firstInt in a thread-safe manner.
 // The thread-safe equivalent of firstInt = firstInt - 1.
 Interlocked.Decrement(ref firstInt);

 Console.WriteLine(Environment.NewLine);
 Console.WriteLine("firstInt after decrement = {0}", firstInt);

 // Increment secondInt in a thread-safe manner.
 // The thread-safe equivalent of secondInt = secondInt + 1.
 Interlocked.Increment(ref secondInt);

 Console.WriteLine("secondInt after increment = {0}", secondInt);

 // Add the firstInt and secondInt values, and store the result in
 // firstInt.
 // The thread-safe equivalent of firstInt = firstInt + secondInt.
 Interlocked.Add(ref firstInt, secondInt);

 Console.WriteLine(Environment.NewLine);
 Console.WriteLine("firstInt after Add = {0}", firstInt);
 Console.WriteLine("secondInt after Add = {0}", secondInt);

 // Exchange the value of firstInt with secondInt.
 // The thread-safe equivalenet of secondInt = firstInt.
 Interlocked.Exchange(ref secondInt, firstInt);

 Console.WriteLine(Environment.NewLine);
 Console.WriteLine("firstInt after Exchange = {0}", firstInt);
 Console.WriteLine("secondInt after Exchange = {0}", secondInt);

 // Compare firstInt with secondInt, and if they are equal, set
 // firstInt to 5000.
 // The thread-safe equivalenet of:
 // if (firstInt == secondInt) firstInt = 5000.
 Interlocked.CompareExchange(ref firstInt, 5000, secondInt);

 Console.WriteLine(Environment.NewLine);
 Console.WriteLine("firstInt after CompareExchange = {0}", firstInt);
 Console.WriteLine("secondInt after CompareExchange = {0}", secondInt);

 // Wait to continue.
 Console.WriteLine(Environment.NewLine);
 Console.WriteLine("Main method complete. Press Enter.");
 Console.ReadLine();
 }
 }
}

CHAPTER 4 ■ THREADS, PROCESSES, AND SYNCHRONIZATION

190

4-12. Know When a Thread Finishes

Problem
You need to know when a thread has finished.

Solution
Use the IsAlive property or the Join method of the Thread class.

How It Works
The easiest way to test whether a thread has finished executing is to test the Thread.IsAlive property.
The IsAlive property returns true if the thread has been started but has not terminated or been aborted.
The IsAlive property provides a simple test to see whether a thread has finished executing, but
commonly you will need one thread to wait for another thread to complete its processing. Instead of
testing IsAlive in a loop, which is inefficient, you can use the Thread.Join method.

Join causes the calling thread to block until the referenced thread terminates, at which point the
calling thread will continue. You can optionally specify an int or a TimeSpan value that specifies the time,
after which the Join operation will time out and execution of the calling thread will resume. If you
specify a timeout value, Join returns true if the thread terminated and false if Join timed out.

The Code
The following example executes a second thread and then calls Join (with a timeout of 2 seconds) to wait
for the second thread to terminate. Because the second thread takes about 5 seconds to execute, the Join
method will always time out, and the example will display a message to the console. The example then
calls Join again without a timeout and blocks until the second thread terminates.

using System;
using System.Threading;

namespace Apress.VisualCSharpRecipes.Chapter04
{
 class Recipe04_12
 {
 private static void DisplayMessage()
 {
 // Display a message to the console five times.
 for (int count = 0; count < 5; count++)
 {
 Console.WriteLine("{0} : DisplayMessage thread",
 DateTime.Now.ToString("HH:mm:ss.ffff"));

CHAPTER 4 ■ THREADS, PROCESSES, AND SYNCHRONIZATION

191

 // Sleep for 1 second.
 Thread.Sleep(1000);
 }
 }

 public static void Main()
 {
 // Create a new Thread to run the DisplayMessage method.
 Thread thread = new Thread(DisplayMessage);

 Console.WriteLine("{0} : Starting DisplayMessage thread.",
 DateTime.Now.ToString("HH:mm:ss.ffff"));

 // Start the DisplayMessage thread.
 thread.Start();

 // Block until the DisplayMessage thread finishes, or time out after
 // 2 seconds.
 if (!thread.Join(2000))
 {
 Console.WriteLine("{0} : Join timed out !!",
 DateTime.Now.ToString("HH:mm:ss.ffff"));
 }

 // Print out the thread status.
 Console.WriteLine("Thread alive: {0}", thread.IsAlive);

 // Block again until the DisplayMessage thread finishes with no timeout.
 thread.Join();

 // Print out the thread status.
 Console.WriteLine("Thread alive: {0}", thread.IsAlive);

 // Wait to continue.
 Console.WriteLine("Main method complete. Press Enter.");
 Console.ReadLine();
 }
 }
}

4-13. Terminate the Execution of a Thread

Problem
You need to terminate an executing thread without waiting for it to finish on its own.

CHAPTER 4 ■ THREADS, PROCESSES, AND SYNCHRONIZATION

192

Solution
Call the Abort method of the Thread object you want to terminate.

How It Works
It is better to write your code so that you can signal to a thread that it should shut down and allow it to
terminate naturally. Recipes 4-7, 4-8, and 4-9 demonstrate this technique (using a Boolean flag).
However, sometimes you will want a more direct method of terminating an active thread.

Calling Abort on an active Thread object terminates the thread by throwing a
System.Threading.ThreadAbortException in the code that the thread is running. You can pass an object
as an argument to the Abort method, which is accessible to the aborted thread through the
ExceptionState property of the ThreadAbortException. When called, Abort returns immediately, but the
runtime determines exactly when the exception is thrown, so you cannot assume the thread has
terminated by the Abort returns. You should use the techniques described in recipe 4-12 if you need to
determine when the aborted thread is actually done.

The aborted thread’s code can catch the ThreadAbortException to perform cleanup, but the runtime
will automatically throw the exception again when exiting the catch block to ensure that the thread
terminates. So, you should not write code after the catch block: it will never execute. However, calling
the static Thread.ResetAbort in the catch block will cancel the abort request and allow the thread to
continue executing. Once you abort a thread, you cannot restart it by calling Thread.Start.

The Code
The following example creates a new thread that continues to display messages to the console until you
press Enter, at which point the thread is terminated by a call to Thread.Abort:

using System;
using System.Threading;

namespace Apress.VisualCSharpRecipes.Chapter04
{
 class Recipe04_13
 {
 private static void DisplayMessage()
 {
 try
 {
 while (true)
 {
 // Display a message to the console.
 Console.WriteLine("{0} : DisplayMessage thread active",
 DateTime.Now.ToString("HH:mm:ss.ffff"));

 // Sleep for 1 second.
 Thread.Sleep(1000);
 }
 }

CHAPTER 4 ■ THREADS, PROCESSES, AND SYNCHRONIZATION

193

 catch (ThreadAbortException ex)
 {
 // Display a message to the console.
 Console.WriteLine("{0} : DisplayMessage thread terminating - {1}",
 DateTime.Now.ToString("HH:mm:ss.ffff"),
 (string)ex.ExceptionState);

 // Call Thread.ResetAbort here to cancel the abort request.
 }

 // This code is never executed unless Thread.ResetAbort
 // is called in the previous catch block.
 Console.WriteLine("{0} : nothing is called after the catch block",
 DateTime.Now.ToString("HH:mm:ss.ffff"));
 }

 public static void Main()
 {
 // Create a new Thread to run the DisplayMessage method.
 Thread thread = new Thread(DisplayMessage);

 Console.WriteLine("{0} : Starting DisplayMessage thread" +
 " - press Enter to terminate.",
 DateTime.Now.ToString("HH:mm:ss.ffff"));

 // Start the DisplayMessage thread.
 thread.Start();

 // Wait until Enter is pressed and terminate the thread.
 Console.ReadLine();

 thread.Abort("User pressed Enter");

 // Block again until the DisplayMessage thread finishes.
 thread.Join();

 // Wait to continue.
 Console.WriteLine("Main method complete. Press Enter.");
 Console.ReadLine();
 }
 }
}

4-14. Create a Thread-Safe Collection Instance

Problem
You need multiple threads to be able to safely access the contents of a collection concurrently.

CHAPTER 4 ■ THREADS, PROCESSES, AND SYNCHRONIZATION

194

Solution
Use lock statements in your code to synchronize thread access to the collection, or to access the
collection through a thread-safe wrapper.

How It Works
By default, the standard collection classes from the System.Collections, System.Collections.
Specialized, and System.Collections.Generic namespaces will support multiple threads reading the
collection’s content concurrently. However, if more than one of these threads tries to modify the
collection, you will almost certainly encounter problems. This is because the operating system can
interrupt the actions of the thread while modifications to the collection have been only partially applied.
This leaves the collection in an indeterminate state, which will almost certainly cause another thread
accessing the collection to fail, return incorrect data, or corrupt the collection.

■ Note.NET 4.0 introduces a set of efficient thread-safe collections in the System.Collections.Concurrent
namespace that can be used. See Chapter 15 and the .NET Framework documentation for details.

The most commonly used collections from the System.Collections namespace implement a static
method named Synchronized; this includes only the ArrayList, Hashtable, Queue, SortedList, and Stack
classes. The Synchronized method takes a collection object of the appropriate type as an argument and
returns an object that provides a synchronized wrapper around the specified collection object. The
wrapper object is returned as the same type as the original collection, but all the methods and properties
that read and write the collection ensure that only a single thread has access to the initial collection
content concurrently. You can test whether a collection is thread-safe using the IsSynchronized
property. One final note: Once you get the wrapper, you should neither access the initial collection nor
create a new wrapper. In both cases, you will lose thread safety.

Collection classes such as HybridDictionary, ListDictionary, and StringCollection from the
System.Collections.Specialized namespace do not implement a Synchronized method. To provide
thread-safe access to instances of these classes, you must implement manual synchronization using the
object returned by their SyncRoot property. This property and IsSynchronized are both defined by the
ICollection interface that is implemented by all collection classes from System.Collections and
System.Collections.Specialized (except BitVector32); you can therefore synchronize all your
collections in a fine-grained way.

However, the new 2.0 classes in the System.Collections.Generic namespace provide no built-in
synchronization mechanisms, leaving it to you to implement thread synchronization manually using the
techniques discussed in this chapter.

CHAPTER 4 ■ THREADS, PROCESSES, AND SYNCHRONIZATION

195

■ Caution Often you will have multiple collections and data elements that are related and need to be updated
atomically. In these instances, you should not use the synchronization mechanisms provided by the individual
collection classes. This approach will introduce synchronization problems into your code such as deadlocks and
race conditions. You must decide what collections and other data elements need to be managed atomically and
use the techniques described in this chapter to synchronize access to these elements as a unit.

The Code
The following code snippet shows how to create a thread-safe Hashtable instance:

// Create a standard Hashtable.
Hashtable hUnsync = new Hashtable();

// Create a synchronized wrapper.
Hashtable hSync = Hashtable.Synchronized(hUnsync);

The following code snippet shows how to create a thread-safe NameValueCollection. Notice that the
NameValueCollection class derives from the NameObjectCollectionBase class, which uses an explicit
interface implementation to implement the ICollection.SyncRoot property. As shown, you must cast
the NameValueCollection to an ICollection instance before you can access the SyncRoot property.
Casting is not necessary with other specialized collection classes such as HybridDictionary,
ListDictionary, and StringCollection, which do not use explicit interface implementations to
implement SyncRoot.

// Create a NameValueCollection.
NameValueCollection nvCollection = new NameValueCollection();

// Obtain a lock on the NameValueCollection before modification.
lock (((ICollection)nvCollection).SyncRoot) {

 // Modify the NameValueCollection...
}

4-15. Start a New Process

Problem
You need to execute an application in a new process.

CHAPTER 4 ■ THREADS, PROCESSES, AND SYNCHRONIZATION

196

Solution
Call one of the static Start method overloads of the System.Diagnostics.Process class. Specify the
configuration details of the process you want to start as individual arguments to the Start method or in
a System.Diagnostics.ProcessStartInfo object that you pass to the Start method.

How It Works
The Process class provides a managed representation of an operating system process and provides a
simple mechanism through which you can execute both managed and unmanaged applications. The
Process class implements five static overloads of the Start method, which you use to start a new
process. All these methods return a Process object that represents the newly started process. Two of
these overloads are methods that allow you to specify only the name and arguments to pass to the new
process. For example, the following statements both execute Notepad in a new process:

// Execute notepad.exe with no command-line arguments.
Process.Start("notepad.exe");

// Execute notepad.exe passing the name of the file to open as a
// command-line argument.
Process.Start("notepad.exe", "SomeFile.txt");

Another two overloads extend these and allow you to specify the name of a Windows user who the
process should run as. You must specify the username, password, and Windows domain. The password
is specified as a System.Security.SecureString for added security. (See recipe 11-18 for more
information about the SecureString class.) Here is an example:

System.Security.SecureString mySecureString = new System.Security.SecureString();

// Obtain a password and place in SecureString (see Recipe 11-18).

// Execute notepad.exe with no command-line arguments.
Process.Start("notepad.exe", "allen", mySecureString, "MyDomain");

// Execute notepad.exe passing the name of the file to open as a
// command-line argument.
Process.Start("notepad.exe", "SomeFile.txt", "allen", mySecureString, "MyDomain");

The remaining static overload requires you to create a ProcessStartInfo object configured with the
details of the process you want to run; using the ProcessStartInfo object provides greater control over
the behavior and configuration of the new process. Table 4-3 summarizes some of the commonly used
properties of the ProcessStartInfo class.

CHAPTER 4 ■ THREADS, PROCESSES, AND SYNCHRONIZATION

197

Table 4-3. Properties of the ProcessStartInfo Class

Property Description

Arguments The command-line arguments to pass to the new process.

Domain A string containing the Windows domain name to which the user belongs.

ErrorDialog If Process.Start cannot start the specified process, it will throw a
System.ComponentModel.Win32Exception. If ErrorDialog is true, Start displays an
error dialog box to the user before throwing the exception.

FileName The name of the application to start. You can also specify any type of file for which
you have configured an application association. For example, you could specify a
file with a .doc or an .xls extension, which would cause Microsoft Word or
Microsoft Excel to run.

LoadUserProfile A bool indicating whether the user’s profile should be loaded from the registry when
the new process is started.

Password A SecureString containing the password of the user.

UserName A string containing the name of the user to use when starting the process.

WindowStyle A member of the System.Diagnostics.ProcessWindowStyle enumeration, which
controls how the window is displayed. Valid values include Hidden, Maximized,
Minimized, and Normal.

WorkingDirectory The fully qualified name of the initial directory for the new process.

When finished with a Process object, you should dispose of it in order to release system resources—

call Close, call Dispose, or create the Process object within the scope of a using statement.

■ Note Disposing of a Process object does not affect the underlying system process, which will continue to run.

The Code
The following example uses Process to execute Notepad in a maximized window and open a file named
C:\Temp\file.txt. After creation, the example calls the Process.WaitForExit method, which blocks the
calling thread until a process terminates or a specified timeout expires. This method returns true if the
process ends before the timeout and returns false otherwise.

CHAPTER 4 ■ THREADS, PROCESSES, AND SYNCHRONIZATION

198

using System;
using System.Diagnostics;

namespace Apress.VisualCSharpRecipes.Chapter04
{
 class Recipe04_15
 {
 public static void Main()
 {
 // Create a ProcessStartInfo object and configure it with the
 // information required to run the new process.
 ProcessStartInfo startInfo = new ProcessStartInfo();

 startInfo.FileName = "notepad.exe";
 startInfo.Arguments = "file.txt";
 startInfo.WorkingDirectory = @"C:\Temp";
 startInfo.WindowStyle = ProcessWindowStyle.Maximized;
 startInfo.ErrorDialog = true;

 // Declare a new Process object.
 Process process;

 try
 {
 // Start the new process.
 process = Process.Start(startInfo);

 // Wait for the new process to terminate before exiting.
 Console.WriteLine("Waiting 30 seconds for process to finish.");

 if (process.WaitForExit(30000))
 {
 Console.WriteLine("Process terminated.");
 }
 else
 {
 Console.WriteLine("Timed out waiting for process to end.");
 }
 }
 catch (Exception ex)
 {
 Console.WriteLine("Could not start process.");
 Console.WriteLine(ex);
 }

CHAPTER 4 ■ THREADS, PROCESSES, AND SYNCHRONIZATION

199

 // Wait to continue.
 Console.WriteLine(Environment.NewLine);
 Console.WriteLine("Main method complete. Press Enter.");
 Console.ReadLine();
 }
 }
}

4-16. Terminate a Process

Problem
You need to terminate a process such as an application or a service.

Solution
Obtain a Process object representing the operating system process you want to terminate. For Windows-
based applications, call Process.CloseMainWindow to send a close message to the application’s main
window. For Windows-based applications that ignore CloseMainWindow, or for non-Windows-based
applications, call the Process.Kill method.

How It Works
If you start a new process from managed code using the Process class (discussed in recipe 4-15), you can
terminate the process using the Process object that represents the new process. You can also obtain
Process objects that refer to other currently running processes using the static methods of the Process
class summarized in Table 4-4.

Table 4-4. Methods for Obtaining Process References

Method Description

GetCurrentProcess Returns a Process object representing the currently active process.

GetProcessById Returns a Process object representing the process with the specified ID. This is
the process ID (PID) you can get using Windows Task Manager.

GetProcesses Returns an array of Process objects representing all currently active processes.

GetProcessesByName Returns an array of Process objects representing all currently active processes
with a specified friendly name. The friendly name is the name of the executable
excluding file extension or path; for example, a friendly name could be notepad
or calc.

CHAPTER 4 ■ THREADS, PROCESSES, AND SYNCHRONIZATION

200

Once you have a Process object representing the process you want to terminate, you need to call
either the CloseMainWindow method or the Kill method. The CloseMainWindow method posts a WM_CLOSE
message to a Windows-based application’s main window. This method has the same effect as if the user
had closed the main window using the system menu, and it gives the application the opportunity to
perform its normal shutdown routine. CloseMainWindow will not terminate applications that do not have
a main window or applications with a disabled main window—possibly because a modal dialog box is
currently displayed. Under such circumstances, CloseMainWindow will return false.

CloseMainWindow returns true if the close message was successfully sent, but this does not guarantee
that the process is actually terminated. For example, applications used to edit data will usually give the
user the opportunity to save unsaved data if a close message is received. The user usually has the chance
to cancel the close operation under such circumstances. This means CloseMainWindow will return true,
but the application will still be running once the user cancels. You can use the Process.WaitForExit
method to signal process termination and the Process.HasExited property to test whether a process has
terminated. Alternatively, you can use the Kill method.

The Kill method simply terminates a process immediately; the user has no chance to stop the
termination, and all unsaved data is lost. Kill is the only option for terminating Windows-based
applications that do not respond to CloseMainWindow and for terminating non-Windows-based
applications.

The Code
The following example starts a new instance of Notepad, waits 5 seconds, and then terminates the
Notepad process. The example first tries to terminate the process using CloseMainWindow. If
CloseMainWindow returns false, or the Notepad process is still running after CloseMainWindow is called, the
example calls Kill and forces the Notepad process to terminate; you can force CloseMainWindow to return
false by leaving the File Open dialog box open.

using System;
using System.Threading;
using System.Diagnostics;

namespace Apress.VisualCSharpRecipes.Chapter04
{
 class Recipe04_16
 {
 public static void Main()
 {
 // Create a new Process and run notepad.exe.
 using (Process process =
 Process.Start("notepad.exe",@"c:\SomeFile.txt"))
 {
 // Wait for 5 seconds and terminate the notepad process.
 Console.WriteLine(
 "Waiting 5 seconds before terminating notepad.exe.");
 Thread.Sleep(5000);

 // Terminate notepad process.
 Console.WriteLine("Terminating Notepad with CloseMainWindow.");

CHAPTER 4 ■ THREADS, PROCESSES, AND SYNCHRONIZATION

201

 // Try to send a close message to the main window.
 if (!process.CloseMainWindow())
 {
 // Close message did not get sent - Kill Notepad.
 Console.WriteLine("CloseMainWindow returned false - " +
 " terminating Notepad with Kill.");
 process.Kill();
 }
 else
 {
 // Close message sent successfully; wait for 2 seconds
 // for termination confirmation before resorting to Kill.
 if (!process.WaitForExit(2000))
 {
 Console.WriteLine("CloseMainWindow failed to" +
 " terminate - terminating Notepad with Kill.");
 process.Kill();
 }
 }
 }

 // Wait to continue.
 Console.WriteLine("Main method complete. Press Enter.");
 Console.ReadLine();
 }
 }
}

4-17. Ensure That Only One Instance of an Application Can
Execute Concurrently

Problem
You need to ensure that a user can have only one instance of an application running concurrently.

Solution
Create a named System.Threading.Mutex object, and have your application try to acquire ownership of it
at startup.

How It Works
The Mutex provides a mechanism for synchronizing the execution of threads across process boundaries
and in addition provides a convenient mechanism through which to ensure that only a single instance of
an application is running concurrently. By trying to acquire ownership of a named Mutex at startup and

CHAPTER 4 ■ THREADS, PROCESSES, AND SYNCHRONIZATION

202

exiting if the Mutex cannot be acquired, you can ensure that only one instance of your application is
running.

The Code
This example uses a Mutex named MutexExample to ensure that only a single instance of the example can
execute:

using System;
using System.Threading;

namespace Apress.VisualCSharpRecipes.Chapter04
{
 class Recipe04_17
 {
 public static void Main()
 {
 // A Boolean that indicates whether this application has
 // initial ownership of the Mutex.
 bool ownsMutex;

 // Attempt to create and take ownership of a Mutex named
 // MutexExample.
 using (Mutex mutex =
 new Mutex(true, "MutexExample", out ownsMutex))
 {
 // If the application owns the Mutex it can continue to execute;
 // otherwise, the application should exit.
 if (ownsMutex)
 {
 Console.WriteLine("This application currently owns the" +
 " mutex named MutexExample. Additional instances of" +
 " this application will not run until you release" +
 " the mutex by pressing Enter.");

 Console.ReadLine();

 // Release the mutex.
 mutex.ReleaseMutex();
 }
 else
 {
 Console.WriteLine("Another instance of this application " +
 " already owns the mutex named MutexExample. This" +
 " instance of the application will terminate.");
 }
 }

CHAPTER 4 ■ THREADS, PROCESSES, AND SYNCHRONIZATION

203

 // Wait to continue.
 Console.WriteLine("Main method complete. Press Enter.");
 Console.ReadLine();
 }
 }
}

■ Note If you do not construct the Mutex in a using statement and encapsulate the body of your application in the
body of the using block as shown in this example, in long-running applications the garbage collector may dispose
of the Mutex if it is not referenced after initial creation. This will result in releasing the Mutex and allow additional
instances of the application to execute concurrently. In these circumstances, you should include the statement
System.GC.KeepAlive(mutex) to ensure the Mutex is not garbage collected. Thanks to Michael A. Covington for
highlighting this possibility.

C H A P T E R 5

■ ■ ■

205

Files, Directories, and I/O

The Microsoft .NET Framework I/O classes fall into two basic categories. First are the classes that
retrieve information from the file system and allow you to perform file system operations such as
copying files and moving directories. Two examples include the FileInfo and the DirectoryInfo classes.
The second and possibly more important category includes a broad range of classes that allow you to
read and write data from all types of streams. Streams can correspond to binary or text files, a file in an
isolated store, a network connection, or even a memory buffer. In all cases, the way you interact with a
stream is the same. This chapter describes how to use the file system classes and a wide range of stream-
based classes.

The recipes in this chapter describe how to do the following:

• Retrieve or modify information about a file, directory, or a drive (recipes 5-1, 5-2,
5-4, 5-5, and 5-16)

• Copy, move, and delete files and directories (recipe 5-3)

• Show a directory tree in a Microsoft Windows-based application use the common
file dialog boxes and monitor the file system for changes (recipes 5-6, 5-17, and 5-
19)

• Create, read, and write text and binary files; create temporary files; and use
isolated storage (recipes 5-7, 5-8, 5-9, 5-15, 5-18, and 5-21)

• Search for specific files and test files for equality and work with strings that
contain path information (recipes 5-10, 5-11, 5-12, 5-13, and 5-14)

• Write to a COM port (recipe 5-20)

• Retrieve or modify the access control lists (ACLs) of a file or directory (recipe 5-22)

• Compress and decompress data (recipe 5-23)

• Log data to a file and process a log file (recipes 5-24 and 5-25)

• Communicate between processes (recipes 5-26)

CHAPTER 5 ■ FILES, DIRECTORIES, AND I/O

206

5-1. Retrieve Information About a File, Directory, or Drive

Problem
You need to retrieve information about a file, directory, or drive.

Solution
Create a new System.IO.FileInfo, System.IO.DirectoryInfo, or System.IO.DriveInfo object, depending
on the type of resource about which you need to retrieve information. Supply the path of the resource to
the constructor, and then you will be able to retrieve information through the properties of the class.

How It Works
To create a FileInfo, DirectoryInfo, or DriveInfo object, you supply a relative or fully qualified path in
the constructor. You can retrieve information through the corresponding object properties. Table 5-1
lists some of the key members that are found in these objects.

Table 5-1. Key Members for Files, Directories, and Drives

Member Applies To Description

Exists FileInfo and
DirectoryInfo

Returns true or false, depending on whether a file or a
directory exists at the specified location.

Attributes FileInfo and
DirectoryInfo

Returns one or more values from the
System.IO.FileAttributes enumeration, which represents
the attributes of the file or the directory.

CreationTime,
LastAccessTime,

FileInfo and
DirectoryInfo

Return System.DateTime and LastWriteTime instances that
describe when a file or a directory was created, last
accessed, and last updated, respectively.

FullName, Name, and
Extension

FileInfo and
DirectoryInfo

Return a string that represents the fully qualified name,
the directory, or the file name (with extension), and the
extension on its own.

IsReadOnly FileInfo Returns true or false, depending on whether a file is read-
only.

Length FileInfo Returns the file size as a number of bytes.

CHAPTER 5 ■ FILES, DIRECTORIES, AND I/O

207

Member Applies To Description

DirectoryName and
Directory

FileInfo DirectoryName returns the name of the parent directory as
a string. Directory returns a full DirectoryInfo object that
represents the parent directory and allows you to retrieve
more information about it.

Parent and Root DirectoryInfo Return a DirectoryInfo object that represents the parent
or root directory.

CreateSubdirectory DirectoryInfo Creates a directory with the specified name in the
directory represented by the DirectoryInfo object. It also
returns a new DirectoryInfo object that represents the
subdirectory.

GetDirectories DirectoryInfo Returns an array of DirectoryInfo objects, with one
element for each subdirectory contained in this directory.

GetFiles DirectoryInfo Returns an array of FileInfo objects, with one element for
each file contained in this directory.

EnumerateFiles DirectoryInfo Returns an IEnumerable of FileInfo objects, with one
element for each file contained in this directory

EnumerateDirectories DirectoryInfo Returns an IEnumerable of DirectoryInfo objects, with one
element for each subdirectory.

DriveType DriveInfo Returns a DriveType enumeration value that represents
the type of the specified drive; for example, Fixed or CD
Rom.

AvailableFreeSpace DriveInfo Returns a long that represents the free space available in
the drive.

GetDrives DriveInfo Returns an array of DriveInfo objects that represents the
logical drives in the computer.

The following are a few points to note while working with these objects:

• FileInfo and DirectoryInfo classes derive from the abstract FileSystemInfo class,
which defines common methods like CreationTime, Exists, and so on. The
DriveInfo class does not inherit from this base class, so it does not provide some
of the common members available in the other two classes.

CHAPTER 5 ■ FILES, DIRECTORIES, AND I/O

208

• The full set of properties that FileInfo and DirectoryInfo objects expose is read
the first time you interrogate any property. If the file or directory changes after this
point, you must call the Refresh method to update the properties. However, this is
not the case for DriveInfo; each property access asks the file system for an up-to-
date value.

• You will not encounter an error if you specify a path that does not correspond to
an existing file, directory, or drive. Instead, you will receive an object that
represents an entity that does not exist—its Exists (or IsReady property for
DriveInfo) property will be false. You can use this object to manipulate the entity.
However, if you attempt to read most other properties, exceptions like
FileNotFoundException, DirectoryNotFoundException, and so on will be thrown.

The Code
The following console application takes a file path from a command-line argument, and then displays
information about the file, the containing directory, and the drive.

using System;
using System.IO;

namespace Apress.VisualCSharpRecipes.Chapter05
{
 static class Recipe05_01
 {
 static void Main(string[] args)
 {
 if (args.Length == 0)
 {
 Console.WriteLine("Please supply a filename.");
 return;
 }

 // Display file information.
 FileInfo file = new FileInfo(args[0]);

 Console.WriteLine("Checking file: " + file.Name);
 Console.WriteLine("File exists: " + file.Exists.ToString());

 if (file.Exists)
 {
 Console.Write("File created: ");
 Console.WriteLine(file.CreationTime.ToString());
 Console.Write("File last updated: ");
 Console.WriteLine(file.LastWriteTime.ToString());
 Console.Write("File last accessed: ");
 Console.WriteLine(file.LastAccessTime.ToString());
 Console.Write("File size (bytes): ");
 Console.WriteLine(file.Length.ToString());

CHAPTER 5 ■ FILES, DIRECTORIES, AND I/O

209

 Console.Write("File attribute list: ");
 Console.WriteLine(file.Attributes.ToString());
 }
 Console.WriteLine();

 // Display directory information.
 DirectoryInfo dir = file.Directory;

 Console.WriteLine("Checking directory: " + dir.Name);
 Console.WriteLine("In directory: " + dir.Parent.Name);
 Console.Write("Directory exists: ");
 Console.WriteLine(dir.Exists.ToString());

 if (dir.Exists)
 {
 Console.Write("Directory created: ");
 Console.WriteLine(dir.CreationTime.ToString());
 Console.Write("Directory last updated: ");
 Console.WriteLine(dir.LastWriteTime.ToString());
 Console.Write("Directory last accessed: ");
 Console.WriteLine(dir.LastAccessTime.ToString());
 Console.Write("Directory attribute list: ");
 Console.WriteLine(dir.Attributes.ToString());
 Console.WriteLine("Directory contains: " +
 dir.GetFiles().Length.ToString() + " files");
 }
 Console.WriteLine();

 // Display drive information.
 DriveInfo drv = new DriveInfo(file.FullName);

 Console.Write("Drive: ");
 Console.WriteLine(drv.Name);

 if (drv.IsReady)
 {
 Console.Write("Drive type: ");
 Console.WriteLine(drv.DriveType.ToString());
 Console.Write("Drive format: ");
 Console.WriteLine(drv.DriveFormat.ToString());
 Console.Write("Drive free space: ");
 Console.WriteLine(drv.AvailableFreeSpace.ToString());
 }

 // Wait to continue.
 Console.WriteLine(Environment.NewLine);
 Console.WriteLine("Main method complete. Press Enter.");
 Console.ReadLine();
 }
 }
}

CHAPTER 5 ■ FILES, DIRECTORIES, AND I/O

210

Usage
If you execute the command Recipe05-01.exe c:\windows\win.ini, you might expect the following
output:

Checking file: win.ini

File exists: True

File created: 31.Mar.2003 5:30:00 PM

File last updated: 24.Sep.2005 11:11:13 PM

File last accessed: 10.Nov.2005 9:41:05 PM

File size (bytes): 658

File attribute list: Archive

Checking directory: windows

In directory: c:\

Directory exists: True

Directory created: 04.Jun.2005 4:47:56 PM

Directory last updated: 01.Nov.2005 10:09:45 AM

Directory last accessed: 11.Nov.2005 6:24:59 AM

Directory attribute list: Directory

Directory contains: 134 files

CHAPTER 5 ■ FILES, DIRECTORIES, AND I/O

211

Drive: c:\

Drive type: Fixed

Drive format: NTFS

Drive free space: 14045097984

5-2. Set File and Directory Attributes

Problem
You need to test or modify file or directory attributes.

Solution
Create a System.IO.FileInfo object for a file or a System.IO.DirectoryInfo object for a directory and use
the bitwise AND (&) and OR (|) arithmetic operators to modify the value of the Attributes property.

How It Works
The FileInfo.Attributes and DirectoryInfo.Attributes properties represent file attributes such as
archive, system, hidden, read-only, compressed, and encrypted. Because a file can possess any
combination of attributes, the Attributes property accepts a combination of enumerated values. To
individually test for a single attribute or change a single attribute, you need to use bitwise arithmetic.
FileInfo.Attributes and DirectoryInfo.Attributes both return values from the FileAttributes
enumeration, whose most commonly used values are

• ReadOnly (the file is read-only)

• Hidden (the file is hidden from ordinary directory listings)

• System (the file part of the operating system)

• Directory (the file is a directory)

• Archive (used by backup applications)

• Temporary (this is a temporary file and will be deleted when no longer required)

• Compressed (the contents of the file are compressed)

• Encrypted (the contents of the file are encrypted)

CHAPTER 5 ■ FILES, DIRECTORIES, AND I/O

212

The Code
The following example takes a read-only test file and checks for the read-only attribute:

using System;
using System.IO;

namespace Apress.VisualCSharpRecipes.Chapter05
{
 static class Recipe05_02
 {
 static void Main()
 {
 // This file has the archive and read-only attributes.
 FileInfo file = new FileInfo(@"C:\Windows\win.ini");

 // This displays the attributes.
 Console.WriteLine(file.Attributes.ToString());

 // This test fails because other attributes are set.
 if (file.Attributes == FileAttributes.ReadOnly)
 {
 Console.WriteLine("File is read-only (faulty test).");
 }

 // This test succeeds because it filters out just the
 // read-only attribute.
 if ((file.Attributes & FileAttributes.ReadOnly) ==
 FileAttributes.ReadOnly)
 {
 Console.WriteLine("File is read-only (correct test).");
 }

 // Wait to continue.
 Console.WriteLine(Environment.NewLine);
 Console.WriteLine("Main method complete. Press Enter.");
 Console.ReadLine();
 }
 }
}

When setting an attribute, you must also use bitwise arithmetic, as demonstrated in the following
example. In this case, it’s needed to ensure that you don’t inadvertently clear the other attributes.

// This adds just the read-only attribute.
file.Attributes = file.Attributes | FileAttributes.ReadOnly;

// This removes just the read-only attribute.
file.Attributes = file.Attributes & ~FileAttributes.ReadOnly;

CHAPTER 5 ■ FILES, DIRECTORIES, AND I/O

213

5-3. Copy, Move, or Delete a File or Directory

Problem
You need to copy, move, or delete a file or directory.

Solution
Create a System.IO.FileInfo object for a file or a System.IO.DirectoryInfo object for a directory,
supplying the path in the constructor. You can then use the object’s methods to copy, move, and delete
the file or directory.

How It Works
The FileInfo and DirectoryInfo classes include a host of valuable methods for manipulating files and
directories. Table 5-2 shows methods for the FileInfo class, and Table 5-3 shows methods for the
DirectoryInfo class.

Table 5-2. Key Methods for Manipulating a FileInfo Object

Method Description

CopyTo Copies a file to the new path and file name specified as a parameter. It also returns
a new FileInfo object that represents the new (copied) file. You can supply an
optional additional parameter of true to allow overwriting.

Create and
CreateText

Create creates the specified file and returns a FileStream object that you can use to
write to it. CreateText performs the same task, but returns a StreamWriter object
that wraps the stream. For more information about writing files, see recipes 5-7
and 5-8.

Open, OpenRead,
OpenText, and
OpenWrite

Open a file (provided it exists). OpenRead and OpenText open a file in read-only
mode, returning a FileStream or StreamReader object. OpenWrite opens a file in
write-only mode, returning a FileStream object. For more information about
reading files, see recipes 5-7 and 5-8.

Delete Removes the file, if it exists.

Encrypt and
Decrypt

Encrypt/decrypt a file using the current account. This applies to NTFS file systems
only.

CHAPTER 5 ■ FILES, DIRECTORIES, AND I/O

214

Method Description

MoveTo Moves the file to the new path and file name specified as a parameter. MoveTo can
also be used to rename a file without changing its location.

Replace Replaces contents of a file by the current FileInfo object. This method could also
take a backup copy of the replaced file.

Table 5-3. Key Methods for Manipulating a DirectoryInfo Object

Method Description

Create Creates the specified directory. If the path specifies multiple directories that do
not exist, they will all be created at once.

CreateSubdirectory Creates a directory with the specified name in the directory represented by the
DirectoryInfo object. It also returns a new DirectoryInfo object that represents
the subdirectory.

Delete Removes the directory, if it exists. If you want to delete a directory that contains
other directories, you must use the overloaded Delete method that accepts a
parameter named recursive and set it to true.

MoveTo Moves the directory (contents and all) to a new path on the same drive. MoveTo
can also be used to rename a directory without changing its location.

The Code
One useful feature that is missing from the DirectoryInfo class is a copy method. Fortunately, you can
write this logic easily enough by relying on recursive logic and the FileInfo object.

The following example contains a helper function that can copy any directory, and its contents.

using System;
using System.IO;

namespace Apress.VisualCSharpRecipes.Chapter05
{
 static class Recipe05_03
 {
 static void Main(string[] args)
 {
 if (args.Length != 2)
 {

CHAPTER 5 ■ FILES, DIRECTORIES, AND I/O

215

 Console.WriteLine("USAGE: " +
 "Recipe05_03 [sourcePath] [destinationPath]");

 Console.ReadLine();
 return;

 }

 DirectoryInfo sourceDir = new DirectoryInfo(args[0]);
 DirectoryInfo destinationDir = new DirectoryInfo(args[1]);

 CopyDirectory(sourceDir, destinationDir);

 // Wait to continue.
 Console.WriteLine(Environment.NewLine);
 Console.WriteLine("Main method complete. Press Enter.");
 Console.ReadLine();
 }

 static void CopyDirectory(DirectoryInfo source,
 DirectoryInfo destination)
 {
 if (!destination.Exists)
 {
 destination.Create();
 }

 // Copy all files.
 foreach (FileInfo file in source.EnumerateFiles())
 {
 file.CopyTo(Path.Combine(destination.FullName,
 file.Name));
 }

 // Process subdirectories.
 foreach (DirectoryInfo dir in source.EnumerateDirectories())
 {
 // Get destination directory.
 string destinationDir = Path.Combine(destination.FullName,
 dir.Name);

 // Call CopyDirectory() recursively.
 CopyDirectory(dir, new DirectoryInfo(destinationDir));
 }
 }
 }
}

CHAPTER 5 ■ FILES, DIRECTORIES, AND I/O

216

5-4. Calculate the Size of a Directory

Problem
You need to calculate the size of all files contained in a directory (and optionally, its subdirectories).

Solution
Examine all the files in a directory and add together their FileInfo.Length properties. Use recursive logic
to include the size of files in contained subdirectories.

How It Works
The DirectoryInfo class does not provide any property that returns size information. However, you can
easily calculate the size of all files contained in a directory using the FileInfo.Length property.

The Code
The following example calculates the size of a directory and optionally examines contained directories
recursively.

using System;
using System.IO;

namespace Apress.VisualCSharpRecipes.Chapter05
{
 static class Recipe05_04
 {
 static void Main(string[] args)
 {
 if (args.Length == 0)
 {
 Console.WriteLine("Please supply a directory path.");
 return;
 }

 DirectoryInfo dir = new DirectoryInfo(args[0]);
 Console.WriteLine("Total size: " +
 CalculateDirectorySize(dir, true).ToString() +
 " bytes.");

 // Wait to continue.
 Console.WriteLine(Environment.NewLine);
 Console.WriteLine("Main method complete. Press Enter.");
 Console.ReadLine();
 }

CHAPTER 5 ■ FILES, DIRECTORIES, AND I/O

217

 static long CalculateDirectorySize(DirectoryInfo directory,
 bool includeSubdirectories)
 {
 long totalSize = 0;

 // Examine all contained files.
 foreach (FileInfo file in directory.EnumerateFiles())
 {
 totalSize += file.Length;
 }

 // Examine all contained directories.
 if (includeSubdirectories)
 {
 foreach (DirectoryInfo dir in directory.EnumerateDirectories())
 {
 totalSize += CalculateDirectorySize(dir, true);
 }
 }

 return totalSize;
 }
 }
}

5-5. Retrieve Version Information for a File

Problem
You want to retrieve file version information, such as the publisher of a file, its revision number,
associated comments, and so on.

Solution
Use the static GetVersionInfo method of the System.Diagnostics.FileVersionInfo class.

How It Works
The .NET Framework allows you to retrieve file information without resorting to the Windows API.
Instead, you simply need to use the FileVersionInfo class and call the GetVersionInfo method with the
file name as a parameter. You can then retrieve extensive information through the FileVersionInfo
properties.

CHAPTER 5 ■ FILES, DIRECTORIES, AND I/O

218

The Code
The FileVersionInfo properties are too numerous to list here, but the following code snippet shows an
example of what you might retrieve:

using System;
using System.Diagnostics;

namespace Apress.VisualCSharpRecipes.Chapter05
{
 static class Recipe05_05
 {
 static void Main(string[] args)
 {
 if (args.Length == 0)
 {
 Console.WriteLine("Please supply a filename.");
 return;
 }

 FileVersionInfo info = FileVersionInfo.GetVersionInfo(args[0]);

 // Display version information.
 Console.WriteLine("Checking File: " + info.FileName);
 Console.WriteLine("Product Name: " + info.ProductName);
 Console.WriteLine("Product Version: " + info.ProductVersion);
 Console.WriteLine("Company Name: " + info.CompanyName);
 Console.WriteLine("File Version: " + info.FileVersion);
 Console.WriteLine("File Description: " + info.FileDescription);
 Console.WriteLine("Original Filename: " + info.OriginalFilename);
 Console.WriteLine("Legal Copyright: " + info.LegalCopyright);
 Console.WriteLine("InternalName: " + info.InternalName);
 Console.WriteLine("IsDebug: " + info.IsDebug);
 Console.WriteLine("IsPatched: " + info.IsPatched);
 Console.WriteLine("IsPreRelease: " + info.IsPreRelease);
 Console.WriteLine("IsPrivateBuild: " + info.IsPrivateBuild);
 Console.WriteLine("IsSpecialBuild: " + info.IsSpecialBuild);

 // Wait to continue.
 Console.WriteLine(Environment.NewLine);
 Console.WriteLine("Main method complete. Press Enter.");
 Console.ReadLine();
 }
 }
}

Usage
If you run the command Recipe05_05 c:\windows\explorer.exe, the example produces the following
output:

CHAPTER 5 ■ FILES, DIRECTORIES, AND I/O

219

Checking File: c:\windows\explorer.exe

Product Name: Microsoftr Windowsr Operating System

Product Version: 6.00.2900.2180

Company Name: Microsoft Corporation

File Version: 6.00.2900.2180 (xpsp_sp2_rtm.040803-2158)

File Description: Windows Explorer

Original Filename: EXPLORER.EXE

Legal Copyright: c Microsoft Corporation. All rights reserved.

InternalName: explorer

IsDebug: False

IsPatched: False

IsPreRelease: False

IsPrivateBuild: False

IsSpecialBuild: False

5-6. Show a Just-in-Time Directory Tree in the TreeView
Control

Problem
You need to display a directory tree in a TreeView control. However, filling the directory tree structure at
startup is too time-consuming.

Solution
Fill the first level of directories in the TreeView control and add a hidden dummy node to each directory
branch. React to the TreeView.BeforeExpand event to fill in subdirectories in a branch just before it’s
displayed.

CHAPTER 5 ■ FILES, DIRECTORIES, AND I/O

220

How It Works
You can use recursion to build an entire directory tree. However, scanning the file system in this way can
be slow, particularly for large drives. For this reason, professional file management software programs
(including Windows Explorer) use a different technique. They query the necessary directory information
when the user requests it.

The TreeView control is particularly well suited to this approach because it provides a BeforeExpand
event that fires before a new level of nodes is displayed. You can use a placeholder (such as an asterisk or
empty TreeNode) in all the directory branches that are not filled in. This allows you to fill in parts of the
directory tree as they are displayed.

To use this type of solution, you need the following three ingredients:

• A Fill method that adds a single level of directory nodes based on a single
directory. You will use this method to fill directory levels as they are expanded.

• A basic Form.Load event handler that uses the Fill method to add the first level of
directories for the drive.

• A TreeView.BeforeExpand event handler that reacts when the user expands a node
and calls the Fill method if this directory information has not yet been added.

The Code
The following shows the code element of a Windows Forms application that demonstrates this recipe.
Download the source code that accompanies this book for the full Visual Studio project.

using System;
using System.Windows.Forms;
using System.IO;

namespace Apress.VisualCSharpRecipes.Chapter05
{
 public partial class DirectoryTree : Form
 {
 public DirectoryTree()
 {
 InitializeComponent();
 }

 private void DirectoryTree_Load(object sender, EventArgs e)
 {
 // Set the first node.
 TreeNode rootNode = new TreeNode(@"C:\");
 treeDirectory.Nodes.Add(rootNode);

CHAPTER 5 ■ FILES, DIRECTORIES, AND I/O

221

 // Fill the first level and expand it.
 Fill(rootNode);
 treeDirectory.Nodes[0].Expand();
 }

 private void treeDirectory_BeforeExpand(object sender,
 TreeViewCancelEventArgs e)
 {
 // If a dummy node is found, remove it and read the
 // real directory list.
 if (e.Node.Nodes[0].Text == "*")
 {
 e.Node.Nodes.Clear();
 Fill(e.Node);
 }
 }

 private void Fill(TreeNode dirNode)
 {
 DirectoryInfo dir = new DirectoryInfo(dirNode.FullPath);

 // An exception could be thrown in this code if you don't
 // have sufficient security permissions for a file or directory.
 // You can catch and then ignore this exception.
 foreach (DirectoryInfo dirItem in dir.GetDirectories())
 {
 // Add node for the directory.
 TreeNode newNode = new TreeNode(dirItem.Name);
 dirNode.Nodes.Add(newNode);
 newNode.Nodes.Add("*");
 }
 }
 }
}

Figure 5-1 shows the directory tree in action.

CHAPTER 5 ■ FILES, DIRECTORIES, AND I/O

222

Figure 5-1. A directory tree with the TreeView

5-7. Read and Write a Text File

Problem
You need to write data to a sequential text file using ASCII, Unicode, or UTF-8 encoding.

Solution
Create a new System.IO.FileStream object that references the file. To write the file, wrap the FileStream
in a System.IO.StreamWriter and use the overloaded Write method. To read the file, wrap the FileStream
in a System.IO.StreamReader and use the Read or ReadLine method.

How It Works
The .NET Framework allows you to write or read text with any stream by using the StreamWriter and
StreamReader classes. When writing data with the StreamWriter, you use the StreamWriter.Write
method. This method is overloaded to support all the common C# .NET data types, including strings,

CHAPTER 5 ■ FILES, DIRECTORIES, AND I/O

223

chars, integers, floating-point numbers, decimals, and so on. However, the Write method always
converts the supplied data to text. If you want to be able to convert the text back to its original data type,
you should use the WriteLine method to make sure each value is placed on a separate line.

The way a string is represented depends on the encoding you use. The most common encodings
include the following:

• ASCII, which encodes each character in a string using 7 bits. ASCII-encoded data
cannot contain extended Unicode characters. When using ASCII encoding in
.NET, the bits will be padded and the resulting byte array will have 1 byte for each
character.

• Full Unicode (or UTF-16), which represents each character in a string using 16
bits. The resulting byte array will have 2 bytes for each character.

• UTF-7 Unicode, which uses 7 bits for ordinary ASCII characters and multiple 7-bit
pairs for extended characters. This encoding is primarily for use with 7-bit
protocols such as mail, and it is not regularly used.

• UTF-8 Unicode, which uses 8 bits for ordinary ASCII characters and multiple 8-bit
pairs for extended characters. The resulting byte array will have 1 byte for each
character (provided there are no extended characters).

The .NET Framework provides a class for each type of encoding in the System.Text namespace.
When using StreamReader and StreamWriter, you can specify the encoding you want to use or simply use
the default UTF-8 encoding.

When reading information, you use the Read or ReadLine method of StreamReader. The Read method
reads a single character, or the number of characters you specify, and returns the data as a char or char
array. The ReadLine method returns a string with the content of an entire line. The ReadToEnd method
will return a string with the content starting from the current position to the end of the stream.

The Code
The following console application writes and then reads a text file:

using System;
using System.IO;
using System.Text;

namespace Apress.VisualCSharpRecipes.Chapter05
{
 static class Recipe05_07
 {
 static void Main()
 {
 // Create a new file.
 using (FileStream fs = new FileStream("test.txt", FileMode.Create))
 {
 // Create a writer and specify the encoding.
 // The default (UTF-8) supports special Unicode characters,
 // but encodes all standard characters in the same way as
 // ASCII encoding.

CHAPTER 5 ■ FILES, DIRECTORIES, AND I/O

224

 using (StreamWriter w = new StreamWriter(fs, Encoding.UTF8))
 {
 // Write a decimal, string, and char.
 w.WriteLine(124.23M);
 w.WriteLine("Test string");
 w.WriteLine('!');
 }
 }
 Console.WriteLine("Press Enter to read the information.");
 Console.ReadLine();

 // Open the file in read-only mode.
 using (FileStream fs = new FileStream("test.txt", FileMode.Open))
 {
 using (StreamReader r = new StreamReader(fs, Encoding.UTF8))
 {
 // Read the data and convert it to the appropriate data type.
 Console.WriteLine(Decimal.Parse(r.ReadLine()));
 Console.WriteLine(r.ReadLine());
 Console.WriteLine(Char.Parse(r.ReadLine()));
 }
 }

 // Wait to continue.
 Console.WriteLine(Environment.NewLine);
 Console.WriteLine("Main method complete. Press Enter.");
 Console.ReadLine();
 }
 }
}

Running the program creates a file that contains the following content:

124.23

Test string

!

5-8. Read and Write a Binary File

Problem
You need to write data to a binary file with strong data typing.

CHAPTER 5 ■ FILES, DIRECTORIES, AND I/O

225

Solution
Create a new System.IO.FileStream object that references the file. To write the file, wrap the FileStream
in a System.IO.BinaryWriter and use the overloaded Write method. To read the file, wrap the FileStream
in a System.IO.BinaryReader and use the Read method that corresponds to the expected data type.

How It Works
The .NET Framework allows you to write or read binary data with any stream by using the BinaryWriter
and BinaryReader classes. When writing data with the BinaryWriter, you use the BinaryWriter.Write
method. This method is overloaded to support all the common C# .NET data types, including strings,
chars, integers, floating-point numbers, decimals, and so on. The information will then be encoded as a
series of bytes and written to the file. You can configure the encoding used for strings by using an
overloaded constructor that accepts a System.Text.Encoding object, as described in recipe 5-7.

You must be particularly fastidious with data types when using binary files. This is because when
you retrieve the information, you must use one of the strongly typed Read methods from the
BinaryReader. For example, to retrieve decimal data, you use ReadDecimal. To read a string, you use
ReadString. (The BinaryWriter always records the length of a string when it writes it to a binary file to
prevent any possibility of error.)

The Code
The following console application writes and then reads a binary file:

using System;
using System.IO;

namespace Apress.VisualCSharpRecipes.Chapter05
{
 static class Recipe05_08
 {
 static void Main()
 {
 // Create a new file and writer.
 using (FileStream fs = new FileStream("test.bin", FileMode.Create))
 {
 using (BinaryWriter w = new BinaryWriter(fs))
 {
 // Write a decimal, two strings, and a char.
 w.Write(124.23M);
 w.Write("Test string");
 w.Write("Test string 2");
 w.Write('!');
 }
 }
 Console.WriteLine("Press Enter to read the information.");
 Console.ReadLine();

CHAPTER 5 ■ FILES, DIRECTORIES, AND I/O

226

 // Open the file in read-only mode.
 using (FileStream fs = new FileStream("test.bin", FileMode.Open))
 {
 // Display the raw information in the file.
 using (StreamReader sr = new StreamReader(fs))
 {
 Console.WriteLine(sr.ReadToEnd());
 Console.WriteLine();

 // Read the data and convert it to the appropriate data type.
 fs.Position = 0;
 using (BinaryReader br = new BinaryReader(fs))
 {
 Console.WriteLine(br.ReadDecimal());
 Console.WriteLine(br.ReadString());
 Console.WriteLine(br.ReadString());
 Console.WriteLine(br.ReadChar());
 }
 }
 }

 // Wait to continue.
 Console.WriteLine(Environment.NewLine);
 Console.WriteLine("Main method complete. Press Enter.");
 Console.ReadLine();
 }
 }
}

5-9. Read a File Asynchronously

Problem
You need to read data from a file without blocking the execution of your code. This technique is
commonly used if the file is stored on a slow backing store (such as a networked drive in a wide area
network).

Solution
Create a separate class that will read the file asynchronously. Start reading a block of data using the
FileStream.BeginRead method and supply a callback method. When the callback is triggered, retrieve the
data by calling FileStream.EndRead, process it, and read the next block asynchronously with BeginRead.

CHAPTER 5 ■ FILES, DIRECTORIES, AND I/O

227

How It Works
The FileStream includes basic support for asynchronous use through the BeginRead and EndRead
methods. Using these methods, you can read a block of data on one of the threads provided by the .NET
Framework thread pool, without needing to directly use the threading classes in the System.Threading
namespace.

When reading a file asynchronously, you choose the amount of data that you want to read at a time.
Depending on the situation, you might want to read a very small amount of data at a time (for example,
if you are copying it block by block to another file) or a relatively large amount of data (for example, if
you need a certain amount of information before your processing logic can start). You specify the block
size when calling BeginRead, and you pass a buffer where the data will be placed. Because the BeginRead
and EndRead methods need to be able to access many of the same pieces of information, such as the
FileStream, the buffer, the block size, and so on, it’s usually easiest to encapsulate your asynchronous
file reading code in a single class.

The Code
The following example demonstrates reading a file asynchronously. The AsyncProcessor class provides a
public StartProcess method, which starts an asynchronous read. Every time the read operation finishes,
the OnCompletedRead callback is triggered and the block of data is processed. If there is more data in the
file, a new asynchronous read operation is started. AsyncProcessor reads 2 kilobytes (2048 bytes) at a
time.

using System;
using System.IO;
using System.Threading;

namespace Apress.VisualCSharpRecipes.Chapter05
{
 public class AsyncProcessor
 {
 private Stream inputStream;

 // The amount that will be read in one block (2KB).
 private int bufferSize = 2048;

 public int BufferSize
 {
 get { return bufferSize; }
 set { bufferSize = value; }
 }

 // The buffer that will hold the retrieved data.
 private byte[] buffer;

 public AsyncProcessor(string fileName)
 {
 buffer = new byte[bufferSize];

CHAPTER 5 ■ FILES, DIRECTORIES, AND I/O

228

 // Open the file, specifying true for asynchronous support.
 inputStream = new FileStream(fileName, FileMode.Open,
 FileAccess.Read, FileShare.Read, bufferSize, true);
 }

 public void StartProcess()
 {

 // Start the asynchronous read, which will fill the buffer.
 inputStream.BeginRead(buffer, 0, buffer.Length,
 OnCompletedRead, null);
 }

 private void OnCompletedRead(IAsyncResult asyncResult)
 {
 // One block has been read asynchronously.
 // Retrieve the data.
 int bytesRead = inputStream.EndRead(asyncResult);

 // If no bytes are read, the stream is at the end of the file.
 if (bytesRead > 0)
 {
 // Pause to simulate processing this block of data.
 Console.WriteLine("\t[ASYNC READER]: Read one block.");
 Thread.Sleep(TimeSpan.FromMilliseconds(20));

 // Begin to read the next block asynchronously.
 inputStream.BeginRead(
 buffer, 0, buffer.Length, OnCompletedRead,
 null);
 }
 else
 {
 // End the operation.
 Console.WriteLine("\t[ASYNC READER]: Complete.");
 inputStream.Close();
 }
 }
 }
}

Usage
The following example shows a console application that uses AsyncProcessor to read a 2MB file:

using System;
using System.IO;
using System.Threading;

CHAPTER 5 ■ FILES, DIRECTORIES, AND I/O

229

namespace Apress.VisualCSharpRecipes.Chapter05
{
 static class Recipe05_09
 {
 static void Main(string[] args)
 {
 // Create a test file.
 using (FileStream fs = new FileStream("test.txt", FileMode.Create))
 {
 fs.SetLength(100000);
 }

 // Start the asynchronous file processor on another thread.
 AsyncProcessor asyncIO = new AsyncProcessor("test.txt");
 asyncIO.StartProcess();

 // At the same time, do some other work.
 // In this example, we simply loop for 10 seconds.
 DateTime startTime = DateTime.Now;
 while (DateTime.Now.Subtract(startTime).TotalSeconds < 2)
 {
 Console.WriteLine("[MAIN THREAD]: Doing some work.");

 // Pause to simulate a time-consuming operation.
 Thread.Sleep(TimeSpan.FromMilliseconds(100));
 }

 Console.WriteLine("[MAIN THREAD]: Complete.");
 Console.ReadLine();

 // Remove the test file.
 File.Delete("test.txt");
 }
 }
}

The following is an example of the output you will see when you run this test:

[MAIN THREAD]: Doing some work.

 [ASYNC READER]: Read one block.

 [ASYNC READER]: Read one block.

[MAIN THREAD]: Doing some work.

 [ASYNC READER]: Read one block.

 [ASYNC READER]: Read one block.

CHAPTER 5 ■ FILES, DIRECTORIES, AND I/O

230

 [ASYNC READER]: Read one block.

 [ASYNC READER]: Read one block.

[MAIN THREAD]: Doing some work.

 [ASYNC READER]: Read one block.

 [ASYNC READER]: Read one block.

 [ASYNC READER]: Read one block.

 . . .

5-10. Find Files That Match a Wildcard Expression

Problem
You need to process multiple files based on a filter expression (such as *.dll or mysheet20??.xls).

Solution
Use the overloaded versions of the System.IO.DirectoryInfo.GetFiles or System.IO.DirectoryInfo.
EnumerateFiles methods that accept a filter expression and return an array of FileInfo objects. For
searching recursively across all subdirectories, use the overloaded version that accepts the SearchOption
enumeration.

How It Works
The DirectoryInfo and Directory objects both provide a way to search the directories for files that
match a specific filter expression. These search expressions can use the standard ? and * wildcards. You
can use a similar technique to retrieve directories that match a specified search pattern by using the
overloaded DirectoryInfo.GetDirectories or DirectoryInfo.EnumerateDirectories methods. You can
also use the overload of GetFiles for searching recursively using the SearchOption.AllDirectories
enumeration constant.

The Code
The following example retrieves the names of all the files in a specified directory that match a specified
filter string. The directory and filter expression are submitted as command-line arguments. The code
then iterates through the retrieved FileInfo collection of matching files and displays the name and size
of each one:

CHAPTER 5 ■ FILES, DIRECTORIES, AND I/O

231

using System;
using System.IO;

namespace Apress.VisualCSharpRecipes.Chapter05
{
 static class Recipe05_10
 {
 static void Main(string[] args)
 {
 if (args.Length != 2)
 {
 Console.WriteLine(
 "USAGE: Recipe05_10 [directory] [filterExpression]");
 return;
 }

 DirectoryInfo dir = new DirectoryInfo(args[0]);
 FileInfo[] files = dir.GetFiles(args[1]);

 // Display the name of all the files.
 foreach (FileInfo file in files)
 {
 Console.Write("Name: " + file.Name + " ");
 Console.WriteLine("Size: " + file.Length.ToString());
 }

 // Wait to continue.
 Console.WriteLine(Environment.NewLine);
 Console.WriteLine("Main method complete. Press Enter.");
 Console.ReadLine();
 }
 }
}

5-11. Test Two Files for Equality

Problem
You need to quickly compare the content of two files and determine if it matches exactly.

Solution
Calculate the hash code of each file using the System.Security.Cryptography.HashAlgorithm class, and
then compare the hash codes.

CHAPTER 5 ■ FILES, DIRECTORIES, AND I/O

232

How It Works
You might compare file contents in a number of ways. For example, you could examine a portion of the
file for similar data, or you could read through each file byte by byte, comparing each byte as you go.
Both of these approaches are valid, but in some cases it’s more convenient to use a hash code algorithm.

A hash code algorithm generates a small (typically about 20 bytes) binary fingerprint for a file. While
it’s possible for different files to generate the same hash codes, that is statistically unlikely to occur. In
fact, even a minor change (for example, modifying a single bit in the source file) has an approximately 50
percent chance of independently changing each bit in the hash code. For this reason, hash codes are
often used in security code to detect data tampering. (Hash codes are discussed in more detail in recipes
11-14, 11-15, and 11-16.)

To create a hash code, you must first create a HashAlgorithm object, typically by calling the static
HashAlgorithm.Create method. You can then call HashAlgorithm.ComputeHash, which returns a byte array
with the hash data.

The Code
The following example demonstrates a simple console application that reads two file names that are
supplied as arguments and uses hash codes to test the files for equality. The hashes are compared by
converting them into strings. Alternatively, you could compare them by iterating over the byte array and
comparing each value. This approach would be slightly faster, but because the overhead of converting 20
bytes into a string is minimal, it’s not required.

using System;
using System.IO;
using System.Security.Cryptography;

namespace Apress.VisualCSharpRecipes.Chapter05
{
 static class Recipe05_11
 {
 static void Main(string[] args)
 {
 if (args.Length != 2)
 {
 Console.WriteLine("USAGE: Recipe05_11 [fileName] [fileName]");
 return;
 }

 Console.WriteLine("Comparing " + args[0] + " and " + args[1]);

 // Create the hashing object.
 using (HashAlgorithm hashAlg = HashAlgorithm.Create())
 {
 using (FileStream fsA = new FileStream(args[0], FileMode.Open),
 fsB = new FileStream(args[1], FileMode.Open))
 {
 // Calculate the hash for the files.
 byte[] hashBytesA = hashAlg.ComputeHash(fsA);
 byte[] hashBytesB = hashAlg.ComputeHash(fsB);

CHAPTER 5 ■ FILES, DIRECTORIES, AND I/O

233

 // Compare the hashes.
 if (BitConverter.ToString(hashBytesA) ==
 BitConverter.ToString(hashBytesB))
 {
 Console.WriteLine("Files match.");
 }
 else
 {
 Console.WriteLine("No match.");
 }
 }
 }

 // Wait to continue.
 Console.WriteLine(Environment.NewLine);
 Console.WriteLine("Main method complete. Press Enter.");
 Console.ReadLine();
 }
 }
}

5-12. Manipulate Strings Representing File Names

Problem
You want to retrieve a portion of a path or verify that a file path is in a normal (standardized) form.

Solution
Process the path using the System.IO.Path class. You can use Path.GetFileName to retrieve a file name
from a path, Path.ChangeExtension to modify the extension portion of a path string, and Path.Combine to
create a fully qualified path without worrying about whether your directory includes a trailing directory
separation character(\).

How It Works
File paths are often difficult to work with in code because of the many different ways to represent the
same directory. For example, you might use an absolute path (C:\Temp), a UNC path
(\\MyServer\\MyShare\temp), or one of many possible relative paths (C:\Temp\MyFiles\..\ or
C:\Temp\MyFiles\..\..\temp).

The easiest way to handle file system paths is to use the static methods of the Path class to make
sure you have the information you expect. For example, here is how you take a file name that might
include a qualified path and extract just the file name:

CHAPTER 5 ■ FILES, DIRECTORIES, AND I/O

234

string filename = @"..\System\MyFile.txt";
filename = Path.GetFileName(filename);

// Now filename = "MyFile.txt"

And here is how you might append the file name to a directory path using the Path.Combine method:

string filename = @"..\..\myfile.txt";
string fullPath = @"c:\Temp";

string filename = Path.GetFileName(filename);
string fullPath = Path.Combine(fullPath, filename);

// (fullPath is now "c:\Temp\myfile.txt")

The advantage of this approach is that a trailing backslash (\) is automatically added to the path
name if required. The Path class also provides the following useful methods for manipulating path
information:

• ChangeExtension modifies the current extension of the file in a string. If no
extension is specified, the current extension will be removed.

• GetDirectoryName returns all the directory information, which is the text between
the first and last directory separators (\).

• GetFileNameWithoutExtension is similar to GetFileName, but it omits the extension.

• GetFullPath has no effect on an absolute path, and it changes a relative path into
an absolute path using the current directory. For example, if C:\Temp\ is the
current directory, calling GetFullPath on a file name such as test.txt returns
C:\Temp\test.txt.

• GetPathRoot retrieves a string with the root (for example, “C:\”), provided that
information is in the string. For a relative path, it returns a null reference.

• HasExtension returns true if the path ends with an extension.

• IsPathRooted returns true if the path is an absolute path and false if it’s a relative
path.

■ Note In most cases, an exception will be thrown if you try to supply an invalid path to one of these methods (for
example, paths that include illegal characters). However, path names that are invalid because they contain a
wildcard character (* or ?) will not cause the methods to throw an exception. You could use the
Path.GetInvalidPathChars method to obtain an array of characters that are illegal in path names.

CHAPTER 5 ■ FILES, DIRECTORIES, AND I/O

235

 5-13. Determine If a Path Is a Directory or a File

Problem
You have a path (in the form of a string), and you want to determine whether it corresponds to a
directory or a file.

Solution
Test the path with the Directory.Exists and the File.Exists methods.

How It Works
The System.IO.Directory and System.IO.File classes both provide an Exists method. The
Directory.Exists method returns true if a supplied relative or absolute path corresponds to an existing
directory, even a shared folder with an UNC name. File.Exists returns true if the path corresponds to
an existing file.

The Code
The following example demonstrates how you can quickly determine if a path corresponds to a file or
directory:

using System;
using System.IO;

namespace Apress.VisualCSharpRecipes.Chapter05
{
 static class Recipe05_13
 {
 static void Main(string[] args)
 {
 foreach (string arg in args)
 {
 Console.Write(arg);

 if (Directory.Exists(arg))
 {
 Console.WriteLine(" is a directory");
 }
 else if (File.Exists(arg))
 {
 Console.WriteLine(" is a file");
 }

CHAPTER 5 ■ FILES, DIRECTORIES, AND I/O

236

 else
 {
 Console.WriteLine(" does not exist");
 }
 }

 // Wait to continue.
 Console.WriteLine(Environment.NewLine);
 Console.WriteLine("Main method complete. Press Enter.");
 Console.ReadLine();
 }
 }
}

5-14. Work with Relative Paths

Problem
You want to set the current working directory so that you can use relative paths in your code.

Solution
Use the static GetCurrentDirectory and SetCurrentDirectory methods of the System.IO.Directory class.

How It Works
Relative paths are automatically interpreted in relation to the current working directory. You can retrieve
the current working directory by calling Directory.GetCurrentDirectory or change it using
Directory.SetCurrentDirectory. In addition, you can use the static GetFullPath method of the
System.IO.Path class to convert a relative path into an absolute path using the current working directory.

The Code
The following is a simple example that demonstrates working with relative paths:

using System;
using System.IO;

namespace Apress.VisualCSharpRecipes.Chapter05
{
 static class Recipe05_14
 {
 static void Main()
 {

CHAPTER 5 ■ FILES, DIRECTORIES, AND I/O

237

 Console.WriteLine("Using: " + Directory.GetCurrentDirectory());
 Console.WriteLine("The relative path 'file.txt' " +
 "will automatically become: '" +
 Path.GetFullPath("file.txt") + "'");

 Console.WriteLine();

 Console.WriteLine("Changing current directory to c:\\");
 Directory.SetCurrentDirectory(@"c:\");

 Console.WriteLine("Now the relative path 'file.txt' " +
 "will automatically become '" +
 Path.GetFullPath("file.txt") + "'");

 // Wait to continue.
 Console.WriteLine(Environment.NewLine);
 Console.WriteLine("Main method complete. Press Enter.");
 Console.ReadLine();
 }
 }
}

Usage
The output for this example might be the following (if you run the application in the directory C:\temp):

Using: c:\temp

The relative path 'file.txt' will automatically become 'c:\temp\file.txt'

Changing current directory to c:\

The relative path 'file.txt' will automatically become 'c:\file.txt'

■ Caution If you use relative paths, it’s recommended that you set the working path at the start of each file
interaction. Otherwise, you could introduce unnoticed security vulnerabilities that could allow a malicious user to
force your application into accessing or overwriting system files by tricking it into using a different working
directory.

CHAPTER 5 ■ FILES, DIRECTORIES, AND I/O

238

5-15. Create a Temporary File

Problem
You need to create a file that will be placed in the user-specific temporary directory and will have a
unique name, so that it will not conflict with temporary files generated by other programs.

Solution
Use the static GetTempFileName method of the System.IO.Path class, which returns a path made up of the
user’s temporary directory and a randomly generated file name.

How It Works
You can use a number of approaches to generate temporary files. In simple cases, you might just create a
file in the application directory, possibly using a GUID or a timestamp in conjunction with a random
value as the file name. However, the Path class provides a helper method that can save you some work. It
creates a file with a unique file name in the current user’s temporary directory that is stored in a folder
like C:\Documents and Settings\[username]\Local Settings\temp.

The Code
The following example demonstrates creating a temporary file:

using System;
using System.IO;

namespace Apress.VisualCSharpRecipes.Chapter05
{
 static class Recipe05_15
 {
 static void Main()
 {
 string tempFile = Path.GetTempFileName();

 Console.WriteLine("Using " + tempFile);

 using (FileStream fs = new FileStream(tempFile, FileMode.Open))
 {
 // (Write some data.)
 }

 // Now delete the file.
 File.Delete(tempFile);

CHAPTER 5 ■ FILES, DIRECTORIES, AND I/O

239

 // Wait to continue.
 Console.WriteLine(Environment.NewLine);
 Console.WriteLine("Main method complete. Press Enter.");
 Console.ReadLine();
 }
 }
}

5-16. Get the Total Free Space on a Drive

Problem
You need to examine a drive and determine how many bytes of free space are available.

Solution
Use the DriveInfo.AvailableFreeSpace property.

How It Works
The DriveInfo class provides members that let you find out the drive type, free space, and many other
details of a drive. In order to create a new DriveInfo object, you need to pass the drive letter or the drive
root string to the constructor, such as 'C' or "C:\" for creating a DriveInfo instance representing the C
drive of the computer. You could also retrieve the list of logical drives available by using the static
Directory.GetLogicalDrives method, which returns an array of strings, each containing the root of the
drive, such as "C:\". For more details on each drive, you create a DriveInfo instance, passing either the
root or the letter corresponding to the logical drive. If you need a detailed description of each logical
drive, call the DriveInfo.GetDrives method, which returns an array of DriveInfo objects, instead of
using Directory.GetLogicalDrives.

■ Note A System.IO.IOException is thrown if you try to access an unavailable network drive.

The Code
The following console application shows the available free space using the DriveInfo class for the given
drive or for all logical drives if no argument is passed to the application:

CHAPTER 5 ■ FILES, DIRECTORIES, AND I/O

240

using System;
using System.IO;

namespace Apress.VisualCSharpRecipes.Chapter05
{
 static class Recipe05_16
 {
 static void Main(string[] args)
 {
 if (args.Length == 1)
 {
 DriveInfo drive = new DriveInfo(args[0]);

 Console.Write("Free space in {0}-drive (in kilobytes): ", args[0]);
 Console.WriteLine(drive.AvailableFreeSpace / 1024);
 Console.ReadLine();
 return;
 }

 foreach (DriveInfo drive in DriveInfo.GetDrives())
 {
 try
 {
 Console.WriteLine(
 "{0} - {1} KB",
 drive.RootDirectory,
 drive.AvailableFreeSpace / 1024
);
 }
 catch (IOException) // network drives may not be available
 {
 Console.WriteLine(drive);
 }
 }

 // Wait to continue.
 Console.WriteLine(Environment.NewLine);
 Console.WriteLine("Main method complete. Press Enter.");
 Console.ReadLine();
 }
 }
}

■ Note In addition to the AvailableFreeSpace property, DriveInfo also defines a TotalFreeSpace property.
The difference between these two properties is that AvailableFreeSpace takes into account disk quotas.

CHAPTER 5 ■ FILES, DIRECTORIES, AND I/O

241

5-17. Show the Common File Dialog Boxes

Problem
You need to show the standard Windows dialog boxes for opening and saving files and for selecting a
folder.

Solution
Use the OpenFileDialog, SaveFileDialog, and FolderBrowserDialog classes in the System.Windows.Forms
namespace. Call the ShowDialog method to display the dialog box, examine the return value to determine
whether the user clicked OK or Cancel, and retrieve the selection from the FileName or SelectedPath
property.

How It Works
The .NET Framework provides objects that wrap many of the standard Windows dialog boxes, including
those used for saving and selecting files and directories. These classes all inherit from
System.Windows.Forms.CommonDialog and include the following:

• OpenFileDialog, which allows the user to select a file, as shown in Figure 5-2. The
file name and path are provided to your code through the FileName property (or
the FileNames collection, if you have enabled multiple-file select by setting
Multiselect to true). Additionally, you can use the Filter property to set the file
format choices and set CheckFileExists to enforce validation.

• SaveFileDialog, which allows the user to specify a new file. The file name and path
are provided to your code through the FileName property. You can also use the
Filter property to set the file format choices, and set the CreatePrompt and
OverwritePrompt Boolean properties to instruct .NET to display a confirmation if
the user selects a new file or an existing file, respectively.

• FolderBrowserDialog, which allows the user to select (and optionally create) a
directory. The selected path is provided through the SelectedPath property, and
you can specify whether or not a Create New button should appear.

When using OpenFileDialog or SaveFileDialog, you need to set the filter string, which specifies the
allowed file extensions. The filter string is separated with the pipe character (|) in this format:

[Text label] | [Extension list separated by semicolons] | [Text label]
| [Extension list separated by semicolons] | . . .

You can also set the Title (form caption) and the InitialDirectory.

CHAPTER 5 ■ FILES, DIRECTORIES, AND I/O

242

Figure 5-2. OpenFileDialog shows the Open dialog box.

The Code
The following code shows the code part of a Windows Forms application that allows the user to load
documents into a RichTextBox, edit the content, and then save the modified document. When opening
and saving a document, the OpenFileDialog and SaveFileDialog classes are used. Download the source
code that accompanies this book from www.apress.com/book/sourcecode to see the full Visual Studio
project.

using System;
using System.Windows.Forms;

namespace Apress.VisualCSharpRecipes.Chapter05
{
 public partial class MainForm : Form
 {
 public MainForm()
 {
 InitializeComponent();
 }

http://www.apress.com/book/sourcecode

CHAPTER 5 ■ FILES, DIRECTORIES, AND I/O

243

 private void mnuOpen_Click(object sender, EventArgs e)
 {
 OpenFileDialog dlg = new OpenFileDialog();
 dlg.Filter = "Rich Text Files (*.rtf)|*.RTF|" +
 "All files (*.*)|*.*";
 dlg.CheckFileExists = true;
 dlg.InitialDirectory = Application.StartupPath;

 if (dlg.ShowDialog() == DialogResult.OK)
 {
 rtDoc.LoadFile(dlg.FileName);
 rtDoc.Enabled = true;
 }
 }

 private void mnuSave_Click(object sender, EventArgs e)
 {
 SaveFileDialog dlg = new SaveFileDialog();
 dlg.Filter = "RichText Files (*.rtf)|*.RTF|Text Files (*.txt)|*.TXT" +
 "|All files (*.*)|*.*";
 dlg.CheckFileExists = true;
 dlg.InitialDirectory = Application.StartupPath;

 if (dlg.ShowDialog() == DialogResult.OK)
 {
 rtDoc.SaveFile(dlg.FileName);
 }
 }

 private void mnuExit_Click(object sender, EventArgs e)
 {
 this.Close();
 }
 }
}

5-18. Use an Isolated Store

Problem
You need to store data in a file, but your application does not have the required FileIOPermission for the
local hard drive.

CHAPTER 5 ■ FILES, DIRECTORIES, AND I/O

244

Solution
Use the IsolatedStorageFile and IsolatedStorageFileStream classes from the
System.IO.IsolatedStorage namespace. These classes allow your application to write data to a file in a
user-specific directory without needing permission to access the local hard drive directly.

How It Works
The .NET Framework includes support for isolated storage, which allows you to read and write to a user-
specific virtual file system that the Common Language Runtime (CLR) manages. When you create
isolated storage files, the data is automatically serialized to a unique location in the user profile path
(typically a path like C:\Documents and Settings\[username]\Local Settings\Application
Data\isolated storage\[guid_identifier]).

One reason you might use isolated storage is to give a partially trusted application limited ability to
store data. For example, the default CLR security policy gives local code unrestricted FileIOPermission,
which allows it to open or write to any file. Code that you run from a remote server on the local intranet
is automatically assigned fewer permissions. It lacks the FileIOPermission, but it has the
IsolatedStoragePermission, giving it the ability to use isolated stores. (The security policy also limits the
maximum amount of space that can be used in an isolated store.) Another reason you might use an
isolated store is to better secure data. For example, data in one user’s isolated store will be restricted
from another nonadministrative user.

By default, each isolated store is segregated by user and assembly. That means that when the same
user runs the same application, the application will access the data in the same isolated store. However,
you can choose to segregate it further by application domain so that multiple AppDomain instances
running in the same application receive different isolated stores.

The files are stored as part of a user’s profile, so users can access their isolated storage files on any
workstation they log onto if roaming profiles are configured on your local area network. (In this case, the
store must be specifically designated as a roaming store by applying the IsolatedStorageFile.Roaming
flag when it’s created.) By letting the .NET Framework and the CLR provide these levels of isolation, you
can relinquish responsibility for maintaining the separation between files, and you do not need to worry
that programming oversights or misunderstandings will cause loss of critical data.

The Code
The following example shows how you can access isolated storage:

using System;
using System.IO;
using System.IO.IsolatedStorage;

namespace Apress.VisualCSharpRecipes.Chapter05
{
 static class Recipe05_18
 {
 static void Main(string[] args)
 {
 // Create the store for the current user.
 using (IsolatedStorageFile store =

CHAPTER 5 ■ FILES, DIRECTORIES, AND I/O

245

 IsolatedStorageFile.GetUserStoreForAssembly())
 {
 // Create a folder in the root of the isolated store.
 store.CreateDirectory("MyFolder");

 // Create a file in the isolated store.
 using (Stream fs = new IsolatedStorageFileStream(
 "MyFile.txt", FileMode.Create, store))
 {
 StreamWriter w = new StreamWriter(fs);

 // You can now write to the file as normal.
 w.WriteLine("Test");
 w.Flush();
 }

 Console.WriteLine("Current size: " +
 store.UsedSize.ToString());
 Console.WriteLine("Scope: " + store.Scope.ToString());

 Console.WriteLine("Contained files include:");
 string[] files = store.GetFileNames("*.*");
 foreach (string file in files)
 {
 Console.WriteLine(file);
 }
 }

 // Wait to continue.
 Console.WriteLine(Environment.NewLine);
 Console.WriteLine("Main method complete. Press Enter.");
 Console.ReadLine();
 }
 }
}

The following demonstrates using multiple AppDomain instances running in the same application to
receive different isolated stores:

// Access isolated storage for the current user and assembly
// (which is equivalent to the first example).
store = IsolatedStorageFile.GetStore(IsolatedStorageScope.User |
 IsolatedStorageScope.Assembly, null, null);

// Access isolated storage for the current user, assembly,
// and application domain. In other words, this data is
// accessible only by the current AppDomain instance.
store = IsolatedStorageFile.GetStore(IsolatedStorageScope.User |
 IsolatedStorageScope.Assembly | IsolatedStorageScope.Domain,
 null, null);

CHAPTER 5 ■ FILES, DIRECTORIES, AND I/O

246

5-19. Monitor the File System for Changes

Problem
You need to react when a file system change is detected in a specific path (such as a file modification or
creation).

Solution
Use the System.IO.FileSystemWatcher component, specify the path or file you want to monitor, and
handle the Created, Deleted, Renamed, and Changed events.

How It Works
When linking together multiple applications and business processes, it’s often necessary to create a
program that waits idly and becomes active only when a new file is received or changed. You can create
this type of program by scanning a directory periodically, but you face a key trade-off. The more often
you scan, the more system resources you waste. The less often you scan, the longer it will take to detect a
change. The solution is to use the FileSystemWatcher class to react directly to Windows file events.

To use FileSystemWatcher, you must create an instance and set the following properties:

• Path indicates the directory you want to monitor.

• Filter indicates the types of files you are monitoring.

• NotifyFilter indicates the type of changes you are monitoring.

FileSystemWatcher raises four key events: Created, Deleted, Renamed, and Changed. All of these events
provide information through their FileSystemEventArgs parameter, including the name of the file (Name),
the full path (FullPath), and the type of change (ChangeType). The Renamed event provides a
RenamedEventArgs instance, which derives from FileSystemEventArgs, and adds information about the
original file name (OldName and OldFullPath). If you need to, you can disable these events by setting the
FileSystemWatcher.EnableRaisingEvents property to false. The Created, Deleted, and Renamed events
are easy to handle. However, if you want to use the Changed event, you need to use the NotifyFilter
property to indicate the types of changes you want to watch. Otherwise, your program might be
swamped by an unceasing series of events as files are modified.

The NotifyFilter property can be set using any combination of the following values from the
System.IO.NotifyFilters enumeration:

• Attributes

• CreationTime

• DirectoryName

• FileName

• LastAccess

CHAPTER 5 ■ FILES, DIRECTORIES, AND I/O

247

• LastWrite

• Security

• Size

The Code
The following example shows a console application that handles Created and Deleted events, and tests
these events by creating a test file:

using System;
using System.IO;
using System.Windows.Forms;

namespace Apress.VisualCSharpRecipes.Chapter05
{
 static class Recipe05_19
 {
 static void Main()
 {
 // Configure the FileSystemWatcher.
 using (FileSystemWatcher watch = new FileSystemWatcher())
 {
 watch.Path = Application.StartupPath;
 watch.Filter = "*.*";
 watch.IncludeSubdirectories = true;

 // Attach the event handler.
 watch.Created += new FileSystemEventHandler(OnCreatedOrDeleted);
 watch.Deleted += new FileSystemEventHandler(OnCreatedOrDeleted);
 watch.EnableRaisingEvents = true;

 Console.WriteLine("Press Enter to create a file.");
 Console.ReadLine();

 if (File.Exists("test.bin"))
 {
 File.Delete("test.bin");
 }

 // Create test.bin.
 using (FileStream fs = new FileStream("test.bin", FileMode.Create))
 {
 // Do something.
 }

 Console.WriteLine("Press Enter to terminate the application.");
 Console.ReadLine();
 }

CHAPTER 5 ■ FILES, DIRECTORIES, AND I/O

248

 // Wait to continue.
 Console.WriteLine(Environment.NewLine);
 Console.WriteLine("Main method complete. Press Enter.");
 Console.ReadLine();
 }

 // Fires when a new file is created in the directory being monitored.
 private static void OnCreatedOrDeleted(object sender,
 FileSystemEventArgs e)
 {
 // Display the notification information.
 Console.WriteLine("\tNOTIFICATION: " + e.FullPath +
 "' was " + e.ChangeType.ToString());
 Console.WriteLine();
 }
 }
}

5-20. Access a COM Port

Problem
You need to send data directly to a serial port.

Solution
Use the System.IO.Ports.SerialPort class. This class represents a serial port resource and defines
methods that enable communication through it.

How It Works
The .NET Framework defines a System.IO.Ports namespace that contains several classes. The central
class is SerialPort. The SerialPort class also exposes properties that let you specify the port, baud rate,
parity, and other information.

The Code
The following example demonstrates a simple console application that writes a string into the COM1
port:

using System;
using System.IO.Ports;

namespace Apress.VisualCSharpRecipes.Chapter05
{

CHAPTER 5 ■ FILES, DIRECTORIES, AND I/O

249

 static class Recipe05_20
 {
 static void Main(string[] args)
 {
 using (SerialPort port = new SerialPort("COM1"))
 {
 // Set the properties.
 port.BaudRate = 9600;
 port.Parity = Parity.None;
 port.ReadTimeout = 10;
 port.StopBits = StopBits.One;

 // Write a message into the port.
 port.Open();
 port.Write("Hello world!");

 Console.WriteLine("Wrote to the port.");
 }

 // Wait to continue.
 Console.WriteLine(Environment.NewLine);
 Console.WriteLine("Main method complete. Press Enter.");
 Console.ReadLine();
 }
 }
}

5-21. Get a Random File Name

Problem
You need to get a random name for creating a folder or a file.

Solution
Use the Path.GetRandomFileName method, which returns a random name.

How It Works
The System.IO.Path class includes a new GetRandomFileName method, which generates a random string.
You could use this string for creating a new file or folder.

The difference between GetRandomFileName and GetTempFileName (discussed in recipe 5-15) of the
Path class is that GetRandomFileName just returns a random string and does not create a file, whereas
GetTempFileName creates a new zero-byte temporary file and returns the path to the file.

CHAPTER 5 ■ FILES, DIRECTORIES, AND I/O

250

The Code
The following example demonstrates using a random file name. Note that this example differs from that
in recipe 5-15 in that we have to ensure that the file exists before opening it—we do this be using the
FileMode.OpenOrCreate enumeration value as an argument to the constructor of FileStream.

using System;
using System.IO;

namespace Apress.VisualCSharpRecipes.Chapter05
{
 static class Recipe05_21
 {
 static void Main()
 {
 string tempFile = Path.GetRandomFileName();

 Console.WriteLine("Using " + tempFile);

 using (FileStream fs = new FileStream(tempFile, FileMode.OpenOrCreate))
 {
 // (Write some data.)
 }

 // Now delete the file.
 File.Delete(tempFile);

 // Wait to continue.
 Console.WriteLine(Environment.NewLine);
 Console.WriteLine("Main method complete. Press Enter.");
 Console.ReadLine();
 }
 }
}

5-22. Manipulate the Access Control List of a File or Directory

Problem
You want to modify the access control list (ACL) of a file or directory in the computer.

Solution
Use the GetAccessControl and SetAccessControl methods of the File or Directory class.

CHAPTER 5 ■ FILES, DIRECTORIES, AND I/O

251

How It Works
The .NET Framework includes support for ACLs for resources like I/O, registry, and threading classes.
You can retrieve and apply the ACL for a resource by using the GetAccessControl and SetAccessControl
methods defined in the corresponding resource classes. For example, the File and Directory classes
define both these methods, which let you manipulate the ACLs for a file or directory.

To add or remove an ACL-associated right of a file or directory, you need to first retrieve the
FileSecurity or DirectorySecurity object currently applied to the resource using the GetAccessControl
method. Once you retrieve this object, you need to perform the required modification of the rights, and
then apply the ACL back to the resource using the SetAccessControl method. Access rights are updated
using any of the add and remove methods provided in the security class.

The Code
The following example demonstrates the effect of denying Everyone Read access to a temporary file,
using a console application. An attempt to read the file after a change in the ACL triggers a security
exception.

using System;
using System.IO;
using System.Security.AccessControl;

namespace Apress.VisualCSharpRecipes.Chapter05
{
 static class Recipe05_22
 {
 static void Main(string[] args)
 {
 FileStream stream;
 string fileName;

 // Create a new file and assign full control to 'Everyone'.
 Console.WriteLine("Press any key to write a new file...");
 Console.ReadKey(true);

 fileName = Path.GetRandomFileName();
 using (stream = new FileStream(fileName, FileMode.Create))
 {
 // Do something.
 }
 Console.WriteLine("Created a new file " + fileName + ".");
 Console.WriteLine();

 // Deny 'Everyone' access to the file
 Console.WriteLine("Press any key to deny 'Everyone' " +
 "access to the file...");
 Console.ReadKey(true);
 SetRule(fileName, "Everyone",
 FileSystemRights.Read, AccessControlType.Deny);

CHAPTER 5 ■ FILES, DIRECTORIES, AND I/O

252

 Console.WriteLine("Removed access rights of 'Everyone'.");
 Console.WriteLine();

 // Attempt to access file.
 Console.WriteLine("Press any key to attempt " +
 "access to the file...");
 Console.ReadKey(true);

 try
 {
 stream = new FileStream(fileName, FileMode.Create);
 }
 catch (Exception ex)
 {
 Console.WriteLine("Exception thrown: ");
 Console.WriteLine(ex.ToString());
 }
 finally
 {
 stream.Close();
 stream.Dispose();
 }

 // Wait to continue.
 Console.WriteLine(Environment.NewLine);
 Console.WriteLine("Main method complete. Press Enter.");
 Console.ReadLine();
 }

 static void AddRule(string filePath, string account,
 FileSystemRights rights, AccessControlType controlType)
 {
 // Get a FileSecurity object that represents the
 // current security settings.
 FileSecurity fSecurity = File.GetAccessControl(filePath);

 // Add the FileSystemAccessRule to the security settings.
 fSecurity.AddAccessRule(new FileSystemAccessRule(account,
 rights, controlType));

 // Set the new access settings.
 File.SetAccessControl(filePath, fSecurity);
 }

 static void SetRule(string filePath, string account,
 FileSystemRights rights, AccessControlType controlType)
 {
 // Get a FileSecurity object that represents the
 // current security settings.
 FileSecurity fSecurity = File.GetAccessControl(filePath);

CHAPTER 5 ■ FILES, DIRECTORIES, AND I/O

253

 // Add the FileSystemAccessRule to the security settings.
 fSecurity.ResetAccessRule(new FileSystemAccessRule(account,
 rights, controlType));

 // Set the new access settings.
 File.SetAccessControl(filePath, fSecurity);
 }

 }
}

5-23. Compress Data

Problem
You need to read or write compressed data.

Solution
Use the System.IO.Compression.GZipStream or System.IO.Compression.DeflateStream to compress or
decompress data.

How It Works
The GZipStream and DeflateStream classes allow you to use the popular ZIP and Deflate compression
algorithms to compress or decompress data. The constructors for both classes accept a System.IO.
Stream instance (which is where data should be written to or read from) and a value from the
CompressionMode enumeration, which allows you to specify that you wish to compress or decompress
data. Both of these classes only read and write bytes and byte arrays—it is often convenient to combine
these classes with streams that are able to read and write other data types, such as in the example for this
recipe.

The Code
The following sample creates a new file and uses the GZipStream class to write compressed data to it from
a StreamWriter instance. The file is closed and then opened in read mode so that the compressed data
can be decompressed and written to the console:

using System;
using System.IO;
using System.IO.Compression;

CHAPTER 5 ■ FILES, DIRECTORIES, AND I/O

254

namespace Recipe05_23
{
 class Recipe05_23
 {
 static void Main(string[] args)
 {
 // Create the compression stream.
 GZipStream zipout = new GZipStream(
 File.OpenWrite("compressed_data.gzip"),
 CompressionMode.Compress);
 // wrap the gzip stream in a stream writer
 StreamWriter writer = new StreamWriter(zipout);

 // Write the data to the file.
 writer.WriteLine("the quick brown fox");
 // Close the streams.
 writer.Close();

 // Open the same file so we can read the
 // data and decompress it.
 GZipStream zipin = new GZipStream(
 File.OpenRead("compressed_data.gzip"),
 CompressionMode.Decompress);
 // Wrap the gzip stream in a stream reader.
 StreamReader reader = new StreamReader(zipin);

 // Read a line from the stream and print it out.
 Console.WriteLine(reader.ReadLine());

 // Wait to continue.
 Console.WriteLine(Environment.NewLine);
 Console.WriteLine("Main method complete. Press Enter.");
 Console.ReadLine();
 }
 }
}

5-24. Log Data to a File

Problem
You need to write data from a collection or an array to a log file.

Solution
Use the static System.IO.File.WriteAllLines method.

CHAPTER 5 ■ FILES, DIRECTORIES, AND I/O

255

How It Works
The File.WriteAllLines method takes a file name and a collection or array of strings as parameters, and
writes each entry on a separate line in the file specified. You can select which entries in the collection or
array are written by applying a LINQ expression before calling the WriteAllLinesMethod.

The Code
The following example creates a List that contains a number of strings, representing two kinds of
logging data. All of the entries are written to one file, and LINQ is used to query the collection so that
only certain entries are written to a second file. See Chapter 2 for recipes that use LINQ to query
collections.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.IO;

namespace Recipe05_24
{
 class Recipe05_24
 {
 static void Main(string[] args)
 {
 // Create a list and populate it.
 List<string> myList = new List<string>();
 myList.Add("Log entry 1");
 myList.Add("Log entry 2");
 myList.Add("Log entry 3");
 myList.Add("Error entry 1");
 myList.Add("Error entry 2");
 myList.Add("Error entry 3");

 // Write all of the entries to a file.
 File.WriteAllLines("all_entries.log", myList);

 // Only write out the errors.
 File.WriteAllLines("only_errors.log",
 myList.Where(e => e.StartsWith("Error")));
 }
 }
}

CHAPTER 5 ■ FILES, DIRECTORIES, AND I/O

256

5-25. Process a Log File

Problem
You need to easily obtain specific entries from a log file.

Solution
Use the static System.IO.File.ReadLines method to read lines from the file. Apply a LINQ expression to
select specific lines.

How It Works
The File.ReadLines method reads the contents of a file, returning a string array containing one entry for
each line in the file. You can filter the contents by using LINQ with the results—for example, using the
Where method to select which lines are included in the results, or the Select method to include only part
of each string.

The Code
The following example reads lines from one of the files created in the previous recipe. In order to
demonstrate how to read entries and be selective with LINQ, the program reads all of the entries, just the
entries that begin with “Error” and the first character of entries that do not begin with “Error.”

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.IO;

namespace Recipe05_25
{
 class Program
 {
 static void Main(string[] args)
 {
 // Read all of the entries from the file.
 IEnumerable<string> alldata = File.ReadAllLines("all_entries.log");
 foreach (string entry in alldata)
 {
 Console.WriteLine("Entry: {0}", entry);
 }

 // Read the entries and select only some of them.
 IEnumerable<string> somedata

= File.ReadLines("all_entries.log").Where(e => e.StartsWith("Error"));

CHAPTER 5 ■ FILES, DIRECTORIES, AND I/O

257

 foreach (string entry in somedata)
 {
 Console.WriteLine("Error entry: {0}", entry);
 }

 // Read selected lines and write only the first character.
 IEnumerable<char> chardata = File.ReadLines("all_entries.log").Where(e

=> !e.StartsWith("Error")).Select(e => e[0]);
 foreach (char entry in chardata)
 {
 Console.WriteLine("Character entry: {0}", entry);
 }
 }
 }
}

5-26. Communicate Between Processes

Problem
You need to send and receive data from one process to another.

Solution
Use named pipes. You create an instance of System.IO.Pipes.NamedPipeServerStream and call the
WaitForConnection method in one of your processes. In the other process, create an instance of
System.IO.Pipes.NamedPipeClientStream and call the Connect method. This creates a two-way data
stream between your processes that you can use to read and write data.

How It Works
Named pipes are an interprocess communication mechanism that allows processes to exchange data.
Each pipe is created by a server and can accept multiple client connections—once the connection is
established (using the WaitForConnection and Connect methods described previously), the server and
client can communicate using the normal .NET Framework streams mechanism—see the other recipes
in this chapter to learn more about streams. You must use the same name for both the server and client
pipes.

The Code
The following example contains both a pipe server and a pipe client in one class—if the executable is
started with the command-line argument client, then the pipe client will operate; otherwise, the pipe
server will run. The server creates a named pipe and waits for a client to connect. When the client
connects, the server writes ten messages to the client, and then reads ten responses.

CHAPTER 5 ■ FILES, DIRECTORIES, AND I/O

258

■ Note Named pipes can be used to communicate between processes running on different computers. See the
.NET Framework documentation for details.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.IO;
using System.IO.Pipes;

namespace Recipe05_26
{
 class Recipe05_26
 {
 static void Main(string[] args)
 {
 if (args.Length > 0 && args[0] == "client")
 {
 pipeClient();
 }
 else
 {
 pipeServer();
 }
 }

 static void pipeServer()
 {
 // Create the server pipe.
 NamedPipeServerStream pipestream = new
NamedPipeServerStream("recipe_05_26_pipe");
 // Wait for a client to connect.
 Console.WriteLine("Waiting for a client connection");
 pipestream.WaitForConnection();

 Console.WriteLine("Received a client connection");
 // Wrap a stream writer and stream reader around the pipe.
 StreamReader reader = new StreamReader(pipestream);
 StreamWriter writer = new StreamWriter(pipestream);

 // Write some data to the pipe.
 for (int i = 0; i < 10; i++)
 {
 Console.WriteLine("Writing message ", i);
 writer.WriteLine("Message {0}", i);
 writer.Flush();
 }

CHAPTER 5 ■ FILES, DIRECTORIES, AND I/O

259

 // Read data from the pipe.
 for (int i = 0; i < 10; i++)
 {
 Console.WriteLine("Received: {0}", reader.ReadLine()); ;
 }
 // Close the pipe.
 pipestream.Close();
 }

 static void pipeClient()
 {
 // Create the client pipe.
 NamedPipeClientStream pipestream = new
NamedPipeClientStream("recipe_05_26_pipe");
 // connect to the pipe server
 pipestream.Connect();

 // Wrap a reader around the stream.
 StreamReader reader = new StreamReader(pipestream);
 StreamWriter writer = new StreamWriter(pipestream);

 // Read the data.
 for (int i = 0; i < 10; i++)
 {
 Console.WriteLine("Received: {0}", reader.ReadLine());
 }

 // Write data to the pipe.
 for (int i = 0; i < 10; i++)
 {
 Console.WriteLine("Writing response ", i);
 writer.WriteLine("Response {0}", i);
 writer.Flush();
 }
 // Close the pipe.
 pipestream.Close();
 }
 }
}

C H A P T E R 6

■ ■ ■

261

XML Processing

One of the most remarkable aspects of the Microsoft .NET Framework is its deep integration with XML.
In many .NET applications, you won’t even be aware you’re using XML technologies—they’ll just be
used behind the scenes when you serialize a Microsoft ADO.NET DataSet, call a web service, or read
application settings from a Web.config configuration file. In other cases, you’ll want to work directly with
the System.Xml namespaces to manipulate Extensible Markup Language (XML) data. Common XML
tasks don’t just include parsing an XML file, but also include validating it against a schema, applying an
Extensible Stylesheet Language (XSL) transform to create a new document or Hypertext Markup
Language (HTML) page, and searching intelligently with XPath.

In .NET 3.5, Microsoft added LINQ to XML, which integrates XML handling into the LINQ model for
querying data sources. You can use the same keywords and syntax to query XML as you would a
collection or a database.

The recipes in this chapter describe how to do the following:

• Read, parse, and manipulate XML data (recipes 6-1, 6-2, 6-3, and 6-7)

• Search an XML document for specific nodes, either by name (recipe 6-4), by
namespace (recipe 6-5), or by using XPath (recipe 6-6)

• Validate an XML document with an XML schema (recipe 6-8)

• Serialize an object to XML (recipe 6-9), create an XML schema for a class (recipe 6-
10), and generate the source code for a class based on an XML schema (recipe 6-
11)

• Transform an XML document to another document using an XSL Transformations
(XSLT) stylesheet (recipe 6-12)

• Use LINQ to XML to load, create, query and modify XML trees (recipes 6-13, 6-14,
6-15, and 6-16).

6-1. Show the Structure of an XML Document in a TreeView

Problem
You need to display the structure and content of an XML document in a Windows-based application.

CHAPTER 6 ■ XML PROCESSING

262

Solution
Load the XML document using the System.Xml.XmlDocument class. Create a reentrant method that
converts a single XmlNode into a System.Windows.Forms.TreeNode, and call it recursively to walk through
the entire document.

How It Works
The .NET Framework provides several different ways to process XML documents. The one you use
depends in part upon your programming task. One of the most fully featured classes is XmlDocument,
which provides an in-memory representation of an XML document that conforms to the W3C Document
Object Model (DOM). The XmlDocument class allows you to browse through the nodes in any direction,
insert and remove nodes, and change the structure on the fly. For details of the DOM specification, go to
www.w3c.org.

■ Note The XmlDocument class is not scalable for very large XML documents, because it holds the entire XML
content in memory at once. If you want a more memory-efficient alternative, and you can afford to read and
process the XML piece by piece, consider the XmlReader and XmlWriter classes described in recipe 6-7.

To use the XmlDocument class, simply create a new instance of the class and call the Load method with
a file name, a Stream, a TextReader, or an XmlReader object. It is also possible to read the XML from a
simple string with the LoadXML method. You can even supply a string with a URL that points to an XML
document on the Web using the Load method. The XmlDocument instance will be populated with the tree
of elements, or nodes, from the source document. The entry point for accessing these nodes is the root
element, which is provided through the XmlDocument.DocumentElement property. DocumentElement is an
XmlElement object that can contain one or more nested XmlNode objects, which in turn can contain more
XmlNode objects, and so on. An XmlNode is the basic ingredient of an XML file. Common XML nodes
include elements, attributes, comments, and contained text.

When dealing with an XmlNode or a class that derives from it (such as XmlElement or XmlAttribute),
you can use the following basic properties:

• ChildNodes is an XmlNodeList collection that contains the first level of nested
nodes.

• Name is the name of the node.

• NodeType returns a member of the System.Xml.XmlNodeType enumeration that
indicates the type of the node (element, attribute, text, and so on).

• Value is the content of the node, if it’s a text or CDATA node.

• Attributes provides a collection of node objects representing the attributes
applied to the element.

• InnerText retrieves a string with the concatenated value of the node and all nested
nodes.

http://www.w3c.org

CHAPTER 6 ■ XML PROCESSING

263

• InnerXml retrieves a string with the concatenated XML markup for all nested
nodes.

• OuterXml retrieves a string with the concatenated XML markup for the current
node and all nested nodes.

The Code
The following example walks through every element of an XmlDocument using the ChildNodes property
and a recursive method. Each node is displayed in a TreeView control, with descriptive text that either
identifies it or shows its content.

using System;
using System.Windows.Forms;
using System.Xml;
using System.IO;

namespace Apress.VisualCSharpRecipes.Chapter06
{
 public partial class Recipe06_01 : System.Windows.Forms.Form
 {
 public Recipe06_01()
 {
 InitializeComponent();
 }

 // Default the file name to the sample document.
 private void Recipe06_01_Load(object sender, EventArgs e)
 {
 txtXmlFile.Text = Path.Combine(Application.StartupPath,
 @"..\..\ProductCatalog.xml");
 }

 private void cmdLoad_Click(object sender, System.EventArgs e)
 {
 // Clear the tree.
 treeXml.Nodes.Clear();

 // Load the XML document.
 XmlDocument doc = new XmlDocument();
 try
 {
 doc.Load(txtXmlFile.Text);
 }
 catch (Exception err)
 {
 MessageBox.Show(err.Message);
 return;
 }

CHAPTER 6 ■ XML PROCESSING

264

 // Populate the TreeView.
 ConvertXmlNodeToTreeNode(doc, treeXml.Nodes);

 // Expand all nodes.
 treeXml.Nodes[0].ExpandAll();
 }

 private void ConvertXmlNodeToTreeNode(XmlNode xmlNode,
 TreeNodeCollection treeNodes)
 {
 // Add a TreeNode node that represents this XmlNode.
 TreeNode newTreeNode = treeNodes.Add(xmlNode.Name);

 // Customize the TreeNode text based on the XmlNode
 // type and content.
 switch (xmlNode.NodeType)
 {
 case XmlNodeType.ProcessingInstruction:
 case XmlNodeType.XmlDeclaration:
 newTreeNode.Text = "<?" + xmlNode.Name + " " +
 xmlNode.Value + "?>";
 break;
 case XmlNodeType.Element:
 newTreeNode.Text = "<" + xmlNode.Name + ">";
 break;
 case XmlNodeType.Attribute:
 newTreeNode.Text = "ATTRIBUTE: " + xmlNode.Name;
 break;
 case XmlNodeType.Text:
 case XmlNodeType.CDATA:
 newTreeNode.Text = xmlNode.Value;
 break;
 case XmlNodeType.Comment:
 newTreeNode.Text = "<!--" + xmlNode.Value + "-->";
 break;
 }

 // Call this routine recursively for each attribute.
 // (XmlAttribute is a subclass of XmlNode.)
 if (xmlNode.Attributes != null)
 {
 foreach (XmlAttribute attribute in xmlNode.Attributes)
 {
 ConvertXmlNodeToTreeNode(attribute, newTreeNode.Nodes);
 }
 }

CHAPTER 6 ■ XML PROCESSING

265

 // Call this routine recursively for each child node.
 // Typically, this child node represents a nested element
 // or element content.
 foreach (XmlNode childNode in xmlNode.ChildNodes)
 {
 ConvertXmlNodeToTreeNode(childNode, newTreeNode.Nodes);
 }
 }
 }
}

Usage
As an example, consider the following simple XML file (which is included with the sample code as the
ProductCatalog.xml file):

<?xml version="1.0" ?>
<!--This document is a sample catalog for demonstration purposes-->
<productCatalog>
 <catalogName>Freeman and Freeman Unique Catalog 2010</catalogName>
 <expiryDate>2012-01-01</expiryDate>

 <products>
 <product id="1001">
 <productName>Gourmet Coffee</productName>
 <description>Beans from rare Chillean plantations.</description>
 <productPrice>0.99</productPrice>
 <inStock>true</inStock>
 </product>
 <product id="1002">
 <productName>Blue China Tea Pot</productName>
 <description>A trendy update for tea drinkers.</description>
 <productPrice>102.99</productPrice>
 <inStock>true</inStock>
 </product>
 </products>
</productCatalog>

Figure 6-1 shows how this file will be rendered in the Recipe06_01 form.

CHAPTER 6 ■ XML PROCESSING

266

Figure 6-1. The displayed structure of an XML document

6-2. Insert Nodes in an XML Document

Problem
You need to modify an XML document by inserting new data, or you want to create an entirely new XML
document in memory.

Solution
Create the node using the appropriate XmlDocument method (such as CreateElement, CreateAttribute,
CreateNode, and so on). Then insert it using the appropriate XmlNode method (such as InsertAfter,
InsertBefore, or AppendChild).

How It Works
Inserting a node into the XmlDocument class is a two-step process. You must first create the node, and
then you insert it at the appropriate location. You can then call XmlDocument.Save to persist changes.

CHAPTER 6 ■ XML PROCESSING

267

To create a node, you use one of the XmlDocument methods starting with the word Create, depending
on the type of node. This ensures that the node will have the same namespace as the rest of the
document. (Alternatively, you can supply a namespace as an additional string argument.) Next, you
must find a suitable related node and use one of its insertion methods to add the new node to the tree.

The Code
The following example demonstrates this technique by programmatically creating a new XML
document:

using System;
using System.Xml;

namespace Apress.VisualCSharpRecipes.Chapter06
{
 public class Recipe06_02
 {
 private static void Main()
 {
 // Create a new, empty document.
 XmlDocument doc = new XmlDocument();
 XmlNode docNode = doc.CreateXmlDeclaration("1.0", "UTF-8", null);
 doc.AppendChild(docNode);

 // Create and insert a new element.
 XmlNode productsNode = doc.CreateElement("products");
 doc.AppendChild(productsNode);

 // Create a nested element (with an attribute).
 XmlNode productNode = doc.CreateElement("product");
 XmlAttribute productAttribute = doc.CreateAttribute("id");
 productAttribute.Value = "1001";
 productNode.Attributes.Append(productAttribute);
 productsNode.AppendChild(productNode);

 // Create and add the subelements for this product node
 // (with contained text data).
 XmlNode nameNode = doc.CreateElement("productName");
 nameNode.AppendChild(doc.CreateTextNode("Gourmet Coffee"));
 productNode.AppendChild(nameNode);
 XmlNode priceNode = doc.CreateElement("productPrice");
 priceNode.AppendChild(doc.CreateTextNode("0.99"));
 productNode.AppendChild(priceNode);

 // Create and add another product node.
 productNode = doc.CreateElement("product");
 productAttribute = doc.CreateAttribute("id");
 productAttribute.Value = "1002";
 productNode.Attributes.Append(productAttribute);
 productsNode.AppendChild(productNode);

CHAPTER 6 ■ XML PROCESSING

268

 nameNode = doc.CreateElement("productName");
 nameNode.AppendChild(doc.CreateTextNode("Blue China Tea Pot"));
 productNode.AppendChild(nameNode);
 priceNode = doc.CreateElement("productPrice");
 priceNode.AppendChild(doc.CreateTextNode("102.99"));
 productNode.AppendChild(priceNode);

 // Save the document (to the console window rather than a file).
 doc.Save(Console.Out);
 Console.ReadLine();
 }
 }
}

When you run this code, the generated XML document looks like this:

<?xml version="1.0"?>

<products>

 <product id="1001">

 <productName>Gourmet Coffee</productName>

 <productPrice>0.99</productPrice>

 </product>

 <product id="1002">

 <productName>Blue China Tea Pot</productName>

 <productPrice>102.99</productPrice>

 </product>

</products>

6-3. Quickly Append Nodes in an XML Document

Problem
You need to add nodes to an XML document without requiring lengthy, verbose code.

CHAPTER 6 ■ XML PROCESSING

269

Solution
Create a helper function that accepts a tag name and content, and can generate the entire element at
once. Alternatively, use the XmlDocument.CloneNode method to copy branches of an XmlDocument.

How It Works
Inserting a single element into an XmlDocument requires several lines of code. You can shorten this code
in several ways. One approach is to create a dedicated helper class with higher-level methods for adding
elements and attributes. For example, you could create an AddElement method that generates a new
element, inserts it, and adds any contained text—the three operations needed to insert most elements.

The Code
Here’s an example of one such helper class:

using System;
using System.Xml;

namespace Apress.VisualCSharpRecipes.Chapter06
{
 public class XmlHelper
 {
 public static XmlNode AddElement(string tagName,
 string textContent, XmlNode parent)
 {
 XmlNode node = parent.OwnerDocument.CreateElement(tagName);
 parent.AppendChild(node);

 if (textContent != null)
 {
 XmlNode content;
 content = parent.OwnerDocument.CreateTextNode(textContent);
 node.AppendChild(content);
 }
 return node;
 }

 public static XmlNode AddAttribute(string attributeName,
 string textContent, XmlNode parent)
 {
 XmlAttribute attribute;
 attribute = parent.OwnerDocument.CreateAttribute(attributeName);
 attribute.Value = textContent;
 parent.Attributes.Append(attribute);

CHAPTER 6 ■ XML PROCESSING

270

 return attribute;
 }
 }
}

You can now condense the XML-generating code from recipe 6-2 with the simpler syntax shown
here:

public class Recipe06_03
{
 private static void Main()
 {
 // Create the basic document.
 XmlDocument doc = new XmlDocument();
 XmlNode docNode = doc.CreateXmlDeclaration("1.0", "UTF-8", null);
 doc.AppendChild(docNode);
 XmlNode products = doc.CreateElement("products");
 doc.AppendChild(products);

 // Add two products.
 XmlNode product = XmlHelper.AddElement("product", null, products);
 XmlHelper.AddAttribute("id", "1001", product);
 XmlHelper.AddElement("productName", "Gourmet Coffee", product);
 XmlHelper.AddElement("productPrice", "0.99", product);

 product = XmlHelper.AddElement("product", null, products);
 XmlHelper.AddAttribute("id", "1002", product);
 XmlHelper.AddElement("productName", "Blue China Tea Pot", product);
 XmlHelper.AddElement("productPrice", "102.99", product);

 // Save the document (to the console window rather than a file).
 doc.Save(Console.Out);
 Console.ReadLine();
 }
}

Alternatively, you might want to take the helper methods such as AddAttribute and AddElement and
make them instance methods in a custom class you derive from XmlDocument.

Another approach to simplifying writing XML is to duplicate nodes using the XmlNode.CloneNode
method. CloneNode accepts a Boolean deep parameter. If you supply true, CloneNode will duplicate the
entire branch, with all nested nodes.

Here is an example that creates a new product node by copying the first node:

// (Add first product node.)

// Create a new element based on an existing product.
product = product.CloneNode(true);

CHAPTER 6 ■ XML PROCESSING

271

// Modify the node data.
product.Attributes[0].Value = "1002";
product.ChildNodes[0].ChildNodes[0].Value = "Blue China Tea Pot";
product.ChildNodes[1].ChildNodes[0].Value = "102.99";

// Add the new element.
products.AppendChild(product);

Notice that in this case, certain assumptions are being made about the existing nodes (for example,
that the first child in the item node is always the name, and the second child is always the price). If this
assumption is not guaranteed to be true, you might need to examine the node name programmatically.

6-4. Find Specific Elements by Name

Problem
You need to retrieve a specific node from an XmlDocument, and you know its name but not its position.

Solution
Use the XmlDocument.GetElementsByTagName method, which searches an entire document and returns a
System.Xml.XmlNodeList containing any matches.

How It Works
The XmlDocument class provides a convenient GetElementsByTagName method that searches an entire
document for nodes that have the indicated element name. It returns the results as a collection of
XmlNode objects.

The Code
The following code demonstrates how you could use GetElementsByTagName to calculate the total price of
items in a catalog by retrieving all elements with the name productPrice:

using System;
using System.Xml;

namespace Apress.VisualCSharpRecipes.Chapter06
{
 public class Recipe06_04
 {
 private static void Main()
 {

CHAPTER 6 ■ XML PROCESSING

272

 // Load the document.
 XmlDocument doc = new XmlDocument();
 doc.Load(@"..\..\ProductCatalog.xml");

 // Retrieve all prices.
 XmlNodeList prices = doc.GetElementsByTagName("productPrice");

 decimal totalPrice = 0;
 foreach (XmlNode price in prices)
 {
 // Get the inner text of each matching element.
 totalPrice += Decimal.Parse(price.ChildNodes[0].Value);
 }

 Console.WriteLine("Total catalog value: " + totalPrice.ToString());
 Console.ReadLine();
 }
 }
}

Notes
You can also search portions of an XML document by using the XmlElement.GetElementsByTagName
method. It searches all the descendant nodes looking for matches. To use this method, first retrieve an
XmlNode that corresponds to an element. Then cast this object to an XmlElement. The following example
demonstrates how to find the price node under the first product element:

// Retrieve a reference to the first product.
XmlNode product = doc.GetElementsByTagName("products")[0];

// Find the price under this product.
XmlNode productPrice
 = ((XmlElement)product).GetElementsByTagName("productPrice")[0];
Console.WriteLine("Price is " + productPrice.InnerText);

If your elements include an attribute of type ID, you can also use a method called GetElementById to
retrieve an element that has a matching ID value.

6-5. Get XML Nodes in a Specific XML Namespace

Problem
You need to retrieve nodes from a specific namespace using an XmlDocument.

CHAPTER 6 ■ XML PROCESSING

273

Solution
Use the overload of the XmlDocument.GetElementsByTagName method that requires a namespace name as
a string argument. Additionally, supply an asterisk (*) for the element name if you want to match all
tags.

How It Works
Many XML documents contain nodes from more than one namespace. For example, an XML document
that represents a scientific article might use a separate type of markup for denoting math equations and
vector diagrams, or an XML document with information about a purchase order might aggregate client
and order information with a shipping record. Similarly, an XML document that represents a business-
to-business transaction might include portions from both companies, written in separate markup
languages.

A common task in XML programming is to retrieve the elements found in a specific namespace. You
can perform this task with the overloaded version of the XmlDocument.GetElementsByTagName method that
requires a namespace name. You can use this method to find tags by name or to find all the tags in the
specified namespace if you supply an asterisk for the tag name parameter.

The Code
As an example, consider the following compound XML document, which includes order and client
information, in two different namespaces (http://mycompany/OrderML and http://mycompany/ClientML):

<?xml version="1.0" ?>
<ord:order xmlns:ord="http://mycompany/OrderML"
 xmlns:cli="http://mycompany/ClientML">

 <cli:client>
 <cli:firstName>Sally</cli:firstName>
 <cli:lastName>Sergeyeva</cli:lastName>
 </cli:client>

 <ord:orderItem itemNumber="3211"/>
 <ord:orderItem itemNumber="1155"/>

</ord:order>

Here is a simple console application that selects all the tags in the http://mycompany/OrderML
namespace:

using System;
using System.Xml;

namespace Apress.VisualCSharpRecipes.Chapter06
{
 public class Recipe06_05
 {
 private static void Main()

http://mycompany/OrderMLandmycompany/ClientML):
http://mycompany/OrderML
http://mycompany/ClientML
http://mycompany/OrderML

CHAPTER 6 ■ XML PROCESSING

274

 {
 // Load the document.
 XmlDocument doc = new XmlDocument();
 doc.Load(@"..\..\Order.xml");

 // Retrieve all order tags.
 XmlNodeList matches = doc.GetElementsByTagName("*",
 "http://mycompany/OrderML");

 // Display all the information.
 Console.WriteLine("Element \tAttributes");
 Console.WriteLine("******* \t**********");

 foreach (XmlNode node in matches)
 {
 Console.Write(node.Name + "\t");
 foreach (XmlAttribute attribute in node.Attributes)
 {
 Console.Write(attribute.Value + " ");
 }
 Console.WriteLine();
 }
 Console.ReadLine();
 }
 }
}

The output of this program is as follows:

Element Attributes

******* **********

ord:order http://mycompany/OrderML http://mycompany/ClientML

ord:orderItem 3211

ord:orderItem 1155

6-6. Find Elements with an XPath Search

Problem
You need to search an XML document for nodes using advanced search criteria. For example, you might
want to search a particular branch of an XML document for nodes that have certain attributes or contain
a specific number of nested child nodes.

http://mycompany/OrderML
http://mycompany/OrderML
http://mycompany/ClientML
http://mycompany/OrderML

CHAPTER 6 ■ XML PROCESSING

275

Solution
Execute an XPath expression using the SelectNodes or SelectSingleNode method of the XmlDocument
class.

How It Works
The XmlNode class defines two methods that perform XPath searches: SelectNodes and SelectSingleNode.
These methods operate on all contained child nodes. Because the XmlDocument inherits from XmlNode,
you can call XmlDocument.SelectNodes to search an entire document.

The Code
For example, consider the following XML document, which represents an order for two items. This
document includes text and numeric data, nested elements, and attributes, and so is a good way to test
simple XPath expressions.

<?xml version="1.0"?>
<Order id="2004-01-30.195496">
 <Client id="ROS-930252034">
 <Name>Remarkable Office Supplies</Name>
 </Client>

 <Items>
 <Item id="1001">
 <Name>Electronic Protractor</Name>
 <Price>42.99</Price>
 </Item>
 <Item id="1002">
 <Name>Invisible Ink</Name>
 <Price>200.25</Price>
 </Item>
 </Items>
</Order>

Basic XPath syntax uses a pathlike notation. For example, the path /Order/Items/Item indicates an
<Item> element that is nested inside an <Items> element, which in turn is nested in a root <Order>
element. This is an absolute path. The following example uses an XPath absolute path to find the name
of every item in an order:

using System;
using System.Xml;

namespace Apress.VisualCSharpRecipes.Chapter06
{
 public class Recipe06_06
 {
 private static void Main()
 {

CHAPTER 6 ■ XML PROCESSING

276

 // Load the document.
 XmlDocument doc = new XmlDocument();
 doc.Load(@"..\..\orders.xml");

 // Retrieve the name of every item.
 // This could not be accomplished as easily with the
 // GetElementsByTagName method, because Name elements are
 // used in Item elements and Client elements, and so
 // both types would be returned.
 XmlNodeList nodes = doc.SelectNodes("/Order/Items/Item/Name");

 foreach (XmlNode node in nodes)
 {
 Console.WriteLine(node.InnerText);
 }
 Console.ReadLine();
 }
 }
}

The output of this program is as follows:

Electronic Protractor

Invisible Ink

Notes
XPath provides a rich and powerful search syntax, and it is impossible to explain all the variations you
can use in a short recipe. However, Table 6-1 outlines some of the key ingredients in more advanced
XPath expressions and includes examples that show how they would work with the order document. For
a more detailed reference, refer to the W3C XPath recommendation, at www.w3.org/TR/xpath.

Table 6-1. XPath Expression Syntax

Expression Description Example

/ Starts an absolute path
that selects from the root
node.

/Order/Items/Item selects all Item elements that are children
of an Items element, which is itself a child of the root Order
element.

// Starts a relative path that
selects nodes anywhere.

//Item/Name selects all the Name elements that are children of
an Item element, regardless of where they appear in the
document.

http://www.w3.org/TR/xpath

CHAPTER 6 ■ XML PROCESSING

277

Expression Description Example

@ Selects an attribute of a
node.

/Order/@id selects the attribute named id from the root
Order element.

* Selects any element in the
path.

/Order/* selects both Items and Client nodes because both
are contained by a root Order element.

| Combines multiple paths. /Order/Items/Item/Name|Order/Client/Name selects the Name
nodes used to describe a Client and the Name nodes used to
describe an Item.

. Indicates the current
(default) node.

If the current node is an Order, the expression ./Items refers
to the related items for that order.

.. Indicates the parent node. //Name/.. selects any element that is parent to a Name, which
includes the Client and Item elements.

[] Defines selection criteria
that can test a contained
node or an attribute value.

/Order[@id="2004-01-30.195496"] selects the Order
elements with the indicated attribute value.
/Order/Items/Item[Price > 50] selects products higher
than $50 in price.
/Order/Items/Item[Price > 50 and Name="Laser Printer"]
selects products that match two criteria.

starts-
with

Retrieves elements based
on what text a contained
element starts with.

/Order/Items/Item[starts-with(Name, "C")] finds all Item
elements that have a Name element that starts with the letter
C.

position Retrieves elements based
on position.

/Order/Items/Item[position ()=2] selects the second Item
element.

count Counts elements. You
specify the name of the
child element to count or
an asterisk (*) for all
children.

/Order/Items/Item[count(Price) = 1] retrieves Item
elements that have exactly one nested Price element.

■ Note XPath expressions and all element and attribute names you use inside them are always case-sensitive,
because XML itself is case-sensitive.

CHAPTER 6 ■ XML PROCESSING

278

6-7. Read and Write XML Without Loading an Entire
Document into Memory

Problem
You need to read XML from a stream or write it to a stream. However, you want to process the
information one node at a time, rather than loading it all into memory with an XmlDocument.

Solution
To write XML, create an XmlWriter that wraps a stream and use Write methods (such as
WriteStartElement and WriteEndElement). To read XML, create an XmlReader that wraps a stream, and
call Read to move from node to node.

How It Works
The XmlWriter and XmlReader classes read or write XML directly from a stream one node at a time. These
classes do not provide the same features for navigating and manipulating your XML as XmlDocument, but
they do provide higher performance and a smaller memory footprint, particularly if you need to deal
with large XML documents.

Both XmlWriter and XmlReader are abstract classes, which means you cannot create an instance of
them directly. Instead, you should call the Create method of XmlWriter or XmlReader and supply a file or
stream. The Create method will return the right derived class based on the options you specify. This
allows for a more flexible model. Because your code uses the base classes, it can work seamlessly with
any derived class. For example, you could switch to a validating reader (as shown in the next recipe)
without needing to modify your code.

To write XML to any stream, you can use the streamlined XmlWriter. It provides Write methods that
write one node at a time. These include the following:

• WriteStartDocument, which writes the document prologue, and WriteEndDocument,
which closes any open elements at the end of the document.

• WriteStartElement, which writes an opening tag for the element you specify. You
can then add more elements nested inside this element, or you can call
WriteEndElement to write the closing tag.

• WriteElementString, which writes an entire element, with an opening tag, a
closing tag, and text content.

• WriteAttributeString, which writes an entire attribute for the nearest open
element, with a name and value.

Using these methods usually requires less code than creating an XmlDocument by hand, as
demonstrated in recipes 6-2 and 6-3.

To read the XML, you use the Read method of the XmlReader. This method advances the reader to the
next node and returns true. If no more nodes can be found, it returns false. You can retrieve

CHAPTER 6 ■ XML PROCESSING

279

information about the current node through XmlReader properties, including its Name, Value, and
NodeType.

To find out whether an element has attributes, you must explicitly test the HasAttributes property
and then use the GetAttribute method to retrieve the attributes by name or index number. The
XmlTextReader class can access only one node at a time, and it cannot move backward or jump to an
arbitrary node, which gives much less flexibility than the XmlDocument class.

The Code
The following console application writes and reads a simple XML document using the XmlWriter and
XmlReader classes. This is the same XML document created in recipes 6-2 and 6-3 using the XmlDocument
class.

using System;
using System.Xml;
using System.IO;
using System.Text;

namespace Apress.VisualCSharpRecipes.Chapter06
{
 public class Recipe06_07
 {
 private static void Main()
 {
 // Create the file and writer.
 FileStream fs = new FileStream("products.xml", FileMode.Create);

 // If you want to configure additional details (like indenting,
 // encoding, and new line handling), use the overload of the Create
 // method that accepts an XmlWriterSettings object instead.
 XmlWriter w = XmlWriter.Create(fs);

 // Start the document.
 w.WriteStartDocument();
 w.WriteStartElement("products");

 // Write a product.
 w.WriteStartElement("product");
 w.WriteAttributeString("id", "1001");
 w.WriteElementString("productName", "Gourmet Coffee");
 w.WriteElementString("productPrice", "0.99");
 w.WriteEndElement();

 // Write another product.
 w.WriteStartElement("product");
 w.WriteAttributeString("id", "1002");
 w.WriteElementString("productName", "Blue China Tea Pot");
 w.WriteElementString("productPrice", "102.99");
 w.WriteEndElement();

CHAPTER 6 ■ XML PROCESSING

280

 // End the document.
 w.WriteEndElement();
 w.WriteEndDocument();
 w.Flush();
 fs.Close();

 Console.WriteLine("Document created. " +
 "Press Enter to read the document.");
 Console.ReadLine();

 fs = new FileStream("products.xml", FileMode.Open);

 // If you want to configure additional details (like comments,
 // whitespace handling, or validation), use the overload of the Create
 // method that accepts an XmlReaderSettings object instead.
 XmlReader r = XmlReader.Create(fs);

 // Read all nodes.
 while (r.Read())
 {
 if (r.NodeType == XmlNodeType.Element)
 {
 Console.WriteLine();
 Console.WriteLine("<" + r.Name + ">");

 if (r.HasAttributes)
 {
 for (int i = 0; i < r.AttributeCount; i++)
 {
 Console.WriteLine("\tATTRIBUTE: " +
 r.GetAttribute(i));
 }
 }
 }
 else if (r.NodeType == XmlNodeType.Text)
 {
 Console.WriteLine("\tVALUE: " + r.Value);
 }
 }
 Console.ReadLine();
 }
 }
}

Often, when using the XmlReader, you are searching for specific nodes rather than processing every
element, as in this example. The approach used in this example does not work as well in this situation. It
forces you to read element tags, text content, and CDATA sections separately, which means you need to
explicitly keep track of where you are in the document. A better approach is to read the entire node and
text content at once (for simple text-only nodes) by using the ReadElementString method. You can also
use methods such as ReadToDescendant, ReadToFollowing, and ReadToNextSibling, all of which allow you
to skip some nodes.

CHAPTER 6 ■ XML PROCESSING

281

For example, you can use ReadToFollowing("Price"); to skip straight to the next Price element,
without worrying about whitespace, comments, or other elements before it. (If a Price element cannot
be found, the XmlReader moves to the end of the document, and the ReadToFollowing method returns
false.)

6-8. Validate an XML Document Against a Schema

Problem
You need to validate the content of an XML document by ensuring that it conforms to an XML schema.

Solution
When you call XmlReader.Create, supply an XmlReaderSettings object that indicates you want to perform
validation. Then move through the document one node at a time by calling XmlReader.Read, catching
any validation exceptions. To find all the errors in a document without catching exceptions, handle the
ValidationEventHandler event on the XmlReaderSettings object given as parameter to XmlReader.

How It Works
An XML schema defines the rules that a given type of XML document must follow. The schema includes
rules that define the following:

• The elements and attributes that can appear in a document

• The data types for elements and attributes

• The structure of a document, including what elements are children of other
elements

• The order and number of child elements that appear in a document

• Whether elements are empty, can include text, or require fixed values

XML schema documents are beyond the scope of this chapter, but you can learn much from a
simple example. This recipe uses the product catalog first presented in recipe 6-1.

At its most basic level, XML Schema Definition (XSD) defines the elements that can occur in an XML
document. XSD documents are themselves written in XML, and you use a separate predefined element
(named <element>) in the XSD document to indicate each element that is required in the target
document. The type attribute indicates the data type. Here is an example for a product name:
<xsd:element name="productName" type="xsd:string" />

And here is an example for the product price:
<xsd:element name="productPrice" type="xsd:decimal" />

The basic schema data types are defined at www.w3.org/TR/xmlschema-2. They map closely to .NET
data types and include string, int, long, decimal, float, dateTime, boolean, and base64Binary—to name
a few of the most frequently used types.

Both productName and productPrice are simple types because they contain only character data.
Elements that contain nested elements are called complex types. You can nest them together using a

http://www.w3.org/TR/xmlschema-2

CHAPTER 6 ■ XML PROCESSING

282

<sequence> tag, if order is important, or an <all> tag if it is not. Here is how you might model the
<product> element in the product catalog. Notice that attributes are always declared after elements, and
they are not grouped with a <sequence> or <all> tag because order is never important:

<xsd:complexType name="product">
 <xsd:sequence>
 <xsd:element name="productName" type="xsd:string"/>
 <xsd:element name="productPrice" type="xsd:decimal"/>
 <xsd:element name="inStock" type="xsd:boolean"/>
 </xsd:sequence>
 <xsd:attribute name="id" type="xsd:integer"/>
</xsd:complexType>

By default, a listed element can occur exactly one time in a document. You can configure this
behavior by specifying the maxOccurs and minOccurs attributes. Here is an example that allows an
unlimited number of products in the catalog:

<xsd:element name="product" type="product" maxOccurs="unbounded" />

Here is the complete schema for the product catalog XML:

<?xml version="1.0"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <!-- Define the complex type product. -->
 <xsd:complexType name="product">
 <xsd:sequence>
 <xsd:element name="productName" type="xsd:string"/>
 <xsd:element name="description" type="xsd:string"/>
 <xsd:element name="productPrice" type="xsd:decimal"/>
 <xsd:element name="inStock" type="xsd:boolean"/>
 </xsd:sequence>
 <xsd:attribute name="id" type="xsd:integer"/>
 </xsd:complexType>

 <!-- This is the structure the document must match.
 It begins with a productCatalog element that nests other elements. -->
 <xsd:element name="productCatalog">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="catalogName" type="xsd:string"/>
 <xsd:element name="expiryDate" type="xsd:date"/>

 <xsd:element name="products">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="product" type="product"
 maxOccurs="unbounded" />
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema

CHAPTER 6 ■ XML PROCESSING

283

 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

</xsd:schema>

The XmlReader class can enforce these schema rules, providing you explicitly request a validating
reader when you use the XmlReader.Create method. (Even if you do not use a validating reader, an
exception will be thrown if the reader discovers XML that is not well formed, such as an illegal character,
improperly nested tags, and so on.)

Once you have created your validating reader, the validation occurs automatically as you read
through the document. As soon as an error is found, the XmlReader raises a ValidationEventHandler
event with information about the error on the XmlReaderSettings object given at creation time. If you
want, you can handle this event and continue processing the document to find more errors. If you do
not handle this event, an XmlException will be raised when the first error is encountered, and processing
will be aborted.

The Code
The next example shows a utility class that displays all errors in an XML document when the ValidateXml
method is called. Errors are displayed in a console window, and a final Boolean variable is returned to
indicate the success or failure of the entire validation operation.

using System;
using System.Xml;
using System.Xml.Schema;

namespace Apress.VisualCSharpRecipes.Chapter06
{
 public class ConsoleValidator
 {
 // Set to true if at least one error exists.
 private bool failed;

 public bool Failed
 {
 get {return failed;}
 }

 public bool ValidateXml(string xmlFilename, string schemaFilename)
 {
 // Set the type of validation.
 XmlReaderSettings settings = new XmlReaderSettings();
 settings.ValidationType = ValidationType.Schema;

 // Load the schema file.
 XmlSchemaSet schemas = new XmlSchemaSet();
 settings.Schemas = schemas;
 // When loading the schema, specify the namespace it validates
 // and the location of the file. Use null to use

CHAPTER 6 ■ XML PROCESSING

284

 // the targetNamespace value from the schema.
 schemas.Add(null, schemaFilename);

 // Specify an event handler for validation errors.
 settings.ValidationEventHandler += ValidationEventHandler;

 // Create the validating reader.
 XmlReader validator = XmlReader.Create(xmlFilename, settings);

 failed = false;
 try
 {
 // Read all XML data.
 while (validator.Read()) {}
 }
 catch (XmlException err)
 {
 // This happens if the XML document includes illegal characters
 // or tags that aren't properly nested or closed.
 Console.WriteLine("A critical XML error has occurred.");
 Console.WriteLine(err.Message);
 failed = true;
 }
 finally
 {
 validator.Close();
 }

 return !failed;
 }

 private void ValidationEventHandler(object sender,
 ValidationEventArgs args)
 {
 failed = true;

 // Display the validation error.
 Console.WriteLine("Validation error: " + args.Message);
 Console.WriteLine();
 }
 }
}

Here is how you would use the class to validate the product catalog:

public class Recipe06_08
{
 private static void Main()
 {
 ConsoleValidator consoleValidator = new ConsoleValidator();
 Console.WriteLine("Validating ProductCatalog.xml.");

CHAPTER 6 ■ XML PROCESSING

285

 bool success = consoleValidator.ValidateXml(@"..\..\ProductCatalog.xml",
 @"..\..\ProductCatalog.xsd");
 if (!success)
 Console.WriteLine("Validation failed.");
 else
 Console.WriteLine("Validation succeeded.");

 Console.ReadLine();
 }
}

If the document is valid, no messages will appear, and the success variable will be set to true. But
consider what happens if you use a document that breaks schema rules, such as the
ProductCatalog_Invalid.xml file shown here:

<?xml version="1.0" ?>
<productCatalog>
 <catalogName>Acme Fall 2003 Catalog</catalogName>
 <expiryDate>Jan 1, 2004</expiryDate>

 <products>
 <product id="1001">
 <productName>Magic Ring</productName>
 <productPrice>$342.10</productPrice>
 <inStock>true</inStock>
 </product>
 <product id="1002">
 <productName>Flying Carpet</productName>
 <productPrice>982.99</productPrice>
 <inStock>Yes</inStock>
 </product>
 </products>
</productCatalog>

If you attempt to validate this document, the success variable will be set to false, and the output
will indicate each error:

Validating ProductCatalog_Invalid.xml.

Validation error: The 'expiryDate' element has an invalid value according to

 its data type. [path information truncated]

Validation error: The 'productPrice' element has an invalid value according to

CHAPTER 6 ■ XML PROCESSING

286

 its data type. [path information truncated]

Validation error: The 'inStock' element has an invalid value according to its

 data type. [path information truncated]

Validation failed.

Finally, if you want to validate an XML document and load it into an in-memory XmlDocument, you
need to take a slightly different approach. The XmlDocument provides its own Schemas property, along with
a Validate method that checks the entire document in one step. When you call Validate, you supply a
delegate that points to your validation event handler.

Here is how it works:

XmlDocument doc = new XmlDocument();
doc.Load(@"..\..\Product_Catalog.xml");

// Specify the schema information.
XmlSchemaSet schemas = new XmlSchemaSet();
schemas.Add(null, @"..\..\ProductCatalog.xsd");
doc.Schemas = schemas;

// Validate the document.
doc.Validate(new ValidationEventHandler(ValidationEventHandler));

6-9. Use XML Serialization with Custom Objects

Problem
You need to use XML as a serialization format. However, you don’t want to process the XML directly in
your code—instead, you want to interact with the data using custom objects.

Solution
Use the System.Xml.Serialization.XmlSerializer class to transfer data from your object to XML, and
vice versa. You can also mark up your class code with attributes to customize its XML representation.

CHAPTER 6 ■ XML PROCESSING

287

How It Works
The XmlSerializer class allows you to convert objects to XML data, and vice versa. This process is used
natively by web services and provides a customizable serialization mechanism that does not require a
single line of custom code. The XmlSerializer class is even intelligent enough to correctly create arrays
when it finds nested elements.

The only requirements for using XmlSerializer are as follows:

• The XmlSerializer serializes only properties and public variables.

• The classes you want to serialize must include a default zero-argument
constructor. The XmlSerializer uses this constructor when creating the new
object during deserialization.

• All class properties must be readable and writable. This is because XmlSerializer
uses the property get accessor to retrieve information and the property set
accessor to restore the data after deserialization.

■ Note You can also store your objects in an XML-based format using .NET serialization and System.Runtime.
Serialization.Formatters.Soap.SoapFormatter. In this case, you simply need to make your class
serializable—you do not need to provide a default constructor or ensure all properties are writable. However, this
gives you no control over the format of the serialized XML.

To use XML serialization, you must first mark up your data objects with attributes that indicate the
desired XML mapping. You can find these attributes in the System.Xml.Serialization namespace and
include the following:

• XmlRoot specifies the name of the root element of the XML file. By default,
XmlSerializer will use the name of the class. You can apply this attribute to the
class declaration.

• XmlElement indicates the element name to use for a property or public variable. By
default, XmlSerializer will use the name of the property or public variable.

• XmlAttribute indicates that a property or public variable should be serialized as an
attribute, not an element, and specifies the attribute name.

• XmlEnum configures the text that should be used when serializing enumerated
values. If you don’t use XmlEnum, the name of the enumerated constant will be
used.

• XmlIgnore indicates that a property or public variable should not be serialized.

CHAPTER 6 ■ XML PROCESSING

288

The Code
For example, consider the product catalog first shown in recipe 6-1. You can represent this XML
document using ProductCatalog and Product objects. Here’s the class code that you might use:

using System;
using System.Xml.Serialization;

namespace Apress.VisualCSharpRecipes.Chapter06
{
 [XmlRoot("productCatalog")]
 public class ProductCatalog
 {
 [XmlElement("catalogName")]
 public string CatalogName;

 // Use the date data type (and ignore the time portion in the
 // serialized XML).
 [XmlElement(ElementName="expiryDate", DataType="date")]
 public DateTime ExpiryDate;

 // Configure the name of the tag that holds all products
 // and the name of the product tag itself.
 [XmlArray("products")]
 [XmlArrayItem("product")]
 public Product[] Products;

 public ProductCatalog()
 {
 // Default constructor for deserialization.
 }

 public ProductCatalog(string catalogName, DateTime expiryDate)
 {
 this.CatalogName = catalogName;
 this.ExpiryDate = expiryDate;
 }
 }

 public class Product
 {
 [XmlElement("productName")]
 public string ProductName;

 [XmlElement("productPrice")]
 public decimal ProductPrice;

 [XmlElement("inStock")]
 public bool InStock;

 [XmlAttributeAttribute(AttributeName="id", DataType="integer")]

CHAPTER 6 ■ XML PROCESSING

289

 public string Id;

 public Product()
 {
 // Default constructor for serialization.
 }

 public Product(string productName, decimal productPrice)
 {
 this.ProductName = productName;
 this.ProductPrice = productPrice;
 }
 }
}

Notice that these classes use the XML serialization attributes to rename element names (using
Pascal casing in the class member names and camel casing in the XML tag names), indicate data types
that are not obvious, and specify how <product> elements will be nested in the <productCatalog>.

Using these custom classes and the XmlSerializer object, you can translate XML into objects, and
vice versa. The following is the code you would need to create a new ProductCatalog object, serialize the
results to an XML document, deserialize the document back to an object, and then display the XML
document:

using System;
using System.Xml;
using System.Xml.Serialization;
using System.IO;

namespace Apress.VisualCSharpRecipes.Chapter06
{
 public class Recipe06_09
 {
 private static void Main()
 {
 // Create the product catalog.
 ProductCatalog catalog = new ProductCatalog("New Catalog",
 DateTime.Now.AddYears(1));
 Product[] products = new Product[2];
 products[0] = new Product("Product 1", 42.99m);
 products[1] = new Product("Product 2", 202.99m);
 catalog.Products = products;

 // Serialize the order to a file.
 XmlSerializer serializer = new XmlSerializer(typeof(ProductCatalog));
 FileStream fs = new FileStream("ProductCatalog.xml", FileMode.Create);
 serializer.Serialize(fs, catalog);
 fs.Close();

 catalog = null;

 // Deserialize the order from the file.
 fs = new FileStream("ProductCatalog.xml", FileMode.Open);

CHAPTER 6 ■ XML PROCESSING

290

 catalog = (ProductCatalog)serializer.Deserialize(fs);

 // Serialize the order to the console window.
 serializer.Serialize(Console.Out, catalog);
 Console.ReadLine();
 }
 }
}

6-10. Create a Schema for a .NET Class

Problem
You need to create an XML schema based on one or more C# classes. This will allow you to validate XML
documents before deserializing them with the XmlSerializer.

Solution
Use the XML Schema Definition Tool (xsd.exe) command-line utility included with the .NET
Framework. Specify the name of your assembly as a command-line argument, and add the
/t:[TypeName] parameter to indicate the types you want to convert.

How It Works
Recipe 6-9 demonstrated how to use the XmlSerializer to serialize .NET objects to XML and deserialize
XML into .NET objects. But if you want to use XML as a way to interact with other applications, business
processes, or non–.NET Framework applications, you’ll need an easy way to validate the XML before you
attempt to deserialize it. You will also need to define an XML schema document that defines the
structure and data types used in your XML format so that other applications can work with it. One quick
solution is to generate an XML schema using the xsd.exe command-line utility.

The xsd.exe utility is included with the .NET Framework. If you have installed Microsoft Visual
Studio .NET, you will find it in a directory like C:\Program Files\Microsoft Visual Studio
.NET\FrameworkSDK\Bin. The xsd.exe utility can generate schema documents from compiled assemblies.
You simply need to supply the file name and indicate the class that represents the XML document with
the / t:[TypeName] parameter.

Usage
For example, consider the ProductCatalog and Product classes shown in recipe 6-9. You could create the
XML schema for a product catalog with the following command line:

xsd Recipe06-09.exe /t:ProductCatalog

You need to specify only the ProductCatalog class on the command line because this class
represents the actual XML document. The generated schema in this example will represent a complete

CHAPTER 6 ■ XML PROCESSING

291

product catalog, with contained product items. It will be given the default file name schema0.xsd. You
can now use the validation technique shown in recipe 6-8 to test whether the XML document can be
successfully validated with the schema.

6-11. Generate a Class from a Schema

Problem
You need to create one or more C# classes based on an XML schema. You can then create an XML
document in the appropriate format using these objects and the XmlSerializer.

Solution
Use the xsd.exe command-line utility included with the .NET Framework. Specify the name of your
schema file as a command-line argument, and add the /c parameter to indicate you want to generate
class code.

How It Works
Recipe 6-10 introduced the xsd.exe command-line utility, which you can use to generate schemas based
on class definitions. The reverse operation—generating C# source code based on an XML schema
document—is also possible. This is primarily useful if you want to write a certain format of XML
document but you do not want to manually create the document by writing individual nodes with the
XmlDocument class or the XmlWriter class. Instead, by using xsd.exe, you can generate a set of full .NET
objects. You can then serialize these objects to the required XML representation using the
XmlSerializer, as described in recipe 6-9.

To generate source code from a schema, you simply need to supply the file name of the schema
document and add the /c parameter to indicate you want to generate the required classes.

Usage
For example, consider the schema shown in recipe 6-8. You can generate C# code for this schema with
the following command line:

xsd ProductCatalog.xsd /c

This will generate one file (ProductCatalog.cs) with two classes: Product and ProductCalalog. These
classes are similar to the ones created in recipe 6-9, except that the class member names match the XML
document exactly. Optionally, you can add the /f parameter. If you do, the generated classes will be
composed of public fields. If you do not, the generated classes will use public properties instead (which
simply wrap private fields).

CHAPTER 6 ■ XML PROCESSING

292

6-12. Perform an XSL Transform

Problem
You need to transform an XML document into another document using an XSLT stylesheet.

Solution
Use the System.Xml.Xsl.XslCompiledTransform class. Load the XSLT stylesheet using the
XslCompiledTransform.Load method, and generate the output document by using the Transform method
and supplying a source document.

How It Works
XSLT is an XML-based language designed to transform one XML document into another document. You
can use XSLT to create a new XML document with the same data but arranged in a different structure, or
to select a subset of the data in a document. You can also use it to create a different type of structured
document. XSLT is commonly used in this manner to format an XML document into an HTML page.

The Code
XSLT is a rich language, and creating XSL transforms is beyond the scope of this book. However, you can
learn how to create simple XSLT documents by looking at a basic example. This recipe transforms the
orders.xml document shown in recipe 6-6 into an HTML document with a table, and then displays the
results. To perform this transformation, you’ll need the following XSLT stylesheet:

<?xml version="1.0" encoding="UTF-8" ?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 version="1.0" >

 <xsl:template match="Order">
 <html><body><p>
 Order <xsl:value-of select="Client/@id"/>
 for <xsl:value-of select="Client/Name"/></p>
 <table border="1">
 <td>ID</td><td>Name</td><td>Price</td>
 <xsl:apply-templates select="Items/Item"/>
 </table></body></html>
 </xsl:template>

http://www.w3.org/1999/XSL/Transform

CHAPTER 6 ■ XML PROCESSING

293

 <xsl:template match="Items/Item">
 <tr>
 <td><xsl:value-of select="@id"/></td>
 <td><xsl:value-of select="Name"/></td>
 <td><xsl:value-of select="Price"/></td>
 </tr>
 </xsl:template>

</xsl:stylesheet>

Essentially, every XSLT stylesheet consists of a set of templates. Each template matches some set of
elements in the source document and then describes the contribution that the matched element will
make to the resulting document. To match the template, the XSLT document uses XPath expressions, as
described in recipe 6-6.

The orders.xslt stylesheet contains two template elements (as children of the root stylesheet
element). The first template matches the root Order element. When the XSLT processor finds an Order
element, it outputs the tags necessary to start an HTML table with appropriate column headings and
inserts some data about the client using the value-of command, which outputs the text result of an
XPath expression. In this case, the XPath expressions (Client/@id and Client/Name) match the id attribute
and the Name element.

Next, the apply-templates command branches off and performs processing of any contained Item
elements. This is required because there might be multiple Item elements. Each Item element is matched
using the XPath expression Items/Item. The root Order node is not specified because Order is the current
node. Finally, the initial template writes the tags necessary to end the HTML document.

If you execute this transform on the sample orders.xml file shown in recipe 6-6, you will end up with
the following HTML document:

<html>
 <body>
 <p>
 Order ROS-930252034
 for Remarkable Office Supplies</p>
 <table border="1">
 <td>ID</td>
 <td>Name</td>
 <td>Price</td>
 <tr>
 <td>1001</td>
 <td>Electronic Protractor</td>
 <td>42.99</td>
 </tr>
 <tr>
 <td>1002</td>
 <td>Invisible Ink</td>
 <td>200.25</td>
 </tr>
 </table>
 </body>
</html>

CHAPTER 6 ■ XML PROCESSING

294

To apply an XSLT stylesheet in .NET, you use the XslCompiledTransform class. The following code
shows a Windows-based application that programmatically applies the transformation and then
displays the transformed file in a window using the WebBrowser control:

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Text;
using System.Windows.Forms;
using System.Xml.Xsl;
using System.Xml;

namespace Apress.VisualCSharpRecipes.Chapter06
{
 public partial class TransformXml : Form
 {
 public TransformXml()
 {
 InitializeComponent();
 }

 private void TransformXml_Load(object sender, EventArgs e)
 {
 XslCompiledTransform transform = new XslCompiledTransform();

 // Load the XSTL stylesheet.
 transform.Load(@"..\..\orders.xslt");

 // Transform orders.xml into orders.html using orders.xslt.
 transform.Transform(@"..\..\orders.xml", @"..\..\orders.html");

 webBrowser1.Navigate(Application.StartupPath + @"\..\..\orders.html");
 }
 }
}

Figure 6-2 shows the application.

CHAPTER 6 ■ XML PROCESSING

295

Figure 6-2. The stylesheet output for orders.xml

In this example, the code uses the overloaded version of the Transform method that saves the result
document directly to disk, although you could receive it as a stream and process it inside your
application instead. The following code shows an alternate approach that keeps the document content
in memory at all times (with no external results file). The XslCompiledTransform writes the results to an
XmlWriter that wraps a StringBuilder. The content is then copied from the StringBuilder into the
WebBrowser through the handy WebBrowser.DocumentText property. The results are identical.

StringBuilder htmlContent = new StringBuilder();
XmlWriter results = XmlWriter.Create(htmlContent);
transform.Transform(@"..\..\orders.xml", results);
webBrowser1.DocumentText = htmlContent.ToString();

CHAPTER 6 ■ XML PROCESSING

296

6-13. Load XML with LINQ

Problem
You need to load an XML tree in order to perform LINQ to XML operations.

Solution
Use the static methods of the System.Xml.Linq.XElement class to handle existing XML.

How It Works
The System.Xml.Linq.XElement class represents an XML element. LINQ represents XML as a tree of
XElements, such that one class is used for every element from the root nodes to the terminating child
nodes. The static XElement.Load method will load and parse an XML document from a number of
sources, returning an instance of XElement representing the root node. The Load method is overloaded to
support a range of data sources, as shown in Table 6-2.

Table 6-2. Overloads of the XElement.Load Method

Method Description

Load(Stream) Loads the XML data from a stream

Load(String) Loads the XML from a file, the name of which is obtained from the string

Load(TextReader) Loads the XML from a System.IO.TextReader

Load(XMLReader) Loads the XML from a System.Xml.XmlReader (see recipe 6-7)

You can control some of the load options by using the System.Xml.Linq.LoadOptions enumeration

as an additional argument to the Load method—see the .NET Framework documentation for details.

The Code
The following example demonstrates using the four different data sources accepted by the
XElement.Load method:

using System;
using System.IO;
using System.Xml;
using System.Xml.Linq;

CHAPTER 6 ■ XML PROCESSING

297

namespace Recipe06_13
{
 class Recipe06_13
 {
 static void Main(string[] args)
 {
 // Define the path to the sample file.
 string filename = @"..\..\ProductCatalog.xml";

 // Load the XML using the file name.
 Console.WriteLine("Loading using file name");
 XElement root = XElement.Load(filename);
 // Write out the XML.
 Console.WriteLine(root);
 Console.WriteLine("Press enter to continue");
 Console.ReadLine();

 // Load via a stream to the file.
 Console.WriteLine("Loading using a stream");
 FileStream filestream = File.OpenRead(filename);
 root = XElement.Load(filestream);
 // Write out the XML.
 Console.WriteLine(root);
 Console.WriteLine("Press enter to continue");
 Console.ReadLine();

 // Load via a textreader.
 Console.WriteLine("Loading using a TextReader");
 TextReader reader = new StreamReader(filename);
 root = XElement.Load(reader);
 // Write out the XML.
 Console.WriteLine(root);
 Console.WriteLine("Press enter to continue");
 Console.ReadLine();

 // Load via an xmlreader.
 Console.WriteLine("Loading using an XmlReader");
 XmlReader xmlreader = new XmlTextReader(new StreamReader(filename));
 root = XElement.Load(xmlreader);
 // Write out the XML.
 Console.WriteLine(root);
 Console.WriteLine("Press enter to continue");
 Console.ReadLine();

 }
 }
}

CHAPTER 6 ■ XML PROCESSING

298

6-14. Create a New XML Tree with LINQ

Problem
You need to create a new XML tree for use with LINQ.

Solution
Create a new instance of System.Xml.Linq.XElement for the root element. Child nodes and attributes can
be added by passing instances of XElement or XAttribute as constructor arguments or by calling the Add
instance method.

How It Works
There are two ways to create an XML tree using LINQ to XML. The first is to create an instance of
XElement and pass in instances of XElement for child nodes and XAttribute for attributes of the root node
as constructor arguments. A simple example follows:

XElement root = new XElement("myrootnode",
 new XAttribute("first_attribute", "first_attribute_value"),
 new XAttribute("second_attribute", "second_attribute_value"),
 new XElement("first_element", "first_element"),
 new XElement("second_element", "second_element",
 new XAttribute("nested_attribute", "nested_attribute_value"))
);

This approach looks confusing, but starts to make sense once you start to write code yourself. You
can supply any number of constructor arguments, and each XElement you create to represent a child
node will accept constructor arguments itself to represent its own children and attributes. The preceding
example is equivalent to the following XML:

<myrootnode

 first_attribute="first_attribute_value" second_attribute="second_attribute_value">

<first_element>first_element</first_element>

<second_element

 nested_attribute="nested_attribute_value">second_element</second_element>

</myrootnode>

CHAPTER 6 ■ XML PROCESSING

299

The second approach to create an XML tree with XML to LINQ is to create individual instances of
XElement and XAttribute and add them to their parent node using the XElement.Add instance method.
See the example in this recipe for a demonstration.

In addition to XElement and XAttribute, the System.Xml.Linq namespace includes classes that
represent other XML types—including XComment, XDeclaration, and XCData. The .NET Framework
contains a full description of each type available, but of particular interest are XDocument and
XDeclaration—these classes allow you to create the standard XML declaration at the start of your data.

The Code
The following example creates one element using the constructor arguments and adds another using the
XElement.Add method. The root element is then added to an instance of XDocument along with an
XDeclaration. The XDocument is written out to the console via an XMLTextWriter, which ensures that the
XML header is included (it is omitted if the XDocument instance is passed to Console.WriteLine).

using System;
using System.Xml.Linq;
using System.Xml;

namespace Recipe06_14
{
 class Recipe06_14
 {
 static void Main(string[] args)
 {

 XElement root = new XElement("products",
 new XElement("product",
 new XAttribute("id", 1001),
 new XElement("productName", "Gourmet Coffee"),
 new XElement("description",
 "The finest beans from rare Chillean plantations."),
 new XElement("productPrice", 0.99),
 new XElement("inStock", true)
));

 XElement teapot = new XElement("product");
 teapot.Add(new XAttribute("id", 1002));
 teapot.Add(new XElement("productName", "Blue China Tea Pot"));
 teapot.Add(new XElement("description",
 "A trendy update for tea drinkers."));
 teapot.Add(new XElement("productPrice", 102.99));
 teapot.Add(new XElement("inStock", true));
 root.Add(teapot);

 XDocument doc = new XDocument(
 new XDeclaration("1.0", "", ""),
 root);

CHAPTER 6 ■ XML PROCESSING

300

 doc.Save(Console.Out); }
 }
}

The output of the example is as follows (formatted for easier reading):

<?xml version="1.0" encoding="ibm850"?>

<products>

<product id="1001">

<productName>Gourmet Coffee</productName>

<description>The finest beans from rare Chillean plantations.</description>

<productPrice>0.99</productPrice>

<inStock>true</inStock>

</product>

<product id="1002">

<productName>Blue China Tea Pot</productName>

<description>A trendy update for tea drinkers.</description>

<productPrice>102.99</productPrice>

<inStock>true</inStock>

</product>

</products>

Press any key to continue . . .

6-15. Query XML with LINQ

Problem
You need to query an XML tree to find elements with a given name, attribute, or other characteristic.

CHAPTER 6 ■ XML PROCESSING

301

Solution
Use the XML tree as the data source for a LINQ query.

How It Works
The System.Xml.Linq.XElement class is a valid data source for LINQ queries. The basic sequence for
querying an XML tree is the same as the one we used in Chapter 2 when querying a collection:

1. Start a new LINQ query using the from keyword, providing a variable name that
you will use to make selections (for example, from element in
root.Elements()).

2. Identify the conditions to use in selecting elements with the where keyword.

3. Indicate what value will be added to the result set from each matching element
using the select keyword.

4. Specify the way in which you wish the results to be sorted using the orderby
keyword.

When using XElement as the LINQ source, the result is an IEnumerable of XElements, containing those
elements from your XML tree that match your search criteria. LINQ queries can be written using the
keywords that have been added to C# (from, where, select, etc.), or by using instance methods that fulfill
the same purpose—in the case of XElement, you should call the Elements instance method to obtain an
IEnumerable<XElement> to use as the basis for your queries.

To select an element, you use the properties and methods of the XElement class. For example, to find
all elements in an XML tree that have an attribute color with value blue, you would call
from element in root.Elements() where (string)element.Attribute("color")

 == "blue" select element;

To achieve the same result using instance methods, you would call

root.Elements().Where(e => (string)e.Attribute("color") == "blue").Select(e => e);

The result type from a LINQ query depends on what kind of element you retrieve with the select

keyword, but will always return an instance of IEnumerable, which you can use in a foreach loop to run
through the matched elements, or as the basis for further LINQ queries. The preceding example calls
(which are functionally equivalent) return an IEnumerable<XElement>. If you use the select keyword to
obtain a value representing a characteristic of an element, such as an attribute value, then the generic
type of IEnumerable will be different.

The Code
The following example loads an XML tree from the file store.xml, which is included in the sample code.
Elements that are named Products and that have a value of 16 for the child element CategoryID are
selected, and the value of the ModelName child element is printed out. The query is performed once using
the LINQ keywords and again using the instance methods and lambda expressions—it is a matter of
preference as to which technique you adopt.

CHAPTER 6 ■ XML PROCESSING

302

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Xml.Linq;

namespace Recipe06_15
{
 class Recipe06_15
 {
 static void Main(string[] args)
 {
 // Load the XML tree from the sample file.
 XElement rootElement = XElement.Load(@"..\..\store.xml");

 // Select the name of elements who have a category ID of 16.
 IEnumerable<string> catEnum = from elem in rootElement.Elements()
 where (elem.Name == "Products" &&
 ((string)elem.Element("CategoryID"))
 == "16")
 select ((string)elem.Element("ModelName"));

 foreach (string stringVal in catEnum)
 {
 Console.WriteLine("Category 16 item: {0}", stringVal);
 }

 Console.WriteLine("Press enter to proceed");
 Console.ReadLine();

 // Perform the select again using instance methods.
 IEnumerable<string> catEnum2 = rootElement.Elements().Where(e
 => e.Name == "Products"
 && (string)e.Element("CategoryID") == "16").Select(

e => (string)e.Element("ModelName"));

 foreach (string stringVal in catEnum2)
 {
 Console.WriteLine("Category 16 item: {0}", stringVal);
 }
 }
 }
}

CHAPTER 6 ■ XML PROCESSING

303

6-16. Modify an XML Tree with LINQ

The Problem
You need to add, remove, or modify elements in an XML tree.

The Solution
Use the Add, Replace*, and Remove* methods of the XElement class.

How It Works
The first step to add, remove, or modify an XML tree is to select the element you wish to change. You can
do this by using a LINQ query, or through the Attribute and Element methods of XElement.

To add a new element, call the Add method of the XElement you wish to use as the parent.
To modify elements, perform a LINQ query to select the elements of interest and enumerate the

results, calling the ReplaceAttributes or ReplaceNodes methods to modify the XElement you have
selected, or the ReplaceWith method to replace the selected element with a new element.

To remove an element, call the Remove method on the XElement instance that you no longer require.

The Code
The following example loads an XML file called ProductCatalog.xml, which is included with the source
code for this chapter. After printing out the XML that has been loaded, the following tasks are performed:

1. Find all elements called product and modify the value of the attribute id.

2. Remove all elements that contain the word tea in a child node called
description.

3. Create a new element and add it to a suitable parent.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Xml.Linq;

namespace Recipe06_16
{
 class Recipe06_16
 {
 static void Main(string[] args)
 {
 // Load the XML tree from the file.
 XElement rootElem = XElement.Load(@"..\..\ProductCatalog.xml");

CHAPTER 6 ■ XML PROCESSING

304

 // Write out the XML.
 Console.WriteLine(rootElem);

 Console.WriteLine("Press enter to continue");
 Console.ReadLine();

 // Select all of the product elements.
 IEnumerable<XElement> prodElements
 = from elem in rootElem.Element("products").Elements()
 where (elem.Name == "product")
 select elem;

 // Run through the elements and change the ID attribute.
 foreach(XElement elem in prodElements)
 {
 // Get the current product ID.
 int current_id = Int32.Parse((string)elem.Attribute("id"));
 // Perform the replace operation on the attribute.
 elem.ReplaceAttributes(new XAttribute("id", current_id + 500));
 }

 Console.WriteLine(rootElem);
 Console.WriteLine("Press enter to continue");
 Console.ReadLine();

 // Remove all elements that contain the word "tea" in the description.
 IEnumerable<XElement> teaElements = from elem in

rootElem.Element("products").Elements()
 where (((string)elem.Element("description")).Contains("tea"))
 select elem;

 foreach (XElement elem in teaElements)
 {
 elem.Remove();
 }

 Console.WriteLine(rootElem);
 Console.WriteLine("Press enter to continue");
 Console.ReadLine();

 // Define and add a new element.
 XElement newElement = new XElement("product",
 new XAttribute("id", 3000),
 new XElement("productName", "Chrome French Press"),
 new XElement("description",
 "A simple and elegant way of making great coffee"),
 new XElement("productPrice", 25.00),
 new XElement("inStock", true));

CHAPTER 6 ■ XML PROCESSING

305

 rootElem.Element("products").Add(newElement);

 Console.WriteLine(rootElem);
 }
 }
}

C H A P T E R 7

■ ■ ■

307

Windows Forms

The Microsoft .NET Framework includes a rich set of classes for creating traditional Windows-based
applications in the System.Windows.Forms namespace. These range from basic controls such as the
TextBox, Button, and MainMenu classes to specialized controls such as TreeView, LinkLabel, and
NotifyIcon. In addition, you will find all the tools you need to manage multiple document interface
(MDI) applications, integrate context-sensitive help, and even create multilingual user interfaces—all
without needing to resort to the complexities of the Win32 API.

Most C# developers quickly find themselves at home with the Windows Forms programming model,
and despite the arrival of Windows Presentation Foundation (discussed in Chapter 17) as an alternative
thick-client development technology, Windows Forms is still the best choice for many types of
applications.

■ Note Most of the recipes in this chapter use control classes, which are defined in the System.Windows.Forms
namespace. When introducing these classes, the full namespace name is not indicated, and System.Windows.
Forms is assumed.

The recipes in this chapter describe how to do the following:

• Add controls to a form programmatically at runtime so that you can build forms
dynamically instead of only building static forms in the Visual Studio forms
designer (recipe 7-1)

• Link arbitrary data objects to controls to provide an easy way to associate data
with a control without the need to maintain additional data structures (recipe 7-2)

• Process all the controls on a form in a generic way (recipe 7-3)

• Track all the forms and MDI forms in an application (recipes 7-4 and 7-5)

• Save user-based and computer-based configuration information for Windows
Forms applications using the mechanisms built into the .NET Framework and
Windows (recipe 7-6)

CHAPTER 7 ■ WINDOWS FORMS

308

• Force a list box to always display the most recently added item, so that users do
not need to scroll up and down to find it (recipe 7-7)

• Assist input validation by restricting what data a user can enter into a text box, and
implement a component-based mechanism for validating user input and
reporting errors (recipes 7-8 and 7-17)

• Implement a custom autocomplete combo box so that you can make suggestions
for completing words as users type data (recipe 7-9)

• Allow users to sort a list view based on the values in any column (recipe 7-10)

• Avoid the need to explicitly lay out controls on a form by using the Windows
Forms layout controls (recipe 7-11)

• Use part of a main menu in a context menu (recipe 7-12)

• Provide multilingual support in your Windows Forms application (recipe 7-13)

• Create forms that cannot be moved and create borderless forms that can be
moved (recipes 7-14 and 7-15)

• Create an animated system tray icon for your application (recipe 7-16)

• Support drag-and-drop functionality in your Windows Forms application (recipe
7-18)

• Correctly update the user interface in a multithreaded application (recipe 7-19)

• Display web-based information within your Windows application and allow users
to browse the Web from within your application (recipe 7-20)

• Display WPF windows in a Windows Forms application (recipe 7-21)

• Display WPF controls in a Windows Forms application (recipe 7-22)

■ Note Visual Studio, with its advanced design and editing capabilities, provides the easiest and most productive
way to develop Windows Forms applications. Therefore, the sample code projects for the recipes in this chapter—
unlike those in most other chapters—rely heavily on the use of Visual Studio. Instead of focusing on the library
classes that provide the required functionality, or looking at the code generated by Visual Studio, these recipes
focus on how to achieve the recipe’s goal using the Visual Studio user interface and the code that you must write
manually to complete the required functionality. The separation of generated and manual code is particularly
elegant in Visual Studio 2005 and later versions due to the extensive use of partial types.

CHAPTER 7 ■ WINDOWS FORMS

309

7-1. Add a Control Programmatically

Problem
You need to add a control to a form at runtime, not design time.

Solution
Create an instance of the appropriate control class. Then add the control object to a form or a container
control by calling Controls.Add on the container. (The container’s Controls property returns a
ControlCollection instance.)

How It Works
In a .NET form-based application, there is really no difference between creating a control at design time
and creating it at runtime. When you create controls at design time, Visual Studio generates code to
instantiate the desired control and places the code in a special method named InitializeComponent,
which is called from your form’s constructor. Visual Studio makes use of the partial class functionality of
C# to keep the bulk of the code it generates in a separate file with the extension Designer.cs.

If you want to create a control at runtime, just follow these steps:

1. Create an instance of the appropriate control class.

2. Configure the control properties accordingly (particularly the size and position
coordinates).

3. Add the control to the form or another container. Every control implements a
read-only Controls property that references a ControlCollection containing
references to all of its child controls. To add a child control, invoke the
ControlCollection.Add method.

4. If you need to handle the events for the new control, you can wire them up to
existing methods.

If you need to add multiple controls to a form or container, you should call SuspendLayout on the
parent control before dynamically adding the new controls, and then call ResumeLayout once you have
finished. This temporarily disables the layout logic used to position controls and will allow you to avoid
significant performance overheads and weird flickering if you are adding many controls at once.

The Code
The following example demonstrates the dynamic creation of a list of check boxes. One check box is
added for each item in a string array. All the check boxes are added to a panel that has its AutoScroll
property set to true, which gives basic scrolling support to the check box list (see Figure 7-1).

CHAPTER 7 ■ WINDOWS FORMS

310

using System;
using System.Windows.Forms;

namespace Apress.VisualCSharpRecipes.Chapter07
{
 public partial class Recipe07_01 : Form
 {
 public Recipe07_01()
 {
 // Initialization code is designer generated and contained
 // in a separate file named Recipe07-01.Designer.cs.
 InitializeComponent();
 }

 protected override void OnLoad(EventArgs e)
 {
 // Call the OnLoad method of the base class to ensure the Load
 // event is raised correctly.
 base.OnLoad(e);

 // Create an array of strings to use as the labels for
 // the dynamic check boxes.
 string[] foods = {"Grain", "Bread", "Beans", "Eggs",
 "Chicken", "Milk", "Fruit", "Vegetables",
 "Pasta", "Rice", "Fish", "Beef"};

 // Suspend the form's layout logic while multiple controls
 // are added.
 this.SuspendLayout();

 // Specify the Y coordinate of the topmost check box in the list.
 int topPosition = 10;

 // Create one new check box for each name in the list of
 // food types.
 foreach (string food in foods)
 {
 // Create a new check box.
 CheckBox checkBox = new CheckBox();

 // Configure the new check box.
 checkBox.Top = topPosition;
 checkBox.Left = 10;
 checkBox.Text = food;

 // Set the Y coordinate of the next check box.
 topPosition += 30;

 // Add the check box to the panel contained by the form.
 panel1.Controls.Add(checkBox);
 }

CHAPTER 7 ■ WINDOWS FORMS

311

 // Resume the form's layout logic now that all controls
 // have been added.
 this.ResumeLayout();
 }

 [STAThread]
 public static void Main(string[] args)
 {
 Application.Run(new Recipe07_01());
 }
 }
}

Figure 7-1. A dynamically generated check box list

7-2. Store Data with a Control

Problem
You need a simple way to store data associated with a control (perhaps to store some arbitrary
information that relates to a given display item).

Solution
Store a reference to the data object in the Tag property of the control.

CHAPTER 7 ■ WINDOWS FORMS

312

How It Works
Every class that derives from Control inherits a Tag property. The Tag property is not used by the control
or the .NET Framework. Instead, it’s reserved as a convenient storage place for application-specific data.
In addition, some other classes not derived from Control also provide a Tag property. Useful examples
include the ListViewItem, TreeNode, and MenuItem classes.

Because the Tag property is defined as an Object type, you can use it to store any value type or
reference type, from a simple number or string to a custom object you have defined. When retrieving
data from the Tag property, you must cast the Object to the correct type before use.

The Code
The following example, shown in Figure 7-2, adds a list of file names (as ListViewItem objects) to a
ListView control. The corresponding System.IO.FileInfo object for each file is stored in the Tag property
of its respective ListViewItem. When a user double-clicks one of the file names, the
listView1_ItemActive event handler is called, which retrieves the FileInfo object from the Tag property
and displays the file name and size using the MessageBox static method Show. In the example, the
listView1_ItemActive event handler is wired to the ItemActivate event of the listView1 control through
the listView1 control’s properties in Visual Studio, meaning the generated code is contained in the file
Recipe07-02.Designer.cs.

using System;
using System.IO;
using System.Windows.Forms;

namespace Apress.VisualCSharpRecipes.Chapter07
{
 public partial class Recipe07_02 : Form
 {
 public Recipe07_02()
 {
 // Initialization code is designer generated and contained
 // in a separate file named Recipe07-02.Designer.cs.
 InitializeComponent();
 }

 protected override void OnLoad(EventArgs e)
 {
 // Call the OnLoad method of the base class to ensure the Load
 // event is raised correctly.
 base.OnLoad(e);

 // Get all the files in the root directory.
 DirectoryInfo directory = new DirectoryInfo(@"C:\");
 FileInfo[] files = directory.GetFiles();

 // Display the name of each file in the ListView.
 foreach (FileInfo file in files)
 {

CHAPTER 7 ■ WINDOWS FORMS

313

 ListViewItem item = listView1.Items.Add(file.Name);
 item.ImageIndex = 0;

 // Associate each FileInfo object with its ListViewItem.
 item.Tag = file;
 }
 }

 private void listView1_ItemActivate(object sender, EventArgs e)
 {
 // Get information from the linked FileInfo object and display
 // it using MessageBox.
 ListViewItem item = ((ListView)sender).SelectedItems[0];
 FileInfo file = (FileInfo)item.Tag;
 string info = file.FullName + " is " + file.Length + " bytes.";

 MessageBox.Show(info, "File Information");
 }

 [STAThread]
 public static void Main(string[] args)
 {
 Application.Run(new Recipe07_02());
 }
 }
}

Figure 7-2. Storing data in the Tag property

CHAPTER 7 ■ WINDOWS FORMS

314

7-3. Process All the Controls on a Form

Problem
You need to perform a generic task with all the controls on the form. For example, you may need to
retrieve or clear their Text property, change their color, or resize them.

Solution
Iterate recursively through the collection of controls. Interact with each control using the properties and
methods of the base Control class.

How It Works
You can iterate through the controls on a form using the Control.ControlCollection object obtained
from the Form.Controls property. The ControlCollection includes all the controls that are placed
directly on the form surface. However, if any of these controls are container controls (such as GroupBox,
Panel, or TabPage), they might contain more controls. Thus, it’s necessary to use recursive logic that
searches the Controls collection of every control on the form.

The Code
The following example demonstrates the use of recursive logic to find every TextBox on a form and clears
the text they contain. The example form contains a number of TextBox controls contained within nested
GroupBox containers. When a button is clicked, the code tests each control in the form’s
ControlCollection to determine whether it is a TextBox by using the is operator.

using System;
using System.Windows.Forms;

namespace Apress.VisualCSharpRecipes.Chapter07
{
 public partial class Recipe07_03 : Form
 {
 public Recipe07_03()
 {
 // Initialization code is designer generated and contained
 // in a separate file named Recipe07-03.Designer.cs.
 InitializeComponent();
 }

 // The event handler for the button click event.
 private void cmdProcessAll_Click(object sender, System.EventArgs e)
 {
 ProcessControls(this);
 }

CHAPTER 7 ■ WINDOWS FORMS

315

 private void ProcessControls(Control ctrl)
 {
 // Ignore the control unless it's a text box.
 if (ctrl is TextBox)
 {
 ctrl.Text = "";
 }

 // Process controls recursively.
 // This is required if controls contain other controls
 // (for example, if you use panels, group boxes, or other
 // container controls).
 foreach (Control ctrlChild in ctrl.Controls)
 {
 ProcessControls(ctrlChild);
 }
 }

 [STAThread]
 public static void Main(string[] args)
 {
 Application.Run(new Recipe07_03());
 }
 }
}

7-4. Track the Visible Forms in an Application

Problem
You need access to all of the open forms that are currently owned by an application.

Solution
Iterate through the FormCollection object that you get from the static property OpenForms of the
Application object.

How It Works
Windows Forms applications automatically keep track of the open forms that they own. This
information is accessed through the Application.OpenForms property, which returns a FormCollection
object containing a Form object for each form the application owns. You can iterate through the
FormCollection to access all Form objects or obtain a single Form object using its name (Form.Name) or its
position in the FormCollection as an index.

CHAPTER 7 ■ WINDOWS FORMS

316

The Code
The following example demonstrates the use of the Application.OpenForms property and the
FormCollection it contains to manage the active forms in an application. The example allows you to
create new forms with specified names. A list of active forms is displayed when you click the Refresh List
button. When you click the name of a form in the list, it is made the active form.

Because of the way the FormCollection works, more than one form may have the same name.
If duplicate forms have the same name, the first one found will be activated. If you try to retrieve a
Form using a name that does not exist, null is returned. The following is the code for the application’s
main form:

using System;
using System.Windows.Forms;

namespace Apress.VisualCSharpRecipes.Chapter07
{
 public partial class Recipe07_04 : Form
 {
 public Recipe07_04()
 {
 // Initialization code is designer generated and contained
 // in a separate file named Recipe07-04.Designer.cs.
 InitializeComponent ();
 }

 // Override the OnLoad method to show the initial list of forms.
 protected override void OnLoad(EventArgs e)
 {
 // Call the OnLoad method of the base class to ensure the Load
 // event is raised correctly.
 base.OnLoad(e);

 // Refresh the list to display the initial set of forms.
 this.RefreshForms();
 }

 // A button click event handler to create a new child form.
 private void btnNewForm_Click(object sender, EventArgs e)
 {
 // Create a new child form and set its name as specified.
 // If no name is specified, use a default name.
 Recipe07_04Child child = new Recipe07_04Child();

 if (this.txtFormName.Text == String.Empty)
 {
 child.Name = "Child Form";
 }
 else
 {
 child.Name = this.txtFormName.Text;
 }

CHAPTER 7 ■ WINDOWS FORMS

317

 // Show the new child form.
 child.Show();
 }

 // List selection event handler to activate the selected form based on
 // its name.
 private void listForms_SelectedIndexChanged(object sender, EventArgs e)
 {
 // Activate the selected form using its name as the index into the
 // collection of active forms. If there are duplicate forms with the
 // same name, the first one found will be activated.
 Form form = Application.OpenForms[this.listForms.Text];

 // If the form has been closed, using its name as an index into the
 // FormCollection will return null. In this instance, update the
 // list of forms.
 if (form != null)
 {
 // Activate the selected form.
 form.Activate();
 }
 else
 {
 // Display a message and refresh the form list.
 MessageBox.Show("Form closed; refreshing list...",
 "Form Closed");
 this.RefreshForms();
 }
 }

 // A button click event handler to initiate a refresh of the list of
 // active forms.
 private void btnRefresh_Click(object sender, EventArgs e)
 {
 RefreshForms();
 }

 // A method to perform a refresh of the list of active forms.
 private void RefreshForms()
 {
 // Clear the list and repopulate from the Application.OpenForms
 // property.
 this.listForms.Items.Clear();

 foreach (Form f in Application.OpenForms)
 {
 this.listForms.Items.Add(f.Name);
 }
 }

CHAPTER 7 ■ WINDOWS FORMS

318

 [STAThread]
 public static void Main(string[] args)
 {
 Application.Run(new Recipe07_04());
 }
 }
}

The following is the code for the child forms you create by clicking the New Form button:

using System;
using System.Windows.Forms;

namespace Apress.VisualCSharpRecipes.Chapter07
{
 public partial class Recipe07_04Child : Form
 {
 public Recipe07_04Child()
 {
 // Initialization code is designer generated and contained
 // in a separate file named Recipe07-04Child.Designer.cs.
 InitializeComponent();
 }

 // Override the OnPaint method to correctly display the name of the
 // form.
 protected override void OnPaint(PaintEventArgs e)
 {
 // Call the OnPaint method of the base class to ensure the Paint
 // event is raised correctly.
 base.OnPaint(e);

 // Display the name of the form.
 this.lblFormName.Text = this.Name;
 }

 // A button click event handler to close the child form.
 private void btnClose_Click(object sender, EventArgs e)
 {
 this.Close();
 }
 }
}

Notes
Versions 1.0 and 1.1 of the .NET Framework do not provide any way of determining which forms are
currently owned by an application. (The one exception is MDI applications, as described in recipe 7-5.)
If you want to determine which forms exist or which forms are displayed, or you want one form to

CHAPTER 7 ■ WINDOWS FORMS

319

call the methods or set the properties of another form, you will need to keep track of form instances on
your own.

For tracking small numbers of forms, one useful approach is to create a static class consisting of
static members. Each static member holds a reference to a specific Form. If you have many forms you
need to track, such as in a document-based application where the user can create multiple instances of
the same form, one per document, a generic collection such as a System.Collections.Generic.
Dictionary<string,Form> is very useful. This lets you map a Form object to a name.

Whichever approach you take, each Form object should register itself with the tracker class when it is
first created. A logical place to put this code is in the Form.OnLoad method. Conversely, when the Form
object is closed, it should deregister itself with the tracker class. Deregistration should occur in the
OnClosing or OnClosed method of the Form class.

Using either of these approaches, any code that requires access to a Form object can obtain a
reference to it from the members of the tracker class, and even invoke operations on the Form instance
directly through the tracker class if you are sure the Form object exists.

7-5. Find All MDI Child Forms

Problem
You need to find all the forms that are currently being displayed in an MDI application.

Solution
Iterate through the forms returned by the MdiChildren collection property of the MDI parent.

How It Works
The .NET Framework includes two convenient shortcuts for managing the forms open in MDI
applications: the MdiChildren and the MdiParent properties of the Form class. The MdiParent property of
any MDI child returns a Form representing the containing parent window. The MdiChildren property
returns an array containing all of the MDI child forms.

The Code
The following example presents an MDI parent window that allows you to create new MDI children by
clicking the New item on the File menu. As shown in Figure 7-3, each child window contains a label,
which displays the date and time when the MDI child was created, and a button. When the button is
clicked, the event handler walks through all the MDI child windows and displays the label text that each
one contains. Notice that when the example enumerates the collection of MDI child forms, it converts
the generic Form reference to the derived Recipe07-05Child form class so that it can use the LabelText
property. The following is the Recipe07-05Parent class:

CHAPTER 7 ■ WINDOWS FORMS

320

using System;
using System.Windows.Forms;

namespace Apress.VisualCSharpRecipes.Chapter07
{
 // An MDI parent form.
 public partial class Recipe07_05Parent : Form
 {
 public Recipe07_05Parent()
 {
 // Initialization code is designer generated and contained
 // in a separate file named Recipe07-05Parent.Designer.cs.
 InitializeComponent();
 }

 // When the New menu item is clicked, create a new MDI child.
 private void mnuNew_Click(object sender, EventArgs e)
 {
 Recipe07_05Child frm = new Recipe07_05Child();
 frm.MdiParent = this;
 frm.Show();
 }

 [STAThread]
 public static void Main(string[] args)
 {
 Application.Run(new Recipe07_05Parent());
 }
 }
}

The following is the Recipe07-05Child class:

using System;
using System.Windows.Forms;

namespace Apress.VisualCSharpRecipes.Chapter07
{
 // An MDI child form.
 public partial class Recipe07_05Child : Form
 {
 public Recipe07_05Child()
 {
 // Initialization code is designer generated and contained
 // in a separate file named Recipe07-05Child.Designer.cs.
 InitializeComponent();
 }

CHAPTER 7 ■ WINDOWS FORMS

321

 // When a button on any of the MDI child forms is clicked, display the
 // contents of each form by enumerating the MdiChildren collection.
 private void cmdShowAllWindows_Click(object sender, EventArgs e)
 {
 foreach (Form frm in this.MdiParent.MdiChildren)
 {
 // Cast the generic Form to the Recipe07_05Child derived class
 // type.
 Recipe07_05Child child = (Recipe07_05Child)frm;
 MessageBox.Show(child.LabelText, frm.Text);
 }
 }

 // On load, set the MDI child form's label to the current date/time.
 protected override void OnLoad(EventArgs e)
 {
 // Call the OnLoad method of the base class to ensure the Load
 // event is raised correctly.
 base.OnLoad(e);

 label.Text = DateTime.Now.ToString();
 }

 // A property to provide easy access to the label data.
 public string LabelText
 {
 get { return label.Text; }
 }
 }
}

Figure 7-3. Getting information from multiple MDI child windows

CHAPTER 7 ■ WINDOWS FORMS

322

7-6. Save Configuration Settings for a Form

Problem
You need to store configuration settings for a form so that they are remembered the next time that the
form is shown.

Solution
Use the .NET Framework Application Settings functionality, which is configurable at design time in
Visual Studio.

How It Works
The Application Settings functionality included in the .NET Framework provides an easy-to-use
mechanism through which you can save application and user settings used to customize the appearance
and operation of a Windows Forms application. You configure Application Settings through the
Properties panel of each Windows control (including the main Windows Form) in your application (see
Figure 7-4 for an example). By expanding the ApplicationSettings property (item 1 in Figure 7-4) and
clicking the ellipsis (three dots) to the right of (PropertyBinding), you can review application settings for
each property of the active control (item 2 in Figure 7-4). When you configure a new application setting
for a control’s property, you must assign it a name, a default value, and a scope (item 3).

• The name allows you to both access the setting programmatically and reuse the
application setting across multiple controls.

• The default value is used if the application cannot obtain a value from a
configuration file at runtime.

• The scope is either User or Application.

Settings with an Application scope are stored in the application’s configuration file (usually located
in the same folder as the application assembly) and are read-only. The benefit of an Application scope is
that you can change configuration settings by editing the configuration file without needing to
recompile the application. Settings with a User scope are read-write by default and are stored as part of
the user’s Windows profile in a file named after the executing assembly.

When you configure your application to use application settings, Visual Studio actually
autogenerates a wrapper class that provides access to the configuration file information, regardless of
whether it is scoped as Application or User. The class is named Settings and implements the singleton
pattern (discussed in recipe 13-10); the singleton instance is accessed through Settings.Default. This
class contains properties with names matching each of the application setting names you configured for
your controls’ properties. The controls will automatically read their configuration at startup, but you
should store configuration changes prior to terminating your application by calling the Settings.
Default.Save method.

CHAPTER 7 ■ WINDOWS FORMS

323

The Code
The following example, shown in Figure 7-4, displays a simple Form containing a TextBox. Using Visual
Studio, the application is configured to store the location of the Form and the background color of the
TextBox. The sample also programmatically records the size of the Form.

using System;
using System.ComponentModel;
using System.Windows.Forms;
using Apress.VisualCSharpRecipes.Chapter07.Properties;

namespace Apress.VisualCSharpRecipes.Chapter07
{
 public partial class Recipe07_06 : Form
 {
 public Recipe07_06()
 {
 // Initialization code is designer generated and contained
 // in a separate file named Recipe07-06.Designer.cs.
 InitializeComponent();
 }

 private void Button_Click(object sender, EventArgs e)
 {
 // Change the color of the text box depending on which button
 // was pressed.
 Button btn = sender as Button;

 if (btn != null)
 {
 // Set the background color of the text box.
 textBox1.BackColor = btn.ForeColor;

 // Update the application settings with the new value.
 Settings.Default.Color = textBox1.BackColor;
 }
 }

 protected override void OnClosing(CancelEventArgs e)
 {
 // Call the OnClosing method of the base class to ensure the
 // FormClosing event is raised correctly.
 base.OnClosing(e);

 // Update the application settings for Form.
 Settings.Default.Size = this.Size;

 // Store all application settings.
 Settings.Default.Save();
 }

CHAPTER 7 ■ WINDOWS FORMS

324

 [STAThread]
 public static void Main(string[] args)
 {
 Application.Run(new Recipe07_06());
 }
 }
}

Figure 7-4. Configuring Application Settings in Visual Studio

CHAPTER 7 ■ WINDOWS FORMS

325

7-7. Force a List Box to Scroll to the Most Recently Added
Item

Problem
You need to scroll a list box programmatically so that the most recently added items are visible.

Solution
Set the ListBox.TopIndex property, which sets the first visible list item.

How It Works
In some cases, you might have a list box that stores a significant amount of information or one that you
add information to periodically. Often, the most recent information, which is added at the end of the list,
is more important than the information at the top of the list. One solution is to scroll the list box so that
recently added items are visible. The ListBox.TopIndex property enables you to do this by allowing you
to specify which item is visible at the top of the list.

The Code
The following sample form includes a list box and a button. Each time the button is clicked, 20 items are
added to the list box. Each time new items are added, the code sets the ListBox.TopIndex property and
forces the list box to display the most recently added items. To provide better feedback, the same line is
also selected.

The example uses an unsorted ListBox, which means that new items are added to the end of the
ListBox. If you set ListBox.Sorted to true, the ListBox will sort the items it contains alphabetically. In
this case, new items added to the ListBox will be inserted at the appropriate point in the list and the
ListBox.Add method returns an int containing the zero-based index of where the new item was inserted.
You can assign this value to the ListBox.TopIndex property and force a sorted list box to display the most
recently added item.

using System;
using System.Windows.Forms;

namespace Apress.VisualCSharpRecipes.Chapter07
{
 public partial class Recipe07_07 : Form
 {
 // A counter to keep track of the number of items added
 // to the ListBox.
 private int counter = 0;

CHAPTER 7 ■ WINDOWS FORMS

326

 public Recipe07_07()
 {
 // Initialization code is designer generated and contained
 // in a separate file named Recipe07-07.Designer.cs.
 InitializeComponent();
 }

 // Button click event handler adds 20 new items to the ListBox.
 private void cmdTest_Click(object sender, EventArgs e)
 {
 // Add 20 items.
 for (int i = 0; i < 20; i++)
 {
 counter++;
 listBox1.Items.Add("Item " + counter.ToString());
 }

 // Set the TopIndex property of the ListBox to ensure the
 // most recently added items are visible.
 listBox1.TopIndex = listBox1.Items.Count - 1;
 listBox1.SelectedIndex = listBox1.Items.Count - 1;
 }

 [STAThread]
 public static void Main(string[] args)
 {
 Application.Run(new Recipe07_07());
 }
 }
}

7-8. Restrict a Text Box to Accept Only Specific Input

Problem
You need to create a text box that will reject all nonnumeric keystrokes.

Solution
Use the MaskedTextBox control and set the Mask property to configure the input that is acceptable.

How It Works
One way to ensure user input is valid is to prevent invalid data from being entered in the first place. The
MaskedTextBox control facilitates this approach. The MaskedTextBox.Mask property takes a string that
specifies the input mask for the control. This mask determines what type of input a user can enter at

CHAPTER 7 ■ WINDOWS FORMS

327

each point in the control’s text area. If the user enters an incorrect character, the control will beep if the
BeepOnError property is true, and the MaskInputRejected event will be raised so that you can customize
the handling of incorrect input.

■ Note The MaskedTextBox control will not solve all your user input validation problems. While it does make some
types of validation easy to implement, without customization it will not ensure some common validation
requirements are met. For example, you can specify that only numeric digits can be input, but you cannot specify
that they must be less than a specific value, nor can you control the overall characteristics of the input value.
Recipe 2-5 discusses regular expressions which provide a great deal of flexibility when testing whether text meets
complex formatting requirements.

The Code
The following example demonstrates the use of the MaskedTextBox control. A series of buttons allows you
to change the active mask on the MaskedTextBox control and experiment with the various masks. Notice
that the control tries to accommodate existing content with the new mask when the mask is changed. If
the content is not allowed with the new mask, the control is cleared.

using System;
using System.Threading;
using System.Windows.Forms;

namespace Apress.VisualCSharpRecipes.Chapter07
{
 public partial class Recipe07_08 : Form
 {

 public Recipe07_08()
 {
 // Initialization code is designer generated and contained
 // in a separate file named Recipe07-08.Designer.cs.
 InitializeComponent();
 }

 private void btnTime_Click(object sender, EventArgs e)
 {
 // Set the input mask to that of a short time.
 this.mskTextBox.UseSystemPasswordChar = false;
 this.mskTextBox.Mask = "00:00";
 this.lblActiveMask.Text = this.mskTextBox.Mask;
 this.mskTextBox.Focus();
 }

CHAPTER 7 ■ WINDOWS FORMS

328

 private void btnUSZip_Click(object sender, EventArgs e)
 {
 // Set the input mask to that of a US ZIP code.
 this.mskTextBox.UseSystemPasswordChar = false;
 this.mskTextBox.Mask = "00000-9999";
 this.lblActiveMask.Text = this.mskTextBox.Mask;
 this.mskTextBox.Focus();
 }

 private void btnUKPost_Click(object sender, EventArgs e)
 {
 // Set the input mask to that of a UK postcode.
 this.mskTextBox.UseSystemPasswordChar = false;
 this.mskTextBox.Mask = ">LCCC 9LL";
 this.lblActiveMask.Text = this.mskTextBox.Mask;
 this.mskTextBox.Focus();
 }

 private void btnCurrency_Click(object sender, EventArgs e)
 {
 // Set the input mask to that of a currency.
 this.mskTextBox.UseSystemPasswordChar = false;
 this.mskTextBox.Mask = "$999,999.00";
 this.lblActiveMask.Text = this.mskTextBox.Mask;
 this.mskTextBox.Focus();
 }

 private void btnDate_Click(object sender, EventArgs e)
 {
 // Set the input mask to that of a short date.
 this.mskTextBox.UseSystemPasswordChar = false;
 this.mskTextBox.Mask = "00/00/0000";
 this.lblActiveMask.Text = this.mskTextBox.Mask;
 this.mskTextBox.Focus();
 }

 private void btnSecret_Click(object sender, EventArgs e)
 {
 // Set the input mask to that of a secret PIN.
 this.mskTextBox.UseSystemPasswordChar = true;
 this.mskTextBox.Mask = "0000";
 this.lblActiveMask.Text = this.mskTextBox.Mask;
 this.mskTextBox.Focus();
 }

CHAPTER 7 ■ WINDOWS FORMS

329

 [STAThread]
 public static void Main(string[] args)
 {
 Application.Run(new Recipe07_08());
 }
 }
}

Notes
The MaskedTextBox used in this recipe was introduced in the .NET Framework 2.0. In previous versions of
the .NET Framework, one approach was to use a standard TextBox control and handle the KeyPress
events it raises. The KeyPress event is raised after each keystroke has been received but before it is
displayed. You can use the KeyPressEventArgs event parameter to effectively cancel an invalid keystroke
by setting its Handled property to true.

For example, to allow only numeric input, you must allow a keystroke only if it corresponds to a
number (0 through 9) or a special control key (such as Delete or the arrow keys). The keystroke character
is provided to the KeyPress event through the KeyPressEventArgs.KeyChar property. You can use two
static methods of the System.Char class—IsDigit and IsControl—to quickly test the character.

7-9. Use an Autocomplete Combo Box or Text Box

Problem
You want to display a combo box or text box that automatically completes what the user is typing based
on a list of predefined items.

Solution
Configure the autocomplete features of the standard .NET ComboBox or TextBox control. The
AutoCompleteMode property controls the autocompletion behavior, and the AutoCompleteSource property
allows you to specify the source of the autocomplete data.

■ Note Prior to the addition of the autocomplete functionality to the ComboBox and TextBox controls in the .NET
Framework 2.0, to implement autocomplete functionality it was necessary to create a custom control that inherited
from ComboBox or TextBox and overrode the inherited OnKeyPress and OnTextChanged methods.

How It Works
Autocomplete functionality is common and comes in many different variations. For example, a control
may fill in values based on a list of recent selections (as Microsoft Excel does when you are entering cell

CHAPTER 7 ■ WINDOWS FORMS

330

values), or the control might display a drop-down list of near matches (as Microsoft Internet Explorer
does when you are typing a URL). The AutoCompleteMode takes one of the following values, which define
how the control’s autocomplete behavior works:

• None: Autocomplete is disabled. This is the default behavior for ComboBox and
TextBox.

• Suggest: This displays suggestions as a drop-down list.

• Append: This appends the remainder of the most likely suggestion to the end of the
text as the user enters it.

• SuggestAppend: This combines the functionality of both Suggest and Append.

The AutoCompleteSource property defines where the ComboBox or TextBox control sources the
autocomplete suggestions it presents to the user. It is possible to make use of various system-level data
sources like the file system or URL histories. The most commonly used values for the
AutoCompleteSource property are ListItems, where the ComboBox uses its current content and
CustomSource. If you specify CustomSource, you must populate the AutoCompleteCustomSource property of
the ComboBox or TextBox with the set of strings you want to use as autocomplete suggestions.

The Code
The following example enables autocomplete on a ComboBox and populates it with a list of values using a
custom source. Figure 7-5 shows how the control offers suggestions to the user when AutoCompleteMode
is set to the value SuggestAppend.

using System;
using System.IO;
using System.Drawing;
using System.Windows.Forms;

namespace Apress.VisualCSharpRecipes.Chapter07
{
 public partial class Recipe07_09 : Form
 {
 public Recipe07_09()
 {
 // Initialization code is designer generated and contained
 // in a separate file named Recipe07-09.Designer.cs.
 InitializeComponent();

 // Configure ComboBox1 to make its autocomplete
 // suggestions from a custom source.
 this.comboBox1.AutoCompleteCustomSource.AddRange(
 new string[] { "Man", "Mark", "Money", "Motley",
 "Mostly", "Mint", "Minion", "Milk", "Mist",
 "Mush", "More", "Map", "Moon", "Monkey"});

CHAPTER 7 ■ WINDOWS FORMS

331

 this.comboBox1.AutoCompleteMode
 = AutoCompleteMode.SuggestAppend;
 this.comboBox1.AutoCompleteSource
 = AutoCompleteSource.CustomSource;

 // Configure ComboBox2 to make its autocomplete
 // suggestions from its current contents.
 this.comboBox2.Items.AddRange(
 new string[] { "Man", "Mark", "Money", "Motley",
 "Mostly", "Mint", "Minion", "Milk", "Mist",
 "Mush", "More", "Map", "Moon", "Monkey"});

 this.comboBox2.AutoCompleteMode
 = AutoCompleteMode.SuggestAppend;
 this.comboBox2.AutoCompleteSource
 = AutoCompleteSource.ListItems;

 // Configure ComboBox3 to make its autocomplete
 // suggestions from the system's URL history.
 this.comboBox3.AutoCompleteMode
 = AutoCompleteMode.SuggestAppend;
 this.comboBox3.AutoCompleteSource
 = AutoCompleteSource.AllUrl;
 }

 [STAThread]
 public static void Main(string[] args)
 {
 Application.Run(new Recipe07_09());
 }
 }
}

Figure 7-5. An autocomplete combo box

CHAPTER 7 ■ WINDOWS FORMS

332

7-10. Sort a List View by Any Column

Problem
You need to sort a list view, but the built-in ListView.Sort method sorts based on only the first column.

Solution
Create a type that implements the System.Collections.IComparer interface and can sort ListViewItem
objects. The IComparer type can sort based on any ListViewItem criteria you specify. Set the
ListView.ListViewItemSorter property with an instance of the IComparer type before calling the
ListView.Sort method.

How It Works
The ListView control provides a Sort method that orders items alphabetically based on the text in the
first column. If you want to sort based on other column values or order items numerically, you need to
create a custom implementation of the IComparer interface that can perform the work. The IComparer
interface defines a single method named Compare, which takes two object arguments and determines
which one should be ordered first. Full details of how to implement the IComparer interface are available
in recipe 13-3.

The Code
The following example demonstrates the creation of an IComparer implementation named
ListViewItemComparer. The ListViewItemComparer class also implements two additional properties:
Column and Numeric. The Column property identifies the column that should be used for sorting. The
Numeric property is a Boolean flag that can be set to true if you want to perform number-based
comparisons instead of alphabetic comparisons.

When the user clicks a column heading, the example creates a ListViewItemComparer instance,
configures the column to use for sorting, and assigns the ListViewItemComparer instance to the
ListView.ListViewItemSorter property before calling the ListView.Sort method.

using System;
using System.Collections;
using System.Windows.Forms;

namespace Apress.VisualCSharpRecipes.Chapter07
{
 public partial class Recipe07_10 : Form
 {
 public Recipe07_10()
 {

CHAPTER 7 ■ WINDOWS FORMS

333

 // Initialization code is designer generated and contained
 // in a separate file named Recipe07-10.Designer.cs.
 InitializeComponent();
 }

 // Event handler to handle user clicks on column headings.
 private void listView1_ColumnClick(object sender, ColumnClickEventArgs e)
 {
 // Create and/or configure the ListViewItemComparer to sort based on
 // the column that was clicked.
 ListViewItemComparer sorter =
 listView1.ListViewItemSorter as ListViewItemComparer;

 if (sorter == null)
 {
 // Create a new ListViewItemComparer.
 sorter = new ListViewItemComparer(e.Column);
 listView1.ListViewItemSorter = sorter;
 }
 else
 {
 // Configure the existing ListViewItemComparer.
 sorter.Column = e.Column;
 }

 // Sort the ListView.
 listView1.Sort();
 }

 [STAThread]
 public static void Main(string[] args)
 {
 Application.Run(new Recipe07_10());
 }
 }

 public class ListViewItemComparer : IComparer
 {
 // Property to get/set the column to use for comparison.
 public int Column { get; set; }

 // Property to get/set whether numeric comparison is required
 // as opposed to the standard alphabetic comparison.
 public bool Numeric { get; set; }

 public ListViewItemComparer(int columnIndex)
 {
 Column = columnIndex;
 }

CHAPTER 7 ■ WINDOWS FORMS

334

 public int Compare(object x, object y)
 {
 // Convert the arguments to ListViewItem objects.
 ListViewItem itemX = x as ListViewItem;
 ListViewItem itemY = y as ListViewItem;

 // Handle logic for null reference as dictated by the
 // IComparer interface; null is considered less than
 // any other value.
 if (itemX == null && itemY == null) return 0;
 else if (itemX == null) return -1;
 else if (itemY == null) return 1;

 // Short-circuit condition where the items are references
 // to the same object.
 if (itemX == itemY) return 0;

 // Determine if numeric comparison is required.
 if (Numeric)
 {
 // Convert column text to numbers before comparing.
 // If the conversion fails, just use the value 0.
 decimal itemXVal, itemYVal;

 if (!Decimal.TryParse(itemX.SubItems[Column].Text, out itemXVal))
 {
 itemXVal = 0;
 }
 if (!Decimal.TryParse(itemY.SubItems[Column].Text, out itemYVal))
 {
 itemYVal = 0;
 }

 return Decimal.Compare(itemXVal, itemYVal);
 }
 else
 {
 // Keep the column text in its native string format
 // and perform an alphabetic comparison.
 string itemXText = itemX.SubItems[Column].Text;
 string itemYText = itemY.SubItems[Column].Text;

 return String.Compare(itemXText, itemYText);
 }
 }
 }
}

CHAPTER 7 ■ WINDOWS FORMS

335

7-11. Lay Out Controls Automatically

Problem
You have a large set of controls on a form and you want them arranged automatically.

Solution
Use the FlowLayoutPanel container to dynamically arrange the controls using a horizontal or vertical
flow, or use the TableLayoutPanel container to dynamically arrange the controls in a grid.

How It Works
The FlowLayoutPanel and TableLayoutPanel containers simplify the design-time and runtime layout of
the controls they contain. At both design time and runtime, as you add controls to one of these panels,
the panel’s logic determines where the control should be positioned, so you do not need to determine
the exact location.

With the FlowLayoutPanel container, the FlowDirection and WrapContents properties determine
where controls are positioned. FlowDirection controls the order and location of controls, and it can be
set to LeftToRight, TopDown, RightToLeft, or BottomUp. The WrapContents property controls whether
controls run off the edge of the panel or wrap around to form a new line of controls.

With the TableLayoutPanel container, the RowCount and ColumnCount properties control how many
rows and columns are currently in the panel’s grid. The GrowStyle property determines how the grid
grows to accommodate more controls once it is full, and it can be set to AddRows, AddColumns, or
FixedSize (which means the grid cannot grow).

Figure 7-6 shows the design-time appearance of both a TableLayoutPanel container and a
FlowLayoutPanel container. The TableLayoutPanel panel is configured with three rows and three
columns. The FlowLayoutPanel panel is configured to wrap contents and use left-to-right flow direction.

Figure 7-6. Using a FlowLayoutPanel panel and a TableLayoutPanel panel

CHAPTER 7 ■ WINDOWS FORMS

336

7-12. Use Part of a Main Menu for a Context Menu

Problem
You need to create a context menu that shows the same menu items as those displayed as part of an
application’s main menu.

Solution
Use the CloneMenu method of the MenuItem class to duplicate the required portion of the main menu.

How It Works
In many applications, a control’s context-sensitive menu duplicates a portion of the main menu.
However, .NET does not allow you to create a MenuItem instance that is contained in more than one
menu at a time.

The solution is to make a duplicate copy of a portion of the menu using the CloneMenu method. The
CloneMenu method not only copies the appropriate MenuItem items (and any contained submenus), but
also registers each MenuItem object with the same event handlers. Thus, when a user clicks a cloned
menu item in a context menu, the event handler will be triggered as if the user had clicked the duplicate
menu item in the main menu.

The Code
The following example uses the CloneMenu method to configure the context menu for a TextBox to be a
duplicate of the File menu. Figure 7-7 shows how the example will look when run.

using System;
using System.Drawing;
using System.Windows.Forms;

namespace Apress.VisualCSharpRecipes.Chapter07
{
 public partial class Recipe07_12 : Form
 {
 public Recipe07_12()
 {
 // Initialization code is designer generated and contained
 // in a separate file named Recipe07-12.Designer.cs.
 InitializeComponent();
 }

 // As the main form loads, clone the required section of the main
 // menu and assign it to the ContextMenu property of the TextBox.
 protected override void OnLoad(EventArgs e)
 {

CHAPTER 7 ■ WINDOWS FORMS

337

 // Call the OnLoad method of the base class to ensure the Load
 // event is raised correctly.
 base.OnLoad(e);

 ContextMenu mnuContext = new ContextMenu();

 // Copy the menu items from the File menu into a context menu.
 foreach (MenuItem mnuItem in mnuFile.MenuItems)
 {
 mnuContext.MenuItems.Add(mnuItem.CloneMenu());
 }

 // Attach the cloned menu to the TextBox.
 TextBox1.ContextMenu = mnuContext;
 }

 // Event handler to display the ContextMenu for the ListBox.
 private void TextBox1_MouseDown(object sender, MouseEventArgs e)
 {
 if (e.Button == MouseButtons.Right)
 {
 TextBox1.ContextMenu.Show(TextBox1, new Point(e.X, e.Y));
 }
 }

 // Event handler to process clicks on File/Open menu item.
 // For the purpose of the example, simply show a message box.
 private void mnuOpen_Click(object sender, EventArgs e)
 {
 MessageBox.Show("This is the event handler for Open.","Recipe07-12");
 }

 // Event handler to process clicks on File/Save menu item.
 // For the purpose of the example, simply show a message box.
 private void mnuSave_Click(object sender, EventArgs e)
 {
 MessageBox.Show("This is the event handler for Save.","Recipe07-12");
 }

 // Event handler to process clicks on File/Exit menu item.
 // For the purpose of the example, simply show a message box.
 private void mnuExit_Click(object sender, EventArgs e)
 {
 MessageBox.Show("This is the event handler for Exit.","Recipe07-12");
 }

CHAPTER 7 ■ WINDOWS FORMS

338

 public static void Main(string[] args)
 {
 Application.Run(new Recipe07_12());
 }
 }
}

Figure 7-7. Copying part of a main menu to a context menu

7-13. Make a Multilingual Form

Problem
You need to create a localizable form that can be deployed in more than one language.

Solution
Store all locale-specific information in resource files, which are compiled into satellite assemblies.

How It Works
The .NET Framework includes built-in support for localization through its use of resource files. The
basic idea is to store information that is locale-specific (for example, button text) in a resource file. You
can create resource files for each culture you need to support and compile them into satellite
assemblies. When you run the application, .NET will automatically use the correct satellite assembly
based on the locale settings of the current user/computer.

You can read to and write from resource files manually; they are XML files. However, Visual Studio
also includes extensive design-time support for localized forms. It works like this:

CHAPTER 7 ■ WINDOWS FORMS

339

1. Set the Localizable property of a Form to true using the Properties window.

2. Set the Language property of the form to the locale for which you would like to
enter information (see Figure 7-8). Then configure the localizable properties of
all the controls on the form. Instead of storing your changes in the designer-
generated code for the form, Visual Studio will actually create a new resource
file to hold your data.

3. Repeat step 2 for each language that you want to support. Each time you enter
a new locale for the form’s Language property, a new resource file will be
generated. If you change the Language property to a locale you have already
configured, your previous settings will reappear, and you will be able to modify
them.

You can now compile and test your application on differently localized systems. Visual Studio will
create a separate directory and satellite assembly for each resource file in the project. You can select
Project/Show All Files from the Visual Studio menu to see how these files are arranged, as shown in
Figure 7-9.

Figure 7-8. Selecting a language for localizing a form

CHAPTER 7 ■ WINDOWS FORMS

340

Figure 7-9. Satellite assembly structure

The Code
Although you do not need to manually code any of the localization functionality, as a testing shortcut
you can force your application to adopt a specific culture by modifying the Thread.CurrentUICulture
property of the application thread. However, you must modify this property before the form has loaded.
Figure 7-10 shows both the English and French versions of the form.

using System;
using System.Threading;
using System.Globalization;
using System.Windows.Forms;

namespace Apress.VisualCSharpRecipes.Chapter07
{
 public partial class Recipe07_13 : Form
 {
 public Recipe07_13()
 {
 // Initialization code is designer generated and contained
 // in a separate file named Recipe07-13.Designer.cs.
 InitializeComponent();
 }

 [STAThread]
 public static void Main(string[] args)
 {
 Thread.CurrentThread.CurrentUICulture = new CultureInfo("fr");
 Application.Run(new Recipe07_13());
 }
 }
}

CHAPTER 7 ■ WINDOWS FORMS

341

Figure 7-10. English and French localizations of Recipe07-13

7-14. Create a Form That Cannot Be Moved

Problem
You want to create a form that occupies a fixed location on the screen and cannot be moved.

Solution
Make a borderless form by setting the FormBorderStyle property of the Form class to the value
FormBorderStyle.None.

How It Works
You can create a borderless form by setting the FormBorderStyle property of a Form to None. Borderless
forms cannot be moved. However, as their name implies, they also lack any kind of border. If you want
the customary blue border, you will need to add it yourself, either with manual drawing code or by using
a background image.

One other approach to creating an immovable form does provide a basic control-style border. First,
set the ControlBox, MinimizeBox, and MaximizeBox properties of the form to false. Then set the Text
property to an empty string. To ensure the user cannot resize the form, set the FormBorderStyle property
to the value FixedSingle.

CHAPTER 7 ■ WINDOWS FORMS

342

The Code
The following example shows how to create immovable forms using both approaches just described:

using System;
using System.Windows.Forms;

namespace Apress.VisualCSharpRecipes.Chapter07
{
 public partial class Recipe07_14 : Form
 {
 public Recipe07_14()
 {
 // Initialization code is designer generated and contained
 // in a separate file named Recipe07-14.cs.
 InitializeComponent();
 }

 private void button1_Click(object sender, EventArgs e)
 {
 Form form = new Form();
 form.FormBorderStyle = FormBorderStyle.None;
 form.Show();
 }

 private void button2_Click(object sender, EventArgs e)
 {
 Form form = new Form();
 form.ControlBox = false;
 form.MinimizeBox = false;
 form.MaximizeBox = false;
 form.FormBorderStyle = FormBorderStyle.FixedSingle;
 form.Text = String.Empty;
 form.Show();
 }

 private void button3_Click(object sender, EventArgs e)
 {
 Application.Exit();
 }

 [STAThread]
 public static void Main(string[] args)
 {
 Application.Run(new Recipe07_14());
 }
 }
}

CHAPTER 7 ■ WINDOWS FORMS

343

7-15. Make a Borderless Form Movable

Problem
You need to create a borderless form that can be moved. This might be the case if you are creating a
custom window that has a unique look (e.g., for a visually rich application such as a game or a media
player).

Solution
Create another control that responds to the MouseDown, MouseUp, and MouseMove events and
programmatically moves the form.

How It Works
Borderless forms omit a title bar, which makes it impossible for a user to move them. You can
compensate for this shortcoming by adding a control to the form that serves the same purpose.
For example, Figure 7-11 shows a form that includes a label to support dragging. The user can click this
label and then drag the form to a new location on the screen while holding down the mouse button. As
the user moves the mouse, the form moves correspondingly, as though it were “attached” to the mouse
pointer.

To implement this solution, take the following steps:

1. Create a form-level Boolean variable that tracks whether or not the form is
currently being dragged.

2. When the label is clicked, the code sets the flag to indicate that the form is in
drag mode. At the same time, the current mouse position is recorded. You add
this logic to the event handler for the Label.MouseDown event.

3. When the user moves the mouse over the label, the form is moved
correspondingly, so that the position of the mouse over the label is unchanged.
You add this logic to the event handler for the Label.MouseMove event.

4. When the user releases the mouse button, the dragging mode is switched off.
You add this logic to the event handler for the Label.MouseUp event.

CHAPTER 7 ■ WINDOWS FORMS

344

Figure 7-11. A movable borderless form

The Code
The following example creates a borderless form that a user can move by clicking a form control and
dragging the form:

using System;
using System.Drawing;
using System.Windows.Forms;

namespace Apress.VisualCSharpRecipes.Chapter07
{
 public partial class Recipe07_15 : Form
 {
 // Boolean member tracks whether the form is in drag mode. If it is,
 // mouse movements over the label will be translated into form movements.
 private bool dragging;

 // Stores the offset where the label is clicked.
 private Point pointClicked;

 public Recipe07_15()
 {
 // Initialization code is designer generated and contained
 // in a separate file named Recipe07-15.Designer.cs.
 InitializeComponent();
 }

 // MouseDown event handler for the label initiates the dragging process.
 private void lblDrag_MouseDown(object sender, MouseEventArgs e)
 {

CHAPTER 7 ■ WINDOWS FORMS

345

 if (e.Button == MouseButtons.Left)
 {
 // Turn drag mode on and store the point clicked.
 dragging = true;
 pointClicked = new Point(e.X, e.Y);
 }
 else
 {
 dragging = false;
 }
 }

 // MouseMove event handler for the label processes dragging movements if
 // the form is in drag mode.
 private void lblDrag_MouseMove(object sender, MouseEventArgs e)
 {
 if (dragging)
 {
 Point pointMoveTo;

 // Find the current mouse position in screen coordinates.
 pointMoveTo = this.PointToScreen(new Point(e.X, e.Y));

 // Compensate for the position the control was clicked.
 pointMoveTo.Offset(-pointClicked.X, -pointClicked.Y);

 // Move the form.
 this.Location = pointMoveTo;
 }
 }

 // MouseUp event handler for the label switches off drag mode.
 private void lblDrag_MouseUp(object sender, MouseEventArgs e)
 {
 dragging = false;
 }

 private void cmdClose_Click(object sender, EventArgs e)
 {
 this.Close();
 }

 [STAThread]
 public static void Main(string[] args)
 {
 Application.Run(new Recipe07_15());
 }
 }
}

CHAPTER 7 ■ WINDOWS FORMS

346

7-16. Create an Animated System Tray Icon

Problem
You need to create an animated system tray icon (perhaps to indicate the status of a long-running task).

Solution
Create and show a NotifyIcon control. Use a timer that fires periodically (every second or so) and
updates the NotifyIcon.Icon property.

How It Works
The .NET Framework makes it easy to show a system tray icon with the NotifyIcon component. You
simply need to add this component to a form and supply an icon by setting the Icon property. You can
animate a system tray icon by swapping the icon periodically. Optionally, you can add a linked context
menu to the NotifyIcon through the ContextMenuStrip property. The NotifyIcon component
automatically displays its context menu when it’s right-clicked.

The Code
The following example uses eight icons, each of which shows a moon graphic in a different stage of
fullness. By moving from one image to another, the illusion of animation is created.

using System;
using System.Drawing;
using System.Windows.Forms;

namespace Apress.VisualCSharpRecipes.Chapter07
{
 public partial class Recipe07_16 : Form
 {
 // An array to hold the set of icons used to create the
 // animation effect.
 private Icon[] images = new Icon[8];

 // An integer to identify the current icon to display.
 int offset = 0;

 public Recipe07_16()
 {
 // Initialization code is designer generated and contained
 // in a separate file named Recipe07-16.Designer.cs.
 InitializeComponent();

CHAPTER 7 ■ WINDOWS FORMS

347

 // Declare a ContextMenuStrip for use by the NotifyIcon.
 ContextMenuStrip contextMenuStrip = new ContextMenuStrip();
 contextMenuStrip.Items.Add(new ToolStripMenuItem("About..."));
 contextMenuStrip.Items.Add(new ToolStripSeparator());
 contextMenuStrip.Items.Add(new ToolStripMenuItem("Exit"));

 // Assign the ContextMenuStrip to the NotifyIcon.
 notifyIcon.ContextMenuStrip = contextMenuStrip;
 }

 protected override void OnLoad(EventArgs e)
 {
 // Call the OnLoad method of the base class to ensure the Load
 // event is raised correctly.
 base.OnLoad(e);

 // Load the basic set of eight icons.
 images[0] = new Icon("moon01.ico");
 images[1] = new Icon("moon02.ico");
 images[2] = new Icon("moon03.ico");
 images[3] = new Icon("moon04.ico");
 images[4] = new Icon("moon05.ico");
 images[5] = new Icon("moon06.ico");
 images[6] = new Icon("moon07.ico");
 images[7] = new Icon("moon08.ico");
 }

 private void timer_Elapsed(object sender, System.Timers.ElapsedEventArgs e)
 {
 // Change the icon. This event handler fires once every second
 // (1000 ms).
 notifyIcon.Icon = images[offset];
 offset++;
 if (offset > 7) offset = 0;
 }

 [STAThread]
 public static void Main(string[] args)
 {
 Application.Run(new Recipe07_16());
 }
 }
}

7-17. Validate an Input Control

Problem
You need to alert the user of invalid input in a control, such as a TextBox.

CHAPTER 7 ■ WINDOWS FORMS

348

Solution
Use the ErrorProvider component to display an error icon next to the offending control. Check for
errors before allowing the user to continue.

How It Works
You can perform validation in a Windows-based application in a number of ways. One approach is to
refuse any invalid character as the user presses a key, by using a MaskedTextBox control, as shown in
recipe 7-8. Another approach is to respond to control validation events and prevent users from changing
focus from one control to another if an error exists. A less invasive approach is to simply flag the
offending control in some way so that the user can review all the errors at once. You can use this
approach by adding the ErrorProvider component to your form.

The ErrorProvider is a special property extender component that displays error icons next to invalid
controls. You show the error icon next to a control by using the ErrorProvider.SetError method and
specifying the appropriate control and a string error message. The ErrorProvider will then show a
warning icon to the right of the control. When the user hovers the mouse above the warning icon, the
detailed message appears.

You need to add only one ErrorProvider component to your form, and you can use it to display an
error icon next to any control. To add the ErrorProvider, drag it on the form or into the component tray
or create it manually in code.

The Code
The following example checks the value that a user has entered into a text box whenever the text box
loses focus. The code validates this text box using a regular expression that checks to see if the value
corresponds to the format of a valid e-mail address (see recipe 2-5 for more details on regular
expressions). If validation fails, the ErrorProvider is used to display an error message. If the text is valid,
any existing error message is cleared from the ErrorProvider.

Finally, the Click event handler for the OK button steps through all the controls on the form and
verifies that none of them have errors before allowing the example to continue. In this example, an
empty text box is allowed, although it would be a simple matter to perform additional checks when the
OK button is pressed for situations where empty text boxes are not acceptable. Figure 7-12 shows how
the ErrorProvider control indicates an input error for the TextBox control when Recipe07-17 is run.

CHAPTER 7 ■ WINDOWS FORMS

349

using System;
using System.Windows.Forms;
using System.Text.RegularExpressions;

namespace Apress.VisualCSharpRecipes.Chapter07
{
 public partial class Recipe07_17 : Form
 {
 public Recipe07_17()
 {
 // Initialization code is designer generated and contained
 // in a separate file named Recipe07-17.Designer.cs.
 InitializeComponent();
 }

 // Button click event handler ensures the ErrorProvider is not
 // reporting any error for each control before proceeding.
 private void Button1_Click(object sender, EventArgs e)
 {
 string errorText = "";
 bool invalidInput = false;

 foreach (Control ctrl in this.Controls)
 {
 if (errProvider.GetError(ctrl) != "")
 {
 errorText += " * " + errProvider.GetError(ctrl) + "\n";
 invalidInput = true;
 }
 }

 if (invalidInput)
 {
 MessageBox.Show(
 "The form contains the following unresolved errors:\n\n" +
 errorText, "Invalid Input", MessageBoxButtons.OK,
 MessageBoxIcon.Warning);
 }
 else
 {
 this.Close();
 }
 }

 // When the TextBox loses focus, check that the contents are a valid
 // e-mail address.
 private void txtEmail_Leave(object sender, EventArgs e)
 {
 // Create a regular expression to check for valid e-mail addresses.
 Regex regex = new Regex(@"^[\w-]+@([\w-]+\.)+[\w-]+$");

CHAPTER 7 ■ WINDOWS FORMS

350

 // Validate the text from the control that raised the event.
 Control ctrl = (Control)sender;
 if (String. IsNullOrEmpty(ctrl.Text) || regex.IsMatch(ctrl.Text))
 {
 errProvider.SetError(ctrl, "");
 }
 else
 {
 errProvider.SetError(ctrl, "This is not a valid email address.");
 }
 }

 [STAThread]
 public static void Main(string[] args)
 {
 Application.Run(new Recipe07_17());
 }
 }
}

Figure 7-12. A validated form with the ErrorProvider

7-18. Use a Drag-and-Drop Operation

Problem
You need to use the drag-and-drop feature to exchange information between two controls (possibly in
separate windows or separate applications).

Solution
Start a drag-and-drop operation using the DoDragDrop method of the Control class, and then respond to
the DragEnter and DragDrop events in the target control.

CHAPTER 7 ■ WINDOWS FORMS

351

How It Works
A drag-and-drop operation allows the user to transfer information from one place to another by clicking
an item and dragging it to another location. A drag-and-drop operation consists of the following three
basic steps:

1. The user clicks a control, holds down the mouse button, and begins dragging.
If the control supports the drag-and-drop feature, it sets aside some
information.

2. The user drags the mouse over another control. If this control accepts the
dragged type of content, the mouse cursor changes to the special drag-and-
drop icon (arrow and page). Otherwise, the mouse cursor becomes a circle
with a line drawn through it.

3. When the user releases the mouse button, the data is sent to the control, which
can then process it appropriately.

To support drag-and-drop functionality, you must handle the DragEnter, DragDrop, and (typically)
MouseDown events. To start a drag-and-drop operation, you call the source control’s DoDragDrop method.
At this point, you submit the data and specify the type of operations that will be supported (copying,
moving, and so on). Controls that can receive dragged data must have the AllowDrop property set to true.
These controls will receive a DragEnter event when the mouse drags the data over them. At this point,
you can examine the data that is being dragged, decide whether the control can accept the drop, and set
the DragEventArgs.Effect property accordingly. The final step is to respond to the DragDrop event, which
occurs when the user releases the mouse button.

■ Note It is very important that the Main method of your Windows application be annotated with the STAThread
attribute if your application will provide drag-and-drop functionality.

The Code
The following example allows you to drag content between a RichTextBox and a standard TextBox
control. Using the standard TextBox, it is not possible to drag only the currently selected text because as
soon as you click the selected text to initiate a drag operation, the selection is cleared. Even handling the
MouseDown event will not allow you to work around this because the selected text is already cleared by the
event is raised.

However, the RichTextBox leaves the selection in place, avoiding the problem. Unfortunately, the
RichTextBox has quirks of its own. To drop successfully onto a RichTextBox, you must be holding down
the Ctrl key when you let go of the mouse button. You can also use the example with other applications
that support text drag-and-drop operations.

CHAPTER 7 ■ WINDOWS FORMS

352

using System;
using System.Drawing;
using System.Windows.Forms;

namespace Apress.VisualCSharpRecipes.Chapter07
{
 public partial class Recipe07_18 : Form
 {
 public Recipe07_18()
 {
 // Initialization code is designer generated and contained
 // in a separate file named Recipe07-18.Designer.cs.
 InitializeComponent();

 this.richTextBox1.AllowDrop = true;
 this.richTextBox1.EnableAutoDragDrop = false;
 this.richTextBox1.DragDrop
 += new System.Windows.Forms.DragEventHandler
 (this.RichTextBox_DragDrop);
 this.richTextBox1.DragEnter
 += new System.Windows.Forms.DragEventHandler
 (this.RichTextBox_DragEnter);
 }

 private void RichTextBox_DragDrop(object sender, DragEventArgs e)
 {
 RichTextBox txt = sender as RichTextBox;

 if (txt != null)
 {
 // Insert the dragged text.
 int pos = txt.SelectionStart;

 string newText = txt.Text.Substring(0, pos)
 + e.Data.GetData(DataFormats.Text).ToString()
 + txt.Text.Substring(pos);

 txt.Text = newText;
 }
 }

 private void RichTextBox_DragEnter(object sender, DragEventArgs e)
 {
 if (e.Data.GetDataPresent(DataFormats.Text))
 {
 e.Effect = DragDropEffects.Copy;
 }

CHAPTER 7 ■ WINDOWS FORMS

353

 else
 {
 e.Effect = DragDropEffects.None;
 }
 }

 private void RichTextBox_MouseDown(object sender, MouseEventArgs e)
 {
 RichTextBox txt = sender as RichTextBox;

 // If the left mouse button is pressed and text is selected,
 // this is a possible drag event.
 if (sender != null && txt.SelectionLength > 0
 && Form.MouseButtons == MouseButtons.Left)
 {
 // Only initiate a drag if the cursor is currently inside
 // the region of selected text.
 int pos = txt.GetCharIndexFromPosition(e.Location);

 if (pos >= txt.SelectionStart
 && pos <= (txt.SelectionStart + txt.SelectionLength))
 {
 txt.DoDragDrop(txt.SelectedText, DragDropEffects.Copy);
 }
 }
 }

 private void TextBox_DragDrop(object sender, DragEventArgs e)
 {
 TextBox txt = sender as TextBox;

 if (txt != null)
 {
 txt.Text = (string)e.Data.GetData(DataFormats.Text);
 }
 }

 private void TextBox_DragEnter(object sender, DragEventArgs e)
 {
 if (e.Data.GetDataPresent(DataFormats.Text))
 {
 e.Effect = DragDropEffects.Copy;
 }
 else
 {
 e.Effect = DragDropEffects.None;
 }
 }

CHAPTER 7 ■ WINDOWS FORMS

354

 private void TextBox_MouseDown(object sender, MouseEventArgs e)
 {
 TextBox txt = sender as TextBox;

 if (txt != null && Form.MouseButtons == MouseButtons.Left)
 {
 txt.SelectAll();
 txt.DoDragDrop(txt.Text, DragDropEffects.Copy);
 }
 }

 [STAThread]
 public static void Main(string[] args)
 {
 Application.Run(new Recipe07_18());
 }
 }
}

7-19. Update the User Interface in a Multithreaded
Application

Problem
You need to ensure a Windows Forms user interface is updated correctly in a multithreaded application.

Solution
Ensure all interaction with a control is performed on the thread that initially created the control. When
calling operations on controls from a thread that did not create the control, make the call using the
control’s Invoke or BeginInvoke methods and pass in a delegate to the code you want executed.

How It Works
Windows Forms is not inherently thread safe, meaning you are not free to interact with controls from
just any thread. Instead, you must marshal all calls to a control onto the thread that owns the message
queue for that control (i.e., the thread that created the control).

You can determine if the executing thread can call a control directly by testing the control’s
InvokeRequired property. If the value is false, then the currently executing thread can interact with the
control directly; otherwise, you must marshal any interaction back onto the correct thread. This
potentially difficult task is made trivial through the use of the Invoke and BeginInvoke methods
implemented by the Control base class.

Both methods take a delegate (or an equivalent anonymous method or lambda expression) and
invoke the specified method on the control using the correct thread. Invoke executes the delegate

CHAPTER 7 ■ WINDOWS FORMS

355

synchronously and BeginInvoke executes the delegate asynchronously. To complete an asynchronous
operation initiated using BeginInvoke, you call the Control.EndInvoke method. The BeginInvoke and
EndInvoke methods make up a common asynchronous execution pattern known as the Classic Async
pattern. The details of this pattern and the options you have available for handling method completion
are discussed in recipe 4-2.

The Code
The following example shows how to update a Windows Forms control from multiple threads. The
example uses two timers that fire at differing intervals to change the color of a Button control between
red and green. The code shows how to use both an anonymous method and a lambda expression with
the Invoke call. Both approaches use System.Action, a delegate type that can encapsulate any method
that returns void and takes no arguments.

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Text;
using System.Windows.Forms;

namespace Apress.VisualCSharpRecipes.Chapter07
{
 public partial class Recipe07_19 : Form
 {
 // Declare timers that change the button color.
 System.Timers.Timer greenTimer;
 System.Timers.Timer redTimer;

 public Recipe07_19()
 {
 // Initialization code is designer generated and contained
 // in a separate file named Recipe07-19.Designer.cs.
 InitializeComponent();

 // Create autoreset timers that fire at varying intervals
 // to change the color of the button on the form.
 greenTimer = new System.Timers.Timer(3000);
 greenTimer.Elapsed +=
 new System.Timers.ElapsedEventHandler(greenTimer_Elapsed);
 greenTimer.Start();

 redTimer = new System.Timers.Timer(5000);
 redTimer.Elapsed +=
 new System.Timers.ElapsedEventHandler(redTimer_Elapsed);
 redTimer.Start();
 }

CHAPTER 7 ■ WINDOWS FORMS

356

 void redTimer_Elapsed(object sender, System.Timers.ElapsedEventArgs e)
 {
 // Use an anonymous method to set the button color to red.
 button1.Invoke((Action)delegate {button1.BackColor = Color.Red;});
 }

 void greenTimer_Elapsed(object sender, System.Timers.ElapsedEventArgs e)
 {
 // Use a lambda expression to set the button color to green.
 button1.Invoke(new Action(() => button1.BackColor = Color.Green));
 }

 private void button1_Click(object sender, EventArgs e)
 {
 Application.Exit();
 }

 [STAThread]
 public static void Main(string[] args)
 {
 Application.Run(new Recipe07_19());
 }
 }
}

7-20. Display a Web Page in a Windows-Based Application

Problem
You want to display a web page and provide web-navigation capabilities within your Windows Forms
application.

Solution
Use the WebBrowser control to display the web page and other standard controls like buttons and text
boxes to allow the user to control the operation of the WebBrowser.

■ Caution The WebBrowser control is a managed wrapper around the WebBrowser ActiveX control. This means
that you must ensure you annotate the Main method of your Windows application with the STAThread attribute and
that you dispose of the WebBrowser control (by calling the WebBrowser.Dispose method) when it is no longer
required.

CHAPTER 7 ■ WINDOWS FORMS

357

How It Works
The WebBrowser control makes it a trivial task to embed highly functional web browser capabilities into
your Windows applications. The WebBrowser control is responsible for the display of web pages and
maintaining page history, but it does not provide any controls for user interaction. Instead, the
WebBrowser control exposes properties and events that you can manipulate programmatically to control
the operation of the WebBrowser. This approach makes the WebBrowser control highly flexible and
adaptable to most common browsing requirements. Table 7-1 summarizes some of the WebBrowser
members related to web navigation that you will find particularly useful.

Table 7-1. Commonly Used Members of the WebBrowser Control

Member Description

Property

AllowNavigation Controls whether the WebBrowser can navigate to another page after its initial page
has been loaded

CanGoBack Indicates whether the WebBrowser currently holds back page history, which would
allow the GoBack method to succeed

CanGoForward Indicates whether the WebBrowser currently holds forward page history, which
would allow the GoForward method to succeed

IsBusy Indicates whether the WebBrowser is currently busy downloading a page

Url Holds the URL of the currently displayed/downloading page

Method

GoBack Displays the previous page in the page history

GoForward Displays the next page in the page history

GoHome Displays the home page of the current user as configured in Windows

Navigate Displays the web page at the specified URL

Stop Stops the current WebBrowser activity

Event

DocumentCompleted Signals that the active download has completed and the document is displayed in
the WebBrowser

CHAPTER 7 ■ WINDOWS FORMS

358

You can also use the WebBrowser.DocumentText property to set (or get) the currently displayed HTML
contents of the WebBrowser. To manipulate the contents using the Document Object Model (DOM), get
an HtmlDocument instance via the Document property.

The Code
The following example uses the WebBrowser control to allow users to navigate to a web page whose
address is entered into a TextBox. Buttons also allow users to move forward and backward through page
history and navigate directly to their personal home page.

using System;
using System.Windows.Forms;

namespace Apress.VisualCSharpRecipes.Chapter07
{
 public partial class Recipe07_20 : Form
 {
 public Recipe07_20()
 {
 // Initialization code is designer generated and contained
 // in a separate file named Recipe07-20.Designer.cs.
 InitializeComponent();
 }

 private void goButton_Click(object sender, EventArgs e)
 {
 // Navigate to the URL specified in the text box.
 webBrowser1.Navigate(textURL.Text);
 }

 private void homeButton_Click(object sender, EventArgs e)
 {
 // Navigate to the current user's home page.
 webBrowser1.GoHome();
 }

 protected override void OnLoad(EventArgs e)
 {
 // Call the OnLoad method of the base class to ensure the Load
 // event is raised correctly.
 base.OnLoad(e);

 // Navigate to the Apress home page when the application first
 // loads.
 webBrowser1.Navigate("http://www.apress.com");
 }

http://www.apress.com
http://www.apress.com

CHAPTER 7 ■ WINDOWS FORMS

359

 private void backButton_Click(object sender, EventArgs e)
 {
 // Go to the previous page in the WebBrowser history.
 webBrowser1.GoBack();
 }

 private void forwarButton_Click(object sender, EventArgs e)
 {
 // Go to the next page in the WebBrowser history.
 webBrowser1.GoForward();
 }

 // Event handler to perform general interface maintenance once a document
 // has been loaded into the WebBrowser.
 private void webBrowser1_DocumentCompleted(object sender,
 WebBrowserDocumentCompletedEventArgs e)
 {
 // Update the content of the TextBox to reflect the current URL.
 textURL.Text = webBrowser1.Url.ToString();

 // Enable or disable the Back button depending on whether the
 // WebBrowser has back history.
 if (webBrowser1.CanGoBack)
 {
 backButton.Enabled = true;
 }
 else
 {
 backButton.Enabled = false;
 }

 // Enable or disable the Forward button depending on whether the
 // WebBrowser has forward history.
 if (webBrowser1.CanGoForward)
 {
 forwarButton.Enabled = true;
 }
 else
 {
 forwarButton.Enabled = false;
 }
 }

 [STAThread]
 public static void Main(string[] args)
 {
 Application.Run(new Recipe07_20());
 }
 }
}

CHAPTER 7 ■ WINDOWS FORMS

360

7-21. Display WPF Windows in a Windows Forms Application

Problem
You need to display a WPF window in a Windows Forms application.

Solution
Create an instance of the WPF window (System.Windows.Window) you want to display in your Windows
Forms code. Call Window.ShowDialog to display a modal window, or call Window.Show to display a
modeless window.

How It Works
The trickiest thing about displaying a WPF window in a Windows Forms application is actually
integrating the WPF source code into your project correctly if you are using Visual Studio. There is no
option in your Windows Forms project to add a WPF Window when you select Add New Item in Solution
Explorer.

The easiest way around this is to import an existing WPF Window using the Add Existing option in
Solution Explorer. This will set everything up appropriately (adding the necessary assembly references),
and you can then edit the WPF Window as you would when creating a WPF application. Alternatively,
Visual Studio will allow you to add a new WPF user control to your Windows Forms application. You can
use that option and then change the XAML and code-behind as required.

Once you have a WPF Window declared, you can reference and instantiate the class the same as you
would any other class. Calling Window.ShowDialog will display the window modally, meaning that the
user can interact with only that window and must close it before they can interact again with the rest of
the application. Calling Window.Show will display a modeless window, allowing the user to interact with
the new window as well as the rest of the application.

The Code
The following example (shown running in Figure 7-13) displays a Windows Form with two buttons. The
left button opens and closes a modeless WPF window, and the right button opens a modal window.
When the example creates the modeless window, it subscribes an event handler to the Window.Closing
event so that the application can update the button state should the user choose to close the window
directly instead of using the button. The following code is the code-behind for the main Windows Form:

using System;
using System.ComponentModel;
using System.Windows.Forms;

namespace Apress.VisualCSharpRecipes.Chapter07
{
 public partial class Recipe07_21 : Form
 {
 private Window1 modelessWindow;

CHAPTER 7 ■ WINDOWS FORMS

361

 private CancelEventHandler modelessWindowCloseHandler;

 public Recipe07_21()
 {
 // Initialization code is designer generated and contained
 // in a separate file named Recipe07-21.Designer.cs.
 InitializeComponent();
 modelessWindowCloseHandler = new CancelEventHandler(Window_Closing);
 }

 // Handles the button click event to open and close the modeless
 // WPF window.
 private void OpenModeless_Click(object sender, EventArgs e)
 {
 if (modelessWindow == null)
 {
 modelessWindow = new Window1();

 // Add an event handler to get notification when the window
 // is closing.
 modelessWindow.Closing += modelessWindowCloseHandler;

 // Change the button text.
 btnOpenModeless.Text = "Close Modeless Window";

 // Show the Windows Form.
 modelessWindow.Show();
 }
 else
 {
 modelessWindow.Close();
 }
 }

 // Handles the button click event to open the modal WPF Window.
 private void OpenModal_Click(object sender, EventArgs e)
 {
 // Create and display the modal window.
 Window1 window = new Window1();
 window.ShowDialog();
 }

 // Handles the WPF Window's Closing event for the modeless window.
 private void Window_Closing(object sender, CancelEventArgs e)
 {
 // Remove the event handler reference.
 modelessWindow.Closing -= modelessWindowCloseHandler;
 modelessWindow = null;

CHAPTER 7 ■ WINDOWS FORMS

362

 // Change the button text.
 btnOpenModeless.Text = "Open Modeless Window";
 }
 }
}

The following XAML provides the declaration of the WPF Window that is opened when the user clicks
either of the buttons on the Windows Forms application:

<Window x:Class="Apress.VisualCSharpRecipes.Chapter07.Window1"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="Recipe07_21" Height="200" Width="300">
 <StackPanel Margin="20">
 <TextBlock FontSize="20" Text="A WPF Window" TextAlignment="Center"/>
 <Button Click="btnClose_Click" Content="Close" Margin="50"
 MaxWidth="50" Name="btnClose" />
 </StackPanel>
</Window>

The following is the code-behind for the WPF Window that allows the user to close the window by
clicking the Close button:

using System.Windows;
using System.Windows.Forms;

namespace Apress.VisualCSharpRecipes.Chapter07
{
 /// <summary>
 /// Interaction logic for Window1.xaml
 /// </summary>
 public partial class Window1 : Window
 {
 public Window1()
 {
 InitializeComponent();
 }

 private void btnClose_Click(object sender, RoutedEventArgs e)
 {
 this.Close();
 }
 }
}

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 7 ■ WINDOWS FORMS

363

Figure 7-13. Displaying a WPF window from a Windows Forms application

7-22. Display WPF Controls in Windows Forms

Problem
You need to display WPF user interface elements alongside Windows Forms controls in a Windows Form.

Solution
Use a System.Windows.Forms.Integration.ElementHost control on your Windows Form, and host the WPF
control inside it.

How It Works
The ElementHost control is a Windows Forms control that allows you to host WPF controls in Windows
Forms. The ElementHost control makes integrating WPF controls into your Windows Forms application
relatively simple and even provides some limited visual design-time support.

The ElementHost can contain a single WPF element that inherits from System.Windows.UIElement.
The element can be one of the layout containers discussed in Chapter 17, which allows you to create
rich, structured WPF content within the ElementHost control. Often, the WPF element you place in the
ElementHost control will be a WPF user control (see Chapter 17), but can also be any common WPF
control.

To use the ElementHost control in Visual Studio’s graphical design environment, open the toolbox
and browse to the WPF Interoperability category. Drag the ElementHost control and drop it on the
Windows Form as you would with any other control. Using the ElementHost Tasks window, you can
then select any WPF user control currently in your project to place in the ElementHost control (see Figure
7-14).

CHAPTER 7 ■ WINDOWS FORMS

364

Figure 7-14. Using ElementHost in Visual Studio

If you do not want to use a user control, then you will need to populate the ElementHost control
programmatically by assigning the desired WPF element to the Child property of the ElementHost
control.

The Code
The following example demonstrates how to integrate WPF controls into a Windows Forms application.
The example (shown in Figure 7-15) uses a simple WPF user control consisting of a System.Windows.
Shapes.Ellipse that can change between red and blue color gradients. This EllipseControl is assigned
to one ElementHost using the Visual Studio form builder. Another ElementHost is populated
programmatically with a System.Windows.Controls.TextBox. A standard Windows Forms button triggers
the EllipseControl to change color, and then writes a log entry to the TextBox. Here is the XAML for the
WPF user control:

<UserControl x:Class="Apress.VisualCSharpRecipes.Chapter07.EllipseControl"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Height="300" Width="300">
 <Grid x:Name="Grid1">
 <Grid.Resources>
 <RadialGradientBrush x:Key="RedBrush" RadiusX=".8" RadiusY="1"
 Center="0.5,0.5" GradientOrigin="0.05,0.5">
 <GradientStop Color="#ffffff" Offset="0.1" />
 <GradientStop Color="#ff0000" Offset="0.5" />
 <GradientStop Color="#880000" Offset="0.8" />
 </RadialGradientBrush>
 <RadialGradientBrush x:Key="BlueBrush" RadiusX=".8" RadiusY="1"
 Center="0.5,0.5" GradientOrigin="0.05,0.5">
 <GradientStop Color="#ffffff" Offset="0.1" />
 <GradientStop Color="#0000ff" Offset="0.5" />
 <GradientStop Color="#000088" Offset="0.8" />
 </RadialGradientBrush>
 </Grid.Resources>

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 7 ■ WINDOWS FORMS

365

 <Ellipse Margin="5" Name="Ellipse1" ToolTip="A WPF Ellipse."
 Fill="{StaticResource RedBrush}">
 </Ellipse>
 </Grid>
</UserControl>

Here is the code-behind for the EllipseControl, which is used to control and query its current color
gradient:

using System.Windows.Controls;
using System.Windows.Media;

namespace Apress.VisualCSharpRecipes.Chapter07
{
 /// <summary>
 /// Interaction logic for EllipseControl.xaml
 /// </summary>
 public partial class EllipseControl : UserControl
 {
 public EllipseControl()
 {
 // Initialization code is designer generated and contained
 // in a separate file named Recipe07-22.Designer.cs.
 InitializeComponent();
 }

 // Gets the name of the current color.
 public string Color
 {
 get
 {
 if (Ellipse1.Fill == (Brush)Grid1.Resources["RedBrush"])
 {
 return "Red";
 }
 else
 {
 return "Blue";
 }
 }
 }

 // Switch the fill to the red gradient.
 public void ChangeColor()
 {
 // Check the current fill of the ellipse.
 if (Ellipse1.Fill == (Brush)Grid1.Resources["RedBrush"])
 {
 // Ellipse is red, change to blue.
 Ellipse1.Fill = (Brush)Grid1.Resources["BlueBrush"];
 }

CHAPTER 7 ■ WINDOWS FORMS

366

 else
 {
 // Ellipse is blue, change to red.
 Ellipse1.Fill = (Brush)Grid1.Resources["RedBrush"];
 }
 }
 }
}

The following is the code-behind for the main Windows Forms form. The form constructor
demonstrates the programmatic creation and configuration of an ElementHost control to display a
standard WPF TextBox control. The button1_Click method is invoked when the user clicks the button,
and it changes the color of the ellipse and appends a message to the content of the TextBox. The rest of
the application code generated by Visual Studio is not shown here, but is provided in the sample code
(available on the book’s page on the Apress web site, www.apress.com).

using System;
using System.Windows;
using System.Windows.Forms;
using WPFControls=System.Windows.Controls;
using System.Windows.Forms.Integration;

namespace Apress.VisualCSharpRecipes.Chapter07
{
 public partial class Recipe07_22: Form
 {
 WPFControls.TextBox textBox;

 public Recipe07_22 ()
 {
 InitializeComponent();

 // Create a new WPF TextBox control.
 textBox = new WPFControls.TextBox();
 textBox.Text = "A WPF TextBox\n\r\n\r";
 textBox.TextAlignment = TextAlignment.Center;
 textBox.VerticalAlignment = VerticalAlignment.Center;
 textBox.VerticalScrollBarVisibility =
 WPFControls.ScrollBarVisibility.Auto;
 textBox.IsReadOnly = true;

 // Create a new ElementHost to host the WPF TextBox.
 ElementHost elementHost2 = new ElementHost();
 elementHost2.Name = "elementHost2";
 elementHost2.Dock = DockStyle.Fill;
 elementHost2.Child = textBox;
 elementHost2.Size = new System.Drawing.Size(156, 253);
 elementHost2.RightToLeft = RightToLeft.No;

http://www.apress.com
http://www.apress.com

CHAPTER 7 ■ WINDOWS FORMS

367

 // Place the new ElementHost in the bottom-left table cell.
 tableLayoutPanel1.Controls.Add(elementHost2, 1, 0);
 }

 private void button1_Click(object sender, EventArgs e)
 {
 // Change the ellipse color.
 ellipseControl1.ChangeColor();

 // Get the current ellipse color and append to TextBox.
 textBox.Text +=
 String.Format("Ellipse color changed to {0}\n\r",
 ellipseControl1.Color);

 textBox.ScrollToEnd();
 }
 }
}

Figure 7-15. Using WPF controls in a Windows Forms form

C H A P T E R 8

■ ■ ■

369

Graphics, Multimedia,
and Printing

Graphics, video, sound, and printing are the hallmarks of a traditional rich client on the Microsoft
Windows operating system. When it comes to multimedia, the Microsoft .NET Framework delivers a
compromise, providing support for some of these features while ignoring others. For example, you will
find a sophisticated set of tools for two-dimensional drawing and event-based printing with GDI+ and
the types in the System.Drawing namespaces. These classes wrap GDI32.dll and USER32.dll, which
provide the native graphics device interface (GDI) functions in the Windows application programming
interface (API), and they make it much easier to draw complex shapes, work with coordinates and
transforms, and process images. On the other hand, if you want to show a video file or get information
about the current print jobs, you will need to look beyond the .NET Framework.

This chapter presents recipes that show you how to use built-in .NET features and, where necessary,
native Win32 libraries via P/Invoke or COM Interop. The recipes in this chapter describe how to do the
following:

• Find the fonts installed in your system (recipe 8-1)

• Perform hit testing with shapes (recipe 8-2)

• Create an irregularly shaped form or control (recipe 8-3)

• Create a sprite that can be moved around (recipe 8-4)

• Display an image that could be made to scroll (recipe 8-5), learn how to capture
the image of the desktop (recipe 8-6), and create a thumbnail for an existing image
(recipe 8-8)

• Enable double buffering to increase performance while redrawing (recipe 8-7)

• Play a beep or a system-defined sound (recipe 8-9), play a WAV file (recipe 8-10),
play a non-WAV file such as an MP3 file (recipe 8-11), and play an animation with
DirectShow (recipe 8-12)

• Retrieve information about the printers installed on the machine (recipe 8-13),
print a simple document (recipe 8-14), print a document that has multiple pages
(recipe 8-15), print wrapped text (recipe 8-16), show a print preview (recipe 8-17),
and manage print jobs (recipe 8-18)

CHAPTER 8 ■ GRAPHICS, MULTIMEDIA, AND PRINTING

370

• Perform text-to-speech (TTS) (recipe 8-19)

• Perform optical character recognition (OCR) to find words in an image (recipe 8-
20).

8-1. Find All Installed Fonts

Problem
You need to retrieve a list of all the fonts installed on the current computer.

Solution
Create a new instance of the System.Drawing.Text.InstalledFontCollection class, which contains a
collection of FontFamily objects representing all the installed fonts.

How It Works
The InstalledFontCollection class allows you to retrieve information about currently installed fonts. It
derives from the FontCollection class, which allows you to get a list of font families as a collection in the
Families property.

The Code
The following code shows a form that iterates through the font collection when it is first created. Every
time it finds a font, it creates a new Label control that will display the font name in the given font face (at
a size of 14 points). The Label is added to a Panel control named pnlFonts with AutoScroll set to true,
allowing the user to scroll through the list of available fonts.

using System;
using System.Drawing;
using System.Windows.Forms;
using System.Drawing.Text;

namespace Apress.VisualCSharpRecipes.Chapter08
{
 public partial class Recipe08_01: Form
 {
 public Recipe08_01()
 {
 InitializeComponent();
 }

 private void Recipe08_01_Load(object sender, EventArgs e)
 {

CHAPTER 8 ■ GRAPHICS, MULTIMEDIA, AND PRINTING

371

 // Create the font collection.
 using (InstalledFontCollection fontFamilies =
 new InstalledFontCollection())
 {
 // Iterate through all font families.
 int offset = 10;
 foreach (FontFamily family in fontFamilies.Families)
 {
 try
 {
 // Create a label that will display text in this font.
 Label fontLabel = new Label();
 fontLabel.Text = family.Name;
 fontLabel.Font = new Font(family, 14);
 fontLabel.Left = 10;
 fontLabel.Width = pnlFonts.Width;
 fontLabel.Top = offset;

 // Add the label to a scrollable Panel.
 pnlFonts.Controls.Add(fontLabel);
 offset += 30;
 }
 catch
 {
 // An error will occur if the selected font does
 // not support normal style (the default used when
 // creating a Font object). This problem can be
 // harmlessly ignored.
 }
 }
 }
 }
 }
}

Figure 8-1 shows this simple test application.

CHAPTER 8 ■ GRAPHICS, MULTIMEDIA, AND PRINTING

372

Figure 8-1. A list of installed fonts

8-2. Perform Hit Testing with Shapes

Problem
You need to detect whether a user clicks inside a shape.

Solution
Test the point where the user clicked with methods such as Rectangle.Contains and Region.IsVisible
(in the System.Drawing namespace) or GraphicsPath.IsVisible (in the System.Drawing.Drawing2D
namespace), depending on the type of shape.

How It Works
Often, if you use GDI+ to draw shapes on a form, you need to be able to determine when a user clicks
inside a given shape. The .NET Framework provides three methods to help with this task:

CHAPTER 8 ■ GRAPHICS, MULTIMEDIA, AND PRINTING

373

• The Rectangle.Contains method takes a point and returns true if the point is
inside a given rectangle. In many cases, you can retrieve a rectangle for another
type of shape. For example, you can use Image.GetBounds to retrieve the invisible
rectangle that represents the image boundaries. The Rectangle structure is a
member of the System.Drawing namespace.

• The GraphicsPath.IsVisible method takes a point and returns true if the point is
inside the area defined by a closed GraphicsPath. Because a GraphicsPath can
contain multiple lines, shapes, and figures, this approach is useful if you want to
test whether a point is contained inside a nonrectangular region. The
GraphicsPath class is a member of the System.Drawing.Drawing2D namespace.

• The Region.IsVisible method takes a point and returns true if the point is inside
the area defined by a Region. A Region, like the GraphicsPath, can represent a
complex nonrectangular shape. Region is a member of the System.Drawing
namespace.

The Code
The following example shows a form that creates a Rectangle and a GraphicsPath. By default, these two
shapes are given light-blue backgrounds. However, an event handler responds to the Form.MouseMove
event, checks to see whether the mouse pointer is in one of these shapes, and updates the background to
bright pink if the pointer is there.

Note that the highlighting operation takes place directly inside the MouseMove event handler. The
painting is performed only if the current selection has changed. For simpler code, you could invalidate
the entire form every time the mouse pointer moves in or out of a region and handle all the drawing in
the Form.Paint event handler, but this would lead to more drawing and generate additional flicker as the
entire form is repainted.

using System;
using System.Drawing;
using System.Windows.Forms;
using System.Drawing.Drawing2D;

namespace Apress.VisualCSharpRecipes.Chapter08
{
 public partial class Recipe08_02 : Form
 {
 // Define the shapes used on this form.
 private GraphicsPath path;
 private Rectangle rectangle;

 // Define the flags that track where the mouse pointer is.
 private bool inPath = false;
 private bool inRectangle = false;

CHAPTER 8 ■ GRAPHICS, MULTIMEDIA, AND PRINTING

374

 // Define the brushes used for painting the shapes.
 Brush highlightBrush = Brushes.HotPink;
 Brush defaultBrush = Brushes.LightBlue;

 public Recipe08_02()
 {
 InitializeComponent();
 }

 private void Recipe08_02_Load(object sender, EventArgs e)
 {
 // Create the shapes that will be displayed.
 path = new GraphicsPath();
 path.AddEllipse(10, 10, 100, 60);
 path.AddCurve(new Point[] {new Point(50, 50),
 new Point(10,33), new Point(80,43)});
 path.AddLine(50, 120, 250, 80);
 path.AddLine(120, 40, 110, 50);
 path.CloseFigure();

 rectangle = new Rectangle(100, 170, 220, 120);
 }

 private void Recipe08_02_Paint(object sender, PaintEventArgs e)
 {
 Graphics g = e.Graphics;

 // Paint the shapes according to the current selection.
 if (inPath)
 {
 g.FillPath(highlightBrush, path);
 g.FillRectangle(defaultBrush, rectangle);
 }
 else if (inRectangle)
 {
 g.FillRectangle(highlightBrush, rectangle);
 g.FillPath(defaultBrush, path);
 }
 else
 {
 g.FillPath(defaultBrush, path);
 g.FillRectangle(defaultBrush, rectangle);
 }
 g.DrawPath(Pens.Black, path);
 g.DrawRectangle(Pens.Black, rectangle);
 }

CHAPTER 8 ■ GRAPHICS, MULTIMEDIA, AND PRINTING

375

 private void Recipe08_02_MouseMove(object sender, MouseEventArgs e)
 {
 using (Graphics g = this.CreateGraphics())
 {
 // Perform hit testing with rectangle.
 if (rectangle.Contains(e.X, e.Y))
 {
 if (!inRectangle)
 {
 inRectangle = true;

 // Highlight the rectangle.
 g.FillRectangle(highlightBrush, rectangle);
 g.DrawRectangle(Pens.Black, rectangle);
 }
 }
 else if (inRectangle)
 {
 inRectangle = false;

 // Restore the unhighlighted rectangle.
 g.FillRectangle(defaultBrush, rectangle);
 g.DrawRectangle(Pens.Black, rectangle);
 }

 // Perform hit testing with path.
 if (path.IsVisible(e.X, e.Y))
 {
 if (!inPath)
 {
 inPath = true;

 // Highlight the path.
 g.FillPath(highlightBrush, path);
 g.DrawPath(Pens.Black, path);
 }
 }
 else if (inPath)
 {
 inPath = false;

 // Restore the unhighlighted path.
 g.FillPath(defaultBrush, path);
 g.DrawPath(Pens.Black, path);
 }
 }
 }
 }
}

Figure 8-2 shows the application in action.

CHAPTER 8 ■ GRAPHICS, MULTIMEDIA, AND PRINTING

376

Figure 8-2. Hit testing with a Rectangle and a GraphicsPath object

8-3. Create an Irregularly Shaped Control

Problem
You need to create a nonrectangular form or control.

Solution
Create a new System.Drawing.Region object that has the shape you want for the form, and assign it to the
Form.Region or Control.Region property.

How It Works
To create a nonrectangular form or control, you first need to define the shape you want. The easiest
approach is to use the System.Drawing.Drawing2D.GraphicsPath object, which can accommodate any
combination of ellipses, rectangles, closed curves, and even strings. You can add shapes to a

CHAPTER 8 ■ GRAPHICS, MULTIMEDIA, AND PRINTING

377

GraphicsPath instance using methods such as AddEllipse, AddRectangle, AddClosedCurve, and AddString.
Once you are finished defining the shape you want, you can create a Region object from this
GraphicsPath—just submit the GraphicsPath in the Region class constructor. Finally, you can assign the
Region to the Form.Region property or the Control.Region property.

The Code
The following example creates an irregularly shaped form (shown in Figure 8-3) using two curves made
of multiple points, which are converted into a closed figure using the GraphicsPath.CloseAllFigures
method.

using System;
using System.Drawing;
using System.Windows.Forms;
using System.Drawing.Drawing2D;

namespace Apress.VisualCSharpRecipes.Chapter08
{
 public partial class Recipe08_03 : Form
 {
 public Recipe08_03()
 {
 InitializeComponent();
 }

 private void Recipe08_03_Load(object sender, EventArgs e)
 {
 GraphicsPath path = new GraphicsPath();

 Point[] pointsA = new Point[]
 {
 new Point(0, 0),
 new Point(40, 60),
 new Point(this.Width - 100, 10)
 };
 path.AddCurve(pointsA);

 Point[] pointsB = new Point[]
 {
 new Point(this.Width - 40, this.Height - 60),
 new Point(this.Width, this.Height),
 new Point(10, this.Height)
 };
 path.AddCurve(pointsB);

 path.CloseAllFigures();

 this.Region = new Region(path);
 }

CHAPTER 8 ■ GRAPHICS, MULTIMEDIA, AND PRINTING

378

 private void cmdClose_Click(object sender, EventArgs e)
 {
 this.Close();
 }
 }
}

Figure 8-3. A nonrectangular form

■ Note Another method for creating nonrectangular forms (not controls) is using the BackgroundImage and
TransparentKey properties available in the Form class. However, this method could cause display problems when
monitors are set to a color depth greater than 24-bit. For more information about this topic, refer to the Microsoft
Developer Network (MSDN) documentation.

For an example that demonstrates a nonrectangular control, refer to recipe 8-4.

CHAPTER 8 ■ GRAPHICS, MULTIMEDIA, AND PRINTING

379

8-4. Create a Movable Sprite

Problem
You need to create a shape the user can manipulate on a form, perhaps by dragging it, resizing it, or
otherwise interacting with it.

Solution
Create a custom control, and override the painting logic to draw a shape. Assign your shape to the
Control.Region property. You can then use this Region to perform hit testing.

How It Works
If you need to create a complex user interface that incorporates many custom-drawn elements, you
need a way to track these elements and allow the user to interact with them. The easiest approach in
.NET is to create a dedicated control by deriving a class from System.Windows.Forms.Control. You can
then customize the way this control is painted in the way its basic set of events is raised.

The Code
The following example shows a control that represents a simple ellipse shape on a form. All controls are
associated with a rectangular region on a form, so the EllipseShape control generates an ellipse that fills
these boundaries (provided through the Control.ClientRectangle property). Once the shape has been
generated, the Control.Region property is set according to the bounds on the ellipse. This ensures that
events such as MouseMove, MouseDown, Click, and so on, will occur only if the mouse is over the ellipse, not
the entire client rectangle.

The following code shows the full EllipseShape code:

using System;
using System.Drawing;
using System.Windows.Forms;
using System.Drawing.Drawing2D;

namespace Apress.VisualCSharpRecipes.Chapter08
{
 public partial class EllipseShape : Control
 {
 public EllipseShape()
 {
 InitializeComponent();
 }

 private GraphicsPath path = null;

CHAPTER 8 ■ GRAPHICS, MULTIMEDIA, AND PRINTING

380

 private void RefreshPath()
 {
 // Create the GraphicsPath for the shape (in this case
 // an ellipse that fits inside the full control area)
 // and apply it to the control by setting
 // the Region property.
 path = new GraphicsPath();
 path.AddEllipse(this.ClientRectangle);
 this.Region = new Region(path);
 }

 protected override void OnPaint(PaintEventArgs e)
 {
 base.OnPaint(e);
 if (path != null)
 {
 e.Graphics.SmoothingMode = SmoothingMode.AntiAlias;
 e.Graphics.FillPath(new SolidBrush(this.BackColor), path);
 e.Graphics.DrawPath(new Pen(this.ForeColor, 4), path);
 }
 }

 protected override void OnResize(System.EventArgs e)
 {
 base.OnResize(e);
 RefreshPath();
 this.Invalidate();
 }
 }
}

You could define the EllipseShape control in a separate class library assembly so that you could add
it to the Microsoft Visual Studio .NET toolbox and use it at design time. However, even without taking
this step, it is easy to create a simple test application. The following Windows Forms application creates
two ellipses and allows the user to drag both of them around the form, simply by holding the mouse
down and moving the pointer:

using System;
using System.Drawing;
using System.Windows.Forms;

namespace Apress.VisualCSharpRecipes.Chapter08
{
 public partial class Recipe08_04 : Form
 {
 public Recipe08_04()
 {
 InitializeComponent();
 }

CHAPTER 8 ■ GRAPHICS, MULTIMEDIA, AND PRINTING

381

 // Tracks when drag mode is on.
 private bool isDraggingA = false;
 private bool isDraggingB = false;

 // The ellipse shape controls.
 private EllipseShape ellipseA, ellipseB;

 private void Recipe08_04_Load(object sender, EventArgs e)
 {
 // Create and configure both ellipses.
 ellipseA = new EllipseShape();
 ellipseA.Width = ellipseA.Height = 100;
 ellipseA.Top = ellipseA.Left = 30;
 ellipseA.BackColor = Color.Red;
 this.Controls.Add(ellipseA);

 ellipseB = new EllipseShape();
 ellipseB.Width = ellipseB.Height = 100;
 ellipseB.Top = ellipseB.Left = 130;
 ellipseB.BackColor = Color.Azure;
 this.Controls.Add(ellipseB);

 // Attach both ellipses to the same set of event handlers.
 ellipseA.MouseDown += Ellipse_MouseDown;
 ellipseA.MouseUp += Ellipse_MouseUp;
 ellipseA.MouseMove += Ellipse_MouseMove;

 ellipseB.MouseDown += Ellipse_MouseDown;
 ellipseB.MouseUp += Ellipse_MouseUp;
 ellipseB.MouseMove += Ellipse_MouseMove;
 }

 private void Ellipse_MouseDown(object sender, MouseEventArgs e)
 {
 // Get the ellipse that triggered this event.
 Control control = (Control)sender;

 if (e.Button == MouseButtons.Left)
 {
 control.Tag = new Point(e.X, e.Y);
 if (control == ellipseA)
 {
 isDraggingA = true;
 }
 else
 {
 isDraggingB = true;
 }
 }
 }

CHAPTER 8 ■ GRAPHICS, MULTIMEDIA, AND PRINTING

382

 private void Ellipse_MouseUp(object sender, MouseEventArgs e)
 {
 isDraggingA = false;
 isDraggingB = false;
 }

 private void Ellipse_MouseMove(object sender, MouseEventArgs e)
 {
 // Get the ellipse that triggered this event.
 Control control = (Control)sender;

 if ((isDraggingA && control == ellipseA) ||
 (isDraggingB && control == ellipseB))
 {
 // Get the offset.
 Point point = (Point)control.Tag;

 // Move the control.
 control.Left = e.X + control.Left - point.X;
 control.Top = e.Y + control.Top - point.Y;
 }
 }
 }
}

Figure 8-4 shows the user about to drag an ellipse.

Figure 8-4. Dragging custom shape controls on a form

CHAPTER 8 ■ GRAPHICS, MULTIMEDIA, AND PRINTING

383

8-5. Create a Scrollable Image

Problem
You need to create a scrollable picture with dynamic content.

Solution
Leverage the automatic scroll capabilities of the System.Windows.Forms.Panel control by setting
Panel.AutoScroll to true and placing a System.Windows.Forms.PictureBox control with the image
content inside the Panel.

How It Works
The Panel control has built-in scrolling support, as shown in recipe 8-1. If you place any controls in it
that extend beyond its bounds and you set Panel.AutoScroll to true, the panel will show scroll bars that
allow the user to move through the content. This works particularly well with large images. You can load
or create the image in memory, assign it to a picture box (which has no intrinsic support for scrolling),
and then show the picture box inside the panel. The only consideration you need to remember is to
make sure you set the picture box dimensions equal to the full size of the image you want to show.

The Code
The following example creates an image that represents a document. The image is generated as an in-
memory bitmap, and several lines of text are added using the Graphics.DrawString method. The image is
then bound to a picture box, which is shown in a scrollable panel, as shown in Figure 8-5.

using System;
using System.Drawing;
using System.Windows.Forms;

namespace Apress.VisualCSharpRecipes.Chapter08
{
 public partial class Recipe08_05 : Form
 {
 public Recipe08_05()
 {
 InitializeComponent();
 }

 private void Recipe08_05_Load(object sender, EventArgs e)
 {
 string text = "The quick brown fox jumps over the lazy dog.";
 using (Font font = new Font("Tahoma", 20))
 {

CHAPTER 8 ■ GRAPHICS, MULTIMEDIA, AND PRINTING

384

 // Create an in-memory bitmap.
 Bitmap b = new Bitmap(600, 600);
 using (Graphics g = Graphics.FromImage(b))
 {
 g.FillRectangle(Brushes.White, new Rectangle(0, 0,
 b.Width, b.Height));

 // Draw several lines of text on the bitmap.
 for (int i = 0; i < 10; i++)
 {
 g.DrawString(text, font, Brushes.Black,
 50, 50 + i * 60);
 }
 }

 // Display the bitmap in the picture box.
 pictureBox1.BackgroundImage = b;
 pictureBox1.Size = b.Size;
 }
 }
 }
}

Figure 8-5. Adding scrolling support to custom content

CHAPTER 8 ■ GRAPHICS, MULTIMEDIA, AND PRINTING

385

8-6. Perform a Screen Capture

Problem
You need to take a snapshot of the current desktop.

Solution
Use the CopyFromScreen method of the Graphics class to copy screen contents.

How It Works
The Graphics class includes CopyFromScreen methods that copy color data from the screen onto the
drawing surface represented by a Graphics object. This method requires you to pass the source and
destination points and the size of the image to be copied.

The Code
The following example captures the screen and displays it in a picture box. It first creates a new Bitmap
object and then invokes CopyFromScreen to draw onto the Bitmap. After drawing, the image is assigned to
the picture box, as shown in Figure 8-6.

using System;
using System.Drawing;
using System.Windows.Forms;

namespace Apress.VisualCSharpRecipes.Chapter08
{
 public partial class Recipe08_06 : Form
 {
 public Recipe08_06()
 {
 InitializeComponent();
 }

 private void cmdCapture_Click(object sender, EventArgs e)
 {
 Bitmap screen = new Bitmap(Screen.PrimaryScreen.Bounds.Width,
 Screen.PrimaryScreen.Bounds.Height);

 using (Graphics g = Graphics.FromImage(screen))
 {
 g.CopyFromScreen(0, 0, 0, 0, screen.Size);
 }

CHAPTER 8 ■ GRAPHICS, MULTIMEDIA, AND PRINTING

386

 pictureBox1.Image = screen;
 }
 }
}

Figure 8-6. Capturing the screen contents

8-7. Use Double Buffering to Increase Redraw Speed

Problem
You need to optimize drawing for a form or an authored control that is frequently refreshed, and you
want to reduce flicker.

Solution
Set the DoubleBuffered property of the form to true.

CHAPTER 8 ■ GRAPHICS, MULTIMEDIA, AND PRINTING

387

How It Works
In some applications you need to repaint a form or control frequently. This is commonly the case when
creating animations. For example, you might use a timer to invalidate your form every second. Your
painting code could then redraw an image at a new location, creating the illusion of motion. The
problem with this approach is that every time you invalidate the form, Windows repaints the window
background (clearing the form) and then runs your painting code, which draws the graphic element by
element. This can cause substantial onscreen flicker.

Double buffering is a technique you can implement to reduce this flicker. With double buffering,
your drawing logic writes to an in-memory bitmap, which is copied to the form at the end of the drawing
operation in a single, seamless repaint operation. Flickering is reduced dramatically.

The .NET Framework provides a default double buffering mechanism for forms and controls. You
can enable this by setting the DoubleBuffered property of your form or control to true or by using the
SetStyle method.

The Code
The following example sets the DoubleBuffered property of the form to true and shows an animation of
an image alternately growing and shrinking on the page. The drawing logic takes place in the Form.Paint
event handler, and a timer invalidates the form in a preset interval so that the image can be redrawn.
The user can choose whether to enable double buffering through a check box on the form. Without
double buffering, the form flickers noticeably. When double buffering is enabled, however, the image
grows and shrinks with smooth, flicker-free animation.

using System;
using System.Drawing;
using System.Windows.Forms;
using System.Drawing.Drawing2D;

namespace Apress.VisualCSharpRecipes.Chapter08
{
 public partial class Recipe08_07 : Form
 {
 public Recipe08_07()
 {
 InitializeComponent();
 }

 // Track the image size and the type of animation
 // (expanding or shrinking).
 private bool isShrinking = false;
 private int imageSize = 0;

 // Store the logo that will be painted on the form.
 private Image image;

CHAPTER 8 ■ GRAPHICS, MULTIMEDIA, AND PRINTING

388

 private void Recipe08_07_Load(object sender, EventArgs e)
 {
 // Load the logo image from the file.
 image = Image.FromFile("test.jpg");

 // Start the timer that invalidates the form.
 tmrRefresh.Start();
 }

 private void tmrRefresh_Tick(object sender, EventArgs e)
 {
 // Change the desired image size according to the animation mode.
 if (isShrinking)
 {
 imageSize--;
 }
 else
 {
 imageSize++;
 }

 // Change the sizing direction if it nears the form border.
 if (imageSize > (this.Width - 150))
 {
 isShrinking = true;
 }
 else if (imageSize < 1)
 {
 isShrinking = false;
 }

 // Repaint the form.
 this.Invalidate();
 }

 private void Recipe08_07_Paint(object sender, PaintEventArgs e)
 {
 Graphics g;

 g = e.Graphics;

 g.SmoothingMode = SmoothingMode.HighQuality;

 // Draw the background.
 g.FillRectangle(Brushes.Yellow, new Rectangle(new Point(0, 0),
 this.ClientSize));

 // Draw the logo image.
 g.DrawImage(image, 50, 50, 50 + imageSize, 50 + imageSize);
 }

CHAPTER 8 ■ GRAPHICS, MULTIMEDIA, AND PRINTING

389

 private void chkUseDoubleBuffering_CheckedChanged(object sender, EventArgs e)
 {
 this.DoubleBuffered = chkUseDoubleBuffering.Checked;
 }
 }
}

8-8. Show a Thumbnail for an Image

Problem
You need to show thumbnails (small representations of pictures) for the images in a directory.

Solution
Read the image from the file using the static FromFile method of the System.Drawing.Image class. You
can then retrieve a thumbnail using the Image.GetThumbnailImage method.

How It Works
The Image class provides the functionality for generating thumbnails through the GetThumbnailImage
method. You simply need to pass the width and height of the thumbnail you want (in pixels), and the
Image class will create a new Image object that fits these criteria. Anti-aliasing is used when reducing the
image to ensure the best possible image quality, although some blurriness and loss of detail are
inevitable. (Anti-aliasing is the process of removing jagged edges, often in resized graphics, by adding
shading with an intermediate color.) In addition, you can supply a notification callback, allowing you to
create thumbnails asynchronously.

When generating a thumbnail, it is important to ensure that the aspect ratio remains constant. For
example, if you reduce a 200×100 picture to a 50×50 thumbnail, the width will be compressed to one
quarter and the height will be compressed to one half, distorting the image. To ensure that the aspect
ratio remains constant, you can change either the width or the height to a fixed size and then adjust the
other dimension proportionately.

The Code
The following example reads a bitmap file and generates a thumbnail that is not greater than 200×200
pixels while preserving the original aspect ratio:

using System;
using System.Drawing;
using System.Windows.Forms;

CHAPTER 8 ■ GRAPHICS, MULTIMEDIA, AND PRINTING

390

namespace Apress.VisualCSharpRecipes.Chapter08
{
 public partial class Recipe08_08 : Form
 {
 public Recipe08_08()
 {
 InitializeComponent();
 }

 Image thumbnail;

 private void Recipe08_08_Load(object sender, EventArgs e)
 {
 using (Image img = Image.FromFile("test.jpg"))
 {
 int thumbnailWidth = 0, thumbnailHeight = 0;

 // Adjust the largest dimension to 200 pixels.
 // This ensures that a thumbnail will not be larger than
 // 200x200 pixels.
 // If you are showing multiple thumbnails, you would reserve a
 // 200x200-pixel square for each one.
 if (img.Width > img.Height)
 {
 thumbnailWidth = 200;
 thumbnailHeight = Convert.ToInt32(((200F / img.Width) *
 img.Height));
 }
 else
 {
 thumbnailHeight = 200;
 thumbnailWidth = Convert.ToInt32(((200F / img.Height) *
 img.Width));
 }

 thumbnail = img.GetThumbnailImage(thumbnailWidth, thumbnailHeight,
 null, IntPtr.Zero);
 }
 }

 private void Recipe08_08_Paint(object sender, PaintEventArgs e)
 {
 e.Graphics.DrawImage(thumbnail, 10, 10);
 }
 }
}

CHAPTER 8 ■ GRAPHICS, MULTIMEDIA, AND PRINTING

391

8-9. Play a Simple Beep or System Sound

Problem
You need to play a simple system-defined beep or sound.

Solution
Use the Beep method of the Console class or the Play method of the SystemSound class.

How It Works
The .NET Framework has provides the Beep method in the Console class and the System.Media
namespace, which provides classes for playing sound files.

Overloads of the Console.Beep method let you play a beep with the default frequency and duration
or with a frequency and duration you specify. Frequency is represented in hertz (and must range from 37
to 32,767), and the duration is represented in milliseconds. Internally, these methods invoke the Beep
Win32 function and use the computer’s internal speaker. Thus, if the computer does not have an
internal speaker, no sound will be produced.

The System.Media namespace contains the SystemSound, SystemSounds, and SoundPlayer classes. The
SystemSound class represents a Windows sound event, such as an asterisk, beep, question, and so on. It
also defines a Play method, which lets you play the sound associated with it.

The SystemSounds class defines properties that let you obtain the SystemSound instance of a specific
Windows sound event. For example, it defines an Asterisk property that returns a SystemSound instance
associated with the asterisk Windows sound event.

The SoundPlayer class lets you play WAV files. For more information on how to play a WAV file using
this class, refer to recipe 8-10.

The Code
The following example plays two different beeps and the asterisk sound in succession, using the Console
and SystemSound classes:

using System;
using System.Windows.Forms;
using System.Media;
using System.Threading;

namespace Apress.VisualCSharpRecipes.Chapter08
{
 public partial class Recipe08_09 : Form
 {
 public Recipe08_09()
 {
 InitializeComponent();
 }

CHAPTER 8 ■ GRAPHICS, MULTIMEDIA, AND PRINTING

392

 private void Recipe08_09_Load(object sender, EventArgs e)
 {
 // Play a beep with default frequency
 // and duration (800 and 200, respectively).
 Console.Beep();
 Thread.Sleep(500);

 // Play a beep with frequency as 200 and duration as 300.
 Console.Beep(200, 300);
 Thread.Sleep(500);

 // Play the sound associated with the Asterisk event.
 SystemSounds.Asterisk.Play();
 }
 }
}

8-10. Play a WAV File

Problem
You need to play a WAV file.

Solution
Create a new instance of the System.Media.SoundPlayer class, pass the location or stream of the WAV file,
and invoke the Play method.

How It Works
The .NET Framework includes the System.Media namespace, which contains a SoundPlayer class.
SoundPlayer contains constructors that let you specify the location of a WAV file or its stream. Once you
have created an instance, you just invoke the Play method to play the file. The Play method creates a
new thread to play the sound and is thus asynchronous (unless a stream is used). For playing the sound
synchronously, use the PlaySync method. Note that SoundPlayer supports only the WAV format.

Before a file is played, it is loaded into memory. You can load a file in advance by invoking the Load
or LoadSync method depending upon whether you want the operation to be asynchronous or
synchronous.

The Code
The following example shows a simple form that allows users to open any WAV file and play it:

CHAPTER 8 ■ GRAPHICS, MULTIMEDIA, AND PRINTING

393

using System;
using System.Windows.Forms;
using System.Media;

namespace Apress.VisualCSharpRecipes.Chapter08
{
 public partial class Recipe08_10 : Form
 {
 public Recipe08_10()
 {
 InitializeComponent();
 }

 private void cmdOpen_Click(object sender, EventArgs e)
 {
 // Allow the user to choose a file.
 OpenFileDialog openDialog = new OpenFileDialog();
 openDialog.InitialDirectory = "C:\\Windows\\Media";
 openDialog.Filter = "WAV Files|*.wav|All Files|*.*";

 if (DialogResult.OK == openDialog.ShowDialog())
 {
 SoundPlayer player = new SoundPlayer(openDialog.FileName);

 try
 {
 player.Play();
 }
 catch (Exception)
 {
 MessageBox.Show("An error occurred while playing media.");
 }
 finally
 {
 player.Dispose();
 }
 }
 }
 }
}

8-11. Play a Sound File

Problem
You need to play a non-WAV format audio file such as an MP3 file.

CHAPTER 8 ■ GRAPHICS, MULTIMEDIA, AND PRINTING

394

Solution
Use the ActiveMovie COM component included with Windows Media Player, which supports WAV and
MP3 audio.

How It Works
The ActiveMovie Quartz library provides a COM component that can play various types of audio files,
including the WAV and MP3 formats. The Quartz type library is provided through quartz.dll and is
included as a part of Microsoft DirectX with Media Player and the Windows operating system.

The first step for using the library is to generate an Interop class that can manage the interaction
between your .NET application and the unmanaged Quartz library. You can generate a C# class with this
Interop code using the Type Library Importer utility (Tlbimp.exe) and the following command line,
where [WindowsDir] is the path for your installation of Windows:
tlbimp [WindowsDir]\system32\quartz.dll /out:QuartzTypeLib.dll

Alternatively, you can generate the Interop class using Visual Studio .NET by adding a reference.
Simply right-click your project in Solution Explorer, and choose Add Reference from the context menu.
Then select the COM tab and scroll down to select ActiveMovie Control Type Library.

Once the Interop class is generated, you can work with the IMediaControl interface. You can specify
the file you want to play using RenderFile, and you can control playback using methods such as Run,
Stop, and Pause. The actual playback takes place on a separate thread, so it will not block your code.

The Code
The following example shows a simple form that allows you to open any audio file and play it.

You can also use the Quartz library to show movie files, as demonstrated in recipe 8-12.

using System;
using System.Windows.Forms;
using QuartzTypeLib;

namespace Apress.VisualCSharpRecipes.Chapter08
{
 public partial class Recipe08_11 : Form
 {
 public Recipe08_11()
 {
 InitializeComponent();
 }

 private void cmdOpen_Click(object sender, EventArgs e)
 {
 // Allow the user to choose a file.
 OpenFileDialog openFileDialog = new OpenFileDialog();
 openFileDialog.Filter =
 "Media Files|*.wav;*.mp3;*.mp2;*.wma|All Files|*.*";

 if (DialogResult.OK == openFileDialog.ShowDialog())
 {

CHAPTER 8 ■ GRAPHICS, MULTIMEDIA, AND PRINTING

395

 // Access the IMediaControl interface.
 QuartzTypeLib.FilgraphManager graphManager =
 new QuartzTypeLib.FilgraphManager();
 QuartzTypeLib.IMediaControl mc =
 (QuartzTypeLib.IMediaControl)graphManager;

 // Specify the file.
 mc.RenderFile(openFileDialog.FileName);

 // Start playing the audio asynchronously.
 mc.Run();
 }
 }
 }
}

8-12. Play a Video

Problem
You need to play a video file (such as an MPEG, AVI, or WMV file) in a Windows Forms application.

Solution
Use the ActiveMovie COM component included with Windows Media Player. Bind the video output to a
picture box on your form by setting the IVideoWindow.Owner property to the PictureBox.Handle property.

How It Works
Although the .NET Framework does not include any managed classes for interacting with video files, you
can leverage the functionality of DirectShow using the COM-based Quartz library included with
Windows Media Player and the Windows operating system. For information about creating an Interop
assembly for the Quartz type library, refer to the instructions in recipe 8-11.

Once you have created the Interop assembly, you can use the IMediaControl interface to load and
play a movie. This is essentially the same technique demonstrated in recipe 8-11 with audio files.
However, if you want to show the video window inside your application interface (rather than in a
separate stand-alone window), you must also use the IVideoWindow interface. The core FilgraphManager
object can be cast to both the IMediaControl interface and the IVideoWindow interface—and several other
interfaces are also supported, such as IBasicAudio (which allows you to configure balance and volume
settings). With the IVideoWindow interface, you can bind the video output to a control on your form, such
as a Panel or a PictureBox. To do so, set the IVideoWindow.Owner property to the handle for the control,
which you can retrieve using the Control.Handle property. Then call IVideoWindow.SetWindowPosition to
set the window size and location. You can call this method to change the video size during playback (for
example, if the form is resized).

CHAPTER 8 ■ GRAPHICS, MULTIMEDIA, AND PRINTING

396

The Code
The following example shows a simple form that allows users to access a video file and play it back in the
provided picture box. The picture box is anchored to all sides of the form, so it changes size as the form
resizes. The code responds to the PictureBox.SizeChanged event to change the size of the corresponding
video window.

using System;
using System.Windows.Forms;
using QuartzTypeLib;

namespace Apress.VisualCSharpRecipes.Chapter08
{
 public partial class Recipe08_12 : Form
 {
 public Recipe08_12()
 {
 InitializeComponent();
 }

 // Define constants used for specifying the window style.
 private const int WS_CHILD = 0x40000000;
 private const int WS_CLIPCHILDREN = 0x2000000;

 // Hold a form-level reference to the media control interface,
 // so the code can control playback of the currently loaded
 // movie.
 private IMediaControl mc = null;

 // Hold a form-level reference to the video window in case it
 // needs to be resized.
 private IVideoWindow videoWindow = null;

 private void cmdOpen_Click(object sender, EventArgs e)
 {
 // Allow the user to choose a file.
 OpenFileDialog openFileDialog = new OpenFileDialog();
 openFileDialog.Filter =
 "Media Files|*.mpg;*.avi;*.wma;*.mov;*.wav;*.mp2;*.mp3|" +
 "All Files|*.*";

 if (DialogResult.OK == openFileDialog.ShowDialog())
 {
 // Stop the playback for the current movie, if it exists.
 if (mc != null) mc.Stop();

 // Load the movie file.
 FilgraphManager graphManager = new FilgraphManager();
 graphManager.RenderFile(openFileDialog.FileName);

CHAPTER 8 ■ GRAPHICS, MULTIMEDIA, AND PRINTING

397

 // Attach the view to a picture box on the form.
 try
 {
 videoWindow = (IVideoWindow)graphManager;
 videoWindow.Owner = (int)pictureBox1.Handle;
 videoWindow.WindowStyle = WS_CHILD | WS_CLIPCHILDREN;
 videoWindow.SetWindowPosition(
 pictureBox1.ClientRectangle.Left,
 pictureBox1.ClientRectangle.Top,
 pictureBox1.ClientRectangle.Width,
 pictureBox1.ClientRectangle.Height);
 }
 catch
 {
 // An error can occur if the file does not have a video
 // source (for example, an MP3 file).
 // You can ignore this error and still allow playback to
 // continue (without any visualization).
 }

 // Start the playback (asynchronously).
 mc = (IMediaControl)graphManager;
 mc.Run();
 }
 }

 private void pictureBox1_SizeChanged(object sender, EventArgs e)
 {
 if (videoWindow != null)
 {
 try
 {
 videoWindow.SetWindowPosition(
 pictureBox1.ClientRectangle.Left,
 pictureBox1.ClientRectangle.Top,
 pictureBox1.ClientRectangle.Width,
 pictureBox1.ClientRectangle.Height);
 }
 catch
 {
 // Ignore the exception thrown when resizing the form
 // when the file does not have a video source.
 }
 }
 }
 }
}

Figure 8-7 shows an example of the output you will see.

CHAPTER 8 ■ GRAPHICS, MULTIMEDIA, AND PRINTING

398

Figure 8-7. Playing a video file

8-13. Retrieve Information About Installed Printers

Problem
You need to retrieve a list of available printers.

Solution
Read the names in the InstalledPrinters collection of the System.Drawing.Printing.PrinterSettings
class.

How It Works
The PrinterSettings class encapsulates the settings for a printer and information about the printer. For
example, you can use the PrinterSettings class to determine supported paper sizes, paper sources, and

CHAPTER 8 ■ GRAPHICS, MULTIMEDIA, AND PRINTING

399

resolutions, and check for the ability to print color or double-sided (duplexed) pages. In addition, you
can retrieve default page settings for margins, page orientation, and so on.

The PrinterSettings class provides a static InstalledPrinters string collection, which includes the
name of every printer installed on the computer. If you want to find out more information about the
settings for a specific printer, you simply need to create a PrinterSettings instance and set the
PrinterName property accordingly.

The Code
The following code shows a console application that finds all the printers installed on a computer and
displays information about the paper sizes and the resolutions supported by each one.

You do not need to take this approach when creating an application that provides printing features.
As you will see in recipe 8-14, you can use the PrintDialog class to prompt the user to choose a printer
and its settings. The PrintDialog class can automatically apply its settings to the appropriate
PrintDocument without any additional code.

using System;
using System.Drawing.Printing;

namespace Apress.VisualCSharpRecipes.Chapter08
{
 class Recipe08_13
 {
 static void Main(string[] args)
 {
 foreach (string printerName in PrinterSettings.InstalledPrinters)
 {
 // Display the printer name.
 Console.WriteLine("Printer: {0}", printerName);

 // Retrieve the printer settings.
 PrinterSettings printer = new PrinterSettings();
 printer.PrinterName = printerName;

 // Check that this is a valid printer.
 // (This step might be required if you read the printer name
 // from a user-supplied value or a registry or configuration file
 // setting.)
 if (printer.IsValid)
 {
 // Display the list of valid resolutions.
 Console.WriteLine("Supported Resolutions:");

 foreach (PrinterResolution resolution in
 printer.PrinterResolutions)
 {
 Console.WriteLine(" {0}", resolution);
 }
 Console.WriteLine();

CHAPTER 8 ■ GRAPHICS, MULTIMEDIA, AND PRINTING

400

 // Display the list of valid paper sizes.
 Console.WriteLine("Supported Paper Sizes:");

 foreach (PaperSize size in printer.PaperSizes)
 {
 if (Enum.IsDefined(size.Kind.GetType(), size.Kind))
 {
 Console.WriteLine(" {0}", size);
 }
 }
 Console.WriteLine();
 }
 }
 Console.ReadLine();
 }
 }
}

Usage
Here is the type of output this utility displays:

Printer: HP LaserJet 5L

Supported Resolutions:

 [PrinterResolution High]

 [PrinterResolution Medium]

 [PrinterResolution Low]

 [PrinterResolution Draft]

 [PrinterResolution X=600 Y=600]

 [PrinterResolution X=300 Y=300]

Supported Paper Sizes:

 [PaperSize Letter Kind=Letter Height=1100 Width=850]

 [PaperSize Legal Kind=Legal Height=1400 Width=850]

 [PaperSize Executive Kind=Executive Height=1050 Width=725]

CHAPTER 8 ■ GRAPHICS, MULTIMEDIA, AND PRINTING

401

 [PaperSize A4 Kind=A4 Height=1169 Width=827]

 [PaperSize Envelope #10 Kind=Number10Envelope Height=950 Width=412]

 [PaperSize Envelope DL Kind=DLEnvelope Height=866 Width=433]

 [PaperSize Envelope C5 Kind=C5Envelope Height=902 Width=638]

 [PaperSize Envelope B5 Kind=B5Envelope Height=984 Width=693]

 [PaperSize Envelope Monarch Kind=MonarchEnvelope Height=750 Width=387]

Printer: Generic PostScript Printer

. . .

■ Note You can print a document in almost any type of application. However, your application must include a
reference to the System.Drawing.dll assembly. If you are using a project type in Visual Studio .NET that would
not normally have this reference (such as a console application), you must add it.

8-14. Print a Simple Document

Problem
You need to print text or images.

Solution
Create a PrintDocument and write a handler for the PrintDocument.PrintPage event that uses the
DrawString and DrawImage methods of the Graphics class to print data to the page.

How It Works
.NET uses an asynchronous event-based printing model. To print a document, you create a
System.Drawing.Printing.PrintDocument instance, configure its properties, and then call its Print
method, which schedules the print job. The Common Language Runtime (CLR) will then fire the
BeginPrint, PrintPage, and EndPrint events of the PrintDocument class on a new thread. You handle
these events and use the provided System.Drawing.Graphics object to output data to the page. Graphics

CHAPTER 8 ■ GRAPHICS, MULTIMEDIA, AND PRINTING

402

and text are written to a page in the same way as you draw to a window using GDI+. However, you might
need to track your position on a page, because every Graphics class method requires explicit coordinates
that indicate where to draw.

You configure printer settings through the PrintDocument.PrinterSettings and
PrintDocument.DefaultPageSettings properties. The PrinterSettings property returns a full
PrinterSettings object (as described in recipe 8-11), which identifies the printer that will be used. The
DefaultPageSettings property provides a full PageSettings object that specifies printer resolution,
margins, orientation, and so on. You can configure these properties in code, or you can use the
System.Windows.Forms.PrintDialog class to let the user make the changes using the standard Windows
Print dialog box (shown in Figure 8-8). In the Print dialog box, the user can select a printer and choose
the number of copies. The user can also click the Properties button to configure advanced settings such
as page layout and printer resolution. Finally, the user can either accept or cancel the print operation by
clicking OK or Cancel.

Before using the PrintDialog class, you must explicitly attach it to a PrintDocument object by setting
the PrintDialog.Document property. Then, any changes the user makes in the Print dialog box will be
automatically applied to the PrintDocument object.

■ Note The PrintDialog class may not work on 64-bit systems unless the UseEXDialog property is set to true.
This displays a Windows XP–style dialog box, but is the only reliable way to display the dialog in a 64-bit
installation of Windows. Alternatively, set the platform target for your application to be x86 instead of Any CPU in
Visual Studio.

Figure 8-8. Using the PrintDialog class

CHAPTER 8 ■ GRAPHICS, MULTIMEDIA, AND PRINTING

403

The Code
The following example provides a form with a single button. When the user clicks the button, the
application creates a new PrintDocument, allows the user to configure print settings, and then starts an
asynchronous print operation (provided the user clicks OK). An event handler responds to the PrintPage
event and writes several lines of text and an image.

This example has one limitation: it can print only a single page. To print more complex documents
and span multiple pages, you will want to create a specialized class that encapsulates the document
information, the current page, and so on. Recipe 8-15 demonstrates this technique.

using System;
using System.Drawing;
using System.Windows.Forms;
using System.Drawing.Printing;
using System.IO;

namespace Apress.VisualCSharpRecipes.Chapter08
{
 public partial class Recipe08_14 : Form
 {
 public Recipe08_14()
 {
 InitializeComponent();
 }

 private void cmdPrint_Click(object sender, EventArgs e)
 {
 // Create the document and attach an event handler.
 PrintDocument doc = new PrintDocument();
 doc.PrintPage += this.Doc_PrintPage;

 // Allow the user to choose a printer and specify other settings.
 PrintDialog dlgSettings = new PrintDialog();
 dlgSettings.Document = doc;

 // If the user clicked OK, print the document.
 if (dlgSettings.ShowDialog() == DialogResult.OK)
 {

 // This method returns immediately, before the print job starts.
 // The PrintPage event will fire asynchronously.
 doc.Print();
 }
 }

 private void Doc_PrintPage(object sender, PrintPageEventArgs e)
 {
 // Define the font.
 using (Font font = new Font("Arial", 30))
 {

CHAPTER 8 ■ GRAPHICS, MULTIMEDIA, AND PRINTING

404

 // Determine the position on the page.
 // In this case, we read the margin settings
 // (although there is nothing that prevents your code
 // from going outside the margin bounds).
 float x = e.MarginBounds.Left;
 float y = e.MarginBounds.Top;

 // Determine the height of a line (based on the font used).
 float lineHeight = font.GetHeight(e.Graphics);

 // Print five lines of text.
 for (int i = 0; i < 5; i++)
 {

 // Draw the text with a black brush,
 // using the font and coordinates we have determined.
 e.Graphics.DrawString("This is line " + i.ToString(),
 font, Brushes.Black, x, y);

 // Move down the equivalent spacing of one line.
 y += lineHeight;
 }
 y += lineHeight;

 // Draw an image.
 e.Graphics.DrawImage(
 Image.FromFile(
 Path.Combine(Application.StartupPath,"test.jpg")
),
 x, y);
 }
 }
 }
}

8-15. Print a Multipage Document

Problem
You need to print complex documents with multiple pages and possibly print several different
documents at once.

Solution
Place the information you want to print into a custom class that derives from PrintDocument, and in the
PrintPage event handler, set the PrintPageEventArgs.HasMorePages property to true as long as pages are
remaining.

CHAPTER 8 ■ GRAPHICS, MULTIMEDIA, AND PRINTING

405

How It Works
The PrintDocument.PrintPage event is triggered to let you to print only a single page. If you need to print
more pages, you need to set the PrintPageEventArgs.HasMorePages property to true in the PrintPage
event handler. As long as HasMorePages is set to true, the PrintDocument class will continue firing
PrintPage events. However, it is up to you to track which page you are on, what data should be placed on
each page, and what is the last page for which HasMorePage is not set to true. To facilitate this tracking, it
is a good idea to create a custom class.

The Code
The following example shows a class called TextDocument. This class inherits from PrintDocument and
adds three properties. Text stores an array of text lines, PageNumber reflects the last printed page, and
Offset indicates the last line that was printed from the Text array.

public class TextDocument : PrintDocument {

 private string[] text;
 private int pageNumber;
 private int offset;

 public string[] Text {
 get {return text;}
 set {text = value;}
 }

 public int PageNumber {
 get {return pageNumber;}
 set {pageNumber = value;}
 }

 public int Offset {
 get {return offset;}
 set {offset = value;}
 }

 public TextDocument(string[] text) {
 this.Text = text;
 }
}

Depending on the type of material you are printing, you might want to modify this class. For
example, you could store an array of image data, some content that should be used as a header or footer
on each page, font information, or even the name of a file from which you want to read the information.
Encapsulating the information in a single class makes it easier to print more than one document at the
same time. This is especially important because the printing process runs in a new dedicated thread. As
a consequence, the user is able to keep working in the application and therefore update your data while
the pages are printing. So, this dedicated class should contain a copy of the data to print to avoid any
concurrency problems.

CHAPTER 8 ■ GRAPHICS, MULTIMEDIA, AND PRINTING

406

The code that initiates printing is the same as in recipe 8-14, only now it creates a TextDocument
instance instead of a PrintDocument instance. The PrintPage event handler keeps track of the current line
and checks whether the page has space before attempting to print the next line. If a new page is needed,
the HasMorePages property is set to true and the PrintPage event fires again for the next page. If not, the
print operation is deemed complete. This simple code sample does not take into account whether a line
fits into the width of the page; refer to recipe 8-16 for a solution to this problem.

The full form code is as follows:

using System;
using System.Drawing;
using System.Windows.Forms;
using System.Drawing.Printing;

namespace Apress.VisualCSharpRecipes.Chapter08
{
 public partial class Recipe08_15 : Form
 {
 public Recipe08_15()
 {
 InitializeComponent();
 }

 private void cmdPrint_Click(object sender, EventArgs e)
 {
 // Create a document with 100 lines.
 string[] printText = new string[101];
 for (int i = 0; i < 101; i++)
 {
 printText[i] = i.ToString();
 printText[i] +=
 ": The quick brown fox jumps over the lazy dog.";
 }

 PrintDocument doc = new TextDocument(printText);
 doc.PrintPage += this.Doc_PrintPage;

 PrintDialog dlgSettings = new PrintDialog();
 dlgSettings.Document = doc;

 // If the user clicked OK, print the document.
 if (dlgSettings.ShowDialog() == DialogResult.OK)
 {
 doc.Print();
 }
 }

CHAPTER 8 ■ GRAPHICS, MULTIMEDIA, AND PRINTING

407

 private void Doc_PrintPage(object sender, PrintPageEventArgs e)
 {
 // Retrieve the document that sent this event.
 TextDocument doc = (TextDocument)sender;

 // Define the font and determine the line height.
 using (Font font = new Font("Arial", 10))
 {
 float lineHeight = font.GetHeight(e.Graphics);

 // Create variables to hold position on page.
 float x = e.MarginBounds.Left;
 float y = e.MarginBounds.Top;

 // Increment the page counter (to reflect the page that
 // is about to be printed).
 doc.PageNumber += 1;

 // Print all the information that can fit on the page.
 // This loop ends when the next line would go over the
 // margin bounds, or there are no more lines to print.

 while ((y + lineHeight) < e.MarginBounds.Bottom &&
 doc.Offset <= doc.Text.GetUpperBound(0))
 {
 e.Graphics.DrawString(doc.Text[doc.Offset], font,
 Brushes.Black, x, y);

 // Move to the next line of data.
 doc.Offset += 1;

 // Move the equivalent of one line down the page.
 y += lineHeight;
 }

 if (doc.Offset < doc.Text.GetUpperBound(0))
 {
 // There is still at least one more page.
 // Signal this event to fire again.
 e.HasMorePages = true;
 }
 else
 {
 // Printing is complete.
 doc.Offset = 0;
 }
 }
 }
 }
}

CHAPTER 8 ■ GRAPHICS, MULTIMEDIA, AND PRINTING

408

8-16. Print Wrapped Text

Problem
You need to parse a large block of text into distinct lines that fit on one page.

Solution
Use the Graphics.DrawString method overload that accepts a bounding rectangle.

How It Works
Often, you will need to break a large block of text into separate lines that can be printed individually on a
page. The .NET Framework can perform this task automatically, provided you use a version of the
Graphics.DrawString method that accepts a bounding rectangle. You specify a rectangle that represents
where you want the text to be displayed. The text is then wrapped automatically to fit within those
confines.

The Code
The following code demonstrates this approach, using the bounding rectangle that represents the
printable portion of the page. It prints a large block of text from a text box on the form.

using System;
using System.Drawing;
using System.Windows.Forms;
using System.Drawing.Printing;

namespace Apress.VisualCSharpRecipes.Chapter08
{
 public partial class Recipe08_16 : Form
 {
 public Recipe08_16()
 {
 InitializeComponent();
 }

 private void cmdPrint_Click(object sender, EventArgs e)
 {
 // Create the document and attach an event handler.
 string text = "Windows Server 2003 builds on the core strengths " +
 "of the Windows family of operating systems--security, " +
 "manageability, reliability, availability, and scalability. " +
 "Windows Server 2003 provides an application environment to " +
 "build, deploy, manage, and run XML Web services. " +

CHAPTER 8 ■ GRAPHICS, MULTIMEDIA, AND PRINTING

409

 "Additionally, advances in Windows Server 2003 provide many " +
 "benefits for developing applications.";
 PrintDocument doc = new ParagraphDocument(text);
 doc.PrintPage += this.Doc_PrintPage;

 // Allow the user to choose a printer and specify other settings.
 PrintDialog dlgSettings = new PrintDialog();
 dlgSettings.Document = doc;

 // If the user clicked OK, print the document.
 if (dlgSettings.ShowDialog() == DialogResult.OK)
 {
 doc.Print();
 }
 }

 private void Doc_PrintPage(object sender, PrintPageEventArgs e)
 {
 // Retrieve the document that sent this event.
 ParagraphDocument doc = (ParagraphDocument)sender;

 // Define the font and text.
 using (Font font = new Font("Arial", 15))
 {
 e.Graphics.DrawString(doc.Text, font, Brushes.Black,
 e.MarginBounds, StringFormat.GenericDefault);
 }
 }
 }

 public class ParagraphDocument : PrintDocument
 {
 private string text;
 public string Text
 {
 get { return text; }
 set { text = value; }
 }

 public ParagraphDocument(string text)
 {
 this.Text = text;
 }
 }
}

Figure 8-9 shows the wrapped text.

CHAPTER 8 ■ GRAPHICS, MULTIMEDIA, AND PRINTING

410

Figure 8-9. The printed document with wrapping

8-17. Show a Dynamic Print Preview

Problem
You need to use an onscreen preview that shows how a printed document will look.

Solution
Use PrintPreviewDialog or PrintPreviewControl (both of which are found in the System.Windows.Forms
namespace).

How It Works
.NET provides two elements of user interface that can take a PrintDocument instance, run your printing
code, and use it to generate a graphical onscreen preview:

• The PrintPreviewDialog, which shows a preview in a stand-alone form

• The PrintPreviewControl, which shows a preview in a control that can be
embedded in one of your own custom forms

CHAPTER 8 ■ GRAPHICS, MULTIMEDIA, AND PRINTING

411

To use a stand-alone print preview form, you simply create a PrintPreviewDialog object, assign its
Document property, and call the Show method:

PrintPreviewDialog dlgPreview = new PrintPreviewDialog();
dlgPreview.Document = doc;
dlgPreview.Show();

The Print Preview window provides all the controls the user needs to move from page to page, zoom
in, and so on. The window even provides a print button that allows the user to send the document
directly to the printer. You can tailor the window to some extent by modifying the PrintPreviewDialog
properties.

You can also add a PrintPreviewControl control to any of your forms to show a preview alongside
other information. In this case, you do not need to call the Show method. As soon as you set the
PrintPreviewControl.Document property, the preview is generated. To clear the preview, set the Document
property to null, and to refresh the preview, simply reassign the Document property. PrintPreviewControl
shows only the preview pages, not any additional controls. However, you can add your own controls for
zooming, tiling multiple pages, and so on. You simply need to adjust the PrintPreviewControl properties
accordingly.

The Code
The following example is the complete for code that incorporates a PrintPreviewControl and allows the
user to select a zoom setting:

using System;
using System.Drawing;
using System.Windows.Forms;
using System.Drawing.Printing;

namespace Apress.VisualCSharpRecipes.Chapter08
{
 public partial class Recipe08_17 : Form
 {
 public Recipe08_17()
 {
 InitializeComponent();
 }

 private PrintDocument doc;
 // (PrintDocument.PrintPage event handler code omitted.
 // See code in recipe 8-15.)

 private void Recipe08_17_Load(object sender, EventArgs e)
 {
 // Set the allowed zoom settings.
 for (int i = 1; i <= 10; i++)
 {
 lstZoom.Items.Add((i * 10).ToString());
 }

CHAPTER 8 ■ GRAPHICS, MULTIMEDIA, AND PRINTING

412

 // Create a document with 100 lines.
 string[] printText = new string[100];
 for (int i = 0; i < 100; i++)
 {
 printText[i] = i.ToString();
 printText[i] += ": The quick brown fox jumps over the lazy dog.";
 }

 doc = new TextDocument(printText);
 doc.PrintPage += this.Doc_PrintPage;

 lstZoom.Text = "100";
 printPreviewControl.Zoom = 1;
 printPreviewControl.Document = doc;
 printPreviewControl.Rows = 2;
 }

 private void cmdPrint_Click(object sender, EventArgs e)
 {
 // Set the zoom.
 printPreviewControl.Zoom = Single.Parse(lstZoom.Text) / 100;

 // Show the full two pages, one above the other.
 printPreviewControl.Rows = 2;

 // Rebind the PrintDocument to refresh the preview.
 printPreviewControl.Document = doc;
 }
 }

 // (TextDocument class code omitted. See recipe 8-15.)
}

8-18. Manage Print Jobs

Problem
You need to pause or resume a print job or a print queue.

Solution
Use Windows Management Instrumentation (WMI). You can retrieve information from the print queue
using a query with the Win32_PrintJob class, and you can use the Pause and Resume methods of the WMI
Win32_PrintJob and Win32_Printer classes to manage the queue.

CHAPTER 8 ■ GRAPHICS, MULTIMEDIA, AND PRINTING

413

How It Works
WMI allows you to retrieve a vast amount of system information using a query-like syntax. One of the
tasks you can perform with WMI is to retrieve a list of outstanding print jobs, along with information
about each one. You can also perform operations such as printing and resuming a job or all the jobs for a
printer. To use WMI, you need to add a reference to the System.Management.dll assembly.

The Code
The following code shows a Windows application that interacts with the print queue. It performs a WMI
query to get a list of all the outstanding jobs on the computer and displays the job ID for each one in a
list box. When the user selects the item, a more complete WMI query is performed, and additional
details about the print job are displayed in a text box. Finally, the user can click the Pause and Resume
buttons after selecting a job to change its status.

Remember that Windows permissions might prevent you from pausing or removing a print job
created by another user. In fact, permissions might even prevent you from retrieving status information
and could cause a security exception to be thrown.

using System;
using System.Drawing;
using System.Windows.Forms;
using System.Management;
using System.Collections;
using System.Text;

namespace Apress.VisualCSharpRecipes.Chapter08
{
 public partial class Recipe08_18 : Form
 {
 public PrintQueueTest()
 {
 InitializeComponent();
 }

 private void cmdRefresh_Click(object sender, EventArgs e)
 {
 // Select all the outstanding print jobs.
 string query = "SELECT * FROM Win32_PrintJob";
 using (ManagementObjectSearcher jobQuery =
 new ManagementObjectSearcher(query))
 {
 using (ManagementObjectCollection jobs = jobQuery.Get())
 {
 // Add the jobs in the queue to the list box.
 lstJobs.Items.Clear();
 txtJobInfo.Text = "";

CHAPTER 8 ■ GRAPHICS, MULTIMEDIA, AND PRINTING

414

 foreach (ManagementObject job in jobs)
 {
 lstJobs.Items.Add(job["JobID"]);
 }
 }
 }
 }

 private void Recipe08_18_Load(object sender, EventArgs e)
 {
 cmdRefresh_Click(null, null);
 }

 // This helper method performs a WMI query and returns the
 // WMI job for the currently selected list box item.
 private ManagementObject GetSelectedJob()
 {
 try
 {
 // Select the matching print job.
 string query = "SELECT * FROM Win32_PrintJob " +
 "WHERE JobID='" + lstJobs.Text + "'";
 ManagementObject job = null;
 using (ManagementObjectSearcher jobQuery =
 new ManagementObjectSearcher(query))
 {
 ManagementObjectCollection jobs = jobQuery.Get();
 IEnumerator enumerator = jobs.GetEnumerator();
 enumerator.MoveNext();
 job = (ManagementObject)enumerator.Current;
 }
 return job;
 }
 catch (InvalidOperationException)
 {
 // The Current property of the enumerator is invalid.
 return null;
 }
 }

 private void lstJobs_SelectedIndexChanged(object sender, EventArgs e)
 {
 ManagementObject job = GetSelectedJob();
 if (job == null)
 {
 txtJobInfo.Text = "";
 return;
 }

CHAPTER 8 ■ GRAPHICS, MULTIMEDIA, AND PRINTING

415

 // Display job information.
 StringBuilder jobInfo = new StringBuilder();
 jobInfo.AppendFormat("Document: {0}", job["Document"].ToString());
 jobInfo.Append(Environment.NewLine);
 jobInfo.AppendFormat("DriverName: {0}", job["DriverName"].ToString());
 jobInfo.Append(Environment.NewLine);
 jobInfo.AppendFormat("Status: {0}", job["Status"].ToString());
 jobInfo.Append(Environment.NewLine);
 jobInfo.AppendFormat("Owner: {0}", job["Owner"].ToString());
 jobInfo.Append(Environment.NewLine);

 jobInfo.AppendFormat("PagesPrinted: {0}", job["PagesPrinted"].ToString());
 jobInfo.Append(Environment.NewLine);
 jobInfo.AppendFormat("TotalPages: {0}", job["TotalPages"].ToString());

 if (job["JobStatus"] != null)
 {
 txtJobInfo.Text += Environment.NewLine;
 txtJobInfo.Text += "JobStatus: " + job["JobStatus"].ToString();
 }
 if (job["StartTime"] != null)
 {
 jobInfo.Append(Environment.NewLine);
 jobInfo.AppendFormat("StartTime: {0}", job["StartTime"].ToString());
 }

 txtJobInfo.Text = jobInfo.ToString();
 }

 private void cmdPause_Click(object sender, EventArgs e)
 {
 if (lstJobs.SelectedIndex == -1) return;
 ManagementObject job = GetSelectedJob();
 if (job == null) return;

 // Attempt to pause the job.
 int returnValue = Int32.Parse(
 job.InvokeMethod("Pause", null).ToString());

 // Display information about the return value.
 if (returnValue == 0)
 {
 MessageBox.Show("Successfully paused job.");
 }
 else
 {
 MessageBox.Show("Unrecognized return value when pausing job.");
 }
 }

CHAPTER 8 ■ GRAPHICS, MULTIMEDIA, AND PRINTING

416

 private void cmdResume_Click(object sender, EventArgs e)
 {
 if (lstJobs.SelectedIndex == -1) return;
 ManagementObject job = GetSelectedJob();
 if (job == null) return;

 if ((Int32.Parse(job["StatusMask"].ToString()) & 1) == 1)
 {
 // Attempt to resume the job.
 int returnValue = Int32.Parse(
 job.InvokeMethod("Resume", null).ToString());

 // Display information about the return value.
 if (returnValue == 0)
 {
 MessageBox.Show("Successfully resumed job.");
 }
 else if (returnValue == 5)
 {
 MessageBox.Show("Access denied.");
 }
 else
 {
 MessageBox.Show(
 "Unrecognized return value when resuming job.");
 }
 }
 }
 }
}

Figure 8-10 shows the window for this application.

CHAPTER 8 ■ GRAPHICS, MULTIMEDIA, AND PRINTING

417

Figure 8-10. Retrieving information from the print queue

■ Note Other WMI methods you might use in a printing scenario include AddPrinterConnection,
SetDefaultPrinter, CancelAllJobs, and PrintTestPage, all of which work with the Win32_Printer class. For
more information about using WMI to retrieve information about Windows hardware, refer to the MSDN
documentation.

8-19. Perform Text-to-Speech

Problem
You need to read a piece of text aloud.

Solution
Create an instance of System.Speech.Synthesis.SpeechSynthesizer, contained in the System.Speech
assembly, and call the Speak instance method, passing in the string that you wish to be spoken.

CHAPTER 8 ■ GRAPHICS, MULTIMEDIA, AND PRINTING

418

How It Works
The SpeechSynthesizer class provides managed access to the Windows Speech SDK. Creating an
instance of SpeechSynthesizer allows you to have text spoken by passing a string to the Speak method.
The Speak method is synchronous, meaning that your application will pause until the speech has
completed—you can have text spoken aloud in the background by using the SpeakAsync method.

Windows provides support for having different voices read text. The voices available on your
machine will depend on the version of Windows you have installed and which other applications are
available—some Microsoft and third-party applications provide additional voices. You can get
information about the voices available by calling the SpeechSynthesizer.GetInstalledVoices instance
method, which returns an enumeration of System.Speech.Synthesis.InstalledVoice. You can select the
voice to use for speech with the SpeechSyntheizer.SelectVoice method. Other useful members of the
SpeechSynthesizer class are listed in Table 8-1.

Table 8-1. Useful Members of SpeechSynthesizer

Member Description

GetInstalledVoices Returns an enumeration of InstalledVoice

Pause Pauses the synthesizer

Resume Resumes the synthesizer playback

SelectVoice Selects an installed synthesizer voice

SetOutputToWaveFile Saves the synthesized speed to a sound file

Speak Synchronously speaks a string

SpeakAsync Asynchronously speaks a string

Rate Returns the speed at which speech is performed

Volume Returns the volume of the speech output

The Code
The following example displays information about each speech synthesis voice installed on the local
machine, and then enters a loop where lines of text read from the console are passed to the Speak
method of a SpeechSynthesizer instance.

CHAPTER 8 ■ GRAPHICS, MULTIMEDIA, AND PRINTING

419

■ Note You will need to add the System.Speech assembly as a reference to your Visual Studio project in order to
use the System.Speech.Synthesis namespace.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Speech.Synthesis;

namespace Apress.VisualCSharpRecipes.Chapter08
{
 class Recipe08_19
 {
 static void Main(string[] args)
 {
 // Create a new synthesizer.
 SpeechSynthesizer mySynth = new SpeechSynthesizer();

 Console.WriteLine("--- Start of voices list ---");
 foreach (InstalledVoice voice in mySynth.GetInstalledVoices())
 {
 Console.WriteLine("Voice: {0}", voice.VoiceInfo.Name);
 Console.WriteLine("Gender: {0}", voice.VoiceInfo.Gender);
 Console.WriteLine("Age: {0}", voice.VoiceInfo.Age);
 Console.WriteLine("Culture: {0}", voice.VoiceInfo.Culture);
 Console.WriteLine("Description: {0}", voice.VoiceInfo.Description);
 }
 Console.WriteLine("--- End of voices list ---");

 while (true)
 {
 Console.WriteLine("Enter string to speak");
 mySynth.Speak(Console.ReadLine());
 Console.WriteLine("Completed");
 }
 }
 }
}

8-20. Recognize Characters in an Image (OCR)

Problem
You need to perform optical character recognition (OCR) to recognize words in an image.

CHAPTER 8 ■ GRAPHICS, MULTIMEDIA, AND PRINTING

420

Solution
Use COM Interop to access the features of Microsoft Office Document Imaging.

■ Note This recipe requires Microsoft Office 2007.

How It Works
The first step is to install the Microsoft Office Document Imaging (MODI), which is not installed by
default by the Microsoft Office installation. Run the Office installer, and select Microsoft Office
Document Imaging from the Office Tools section, as shown in Figure 8-11.

Figure 8-11. Installing MODI

CHAPTER 8 ■ GRAPHICS, MULTIMEDIA, AND PRINTING

421

Once the Office feature has been installed, you can add a reference to your project for the Microsoft
Office Document Imaging 12.0 Type Library entry, available under the COM tab and import the MODI
namespace into your class file. Because we are accessing MODI through COM, the API calls we have to
make are a little awkward. The sequence for performing OCR follows:

• Create a new instance of Document by calling new Document().

• Load the image that you wish to process by calling the Create method on the
Document instance from the previous step, passing in a string that contains the
name of the image file. OCR can be performed on PNG, JPG, GIF, and TIFF files.

• Call the OCR method on the Document instance.

• Obtain the first element of the Images array property from the Document instance,
and from that Image instance, get the Layout by calling the Image.Layout property.

The Layout class is what we are trying to obtain—it represents the scanned content, and its
members allow us to get information about the OCR results and access the words that have been
scanned. The most important member of Layout is Words, which is a collection of Word instances, each of
which represents a word scanned from the source image and that you can enumerate through to create
the processed result. The Word class has two useful members—the most important is Text, which returns
the string value of the scanned word. The second useful member is RecognitionConfidence, which
returns a value indicating how confident the OCR process was in recognizing the word correctly, on a
scale of 0 to 999.

The Code
The following example loads an image called ocr.GIF (which we have included in the sample code for
this chapter) and performs OCR on it. Each word found is printed out, along with the

RecognitionConfidence value.
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using MODI;

namespace Apress.VisualCSharpRecipes.Chapter08
{
 class Recipe08_20
 {
 static void Main(string[] args)
 {
 // Create the new document instance.
 Document myOCRDoc = new Document();
 // Load the sample file.
 myOCRDoc.Create(@"..\..\ocr.GIF");

 // Perform the OCR.
 myOCRDoc.OCR();

CHAPTER 8 ■ GRAPHICS, MULTIMEDIA, AND PRINTING

422

 // Get the processed document.
 Image image = (Image)myOCRDoc.Images[0];
 Layout layout = image.Layout;

 // Print out each word that has been found.
 foreach (Word word in layout.Words)
 {
 Console.WriteLine("Word: {0} Confidence: {1}",

word.Text, word.RecognitionConfidence);
 }
 }
 }
}

C H A P T E R 9

■ ■ ■

423

Database Access

In the Microsoft .NET Framework, access to a wide variety of data sources is enabled through a group of
classes collectively named Microsoft ADO.NET. Each type of data source is supported through the
provision of a data provider. Each data provider contains a set of classes that not only implement a
standard set of interfaces (defined in the System.Data namespace), but also provide functionality unique
to the data source they support. These classes include representations of connections, commands,
properties, data adapters, and data readers through which you interact with a data source.

Table 9-1 lists the data providers included as standard with the .NET Framework.

Table 9-1. .NET Framework Data Provider Implementations

Data Provider Description

.NET Framework
Data Provider for
ODBC

Provides connectivity (via COM Interop) to any data source that implements an
ODBC interface. This includes Microsoft SQL Server, Oracle, and Microsoft Access
databases. Data provider classes are contained in the System.Data.Odbc namespace
and have the prefix Odbc.

.NET Framework
Data Provider for
OLE DB

Provides connectivity (via COM Interop) to any data source that implements an
OLE DB interface. This includes Microsoft SQL Server, MSDE, Oracle, and Jet
databases. Data provider classes are contained in the System.Data.OleDb
namespace and have the prefix OleDb.

.NET Framework
Data Provider for
Oracle

Provides optimized connectivity to Oracle databases via Oracle client software
version 8.1.7 or later. Data provider classes are contained in the
System.Data.OracleClient namespace and have the prefix Oracle.

.NET Framework
Data Provider for
SQL Server

Provides optimized connectivity to Microsoft SQL Server version 7 and later
(including MSDE) by communicating directly with the SQL Server data source,
without the need to use ODBC or OLE DB. Data provider classes are contained in
the System.Data.SqlClient namespace and have the prefix Sql.

.NET Compact
Framework Data
Provider

Provides connectivity to Microsoft SQL Server CE. Data provider classes are
contained in the System.Data.SqlServerCe namespace and have the prefix SqlCe.

CHAPTER 9 ■ DATABASE ACCESS

424

■ Tip Where possible, the recipes in this chapter are programmed against the interfaces defined in the
System.Data namespace. This approach makes it easier to apply the solutions to any database. Adopting this
approach in your own code will make it more portable. However, the data provider classes that implement these
interfaces often implement additional functionality specific to their own database. Generally, you must trade off
portability against access to proprietary functionality when it comes to database code. Recipe 9-10 describes how
you can use the System.Data.Common.DbProviderFactory and associated classes to write code not tied to a
specific database implementation.

This chapter describes some of the most commonly used aspects of ADO.NET. The recipes in this
chapter describe how to do the following:

• Create, configure, open, and close database connections (recipe 9-1)

• Employ connection pooling to improve the performance and scalability of
applications that use database connections (recipe 9-2)

• Create and securely store database connection strings (recipes 9-3 and 9-4)

• Execute SQL commands and stored procedures, and use parameters to improve
their flexibility (recipes 9-5 and 9-6)

• Process the results returned by database queries as either a set of rows or as XML
(recipes 9-7 and 9-8)

• Execute database operations asynchronously, allowing your main code to
continue with other tasks while the database operation executes in the
background (recipe 9-9)

• Write generic ADO.NET code that can be configured to work against any relational
database for which a data provider is available (recipe 9-10)

• Discover all instances of SQL Server 2000 and SQL Server 2005 available on a
network (recipe 9-11)

• Create an in-memory cache and programmatically create a DataSet (recipes 9-12
and 9-13)

• Perform LINQ database queries using a DataSet, and use entity types (recipes 9-14
and 9-15)

• Compare the results of LINQ queries (recipe 9-16)

CHAPTER 9 ■ DATABASE ACCESS

425

■ Note Unless otherwise stated, the recipes in this chapter have been written to use SQL Server 2008 Express
Edition running on the local machine and the Northwind sample database provided by Microsoft. To run the
examples against your own database, ensure the Northwind sample is installed and update the recipe’s
connection string to contain the name of your server instead of .\sqlexpress. You can obtain the script to set up
the Northwind database from the Microsoft web site. On that site, search for the file named
SQL2000SampleDb.msi to find links to where the file is available for download. The download includes a Readme
file with instructions on how to run the installation script.

9-1. Connect to a Database

Problem
You need to open a connection to a database.

Solution
Create a connection object appropriate to the type of database to which you need to connect. All
connection objects implement the System.Data.IDbConnection interface. Configure the connection
object by setting its ConnectionString property. Open the connection by calling the connection object’s
Open method.

How It Works
The first step in database access is to open a connection to the database. The IDbConnection interface
represents a database connection, and each data provider includes a unique implementation. Here is
the list of IDbConnection implementations for the five standard data providers:

• System.Data.Odbc.OdbcConnection

• System.Data.OleDb.OleDbConnection

• System.Data.OracleClient.OracleConnection

• System.Data.SqlServerCe.SqlCeConnection

• System.Data.SqlClient.SqlConnection

You configure a connection object using a connection string. A connection string is a set of
semicolon-separated name/value pairs. You can supply a connection string either as a constructor
argument or by setting a connection object’s ConnectionString property before opening the connection.
Each connection class implementation requires that you provide different information in the
connection string. Refer to the ConnectionString property documentation for each implementation to
see the values you can specify. Possible settings include the following:

CHAPTER 9 ■ DATABASE ACCESS

426

• The name of the target database server

• The name of the database to open initially

• Connection timeout values

• Connection-pooling behavior (see recipe 9-2)

• Authentication mechanisms to use when connecting to secured databases,
including provision of a username and password if needed

Once configured, call the connection object’s Open method to open the connection to the database.
You can then use the connection object to execute commands against the data source (discussed in
recipe 9-3). The properties of a connection object also allow you to retrieve information about the state
of a connection and the settings used to open the connection. When you’re finished with a connection,
you should always call its Close method to free the underlying database connection and system
resources. IDbConnection extends System.IDisposable, meaning that each connection class implements
the Dispose method. Dispose automatically calls Close, making the using statement a very clean and
efficient way of using connection objects in your code.

The Code
The following example demonstrates how to use both the SqlConnection and OleDbConnection classes to
open a connection to a Microsoft SQL Server Express database running on the local machine that uses
integrated Windows security:

using System;
using System.Data;
using System.Data.SqlClient;
using System.Data.OleDb;

namespace Apress.VisualCSharpRecipes.Chapter09
{
 class Recipe09_01
 {
 public static void SqlConnectionExample()
 {
 // Create an empty SqlConnection object.
 using (SqlConnection con = new SqlConnection())
 {
 // Configure the SqlConnection object's connection string.
 con.ConnectionString =
 @"Data Source=.\sqlexpress;" + // local SQL Server instance
 "Database=Northwind;" + // the sample Northwind DB
 "Integrated Security=SSPI"; // integrated Windows security

 // Open the database connection.
 con.Open();

CHAPTER 9 ■ DATABASE ACCESS

427

 // Display information about the connection.
 if (con.State == ConnectionState.Open)
 {
 Console.WriteLine("SqlConnection Information:");
 Console.WriteLine(" Connection State = " + con.State);
 Console.WriteLine(" Connection String = " +
 con.ConnectionString);
 Console.WriteLine(" Database Source = " + con.DataSource);
 Console.WriteLine(" Database = " + con.Database);
 Console.WriteLine(" Server Version = " + con.ServerVersion);
 Console.WriteLine(" Workstation Id = " + con.WorkstationId);
 Console.WriteLine(" Timeout = " + con.ConnectionTimeout);
 Console.WriteLine(" Packet Size = " + con.PacketSize);
 }
 else
 {
 Console.WriteLine("SqlConnection failed to open.");
 Console.WriteLine(" Connection State = " + con.State);
 }
 // At the end of the using block Dispose() calls Close().
 }
 }

 public static void OleDbConnectionExample()
 {

 // Create an empty OleDbConnection object.
 using (OleDbConnection con = new OleDbConnection())
 {
 // Configure the OleDbConnection object's connection string.
 con.ConnectionString =
 "Provider=SQLOLEDB;" + // OLE DB Provider for SQL Server
 @"Data Source=.\sqlexpress;" + // local SQL Server instance
 "Initial Catalog=Northwind;" + // the sample Northwind DB
 "Integrated Security=SSPI"; // integrated Windows security

 // Open the database connection.
 con.Open();

 // Display information about the connection.
 if (con.State == ConnectionState.Open)
 {
 Console.WriteLine("OleDbConnection Information:");
 Console.WriteLine(" Connection State = " + con.State);
 Console.WriteLine(" Connection String = " +
 con.ConnectionString);
 Console.WriteLine(" Database Source = " + con.DataSource);
 Console.WriteLine(" Database = " + con.Database);
 Console.WriteLine(" Server Version = " + con.ServerVersion);
 Console.WriteLine(" Timeout = " + con.ConnectionTimeout);
 }

CHAPTER 9 ■ DATABASE ACCESS

428

 else
 {
 Console.WriteLine("OleDbConnection failed to open.");
 Console.WriteLine(" Connection State = " + con.State);
 }
 // At the end of the using block Dispose() calls Close().
 }
 }

 public static void Main()
 {
 // Open connection using SqlConnection.
 SqlConnectionExample();
 Console.WriteLine(Environment.NewLine);

 // Open connection using OleDbConnection.
 OleDbConnectionExample();

 // Wait to continue.
 Console.WriteLine(Environment.NewLine);
 Console.WriteLine("Main method complete. Press Enter.");
 Console.ReadLine();
 }
 }
}

9-2. Use Connection Pooling

Problem
You need to use a pool of database connections to improve application performance and scalability.

Solution
Configure the connection pool using settings in the connection string of a connection object.

How It Works
Connection pooling reduces the overhead associated with creating and destroying database
connections. Connection pooling also improves the scalability of solutions by reducing the number of
concurrent connections a database must maintain. Many of these connections sit idle for a significant
portion of their lifetimes. With connection pooling, instead of creating and opening a new connection
object whenever you need one, you take an already open connection from the connection pool. When
you have finished using the connection, instead of closing it, you return it to the pool and allow other
code to use it.

CHAPTER 9 ■ DATABASE ACCESS

429

The SQL Server and Oracle data providers encapsulate connection-pooling functionality, which is
enabled by default. One connection pool is created for each unique connection string you specify when
you open a new connection. Each time you open a new connection with a connection string that you
used previously, the connection is taken from the existing pool. Only if you specify a different
connection string will the data provider create a new connection pool. You can control some
characteristics of your pool using the connection string settings described in Table 9-2.

■ Note Once created, a pool exists until your process terminates.

Table 9-2. Connection String Settings That Control Connection Pooling

Setting Description

Connection
Lifetime

Specifies the maximum time in seconds that a connection is allowed to live in the pool
before it’s closed. The age of a connection is tested only when the connection is returned
to the pool. This setting is useful for minimizing pool size if the pool is not heavily used,
and also ensures optimal load balancing is achieved in clustered database environments.
The default value is 0, which means connections exist for the life of the current process.

Connection
Reset

Supported only by the SQL Server data provider. Specifies whether connections are reset
as they are taken from the pool. A value of True (the default) ensures that a connection’s
state is reset, but requires additional communication with the database.

Max Pool
Size

Specifies the maximum number of connections that should be in the pool. Connections
are created and added to the pool as required until this value is reached. If a request for a
connection is made but there are no free connections, the caller will block until a
connection becomes available. The default value is 100.

Min Pool
Size

Specifies the minimum number of connections that should be in the pool. On pool
creation, this number of connections is created and added to the pool. During periodic
maintenance, or when a connection is requested, connections are added to the pool to
ensure that the minimum number of connections are available. The default value is 0.

Pooling Set to False to obtain a nonpooled connection. The default value is True.

The Code
The following example demonstrates the configuration of a connection pool that contains a minimum of
5 and a maximum of 15 connections. Connections expire after 10 minutes (600 seconds) and are reset
each time a connection is obtained from the pool. The example also demonstrates how to use the
Pooling setting to obtain a connection object that is not from a pool. This is useful if your application
uses a single long-lived connection to a database.

CHAPTER 9 ■ DATABASE ACCESS

430

using System;
using System.Data.SqlClient;

namespace Apress.VisualCSharpRecipes.Chapter09
{
 class Recipe09_02
 {
 public static void Main()
 {
 // Obtain a pooled connection.
 using (SqlConnection con = new SqlConnection())
 {
 // Configure the SqlConnection object's connection string.
 con.ConnectionString =
 @"Data Source = .\sqlexpress;" +// local SQL Server instance
 "Database = Northwind;" + // the sample Northwind DB
 "Integrated Security = SSPI;" + // integrated Windows security
 "Min Pool Size = 5;" + // configure minimum pool size
 "Max Pool Size = 15;" + // configure maximum pool size
 "Connection Reset = True;" + // reset connections each use
 "Connection Lifetime = 600"; // set max connection lifetime

 // Open the database connection.
 con.Open();

 // Access the database . . .

 // At the end of the using block, the Dispose calls Close, which
 // returns the connection to the pool for reuse.
 }

 // Obtain a nonpooled connection.
 using (SqlConnection con = new SqlConnection())
 {
 // Configure the SqlConnection object's connection string.
 con.ConnectionString =
 @"Data Source = .\sqlexpress;" +//local SQL Server instance
 "Database = Northwind;" + //the sample Northwind DB
 "Integrated Security = SSPI;" + //integrated Windows security
 "Pooling = False"; //specify nonpooled connection

 // Open the database connection.
 con.Open();

 // Access the database . . .

 // At the end of the using block, the Dispose calls Close, which
 // closes the nonpooled connection.
 }

CHAPTER 9 ■ DATABASE ACCESS

431

 // Wait to continue.
 Console.WriteLine(Environment.NewLine);
 Console.WriteLine("Main method complete. Press Enter.");
 Console.ReadLine();
 }
 }
}

Notes
The ODBC and OLE DB data providers also support connection pooling, but they do not implement
connection pooling within managed .NET classes, and you do not configure the pool in the same way as
you do for the SQL Server or Oracle data providers. ODBC connection pooling is managed by the ODBC
Driver Manager and configured using the ODBC Data Source Administrator tool in the Control Panel.
OLE DB connection pooling is managed by the native OLE DB implementation. The most you can do is
disable pooling by including the setting OLE DB Services=-4; in your connection string.

The SQL Server CE data provider does not support connection pooling, because SQL Server CE
supports only a single concurrent connection.

9-3. Create a Database Connection String Programmatically

Problem
You need to programmatically create or modify a syntactically correct connection string by working with
its component parts or parsing a given connection string.

Solution
Use the System.Data.Common.DbConnectionStringBuilder class or one of its strongly typed subclasses
that form part of an ADO.NET data provider.

How It Works
Connection strings are String objects that contain a set of configuration parameters in the form of
name/value pairs separated by semicolons. These configuration parameters instruct the ADO.NET
infrastructure how to open a connection to the data source you want to access and how to handle the life
cycle of connections to that data source. As a developer, you will often simply define your connection
string by hand and store it in a configuration file (see recipe 9-4). However, you may want to build a
connection string from component elements entered by a user, or you may want to parse an existing
connection string into its component parts so that you can manipulate it programmatically. The
DbConnectionStringBuilder class and the classes derived from it provide both these capabilities.

DbConnectionStringBuilder is a class used to create connection strings from name/value pairs or to
parse connection strings, but it does not enforce any logic on which configuration parameters are valid.
Instead, each data provider (except the SQL Server CE data provider) includes a unique implementation
derived from DbConnectionStringBuilder that accurately enforces the configuration rules for a

CHAPTER 9 ■ DATABASE ACCESS

432

connection string of that type. Here is the list of available DbConnectionStringBuilder implementations
for standard data providers:

• System.Data.Odbc.OdbcConnectionStringBuilder

• System.Data.OleDb.OleDbConnectionStringBuilder

• System.Data.OracleClient.OracleConnectionStringBuilder

• System.Data.SqlClient.SqlConnectionStringBuilder

Each of these classes exposes properties for getting and setting the possible parameters for a
connection string of that type. To parse an existing connection string, pass it as an argument when
creating the DbConnectionStringBuilder-derived class, or set the ConnectionString property. If this
string contains a keyword not supported by the type of connection, an ArgumentException will be
thrown.

The Code
The following example demonstrates the use of the SqlConnectionStringBuilder class to parse and
construct SQL Server connection strings:

using System;
using System.Data.SqlClient;

namespace Apress.VisualCSharpRecipes.Chapter09
{
 class Recipe09_03
 {
 public static void Main(string[] args)
 {
 string conString = @"Data Source=.\sqlexpress;" +
 "Database=Northwind;Integrated Security=SSPI;" +
 "Min Pool Size=5;Max Pool Size=15;Connection Reset=True;" +
 "Connection Lifetime=600;";

 // Parse the SQL Server connection string and display the component
 // configuration parameters.
 SqlConnectionStringBuilder sb1 =
 new SqlConnectionStringBuilder(conString);

 Console.WriteLine("Parsed SQL Connection String Parameters:");
 Console.WriteLine(" Database Source = " + sb1.DataSource);
 Console.WriteLine(" Database = " + sb1.InitialCatalog);
 Console.WriteLine(" Use Integrated Security = "
 + sb1.IntegratedSecurity);
 Console.WriteLine(" Min Pool Size = " + sb1.MinPoolSize);
 Console.WriteLine(" Max Pool Size = " + sb1.MaxPoolSize);
 Console.WriteLine(" Lifetime = " + sb1.LoadBalanceTimeout);

CHAPTER 9 ■ DATABASE ACCESS

433

 // Build a connection string from component parameters and display it.
 SqlConnectionStringBuilder sb2 =
 new SqlConnectionStringBuilder(conString);

 sb2.DataSource = @".\sqlexpress";
 sb2.InitialCatalog = "Northwind";
 sb2.IntegratedSecurity = true;
 sb2.MinPoolSize = 5;
 sb2.MaxPoolSize = 15;
 sb2.LoadBalanceTimeout = 600;

 Console.WriteLine(Environment.NewLine);
 Console.WriteLine("Constructed connection string:");
 Console.WriteLine(" " + sb2.ConnectionString);

 // Wait to continue.
 Console.WriteLine(Environment.NewLine);
 Console.WriteLine("Main method complete. Press Enter.");
 Console.ReadLine();
 }
 }
}

9-4. Store a Database Connection String Securely

Problem
You need to store a database connection string securely.

Solution
Store the connection string in an encrypted section of the application’s configuration file.

■ Note Protected configuration—the .NET Framework feature that lets you encrypt configuration information—
relies on the key storage facilities of the Data Protection API (DPAPI) to store the secret key used to encrypt the
configuration file. This solves the very difficult problem of code-based secret key management.

How It Works
Database connection strings often contain secret information, or at the very least information that
would be valuable to someone trying to attack your system. As such, you should not store connection
strings in plain text, nor should you hard-code them into the application code. Strings embedded in an

CHAPTER 9 ■ DATABASE ACCESS

434

assembly can easily be retrieved using a disassembler. The .NET Framework includes a number of
classes and capabilities that make storing and retrieving encrypted connection strings in your
application’s configuration trivial.

Unencrypted connection strings are stored in the machine or application configuration file in the
<connectionStrings> section in the format shown here:

<configuration>
 <connectionStrings>
 <add name="ConnectionString1" connectionString="Data Source=.\sqlexpress
;Database=Northwind;Integrated Security=SSPI;Min Pool Size=5;Max Pool Size=15;Co
nnection Reset=True;Connection Lifetime=600;"
 providerName="System.Data.SqlClient" />
 </connectionStrings>
</configuration>

The easiest way to read this connection string is to use the indexed ConnectionStrings property of
the System.Configuration.ConfigurationManager class. Specifying the name of the connection string you
want as the property index will return a System.Configuration.ConnectionStringSettings object. The
ConnectionStringSettings.ConnectionString property gets the connection string, and the
ConnectionStringSettings.ProviderName property gets the provider name that you can use to create a
data provider factory (see recipe 9-10). This process will work regardless of whether the connection
string has been encrypted or written in plain text.

To write a connection string to the application’s configuration file, you must first obtain a
System.Configuration.Configuration object, which represents the application’s configuration file. The
easiest way to do this is by calling the System.Configuration.ConfigurationManager.
OpenExeConfiguration method. You should then create and configure a new System.Configuration.
ConnectionStringSettings object to represent the stored connection string. You should provide a name,
connection string, and data provider name for storage. Add the ConnectionStringSettings object to
Configuration’s ConnectionStringsSection collection, available through the Configuration.
ConnectionStrings property. Finally, save the updated file by calling the Configuration.Save method.

To encrypt the connection strings section of the configuration file, before saving the file, you must
configure the ConnectionStringsSection collection. To do this, call the ConnectionStringsSection.
SectionInformation.ProtectSection method and pass it a string containing the name of the protected
configuration provider to use: either RsaProtectedConfigurationProvider or
DPAPIProtectedConfigurationProvider. To disable encryption, call the SectionInformation.Unprotect
method.

■ Note To use the classes from the System.Configuration namespace discussed in this recipe, you must add a
reference to the System.Configuration.dll assembly when you build your application.

The Code
The following example demonstrates the writing of an encrypted connection string to the application’s
configuration file and the subsequent reading and use of that connection string.

CHAPTER 9 ■ DATABASE ACCESS

435

■ Note The configuration file will be created alongside the compiled program in the bin/Release or bin/Debug
directory of the Visual Studio project folder. If you have downloaded the source code that accompanies this book,
the configuration tile will be called Recipe09-04.exe.Config.

using System;
using System.Configuration;
using System.Data.SqlClient;

namespace Apress.VisualCSharpRecipes.Chapter09
{
 class Recipe09_04
 {
 private static void WriteEncryptedConnectionStringSection(
 string name, string constring, string provider)
 {
 // Get the configuration file for the current application. Specify
 // the ConfigurationUserLevel.None argument so that we get the
 // configuration settings that apply to all users.
 Configuration config = ConfigurationManager.OpenExeConfiguration(
 ConfigurationUserLevel.None);

 // Get the connectionStrings section from the configuration file.
 ConnectionStringsSection section = config.ConnectionStrings;

 // If the connectionString section does not exist, create it.
 if (section == null)
 {
 section = new ConnectionStringsSection();
 config.Sections.Add("connectionSettings", section);
 }

 // If it is not already encrypted, configure the connectionStrings
 // section to be encrypted using the standard RSA Proected
 // Configuration Provider.
 if (!section.SectionInformation.IsProtected)
 {
 // Remove this statement to write the connection string in clear
 // text for the purpose of testing.
 section.SectionInformation.ProtectSection(
 "RsaProtectedConfigurationProvider");
 }

 // Create a new connection string element and add it to the
 // connection string configuration section.
 ConnectionStringSettings cs =
 new ConnectionStringSettings(name, constring, provider);
 section.ConnectionStrings.Add(cs);

CHAPTER 9 ■ DATABASE ACCESS

436

 // Force the connection string section to be saved.
 section.SectionInformation.ForceSave = true;

 // Save the updated configuration file.
 config.Save(ConfigurationSaveMode.Full);
 }

 public static void Main(string[] args)
 {
 // The connection string information to be written to the
 // configuration file.
 string conName = "ConnectionString1";
 string conString = @"Data Source=.\sqlexpress;" +
 "Database=Northwind;Integrated Security=SSPI;" +
 "Min Pool Size=5;Max Pool Size=15;Connection Reset=True;" +
 "Connection Lifetime=600;";
 string providerName = "System.Data.SqlClient";

 // Write the new connection string to the application's
 // configuration file.
 WriteEncryptedConnectionStringSection(conName, conString, providerName);

 // Read the encrypted connection string settings from the
 // application's configuration file.
 ConnectionStringSettings cs2 =
 ConfigurationManager.ConnectionStrings["ConnectionString1"];

 // Use the connection string to create a new SQL Server connection.
 using (SqlConnection con = new SqlConnection(cs2.ConnectionString))
 {
 // Issue database commands/queries . . .

 }

 // Wait to continue.
 Console.WriteLine(Environment.NewLine);
 Console.WriteLine("Main method complete. Press Enter.");
 Console.ReadLine();
 }
 }
}

9-5. Execute a SQL Command or Stored Procedure

Problem
You need to execute a SQL command or stored procedure on a database.

CHAPTER 9 ■ DATABASE ACCESS

437

Solution
Create a command object appropriate to the type of database you intend to use. All command objects
implement the System.Data.IDbCommand interface. Configure the command object by setting its
CommandType and CommandText properties. Execute the command using the ExecuteNonQuery,
ExecuteReader, or ExecuteScalar method, depending on the type of command and its expected results.

How It Works
The IDbCommand interface represents a database command, and each data provider includes a unique
implementation. Here is the list of IDbCommand implementations for the five standard data providers:

• System.Data.Odbc.OdbcCommand

• System.Data.OleDb.OleDbCommand

• System.Data.OracleClient.OracleCommand

• System.Data.SqlServerCe.SqlCeCommand

• System.Data.SqlClient.SqlCommand

To execute a command against a database, you must have an open connection (discussed in recipe
9-1) and a properly configured command object appropriate to the type of database you are accessing.
You can create command objects directly using a constructor, but a simpler approach is to use the
CreateCommand factory method of a connection object. The CreateCommand method returns a command
object of the correct type for the data provider and configures it with basic information obtained from
the connection you used to create the command. Before executing the command, you must configure
the properties described in Table 9-3, which are common to all command implementations.

Table 9-3. Common Command Object Properties

Property Description

CommandText A string containing the text of the SQL command to execute or the name of a stored
procedure. The content of the CommandText property must be compatible with the
value you specify in the CommandType property.

CommandTimeout An int that specifies the number of seconds to wait for the command to return before
timing out and raising an exception. Defaults to 30 seconds.

CommandType A value of the System.Data.CommandType enumeration that specifies the type of
command represented by the command object. For most data providers, valid values
are StoredProcedure, when you want to execute a stored procedure; and Text, when
you want to execute a SQL text command. If you are using the OLE DB data provider,
you can specify TableDirect when you want to return the entire contents of one or
more tables; refer to the .NET Framework SDK documentation for more details.
Defaults to Text.

CHAPTER 9 ■ DATABASE ACCESS

438

Property Description

Connection An IDbConnection instance that provides the connection to the database on which you
will execute the command. If you create the command using the
IDbConnection.CreateCommand method, this property will be automatically set to the
IDbConnection instance from which you created the command.

Parameters A System.Data.IDataParameterCollection instance containing the set of parameters to
substitute into the command. (See recipe 9-6 for details on how to use parameters.)

Transaction A System.Data.IDbTransaction instance representing the transaction into which to
enlist the command. (See the .NET Framework SDK documentation for details about
transactions.)

Once you have configured your command object, you can execute it in a number of ways,

depending on the nature of the command, the type of data returned by the command, and the format in
which you want to process the data.

• To execute a command that does not return database data (such as INSERT, DELETE,
or CREATE TABLE), call ExecuteNonQuery. For the UPDATE, INSERT, and DELETE
commands, the ExecuteNonQuery method returns an int that specifies the number
of rows affected by the command. For other commands, such as CREATE TABLE,
ExecuteNonQuery returns the value -1.

• To execute a command that returns a result set, such as a SELECT statement or
stored procedure, use the ExecuteReader method. ExecuteReader returns an
IDataReader instance (discussed in recipe 9-7) through which you have access to
the result data. Most data providers also allow you to execute multiple SQL
commands in a single call to the ExecuteReader method, as demonstrated in the
example in recipe 9-7, which also shows how to access each result set.

• If you want to execute a query but only need the value from the first column of the
first row of result data, use the ExecuteScalar method. The value is returned as an
object reference that you must cast to the correct type.

■ Note The IDbCommand implementations included in the Oracle and SQL data providers implement additional
command execution methods. Recipe 9-8 describes how to use the ExecuteXmlReader method provided by the
SqlCommand class. Refer to the .NET Framework’s SDK documentation for details on the additional
ExecuteOracleNonQuery and ExecuteOracleScalar methods provided by the OracleCommand class.

The Code
The following example demonstrates the use of command objects to update a database record, run a
stored procedure, and obtain a scalar value:

CHAPTER 9 ■ DATABASE ACCESS

439

using System;
using System.Data;
using System.Data.SqlClient;

namespace Apress.VisualCSharpRecipes.Chapter09
{
 class Recipe09_05
 {
 public static void ExecuteNonQueryExample(IDbConnection con)
 {
 // Create and configure a new command.
 IDbCommand com = con.CreateCommand();
 com.CommandType = CommandType.Text;
 com.CommandText = "UPDATE Employees SET Title = 'Sales Director'" +
 " WHERE EmployeeId = '5'";

 // Execute the command and process the result.
 int result = com.ExecuteNonQuery();

 if (result == 1)
 {
 Console.WriteLine("Employee title updated.");
 }
 else
 {
 Console.WriteLine("Employee title not updated.");
 }
 }

 public static void ExecuteReaderExample(IDbConnection con)
 {
 // Create and configure a new command.
 IDbCommand com = con.CreateCommand();
 com.CommandType = CommandType.StoredProcedure;
 com.CommandText = "Ten Most Expensive Products";

 // Execute the command and process the results.
 using (IDataReader reader = com.ExecuteReader())
 {
 Console.WriteLine("Price of the Ten Most Expensive Products.");

 while (reader.Read())
 {
 // Display the product details.
 Console.WriteLine(" {0} = {1}",
 reader["TenMostExpensiveProducts"],
 reader["UnitPrice"]);
 }
 }
 }

CHAPTER 9 ■ DATABASE ACCESS

440

 public static void ExecuteScalarExample(IDbConnection con)
 {
 // Create and configure a new command.
 IDbCommand com = con.CreateCommand();
 com.CommandType = CommandType.Text;
 com.CommandText = "SELECT COUNT(*) FROM Employees";

 // Execute the command and cast the result.
 int result = (int)com.ExecuteScalar();

 Console.WriteLine("Employee count = " + result);
 }

 public static void Main()
 {
 // Create a new SqlConnection object.
 using (SqlConnection con = new SqlConnection())
 {
 // Configure the SqlConnection object's connection string.
 con.ConnectionString = @"Data Source = .\sqlexpress;" +
 "Database = Northwind; Integrated Security=SSPI";

 // Open the database connection and execute the example
 // commands through the connection.
 con.Open();

 ExecuteNonQueryExample(con);
 Console.WriteLine(Environment.NewLine);

 ExecuteReaderExample(con);
 Console.WriteLine(Environment.NewLine);

 ExecuteScalarExample(con);
 }

 // Wait to continue.
 Console.WriteLine(Environment.NewLine);
 Console.WriteLine("Main method complete. Press Enter.");
 Console.ReadLine();
 }
 }
}

CHAPTER 9 ■ DATABASE ACCESS

441

9-6. Use Parameters in a SQL Command or Stored Procedure

Problem
You need to set the arguments of a stored procedure or use parameters in a SQL command to improve
flexibility.

Solution
Create parameter objects appropriate to the type of command object you intend to execute. All
parameter objects implement the System.Data.IDataParameter interface. Configure the parameter
objects’ data types, values, and directions, and add them to the command object’s parameter collection
using the IDbCommand.Parameters.Add method.

How It Works
All command objects support the use of parameters, so you can do the following:

• Set the arguments of stored procedures.

• Receive stored procedure return values.

• Substitute values into text commands at runtime.

The IDataParameter interface represents a parameter, and each data provider includes a unique
implementation. Here is the list of IDataParameter implementations for the five standard data providers:

• System.Data.Odbc.OdbcParameter

• System.Data.OleDb.OleDbParameter

• System.Data.OracleClient.OracleParameter

• System.Data.SqlServerCe.SqlCeParameter

• System.Data.SqlClient.SqlParameter

To use parameters with a text command, you must identify where to substitute the parameter’s
value within the command. The ODBC, OLE DB, and SQL Server CE data providers support positional
parameters; the location of each argument is identified by a question mark (?). For example, the
following command identifies two locations to be substituted with parameter values:
UPDATE Employees SET Title = ? WHERE EmployeeId = ?

The SQL Server and Oracle data providers support named parameters, which allow you to identify
each parameter location using a name preceded by the at symbol (@). Here is the equivalent command
using named parameters:
UPDATE Employees SET Title = @title WHERE EmployeeId = @id

To specify the parameter values to substitute into a command, you must create parameter objects of
the correct type and add them to the command object’s parameter collection accessible through the
Parameters property. You can add named parameters in any order, but you must add positional
parameters in the same order they appear in the text command. When you execute your command, the

CHAPTER 9 ■ DATABASE ACCESS

442

value of each parameter is substituted into the command string before the command is executed against
the data source. You can create parameter objects in the following ways:

• Use the IDbCommand.CreateParameter method.

• Use the IDbCommand.Parameters.Add method.

• Use System.Data.Common.DbProviderFactory.

• Directly create parameter objects using constructors and configure them using
constructor arguments or through setting their properties. (This approach ties you
to a specific database provider.)

A parameter object’s properties describe everything about a parameter that the command object
needs to use the parameter object when executing a command against a data source. Table 9-4 describes
the properties that you will use most frequently when configuring parameters.

Table 9-4. Commonly Used Parameter Properties

Property Description

DbType A value of the System.Data.DbType enumeration that specifies the type of data
contained in the parameter. Commonly used values include String, Int32, DateTime,
and Currency.

Direction A value from the System.Data.ParameterDirection enumeration that indicates the
direction in which the parameter is used to pass data. Valid values are Input,
InputOutput, Output, and ReturnValue.

IsNullable A bool that indicates whether the parameter accepts null values.

ParameterName A string containing the name of the parameter.

Value An object containing the value of the parameter.

When using parameters to execute stored procedures, you must provide parameter objects to satisfy

each argument required by the stored procedure, including both input and output arguments. You must
set the Direction property of each parameter as described in Table 9-4; parameters are Input by default.
If a stored procedure has a return value, the parameter to hold the return value (with a Direction
property equal to ReturnValue) must be the first parameter added to the parameter collection.

The Code
The following example demonstrates the use of parameters in SQL commands. The
ParameterizedCommandExample method demonstrates the use of parameters in a SQL Server UPDATE
statement. The ParameterizedCommandExample method’s arguments include an open SqlConnection and
two strings. The values of the two strings are substituted into the UPDATE command using parameters.
The StoredProcedureExample method demonstrates the use of parameters to call a stored procedure.

CHAPTER 9 ■ DATABASE ACCESS

443

using System;
using System.Data;
using System.Data.SqlClient;

namespace Apress.VisualCSharpRecipes.Chapter09
{
 class Recipe09_06
 {
 public static void ParameterizedCommandExample(SqlConnection con,
 string employeeID, string title)
 {
 // Create and configure a new command containing two named parameters.
 using (SqlCommand com = con.CreateCommand())
 {
 com.CommandType = CommandType.Text;
 com.CommandText = "UPDATE Employees SET Title = @title" +
 " WHERE EmployeeId = @id";

 // Create a SqlParameter object for the title parameter.
 SqlParameter p1 = com.CreateParameter();
 p1.ParameterName = "@title";
 p1.SqlDbType = SqlDbType.VarChar;
 p1.Value = title;
 com.Parameters.Add(p1);

 // Use a shorthand syntax to add the id parameter.
 com.Parameters.Add("@id", SqlDbType.Int).Value = employeeID;

 // Execute the command and process the result.
 int result = com.ExecuteNonQuery();

 if (result == 1)
 {
 Console.WriteLine("Employee {0} title updated to {1}.",
 employeeID, title);
 }
 else
 {
 Console.WriteLine("Employee {0} title not updated.",
 employeeID);
 }
 }
 }

 public static void StoredProcedureExample(SqlConnection con,
 string category, string year)
 {

CHAPTER 9 ■ DATABASE ACCESS

444

 // Create and configure a new command.
 using (SqlCommand com = con.CreateCommand())
 {
 com.CommandType = CommandType.StoredProcedure;
 com.CommandText = "SalesByCategory";

 // Create a SqlParameter object for the category parameter.
 com.Parameters.Add("@CategoryName", SqlDbType.NVarChar).Value =
 category;

 // Create a SqlParameter object for the year parameter.
 com.Parameters.Add("@OrdYear", SqlDbType.NVarChar).Value = year;

 // Execute the command and process the results.
 using (IDataReader reader = com.ExecuteReader())
 {
 Console.WriteLine("Sales By Category ({0}).", year);

 while (reader.Read())
 {
 // Display the product details.
 Console.WriteLine(" {0} = {1}",
 reader["ProductName"],
 reader["TotalPurchase"]);
 }
 }
 }
 }

 public static void Main()
 {
 // Create a new SqlConnection object.
 using (SqlConnection con = new SqlConnection())
 {
 // Configure the SqlConnection object's connection string.
 con.ConnectionString = @"Data Source = .\sqlexpress;" +
 "Database = Northwind; Integrated Security=SSPI";

 // Open the database connection and execute the example
 // commands through the connection.
 con.Open();

 ParameterizedCommandExample(con, "5", "Cleaner");
 Console.WriteLine(Environment.NewLine);

 StoredProcedureExample(con, "Seafood", "1999");
 Console.WriteLine(Environment.NewLine);
 }

CHAPTER 9 ■ DATABASE ACCESS

445

 // Wait to continue.
 Console.WriteLine(Environment.NewLine);
 Console.WriteLine("Main method complete. Press Enter.");
 Console.ReadLine();
 }
 }
}

9-7. Process the Results of a SQL Query Using a Data Reader

Problem
You need to process the data contained in a System.Data.IDataReader instance returned when you
execute the IDbCommand.ExecuteReader method (discussed in recipe 9-5).

Solution
Use the members of the IDataReader instance to move through the rows in the result set sequentially
and access the individual data items contained in each row.

How It Works
The IDataReader interface represents a data reader, which is a forward-only, read-only mechanism for
accessing the results of a SQL query. Each data provider includes a unique IDataReader implementation.
Here is the list of IDataReader implementations for the five standard data providers:

• System.Data.Odbc.OdbcDataReader

• System.Data.OleDb.OleDbDataReader

• System.Data.OracleClient.OracleDataReader

• System.Data.SqlServerCe.SqlCeDataReader

• System.Data.SqlClient.SqlDataReader

The IDataReader interface extends the System.Data.IDataRecord interface. Together, these
interfaces declare the functionality that provides access to both the data and the structure of the data
contained in the result set. Table 9-5 describes some of the commonly used members of the IDataReader
and IDataRecord interfaces.

CHAPTER 9 ■ DATABASE ACCESS

446

Table 9-5. Commonly Used Members of Data Reader Classes

Member Description

Property

FieldCount Gets the number of columns in the current row.

IsClosed Returns true if IDataReader is closed, and false if it’s currently open.

Item Returns an object representing the value of the specified column in the current row.
Columns can be specified using a zero-based integer index or a string containing the
column name. You must cast the returned value to the appropriate type. This is the
indexer for data record and reader classes.

Method

GetDataTypeName Gets the name of the data source data type for a specified column.

GetFieldType Gets a System.Type instance representing the data type of the value contained in the
column specified using a zero-based integer index.

GetName Gets the name of the column specified by using a zero-based integer index.

GetOrdinal Gets the zero-based column ordinal for the column with the specified name.

GetSchemaTable Returns a System.Data.DataTable instance that contains metadata describing the
columns contained in IDataReader.

IsDBNull Returns true if the value in the specified column contains a data source null value;
otherwise, it returns false.

NextResult Moves to the next set of results if IDataReader includes multiple result sets because
multiple statements were executed. By default, IDataReader is positioned on the first
result set.

Read Advances the reader to the next record. The reader always starts prior to the first
record.

In addition to those members listed in Table 9-5, the data reader provides a set of methods for

retrieving typed data from the current row. Each of the following methods takes an integer argument
that identifies the zero-based index of the column from which the data should be returned: GetBoolean,
GetByte, GetBytes, GetChar, GetChars, GetDateTime, GetDecimal, GetDouble, GetFloat, GetGuid, GetInt16,
GetInt32, GetInt64, GetString, GetValue, and GetValues.

The SQL Server and Oracle data readers also include methods for retrieving data as data source–
specific data types. For example, SqlDataReader includes methods such as GetSqlByte, GetSqlDecimal,

CHAPTER 9 ■ DATABASE ACCESS

447

and GetSqlMoney; and OracleDataReader includes methods such as GetOracleLob, GetOracleNumber, and
GetOracleMonthSpan. Refer to the .NET Framework SDK documentation for more details.

When you have finished with a data reader, you should always call its Close method so that you can
use the database connection again. IDataReader extends System.IDisposable, meaning that each data
reader class implements the Dispose method. Dispose automatically calls Close, making the using
statement a very clean and efficient way of using data readers.

The Code
The following example demonstrates the use of a data reader to process the contents of two result sets
returned by executing a batch query containing two SELECT queries. The first result set is enumerated
and displayed to the console. The second result set is inspected for metadata information, which is then
displayed.

using System;
using System.Data;
using System.Data.SqlClient;

namespace Apress.VisualCSharpRecipes.Chapter09
{
 class Recipe09_07
 {
 public static void Main()
 {
 // Create a new SqlConnection object.
 using (SqlConnection con = new SqlConnection())
 {
 // Configure the SqlConnection object's connection string.
 con.ConnectionString = @"Data Source = .\sqlexpress;" +
 "Database = Northwind; Integrated Security=SSPI";

 // Create and configure a new command.
 using (SqlCommand com = con.CreateCommand())
 {
 com.CommandType = CommandType.Text;
 com.CommandText = "SELECT BirthDate,FirstName,LastName FROM "+
 "Employees ORDER BY BirthDate;SELECT * FROM Employees";

 // Open the database connection and execute the example.
 // commands through the connection.
 con.Open();

 // Execute the command and obtain a SqlReader.
 using (SqlDataReader reader = com.ExecuteReader())
 {
 // Process the first set of results and display the
 // content of the result set.
 Console.WriteLine("Employee Birthdays (By Age).");

CHAPTER 9 ■ DATABASE ACCESS

448

 while (reader.Read())
 {
 Console.WriteLine(" {0,18:D} - {1} {2}",
 reader.GetDateTime(0), // Retrieve typed data
 reader["FirstName"], // Use string index
 reader[2]); // Use ordinal index
 }
 Console.WriteLine(Environment.NewLine);

 // Process the second set of results and display details
 // about the columns and data types in the result set.
 reader.NextResult();
 Console.WriteLine("Employee Table Metadata.");
 for (int field = 0; field < reader.FieldCount; field++)
 {
 Console.WriteLine(" Column Name:{0} Type:{1}",
 reader.GetName(field),
 reader.GetDataTypeName(field));
 }
 }
 }
 }

 // Wait to continue.
 Console.WriteLine(Environment.NewLine);
 Console.WriteLine("Main method complete. Press Enter.");
 Console.ReadLine();
 }
 }
}

9-8. Obtain an XML Document from a SQL Server Query

Problem
You need to execute a query against a SQL Server database and retrieve the results as XML.

Solution
Specify the FOR XML clause in your SQL query to return the results as XML. Execute the command using
the ExecuteXmlReader method of the System.Data.SqlClient.SqlCommand class, which returns a
System.Xml.XmlReader object through which you can access the returned XML data.

CHAPTER 9 ■ DATABASE ACCESS

449

How It Works
SQL Server 2000 (and later versions) provides direct support for XML. You simply need to add the clause
FOR XML AUTO to the end of a SQL query to indicate that the results should be returned as XML. By
default, the XML representation is not a full XML document. Instead, it simply returns the result of each
record in a separate element, with all the fields as attributes. For example, the query

SELECT CustomerID, CompanyName FROM Customers FOR XML AUTO

returns XML with the following structure:

<Customers CustomerID="ALFKI" CompanyName="Alfreds Futterkiste"/>
<Customers CustomerID="ANTON" CompanyName="Antonio Moreno Taquería"/>
<Customers CustomerID="GOURL" CompanyName="Gourmet Lanchonetes"/>

Alternatively, you can add the ELEMENTS keyword to the end of a query to structure the results using
nested elements rather than attributes. For example, the query

SELECT CustomerID, CompanyName FROM Customers FOR XML AUTO, ELEMENTS

returns XML with the following structure:

<Customers>
 <CustomerID>ALFKI</CustomerID>
 <CompanyName>Alfreds Futterkiste</CompanyName>
</Customers>
<Customers>
 <CustomerID>ANTON</CustomerID>
 <CompanyName>Antonio Moreno Taquería</CompanyName>
</Customers>
<Customers>
 <CustomerID>GOURL</CustomerID>
 <CompanyName>Gourmet Lanchonetes</CompanyName>
</Customers>

■ Tip You can also fine-tune the format in more detail using the FOR XML EXPLICIT syntax. For example, this
allows you to convert some fields to attributes and others to elements. Refer to SQL Server Books Online for more
information.

When the ExecuteXmlReader command returns, the connection cannot be used for any other
commands while XmlReader is open. You should process the results as quickly as possible, and you must
always close XmlReader. Instead of working with XmlReader and accessing the data sequentially, you can
read the XML data into a System.Xml.XmlDocument. This way, all the data is retrieved into memory, and
the database connection can be closed. You can then continue to interact with the XML document.
(Chapter 6 contains numerous examples of how to use the XmlReader and XmlDocument classes.)

CHAPTER 9 ■ DATABASE ACCESS

450

The Code
The following example demonstrates how to retrieve results as XML using the FOR XML clause and the
ExecuteXmlReader method:

using System;
using System.Xml;
using System.Data;
using System.Data.SqlClient;

namespace Apress.VisualCSharpRecipes.Chapter09
{
 class Recipe09_08
 {
 public static void ConnectedExample()
 {
 // Create a new SqlConnection object.
 using (SqlConnection con = new SqlConnection())
 {
 // Configure the SqlConnection object's connection string.
 con.ConnectionString = @"Data Source = .\sqlexpress;" +
 "Database = Northwind; Integrated Security=SSPI";

 // Create and configure a new command that includes the
 // FOR XML AUTO clause.
 using (SqlCommand com = con.CreateCommand())
 {
 com.CommandType = CommandType.Text;
 com.CommandText = "SELECT CustomerID, CompanyName" +
 " FROM Customers FOR XML AUTO";

 // Open the database connection.
 con.Open();

 // Execute the command and retrieve an XmlReader to access
 // the results.
 using (XmlReader reader = com.ExecuteXmlReader())
 {
 while (reader.Read())
 {
 Console.Write("Element: " + reader.Name);
 if (reader.HasAttributes)
 {
 for (int i = 0; i < reader.AttributeCount; i++)
 {
 reader.MoveToAttribute(i);
 Console.Write(" {0}: {1}",
 reader.Name, reader.Value);
 }

CHAPTER 9 ■ DATABASE ACCESS

451

 // Move the XmlReader back to the element node.
 reader.MoveToElement();
 Console.WriteLine(Environment.NewLine);
 }
 }
 }
 }
 }
 }

 public static void DisconnectedExample()
 {
 XmlDocument doc = new XmlDocument();

 // Create a new SqlConnection object.
 using (SqlConnection con = new SqlConnection())
 {
 // Configure the SqlConnection object's connection string.
 con.ConnectionString = @"Data Source = .\sqlexpress;" +
 "Database = Northwind; Integrated Security=SSPI";

 // Create and configure a new command that includes the
 // FOR XML AUTO clause.
 SqlCommand com = con.CreateCommand();
 com.CommandType = CommandType.Text;
 com.CommandText =
 "SELECT CustomerID, CompanyName FROM Customers FOR XML AUTO";

 // Open the database connection.
 con.Open();

 // Load the XML data into the XmlDocument. Must first create a
 // root element into which to place each result row element.
 XmlReader reader = com.ExecuteXmlReader();
 doc.LoadXml("<results></results>");

 // Create an XmlNode from the next XML element read from the
 // reader.
 XmlNode newNode = doc.ReadNode(reader);

 while (newNode != null)
 {
 doc.DocumentElement.AppendChild(newNode);
 newNode = doc.ReadNode(reader);
 }
 }

 // Process the disconnected XmlDocument.
 Console.WriteLine(doc.OuterXml);
 }

CHAPTER 9 ■ DATABASE ACCESS

452

 public static void Main(string[] args)
 {
 ConnectedExample();
 Console.WriteLine(Environment.NewLine);

 DisconnectedExample();
 Console.WriteLine(Environment.NewLine);

 // Wait to continue.
 Console.WriteLine(Environment.NewLine);
 Console.WriteLine("Main method complete. Press Enter.");
 Console.ReadLine();
 }
 }
}

9-9. Perform Asynchronous Database Operations Against
SQL Server

Problem
You need to execute a query or command against a SQL Server database as a background task while your
application continues with other processing.

Solution
Use the BeginExecuteNonQuery, BeginExecuteReader, or BeginExecuteXmlReader method of the
System.Data.SqlClient.SqlCommand class to start the database operation as a background task. These
methods all return a System.IAsyncResult object that you can use to determine the operation’s status or
use thread synchronization to wait for completion. Use the IAsyncResult object and the corresponding
EndExecuteNonQuery, EndExecuteReader, or EndExecuteXmlReader method to obtain the result of the
operation.

■ Note Only the SqlCommand class supports the asynchronous operations described in this recipe. The equivalent
command classes for the Oracle, SQL Server CE, ODBC, and OLE DB data providers do not provide this
functionality.

How It Works
You will usually execute operations against databases synchronously, meaning that the calling code
blocks until the operation is complete. Synchronous calls are most common because your code will

CHAPTER 9 ■ DATABASE ACCESS

453

usually require the result of the operation before it can continue. However, sometimes it’s useful to
execute a database operation asynchronously, meaning that you start the method in a separate thread
and then continue with other operations.

■ Note To execute asynchronous operations over a System.Data.SqlClient.SqlConnection connection, you
must specify the value Asynchronous Processing=true in its connection string.

The SqlCommand class implements the asynchronous execution pattern similar to that discussed in
recipe 4-2. As with the general asynchronous execution pattern described in recipe 4-2, the arguments of
the asynchronous execution methods (BeginExecuteNonQuery, BeginExecuteReader, and
BeginExecuteXmlReader) are the same as those of the synchronous variants (ExecuteNonQuery,
ExecuteReader, and ExecuteXmlReader), but they take the following two additional arguments to support
asynchronous completion:

• A System.AsyncCallback delegate instance that references a method that the
runtime will call when the asynchronous operation completes. The method is
executed in the context of a thread-pool thread. Passing null means that no
method is called and you must use another completion mechanism (discussed
later in this recipe) to determine when the asynchronous operation is complete.

• An object reference that the runtime associates with the asynchronous operation.
The asynchronous operation does not use nor have access to this object, but it’s
available to your code when the operation completes, allowing you to associate
useful state information with an asynchronous operation. For example, this object
allows you to map results against initiated operations in situations where you
initiate many asynchronous operations that use a common callback method to
perform completion.

The EndExecuteNonQuery, EndExecuteReader, and EndExecuteXmlReader methods allow you to retrieve
the return value of an operation that was executed asynchronously, but you must first determine when it
has finished. Here are the four techniques for determining if an asynchronous method has finished:

• Blocking: This method stops the execution of the current thread until the
asynchronous operation completes execution. In effect, this is much the same as
synchronous execution. However, in this case, you have the flexibility to decide
exactly when your code enters the blocked state, giving you the opportunity to
carry out some additional processing before blocking.

• Polling: This method involves repeatedly testing the state of an asynchronous
operation to determine whether it’s complete. This is a very simple technique and
is not particularly efficient from a processing perspective. You should avoid tight
loops that consume processor time. It’s best to put the polling thread to sleep for a
period using Thread.Sleep between completion tests. Because polling involves
maintaining a loop, the actions of the waiting thread are limited, but you can
easily update some kind of progress indicator.

CHAPTER 9 ■ DATABASE ACCESS

454

• Waiting: This method uses an object derived from the
System.Threading.WaitHandle class to signal when the asynchronous method
completes. Waiting is a more efficient version of polling and in addition allows
you to wait for multiple asynchronous operations to complete. You can also
specify timeout values to allow your waiting thread to fail if the asynchronous
operation takes too long, or if you want to periodically update a status indicator.

• Callback: This a method that the runtime calls when an asynchronous operation
completes. The calling code does not need to take any steps to determine when
the asynchronous operation is complete and is free to continue with other
processing. Callbacks provide the greatest flexibility, but also introduce the
greatest complexity, especially if you have many concurrently active
asynchronous operations that all use the same callback. In such cases, you must
use appropriate state objects to match completed methods against those you
initiated.

■ Caution When using the asynchronous capabilities of the SQL Server data provider, you must ensure that your
code does not inadvertently dispose of objects that are still being used by other threads. Pay particular attention to
SqlConnection and SqlCommand objects.

The Code
Recipe 4-2 provides examples of all of the completion techniques summarized in the preceding list. The
following example demonstrates the use of an asynchronous call to execute a stored procedure on a SQL
Server database. The code uses a callback to process the returned result set.

using System;
using System.Data;
using System.Threading;
using System.Data.SqlClient;

namespace Apress.VisualCSharpRecipes.Chapter09
{
 class Recipe09_09
 {
 // A method to handle asynchronous completion using callbacks.
 public static void CallbackHandler(IAsyncResult result)
 {
 // Obtain a reference to the SqlCommand used to initiate the
 // asynchronous operation.
 using (SqlCommand cmd = result.AsyncState as SqlCommand)
 {
 // Obtain the result of the stored procedure.
 using (SqlDataReader reader = cmd.EndExecuteReader(result))
 {

CHAPTER 9 ■ DATABASE ACCESS

455

 // Display the results of the stored procedure to the console.
 lock (Console.Out)
 {
 Console.WriteLine(
 "Price of the Ten Most Expensive Products:");

 while (reader.Read())
 {
 // Display the product details.
 Console.WriteLine(" {0} = {1}",
 reader["TenMostExpensiveProducts"],
 reader["UnitPrice"]);
 }
 }
 }
 }
 }

 public static void Main()
 {
 // Create a new SqlConnection object.
 using (SqlConnection con = new SqlConnection())
 {
 // Configure the SqlConnection object's connection string.
 // You must specify Asynchronous Processing=true to support
 // asynchronous operations over the connection.
 con.ConnectionString = @"Data Source = .\sqlexpress;" +
 "Database = Northwind; Integrated Security=SSPI;" +
 "Asynchronous Processing=true";

 // Create and configure a new command to run a stored procedure.
 // Do not wrap it in a using statement because the asynchronous
 // completion handler will dispose of the SqlCommand object.
 SqlCommand cmd = con.CreateCommand();
 cmd.CommandType = CommandType.StoredProcedure;
 cmd.CommandText = "Ten Most Expensive Products";

 // Open the database connection and execute the command
 // asynchronously. Pass the reference to the SqlCommand
 // used to initiate the asynchronous operation.
 con.Open();
 cmd.BeginExecuteReader(CallbackHandler, cmd);

CHAPTER 9 ■ DATABASE ACCESS

456

 // Continue with other processing.
 for (int count = 0; count < 10; count++)
 {
 lock (Console.Out)
 {
 Console.WriteLine("{0} : Continue processing...",
 DateTime.Now.ToString("HH:mm:ss.ffff"));
 }
 Thread.Sleep(500);
 }
 }

 // Wait to continue.
 Console.WriteLine(Environment.NewLine);
 Console.WriteLine("Main method complete. Press Enter.");
 Console.ReadLine();
 }
 }
}

9-10. Write Database-Independent Code

Problem
You need to write code that can be configured to work against any relational database supported by an
ADO.NET data provider.

Solution
Program to the ADO.NET data provider interfaces in the System.Data namespace, as opposed to the
concrete implementations, and do not rely on features and data types that are unique to specific
database implementations. Use factory classes and methods to instantiate the data provider objects you
need to use.

How It Works
Using a specific data provider implementation (the SQL Server data provider, for example) simplifies
your code, and may be appropriate if you need to support only a single type of database or require
access to specific features provided by that data provider, such as the asynchronous execution for SQL
Server detailed in recipe 9-9. However, if you program your application against a specific data provider
implementation, you will need to rewrite and test those sections of your code if you want to use a
different data provider at some point in the future.

Table 9-6 contains a summary of the main interfaces you must program against when writing
generic ADO.NET code that will work with any relational database’s data provider. The table also
explains how to create objects of the appropriate type that implement the interface. Many of the recipes

CHAPTER 9 ■ DATABASE ACCESS

457

in this chapter demonstrate the use of ADO.NET data provider interfaces over specific implementation,
as highlighted in the table.

Table 9-6. Data Provider Interfaces

Interface Description Demonstrated In

IDbConnection Represents a connection to a relational database. You must
program the logic to create a connection object of the
appropriate type based on your application’s configuration
information, or use the DbProviderFactory.CreateConnection
factory method (discussed in this recipe).

Recipe 9-1

IDbCommand Represents a SQL command that is issued to a relational
database. You can create IDbCommand objects of the appropriate
type using the IDbConnection.CreateCommand or
DbProviderFactory.CreateCommand factory method.

Recipe 9-5

IDataParameter Represents a parameter to an IDbCommand object. You can create
IDataParameter objects of the correct type using the
IDbCommand.CreateParameter, IDbCommand.Parameters.Add, or
DbProviderFactory.CreateParameter factory method.

Recipe 9-6

IDataReader Represents the result set of a database query and provides access
to the contained rows and columns. An object of the correct type
will be returned when you call the IDbCommand.ExecuteReader
method.

Recipes 9-5 and
9-6

IDbDataAdapter Represents the set of commands used to fill a
System.Data.DataSet from a relational database and to update
the database based on changes to the DataSet. You must program
the logic to create a data adapter object of the appropriate type
based on your application’s configuration information, or use the
DbProviderFactory.CreateAdapter factory method (discussed in
this recipe).

The System.Data.Common.DbProviderFactory class provides a set of factory methods for creating all

types of data provider objects, making it very useful for implementing generic database code. Most
important, DbProviderFactory provides a mechanism for obtaining an initial IDbConnection instance,
which is the critical starting point for writing generic ADO.NET code. Each of the standard data provider
implementations (except the SQL Server CE data provider) includes a unique factory class derived from
DbProviderFactory. Here is the list of DbProviderFactory subclasses:

CHAPTER 9 ■ DATABASE ACCESS

458

• System.Data.Odbc.OdbcFactory

• System.Data.OleDb.OleDbFactory

• System.Data.OracleClient.OracleClientFactory

• System.Data.SqlClient.SqlClientFactory

You can obtain an instance of the appropriate DbProviderFactory subclass using the
DbProviderFactories class, which is effectively a factory of factories. Each data provider factory is
described by configuration information in the machine.config file, similar to that shown here for the SQL
Server data adapter. This can be changed or overridden by application-specific configuration
information if required.

<configuration>
 <system.data>
 <DbProviderFactories>
 <add name="SqlClient Data Provider" invariant="System.Data.SqlClient" ~CCC
description=".Net Framework Data Provider for SqlServer" type= ~CCC
"System.Data.SqlClient.SqlClientFactory, System.Data, Version=2.0.0.0, ~CCC
Culture=neutral, PublicKeyToken=b77a5c561934e089" />
 <add name="Odbc Data Provider" ... />
 <add name="OleDb Data Provider" ... />
 <add name="OracleClient Data Provider" ... />
 <add name="SQL Server CE Data ... />
 </DbProviderFactories>
 </system.data>
</configuration>

You can enumerate the available data provider factories by calling DbProviderFactories.
GetFactoryClasses, which returns a System.Data.DataTable containing the following columns:

• Name, which contains a human-readable name for the provider factory. Taken from
the name attribute in the configuration information.

• Description, which contains a human-readable description for the provider
factory. Taken from the description attribute of the configuration information.

• InvariantName, which contains the unique name used to refer to the data provider
factory programmatically. Taken from the invariant attribute of the configuration
information.

• AssemblyQualifiedName, which contains the fully qualified name of the
DbProviderFactory class for the data provider. Taken from the type attribute of the
configuration information.

Normally, you would allow the provider to be selected at install time or the first time the application
is run, and then store the settings as user or application configuration data. The most important piece of
information is the InvariantName, which you pass to the DbProviderFactories.GetFactory method to
obtain the DbProviderFactory implementation you will use to create your IDbConnection instances.

CHAPTER 9 ■ DATABASE ACCESS

459

The Code
The following example demonstrates the enumeration of all data providers configured for the local
machine and application. It then uses the DbProviderFactories class to instantiate a DbProviderFactory
object (actually a SqlClientFactory) from which it creates the appropriate IDbConnection. It then uses
the factory methods of the data provider interfaces to create other required objects, resulting in code
that is completely generic.

using System;
using System.Data;
using System.Data.Common;

namespace Apress.VisualCSharpRecipes.Chapter09
{
 class Recipe09_10
 {
 public static void Main(string[] args)
 {
 // Obtain the list of ADO.NET data providers registered in the
 // machine and application configuration files.
 using (DataTable providers = DbProviderFactories.GetFactoryClasses())
 {
 // Enumerate the set of data providers and display details.
 Console.WriteLine("Available ADO.NET Data Providers:");
 foreach (DataRow prov in providers.Rows)
 {
 Console.WriteLine(" Name:{0}", prov["Name"]);
 Console.WriteLine(" Description:{0}",
 prov["Description"]);
 Console.WriteLine(" Invariant Name:{0}",
 prov["InvariantName"]);
 }
 }

 // Obtain the DbProviderFactory for SQL Server. The provider to use
 // could be selected by the user or read from a configuration file.
 // In this case, we simply pass the invariant name.
 DbProviderFactory factory =
 DbProviderFactories.GetFactory("System.Data.SqlClient");

 // Use the DbProviderFactory to create the initial IDbConnection, and
 // then the data provider interface factory methods for other objects.
 using (IDbConnection con = factory.CreateConnection())
 {
 // Normally, read the connection string from secure storage.
 // See recipe 9-3. In this case, use a default value.
 con.ConnectionString = @"Data Source = .\sqlexpress;" +
 "Database = Northwind; Integrated Security=SSPI";

CHAPTER 9 ■ DATABASE ACCESS

460

 // Create and configure a new command.
 using (IDbCommand com = con.CreateCommand())
 {
 com.CommandType = CommandType.StoredProcedure;
 com.CommandText = "Ten Most Expensive Products";

 // Open the connection.
 con.Open();

 // Execute the command and process the results.
 using (IDataReader reader = com.ExecuteReader())
 {
 Console.WriteLine(Environment.NewLine);
 Console.WriteLine("Price of the Ten Most" +
 " Expensive Products.");

 while (reader.Read())
 {
 // Display the product details.
 Console.WriteLine(" {0} = {1}",
 reader["TenMostExpensiveProducts"],
 reader["UnitPrice"]);
 }
 }
 }
 }

 // Wait to continue.
 Console.WriteLine(Environment.NewLine);
 Console.WriteLine("Main method complete. Press Enter.");
 Console.ReadLine();
 }
 }
}

9-11. Discover All Instances of SQL Server on Your Network

Problem
You need to obtain a list of all instances of SQL Server that are accessible on the network.

Solution
Use the GetDataSources method of the System.Data.Sql.SqlDataSourceEnumerator class.

CHAPTER 9 ■ DATABASE ACCESS

461

How It Works
The SqlDataSourceEnumerator class makes it easy to enumerate the SQL Server instances accessible on
the network. You simply obtain the singleton SqlDataSourceEnumerator instance via the static property
SqlDataSourceEnumerator.Instance and call its GetDataSources method. The GetDataSources method
returns a System.Data.DataTable that contains a set of System.Data.DataRow objects. Each DataRow
represents a single SQL Server instance and contains the following columns:

• ServerName, which contains the name of the server where the SQL Server instance
is hosted

• InstanceName, which contains the name of the SQL Server instance or the empty
string if the SQL Server is the default instance

• IsClustered, which indicates whether the SQL Server instance is part of a cluster

• Version, which contains the version of the SQL Server instance

The Code
The following example demonstrates the use of the SqlDataSourceEnumerator class to discover and
display details of all SQL Server instances accessible (and visible) on the network. The IsClustered and
Version columns may be blank for some versions of SQL Server.

using System;
using System.Data;
using System.Data.Sql;

namespace Apress.VisualCSharpRecipes.Chapter09
{
 class Recipe09_11
 {
 public static void Main(string[] args)
 {
 // Obtain the DataTable of SQL Server instances.
 using (DataTable SqlSources =
 SqlDataSourceEnumerator.Instance.GetDataSources())
 {
 // Enumerate the set of SQL Servers and display details.
 Console.WriteLine("Discover SQL Server Instances:");
 foreach (DataRow source in SqlSources.Rows)
 {
 Console.WriteLine(" Server Name:{0}", source["ServerName"]);
 Console.WriteLine(" Instance Name:{0}",
 source["InstanceName"]);
 Console.WriteLine(" Is Clustered:{0}",
 source["IsClustered"]);
 Console.WriteLine(" Version:{0}", source["Version"]);
 }
 }

CHAPTER 9 ■ DATABASE ACCESS

462

 // Wait to continue.
 Console.WriteLine(Environment.NewLine);
 Console.WriteLine("Main method complete. Press Enter.");
 Console.ReadLine();
 }
 }
}

9-12. Create an In-Memory Cache

Problem
You need to create an in-memory cache of part of the database.

Solution
Use System.Data.DataSet to represent the data and System.Data.SqlClient.SqlDataAdapter to read and
sync data with the database.

How It Works
The System.Data.DataSet class contains one or more instances of System.Data.DataTable, each of which
contains instances of System.Data.DataRow, representing data rows from the database. The
SqlDataAdapter class acts as the bridge between the database and the DataSet, allowing you to populate
the DataSet with data and write back any changes to the database when you are done. The sequence for
using a DataSet is as follows:

1. Create a SqlConnection to your database as normal (see recipe 9-1).

2. Create a new instance of DataSet using the default constructor.

3. Create a new instance of SqlDataAdapter, passing in a query string for the data
you require and the SqlConnection you created in step 1 as constructor
arguments.

4. Create an instance of SqlCommandBuilder, passing in the SqlDataAdapter you
created.

5. Call the SqlDataAdapter.Fill instance method, passing the DataSet you
created in step 2 as a method argument.

6. Use the DataSet to access the DataTables contained within—read and modify
data as required.

7. Call the SqlDataAdapter.Update method to write any changes back to the
database.

To create a new row in a table, call the DataTable.NewRow instance method to obtain an instance of
DataRow that has the same schema as the DataTable. The new row is not automatically added to the table

CHAPTER 9 ■ DATABASE ACCESS

463

when you call NewRow—call DataTable.Rows.Add once you have set the values for the row. Changes that
you make to the data in the DataSet are not written back to the database until you call the
SqpDataAdapter.Update method.

The Code
The following example creates a DataSet and fills it with the contents of the Region table of the Northwind
sample database. The DataSet contains one DataTable, whose schema and contents are printed out. A
new record is added and an existing one modified before the changes are written back to the database.

using System;
using System.Data;
using System.Data.SqlClient;

namespace Apress.VisualCSharpRecipes.Chapter09
{
 class Recipe09_12
 {
 static void Main(string[] args)
 {

 // Create a new SqlConnection object.
 using (SqlConnection con = new SqlConnection())
 {
 // Configure the SqlConnection object's connection string.
 con.ConnectionString = @"Data Source = .\sqlexpress;" +
 "Database = Northwind; Integrated Security=SSPI";

 // Open the database connection.
 con.Open();

 // Create the query string.
 string query = "SELECT * from Region";

 // Create the data set.
 DataSet dataset = new DataSet();

 // Create the SQL data adapter.
 SqlDataAdapter adapter = new SqlDataAdapter(query, con);
 // Create the command builder so we can do modifications.
 SqlCommandBuilder commbuilder = new SqlCommandBuilder(adapter);

 // Populate the data set from the database.
 adapter.Fill(dataset);

CHAPTER 9 ■ DATABASE ACCESS

464

 // Print details of the schema.
 Console.WriteLine("\nSchema for table");
 DataTable table = dataset.Tables[0];
 foreach (DataColumn col in table.Columns)
 {
 Console.WriteLine("Column: {0} Type: {1}",
 col.ColumnName, col.DataType);
 }

 // Enumerate the data we have received.
 Console.WriteLine("\nData in table");
 foreach (DataRow row in table.Rows)
 {
 Console.WriteLine("Data {0} {1}", row[0], row[1]);
 }

 // Create a new row.
 DataRow newrow = table.NewRow();
 newrow["RegionID"] = 5;
 newrow["RegionDescription"] = "Central";
 table.Rows.Add(newrow);

 // Modify an existing row.
 table.Rows[0]["RegionDescription"] = "North Eastern";

 // Enumerate the cached data again.
 // Enumerate the data we have received.
 Console.WriteLine("\nData in (modified) table");
 foreach (DataRow row in table.Rows)
 {
 Console.WriteLine("Data {0} {1}", row[0], row[1]);
 }

 // Write the data back to the database.
 adapter.Update(dataset);
 }

 // Wait to continue.
 Console.WriteLine(Environment.NewLine);
 Console.WriteLine("Main method complete. Press Enter.");
 Console.ReadLine();
 }
 }
}

CHAPTER 9 ■ DATABASE ACCESS

465

Running the example produces the following results:

Schema for table

Column: RegionID Type: System.Int32

Column: RegionDescription Type: System.String

Data in table

Data 1 Eastern

Data 2 Western

Data 3 Northern

Data 4 Southern

Data in (modified) table

Data 1 North Eastern

Data 2 Western

Data 3 Northern

Data 4 Southern

Data 5 Central

Main method complete. Press Enter.

CHAPTER 9 ■ DATABASE ACCESS

466

9-13. Create a DataSet Programmatically

Problem
You need to work with in-memory data without a database.

Solution
Create an instance of System.Sql.DataSet and manually populate it with instances of
System.Data.Datatable. Create a schema for each table and create rows to represent data elements.

How It Works
In the previous recipe, we demonstrated how to use the DataSet and DataTable classes as part of a
memory cache, in order to achieve disconnected data manipulation. However, you can create instances
of these classes to represent data programmatically by calling constructors for the classes directly. The
example code for this recipe illustrates how to do this in order to create the same kind of DataSet and
DataTable that we used previously.

The Code
The following code creates a DataSet that contains a single DataTable and populates it with instances of
DataRow. Once populated, the same queries, modifications, and additions are performed upon it as in the
previous recipe.

using System;
sing System.Data;

namespace Apress.VisualCSharpRecipes.Chapter09
{
 class Recipe09_13
 {
 static void Main(string[] args)
 {
 // Create the data set.
 DataSet dataset = new DataSet();

 // Create the table and add it to the data set.
 DataTable table = new DataTable("Regions");
 dataset.Tables.Add(table);

 // Create the colums for the table.
 table.Columns.Add("RegionID", typeof(int));
 table.Columns.Add("RegionDescription", typeof(string));

CHAPTER 9 ■ DATABASE ACCESS

467

 // Populate the table.
 string[] regions = { "Eastern", "Western", "Northern", "Southern" };
 for (int i = 0; i < regions.Length; i++)
 {
 DataRow row = table.NewRow();
 row["RegionID"] = i + 1;
 row["RegionDescription"] = regions[i];
 table.Rows.Add(row);
 }

 // Print details of the schema.
 Console.WriteLine("\nSchema for table");
 foreach (DataColumn col in table.Columns)
 {
 Console.WriteLine("Column: {0} Type: {1}",
 col.ColumnName, col.DataType);
 }

 // Enumerate the data we have received.
 Console.WriteLine("\nData in table");
 foreach (DataRow row in table.Rows)
 {
 Console.WriteLine("Data {0} {1}", row[0], row[1]);
 }

 // Create a new row.
 DataRow newrow = table.NewRow();
 newrow["RegionID"] = 5;
 newrow["RegionDescription"] = "Central";
 table.Rows.Add(newrow);

 // Modify an existing row.
 table.Rows[0]["RegionDescription"] = "North Eastern";

 // Enumerate the cached data again.
 // Enumerate the data we have received.
 Console.WriteLine("\nData in (modified) table");
 foreach (DataRow row in table.Rows)
 {
 Console.WriteLine("Data {0} {1}", row[0], row[1]);
 }

 // Wait to continue.
 Console.WriteLine(Environment.NewLine);
 Console.WriteLine("Main method complete. Press Enter.");
 Console.ReadLine();
 }
 }
}

The program produces the following output:

CHAPTER 9 ■ DATABASE ACCESS

468

Schema for table

Column: RegionID Type: System.Int32

Column: RegionDescription Type: System.String

Data in table

Data 1 Eastern

Data 2 Western

Data 3 Northern

Data 4 Southern

Data in (modified) table

Data 1 North Eastern

Data 2 Western

Data 3 Northern

Data 4 Southern

Data 5 Central

Main method complete. Press Enter.

9-14. Perform a LINQ Query

Problem
You need to use LINQ to query a database.

CHAPTER 9 ■ DATABASE ACCESS

469

Solution
Create or obtain an instance of DataTable (see recipes 9-12 and 9-13) and call the AsEnumerable instance
method to obtain an IEnumerable<DataRow>, which can be used as a data source for LINQ queries.

How It Works
LINQ performs queries on the IEnumerable<> type, which you can obtain from instances of DataTable
using the AsEnumerable instance method. When using SQLDataAdapter to populate instances of DataTable
with data (see recipe 9-12), remember that you are working with cached data that will not reflect
changes made to the database. See Chapter 16 for recipes that demonstrate LINQ features.

The Code
The following example creates a DataSet that contains a DataTable with all of the rows of the Northwind
Region table, and then performs a LINQ query using the DataTable as the data source:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Data;
using System.Data.SqlClient;

namespace Apress.VisualCSharpRecipes.Chapter09
{
 class Recipe09_14
 {
 static void Main(string[] args)
 {

 // Create a new SqlConnection object.
 using (SqlConnection con = new SqlConnection())
 {
 // Configure the SqlConnection object's connection string.
 con.ConnectionString = @"Data Source = .\sqlexpress;" +
 "Database = Northwind; Integrated Security=SSPI";

 // Open the database connection.
 con.Open();

 // Create the query string.
 string query = "SELECT * from Region";

 // Create the data set.
 DataSet dataset = new DataSet();

CHAPTER 9 ■ DATABASE ACCESS

470

 // Create the SQL data adapter.
 SqlDataAdapter adapter = new SqlDataAdapter(query, con);
 // Create the command builder so we can do modifications.
 SqlCommandBuilder commbuilder = new SqlCommandBuilder(adapter);

 // Populate the data set from the database.
 adapter.Fill(dataset);

 // Obtain the data table.
 DataTable table = dataset.Tables[0];

 // Perform the LINQ query.
 IEnumerable<string> result = from e in table.AsEnumerable()
 where e.Field<int>(0) < 3
 select e.Field<string>(1);

 // Enumerate the results of the LINQ query.
 foreach (string str in result)
 {
 Console.WriteLine("Result: {0}", str);
 }
 }

 // Wait to continue.
 Console.WriteLine(Environment.NewLine);
 Console.WriteLine("Main method complete. Press Enter.");
 Console.ReadLine();
 }
 }
}

Running the program gives the following results:

Result: Eastern

Result: Western

Main method complete. Press Enter.

CHAPTER 9 ■ DATABASE ACCESS

471

9-15. Perform a LINQ Query with Entity Types

Problem
You need to work with types when using LINQ.

Solution
Define and annotate types with the Table and Column annotations and use
System.Data.Linq.DataContext to access the data in your database.

How It Works
LINQ includes support for entity classes, which map the schema from your database into .NET types.
You create an entity type by defining a partial class with members representing columns in a given
database table and apply annotations from the System.Data.Linq.Mapping namespace to give the .NET
Framework details of how to map from the table to instances of your entity type.

■ Tip Visual Studio can automatically create types for you. Select the Add a New Item option for your project, and
then select LINQ to SQL Classes to start a wizard that will generate the source files you require.

The first annotation to apply is Table, which creates the relationship between the partial class you
have defined and the table in the database—this annotation takes one argument, which is, not
surprisingly, the name of the table in question. You must then define one member for each column in
the table (ensuring that the member type matches the schema type for the database table), and apply the
Column annotation. For the Region table in the Northwind database, we would create a class like this:

 [Table(Name = "Region")]
 public partial class Region
 {
 [Column]
 public int RegionID;
 [Column]
 public string RegionDescription;
 }

To use the entity type, create an instance of System.Data.Linq.DataContext, passing in a
SqlConnection to your database as the constructor argument. You then call the DataContext.GetTable<>
instance method using your entity class as the type annotation—for example:
Table<Region> regionstable = context.GetTable<Region>();

The result from the GetTable method is a strongly typed instance of System.Data.Linq.Table, which
you can use as the data source for a LINQ query. In the clauses of the query, you can refer to the

CHAPTER 9 ■ DATABASE ACCESS

472

members of your entity type to perform filters and select results—see the code for this recipe for a
demonstration.

■ Tip LINQ entity types have a lot of features beyond what we have demonstrated here—see the .NET
documentation for further details. The LINQ to SQL home page is a good starting point:
http://msdn.microsoft.com/en-us/library/bb386976(VS.100).aspx.

The Code
The following example defines the type Region to represent rows in the Northwind Region table. A
DataContext is created to access the data, and the Region table is used as the basis for a LINQ query,
returning an IEnumeration<Region> as the result.

■ Note You must add the System.Data.Linq.dll assembly to your project in order to use the
System.Data.Linq and System.Data.Linq.Mapping namespaces.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Data;
using System.Data.SqlClient;
using System.Data.Linq;
using System.Data.Linq.Mapping;

namespace Apress.VisualCSharpRecipes.Chapter09
{
 [Table(Name = "Region")]
 public partial class Region
 {
 [Column]
 public int RegionID;
 [Column]
 public string RegionDescription;
 }
 class Recipe09_15
 {
 static void Main(string[] args)
 {

http://msdn.microsoft.com/en-us/library/bb386976

CHAPTER 9 ■ DATABASE ACCESS

473

 // Create a new SqlConnection object.
 using (SqlConnection con = new SqlConnection())
 {
 // Configure the SqlConnection object's connection string.
 con.ConnectionString = @"Data Source = .\sqlexpress;" +
 "Database = Northwind; Integrated Security=SSPI";

 // Open the database connection.
 con.Open();

 // Create the data context.
 DataContext context = new DataContext(con);

 // Get the table we are interested in.
 Table<Region> regionstable = context.GetTable<Region>();

 IEnumerable<Region> result = from e in regionstable
 where e.RegionID < 3
 select e;
 foreach (Region res in result)
 {
 Console.WriteLine("RegionID {0} Descr: {1}",

res.RegionID, res.RegionDescription);
 }
 }

 // Wait to continue.
 Console.WriteLine(Environment.NewLine);
 Console.WriteLine("Main method complete. Press Enter.");
 Console.ReadLine();
 }
 }
}

9-16. Compare LINQ DataSet Results

Problem
You need to compare the results of a LINQ query.

Solution
Use the Union, Intersect, or Except extension method to compare the results of two LINQ queries.

CHAPTER 9 ■ DATABASE ACCESS

474

How It Works
The default result of a LINQ query on a DataSet is an IEnumerable<DataRow>, and LINQ provides
extension methods that operate on this result type to allow you to compare results.

■ Tip See Chapter 16 for more information about LINQ extension methods, recipes for using them, and creating
custom extension methods that you can apply to your own data types.

The three extension methods are Union, Intersect, and Except. In all three cases, you call the
extension method on one result and supply another as the method argument—for example:

IEnumerable<DataRow> result1 = ...LINQ query on a DataSet...
IEnumerable<DataRow> result2 = ...LINQ query on a DataSet...
IEnumerable<DataRow> union = result1.Union(result2)

The Union method combines the contents of the two IEnumerable<DataRow> instances. The
Intersect method returns just those rows that exist in both enumerations. The Except method returns
all of the rows in the first enumeration except those that also exist in the second enumeration.

The result of these methods is another IEnumerable<DataRow>, meaning that you can use the result
to enumerate the data rows or as the basis for a further LINQ query, and you can use the same extension
methods to compare the result against another IEnumerable<DataRow>.

The Code
The following program performs two queries against the same table and then uses the Union, Intersect,
and Except methods to compare the results:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Data;
using System.Data.SqlClient;

namespace Apress.VisualCSharpRecipes.Chapter09
{
 class Recipe09_16
 {
 static void Main(string[] args)
 {

 // Create a new SqlConnection object.
 using (SqlConnection con = new SqlConnection())
 {

CHAPTER 9 ■ DATABASE ACCESS

475

 // Configure the SqlConnection object's connection string.
 con.ConnectionString = @"Data Source = .\sqlexpress;" +
 "Database = Northwind; Integrated Security=SSPI";

 // Open the database connection.
 con.Open();

 // Create the query string.
 string query = "SELECT * from Region";

 // Create the data set.
 DataSet dataset = new DataSet();

 // Create the SQL data adapter.
 SqlDataAdapter adapter = new SqlDataAdapter(query, con);
 // Create the command builder so we can do modifications.
 SqlCommandBuilder commbuilder = new SqlCommandBuilder(adapter);

 // Populate the data set from the database.
 adapter.Fill(dataset);

 // Obtain the data table.
 DataTable table = dataset.Tables[0];

 // Perform the first LINQ query.
 IEnumerable<DataRow> result1 = from e in table.AsEnumerable()
 where e.Field<int>(0) < 3
 select e;

 // Enumerate the results of the first LINQ query.
 Console.WriteLine("Results from first LINQ query");
 foreach (DataRow row in result1)
 {
 Console.WriteLine("ID: {0} Name: {1}",
 row.Field<int>(0), row.Field<string>(1));
 }

 // Perform the first LINQ query.
 IEnumerable<DataRow> result2 = from e in table.AsEnumerable()
 let name = e.Field<string>(1)
 where name.StartsWith("North")
 || name.StartsWith("East")
 select e;

CHAPTER 9 ■ DATABASE ACCESS

476

 // Enumerate the results of the first LINQ query.
 Console.WriteLine("\nResults from second LINQ query");
 foreach (DataRow row in result2)
 {
 Console.WriteLine("ID: {0} Name: {1}",
 row.Field<int>(0), row.Field<string>(1));
 }
 IEnumerable<DataRow> union = result1.Union(result2);
 // Enumerate the results.
 Console.WriteLine("\nResults from union");
 foreach (DataRow row in union)
 {
 Console.WriteLine("ID: {0} Name: {1}",
 row.Field<int>(0), row.Field<string>(1));
 }

 IEnumerable<DataRow> intersect = result1.Intersect(result2);
 // Enumerate the results.
 Console.WriteLine("\nResults from intersect");
 foreach (DataRow row in intersect)
 {
 Console.WriteLine("ID: {0} Name: {1}",
 row.Field<int>(0), row.Field<string>(1));
 }

 IEnumerable<DataRow> except = result1.Except(result2);
 // Enumerate the results.
 Console.WriteLine("\nResults from except");
 foreach (DataRow row in except)
 {
 Console.WriteLine("ID: {0} Name: {1}",
 row.Field<int>(0), row.Field<string>(1));
 }

 }

 // Wait to continue.
 Console.WriteLine(Environment.NewLine);
 Console.WriteLine("Main method complete. Press Enter.");
 Console.ReadLine();
 }
 }
}

CHAPTER 9 ■ DATABASE ACCESS

477

Running the sample program gives the following results:

Results from first LINQ query

ID: 1 Name: Eastern

ID: 2 Name: Western

Results from second LINQ query

ID: 1 Name: Eastern

ID: 3 Name: Northern

Results from union

ID: 1 Name: Eastern

ID: 2 Name: Western

ID: 3 Name: Northern

Results from intersect

ID: 1 Name: Eastern

Results from except

ID: 2 Name: Western

Main method complete. Press Enter.

C H A P T E R 10

■ ■ ■

479

Networking

The Microsoft .NET Framework includes a full set of classes for network programming. These classes
support low-level network programming tasks like querying the state of network interfaces and socket-
based programming with Transmission Control Protocol/Internet Protocol (TCP/IP) to higher-level
tasks like downloading files and HTML pages from the Web over Hypertext Transfer Protocol (HTTP).
You can even build fully distributed applications using distributed objects or service-oriented
approaches.

Included in the release of .NET Framework 3.0 was Windows Communication Foundation (WCF), a
unified programming model for building service-oriented applications. Although earlier technologies
are still available, WCF is generally seen as a replacement for technologies like .NET Remoting and
ASP.NET Web Services, and also provides a flexible unified interface through which to access many other
types of distributed communications, like message queues.

The recipes in this chapter describe how to do the following:

• Obtain configuration and network statistic information about the network
interfaces on a computer as well as detect when network configuration changes
occur (recipes 10-1 and 10-2)

• Download files from File Transfer Protocol (FTP) and HTTP servers (recipes 10-3,
10-4, and 10-6)

• Respond to HTTP requests from within your application (recipe 10-5)

• Send e-mail messages with attachments using Simple Mail Transfer Protocol
(SMTP) (recipe 10-7)

• Use the Domain Name System (DNS) to resolve a host name into an Internet
Protocol (IP) address (recipe 10-8)

• Ping an IP address to determine whether it is accessible and calculate round-trip
communication speeds by sending it an Internet Control Message Protocol
(ICMP) Echo request (recipe 10-9)

• Communicate between programs through the direct use of TCP in both
synchronous and asynchronous communication models (recipes 10-10 and 10-11)

• Communicate using User Datagram Protocol (UDP) datagrams where
connection-oriented and reliable TCP represents unnecessary overhead (recipe
10-12)

CHAPTER 10 ■ NETWORKING

480

• Create a SOAP-based web service (recipe 10-13)

• Generate a WCF service proxy dynamically (recipe 10-14)

• Parse the contents of an Atom or RSS feed (recipe 10-15)

• Manipulate uniform resource locators (URIs) (recipe 10-16)

■ Tip A number of the recipes in this chapter include a client and a server component that must both be running
for the recipe to work correctly. Where this is the case, the client and server code are contained in separate
projects. To run these recipes from within Visual Studio, set the server project as the startup project and run it
normally. Once the server is running, right-click the client project in Solution Explorer, click Debug on the context
menu, and then click “Start new instance.”

10-1. Obtain Information About the Local Network Interface

Problem
You need to obtain information about the network adapters and network configuration of the local
machine.

Solution
Call the static method GetAllNetworkInterfaces of the System.Net.NetworkInformation.
NetworkInterface class to get an array of objects derived from the abstract class NetworkInterface.
Each object represents a network interface available on the local machine. Use the members of each
NetworkInterface object to retrieve configuration information and network statistics for that interface.

How It Works
The System.Net.NetworkInformation namespace provides easy access to information about network
configuration and statistics. The primary means of retrieving network information are the properties
and methods of the NetworkInterface class. You do not instantiate NetworkInterface objects directly.
Instead, you call the static method NetworkInterface.GetAllNetworkInterfaces, which returns an array
of NetworkInterface objects. Each object represents a single network interface on the local machine. You
can then obtain network information and statistics about the interface using the NetworkInterface
members described in Table 10-1.

CHAPTER 10 ■ NETWORKING

481

■ Tip The System.Net.NetworkInformation.IPGlobalProperties class also provides access to useful
information about the network configuration of the local computer.

Table 10-1. Members of the NetworkInterface Class

Member Description

Properties

Description Gets a string that provides a general description of the interface.

Id Gets a string that contains the identifier of the interface.

IsReceiveOnly Gets a bool indicating whether the interface can only receive or can both send
and receive data.

Name Gets a string containing the name of the interface.

NetworkInterfaceType Gets a value from the System.Net.NetworkInformation.NetworkInterfaceType
enumeration that identifies the type of interface. Common values include
Ethernet, FastEthernetT, and Loopback.

OperationalStatus Gets a value from the System.Net.NetworkInformation.OperationalStatus
enumeration that identifies the status of the interface. Common values include
Down and Up.

Speed Gets a long that identifies the speed (in bits per second) of the interface as
reported by the adapter, not based on dynamic calculation.

SupportsMulticast Gets a bool indicating whether the interface is enabled to receive multicast
packets.

Methods

GetIPProperties Returns a System.Net.NetworkInformation.IPInterfaceProperties object that
provides access to the TCP/IP configuration information for the interface.
Properties of the IPInterfaceProperties object provide access to WINS, DNS,
gateway, and IP address configuration.

CHAPTER 10 ■ NETWORKING

482

Member Description

GetIPv4Statistics Returns a System.Net.NetworkInformation.IPv4InterfaceStatistics object
that provides access to the TCP/IP v4 statistics for the interface. The properties
of the IPv4InterfaceStatistics object provide access to information about
bytes sent and received, packets sent and received, discarded packets, and
packets with errors.

GetPhysicalAddress Returns a System.Net.NetworkInformation.PhysicalAddress object that
provides access to the physical address of the interface. You can obtain the
physical address as a byte array using the method
PhysicalAddress.GetAddressBytes or as a string using
PhysicalAddress.ToString.

Supports Returns a bool indicating whether the interface supports a specified protocol.
You specify the protocol using a value from the
System.Net.NetworkInformation.NetworkInterfaceComponent enumeration.
Possible values include IPv4 and IPv6.

The NetworkInterface class also provides two other static members that you will find useful:

• The static property LoopbackInterfaceIndex returns an int identifying the index
of the loopback interface within the NetworkInterface array returned by
GetAllNetworkInterfaces.

• The static method GetIsNetworkAvailable returns a bool indicating whether any
network connection is available—that is, has an OperationalStatus value of Up.

The Code
The following example uses the members of the NetworkInterface class to display information about all
the network interfaces on the local machine:

using System;
using System.Net.NetworkInformation;

namespace Apress.VisualCSharpRecipes.Chapter10
{
 class Recipe10_01
 {
 static void Main()
 {
 // Only proceed if there is a network available.
 if (NetworkInterface.GetIsNetworkAvailable())
 {
 // Get the set of all NetworkInterface objects for the local
 // machine.
 NetworkInterface[] interfaces =
 NetworkInterface.GetAllNetworkInterfaces();

CHAPTER 10 ■ NETWORKING

483

 // Iterate through the interfaces and display information.
 foreach (NetworkInterface ni in interfaces)
 {
 // Report basic interface information.
 Console.WriteLine("Interface Name: {0}", ni.Name);
 Console.WriteLine(" Description: {0}", ni.Description);
 Console.WriteLine(" ID: {0}", ni.Id);
 Console.WriteLine(" Type: {0}", ni.NetworkInterfaceType);
 Console.WriteLine(" Speed: {0}", ni.Speed);
 Console.WriteLine(" Status: {0}", ni.OperationalStatus);

 // Report physical address.
 Console.WriteLine(" Physical Address: {0}",
 ni.GetPhysicalAddress().ToString());

 // Report network statistics for the interface.
 Console.WriteLine(" Bytes Sent: {0}",
 ni.GetIPv4Statistics().BytesSent);
 Console.WriteLine(" Bytes Received: {0}",
 ni.GetIPv4Statistics().BytesReceived);

 // Report IP configuration.
 Console.WriteLine(" IP Addresses:");
 foreach (UnicastIPAddressInformation addr
 in ni.GetIPProperties().UnicastAddresses)
 {
 Console.WriteLine(" - {0} (lease expires {1})",
 addr.Address,
 DateTime.Now +
 new TimeSpan(0, 0, (int)addr.DhcpLeaseLifetime));
 }

 Console.WriteLine(Environment.NewLine);
 }
 }
 else
 {
 Console.WriteLine("No network available.");
 }

 // Wait to continue.
 Console.WriteLine(Environment.NewLine);
 Console.WriteLine("Main method complete. Press Enter");
 Console.ReadLine();
 }
 }
}

CHAPTER 10 ■ NETWORKING

484

10-2. Detect Changes in Network Connectivity

Problem
You need a mechanism to check whether changes to the network occur during the life of your
application.

Solution
Add handlers to the static NetworkAddressChanged and NetworkAvailabilityChanged events implemented
by the System.Net.NetworkInformation.NetworkChange class.

How It Works
The NetworkChange class provides an easy-to-use mechanism that allows applications to be aware of
changes to network addresses and general network availability. This allows your applications to adapt
dynamically to the availability and configuration of the network.

The NetworkAvailabilityChanged event fires when a change occurs to general network availability.
An instance of the NetworkAvailabilityChangedEventHandler delegate is needed to handle this event and
is passed a NetworkAvailabilityEventArgs object when the event fires. The
NetworkAvailabilityEventArgs.IsAvailable property returns a bool indicating whether the network is
available or unavailable following the change.

The NetworkAddressChanged event fires when the IP address of a network interface changes.
An instance of the NetworkAddressChangedEventHandler delegate is required to handle these events.
No event-specific arguments are passed to the event handler, which must call NetworkInterface.
GetAllNetworkInterfaces (discussed in recipe 10-1) to determine what has changed and to take
appropriate action.

■ Note The NetworkAddressChanged and NetworkAvailabilityChanged events work on Windows 2000 and
later operating systems.

The Code
The following example demonstrates how to use handlers that catch NetworkAddressChanged and
NetworkAvailabilityChanged events and then display status information to the console. To observe how
the code handles changing network conditions, unplug your network cable while the example is
running, wait a few seconds, and then plug the cable back in.

CHAPTER 10 ■ NETWORKING

485

using System;
using System.Net.NetworkInformation;

namespace Apress.VisualCSharpRecipes.Chapter10
{
 class Recipe10_02
 {
 // Declare a method to handle NetworkAvailabilityChanged events.
 private static void NetworkAvailabilityChanged(
 object sender, NetworkAvailabilityEventArgs e)
 {
 // Report whether the network is now available or unavailable.
 if (e.IsAvailable)
 {
 Console.WriteLine("Network Available");
 }
 else
 {
 Console.WriteLine("Network Unavailable");
 }
 }

 // Declare a method to handle NetworkAdressChanged events.
 private static void NetworkAddressChanged(object sender, EventArgs e)
 {
 Console.WriteLine("Current IP Addresses:");

 // Iterate through the interfaces and display information.
 foreach (NetworkInterface ni in
 NetworkInterface.GetAllNetworkInterfaces())
 {
 foreach (UnicastIPAddressInformation addr
 in ni.GetIPProperties().UnicastAddresses)
 {
 Console.WriteLine(" - {0} (lease expires {1})",
 addr.Address, DateTime.Now +
 new TimeSpan(0, 0, (int)addr.DhcpLeaseLifetime));
 }
 }
 }

 static void Main(string[] args)
 {
 // Add the handlers to the NetworkChange events.
 NetworkChange.NetworkAvailabilityChanged +=
 NetworkAvailabilityChanged;
 NetworkChange.NetworkAddressChanged +=
 NetworkAddressChanged;

CHAPTER 10 ■ NETWORKING

486

 // Wait to continue.
 Console.WriteLine(Environment.NewLine);
 Console.WriteLine("Press Enter to stop waiting for network events");
 Console.ReadLine();
 }
 }
}

10-3. Download Data over HTTP or FTP

Problem
You need a quick, simple way to download data from the Internet using HTTP or FTP.

Solution
Use the methods of the System.Net.WebClient class.

How It Works
The .NET Framework provides several mechanisms for transferring data over the Internet. One of the
easiest approaches is to use the System.Net.WebClient class. WebClient provides many high-level
methods that simplify the transfer of data by specifying the source as a URI; Table 10-2 summarizes
them. The URI can specify that a file (file://), FTP (ftp://), or HTTP (http:// or https://) scheme be
used to download the resource.

Table 10-2. Data Download Methods of the WebClient Class

Method Description

OpenRead Returns a System.IO.Stream that provides access to the data from a specified
URI.

OpenReadAsync Same as OpenRead, but performs the data transfer using a thread-pool thread so
that the calling thread does not block. Add an event handler to the
OpenReadCompleted event to receive notification that the operation has
completed.

DownloadData Returns a byte array that contains the data from a specified URI.

DownloadDataAsync Same as DownloadData, but performs the data transfer using a thread-pool thread
so that the calling thread does not block. Add an event handler to the
DownloadDataCompleted event to receive notification that the operation has
completed.

http://orhttps:
http://orhttps:

CHAPTER 10 ■ NETWORKING

487

DownloadFile Downloads data from a specified URI and saves it to a specified local file.

DownloadFileAsync Same as DownloadFile, but performs the data transfer using a thread-pool thread
so that the calling thread does not block. Add an event handler to the
DownloadFileCompleted event to receive notification that the operation has
completed.

DownloadString Returns a string that contains the data from a specified URI.

DownloadStringAsync Same as DownloadString, but performs the data transfer using a thread-pool
thread so that the calling thread does not block. Add an event handler to the
DownloadStringCompleted event to receive notification that the operation has
completed.

The asynchronous download allows you to download data as a background task using a thread from

the thread pool (discussed in recipe 4-1). When the download is finished or fails, the thread calls the
appropriate OnXXX virtual methods that raise the corresponding event on the WebClient object, which
you can handle using a method that matches the signature of the System.ComponentModel.
AsyncCompletedEventHandler delegate if you don’t want to derive a type from WebClient and override the
virtual method. However, the WebClient object can handle only a single concurrent asynchronous
download, making a WebClient object suitable for the background download of large single sets of data
but not for the download of many files concurrently. (You could, of course, create multiple WebClient
objects to handle multiple downloads.) You can cancel the outstanding asynchronous download using
the method CancelAsync.

■ Tip The WebClient class derives from System.ComponentModel.Component, so you can add it to the Visual
Studio Form Designer Toolbox in order to allow you to easily set the properties or define the event handlers in a
Windows Forms–based application.

The Code
The following example downloads a specified resource from a URI as a string and, since it is an HTML
page, parses it for any fully qualified URLs that refer to GIF files. It then downloads each of these files to
the local hard drive.

using System;
using System.IO;
using System.Net;
using System.Text.RegularExpressions;

namespace Apress.VisualCSharpRecipes.Chapter10
{
 class Recipe10_03
 {

CHAPTER 10 ■ NETWORKING

488

 private static void Main()
 {
 // Specify the URI of the resource to parse.
 string srcUriString = "http://www.apress.com";
 Uri srcUri = new Uri(srcUriString);

 // Create a WebClient to perform the download.
 WebClient client = new WebClient();

 Console.WriteLine("Downloading {0}", srcUri);

 // Perform the download getting the resource as a string.
 string str = client.DownloadString(srcUri);

 // Use a regular expression to extract all HTML
 // elements and extract the path to any that reference
 // files with a gif, jpg, or jpeg extension.
 MatchCollection matches = Regex.Matches(str,
 "<img.*?src\\s*=\\s*[\"'](?<url>.*?\\.(gif|jpg|jpeg)).*?>",
 RegexOptions.Singleline | RegexOptions.IgnoreCase);

 // Try to download each referenced image file.
 foreach(Match match in matches)
 {
 var urlGrp = match.Groups["url"];

 if (urlGrp != null && urlGrp.Success)
 {
 Uri imgUri = null;

 // Determine the source URI.
 if (urlGrp.Value.StartsWith("http"))
 {
 // Absolute
 imgUri = new Uri(urlGrp.Value);
 }
 else if (urlGrp.Value.StartsWith("/"))
 {
 // Relative
 imgUri = new Uri(srcUri, urlGrp.Value);
 }
 else
 {
 // Skip it.
 Console.WriteLine("Skipping image {0}", urlGrp.Value);
 }

http://www.apress.com
http://www.apress.com

CHAPTER 10 ■ NETWORKING

489

 if (imgUri != null)
 {
 // Determine the local file name to use.
 string fileName =
 urlGrp.Value.Substring(urlGrp.Value.LastIndexOf('/')+1);

 try
 {
 // Download and store the file.
 Console.WriteLine("Downloading {0} to {1}",
 imgUri.AbsoluteUri, fileName);

 client.DownloadFile(imgUri, fileName);
 }
 catch
 {
 Console.WriteLine("Failed to download {0}",
 imgUri.AbsoluteUri);
 }
 }
 }
 }

 // Wait to continue.
 Console.WriteLine(Environment.NewLine);
 Console.WriteLine("Main method complete. Press Enter");
 Console.ReadLine();
 }
 }
}

■ Note The regular expression used in the example is simple and is not designed to cater to all possible URL
structures. Recipes 2-5 and 2-6 discuss regular expressions.

Notes
You may also want to upload data to resources specified as a URI, although this technique is not as
commonly used. The WebClient class also provides methods for performing uploads that are equivalent
to the download methods discussed previously:

• OpenWrite

• OpenWriteAsync

• UploadData

• UploadDataAsync

CHAPTER 10 ■ NETWORKING

490

• UploadFile

• UploadFileAsync

• UploadString

• UploadStringAsync

10-4. Download a File and Process It Using a Stream

Problem
You need to retrieve a file from a web site, but you do not want or do not have permission to save it
directly to the hard drive. Instead, you want to process the data in your application directly in memory.

Solution
Use the System.Net.WebRequest class to create your request, the System.Net.WebResponse class to retrieve
the response from the web server, and some form of reader (typically a System.IO.StreamReader for
HTML or text data or a System.IO.BinaryReader for a binary file) to parse the response data.

■ Tip You could also use the OpenRead method of the System.Net.WebClient class to open a stream. However,
the additional capabilities of the WebRequest and WebResponse classes give you more control over the operation of
the network request.

How It Works
Opening and downloading a stream of data from the Web using the WebRequest and WebResponse classes
takes the following four basic steps:

1. Use the static method Create of the WebRequest class to specify the page you
want. This method returns a WebRequest-derived object, depending on the type
of URI you specify. For example, if you use an HTTP URI (with the scheme
http:// or https://), you will create an HttpWebRequest instance. If you use a
file system URI (with the scheme file://), you will create a FileWebRequest
instance. In the .NET Framework 2.0 and later, you can also use an FTP URL
(with the scheme ftp://), which will create an FtpWebRequest.

2. Use the GetResponse method of the WebRequest object to return a WebResponse
object for the page. If the request times out, a System.Net.WebException will be
thrown. You can configure the timeout for the network request through the
WebRequest.Timeout property in milliseconds (the default value is 100000).

http://or

CHAPTER 10 ■ NETWORKING

491

3. Create a StreamReader or a BinaryReader that wraps the stream returned by the
WebResponse.GetResponseStream method.

4. Perform any steps you need to with the stream contents.

The Code
The following example retrieves and displays a graphic and the HTML content of a web page. Figure 10-1
shows the output.

using System;
using System.Net;
using System.IO;
using System.Drawing;
using System.Windows.Forms;

namespace Apress.VisualCSharpRecipes.Chapter10
{
 public partial class Recipe10_04 : Form
 {
 public Recipe10_04()
 {
 InitializeComponent();
 }

 protected override void OnLoad(EventArgs e)
 {
 base.OnLoad(e);

 string picUri = "http://www.apress.com/img/img05/Hex_RGB4.jpg";
 string htmlUri = "http://www.apress.com";

 // Create the requests.
 WebRequest requestPic = WebRequest.Create(picUri);
 WebRequest requestHtml = WebRequest.Create(htmlUri);

 // Get the responses.
 // This takes the most significant amount of time, particularly
 // if the file is large, because the whole response is retrieved.
 WebResponse responsePic = requestPic.GetResponse();
 WebResponse responseHtml = requestHtml.GetResponse();

 // Read the image from the response stream.
 pictureBox1.Image = Image.FromStream(responsePic.GetResponseStream());

http://www.apress.com/img/img05/Hex_RGB4.jpg
http://www.apress.com
http://www.apress.com/img/img05/Hex_RGB4.jpg

CHAPTER 10 ■ NETWORKING

492

 // Read the text from the response stream.
 using (StreamReader r =
 new StreamReader(responseHtml.GetResponseStream()))
 {
 textBox1.Text = r.ReadToEnd();
 }
 }

 [STAThread]
 public static void Main(string[] args)
 {
 Application.Run(new Recipe10_04());
 }
 }
}

Figure 10-1. Downloading content from the Web using a stream

10-5. Respond to HTTP Requests from Within Your
Application

Problem
You want your application to be able to respond to HTTP requests programmatically.

CHAPTER 10 ■ NETWORKING

493

Solution
Use the new System.Net.HttpListener class.

■ Note Your application must be running on Windows XP Service Pack 2 (or later) or Windows 2003 to use the
HttpListener class; otherwise, a System.PlatformNotSupportedException will be thrown when you try to
instantiate it. You should check the bool returned by the static property HttpListener.IsSupported to check
whether support is available.

How It Works
The HttpListener class provides an easy-to-use mechanism through which your programs can accept
and respond to HTTP requests. To use the HttpListener class, follow these steps:

1. Instantiate an HttpListener object.

2. Configure the URI prefixes that the HttpListener object will handle using the
Prefixes property. The Prefixes property returns a System.Net.
HttpListenerPrefixCollection collection to which you can add URI prefixes
(as strings) using the Add method. Each prefix must end with a forward slash
(/), or else a System.ArgumentException will be thrown. If you specify a URL
prefix that is already being handled, a System.Net.HttpListenerException will
be thrown. When a client makes a request, the request will be handled by the
listener configured with the prefix that most closely matches the client’s
requested URL.

3. Start the HttpListener object by calling its Start method. You must call Start
before the HttpListener object can accept and process HTTP requests.

4. Accept client requests using the GetContext method of the HttpListener
object. The GetContext method will block the calling thread until a request is
received and then returns a System.Net.HttpListenerContext object.
Alternatively, you can use the BeginGetContext and EndGetContext methods to
listen for requests on a thread-pool thread. When a request is received, the
System.AsyncCallback delegate specified as the argument to the
BeginGetContext method will be called and passed the HttpListenerContext
object. Regardless of how it is obtained, the HttpListenerContext object
implements three read-only properties critical to the handling of a client
request:

• The Request property returns a System.Net.HttpListenerRequest through
which you can access details of the client’s request.

• The Response property returns a System.Net.HttpListenerResponse through
which you can configure the response to send to the client.

CHAPTER 10 ■ NETWORKING

494

• The User property returns an instance of a type implementing
System.Security.Principal.IPrincipal, which you can use to obtain
identity, authentication, and authorization information about the user
associated with the request.

5. Configure the HTTP response through the members of the
HttpListenerResponse object accessible through the
HttpListenerContext.Response property.

6. Send the response by calling the Close method of the HttpListenerResponse
object.

7. Once you have finished processing HTTP requests, call Stop on the
HttpListener object to stop accepting more requests. Call Close to shut down
the HttpListener object, which will wait until all outstanding requests have
been processed, or call Abort to terminate the HttpListener object without
waiting for requests to complete.

The Code
The following example demonstrates how to use the HttpListener class to process HTTP requests. The
example starts listening for five requests concurrently using the asynchronous BeginGetContext method
and handles the response to each request by calling the RequestHandler method. Each time a request is
handled, a new call is made to BeginGetContext so that you always have the capacity to handle up to five
requests.

To open a connection to the example from your browser, enter the URL http://localhost:19080/
VisualCSharpRecipes/ or http://localhost:20000/Recipe10-05/, and you will see the response from the
appropriate request handler.

using System;
using System.IO;
using System.Net;
using System.Text;
using System.Threading;

namespace Apress.VisualCSharpRecipes.Chapter10
{
 class Recipe10_05
 {
 // Configure the maximum number of request that can be
 // handled concurrently.
 private static int maxRequestHandlers = 5;

 // An integer used to assign each HTTP request handler a unique
 // identifier.
 private static int requestHandlerID = 0;

 // The HttpListener is the class that provides all the capabilities
 // to receive and process HTTP requests.
 private static HttpListener listener;

http://localhost:19080
http://localhost:20000/Recipe10-05
http://localhost:20000/Recipe10-05

CHAPTER 10 ■ NETWORKING

495

 // A method to asynchronously process individual requests and send
 // responses.
 private static void RequestHandler(IAsyncResult result)
 {
 Console.WriteLine("{0}: Activated.", result.AsyncState);

 try
 {
 // Obtain the HttpListenerContext for the new request.
 HttpListenerContext context = listener.EndGetContext(result);

 Console.WriteLine("{0}: Processing HTTP Request from {1} ({2}).",
 result.AsyncState,
 context.Request.UserHostName,
 context.Request.RemoteEndPoint);

 // Build the response using a StreamWriter feeding the
 // Response.OutputStream.
 StreamWriter sw =
 new StreamWriter(context.Response.OutputStream, Encoding.UTF8);

 sw.WriteLine("<html>");
 sw.WriteLine("<head>");
 sw.WriteLine("<title>Visual C# Recipes</title>");
 sw.WriteLine("</head>");
 sw.WriteLine("<body>");
 sw.WriteLine("Recipe 10-5: " + result.AsyncState);
 sw.WriteLine("</body>");
 sw.WriteLine("</html>");
 sw.Flush();

 // Configure the Response.
 context.Response.ContentType = "text/html";
 context.Response.ContentEncoding = Encoding.UTF8;

 // Close the Response to send it to the client.
 context.Response.Close();

 Console.WriteLine("{0}: Sent HTTP response.", result.AsyncState);
 }
 catch (ObjectDisposedException)
 {
 Console.WriteLine("{0}: HttpListener disposed--shutting down.",
 result.AsyncState);
 }
 finally
 {

CHAPTER 10 ■ NETWORKING

496

 // Start another handler if unless the HttpListener is closing.
 if (listener.IsListening)
 {
 Console.WriteLine("{0}: Creating new request handler.",
 result.AsyncState);

 listener.BeginGetContext(RequestHandler, "RequestHandler_" +
 Interlocked.Increment(ref requestHandlerID));
 }
 }
 }

 public static void Main(string[] args)
 {
 // Quit gracefully if this feature is not supported.
 if (!HttpListener.IsSupported)
 {
 Console.WriteLine(
 "You must be running this example on Windows XP SP2, ",
 "Windows Server 2003, or higher to create ",
 "an HttpListener.");
 return;
 }

 // Create the HttpListener.
 using (listener = new HttpListener())
 {
 // Configure the URI prefixes that will map to the HttpListener.
 listener.Prefixes.Add(
 "http://localhost:19080/VisualCSharpRecipes/");
 listener.Prefixes.Add(
 "http://localhost:20000/Recipe10-05/");

 // Start the HttpListener before listening for incoming requests.
 Console.WriteLine("Starting HTTP Server");
 listener.Start();
 Console.WriteLine("HTTP Server started");
 Console.WriteLine(Environment.NewLine);

 // Create a number of asynchronous request handlers up to
 // the configurable maximum. Give each a unique identifier.
 for (int count = 0; count < maxRequestHandlers; count++)
 {
 listener.BeginGetContext(RequestHandler, "RequestHandler_" +
 Interlocked.Increment(ref requestHandlerID));
 }

 // Wait for the user to stop the HttpListener.
 Console.WriteLine("Press Enter to stop the HTTP Server");
 Console.ReadLine();

http://localhost:19080/VisualCSharpRecipes
http://localhost:20000/Recipe10-05
http://localhost:19080/VisualCSharpRecipes

CHAPTER 10 ■ NETWORKING

497

 // Stop accepting new requests.
 listener.Stop();

 // Terminate the HttpListener without processing current requests.
 listener.Abort();
 }

 // Wait to continue.
 Console.WriteLine(Environment.NewLine);
 Console.WriteLine("Main method complete. Press Enter");
 Console.ReadLine();
 }
 }
}

10-6. Get an HTML Page from a Site That Requires
Authentication

Problem
You need to retrieve a file from a web site, but the web site requires that you provide credentials for the
purpose of authentication.

Solution
Use the System.Net.WebRequest and System.Net.WebResponse classes as described in recipe 10-4. Before
making the request, configure the WebRequest.Credentials and WebRequest.Certificates properties
with the necessary authentication information.

■ Tip You could also use the System.Net.WebClient class (discussed in recipe 10-3), which also has
Credentials and Certificates properties that allow you to associate user credentials with a web request.

How It Works
Some web sites require user authentication information. When connecting through a browser, this
information might be submitted transparently (for example, on a local intranet site that uses Windows
integrated authentication), or the browser might request this information with a login dialog box. When
accessing a web page programmatically, your code needs to submit this information. The approach you
use depends on the type of authentication implemented by the web site:

CHAPTER 10 ■ NETWORKING

498

• If the web site is using basic or digest authentication, you can transmit a username
and password combination by manually creating a new System.Net.
NetworkCredential object and assigning it to the WebRequest.Credentials
property. With digest authentication, you may also supply a domain name.

• If the web site is using Windows integrated authentication, you can take the same
approach and manually create a new System.Net.NetworkCredential object.
Alternatively, you can retrieve the current user login information from the
System.Net.CredentialCache object using the DefaultCredentials property.

• If the web site requires a client certificate, you can load the certificate from a file
using the System.Security.Cryptography.X509Certificates.X509Certificate2
class and add that to the HttpWebRequest.ClientCertificates collection.

• You can load an X.509 certificate from a certificate store using the class
System.Security.Cryptography.X509Certificates.X509Store defined in the
System.Security.dll assembly. You can either find a certificate in the store
programmatically using the X509Store.Certificates.Find method or present the
user with a Windows dialog box and allow them to select the certificate. To
present a dialog box, pass a collection of X.509 certificates contained in an
X509Certificate2Collection object to the SelectFromCollection method of the
System.Security.Cryptography.X509Certificates.X509Certificate2UI class.

The Code
The following example demonstrates all four of the basic approaches described previously. Note that
you need to add a reference to the System.Security.dll assembly.

using System;
using System.Net;
using System.Security.Cryptography.X509Certificates;

namespace Apress.VisualCSharpRecipes.Chapter10
{
 class Recipe10_06
 {
 public static void Main()
 {
 // Create a WebRequest that authenticates the user with a
 // username and password combination over basic authentication.
 WebRequest requestA = WebRequest.Create("http://www.somesite.com");
 requestA.Credentials = new NetworkCredential("userName", "password");
 requestA.PreAuthenticate = true;

 // Create a WebRequest that authenticates the current user
 // with Windows integrated authentication.
 WebRequest requestB = WebRequest.Create("http://www.somesite.com");
 requestB.Credentials = CredentialCache.DefaultCredentials;
 requestB.PreAuthenticate = true;

http://www.somesite.com
http://www.somesite.com
http://www.somesite.com
http://www.somesite.com

CHAPTER 10 ■ NETWORKING

499

 // Create a WebRequest that authenticates the user with a client
 // certificate loaded from a file.
 HttpWebRequest requestC =
 (HttpWebRequest)WebRequest.Create("http://www.somesite.com");
 X509Certificate cert1 =
 X509Certificate.CreateFromCertFile(@"..\..\TestCertificate.cer");
 requestC.ClientCertificates.Add(cert1);

 // Create a WebRequest that authenticates the user with a client
 // certificate loaded from a certificate store. Try to find a
 // certificate with a specific subject, but if it is not found,
 // present the user with a dialog so they can select the certificate
 // to use from their personal store.
 HttpWebRequest requestD =
 (HttpWebRequest)WebRequest.Create("http://www.somesite.com");
 X509Store store = new X509Store();
 X509Certificate2Collection certs =
 store.Certificates.Find(X509FindType.FindBySubjectName,
 "Allen Jones", false);

 if (certs.Count == 1)
 {
 requestD.ClientCertificates.Add(certs[0]);
 }
 else
 {
 certs = X509Certificate2UI.SelectFromCollection(
 store.Certificates,
 "Select Certificate",
 "Select the certificate to use for authentication.",
 X509SelectionFlag.SingleSelection);

 if (certs.Count != 0)
 {
 requestD.ClientCertificates.Add(certs[0]);
 }
 }

 // Now issue the request and process the responses...
 }
 }
}

10-7. Send E-mail Using SMTP

Problem
You need to send e-mail using an SMTP server.

http://www.somesite.com
http://www.somesite.com
http://www.somesite.com
http://www.somesite.com

CHAPTER 10 ■ NETWORKING

500

Solution
Use the SmtpClient and MailMessage classes in the System.Net.Mail namespace.

■ Note In versions 1.0 and 1.1 of the .NET Framework, you would send SMTP mail using the SmtpMail and
MailMessage classes in the System.Web.Mail namespace from the System.Web.dll assembly. The SmtpClient
and MailMessage classes discussed in this recipe were added to the System.dll assembly in the .NET
Framework 2.0, and both simplify and extend the functionality provided by earlier versions.

How It Works
An instance of the SmtpClient class provides the mechanism through which you communicate with the
SMTP server. You configure the SmtpClient using the properties described in Table 10-3.

Table 10-3. Properties of the SmtpClient Class

Property Description

ClientCertificates Gets a
System.Security.Cryptography.X509Certificates.X509CertificatesCollection
to which you add the certificates to use for communicating with the SMTP
server (if required).

Credentials Gets or sets an implementation of the System.Net.ICredentialsByHost interface
that represents the credentials to use to gain access to the SMTP server. The
CredentialCache and NetworkCredential classes implement the
ICredentialsByHost interface. Use NetworkCredential if you want to specify
a single set of credentials and CredentialCache if you want to specify more
than one.

EnableSsl Gets or sets a bool value that indicates whether the SmtpClient should use
Secure Sockets Layer (SSL) to communicate with the SMTP server.

Host Gets or sets a string containing the host name or IP address of the SMTP server
to use to send e-mail.

Port Gets or sets an int value containing the port number to connect to on the SMTP
server. The default value is 25.

Timeout Gets or sets an int value containing the timeout in milliseconds when
attempting to send e-mail. The default is 100 seconds.

CHAPTER 10 ■ NETWORKING

501

Property Description

UseDefaultCredentials Gets or sets a bool value indicating whether the default user credentials are
used when communicating with the SMTP server. If true, the credentials
passed to the SMTP server are automatically obtained from the static property
CredentialCache.DefaultCredentials.

■ Tip You can specify default settings for the SmtpClient in the <mailSettings> section of your machine or
application configuration files. Configurable default values include the host, port, username, and password.

Mail messages are represented by MailMessage objects, which you instantiate and then configure
using the members summarized in Table 10-4.

■ Tip For simple mail messages, the MailMessage class provides a constructor that allows you to specify the
from, to, subject, and body information for the mail message as string arguments—allowing you to create a
complete mail message in a single call.

Table 10-4. Properties of the MailMessage Class

Property Description

Attachments Gets or sets a System.Net.Mail.AttachmentCollection containing the set of
attachments for the e-mail message. A System.Net.Mail.Attachment object represents
each attachment. You can create Attachment objects from files or streams, and you
can configure the encoding and content type for each attachment.

Bcc Gets or sets a System.Net.Mail.MailAddressCollection containing the blind carbon
copy addresses for the e-mail message. The MailAddressCollection contains one or
more MailAddress objects.

Body Gets or sets a string value that contains the body text of the e-mail message.

BodyEncoding Gets or sets a System.Text.Encoding object that specifies the encoding for the body of
the e-mail message. The default value is null, resulting in a default encoding of US-
ASCII, which is equivalent to the Encoding object returned by the static property
Encoding.ASCII.

CHAPTER 10 ■ NETWORKING

502

Property Description

CC Gets or sets a System.Net.Mail.MailAddressCollection containing the carbon copy
addresses for the e-mail message. The MailAddressCollection contains one or more
MailAddress objects.

From Gets or sets a System.Net.Mail.MailAddress containing the from address for the e-
mail message.

IsBodyHtml Gets or sets a bool value identifying whether the body of the e-mail message contains
HTML.

ReplyTo Gets or sets a System.Net.Mail.MailAddress containing the reply address for the e-
mail message.

Subject Gets or sets a string containing the subject for the e-mail message.

SubjectEncoding Gets or sets a System.Text.Encoding object that specifies the encoding used to
encode the body of the e-mail subject. The default value is null, resulting in a default
encoding of US-ASCII, which is equivalent to the Encoding object returned by the
static property Encoding.ASCII.

To Gets or sets a System.Net.Mail.MailAddressCollection containing the destination
addresses for the e-mail message. The MailAddressCollection contains one or more
MailAddress objects.

Once you have configured the SmtpClient, you can send your MailMessage objects using the

SmtpClient.Send method, which will cause your code to block until the send operation is completed or
fails. Alternatively, you can send mail using a thread from the thread pool by calling the SendAsync
method. When you call SendAsync, your code will be free to continue other processing while the e-mail is
sent. Add an event handler to the SendCompleted event to receive notification that the asynchronous
send has completed.

■ Note Remember that you can’t use SMTP to retrieve e-mail. For this task, you need the Post Office Protocol 3
(POP3) or the Internet Message Access Protocol (IMAP), neither of which is exposed natively in the .NET
Framework.

The Code
The following example demonstrates how to use the SmtpClient class to send an e-mail message with
multiple attachments to a set of recipients whose e-mail addresses are specified as command-line
arguments:

CHAPTER 10 ■ NETWORKING

503

using System;
using System.Net;
using System.Net.Mail;

namespace Apress.VisualCSharpRecipes.Chapter10
{
 class Recipe10_07
 {
 public static void Main(string[] args)
 {
 // Create and configure the SmtpClient that will send the mail.
 // Specify the host name of the SMTP server and the port used
 // to send mail.
 SmtpClient client = new SmtpClient("mail.somecompany.com", 25);

 // Configure the SmtpClient with the credentials used to connect
 // to the SMTP server.
 client.Credentials =
 new NetworkCredential("user@somecompany.com", "password");

 // Create the MailMessage to represent the e-mail being sent.
 using (MailMessage msg = new MailMessage())
 {
 // Configure the e-mail sender and subject.
 msg.From = new MailAddress("author@visual-csharp-recipes.com");
 msg.Subject = "Greetings from Visual C# Recipes";

 // Configure the e-mail body.
 msg.Body = "This is a message from Recipe 10-07 of" +
 " Visual C# Recipes. Attached is the source file " +
 " and the binary for the recipe.";

 // Attach the files to the e-mail message and set their MIME type.
 msg.Attachments.Add(
 new Attachment(@"..\..\Recipe10-07.cs","text/plain"));
 msg.Attachments.Add(
 new Attachment(@".\Recipe10-07.exe",
 "application/octet-stream"));

 // Iterate through the set of recipients specified on the
 // command line. Add all addresses with the correct structure as
 // recipients.
 foreach (string str in args)
 {

mailto:user@somecompany.com
mailto:author@visual-csharp-recipes.com
mailto:user@somecompany.com
mailto:author@visual-csharp-recipes.com

CHAPTER 10 ■ NETWORKING

504

 // Create a MailAddress from each value on the command line
 // and add it to the set of recipients.
 try
 {
 msg.To.Add(new MailAddress(str));
 }
 catch (FormatException ex)
 {
 // Proceed to the next specified recipient.
 Console.WriteLine("{0}: Error -- {1}", str, ex.Message);
 continue;
 }
 }

 // Send the message.
 client.Send(msg);
 }

 // Wait to continue.
 Console.WriteLine(Environment.NewLine);
 Console.WriteLine("Main method complete. Press Enter");
 Console.ReadLine();
 }
 }
}

10-8. Resolve a Host Name to an IP Address

Problem
You want to determine the IP address for a computer based on its fully qualified domain name by
performing a DNS query.

Solution
Use the method GetHostEntry of the System.Net.Dns class, and pass the computer’s fully qualified
domain name as a string parameter.

■ Note In versions 1.0 and 1.1 of the .NET Framework, you should use the method GetHostByName of the Dns
class, but it is marked as obsolete as of version 2.0.

CHAPTER 10 ■ NETWORKING

505

How It Works
On the Internet, the human-readable names that refer to computers are mapped to IP addresses, which
is what TCP/IP requires in order to communicate between computers. For example, the name
www.apress.com might be mapped to the IP address 66.211.109.45. It is not unusual for the IP address of
computers to change while their name remains constant, meaning that it is usually better to reference
computers with their name, not their IP address. To determine the current IP address for a given name,
the computer contacts a DNS server. The name or IP address of the DNS server contacted is configured
as part of a computer’s network configuration.

The entire process of name resolution is transparent if you use the System.Net.Dns class, which
allows you to retrieve the IP address for a host name by calling GetHostEntry.

■ Tip The Dns class also provides the BeginGetHostEntry and EndGetHostEntry methods, which allow you to
resolve IP addresses asynchronously. Also, the static method GetHostName returns the computer name of the local
machine.

The Code
The following example retrieves the IP addresses of all computers whose fully qualified domain names
are specified as command-line arguments:

using System;
using System.Net;

namespace Apress.VisualCSharpRecipes.Chapter10
{
 class Recipe10_08
 {
 public static void Main(string[] args)
 {
 foreach (string comp in args)
 {
 try
 {
 // Retrieve the DNS entry for the specified computer.
 IPAddress[] addresses = Dns.GetHostEntry(comp).AddressList;

 // The DNS entry may contain more than one IP address. Iterate
 // through them and display each one along with the type of
 // address (AddressFamily).
 foreach (IPAddress address in addresses)
 {

http://www.apress.com

CHAPTER 10 ■ NETWORKING

506

 Console.WriteLine("{0} = {1} ({2})",
 comp, address, address.AddressFamily);
 }
 }
 catch (Exception ex)
 {
 Console.WriteLine("{0} = Error ({1})", comp, ex.Message);
 }
 }

 // Wait to continue.
 Console.WriteLine(Environment.NewLine);
 Console.WriteLine("Main method complete. Press Enter");
 Console.ReadLine();
 }
 }
}

Usage
Running the example with the following command line:
recipe10-08 www.apress.com www.microsoft.com localhost somejunk
will produce output similar to the following. Notice that multiple IP addresses can be returned for some
host names.

www.apress.com = 65.19.150.100 (InterNetwork)

www.microsoft.com = 207.46.198.30 (InterNetwork)

www.microsoft.com = 207.46.20.30 (InterNetwork)

www.microsoft.com = 207.46.20.60 (InterNetwork)

www.microsoft.com = 207.46.18.30 (InterNetwork)

www.microsoft.com = 207.46.19.30 (InterNetwork)

www.microsoft.com = 207.46.19.60 (InterNetwork)

www.microsoft.com = 207.46.199.30 (InterNetwork)

www.microsoft.com = 207.46.198.60 (InterNetwork)

localhost = 127.0.0.1 (InterNetwork)

somejunk = Error (No such host is known)

http://www.apress.com
http://www.microsoft.com
http://www.apress.com
http://www.microsoft.com
http://www.microsoft.com
http://www.microsoft.com
http://www.microsoft.com
http://www.microsoft.com
http://www.microsoft.com
http://www.microsoft.com
http://www.microsoft.com

CHAPTER 10 ■ NETWORKING

507

10-9. Ping an IP Address

Problem
You want to check whether a computer is online and accessible and gauge its response time.

Solution
Send a ping message. This message is sent using the ICMP, accessible through the Send method of the
System.Net.NetworkInformation.Ping class.

■ Note The Ping class was introduced in the .NET Framework 2.0. To send a ping message in earlier versions of
the .NET Framework, you had to undertake significant effort to manually create an ICMP request message using
raw sockets and lengthy code.

How It Works
A ping message contacts a device at a specific IP address, passing it a test packet, and requests that the
remote device respond by echoing back the packet. To gauge the connection latency between two
computers, you can measure the time taken for a ping response to be received.

■ Caution Many commercial web sites do not respond to ping requests because they represent an unnecessary
processing overhead and are often used in denial-of-service attacks. The firewall that protects the site will usually
filter them out before they reach the specified destination. This will cause your ping request to time out.

The Ping class allows you to send ping messages using the Send method. The Send method provides
a number of overloads, which allow you to specify some or all of the following:

• The IP address or host name of the target computer. You can specify this as a
string or a System.Net.IPAddress object.

• The number of milliseconds to wait for a response before the request times out
(specified as an int) with the default set to 5,000.

• A byte array of up to 65,500 data bytes that is sent with the ping request and that
should be returned in the response.

• A System.Net.NetworkInformation.PingOptions object that specifies time-to-live
and fragmentation options for the transmission of the ping message.

CHAPTER 10 ■ NETWORKING

508

The Send method will return a System.Net.NetworkInformation.PingReply object. The Status
property of the PingReply will contain a value from the System.Net.NetworkInformation.IPStatus
enumeration from which you can determine the result of the ping request. The most common values
will be Success and TimedOut. If the host name you pass to the Send method cannot be resolved, Send will
throw an exception, but you must look at the InnerException to determine the cause of the problem.

The Ping class also provides a SendAsync method that performs the ping request using a thread-pool
thread so that the calling thread does not block. When the ping is finished or fails because of a timeout,
the thread raises the PingCompleted event on the Ping object, which you can handle using a method that
matches the signature of the System.Net.NetworkInformation.PingCompletedEventHandler delegate.
However, the Ping object can handle only a single concurrent request; otherwise, it will throw a
System.InvalidOperationException.

■ Tip The Ping class derives from System.ComponentModel.Component, so you can add it to the Visual Studio
Form Designer Toolbox in order to allow you to easily set the properties or define the event handlers in a Windows
Forms–based application.

The Code
The following example pings the computers whose domain names or IP addresses are specified as
command-line arguments:
using System;
using System.Net.NetworkInformation;

namespace Apress.VisualCSharpRecipes.Chapter10
{
 class Recipe10_09
 {
 public static void Main(string[] args)
 {
 // Create an instance of the Ping class.
 using (Ping ping = new Ping())
 {
 Console.WriteLine("Pinging:");

 foreach (string comp in args)
 {
 try
 {
 Console.Write(" {0}...", comp);

 // Ping the specified computer with a timeout of 100 ms.
 PingReply reply = ping.Send(comp, 100);

CHAPTER 10 ■ NETWORKING

509

 if (reply.Status == IPStatus.Success)
 {
 Console.WriteLine("Success - IP Address:{0} Time:{1}ms",
 reply.Address, reply.RoundtripTime);
 }
 else
 {
 Console.WriteLine(reply.Status);
 }
 }
 catch (Exception ex)
 {
 Console.WriteLine("Error ({0})",
 ex.InnerException.Message);
 }
 }
 }

 // Wait to continue.
 Console.WriteLine(Environment.NewLine);
 Console.WriteLine("Main method complete. Press Enter");
 Console.ReadLine();
 }
 }
}

Usage
Running the example with the following command line:

recipe10-09 www.apress.com www.google.com localhost somejunk

will produce output similar to the following:

Pinging:

 www.apress.com...TimedOut

 www.google.com...Success - IP Address:216.239.59.104 Time:42ms

 localhost...Success - IP Address:127.0.0.1 Time:0ms

 somejunk...Error (No such host is known)

http://www.apress.com
http://www.google.com
http://www.apress.com...TimedOut
http://www.google.com...Success

CHAPTER 10 ■ NETWORKING

510

10-10. Communicate Using TCP

Problem
You need to send data between two computers on a network using a TCP/IP connection.

Solution
One computer (the server) must begin listening using the System.Net.Sockets.TcpListener class.
Another computer (the client) connects to it using the System.Net.Sockets.TcpClient class. Once a
connection is established, both computers can communicate using the System.Net.Sockets.
NetworkStream class.

How It Works
TCP is a reliable, connection-oriented protocol that allows two computers to communicate over a
network. It provides built-in flow control, sequencing, and error handling, which makes it reliable and
easy to program.

To create a TCP connection, one computer must act as the server and start listening on a specific
endpoint. (An endpoint is a combination of an IP address and a port number.) The other computer must
act as a client and send a connection request to the endpoint on which the first computer is listening.
Once the connection is established, the two computers can take turns exchanging messages. .NET
makes this process easy through its stream abstraction. Both computers simply write to and read from a
System.Net.Sockets.NetworkStream to transmit data.

■ Note Even though a TCP connection always requires a server and a client, an individual application could be
both. For example, in a peer-to-peer application, one thread is dedicated to listening for incoming requests (acting
as a server), and another thread is dedicated to initiating outgoing connections (acting as a client). In the examples
provided with this chapter, the client and server are provided as separate applications and are placed in separate
subdirectories.

Once a TCP connection is established, the two computers can send any type of data by writing it to
the NetworkStream. However, it’s a good idea to begin designing a networked application by defining the
application-level protocol that clients and servers will use to communicate. This protocol includes
constants that represent the allowable commands, ensuring that your application code doesn’t include
hard-coded communication strings.

CHAPTER 10 ■ NETWORKING

511

The Code
In this example, the defined protocol is basic. You would add more constants depending on the type of
application. For example, in a file transfer application, you might include a client message for requesting
a file. The server might then respond with an acknowledgment and return file details such as the file size.
These constants should be compiled into a separate class library assembly, which must be referenced by
both the client and server. Here is the code for the shared protocol:

namespace Apress.VisualCSharpRecipes.Chapter10
{
 public class Recipe10_10Shared
 {
 public const string AcknowledgeOK = "OK";
 public const string AcknowledgeCancel = "Cancel";
 public const string Disconnect = "Bye";
 public const string RequestConnect = "Hello";
 }
}

The following code is a template for a basic TCP server. It listens on a fixed port, accepts the first
incoming connection, and then waits for the client to request a disconnect. At this point, the server
could call the TcpListener.AcceptTcpClient method again to wait for the next client, but instead it
simply shuts down.

using System;
using System.IO;
using System.Net;
using System.Net.Sockets;

namespace Apress.VisualCSharpRecipes.Chapter10
{
 public class Recipe10_10Server
 {
 public static void Main()
 {
 // Create a new listener on port 8000.
 TcpListener listener =
 new TcpListener(IPAddress.Parse("127.0.0.1"), 8000);

 Console.WriteLine("About to initialize port.");
 listener.Start();
 Console.WriteLine("Listening for a connection...");

 try
 {
 // Wait for a connection request, and return a TcpClient
 // initialized for communication.
 using (TcpClient client = listener.AcceptTcpClient())
 {
 Console.WriteLine("Connection accepted.");

CHAPTER 10 ■ NETWORKING

512

 // Retrieve the network stream.
 NetworkStream stream = client.GetStream();

 // Create a BinaryWriter for writing to the stream.
 using (BinaryWriter w = new BinaryWriter(stream))
 {
 // Create a BinaryReader for reading from the stream.
 using (BinaryReader r = new BinaryReader(stream))
 {
 if (r.ReadString() ==
 Recipe10_10Shared.RequestConnect)
 {
 w.Write(Recipe10_10Shared.AcknowledgeOK);
 Console.WriteLine("Connection completed.");

 while (r.ReadString() !=
 Recipe10_10Shared.Disconnect) { }

 Console.WriteLine(Environment.NewLine);
 Console.WriteLine("Disconnect request received.");
 }
 else
 {
 Console.WriteLine("Can't complete connection.");
 }
 }
 }
 }

 Console.WriteLine("Connection closed.");
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.ToString());
 }
 finally
 {
 // Close the underlying socket (stop listening for new requests).
 listener.Stop();
 Console.WriteLine("Listener stopped.");
 }

 // Wait to continue.
 Console.WriteLine(Environment.NewLine);
 Console.WriteLine("Main method complete. Press Enter");
 Console.ReadLine();
 }
 }
}

CHAPTER 10 ■ NETWORKING

513

The following code is a template for a basic TCP client. It contacts the server at the specified IP
address and port. In this example, the loopback address (127.0.0.1) is used, which always points to the
local computer. Keep in mind that a TCP connection requires two ports: one at the server end and one at
the client end. However, only the server port to connect to needs to be specified. The outgoing client
port can be chosen dynamically at runtime from the available ports, which is what the TcpClient class
will do by default.

using System;
using System.IO;
using System.Net;
using System.Net.Sockets;

namespace Apress.VisualCSharpRecipes.Chapter10
{
 public class Recipe10_10Client
 {
 public static void Main()
 {
 TcpClient client = new TcpClient();

 try
 {
 Console.WriteLine("Attempting to connect to the server ",
 "on port 8000.");
 client.Connect(IPAddress.Parse("127.0.0.1"), 8000);
 Console.WriteLine("Connection established.");

 // Retrieve the network stream.
 NetworkStream stream = client.GetStream();

 // Create a BinaryWriter for writing to the stream.
 using (BinaryWriter w = new BinaryWriter(stream))
 {
 // Create a BinaryReader for reading from the stream.
 using (BinaryReader r = new BinaryReader(stream))
 {
 // Start a dialog.
 w.Write(Recipe10_10Shared.RequestConnect);

 if (r.ReadString() == Recipe10_10Shared.AcknowledgeOK)
 {
 Console.WriteLine("Connected.");
 Console.WriteLine("Press Enter to disconnect.");
 Console.ReadLine();
 Console.WriteLine("Disconnecting...");
 w.Write(Recipe10_10Shared.Disconnect);
 }

CHAPTER 10 ■ NETWORKING

514

 else
 {
 Console.WriteLine("Connection not completed.");
 }
 }
 }
 }
 catch (Exception err)
 {
 Console.WriteLine(err.ToString());
 }
 finally
 {
 // Close the connection socket.
 client.Close();
 Console.WriteLine("Port closed.");
 }

 // Wait to continue.
 Console.WriteLine(Environment.NewLine);
 Console.WriteLine("Main method complete. Press Enter");
 Console.ReadLine();
 }
 }
}

Usage
Here’s a sample connection transcript on the server side:

About to initialize port.
Listening for a connection...
Connection accepted.
Connection completed.

Disconnect request received.
Connection closed.
Listener stopped.

And here’s a sample connection transcript on the client side:

Attempting to connect to the server on port 8000.
Connection established.
Connected.
Press Enter to disconnect.

Disconnecting...
Port closed.

CHAPTER 10 ■ NETWORKING

515

10-11. Create a Multithreaded TCP Server That Supports
Asynchronous Communications

Problem
You need to handle multiple network requests concurrently or perform a network data transfer as a
background task while your program continues with other processing.

Solution
Use the method AcceptTcpClient of the System.Net.Sockets.TcpListener class to accept connections.
Every time a new client connects, start a new thread to handle the connection. Alternatively, use the
TcpListener.BeginAcceptTcpClient to accept a new client connection on a thread-pool thread using the
asynchronous execution pattern (discussed in recipe 4-2).

To start a background task to handle the asynchronous sending of data, you can use the BeginWrite
method of the System.Net.Sockets.NetworkStream class and supply a callback method—each time the
callback is triggered, send more data.

How It Works
A single TCP endpoint (IP address and port) can serve multiple connections. In fact, the operating
system takes care of most of the work for you. All you need to do is create a worker object on the server
that will handle each connection on a separate thread. The TcpListener.AcceptTcpClient method
returns a TcpClient when a connection is established. This should be passed off to a threaded worker
object so that the worker can communicate with the remote client.

Alternatively, call the TcpListener.BeginAcceptTcpClient method to start an asynchronous
operation using a thread-pool thread that waits in the background for a client to connect.
BeginAcceptTcpClient follows the asynchronous execution pattern, allowing you to wait for the
operation to complete or specify a callback that the .NET runtime will call when a client connects.
(See recipe 4-2 for details on the options available.) Whichever mechanism you use, once
BeginAcceptTcpClient has completed, call EndAcceptTcpClient to obtain the newly created TcpClient
object.

To exchange network data asynchronously, you can use the NetworkStream class, which includes
basic support for asynchronous communication through the BeginRead and BeginWrite methods. Using
these methods, you can send or receive a block of data on one of the threads provided by the thread
pool, without blocking your code. When sending data asynchronously, you must send raw binary data
(an array of bytes). It’s up to you to choose the amount you want to send or receive at a time.

One advantage of this approach when sending files is that the entire content of the file does not
have to be held in memory at once. Instead, it is retrieved just before a new block is sent. Another
advantage is that the server can abort the transfer operation easily at any time.

CHAPTER 10 ■ NETWORKING

516

The Code
The following example demonstrates various techniques for handling network connections and
communications asynchronously. The server (Recipe10-11Server) starts a thread-pool thread listening
for new connections using the TcpListener.BeginAcceptTcpClient method and specifying a callback
method to handle the new connections. Every time a client connects to the server, the callback method
obtains the new TcpClient object and passes it to a new threaded ClientHandler object to handle client
communications.

The ClientHandler object waits for the client to request data and then sends a large amount of data
(read from a file) to the client. This data is sent asynchronously, which means ClientHandler could
continue to perform other tasks. In this example, it simply monitors the network stream for messages
sent from the client. The client reads only a third of the data before sending a disconnect message to the
server, which terminates the remainder of the file transfer and drops the client connection.

Here is the code for the shared protocol:

namespace Apress.VisualCSharpRecipes.Chapter10
{
 public class Recipe10_11Shared
 {
 public const string AcknowledgeOK = "OK";
 public const string AcknowledgeCancel = "Cancel";
 public const string Disconnect = "Bye";
 public const string RequestConnect = "Hello";
 public const string RequestData = "Data";
 }
}

Here is the server code:

using System;
using System.IO;
using System.Net;
using System.Threading;
using System.Net.Sockets;

namespace Apress.VisualCSharpRecipes.Chapter10
{
 public class Recipe10_11Server
 {
 // A flag used to indicate whether the server is shutting down.
 private static bool terminate;
 public static bool Terminate { get { return terminate; } }

 // A variable to track the identity of each client connection.
 private static int ClientNumber = 0;

 // A single TcpListener will accept all incoming client connections.
 private static TcpListener listener;

 public static void Main()
 {

CHAPTER 10 ■ NETWORKING

517

 // Create a 100KB test file for use in the example. This file will be
 // sent to clients that connect.
 using (FileStream fs = new FileStream("test.bin", FileMode.Create))
 {
 fs.SetLength(100000);
 }

 try
 {
 // Create a TcpListener that will accept incoming client
 // connections on port 8000 of the local machine.
 listener = new TcpListener(IPAddress.Parse("127.0.0.1"), 8000);

 Console.WriteLine("Starting TcpListener...");

 // Start the TcpListener accepting connections.
 terminate = false;
 listener.Start();

 // Begin asynchronously listening for client connections. When a
 // new connection is established, call the ConnectionHandler
 // method to process the new connection.
 listener.BeginAcceptTcpClient(ConnectionHandler, null);

 // Keep the server active until the user presses Enter.
 Console.WriteLine("Server awaiting connections. " +
 "Press Enter to stop server.");
 Console.ReadLine();
 }
 finally
 {
 // Shut down the TcpListener. This will cause any outstanding
 // asynchronous requests to stop and throw an exception in
 // the ConnectionHandler when EndAcceptTcpClient is called.
 // More robust termination synchronization may be desired here,
 // but for the purpose of this example ClientHandler threads are
 // all background threads and will terminate automatically when
 // the main thread terminates. This is suitable for our needs.
 Console.WriteLine("Server stopping...");
 terminate = true;
 if (listener != null) listener.Stop();
 }

 // Wait to continue.
 Console.WriteLine(Environment.NewLine);
 Console.WriteLine("Server stopped. Press Enter");
 Console.ReadLine();
 }

 // A method to handle the callback when a connection is established
 // from a client. This is a simple way to implement a dispatcher

CHAPTER 10 ■ NETWORKING

518

 // but lacks the control and scalability required when implementing
 // full-blown asynchronous server applications.
 private static void ConnectionHandler(IAsyncResult result)
 {
 TcpClient client = null;

 // Always end the asynchronous operation to avoid leaks.
 try
 {
 // Get the TcpClient that represents the new client connection.
 client = listener.EndAcceptTcpClient(result);
 }
 catch (ObjectDisposedException)
 {
 // Server is shutting down and the outstanding asynchronous
 // request calls the completion method with this exception.
 // The exception is thrown when EndAcceptTcpClient is called.
 // Do nothing and return.
 return;
 }

 Console.WriteLine("Dispatcher: New connection accepted.");

 // Begin asynchronously listening for the next client
 // connection.
 listener.BeginAcceptTcpClient(ConnectionHandler, null);

 if (client != null)
 {
 // Determine the identifier for the new client connection.
 Interlocked.Increment(ref ClientNumber);
 string clientName = "Client " + ClientNumber.ToString();

 Console.WriteLine("Dispatcher: Creating client handler ({0})."
 , clientName);

 // Create a new ClientHandler to handle this connection.
 new ClientHandler(client, clientName);
 }
 }
 }

 // A class that encapsulates the logic to handle a client connection.
 public class ClientHandler
 {
 // The TcpClient that represents the connection to the client.
 private TcpClient client;

 // An ID that uniquely identifies this ClientHandler.
 private string ID;

CHAPTER 10 ■ NETWORKING

519

 // The amount of data that will be written in one block (2KB).
 private int bufferSize = 2048;

 // The buffer that holds the data to write.
 private byte[] buffer;

 // Used to read data from the local file.
 private FileStream fileStream;

 // A signal to stop sending data to the client.
 private bool stopDataTransfer;

 internal ClientHandler(TcpClient client, string ID)
 {
 this.buffer = new byte[bufferSize];
 this.client = client;
 this.ID = ID;

 // Create a new background thread to handle the client connection
 // so that we do not consume a thread-pool thread for a long time
 // and also so that it will be terminated when the main thread ends.
 Thread thread = new Thread(ProcessConnection);
 thread.IsBackground = true;
 thread.Start();
 }

 private void ProcessConnection()
 {
 using (client)
 {
 // Create a BinaryReader to receive messages from the client. At
 // the end of the using block, it will close both the BinaryReader
 // and the underlying NetworkStream.
 using (BinaryReader reader = new BinaryReader(client.GetStream()))
 {
 if (reader.ReadString() == Recipe10_11Shared.RequestConnect)
 {
 // Create a BinaryWriter to send messages to the client.
 // At the end of the using block, it will close both the
 // BinaryWriter and the underlying NetworkStream.
 using (BinaryWriter writer =
 new BinaryWriter(client.GetStream()))
 {
 writer.Write(Recipe10_11Shared.AcknowledgeOK);
 Console.WriteLine(ID + ": Connection established.");

 string message = "";

CHAPTER 10 ■ NETWORKING

520

 while (message != Recipe10_11Shared.Disconnect)
 {
 try
 {
 // Read the message from the client.
 message = reader.ReadString();
 }
 catch
 {
 // For the purpose of the example, any
 // exception should be taken as a
 // client disconnect.
 message = Recipe10_11Shared.Disconnect;
 }

 if (message == Recipe10_11Shared.RequestData)
 {
 Console.WriteLine(ID + ": Requested data. ",
 "Sending...");

 // The filename could be supplied by the
 // client, but in this example a test file
 // is hard-coded.
 fileStream = new FileStream("test.bin",
 FileMode.Open, FileAccess.Read);

 // Send the file size--this is how the client
 // knows how much to read.
 writer.Write(fileStream.Length.ToString());

 // Start an asynchronous send operation.
 stopDataTransfer = false;
 StreamData(null);
 }
 else if (message == Recipe10_11Shared.Disconnect)
 {
 Console.WriteLine(ID +
 ": Client disconnecting...");
 stopDataTransfer = true;
 }
 else
 {
 Console.WriteLine(ID + ": Unknown command.");
 }
 }
 }
 }

CHAPTER 10 ■ NETWORKING

521

 else
 {
 Console.WriteLine(ID +
 ": Could not establish connection.");
 }
 }
 }

 Console.WriteLine(ID + ": Client connection closed.");
 }

 private void StreamData(IAsyncResult asyncResult)
 {
 // Always complete outstanding asynchronous operations to avoid leaks.
 if (asyncResult != null)
 {
 try
 {
 client.GetStream().EndWrite(asyncResult);
 }
 catch
 {
 // For the purpose of the example, any exception obtaining
 // or writing to the network should just terminate the
 // download.
 fileStream.Close();
 return;
 }
 }

 if (!stopDataTransfer && !Recipe10_11Server.Terminate)
 {
 // Read the next block from the file.
 int bytesRead = fileStream.Read(buffer, 0, buffer.Length);

 // If no bytes are read, the stream is at the end of the file.
 if (bytesRead > 0)
 {
 Console.WriteLine(ID + ": Streaming next block.");

 // Write the next block to the network stream.
 client.GetStream().BeginWrite(buffer, 0, buffer.Length,
 StreamData, null);
 }
 else
 {
 // End the operation.
 Console.WriteLine(ID + ": File streaming complete.");
 fileStream.Close();
 }
 }

CHAPTER 10 ■ NETWORKING

522

 else
 {
 // Client disconnected.
 Console.WriteLine(ID + ": Client disconnected.");
 fileStream.Close();
 }
 }
 }
}

And here is the client code:

using System;
using System.Net;
using System.Net.Sockets;
using System.IO;

namespace Apress.VisualCSharpRecipes.Chapter10
{
 public class Recipe10_11Client
 {
 private static void Main()
 {
 using (TcpClient client = new TcpClient())
 {
 Console.WriteLine("Attempting to connect to the server ",
 "on port 8000.");

 // Connect to the server.
 client.Connect(IPAddress.Parse("127.0.0.1"), 8000);

 // Retrieve the network stream from the TcpClient.
 using (NetworkStream networkStream = client.GetStream())
 {
 // Create a BinaryWriter for writing to the stream.
 using (BinaryWriter writer = new BinaryWriter(networkStream))
 {
 // Start a dialog.
 writer.Write(Recipe10_11Shared.RequestConnect);

 // Create a BinaryReader for reading from the stream.
 using (BinaryReader reader =
 new BinaryReader(networkStream))
 {
 if (reader.ReadString() ==
 Recipe10_11Shared.AcknowledgeOK)
 {
 Console.WriteLine("Connection established." +
 "Press Enter to download data.");

 Console.ReadLine();

CHAPTER 10 ■ NETWORKING

523

 // Send message requesting data to server.
 writer.Write(Recipe10_11Shared.RequestData);

 // The server should respond with the size of
 // the data it will send. Assume it does.
 int fileSize = int.Parse(reader.ReadString());

 // Only get part of the data, then carry out a
 // premature disconnect.
 for (int i = 0; i < fileSize / 3; i++)
 {
 Console.Write(networkStream.ReadByte());
 }

 Console.WriteLine(Environment.NewLine);
 Console.WriteLine("Press Enter to disconnect.");
 Console.ReadLine();
 Console.WriteLine("Disconnecting...");
 writer.Write(Recipe10_11Shared.Disconnect);
 }
 else
 {
 Console.WriteLine("Connection not established.");
 }
 }
 }
 }
 }

 // Wait to continue.
 Console.WriteLine(Environment.NewLine);
 Console.WriteLine("Connection closed. Press Enter");
 Console.ReadLine();
 }
 }
}

10-12. Communicate Using UDP

Problem
You need to send data between two computers on a network using a UDP stream.

Solution
Use the System.Net.Sockets.UdpClient class and use two threads: one to send data and the other to
receive it.

CHAPTER 10 ■ NETWORKING

524

How It Works
UDP is a connectionless protocol that doesn’t include any flow control or error checking. Unlike TCP,
UDP shouldn’t be used where reliable communication is required. However, because of its lower
overhead, UDP is often used for “chatty” applications where it is acceptable to lose some messages. For
example, imagine you want to create a network in which individual clients send information about the
current temperature at their locations to a server every few seconds. You might use UDP in this case
because the communication frequency is high and the damage caused by losing a packet is trivial
(because the server can just continue to use the last received temperature reading).

The Code
The application shown in the following code uses two threads: one to receive messages and one to send
them. The application stops when the user presses the Enter key without any text to send. Notice that
UDP applications cannot use the NetworkStream abstraction that TCP applications can. Instead, they
must convert all data to a stream of bytes using an encoding class, as described in recipe 2-2.

using System;
using System.Text;
using System.Net;
using System.Net.Sockets;
using System.Threading;

namespace Apress.VisualCSharpRecipes.Chapter10
{
 class Recipe10_12
 {
 private static int localPort;

 private static void Main()
 {
 // Define endpoint where messages are sent.
 Console.Write("Connect to IP: ");
 string IP = Console.ReadLine();
 Console.Write("Connect to port: ");
 int port = Int32.Parse(Console.ReadLine());

 IPEndPoint remoteEndPoint =
 new IPEndPoint(IPAddress.Parse(IP), port);

 // Define local endpoint (where messages are received).
 Console.Write("Local port for listening: ");
 localPort = Int32.Parse(Console.ReadLine());

 // Create a new thread for receiving incoming messages.
 Thread receiveThread = new Thread(ReceiveData);
 receiveThread.IsBackground = true;
 receiveThread.Start();

CHAPTER 10 ■ NETWORKING

525

 UdpClient client = new UdpClient();

 Console.WriteLine("Type message and press Enter to send:");

 try
 {
 string text;

 do
 {
 text = Console.ReadLine();

 // Send the text to the remote client.
 if (text.Length != 0)
 {
 // Encode the data to binary using UTF8 encoding.
 byte[] data = Encoding.UTF8.GetBytes(text);

 // Send the text to the remote client.
 client.Send(data, data.Length, remoteEndPoint);
 }
 } while (text.Length != 0);
 }
 catch (Exception err)
 {
 Console.WriteLine(err.ToString());
 }
 finally
 {
 client.Close();
 }

 // Wait to continue.
 Console.WriteLine(Environment.NewLine);
 Console.WriteLine("Main method complete. Press Enter");
 Console.ReadLine();
 }

 private static void ReceiveData()
 {
 UdpClient client = new UdpClient(localPort);

 while (true)
 {
 try
 {
 // Receive bytes.
 IPEndPoint anyIP = new IPEndPoint(IPAddress.Any, 0);
 byte[] data = client.Receive(ref anyIP);

CHAPTER 10 ■ NETWORKING

526

 // Convert bytes to text using UTF8 encoding.
 string text = Encoding.UTF8.GetString(data);

 // Display the retrieved text.
 Console.WriteLine(">> " + text);
 }
 catch (Exception err)
 {
 Console.WriteLine(err.ToString());
 }
 }
 }
 }
}

To test this application, load two instances at the same time. On computer A, specify the IP address
for computer B. On computer B, specify the address for computer A. You can then send text messages
back and forth at will. You can test this application with clients on the local computer using the loopback
alias 127.0.0.1, provided you use different listening ports. For example, imagine a situation with two UDP
clients, client A and client B. Here’s a sample transcript for client A:

Connect to IP: 127.0.0.1
Connect to port: 8001
Local port for listening: 8080

Hi there!

And here’s the corresponding transcript for client B (with the received message):

Connect to IP: 127.0.0.1
Connect to port: 8080
Local port for listening: 8001

>> Hi there!

10-13. Create a SOAP-Based Web Service

Problem
You need to expose functionality as a SOAP-based web service so that it can be accessed across the
Internet.

Solution
Declare an interface that contains the methods you want your web service to expose. Identify this
interface as a Windows Communication Foundation (WCF) service contract by applying the
ServiceContractAttribute attribute to the interface and the OperationContractAttribute attribute to

CHAPTER 10 ■ NETWORKING

527

each of the methods you want exposed by the web service. The ServiceContractAttribute and
OperationContractAttribute classes are members of the System.ServiceModel namespace.

Define any complex data types passed to and from the service and identify them as WCF data
contracts by applying the DataContractAttribute attribute to the class and the DataMemberAttribute
attribute to the members that need to be passed across the network. The DataContractAttribute and
DataMemberAttribute classes are members of the System.Runtime.Serialization namespace.

Implement the service contract functionality by implementing the interface on a class, configure
the configuration settings that control the behavior and protocols used by the service, and host an
instance of the service class in a service host.

How It Works
WCF allows you to quickly create web services that are accessible across the Internet and that offer many
choices in terms of protocols, security, and communication models. To create a simple SOAP-based
WCF web service, you need the following key ingredients:

• A service contract: This defines the functionality exposed by the web service and is
usually in the form of a C# interface, where the interface is annotated with the
ServiceContractAttribute attribute and the web service methods are annotated
with the OperationContractAttribute attribute.

• A service implementation: This object implements the service contract interface
and defines what each of the web service methods does when called by a client.

• A service host: The service host is a process that controls the life cycle of the web
service. This can be a custom program that loads your service (called self-hosting),
Internet Information Server (IIS), or Windows Activation Services (WAS).

There is potentially a lot of configuration information associated with a WCF web service, including
things like network addresses, protocol selection, and security settings. But the beauty of WCF is that
you really only need to worry about those bits of functionality that you are actively using and ignore the
rest. You can also choose whether to manage your configuration in code or through the application
config files. However, unless you need to make configuration decisions at runtime, it is usually best to
use declarative configuration so that you can change settings without having to change your code.

Once you have created a SOAP-based web service, the easiest way to consume it is to automatically
generate a proxy class using Visual Studio, or use the ServiceModel Metadata Utility Tool (svcutil.exe),
which is part of the Windows SDK. In some circumstances, you can also generate proxy classes
dynamically (see recipe 10-14 for details).

The Code
The following example demonstrates the creation of a simple SOAP-based web service that allows you to
create, update, find, and delete employee records. The example is self-hosted, but could be moved to IIS
or WAS without changes to the service code. The IEmployeeService interface defines the service contract.

using System;
using System.ServiceModel;

namespace Apress.VisualCSharpRecipes.Chapter10
{

CHAPTER 10 ■ NETWORKING

528

 [ServiceContract(Namespace = "Apress.VisualCSharpRecipes.Chapter10")]
 public interface IEmployeeService
 {
 [OperationContract]
 Employee CreateEmployee(Employee newEmployee);

 [OperationContract]
 bool DeleteEmployee(int employeeId);

 [OperationContract(Name="GetEmployeeById")]
 Employee GetEmployee(int employeeId);

 [OperationContract(Name = "GetEmployeeByName")]
 Employee GetEmployee(string employeeName);

 [OperationContract]
 Employee UpdateEmployee(Employee updatedEmployee);
 }
}

Here is the class that declares the Employee data contract representing the data that is passed
between the client and the service:

using System;
using System.Runtime.Serialization;

namespace Apress.VisualCSharpRecipes.Chapter10
{
 [DataContract]
 public class Employee
 {
 [DataMember]
 public DateTime DateOfBirth { get; set; }

 [DataMember]
 public int Id { get; set; }

 [DataMember]
 public string Name { get; set; }
 }
}

The EmployeeService class implements the IEmployeeService interface and provides the actual logic

of the web service.

using System;
using System.Collections.Generic;
using System.Linq;

namespace Apress.VisualCSharpRecipes.Chapter10
{

CHAPTER 10 ■ NETWORKING

529

 public class EmployeeService : IEmployeeService
 {
 private Dictionary<int, Employee> employees;

 public EmployeeService()
 {
 employees = new Dictionary<int, Employee>();
 }

 // Create an Employee based on the contents of a provided
 // Employee object. Return the new Employee object.
 public Employee CreateEmployee(Employee newEmployee)
 {
 // NOTE: Should validate new employee data.
 newEmployee.Id = employees.Count + 1;

 lock (employees)
 {
 employees[newEmployee.Id] = newEmployee;
 }

 return newEmployee;
 }

 // Delete an employee by the specified Id and return true
 // or false depending on if an Employee was deleted.
 public bool DeleteEmployee(int employeeId)
 {
 lock(employees)
 {
 return employees.Remove(employeeId);
 }
 }

 // Get an employee by the specified Id and return null if
 // the employee does not exist.
 public Employee GetEmployee(int employeeId)
 {
 Employee employee = null;

 lock (employees)
 {
 employees.TryGetValue(employeeId, out employee);
 }

 return employee;
 }

CHAPTER 10 ■ NETWORKING

530

 // Get an employee by the specified Name and return null if
 // the employee does not exist.
 public Employee GetEmployee(string employeeName)
 {
 Employee employee = null;

 lock (employees)
 {
 employee = employees.Values.FirstOrDefault
 (e => e.Name.ToLower() == employeeName.ToLower());
 }

 return employee;
 }

 // Update an employee based on the contents of a provided
 // Employee object. Return the updated Employee object.
 public Employee UpdateEmployee(Employee updatedEmployee)
 {
 Employee employee = GetEmployee(updatedEmployee.Id);

 // NOTE: Should validate new employee data.
 if (employee != null)
 {
 lock (employees)
 {
 employees[employee.Id] = updatedEmployee;
 }
 }

 return updatedEmployee;
 }
 }
}

The following code shows the simple service host created to run the service:

using System;
using System.ServiceModel;

namespace Apress.VisualCSharpRecipes.Chapter10
{
 public static class Recipe10_13Service
 {
 static void Main(string[] args)
 {
 ServiceHost host = new ServiceHost(typeof(EmployeeService));
 host.Open();

CHAPTER 10 ■ NETWORKING

531

 // Wait to continue.
 Console.WriteLine("Service host running. Press Enter to terminate.");
 Console.ReadLine();
 }
 }
}

The following shows the configuration information used by the service host:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <system.serviceModel>
 <behaviors>
 <serviceBehaviors>
 <behavior name="EmployeeServiceBehavior" >
 <serviceMetadata httpGetEnabled="true" />
 </behavior>
 </serviceBehaviors>
 </behaviors>
 <services>
 <service name="Apress.VisualCSharpRecipes.Chapter10.EmployeeService"
 behaviorConfiguration="EmployeeServiceBehavior">
 <endpoint address="http://localhost:8000/EmployeeService"
 binding="wsHttpBinding"
 contract="Apress.VisualCSharpRecipes.Chapter10.IEmployeeService" />
 <endpoint address="http://localhost:8000/EmployeeService/mex"
 binding="mexHttpBinding"
 contract="IMetadataExchange" />
 <host>
 <baseAddresses>
 <add baseAddress="http://localhost:8000/" />
 </baseAddresses>
 </host>
 </service>
 </services>
 </system.serviceModel>
</configuration>

Finally, the following simple client code demonstrates how to interact with the service via a proxy:

using System;
using Apress.VisualCSharpRecipes.Chapter10.Services;

namespace Apress.VisualCSharpRecipes.Chapter10
{
 class Recipe10_13Client
 {
 private static string FormatEmployee(Employee emp)
 {

http://localhost:8000/EmployeeService
http://localhost:8000/EmployeeService/mex
http://localhost:8000

CHAPTER 10 ■ NETWORKING

532

 return String.Format("ID:{0}, NAME:{1}, DOB:{2}",
 emp.Id, emp.Name, emp.DateOfBirth);
 }

 static void Main(string[] args)
 {
 // Create a service proxy.
 using (EmployeeServiceClient employeeService
 = new EmployeeServiceClient())
 {
 // Create a new Employee.
 Employee emp = new Employee()
 {
 DateOfBirth = DateTime.Now,
 Name = "Allen Jones"
 };

 // Call the EmployeeService to create a new Employee record.
 emp = employeeService.CreateEmployee(emp);

 Console.WriteLine("Created employee record - {0}",
 FormatEmployee(emp));

 // Update the existing Employee.
 emp.DateOfBirth = new DateTime(1950, 10, 13);
 emp = employeeService.UpdateEmployee(emp);

 Console.WriteLine("Updated employee record - {0}",
 FormatEmployee(emp));

 // Wait to continue.
 Console.WriteLine(Environment.NewLine);
 Console.WriteLine("Main method complete. Press Enter");
 Console.ReadLine();
 }
 }
 }
}

10-14. Call a WCF Service Using a Dynamically Generated
Service Proxy

Problem
You need to call the methods of a WCF service but can’t or don’t want to generate a static proxy class as
described in recipe 10-13.

CHAPTER 10 ■ NETWORKING

533

Solution
If you have access to classes that represent the service and data contracts exposed by the service, you
can create a dynamic service proxy using the System.ServiceModel.ChannelFactory class.

How It Works
The ChannelFactory class is a generic class that allows you to create proxies dynamically based on WCF
service contracts. When instantiating a ChannelFactory, in addition to identifying the type of the service
proxy you want to create, you must provide details of the WCF endpoint to which you want to connect.
This includes the binding you want to use and the address of the service you want to communicate with.

Once you have instantiated a properly configured ChannelFactory, you call its CreateChannel
method, which will return a service proxy in the form of an instance of the service contract type. You can
then use this proxy to make calls against the service endpoint identified in the ChannelFactory
constructor.

The Code
The following code demonstrates the use of a dynamic service proxy to communicate with a WCF
service. The service used in this example is basically the same as that used in recipe 10-13. Instead of
using Visual Studio to generate a proxy class, the client project contains a reference to the service
project. The reference gives the client code access to the service and data contract classes of the service,
enabling the use of the ChannelFactory to create dynamic service proxies at runtime.

using System;
using System.ServiceModel;

namespace Apress.VisualCSharpRecipes.Chapter10
{
 class Recipe10_14Client
 {
 static void Main(string[] args)
 {
 string serviceUri = "http://localhost:8000/EmployeeService";

 // Create the ChannelFactory that is used to generate service
 // proxies.
 using (ChannelFactory<IEmployeeService> channelFactory =
 new ChannelFactory<IEmployeeService>(new WSHttpBinding(), serviceUri))
 {
 // Create a dynamic proxy for IEmployeeService.
 IEmployeeService proxy = channelFactory.CreateChannel();

 // Create a new Employee.
 Employee emp = new Employee()
 {
 DateOfBirth = DateTime.Now,
 Name = "Allen Jones"
 };

http://localhost:8000/EmployeeService
http://localhost:8000/EmployeeService

CHAPTER 10 ■ NETWORKING

534

 // Call the EmployeeService to create a new Employee record.
 emp = proxy.CreateEmployee(emp);

 Console.WriteLine("Created employee record - {0}", emp);

 // Update an existing Employee record.
 emp.DateOfBirth = new DateTime(1950, 10, 13);
 emp = proxy.UpdateEmployee(emp);

 Console.WriteLine("Updated employee record - {0}", emp);

 // Wait to continue.
 Console.WriteLine(Environment.NewLine);
 Console.WriteLine("Main method complete. Press Enter");
 Console.ReadLine();
 }
 }
 }
}

10-15. Process the Content of an Atom or RSS Feed

Problem
You need to process the content of an Atom 1.0 or RSS 2.0 feed to extract details of the feed, or the items
it contains.

Solution
Parse the feed data using one of the format-specific classes derived from System.ServiceModel.
Syndication.SyndicationFeedFormatter. Once parsed, the SyndicationFeedFormatter.Feed property
returns a System.ServiceModel.Syndication.SyndicationFeed object whose properties provide access to
the attributes of the feed and the items it contains. Use the SyndicationFeedFormatter.Items property to
access a collection of System.ServiceModel.Syndication.SyndicationItem objects that represent the
items in the feed. The properties of each SyndicationItem object expose the attributes of the individual
feed items.

How It Works
The SyndicationFeed and SyndicationFeedItem classes provide a generic abstraction of Atom 1.0 and RSS
2.0 feeds and feed items, and present a common interface to simplify the processing of both feed types.
The Rss20FeedFormatter class allows you to create a SyndicationFeed object from an RSS 2.0 feed, and
the Atom10FeedFormatter class provides equivalent support for Atom 1.0 feeds. Both classes are members
of the System.ServiceModel.Syndication namespace.

CHAPTER 10 ■ NETWORKING

535

To load feed data for processing, use the SyndicationFeedFormatter.ReadFrom method and pass it a
System.Xml.XmlReader that provides access to the feed data. Once loaded with feed data, the
SyndicationFeedFormatter.Feed property provides access to a SyndicationFeed object allowing you to
use the properties listed in Table 10-5 to access the feed attributes.

Table 10-5. Properties of the SyndicatedFeed Class

Property Description

Authors Gets a collection of authors from the feed

BaseUri Gets the base URI from the feed

Categories Gets a collection of categories from the feed

Description Gets the description from the feed

Id Gets the ID from the feed

ImageUrl Gets the image URL from the feed

Items Gets the collection of items contained in the feed

Language Gets the language from the feed

LastUpdatedTime Gets the last updated time from the feed

Links Gets a collection of links associated with the feed

Title Gets the title from the feed

The SyndicationFeed.Items property provides access to the set of items contained in the feed. Each

item is represented by a SyndicationItem. Table 10-6 lists the properties that provide access to the
attributes of a feed item.

CHAPTER 10 ■ NETWORKING

536

Table 10-6. Properties of the SyndicationItem Class

Property Description

Authors Gets a collection of authors from the feed item

BaseUri Gets the base URI from the feed item

Categories Gets a collection of categories from the feed item

Content Gets the content from the feed item

Id Gets the ID from the feed item

Language Gets the language from the feed item

LastUpdatedTime Gets the last updated time from the feed item

Links Gets a collection of links associated with the feed

Summary Gets the summary from the feed item

Title Gets the title from the feed item

The Code
The following example takes the URL of a feed as a command-line argument, downloads the feed,
determines whether it is an RSS or Atom feed, and parses it using the appropriate
SyndicationFeedFormatter. The output from running the example contains the title and description of
the overall feed, and then the title, summary, and publication date of each item in the feed.

using System;
using System.Net;
using System.ServiceModel.Syndication;
using System.Xml.Linq;

namespace Apress.VisualCSharpRecipes.Chapter10
{
 class Recipe10_15
 {
 static void Main(string[] args)
 {
 Uri feedUrl = null;

CHAPTER 10 ■ NETWORKING

537

 if (args.Length == 0 || String.IsNullOrEmpty(args[0])
 || !Uri.TryCreate(args[0], UriKind.RelativeOrAbsolute,
 out feedUrl))
 {
 // Error and wait to continue.
 Console.WriteLine("Invalid feed URL. Press Enter.");
 Console.ReadLine();
 return;
 }

 // Create the web request based on the URL provided for the feed.
 WebRequest req = WebRequest.Create(feedUrl);

 // Get the data from the feed.
 WebResponse res = req.GetResponse();

 // Simple test for the type of feed: Atom 1.0 or RSS 2.0.
 SyndicationFeedFormatter formatter = null;
 XElement feed = XElement.Load(res.GetResponseStream());

 if (feed.Name.LocalName == "rss")
 {
 formatter = new Rss20FeedFormatter();
 }
 else if (feed.Name.LocalName == "feed")
 {
 formatter = new Atom10FeedFormatter();
 }
 else
 {
 // Error and wait to continue.
 Console.WriteLine("Unsupported feed type: "
 + feed.Name.LocalName);
 Console.ReadLine();
 return;
 }

 // Read the feed data into the formatter.
 formatter.ReadFrom(feed.CreateReader());

 // Display feed level data:
 Console.WriteLine("Title: " + formatter.Feed.Title.Text);
 Console.WriteLine("Description: "
 + formatter.Feed.Description.Text);
 Console.Write(Environment.NewLine);
 Console.WriteLine("Items: ");

CHAPTER 10 ■ NETWORKING

538

 // Display the item data.
 foreach (var item in formatter.Feed.Items)
 {
 Console.WriteLine("\tTitle: " + item.Title.Text);
 Console.WriteLine("\tSummary: " + item.Summary.Text);
 Console.WriteLine("\tPublish Date: " + item.PublishDate);
 Console.Write(Environment.NewLine);
 }

 // Wait to continue.
 Console.WriteLine(Environment.NewLine);
 Console.WriteLine("Main method complete. Press Enter.");
 Console.ReadLine();
 }
 }
}

10-16. Manipulate URIs

Problem
You need to construct a well-formed URI or extract the component parts of a provided URI.

Solution
Use the System.Uri class to extract the component parts of an existing URI and the System.UriBuilder
class to construct a new well-formed URI.

How It Works
When doing web or network programming, you will regularly need to manipulate URIs and their closely
related derivatives: URNs and URLs. For example, you may need to construct URLs that represent
servers and network resources you want to access, or extract information like the host, port, or protocol
specified in an externally provided URI.

The System.Uri class provides an object representation of a URI and implements properties that
allow you to extract the various elements that constitute the URI. To create a Uri, pass the string
representing the URI you want to parse to the Uri constructor. A number of constructor overloads allow
you to handle both absolute and relative URIs. However, if the URI string is invalid, the constructor will
throw a System.UriFormatException. To avoid this, you can use the static method Uri.TryCreate, which
returns true if the parse was successful and false otherwise.

Once you have a Uri object, you can use its properties to extract specific components of the URI.
Table 10-7 contains some commonly used properties of the Uri class.

CHAPTER 10 ■ NETWORKING

539

Table 10-7. Commonly Used Members of the Uri Class

Property Description

AbsolutePath Gets a string that contains the absolute path of the URI

AbsoluteUri Gets a string representation of the full URI as an absolute address

Host Gets a string containing the host name specified in the URI

IsDefaultPort Gets a bool indicating whether the specified port is the default port for the URI
scheme

OriginalString Gets the original string used to construct the Uri

Port Gets an int containing the port number specified in the URI

Query Gets a string containing the query string specified in the URI

Scheme Gets a string containing the scheme specified in the URI

The Uri class is read-only, so if you want to create a new well-formed URI, you should use the

UriBuilder class. You can specify the key elements of the URI in various overloads of the UriBuilder
constructor, or you can configure a new UriBuilder object via its properties. Table 10-8 describes the
properties of the UriBuilder class.

Table 10-8. Properties of the UriBuilder Class

Property Description

Fragment Gets or sets a string specifying the fragment element of the URI. This is the part after the
hash symbol (#) found at the end of URLs.

Host Gets or sets a string specifying the host element of the URI.

Password Gets or sets a string specifying the password to use with the URI.

Path Gets or sets a string specifying the path element of the URI.

Port Gets or sets an int specifying the port element of the URI.

Query Gets or sets a string specifying the query string element of the URI.

CHAPTER 10 ■ NETWORKING

540

Property Description

Scheme Gets or sets a string specifying the scheme element of the URI.

UserName Gets or sets a string containing the username to use with the URI.

Once you have configured the UriBuilder, you obtain an appropriately configured Uri object

representing the URI via the UriBuilder.Uri property. Many methods that require URIs take Uri
instances, but if you need a string representation of the URI you can use the Uri.AbsolutePath property.

The Code
The following code demonstrates the use of the Uri and UriBuilder classes.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Apress.VisualCSharpRecipes.Chapter10
{
 class Recipe10_16
 {
 private static string defualtUrl
 = "http://www.apress.com:80/book/view/9781430225256";

 static void Main(string[] args)
 {
 Uri uri = null;

 // Extract information from a string URL passed as a
 // command line argument or use the default URL.
 string strUri = defualtUrl;

 if (args.Length > 0 && !String.IsNullOrEmpty(args[0]))
 {
 strUri = args[0];
 }

 // Safely parse the url
 if (Uri.TryCreate(strUri, UriKind.RelativeOrAbsolute, out uri))
 {
 Console.WriteLine("Parsed URI: " + uri.OriginalString);
 Console.WriteLine("\tScheme: " + uri.Scheme);
 Console.WriteLine("\tHost: " + uri.Host);
 Console.WriteLine("\tPort: " + uri.Port);
 Console.WriteLine("\tPath and Query: " + uri.PathAndQuery);
 }

http://www.apress.com:80/book/view/9781430225256
http://www.apress.com:80/book/view/9781430225256

CHAPTER 10 ■ NETWORKING

541

 else
 {
 Console.WriteLine("Unable to parse URI: " + strUri);
 }

 // Create a new URI.
 UriBuilder newUri = new UriBuilder();
 newUri.Scheme = "http";
 newUri.Host = "www.apress.com";
 newUri.Port = 80;
 newUri.Path = "book/view/9781430225256";

 Console.WriteLine(Environment.NewLine);
 Console.WriteLine("Created URI: " + newUri.Uri.AbsoluteUri);

 // Wait to continue.
 Console.WriteLine(Environment.NewLine);
 Console.WriteLine("Main method complete. Press Enter.");
 Console.ReadLine();
 }
 }
}

http://www.apress.com
http://www.apress.com

C H A P T E R 11

■ ■ ■

543

Security and Cryptography

Prior to version 4.0, the .NET Framework incorporated two complementary security models that
addressed user and code security: role-based security (RBS) and code access security (CAS). With version
4.0, CAS has been deprecated. The previous edition of this book included a number of CAS recipes (11-1
through to 11-7), and we have included them in this new version because of the number of developers
still using .NET 3.5 or earlier, where CAS still has a significant function. The C# compiler will show
deprecation warnings if you use CAS in a project. You can prevent these errors by targeting your project
at an earlier version of the .NET Framework on the Application tab. You can enable CAS in your .NET 4.0
projects with the NetFx40_LegacySecurityPolicy configuration element in the app.config file—for
example:

<?xml version="1.0"?>
<configuration>
 <runtime>
 <NetFx40_LegacySecurityPolicy enabled="true"/>
 </runtime>
</configuration>

RBS remains current in .NET 4.0 and allows you to make runtime decisions based on the identity
and roles of the user on whose behalf an application is running. On the Windows operating system, this
equates to making decisions based on the Windows username and the Windows groups to which that
user belongs. However, RBS provides a generic security mechanism that is independent of the
underlying operating system, allowing you (with some development) to integrate with any user account
system.

An important aspect of the security features provided by the .NET Framework is cryptography.
Cryptography is one of the most complex aspects of software development that any developer will use.
The theory of modern cryptographic techniques is extremely difficult to understand and requires a level
of mathematical knowledge that relatively few people have or need. Fortunately, the Microsoft .NET
Framework class library provides easy-to-use implementations of the most commonly used
cryptographic techniques and support for the most popular and well-understood algorithms.

This chapter provides a wide variety of recipes that cover some of the more commonly used security
capabilities provided by the .NET Framework. As you read the recipes in this chapter and think about
how to apply the techniques to your own code, keep in mind that individual security features are rarely
effective when implemented in isolation. In particular, cryptography does not equal security; the use of
cryptography is merely one small element of creating a secure solution.

CHAPTER 11 ■ SECURITY AND CRYPTOGRAPHY

544

The recipes in this chapter describe how to do the following:

• Develop strongly named assemblies that can still be called by partially trusted
code (recipe 11-1)

• Configure the .NET Framework security policy to turn off CAS completely or turn
off only execution permission checks (recipes 11-2 and 11-3)

• Request specific code access permissions for your assemblies, determine at
runtime what permissions the current assembly has, and inspect third-party
assemblies to determine what permissions they need in order to run correctly
(recipes 11-4, 11-5, 11-6, and 11-7)

• Control inheritance and member overrides using CAS (recipe 11-8)

• Inspect the evidence presented by an assembly to the runtime when the assembly
is loaded (recipe 11-9)

• Integrate with Windows security to determine if a user is a member of a specific
Windows group, restrict which users can execute your code, and impersonate
other Windows users (recipes 11-10, 11-11, and 11-12)

• Generate random numbers that are nondeterministic and are suitable for use in
security-sensitive applications (recipe 11-13)

• Use hash codes and keyed hash codes to store user passwords and determine if
files have changed (recipes 11-14, 11-15, 11-16, and 11-17)

• Use encryption to protect sensitive data both in memory and when it is stored to
disk (recipes 11-18 and 11-19)

11-1. Allow Partially Trusted Code to Use Your Strongly
Named Assembly

Problem
You need to write a shared assembly that is accessible to partially trusted code. (By default, the runtime
does not allow partially trusted code to access the types and members contained in a strongly named
assembly.)

Solution
Apply the assembly-level attribute System.Security.AllowPartiallyTrustedCallersAttribute to your
shared assembly.

CHAPTER 11 ■ SECURITY AND CRYPTOGRAPHY

545

■ Note CAS is deprecated in .NET 4.0.

How It Works
To minimize the security risks posed by malicious code, the runtime does not allow assemblies granted
only partial trust to access strongly named assemblies. This restriction dramatically reduces the
opportunity for malicious code to attack your system, but the reasoning behind such a heavy-handed
approach requires some explanation.

Assemblies that contain important functionality that is shared between multiple applications are
usually strongly named and are often installed in the Global Assembly Cache (GAC). This is particularly
true of the assemblies that constitute the .NET Framework class library. Other strongly named
assemblies from well-known and widely distributed products are in the GAC and accessible to managed
applications. The high chance that certain assemblies will be present in the GAC, their easy accessibility,
and their importance to many different applications make strongly named assemblies the most likely
target for any type of subversive activity by malicious managed code.

Generally, the code most likely to be malicious is that which is loaded from remote locations over
which you have little or no control (such as over the Internet). Under the default security policy of the
.NET Framework, all code run from the local machine has full trust, whereas code loaded from remote
locations has only partial trust. Stopping partially trusted code from accessing strongly named
assemblies means that partially trusted code has no opportunity to use the features of the assembly for
malicious purposes, and cannot probe and explore the assembly to find exploitable holes. Of course, this
theory hinges on the assumption that you correctly administer your security policy. If you simply assign
all code full trust, not only will any assembly be able to access your strongly named assembly, but the
code will also be able to access all of the functionality of the .NET Framework and even Win32 or any
COM object through P/Invoke and COM Interop. That would be a security disaster!

■ Note If you design, implement, and test your shared assembly correctly using CAS to restrict access to
important members, you do not need to impose a blanket restriction to prevent partially trusted code from using
your assembly. However, for an assembly of any significance, it’s impossible to prove there are no security holes
that malicious code can exploit. Therefore, you should carefully consider the need to allow partially trusted code to
access your strongly named assembly before applying AllowPartiallyTrustedCallersAttribute. However, you
might have no choice. If you are exposing public classes that provide events, you must apply this attribute. If you
do not, an assembly that is not strongly named will be allowed to register a handler for one of your events, but
when it is called, a security exception will be thrown. Code in an assembly that is not strongly named is not
allowed to call code in a strongly named assembly.

The runtime stops partially trusted code from accessing strongly named assemblies by placing an
implicit LinkDemand for the FullTrust permission set on every public and protected member of every
publicly accessible type defined in the assembly. This means that only assemblies granted the
permissions equivalent to the FullTrust permission set are able to access the types and members from

CHAPTER 11 ■ SECURITY AND CRYPTOGRAPHY

546

the strongly named assembly. Applying AllowPartiallyTrustedCallersAttribute to your strongly
named assembly signals the runtime to not enforce the LinkDemand on the contained types and
members.

■ Note The runtime is responsible for enforcing the implicit LinkDemand security actions required to protect
strongly named assemblies. The C# assembler does not generate declarative LinkDemand statements at
compile time.

The Code
The following code fragment shows the application of the attribute
AllowPartiallyTrustedCallersAttribute. Notice that you must prefix the attribute with assembly: to
signal to the compiler that the target of the attribute is the assembly (also called a global attribute). In
addition, you do not need to include the Attribute part of the attribute name, although you can if you
want to add it. Because you target the assembly, the attribute must be positioned after any top-level
using statements, but before any namespace or type declarations.

using System.Security;

[assembly:AllowPartiallyTrustedCallers]

namespace Apress.VisualCSharpRecipes.Chapter11
{
 public class Recipe11-01 {

 // Implementation code . . .
 }
}

■ Tip It's common practice to contain all global attributes in a file separate from the rest of your application code.
Microsoft Visual Studio uses this approach, creating a file named AssemblyInfo.cs to contain all global attributes.

Notes
If, after applying AllowPartiallyTrustedCallersAttribute to your assembly, you want to restrict
partially trusted code from calling only specific members, you should implement a LinkDemand for the
FullTrust permission set on the necessary members, as shown in the following code fragment:

CHAPTER 11 ■ SECURITY AND CRYPTOGRAPHY

547

[System.Security.Permissions.PermissionSetAttribute
 (System.Security.Permissions.SecurityAction.LinkDemand, Name="FullTrust")]

public void SomeMethod() {
 // Method code . . .
}

11-2. Disable Code Access Security

Problem
You need to turn off all CAS checks.

Solution
Use the Code Access Security Policy tool (Caspol.exe) and execute the command caspol -s off from the
command line to temporarily disable code access security checks.

■ Note This recipe only applies to .NET version 3.5 and earlier.

How It Works
Although CAS was implemented with performance in mind and has been used prudently throughout the
.NET class library, some overhead is associated with each security demand and resulting stack walk that
the runtime must execute to check every caller in the chain of execution.

You can temporarily disable CAS and remove the overhead and possible interference caused by
code-level security checks. Turning off CAS has the effect of giving all code the ability to perform any
action supported by the .NET Framework (equivalent to the FullTrust permission set). This includes the
ability to load other code, call native libraries, and use pointers to access memory directly.

Caspol.exe is a utility provided with the .NET Framework that allows you to configure all aspects of
your code access security policy from the command line. When you enter the command caspol -s off
from the command line, you will see the following message indicating that CAS has been temporarily
disabled:

Microsoft (r) .NET Framework CasPol 2.0.50727.42
Copyright (c) Microsoft Corporation. Al rights reserved.

CAS enforcement is being turned off temporarily. Press <enter> when you want to
restore the setting back on.

As the message states, CAS enforcement is off until you press Enter, or until the console in which
Caspol.exe is running terminates.

CHAPTER 11 ■ SECURITY AND CRYPTOGRAPHY

548

11-3. Disable Execution Permission Checks

Problem
You need to load assemblies at runtime without the runtime checking them for execution permission.

Solution
In code, set the property CheckExecutionRights of the class System.Security.SecurityManager to false
and persist the change by calling SecurityManager.SavePolicy. Alternatively, use the Code Access
Security Policy tool (Caspol.exe), and execute the command caspol -e off from the command line.

■ Note This recipe only applies to .NET version 3.5 and earlier.

How It Works
As the runtime loads each assembly, it ensures that the assembly’s grant set (the permissions assigned to
the assembly based on the security policy) includes the Execution element of SecurityPermission. The
runtime implements a lazy policy resolution process, meaning that the grant set of an assembly is not
calculated until the first time a security demand is made against the assembly. Not only does execution
permission checking force the runtime to check that every assembly has the execution permission, but it
also indirectly causes policy resolution for every assembly loaded, effectively negating the benefits of
lazy policy resolution. These factors can introduce a noticeable delay as assemblies are loaded,
especially when the runtime loads a number of assemblies together, as it does at application startup.

In many situations, simply allowing code to load and run is not a significant risk, as long as all other
important operations and resources are correctly secured using CAS and operating system security. The
SecurityManager class contains a set of static methods that provide access to critical security
functionality and data. This includes the CheckExecutionRights property, which turns on and off
execution permission checks.

To modify the value of CheckExecutionRights, your code must have the ControlPolicy element of
SecurityPermission. The change will affect the current process immediately, allowing you to load
assemblies at runtime without the runtime checking them for execution permission. However, the
change will not affect other existing processes. You must call the SavePolicy method to persist the
change to the Windows registry for it to affect new processes.

The Code
The following example contains two methods (ExecutionCheckOn and ExecutionCheckOff) that
demonstrate the code required to turn execution permission checks on and off and persist the
configuration change. You may need to run the example with administrator privileges.

CHAPTER 11 ■ SECURITY AND CRYPTOGRAPHY

549

using System;
using System.Security;

namespace Apress.VisualCSharpRecipes.Chapter11
{
 class Recipe11_03
 {
 // A method to turn on execution permission checking
 // and persist the change.
 public void ExecutionCheckOn()
 {
 // Turn on execution permission checks.
 SecurityManager.CheckExecutionRights = true;

 // Persist the configuration change.
 SecurityManager.SavePolicy();
 }

 // A method to turn off execution permission checking
 // and persist the change.
 public void ExecutionCheckOff()
 {
 // Turn off execution permission checks.
 SecurityManager.CheckExecutionRights = false;

 // Persist the configuration change.
 SecurityManager.SavePolicy();
 }
 }
}

Notes
The .NET runtime allows you to turn off the automatic checks for execution permissions from within
code or by using Caspol.exe. When you enter the command caspol -e off or its counterpart caspol -e
on from the command line, the Caspol.exe utility actually sets the CheckExecutionRights property of the
SecurityManager class before calling SecurityManager.SavePolicy.

11-4. Ensure the Runtime Grants Specific Permissions to
Your Assembly

Problem
You need to ensure that the runtime grants your assembly those code access permissions that are critical
to the successful operation of your application.

CHAPTER 11 ■ SECURITY AND CRYPTOGRAPHY

550

Solution
In your assembly, use permission requests to specify the code access permissions that your assembly
must have. You declare permission requests using assembly-level code access permission attributes.

■ Note CAS is deprecated in .NET 4.0.

How It Works
The name permission request is a little misleading given that the runtime will never grant permissions to
an assembly unless security policy dictates that the assembly should have those permissions. However,
naming aside, permission requests serve an essential purpose, and although the way the runtime
handles permission requests might initially seem strange, the nature of CAS does not allow for any
obvious alternative.

Permission requests identify permissions that your code must have to function. For example, if you
wrote a movie player that your customers could use to download and view movies from your web server,
it would be disastrous if the user’s security policy did not allow your player to open a network
connection to your media server. Your player would load and run, but as soon as the user tried to
connect to your server to play a movie, the application would crash with the exception
System.Security.SecurityException. The solution is to include in your assembly a permission request
for the code access permission required to open a network connection to your server
(System.Net.WebPermission or System.Net.SocketPermission, depending on the type of connection you
need to open).

The runtime honors permission requests using the premise that it’s better that your code never load
than to load and fail sometime later when it tries to perform an action that it does not have permission
to perform. Therefore, if after security policy resolution the runtime determines that the grant set of your
assembly does not satisfy the assembly’s permission requests, the runtime will fail to load the assembly
and will instead throw the exception System.Security.Policy.PolicyException. Since your own code
failed to load, the runtime will handle this security exception during the assembly loading and transform
it into a System.IO.FileLoadException exception that will terminate your program.

When you try to load an assembly from within code (either automatically or manually), and the
loaded assembly contains permission requests that the security policy does not satisfy, the method you
use to load the assembly will throw a PolicyException exception, which you must handle appropriately.

To declare a permission request, you must use the attribute counterpart of the code access
permission that you need to request. All code access permissions have an attribute counterpart that you
use to construct declarative security statements, including permission requests. For example, the
attribute counterpart of SocketPermission is SocketPermissionAttribute, and the attribute counterpart
of WebPermission is WebPermissionAttribute. All permissions and their attribute counterparts follow the
same naming convention and are members of the same namespace.

When making a permission request, it’s important to remember the following:

• You must declare the permission request after any top-level using statements but
before any namespace or type declarations.

• The attribute must target the assembly, so you must prefix the attribute name with
assembly.

CHAPTER 11 ■ SECURITY AND CRYPTOGRAPHY

551

• You do not need to include the Attribute portion of an attribute’s name, although
you can.

• You must specify SecurityAction.RequestMinimum as the first positional argument
of the attribute. This value identifies the statement as a permission request.

• You must configure the attribute to represent the code access permission you
want to request using the attribute’s properties. Refer to the .NET Framework SDK
documentation for details of the properties implemented by each code access
security attribute.

• The permission request statements do not end with a semicolon (;).

• To make more than one permission request, simply include multiple permission
request statements.

The Code
The following example is a console application that includes two permission requests: one for
SocketPermission and the other for SecurityPermission. If you try to execute the
PermissionRequestExample application and your security policy does not grant the assembly the
requested permissions, you will get a PolicyException, and the application will not execute. Using the
default security policy, this will happen if you run the assembly from a network share, because
assemblies loaded from the intranet zone are not granted SocketPermission.

using System;
using System.Net;
using System.Security.Permissions;

// Permission request for a SocketPermission that allows the code to open
// a TCP connection to the specified host and port.
[assembly:SocketPermission(SecurityAction.RequestMinimum,
 Access = "Connect", Host = "www.fabrikam.com",
 Port = "3538", Transport = "Tcp")]

// Permission request for the UnmanagedCode element of SecurityPermission,
// which controls the code's ability to execute unmanaged code.
[assembly:SecurityPermission(SecurityAction.RequestMinimum,
 UnmanagedCode = true)]

namespace Apress.VisualCSharpRecipes.Chapter11
{
 class Recipe11_04
 {
 public static void Main()
 {
 // Do something . . .

http://www.fabrikam.com
http://www.fabrikam.com

CHAPTER 11 ■ SECURITY AND CRYPTOGRAPHY

552

 // Wait to continue.
 Console.WriteLine("Main method complete. Press Enter.");
 Console.ReadLine();
 }
 }
}

11-5. Limit the Permissions Granted to Your Assembly

Problem
You need to restrict the code access permissions granted to your assembly, ensuring that people and
other software can never use your code as a mechanism through which to perform undesirable or
malicious actions.

Solution
Use declarative security statements to specify optional permission requests and permission refusal
requests in your assembly. Optional permission requests define the maximum set of permissions that
the runtime will grant to your assembly. Permission refusal requests specify particular permissions that
the runtime should not grant to your assembly.

■ Note CAS is deprecated in .NET 4.0.

How It Works
In the interest of security, it’s ideal if your code has only those code access permissions required to
perform its function. This minimizes the opportunities for people and other code to use your code to
carry out malicious or undesirable actions. The problem is that the runtime resolves an assembly’s
permissions using security policy, which a user or an administrator configures. Security policy could be
different in every location where your application is run, and you have no control over what permissions
the security policy assigns to your code.

CHAPTER 11 ■ SECURITY AND CRYPTOGRAPHY

553

Although you cannot control security policy in all locations where your code runs, the .NET
Framework provides two mechanisms through which you can reject permissions granted to your
assembly:

• Refuse request: This allows you to identify specific permissions that you do not
want the runtime to grant to your assembly. After policy resolution, if the final
grant set of an assembly contains any permission specified in a refuse request, the
runtime removes that permission.

• Optional permission request: This defines the maximum set of permissions that
the runtime can grant to your assembly. If the final grant set of an assembly
contains any permissions other than those specified in the optional permission
request, the runtime removes those permissions. Unlike as with a minimum
permission request (discussed in recipe 11-4), the runtime will not refuse to load
your assembly if it cannot grant all of the permissions specified in the optional
request.

You can think of a refuse request and an optional request as alternative ways to achieve the same
result. The approach you use depends on how many permissions you want to reject. If you want to reject
only a handful of permissions, a refuse request is easier to code. However, if you want to reject a large
number of permissions, it’s easier to code an optional request for the few permissions you want, which
will automatically reject the rest.

You include optional and refuse requests in your code using declarative security statements with the
same syntax as the minimum permission requests discussed in recipe 11-4. The only difference is the
value of the System.Security.Permissions.SecurityAction that you pass to the permission attribute’s
constructor. Use SecurityAction.RequestOptional to declare an optional permission request and
SecurityAction.RequestRefuse to declare a refuse request. As with minimal permission requests, you
must declare optional and refuse requests as global attributes by beginning the permission attribute
name with the prefix assembly. In addition, all requests must appear after any top-level using statements
but before any namespace or type declarations.

The Code
The code shown here demonstrates an optional permission request for the Internet permission set. The
Internet permission set is a named permission set defined by the default security policy. When the
runtime loads the example, it will not grant the assembly any permission that is not included within the
Internet permission set. (Consult the .NET Framework SDK documentation for details of the
permissions contained in the Internet permission set.)

using System.Security.Permissions;

[assembly:PermissionSet(SecurityAction.RequestOptional, Name = "Internet")]

namespace Apress.VisualCSharpRecipes.Chapter11
{
 class Recipe11_05_OptionalRequest
 {
 // Class implementation . . .
 }
}

CHAPTER 11 ■ SECURITY AND CRYPTOGRAPHY

554

In contrast to the preceding example, the following example uses a refuse request to single out the
permission System.Security.Permissions.FileIOPermission—representing write access to the C:
drive—for refusal.

using System.Security.Permissions;

[assembly:FileIOPermission(SecurityAction.RequestRefuse, Write = @"C:\")]

namespace Apress.VisualCSharpRecipes.Chapter11
{
 class Recipe11_05_RefuseRequest
 {
 // Class implementation . . .
 }
}

11-6. View the Permissions Required by an Assembly

Problem
You need to view the permissions that an assembly must be granted in order to run correctly.

Solution
Use the Permissions Calculator (Permcalc.exe) supplied with the .NET Framework SDK version 3.5 or
earlier.

■ Note CAS is deprecated in .NET 4.0.

How It Works
To configure security policy correctly, you need to know the code access permission requirements of the
assemblies you intend to run. This is true of both executable assemblies and libraries that you access
from your own applications. With libraries, it’s also important to know which permissions the assembly
refuses so that you do not try to use the library to perform a restricted action, which would result in a
System.Security.SecurityException exception.

The Permissions Calculator (Permcalc.exe) supplied with the .NET Framework SDK version
overcomes this limitation. Permcalc.exe walks through an assembly and provides an estimate of the
permissions the assembly requires to run, regardless of whether they are declarative or imperative.

CHAPTER 11 ■ SECURITY AND CRYPTOGRAPHY

555

The Code
The following example shows a class that declares a minimum, optional, and refusal request, as well as a
number of imperative security demands:

using System;
using System.Net;
using System.Security.Permissions;

// Minimum permission request for SocketPermission.
[assembly: SocketPermission(SecurityAction.RequestMinimum,
 Unrestricted = true)]

// Optional permission request for IsolatedStorageFilePermission.
[assembly: IsolatedStorageFilePermission(SecurityAction.RequestOptional,
 Unrestricted = true)]

// Refuse request for ReflectionPermission.
[assembly: ReflectionPermission(SecurityAction.RequestRefuse,
 Unrestricted = true)]

namespace Apress.VisualCSharpRecipes.Chapter11
{
 class Recipe11_06
 {
 public static void Main()
 {
 // Create and configure a FileIOPermission object that represents
 // write access to the C:\Data folder.
 FileIOPermission fileIOPerm =
 new FileIOPermission(FileIOPermissionAccess.Write, @"C:\Data");

 // Make the demand.
 fileIOPerm.Demand();

 // Do something . . .

 // Wait to continue.
 Console.WriteLine("Main method complete. Press Enter.");
 Console.ReadLine();
 }
 }
}

CHAPTER 11 ■ SECURITY AND CRYPTOGRAPHY

556

Usage
Executing the command permview Recipe11-06.exe will generate the following output. Although this
output is not particularly user-friendly, you can decipher it to determine the declarative permission
requests made by an assembly. Each of the three types of permission requests—minimum, optional, and
refused—is listed under a separate heading and is structured as the XML representation of a
System.Security.PermissionSet object.

Microsoft (R) .NET Framework Permission Request Viewer.

Version 1.1.4322.573

Copyright (C) Microsoft Corporation 1998-2002. All rights reserved.

minimal permission set:

<PermissionSet class=System.Security.PermissionSet" version="1">

 <IPermission class="System.Net.SocketPermission, System, Version=1.

0.5000.0, Culture=neutral, PublicKeyToken=b77a5c561934e089" version="

1" Unrestricted="true"/>

</PermissionSet>

optional permission set:

<PermissionSet class="System.Security.PermissionSet" version="1">

 <IPermission class="System.Security.Permissions.IsolatedStorageFilePermission,

mscorlib, Version=1.0.5000.0, Culture=neutral, PublicKeyToken=b77a5c5

61934e089" version="1" Unrestricted="true"/>

</PermissionSet>

CHAPTER 11 ■ SECURITY AND CRYPTOGRAPHY

557

refused permission set:

<PermissionSet class="System.Security.PermissionSet" version="1">

 <IPermission class="System.Security.Permissions.ReflectionPermission,

mscorlib, Version=1.0.5000.0, Culture=neutral, PublicKeyToken=b77a5c5

61934e089" version="1" Unrestricted="true"/>

</PermissionSet>

Executing the command permcalc -sandbox Recipe11-06.exe will generate a file named
sandbox.PermCalc.xml that contains XML representations of the permissions required by the assembly.
Where the exact requirements of a permission cannot be determined (because it is based on runtime
data), Permcalc.exe reports that unrestricted permissions of that type are required. You can instead
default to the Internet zone permissions using the -Internet flag. Here are the contents of
sandbox.PermCalc.xml when run against the sample code:

<?xml version="1.0"?>

<Sandbox>

 <PermissionSet version="1" class="System.Security.PermissionSet">

 <IPermission Write="C:\Data" version="1"

 class="System.Security.Permissions.FileIOPermission, mscorlib,

 Version=2.0.0.0, Culture=neutral,

 PublicKeyToken=b77a5c561934e089" />

 <IPermission version="1" class="System.Security.Permissions.SecurityPermission,

 mscorlib, Version=2.0.0.0, Culture=neutral,

 PublicKeyToken=b77a5c561934e089" Flags="Execution" />

 <IPermission version="1" class="System.Security.Permissions.UIPermission,

 mscorlib, Version=2.0.0.0, Culture=neutral,

 PublicKeyToken=b77a5c561934e089" Unrestricted="true" />

CHAPTER 11 ■ SECURITY AND CRYPTOGRAPHY

558

 <IPermission version="1" class="System.Net.SocketPermission, System,

 Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"

 Unrestricted="true" />

 </PermissionSet>

</Sandbox>

11-7. Determine at Runtime If Your Code Has a Specific
Permission

Problem
You need to determine at runtime if your assembly has a specific permission.

Solution
Instantiate and configure the permission you want to test for, and then pass it as an argument to the
static method IsGranted of the class System.Security.SecurityManager.

■ Note CAS is deprecated in .NET 4.0.

How It Works
Using minimum permission requests, you can ensure that the runtime grants your assembly a specified
set of permissions. As a result, when your code is running, you can safely assume that it has the
requested minimum permissions. However, you might want to implement opportunistic functionality
that your application offers only if the runtime grants your assembly appropriate permissions. This
approach is partially formalized using optional permission requests, which allow you to define a set of
permissions that your code could use if the security policy granted them, but are not essential for the
successful operation of your code. (Recipe 11-5 provides more details on using optional permission
requests.)

The problem with optional permission requests is that the runtime has no ability to communicate to
your assembly which of the requested optional permissions it has granted. You can try to use a protected
operation and fail gracefully if the call results in the exception System.Security.SecurityException.
However, it’s more efficient to determine in advance whether you have the necessary permissions. You
can then build logic into your code to avoid invoking secured members that will cause stack walks and
raise security exceptions.

CHAPTER 11 ■ SECURITY AND CRYPTOGRAPHY

559

■ Note IsGranted checks the grant set only of the calling assembly. It does not do a full stack walk to evaluate
the grant set of other assemblies on the call stack.

The Code
The following example demonstrates how to use the IsGranted method to determine if the assembly has
write permission to the directory C:\Data. You could make such a call each time you needed to test for
the permission, but it’s more efficient to use the returned Boolean value to set a configuration flag
indicating whether to allow users to save files.

using System.Security;
using System.Security.Permissions;

namespace Apress.VisualCSharpRecipes.Chapter11
{
 class Recipe11_07
 {
 // Define a variable to indicate whether the assembly has write
 // access to the C:\Data folder.
 private bool canWrite = false;

 public Recipe11_07()
 {
 // Create and configure a FileIOPermission object that represents
 // write access to the C:\Data folder.
 FileIOPermission fileIOPerm =
 new FileIOPermission(FileIOPermissionAccess.Write, @"C:\Data");

 // Test if the current assembly has the specified permission.
 canWrite = SecurityManager.IsGranted(fileIOPerm);
 }
 }
}

11-8. Restrict Who Can Extend Your Classes and Override
Class Members

Problem
You need to control what code can extend your classes through inheritance and which class members a
derived class can override.

CHAPTER 11 ■ SECURITY AND CRYPTOGRAPHY

560

Solution
Use declarative security statements to apply SecurityAction.InheritanceDemand to the declarations of
the classes and members that you need to protect.

How It Works
Language modifiers such as sealed, public, private, and virtual give you a level of control over the
ability of classes to inherit from your class and override its members. However, these modifiers are
inflexible, providing no selectivity in restricting what code can extend a class or override its members.
For example, you might want to allow only code written by your company or department to extend
business-critical classes. By applying an InheritanceDemand attribute to your class or member
declaration, you can specify runtime permissions that a class must have to extend your class or override
particular members. Remember that the permissions of a class are the permissions of the assembly in
which the class is declared.

Although you can demand any permission or permission set in your InheritanceDemand, it’s more
common to demand identity permissions. Identity permissions represent evidence presented to the
runtime by an assembly. If an assembly presents certain types of evidence at load time, the runtime will
automatically assign the assembly the appropriate identity permission. Identity permissions allow you
to use regular imperative and declarative security statements to base security decisions directly on code
identity, without the need to evaluate evidence objects directly. Table 11-1 lists the type of identity
permission generated for each type of evidence. (Evidence types are members of the
System.Security.Policy namespace, and identity permission types are members of the
System.Security.Permissions namespace.)

Table 11-1. Evidence Classes That Generate Identity Permissions

Evidence Class Identity Permission

ApplicationDirectory None

Hash None

Publisher PublisherIdentityPermission

Site SiteIdentityPermission

StrongName StrongNameIdentityPermission

Url UrlIdentityPermission

Zone ZoneIdentityPermission

CHAPTER 11 ■ SECURITY AND CRYPTOGRAPHY

561

■ Note The runtime assigns identity permissions to an assembly based on the evidence presented by the
assembly. You cannot assign additional identity permissions to an assembly through the configuration of security
policy.

You must use declarative security syntax to implement an InheritanceDemand, and so you must use
the attribute counterpart of the permission class that you want to demand. All permission classes,
including InheritanceDemand, have an attribute counterpart that you use to construct declarative
security statements. For example, the attribute counterpart of PublisherIdentityPermission is
PublisherIdentityPermissionAttribute, and the attribute counterpart of StrongNameIdentityPermission
is StrongNameIdentityPermissionAttribute. All permissions and their attribute counterparts follow the
same naming convention and are members of the same namespace.

To control which code can extend your class, apply the InheritanceDemand to the class declaration
using one of the permissions listed in Table 11-1. To control which code can override specific members
of a class, apply the InheritanceDemand to the member declaration.

The Code
The following example demonstrates the use of an InheritanceDemand attribute on both a class and a
method. Applying a PublisherIdentityPermissionAttribute to the Recipe11_08 class means that only
classes in assemblies signed by the publisher certificate contained in the pubcert.cer file (or assemblies
granted FullTrust) can extend the class. The contents of the pubcert.cer file are read at compile time,
and the necessary certificate information is built into the assembly metadata. To demonstrate that other
permissions can also be used with an InheritanceDemand, the PermissionSetAttribute is used to allow
only classes granted the FullTrust permission set to override the method SomeProtectedMethod.

using System.Security.Permissions;

namespace Apress.VisualCSharpRecipes.Chapter11
{
 [PublisherIdentityPermission(SecurityAction.InheritanceDemand,
 CertFile = "pubcert.cer")]
 public class Recipe11_08
 {
 [PermissionSet(SecurityAction.InheritanceDemand, Name="FullTrust")]
 public void SomeProtectedMethod ()
 {
 // Method implementation . . .
 }
 }
}

CHAPTER 11 ■ SECURITY AND CRYPTOGRAPHY

562

11-9. Inspect an Assembly’s Evidence

Problem
You need to inspect the evidence that the runtime assigned to an assembly.

Solution
Obtain a System.Reflection.Assembly object that represents the assembly in which you are interested.
Get the System.Security.Policy.Evidence collection from the Evidence property of the Assembly object,
and access the contained evidence objects using the GetEnumerator, GetHostEnumerator, or
GetAssemblyEnumerator method of the Evidence class.

How It Works
The Evidence class represents a collection of evidence objects. The read-only Evidence property of the
Assembly class returns an Evidence collection object that contains all of the evidence objects that the
runtime assigned to the assembly as the assembly was loaded.

The Evidence class actually contains two collections, representing different types of evidence:

• Host evidence includes those evidence objects assigned to the assembly by the
runtime or the trusted code that loaded the assembly.

• Assembly evidence represents custom evidence objects embedded into the
assembly at build time.

The Evidence class implements three methods for enumerating the evidence objects it contains:
GetEnumerator, GetHostEnumerator, and GetAssemblyEnumerator. The GetHostEnumerator and
GetAssemblyEnumerator methods return a System.Collections.IEnumerator instance that enumerates
only those evidence objects from the appropriate collection. The GetEnumerator method returns an
IEnumerator instance that enumerates all of the evidence objects contained in the Evidence collection.

■ Note Evidence classes do not extend a standard base class or implement a standard interface. Therefore, when
working with evidence programmatically, you need to test the type of each object and know what particular types
you are seeking. (See recipe 3-11 for details on how to test the type of an object at runtime.)

The Code
The following example demonstrates how to display the host and assembly evidence of an assembly to
the console. The example relies on the fact that all standard evidence classes override the
Object.ToString method to display a useful representation of the evidence object’s state. Although
interesting, this example does not always show the evidence that an assembly would have when loaded

CHAPTER 11 ■ SECURITY AND CRYPTOGRAPHY

563

from within your program. The runtime host (such as the Microsoft ASP.NET or Internet Explorer
runtime host) is free to assign additional host evidence as it loads an assembly.

using System;
using System.Reflection;
using System.Collections;
using System.Security.Policy;

namespace Apress.VisualCSharpRecipes.Chapter11
{
 public class Recipe11_09
 {
 public static void Main(string[] args)
 {
 // Load the specified assembly.
 Assembly a = Assembly.LoadFrom(args[0]);

 // Get the Evidence collection from the
 // loaded assembly.
 Evidence e = a.Evidence;

 // Display the host evidence.
 IEnumerator x = e.GetHostEnumerator();
 Console.WriteLine("HOST EVIDENCE COLLECTION:");
 while(x.MoveNext())
 {
 Console.WriteLine(x.Current.ToString());
 Console.WriteLine("Press Enter to see next evidence.");
 Console.ReadLine();
 }

 // Display the assembly evidence.
 x = e.GetAssemblyEnumerator();
 Console.WriteLine("ASSEMBLY EVIDENCE COLLECTION:");
 while(x.MoveNext())
 {
 Console.WriteLine(x.Current.ToString());
 Console.WriteLine("Press Enter to see next evidence.");
 Console.ReadLine();
 }

 // Wait to continue.
 Console.WriteLine("Main method complete. Press Enter.");
 Console.ReadLine();
 }
 }
}

CHAPTER 11 ■ SECURITY AND CRYPTOGRAPHY

564

11-10. Determine If the Current User Is a Member of a
Specific Windows Group

Problem
You need to determine if the current user of your application is a member of a specific Windows user
group.

Solution
Obtain a System.Security.Principal.WindowsIdentity object representing the current Windows user
by calling the static method WindowsIdentity.GetCurrent. Create a System.Security.Principal.
WindowsPrincipal class using the WindowsIdentity class, and then call the method IsInRole of the
WindowsPrincipal object.

How It Works
The RBS mechanism of the .NET Framework abstracts the user-based security features of the underlying
operating system through the following two key interfaces:

• The System.Security.Principal.IIdentity interface, which represents the entity
on whose behalf code is running; for example, a user or service account.

• The System.Security.Principal.IPrincipal interface, which represents the
entity’s IIdentity and the set of roles to which the entity belongs. A role is simply
a categorization used to group entities with similar security capabilities, such as a
Windows user group.

To integrate RBS with Windows user security, the .NET Framework provides the following two
Windows-specific classes that implement the IIdentity and IPrincipal interfaces:

• System.Security.Principal.WindowsIdentity, which implements the IIdentity
interface and represents a Windows user.

• System.Security.Principal.WindowsPrincipal, which implements IPrincipal and
represents the set of Windows groups to which the user belongs.

Because .NET RBS is a generic solution designed to be platform-independent, you have no access to
the features and capabilities of the Windows user account through the IIdentity and IPrincipal
interfaces, and you must frequently use the WindowsIdentity and WindowsPrincipal objects directly.

To determine if the current user is a member of a specific Windows group, you must first call the
static method WindowsIdentity.GetCurrent. The GetCurrent method returns a WindowsIdentity object
that represents the Windows user on whose behalf the current thread is running. An overload of the
GetCurrent method takes a bool argument and allows you to control what is returned by GetCurrent if
the current thread is impersonating a user different from the one associated with the process. If the
argument is true, then GetCurrent returns a WindowsIdentity representing the impersonated user, and it
returns null if the thread is not impersonating a user. If the argument is false, then GetCurrent returns

CHAPTER 11 ■ SECURITY AND CRYPTOGRAPHY

565

the WindowsIdentity of the thread if it is not impersonating a user, and it returns the WindowsIdentity of
the process if the thread is currently impersonating a user.

■ Note The WindowsIdentity class provides overloaded constructors that, when running on Microsoft Windows
Server 2003 or later platforms, allow you to obtain a WindowsIdentity object representing a named user. You can
use this WindowsIdentity object and the process described in this recipe to determine whether that user is a
member of a specific Windows group. If you try to use one of these constructors when running on an earlier
version of Windows, the WindowsIdentity constructor will throw an exception. On Windows platforms preceding
Windows Server 2003, you must use native code to obtain a Windows access token representing the desired user.
You can then use this access token to instantiate a WindowsIdentity object. Recipe 11-12 explains how to obtain
Windows access tokens for specific users.

Once you have a WindowsIdentity, instantiate a new WindowsPrincipal object, passing the
WindowsIdentity object as an argument to the constructor. Finally, call the IsInRole method of the
WindowsPrincipal object to test if the user is in a specific group (role). IsInRole returns true if the user is
a member of the specified group; otherwise, it returns false. The IsInRole method provides four
overloads:

• The first overload takes a string containing the name of the group for which you
want to test. The group name must be of the form [DomainName]\[GroupName] for
domain-based groups and [MachineName]\[GroupName] for locally defined groups.
If you want to test for membership of a standard Windows group, use the form
BUILTIN\[GroupName] or the other overload that takes a value from the
System.Security.Principal.WindowsBuiltInRole enumeration. IsInRole performs
a case-insensitive test for the specified group name.

• The second IsInRole overload accepts an int, which specifies a Windows role
identifier (RID). RIDs provide a mechanism that is independent of language and
localization to identify groups.

• The third IsInRole overload accepts a member of the
System.Security.Principal.WindowsBuiltInRole enumeration. The
WindowsBuiltInRole enumeration defines a set of members that represent each of
the built-in Windows groups.

• The fourth IsInRole overload accepts a
System.Security.Principal.SecurityIdentifier object that represents the
security identifier (SID) of the group for which you want to test.

Table 11-2 lists the name, RID, and WindowsBuiltInRole value for each of the standard Windows
groups.

CHAPTER 11 ■ SECURITY AND CRYPTOGRAPHY

566

Table 11-2. Windows Built-In Account Names and Identifiers

Account Name RID (Hex) WindowsBuiltInRole Value

BUILTIN\Account Operators 0x224 AccountOperator

BUILTIN\Administrators 0x220 Administrator

BUILTIN\Backup Operators 0x227 BackupOperator

BUILTIN\Guests 0x222 Guest

BUILTIN\Power Users 0x223 PowerUser

BUILTIN\Print Operators 0x226 PrintOperator

BUILTIN\Replicators 0x228 Replicator

BUILTIN\Server Operators 0x225 SystemOperator

BUILTIN\Users 0x221 User

■ Note Membership of the BUILTIN\Administrators group under Windows 7 will depend on the whether your
process is running with elevated privileges. If the current user is an administrator but your process is running
without elevated privileges, checking membership of BUILTIN\Administrators will return false. See Chapter 14
for recipes relating to elevated privileges.

The Code
The following example demonstrates how to test whether the current user is a member of a set of named
“Windows groups.” You specify the groups that you want to test for as command-line arguments.
Remember to prefix the group name with the machine or domain name, or BUILTIN for standard
Windows groups.

using System;
using System.Security.Principal;

namespace Apress.VisualCSharpRecipes.Chapter11
{
 class Recipe11_10
 {
 public static void Main (string[] args)
 {

CHAPTER 11 ■ SECURITY AND CRYPTOGRAPHY

567

 if (args.Length == 0)
 {
 Console.WriteLine(
 "Please provide groups to check as command line arguments");
 }

 // Obtain a WindowsIdentity object representing the currently
 // logged-on Windows user.
 WindowsIdentity identity = WindowsIdentity.GetCurrent();

 // Create a WindowsPrincipal object that represents the security
 // capabilities of the specified WindowsIdentity; in this case,
 // the Windows groups to which the current user belongs.
 WindowsPrincipal principal = new WindowsPrincipal(identity);

 // Iterate through the group names specified as command-line
 // arguments and test to see if the current user is a member of
 // each one.
 foreach (string role in args)
 {
 Console.WriteLine("Is {0} a member of {1}? = {2}",
 identity.Name, role, principal.IsInRole(role));
 }

 // Wait to continue.
 Console.WriteLine("\nMain method complete. Press Enter.");
 Console.ReadLine();
 }
 }
}

Usage
If you run this example as a user named Darryl on a computer named MACHINE using this command:

Recipe11-10 BUILTIN\Administrators BUILTIN\Users MACHINE\Accountants

you will see console output similar to the following:

Is MACHINE\Darryl a member of BUILTIN\Administrators? = False

Is MACHINE\Darryl a member of BUILTIN\Users? = True

Is MACHINE\Darryl a member of MACHINE\Accountants? = True

CHAPTER 11 ■ SECURITY AND CRYPTOGRAPHY

568

11-11. Restrict Which Users Can Execute Your Code

Problem
You need to restrict which users can execute elements of your code based on the user’s name or the roles
of which the user is a member.

Solution
Use the permission class System.Security.Permissions.PrincipalPermission and its attribute
counterpart System.Security.Permissions.PrincipalPermissionAttribute to protect your program
elements with RBS demands.

How It Works
The .NET Framework supports both imperative and declarative RBS demands. The class
PrincipalPermission provides support for imperative security statements, and its attribute counterpart
PrincipalPermissionAttribute provides support for declarative security statements. RBS demands use
the same syntax as CAS demands, but RBS demands specify the name the current user must have, or
more commonly, the roles of which the user must be a member. An RBS demand instructs the runtime
to look at the name and roles of the current user, and if that user does not meet the requirements of the
demand, the runtime throws a System.Security.SecurityException exception.

To make an imperative security demand, you must first create a PrincipalPermission object
specifying the username and role name you want to demand, and then you must call its Demand method.
You can specify only a single username and role name per demand. If either the username or the role
name is null, any value will satisfy the demand. Unlike with code access permissions, an RBS demand
does not result in a stack walk; the runtime evaluates only the username and roles of the current user.

To make a declarative security demand, you must annotate the class or member you want to protect
with a correctly configured PrincipalPermissionAttribute attribute. Class-level demands apply to all
members of the class, unless a member-specific demand overrides the class demand.

Generally, you are free to choose whether to implement imperative or declarative demands.
However, imperative security demands allow you to integrate RBS demands with code logic to achieve
more sophisticated demand behavior. In addition, if you do not know the role or usernames to demand
at compile time, you must use imperative demands. Declarative demands have the advantage that they
are separate from code logic and easier to identify. In addition, you can view declarative demands using
the Permview.exe tool (discussed in recipe 11-6). Whether you implement imperative or declarative
demands, you must ensure that the runtime has access to the name and roles for the current user to
evaluate the demand correctly.

The System.Threading.Thread class represents an operating system thread running managed code.
The static property CurrentPrincipal of the Thread class contains an IPrincipal instance representing
the user on whose behalf the managed thread is running. At the operating system level, each thread also
has an associated Windows access token, which represents the Windows account on whose behalf the
thread is running. The IPrincipal instance and the Windows access token are two separate entities.
Windows uses its access token to enforce operating system security, whereas the .NET runtime uses its
IPrincipal instance to evaluate application-level RBS demands. Although they may, and often do,
represent the same user, this is by no means always the case.

CHAPTER 11 ■ SECURITY AND CRYPTOGRAPHY

569

The benefit of this approach is that you can implement a user and an RBS model within your
application using a proprietary user accounts database, without the need for all users to have Windows
user accounts. This is a particularly useful approach in large-scale, publicly accessible Internet
applications.

By default, the Thread.CurrentPrincipal property is undefined. Because obtaining user-related
information can be time-consuming, and only a minority of applications use this information, the .NET
designers opted for lazy initialization of the CurrentPrincipal property. The first time code gets the
Thread.CurrentPrincipal property, the runtime assigns an IPrincipal instance to the property using the
following logic:

• If the application domain in which the current thread is executing has a default
principal, the runtime assigns this principal to the Thread.CurrentPrincipal
property. By default, application domains do not have default principals.
You can set the default principal of an application domain by calling the
SetThreadPrincipal method on a System.AppDomain object that represents the
application domain you want to configure. Code must have the ControlPrincipal
element of SecurityPermission to call SetThreadPrincipal. You can set the default
principal only once for each application domain; a second call to
SetThreadPrincipal results in the exception System.Security.Policy.
PolicyException.

• If the application domain does not have a default principal, the application
domain’s principal policy determines which IPrincipal implementation to create
and assign to Thread.CurrentPrincipal. To configure principal policy for an
application domain, obtain an AppDomain object that represents the application
domain and call the object’s SetPrincipalPolicy method. The
SetPrincipalPolicy method accepts a member of the enumeration
System.Security.Principal.PrincipalPolicy, which specifies the type of
IPrincipal object to assign to Thread.CurrentPrincipal. Code must have the
ControlPrincipal element of SecurityPermission to call SetPrincipalPolicy.
Table 11-3 lists the available PrincipalPolicy values; the default value is
UnauthenticatedPrincipal.

• If your code has the ControlPrincipal element of SecurityPermission, you can
instantiate your own IPrincipal object and assign it to the Thread.
CurrentPrincipal property directly. This will prevent the runtime from assigning
default IPrincipal objects or creating new ones based on principal policy.

CHAPTER 11 ■ SECURITY AND CRYPTOGRAPHY

570

Table 11-3. Members of the PrincipalPolicy Enumeration

Member Name Description

NoPrincipal No IPrincipal object is created. Thread.CurrentPrincipal returns a null
reference.

UnauthenticatedPrincipal An empty System.Security.Principal.GenericPrincipal object is created
and assigned to Thread.CurrentPrincipal.

WindowsPrincipal A WindowsPrincipal object representing the currently logged-on Windows
user is created and assigned to Thread.CurrentPrincipal.

Whatever method you use to establish the IPrincipal for the current thread, you must do so before

you use RBS demands, or the correct user (IPrincipal) information will not be available for the runtime
to process the demand. Normally, when running on the Windows platform, you would set the principal
policy of an application domain to PrincipalPolicy.WindowsPrincipal (as shown here) to obtain
Windows user information.

// Obtain a reference to the current application domain.
AppDomain appDomain = System.AppDomain.CurrentDomain;

// Configure the current application domain to use Windows-based principals.
appDomain.SetPrincipalPolicy(
 System.Security.Principal.PrincipalPolicy.WindowsPrincipal);

The Code
The following example demonstrates the use of imperative and declarative RBS demands. The example
shows three methods protected using imperative RBS demands (Method1, Method2, and Method3), and
then three other methods protected using the equivalent declarative RBS demands (Method4, Method5,
and Method6).

using System;
using System.Security.Permissions;

namespace Apress.VisualCSharpRecipes.Chapter11
{
 class Recipe11_11
 {
 public static void Method1()
 {
 // An imperative role-based security demand for the current principal
 // to represent an identity with the name Anya. The roles of the
 // principal are irrelevant.
 PrincipalPermission perm =
 new PrincipalPermission(@"MACHINE\Anya", null);

CHAPTER 11 ■ SECURITY AND CRYPTOGRAPHY

571

 // Make the demand.
 perm.Demand();
 }

 public static void Method2()
 {
 // An imperative role-based security demand for the current principal
 // to be a member of the roles Managers OR Developers. If the
 // principal is a member of either role, access is granted. Using the
 // PrincipalPermission, you can express only an OR-type relationship.
 // This is because the PrincipalPolicy.Intersect method always
 // returns an empty permission unless the two inputs are the same.
 // However, you can use code logic to implement more complex
 // conditions. In this case, the name of the identity is irrelevant.
 PrincipalPermission perm1 =
 new PrincipalPermission(null, @"MACHINE\Managers");

 PrincipalPermission perm2 =
 new PrincipalPermission(null, @"MACHINE\Developers");

 // Make the demand.
 perm1.Union(perm2).Demand();
 }

 public static void Method3()
 {
 // An imperative role-based security demand for the current principal
 // to represent an identity with the name Anya AND be a member of the
 // Managers role.
 PrincipalPermission perm =
 new PrincipalPermission(@"MACHINE\Anya", @"MACHINE\Managers");

 // Make the demand.
 perm.Demand();
 }

 // A declarative role-based security demand for the current principal
 // to represent an identity with the name Anya. The roles of the
 // principal are irrelevant.
 [PrincipalPermission(SecurityAction.Demand, Name = @"MACHINE\Anya")]
 public static void Method4()
 {
 // Method implementation . . .
 }

 // A declarative role-based security demand for the current principal
 // to be a member of the roles Managers OR Developers. If the
 // principal is a member of either role, access is granted. You
 // can express only an OR type relationship, not an AND relationship.
 // The name of the identity is irrelevant.
 [PrincipalPermission(SecurityAction.Demand, Role = @"MACHINE\Managers")]

CHAPTER 11 ■ SECURITY AND CRYPTOGRAPHY

572

 [PrincipalPermission(SecurityAction.Demand, Role = @"MACHINE\Developers")]
 public static void Method5()
 {
 // Method implementation . . .
 }

 // A declarative role-based security demand for the current principal
 // to represent an identity with the name Anya AND be a member of the
 // Managers role.
 [PrincipalPermission(SecurityAction.Demand, Name = @"MACHINE\Anya",
 Role = @"MACHINE\Managers")]
 public static void Method6()
 {
 // Method implementation . . .
 }
 }
}

11-12. Impersonate a Windows User

Problem
You need your code to run in the context of a Windows user other than the currently active user account.

Solution
Obtain a System.Security.Principal.WindowsIdentity object representing the Windows user you need
to impersonate, and then call the Impersonate method of the WindowsIdentity object.

How It Works
Every Windows thread has an associated access token, which represents the Windows account on whose
behalf the thread is running. The Windows operating system uses the access token to determine whether
a thread has the appropriate permissions to perform protected operations on behalf of the account, such
as read and write files, reboot the system, and change the system time.

By default, a managed application runs in the context of the Windows account that executed the
application. This is normally desirable behavior, but sometimes you will want to run an application in
the context of a different Windows account. This is particularly true in the case of server-side
applications that process transactions on behalf of the users remotely connected to the server.

It’s common for a server application to run in the context of a Windows account created specifically
for the application—a service account. This service account will have minimal permissions to access
system resources. Enabling the application to operate as though it were the connected user permits the
application to access the operations and resources appropriate to that user’s security clearance. When
an application assumes the identity of another user, it’s known as impersonation. Correctly
implemented, impersonation simplifies security administration and application design while
maintaining user accountability.

CHAPTER 11 ■ SECURITY AND CRYPTOGRAPHY

573

■ Note As discussed in recipe 11-11, a thread’s Windows access token and its .NET principal are separate
entities and can represent different users. The impersonation technique described in this recipe changes only the
Windows access token of the current thread; it does not change the thread’s principal. To change the thread’s
principal, code must have the ControlPrincipal element of SecurityPermission and assign a new
System.Security.Principal.IPrincipal object to the CurrentPrincipal property of the current
System.Threading.Thread.

The System.Security.Principal.WindowsIdentity class provides the functionality through which
you invoke impersonation. However, the exact process depends on which version of Windows your
application is running. If it’s running on Windows Server 2003 or later, the WindowsIdentity class
supports constructor overloads that create WindowsIdentity objects based on the account name of the
user you want to impersonate. On all previous versions of Windows, you must first obtain a
System.IntPtr containing a reference to a Windows access token that represents the user to
impersonate. To obtain the access token reference, you must use a native method such as the LogonUser
function from the Win32 API.

Once you have a WindowsIdentity object representing the user you want to impersonate, call its
Impersonate method. From that point on, all actions your code performs occur in the context of the
impersonated Windows account. The Impersonate method returns a System.Security.Principal.
WindowsSecurityContext object, which represents the active account prior to impersonation. To revert to
the original account, call the Undo method of this WindowsSecurityContext object.

The Code
The following example demonstrates impersonation of a Windows user. The example uses the LogonUser
function of the Win32 API to obtain a Windows access token for the specified user, impersonates the
user, and then reverts to the original user context.

using System;
using System.IO;
using System.Security.Principal;
using System.Security.Permissions;
using System.Runtime.InteropServices;

// Ensure the assembly has permission to execute unmanaged code
// and control the thread principal.
[assembly:SecurityPermission(SecurityAction.RequestMinimum,
 UnmanagedCode=true, ControlPrincipal=true)]

namespace Apress.VisualCSharpRecipes.Chapter11
{
 class Recipe11_12
 {

CHAPTER 11 ■ SECURITY AND CRYPTOGRAPHY

574

 // Define some constants for use with the LogonUser function.
 const int LOGON32_PROVIDER_DEFAULT = 0;
 const int LOGON32_LOGON_INTERACTIVE = 2;

 // Import the Win32 LogonUser function from advapi32.dll. Specify
 // "SetLastError = true" to correctly support access to Win32 error
 // codes.
 [DllImport("advapi32.dll", SetLastError=true, CharSet=CharSet.Unicode)]
 static extern bool LogonUser(string userName, string domain,
 string password, int logonType, int logonProvider,
 ref IntPtr accessToken);

 public static void Main(string[] args)
 {
 // Create a new IntPtr to hold the access token returned by the
 // LogonUser function.
 IntPtr accessToken = IntPtr.Zero;

 // Call LogonUser to obtain an access token for the specified user.
 // The accessToken variable is passed to LogonUser by reference and
 // will contain a reference to the Windows access token if
 // LogonUser is successful.
 bool success = LogonUser(
 args[0], // Username to log on.
 ".", // Use the local account database.
 args[1], // User's password.
 LOGON32_LOGON_INTERACTIVE, // Create an interactive login.
 LOGON32_PROVIDER_DEFAULT, // Use the default logon provider.
 ref accessToken // Receives access token handle.
);

 // If the LogonUser return code is zero, an error has occurred.
 // Display the error and exit.
 if (!success)
 {
 Console.WriteLine("LogonUser returned error {0}",
 Marshal.GetLastWin32Error());
 }
 else
 {
 // Create a new WindowsIdentity from the Windows access token.
 WindowsIdentity identity = new WindowsIdentity(accessToken);

 // Display the active identity.
 Console.WriteLine("Identity before impersonation = {0}",
 WindowsIdentity.GetCurrent().Name);

 // Impersonate the specified user, saving a reference to the
 // returned WindowsImpersonationContext, which contains the
 // information necessary to revert to the original user
 // context.

CHAPTER 11 ■ SECURITY AND CRYPTOGRAPHY

575

 WindowsImpersonationContext impContext =
 identity.Impersonate();

 // Display the active identity.
 Console.WriteLine("Identity during impersonation = {0}",
 WindowsIdentity.GetCurrent().Name);

 // ***
 // Perform actions as the impersonated user.
 // ***

 // Revert to the original Windows user using the
 // WindowsImpersonationContext object.
 impContext.Undo();

 // Display the active identity.
 Console.WriteLine("Identity after impersonation = {0}",
 WindowsIdentity.GetCurrent().Name);

 // Wait to continue.
 Console.WriteLine("\nMain method complete. Press Enter.");
 Console.ReadLine();
 }
 }
 }
}

Usage
The example expects two command-line arguments: the account name of the user on the local machine
to impersonate and the account’s password. For example, the command Recipe11-12 Bob password
impersonates the user Bob, as long as that user exists in the local accounts database and his password is
“password.”

11-13. Create a Cryptographically Random Number

Problem
You need to create a random number that is suitable for use in cryptographic and security applications.

Solution
Use a cryptographic random number generator such as the System.Security.Cryptography.
RNGCryptoServiceProvider class.

CHAPTER 11 ■ SECURITY AND CRYPTOGRAPHY

576

How It Works
The System.Random class is a pseudorandom number generator that uses a mathematical algorithm to
simulate the generation of random numbers. In fact, the algorithm it uses is deterministic, meaning that
you can always calculate what the next number will be based on the previously generated number. This
means that numbers generated by the Random class are unsuitable for use in situations in which security
is a priority, such as generating encryption keys and passwords.

When you need a nondeterministic random number for use in cryptographic or security-related
applications, you must use a random number generator derived from the class
System.Security.Cryptography.RandomNumberGenerator. The RandomNumberGenerator class is an abstract
class from which all concrete .NET random number generator classes should inherit. Currently, the
RNGCryptoServiceProvider class is the only concrete implementation provided. The
RNGCryptoServiceProvider class provides a managed wrapper around the CryptGenRandom function of the
Win32 CryptoAPI, and you can use it to fill byte arrays with cryptographically random byte values.

■ Note The numbers produced by the RNGCryptoServiceProvider class are not truly random. However, they are
sufficiently random to meet the requirements of cryptography and security applications in most commercial and
government environments.

As is the case with many of the .NET cryptography classes, the RandomNumberGenerator base class is a
factory for the concrete implementation classes that derive from it. Calling RandomNumberGenerator.
Create("System.Security.Cryptography.RNGCryptoServiceProvider") will return an instance of
RNGCryptoServiceProvider that you can use to generate random numbers. In addition, because
RNGCryptoServiceProvider is the only concrete implementation provided, it’s the default class created if
you call the Create method without arguments, as in RandomNumberGenerator.Create().

Once you have a RandomNumberGenerator instance, the method GetBytes fills a byte array with
random byte values. As an alternative, you can use the GetNonZeroBytes method if you need random
data that contains no zero values.

The Code
The following example instantiates an RNGCryptoServiceProvider object and uses it to generate random
values.

using System;
using System.Security.Cryptography;

namespace Apress.VisualCSharpRecipes.Chapter11
{
 class Recipe11_13
 {
 public static void Main() {

 // Create a byte array to hold the random data.
 byte[] number = new byte[32];

CHAPTER 11 ■ SECURITY AND CRYPTOGRAPHY

577

 // Instantiate the default random number generator.
 RandomNumberGenerator rng = RandomNumberGenerator.Create();

 // Generate 32 bytes of random data.
 rng.GetBytes(number);

 // Display the random number.
 Console.WriteLine(BitConverter.ToString(number));

 // Wait to continue.
 Console.WriteLine("\nMain method complete. Press Enter.");
 Console.ReadLine();
 }
 }
}

■ Note The computational effort required to generate a random number with RNGCryptoServiceProvider is
significantly greater than that required by Random. For everyday purposes, the use of RNGCryptoServiceProvider
is overkill. You should consider the quantity of random numbers you need to generate and the purpose of the
numbers before deciding to use RNGCryptoServiceProvider. Excessive and unnecessary use of the
RNGCryptoServiceProvider class could have a noticeable effect on application performance if many random
numbers are generated.

11-14. Calculate the Hash Code of a Password

Problem
You need to store a user’s password securely so that you can use it to authenticate the user in the future.

Solution
Create and store a cryptographic hash code of the password using a hashing algorithm class derived
from the System.Security.Cryptography.HashAlgorithm class. On future authentication attempts,
generate the hash of the password entered by the user and compare it to the stored hash code.

CHAPTER 11 ■ SECURITY AND CRYPTOGRAPHY

578

■ Caution You should never store a user’s plain text password, because it is a major security risk and one that
most users would not appreciate, given that many of them will use the same password to access multiple
systems.

How It Works
Hashing algorithms are one-way cryptographic functions that take plain text of variable length and
generate a fixed-size numeric value. They are one-way because it’s nearly impossible to derive the
original plain text from the hash code. Hashing algorithms are deterministic; applying the same hashing
algorithm to a specific piece of plain text always generates the same hash code. This makes hash codes
useful for determining if two blocks of plain text (passwords in this case) are the same. The design of
hashing algorithms ensures that the chance of two different pieces of plain text generating the same
hash code is extremely small (although not impossible). In addition, there is no correlation between the
similarity of two pieces of plain text and their hash codes; minor differences in the plain text cause
significant differences in the resulting hash codes.

When using passwords to authenticate a user, you are not concerned with the content of the
password that the user enters. You need to know only that the entered password matches the password
that you have recorded for that user in your accounts database.

The nature of hashing algorithms makes them ideal for storing passwords securely. When the user
provides a new password, you must create the hash code of the password and store it, and then discard
the plain text password. Each time the user tries to authenticate with your application, calculate the
hash code of the password that user provides and compare it with the hash code you have stored.

■ Note People regularly ask how to obtain a password from a hash code. The simple answer is that you cannot.
The whole purpose of a hash code is to act as a token that you can freely store without creating security holes. If a
user forgets a password, you cannot derive it from the stored hash code. Rather, you must either reset the account
to some default value or generate a new password for the user.

Generating hash codes is simple in the .NET Framework. The abstract class HashAlgorithm provides
a base from which all concrete hashing algorithm implementations derive. The .NET Framework class
library includes the seven hashing algorithm implementations listed in Table 11-4; each implementation
class is a member of the System.Security.Cryptography namespace. The classes with names ending in
CryptoServiceProvider wrap functionality provided by the native Win32 CryptoAPI, whereas those with
names ending in Managed are fully implemented in managed code.

CHAPTER 11 ■ SECURITY AND CRYPTOGRAPHY

579

Table 11-4. Hashing Algorithm Implementations

Algorithm Name Class Name Hash Code Size (in Bits)

MD5 MD5CryptoServiceProvider 128

RIPEMD160 or RIPEMD-160 RIPEMD160Managed 160

SHA or SHA1 SHA1CryptoServiceProvider 160

SHA1Managed SHA1Managed 160

SHA256 or SHA-256 SHA256Managed 256

SHA384 or SHA-384 SHA384Managed 384

SHA512 or SHA-512 SHA512Managed 512

Although you can create instances of the hashing algorithm classes directly, the HashAlgorithm base

class is a factory for the concrete implementation classes that derive from it. Calling the static method
HashAlgorithm.Create will return an object of the specified type. Using the factory approach allows you
to write generic code that can work with any hashing algorithm implementation. Note that unlike in
recipe 11-13, you do not pass the class name as parameter to the factory; instead, you pass the algorithm
name.

Once you have a HashAlgorithm object, its ComputeHash method accepts a byte array argument
containing plain text and returns a new byte array containing the generated hash code. Table 11-4 shows
the size of hash code (in bits) generated by each hashing algorithm class.

■ Note The SHA1Managed algorithm cannot be implemented using the factory approach. It must be instantiated
directly.

The Code
The example shown here demonstrates the creation of a hash code from a string, such as a password.
The application expects two command-line arguments: the name of the hashing algorithm to use and
the string from which to generate the hash. Because the HashAlgorithm.ComputeHash method requires a
byte array, you must first byte-encode the input string using the class System.Text.Encoding, which
provides mechanisms for converting strings to and from various character-encoding formats.

using System;
using System.Text;
using System.Security.Cryptography;

CHAPTER 11 ■ SECURITY AND CRYPTOGRAPHY

580

namespace Apress.VisualCSharpRecipes.Chapter11
{
 class Recipe11_14
 {
 public static void Main(string[] args)
 {
 // Create a HashAlgorithm of the type specified by the first
 // command-line argument.
 HashAlgorithm hashAlg = null;
 if (args[0].CompareTo("SHA1Managed") == 0)
 {
 hashAlg = new SHA1Managed();
 }
 else
 {
 hashAlg = HashAlgorithm.Create(args[0]);
 }

 using (hashAlg)
 {
 // Convert the password string, provided as the second
 // command-line argument, to an array of bytes.
 byte[] pwordData = Encoding.Default.GetBytes(args[1]);

 // Generate the hash code of the password.
 byte[] hash = hashAlg.ComputeHash(pwordData);

 // Display the hash code of the password to the console.
 Console.WriteLine(BitConverter.ToString(hash));

 // Wait to continue.
 Console.WriteLine("\nMain method complete. Press Enter.");
 Console.ReadLine();
 }
 }
 }
}

Usage
Running the following command:

Recipe11-14 SHA1 ThisIsMyPassword

will display the following hash code to the console:

30-B8-BD-58-29-88-89-00-D1-5D-2B-BE-62-70-D9-BC-65-B0-70-2F

CHAPTER 11 ■ SECURITY AND CRYPTOGRAPHY

581

In contrast, executing this command:

Recipe11-14 RIPEMD-160 ThisIsMyPassword

will display the following hash code:

0C-39-3B-2E-8A-4E-D3-DD-FB-E3-C8-05-E4-62-6F-6B-76-7C-7A-49

11-15. Calculate the Hash Code of a File

Problem
You need to determine whether the contents of a file have changed over time.

Solution
Create a cryptographic hash code of the file’s contents using the ComputeHash method of the
System.Security.Cryptography.HashAlgorithm class. Store the hash code for future comparison against
newly generated hash codes.

How It Works
As well as allowing you to store passwords securely (discussed in recipe 11-14), hash codes provide an
excellent means of determining if a file has changed. By calculating and storing the cryptographic hash
of a file, you can later recalculate the hash of the file to determine if the file has changed in the interim. A
hashing algorithm will produce a very different hash code even if the file has been changed only slightly,
and the chances of two different files resulting in the same hash code are extremely small.

■ Caution Standard hash codes are not suitable for sending with a file to ensure the integrity of the file’s
contents. If someone intercepts the file in transit, that person can easily change the file and recalculate the hash
code, leaving the recipient none the wiser. Recipe 11-17 discusses a variant of the hash code—a keyed hash
code—that is suitable for ensuring the integrity of a file in transit.

The HashAlgorithm class makes it easy to generate the hash code of a file. First, instantiate one of the
concrete hashing algorithm implementations derived from the HashAlgorithm class. To instantiate the
desired hashing algorithm class, pass the name of the hashing algorithm to the HashAlgorithm.Create
method, as described in recipe 11-14. See Table 11-4 for a list of valid hashing algorithm names. Then,
instead of passing a byte array to the ComputeHash method, you pass a System.IO.Stream object

CHAPTER 11 ■ SECURITY AND CRYPTOGRAPHY

582

representing the file from which you want to generate the hash code. The HashAlgorithm object handles
the process of reading data from the Stream and returns a byte array containing the hash code for the file.

The Code
The example shown here demonstrates the generation of a hash code from a file. The application
expects two command-line arguments: the name of the hashing algorithm to use and the name of the
file from which the hash is calculated.

using System;
using System.IO;
using System.Security.Cryptography;
namespace Apress.VisualCSharpRecipes.Chapter11
{
 class Recipe11_15
 {
 public static void Main(string[] args)
 {
 // Create a HashAlgorithm of the type specified by the first
 // command-line argument.
 using (HashAlgorithm hashAlg = HashAlgorithm.Create(args[0]))
 {
 // Open a FileStream to the file specified by the second
 // command-line argument.
 using (Stream file =
 new FileStream(args[1], FileMode.Open, FileAccess.Read))
 {
 // Generate the hash code of the file's contents.
 byte[] hash = hashAlg.ComputeHash(file);

 // Display the hash code of the file to the console.
 Console.WriteLine(BitConverter.ToString(hash));
 }

 // Wait to continue.
 Console.WriteLine("\nMain method complete. Press Enter.");
 Console.ReadLine();
 }
 }
 }
}

Usage
Running this command:

Recipe11-15 SHA1 Recipe11-15.exe

will display the following hash code to the console:

CHAPTER 11 ■ SECURITY AND CRYPTOGRAPHY

583

CA-67-A5-2D-EC-E9-FC-45-AE-97-E9-E1-38-CB-17-86-BB-17-EE-30

In contrast, executing this command:

Recipe11-15 RIPEMD-160 Recipe11-15.exe

will display the following hash code:

E1-6E-FA-BB-89-BA-DA-83-20-D5-CA-EC-FC-3D-52-13-86-B9-41-7C

11-16. Verify a Hash Code

Problem
You need to verify a password or confirm that a file remains unchanged by comparing two hash codes.

Solution
Convert both the old and the new hash codes to hexadecimal code strings, Base64 strings, or byte arrays,
and compare them.

How It Works
You can use hash codes to determine if two pieces of data (such as passwords or files) are the same,
without the need to store or even maintain access to the original data. To determine if data changes over
time, you must generate and store the original data’s hash code. Later, you can generate another hash
code for the data and compare the old and new hash codes, which will show whether any change has
occurred. The format in which you store the original hash code will determine the most appropriate way
to verify a newly generated hash code against the stored one.

■ Note The recipes in this chapter use the ToString method of the class System.BitConverter to convert byte
arrays to hexadecimal string values for display. Although easy to use and appropriate for display purposes, you
might find this approach inappropriate for use when storing hash codes, because it places a hyphen (-) between
each byte value (for example, 4D-79-3A-C9- . . .). In addition, the BitConverter class does not provide a method
to parse such a string representation back into a byte array.

CHAPTER 11 ■ SECURITY AND CRYPTOGRAPHY

584

Hash codes are often stored in text files, either as hexadecimal strings (for example,
89D22213170A9CFF09A392F00E2C6C4EDC1B0EF9) or as Base64-encoded strings (for example,
idIiExcKnP8Jo5LwDixsTtwbDvk=). Alternatively, hash codes may be stored in databases as raw byte values.
Regardless of how you store your hash code, the first step in comparing old and new hash codes is to get
them both into a common form.

The Code
This following example contains three methods that use different approaches to compare hash codes:

• VerifyHexHash: This method converts a new hash code (a byte array) to a
hexadecimal string for comparison to an old hash code. Other than the
BitConverter.ToString method, the .NET Framework class library does not
provide an easy method to convert a byte array to a hexadecimal string. You must
program a loop to step through the elements of the byte array, convert each
individual byte to a string, and append the string to the hexadecimal string
representation of the hash code. The use of System.Text.StringBuilder avoids the
unnecessary creation of new strings each time the loop appends the next byte
value to the result string. (See recipe 2-1 for more details.)

• VerifyB64Hash: This method takes a new hash code as a byte array and the old
hash code as a Base64-encoded string. The method encodes the new hash code as
a Base64 string and performs a straightforward string comparison of the two
values.

• VerifyByteHash: This method compares two hash codes represented as byte
arrays. The .NET Framework class library does not include a method that
performs this type of comparison, and so you must program a loop to compare
the elements of the two arrays. This code uses a few time-saving techniques,
namely ensuring that the byte arrays are the same length before starting to
compare them and returning false on the first difference found.

using System;
using System.Text;

namespace Apress.VisualCSharpRecipes.Chapter11
{
 class Recipe11_16
 {
 // A method to compare a newly generated hash code with an
 // existing hash code that's represented by a hex code string.
 public static bool VerifyHexHash(byte[] hash, string oldHashString)
 {
 // Create a string representation of the hash code bytes.
 StringBuilder newHashString = new StringBuilder(hash.Length);

CHAPTER 11 ■ SECURITY AND CRYPTOGRAPHY

585

 // Append each byte as a two-character uppercase hex string.
 foreach (byte b in hash)
 {
 newHashString.AppendFormat("{0:X2}", b);
 }

 // Compare the string representations of the old and new hash
 // codes and return the result.
 return (oldHashString == newHashString.ToString());
 }

 // A method to compare a newly generated hash code with an
 // existing hash code that's represented by a Base64-encoded string.
 private static bool VerifyB64Hash(byte[] hash, string oldHashString)
 {
 // Create a Base64 representation of the hash code bytes.
 string newHashString = Convert.ToBase64String(hash);

 // Compare the string representations of the old and new hash
 // codes and return the result.
 return (oldHashString == newHashString);
 }

 // A method to compare a newly generated hash code with an
 // existing hash code represented by a byte array.
 private static bool VerifyByteHash(byte[] hash, byte[] oldHash)
 {
 // If either array is null or the arrays are different lengths,
 // then they are not equal.
 if (hash == null || oldHash == null || hash.Length != oldHash.Length)
 return false;

 // Step through the byte arrays and compare each byte value.
 for (int count = 0; count < hash.Length; count++)
 {
 if (hash[count] != oldHash[count]) return false;
 }

 // Hash codes are equal.
 return true;
 }
 }
}

CHAPTER 11 ■ SECURITY AND CRYPTOGRAPHY

586

11-17. Ensure Data Integrity Using a Keyed Hash Code

Problem
You need to transmit a file to someone and provide the recipient with a means to verify the integrity of
the file and its source.

Solution
Share a secret key with the intended recipient. This key would ideally be a randomly generated number,
but it could also be a phrase that you and the recipient agree to use. Use the key with one of the keyed
hashing algorithm classes derived from the System.Security.Cryptography.KeyedHashAlgorithm class to
create a keyed hash code. Send the hash code with the file. On receipt of the file, the recipient will
generate the keyed hash code of the file using the shared secret key. If the hash codes are equal, the
recipient knows that the file is from you and that it has not changed in transit.

How It Works
Hash codes are useful for comparing two pieces of data to determine if they are the same, even if you no
longer have access to the original data. However, you cannot use a hash code to reassure the recipient of
data as to the data’s integrity. If someone could intercept the data, that person could replace the data
and generate a new hash code. When the recipient verifies the hash code, it will seem correct, even
though the data is actually nothing like what you sent originally.

A simple and efficient solution to the problem of data integrity is a keyed hash code. A keyed hash
code is similar to a normal hash code (discussed in recipes 11-14 and 11-15); however, the keyed hash
code incorporates an element of secret data—a key—known only to the sender and the receiver. Without
the key, a person cannot generate the correct hash code from a given set of data. When you successfully
verify a keyed hash code, you can be certain that only someone who knows the secret key could generate
the hash code.

■ Caution The secret key must remain secret. Anyone who knows the secret key can generate valid keyed hash
codes, meaning that you would be unable to determine whether someone else who knew the key had changed the
content of a document. For this reason, you should not transmit or store the secret key with the document whose
integrity you are trying to protect.

Generating keyed hash codes is similar to generating normal hash codes. The abstract class
System.Security.Cryptography.KeyedHashAlgorithm extends the class System.Security.
Cryptography.HashAlgorithm and provides a base class from which all concrete keyed hashing algorithm
implementations must derive. The .NET Framework class library includes the seven keyed hashing
algorithm implementations listed in Table 11-5. Each implementation is a member of the namespace
System.Security.Cryptography.

CHAPTER 11 ■ SECURITY AND CRYPTOGRAPHY

587

Table 11-5. Keyed Hashing Algorithm Implementations

Algorithm/Class Name Key Size (in Bits) Hash Code Size (in Bits)

HMACMD5 Any 128

HMACRIPEMD160 Any 160

HMACSHA1 Any 160

HMACSHA256 Any 256

HMACSHA384 Any 384

HMACSHA512 Any 512

MACTripleDES 128, 192 64

As with the standard hashing algorithms, you can either create keyed hashing algorithm objects

directly or use the static factory method KeyedHashAlgorithm.Create and pass the algorithm name as an
argument. Using the factory approach allows you to write generic code that can work with any keyed
hashing algorithm implementation, but as shown in Table 11-5, MACTripleDES supports fixed key lengths
that you must accommodate in generic code.

If you use constructors to instantiate a keyed hashing object, you can pass the secret key to the
constructor. Using the factory approach, you must set the key using the Key property inherited from the
KeyedHashAlgorithm class. Then call the ComputeHash method and pass either a byte array or a
System.IO.Stream object. The keyed hashing algorithm will process the input data and return a byte
array containing the keyed hash code. Table 11-5 shows the size of the hash code generated by each
keyed hashing algorithm.

The Code
The following example demonstrates the generation of a keyed hash code from a file. The example uses
the given class to generate the keyed hash code, and then displays it to the console. The example
requires three command-line arguments: the name of the file from which the hash is calculated, the
name of the class to instantiate, and the key to use when calculating the hash.

using System;
using System.IO;
using System.Text;
using System.Security.Cryptography;

namespace Apress.VisualCSharpRecipes.Chapter11
{
 class Recipe11_17
 {

CHAPTER 11 ■ SECURITY AND CRYPTOGRAPHY

588

 public static void Main(string[] args)
 {
 // Create a byte array from the key string, which is the
 // second command-line argument.
 byte[] key = Encoding.Unicode.GetBytes(args[2]);

 // Create a KeyedHashAlgorithm-derived object to generate the keyed
 // hash code for the input file. Pass the byte array representing the
 // key to the constructor.
 using (KeyedHashAlgorithm hashAlg = KeyedHashAlgorithm.Create(args[1]))
 {
 // Assign the key.
 hashAlg.Key = key;

 // Open a FileStream to read the input file. The file name is
 // specified by the first command-line argument.
 using (Stream file =
 new FileStream(args[0], FileMode.Open, FileAccess.Read))
 {
 // Generate the keyed hash code of the file's contents.
 byte[] hash = hashAlg.ComputeHash(file);

 // Display the keyed hash code to the console.
 Console.WriteLine(BitConverter.ToString(hash));
 }
 }

 // Wait to continue.
 Console.WriteLine("\nMain method complete. Press Enter.");
 Console.ReadLine();
 }
 }
}

Usage
Executing the following command:

Recipe11-17 Recipe11-17.exe HMACSHA1 secretKey

will display the following hash code to the console:

2E-5B-9B-2C-91-42-BA-4E-98-DF-39-F6-AE-89-B6-44-61-FB-32-E7

In contrast, executing this command:

Recipe11-17 Recipe11-17.exe HMACSHA1 anotherKey

CHAPTER 11 ■ SECURITY AND CRYPTOGRAPHY

589

will display the following hash code to the console:

EF-64-79-3A-3C-A4-44-01-AD-9E-94-2A-B4-58-CF-42-84-3E-27-91

11-18. Work with Security-Sensitive Strings in Memory

Problem
You need to work with sensitive string data, such as passwords or credit card numbers, in memory, and
you need to minimize the risk of other people or processes accessing that data.

Solution
Use the class System.Security.SecureString to hold the sensitive data values in memory.

How It Works
Storing sensitive data such as passwords, personal details, and banking information in memory as
String objects is insecure for many reasons, including the following:

• String objects are not encrypted.

• The immutability of String objects means that whenever you change the String,
the old String value is left in memory until it is garbage-collected and later
overwritten.

• Because the garbage collector is free to reorganize the contents of the managed
heap, multiple copies of your sensitive data may be present on the heap.

• If part of your process address space is swapped to disk or a memory dump is
written to disk, a copy of your data may be stored on the disk.

Each of these factors increases the opportunities for others to access your sensitive data. The .NET
Framework includes the SecureString class to simplify the task of working with sensitive string data in
memory.

You create a SecureString as either initially empty or from a pointer to a character (char) array.
Then you manipulate the contents of the SecureString one character at a time using the methods
AppendChar, InsertAt, RemoveAt, and SetAt. As you add characters to the SecureString, they are
encrypted using the capabilities of the Data Protection API.

■ Note The SecureString class uses features of Data Protection API (DPAPI) and is available only on Windows
2000 SP3 and later operating system versions.

CHAPTER 11 ■ SECURITY AND CRYPTOGRAPHY

590

The SecureString class also provides a method named MakeReadOnly. As the name suggests, calling
MakeReadOnly configures the SecureString to no longer allow its value to be changed. Attempting to
modify a SecureString marked as read-only results in the exception System.InvalidOperationException
being thrown. Once you have set the SecureString to read-only, it cannot be undone.

The SecureString class has a ToString method, but this does not retrieve a string representation of
the contained data. Instead, the class System.Runtime.InteropServices.Marshal implements a number
of static methods that take a SecureString object; decrypts it; converts it to a binary string, a block of
ANSI, or a block of Unicode data; and returns a System.IntPtr object that points to the converted data.

At any time, you can call the SecureString.Clear method to clear the sensitive data, and when you
have finished with the SecureString object, call its Dispose method to clear the data and free the
memory. SecureString implements System.IDisposable.

■ Note Although it might seem that the benefits of the SecureString class are limited, because there is no way
in Windows Forms applications to get such a secured string from the GUI without first retrieving an unsecured
String through a TextBox or another control, it is likely that third parties and future additions to the .NET
Framework will use the SecureString class to handle sensitive data. This is already the case in
System.Diagnostics.ProcessStartInfo, where using a SecureString, you can set the Password property to
the password of the user context in which the new process should be run.

The Code
The following example reads a username and password from the console and starts Notepad.exe as the
specified user. The password is masked on input and stored in a SecureString in memory, maximizing
the chances of the password remaining secret.

using System;
using System.Security;
using System.Diagnostics;

namespace Apress.VisualCSharpRecipes.Chapter11
{
 class Recipe11_18
 {
 public static SecureString ReadString()
 {
 // Create a new emtpty SecureString.
 SecureString str = new SecureString();

 // Read the string from the console one
 // character at a time without displaying it.
 ConsoleKeyInfo nextChar = Console.ReadKey(true);

CHAPTER 11 ■ SECURITY AND CRYPTOGRAPHY

591

 // Read characters until Enter is pressed.
 while (nextChar.Key != ConsoleKey.Enter)
 {
 if (nextChar.Key == ConsoleKey.Backspace)
 {
 if (str.Length > 0)
 {
 // Backspace pressed, remove the last character.
 str.RemoveAt(str.Length - 1);

 Console.Write(nextChar.KeyChar);
 Console.Write(" ");
 Console.Write(nextChar.KeyChar);
 }
 else
 {
 Console.Beep();
 }
 }
 else
 {
 // Append the character to the SecureString and
 // display a masked character.
 str.AppendChar(nextChar.KeyChar);
 Console.Write("*");
 }

 // Read the next character.
 nextChar = Console.ReadKey(true);
 }

 // String entry finished. Make it read-only.
 str.MakeReadOnly();
 return str;
 }

 public static void Main()
 {
 string user = "";

 // Get the username under which Notepad.exe will be run.
 Console.Write("Enter the user name: ");
 user = Console.ReadLine();

 // Get the user's password as a SecureString.
 Console.Write("Enter the user's password: ");
 using (SecureString pword = ReadString())
 {

CHAPTER 11 ■ SECURITY AND CRYPTOGRAPHY

592

 // Start Notepad as the specified user.
 ProcessStartInfo startInfo = new ProcessStartInfo();

 startInfo.FileName = "notepad.exe";
 startInfo.UserName = user;
 startInfo.Password = pword;
 startInfo.UseShellExecute = false;

 // Create a new Process object.
 using (Process process = new Process())
 {
 // Assign the ProcessStartInfo to the Process object.
 process.StartInfo = startInfo;

 try
 {
 // Start the new process.
 process.Start();
 }
 catch (Exception ex)
 {
 Console.WriteLine("\n\nCould not start Notepad process.");
 Console.WriteLine(ex);
 }
 }
 }

 // Wait to continue.
 Console.WriteLine("\n\nMain method complete. Press Enter.");
 Console.ReadLine();
 }
 }
}

11-19. Encrypt and Decrypt Data Using the Data Protection
API

Problem
You need a convenient way to securely encrypt data without the headache associated with key
management.

Solution
Use the ProtectedData and ProtectedMemory classes of the System.Security.Cryptography namespace to
access the encryption and key management capabilities provided by the Data Protection API (DPAPI).

CHAPTER 11 ■ SECURITY AND CRYPTOGRAPHY

593

How It Works
Given that the .NET Framework provides you with well-tested implementations of the most widely used
and trusted encryption algorithms, the biggest challenge you face when using cryptography is key
management, namely the effective generation, storage, and sharing of keys to facilitate the use of
cryptography. In fact, key management is the biggest problem facing most people when they want to
securely store or transmit data using cryptographic techniques. If implemented incorrectly, key
management can easily render useless all of your efforts to encrypt your data.

DPAPI provides encryption and decryption services without the need for you to worry about key
management. DPAPI automatically generates keys based on Windows user credentials, stores keys
securely as part of your profile, and even provides automated key expiry without losing access to
previously encrypted data.

■ Note DPAPI is suitable for many common uses of cryptography in Windows applications, but will not help you in
situations that require you to distribute or share secret or public keys with other users.

The .NET Framework contains two classes in System.Security.dll that provide easy access to the
encryption and decryption capabilities of DPAPI: ProtectedData and ProtectedMemory. Both classes allow
you to encrypt a byte array by passing it to the static method Protect, and decrypt a byte array of
encrypted data by passing it the static method Unprotect. The difference in the classes is in the scope
that they allow you to specify when you encrypt and decrypt data.

■ Caution You must use ProtectedData if you intend to store encrypted data and reboot your machine before
decrypting it. ProtectedMemory will be unable to decrypt data that was encrypted before a reboot.

When you call ProtectedData.Protect, you specify a value from the enumeration
System.Security.Cryptography.DataProtectionScope. The following are the possible values:

• CurrentUser, which means that only code running in the context of the current
user can decrypt the data

• LocalMachine, which means that any code running on the same computer can
decrypt the data

When you call ProtectedMemory.Protect, you specify a value from the enumeration
System.Security.Cryptography.MemoryProtectionScope. The possible values are as follows:

• CrossProcess, which means that any code in any process can decrypt the
encrypted data

• SameLogon, which means that only code running in the same user context can
decrypt the data

CHAPTER 11 ■ SECURITY AND CRYPTOGRAPHY

594

• SameProcess, which means that only code running in the same process can
decrypt the data

Both classes allow you to specify additional data (entropy) when you encrypt your data. Entropy
makes certain types of cryptographic attacks less likely to succeed. If you choose to use entropy when
you protect data, you must use the same entropy value when you unprotect the data. It is not essential
that you keep the entropy data secret, so it can be stored freely without encryption.

The Code
The following example demonstrates the use of the ProtectedData class to encrypt a string entered at the
console by the user. Note that you need to reference the System.Security.dll assembly.

using System;
using System.Text;
using System.Security.Cryptography;

namespace Apress.VisualCSharpRecipes.Chapter11
{
 class Recipe11_19
 {
 public static void Main()
 {
 // Read the string from the console.
 Console.Write("Enter the string to encrypt: ");
 string str = Console.ReadLine();

 // Create a byte array of entropy to use in the encryption process.
 byte[] entropy = { 0, 1, 2, 3, 4, 5, 6, 7, 8 };

 // Encrypt the entered string after converting it to
 // a byte array. Use LocalMachine scope so that only
 // the current user can decrypt the data.
 byte[] enc = ProtectedData.Protect(Encoding.Unicode.GetBytes(str),
 entropy, DataProtectionScope.LocalMachine);

 // Display the encrypted data to the console.
 Console.WriteLine("\nEncrypted string = {0}",
 BitConverter.ToString(enc));

 // Attempt to decrypt the data using CurrentUser scope.
 byte[] dec = ProtectedData.Unprotect(enc,
 entropy, DataProtectionScope.CurrentUser);

 // Display the data decrypted using CurrentUser scope.
 Console.WriteLine("\nDecrypted data using CurrentUser scope = {0}",
 Encoding.Unicode.GetString(dec));

CHAPTER 11 ■ SECURITY AND CRYPTOGRAPHY

595

 // Wait to continue.
 Console.WriteLine("\nMain method complete. Press Enter.");
 Console.ReadLine();
 }
 }
}

C H A P T E R 12

■ ■ ■

597

Unmanaged Code Interoperability

The Microsoft .NET Framework is an extensive platform. However, despite having reached version 4.0, it
still does not duplicate all the features that are available in unmanaged code. Currently, the .NET
Framework does not include every function that is available in the Win32 API, and many businesses use
proprietary solutions that they have built in native code or as COM or ActiveX components.

Fortunately, the .NET Framework is equipped with interoperability features that allow you to use
native code from .NET Framework applications as well as access .NET assemblies as though they were
COM components. The recipes in this chapter describe how to do the following:

• Call functions defined in a DLL, get the handles for a control or window, invoke an
unmanaged function that uses a structure, invoke unmanaged callback functions,
and retrieve unmanaged error information (recipes 12-1 through 12-5)

• Use COM components from .NET Framework applications, release COM
components, and use optional parameters (recipes 12-6 through 12-8)

• Use ActiveX controls from .NET Framework applications (recipe 12-9)

• Expose the functionality of a .NET assembly as a COM component (recipe 12-10)

■ Note The web site PInvoke.net (http://pinvoke.net) is an invaluable resource when trying to use PInvoke to
call Win32 API functions. It provides predefined method signatures for most if not all of the Win32 API functions, as
well as usage examples and tips for many of the functions.

12-1. Call a Function in an Unmanaged DLL

Problem
You need to call a function exported by a native DLL. This function might be a part of the Win32 API or
your own native code library.

http://pinvoke.net

CHAPTER 12 ■ UNMANAGED CODE INTEROPERABILITY

598

Solution
Declare a method in your C# code that you will use to access the unmanaged function. Declare this
method as both extern and static, and apply the attribute System.Runtime.InteropServices.
DllImportAttribute to specify the DLL file and the name of the unmanaged function.

How It Works
To use a native function contained in an external library, all you need to do is declare a method with the
appropriate signature—the Common Language Runtime (CLR) automatically handles the rest, including
loading the DLL into memory when the function is called and marshaling the parameters from .NET
data types to native data types. The .NET service that supports this cross-platform execution is named
PInvoke (Platform Invoke), and the process is usually seamless. Occasionally, you will need to do a little
more work, such as when you need to support in-memory structures, callbacks, or mutable strings.

PInvoke is often used to access functionality in the Win32 API, particularly Win32 features that are
not present in the set of managed classes that make up the .NET Framework. Three core libraries make
up the Win32 API:

• Kernel32.dll includes operating system–specific functionality such as process
loading, context switching, and file and memory I/O.

• User32.dll includes functionality for manipulating windows, menus, dialog
boxes, icons, and so on.

• GDI32.dll includes graphical capabilities for drawing directly on windows, menus,
and control surfaces, as well as for printing.

As an example, consider the Win32 API functions used for writing and reading INI files, such as
GetPrivateProfileString and WritePrivateProfileString, in Kernel32.dll. The .NET Framework does
not include any classes that wrap this functionality. However, you can import these functions using the
attribute DllImportAttribute, like this:

[DllImport("kernel32.DLL", EntryPoint="WritePrivateProfileString")]
private static extern bool WritePrivateProfileString(string lpAppName,
 string lpKeyName, string lpString, string lpFileName);

The arguments specified in the signature of the WritePrivateProfileString method must match the
DLL method or a runtime error will occur when you attempt to invoke it. Remember that you do not
define any method body, because the declaration refers to a method in the DLL. The EntryPoint portion
of the attribute DllImportAttribute is optional in this example. You do not need to specify the
EntryPoint when the declared function name matches the function name in the external library.

The Code
The following is an example of using some Win32 API functions to get INI file information. It declares the
unmanaged functions used and exposes public methods to call them. (Other Win32 API functions for
getting INI file information not shown in this example include those that retrieve all the sections in an
INI file.) The code first displays the current value of a key in the INI file, modifies it, retrieves the new
value, and then writes the default value.

CHAPTER 10 ■ UNMANAGED CODE INTEROPERABILITY

599

using System;
using System.Runtime.InteropServices;
using System.Text;
using System.IO;

namespace Apress.VisualCSharpRecipes.Chapter12
{
 class Recipe12_01
 {
 // Declare the unmanaged functions.
 [DllImport("kernel32.dll", EntryPoint = "GetPrivateProfileString")]
 private static extern int GetPrivateProfileString(string lpAppName,
 string lpKeyName, string lpDefault, StringBuilder lpReturnedString,
 int nSize, string lpFileName);

 [DllImport("kernel32.dll", EntryPoint = "WritePrivateProfileString")]
 private static extern bool WritePrivateProfileString(string lpAppName,
 string lpKeyName, string lpString, string lpFileName);

 static void Main(string[] args)
 {
 // Must use full path or Windows will try to write the INI file
 // to the Windows folder, causing issues on Vista and Windows 7.
 string iniFileName = Path.Combine(Directory.GetCurrentDirectory(),
 "Recipe12-01.ini");

 string message = "Value of LastAccess in [SampleSection] is: {0}";

 // Write a new value to the INI file.
 WriteIniValue("SampleSection", "LastAccess",
 DateTime.Now.ToString(), iniFileName);

 // Obtain the value contained in the INI file.
 string val = GetIniValue("SampleSection", "LastAccess", iniFileName);
 Console.WriteLine(message, val ?? "???");

 // Wait to continue.
 Console.WriteLine(Environment.NewLine);
 Console.WriteLine("Press Enter to continue the example.");
 Console.ReadLine();

 // Update the INI file.
 WriteIniValue("SampleSection", "LastAccess",
 DateTime.Now.ToString(), iniFileName);

 // Obtain the new value.
 val = GetIniValue("SampleSection", "LastAccess", iniFileName);
 Console.WriteLine(message, val ?? "???");

CHAPTER 12 ■ UNMANAGED CODE INTEROPERABILITY

600

 // Wait to continue.
 Console.WriteLine(Environment.NewLine);
 Console.WriteLine("Main method complete. Press Enter.");
 Console.ReadLine();
 }

 public static string GetIniValue(string section, string key,
 string filename)
 {
 int chars = 256;
 StringBuilder buffer = new StringBuilder(chars);
 string sDefault = "";
 if (GetPrivateProfileString(section, key, sDefault,
 buffer, chars, filename) != 0)
 {
 return buffer.ToString();
 }
 else
 {
 // Look at the last Win32 error.
 int err = Marshal.GetLastWin32Error();
 return null;
 }
 }

 public static bool WriteIniValue(string section, string key,
 string value, string filename)
 {
 return WritePrivateProfileString(section, key, value, filename);
 }
 }
}

■ Note The GetPrivateProfileString method is declared with one StringBuilder parameter
(lpReturnedString). This is because this string must be mutable; when the call completes, it will contain the
returned INI file information. Whenever you need a mutable string, you must substitute StringBuilder in place of
the String class. Often, you will need to create the StringBuilder object with a character buffer of a set size,
and then pass the size of the buffer to the function as another parameter. You can specify the number of
characters in the StringBuilder constructor. See recipe 2-1 for more information about using the
StringBuilder class.

CHAPTER 10 ■ UNMANAGED CODE INTEROPERABILITY

601

12-2. Get the Handle for a Control, Window, or File

Problem
You need to call an unmanaged function that requires the handle for a control, a window, or a file.

Solution
Many classes, including all Control-derived classes and the FileStream class, return the handle of the
unmanaged Windows object they are wrapping as an IntPtr through a property named Handle. Other
classes also provide similar information; for example, the System.Diagnostics.Process class provides a
Process.MainWindowHandle property in addition to the Handle property.

How It Works
The .NET Framework does not hide underlying details such as the operating system handles used for
controls and windows. Although you usually will not use this information, you can retrieve it if you need
to call an unmanaged function that requires it. Many Microsoft Windows API functions, for example,
require control or window handles.

The Code
As an example, consider the Windows-based application shown in Figure 12-1. It consists of a single
window that always stays on top of all other windows regardless of focus. (This behavior is enforced by
setting the Form.TopMost property to true.) The form also includes a timer that periodically calls the
unmanaged GetForegroundWindow and GetWindowText WinAPI functions to determine which window is
currently active.

One additional detail in this example is that the code also uses the Form.Handle property to get the
handle of the main application form. It then compares with the handle of the active form to test if the
current application has focus. The following is the complete code for this form:

using System;
using System.Windows.Forms;
using System.Runtime.InteropServices;
using System.Text;

namespace Apress.VisualCSharpRecipes.Chapter12
{
 public partial class ActiveWindowInfo : Form
 {
 public ActiveWindowInfo()
 {
 InitializeComponent();
 }

CHAPTER 12 ■ UNMANAGED CODE INTEROPERABILITY

602

 // Declare external functions.
 [DllImport("user32.dll")]
 private static extern IntPtr GetForegroundWindow();

 [DllImport("user32.dll")]
 private static extern int GetWindowText(IntPtr hWnd,
 StringBuilder text, int count);

 private void tmrRefresh_Tick(object sender, EventArgs e)
 {
 int chars = 256;
 StringBuilder buff = new StringBuilder(chars);

 // Obtain the handle of the active window.
 IntPtr handle = GetForegroundWindow();

 // Update the controls.
 if (GetWindowText(handle, buff, chars) > 0)
 {
 lblCaption.Text = buff.ToString();
 lblHandle.Text = handle.ToString();
 if (handle == this.Handle)
 {
 lblCurrent.Text = "True";
 }
 else
 {
 lblCurrent.Text = "False";
 }
 }
 }
 }
}

■ Caution The Windows Forms infrastructure manages window handles for forms and controls transparently.
Changing some of their properties can force the CLR to create a new native window behind the scenes, and the
new window gets assigned a different handle. For that reason, you should always retrieve the handle before you
use it (rather than storing it in a member variable for a long period of time).

CHAPTER 10 ■ UNMANAGED CODE INTEROPERABILITY

603

Figure 12-1. Retrieving information about the active window

12-3. Call an Unmanaged Function That Uses a Structure

Problem
You need to call an unmanaged function that accepts a structure as a parameter.

Solution
Define the structure in your C# code. Use the attribute System.Runtime.InteropServices.
StructLayoutAttribute to configure how the structure fields are laid out in memory. Use the static
SizeOf method of the System.Runtime.Interop.Marshal class if you need to determine the size of the
unmanaged structure in bytes.

How It Works
In pure C# code, you are not able to directly control how type fields are laid out once the memory is
allocated. Instead, the CLR is free to arrange fields to optimize performance, especially in the context of
moving memory around during garbage collection. This can cause problems when interacting with
native functions that expect structures to be laid out sequentially in memory as defined in include files.
Fortunately, the .NET Framework allows you to solve this problem by using the attribute
StructLayoutAttribute, which lets you specify how the members of a given class or structure should be
arranged in memory.

The Code
As an example, consider the unmanaged GetVersionEx function implemented in the Kernel32.dll file.
This function accepts a pointer to an OSVERSIONINFO structure and uses it to return information about the
current operating system version. To use the OSVERSIONINFO structure in C# code, you must define it with
the attribute StructLayoutAttribute, as shown here:

CHAPTER 12 ■ UNMANAGED CODE INTEROPERABILITY

604

[StructLayout(LayoutKind.Sequential)]
public class OSVersionInfo {

 public int dwOSVersionInfoSize;
 public int dwMajorVersion;
 public int dwMinorVersion;
 public int dwBuildNumber;
 public int dwPlatformId;
 [MarshalAs(UnmanagedType.ByValTStr, SizeConst=128)]
 public String szCSDVersion;
}

Notice that this structure also uses the attribute System.Runtime.InteropServices.
MarshalAsAttribute, which is required for fixed-length strings. In this example, MarshalAsAttribute
specifies that the string will be passed by value and will contain a buffer of exactly 128 characters, as
specified in the OSVERSIONINFO structure. This example uses sequential layout, which means that the data
types in the structure are laid out in the order they are listed in the class or structure. When using
sequential layout, you can also configure the packing for the structure by specifying a named Pack field
in the StructLayoutAttribute constructor. The default is 8, which means the structure will be packed on
8-byte boundaries.

Instead of using sequential layout, you could use LayoutKind.Explicit; in which case, you must
define the byte offset of each field using FieldOffsetAttribute. This layout is useful when dealing with
an irregularly packed structure or one where you want to omit some of the fields that you do not want to
use. Here is an example that defines the OSVersionInfo class with explicit layout:

[StructLayout(LayoutKind.Explicit)]
public class OSVersionInfo {

 [FieldOffset(0)]public int dwOSVersionInfoSize;
 [FieldOffset(4)]public int dwMajorVersion;
 [FieldOffset(8)]public int dwMinorVersion;
 [FieldOffset(12)]public int dwBuildNumber;
 [FieldOffset(16)]public int dwPlatformId;
 [MarshalAs(UnmanagedType.ByValTStr, SizeConst=128)]
 [FieldOffset(20)]public String szCSDVersion;
}

Now that you’ve defined the structure used by the GetVersionEx function, you can declare the
function and then use it. The following console application shows all the code you will need. Notice that
InAttribute and OutAttribute are applied to the OSVersionInfo parameter to indicate that marshaling
should be performed on this structure when it is passed to the function and when it is returned from the
function. In addition, the code uses the Marshal.SizeOf method to calculate the size the marshaled
structure will occupy in memory.

using System;
using System.Runtime.InteropServices;

namespace Apress.VisualCSharpRecipes.Chapter12
{
 class Recipe12_03
 {

CHAPTER 10 ■ UNMANAGED CODE INTEROPERABILITY

605

 // Declare the external function.
 [DllImport("kernel32.dll")]
 public static extern bool GetVersionEx([In, Out] OSVersionInfo osvi);

 static void Main(string[] args)
 {
 OSVersionInfo osvi = new OSVersionInfo();
 osvi.dwOSVersionInfoSize = Marshal.SizeOf(osvi);

 // Obtain the OS version information.
 GetVersionEx(osvi);

 // Display the version information.
 Console.WriteLine("Class size: " + osvi.dwOSVersionInfoSize);
 Console.WriteLine("Major Version: " + osvi.dwMajorVersion);
 Console.WriteLine("Minor Version: " + osvi.dwMinorVersion);
 Console.WriteLine("Build Number: " + osvi.dwBuildNumber);
 Console.WriteLine("Platform Id: " + osvi.dwPlatformId);
 Console.WriteLine("CSD Version: " + osvi.szCSDVersion);
 Console.WriteLine("Platform: " + Environment.OSVersion.Platform);
 Console.WriteLine("Version: " + Environment.OSVersion.Version);

 // Wait to continue.
 Console.WriteLine(Environment.NewLine);
 Console.WriteLine("Main method complete. Press Enter.");
 Console.ReadLine();
 }
 }

 // Define the structure and specify the layout type as sequential.
 [StructLayout(LayoutKind.Sequential)]
 public class OSVersionInfo
 {
 public int dwOSVersionInfoSize;
 public int dwMajorVersion;
 public int dwMinorVersion;
 public int dwBuildNumber;
 public int dwPlatformId;
 [MarshalAs(UnmanagedType.ByValTStr, SizeConst = 128)]
 public String szCSDVersion;
 }
}

CHAPTER 12 ■ UNMANAGED CODE INTEROPERABILITY

606

If you run this application on a Windows 7 system, you will see information such as this:

Class size: 148

Major Version: 6

Minor Version: 1

Build Number: 7600

Platform Id: 2

CSD Version:

Platform: Win32NT

Version: 6.1.7600.0

12-4. Call an Unmanaged Function That Uses a Callback

Problem
You need to call an unmanaged function and allow it to call a method in your code.

Solution
Create a delegate that has the required signature for the callback. Use this delegate when defining and
using the unmanaged function.

How It Works
Many of the Win32 API functions use callbacks. For example, if you want to retrieve the name of all the
top-level windows that are currently open, you can call the unmanaged EnumWindows function in the
User32.dll file. When calling EnumWindows, you need to supply a pointer to a function in your code. The
Windows operating system will then call this function repeatedly—once for each top-level window that
it finds—and pass the window handle to your code.

The .NET Framework allows you to handle callback scenarios like this without resorting to pointers
and unsafe code blocks. Instead, you can define and use a delegate that points to your callback function.
When you pass the delegate to the EnumWindows function, for example, the CLR will automatically
marshal the delegate to the expected unmanaged function pointer.

CHAPTER 10 ■ UNMANAGED CODE INTEROPERABILITY

607

The Code
Following is a console application that uses EnumWindows with a callback to display the name of every
open window:

using System;
using System.Text;
using System.Runtime.InteropServices;

namespace Apress.VisualCSharpRecipes.Chapter12
{
 class Recipe12_04
 {
 // The signature for the callback method.
 public delegate bool CallBack(IntPtr hwnd, int lParam);

 // The unmanaged function that will trigger the callback
 // as it enumerates the open windows.
 [DllImport("user32.dll")]
 public static extern int EnumWindows(CallBack callback, int param);

 [DllImport("user32.dll")]
 public static extern int GetWindowText(IntPtr hWnd,
 StringBuilder lpString, int nMaxCount);

 static void Main(string[] args)
 {
 // Request that the operating system enumerate all windows,
 // and trigger your callback with the handle of each one.
 EnumWindows(new CallBack (DisplayWindowInfo), 0);

 // Wait to continue.
 Console.WriteLine(Environment.NewLine);
 Console.WriteLine("Main method complete. Press Enter.");
 Console.ReadLine();
 }

 // The method that will receive the callback. The second
 // parameter is not used, but is needed to match the
 // callback's signature.
 public static bool DisplayWindowInfo(IntPtr hWnd, int lParam)
 {
 int chars = 100;
 StringBuilder buf = new StringBuilder(chars);
 if (GetWindowText(hWnd, buf, chars) != 0)
 {
 Console.WriteLine(buf);
 }

CHAPTER 12 ■ UNMANAGED CODE INTEROPERABILITY

608

 return true;
 }
 }
}

12-5. Retrieve Unmanaged Error Information

Problem
You need to retrieve error information (either an error code or a text message) explaining why a Win32
API call failed.

Solution
On the declaration of the unmanaged method, set the SetLastError field of the DllImportAttribute to
true. If an error occurs when you execute the method, call the static Marshal.GetLastWin32Error
method to retrieve the error code. To get a text description for a specific error code, use the unmanaged
FormatMessage function.

How It Works
You cannot retrieve error information directly using the unmanaged GetLastError function. The
problem is that the error code returned by GetLastError might not reflect the error caused by the
unmanaged function you are using. Instead, it might be set by other .NET Framework classes or the CLR.
You can retrieve the error information safely using the static Marshal.GetLastWin32Error method. This
method should be called immediately after the unmanaged call, and it will return the error information
only once. (Subsequent calls to GetLastWin32Error will simply return the error code 127.) In addition,
you must specifically set the SetLastError field of the DllImportAttribute to true to indicate that errors
from this function should be cached, as shown here:

[DllImport("user32.dll", SetLastError=true)]

You can extract additional information from the Win32 error code using the unmanaged

FormatMessage function from the Kernel32.dll file.

The Code
The following console application attempts to show a message box, but submits an invalid window
handle. The error information is retrieved with Marshal.GetLastWin32Error, and the corresponding text
information is retrieved using FormatMessage.

CHAPTER 10 ■ UNMANAGED CODE INTEROPERABILITY

609

using System;
using System.Runtime.InteropServices;

namespace Apress.VisualCSharpRecipes.Chapter12
{
 class Recipe12_05
 {
 // Declare the unmanaged functions.
 [DllImport("kernel32.dll")]
 private static extern int FormatMessage(int dwFlags, int lpSource,
 int dwMessageId, int dwLanguageId, ref String lpBuffer, int nSize,
 int Arguments);

 [DllImport("user32.dll", SetLastError = true)]
 public static extern int MessageBox(IntPtr hWnd, string pText,
 string pCaption, int uType);

 static void Main(string[] args)
 {
 // Invoke the MessageBox function passing an invalid
 // window handle and thus force an error.
 IntPtr badWindowHandle = (IntPtr)453;
 MessageBox(badWindowHandle, "Message", "Caption", 0);

 // Obtain the error information.
 int errorCode = Marshal.GetLastWin32Error();
 Console.WriteLine(errorCode);
 Console.WriteLine(GetErrorMessage(errorCode));

 // Wait to continue.
 Console.WriteLine(Environment.NewLine);
 Console.WriteLine("Main method complete. Press Enter.");
 Console.ReadLine();
 }

 // GetErrorMessage formats and returns an error message
 // corresponding to the input errorCode.
 public static string GetErrorMessage(int errorCode)
 {
 int FORMAT_MESSAGE_ALLOCATE_BUFFER = 0x00000100;
 int FORMAT_MESSAGE_IGNORE_INSERTS = 0x00000200;
 int FORMAT_MESSAGE_FROM_SYSTEM = 0x00001000;

 int messageSize = 255;
 string lpMsgBuf = "";
 int dwFlags = FORMAT_MESSAGE_ALLOCATE_BUFFER |
 FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS;

CHAPTER 12 ■ UNMANAGED CODE INTEROPERABILITY

610

 int retVal = FormatMessage(dwFlags, 0, errorCode, 0,
 ref lpMsgBuf, messageSize, 0);

 if (0 == retVal)
 {
 return null;
 }
 else
 {
 return lpMsgBuf;
 }
 }
 }
}

Here is the output generated by the preceding program:

1400

Invalid window handle.

12-6. Use a COM Component in a .NET Client

Problem
You need to use a COM component in a .NET client.

Solution
Use a Primary Interop Assembly (PIA) supplied by the COM object publisher, if one is available.
Otherwise, generate a runtime callable wrapper (RCW) using the Type Library Importer (Tlbimp.exe) or
the Add Reference feature in Visual Studio .NET.

How It Works
Because of the continuing importance of COM objects in Windows-based software development, the
.NET Framework includes extensive support for COM interoperability. To allow .NET clients to interact
with a COM component, .NET uses an RCW—a special .NET proxy class that sits between your managed
.NET code and the unmanaged COM component. The RCW handles all the details of communicating
between .NET code and COM objects, including marshaling data types, using the traditional COM
interfaces, and handling COM events.

CHAPTER 10 ■ UNMANAGED CODE INTEROPERABILITY

611

You have the following three options for using an RCW:

• Obtain an RCW from the author of the original COM component. In this case, the
RCW is created from a PIA provided by the publisher, as Microsoft does for
Microsoft Office.

• Generate an RCW using the Tlbimp.exe command-line utility or Visual Studio
.NET.

• Create your own RCW using the types in the System.Runtime.InteropServices
namespace. (This can be an extremely tedious and complicated process.)

If you want to use Visual Studio .NET to generate an RCW, you simply need to right-click your
project in Solution Explorer and click Add Reference in the context menu, and then select the
appropriate component from the COM tab. When you click OK, the RCW will be generated and added to
your project references. After that, you can use the Object Browser to inspect the namespaces and
classes that are available.

If you are not using Visual Studio .NET, you can create a wrapper assembly using the Tlbimp.exe
command-line utility that is included with the .NET Framework. The only mandatory piece of
information is the filename that contains the COM component. For example, the following statement
creates an RCW with the default filename and namespace, assuming that the MyCOMComponent.dll file is
in the current directory.

tlbimp MyCOMComponent.dll

Assuming that MyCOMComponent has a type library named MyClasses, the generated RCW file will have
the name MyClasses.dll and will expose its classes through a namespace named MyClasses. You can also
configure these options with command-line parameters, as described in the MSDN reference. For
example, you can use /out:[Filename] to specify a different assembly file name and
/namespace:[Namespace] to set a different namespace for the generated classes. You can also specify a
key file using /keyfile[keyfilename] so that the component will be signed and given a strong name,
allowing it to be placed in the Global Assembly Cache (GAC). Use the /primary parameter to create a PIA.

If possible, you should always use a PIA instead of generating your own RCW. PIAs are more likely to
work as expected, because they are created by the original component publisher. They might also
include additional .NET refinements or enhancements. If a PIA is registered on your system for a COM
component, Visual Studio .NET will automatically use that PIA when you add a reference to the COM
component. For example, the .NET Framework includes an adodb.dll assembly that allows you to use
the ADO classic COM objects. If you add a reference to the Microsoft ActiveX Data Objects component,
this PIA will be used automatically; no new RCW will be generated. Similarly, Microsoft Office provides a
PIA that improves .NET support for Office automation. However, you must download this assembly from
the MSDN web site.

The Code
The following example shows how you can use COM Interop, in the form of the Microsoft Office PIAs, to
access Office automation functionality from a .NET Framework application. As you can see, the code is
like any other .NET code—the key is the need to add the appropriate reference to the COM wrapper,
which handles the communication between your code and the COM component. The example code also
highlights (using the Workbooks.Open method) the significant syntax simplification enabled by .NET 4.0
when calling Interop methods that contain many optional parameters—something discussed further in
recipe 12-8.

CHAPTER 12 ■ UNMANAGED CODE INTEROPERABILITY

612

using System;
using System.IO;
using System.Runtime.InteropServices;
using Excel = Microsoft.Office.Interop.Excel;

namespace Apress.VisualCSharpRecipes.Chapter12
{
 class Recipe12_06
 {
 static void Main()
 {
 string fileName =
 Path.Combine(Directory.GetCurrentDirectory(),
 "Ranges.xlsx");

 // Create an instance of Excel.
 Console.WriteLine("Creating Excel instance...");
 Console.WriteLine(Environment.NewLine);
 Excel.Application excel = new Excel.Application();

 // Open the required file in Excel.
 Console.WriteLine("Opening file: {0}", fileName);
 Console.WriteLine(Environment.NewLine);

 // Open the specified file in Excel using .NET 4.0 optional
 // and named argument capabilities.
 Excel.Workbook workbook =
 excel.Workbooks.Open(fileName, ReadOnly: true);

 /* Pre-.NET 4.0 syntax required to open Excel file:
 Excel.Workbook workbook =
 excel.Workbooks.Open(fileName, Type.Missing,
 false, Type.Missing, Type.Missing, Type.Missing,
 Type.Missing, Type.Missing, Type.Missing, Type.Missing,
 Type.Missing, Type.Missing, Type.Missing, Type.Missing,
 Type.Missing); */

 // Display the list of named ranges from the file.
 Console.WriteLine("Named ranges:");
 foreach (Excel.Name name in workbook.Names)
 {
 Console.WriteLine(" {0} ({1})",name.Name,name.Value);
 }
 Console.WriteLine(Environment.NewLine);

 // Close the workbook.
 workbook.Close();

 /* Pre-.NET 4.0 syntax required to close Excel file:
 workbook.Close(Type.Missing, Type.Missing, Type.Missing); */

CHAPTER 10 ■ UNMANAGED CODE INTEROPERABILITY

613

 // Terminate Excel instance.
 Console.WriteLine("Closing Excel instance...");
 excel.Quit();
 Marshal.ReleaseComObject(excel);
 excel = null;

 // Wait to continue.
 Console.WriteLine(Environment.NewLine);
 Console.WriteLine("Main method complete. Press Enter.");
 Console.ReadLine();
 }
 }}

12-7. Release a COM Component Quickly

Problem
You need to ensure that a COM component is removed from memory immediately, without waiting for
garbage collection to take place, or you need to make sure that COM objects are released in a specific
order.

Solution
Release the reference to the underlying COM object using the static Marshal.FinalReleaseComObject
method and passing the appropriate RCW.

How It Works
COM uses reference counting to determine when objects should be released. When you use an RCW, the
reference will be held to the underlying COM object even when the object variable goes out of scope.
The reference will be released only when the garbage collector disposes of the RCW object. As a result,
you cannot control when or in what order COM objects will be released from memory.

To get around this limitation, you usually use the Marshal.ReleaseComObject method. However, if
the COM object’s pointer is marshaled several times, you need to repeatedly call this method to decrease
the count to zero. However, the FinalReleaseComObject method allows you to release all references in
one go, by setting the reference count of the supplied RCW to zero. This means that you do not need to
loop and invoke ReleaseComObject to completely release an RCW.

For example, in the Excel example in recipe 12-6, you could release all references to the Excel
Application component using this code:

System.Runtime.InteropServices.Marshal.FinalReleaseComObject(excel);

CHAPTER 12 ■ UNMANAGED CODE INTEROPERABILITY

614

■ Note The ReleaseComObject method does not actually release the COM object; it just decrements the
reference count. If the reference count reaches zero, the COM object will be released. FinalReleaseComObject
works by setting the reference count of an RCW to zero. It thus bypasses the internal count logic and releases all
references.

12-8. Use Optional Parameters

Problem
You need to call a method in a COM component without supplying all the required parameters.

Solution
Prior to .NET 4.0, you would need to use the Type.Missing field. As of .NET 4.0, you can simply omit
unused optional parameters and use named parameters for those values you do want to provide.

How It Works
The .NET Framework is designed with a heavy use of method overloading. Many methods are
overloaded several times so that you can call the version that requires only the parameters you choose to
supply. COM, on the other hand, does not support method overloading. Instead, COM components
usually implement methods with a long list of optional parameters.

Prior to .NET 4.0, C# (unlike Visual Basic .NET) did not support optional parameters, which meant
C# developers were forced to supply numerous additional or irrelevant values when calling a method on
a COM component. And because COM parameters are often passed by reference, code could not simply
pass a null reference. Instead, it had to declare an object variable and then pass that variable. This
resulted in code that used the Type.Missing field whenever there was an unused optional parameter. In
Office automation code, it is not unusual to see method calls with 10 or 15 Type.Missing parameters with
1 or 2 real values scattered among them. The optional and named parameter features included in .NET
mean that COM Interop code becomes much cleaner and easier to understand. Instead of providing
Type.Missing references for optional parameters you do not use, you can simply ignore them. And for
those few parameters that you do need to provide, you can use named parameter syntax.

The Code
The following code snippet, taken from recipe 12-6, illustrates the improved clarity achieved using the
optional and named parameter support added in .NET 4.0. In the example, the fileName parameter is
not named as it is in the correct position (first), whereas ReadOnly would actually be the third parameter
if it were not identified by name.

CHAPTER 10 ■ UNMANAGED CODE INTEROPERABILITY

615

 // Open the specified file in Excel using .NET 4.0 optional
 // and named argument capabilities.
 Excel.Workbook workbook =
 excel.Workbooks.Open(fileName, ReadOnly: true);

 /* Pre-.NET 4.0 syntax required to open Excel file:
 Excel.Workbook workbook =
 excel.Workbooks.Open(fileName, Type.Missing,
 false, Type.Missing, Type.Missing, Type.Missing,
 Type.Missing, Type.Missing, Type.Missing, Type.Missing,
 Type.Missing, Type.Missing, Type.Missing, Type.Missing,
 Type.Missing); */
}

12-9. Use an ActiveX Control in a .NET Client

Problem
You need to place an ActiveX control on a form or a user control in a .NET Framework application.

Solution
Use an RCW exactly as you would with an ordinary COM component (see recipe 12-6). To work with the
ActiveX control at design time, add it to the Visual Studio .NET Toolbox.

How It Works
The .NET Framework includes the same support for all COM components, including ActiveX controls.
The key difference is that the RCW class for an ActiveX control derives from the special .NET Framework
type System.Windows.Forms.AxHost. You add the AxHost control to your form, and it communicates with
the ActiveX control behind the scenes. Because AxHost derives from System.Windows.Forms.Control, it
provides the standard .NET control properties, methods, and events, such as Location, Size, Anchor, and
so on. In the case of an autogenerated RCW, the AxHost classes will always begin with the letters Ax.

You can create an RCW for an ActiveX control as you would for any other COM component, as
described in recipe 12-6: use the Type Library Importer (Tlbimp.exe) command-line utility or use the
Add Reference feature in Visual Studio .NET and create the control programmatically. However, an
easier approach in Visual Studio .NET is to add the ActiveX control to the toolbox. To add a control to the
toolbox, in Visual Studio, open the Tools menu and click the Choose Toolbox Items menu option.
Choose the COM Components tab and either select an item that is already listed or click the Browse
button to locate a new control.

Nothing happens to your project when you add an ActiveX control to the toolbox. However, you can
use the Toolbox icon to add an instance of the control to your form. The first time you do this, Visual
Studio .NET will create the Interop assembly and add it to your project. For example, if you add the
Microsoft Masked Edit control, Visual Studio .NET creates an RCW assembly with a name such as
AxInterop.MSMask.dll. Here is the code you might expect to see in the hidden designer region that
creates the control instance and adds it to the form:

CHAPTER 12 ■ UNMANAGED CODE INTEROPERABILITY

616

this.axMaskEdBox1 = new AxMSMask.AxMaskEdBox();
((System.ComponentModel.ISupportInitialize)(this.axMaskEdBox1)).BeginInit();

//
// axMaskEdBox1
//
this.axMaskEdBox1.Location = new System.Drawing.Point(16, 12);
this.axMaskEdBox1.Name = "axMaskEdBox1";
this.axMaskEdBox1.OcxState = ((System.Windows.Forms.AxHost.State)
 (resources.GetObject("axMaskEdBox1.OcxState")));

this.axMaskEdBox1.Size = new System.Drawing.Size(112, 20);
this.axMaskEdBox1.TabIndex = 0;

this.Controls.Add(this.axMaskEdBox1);

Notice that the custom properties for the ActiveX control are not applied directly through property

set statements. Instead, they are restored as a group when the control sets its persisted OcxState
property. However, your code can use the control’s properties directly.

12-10. Expose a .NET Component Through COM

Problem
You need to create a .NET component that can be called by a COM client.

Solution
Create an assembly that follows certain restrictions identified in this recipe. Export a type library for this
assembly using the Type Library Exporter (Tlbexp.exe) command-line utility.

How It Works
The .NET Framework includes support for COM clients to use .NET components. When a COM client
needs to create a .NET object, the CLR creates the managed object and a COM callable wrapper (CCW)
that wraps the object. The COM client interacts with the managed object through the CCW. The runtime
creates only one CCW for a managed object, regardless of how many COM clients are using it.

Types that need to be accessed by COM clients must meet certain requirements:

• The managed type (class, interface, struct, or enum) must be public.

• If the COM client needs to create the object, it must have a public default
constructor. COM does not support parameterized constructors.

• The members of the type that are being accessed must be public instance
members. Private, protected, internal, and static members are not accessible to
COM clients.

CHAPTER 10 ■ UNMANAGED CODE INTEROPERABILITY

617

In addition, you should consider the following recommendations:

• You should not create inheritance relationships between classes, because these
relationships will not be visible to COM clients (although .NET will attempt to
simulate this by declaring a shared base class interface).

• The classes you are exposing should implement an interface. For added versioning
control, you can use the attribute System.Runtime.InteropServices.GuidAttribute
to specify the GUID that should be assigned to an interface.

• Ideally, you should give the managed assembly a strong name so that it can be
installed into the GAC and shared among multiple clients.

In order for a COM client to create the .NET object, it requires a type library (a TLB file). The type
library can be generated from an assembly using the Tlbexp.exe command-line utility. Here is an
example of the syntax you use:
tlbexp ManagedLibrary.dll

Once you generate the type library, you can reference it from the unmanaged development tool.
With Visual Basic 6, you reference the TLB file from the Project References dialog box. In Visual C++, you
can use the #import statement to import the type definitions from the type library.

C H A P T E R 13

■ ■ ■

619

Commonly Used Interfaces
and Patterns

The recipes in this chapter show you how to implement patterns you will use frequently during the
development of Microsoft .NET Framework applications. Some of these patterns are formalized using
interfaces defined in the .NET Framework class library. Others are less rigid, but still require you to take
specific approaches to their design and implementation of your types. The recipes in this chapter
describe how to do the following:

• Create custom serializable types that you can easily store to disk, send across the
network, or pass by value across application domain boundaries (recipe 13-1)

• Provide a mechanism that creates accurate and complete copies (clones) of
objects (recipe 13-2)

• Implement types that are easy to compare and sort (recipe 13-3)

• Support the enumeration of the elements contained in custom collections using a
default or custom iterator (recipes 13-4 and 13-5)

• Ensure that a type that uses unmanaged resources correctly releases those
resources when they are no longer needed (recipe 13-6)

• Display string representations of objects that vary based on format specifiers
(recipe 13-7)

• Correctly implement custom exception and event argument types, which you will
use frequently in the development of your applications (recipes 13-8 and 13-9)

• Implement the commonly used Singleton and Observer design patterns using the
built-in features of C# and the .NET Framework class library (recipes 13-10 and
13-11)

• Implement the producer/consumer pattern to coordinate multiple threads or
tasks safely (recipe 13-12)

• Defer initialization of a type until the first time it is used (recipe 13-13)

• Define a method that has optional parameters with default values (recipe 13-14).

CHAPTER 13 ■ COMMONLY USED INTERFACES AND PATTERNS

620

• Define an extension method (recipe 13-15)

• Invoke type members dynamically and without static checking (recipe 13-16)

• Create variant generic types (recipe 13-18)

13-1. Implement a Custom Serializable Type

Problem
You need to implement a custom type that is serializable, allowing you to do the following:

• Store instances of the type to persistent storage (for example, a file or a database)

• Transmit instances of the type across a network

• Pass instances of the type by value across application domain boundaries

Solution
For serialization of simple types, apply the attribute System.SerializableAttribute to the type
declaration. For types that are more complex, or to control the content and structure of the serialized
data, implement the interface System.Runtime.Serialization.ISerializable.

How It Works
Recipe 2-13 showed how to serialize and deserialize an object using the formatter classes provided with
the .NET Framework class library. However, types are not serializable by default. To implement a custom
type that is serializable, you must apply the attribute SerializableAttribute to your type declaration. As
long as all of the data fields in your type are serializable types, applying SerializableAttribute is all you
need to do to make your custom type serializable. If you are implementing a custom class that derives
from a base class, the base class must also be serializable.

■ Caution Classes that derive from a serializable type don’t inherit the attribute SerializableAttribute. To
make derived types serializable, you must explicitly declare them as serializable by applying the
SerializableAttribute attribute.

Each formatter class contains the logic necessary to serialize types decorated with
SerializableAttribute, and will correctly serialize all public, protected, and private fields. You can
exclude specific fields from serialization by applying the attribute System.NonSerializedAttribute to
those fields. As a rule, you should exclude the following fields from serialization:

CHAPTER 13 ■ COMMONLY USED INTERFACES AND PATTERNS

621

• Fields that contain unserializable data types

• Fields that contain values that might be invalid when the object is deserialized,
such as database connections, memory addresses, thread IDs, and unmanaged
resource handles

• Fields that contain sensitive or secret information, such as passwords, encryption
keys, and the personal details of people and organizations

• Fields that contain data that is easily re-creatable or retrievable from other
sources, especially if there is a lot of data

■ Note See Recipe 2-14 for an example of using a slightly different method to exclude members from serialization
when using the JSON format.

If you exclude fields from serialization, you must implement your type to compensate for the fact
that some data will not be present when an object is deserialized. Unfortunately, you cannot create or
retrieve the missing data fields in an instance constructor, because formatters do not call constructors
during the process of deserializing objects. The best approach for achieving fine-grained control of the
serialization of your custom types is to use the attributes from the System.Runtime.Serialization
namespace described in Table 13-1. These attributes allow you to identify methods of the serializable
type that the serialization process should execute before and after serialization and deserialization. Any
method annotated with one of these attributes must take a single System.Runtime.Serialization.
StreamingContext argument, which contains details about the source or intended destination of the
serialized object so that you can determine what to serialize. For example, you might be happy to
serialize secret data if it’s destined for another application domain in the same process, but not if the
data will be written to a file.

Table 13-1. Attributes to Customize the Serialization and Deserialization Processs

Attribute Description

OnSerializingAttribute Apply this attribute to a method to have it executed before the object is
serialized. This is useful if you need to modify object state before it is
serialized. For example, you may need to convert a DateTime field to UTC
time for storage.

OnSerializedAttribute Apply this attribute to a method to have it executed after the object is
serialized. This is useful in case you need to revert the object state to what
it was before the method annotated with OnSerializingAttribute was run.

OnDeserializingAttribute Apply this attribute to a method to have it executed before the object is
deserialized. This is useful if you need to modify the object state prior to
deserialization.

CHAPTER 13 ■ COMMONLY USED INTERFACES AND PATTERNS

622

Attribute Description

OnDeserializedAttribute Apply this attribute to a method to have it executed after the object is
deserialized. This is useful if you need to re-create additional object state
that depends on the data that was deserialized with the object or modify
the deserialized state before the object is used.

As types evolve, you often add new member variables to support new features. This new state causes

a problem when deserializing old objects because the new member variables are not part of the
serialized object. The.NET Framework supports the attribute System.Runtime.Serialization.
OptionalFieldAttribute. When you create a new version of a type and add data members, annotate
them with OptionalFieldAttribute, and the deserialization process will not fail if they are not present.
You can then use a method annotated with OnDeserializedAttribute (see Table 13-1) to configure the
new member variables appropriately.

For the majority of custom types, the mechanisms described will be sufficient to meet your
serialization needs. If you require more control over the serialization process, you can implement the
interface ISerializable. The formatter classes use different logic when serializing and deserializing
instances of types that implement ISerializable. To implement ISerializable correctly, you must do
the following:

• Declare that your type implements ISerializable

• Apply the attribute SerializableAttribute to your type declaration as just
described. Do not use NonSerializedAttribute, because it will have no effect.

• Implement the ISerializable.GetObjectData method (used during serialization),
which takes the argument types System.Runtime.Serialization.
SerializationInfo and System.Runtime.Serialization.StreamingContext.

• Implement a nonpublic constructor (used during deserialization) that accepts the
same arguments as the GetObjectData method. Remember that if you plan to
derive classes from your serializable class, you should make the constructor
protected.

During serialization, the formatter calls the GetObjectData method and passes it SerializationInfo
and StreamingContext references as arguments. Your type must populate the SerializationInfo object
with the data you want to serialize.

If you are creating a serializable class from a base class that also implements ISerializable, your
type’s GetObjectData method and deserialization constructor must call the equivalent method and
constructor in the parent class.

The SerializationInfo class acts as a list of field/value pairs and provides the AddValue method to
let you store a field with its value. In each call to AddValue, you must specify a name for the field/value
pair; you use this name during deserialization to retrieve the value of each field. The AddValue method
has 16 overloads that allow you to add values of different data types to the SerializationInfo object.

The StreamingContext object, as described earlier, provides information about the purpose and
destination of the serialized data, allowing you to choose which data to serialize.

When a formatter deserializes an instance of your type, it calls the deserialization constructor, again
passing a SerializationInfo and a StreamingContext reference as arguments. Your type must extract the
serialized data from the SerializationInfo object using one of the SerializationInfo.Get* methods; for
example, using GetString, GetInt32, or GetBoolean. During deserialization, the StreamingContext object

CHAPTER 13 ■ COMMONLY USED INTERFACES AND PATTERNS

623

provides information about the source of the serialized data, allowing you to mirror the logic you
implemented for serialization.

The Code
This following example demonstrates a serializable Employee class that implements the ISerializable
interface. In this example, the Employee class does not serialize the address field if the provided
StreamingContext object specifies that the destination of the serialized data is a file. The Main method
demonstrates the serialization and deserialization of an Employee object.

using System;
using System.IO;
using System.Text;
using System.Runtime.Serialization;
using System.Runtime.Serialization.Formatters.Binary;

namespace Apress.VisualCSharpRecipes.Chapter13
{
 [Serializable]
 public class Employee : ISerializable
 {
 private string name;
 private int age;
 private string address;

 // Simple Employee constructor.
 public Employee(string name, int age, string address)
 {
 this.name = name;
 this.age = age;
 this.address = address;
 }

 // Constructor required to enable a formatter to deserialize an
 // Employee object. You should declare the constructor private or at
 // least protected to ensure it is not called unnecessarily.
 private Employee(SerializationInfo info, StreamingContext context)
 {
 // Extract the name and age of the employee, which will always be
 // present in the serialized data regardless of the value of the
 // StreamingContext.
 name = info.GetString("Name");
 age = info.GetInt32("Age");

 // Attempt to extract the employee's address and fail gracefully
 // if it is not available.
 try
 {
 address = info.GetString("Address");
 }

CHAPTER 13 ■ COMMONLY USED INTERFACES AND PATTERNS

624

 catch (SerializationException)
 {
 address = null;
 }
 }

 // Public property to provide access to employee's name.
 public string Name
 {
 get { return name; }
 set { name = value; }
 }

 // Public property to provide access to employee's age.
 public int Age
 {
 get { return age; }
 set { age = value; }
 }

 // Public property to provide access to employee's address.
 // Uses lazy initialization to establish address because
 // a deserialized object will not have an address value.
 public string Address
 {
 get
 {
 if (address == null)
 {
 // Load the address from persistent storage.
 // In this case, set it to an empty string.
 address = String.Empty;
 }
 return address;
 }

 set
 {
 address = value;
 }
 }

 // Declared by the ISerializable interface, the GetObjectData method
 // provides the mechanism with which a formatter obtains the object
 // data that it should serialize.
 public void GetObjectData(SerializationInfo inf, StreamingContext con)
 {
 // Always serialize the employee's name and age.
 inf.AddValue("Name", name);
 inf.AddValue("Age", age);

CHAPTER 13 ■ COMMONLY USED INTERFACES AND PATTERNS

625

 // Don't serialize the employee's address if the StreamingContext
 // indicates that the serialized data is to be written to a file.
 if ((con.State & StreamingContextStates.File) == 0)
 {
 inf.AddValue("Address", address);
 }
 }

 // Override Object.ToString to return a string representation of the
 // Employee state.
 public override string ToString()
 {
 StringBuilder str = new StringBuilder();

 str.AppendFormat("Name: {0}\r\n", Name);
 str.AppendFormat("Age: {0}\r\n", Age);
 str.AppendFormat("Address: {0}\r\n", Address);

 return str.ToString();
 }
 }

 // A class to demonstrate the use of Employee.
 public class Recipe13_01
 {
 public static void Main(string[] args)
 {
 // Create an Employee object representing Roger.
 Employee roger = new Employee("Roger", 56, "London");

 // Display Roger.
 Console.WriteLine(roger);

 // Serialize Roger specifying another application domain as the
 // destination of the serialized data. All data including Roger's
 // address is serialized.
 Stream str = File.Create("roger.bin");
 BinaryFormatter bf = new BinaryFormatter();
 bf.Context =
 new StreamingContext(StreamingContextStates.CrossAppDomain);
 bf.Serialize(str, roger);
 str.Close();

 // Deserialize and display Roger.
 str = File.OpenRead("roger.bin");
 bf = new BinaryFormatter();
 roger = (Employee)bf.Deserialize(str);
 str.Close();
 Console.WriteLine(roger);

CHAPTER 13 ■ COMMONLY USED INTERFACES AND PATTERNS

626

 // Serialize Roger specifying a file as the destination of the
 // serialized data. In this case, Roger's address is not included
 // in the serialized data.
 str = File.Create("roger.bin");
 bf = new BinaryFormatter();
 bf.Context = new StreamingContext(StreamingContextStates.File);
 bf.Serialize(str, roger);
 str.Close();

 // Deserialize and display Roger.
 str = File.OpenRead("roger.bin");
 bf = new BinaryFormatter();
 roger = (Employee)bf.Deserialize(str);
 str.Close();
 Console.WriteLine(roger);

 // Wait to continue.
 Console.WriteLine(Environment.NewLine);
 Console.WriteLine("Main method complete. Press Enter");
 Console.ReadLine();
 }
 }
}

13-2. Implement a Cloneable Type

Problem
You need to create a custom type that provides a simple mechanism for programmers to create copies of
type instances.

Solution
Implement the System.ICloneable interface.

How It Works
When you assign one value type to another, you create a copy of the value. No link exists between the
two values—a change to one will not affect the other. However, when you assign one reference type to
another (excluding strings, which receive special treatment by the runtime), you do not create a new
copy of the reference type. Instead, both reference types refer to the same object, and changes to the
value of the object are reflected in both references. To create a true copy of a reference type, you must
clone the object to which it refers.

The ICloneable interface identifies a type as cloneable and declares the Clone method as the
mechanism through which you obtain a clone of an object. The Clone method takes no arguments, and

CHAPTER 13 ■ COMMONLY USED INTERFACES AND PATTERNS

627

returns a System.Object, regardless of the implementing type. This means that once you clone an object,
you must explicitly cast the clone to the correct type.

The approach you take to implement the Clone method for a custom type depends on the data
members declared within the type. If the custom type contains only value-type data members (int, byte,
and so on) and System.String data members, you can implement the Clone method by instantiating a
new object and setting its data members to the same values as the current object. The Object class (from
which all types derive) includes the protected method MemberwiseClone, which automates this process.

If your custom type contains reference-type data members, you must decide whether your Clone
method will perform a shallow copy or a deep copy. A shallow copy means that any reference-type data
members in the clone will refer to the same objects as the equivalent reference-type data members in
the original object. A deep copy means that you must create clones of the entire object graph so that the
reference-type data members of the clone refer to physically independent copies (clones) of the objects
referenced by the original object.

A shallow copy is easy to implement using the MemberwiseClone method just described. However, a
deep copy is often what programmers expect when they first clone an object, but it’s rarely what they
get. This is especially true of the collection classes in the System.Collections namespace, which all
implement shallow copies in their Clone methods. Although it would often be useful if these collections
implemented a deep copy, there are two key reasons why types (especially generic collection classes) do
not implement deep copies:

• Creating a clone of a large object graph is processor-intensive and memory-
intensive.

• General-purpose collections can contain wide and deep object graphs consisting
of any type of object. Creating a deep-copy implementation to cater to such
variety is not feasible because some objects in the collection might not be
cloneable, and others might contain circular references, which would send the
cloning process into an infinite loop.

For strongly typed collections in which the nature of the contained elements are understood and
controlled, a deep copy can be a very useful feature; for example, System.Xml.XmlNode implements a
deep copy in its Clone method. This allows you to create true copies of entire XML object hierarchies
with a single statement.

■ Tip If you need to clone an object that does not implement ICloneable but is serializable, you can often
serialize and then deserialize the object to achieve the same result as cloning. However, be aware that the
serialization process might not serialize all data members (as discussed in recipe 13-1). Likewise, if you create a
custom serializable type, you can potentially use the serialization process just described to perform a deep copy
within your ICloneable.Clone method implementation. To clone a serializable object, use the class
System.Runtime.Serialization.Formatters.Binary.BinaryFormatter to serialize the object to, and then
deserialize the object from a System.IO.MemoryStream object.

CHAPTER 13 ■ COMMONLY USED INTERFACES AND PATTERNS

628

The Code
The following example demonstrates various approaches to cloning. The simple class Employee contains
only string and int members, and so relies on the inherited MemberwiseClone method to create a clone.
The Team class contains an implementation of the Clone method that performs a deep copy. The Team
class contains a collection of Employee objects, representing a team of people. When you call the Clone
method of a Team object, the method creates a clone of every contained Employee object and adds it to
the cloned Team object. The Team class provides a private constructor to simplify the code in the Clone
method. The use of constructors is a common approach to simplifying the cloning process.

using System;
using System.Text;
using System.Collections.Generic;

namespace Apress.VisualCSharpRecipes.Chapter13
{
 public class Employee : ICloneable
 {
 public string Name;
 public string Title;
 public int Age;

 // Simple Employee constructor.
 public Employee(string name, string title, int age)
 {
 Name = name;
 Title = title;
 Age = age;
 }

 // Create a clone using the Object.MemberwiseClone method because the
 // Employee class contains only string and value types.
 public object Clone()
 {
 return MemberwiseClone();
 }

 // Returns a string representation of the Employee object.
 public override string ToString()
 {
 return string.Format("{0} ({1}) - Age {2}", Name, Title, Age);
 }
 }

 public class Team : ICloneable
 {
 // A List to hold the Employee team members.
 public List<Employee> TeamMembers =
 new List<Employee>();

CHAPTER 13 ■ COMMONLY USED INTERFACES AND PATTERNS

629

 public Team()
 {
 }

 // Private constructor called by the Clone method to create a new Team
 // object and populate its List with clones of Employee objects from
 // a provided List.
 private Team(List<Employee> members)
 {
 foreach (Employee e in members)
 {
 // Clone the individual employee objects and
 // add them to the List.
 TeamMembers.Add((Employee)e.Clone());
 }
 }

 // Adds an Employee object to the Team.
 public void AddMember(Employee member)
 {
 TeamMembers.Add(member);
 }

 // Override Object.ToString to return a string representation of the
 // entire Team.
 public override string ToString()
 {
 StringBuilder str = new StringBuilder();

 foreach (Employee e in TeamMembers)
 {
 str.AppendFormat(" {0}\r\n", e);
 }

 return str.ToString();
 }

 // Implementation of ICloneable.Clone.
 public object Clone()
 {
 // Create a deep copy of the team by calling the private Team
 // constructor and passing the ArrayList containing team members.
 return new Team(this.TeamMembers);

 // The following command would create a shallow copy of the Team.
 // return MemberwiseClone();
 }
 }

CHAPTER 13 ■ COMMONLY USED INTERFACES AND PATTERNS

630

 // A class to demonstrate the use of Employee.
 public class Recipe13_02
 {
 public static void Main()
 {
 // Create the original team.
 Team team = new Team();
 team.AddMember(new Employee("Frank", "Developer", 34));
 team.AddMember(new Employee("Kathy", "Tester", 78));
 team.AddMember(new Employee("Chris", "Support", 18));

 // Clone the original team.
 Team clone = (Team)team.Clone();

 // Display the original team.
 Console.WriteLine("Original Team:");
 Console.WriteLine(team);

 // Display the cloned team.
 Console.WriteLine("Clone Team:");
 Console.WriteLine(clone);

 // Make change.
 Console.WriteLine("*** Make a change to original team ***");
 Console.WriteLine(Environment.NewLine);
 team.TeamMembers[0].Name = "Luke";
 team.TeamMembers[0].Title = "Manager";
 team.TeamMembers[0].Age = 44;

 // Display the original team.
 Console.WriteLine("Original Team:");
 Console.WriteLine(team);

 // Display the cloned team.
 Console.WriteLine("Clone Team:");
 Console.WriteLine(clone);

 // Wait to continue.
 Console.WriteLine(Environment.NewLine);
 Console.WriteLine("Main method complete. Press Enter");
 Console.ReadLine();
 }
 }
}

CHAPTER 13 ■ COMMONLY USED INTERFACES AND PATTERNS

631

13-3. Implement a Comparable Type

Problem
You need to provide a mechanism that allows you to compare custom types, enabling you to easily sort
collections containing instances of those types.

Solution
To provide a standard comparison mechanism for a type, implement the generic System.IComparable<T>
interface. To support the comparison of a type based on more than one characteristic, create separate
types that implement the generic System.Collections.Generic.IComparer<T> interface.

How It Works
If you need to sort your type into only a single order, such as ascending ID number, or alphabetically
based on surname, you should implement the IComparable<T> interface. IComparable<T> defines a single
method named CompareTo, shown here:

int CompareTo(T other);

The value returned by CompareTo should be calculated as follows:

• If the current object is less than other, return less than zero (for example,-1).

• If the current object has the same value as other, return zero.

• If the current object is greater than other, return greater than zero (for example, 1).

What these comparisons mean depends on the type implementing the IComparable interface. For
example, if you were sorting people based on their surname, you would do a String comparison on this
field. However, if you wanted to sort by birthday, you would need to perform a comparison of the
corresponding System.DateTime fields.

To support a variety of sort orders for a particular type, you must implement separate helper types
that implement the IComparer<T> interface, which defines the Compare method shown here:
int Compare(T x, T y);

These helper types must encapsulate the necessary logic to compare two objects and return a value
based on the following logic:

• If x is less than y, return less than zero (for example, -1).

• If x has the same value as y, return zero.

• If x is greater than y, return greater than zero (for example, 1).

CHAPTER 13 ■ COMMONLY USED INTERFACES AND PATTERNS

632

The Code
The Newspaper class listed here demonstrates the implementation of both the IComparable and IComparer
interfaces. The Newspaper.CompareTo method performs a case-insensitive comparison of two Newspaper
objects based on their name fields. A private nested class named AscendingCirculationComparer
implements IComparer and compares two Newspaper objects based on their circulation fields. An
AscendingCirculationComparer object is obtained using the static Newspaper.CirculationSorter
property.

The Main method shown here demonstrates the comparison and sorting capabilities provided by
implementing the IComparable and IComparer interfaces. The method creates a System.Collections.
ArrayList collection containing five Newspaper objects. Main then sorts the ArrayList twice using the
ArrayList.Sort method. The first Sort operation uses the default Newspaper comparison mechanism
provided by the IComparable.CompareTo method. The second Sort operation uses an
AscendingCirculationComparer object to perform comparisons through its implementation
of the IComparer.Compare method.

using System;
using System.Collections.Generic;

namespace Apress.VisualCSharpRecipes.Chapter13
{
 public class Newspaper : IComparable<Newspaper>
 {
 private string name;
 private int circulation;

 private class AscendingCirculationComparer : IComparer<Newspaper>
 {
 // Implementation of IComparer.Compare. The generic definition of
 // IComparer allows us to ensure both arguments are Newspaper
 // objects.
 public int Compare(Newspaper x, Newspaper y)
 {
 // Handle logic for null reference as dictated by the
 // IComparer interface. Null is considered less than
 // any other value.
 if (x == null && y == null) return 0;
 else if (x == null) return -1;
 else if (y == null) return 1;

 // Short-circuit condition where x and y are references
 // to the same object.
 if (x == y) return 0;

 // Compare the circulation figures. IComparer dictates that:
 // return less than zero if x < y
 // return zero if x = y
 // return greater than zero if x > y

CHAPTER 13 ■ COMMONLY USED INTERFACES AND PATTERNS

633

 // This logic is easily implemented using integer arithmetic.
 return x.circulation - y.circulation;
 }
 }

 // Simple Newspaper constructor.
 public Newspaper(string name, int circulation)
 {
 this.name = name;
 this.circulation = circulation;
 }

 // Declare a read-only property that returns an instance of the
 // AscendingCirculationComparer.
 public static IComparer<Newspaper> CirculationSorter
 {
 get { return new AscendingCirculationComparer(); }
 }

 // Override Object.ToString.
 public override string ToString()
 {
 return string.Format("{0}: Circulation = {1}", name, circulation);
 }

 // Implementation of IComparable.CompareTo. The generic definition
 // of IComparable allows us to ensure that the argument provided
 // must be a Newspaper object. Comparison is based on a
 // case-insensitive comparison of the Newspaper names.
 public int CompareTo(Newspaper other)
 {
 // IComparable dictates that an object is always considered greater
 // than null.
 if (other == null) return 1;

 // Short-circuit the case where the other Newspaper object is a
 // reference to this one.
 if (other == this) return 0;

 // Calculate return value by performing a case-insensitive
 // comparison of the Newspaper names.

 // Because the Newspaper name is a string, the easiest approach
 // is to rely on the comparison capabilities of the String
 // class, which perform culture-sensitive string comparisons.
 return string.Compare(this.name, other.name, true);
 }
 }

CHAPTER 13 ■ COMMONLY USED INTERFACES AND PATTERNS

634

 // A class to demonstrate the use of Newspaper.
 public class Recipe13_03
 {
 public static void Main()
 {
 List<Newspaper> newspapers = new List<Newspaper>();

 newspapers.Add(new Newspaper("The Echo", 125780));
 newspapers.Add(new Newspaper("The Times", 55230));
 newspapers.Add(new Newspaper("The Gazette", 235950));
 newspapers.Add(new Newspaper("The Sun", 88760));
 newspapers.Add(new Newspaper("The Herald", 5670));

 Console.Clear();
 Console.WriteLine("Unsorted newspaper list:");
 foreach (Newspaper n in newspapers)
 {
 Console.WriteLine(" " + n);
 }

 Console.WriteLine(Environment.NewLine);
 Console.WriteLine("Newspaper list sorted by name (default order):");
 newspapers.Sort();
 foreach (Newspaper n in newspapers)
 {
 Console.WriteLine(" " + n);
 }

 Console.WriteLine(Environment.NewLine);
 Console.WriteLine("Newspaper list sorted by circulation:");
 newspapers.Sort(Newspaper.CirculationSorter);
 foreach (Newspaper n in newspapers)
 {
 Console.WriteLine(" " + n);
 }

 // Wait to continue.
 Console.WriteLine(Environment.NewLine);
 Console.WriteLine("Main method complete. Press Enter");
 Console.ReadLine();
 }
 }
}

Usage
Running the example will produce the results shown here. The first list of newspapers is unsorted, the
second is sorted using the IComparable interface, and the third is sorted using a comparer class that
implements IComparer.

CHAPTER 13 ■ COMMONLY USED INTERFACES AND PATTERNS

635

Unsorted newspaper list:

 The Echo: Circulation = 125780

 The Times: Circulation = 55230

 The Gazette: Circulation = 235950

 The Sun: Circulation = 88760

 The Herald: Circulation = 5670

Newspaper list sorted by name (default order):

 The Echo: Circulation = 125780

 The Gazette: Circulation = 235950

 The Herald: Circulation = 5670

 The Sun: Circulation = 88760

 The Times: Circulation = 55230

Newspaper list sorted by circulation:

 The Herald: Circulation = 5670

 The Times: Circulation = 55230

 The Sun: Circulation = 88760

 The Echo: Circulation = 125780

 The Gazette: Circulation = 235950

CHAPTER 13 ■ COMMONLY USED INTERFACES AND PATTERNS

636

13-4. Implement an Enumerable Collection

Problem
You need to create a collection type whose contents you can enumerate using a foreach statement.

Solution
Implement the generic interface System.Collections.Generic.IEnumerable<T> on your collection type.
The GetEnumerator method of the IEnumerable interface returns an enumerator, which is an object that
implements the interface System.Collections.Generic.IEnumerator<T>. Within the GetEnumerator
method, traverse the items in the collection using whatever logic is appropriate to your data structure
and return the next value using the yield return statement. The C# compiler will automatically generate
the necessary code to enable enumeration across the contents of your type.

How It Works
A numeric indexer allows you to iterate through the elements of most standard collections using a for
loop. However, this technique does not always provide an appropriate abstraction for nonlinear data
structures, such as trees and multidimensional collections. The foreach statement provides an easy-to-
use and syntactically elegant mechanism for iterating through a collection of objects, regardless of their
internal structures.

In order to support foreach semantics, the type containing the collection of objects should
implement the IEnumerable<T> interface. The IEnumerable<T> interface declares a single method named
GetEnumerator, which takes no arguments and returns an object that implements IEnumerator<T>. All
you need to do in your GetEnumerator method is write the code necessary to iterate through the items in
your collection using logic appropriate to the data structure. Each time you want to return an item, call
the yield return statement and specify the value to return. The compiler generates code that returns
the specified value and maintains appropriate state for the next time a value is requested. If you need to
stop partway through the enumeration, call the yield break statement instead, and the enumeration
will terminate as if it had reached the end of the collection.

■ Tip You do not actually need to explicitly implement IEnumerable on your type to make it enumerable. As long
as it has a GetEnumerator method that returns an IEnumerator instance, the compiler will allow you to use the
type in a foreach statement. However, it is always good practice to explicitly declare the capabilities of a type by
declaring the interfaces it implements, as it allows users of your class to more easily understand its capabilities
and purpose.

The GetEnumerator method is used automatically whenever you use an instance of your collection
type in a foreach statement. However, if you want to provide multiple ways to enumerate the items in
your collection, you can implement multiple methods or properties that are declared to return

CHAPTER 13 ■ COMMONLY USED INTERFACES AND PATTERNS

637

IEnumerable<T> instances. Within the body of the member, use the yield return statement just
mentioned, and the C# compiler will generate the appropriate code automatically. To use one of the
alternative enumerations from a foreach statement, you must directly reference the appropriate
member, as in this example:

foreach (node n in Tree.BreadthFirst)

The Code
The following example demonstrates the creation of an enumerable collection using the IEnumerable<T>
and IEnumerator<T> interfaces in conjunction with the yield return and yield break statements. The
Team class, which represents a team of people, is a collection of enumerable TeamMember objects.

using System;
using System.Collections.Generic;

namespace Apress.VisualCSharpRecipes.Chapter13
{
 // The TeamMember class represents an individual team member.
 public class TeamMember
 {
 public string Name;
 public string Title;

 // Simple TeamMember constructor.
 public TeamMember(string name, string title)
 {
 Name = name;
 Title = title;
 }

 // Returns a string representation of the TeamMember.
 public override string ToString()
 {
 return string.Format("{0} ({1})", Name, Title);
 }
 }

 // Team class represents a collection of TeamMember objects.
 public class Team
 {
 // A List to contain the TeamMember objects.
 private List<TeamMember> teamMembers = new List<TeamMember>();

CHAPTER 13 ■ COMMONLY USED INTERFACES AND PATTERNS

638

 // Implement the GetEnumerator method, which will support
 // iteration across the entire team member List.
 public IEnumerator<TeamMember> GetEnumerator()
 {
 foreach (TeamMember tm in teamMembers)
 {
 yield return tm;
 }
 }

 // Implement the Reverse method, which will iterate through
 // the team members in alphabetical order.
 public IEnumerable<TeamMember> Reverse
 {
 get
 {
 for (int c = teamMembers.Count - 1; c >= 0; c--)
 {
 yield return teamMembers[c];
 }
 }
 }

 // Implement the FirstTwo method, which will stop the iteration
 // after only the first two team members.
 public IEnumerable<TeamMember> FirstTwo
 {
 get
 {
 int count = 0;

 foreach (TeamMember tm in teamMembers)
 {
 if (count >= 2)
 {
 // Terminate the iterator.
 yield break;
 }
 else
 {
 // Return the TeamMember and maintain the iterator.
 count++;
 yield return tm;
 }
 }
 }
 }

CHAPTER 13 ■ COMMONLY USED INTERFACES AND PATTERNS

639

 // Adds a TeamMember object to the Team.
 public void AddMember(TeamMember member)
 {
 teamMembers.Add(member);
 }
 }

 // A class to demonstrate the use of Team.
 public class Recipe13_04
 {
 public static void Main()
 {
 // Create and populate a new Team.
 Team team = new Team();
 team.AddMember(new TeamMember("Curly", "Clown"));
 team.AddMember(new TeamMember("Nick", "Knife Thrower"));
 team.AddMember(new TeamMember("Nancy", "Strong Man"));

 // Enumerate the entire Team using the default iterator.
 Console.Clear();
 Console.WriteLine("Enumerate using default iterator:");
 foreach (TeamMember member in team)
 {
 Console.WriteLine(" " + member.ToString());
 }

 // Enumerate the first two Team members only.
 Console.WriteLine(Environment.NewLine);
 Console.WriteLine("Enumerate using the FirstTwo iterator:");
 foreach (TeamMember member in team.FirstTwo)
 {
 Console.WriteLine(" " + member.ToString());
 }

 // Enumerate the entire Team in reverse order.
 Console.WriteLine(Environment.NewLine);
 Console.WriteLine("Enumerate using the Reverse iterator:");
 foreach (TeamMember member in team.Reverse)
 {
 Console.WriteLine(" " + member.ToString());
 }

 // Wait to continue.
 Console.WriteLine(Environment.NewLine);
 Console.WriteLine("Main method complete. Press Enter");
 Console.ReadLine();
 }
 }
}

CHAPTER 13 ■ COMMONLY USED INTERFACES AND PATTERNS

640

13-5. Implement an Enumerable Type Using a Custom
Iterator

Problem
You need to create an enumerable type but do not want to rely on the built-in iterator support provided
by the .NET Framework (described in recipe 13-4).

Solution
Implement the interface System.Collections.IEnumerable on your collection type. The GetEnumerator
method of the IEnumerable interface returns an enumerator, which is an object that implements the
interface System.Collections.IEnumerator. The IEnumerator interface defines the methods used by the
foreach statement to enumerate the collection.

Implement a private inner class within the enumerable type that implements the interface
IEnumerator and can iterate over the enumerable type while maintaining appropriate state information.
In the GetEnumerator method of the enumerable type, create and return an instance of the iterator class.

How It Works
The automatic iterator support built into C# is very powerful and will be sufficient in the majority of
cases. However, in some cases you may want to take direct control of the implementation of your
collection’s iterators. For example, you may want an iterator that supports changes to the underlying
collection during enumeration.

Whatever your reason, the basic model of an enumerable collection is the same as that described in
recipe 13-4. Your enumerable type should implement the IEnumerable interface, which requires you to
implement a method named GetEnumerator. However, instead of using the yield return statement in
GetEnumerator, you must instantiate and return an object that implements the IEnumerator interface.
The IEnumerator interface provides a read-only, forward-only cursor for accessing the members of the
underlying collection. Table 13-2 describes the members of the IEnumerator interface. The IEnumerator
instance returned by GetEnumerator is your custom iterator—the object that actually supports
enumeration of the collection’s data elements.

CHAPTER 13 ■ COMMONLY USED INTERFACES AND PATTERNS

641

Table 13-2. Members of the IEnumerator Interface

Member Description

Current Property that returns the current data element. When the enumerator is created, Current
refers to a position preceding the first data element. This means you must call MoveNext
before using Current. If Current is called and the enumerator is positioned before the first
element or after the last element in the data collection, Current must throw a
System.InvalidOperationException.

MoveNext Method that moves the enumerator to the next data element in the collection. Returns true if
there are more elements; otherwise, it returns false. If the underlying source of data changes
during the life of the enumerator, MoveNext must throw an InvalidOperationException.

Reset Method that moves the enumerator to a position preceding the first element in the data
collection. If the underlying source of data changes during the life of the enumerator, Reset
must throw an InvalidOperationException.

If your collection class contains different types of data that you want to enumerate separately,

implementing the IEnumerable interface on the collection class is insufficient. In this case, you would
implement a number of properties that return different IEnumerator instances.

The Code
The TeamMember, Team, and TeamMemberEnumerator classes in the following example demonstrate the
implementation of a custom iterator using the IEnumerable and IEnumerator interfaces. The TeamMember
class represents a member of a team. The Team class, which represents a team of people, is a collection of
TeamMember objects. Team implements the IEnumerable interface and declares a separate class, named
TeamMemberEnumerator, to provide enumeration functionality. Team implements the Observer pattern
using delegate and event members to notify all TeamMemberEnumerator objects if their underlying Team
changes. (See recipe 13-11 for a detailed description of the Observer pattern.) The TeamMemberEnumerator
class is a private nested class, so you cannot create instances of it other than through the
Team.GetEnumerator method.

using System;
using System.Collections;

namespace Apress.VisualCSharpRecipes.Chapter13
{
 // TeamMember class represents an individual team member.
 public class TeamMember
 {
 public string Name;
 public string Title;

CHAPTER 13 ■ COMMONLY USED INTERFACES AND PATTERNS

642

 // Simple TeamMember constructor.
 public TeamMember(string name, string title)
 {
 Name = name;
 Title = title;
 }

 // Returns a string representation of the TeamMember.
 public override string ToString()
 {
 return string.Format("{0} ({1})", Name, Title);
 }
 }

 // Team class represents a collection of TeamMember objects. Implements
 // the IEnumerable interface to support enumerating TeamMember objects.
 public class Team : IEnumerable
 {
 // TeamMemberEnumerator is a private nested class that provides
 // the functionality to enumerate the TeamMembers contained in
 // a Team collection. As a nested class, TeamMemberEnumerator
 // has access to the private members of the Team class.
 private class TeamMemberEnumerator : IEnumerator
 {
 // The Team that this object is enumerating.
 private Team sourceTeam;

 // Boolean to indicate whether underlying Team has changed
 // and so is invalid for further enumeration.
 private bool teamInvalid = false;

 // Integer to identify the current TeamMember. Provides
 // the index of the TeamMember in the underlying ArrayList
 // used by the Team collection. Initialize to -1, which is
 // the index prior to the first element.
 private int currentMember = -1;

 // Constructor takes a reference to the Team that is the source
 // of enumerated data.
 internal TeamMemberEnumerator(Team team)
 {
 this.sourceTeam = team;

 // Register with sourceTeam for change notifications.
 sourceTeam.TeamChange +=
 new TeamChangedEventHandler(this.TeamChange);
 }

CHAPTER 13 ■ COMMONLY USED INTERFACES AND PATTERNS

643

 // Implement the IEnumerator.Current property.
 public object Current
 {
 get
 {
 // If the TeamMemberEnumerator is positioned before
 // the first element or after the last element, then
 // throw an exception.
 if (currentMember == -1 ||
 currentMember > (sourceTeam.teamMembers.Count - 1))
 {
 throw new InvalidOperationException();
 }

 //Otherwise, return the current TeamMember.
 return sourceTeam.teamMembers[currentMember];
 }
 }

 // Implement the IEnumerator.MoveNext method.
 public bool MoveNext()
 {
 // If underlying Team is invalid, throw exception.
 if (teamInvalid)
 {
 throw new InvalidOperationException("Team modified");
 }

 // Otherwise, progress to the next TeamMember.
 currentMember++;

 // Return false if we have moved past the last TeamMember.
 if (currentMember > (sourceTeam.teamMembers.Count - 1))
 {
 return false;
 }
 else
 {
 return true;
 }
 }

 // Implement the IEnumerator.Reset method.
 // This method resets the position of the TeamMemberEnumerator
 // to the beginning of the TeamMembers collection.
 public void Reset()
 {

CHAPTER 13 ■ COMMONLY USED INTERFACES AND PATTERNS

644

 // If underlying Team is invalid, throw exception.
 if (teamInvalid)
 {
 throw new InvalidOperationException("Team modified");
 }

 // Move the currentMember pointer back to the index
 // preceding the first element.
 currentMember = -1;
 }

 // An event handler to handle notifications that the underlying
 // Team collection has changed.
 internal void TeamChange(Team t, EventArgs e)
 {
 // Signal that the underlying Team is now invalid.
 teamInvalid = true;
 }
 }

 // A delegate that specifies the signature that all team change event
 // handler methods must implement.
 public delegate void TeamChangedEventHandler(Team t, EventArgs e);

 // An ArrayList to contain the TeamMember objects.
 private ArrayList teamMembers;

 // The event used to notify TeamMemberEnumerators that the Team
 // has changed.
 public event TeamChangedEventHandler TeamChange;

 // Team constructor.
 public Team()
 {
 teamMembers = new ArrayList();
 }

 // Implement the IEnumerable.GetEnumerator method.
 public IEnumerator GetEnumerator()
 {
 return new TeamMemberEnumerator(this);
 }

 // Adds a TeamMember object to the Team.
 public void AddMember(TeamMember member)
 {
 teamMembers.Add(member);

CHAPTER 13 ■ COMMONLY USED INTERFACES AND PATTERNS

645

 // Notify listeners that the list has changed.
 if (TeamChange != null)
 {
 TeamChange(this, null);
 }
 }
 }

 // A class to demonstrate the use of Team.
 public class Recipe13_05
 {
 public static void Main()
 {
 // Create a new Team.
 Team team = new Team();
 team.AddMember(new TeamMember("Curly", "Clown"));
 team.AddMember(new TeamMember("Nick", "Knife Thrower"));
 team.AddMember(new TeamMember("Nancy", "Strong Man"));

 // Enumerate the Team.
 Console.Clear();
 Console.WriteLine("Enumerate with foreach loop:");
 foreach (TeamMember member in team)
 {
 Console.WriteLine(member.ToString());
 }

 // Enumerate using a While loop.
 Console.WriteLine(Environment.NewLine);
 Console.WriteLine("Enumerate with while loop:");
 IEnumerator e = team.GetEnumerator();
 while (e.MoveNext())
 {
 Console.WriteLine(e.Current);
 }

 // Enumerate the Team and try to add a Team Member.
 // (This will cause an exception to be thrown.)
 Console.WriteLine(Environment.NewLine);
 Console.WriteLine("Modify while enumerating:");
 foreach (TeamMember member in team)
 {
 Console.WriteLine(member.ToString());
 team.AddMember(new TeamMember("Stumpy", "Lion Tamer"));
 }

CHAPTER 13 ■ COMMONLY USED INTERFACES AND PATTERNS

646

 // Wait to continue.
 Console.WriteLine(Environment.NewLine);
 Console.WriteLine("Main method complete. Press Enter");
 Console.ReadLine();
 }
 }
}

The example enumerates through the data with foreach and while loops and then attempts to
modify the data during an enumeration, resulting in an exception. The output from the example is as
follows:

Enumerate with foreach loop:

Curly (Clown)

Nick (Knife Thrower)

Nancy (Strong Man)

Enumerate with while loop:

Curly (Clown)

Nick (Knife Thrower)

Nancy (Strong Man)

Modify while enumerating:

Curly (Clown)

CHAPTER 13 ■ COMMONLY USED INTERFACES AND PATTERNS

647

Unhandled Exception: System.InvalidOperationException: Team modified

 at Apress.VisualCSharpRecipes.Chapter13.Team.TeamMemberEnumerator.MoveNext() in

C:\Users\Adam\Documents\Work\C# Cookbook\Repository\CSHARPRECIPES\SourceCode

 \Chapter13\Recipe13-05\Recipe13-05.cs:line 85

 at Apress.VisualCSharpRecipes.Chapter13.Recipe13_05.Main() in C:\Users\Adam\

 Documents\Work\C# Cookbook\Repository\CSH

ARPRECIPES\SourceCode\Chapter13\Recipe13-05\Recipe13-05.cs:line 195

Press any key to continue . . .

13-6. Implement a Disposable Class

Problem
You need to create a class that references unmanaged resources and provide a mechanism for users of
the class to free those unmanaged resources deterministically.

Solution
Implement the System.IDisposable interface and release the unmanaged resources when client code
calls the IDisposable.Dispose method.

How It Works
An unreferenced object continues to exist on the managed heap and consume resources until the
garbage collector releases the object and reclaims the resources. The garbage collector will automatically
free managed resources (such as memory), but it will not free unmanaged resources (such as file handles
and database connections) referenced by managed objects. If an object contains data members that
reference unmanaged resources, the object must free those resources explicitly.

One solution is to declare a destructor—or finalizer—for the class (destructor is a C++ term
equivalent to the more general .NET term finalizer). Prior to reclaiming the memory consumed by an
instance of the class, the garbage collector calls the object’s finalizer. The finalizer can take the necessary
steps to release any unmanaged resources. Unfortunately, because the garbage collector uses a single
thread to execute all finalizers, use of finalizers can have a detrimental effect on the efficiency of the
garbage collection process, which will affect the performance of your application. In addition, you
cannot control when the runtime frees unmanaged resources because you cannot call an object’s
finalizer directly, and you have only limited control over the activities of the garbage collector using the
System.GC class.

CHAPTER 13 ■ COMMONLY USED INTERFACES AND PATTERNS

648

As a complementary mechanism to using finalizers, the .NET Framework defines the Dispose
pattern as a means to provide deterministic control over when to free unmanaged resources. To
implement the Dispose pattern, a class must implement the IDisposable interface, which declares a
single method named Dispose. In the Dispose method, you must implement the code necessary to
release any unmanaged resources and remove the object from the list of objects eligible for finalization if
a finalizer has been defined.

Instances of classes that implement the Dispose pattern are called disposable objects. When code
has finished with a disposable object, it calls the object’s Dispose method to free all resources and make
it unusable, but still relies on the garbage collector to eventually release the object memory. It’s
important to understand that the runtime does not enforce disposal of objects; it’s the responsibility of
the client to call the Dispose method. However, because the .NET Framework class library uses the
Dispose pattern extensively, C# provides the using statement to simplify the correct use of disposable
objects. The following code shows the structure of a using statement:

using (FileStream fileStream = new FileStream("SomeFile.txt", FileMode.Open)) {
 // Do something with the fileStream object.
}

When the code reaches the end of the block in which the disposable object was declared, the
object’s Dispose method is automatically called, even if an exception is raised. Here are some points to
consider when implementing the Dispose pattern:

• Client code should be able to call the Dispose method repeatedly with no adverse
effects.

• In multithreaded applications, it’s important that only one thread execute the
Dispose method at a time. It’s normally the responsibility of the client code to
ensure thread synchronization, although you could decide to implement
synchronization within the Dispose method.

• The Dispose method should not throw exceptions.

• Because the Dispose method does all necessary cleaning up, you do not need to
call the object’s finalizer. Your Dispose method should call the
GC.SuppressFinalize method to ensure that the finalizer is not called during
garbage collection.

• Implement a finalizer that calls the unmanaged cleanup part of your Dispose
method as a safety mechanism in case client code does not call Dispose correctly.
However, avoid referencing managed objects in finalizers, because you cannot be
certain of the object’s state.

• If a disposable class extends another disposable class, the Dispose method of the
child must call the Dispose method of its base class. Wrap the child’s code in a try
block and call the parent’s Dispose method in a finally clause to ensure
execution.

• Other instance methods and properties of the class should throw a
System.ObjectDisposedException exception if client code attempts to execute a
method on an already disposed object.

CHAPTER 13 ■ COMMONLY USED INTERFACES AND PATTERNS

649

The Code
The following example demonstrates a common implementation of the Dispose pattern.
using System;

namespace Apress.VisualCSharpRecipes.Chapter13
{
 // Implement the IDisposable interface.
 public class DisposeExample : IDisposable
 {
 // Private data member to signal if the object has already been
 // disposed.
 bool isDisposed = false;

 // Private data member that holds the handle to an unmanaged resource.
 private IntPtr resourceHandle;

 // Constructor.
 public DisposeExample()
 {
 // Constructor code obtains reference to unmanaged resource.
 resourceHandle = default(IntPtr);
 }

 // Destructor/finalizer. Because Dispose calls GC.SuppressFinalize,
 // this method is called by the garbage collection process only if
 // the consumer of the object does not call Dispose as it should.
 ~DisposeExample()
 {
 // Call the Dispose method as opposed to duplicating the code to
 // clean up any unmanaged resources. Use the protected Dispose
 // overload and pass a value of "false" to indicate that Dispose is
 // being called during the garbage collection process, not by
 // consumer code.
 Dispose(false);
 }

 // Public implementation of the IDisposable.Dispose method, called
 // by the consumer of the object in order to free unmanaged resources
 // deterministically.
 public void Dispose()
 {
 // Call the protected Dispose overload and pass a value of "true"
 // to indicate that Dispose is being called by consumer code, not
 // by the garbage collector.
 Dispose(true);

 // Because the Dispose method performs all necessary cleanup,
 // ensure the garbage collector does not call the class destructor.
 GC.SuppressFinalize(this);
 }

CHAPTER 13 ■ COMMONLY USED INTERFACES AND PATTERNS

650

 // Protected overload of the Dispose method. The disposing argument
 // signals whether the method is called by consumer code (true), or by
 // the garbage collector (false). Note that this method is not part of
 // the IDisposable interface because it has a different signature to the
 // parameterless Dispose method.
 protected virtual void Dispose(bool disposing)
 {
 // Don't try to dispose of the object twice.
 if (!isDisposed)
 {
 // Determine if consumer code or the garbage collector is
 // calling. Avoid referencing other managed objects during
 // finalization.
 if (disposing)
 {
 // Method called by consumer code. Call the Dispose method
 // of any managed data members that implement the
 // IDisposable interface.
 // ...
 }

 // Whether called by consumer code or the garbage collector,
 // free all unmanaged resources and set the value of managed
 // data members to null.
 // Close(resourceHandle);

 // In the case of an inherited type, call base.Dispose(disposing).
 }

 // Signal that this object has been disposed.
 isDisposed = true;
 }

 // Before executing any functionality, ensure that Dispose has not
 // already been executed on the object.
 public void SomeMethod()
 {
 // Throw an exception if the object has already been disposed.
 if (isDisposed)
 {
 throw new ObjectDisposedException("DisposeExample");
 }

 // Execute method functionality.
 // . . .
 }
 }

 // A class to demonstrate the use of DisposeExample.
 public class Recipe13_06
 {

CHAPTER 13 ■ COMMONLY USED INTERFACES AND PATTERNS

651

 public static void Main()
 {
 // The using statement ensures the Dispose method is called
 // even if an exception occurs.
 using (DisposeExample d = new DisposeExample())
 {
 // Do something with d.
 }

 // Wait to continue.
 Console.WriteLine(Environment.NewLine);
 Console.WriteLine("Main method complete. Press Enter");
 Console.ReadLine();
 }
 }
}

13-7. Implement a Formattable Type

Problem
You need to implement a type that can create different string representations of its content based on the
use of format specifiers, for use in formatted strings.

Solution
Implement the System.IFormattable interface.

How It Works
The following code fragment demonstrates the use of format specifiers in the WriteLine method of the
System.Console class. The format specifiers are inside the braces (shown in bold in the example).

double a = 345678.5678;
uint b = 12000;
byte c = 254;
Console.WriteLine("a = {0}, b = {1}, and c = {2}", a, b, c);
Console.WriteLine("a = {0:c0}, b = {1:n4}, and c = {2,10:x5}", a, b, c);

CHAPTER 13 ■ COMMONLY USED INTERFACES AND PATTERNS

652

When run on a machine configured with English (UK) regional settings, this code will result in the
output shown here:

a = 345678.5678, b = 12000, and c = 254

a = £345,679, b = 12,000.0000, and c = 000fe

As you can see, changing the contents of the format specifiers changes the format of the output
significantly, even though the data has not changed. To enable support for format specifiers in your own
types, you must implement the IFormattable interface. IFormattable declares a single method named
ToString with the following signature:
string ToString(string format, IFormatProvider formatProvider);

The format argument is a System.String containing a format string. The format string is the portion
of the format specifier that follows the colon. For example, in the format specifier {2,10:x5} used in the
previous example, x5 is the format string. The format string contains the instructions that the
IFormattable instance should use when it’s generating the string representation of its content. The .NET
Framework documentation for IFormattable states that types that implement IFormattable must
support the G (general) format string, but that the other supported format strings depend on the
implementation. The format argument will be null if the format specifier does not include a format
string component; for example, {0} or {1,20}.

The formatProvider argument is a reference to an instance of a type that implements
System.IFormatProvider, and that provides access to information about the cultural and regional
preferences to use when generating the string representation of the IFormattable object. This
information includes data such as the appropriate currency symbol or number of decimal places to use.
By default, formatProvider is null, which means you should use the current thread’s regional and
cultural settings, available through the static method CurrentCulture of the
System.Globalization.CultureInfo class. Some methods that generate formatted strings, such as
String.Format, allow you to specify an alternative IFormatProvider to use such as CultureInfo,
DateTimeFormatInfo, or NumberFormatInfo.

The .NET Framework uses IFormattable primarily to support the formatting of value types, but it
can be used to good effect with any type.

The Code
The following example contains a class named Person that implements the IFormattable interface. The
Person class contains the title and names of a person and will render the person’s name in different
formats depending on the format strings provided. The Person class does not make use of regional and
cultural settings provided by the formatProvider argument. The Main method demonstrates how to use
the formatting capabilities of the Person class.

using System;

namespace Apress.VisualCSharpRecipes.Chapter13
{
 public class Person : IFormattable
 {

CHAPTER 13 ■ COMMONLY USED INTERFACES AND PATTERNS

653

 // Private members to hold the person's title and name details.
 private string title;
 private string[] names;

 // Constructor used to set the person's title and names.
 public Person(string title, params string[] names)
 {
 this.title = title;
 this.names = names;
 }

 // Override the Object.ToString method to return the person's
 // name using the general format.
 public override string ToString()
 {
 return ToString("G", null);
 }

 // Implementation of the IFormattable.ToString method to return the
 // person's name in different forms based on the format string
 // provided.
 public string ToString(string format, IFormatProvider formatProvider)
 {
 string result = null;

 // Use the general format if none is specified.
 if (format == null) format = "G";

 // The contents of the format string determine the format of the
 // name returned.
 switch (format.ToUpper()[0])
 {
 case 'S':
 // Use short form - first initial and surname.
 result = names[0][0] + ". " + names[names.Length - 1];
 break;

 case 'P':
 // Use polite form - title, initials, and surname.
 // Add the person's title to the result.
 if (title != null && title.Length != 0)
 {
 result = title + ". ";
 }
 // Add the person's initials and surname.
 for (int count = 0; count < names.Length; count++)
 {
 if (count != (names.Length - 1))
 {
 result += names[count][0] + ". ";
 }

CHAPTER 13 ■ COMMONLY USED INTERFACES AND PATTERNS

654

 else
 {
 result += names[count];
 }
 }
 break;

 case 'I':
 // Use informal form - first name only.
 result = names[0];
 break;

 case 'G':
 default:
 // Use general/default form - first name and surname.
 result = names[0] + " " + names[names.Length - 1];
 break;
 }
 return result;
 }
 }

 // A class to demonstrate the use of Person.
 public class Recipe13_07
 {
 public static void Main()
 {
 // Create a Person object representing a man with the name
 // Mr. Richard Glen David Peters.
 Person person =
 new Person("Mr", "Richard", "Glen", "David", "Peters");

 // Display the person's name using a variety of format strings.
 System.Console.WriteLine("Dear {0:G},", person);
 System.Console.WriteLine("Dear {0:P},", person);
 System.Console.WriteLine("Dear {0:I},", person);
 System.Console.WriteLine("Dear {0},", person);
 System.Console.WriteLine("Dear {0:S},", person);

 // Wait to continue.
 Console.WriteLine(Environment.NewLine);
 Console.WriteLine("Main method complete. Press Enter");
 Console.ReadLine();
 }
 }
}

CHAPTER 13 ■ COMMONLY USED INTERFACES AND PATTERNS

655

Usage
When executed, the preceding example produces the following output:

Dear Richard Peters,

Dear Mr. R. G. D. Peters,

Dear Richard,

Dear Richard Peters,

Dear R. Peters,

13-8. Implement a Custom Exception Class

Problem
You need to create a custom exception class so that you can use the runtime’s exception-handling
mechanism to handle application-specific exceptions.

Solution
Create a serializable class that extends the System.Exception class. Add support for any custom data
members required by the exception, including constructors and properties required to manipulate the
data members.

How It Works
Exception classes are unique in the fact that you do not declare new classes solely to implement new or
extended functionality. The runtime’s exception-handling mechanism—exposed by the C# statements
try, catch, and finally—works based on the type of exception thrown, not the functional or data
members implemented by the thrown exception.

If you need to throw an exception, you should use an existing exception class from the .NET
Framework class library, if a suitable one exists. For example, some useful exceptions include the
following:

• System.ArgumentNullException, when code passes a null argument value that
does not support null arguments to your method

• System.ArgumentOutOfRangeException, when code passes an inappropriately large
or small argument value to your method

CHAPTER 13 ■ COMMONLY USED INTERFACES AND PATTERNS

656

• System.FormatException, when code attempts to pass your method a String
argument containing incorrectly formatted data

If none of the existing exception classes meet your needs, or you feel your application would benefit
from using application-specific exceptions, it’s a simple matter to create your own exception class. In
order to integrate your custom exception with the runtime’s exception-handling mechanism and remain
consistent with the pattern implemented by .NET Framework–defined exception classes, you should do
the following:

• Give your exception class a meaningful name ending in the word Exception, such
as TypeMismatchException or RecordNotFoundException.

• Mark your exception class as sealed if you do not intend other exception classes to
extend it.

• Implement additional data members and properties to support custom
information that the exception class should provide.

• Implement three public constructors with the signatures shown here and ensure
that they call the base class constructor:

public CustomException() : base() {}
public CustomException(string msg): base(msg) {}
public CustomException(string msg, Exception inner) : base(msg, inner) {}

• Make your exception class serializable so that the runtime can marshal instances
of your exception across application domain and machine boundaries. Applying
the attribute System.SerializableAttribute is sufficient for exception classes that
do not implement custom data members. However, because Exception
implements the interface System.Runtime.Serialization.ISerializable, if your
exception declares custom data members, you must override the
ISerializable.GetObjectData method of the Exception class as well as implement
a deserialization constructor with this signature. If your exception class is sealed,
mark the deserialization constructor as private; otherwise, mark it as protected.
The GetObjectData method and deserialization constructor must call the
equivalent base class method to allow the base class to serialize and deserialize its
data correctly. (See recipe 13-1 for details on making classes serializable.)

■ Tip In large applications, you will usually implement quite a few custom exception classes. It pays to put
significant thought into how you organize your custom exceptions and how code will use them. Generally, avoid
creating new exception classes unless code will make specific efforts to catch that exception; use data members
to achieve informational granularity, not additional exception classes. In addition, avoid deep class hierarchies
when possible in favor of broad, shallow hierarchies.

CHAPTER 13 ■ COMMONLY USED INTERFACES AND PATTERNS

657

The Code
The following example is a custom exception named CustomException that extends Exception and
declares two custom data members: a string named stringInfo and a bool named booleanInfo.

using System;
using System.Runtime.Serialization;

namespace Apress.VisualCSharpRecipes.Chapter13
{
 // Mark CustomException as Serializable.
 [Serializable]
 public sealed class CustomException : Exception
 {
 // Custom data members for CustomException.
 private string stringInfo;
 private bool booleanInfo;

 // Three standard constructors and simply call the base class.
 // constructor (System.Exception).
 public CustomException() : base() { }

 public CustomException(string message) : base(message) { }

 public CustomException(string message, Exception inner)
 : base(message, inner) { }

 // The deserialization constructor required by the ISerialization
 // interface. Because CustomException is sealed, this constructor
 // is private. If CustomException were not sealed, this constructor
 // should be declared as protected so that derived classes can call
 // it during deserialization.
 private CustomException(SerializationInfo info,
 StreamingContext context) : base(info, context)
 {
 // Deserialize each custom data member.
 stringInfo = info.GetString("StringInfo");
 booleanInfo = info.GetBoolean("BooleanInfo");
 }

 // Additional constructors to allow code to set the custom data
 // members.
 public CustomException(string message, string stringInfo,
 bool booleanInfo) : this(message)
 {
 this.stringInfo = stringInfo;
 this.booleanInfo = booleanInfo;
 }

CHAPTER 13 ■ COMMONLY USED INTERFACES AND PATTERNS

658

 public CustomException(string message, Exception inner,
 string stringInfo, bool booleanInfo): this(message, inner)
 {
 this.stringInfo = stringInfo;
 this.booleanInfo = booleanInfo;
 }

 // Read-only properties that provide access to the custom data members.
 public string StringInfo
 {
 get { return stringInfo; }
 }

 public bool BooleanInfo
 {
 get { return booleanInfo; }
 }

 // The GetObjectData method (declared in the ISerializable interface)
 // is used during serialization of CustomException. Because
 // CustomException declares custom data members, it must override the
 // base class implementation of GetObjectData.
 public override void GetObjectData(SerializationInfo info,
 StreamingContext context)
 {
 // Serialize the custom data members.
 info.AddValue("StringInfo", stringInfo);
 info.AddValue("BooleanInfo", booleanInfo);

 // Call the base class to serialize its members.
 base.GetObjectData(info, context);
 }

 // Override the base class Message property to include the custom data
 // members.
 public override string Message
 {
 get
 {
 string message = base.Message;
 if (stringInfo != null)
 {
 message += Environment.NewLine +
 stringInfo + " = " + booleanInfo;
 }
 return message;
 }
 }
 }

CHAPTER 13 ■ COMMONLY USED INTERFACES AND PATTERNS

659

 // A class to demonstrate the use of CustomException.
 public class Recipe13_08
 {
 public static void Main()
 {
 try
 {
 // Create and throw a CustomException object.
 throw new CustomException("Some error",
 "SomeCustomMessage", true);
 }
 catch (CustomException ex)
 {
 Console.WriteLine(ex.Message);
 }

 // Wait to continue.
 Console.WriteLine(Environment.NewLine);
 Console.WriteLine("Main method complete. Press Enter");
 Console.ReadLine();
 }
 }
}

13-9. Implement a Custom Event Argument

Problem
When you raise an event, you need to pass an event-specific state to the event handlers.

Solution
Create a custom event argument class derived from the System.EventArg class. When you raise the event,
create an instance of your event argument class and pass it to the event handlers.

How It Works
When you declare your own event types, you will often want to pass event-specific state to any listening
event handlers. To create a custom event argument class that complies with the Event pattern defined
by the .NET Framework, you should do the following:

• Derive your custom event argument class from the EventArgs class. The EventArgs
class contains no data and is used with events that do not need to pass event state.

• Give your event argument class a meaningful name ending in EventArgs, such as
DiskFullEventArgs or MailReceivedEventArgs.

CHAPTER 13 ■ COMMONLY USED INTERFACES AND PATTERNS

660

• Mark your argument class as sealed if you do not intend other event argument
classes to extend it.

• Implement additional data members and properties that you need to pass to
event handlers to support event state. It’s best to make event state immutable, so
you should use private readonly data members and public properties to provide
read-only access to the data members.

• Implement a public constructor that allows you to set the initial configuration of
the event state.

• Make your event argument class serializable so that the runtime can marshal
instances of it across application domain and machine boundaries. Applying the
attribute System.SerializableAttribute is usually sufficient for event argument
classes. However, if your class has special serialization requirements, you must
also implement the interface System.Runtime.Serialization.ISerializable. (See
recipe 13-1 for details on making classes serializable.)

The Code
The following example demonstrates the implementation of an event argument class named
MailReceivedEventArgs. Theoretically, an e-mail server passes instances of the MailReceivedEventArgs
class to event handlers in response to the receipt of an e-mail message. The MailReceivedEventArgs class
contains information about the sender and subject of the received e-mail message.

using System;

namespace Apress.VisualCSharpRecipes.Chapter13
{
 [Serializable]
 public sealed class MailReceivedEventArgs : EventArgs
 {
 // Private read-only members that hold the event state that is to be
 // distributed to all event handlers. The MailReceivedEventArgs class
 // will specify who sent the received mail and what the subject is.
 private readonly string from;
 private readonly string subject;

 // Constructor, initializes event state.
 public MailReceivedEventArgs(string from, string subject)
 {
 this.from = from;
 this.subject = subject;
 }

 // Read-only properties to provide access to event state.
 public string From { get { return from; } }
 public string Subject { get { return subject; } }
 }

CHAPTER 13 ■ COMMONLY USED INTERFACES AND PATTERNS

661

 // A class to demonstrate the use of MailReceivedEventArgs.
 public class Recipe13_09
 {
 public static void Main()
 {
 MailReceivedEventArgs args =
 new MailReceivedEventArgs("Danielle", "Your book");

 Console.WriteLine("From: {0}, Subject: {1}", args.From, args.Subject);

 // Wait to continue.
 Console.WriteLine(Environment.NewLine);
 Console.WriteLine("Main method complete. Press Enter");
 Console.ReadLine();
 }
 }
}

13-10. Implement the Singleton Pattern

Problem
You need to ensure that only a single instance of a type exists at any given time and that the single
instance is accessible to all elements of your application.

Solution
Implement the type using the Singleton pattern.

How It Works
Of all the identified patterns, the Singleton pattern is perhaps the most widely known and commonly
used. The purposes of the Singleton pattern are to ensure that only one instance of a type exists at a
given time and to provide global access to the functionality of that single instance. You can implement
the type using the Singleton pattern by doing the following:

• Implement a private static member within the type to hold a reference to the
single instance of the type.

• Implement a publicly accessible static property in the type to provide read-only
access to the singleton instance.

• Implement only a private constructor so that code cannot create additional
instances of the type.

CHAPTER 13 ■ COMMONLY USED INTERFACES AND PATTERNS

662

The Code
The following example demonstrates an implementation of the Singleton pattern for a class named
SingletonExample:

using System;

namespace Apress.VisualCSharpRecipes.Chapter13
{
 public class SingletonExample
 {
 // A static member to hold a reference to the singleton instance.
 private static SingletonExample instance;

 // A static constructor to create the singleton instance. Another
 // alternative is to use lazy initialization in the Instance property.
 static SingletonExample()
 {
 instance = new SingletonExample();
 }

 // A private constructor to stop code from creating additional
 // instances of the singleton type.
 private SingletonExample() { }

 // A public property to provide access to the singleton instance.
 public static SingletonExample Instance
 {
 get { return instance; }
 }

 // Public methods that provide singleton functionality.
 public void SomeMethod1() { /*..*/ }
 public void SomeMethod2() { /*..*/ }
 }
}

Usage
To invoke the functionality of the SingletonExample class, you can obtain a reference to the singleton
using the Instance property and then call its methods. Alternatively, you can execute members of the
singleton directly through the Instance property. The following code shows both approaches.

// Obtain reference to singleton and invoke methods
SingletonExample s = SingletonExample.Instance;
s.SomeMethod1();

// Execute singleton functionality without a reference
SingletonExample.Instance.SomeMethod2();

CHAPTER 13 ■ COMMONLY USED INTERFACES AND PATTERNS

663

13-11. Implement the Observer Pattern

Problem
You need to implement an efficient mechanism for an object (the subject) to notify other objects (the
observers) about changes to its state.

Solution
Implement the Observer pattern using delegate types as type-safe function pointers and event types to
manage and notify the set of observers.

How It Works
The traditional approach to implementing the Observer pattern is to implement two interfaces: one to
represent an observer (IObserver) and the other to represent the subject (ISubject). Objects that
implement IObserver register with the subject, indicating that they want to be notified of important
events (such as state changes) affecting the subject. The subject is responsible for managing the list of
registered observers and notifying them in response to events affecting the subject. The subject usually
notifies observers by calling a Notify method declared in the IObserver interface. The subject might pass
data to the observer as part of the Notify method, or the observer might need to call a method declared
in the ISubject interface to obtain additional details about the event.

Although you are free to implement the Observer pattern in C# using the approach just described,
the Observer pattern is so pervasive in modern software solutions that C# and the .NET Framework
include event and delegate types to simplify its implementation. The use of events and delegates means
that you do not need to declare IObserver and ISubject interfaces. In addition, you do not need to
implement the logic necessary to manage and notify the set of registered observers—the area where
most coding errors occur.

The .NET Framework uses one particular implementation of the event-based and delegate-based
Observer pattern so frequently that it has been given its own name: the Event pattern. (Pattern purists
might prefer the name Event idiom, but Event pattern is the name most commonly used in Microsoft
documentation.)

The Code
The example for this recipe contains a complete implementation of the Event pattern, which includes
the following types:

• Thermostat class (the subject of the example), which keeps track of the current
temperature and notifies observers when a temperature change occurs

• TemperatureChangeEventArgs class, which is a custom implementation of the
System.EventArgs class used to encapsulate temperature change data for
distribution during the notification of observers

CHAPTER 13 ■ COMMONLY USED INTERFACES AND PATTERNS

664

• TemperatureEventHandler delegate, which defines the signature of the method that
all observers of a Thermostat object must implement and that a Thermostat object
will call in the event of temperature changes

• TemperatureChangeObserver and TemperatureAverageObserver classes, which are
observers of the Thermostat class

The TemperatureChangeEventArgs class (in the following listing) derives from the class
System.EventArgs. The custom event argument class should contain all of the data that the subject needs
to pass to its observers when it notifies them of an event. If you do not need to pass data with your event
notifications, you do not need to define a new argument class; simply pass EventArgs.Empty or null as
the argument when you raise the event. (See recipe 13-9 for details on implementing custom event
argument classes.)

namespace Apress.VisualCSharpRecipes.Chapter13
{
 // An event argument class that contains information about a temperature
 // change event. An instance of this class is passed with every event.
 public class TemperatureChangedEventArgs : EventArgs
 {
 // Private data members contain the old and new temperature readings.
 private readonly int oldTemperature, newTemperature;

 // Constructor that takes the old and new temperature values.
 public TemperatureChangedEventArgs(int oldTemp, int newTemp)
 {
 oldTemperature = oldTemp;
 newTemperature = newTemp;
 }

 // Read-only properties provide access to the temperature values.
 public int OldTemperature { get { return oldTemperature; } }
 public int NewTemperature { get { return newTemperature; } }
 }
}

The following code shows the declaration of the TemperatureEventHandler delegate. Based on this
declaration, all observers must implement a method (the name is unimportant) that returns void and
takes two arguments: an Object instance as the first argument and a TemperatureChangeEventArgs object
as the second. During notification, the Object argument is a reference to the Thermostat object that
raises the event, and the TemperatureChangeEventArgs argument contains data about the old and new
temperature values.

namespace Apress.VisualCSharpRecipes.Chapter13
{
 // A delegate that specifies the signature that all temperature event
 // handler methods must implement.
 public delegate void TemperatureChangedEventHandler(Object sender,
 TemperatureChangedEventArgs args);
}

CHAPTER 13 ■ COMMONLY USED INTERFACES AND PATTERNS

665

For the purpose of demonstrating the Observer pattern, the example contains two different observer
types: TemperatureAverageObserver and TemperatureChangeObserver. Both classes have the same basic
implementation. TemperatureAverageObserver keeps a count of the number of temperature change
events and the sum of the temperature values, and displays an average temperature when each event
occurs. TemperatureChangeObserver displays information about the change in temperature each time a
temperature change event occurs.

The following listing shows the TemperatureChangeObserver and TemperatureAverageObserver
classes. Notice that the constructors take references to the Thermostat object that the
TemperatureChangeObserver or TemperatureAverageObserver object should observe. When you instantiate
an observer, pass it a reference to the subject. The observer must create a delegate instance containing a
reference to the observer’s event-handler method. To register as an observer, the observer object must
then add its delegate instance to the subject using the subject’s public event member. This is made even
easier with the simplified delegate syntax provided by C#, where it is no longer required to explicitly
instantiate a delegate to wrap the listening method.

Once the TemperatureChangeObserver or TemperatureAverageObserver object has registered its
delegate instance with the Thermostat object, you need to maintain a reference to this Thermostat object
only if you want to stop observing it later on. In addition, you do not need to maintain a reference to the
subject, because a reference to the event source is included as the first argument each time the
Thermostat object raises an event through the TemperatureChange method.

namespace Apress.VisualCSharpRecipes.Chapter13
{
 // A Thermostat observer that displays information about the change in
 // temperature when a temperature change event occurs.
 public class TemperatureChangeObserver
 {
 // A constructor that takes a reference to the Thermostat object that
 // the TemperatureChangeObserver object should observe.
 public TemperatureChangeObserver(Thermostat t)
 {
 // Create a new TemperatureChangedEventHandler delegate instance and
 // register it with the specified Thermostat.
 t.TemperatureChanged += this.TemperatureChange;
 }

 // The method to handle temperature change events.
 public void TemperatureChange(Object sender,
 TemperatureChangedEventArgs temp)
 {
 Console.WriteLine ("ChangeObserver: Old={0}, New={1}, Change={2}",
 temp.OldTemperature, temp.NewTemperature,
 temp.NewTemperature - temp.OldTemperature);
 }
 }

 // A Thermostat observer that displays information about the average
 // temperature when a temperature change event occurs.
 public class TemperatureAverageObserver
 {

CHAPTER 13 ■ COMMONLY USED INTERFACES AND PATTERNS

666

 // Sum contains the running total of temperature readings.
 // Count contains the number of temperature events received.
 private int sum = 0, count = 0;

 // A constructor that takes a reference to the Thermostat object that
 // the TemperatureAverageObserver object should observe.
 public TemperatureAverageObserver(Thermostat t)
 {
 // Create a new TemperatureChangedEventHandler delegate instance and
 // register it with the specified Thermostat.
 t.TemperatureChanged += this.TemperatureChange;
 }

 // The method to handle temperature change events.
 public void TemperatureChange(Object sender,
 TemperatureChangedEventArgs temp)
 {
 count++;
 sum += temp.NewTemperature;

 Console.WriteLine
 ("AverageObserver: Average={0:F}", (double)sum / (double)count);
 }
 }
}

Finally, the Thermostat class is the observed object in this Observer (Event) pattern. In theory, a
monitoring device sets the current temperature by calling the Temperature property on a Thermostat
object. This causes the Thermostat object to raise its TemperatureChange event and send a
TemperatureChangeEventArgs object to each observer.

The example contains a Recipe13_11 class that defines a Main method to drive the example. After
creating a Thermostat object and two different observer objects, the Main method repeatedly prompts
you to enter a temperature. Each time you enter a new temperature, the Thermostat object notifies the
listeners, which display information to the console. The following is the code for the Thermostat class:

namespace Apress.VisualCSharpRecipes.Chapter13
{
 // A class that represents a Thermostat, which is the source of temperature
 // change events. In the Observer pattern, a Thermostat object is the
 // subject that Observers listen to for change notifications.
 public class Thermostat
 {
 // Private field to hold current temperature.
 private int temperature = 0;

 // The event used to maintain a list of observer delegates and raise
 // a temperature change event when a temperature change occurs.
 public event TemperatureChangedEventHandler TemperatureChanged;

 // A protected method used to raise the TemperatureChanged event.
 // Because events can be triggered only from within the containing

CHAPTER 13 ■ COMMONLY USED INTERFACES AND PATTERNS

667

 // type, using a protected method to raise the event allows derived
 // classes to provide customized behavior and still be able to raise
 // the base class event.
 virtual protected void OnTemperatureChanged
 (TemperatureChangedEventArgs args)
 {
 // Notify all observers. A test for null indicates whether any
 // observers are registered.
 if (TemperatureChanged != null)
 {
 TemperatureChanged(this, args);
 }
 }

 // Public property to get and set the current temperature. The "set"
 // side of the property is responsible for raising the temperature
 // change event to notify all observers of a change in temperature.
 public int Temperature
 {
 get { return temperature; }

 set
 {
 // Create a new event argument object containing the old and
 // new temperatures.
 TemperatureChangedEventArgs args =
 new TemperatureChangedEventArgs(temperature, value);

 // Update the current temperature.
 temperature = value;

 // Raise the temperature change event.
 OnTemperatureChanged(args);
 }
 }
 }

 // A class to demonstrate the use of the Observer pattern.
 public class Recipe13_11
 {
 public static void Main()
 {
 // Create a Thermostat instance.
 Thermostat t = new Thermostat();

 // Create the Thermostat observers.
 new TemperatureChangeObserver(t);
 new TemperatureAverageObserver(t);

CHAPTER 13 ■ COMMONLY USED INTERFACES AND PATTERNS

668

 // Loop, getting temperature readings from the user.
 // Any noninteger value will terminate the loop.
 do
 {
 Console.WriteLine(Environment.NewLine);
 Console.Write("Enter current temperature: ");

 try
 {
 // Convert the user's input to an integer and use it to set
 // the current temperature of the Thermostat.
 t.Temperature = Int32.Parse(Console.ReadLine());
 }
 catch (Exception)
 {
 // Use the exception condition to trigger termination.
 Console.WriteLine("Terminating Observer Pattern Example.");

 // Wait to continue.
 Console.WriteLine(Environment.NewLine);
 Console.WriteLine("Main method complete. Press Enter");
 Console.ReadLine();
 return;
 }
 } while (true);
 }
 }
}

Usage
The following listing shows the kind of output you should expect if you build and run the previous
example. The bold values show your input.

Enter current temperature: 50

ChangeObserver: Old=0, New=50, Change=50

AverageObserver: Average=50.00

Enter current temperature: 20

ChangeObserver: Old=50, New=20, Change=-30

AverageObserver: Average=35.00

CHAPTER 13 ■ COMMONLY USED INTERFACES AND PATTERNS

669

Enter current temperature: 40

ChangeObserver: Old=20, New=40, Change=20

AverageObserver: Average=36.67

13-12. Implement a Parallel Producer-Consumer Pattern

Problem
You need to coordinate several threads using a collection, such that one or more producer threads
places items into the collection as one or more consumer threads removes items from it.

Solution
Use the System.Collections.Concurrent.BlockingCollection class.

How It Works
The BlockingCollection is a wrapper class that provides the foundation for the parallel producer-
consumer pattern. Consumer threads are blocked when trying to take data from the collection until
there are data items available. Optionally, producer threads are blocked when trying to add data to the
collection if there are too many items already in the collection.

BlockingCollection wraps around collections classes that implement the System.Collections.
Concurrent.IProducerConsumerCollection interface—this includes the ConcurrentQueue,
ConcurrentStack, and ConcurrentBag collections in the System.Collections.Concurrent namespace.

To create a new instance of BlockingCollection, pass in an instance of the collection that you want
to wrap and, if required, the maximum number of items you wish to be in the collection before
producers will block when adding. For example, the following statement creates a new instance wrapped
around a ConcurrentQueue with a size limit of three pending items:
new BlockingCollection<string>(new ConcurrentStack<string>(), 3);

The default constructor for BlockingCollection (which takes no arguments) uses the
ConcurrentQueue class as the underlying collection, and uses no size limit—meaning that items will be
taken out of the collection in the same order in which they were added, and also that producer threads
will not block when adding items, irrespective of how many items are in the collection.

There are two ways for consumers to take items out of the collection. If you have one consumer
thread, then the simplest way is to call the GetConsumingEnumerable method and use the resulting
IEnumerable in a foreach loop. The loop will block when there are no items in the collection to be
consumed. If you have multiple consumers, then they should call the Take method, which will return an
item if one is available in the collection or block until such time as one becomes available.

If you don’t want your producers and consumers to block, you can use the
BlockingCollection.TryAdd and BlockingCollection.TryTake methods. These methods won’t block,
regardless of the state of the collection, and they return a bool to indicate whether the add or take
operations succeeded.

CHAPTER 13 ■ COMMONLY USED INTERFACES AND PATTERNS

670

When using this pattern, there often comes a point when your producers have added all of the items
that you require and their tasks or threads have completed. However, your consumers will still be
blocking because they continue to wait for new items to arrive in the collection. To avoid this situation,
you should call the BlockingCollection.CompleteAdding instance method, which stops the methods the
consumers are using from blocking—see the following code example for an illustration of this.

The Code
The following example creates a BlockingCollection using a ConcurrentQueue as the underlying
collection. Using the .NET parallel programming features (see Chapter 15 for further information about
parallel programming), a single consumer reads items from the collection while four producers add
items. The main application thread waits for the producers to add their items and finish, before calling
CompleteAdding on the collection. This causes the consumer’s foreach method to stop blocking when all
of the items are read from the collection.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Collections.Concurrent;
using System.Threading.Tasks;

namespace Apress.VisualCSharpRecipes.Chapter13
{
 class Recipe13_12
 {
 static void Main(string[] args)
 {
 // Create the collection.
 BlockingCollection<string> bCollection
 = new BlockingCollection<string>(new ConcurrentQueue<string>(), 3);

 // Start the consumer.
 Task consumerTask = Task.Factory.StartNew(
 () => performConsumerTasks(bCollection));
 // Start the producers.
 Task producer0 = Task.Factory.StartNew(
 () => performProducerTasks(bCollection, 0));
 Task producer1 = Task.Factory.StartNew(
 () => performProducerTasks(bCollection, 1));
 Task producer2 = Task.Factory.StartNew(
 () => performProducerTasks(bCollection, 2));
 Task producer3 = Task.Factory.StartNew(
 () => performProducerTasks(bCollection, 3));

 // Wait for the producers to complete.
 Task.WaitAll(producer0, producer1, producer2, producer3);
 Console.WriteLine("Producer tasks complete.");

CHAPTER 13 ■ COMMONLY USED INTERFACES AND PATTERNS

671

 // Indicate that we will not add anything further.
 bCollection.CompleteAdding();

 // Wait for the consumer task to complete.
 consumerTask.Wait();

 // Wait to continue.
 Console.WriteLine(Environment.NewLine);
 Console.WriteLine("Main method complete. Press Enter");
 Console.ReadLine();
 }

 static void performConsumerTasks(BlockingCollection<string> collection)
 {
 Console.WriteLine("Consumer started");
 foreach (string collData in collection.GetConsumingEnumerable())
 {
 // Write out the data.
 Console.WriteLine("Consumer got message {0}", collData);
 }
 Console.WriteLine("Consumer completed");
 }

 static void performProducerTasks(BlockingCollection<string> collection,
 int taskID)
 {
 Console.WriteLine("Producer started");
 for (int i = 0; i < 100; i++)
 {
 // Put something into the collection.
 collection.Add("TaskID " + taskID + " Message" + i++);
 Console.WriteLine("Task {0} wrote message {1}", taskID, i);
 }
 }
 }
}

13-13. Perform Lazy Object Initialization

Problem
You want to defer instantiating an object until it is used for the first time.

Solution
Use the System.Lazy class to wrap the creation of your data type and call the Lazy.Value instance
method to access the type instance—the type will not be initialized until Lazy.Value is first called.

CHAPTER 13 ■ COMMONLY USED INTERFACES AND PATTERNS

672

How It Works
The .NET Framework performs eager initialization by default, which means that types are initialized as
soon as they are created. By contrast, lazy initialization lets you defer object initialization until you need
to access one of the members of your type. Eager initialization tends to create applications that create
lots of objects when they start, even though the objects themselves may not be used for some time—this
can consume resources unnecessarily and slow down your application, at least until all of the objects are
created. To use lazy initialization, you simply pass your normal object instantiation as a delegate
argument to the constructor of the System.Lazy class, so that

MyDataType mytype = new MydataType();

becomes

Lazy<MyDataType> myType = new Lazy<MyDataType<(() => new MyDataType());

In order to access the type within the Lazy instance, you call the Value property—the first time that
Value is called, the type will be initialized—in this way, you can defer initializing your object until you
need to use it.

The Code
The following example defines a type called MyDataType, which has a constructor and a method called
sayHello. The Main method called when the application starts creates an instance of MyDataType using
eager initialization, prints out a message simulating performing other tasks, and then calls sayHello.
This process is then repeated using lazy initialization. The result is that the constructor is called as soon
as the object reference is created using eager initialization, whereas the constructor is not called until
the sayHello method is invoked when using lazy initialization.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Apress.VisualCSharpRecipes.Chapter13
{
 class Recipe13_13
 {
 static void Main(string[] args)
 {
 // Create an instance using eager initialization.
 MyDataType eagerInstance = new MyDataType(false);
 Console.WriteLine("...do other things...");
 eagerInstance.sayHello();

 Lazy<MyDataType> lazyInstance = new Lazy<MyDataType>(()
 => new MyDataType(true));
 Console.WriteLine("...do other things...");
 lazyInstance.Value.sayHello();

CHAPTER 13 ■ COMMONLY USED INTERFACES AND PATTERNS

673

 // Wait to continue.
 Console.WriteLine(Environment.NewLine);
 Console.WriteLine("Main method complete. Press Enter");
 Console.ReadLine();
 }
 }

 class MyDataType
 {
 public MyDataType(bool lazy)
 {
 Console.WriteLine("Initializing MyDataType - lazy instance: {0}", lazy);
 }

 public void sayHello()
 {
 Console.WriteLine("MyDataType Says Hello");
 }
 }
}

13-14. Use Optional Parameters

Problem
You need to define a method with optional parameters.

Solution
Supply a default value for the parameters you wish to make optional when defining your method.

How It Works
The optional parameters feature allows you to simplify a common programming pattern, where several
slightly different methods exist to allow a caller to use default values, such as the following:

void printMessage()
{
 printMessage("Adam");
}

void printMessage(string from)
{
 printMessage(from, "Hello");
}

CHAPTER 13 ■ COMMONLY USED INTERFACES AND PATTERNS

674

void printMessage(string from, string message)
{
 printMessage(from, message, false);
}

void printMessage(string from, string message, bool urgent)
{
 // Do something.
}

This approach allows callers of the method to rely on default values—this helps to simplify the code
of the calling classes. C# supports optional parameters so that you can achieve the same effect with only
one method in your class—you do this by setting the default values when defining the parameters—for
example:

void printMessage(string from = "Adam", string message = "Hello",
 bool urgent = false)

Optional parameters must be defined after normal parameters.

The Code
The following example defines a method with three optional parameters:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Apress.VisualCSharpRecipes.Chapter13
{
 class Recipe13_14
 {
 static void Main(string[] args)
 {
 printMessage();
 printMessage("Allen");
 printMessage("Bob", "Goodbye");
 printMessage("Joe", "Help", true);

 // Wait to continue.
 Console.WriteLine(Environment.NewLine);
 Console.WriteLine("Main method complete. Press Enter");
 Console.ReadLine();
 }

 static void printMessage(string from = "Adam", string message = "Hello",

bool urgent = false)
 {

CHAPTER 13 ■ COMMONLY USED INTERFACES AND PATTERNS

675

 Console.WriteLine("From: {0}, Urgent: {1}, Message: {2}",
 from, message, urgent);
 }
 }
}

13-15. Add a Method to a Type Without Modifying It

Problem
You want to add a method to a type without modifying it, most likely because you didn’t write the type
you want to modify.

Solution
Implement and call a custom extension method.

How It Works
Extension types allow you to extend a type by providing new methods in a separate class file and
associating them with the type you wish to apply them to. The main need for this C# feature is when you
want to associate new features with a type that you didn’t write—one from the .NET Framework class
library, for example. To create an extension method, start by creating a static class—a static class has the
keyword static before class in the declaration. A static class is like a regular class, except the class
cannot be instantiated and all of the methods must be static.

Add a static method to the static class with the name and result type you require. The first
parameter of the method must be of the type that you wish to extend and be prefaced with the
word this.

Implement the method body, performing the tasks you require. The parameter you prefaced with
this represents the instance of the type you have extended on which your method has been invoked. For
example, suppose we define an extension for string like this:

public static int countVowels(this string str)

The str parameter is the string instance that the extension has been invoked to process. To use an
extension method, you must ensure that the namespace in which you created the static class is available
to the calling class with the using keyword, just as you would for any other namespace. Then you simply
call the extension method as though it is an instance method of the type you have extended—for
example:

String mystring = "Hello";
Mystring.countVowels();

Note that you don’t need to provide the first argument you declared for your extension method (the
one prefaced with this).

CHAPTER 13 ■ COMMONLY USED INTERFACES AND PATTERNS

676

The Code
The following example defines two extension methods for the string type in the namespace
Apress.VisualCSharpRecipes.Chapter13.Extensions:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using Apress.VisualCSharpRecipes.Chapter13.Extensions;

namespace Apress.VisualCSharpRecipes.Chapter13.Extensions
{
 public static class MyStringExtentions
 {
 public static string toMixedCase(this String str)
 {
 StringBuilder builder = new StringBuilder(str.Length);
 for (int i = 0; i < str.Length; i += 2)
 {
 builder.Append(str.ToLower()[i]);
 builder.Append(str.ToUpper()[i + 1]);
 }
 return builder.ToString();
 }

 public static int countVowels(this String str)
 {
 char[] vowels = { 'a', 'e', 'i', 'o', 'u' };
 int vowelcount = 0;
 foreach (char c in str)
 {
 if (vowels.Contains(c))
 {
 vowelcount++;
 }
 }
 return vowelcount;
 }
 }
}

namespace Apress.VisualCSharpRecipes.Chapter13
{
 class Recipe13_15
 {
 static void Main(string[] args)
 {
 string str = "The quick brown fox jumped over the...";
 Console.WriteLine(str.toMixedCase());
 Console.WriteLine("There are {0} vowels", str.countVowels());

CHAPTER 13 ■ COMMONLY USED INTERFACES AND PATTERNS

677

 // Wait to continue.
 Console.WriteLine(Environment.NewLine);
 Console.WriteLine("Main method complete. Press Enter");
 Console.ReadLine();
 }
 }
}

13-16. Call an Object Member Dynamically

Problem
You need to call a method or property dynamically.

Solution
Use the dynamic keyword to disable static checking for an object instance.

How It Works
Usually, the C# compiler checks to see that calls you make to type members are valid—that they exist,
that they are accessible to the type you are calling from, that you have supplied the right number of
arguments, that the arguments are of the right type, and so on.

C# also supports dynamic calls to type members in which these checks are not performed until the
program is running and the call needs to be made. In order to take advantage of this feature, you declare
an instance of dynamic—for example:

dynamic myobject = new MyObject();

You can then use the object reference you have created as you would normally—however, the calls
you make against the dynamic instance are not checked by the compiler, and errors will not be detected
until the calls are executed at runtime.

The Code
The following example defines a type. The program Main method creates a dynamic instance of that type
and calls countVowels, which exists, and thisMethodDoesNotExist, which does not.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Dynamic;

CHAPTER 13 ■ COMMONLY USED INTERFACES AND PATTERNS

678

namespace Apress.VisualCSharpRecipes.Chapter13
{
 class myType
 {
 public myType(string strval)
 {
 str = strval;
 }

 public string str {get; set;}

 public int countVowels()
 {
 char[] vowels = { 'a', 'e', 'i', 'o', 'u' };
 int vowelcount = 0;
 foreach (char c in str)
 {
 if (vowels.Contains(c))
 {
 vowelcount++;
 }
 }
 return vowelcount;
 }
 }

 class Recipe13_16
 {
 static void Main(string[] args)
 {
 // create a dynamic type
 dynamic dynInstance
 = new myType("The quick brown fox jumped over the...");
 // call the countVowels method
 int vowels = dynInstance.countVowels();
 Console.WriteLine("There are {0} vowels", vowels);
 // call a method that does not exist
 dynInstance.thisMethodDoesNotExist();
 }
 }
}

CHAPTER 13 ■ COMMONLY USED INTERFACES AND PATTERNS

679

The code compiles, even though we have called a method that does not exist. When we execute the
program, we get the following output:

There are 10 vowels

Unhandled Exception: Microsoft.CSharp.RuntimeBinder.RuntimeBinderException:

 'Apress.VisualCSharpRecipes.Chapter13.myType

' does not contain a definition for 'thisMethodDoesNotExist'

 at CallSite.Target(Closure , CallSite , Object)

 at System.Dynamic.UpdateDelegates.UpdateAndExecuteVoid1[T0](

 CallSite site, T0 arg0)

 at Apress.VisualCSharpRecipes.Chapter13.Recipe13_16.Main(String[] args) in

C:\Users\Adam\Documents\Work\C# Cookbook\Chapter13\Recipe13-16\

 Recipe13-16.cs:line 44

Press any key to continue . . .

13-17. Create a Variant Generic Type

Problem
You need to treat a generic interface of one type as a generic interface of a type it derives from.

Solution
Apply the in or out modifiers to your generic interface definition.

How It Works
Generic types allow you to provide strict controls on types that collections and classes will accept, but
can create some unexpected behaviors. For example, suppose we define two classes, one of which
derives from the other, and a generic interface, as follows:

CHAPTER 13 ■ COMMONLY USED INTERFACES AND PATTERNS

680

class BaseType
{
}

class DerivedType : BaseType
{
}

public interface IMyInterface<T>
{

T getValue();
}

The following program illustrates the problem—the compiler won’t allow us to treat a
IMyInterface<DerivedType> as a IMyInterface<BaseType> so that we can call the processData method:

 class Recipe13_17
 {
 static void Main(string[] args)
 {
 IMyInterface<DerivedType> variant = // implementation class //;
 processData(variant);
 }

 static void processData(IMyInterface<BaseType> data)
 {
 ...do something...
 }
 }

Covariance allows you to change this behavior when there is no possibility of breaking type safety.
You use covariance by applying the out keyword to your interface definition, such as
public interface IMyInterface<out T>

Now the preceding code will work. Covariance can only be used for interfaces that only contain
methods that return the generic type—if you define a method that accepts the type as a parameter, the
compiler will generate an error. Contravariance is the complement to covariance—in order to handle
parameters, you must use the in keyword, either in a separate interface or as a different type in the same
interface—for example:

public interface IMyInterface<out T1, in T2 >

■ Note The generic interfaces in the .NET Framework class library have been updated in .NET 4.0 to use variance
so that you can perform safe conversion using those types.

CHAPTER 13 ■ COMMONLY USED INTERFACES AND PATTERNS

681

The Code
The following example is similar to the fragments shown preceding, and contains two types (one derived
from the other) and a covariant generic interface. In the Main method, we create an implementation of
the interface that is typed using the derived class, and then call a method that requires an
implementation of the interface that is typed using the base class.

using System;

namespace Apress.VisualCSharpRecipes.Chapter13
{
 class Recipe13_17
 {
 static void Main(string[] args)
 {
 // Create an implementation of the interface that is typed
 // (and contains) the derived type.
 IMyInterface<DerivedType> variant
 = new ImplClass<DerivedType>(new DerivedType());
 // Call a method that accepts an instance of the interface typed.
 // with the base type - if the interface has been
 // defined with the out keyword
 // This will work; otherwise, the compiler will report an error.m
 processData(variant);
 }

 static void processData(IMyInterface<BaseType> data)
 {
 data.getValue().printMessage();
 }
 }

 class BaseType
 {
 public virtual void printMessage()
 {
 Console.WriteLine("BaseType Message");
 }
 }

 class DerivedType : BaseType
 {
 public override void printMessage()
 {
 Console.WriteLine("DerivedType Message");
 }
 }

CHAPTER 13 ■ COMMONLY USED INTERFACES AND PATTERNS

682

 public interface IMyInterface<out T>
 {
 T getValue();
 }

 public class ImplClass<T> : IMyInterface<T>
 {
 private T value;
 public ImplClass(T val)
 {
 value = val;
 }

 public T getValue()
 {
 return value;
 }
 }
}

C H A P T E R 14

■ ■ ■

683

Windows Integration

The Microsoft .NET Framework is intended to run on a wide variety of operating systems to improve
code mobility and simplify cross-platform integration. At the time this book was written, versions of the
.NET Framework were available for various operating systems, including Microsoft Windows, FreeBSD,
Linux, and Mac OS X. However, many of these implementations have yet to be widely adopted.
Microsoft Windows is currently the operating system on which the .NET Framework is most commonly
installed. Therefore, the recipes in this chapter describe how to perform the following tasks, specific to
the Windows operating system:

• Retrieve runtime environment information (recipes 14-1 and 14-2)

• Write to the Windows event log (recipe 14-3)

• Read, write, and search the Windows registry (recipe 14-4 and 14-5)

• Create and install Windows services (recipes 14-6 and 14-7)

• Create a shortcut on the Windows Start menu or desktop (recipe 14-8)

• Create Windows 7 Jump Lists (recipe 14-9)

• Use the Windows Search service (recipe 14-10)

• Check Internet connectivity (recipe 14-11)

• Display a task dialog (recipe 14-12)

• Read and write performance counters (recipes 14-13 and 14-14)

• Obtain elevated privileges (recipe 14-15)

■ Note The majority of functionality discussed in this chapter is protected by code access security permissions
enforced by the Common Language Runtime (CLR). See the .NET Framework software development kit (SDK)
documentation for the specific permissions required to execute each member.

CHAPTER 14 ■ WINDOWS INTEGRATION

684

14-1. Access Runtime Environment Information

Problem
You need to access information about the runtime environment in which your application is running.

Solution
Use the members of the System.Environment class.

How It Works
The static Environment class provides a set of static members that you can use to obtain (and in some
cases modify) information about the environment in which an application is running. Table 14-1
describes some of the most commonly used Environment members.

Table 14-1. Commonly Used Members of the Environment Class

Member Description

Properties

CommandLine Gets a string containing the command line used to execute the current
application, including the application name. See recipe 1-5 for details.

CurrentDirectory Gets and sets a string containing the current application directory.
Initially, this property will contain the name of the directory in which the
application was started.

HasShutdownStarted Gets a bool that indicates whether the CLR has started to shut down or
the current application domain has started unloading.

MachineName Gets a string containing the name of the machine.

OSVersion Gets a System.OperatingSystem object that contains information about
the platform and version of the underlying operating system. See the
discussion of this topic in this recipe for more details.

ProcessorCount Gets the number of processors on the machine.

SystemDirectory Gets a string containing the fully qualified path of the system
directory—that is, the system32 subdirectory of the Windows folder.

CHAPTER 14 ■ WINDOWS INTEGRATION

685

Member Description

TickCount Gets an int representing the number of milliseconds that have elapsed
since the system was started.

UserDomainName Gets a string containing the Windows domain name to which the
current user belongs. This will be the same as MachineName if the user has
logged in on a machine account instead of a domain account.

UserInteractive Gets a bool indicating whether the application is running in user
interactive mode; in other words, its forms and message boxes will be
visible to the logged-on user. UserInteractive will return false when the
application is running as a service or is a web application.

UserName Gets a string containing the name of the user that started the current
thread, which can be different from the logged-on user in case of
impersonation.

Version Gets a System.Version object that contains information about the
version of the CLR.

Methods

ExpandEnvironmentVariables Replaces the names of environment variables in a string with the value
of the variable. See recipe 14-2 for details.

GetCommandLineArgs Returns a string array containing all elements of the command line used
to execute the current application, including the application name. See
recipe 1-5 for details.

GetEnvironmentVariable Returns a string containing the value of a specified environment
variable. See recipe 14-2 for details.

GetEnvironmentVariables Returns an object implementing System.Collections.IDictionary,
which contains all environment variables and their values. See recipe 14-
2 for details.

GetFolderPath Returns a string containing the path to a special system folder specified
using the System.Environment.SpecialFolder enumeration. This
includes folders for the Internet cache, cookies, history, desktop, and
favorites; see the .NET Framework SDK documentation for a complete
list of values.

GetLogicalDrives Returns a string array containing the names of all logical drives,
including network-mapped drives. Note that each drive has the following
syntax: <drive letter>:\.

CHAPTER 14 ■ WINDOWS INTEGRATION

686

The System.OperatingSystem object returned by OSVersion contains four properties:

• The Platform property returns a value of the System.PlatformID enumeration
identifying the current operating system; valid values are Unix, Win32NT, Win32S,
Win32Windows, and WinCE.

• The ServicePack property returns a string identifying the service pack level
installed on the computer. If no service packs are installed, or service packs are
not supported, an empty string is returned.

• The Version property returns a System.Version object that identifies the specific
operating system version.

• The VersionString property returns a concatenated string summary of the
Platform, ServicePack, and Version properties.

To determine the operating system on which you are running, you must use both the platform and
the version information, as detailed in Table 14-2.

Table 14-2. Determining the Current Operating System

PlatformID Major Version Minor Version Operating System

Win32Windows 4 10 Windows 98

Win32Windows 4 90 Windows Me

Win32NT 4 0 Windows NT 4

Win32NT 5 0 Windows 2000

Win32NT 5 1 Windows XP

Win32NT 5 2 Windows Server 2003

Win32NT 6 0 Windows Vista, Windows Server 2008

Win32NT 6 1 Windows 7, Windows Server 2008 R2

The Code
The following example uses the Environment class to display information about the current environment
to the console:

CHAPTER 14 ■ WINDOWS INTEGRATION

687

using System;

namespace Apress.VisualCSharpRecipes.Chapter14
{
 class Recipe14_01
 {
 public static void Main()
 {
 // Command line.
 Console.WriteLine("Command line : " + Environment.CommandLine);

 // OS and CLR version information.
 Console.WriteLine(Environment.NewLine);
 Console.WriteLine("OS PlatformID : " +
 Environment.OSVersion.Platform);
 Console.WriteLine("OS Major Version : " +
 Environment.OSVersion.Version.Major);
 Console.WriteLine("OS Minor Version : " +
 Environment.OSVersion.Version.Minor);
 Console.WriteLine("CLR Version : " + Environment.Version);

 // User, machine, and domain name information.
 Console.WriteLine(Environment.NewLine);
 Console.WriteLine("User Name : " + Environment.UserName);
 Console.WriteLine("Domain Name : " + Environment.UserDomainName);
 Console.WriteLine("Machine name : " + Environment.MachineName);

 // Other environment information.
 Console.WriteLine(Environment.NewLine);
 Console.WriteLine("Is interactive? : "
 + Environment.UserInteractive);
 Console.WriteLine("Shutting down? : "
 + Environment.HasShutdownStarted);
 Console.WriteLine("Ticks since startup : "
 + Environment.TickCount);

 // Display the names of all logical drives.
 Console.WriteLine(Environment.NewLine);
 foreach (string s in Environment.GetLogicalDrives())
 {
 Console.WriteLine("Logical drive : " + s);
 }

 // Standard folder information.
 Console.WriteLine(Environment.NewLine);
 Console.WriteLine("Current folder : "
 + Environment.CurrentDirectory);
 Console.WriteLine("System folder : "
 + Environment.SystemDirectory);

CHAPTER 14 ■ WINDOWS INTEGRATION

688

 // Enumerate all special folders and display them.
 Console.WriteLine(Environment.NewLine);
 foreach (Environment.SpecialFolder s in
 Enum.GetValues(typeof(Environment.SpecialFolder)))
 {
 Console.WriteLine("{0} folder : {1}",
 s, Environment.GetFolderPath(s));
 }

 // Wait to continue.
 Console.WriteLine(Environment.NewLine);
 Console.WriteLine("Main method complete. Press Enter.");
 Console.ReadLine();
 }
 }
}

14-2. Retrieve the Value of an Environment Variable

Problem
You need to retrieve the value of an environment variable for use in your application.

Solution
Use the GetEnvironmentVariable, GetEnvironmentVariables, and ExpandEnvironmentVariables methods
of the Environment class.

How It Works
The GetEnvironmentVariable method allows you to retrieve a string containing the value of a single
named environment variable, whereas the GetEnvironmentVariables method returns an object
implementing IDictionary that contains the names and values of all environment variables as strings.
The .NET Framework includes an overload of the GetEnvironmentVariables method that takes a
System.EnvironmentVariableTarget argument, allowing you to specify a subset of environment variables
to return based on the target of the variable: Machine, Process, or User.

The ExpandEnvironmentVariables method provides a simple mechanism for substituting the value of
an environment variable into a string by including the variable name enclosed in percent signs (%) within
the string.

CHAPTER 14 ■ WINDOWS INTEGRATION

689

The Code
Here is an example that demonstrates how to use all three methods:

using System;
using System.Collections;

namespace Apress.VisualCSharpRecipes.Chapter14
{
 class Recipe14_02
 {
 public static void Main()
 {
 // Retrieve a named environment variable.
 Console.WriteLine("Path = " +
 Environment.GetEnvironmentVariable("Path"));
 Console.WriteLine(Environment.NewLine);

 // Substitute the value of named environment variables.
 Console.WriteLine(Environment.ExpandEnvironmentVariables(
 "The Path on %computername% is %Path%"));
 Console.WriteLine(Environment.NewLine);

 // Retrieve all environment variables targeted at the process and
 // display the values of all that begin with the letter U.
 IDictionary vars = Environment.GetEnvironmentVariables(
 EnvironmentVariableTarget.Process);

 foreach (string s in vars.Keys)
 {
 if (s.ToUpper().StartsWith("U"))
 {
 Console.WriteLine(s + " = " + vars[s]);
 }
 }

 // Wait to continue.
 Console.WriteLine(Environment.NewLine);
 Console.WriteLine("Main method complete. Press Enter.");
 Console.ReadLine();
 }
 }
}

CHAPTER 14 ■ WINDOWS INTEGRATION

690

14-3. Write an Event to the Windows Event Log

Problem
You need to write an event to the Windows event log.

Solution
Use the members of the System.Diagnostics.EventLog class to create a log (if required), register an event
source, and write events.

How It Works
You can write to the Windows event log using the static methods of the EventLog class, or you can create
an EventLog object and use its members. Whichever approach you choose, before writing to the event
log you must decide which log you will use and register an event source against that log. The event
source is simply a string that uniquely identifies your application. An event source may be registered
against only one log at a time.

By default, the event log contains three separate logs: Application, System, and Security. Usually,
you will write to the Application log, but you might decide your application warrants a custom log in
which to write events. You do not need to explicitly create a custom log; when you register an event
source against a log, if the specified log doesn’t exist, it’s created automatically.

■ Tip You must have administrator privileges to create an event source—this is because the .NET Framework
checks all of the event logs to ensure that the source name is unique and this means being able to read the
security log.

Once you have decided on the destination log and registered an event source, you can start to write
event log entries using the WriteEntry method. WriteEntry provides a variety of overloads that allow you
to specify some or all of the following values:

• A string containing the event source for the log entry (static versions of
WriteEntry only).

• A string containing the message for the log entry.

• A value from the System.Diagnostics.EventLogEntryType enumeration, which
identifies the type of log entry. Valid values are Error, FailureAudit, Information,
SuccessAudit, and Warning.

• An int that specifies an application-specific event ID for the log entry.

CHAPTER 14 ■ WINDOWS INTEGRATION

691

• A short that specifies an application-specific subcategory for the log entry.

• A byte array containing any raw data to associate with the log entry.

■ Note The methods of the EventLog class also provide overloads that support the writing of events to the event
log of remote machines; see the .NET Framework SDK documentation for more information.

The Code
The following example demonstrates how to use the static members of the EventLog class to write an
entry to the event log of the local machine. You must run the example as administrator in order to create
the event source—if you do not, a security exception will be thrown.

using System;
using System.Diagnostics;

namespace Apress.VisualCSharpRecipes.Chapter14
{
 class Recipe14_03
 {
 public static void Main ()
 {
 // If it does not exist, register an event source for this
 // application against the Application log of the local machine.
 // Trying to register an event source that already exists on the
 // specified machine will throw a System.ArgumentException.
 if (!EventLog.SourceExists("Visual C# Recipes"))
 {
 EventLog.CreateEventSource("Visual C# Recipes",
 "Application");
 }

 // Write an event to the event log.
 EventLog.WriteEntry(
 "Visual C# Recipes", // Registered event source
 "A simple test event.", // Event entry message
 EventLogEntryType.Information, // Event type
 1, // Application-specific ID
 0, // Application-specific category
 new byte[] {10, 55, 200} // Event data
);

CHAPTER 14 ■ WINDOWS INTEGRATION

692

 // Wait to continue.
 Console.WriteLine(Environment.NewLine);
 Console.WriteLine("Main method complete. Press Enter.");
 Console.ReadLine();
 }
 }
}

14-4. Read and Write to the Windows Registry

Problem
You need to read information from or write information to the Windows registry.

Solution
Use the methods GetValue and SetValue of the Microsoft.Win32.Registry class.

■ Tip The GetValue and SetValue methods open a registry key, get or set its value, and close the key each time
they are called. This means they are inefficient when used to perform many read or write operations. The
GetValue and SetValue methods of the Microsoft.Win32.RegistryKey class discussed in recipe 14-5 will
provide better performance if you need to perform many read or write operations on the registry.

How It Works
The GetValue and SetValue methods allow you to read and write named values in named registry keys.
GetValue takes three arguments:

• A string containing the fully qualified name of the key you want to read. The key
name must start with one of the following root key names:

• HKEY_CLASSES_ROOT

• HKEY_CURRENT_CONFIG

• HKEY_CURRENT_USER

• HKEY_DYN_DATA

• HKEY_LOCAL_MACHINE

• HKEY_PERFORMANCE_DATA

• HKEY_USERS

CHAPTER 14 ■ WINDOWS INTEGRATION

693

• A string containing the name of the value in the key you want to read.

• An object containing the default value to return if the named value is not present
in the key.

GetValue returns an object containing either the data read from the registry or the default value
specified as the third argument if the named value is not found. If the specified key does not exist,
GetValue returns null.

SetValue offers two overloads. The most functional expects the following arguments:

• A string containing the fully qualified name of the key you want to write. The key
must start with one of the root key names specified previously.

• A string containing the name of the value in the key you want to write.

• An object containing the value to write.

• An element of the Microsoft.Win32.RegistyValueKind enumeration that specifies
the registry data type that should be used to hold the data.

If the registry key specified in the SetValue call does not exist, it is automatically created.

The Code
The following example demonstrates how to use GetValue and SetValue to read from and write to the
registry. Every time the example is run, it reads usage information from the registry and displays it to the
screen. The example also updates the stored usage information, which you can see the next time you run
the example.

using System;
using Microsoft.Win32;

namespace Apress.VisualCSharpRecipes.Chapter14
{
 class Recipe14_04
 {
 public static void Main(String[] args)
 {
 // Variables to hold usage information read from registry.
 string lastUser;
 string lastRun;
 int runCount;

 // Read the name of the last user to run the application from the
 // registry. This is stored as the default value of the key and is
 // accessed by not specifying a value name. Cast the returned Object
 // to a string.
 lastUser = (string)Registry.GetValue(
 @"HKEY_CURRENT_USER\Software\Apress\Visual C# Recipes",
 "", "Nobody");

CHAPTER 14 ■ WINDOWS INTEGRATION

694

 // If lastUser is null, it means that the specified registry key
 // does not exist.
 if (lastUser == null)
 {
 // Set initial values for the usage information.
 lastUser = "Nobody";
 lastRun = "Never";
 runCount = 0;
 }
 else
 {
 // Read the last run date and specify a default value of
 // "Never". Cast the returned Object to string.
 lastRun = (string)Registry.GetValue(
 @"HKEY_CURRENT_USER\Software\Apress\Visual C# Recipes",
 "LastRun", "Never");

 // Read the run count value and specify a default value of
 // 0 (zero). Cast the Object to Int32 and assign to an int.
 runCount = (Int32)Registry.GetValue(
 @"HKEY_CURRENT_USER\Software\Apress\Visual C# Recipes",
 "RunCount", 0);
 }

 // Display the usage information.
 Console.WriteLine("Last user name: " + lastUser);
 Console.WriteLine("Last run date/time: " + lastRun);
 Console.WriteLine("Previous executions: " + runCount);

 // Update the usage information. It doesn't matter if the registry
 // key exists or not, SetValue will automatically create it.

 // Update the "last user" information with the current username.
 // Specify that this should be stored as the default value
 // for the key by using an empty string as the value name.
 Registry.SetValue(
 @"HKEY_CURRENT_USER\Software\Apress\Visual C# Recipes",
 "", Environment.UserName, RegistryValueKind.String);

 // Update the "last run" information with the current date and time.
 // Specify that this should be stored as a string value in the
 // registry.
 Registry.SetValue(
 @"HKEY_CURRENT_USER\Software\Apress\Visual C# Recipes",
 "LastRun", DateTime.Now.ToString(), RegistryValueKind.String);

 // Update the usage count information. Specify that this should
 // be stored as an integer value in the registry.
 Registry.SetValue(
 @"HKEY_CURRENT_USER\Software\Apress\Visual C# Recipes",
 "RunCount", ++runCount, RegistryValueKind.DWord);

CHAPTER 14 ■ WINDOWS INTEGRATION

695

 // Wait to continue.
 Console.WriteLine(Environment.NewLine);
 Console.WriteLine("Main method complete. Press Enter.");
 Console.ReadLine();
 }
 }
}

14-5. Search the Windows Registry

Problem
You need to search the Windows registry for a key that contains a specific value or content.

Solution
Use the Microsoft.Win32.Registry class to obtain a Microsoft.Win32.RegistryKey object that represents the
root key of a registry hive you want to search. Use the members of this RegistryKey object to navigate through
and enumerate the registry key hierarchy, as well as to read the names and content of values held in the keys.

How It Works
You must first obtain a RegistryKey object that represents a base-level key and navigate through the
hierarchy of RegistryKey objects as required. The Registry class implements a set of seven static fields
that return RegistryKey objects representing base-level registry keys; Table 14-3 describes the registry
location to where each of these fields maps.

Table 14-3. Static Fields of the Registry Class

Field Registry Mapping

ClassesRoot HKEY_CLASSES_ROOT

CurrentConfig HKEY_CURRENT_CONFIG

CurrentUser HKEY_CURRENT_USER

DynData HKEY_DYN_DATA

LocalMachine HKEY_LOCAL_MACHINE

PerformanceData HKEY_PERFORMANCE_DATA

Users HKEY_USERS

CHAPTER 14 ■ WINDOWS INTEGRATION

696

■ Tip The static method RegistryKey.OpenRemoteBaseKey allows you to open a registry base key on a remote
machine. See the .NET Framework SDK documentation for details of its use.

Once you have the base-level RegistryKey object, you must navigate through its child subkeys
recursively. To support navigation, the RegistryKey class allows you to do the following:

• Get the number of immediate subkeys using the SubKeyCount property.

• Get a string array containing the names of all subkeys using the GetSubKeyNames
method.

• Get a RegistryKey reference to a subkey using the OpenSubKey method. The
OpenSubKey method provides two overloads: the first opens the named key as read-
only; the second accepts a bool argument that, if true, will open a writable
RegistryKey object.

Once you obtain a RegistryKey, you can create, read, update, and delete subkeys and values using
the methods listed in Table 14-4. Methods that modify the contents of the key require you to have a
writable RegistryKey object.

Table 14-4. RegistryKey Methods to Create, Read, Update, and Delete Registry Keys and Values

Method Description

CreateSubKey Creates a new subkey with the specified name and returns a writable RegistryKey
object. If the specified subkey already exists, CreateSubKey will return a writable
reference to the existing subkey.

DeleteSubKey Deletes the subkey with the specified name, which must be empty of subkeys (but
not values); otherwise, a System.InvalidOperationException is thrown.

DeleteSubKeyTree Deletes the subkey with the specified name along with all of its subkeys.

DeleteValue Deletes the value with the specified name from the current key.

GetValue Returns the value with the specified name from the current key. The value is
returned as an object, which you must cast to the appropriate type. The simplest
form of GetValue returns null if the specified value doesn’t exist. An overload allows
you to specify a default value to return (instead of null) if the named value doesn’t
exist.

GetValueKind Returns the registry data type of the value with the specified name in the current
key. The value is returned as a member of the Microsoft.Win32.RegistryValueKind
enumeration.

CHAPTER 14 ■ WINDOWS INTEGRATION

697

Method Description

GetValueNames Returns a string array containing the names of all values in the current registry key.

SetValue Creates (or updates) the value with the specified name. In 2.0, you can specify the
data type used to store the value with the overload that takes a RegistryValueKind as
last parameter. If you don’t provide such a value kind, one will be calculated
automatically, based on the managed type of the object you pass as value to set.

■ Tip On 64-bit versions of Windows, separate portions of the registry exist for 32-bit and 64-bit applications. The
RegistryView enumeration can be used as an argument to the static OpenBaseKey method of RegistryKey to
specify which portion of the registry is accessed. See the .NET Framework SDK documentation for further details.

The RegistryKey class implements IDisposable; you should call the IDisposable.Dispose method to
free operating system resources when you have finished with the RegistryKey object.

The Code
The following example takes a single command-line argument and recursively searches the CurrentUser
hive of the registry looking for keys with names matching the supplied argument. When the example
finds a match, it displays all string type values contained in the key to the console.

using System;
using Microsoft.Win32;

namespace Apress.VisualCSharpRecipes.Chapter14
{
 class Recipe14_05
 {
 public static void SearchSubKeys(RegistryKey root, String searchKey)
 {
 try
 {
 // Get the subkeys contained in the current key.
 string[] subkeys = root.GetSubKeyNames();

 // Loop through all subkeys contained in the current key.
 foreach (string keyname in subkeys)
 {
 try
 {
 using (RegistryKey key = root.OpenSubKey(keyname))
 {

CHAPTER 14 ■ WINDOWS INTEGRATION

698

 if (keyname == searchKey) PrintKeyValues(key);
 SearchSubKeys(key, searchKey);
 }
 }
 catch (System.Security.SecurityException)
 {
 // Ignore SecurityException for the purpose of the example.
 // Some subkeys of HKEY_CURRENT_USER are secured and will
 // throw a SecurityException when opened.
 }
 }
 }
 catch (UnauthorizedAccessException)
 {
 // Ignore UnauthorizedAccessException for the purpose of the example
 // - this exception is thrown if the user does not have the
 // rights to read part of the registry.
 }

 }

 public static void PrintKeyValues(RegistryKey key)
 {
 // Display the name of the matching subkey and the number of
 // values it contains.
 Console.WriteLine("Registry key found : {0} contains {1} values",
 key.Name, key.ValueCount);

 // Loop through the values and display.
 foreach (string valuename in key.GetValueNames())
 {
 if (key.GetValue(valuename) is String)
 {
 Console.WriteLine(" Value : {0} = {1}",
 valuename, key.GetValue(valuename));
 }
 }
 }

 public static void Main(String[] args)
 {
 if (args.Length > 0)
 {
 // Open the CurrentUser base key.
 using (RegistryKey root = Registry.CurrentUser)
 {
 // Search recursively through the registry for any keys
 // with the specified name.
 SearchSubKeys(root, args[0]);
 }
 }

CHAPTER 14 ■ WINDOWS INTEGRATION

699

 // Wait to continue.
 Console.WriteLine(Environment.NewLine);
 Console.WriteLine("Main method complete. Press Enter.");
 Console.ReadLine();
 }
 }
}

Usage
Running the example using the command Recipe14-05 Environment will display output similar to the
following when executed using the command on a machine running Windows 7:

Registry key found : HKEY_CURRENT_USER\Environment contains 2 values

 Value : TEMP = C:\Users\Adam\AppData\Local\Temp

 Value : TMP = C:\Users\Adam\AppData\Local\Temp

14-6. Create a Windows Service

Problem
You need to create an application that will run as a Windows service.

Solution
Create a class that extends System.ServiceProcess.ServiceBase. Use the inherited properties to control
the behavior of your service, and override inherited methods to implement the functionality required.
Implement a Main method that creates an instance of your service class and passes it to the static
ServiceBase.Run method.

■ Note The ServiceBase class is defined in the System.Serviceprocess.dll assembly, so you must include a
reference to this assembly when you build your service class.

How It Works
To create a Windows service manually, you must implement a class derived from the ServiceBase class.
The ServiceBase class provides the base functionality that allows the Windows Service Control Manager

CHAPTER 14 ■ WINDOWS INTEGRATION

700

(SCM) to configure the service, operate the service as a background task, and control the life cycle of the
service. The SCM also controls how other applications can control the service programmatically.

■ Tip If you are using Microsoft Visual Studio, you can use the Windows Service project template to create a
Windows service. The template provides the basic code infrastructure required by a Windows service class, which
you can extend with your custom functionality.

To control your service, the SCM uses the eight protected methods inherited from the ServiceBase
class described in Table 14-5. You should override these virtual methods to implement the functionality
and behavior required by your service. Not all services must support all control messages. The CanXXX
properties inherited from the ServiceBase class declare to the SCM which control messages your service
supports; Table 14-5 specifies the property that controls each operation.

Table 14-5. Methods That Control the Operation of a Service

Method Description

OnStart All services must support the OnStart method, which the SCM calls to start the
service. The SCM passes a string array containing arguments specified for the
service. These arguments can be specified when the ServiceController.Start
method is called, and are usually configured in the service’s property window in the
Windows Control Panel. However, they are rarely used, because it is better for the
service to retrieve its configuration information directly from the Windows registry.
The OnStart method must normally return within 30 seconds, or else the SCM will
abort the service. Your service must call the RequestAdditionalTime method of the
ServiceBase class if it requires more time; specify the additional milliseconds
required as an int.

OnStop Called by the SCM to stop a service—the SCM will call OnStop only if the CanStop
property is set to true.

OnPause Called by the SCM to pause a service—the SCM will call OnPause only if the
CanPauseAndContinue property is set to true.

OnContinue Called by the SCM to continue a paused service—the SCM will call OnContinue only if
the CanPauseAndContinue property is set to true.

OnShutdown Called by the SCM when the system is shutting down—the SCM will call OnShutdown
only if the CanShutdown property is set to true.

OnPowerEvent Called by the SCM when a system-level power status change occurs, such as a laptop
going into suspend mode. The SCM will call OnPowerEvent only if the
CanHandlePowerEvent property is set to true.

CHAPTER 14 ■ WINDOWS INTEGRATION

701

Method Description

OnCustomCommand Allows you to extend the service control mechanism with custom control messages;
see the .NET Framework SDK documentation for more details.

OnSessionChange Called by the SCM when a change event is received from the Terminal Services
session or when users log on and off on the local machine. A
System.ServiceProcess.SessionChangeDescription object passed as an argument by
the SCM contains details of what type of session change occurred. The SCM will call
OnSessionChange only if the CanHandleSessionChangeEvent property is set to true. This
method is new in the .NET Framework 2.0.

As mentioned in Table 14-5, the OnStart method is expected to return within 30 seconds, so you

should not use OnStart to perform lengthy initialization tasks if possible. A service class should
implement a constructor that performs initialization, including configuring the inherited properties of
the ServiceBase class. In addition to the properties that declare the control messages supported by a
service, the ServiceBase class implements three other important properties:

• ServiceName is the name used internally by the SCM to identify the service and
must be set before the service is run.

• AutoLog controls whether the service automatically writes entries to the event log
when it receives any of the OnStart, OnStop, OnPause, or OnContinue control
messages from Table 14-5.

• EventLog provides access to an EventLog object that’s preconfigured with an event
source name that’s the same as the ServiceName property registered against the
Application log. (See recipe 14-3 for more information about the EventLog class.)

The final step in creating a service is to implement a static Main method. The Main method must
create an instance of your service class and pass it as an argument to the static method ServiceBase.Run.

The Code
The following Windows service example uses a configurable System.Timers.Timer to write an entry to
the Windows event log periodically. You can start, pause, and stop the service using the Services
application in the Control Panel.

using System;
using System.Timers;
using System.ServiceProcess;

namespace Apress.VisualCSharpRecipes.Chapter14
{
 class Recipe14_06 : ServiceBase
 {
 // A Timer that controls how frequently the example writes to the
 // event log.
 private System.Timers.Timer timer;

CHAPTER 14 ■ WINDOWS INTEGRATION

702

 public Recipe14_06()
 {
 // Set the ServiceBase.ServiceName property.
 ServiceName = "Recipe 14_06 Service";

 // Configure the level of control available on the service.
 CanStop = true;
 CanPauseAndContinue = true;
 CanHandleSessionChangeEvent = true;

 // Configure the service to log important events to the
 // Application event log automatically.
 AutoLog = true;
 }

 // The method executed when the timer expires and writes an
 // entry to the Application event log.
 private void WriteLogEntry(object sender, ElapsedEventArgs e)
 {
 // Use the EventLog object automatically configured by the
 // ServiceBase class to write to the event log.
 EventLog.WriteEntry("Recipe14_06 Service active : " + e.SignalTime);
 }

 protected override void OnStart(string[] args)
 {
 // Obtain the interval between log entry writes from the first
 // argument. Use 5000 milliseconds by default and enforce a 1000
 // millisecond minimum.
 double interval;

 try
 {
 interval = Double.Parse(args[0]);
 interval = Math.Max(1000, interval);
 }
 catch
 {
 interval = 5000;
 }

 EventLog.WriteEntry(String.Format("Recipe14_06 Service starting. " +
 "Writing log entries every {0} milliseconds...", interval));

 // Create, configure, and start a System.Timers.Timer to
 // periodically call the WriteLogEntry method. The Start
 // and Stop methods of the System.Timers.Timer class
 // make starting, pausing, resuming, and stopping the
 // service straightforward.
 timer = new Timer();
 timer.Interval = interval;

CHAPTER 14 ■ WINDOWS INTEGRATION

703

 timer.AutoReset = true;
 timer.Elapsed += new ElapsedEventHandler(WriteLogEntry);
 timer.Start();
 }

 protected override void OnStop()
 {
 EventLog.WriteEntry("Recipe14_06 Service stopping...");
 timer.Stop();

 // Free system resources used by the Timer object.
 timer.Dispose();
 timer = null;
 }

 protected override void OnPause()
 {
 if (timer != null)
 {
 EventLog.WriteEntry("Recipe14_06 Service pausing...");
 timer.Stop();
 }
 }

 protected override void OnContinue()
 {
 if (timer != null)
 {
 EventLog.WriteEntry("Recipe14_06 Service resuming...");
 timer.Start();
 }
 }

 protected override void OnSessionChange(SessionChangeDescription change)
 {
 EventLog.WriteEntry("Recipe14_06 Session change..." +
 change.Reason);
 }

 public static void Main()
 {
 // Create an instance of the Recipe14_06 class that will write
 // an entry to the Application event log. Pass the object to the
 // static ServiceBase.Run method.
 ServiceBase.Run(new Recipe14_06());
 }
 }
}

CHAPTER 14 ■ WINDOWS INTEGRATION

704

Usage
If you want to run multiple services in a single process, you must create an array of ServiceBase objects
and pass it to the ServiceBase.Run method. Although service classes have a Main method, you can’t
execute service code directly or run a service class directly. Recipe 14-7 describes what you must do to
install your service before it will execute.

14-7. Create a Windows Service Installer

Problem
You have created a Windows service application and need to install it.

Solution
Add a new class to your Windows service project that extends the System.Configuration.Install.
Installer class to create an installer class containing the information necessary to install and configure
your service class. Use the Installer tool (Installutil.exe) to perform the installation, which is installed
as part of the .NET Framework.

■ Note You must create the installer class in the same assembly as the service class for the service to install and
function correctly.

How It Works
As recipe 14-6 points out, you cannot run service classes directly. The high level of integration with the
Windows operating system and the information stored about the service in the Windows registry means
services require explicit installation.

If you have Microsoft Visual Studio .NET, you can create an installation component for your service
automatically by right-clicking in the design view of your service class and selecting Add Installer from
the context menu. You can call this installation component by using deployment projects or by using the
Installer tool to install your service. You can also create installer components for Windows services
manually by following these steps:

1. In your project, create a class derived from the Installer class.

2. Apply the attribute System.ComponentModel.RunInstallerAttribute(true) to
the installer class.

3. In the constructor of the installer class, create a single instance of the
System.ServiceProcess.ServiceProcessInstaller class. Set the Account, User,
and Password properties of ServiceProcessInstaller to configure the account
under which your service will run. This account must already exist.

CHAPTER 14 ■ WINDOWS INTEGRATION

705

4. In the constructor of the installer class, create one instance of the
System.ServiceProcess.ServiceInstaller class for each individual service you
want to install. Use the properties of the ServiceInstaller objects to configure
information about each service, including the following:

• ServiceName, which specifies the name Windows uses internally to identify
the service. This must be the same as the value assigned to the
ServiceBase.ServiceName property.

• DisplayName, which provides a user-friendly name for the service.

• StartType, which uses values of the
System.ServiceProcess.ServiceStartMode enumeration to control whether
the service is started automatically or manually, or is disabled.

• ServiceDependsUpon, which allows you to provide a string array containing a
set of service names that must be started before this service can start.

5. Add the ServiceProcessInstaller object and all ServiceInstaller objects to
the System.Configuration.Install.InstallerCollection object accessed
through the Installers property, which is inherited by your installer class
from the Installer base class.

The Code
The following example is an installer for the Recipe14_06 Windows service created in recipe 14-6. The
sample project contains the code from recipe 14-6 and for the installer class. This is necessary for the
service installation to function correctly. To compile the example, you must reference two additional
assemblies: System.Configuration.Install.dll and System.ServiceProcess.dll.

using System.Configuration.Install;
using System.ServiceProcess;
using System.ComponentModel;

namespace Apress.VisualCSharpRecipes.Chapter14
{
 [RunInstaller(true)]
 public class Recipe14_07 : Installer
 {
 public Recipe14_07()
 {
 // Instantiate and configure a ServiceProcessInstaller.
 ServiceProcessInstaller ServiceExampleProcess =
 new ServiceProcessInstaller();
 ServiceExampleProcess.Account = ServiceAccount.LocalSystem;

 // Instantiate and configure a ServiceInstaller.
 ServiceInstaller ServiceExampleInstaller =
 new ServiceInstaller();
 ServiceExampleInstaller.DisplayName =
 "Visual C# Recipes Service Example";

CHAPTER 14 ■ WINDOWS INTEGRATION

706

 ServiceExampleInstaller.ServiceName = "Recipe 14_06 Service";
 ServiceExampleInstaller.StartType = ServiceStartMode.Automatic;

 // Add both the ServiceProcessInstaller and ServiceInstaller to
 // the Installers collection, which is inherited from the
 // Installer base class.
 Installers.Add(ServiceExampleInstaller);
 Installers.Add(ServiceExampleProcess);
 }
 }
}

Usage
To install the Recipe14_06 service, build the project, navigate to the directory where Recipe14-07.exe is
located (bin\debug by default), and execute the command Installutil Recipe14-07.exe—you will need
to do this as an administrator. You can then see and control the Visual C# Recipes Service Example
service using the Windows Computer Management console. However, even though you have specified a
StartType of Automatic, the service is initially installed without being started; you must start the service
manually (or restart your computer) before the service will write entries to the event log. Once the
service is running, you can view the entries it writes to the Application event log using the Event Viewer
application. To uninstall the Recipe14_06 service, add the /u switch to the Installutil command, as
follows: Installutil /u Recipe14-07.exe.

■ Note If you have the Service application from the Control Panel open when you uninstall the service, the service
will not uninstall completely until you close the Service application. Once you close the Service application, you
can reinstall the service; otherwise, you will get an error telling you that the installation failed because the service
is scheduled for deletion.

14-8. Create a Shortcut on the Desktop or Start Menu

Problem
You need to create a shortcut on the user’s Windows desktop or Start menu.

Solution
Use COM Interop to access the functionality of the Windows Script Host. Create and configure an
IWshShortcut instance that represents the shortcut. The folder in which you save the shortcut
determines whether it appears on the desktop or in the Start menu.

CHAPTER 14 ■ WINDOWS INTEGRATION

707

How It Works
The .NET Framework class library does not include the functionality to create desktop or Start menu
shortcuts; however, this is relatively easy to do using the Windows Script Host component accessed
through COM Interop. Chapter 15 describes how to create an Interop assembly that provides access to a
COM component. If you are using Visual Studio, add a reference to the Windows Script Host object
model, listed on the COM tab of the Add Reference dialog box. If you don’t have Visual Studio .NET, use
the Type Library Importer (Tlbimp.exe) to create an Interop assembly for the wshom.ocx file, which is
usually located in the Windows\System32 folder. (You can obtain the latest version of the Windows Script
Host from http://msdn.microsoft.com/scripting.)

Once you have generated the Interop assembly and imported it into your project, follow these steps
to create a desktop or Start menu shortcut.

1. Instantiate a WshShell object, which provides access to the Windows shell.

2. Use the SpecialFolders property of the WshShell object to determine the
correct path of the folder where you want to put the shortcut. You must specify
the name of the folder you want as an index to the SpecialFolders property.
For example, to create a desktop shortcut, specify the value Desktop, and to
create a Start menu shortcut, specify StartMenu. Using the SpecialFolders
property, you can obtain the path to any of the special system folders. If the
specified folder does not exist on the platform you are running on,
SpecialFolders returns an empty string. Other commonly used values include
AllUsersDesktop and AllUsersStartMenu; you can find the full list of special
folder names in the section on the SpecialFolders property in the Windows
Script Host documentation.

3. Call the CreateShortcut method of the WshShell object, and provide the fully
qualified file name of the shortcut file you want to create. The file should have
the extension .lnk. CreateShortcut will return an IWshShortcut instance.

4. Use the properties of the IWshShortcut instance to configure the shortcut. You
can configure properties such as the executable that the shortcut references, a
description for the shortcut, a hotkey sequence, and the icon displayed for the
shortcut.

5. Call the Save method of the IWshShortcut instance to write the shortcut to disk.
The shortcut will appear either on the desktop or in the Start menu (or
elsewhere), depending on the path specified when the IWshShortcut instance
was created.

The Code
The following example class creates a shortcut to Notepad.exe on both the desktop and Start menu of the
current user. The example creates both shortcuts by calling the CreateShortcut method and specifying a
different destination folder for each shortcut file. This approach makes it possible to create the shortcut
file in any of the special folders returned by the WshShell.SpecialFolders property.

http://msdn.microsoft.com/scripting
http://msdn.microsoft.com/scripting

CHAPTER 14 ■ WINDOWS INTEGRATION

708

using System;
using System.IO;
using IWshRuntimeLibrary;

namespace Apress.VisualCSharpRecipes.Chapter14
{
 class Recipe14_08
 {
 public static void CreateShortcut(string destination)
 {
 // Create a WshShell instance through which to access the
 // functionality of the Windows shell.
 WshShell wshShell = new WshShell();

 // Assemble a fully qualified name that places the Notepad.lnk
 // file in the specified destination folder. You could use the
 // System.Environment.GetFolderPath method to obtain a path, but
 // the WshShell.SpecialFolders method provides access to a wider
 // range of folders. You need to create a temporary object reference
 // to the destination string to satisfy the requirements of the
 // Item method signature.
 object destFolder = (object)destination;
 string fileName = Path.Combine(
 (string)wshShell.SpecialFolders.Item(ref destFolder),
 "Notepad.lnk"
);

 // Create the shortcut object. Nothing is created in the
 // destination folder until the shortcut is saved.
 IWshShortcut shortcut =
 (IWshShortcut)wshShell.CreateShortcut(fileName);

 // Configure the fully qualified name to the executable.
 // Use the Environment class for simplicity.
 shortcut.TargetPath = Path.Combine(
 Environment.GetFolderPath(Environment.SpecialFolder.System),
 "notepad.exe"
);

 // Set the working directory to the Personal (My Documents) folder.
 shortcut.WorkingDirectory =
 Environment.GetFolderPath(Environment.SpecialFolder.Personal);

 // Provide a description for the shortcut.
 shortcut.Description = "Notepad Text Editor";

 // Assign a hotkey to the shortcut.
 shortcut.Hotkey = "CTRL+ALT+N";

 // Configure Notepad to always start maximized.
 shortcut.WindowStyle = 3;

CHAPTER 14 ■ WINDOWS INTEGRATION

709

 // Configure the shortcut to display the first icon in Notepad.exe.
 shortcut.IconLocation = "notepad.exe, 0";

 // Save the configured shortcut file.
 shortcut.Save();
 }

 public static void Main()
 {
 // Create the Notepad shortcut on the desktop.
 CreateShortcut("Desktop");

 // Create the Notepad shortcut on the Windows Start menu of
 // the current user.
 CreateShortcut("StartMenu");

 // Wait to continue.
 Console.WriteLine(Environment.NewLine);
 Console.WriteLine("Main method complete. Press Enter.");
 Console.ReadLine();
 }
 }
}

14-9. Create a Windows 7 Jump List

Problem
You need to create a Windows 7 Jump List for your application.

Solution
Use the features of Windows API CodePack for Microsoft .NET Framework. Create and configure a
JumpList instance for your application. The items that you add to the JumpList define the tasks,
documents, and categories that appear in the Windows taskbar.

How It Works
Windows API CodePack for Microsoft .NET Framework is a source code library published by Microsoft to
simplify integration with Windows using managed code. One feature of the CodePack is support for the
Windows 7 taskbar. There is nothing in the CodePack that you could not write yourself, but using the
CodePack is simpler and quicker, and provides a consistent API that Microsoft will support across
Windows versions. (You can download the CodePack from

http://code.msdn.microsoft.com/WindowsAPICodePack).

http://code.msdn.microsoft.com/WindowsAPICodePack
http://code.msdn.microsoft.com/WindowsAPICodePack

CHAPTER 14 ■ WINDOWS INTEGRATION

710

Once you have compiled the library, reference the Microsoft.WindowsAPICodePack.dll and
Microsoft.WindowsAPICodePack.Shell.dll assemblies (these files will be in Shell\bin\debug folder
within the CodePack directory) and follow these steps to create and populate a Jump List:

1. Import the Microsoft.WindowsAPICodePack.Shell and
Microsoft.WindowsAPICodePack.Taskbar namespaces with the using directive.

2. Add an event handler to the Shown member of your application class.

3. Within the event handler, call the static method JumpList.CreateJumpList to
create a new JumpList instance for your application.

4. Create instances of JumpListLink to represent tasks and documents and add
them to the JumpList instance using the AddUserTasks method.

■ Note The JumpList class can also be used to display recently used documents, but only if your application is
registered as a handler for the document types you display. See the Windows API CodePack for details and
example code to handle document type registration.

The Code
The following example uses the Microsoft.WindowsAPICodePack.Taskbar.JumpList class to populate the
Windows 7 Jump List with three items. The first item opens a command prompt. The second item opens
Notepad and displays the Notepad icon in the Jump List. The third item shows how to open another
application’s file using a Jump List. To compile the example, you must build the Windows API CodePack
for .NET Framework and reference the Microsoft.WindowsAPICodePack.dll and
Microsoft.WindowsAPICodePack.Shell.dll assemblies.

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.IO;
using System.Windows.Forms;

using Microsoft.WindowsAPICodePack.Shell;
using Microsoft.WindowsAPICodePack.Taskbar;

namespace Recipe14_09
{
 public partial class Form1 : Form
 {
 public Form1()
 {

CHAPTER 14 ■ WINDOWS INTEGRATION

711

 // Call the default intializer.
 InitializeComponent();

 // Register an event handler for when the windows is shown.
 this.Shown += new EventHandler(onWindowShown);
 }

 void onWindowShown(object sender, EventArgs e)
 {
 // Create a new Jump List.
 JumpList jumpList = JumpList.CreateJumpList();

 // Create a user task.
 jumpList.AddUserTasks(
 new JumpListLink("cmd.exe", "Open Command Prompt"));

 // Create a user task with an icon.
 jumpList.AddUserTasks(new JumpListLink("notepad.exe", "Open Notepad")
 {
 IconReference = new IconReference("notepad.exe", 0)
 });

 // Create a user task with a document.
 jumpList.AddUserTasks(
 new JumpListLink(@"C:\Users\Adam\Desktop\test.txt",

 "Open Text File"));

 }
 }
}

14-10. Use Windows Search

Problem
You need to search the Windows file system.

Solution
Use Microsoft Windows API CodePack for .NET Framework to access the Windows Search feature.
Create one or more Microsoft.WindowsAPICodePack.Shell.SearchConditions to define the constraints for
your search and pass them to an instance of Microsoft.WindowsAPICodePack.Shell.ShellSearchFolder.
The ShellSearchFolder acts as a collection whose members represent the results of your search. The
Windows API CodePack for .NET Framework is a source code library published by Microsoft to simplify
integration with Windows using managed code. (You can download the CodePack from
http://code.msdn.microsoft.com/WindowsAPICodePack).

http://code.msdn.microsoft.com/WindowsAPICodePack
http://code.msdn.microsoft.com/WindowsAPICodePack

CHAPTER 14 ■ WINDOWS INTEGRATION

712

How It Works
The search model is built around conditions and locations. Conditions are the individual aspects of a file
that match your search—for example, if you needed to find files text files that have “windows” in the file
name, the constrains would be:

1. Files that have the .txt extension

2. Files that have the word windows in the file name.

Locations are where you want the search to be conducted and can include Windows 7 libraries.
When using the CodePack, searches are created and performed as follows:

1. Create one or more instances of SearchCondition using the
SearchConditionFactory.CreateLeafCondition method. The CreateLeafCondition method
accepts three parameters:

• A property of the SystemProperties.System class. The System class contains
properties for all of the attributes you can search for—some of the most
commonly used are described in Table 14-6.

• The data value to match when searching. This must match the data type of
the preceding attribute.

• A value from the SearchConditionOperation enumeration. This value
specifies the way in which the data value is matched (equals, greater than,
less than, etc.). Commonly used members are described in Table 14-7.

2. If you have created more than one SearchCondition, you must combine them
with the SearchConditionFactory.CreateAndOrCondition method. This method
takes a value from the SearchConditionType enumeration (And, Or, Not) that
specifies how the individual conditions are combined.

3. Create a new instance of the ShellSearchFolder class, using the
SearchCondition you previously created and one or more locations as
constructor parameters. The CodePack includes the KnownFolders
enumeration, whose members reference useful directories and libraries.

4. Treat the ShellSearchFolder as a collection. Enumerating the contents will
return the results of your search, with each file represented by an instance of
ShellObject.

■ Tip Your search is not performed until you try to access the members of the ShellSearchFolder collection—at
which point the current thread is blocked until the search has completed. Perform the search in a background
thread to avoid an unresponsive application.

CHAPTER 14 ■ WINDOWS INTEGRATION

713

Table 14-6. Commonly Used Members of the SystemProperties.System Class

Property Data Type Description

DateModified DateTime The last time that the file was changed

DateCreated DateTime The time the file was created

FileExtention String The extension for the file, including the period

FileName String The name of the file, including the file extension

FileOwner String The owner of the file

Table 14-7. Commonly Used Members of the SearchConditionOperation Class

Member Description

Equal The file attribute and the target value are the same.

NotEqual The file attribute and the target value are different.

ValueContains The file attribute contains the target value (for example, “windows” contains “win”).

ValueStartsWith The file attribute starts with the target value (for example, “windows” starts with
“win”).

ValueEndsWith The file attribute ends with the target value (for example, “Microsoft” ends with
“soft”).

ValueNotContains The file attribute does not contains the target value (for example, “Microsoft” does
not contain “win”).

LessThan The file attribute is less than the target value.

GreaterThan The file attribute is greater than the target value.

The Code
The following example is a Windows Forms application that uses the FileExtension and FileName
attributes to search for files in the current user’s directories. The user interface, built using the Visual
Studio designer, is shown in Figure 14-1. To compile the example, you must build Windows API
CodePack for Microsoft .NET Framework and reference the Microsoft.WindowsAPICodePack.dll and
Microsoft.WindowsAPICodePack.Shell.dll assemblies.

CHAPTER 14 ■ WINDOWS INTEGRATION

714

Figure 14-1. Example search application

The button1_Click method is called when the Search button is pressed. A SearchCondition is
created using the values that the user has entered for the file name and extension, and combined using
the SearchConditionType.And enumeration value. The search results are read from the
ShellSearchFolder and name of each file found is added to the large text box.

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Windows.Forms;
using Microsoft.WindowsAPICodePack.Shell;
using Microsoft.WindowsAPICodePack.Shell.PropertySystem;

namespace Recipe14_10
{
 public partial class Recipe14_10 : Form
 {

CHAPTER 14 ■ WINDOWS INTEGRATION

715

 public Recipe14_10()
 {
 InitializeComponent();
 }

 private void button1_Click(object sender, EventArgs e)
 {
 // Create the leaf condition for the file extension.
 SearchCondition fileExtCondition =
 SearchConditionFactory.CreateLeafCondition(
 SystemProperties.System.FileExtension, textBox1.Text,
 SearchConditionOperation.Equal);

 // Create the leaf condition for the file name.
 SearchCondition fileNameCondition =
 SearchConditionFactory.CreateLeafCondition(
 SystemProperties.System.FileName, textBox2.Text,
 SearchConditionOperation.ValueContains);

 // Combine the two leaf conditions.
 SearchCondition comboCondition =
 SearchConditionFactory.CreateAndOrCondition(
 SearchConditionType.And,
 false, fileExtCondition, fileNameCondition);

 // Create the search folder.
 ShellSearchFolder searchFolder = new ShellSearchFolder(
 comboCondition, (ShellContainer)KnownFolders.UsersFiles);

 // Clear the result text box.
 textBox3.Clear();
 textBox3.AppendText("Processing search results...\n");

 // Run through each search result.
 foreach (ShellObject shellObject in searchFolder)
 {
 textBox3.AppendText("Result: "
 + shellObject.ParsingName + "\n");
 }

 // Display a final message to the user.
 textBox3.AppendText("All results processed\n");

 }
 }
}

CHAPTER 14 ■ WINDOWS INTEGRATION

716

14-11. Check Internet Connectivity

Problem
You need to check that the computer has Internet access.

Solution
Use the Windows API CodePack for Microsoft .NET Framework to access to enumerate the available
network connections and determine which, if any, are connected to the Internet. The Windows API
CodePack for Microsoft .NET Framework is a source code library published by Microsoft to simplify
integration with Windows using managed code. (You can download the CodePack from http://code.
msdn.microsoft.com/WindowsAPICodePack).

How It Works
The Microsoft.WindowsAPICodePack.Net.NetworkListManager class contains the IsConnectedToInternet
property. If this returns true, the GetNetworks method can be used to obtain a collection of connected
networks, each of which is represented by the Microsoft.WindowsAPICodePack.Net.Network class.

The Code
The following example uses the IsConnectedToInternet property of the Microsoft.WindowsAPICodePack.
Net.NetworkListManager class, and if the result is positive, gets the list of network connections and
writes out the name of those that are connected. To compile the example, you must build Windows API
CodePack for Microsoft .NET Framework and reference the Microsoft.WindowsAPICodePack.dll
assembly.

using System;
using Microsoft.WindowsAPICodePack.Net;

namespace Recipe14_11
{
 class Recipe14_11
 {
 static void Main(string[] args)
 {
 // Check the internet connection state.
 bool isInternetConnected =
 NetworkListManager.IsConnectedToInternet;

 Console.WriteLine("Machine connected to Internet: {0}",
 isInternetConnected);

 if (isInternetConnected)
 {

http://code

CHAPTER 14 ■ WINDOWS INTEGRATION

717

 // Get the list of all network connections.
 NetworkCollection netCollection =
 NetworkListManager.GetNetworks(
 NetworkConnectivityLevels.Connected);

 // Work through the set of connections and write out the
 // name of those that are connected to the internet.
 foreach (Network network in netCollection)
 {
 if (network.IsConnectedToInternet)
 {
 Console.WriteLine(
 "Connection {0} is connected to the internet",
 network.Name);
 }
 }
 }

 Console.WriteLine("\nMain method complete. Press Enter.");
 Console.ReadLine();
 }
 }
}

14-12. Display a Task Dialog

Problem
You need to display a task dialog—a standard Windows-specific dialog box, such as an elevated task
request.

Solution
Use Windows API CodePack for Microsoft .NET Framework to create and display task dialogs. Windows
API CodePack for Microsoft .NET Framework is a source code library published by Microsoft to simplify
integration with Windows using managed code—it contains extensive support for Windows-specific
dialog boxes, which allow your application to better integrate with the platform. (You can download the
CodePack from http://code.msdn.microsoft.com/WindowsAPICodePack).

How It Works
Create an instance of the Microsoft.WindowsAPICodePack.Dialogs.TaskDialog class and use the class
properties to configure the task dialog. Add event handlers so that you are notified when buttons are
pressed and then call the Show method to display the dialog. Some of the most useful properties of the
TaskDialog class are shown in Table 14-8.

http://code.msdn.microsoft.com/WindowsAPICodePack
http://code.msdn.microsoft.com/WindowsAPICodePack

CHAPTER 14 ■ WINDOWS INTEGRATION

718

Table 14-8. Selected Properties of the TaskDialog Class

Property Description

Cancelable Determines if the user can dismiss the dialog.

Controls The set of controls embedded within the task dialog. See the recipe code for an
example.

InstructionText The summary text displayed in the dialog.

StandardButtons The standard buttons for the dialog. Set with the values of the
TaskDialogStandardButtons enumeration. See the recipe code for an example.

Text The detailed text, displayed below the InstructionText.

The Code
The following example is a Windows Forms application comprising a button and a text area. To compile
the example, you must build the Windows API CodePack for Microsoft .NET Framework and reference
the Microsoft.WindowsAPICodePack.dll assembly. The user interface is shown in Figure 14-2. We have
added an event handler such that the showElevatedTaskRequest method is called when the button is
clicked.

Figure 14-2. Windows Forms interface

CHAPTER 14 ■ WINDOWS INTEGRATION

719

When the button is clicked, we create a new instance of TaskDialog and configure the basic settings,
allowing the user to cancel the dialog and specifying which buttons should be displayed at the bottom of
the dialog window. We then create an instance of TaskDialogCommandLink, using sample text as the
constructor parameters and add it to the TaskDialog.Controls property. We register an event handler so
that we can add a line of text to the text box on the main window when the elevated task button is
clicked. The dialog interface is shown in Figure 14-3.

Figure 14-3. Elevated task dialog

■ Note Using the task dialog to allow your application to indicate to a user that a particular task requires elevated
privileges does not elevate the privilege level for your application. See recipe 14-15 for details of how to perform
an elevated task.

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Windows.Forms;
using Microsoft.WindowsAPICodePack.Dialogs;

namespace Recipe14_12
{
 public partial class Form1 : Form
 {

CHAPTER 14 ■ WINDOWS INTEGRATION

720

 public Form1()
 {
 InitializeComponent();
 }

 void showElevatedTaskRequest(object sender, EventArgs args)
 {
 // Create the TaskDialog and configure the basics.
 TaskDialog taskDialog = new TaskDialog();
 taskDialog.Cancelable = true;
 taskDialog.InstructionText = "This is a Task Dialog";
 taskDialog.StandardButtons =

TaskDialogStandardButtons.Ok | TaskDialogStandardButtons.Close;

 // Create the control that will represent the elevated task.
 TaskDialogCommandLink commLink = new TaskDialogCommandLink(
 "adminTask", "First Line Of Text", "Second Line of Text");
 commLink.ShowElevationIcon = true;

 // Add the control to the task dialog.
 taskDialog.Controls.Add(commLink);

 // Add an event handler to the command link so that
 // we are notified when the user presses the button.
 commLink.Click += new EventHandler(performElevatedTask);

 // display the task dialog
 taskDialog.Show();
 }

 void performElevatedTask(object sender, EventArgs args)
 {
 textBox1.AppendText("Elevated task button pressed\n");
 }
 }
}

14-13. Write Custom Performance Counters

Problem
You need to create and write to performance counters to instrument your application.

CHAPTER 14 ■ WINDOWS INTEGRATION

721

Solution
To set up the counters, add one or more instances of System.Diagnostics.CounterCreateData, add them
to an instance of System.Diagnostics.CounterCreationDataCollection, and pass the collection as an
argument to the Create method of the System.Diagnostics.PerformanceCounterCategory class.

■ Note Creating new counters requires administrator privileges.

To write to a counter, create an instance of System.Diagnostics.PerformanceCounter using the same
details you specified when creating the corresponding CounterCreateData instance. Ensure that the
ReadOnly property is false. Use the Increment, IncrementBy, Decrement, and DecrementBy methods to
change the value of the counter.

How It Works
Counters are grouped together in categories. You can determine if a category already exists by using the
PerformanceCategory.Exists method—an exception will be thrown if you try to create a category that
already exists. An individual counter is created using the CounterCreationData class. The three key
properties are CounterName (the name of the counter), CounterHelp (a descriptive string that can be
displayed to the user), and CounterType, which defines the kind of counter that will be created. There are
many kinds of counters available, ranging from simple 32- and 64-bit values to pairs of counters that
must be created together so that Windows can calculate rate information (see the recipe code for an
example of this). The range of counter types available is described in the System.Diagnostic.
PerformanceCounterType enumeration.

Writing to performance counters uses a different set of classes. To write to a counter, create an
instance of the PerformanceCounter class, setting the CategoryName property and CounterName properties
to those you used when creating the category and counters. PerformanceCounter values can be
incremented using the Increment and IncrementBy methods, decremented using the Decrement and
DecrementBy methods, and set to a specific value using the RawValue property.

The Code
The following example creates a new performance counter category called Recipe 14-13 Performance
Counters and populates it with three counters: NumberOfItems32, AverageTimer32, and AverageBase.

Two of the counters are closely related. When creating a counter of the AverageTimer32 type, the
next counter that is created must be of the AverageBase type. The two counters are used together to
report the number of occurrences of an operation over time. We update the AverageBase value to report
how many operations have been performed and the AverageTimer32 value to report how many ticks have
passed since you last updated the AverageBase value.

Having created the category and counters, we then create three instance of PerformanceCounter and
enter a loop so that the counter values are updated randomly.

CHAPTER 14 ■ WINDOWS INTEGRATION

722

■ Caution AverageTimer32 should be updated with the number of ticks reported by the Windows high-resolution
performance counter. The counter value is not available through a managed library, and must be obtained using
the QueryPerformanceCounter method in Kernel32.dll. You can see how the DLL is imported and used in the
example.

using System;
using System.Security.Principal;
using System.Diagnostics;
using System.Runtime.InteropServices;

namespace Recipe14_13
{
 class Recipe14_13
 {

 [DllImport("Kernel32.dll")]
 public static extern void QueryPerformanceCounter(ref long ticks);

 static void Main(string[] args)
 {

 if (!checkElevatedPrivilege())
 {
 Console.WriteLine("This recipe requires administrator rights");
 Console.ReadLine();
 Environment.Exit(1);
 }

 // Define the category name for the performance counters.
 string categoryName = "Recipe 14-13 Performance Counters";

 if (!PerformanceCounterCategory.Exists(categoryName))
 {
 Console.WriteLine("Creating counters.");

 // We need to create the category.
 CounterCreationDataCollection counterCollection
 = new CounterCreationDataCollection();

 // Create the individual counters.
 CounterCreationData counter1 = new CounterCreationData();
 counter1.CounterType = PerformanceCounterType.NumberOfItems32;
 counter1.CounterName = "Number of Items Counter";
 counter1.CounterHelp = "A sample 32-bit number counter";

 CounterCreationData counter2 = new CounterCreationData();
 counter2.CounterType = PerformanceCounterType.AverageTimer32;

CHAPTER 14 ■ WINDOWS INTEGRATION

723

 counter2.CounterName = "Average Timer Counter";
 counter2.CounterHelp = "A sample average timer counter";

 CounterCreationData counter3 = new CounterCreationData();
 counter3.CounterType = PerformanceCounterType.AverageBase;
 counter3.CounterName = "Average Base Counter";
 counter3.CounterHelp = "A sample average base counter";

 // Add the counters to the collection.
 counterCollection.Add(counter1);
 counterCollection.Add(counter2);
 counterCollection.Add(counter3);

 // Create the counters category.
 PerformanceCounterCategory.Create(categoryName,
 "Category for Visual C# Recipe 14-13",
 PerformanceCounterCategoryType.SingleInstance,
 counterCollection);
 }
 else
 {
 Console.WriteLine("Counters already exist.");
 }

 // Open the counters for reading.
 PerformanceCounter perfCounter1 = new PerformanceCounter();
 perfCounter1.CategoryName = categoryName;
 perfCounter1.CounterName = "Number of Items Counter";
 perfCounter1.ReadOnly = false;

 PerformanceCounter perfCounter2 = new PerformanceCounter();
 perfCounter2.CategoryName = categoryName;
 perfCounter2.CounterName = "Average Timer Counter";
 perfCounter2.ReadOnly = false;

 PerformanceCounter perfCounter3 = new PerformanceCounter();
 perfCounter3.CategoryName = categoryName;
 perfCounter3.CounterName = "Average Base Counter";
 perfCounter3.ReadOnly = false;

 // Create a number generator to produce values.
 Random numberGenerator = new Random();

 // Enter a loop to update the values every second.
 long startTickCount = 0, endTickCount = 0;
 while (true)
 {
 // Get the high-frequency tick count.
 QueryPerformanceCounter(ref startTickCount);
 // put the thread to sleep for up to a second
 System.Threading.Thread.Sleep(numberGenerator.Next(1000));

CHAPTER 14 ■ WINDOWS INTEGRATION

724

 // Get the high-frequency tick count again.
 QueryPerformanceCounter(ref endTickCount);

 Console.WriteLine("Updating counter values.");
 perfCounter1.Increment();
 perfCounter2.IncrementBy(endTickCount - startTickCount);
 perfCounter3.Increment();
 }
 }

 static bool checkElevatedPrivilege()
 {
 WindowsIdentity winIdentity = WindowsIdentity.GetCurrent();
 WindowsPrincipal winPrincipal = new WindowsPrincipal(winIdentity);
 return winPrincipal.IsInRole(WindowsBuiltInRole.Administrator);
 }
 }
}

14-14. Read Performance Counters

Problem
You need to read performance counter values.

Solution
Create an instance of the System.Diagnostics.PerformanceCounter class for each counter that you want
to read, specifying the counter category and name as constructor arguments. Read data values by calling
the NextValue method.

How It Works
The process for reading performance counter values is very similar to that for writing values, except that
instead of using the Increment and Decrement methods, the NextSample method is called to return data
points as float values.

■ Note Administrator privileges are required to read performance counters.

CHAPTER 14 ■ WINDOWS INTEGRATION

725

The Code
The following example reads values from the counters that we created in the previous recipe. In the
previous recipe, we noted that two of the counters were related. When reading data from such a pair,
you only read values from the first counter—Windows returns the calculated value (the number of
operations/second). If you need to access the underlying data, then consult the .NET documentation for
details of the System.Diagnostics.CounterSample class, instances of which can be obtained from the
PerformanceCounter.NextSample method. You must run the previous example at the same time as this
example; otherwise, you will only be able to read zeros from the counters, as no updates will be
generated.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Diagnostics;
using System.Security.Principal;

namespace Recipe14_14
{
 class Recipe14_14
 {
 static void Main(string[] args)
 {

 if (!checkElevatedPrivilege())
 {
 Console.WriteLine("This recipe requires administrator rights");
 Console.ReadLine();
 Environment.Exit(1);
 }

 // Define the category name for the performance counters.
 string categoryName = "Recipe 14-13 Performance Counters";

 // Open the counters for reading.
 PerformanceCounter perfCounter1 = new PerformanceCounter();
 perfCounter1.CategoryName = categoryName;
 perfCounter1.CounterName = "Number of Items Counter";

 PerformanceCounter perfCounter2 = new PerformanceCounter();
 perfCounter2.CategoryName = categoryName;
 perfCounter2.CounterName = "Average Timer Counter";

 while (true)
 {
 float value1 = perfCounter1.NextValue();
 Console.WriteLine("Value for first counter: {0}", value1);
 float value2 = perfCounter2.NextValue();
 Console.WriteLine("Value for second counter: {0}", value2);

CHAPTER 14 ■ WINDOWS INTEGRATION

726

 // Put the thread to sleep for a second.
 System.Threading.Thread.Sleep(1000);
 }
 }

 static bool checkElevatedPrivilege()
 {
 WindowsIdentity winIdentity = WindowsIdentity.GetCurrent();
 WindowsPrincipal winPrincipal = new WindowsPrincipal(winIdentity);
 return winPrincipal.IsInRole(WindowsBuiltInRole.Administrator);
 }
 }
}

14-15. Obtain Elevated Privileges

Problem
You need elevated (administrator) privileges for part of your application’s functionality.

Solution
Use the runas command to start a second instance of your application with elevated privileges using a
command-line argument to indicate that the privileged operations should be performed.

How It Works
Windows doesn’t support temporarily elevating privileges for a process. If your application needs
elevated privileges for specific tasks, create a second process that starts your application with elevated
privileges and use command-line arguments to indicate that elevated tasks should be performed.

To execute a process with elevated privileges, create a new instance of the
System.Diagnostics.ProcessStartInfo class, set the Verb property to runas and the Arguments property
to be a string that represents a request for elevated actions (we use elevated in the following example).
Pass the ProcessStartInfo instance to the static System.Diagnostics.Process.Start method. In your
application’s Main method, check the arguments to determine whether you should perform the elevated
tasks or run normally. Encapsulate the tasks that require elevated privileges in separate methods and
invoke them when your application is started using the command-line argument.

■ Tip If your application needs to perform different sets of elevated tasks, use an additional argument to indicate
which set should be executed.

CHAPTER 14 ■ WINDOWS INTEGRATION

727

The Code
In the following example, the performNormalTasks method represents normal operation and the
performElevatedTasks method represents the tasks that require elevation. When the example is started,
the Main method is called and the arguments are checked to determine which of these methods should
be called.

The checkElevatedPrivilege method uses the System.Security.Principal.WindowsIdentity and
System.Security.Principal.WindowsPrincipal classes to establish our privilege level. We don’t want to
start a new process if the application has been started with elevated privileges, so the
performNormalTasks method checks the elevation level before calling the startElevatedInstance
method.

Starting the example normally will result in an elevated process being started with the elevated
argument. The new process will perform the elevated task and then exit. Starting the process as
administrator will result in the elevated tasks being performed within the same process.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Security.Principal;
using System.Diagnostics;

namespace Recipe14_15
{
 class Program
 {
 static void Main(string[] args)
 {
 // Check to see if the first argument is "elevated".
 if (args.Length > 0 && args[0] == "elevated")
 {
 Console.WriteLine("Started with command line argument");
 performElevatedTasks();
 }
 else
 {
 Console.WriteLine("Started without command line argument");
 performNormalTasks();
 }
 }

 static void performNormalTasks()
 {

 Console.WriteLine("Press return to perform elevated tasks");
 Console.ReadLine();
 // Check to see if we have been started with elevated privileges.
 if (checkElevatedPrivilege())
 {

CHAPTER 14 ■ WINDOWS INTEGRATION

728

 // We already have privileges - perform the tasks.
 performElevatedTasks();
 }
 else
 {
 // We need to start an elevated instance.
 startElevatedInstance();
 }
 }

 static void performElevatedTasks()
 {
 // Check to see that we have elevated privileges.
 if (checkElevatedPrivilege())
 {
 // perform the elevated task
 Console.WriteLine("Elevated tasks performed");
 }
 else
 {
 // We are not able to perform the elevated tasks.
 Console.WriteLine("Cannot perform elevated tasks");
 }
 Console.WriteLine("Press return to exit");
 Console.ReadLine();
 }

 static bool checkElevatedPrivilege()
 {
 WindowsIdentity winIdentity = WindowsIdentity.GetCurrent();
 WindowsPrincipal winPrincipal = new WindowsPrincipal(winIdentity);
 return winPrincipal.IsInRole (WindowsBuiltInRole.Administrator);
 }

 static void startElevatedInstance()
 {
 ProcessStartInfo procstartinf = new ProcessStartInfo("Recipe14-15.exe");
 procstartinf.Arguments = "elevated";
 procstartinf.Verb = "runas";
 Process.Start(procstartinf).WaitForExit();
 }
 }
}

C H A P T E R 15

■ ■ ■

729

Parallel Programming

With version 4.0 of the .NET Framework, Microsoft introduced a new model for writing applications that
need to perform multiple simultaneous tasks—that model is known as parallel programming, and the
implementation is called the Task Parallel Library. Unlike the traditional approach to multitasking,
where you create and manage a set of threads in your code, the new parallel programming model lets
you focus on the tasks you need to accomplish and allows the runtime to create and manage the threads
on your behalf.

There key advantage of this approach is that your code is focused on the tasks you need to perform,
not the way in which they will be performed. The main disadvantage is that you give up direct control of
the behavior of your application—so, for many applications, the new parallel programming model will
be ideal, but for those applications that require careful control and management (and for those
programmers who cannot let go), we refer you to Chapter 4, which covers the traditional threading
approach. The recipes in this chapter describe how to perform the following tasks:

• Performing simple parallel tasks (recipe 15-1)

• Writing more complex tasks (recipes 15-2, 15-6, and 15-7)

• Managing tasks (recipes 15-3, 15-5 and 15-8)

• Working in parallel with data (recipes 15-4 and 15-9)

15-1. Perform Simple Parallel Tasks

Problem
You need to perform simple tasks simultaneously.

Solution
Use the Invoke method of the System.Threading.Parallel class, passing in an instance of the
System.Action delegate for each method you wish to run.

CHAPTER 15 ■ PARALLEL PROGRAMMING

730

How It Works
The Invoke method of the Parallel class is the simplest way to add multitasking to your application. You
simply provide a set of Action delegates, each of which wraps around a method you wish to invoke. The
.NET Framework takes care of the rest—threads are created and managed automatically on your behalf.

■ Note The Parallel.Invoke method can only be used to invoke methods that do not return a result. See the
other recipes in this chapter for more complex examples.

The Code
The following example invokes three methods concurrently, each of which writes a series of messages to
the console. In order to simulate a time-intensive task, these methods call Thread.Sleep to slow down
the progress of the application—something that you would not do with a real application.

We have created the Action delegates explicitly to make the example as clear as possible, but a more
elegant approach is to use lambda expressions, so that

 Parallel.Invoke(
 new Action(writeDays),
 new Action(writeMonths),
 new Action(writeCities)
);

would be written as

 Parallel.Invoke(
 () => writeDays(),
 () => writeMonths(),
 () => writeCities()
);

The remaining recipes in this chapter use lambda expressions.

using System;
using System.Threading;
using System.Threading.Tasks;

namespace Recipe15_01
{
 class Recipe15_01
 {
 static void Main(string[] args)
 {
 Console.WriteLine("Press enter to start");
 Console.ReadLine();

CHAPTER 15 ■ PARALLEL PROGRAMMING

731

 // Invoke the methods we want to run.
 Parallel.Invoke(
 new Action(writeDays),
 new Action(writeMonths),
 new Action(writeCities)
);

 // Wait to continue.
 Console.WriteLine("\nMain method complete. Press Enter");
 Console.ReadLine();
 }

 static void writeDays()
 {
 string[] daysArray = { "Monday", "Tuesday", "Wednesday",
 "Thursday", "Friday", "Saturday", "Sunday" };
 foreach (string day in daysArray)
 {
 Console.WriteLine("Day of the Week: {0}", day);
 Thread.Sleep(500);
 }
 }

 static void writeMonths()
 {
 string[] monthsArray = { "Jan", "Feb", "Mar", "Apr",
 "May", "Jun", "Jul",
 "Aug", "Sep", "Oct", "Nov", "Dec" };
 foreach (string month in monthsArray)
 {
 Console.WriteLine("Month: {0}", month);
 Thread.Sleep(500);
 }
 }

 static void writeCities()
 {
 string[] citiesArray = { "London", "New York", "Paris", "Tokyo",
 "Sydney" };
 foreach (string city in citiesArray)
 {
 Console.WriteLine("City: {0}", city);
 Thread.Sleep(500);
 }

 }
 }
}

CHAPTER 15 ■ PARALLEL PROGRAMMING

732

15-2. Return a Result from a Task

Problem
You need to perform concurrent tasks that return results.

Solution
Create typed instances of the Task class by passing function delegates to the generic-typed static
System.Threading.Task<>.Factory.StartNew method. Use the Task.Result property to obtain the result
from your task.

How It Works
For anything other than simple tasks, such as those in the previous recipe, you use the Task class to write
parallel applications. New tasks are created (and automatically started) when you call the Task<>.
Factory.StartNew method, passing in a function delegate as the argument. You obtain the result of your
task through the Task.Result property.

■ Tip The StartNew method creates and starts a new task in one step. If you need to create tasks and start them
later, you can create instances of Task directly with the class constructors and start them running using the Start
method.

The Code
The following example modifies the task methods from the previous recipe to return how many items
have been printed out. We call the Result property for each task and write it to the console. Notice that
when running the example, the results are intermingled with the output from the tasks themselves, as
shown following:

. . .
Month: Jul
Day of the Week: Sunday
Month: Aug
7 days were written
Month: Sep
Month: Oct
Month: Nov
Month: Dec
12 months were written
5 cities were written
. . .

CHAPTER 15 ■ PARALLEL PROGRAMMING

733

This happens because the Result property blocks until the task has completed. See the following
recipes for different ways to wait for tasks to complete.

using System;
using System.Threading;
using System.Threading.Tasks;

namespace Recipe15_02
{
 class Recipe15_02
 {
 static void Main(string[] args)
 {

 Console.WriteLine("Press enter to start");
 Console.ReadLine();

 // Create the tasks.
 Task<int> task1 = Task<int>.Factory.StartNew(() => writeDays());
 Task<int> task2 = Task<int>.Factory.StartNew(() => writeMonths());
 Task<int> task3 = Task<int>.Factory.StartNew(() => writeCities());

 // Get the results and write them out.
 Console.WriteLine("{0} days were written", task1.Result);
 Console.WriteLine("{0} months were written", task2.Result);
 Console.WriteLine("{0} cities were written", task3.Result);

 // Wait to continue.
 Console.WriteLine("\nMain method complete. Press Enter");
 Console.ReadLine();
 }

 static int writeDays()
 {
 string[] daysArray = { "Monday", "Tuesday", "Wednesday",
 "Thursday", "Friday",
 "Saturday", "Sunday" };
 foreach (string day in daysArray)
 {
 Console.WriteLine("Day of the Week: {0}", day);
 Thread.Sleep(500);
 }
 return daysArray.Length;
 }

 static int writeMonths()
 {
 string[] monthsArray = { "Jan", "Feb", "Mar", "Apr",
 "May", "Jun", "Jul",
 "Aug", "Sep", "Oct", "Nov", "Dec" };

CHAPTER 15 ■ PARALLEL PROGRAMMING

734

 foreach (string month in monthsArray)
 {
 Console.WriteLine("Month: {0}", month);
 Thread.Sleep(500);
 }
 return monthsArray.Length;
 }

 static int writeCities()
 {
 string[] citiesArray = { "London", "New York", "Paris",
 "Tokyo", "Sydney" };
 foreach (string city in citiesArray)
 {
 Console.WriteLine("City: {0}", city);
 Thread.Sleep(500);
 }
 return citiesArray.Length;
 }
 }
}

15-3. Wait for Tasks to Complete

Problem
You need to wait for one or more tasks to complete.

Solution
Use the Wait, WaitAll, or WaitAny methods of the System.Threading.Task class.

How It Works
The Wait method is called on a Task instance and blocks until the task is complete. The static WaitAll
and WaitAny methods take an array of tasks as parameters—the WaitAll method blocks until all of the
Tasks in the array have completed, and the WaitAny method blocks until any one of the Tasks is finished.
These methods also accept an int argument that will block for the specific number of milliseconds and
then continue regardless of whether the task or tasks have completed. The IsCompleted property of the
Task class is used to determine whether a task has finished.

The Code
This example changes the code from the previous recipe to wait for all of the tasks we created using the
WaitAll method. In the previous example, the results of the tasks were reported as each result we

CHAPTER 15 ■ PARALLEL PROGRAMMING

735

requested became available—this example waits for all of the tasks to complete before obtaining the
results.

using System;
using System.Threading;
using System.Threading.Tasks;

namespace Recipe15_03
{
 class Recipe15_03
 {
 static void Main(string[] args)
 {

 Console.WriteLine("Press enter to start");
 Console.ReadLine();

 // Create the tasks.
 Task<int> task1 = Task<int>.Factory.StartNew(() => writeDays());
 Task<int> task2 = Task<int>.Factory.StartNew(() => writeMonths());
 Task<int> task3 = Task<int>.Factory.StartNew(() => writeCities());

 // Wait for all of the tasks to complete.
 Task.WaitAll(task1, task2, task3);

 // Get the results and write them out.
 Console.WriteLine("{0} days were written", task1.Result);
 Console.WriteLine("{0} months were written", task2.Result);
 Console.WriteLine("{0} cities were written", task3.Result);

 // Wait to continue.
 Console.WriteLine("\nMain method complete. Press Enter");
 Console.ReadLine();
 }

 static int writeDays()
 {
 string[] daysArray = { "Monday", "Tuesday", "Wednesday",
 "Thursday", "Friday",
 "Saturday", "Sunday" };
 foreach (string day in daysArray)
 {
 Console.WriteLine("Day of the Week: {0}", day);
 Thread.Sleep(500);
 }
 return daysArray.Length;
 }

CHAPTER 15 ■ PARALLEL PROGRAMMING

736

 static int writeMonths()
 {
 string[] monthsArray = { "Jan", "Feb", "Mar", "Apr",
 "May", "Jun", "Jul",
 "Aug", "Sep", "Oct", "Nov", "Dec" };
 foreach (string month in monthsArray)
 {
 Console.WriteLine("Month: {0}", month);
 Thread.Sleep(500);
 }
 return monthsArray.Length;
 }

 static int writeCities()
 {
 string[] citiesArray = { "London", "New York", "Paris",
 "Tokyo", "Sydney" };
 foreach (string city in citiesArray)
 {
 Console.WriteLine("City: {0}", city);
 Thread.Sleep(500);
 }
 return citiesArray.Length;
 }
 }
}

15-4. Parallel Process a Collection

Problem
You need to parallel process each element in a collection.

Solution
Use the System.Threading.Parallel.ForEach method to create a new task to process each of the
elements in a collection. Optionally, use System.Threading.ParallelOptions to limit the degree of
parallelism that will be used.

How It Works
The static Parallel.ForEach method accepts a collection, a function delegate, and an optional instance
of ParallelOptions as arguments. A new task is created to process each element in the collection using
the function referenced by the delegate. The number of concurrent tasks is controlled by the
ParallelOptions.MaxDegreeOfParallelism property—a value of -1 means that the degree of parallelism

CHAPTER 15 ■ PARALLEL PROGRAMMING

737

will be determined by the runtime, whereas a value of 1 or more limits the number of tasks that will run
at the same time (a value of 0 will throw an exception).

The Code
The following example creates tasks to process each element of a simple array using the printNumbers
method. We have called Thread.Sleep in this method to slow down the processing so that the example is
clearer. We use the MaxDegreeOfParallelism property of ParallelOptions to ensure that at most two
tasks are performed simultaneously—when running the example, notice that the output from the first
two tasks is intermingled and then followed by the output from the third task.

using System;
using System.Threading;
using System.Threading.Tasks;

namespace Recipe15_04
{
 class Recipe15_04
 {
 static void Main(string[] args)
 {
 Console.WriteLine("Press enter to start");
 Console.ReadLine();

 // Define the data we want to process.
 int[] numbersArray = { 100, 200, 300 };

 // Configure the options.
 ParallelOptions options = new ParallelOptions();
 options.MaxDegreeOfParallelism = 2;

 // Process each data element in parallel.
 Parallel.ForEach(numbersArray, options, baseNumber =>
 printNumbers(baseNumber));

 Console.WriteLine("Tasks Completed. Press Enter");
 Console.ReadLine();
 }

 static void printNumbers(int baseNumber)
 {
 for (int i = baseNumber, j = baseNumber + 10; i < j; i++)
 {
 Console.WriteLine("Number: {0}", i);
 Thread.Sleep(100);
 }
 }
 }
}

CHAPTER 15 ■ PARALLEL PROGRAMMING

738

15-5. Chain Tasks Together

Problem
You need to perform several tasks in sequence.

Solution
Create an instance of Task for the initial activity using the class constructors (as shown in the previous
recipes in this chapter), and then call the ContinueWith method to create a Task instance representing
the next activity in the sequence. When you have created all of the Task instances you require, call the
Start method on the first in the sequence.

How It Works
The Task.ContinueWith and Task.ContinueWith<> methods create a new task that will continue upon
completion of the Task instance on which they are invoked. The previous task (known as the antecedent)
is provided as an input parameter to the lambda expression in the ContinueWith method—this can be
used to check the states or get the result of the previous task, as shown in the following example.

The Code
The example for this recipe chains three tasks together. The first task adds some integer values. The
second obtains the result from the first and prints it out, and the third task simply writes a message
without reference to the previous tasks at all.

using System;
using System.Threading;
using System.Threading.Tasks;

namespace Recipe15_05
{
 class Recipe15_05
 {
 static void Main(string[] args)
 {
 Console.WriteLine("Press enter to start");
 Console.ReadLine();

 // Create the set of tasks.
 Task<int> firstTask = new Task<int>(() => sumAndPrintNumbers(100));
 Task secondTask = firstTask.ContinueWith(parent => printTotal(parent));
 Task thirdTask = secondTask.ContinueWith(parent => printMessage());

CHAPTER 15 ■ PARALLEL PROGRAMMING

739

 // Start the first task.
 firstTask.Start();

 // Read a line to keep the process alive.
 Console.WriteLine("Press enter to finish");
 Console.ReadLine();
 }

 static int sumAndPrintNumbers(int baseNumber)
 {
 Console.WriteLine("sum&print called for {0}", baseNumber);
 int total = 0;
 for (int i = baseNumber, j = baseNumber + 10; i < j; i++)
 {
 Console.WriteLine("Number: {0}", i);
 total += i;
 }
 return total;
 }

 static void printTotal(Task<int> parentTask)
 {
 Console.WriteLine("Total is {0}", parentTask.Result);
 }

 static void printMessage()
 {
 Console.WriteLine("Message from third task");
 }
 }
}

15-6. Write a Cooperative Algorithm

Problem
You need to write a parallel algorithm with multiple phases, each of which must be completed before the
next can begin.

Solution
Create an instance of the System.Threading.Barrier class and call the SignalAndWait method from your
Task code at the end of each algorithm phase.

CHAPTER 15 ■ PARALLEL PROGRAMMING

740

How It Works
The Barrier class allows you to wait for a set of tasks to complete one part of an algorithm before moving
onto the next. This is useful when the overall results from the one phase are required by all tasks in order
to complete a subsequent phase. When creating an instance of Barrier, you specify an integer as a
constructor argument. In your Task code, you call the SignalAndWait method when you have reached the
end of a phase—your Task will block until the specified number of Tasks is waiting, at which point the
Barrier allows all of the waiting tasks to continue into the next phase. It is up to you to determine what
constitutes each phase of your algorithm and to specify how many Tasks must reach the barrier before
the next phase can begin.

You can also specify an action to be performed when each phase is completed (i.e., after the
required number of tasks have called the SignalAndWait method, but before the tasks are allowed to
continue to the next phase—the example for this recipe demonstrates how to do this with a lambda
function.

■ Note It is important to ensure that you set the Barrier instance to expect the correct number of tasks at each
stage of your algorithm. If you tell the Barrier to expect too few tasks, one phase may not have completed before
the next begins. If you tell the Barrier to expect too many tasks, a phase will never start, even though all of your
tasks have completed the earlier phase. You can change the number of tasks a Barrier will wait for by using the
AddParticipant, AddParticipants, RemoveParticipant, and RemoveParticipants methods.

The Code
The following example shows a simple two-phase cooperative algorithm, performed by three tasks.
When all of the tasks reach the barrier at the end of each phase, the notifyPhaseEnd method is called.

using System;
using System.Threading;
using System.Threading.Tasks;

namespace Recipe15_06
{
 class Recipe15_06
 {
 static void Main(string[] args)
 {
 // Create the barrier.
 Barrier myBarrier = new Barrier(3,
 (barrier) => notifyPhaseEnd(barrier));

 Task task1 = Task.Factory.StartNew(
 () => cooperatingAlgorithm(1, myBarrier));
 Task task2 = Task.Factory.StartNew(
 () => cooperatingAlgorithm(2, myBarrier));

CHAPTER 15 ■ PARALLEL PROGRAMMING

741

 Task task3 = Task.Factory.StartNew(
 () => cooperatingAlgorithm(3, myBarrier));

 // Wait for all of the tasks to complete.
 Task.WaitAll(task1, task2, task3);

 // Wait to continue.
 Console.WriteLine("\nMain method complete. Press Enter");
 Console.ReadLine();
 }

 static void cooperatingAlgorithm(int taskid, Barrier barrier)
 {
 Console.WriteLine("Running algorithm for task {0}", taskid);

 // Perform phase one and wait at the barrier.
 performPhase1(taskid);
 barrier.SignalAndWait();

 // Perform phase two and wait at the barrier.
 performPhase2(taskid);
 barrier.SignalAndWait();
 }

 static void performPhase1(int taskid)
 {
 Console.WriteLine("Phase one performed for task {0}", taskid);
 }

 static void performPhase2(int taskid)
 {
 Console.WriteLine("Phase two performed for task {0}", taskid);
 }

 static void notifyPhaseEnd(Barrier barrier)
 {
 Console.WriteLine("Phase has concluded");
 }
 }
}

15-7. Handle Exceptions in Tasks

Problem
You need to catch and process exceptions thrown by a Task.

CHAPTER 15 ■ PARALLEL PROGRAMMING

742

Solution
Call the Task.Wait or Task.WaitAll methods within a try...catch block to catch the
System.AggregateException exception. Call the Handle method of AggregateException with a function
delegate—the delegate will receive each exception that has been thrown by the Tasks. Your function
should return true if the exception can be handled, and false otherwise.

How It Works
Catching AggregateException as it is thrown from Task.Wait or Task.WaitAll allows you to be notified of
exceptions that are unhandled by your Task. If an error has occurred, then you will catch a single
instance of System.AggregateException representing all of the exceptions that have been thrown.

You process each individual exception by calling the AggregateException.Handle method, which
accepts a function delegate (usually specified using a lambda expression)—the delegate will be called
once for each exception that has been thrown by your task or tasks. Bear in mind that several threads
may have encountered the same problem, and that you are likely to have to process the same exception
type more than once. If you can handle the exception, your function delegate should return true—
returning false will cause your application to terminate.

■ Tip If you do not catch exceptions from Wait or WaitAll, then any exception thrown by a Task will be
considered unhandled and terminate your application.

The Code
The following example demonstrates how use the AggregateException.Handle method to implement a
custom exception handler function:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading;
using System.Threading.Tasks;

namespace Recipe15_07
{
 class Recipe15_07
 {
 static void Main(string[] args)
 {
 // Create two tasks, one with a null param.
 Task goodTask = Task.Factory.StartNew(() => performTask("good"));
 Task badTask = Task.Factory.StartNew(() => performTask("bad"));

CHAPTER 15 ■ PARALLEL PROGRAMMING

743

 try
 {
 Task.WaitAll(goodTask, badTask);
 }
 catch (AggregateException aggex)
 {
 aggex.Handle(ex => handleException(ex));
 }

 // Wait to continue.
 Console.WriteLine("\nMain method complete. Press Enter");
 Console.ReadLine();
 }

 static bool handleException(Exception exception)
 {
 Console.WriteLine("Processed Exception");
 Console.WriteLine(exception);
 // Return true to indicate we have handled the exception.
 return true;
 }

 static void performTask(string label)
 {
 if (label == "bad")
 {
 Console.WriteLine("About to throw exception.");
 throw new ArgumentOutOfRangeException("label");
 }
 else
 {
 Console.WriteLine("performTask for label: {0}", label);
 }
 }
 }
}

15-8. Cancel a Task

Problem
You need to cancel a Task while it is running.

Solution
Create an instance of System.Threading.CancellationTokenSource and call the Token property to obtain a
System.Threading.CancellationToken. Pass a function delegate that calls the Cancel method of your Task

CHAPTER 15 ■ PARALLEL PROGRAMMING

744

to the Register method of CancellationToken. Cancel your Task by calling the Cancel method of
CancellationTokenSource.

How It Works
The System.Threading.CancellationTokenSource class provides a mechanism to cancel one or more
tasks. CancellationTokenSource is a factory for System.Threading.CancellationToken.

CancallationToken has the property IsCancellationRequested, which returns true when the Cancel
method is called on the CancellationTokenSource that produced the token. You can also use the
Register method to specify one or more functions to be called when the Cancel method is called. The
sequence for handling cancellation is as follows:

1. Create an instance of CancellationTokenSource.

2. Create one or more Tasks to handle your work, passing CancellationToken as a
constructor parameter.

3. For each Task you have created, obtain a CancellationToken by calling Token
on the CancellationTokenSource created in step 1.

4. Check the IsCancellationRequested property of the token in your Task body—
if the property returns true, then release any resources and throw an instance
of OperationCanceledException.

5. When you are ready to cancel, call the Cancel method on the
CancellationTokenSource from step 1.

Note that you must throw an instance of OperationCanceledException to acknowledge the task
cancellation request.

The Code
The following example creates a CancellationToken that is used to create an instance of Task. A method
to be called when the CancellationTokenSource is canceled is registered with the Register method.
When CancellationTokenSource.Cancel is called, the Task is stopped and a message is written to the
console.

using System;
using System.Threading;
using System.Threading.Tasks;

namespace Recipe15_08
{
 class Recipe15_08
 {
 static void Main(string[] args)
 {
 // Create the token source.
 CancellationTokenSource tokenSource = new CancellationTokenSource();
 // create the cancellation token
 CancellationToken token = tokenSource.Token;

CHAPTER 15 ■ PARALLEL PROGRAMMING

745

 // Create the task.
 Task task = Task.Factory.StartNew(() => printNumbers(token), token);
 // register the task with the token
 token.Register(() => notifyTaskCanceled ());

 // Wait for the user to request cancellation.
 Console.WriteLine("Press enter to cancel token");
 Console.ReadLine();

 // Canceling.
 tokenSource.Cancel();
 }

 static void notifyTaskCanceled()
 {
 Console.WriteLine("Task cancellation requested");
 }

 static void printNumbers(CancellationToken token)
 {
 int i = 0;
 while (!token.IsCancellationRequested)
 {
 Console.WriteLine("Number {0}", i++);
 Thread.Sleep(500);
 }
 throw new OperationCanceledException(token);
 }
 }
}

15-9. Share Data Between Tasks

Problem
You need to share data safely between Tasks.

Solution
Use the collection classes in the System.Collections.Concurrent namespace.

How It Works
One of the biggest problems when writing parallel or threaded code is ensuring that data is shared safely.
Microsoft has introduced new classes in .NET 4.0 that are designed to be more efficient than using
synchronization around the default collection classes, which we demonstrated in Chapter 4. The

CHAPTER 15 ■ PARALLEL PROGRAMMING

746

techniques demonstrated in Chapter 4 will work with the .NET parallel programming model, but the
new collection classes may be more efficient for large-scale applications. Table 15-1 lists the most useful
classes from the System.Collections.Concurrent namespace.

Table 15-1. Useful System.Collections.Concurrent Classes

Class Description

ConcurrentBag A thread-safe collection of objects where no typing or ordering is assumed

ConcurrentDictionary A key/value pair collection

ConcurrentQueue A first in, first out (FIFO) queue

ConcurrentStack A last in, first out (LIFO) stack

These new collections take care of managing data automatically—you do not have to use

synchronization techniques in your code.

The Code
The following example creates a ConcurrentStack, which is then used by three Tasks.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading;
using System.Threading.Tasks;
using System.Collections.Concurrent;

namespace Recipe15_9
{
 class Recipe15_9
 {
 static void Main(string[] args)
 {
 // Create a concurrent collection.
 ConcurrentStack<int> cStack = new ConcurrentStack<int>();

 // create tasks that will use the stack
 Task task1 = Task.Factory.StartNew(
 () => addNumbersToCollection(cStack));
 Task task2 = Task.Factory.StartNew(
 () => addNumbersToCollection(cStack));
 Task task3 = Task.Factory.StartNew(
 () => addNumbersToCollection(cStack));

CHAPTER 15 ■ PARALLEL PROGRAMMING

747

 // Wait for all of the tasks to complete.
 Task.WaitAll(task1, task2, task3);

 // Report how many items there are in the stack.
 Console.WriteLine("There are {0} items in the collection",
 cStack.Count);

 // Wait to continue.
 Console.WriteLine("\nMain method complete. Press Enter");
 Console.ReadLine();
 }

 static void addNumbersToCollection(ConcurrentStack<int> stack)
 {
 for (int i = 0; i < 1000; i++)
 {
 stack.Push(i);
 }
 }
 }
}

C H A P T E R 16

■ ■ ■

749

Using LINQ

In some of the previous chapters, we illustrated how to use LINQ to perform queries on different types of
data. Chapter 2 showed how to query collections and arrays, Chapter 6 to query XML trees, and Chapter
9 to query databases. This chapter shows you how to build on those simple examples to exploit the full
flexibility of LINQ.

One of the best features of LINQ is that you can perform the same kinds of queries whatever the data
source is. Each of the recipes in this chapter uses an array or a collection as the data source, but the same
techniques can be applied equally to XML or databases. The recipes in this chapter are all self-contained
and illustrate different LINQ features—but part of the allure of LINQ is that you will be able to combine
these techniques to create complex and powerful queries. The recipes in this chapter describe how to
perform the following tasks:

• Filter elements in a data source (recipes 16-1, 16-2, and 16-3)

• Create anonymous types in results (recipe 16-4)

• Work with multiple data sources in queries (recipes 16-6, 16-7, ad 16-8)

• Grouping, sorting, comparing, and aggregating data (recipes 16-9 through to 16-
12)

• Sharing interim results across query clauses (recipe 16-13)

• Extending LINQ with custom extension methods (recipe 16-14)

• Converting LINQ results into other types (recipe 16-15)

16-1. Perform a Simple LINQ Query

Problem
You need to select all items from a collection, database, or XML document.

CHAPTER 16 ■ USING LINQ

750

Solution
Use the from and select keywords.

How It Works
The most basic LINQ query selects all of the items contained in a data source. The most powerful aspect
of LINQ is that you can apply the same query approach to any data source and get consistent,
predictable results. Microsoft has embedded LINQ support throughout the .NET Framework so that you
can use arrays, collections, XML documents and databases in the same way.

To select all of the items in a data source is a simple two-step process

1. Start a new LINQ query using the from keyword, providing an element variable
name that you will use to refer to elements that LINQ finds (for example, from
e in datasource).

2. Indicate what will be added to the result set from each matching element using
the select keyword.

For the basic “select all” query used in this recipe, we simply define the element variable name in
the first step and use it as the basis for the second step, as follows:

IEnumerable<myType> myEnum = from e in datasource select e;

The type that you use for the datasource reference must implement the System.Collections.
Generic.IEnumerable<> interface. If you are using an array or a generic collection, then you can simply
use the references to your instance as the data source because arrays and all standard generic collections
implement IEnumerable<>, as follows:

IEnumerable<myType> myEnum = from e in myarray select e;
IEnumerable<myType> myEnum = from e in mycollection select e;

If you are using an XML tree, you can get an IEnumerable from the root XElement by calling the
Elements method; and for a DataTable, you can get an IEnumerable by calling the AsEnumerable method,
as follows:

IEnumerable<XElement> myEnum = from e in root.Elements() select e;
IEnumerable<DataRow> myEnum = from e in table.AsEnumerable() select e;

Notice that the generic type of the result is dependent on the data source. For an array or collection,
the result will be an IEnumerable of the data contained in the array—string for string[] and
IList<string>, for example. LINQ queries of DataTables return an IEnumerable<DataRow>, and queries of
an XML tree return IEnumerable<XElement>.

If you want to select a value contained within a data source element (for example, if myType had a
property called Name that returned a string), then you simply specify the value you want after the select
keyword—for example:

IEnumerable<string> myEnum = from e in datasource select e.Name;

CHAPTER 16 ■ USING LINQ

751

Notice that the generic type of the result has changed—we are querying a data source that contains
myType instances, but selecting a string property—therefore, the result is an IEnumerable<string>.

IEnumerable<> can be used with a foreach loop to enumerate the results of a query, but because
LINQ queries return instances of IEnumerable<> and LINQ data sources must implement IEnumerable<>,
you can also use the result of one query as the data source for another.

The Code
The following example performs a basic LINQ query on a string array, a collection, an XML tree, and a
DataTable, and prints out the results in each case:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Xml.Linq;
using System.Data;

namespace Apress.VisualCSharpRecipes.Chapter16
{
 class Recipe16_01
 {
 static void Main(string[] args)
 {
 Console.WriteLine("Using an array source");
 // Create the source.
 string[] array = createArray();
 // Perform the query.
 IEnumerable<string> arrayEnum = from e in array select e;
 // Write out the elements.
 foreach (string str in arrayEnum)
 {
 Console.WriteLine("Element {0}", str);
 }

 Console.WriteLine("\nUsing a collection source");
 // Create the source.
 ICollection<string> collection = createCollection();
 // Perform the query.
 IEnumerable<string> collEnum = from e in collection select e;
 // Write out the elements.
 foreach (string str in collEnum)
 {
 Console.WriteLine("Element {0}", str);
 }

 Console.WriteLine("\nUsing an xml source");
 // Create the source.
 XElement xmltree = createXML();

CHAPTER 16 ■ USING LINQ

752

 // Perform the query.
 IEnumerable<XElement> xmlEnum = from e in xmltree.Elements() select e;
 // Write out the elements.
 foreach (string str in xmlEnum)
 {
 Console.WriteLine("Element {0}", str);
 }

 Console.WriteLine("\nUsing a data table source");
 // Create the source.
 DataTable table = createDataTable();

 // Perform the query.
 IEnumerable<string> dtEnum = from e in table.AsEnumerable()

select e.Field<string>(0);
 // Write out the elements.
 foreach (string str in dtEnum)
 {
 Console.WriteLine("Element {0}", str);
 }

 // Wait to continue.
 Console.WriteLine("\nMain method complete. Press Enter");
 Console.ReadLine();
 }

 static string[] createArray()
 {
 return new string[] { "apple", "orange", "grape", "fig",

"plum", "banana", "cherry" };
 }

 static IList<string> createCollection()
 {
 return new List<string>() { "apple", "orange", "grape", "fig",

"plum", "banana", "cherry" };
 }

 static XElement createXML()
 {
 return new XElement("fruit",
 new XElement("name", "apple"),
 new XElement("name", "orange"),
 new XElement("name", "grape"),
 new XElement("name", "fig"),
 new XElement("name", "plum"),
 new XElement("name", "banana"),
 new XElement("name", "cherry")
);
 }

CHAPTER 16 ■ USING LINQ

753

 static DataTable createDataTable()
 {
 DataTable table = new DataTable();
 table.Columns.Add("name", typeof(string));
 string[] fruit = { "apple", "orange", "grape", "fig", "plum",

"banana", "cherry" };
 foreach (string name in fruit)
 {
 table.Rows.Add(name);
 }
 return table;
 }
 }
}

Running the example produces the following result:

Using an array source

Element apple

Element orange

Element grape

Element fig

Element plum

Element banana

Element cherry

Using a collection source

Element apple

Element orange

Element grape

Element fig

Element plum

Element banana

CHAPTER 16 ■ USING LINQ

754

Element cherry

Using an xml source

Element apple

Element orange

Element grape

Element fig

Element plum

Element banana

Element cherry

Using a data table source

Element apple

Element orange

Element grape

Element fig

Element plum

Element banana

Element cherry

Main method complete. Press Enter

CHAPTER 16 ■ USING LINQ

755

16-2. Filter Items from a Data Source

Problem
You need to filter the contents of a LINQ data source to select specific items.

Solution
Use the where keyword.

How It Works
Using the where keyword in conjunction with the basic LINQ query covered in recipe 16-1 allows you to
specify criteria that will be used to filter the contents of a data source. You supply an expression that will
be evaluated for each element in the data source— an element will be included in the results if your
expression returns true and excluded if your expression returns false. You can use the element variable
declared with the from keyword to refer to the current element.

For example, the following fragment uses the element variable to filter only string elements whose
first character is t:

string[] array = { "one", "two", "three", "four" };
IEnumerable<string> result = from e in array where e[0] == 't' select e;

You can make your filter expressions as complex as required and also call methods that return a
bool. A LINQ query can have multiple filters, such that the two LINQ queries in the following fragment
are equivalent:

string[] array = { "one", "two", "three", "four" };
IEnumerable<string> result1
 = from e in array where e[0] == 't' where e[1] == 'w' select e;
IEnumerable<string> result2
 = from e in array where e[0] == 't' && e[1] == 'w' select e;

The Code
The following example creates a collection of a type Fruit and then filters the data using the LINQ where
operator using a string comparison and an arithmetic operator:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Data;
using System.Xml.Linq;

CHAPTER 16 ■ USING LINQ

756

namespace Apress.VisualCSharpRecipes.Chapter16
{
 class Recipe16_02
 {
 static void Main(string[] args)
 {
 // Create the data.
 IList<Fruit> datasource = createData();

 // Filter based on a single characteristic.
 IEnumerable<string> result1 = from e in datasource
 where e.Color == "green" select e.Name;
 Console.WriteLine("Filter for green fruit");
 foreach (string str in result1)
 {
 Console.WriteLine("Fruit {0}", str);
 }

 // Filter based using > operator.
 IEnumerable<Fruit> result2 = from e in datasource
 where e.ShelfLife > 5 select e;
 Console.WriteLine("\nFilter for life > 5 days");
 foreach (Fruit fruit in result2)
 {
 Console.WriteLine("Fruit {0}", fruit.Name);
 }

 // Filter using two characteristics.
 IEnumerable<string> result3 = from e in datasource
 where e.Color == "green"
 && e.ShelfLife > 5
 select e.Name;
 Console.WriteLine("\nFilter for green fruit and life > 5 days");
 foreach (string str in result3)
 {
 Console.WriteLine("Fruit {0}", str);
 }

 // Wait to continue.
 Console.WriteLine("\nMain method complete. Press Enter");
 Console.ReadLine();
 }

 static IList<Fruit> createData()
 {
 return new List<Fruit>()
 {
 new Fruit("apple", "green", 7),
 new Fruit("orange", "orange", 10),
 new Fruit("grape", "green", 4),
 new Fruit("fig", "brown", 12),

CHAPTER 16 ■ USING LINQ

757

 new Fruit("plum", "red", 2),
 new Fruit("banana", "yellow", 10),
 new Fruit("cherry", "red", 7)
 };
 }
 }
 class Fruit
 {
 public Fruit(string namearg, string colorarg, int lifearg)
 {
 Name = namearg;
 Color = colorarg;
 ShelfLife = lifearg;
 }
 public string Name { get; set;}
 public string Color { get; set;}
 public int ShelfLife { get; set;}
 }
}

16-3. Filter a Data Source by Type

Problem
You need to select all of the elements in a data source that are of a given type.

Solution
Use the LINQ OfType extension method.

How It Works
C# has keywords for many LINQ features, but they are mappings to extension methods in the
System.Linq namespace—the keywords exist to simplify your code. See recipe 13-15 for a recipe to create
and use an extension method. Keywords do not exist for all of the LINQ functions—some features are
only available using extension methods directly. In order to filter a data source for all objects of a given
type, you call the OfType<> method, specifying the type that you are looking for, as the following code
fragment shows:
IEnumerable <string> stringData = mixedData.OfType<string>();

The fragment filters the data source for all string instances and will omit any other type from the
results. Notice that the result of calling OfType<> is an IEnumeration<>, which can be used as the data
source for a further LINQ query, as shown by the following fragment, which filters a data source for all
string instances and then filters the results for strings with the first character of c:

IEnumerable<string> stringData = from e in mixedData.OfType<string>()
 where e[0] == 'c' select e;

CHAPTER 16 ■ USING LINQ

758

■ Note You must import the System.Linq namespace before you can use the LINQ extension methods with the
using System.Linq statement.

The Code
The following example creates a collection of mixed.
 types and then filters the elements using the OfType<> extension method:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Apress.VisualCSharpRecipes.Chapter16
{
 class Recipe16_03
 {
 static void Main(string[] args)
 {
 IList<object> mixedData = createData();
 IEnumerable <string> stringData = mixedData.OfType<string>();
 foreach (string str in stringData)
 {
 Console.WriteLine(str);
 }

 // Wait to continue.
 Console.WriteLine("\nMain method complete. Press Enter");
 Console.ReadLine();
 }

 static IList<object> createData()
 {
 return new List<object>()
 {
 "this is a string",
 23,
 9.2,
 "this is another string"
 };
 }
 }
}

CHAPTER 16 ■ USING LINQ

759

16-4. Filter Ranges of Elements

Problem
You need to apply a LINQ query to part of a data source.

Solution
Use the Skip<>, Take<>, and Range<> extension methods.

How It Works
The Skip<> extension method omits the specified number of elements, starting at the beginning of the
set of elements in the data source, and includes the remaining elements. The Take<> extension method
does the opposite—it includes the specified number of elements and omits the rest. As with all of the
LINQ extension methods, you must supply a generic type annotation when calling the method—this
determines the type of IEnumeration<> that will be returned. The Range<> extension method takes a start
index and a count as method parameters and returns a subset of the elements in the data source.

Skip<>, Take<>, and Range<> all return IEnumeration<>, so the results from these methods can be
used either to enumerate the results or as the data source for another LINQ query.

The Code
The following example creates a string array and uses it as the data source for Take and Skip filters:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Apress.VisualCSharpRecipes.Chapter16
{
 class Recipe16_04
 {
 static void Main(string[] args)
 {
 string[] array = { "one", "two", "three", "four", "five" };

 IEnumerable<string> skipresult
 = from e in array.Skip<string>(2) select e;
 foreach (string str in skipresult)
 {
 Console.WriteLine("Result from skip filter: {0}", str);
 }

CHAPTER 16 ■ USING LINQ

760

 IEnumerable<string> takeresult
 = from e in array.Take<string>(2) select e;
 foreach (string str in takeresult)
 {
 Console.WriteLine("Result from take filter: {0}", str);
 }

 // Wait to continue.
 Console.WriteLine("\nMain method complete. Press Enter");
 Console.ReadLine();

 }
 }
}

Running the example program gives the following results:

Result from skip filter: three

Result from skip filter: four

Result from skip filter: five

Result from take filter: one

Result from take filter: two

Main method complete. Press Enter

16-5. Select Multiple Member Values

Problem
You need to select the values returned by more than one member of a data element.

Solution
Use the new keyword in your select statement to create an anonymous type.

CHAPTER 16 ■ USING LINQ

761

How It Works
If you want to create a LINQ result that contains the values from more than one member of a data
element, you can use the new keyword after the select keyword to create an anonymous type. An
anonymous type doesn’t have a name (hence “anonymous”) and is made up of just the values that you
specify.

You reference the result from the query using the special var type, as shown in the example code.

The Code
The following example creates a collection of the Fruit type and then performs a LINQ query that
returns an anonymous type containing the Name and Color properties from each Fruit element:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Apress.VisualCSharpRecipes.Chapter16
{
 class Recipe16_05
 {
 static void Main(string[] args)
 {
 IList<Fruit> sourcedata = createData();
 var result = from e in sourcedata
 select new
 {
 e.Name,
 e.Color
 };
 foreach (var element in result)
 {
 Console.WriteLine("Result: {0} {1}", element.Name, element.Color);
 }

 // Wait to continue.
 Console.WriteLine("\nMain method complete. Press Enter");
 Console.ReadLine();
 }

 static IList<Fruit> createData()
 {
 return new List<Fruit>()
 {
 new Fruit("apple", "green", 7),
 new Fruit("orange", "orange", 10),
 new Fruit("grape", "green", 4),
 new Fruit("fig", "brown", 12),
 new Fruit("plum", "red", 2),

CHAPTER 16 ■ USING LINQ

762

 new Fruit("banana", "yellow", 10),
 new Fruit("cherry", "red", 7)
 };
 }
 }
 class Fruit
 {
 public Fruit(string namearg, string colorarg, int lifearg)
 {
 Name = namearg;
 Color = colorarg;
 ShelfLife = lifearg;
 }
 public string Name { get; set; }
 public string Color { get; set; }
 public int ShelfLife { get; set; }
 }
}

16-6. Filter and Select from Multiple Data Sources

Problem
You need to create an anonymous type that contains values from multiple data sources with common
keys.

Solution
Use the join...in...on...equals... keyword sequence.

How It Works
If you have two data sources that share a common key, you can combine them in a LINQ query using the
join...in...on...equals... keywords. The following fragment demonstrates how to do this:

from e in firstDataSource join f in secondDataSource
 on e.CommonKey equals f.CommonKey

LINQ will arrange the data so that your filter and select statements are called once per common
key. You can refer to the individual elements using the variable names you have defined—in the
fragment, we have used e and f. You can join as many data sources as you wish in a LINQ query, as long
as they share a common key.

CHAPTER 16 ■ USING LINQ

763

The Code
The following example creates two data sources that share a common key, and uses the join keyword to
combine them in a LINQ query in order to create an anonymous result type that contains elements from
both data sources:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Apress.VisualCSharpRecipes.Chapter16
{
 class Recipe16_6
 {
 static void Main(string[] args)
 {
 // Create the data sources.
 IList<FruitColor> colorsource = createColorData();
 IList<FruitShelfLife> shelflifesource = createShelfLifeData();

 // Perform the LINQ query with a join.
 var result = from e in colorsource
 join f in shelflifesource on e.Name equals f.Name
 where e.Color == "green"
 select new
 {
 e.Name,
 e.Color,
 f.Life
 };

 // Write out the results.
 foreach (var element in result)
 {
 Console.WriteLine("Name: {0}, Color: {1}, Shelf Life: {2} days",
 element.Name, element.Color, element.Life);
 }

 // Wait to continue.
 Console.WriteLine("\nMain method complete. Press Enter");
 Console.ReadLine();
 }

 static IList<FruitColor> createColorData()
 {
 return new List<FruitColor>()
 {
 new FruitColor("apple", "green"),
 new FruitColor("orange", "orange"),
 new FruitColor("grape", "green"),

CHAPTER 16 ■ USING LINQ

764

 new FruitColor("fig", "brown"),
 new FruitColor("plum", "red"),
 new FruitColor("banana", "yellow"),
 new FruitColor("cherry", "red")
 };
 }

 static IList<FruitShelfLife> createShelfLifeData()
 {
 return new List<FruitShelfLife>()
 {
 new FruitShelfLife("apple", 7),
 new FruitShelfLife("orange", 10),
 new FruitShelfLife("grape", 4),
 new FruitShelfLife("fig", 12),
 new FruitShelfLife("plum", 2),
 new FruitShelfLife("banana", 10),
 new FruitShelfLife("cherry", 7)
 };
 }
 }

 class FruitColor
 {
 public FruitColor(string namearg, string colorarg)
 {
 Name = namearg;
 Color = colorarg;
 }
 public string Name { get; set; }
 public string Color { get; set; }
 }

 class FruitShelfLife
 {
 public FruitShelfLife(string namearg, int lifearg)
 {
 Name = namearg;
 Life = lifearg;
 }
 public string Name { get; set; }
 public int Life{ get; set; }
 }
}

CHAPTER 16 ■ USING LINQ

765

Running the example gives the following results:

Name: apple Color green Shelf Life: 7 days

Name: grape Color green Shelf Life: 4 days

Main method complete. Press Enter

16-7. Use Permutations of Data Sources

Problem
You need to enumerate all permutations of two or more data sources.

Solution
Include more than one from statement in your LINQ query.

How It Works
You can enumerate through the permutations of multiple data sources by using more than one from
keyword in your LINQ query. The query will be applied to every permutation of every element in each
data source. The following fragment illustrates a query that uses from twice:

string[] datasource1 = { "apple", "orange",};
int[] datasource2 = { 21, 42 };

var result = from e in datasource1
 from f in datasource2
 select new
 {
 e,
 f
 };

The select part of the query (and any filters that we might have applied) will be called for every
combination of element from the two data sources—apple and 21, apple and 42, orange and 21, and
orange and 42.

CHAPTER 16 ■ USING LINQ

766

The Code
The following example creates two arrays and uses them as data sources for a LINQ query with multiple
from keywords. The result is an anonymous type containing the elements from both sources, and each
element in the result is printed to the console.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Apress.VisualCSharpRecipes.Chapter16
{
 class Recipe16_7
 {
 static void Main(string[] args)
 {
 // Create the data sources.
 string[] datasource1 = { "apple", "orange", "cherry", "pear" };
 int[] datasource2 = { 21, 42, 37 };

 // Perform the LINQ query.
 var result = from e in datasource1
 from f in datasource2
 select new
 {
 e,
 f
 };

 // Print the results.
 foreach (var element in result)
 {
 Console.WriteLine("{0}, {1}", element.e, element.f);
 }

 // Wait to continue.
 Console.WriteLine("\nMain method complete. Press Enter");
 Console.ReadLine();
 }
 }
}

CHAPTER 16 ■ USING LINQ

767

Running the program produces the following results:

apple, 21

apple, 42

apple, 37

orange, 21

orange, 42

orange, 37

cherry, 21

cherry, 42

cherry, 37

pear, 21

pear, 42

pear, 37

Main method complete. Press Enter

16-8. Concatenate Data Sources

Problem
You need to combine one or more data sources.

Solution
Use the Concat<> extension method to combine multiple sources into a sequence that LINQ will process
as a single data source.

CHAPTER 16 ■ USING LINQ

768

How It Works
The Concat<> extension method returns an IEnumeration<> containing the element in the data source on
which you call the method and the elements in the data source you pass as a method parameter. The
type annotation you pass to the Concat<> method must match the element types in the data sources.

The Code
The following example concatenates two arrays of strings to form a single data source for a LINQ query:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Apress.VisualCSharpRecipes.Chapter16
{
 class Recipe16_08
 {
 static void Main(string[] args)
 {
 // Create the data sources.
 string[] datasource1 = { "apple", "orange", "cherry", "pear" };
 string[] datasource2 = { "banana", "kiwi", "fig" };

 // Perform the LINQ query.
 IEnumerable<string> result
 = from e in datasource1.Concat<string>(datasource2)
 select e;

 // Print the results.
 foreach (string element in result)
 {
 Console.WriteLine(element);
 }

 // Wait to continue.
 Console.WriteLine("\nMain method complete. Press Enter");
 Console.ReadLine();
 }
 }
}

CHAPTER 16 ■ USING LINQ

769

Running the example produces the following result:

apple

orange

cherry

pear

banana

kiwi

fig

Main method complete. Press Enter

16-9. Group Result Elements by Attribute

Problem
You need to order the result of a LINQ query so that elements that share a common attribute are
grouped together.

Solution
Use the group...by... keywords.

How It Works
The group...by... keywords allow you to create a result where elements that share a member value are
grouped together. Using group...by... in a query results in a fragment such as this:

IEnumerable<IGrouping<T1, T2>> result
 = from e in datasource group e.FirstMember by e.SecondMember;

The result from this query in an instance of System.Linq.IGrouping<T1, T2>, where T1 is the type of
e.SecondMember and T2 is the type of e.FirstMember. All of the elements in the data source that have the
same value of e.SecondMember will appear in the same IGrouping<>, and there will be an instance of
IGrouping<> contained in the IEnumeration<> for each distinct value of e.SecondMember that LINQ finds

CHAPTER 16 ■ USING LINQ

770

in the data source. The easiest way to understand these keywords is to review and run the example
program that follows.

You can get the value that the elements contained in an IGrouping<> share by calling the Key
property. IGrouping<> extends IEnumerable<>, so you can enumerate the values of a group using a
foreach loop or use an IGrouping<> as the data source for a LINQ query.

You can access each individual group as it is created by LINQ using the order...by...into...
keywords. The addition of into allows you to define a variable that will contain the IGrouping<>
instance—see the example program for this recipe to see an example of using into to create an
anonymous type.

The Code
The following example uses a collection of the type Fruit as the data source for two LINQ queries. The
first uses a standard group...by... format to create an IEnumerable<IGrouping<string, Fruit>> result,
which is then enumerated by group and the elements in each group. The second query uses
group...by...into... in order to create an anonymous type containing the Key value of the group and
the set of matching Fruit instances, which are then printed out.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Apress.VisualCSharpRecipes.Chapter16
{
 class Recipe16_09
 {
 static void Main(string[] args)
 {
 // Create the data source.
 IList<Fruit> datasource = createData();

 Console.WriteLine("Perfoming group...by... query");
 // Perform a query with a basic grouping.
 IEnumerable<IGrouping<string, Fruit>> result =
 from e in datasource group e by e.Color;

 foreach (IGrouping<string, Fruit> group in result)
 {
 Console.WriteLine("\nStart of group for {0}", group.Key);
 foreach (Fruit fruit in group)
 {
 Console.WriteLine("Name: {0} Color: {1} Shelf Life: {2} days.",
 fruit.Name, fruit.Color, fruit.ShelfLife);
 }
 }

CHAPTER 16 ■ USING LINQ

771

 Console.WriteLine("\n\nPerfoming group...by...into query");
 // Use the group...by...into... keywords.
 var result2 = from e in datasource
 group e by e.Color into g
 select new
 {
 Color = g.Key,
 Fruits = g
 };

 foreach (var element in result2)
 {
 Console.WriteLine("\nElement for color {0}", element.Color);
 foreach (var fruit in element.Fruits)
 {
 Console.WriteLine("Name: {0} Color: {1} Shelf Life: {2} days.",
 fruit.Name, fruit.Color, fruit.ShelfLife);
 }
 }

 // Wait to continue.
 Console.WriteLine("\nMain method complete. Press Enter");
 Console.ReadLine();
 }

 static IList<Fruit> createData()
 {
 return new List<Fruit>()
 {
 new Fruit("apple", "green", 7),
 new Fruit("orange", "orange", 10),
 new Fruit("grape", "green", 4),
 new Fruit("fig", "brown", 12),
 new Fruit("plum", "red", 2),
 new Fruit("banana", "yellow", 10),
 new Fruit("cherry", "red", 7)
 };
 }
 }
 class Fruit
 {
 public Fruit(string namearg, string colorarg, int lifearg)
 {
 Name = namearg;
 Color = colorarg;
 ShelfLife = lifearg;
 }

CHAPTER 16 ■ USING LINQ

772

 public string Name { get; set; }
 public string Color { get; set; }
 public int ShelfLife { get; set; }
 }
}

Running the example program produces the following results:

Perfoming order...by... query

Start of group for green

Name: apple Color: green Shelf Life: 7 days.

Name: grape Color: green Shelf Life: 4 days.

Start of group for orange

Name: orange Color: orange Shelf Life: 10 days.

Start of group for brown

Name: fig Color: brown Shelf Life: 12 days.

Start of group for red

Name: plum Color: red Shelf Life: 2 days.

Name: cherry Color: red Shelf Life: 7 days.

CHAPTER 16 ■ USING LINQ

773

Start of group for yellow

Name: banana Color: yellow Shelf Life: 10 days.

Perfoming order...by...into query

Element for color green

Name: apple Color: green Shelf Life: 7 days.

Name: grape Color: green Shelf Life: 4 days.

Element for color orange

Name: orange Color: orange Shelf Life: 10 days.

Element for color brown

Name: fig Color: brown Shelf Life: 12 days.

Element for color red

Name: plum Color: red Shelf Life: 2 days.

Name: cherry Color: red Shelf Life: 7 days.

Element for color yellow

Name: banana Color: yellow Shelf Life: 10 days.

Main method complete. Press Enter

CHAPTER 16 ■ USING LINQ

774

16-10. Sort Query Results

Problem
You need to sort the results of a LINQ query.

Solution
Use the orderby keyword.

How It Works
The orderby keyword sorts the result elements of a LINQ query by the member you specify. You can sort
on several members by using the orderby keyword more than once—see the example code for this recipe
for an illustration. By default, LINQ will sort the elements in ascending order (the smallest value will
come first in the results)—you can use the descending keyword after the member you want to use for
sorting to get the reverse effect.

The Code
The following example creates a collection containing the Fruit type and uses it as the basis for a LINQ
query that orders the results by the Color property in descending order and then the Name property in
ascending order.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Apress.VisualCSharpRecipes.Chapter16
{
 class Recipe16_10
 {
 static void Main(string[] args)
 {
 // Create the data source.
 IList<Fruit> datasource = createData();

 IEnumerable<Fruit> result = from e in datasource
 orderby e.Name
 orderby e.Color descending
 select e;

 foreach (Fruit fruit in result)
 {

CHAPTER 16 ■ USING LINQ

775

 Console.WriteLine("Name: {0} Color: {1} Shelf Life: {2} days.",
 fruit.Name, fruit.Color, fruit.ShelfLife);
 }

 // Wait to continue.
 Console.WriteLine("\nMain method complete. Press Enter");
 Console.ReadLine();
 }

 static IList<Fruit> createData()
 {
 return new List<Fruit>()
 {
 new Fruit("apple", "red", 7),
 new Fruit("apple", "green", 7),
 new Fruit("orange", "orange", 10),
 new Fruit("grape", "green", 4),
 new Fruit("fig", "brown", 12),
 new Fruit("plum", "red", 2),
 new Fruit("banana", "yellow", 10),
 new Fruit("cherry", "red", 7)
 };
 }
 }
 class Fruit
 {
 public Fruit(string namearg, string colorarg, int lifearg)
 {
 Name = namearg;
 Color = colorarg;
 ShelfLife = lifearg;
 }
 public string Name { get; set; }
 public string Color { get; set; }
 public int ShelfLife { get; set; }
 }
}

Running the program gives the following results:

Name: apple Color: red Shelf Life: 7 days.

Name: apple Color: green Shelf Life: 7 days.

Name: banana Color: yellow Shelf Life: 10 days.

Name: cherry Color: red Shelf Life: 7 days.

Name: fig Color: brown Shelf Life: 12 days.

CHAPTER 16 ■ USING LINQ

776

Name: grape Color: green Shelf Life: 4 days.

Name: orange Color: orange Shelf Life: 10 days.

Name: plum Color: red Shelf Life: 2 days.

Main method complete. Press Enter

16-11. Compare Data Sources

Problem
You need to determine whether two data sources contain the same elements.

The Solution
Use the SequenceEquals<> extension method.

How It Works
The SequenceEquals<> extension method compares two data sources and returns true if both data
sources contain the same number of elements and the individual elements in each position in each data
source are the same. You can specify your own code to assess element equality by implementing the
System.Collections.Generic.IEqualityComparer<> interface and supplying an instance of the
implementation as an argument to SequenceEquals<>.

The Code
The following example creates four data sources. The first contains a list of names of fruit. The second
contains the same names in the same order. The third contains the same names in a different order, and
the last contains different names, but with the same first letters as the names in the first list.
Comparisons are then performed using the default IEqualityComparer and a custom IEqualityComparer
that treats strings with the same first character as being equal.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

CHAPTER 16 ■ USING LINQ

777

namespace Apress.VisualCSharpRecipes.Chapter16
{
 class Recipe16_11
 {
 static void Main(string[] args)
 {
 // Create the first data source.
 string[] ds1 = { "apple", "cherry", "pear" };
 // Create a data source with the same elements
 // in the same order.
 string[] ds2 = { "apple", "cherry", "pear" };
 // Create a data source with the
 // same elements in a different order.
 string[] ds3 = { "pear", "cherry", "apple" };
 // Create a data source with different elements.
 string[] ds4 = { "apricot", "cranberry", "plum" };

 // Perform the comparisons.
 Console.WriteLine("Using standard comparer");
 Console.WriteLine("DS1 == DS2? {0}", ds1.SequenceEqual(ds2));
 Console.WriteLine("DS1 == DS3? {0}", ds1.SequenceEqual(ds3));
 Console.WriteLine("DS1 == DS4? {0}", ds1.SequenceEqual(ds4));

 // Create the custom comparer.
 MyComparer comparer = new MyComparer();

 Console.WriteLine("\nUsing custom comparer");
 Console.WriteLine("DS1 == DS2? {0}", ds1.SequenceEqual(ds2, comparer));
 Console.WriteLine("DS1 == DS3? {0}", ds1.SequenceEqual(ds3, comparer));
 Console.WriteLine("DS1 == DS4? {0}", ds1.SequenceEqual(ds4, comparer));

 // Wait to continue.
 Console.WriteLine("\nMain method complete. Press Enter");
 Console.ReadLine();
 }
 }
 class MyComparer : IEqualityComparer<string>
 {
 public bool Equals(string first, string second)
 {
 return first[0] == second[0];
 }

 public int GetHashCode(string str)
 {
 return str[0].GetHashCode();
 }
 }
}

CHAPTER 16 ■ USING LINQ

778

Running the program gives the following results:

Using standard comparer

DS1 == DS2? True

DS1 == DS3? False

DS1 == DS4? False

Using custom comparer

DS1 == DS2? True

DS1 == DS3? False

DS1 == DS4? True

Main method complete. Press Enter

16-12. Aggregate Data Sources

Problem
You need to aggregate the values in a data source.

Solution
Use the Average<>, Count<>, Max<>, Min<>, or Sum<> extension methods for standard aggregations, or the
Aggregate<> extension method to perform a custom aggregation.

How It Works
The standard aggregation extension methods process the elements in a data source to perform useful
calculations. Average<> calculates the mean value, Count<> returns the number of elements in the data
source, Min<> and Max<> return the smallest and largest elements, and Sum<> totals the elements.

You can perform custom aggregation operations using the Aggregate<> method. The example code
demonstrates two custom aggregation operations. The expression receives two arguments—the first is

CHAPTER 16 ■ USING LINQ

779

the aggregate value so far and the second is the current element to process. The parameters and
return value are of the same type as the data source type—that is, if you are aggregating an
IEnumeration<string>, you will receive two strings as arguments and must return a string as your
aggregate result.

The Code
The following example creates a data source of integers and calls each of the standard aggregation
methods. The same data source is used to demonstrate a custom aggregation method that totals the
individual elements (equivalent to the Sum<> method). Finally, a string array is used as a data source for
a custom aggregation that concatenates the individual elements.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Apress.VisualCSharpRecipes.Chapter16
{
 class Recipe16_12
 {
 static void Main(string[] args)
 {
 // Define a numeric data source.
 int[] ds1 = { 1, 23, 37, 49, 143 };

 // Use the standard aggregation methods.
 Console.WriteLine("Standard aggregation methods");
 Console.WriteLine("Average: {0}", ds1.Average());
 Console.WriteLine("Count: {0}", ds1.Count());
 Console.WriteLine("Max: {0}", ds1.Max());
 Console.WriteLine("Min: {0}", ds1.Min());
 Console.WriteLine("Sum: {0}", ds1.Sum());

 // Perform our own sum aggregation.
 Console.WriteLine("\nCustom aggregation");
 Console.WriteLine(ds1.Aggregate((total, elem) => total += elem));

 // Define a string data source.
 string[] ds2 = { "apple", "pear", "cherry" };

 // Perform a concat aggregation.
 Console.WriteLine("\nString concatenation aggregation");
 Console.WriteLine(ds2.Aggregate((len, elem) => len += elem));

CHAPTER 16 ■ USING LINQ

780

 // Wait to continue.
 Console.WriteLine("\nMain method complete. Press Enter");
 Console.ReadLine();
 }
 }
}

The program gives the following results:

Standard aggregation methods

Average: 50.6

Count: 5

Max: 143

Min: 1

Sum: 253

Custom aggregation

253

String concatenation aggregation

applepearcherry

Main method complete. Press Enter

16-13. Share Values Within a Query

Problem
You need to perform an operation on an element or a data source only once in a query.

CHAPTER 16 ■ USING LINQ

781

Solution
Use the let keywords.

How It Works
If you need to perform the same operation in different parts of your query, you can store the result of an
expression and use it several times. The example for this recipe demonstrates using the Sum aggregate
method and using the result in both the where and select clauses of the query. Without the use of the let
keyword, we would have to perform the aggregation in each clause. You can use let multiple times in a
query.

The Code
The following example demonstrates how to use the let keyword to obtain the sum of the elements in a
data source consisting of integers and use the result in the where and select sections of the same LINQ
query.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Apress.VisualCSharpRecipes.Chapter16
{
 class Recipe16_13
 {
 static void Main(string[] args)
 {
 // Define a numeric data source.
 int[] ds1 = { 1, 23, 37, 49, 143 };

 // Perform a query that shares a calculated value.
 IEnumerable<double> result1 = from e in ds1
 let avg = ds1.Average()
 where (e < avg)
 select (e + avg);

 Console.WriteLine("Query using shared value");
 foreach (double element in result1)
 {
 Console.WriteLine("Result element {0}", element);
 }

CHAPTER 16 ■ USING LINQ

782

 // Wait to continue.
 Console.WriteLine("\nMain method complete. Press Enter");
 Console.ReadLine();
 }
 }
}

Running the program gives the following results:

Query using shared value

Result element 51.6

Result element 73.6

Result element 87.6

Result element 99.6

Main method complete. Press Enter

16-14. Create Custom LINQ Extension Methods

Problem
You need to create a custom extension method that you can apply to LINQ data sources.

Solution
Create an extension method that works on instances of IEnumerable<>.

How It Works
Recipe 13-15 demonstrates how to create and use an extension method. The process for a LINQ
extension method is the same, except that you specify the type to operate on as IEnumerable<>. All LINQ
data sources implement IEnumerable<> or have a member that returns IEnumerable<>, so once you have
defined your extension method, you will be able to apply it to any data source that contains elements of
the type you have specified.

CHAPTER 16 ■ USING LINQ

783

The Code
The following example demonstrates creating a customer LINQ extension method that removes the first
and last element from string data sources:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Apress.VisualCSharpRecipes.Chapter16
{
 static class LINQExtensions
 {
 public static IEnumerable<string> RemoveFirstAndLast(
 this IEnumerable<string> source)
 {
 return source.Skip(1).Take(source.Count() - 2);
 }
 }

 class Recipe16_14
 {
 static void Main(string[] args)
 {
 // Create the data sources.
 string[] ds1 = {"apple", "banana", "pear", "fig"};
 IList<string> ds2 = new List<string>
 { "apple", "banana", "pear", "fig" };

 Console.WriteLine("Extension method used on string[]");
 IEnumerable<string> result1 = ds1.RemoveFirstAndLast();
 foreach (string element in result1)
 {
 Console.WriteLine("Result: {0}", element);
 }

 Console.WriteLine("\nExtension method used on IList<string>");
 IEnumerable<string> result2 = ds1.RemoveFirstAndLast();
 foreach (string element in result2)
 {
 Console.WriteLine("Result: {0}", element);
 }

 // Wait to continue.
 Console.WriteLine("\nMain method complete. Press Enter");
 Console.ReadLine();
 }
 }
}

CHAPTER 16 ■ USING LINQ

784

Running the sample program gives the same result for the differing data sources:

Extension method used on string[]

Result: banana

Result: pear

Extension method used on IList<string>

Result: banana

Result: pear

Main method complete. Press Enter

16-15. Convert from IEnumerable<>

Problem
You want to use the results of a LINQ query in a form other than an enumeration.

Solution
Use one of the LINQ convenience extension methods to convert your result.

How It Works
It is not always convenient to have the results of a query as an IEnumerable. LINQ provides a series of
extension methods that you can use to convert a query result into different types.

The Code
The following example creates a data source containing instances of the type Fruit, performs a LINQ
query to select those with a short shelf life, and then converts the result to an array, a Dictionary, a List,
and a Lookup, printing out the contents of each:

CHAPTER 16 ■ USING LINQ

785

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Apress.VisualCSharpRecipes.Chapter16
{
 class Recipe16_15
 {
 static void Main(string[] args)
 {
 // Create the data sources.
 IEnumerable<Fruit> datasource = createData();

 // Perform a query.
 IEnumerable<Fruit> result = from e in datasource
 where e.ShelfLife <= 7
 select e;

 // Enumerate the result elements.
 Console.WriteLine("Results from enumeration");
 foreach (Fruit fruit in result)
 {
 Console.WriteLine("Name: {0} Color: {1} Shelf Life: {2} days.",
 fruit.Name, fruit.Color, fruit.ShelfLife);
 }

 // Convert the IEnumerable to an array.
 Fruit[] array = result.ToArray<Fruit>();
 // print out the contents of the array
 Console.WriteLine("\nResults from array");
 for (int i = 0; i < array.Length; i++)
 {
 Console.WriteLine("Name: {0} Color: {1} Shelf Life: {2} days.",
 array[i].Name,
 array[i].Color, array[i].ShelfLife);
 }

 // Convert the IEnumerable to a dictionary indexed by name.
 Dictionary<string, Fruit> dictionary = result.ToDictionary(e => e.Name);
 // print out the contents of the dictionary
 Console.WriteLine("\nResults from dictionary");
 foreach (KeyValuePair<string, Fruit> kvp in dictionary)
 {
 Console.WriteLine("Name: {0} Color: {1} Shelf Life: {2} days.",
 kvp.Key, kvp.Value.Color, kvp.Value.ShelfLife);
 }

CHAPTER 16 ■ USING LINQ

786

 // Convert the IEnumerable to a list.
 IList<Fruit> list = result.ToList<Fruit>();
 // print out the contents of the list
 Console.WriteLine("\nResults from list");
 foreach (Fruit fruit in list)
 {
 Console.WriteLine("Name: {0} Color: {1} Shelf Life: {2} days.",
 fruit.Name, fruit.Color, fruit.ShelfLife);
 }

 // Convert the IEnumerable to a lookup, indexed by color.
 ILookup<string, Fruit> lookup = result.ToLookup(e => e.Color);
 // Print out the contents of the list.
 Console.WriteLine("\nResults from lookup");
 IEnumerator<IGrouping<string, Fruit>> groups = lookup.GetEnumerator();
 while (groups.MoveNext())
 {
 IGrouping<string, Fruit> group = groups.Current;
 Console.WriteLine("Group for {0}", group.Key);
 foreach (Fruit fruit in group)
 {
 Console.WriteLine("Name: {0} Color: {1} Shelf Life: {2} days.",
 fruit.Name, fruit.Color, fruit.ShelfLife);
 }
 }

 // Wait to continue.
 Console.WriteLine("\nMain method complete. Press Enter");
 Console.ReadLine();
 }

 static IList<Fruit> createData()
 {
 return new List<Fruit>()
 {
 new Fruit("apple", "red", 7),
 new Fruit("orange", "orange", 10),
 new Fruit("grape", "green", 4),
 new Fruit("fig", "brown", 12),
 new Fruit("plum", "red", 2),
 new Fruit("banana", "yellow", 10),
 new Fruit("cherry", "red", 7)
 };
 }
 }
 class Fruit
 {

CHAPTER 16 ■ USING LINQ

787

 public Fruit(string namearg, string colorarg, int lifearg)
 {
 Name = namearg;
 Color = colorarg;
 ShelfLife = lifearg;
 }
 public string Name { get; set; }
 public string Color { get; set; }
 public int ShelfLife { get; set; }
 }
}

Running the program gives the following results:

Results from enumeration

Name: apple Color: red Shelf Life: 7 days.

Name: grape Color: green Shelf Life: 4 days.

Name: plum Color: red Shelf Life: 2 days.

Name: cherry Color: red Shelf Life: 7 days.

Results from array

Name: apple Color: red Shelf Life: 7 days.

Name: grape Color: green Shelf Life: 4 days.

Name: plum Color: red Shelf Life: 2 days.

Name: cherry Color: red Shelf Life: 7 days.

Results from dictionary

Name: apple Color: red Shelf Life: 7 days.

Name: grape Color: green Shelf Life: 4 days.

Name: plum Color: red Shelf Life: 2 days.

Name: cherry Color: red Shelf Life: 7 days.

CHAPTER 16 ■ USING LINQ

788

Results from list

Name: apple Color: red Shelf Life: 7 days.

Name: grape Color: green Shelf Life: 4 days.

Name: plum Color: red Shelf Life: 2 days.

Name: cherry Color: red Shelf Life: 7 days.

Results from lookup

Group for red

Name: apple Color: red Shelf Life: 7 days.

Name: plum Color: red Shelf Life: 2 days.

Name: cherry Color: red Shelf Life: 7 days.

Group for green

Name: grape Color: green Shelf Life: 4 days.

Main method complete. Press Enter

C H A P T E R 17

■ ■ ■

789

Windows Presentation
Foundation

Windows Presentation Foundation (WPF), introduced in the .NET Framework 3.0, provides an
alternative to Windows Forms (see Chapter 7) for the development of highly functional rich client
applications. The WPF development model is radically different than that of Windows Forms and can be
difficult to adjust to—especially for experienced Windows Forms developers. However, WPF is
incredibly flexible and powerful, and taking the time to learn it can be lots of fun and immensely
rewarding. WPF enables the average developer to create user interfaces that incorporate techniques
previously accessible only to highly specialized graphics developers and take a fraction of the time to
develop that they would have once taken.

The capabilities offered by WPF are immense, so it is not possible to provide full coverage here. A far
more extensive set of recipes about WPF is provided in WPF Recipes in C# 2010 (Apress, 2010), of which
the recipes in the chapter are a much simplified subset. Thanks to Sam Bourton and Sam Noble for the
original work on some of the recipes in this chapter. The recipes in this chapter describe how to do the
following:

• Create and use a dependency and attached properties (recipes 17-1 and 17-2)

• Define and use application-wide resources (recipe 17-3)

• Debug data bindings (recipes 17-4 and 17-5)

• Control the position of UI elements using layout containers (recipes 17-6
through 17-9)

• Get rich text input from the user (recipe 17-10)

• Display a control rotated (recipe 17-11)

• Create and configure user controls (recipes 17-12 through 17-14)

• Create two-way and command bindings (recipes 17-15 and 17-16)

• Use data templates to display bound data (recipe 17-17)

• Bind controls to a master-detail collection (recipe 17-18)

• Change a control’s appearance when the mouse goes over it (recipe 17-19)

CHAPTER 17 ■ WINDOWS PRESENTATION FOUNDATION

790

• Make alternate items in a list look different (recipe 17-20)

• Allow the user to drag items from a list and position them on a canvas (recipe
17-21)

• Show progress and allow cancellation of a long-running process (recipe 17-22)

• Draw and reuse two-dimensional shapes (recipes 17-23 and 17-24)

• Fill shapes with colors, gradients, images, and textures (recipes 17-25 through
17-28)

• Animate the properties of a control (recipes 17-29 through 17-32)

• Play a media file (recipe 17-33)

• Query the state of the keyboard (recipe 17-34)

17-1. Create and Use a Dependency Property

Problem
You need to add a property to a class that derives from System.Windows.DependencyObject to provide
support for any or all of the following:

• Data bindings

• Animation

• Setting with a dynamic resource reference

• Automatically inheriting a property value from a superclass

• Setting in a style

• Using property value inheritance

• Notification through callbacks on property value changes

Solution
Register a System.Windows.DependencyProperty to use as the backing store for the required property on
your class.

CHAPTER 17 ■ WINDOWS PRESENTATION FOUNDATION

791

How It Works
A dependency property is implemented using a standard Common Language Runtime (CLR) property,
but instead of using a private field to back the property, you use a DependencyProperty. A
DependencyProperty is instantiated using the static method DependencyProperty.Register(string name,
System.Type propertyType, Type ownerType), which returns a DependencyProperty instance that is
stored using a static, read-only field. There are also two overrides that allow you to specify metadata that
defines behavior and a callback for validation.

The first argument passed to the DependencyProperty.Register method specifies the name of the
dependency property being registered. This name must be unique within registrations that occur in the
owner type’s namespace. The next two arguments give the type of property being registered and the
class against which the dependency property is being defined. It is important to note that the owning
type must derive from DependencyObject; otherwise, an exception is raised when you initialize the
dependency property.

The first override for the Register method allows a System.Windows.PropertyMetadata object, or one
of the several derived types, to be specified for the property. Property metadata is used to define
characteristics of a dependency property, allowing for greater richness than simply using reflection or
common CLR characteristics. The use of property metadata can be broken down into three areas:

• Specifying a default value for the property

• Providing callback implementations for property changes and value coercion

• Reporting framework-level characteristics used in layout, inheritance, and so on

■ Caution Because values for dependency properties can be set in several places, a set of rules define the
precedence of these values and any default value specified in property metadata. These rules are beyond the
scope of this recipe; for more information, you can look at the subject of dependency property value precedence at
http://msdn.microsoft.com/en-us/library/ms743230(VS.100).aspx.

In addition to specifying a default value, property-changed callbacks, and coercion callbacks, the
System.Windows.FrameworkPropertyMetadata object allows you to specify various options given by the
System.Windows.FrameworkPropertyMetadataOptions enumeration. You can use as many of these options
as required, combining them as flags. Table 17-1 details the values defined in the
FrameworkPropertyMetadataOptions enumeration.

http://msdn.microsoft.com/en-us/library/ms743230

CHAPTER 17 ■ WINDOWS PRESENTATION FOUNDATION

792

Table 17-1. Values for the FrameworkPropertyMetadataOptions Class

Property Description

None The property will adopt the default behavior of the WPF property
system.

AffectsMeasure Changes to the dependency property’s value affect the owning
control’s measure.

AffectsArrange Changes to the dependency property’s value affect the owning
control’s arrangement.

AffectsParentMeasure Changes to the dependency property’s value affect the parent of the
owning control’s measure.

AffectsParentArrange Changes to the dependency property’s value affect the parent of the
owning control’s arrangement.

AffectsRender Changes to the dependency property’s value affect the owning
control’s render or layout composition.

Inherits The value of the dependency property is inherited by any child
elements of the owning type.

OverridesInheritanceBehavior The value of the dependency property spans disconnected trees in
the context of property value inheritance.

NotDataBindable Binding operations cannot be performed on this dependency
property.

BindsTwoWayByDefault When used in data bindings, the System.Windows.BindingMode is
TwoWay by default.

Journal The value of the dependency property is saved or restored through
any journaling processes or URI navigations.

SubPropertiesDoNotAffectRender Properties of the value of the dependency property do not affect the
owning type’s rendering in any way.

CHAPTER 17 ■ WINDOWS PRESENTATION FOUNDATION

793

■ Caution When implementing a dependency property, it is important to use the correct naming convention.
The identifier used for the dependency property must be the same as the identifier used to name the CLR property
it is registered against, appended with Property. For example, if you were defining a property to store the
velocity of an object, the CLR property would be named Velocity, and the dependency property field would be
named VelocityProperty. If a dependency property isn’t implemented in this fashion, you may experience
strange behavior with property system–style applications and some visual designers not correctly reporting the
property’s value.

Value coercion plays an important role in dependency properties and comes into play when the
value of a dependency property is set. By supplying a CoerceValueCallback argument, it is possible to
alter the value to which the property is being set. An example of value coercion is when setting the value
of the System.Windows.Window.RenderTransform property. It is not valid to set the RenderTransform
property of a window to anything other than an identity matrix. If any other value is used, an exception
is thrown. It should be noted that any coercion callback methods are invoked before any
System.Windows.ValidateValueCallback methods.

The Code
The following example demonstrates the definition of a custom DependencyProperty on a simple
System.Windows.Controls.UserControl (MyControl, defined in MyControl.xaml). The UserControl
contains two text blocks: one set by the control’s code-behind, and the other bound to a dependency
property defined in the control’s code-behind.

<UserControl
 x:Class="Apress.VisualCSharpRecipes.Chapter17.MyControl"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">
 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height="20" />
 <RowDefinition Height="*" />
 </Grid.RowDefinitions>

 <TextBlock x:Name="txblFontWeight" Text="FontWeight set to: Normal." />

 <Viewbox Grid.Row="1">
 <TextBlock Text="{Binding Path=TextContent}"
 FontWeight="{Binding Path=TextFontWeight}" />
 </Viewbox>
 </Grid>
</UserControl>

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 17 ■ WINDOWS PRESENTATION FOUNDATION

794

The following code block details the code-behind for the previous markup (MyControl.xaml.cs):

using System.Windows;
using System.Windows.Controls;

namespace Apress.VisualCSharpRecipes.Chapter17
{
 public partial class MyControl : UserControl
 {
 public MyControl()
 {
 InitializeComponent();
 DataContext = this;
 }

 public FontWeight TextFontWeight
 {
 get { return (FontWeight)GetValue(TextFontWeightProperty); }
 set { SetValue(TextFontWeightProperty, value); }
 }

 public static readonly DependencyProperty TextFontWeightProperty =
 DependencyProperty.Register(
 "TextFontWeight",
 typeof(FontWeight),
 typeof(MyControl),
 new FrameworkPropertyMetadata(FontWeights.Normal,
 FrameworkPropertyMetadataOptions.AffectsArrange
 & FrameworkPropertyMetadataOptions.AffectsMeasure
 & FrameworkPropertyMetadataOptions.AffectsRender,
 TextFontWeight_PropertyChanged,
 TextFontWeight_CoerceValue));

 public string TextContent
 {
 get { return (string)GetValue(TextContentProperty); }
 set { SetValue(TextContentProperty, value); }
 }

 public static readonly DependencyProperty TextContentProperty =
 DependencyProperty.Register(
 "TextContent",
 typeof(string),
 typeof(MyControl),

 new FrameworkPropertyMetadata(
 "Default Value",
 FrameworkPropertyMetadataOptions.AffectsArrange
 & FrameworkPropertyMetadataOptions.AffectsMeasure
 & FrameworkPropertyMetadataOptions.AffectsRender));

CHAPTER 17 ■ WINDOWS PRESENTATION FOUNDATION

795

 private static object TextFontWeight_CoerceValue(DependencyObject d,
 object value)
 {
 FontWeight fontWeight = (FontWeight)value;

 if (fontWeight == FontWeights.Bold
 || fontWeight == FontWeights.Normal)
 {
 return fontWeight;
 }

 return FontWeights.Normal;
 }

 private static void TextFontWeight_PropertyChanged(DependencyObject d,
 DependencyPropertyChangedEventArgs e)
 {
 MyControl myControl = d as MyControl;

 if (myControl != null)
 {
 FontWeight fontWeight = (FontWeight)e.NewValue;
 string fontWeightName;

 if (fontWeight == FontWeights.Bold)
 fontWeightName = "Bold";
 else
 fontWeightName = "Normal";

 myControl.txblFontWeight.Text =
 string.Format("Font weight set to: {0}.", fontWeightName);
 }
 }
 }
}

17-2. Create and Use an Attached Property

Problem
You need to add a dependency property to a class but are not able to access the class in a way that
would allow you to add the property, or you want to use a property that can be set on any child objects
of the type.

CHAPTER 17 ■ WINDOWS PRESENTATION FOUNDATION

796

Solution
Create an attached property by registering a System.Windows.DependencyProperty using the static
DependencyProperty.RegisterAttached method.

How It Works
You can think of an attached property as a special type of dependency property (see Recipe 17-1) that
doesn’t get exposed using a CLR property wrapper. Common examples of attached properties include
System.Windows.Controls.Canvas.Top, System.Windows.Controls.DockPanel.Dock, and
System.Windows.Controls.Grid.Row.

As attached properties are registered in a similar way to dependency properties, you are still able to
provide metadata for handling property changes, and so on. In addition to metadata, it is possible to
enable property value inheritance on attached properties.

Attached properties are not set like dependency properties using a CLR wrapper property; they are
instead accessed through a method for getting and setting their values. These methods have specific
signatures and naming conventions so that they can be matched up to the correct attached property.
The signatures for the property’s getter and setter methods can be found in the following code listing.

The Code
The following code defines a simple System.Windows.Window that contains a few controls. The window’s
code-behind defines an attached property named RotationProperty with SystemWindows.UIElement as
the target type. The window’s markup defines four controls, three of which have the value of
MainWindow.Rotation set in XAML. The button’s value for this property is not set and will therefore return
the default value for the property—0 in this case.

<Window
 x:Class=" Apress.VisualCSharpRecipes.Chapter17.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="clr-namespace:Apress.VisualCSharpRecipes.Chapter17"
 Title="Recipe17_02" Height="350" Width="350">
 <UniformGrid>
 <Button Content="Click me!" Click="UIElement_Click" Margin="10" />

 <Border MouseLeftButtonDown="UIElement_Click"
 BorderThickness="1" BorderBrush="Black" Background="Transparent"
 Margin="10" local:MainWindow.Rotation="3.14" />

 <ListView PreviewMouseLeftButtonDown="UIElement_Click"
 Margin="10" local:MainWindow.Rotation="1.57">
 <ListViewItem Content="Item 1" />
 <ListViewItem Content="Item 1" />
 <ListViewItem Content="Item 1" />
 <ListViewItem Content="Item 1" />
 </ListView>

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 17 ■ WINDOWS PRESENTATION FOUNDATION

797

 <local:UserControl1 Margin="10" local:MainWindow.Rotation="1.0" />
 </UniformGrid>
</Window>

using System.Windows;
using System.Windows.Controls;

namespace Apress.VisualCSharpRecipes.Chapter17
{
 /// <summary>
 /// Interaction logic for MainWindow.xaml
 /// </summary>
 public partial class MainWindow : Window
 {
 public MainWindow()
 {
 InitializeComponent();
 }

 private void UIElement_Click(object sender, RoutedEventArgs e)
 {
 UIElement uiElement = (UIElement)sender;

 MessageBox.Show("Rotation = " + GetRotation(uiElement), "Recipe17_02");
 }

 public static readonly DependencyProperty RotationProperty =
 DependencyProperty.RegisterAttached("Rotation",
 typeof(double),
 typeof(MainWindow),
 new FrameworkPropertyMetadata(
 0d, FrameworkPropertyMetadataOptions.AffectsRender));

 public static void SetRotation(UIElement element, double value)
 {
 element.SetValue(RotationProperty, value);
 }

 public static double GetRotation(UIElement element)
 {
 return (double)element.GetValue(RotationProperty);
 }
 }
}

CHAPTER 17 ■ WINDOWS PRESENTATION FOUNDATION

798

The following markup and code-behind define a simple System.Windows.Controls.UserControl that
demonstrates the use of the custom attached property in code:

<UserControl
 x:Class=" Apress.VisualCSharpRecipes.Chapter17.UserControl1"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 MouseLeftButtonDown="UserControl_MouseLeftButtonDown"
 Background="Transparent">
 <Viewbox>
 <TextBlock Text="I'm a UserControl" />
 </Viewbox>
</UserControl>

using System.Windows;
using System.Windows.Controls;

namespace Apress.VisualCSharpRecipes.Chapter17
{
 /// <summary>
 /// Interaction logic for UserControl1.xaml
 /// </summary>
 public partial class UserControl1 : UserControl
 {
 public UserControl1()
 {
 InitializeComponent();
 }

 private void UserControl_MouseLeftButtonDown(object sender,
 RoutedEventArgs e)
 {
 UserControl1 uiElement = (UserControl1)sender;

 MessageBox.Show("Rotation = " + MainWindow.GetRotation(uiElement),
 "Recipe17_02");
 }
 }
}

Figure 17-1 shows the result of clicking the button. A value for the MainWindow.Rotation property is
not explicitly set on the button; therefore, it is displaying the default value.

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 17 ■ WINDOWS PRESENTATION FOUNDATION

799

Figure 17-1. The result of clicking the button

17-3. Define Application-Wide Resources

Problem
You have several resources that you want to make available throughout your application.

Solution
Merge all the required System.Windows.ResourceDictionary objects into the application’s
ResourceDictionary.

How It Works
ResourceDictionary objects are by default available to all objects that are within the scope of the
application. This means that some System.Windows.Controls.Control that is placed within a
System.Windows.Window will be able to reference objects contained within any of the ResourceDictionary
objects referenced at the application level. This ensures the maintainability of your styles because you
will need to update the objects in a single place.

It is important to know that each time a ResourceDictionary is referenced by a System.Windows.
Controls.Control, a local copy of that ResourceDictionary is made for each instance of the control. This

CHAPTER 17 ■ WINDOWS PRESENTATION FOUNDATION

800

means that if you have several large ResourceDictionary objects that are referenced by a control that is
instantiated several times, you may notice a performance hit.

■ Note System.Windows.Controls.ToolTip styles need to be referenced once per control. If several controls all
use a ToolTip style referenced at the application level, you will observe strange behavior in your tooltips.

The Code
The following example demonstrates the content of an application’s App.xaml. Two
System.Windows.Media.SolidColorBrush resources are defined that are referenced in other parts of the
application.

<Application
 x:Class="Apress.VisualCSharpRecipes.Chapter17.App"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 StartupUri="MainWindow.xaml">
 <Application.Resources>
 <SolidColorBrush x:Key="FontBrush" Color="#FF222222" />
 <SolidColorBrush x:Key="BackgroundBrush" Color="#FFDDDDDD" />
 </Application.Resources>
</Application>

The following example demonstrates the content of the application’s MainWindow.xaml file. The two
resources that were defined in the application’s resources are used by controls in the System.
Windows.Window. The first resource is used to set the background property of the outer System.
Windows.Controls.Grid, and the second resource is used to set the foreground property of a System.
Windows.Controls.TextBlock (see Figure 17-2).

<Window
 x:Class="Apress.VisualCSharpRecipes.Chapter17.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="Recipe17_03" Height="100" Width="300">
 <Grid Background="{StaticResource BackgroundBrush}">
 <Viewbox>
 <TextBlock Text="Some Text" Margin="5"
 Foreground="{StaticResource FontBrush}" />
 </Viewbox>
 </Grid>
</Window>

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 17 ■ WINDOWS PRESENTATION FOUNDATION

801

Figure 17-2. Using an application-level resource to set properties on controls

17-4. Debug Data Bindings Using an IValueConverter

Problem
You need to debug a binding that is not working as expected and want to make sure the correct values
are going in.

Solution
Create a converter class that implements System.Windows.Data.IValueConverter and simply returns the
value it receives for conversion, setting a breakpoint or tracepoint within the converter.

How It Works
Debugging a data binding can be quite tricky and consume a lot of time. Because data bindings are
generally defined in XAML, you don’t have anywhere you can set a breakpoint to make sure things are
working as you intended. In some cases, you will be able to place a breakpoint on a property of the
object that is being bound, but that option isn’t always available, such as when binding to a property of
some other control in your application. This is where a converter can be useful.

When using a simple converter that returns the argument being passed in, unchanged, you
immediately have code on which you can place a breakpoint or write debugging information to the
Output window or log. This can tell you whether the value coming in is the wrong type, is in a form that
means it is not valid for the binding, or has a strange value. You’ll also soon realize whether the binding
is not being used, because the converter will never be hit.

The Code
The following example demonstrates a System.Windows.Window that contains a System.Windows.
Controls.Grid. Inside the Grid are a System.Windows.Controls.CheckBox and a System.Windows.
Controls.Expander. The IsExpanded property of the Expander is bound to the IsChecked property of the
CheckBox. This is a very simple binding, but it gives an example where you are able to place a breakpoint
in code.

CHAPTER 17 ■ WINDOWS PRESENTATION FOUNDATION

802

<Window
 x:Class="Apress.VisualCSharpRecipes.Chapter17.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="clr-namespace:Apress.VisualCSharpRecipes.Chapter17"
 Title="Recipe17_04" Width="200" Height="200">
 <Window.Resources>
 <local:DebugConverter x:Key="DebugConverter" />
 </Window.Resources>
 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height="0.5*" />
 <RowDefinition Height="0.5*"/>
 </Grid.RowDefinitions>

 <CheckBox x:Name="chkShouldItBeOpen" Margin="10"
 IsChecked="False" Content="Open Expander" />

 <Expander IsExpanded="{Binding
 ElementName=chkShouldItBeOpen, Path=IsChecked,
 Converter={StaticResource DebugConverter}}"
 Grid.Row="1" Background="Black" Foreground="White"
 Margin="10" VerticalAlignment="Center"
 HorizontalAlignment="Center" Header="I'm an Expander!">
 <TextBlock Text="Expander Open" Foreground="White"/>
 </Expander>
 </Grid>
</Window>

The following code defines the code-behind for the previous XAML:

using System.Windows;

namespace Apress.VisualCSharpRecipes.Chapter17
{
 /// <summary>
 /// Interaction logic for MainWindow.xaml
 /// </summary>
 public partial class MainWindow : Window
 {
 public MainWindow()
 {
 InitializeComponent();
 }
 }
}

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 17 ■ WINDOWS PRESENTATION FOUNDATION

803

The following code defines a converter class that simply returns the value passed to it unchanged.
However, you can place breakpoints on these lines of code to see what data is flowing through the
converter:

using System;
using System.Globalization;
using System.Windows.Data;

namespace Apress.VisualCSharpRecipes.Chapter17
{
 public class DebugConverter : IValueConverter
 {
 public object Convert(object value,
 Type targetType,
 object parameter,
 CultureInfo culture)
 {
 return value;
 }

 public object ConvertBack(object value,
 Type targetType,
 object parameter,
 CultureInfo culture)
 {
 return value;
 }
 }
}

17-5. Debug Bindings Using Attached Properties

Problem
You need to debug a binding that is not working as expected and want to make sure the correct values
are going in. Using a converter is either undesired or not feasible.

Solution
Use the System.Diagnostics.PresentationTraceSources.TraceLevel attached property defined in the
WindowsBase assembly, setting the level of detail required. If the data binding is defined in code, use the
static method PresentationTraceLevel.SetTraceLevel.

CHAPTER 17 ■ WINDOWS PRESENTATION FOUNDATION

804

■ Caution Using the PresentationTraceSources.TraceLevel attached property can affect the performance of a
WPF application and should be removed as soon as it is no longer required.

How It Works
The PresentationTraceSources.TraceLevel attached property allows you to specify the level of
information written to the Output window for data bindings, on a per-binding basis. The higher the
System.Diagnostics.PresentationTraceLevel value that is used, the more information that will be
generated. The PresentationTraceSources.TraceLevel can be used on the following object types:

• System.Windows.Data.BindingBase

• System.Windows.Data.BindingExpressionBase

• System.Windows.Data.ObjectDataProvider

• System.Windows.Data.XmlDataProvider

It is important to remember to remove any trace-level attached properties from your code once you
are finished debugging a binding; otherwise, your Output window will continue to be filled with binding
information. Table 17-2 details the values of the PresentationTraceSource.TraceLevel enumeration.

Table 17-2. Values for PresentationTraceSources.TraceLevel

Property Description

None Generates no additional information.

Low Generates some information about binding failures. This generally details the target and
source properties involved and any exception that is thrown. No information is generated for
bindings that work properly.

Medium Generates a medium amount of information about binding failures and a small amount of
information for valid bindings. When a binding fails, information is generated for the source
and target properties, some of the transformations that are applied to the value, any
exceptions that occur, the final value of the binding, and some of the steps taken during the
whole process. For valid bindings, information logging is light.

High Generates the most binding state information for binding failures and valid bindings. When a
binding fails, a great deal of information about the binding process is logged, covering all the
previous data in a more verbose manner.

CHAPTER 17 ■ WINDOWS PRESENTATION FOUNDATION

805

The Code
The following markup demonstrates how to use the PresentationTraceSource.TraceLevel property in
two different bindings. One of the bindings is valid and binds the value of the text block to the width of
the parent grid; the other is invalid and attempts to bind the width of the parent grid to the height of the
text block. Set the values of the PresentatonTraceSource.TraceLevel attached properties to see how they
behave.

<Window
 x:Class="Apress.VisualCSharpRecipes.Chapter17.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:diagnostics="clr-namespace:System.Diagnostics;assembly=WindowsBase"
 Title="Recipe17_05" Height="300" Width="300">
 <Grid x:Name="gdLayoutRoot">
 <Viewbox>
 <TextBlock x:Name="tbkTextBlock">
 <TextBlock.Text>
 <Binding ElementName="gdLayoutRoot" Path="ActualWidth"
 diagnostics:PresentationTraceSources.TraceLevel="High" />
 </TextBlock.Text>
 <TextBlock.Height>
 <Binding ElementName="gdLayoutRoot" Path="Name"
 diagnostics:PresentationTraceSources.TraceLevel="High" />
 </TextBlock.Height>
 </TextBlock>
 </Viewbox>
 </Grid>
</Window>

17-6. Arrange UI Elements in a Horizontal or Vertical Stack

Problem
You need to arrange a group of UI elements in a horizontal or vertical stack.

Solution
Place the UI elements in a System.Windows.Controls.StackPanel. Use the Orientation property of the
StackPanel to control the flow of the stacking (vertical or horizontal).

How It Works
The StackPanel arranges the elements it contains in a horizontal or vertical stack. The order of the
elements is determined by the order in which they are declared in the XAML (that is, the order in which
they occur in the Children collection of the StackPanel). By default, the StackPanel will arrange the

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 17 ■ WINDOWS PRESENTATION FOUNDATION

806

elements vertically (one under another). You can control the direction of the stack using the Orientation
property. To stack the elements horizontally (next to each other), set the Orientation property to the
value Horizontal.

■ Note If the StackPanel is smaller than the space required to display its content, the content is visually cropped.
However, you can still interact with visual elements that are cropped by using keyboard shortcuts or by tabbing to
the control and pressing Enter.

The default height and width of elements in a StackPanel depend on the type of element and the
orientation of the StackPanel. When the Orientation property of the StackPanel has the value Vertical,
text is left justified, but buttons are stretched to the width of the StackPanel. You can override this
default behavior by directly configuring the width of the element or by setting the HorizontalAlignment
property of the contained element to the value Left, Center, or Right. These values force the element to
take a width based on its content and position it in the left, center, or right of the StackPanel.

Similarly, when the Orientation property of the StackPanel has the value Horizontal, the text is top
justified, but the height of buttons is stretched to fill the height of the StackPanel. You can override this
behavior by directly configuring the height of the element or by setting the VerticalAlignment property
of the contained element to the value Top, Center, or Bottom. These values force the element to take a
height based on its content and position it in the top, center, or bottom of the StackPanel.

The Code
The following XAML demonstrates how to use three StackPanel panels. An outer StackPanel allows you
to stack two inner StackPanel panels vertically. The first inner StackPanel has a horizontal orientation
and contains a set of System.Windows.Controls.Button controls. The Button controls show the effects of
the various VerticalAlignment property values on the positioning of the controls. This panel also shows
the cropping behavior of the StackPanel on the elements it contains (see Figure 17-3). You can see that
Button 4 is partially cropped and that Button 5 is not visible at all. However, you can still tab to and
interact with Button 5.

The second inner StackPanel has a vertical orientation and also contains a set of Button controls.
These buttons show the effects of the various HorizontalAlignment property values on the positioning of
a control in the StackPanel.

<Window x:Class="Apress.VisualCSharpRecipes.Chapter17.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="Recipe17_06" Height="240" Width="250">
 <StackPanel Width="200">
 <StackPanel Height="50" Margin ="5" Orientation="Horizontal">
 <Button Content="Button _1" Margin="2" />
 <Button Content="Button _2" Margin="2"
 VerticalAlignment="Top"/>
 <Button Content="Button _3" Margin="2"
 VerticalAlignment="Center"/>

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 17 ■ WINDOWS PRESENTATION FOUNDATION

807

 <Button Content="Button _4" Margin="2"
 VerticalAlignment="Bottom"/>
 <Button Content="Button _5" Margin="2" />
 </StackPanel>
 <Separator />
 <StackPanel Margin="5" Orientation="Vertical">
 <Button Content="Button _A" Margin="2" />
 <Button Content="Button _B" Margin="2"
 HorizontalAlignment="Left" />
 <Button Content="Button _C" Margin="2"
 HorizontalAlignment="Center" />
 <Button Content="Button _D" Margin="2"
 HorizontalAlignment="Right" />
 <Button Content="Button _E" Margin="2" />
 </StackPanel>
 </StackPanel>
</Window>

Figure 17-3. Using a StackPanel to control the layout of UI elements

17-7. Dock UI Elements to the Edges of a Form

Problem
You need to dock UI elements to specific edges of a form.

Solution
Place the UI elements in a System.Windows.Controls.DockPanel. Use the DockPanel.Dock attached
property on each element in the DockPanel to position the element on a particular edge.

CHAPTER 17 ■ WINDOWS PRESENTATION FOUNDATION

808

How It Works
The DockPanel allows you to arrange UI elements (including other panels) along its edges. This is very
useful in achieving the basic window layout common to many Windows applications with menus and
toolbars along the top of the window and control panels along the sides.

When you apply the DockPanel.Dock attached property to the elements contained in a DockPanel, the
DockPanel places the UI element along the specified edge: Left, Right, Top, or Bottom. The DockPanel
assigns the elements’ positions in the same order they are declared in the XAML (that is, in the order in
which they occur in the Children collection of the DockPanel).

As each element is placed on an edge, it takes up all the space available along that edge. This means
you must consider the layout you want when ordering the contained elements. Also, if there are multiple
elements on a given edge, the DockPanel stacks them in order.

By default, the last element added to the DockPanel fills all the remaining space in the panel
regardless of its DockPanel.Dock property value. You can stop this behavior by setting the LastChildFill
property of the DockPanel to False. The DockPanel places any elements without a DockPanel.Dock
property value along the left edge.

Figure 17-4 provides examples of the different layouts you can achieve by declaring elements in
different orders. The third example also shows how the DockPanel stacks elements when specified on a
common edge.

Figure 17-4. Layout examples using a DockPanel

The Code
The following XAML demonstrates how to use a DockPanel to dock a System.Windows.Controls.
StackPanel containing a set of System.Windows.Controls.Button controls along its top edge and another
along its left edge. The final Button added to the DockPanel stretches to fill all the remaining space in the
panel (see Figure 17-5).

<Window x:Class="Apress.VisualCSharpRecipes.Chapter17.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="Recipe17_07" Height="200" Width="300">
 <DockPanel >
 <StackPanel DockPanel.Dock="Top" Orientation="Horizontal">
 <Button Content="Button 1" Margin="2" />
 <Button Content="Button 2" Margin="2" />

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 17 ■ WINDOWS PRESENTATION FOUNDATION

809

 <Button Content="Button 3" Margin="2" />
 <Button Content="Button 4" Margin="2" />
 <Button Content="Button 5" Margin="2" />
 </StackPanel>
 <StackPanel DockPanel.Dock="Left">
 <Button Content="Button A" Margin="2" />
 <Button Content="Button B" Margin="2" />
 <Button Content="Button C" Margin="2" />
 <Button Content="Button D" Margin="2" />
 <Button Content="Button E" Margin="2" />
 </StackPanel>
 <Button Content="Fill Button" />
 </DockPanel>
</Window>

Figure 17-5. Arranging UI elements in a DockPanel

17-8. Arrange UI Elements in a Grid

Problem
You need to arrange a group of UI elements in a two-dimensional grid layout.

Solution
Place the UI elements in a System.Windows.Controls.Grid. Define the number of rows and columns in
the Grid. For each UI element in the Grid, define its row and column coordinates using the Grid.Row and
Grid.Column attached properties.

CHAPTER 17 ■ WINDOWS PRESENTATION FOUNDATION

810

How It Works
To define the number of rows in a Grid panel, you must include a Grid.RowDefinitions element inside
the Grid. Within the Grid.RowDefinitions element, you declare one RowDefintion element for each row
you need. You must do the same thing for columns, but you use elements named
Grid.ColumnDefinitions and ColumnDefinition.

■ Tip Although you will rarely want it in live production code, it is often useful during development to be able to
see where the row and column boundaries are within your Grid panel. Setting the ShowGridLines property of the
Grid panel to True will turn visible grid lines on.

Using the Height property of the RowDefinition element and the Width property of the
ColumnDefinition, you have fine-grained control over the layout of a Grid. Both the Height and Width
properties can take absolute values if you require fixed sizes. You must define the size of the column or
row as a number and an optional unit identifier. By default, the unit is assumed to be px (pixels) but can
also be in (inches), cm (centimeters), or pt (points).

If you do not want fixed sizes, you can assign the value Auto to the Height or Width property, in
which case the Grid allocates only the amount of space required by the elements contained in the row
or column.

If you do not specify absolute or auto values, the Grid will divide its horizontal space equally
between all columns and its vertical space equally between all rows. You can override this default
behavior and change the proportions of available space assigned to each row or column using an
asterisk (*) preceded by the relative weighting the Grid should give the row or column. For example, a
RowDefinition element with the Height property of 3* will get three times as much space allocated to it
as a RowDefinition element with a Height property of *. Most often, you will use a mix of auto and
proportional sizing.

Once you have defined the structure of your Grid, you specify where in the Grid each element
should go using the Grid.Row and Grid.Column attached properties. Both the Grid.Row and Grid.Column
properties are zero-based and default to zero if you do not define them for an element contained within
the Grid.

If you want elements in the Grid that span multiple rows or columns, you can assign them
Grid.RowSpan and Grid.ColumnSpan attached properties that specify the number of rows or columns that
the element should span.

The Code
The following XAML demonstrates how to use a three-by-three Grid to lay out a set of System.Windows.
Controls.Button controls. The Grid uses a mix of fixed, auto, and proportional row and column sizing,
and the Grid lines are turned on so that you can see (in Figure 17-6) the resulting Grid structure. The top-
left Button controls span multiple rows or columns, and the leftmost Button is rotated (see recipe 17-11
for details on how to do this).

<Window x:Class="Apress.VisualCSharpRecipes.Chapter17.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

http://schemas.microsoft.com/winfx/2006/xaml/presentation

CHAPTER 17 ■ WINDOWS PRESENTATION FOUNDATION

811

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="Recipe17_08" Height="200" Width="250">
 <Grid ShowGridLines="True">
 <Grid.RowDefinitions>
 <RowDefinition MinHeight="50" />
 <RowDefinition Height="2*" />
 <RowDefinition Height="*" />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="50" />
 <ColumnDefinition Width="2*" />
 <ColumnDefinition Width="3*" />
 </Grid.ColumnDefinitions>
 <Button Content="Button spanning 3 rows" Grid.RowSpan="3">
 <Button.LayoutTransform>
 <RotateTransform Angle="90" />
 </Button.LayoutTransform>
 </Button>
 <Button Content="Button spanning 2 columns" Grid.Column="1"
 Grid.Row="0" Grid.ColumnSpan="2" />
 <Button Content="Button" Grid.Column="2" Grid.Row="2"/>
 </Grid>
</Window>

Figure 17-6. Arranging UI elements in a Grid

17-9. Position UI Elements Using Exact Coordinates

Problem
You need complete control over the positioning of the UI elements in a form.

http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 17 ■ WINDOWS PRESENTATION FOUNDATION

812

Solution
Place the UI elements in a System.Windows.Controls.Canvas panel. Use the Canvas.Top, Canvas.Bottom,
Canvas.Left, and Canvas.Right attached properties to define the position of each element.

How It Works
The Canvas panel allows you to place UI elements using exact coordinates. Unlike other layout panels,
the Canvas does not provide special layout logic to position and size the elements it contains based on
the space it has available. Instead, the Canvas simply places each element at its specified location and
gives it the exact dimensions it requires. This does not facilitate maintainable user interfaces that are
easy to localize, but in certain circumstances (such as drawing and graphical design applications) it may
be necessary.

By default, the Canvas positions the elements it contains in its top-left corner. To position an
element elsewhere in the Canvas, you can define the Canvas.Top, Canvas.Bottom, Canvas.Left, and
Canvas.Right attached properties on the element. Each property takes a number and an optional unit
identifier. By default, the unit is assumed to be px (pixels), but can also be in (inches), cm (centimeters),
or pt (points). The value can even be negative, which allows the Canvas to draw elements outside its own
visual boundaries.

If you define both Canvas.Top and Canvas.Bottom on an element, the Canvas ignores the
Canvas.Bottom value. Similarly, if you define both Canvas.Left and Canvas.Right on an element, the
Canvas ignores the Canvas.Right value.

Because you have complete control over element position when using a Canvas, it is easy to get
elements that overlap. The Canvas draws the elements in the same order they are declared in the XAML
(that is, the order in which they occur in the Children collection of the Canvas). So, elements declared
later are visible on top of elements declared earlier. You can override this default stacking order (referred
to as the z-order) by defining the Canvas.ZIndex attached property on the element. The default
Canvas.ZIndex is zero, so by assigning a higher integer value to the Canvas.ZIndex property on an
element, the Canvas will draw that element over the top of elements with a lower value.

The Code
The following XAML demonstrates how to use a Canvas to lay out a set of System.Windows.Controls.
Button controls. In Figure 17-7, the shaded area shows the boundary of the Canvas. You can see how
using negative position values for Button 1 and Button 5 place them wholly or partially outside the
boundary of the Canvas. Despite Button 4 being declared after Button 2, the higher Canvas.ZIndex
assigned on Button 2 forces the Canvas to draw Button 2 over the top of Button 4.

<Window x:Class="Apress.VisualCSharpRecipes.Chapter17.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="Recipe17_09" Height="300" Width="300">
 <Canvas Background="LightGray" Margin="1cm">
 <Button Content="Button _1" Canvas.Top="-1cm" Canvas.Left="1cm" />
 <Button Content="Button _2" Canvas.Bottom="1cm" Canvas.Left="1cm"
 Canvas.ZIndex="1"/>
 <Button Content="Button _3" Canvas.Top="1cm" Canvas.Right="1cm" />
 <Button Content="Button _4" Canvas.Bottom="1.2cm" Canvas.Left="1.5cm" />

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 17 ■ WINDOWS PRESENTATION FOUNDATION

813

 <Button Content="Button _5" Canvas.Bottom="1cm" Canvas.Right="-1cm" />
 </Canvas>
</Window>

Figure 17-7. Arranging UI elements using a Canvas

17-10. Get Rich Text Input from a User

Problem
You need to allow the user to edit large amounts of text and give them fine-grained control over the
formatting of text they enter.

Solution
Use the System.Windows.Controls.RichTextBox control.

How It Works
The RichTextBox is a sophisticated and highly functional control designed to allow you to display and
edit System.Windows.Documents.FlowDocument objects. The combination of the RichTextBox and
FlowDocument objects provides the user with access to advanced document-editing capabilities that you
do not get in a System.Windows.Controls.TextBox control. These features include mixed text formatting,
hyphenation, tables, lists, paragraphs, and embedded images.

To populate the content of a RichTextBox statically, you include a FlowDocument element as the
content of the RichTextBox XAML declaration. Within the FlowDocument element, you can define richly
formatted content using elements of the flow document content model. Key structural elements of this
content model include Figure, Hyperlink, List, ListItem, Paragraph, Section, and Table.

To populate the RichTextBox in code, you must work with a FlowDocument object directly. You can
either create a new FlowDocument object or obtain one currently in a RichTextBox through the
RichTextBox.Document property.

CHAPTER 17 ■ WINDOWS PRESENTATION FOUNDATION

814

You manipulate the content of the FlowDocument by selecting portions of its content using a
System.Windows.Documents.TextSelection object. The TextSelection object contains two properties,
Start and End, which identify the beginning and end positions of the FlowDocument content you want to
manipulate. Once you have a suitable TextSelection object, you can manipulate its content using the
TextSelection members.

■ Note For detailed information about flow content, see the .NET Framework documentation at
http://msdn.microsoft.com/en-us/library/ms753113(VS.100).aspx.

To simplify the manipulation of FlowDocument objects, the RichTextBox supports standard
commands defined by the ApplicationCommands and EditingCommands classes from the
System.Windows.Input namespace. The RichTextBox also supports standard key combinations to execute
basic text-formatting operations such as applying bold, italic, and underline formats to text, as well as
cutting, copying, and pasting selected content. Table 17-3 summarizes some of the more commonly
used members of the RichTextBox control.

Table 17-3. Commonly Used Members of the RichTextBox Control

Member Summary

Properties

AcceptsTab Controls whether the user can insert tab characters in the
RichTextBox content or whether pressing Tab takes the user out of the
RichTextBox and moves to the next control marked as a tab stop.

CaretPostion Gets or sets the current insertion position index of the RichTextBox.

Document Gets or sets the FlowDocument object that represents the RichTextBox
content.

HorizontalScrollBarVisibility Determines whether the RichTextBox displays a horizontal scroll bar.

IsReadOnly Controls whether the RichTextBox is read-only or whether the user
can also edit the content of the TextBox. Even if IsReadOnly is set to
True, you can still programmatically change the content of the
RichTextBox.

Selection Gets a System.Windows.Documents.TextSelection object representing
the current selection in the RichTextBox.

VerticalScrollBarVisibility Determines whether the RichTextBox displays a vertical scroll bar.

http://msdn.microsoft.com/en-us/library/ms753113

CHAPTER 17 ■ WINDOWS PRESENTATION FOUNDATION

815

Member Summary

Methods

AppendText Appends text to the existing content of the RichTextBox.

Copy Copies the currently selected RichTextBox content to the clipboard.

Cut Cuts the currently selected RichTextBox content and places it in the
clipboard.

Paste Pastes the current content of the clipboard over the currently selected
RichTextBox content or inserts it at the cursor position if nothing is
selected.

SelectAll Selects the entire content of the RichTextBox control.

Undo Undoes the most recent undoable action on the RichTextBox control.

Events

TextChanged The event fired when the text in a RichTextBox changes.

The Code
The following code provides a simple example of a RichTextBox used to edit a FlowDocument. The XAML
defines a static FlowDocument that contains a variety of structural and formatting elements. The user
interface provides a set of buttons to manipulate the RichTextBox content. The buttons rely on the
application and editing command support provided by the RichTextBox control and use a style to make
the RichTextBox the target of the button’s command.

<Window x:Class="Apress.VisualCSharpRecipes.Chapter17.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="Recipe17_10" Height="350" Width="500">
 <DockPanel>
 <StackPanel DockPanel.Dock="Top" Orientation="Horizontal">
 <StackPanel.Resources>
 <Style TargetType="{x:Type Button}">
 <Setter Property="CommandTarget"
 Value="{Binding ElementName=rtbTextBox1}" />
 </Style>
 </StackPanel.Resources>

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 17 ■ WINDOWS PRESENTATION FOUNDATION

816

 <Button Content="Clear" Name="btnClear" Click="btnClear_Click" />
 <Separator Margin="5"/>
 <Button Content="Cu_t" Command="ApplicationCommands.Cut" />
 <Button Content="_Copy" Command="ApplicationCommands.Copy" />
 <Button Content="_Paste" Command="ApplicationCommands.Paste" />
 <Separator Margin="5"/>
 <Button Content="_Undo" Command="ApplicationCommands.Undo" />
 <Button Content="_Redo" Command="ApplicationCommands.Redo" />
 <Separator Margin="5"/>
 <Button Content="_Bold" Command="EditingCommands.ToggleBold" />
 <Button Content="_Italic" Command="EditingCommands.ToggleItalic" />
 <Button Content="Underline"
 Command="EditingCommands.ToggleUnderline" />
 <Separator Margin="5"/>
 <Button Content="_Right" Command="EditingCommands.AlignRight" />
 <Button Content="C_enter" Command="EditingCommands.AlignCenter" />
 <Button Content="_Left" Command="EditingCommands.AlignLeft" />
 </StackPanel>
 <RichTextBox DockPanel.Dock="Bottom" Name="rtbTextBox1"
 HorizontalScrollBarVisibility="Visible"
 VerticalScrollBarVisibility="Visible">
 <FlowDocument>
 <Paragraph FontSize="12">
 Lorem ipsum dolor sit amet, consectetuer adipiscing elit,
 sed diam nonummy nibh euismod tincidunt ut laoreet dolore
 magna aliquam erat volutpat.
 </Paragraph>
 <Paragraph FontSize="15">
 Ut wisi enim ad minim veniam, quis nostrud exerci tation
 ullamcorper suscipit lobortis nisl ut aliquip ex ea
 commodo consequat. Duis autem vel eum iriure.
 </Paragraph>

 <Paragraph FontSize="18">A List</Paragraph>

 <List>
 <ListItem>
 <Paragraph>
 <Bold>Bold List Item</Bold>
 </Paragraph>
 </ListItem>
 <ListItem>
 <Paragraph>
 <Italic>Italic List Item</Italic>
 </Paragraph>
 </ListItem>
 <ListItem>
 <Paragraph>
 <Underline>Underlined List Item</Underline>
 </Paragraph>
 </ListItem>

CHAPTER 17 ■ WINDOWS PRESENTATION FOUNDATION

817

 </List>
 </FlowDocument>
 </RichTextBox>
 </DockPanel>
</Window>

The following code-behind contains the event handler that handles the Clear button provided on
the user interface defined earlier:

using System.Windows;

namespace Apress.VisualCSharpRecipes.Chapter17
{
 /// <summary>
 /// Interaction logic for MainWindow.xaml
 /// </summary>
 public partial class MainWindow : Window
 {
 public MainWindow()
 {
 InitializeComponent();
 }

 // Handles Clear button click event.
 private void btnClear_Click(object sender, RoutedEventArgs e)
 {
 // Select all the text in the FlowDocument and cut it.
 rtbTextBox1.SelectAll();
 rtbTextBox1.Cut();
 }
 }
}

Figure 17-8 shows what the RichTextBox looks like when the example is first run.

Figure 17-8. Using a RichTextBox to edit a FlowDocument

CHAPTER 17 ■ WINDOWS PRESENTATION FOUNDATION

818

17-11. Display a Control Rotated

Problem
You need to display a control rotated from its normal horizontal or vertical axis.

Solution
Apply a LayoutTransform or a RenderTransform to the control.

How It Works
WPF makes many things trivial that are incredibly complex to do in Windows Forms programming. One
of those things is the ability to rotate controls to any orientation yet still have them appear and function
as normal. Admittedly, it is not every day you need to display a rotated control, but when you do, you
will appreciate how easy it is in WPF. Most frequently, the ability to rotate controls becomes important
when you start to customize the appearance of standard controls using templates or when you create
custom controls.

Both the LayoutTransform and RenderTransform have a RotateTransform property, in which you
specify in degrees the angle you want your control rotated by. Positive values rotate the control
clockwise and negative values rotate the control counterclockwise. The rotation occurs around the point
specified by the CenterX and CenterY properties. These properties refer to the coordinate space of the
control that is being transformed, with (0,0) being the upper-left corner. Alternatively, you can use the
RenderTransformOrigin property on the control you are rotating; this allows you to specify a point a
relative distance from the origin using values between 0 and 1, which WPF automatically converts to
specific values.

The difference between the LayoutTransform and RenderTransform is the order in which WPF
executes the transformation. WPF executes the LayoutTransform as part of the layout processing, so the
rotated position of the control affects the layout of controls around it. The RenderTransform, on the other
hand, is executed after layout is determined, which means the rotated control does not affect the
positioning of other controls and can therefore end up appearing partially over or under other controls.

The Code
The following XAML demonstrates a variety of rotated controls, and the output is shown in Figure 17-9.
Figure 17-9 shows the difference in behavior between a LayoutTransform (bottom left) and a
RenderTransform (bottom-right).

<Window x:Class="Apress.VisualCSharpRecipes.Chapter17.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="Recipe17_11" Height="350" Width="400">
 <Grid ShowGridLines="True">
 <Grid.RowDefinitions>
 <RowDefinition MinHeight="140" />
 <RowDefinition MinHeight="170" />

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 17 ■ WINDOWS PRESENTATION FOUNDATION

819

 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition />
 <ColumnDefinition />
 </Grid.ColumnDefinitions>
 <TextBox Grid.Row="0" Grid.Column="0" Height="23"
 HorizontalAlignment="Center" Text="An upside down TextBox."
 Width="140">
 <TextBox.LayoutTransform>
 <RotateTransform Angle="180"/>
 </TextBox.LayoutTransform>
 </TextBox>
 <Button Content="A rotated Button" Grid.Row="0" Grid.Column="1"
 Height="23" Width="100">
 <Button.LayoutTransform>
 <RotateTransform Angle="-120"/>
 </Button.LayoutTransform>
 </Button>
 <StackPanel Grid.Row="1" Grid.Column="0" >
 <TextBlock HorizontalAlignment="Center" Margin="5">
 Layout Tranform
 </TextBlock>
 <Button Margin="5" Width="100">Top Button</Button>
 <Button Content="Middle Button" Margin="5" Width="100">
 <Button.LayoutTransform>
 <RotateTransform Angle="30" />
 </Button.LayoutTransform>
 </Button>
 <Button Margin="5" Width="100">Bottom Button</Button>
 </StackPanel>
 <StackPanel Grid.Row="1" Grid.Column="1" >
 <TextBlock HorizontalAlignment="Center" Margin="5">
 Render Tranform
 </TextBlock>
 <Button Margin="5" Width="100">Top Button</Button>
 <Button Content="Middle Button" Margin="5"
 RenderTransformOrigin="0.5, 0.5" Width="100">
 <Button.RenderTransform>
 <RotateTransform Angle="30" />
 </Button.RenderTransform>
 </Button>
 <Button Margin="5" Width="100">Bottom Button</Button>
 </StackPanel>
 </Grid>
</Window>

CHAPTER 17 ■ WINDOWS PRESENTATION FOUNDATION

820

Figure 17-9. A set of rotated controls

17-12. Create a User Control

Problem
You need to create a user control to reuse part of the UI in different contexts within your application,
without duplicating appearance or behavior logic.

Solution
Create a class that derives from System.Windows.Controls.UserControl or System.Windows.Controls.
ContentControl, and place the visual elements you need in your reusable component in the XAML for
the user control. Put custom logic in the code-behind for the UserControl to control custom behavior
and functionality.

■ Tip A control that derives from UserControl is useful for creating a reusable component within an application
but is less useful if the control must be shared by other applications, software teams, or even companies. This is
because a control that derives from UserControl cannot have its appearance customized by applying custom
styles and templates in the consumer. If this is needed, then you need to use a custom control, which is a control
that derives from System.Windows.UIElement.FrameworkElement or System.Windows.Controls.Control.

CHAPTER 17 ■ WINDOWS PRESENTATION FOUNDATION

821

How It Works
User controls provide a simple development model that is similar to creating WPF elements in standard
windows. They are ideal for composing reusable UI controls out of existing components or elements,
provided you do not need to allow them to be extensively customized by consumers of your control. If
you do want to provide full control over the visual appearance of your control, or allow it to be a
container for other controls, then a custom control is more suitable. Custom controls are covered in
recipe 17-14.

To create a user control, right-click your project in Visual Studio, click Add, and then click the User
Control option in the submenu. This creates a new XAML file and a corresponding code-behind file. The
root element of the new XAML file is a System.Windows.Controls.UserControl class. Inside this XAML
file, you can create the UI elements that compose your control.

The Code
The following example demonstrates how to create a FileInputControl, a custom reusable user control
to encapsulate the functionality of browsing for a file and displaying the selected file name. This user
control is then used in a window, as shown in Figure 17-10. The XAML for the FileInputControl is as
follows:

<UserControl x:Class="Apress.VisualCSharpRecipes.Chapter17.FileInputControl"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">
 <DockPanel>
 <Button DockPanel.Dock="Right" Margin="2,0,0,0" Click="BrowseButton_Click">
 Browse...
 </Button>
 <TextBox x:Name="txtBox" IsReadOnly="True" />
 </DockPanel>
</UserControl>

The code-behind for the control is as follows:

using System.Windows.Controls;
using Microsoft.Win32;

namespace Apress.VisualCSharpRecipes.Chapter17
{
 public partial class FileInputControl : UserControl
 {
 public FileInputControl()
 {
 InitializeComponent();
 }

 private void BrowseButton_Click(
 object sender,
 System.Windows.RoutedEventArgs e)
 {
 OpenFileDialog dlg = new OpenFileDialog();

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 17 ■ WINDOWS PRESENTATION FOUNDATION

822

 if(dlg.ShowDialog() == true)
 {
 this.FileName = dlg.FileName;
 }
 }

 public string FileName
 {
 get
 {
 return txtBox.Text;
 }
 set
 {
 txtBox.Text = value;
 }
 }
 }
}

The XAML for the window that consumes this user control is as follows:

<Window x:Class="Apress.VisualCSharpRecipes.Chapter17.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="clr-namespace:Apress.VisualCSharpRecipes.Chapter17;assembly="
 Title="Recipe17_12" Height="80" Width="300">
 <Grid>
 <local:FileInputControl Margin="8" />
 </Grid>
</Window>

Figure 17-10. Creating and using a FileInput user control

17-13. Support Application Commands in a User Control

Problem
You need to support common application commands in your System.Windows.Controls.UserControl,
such as Undo, Redo, Open, Copy, Paste, and so on, so that your control can respond to a command
without needing any external code.

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 17 ■ WINDOWS PRESENTATION FOUNDATION

823

Solution
Use the System.Windows.Input.CommandManager to register an instance of the System.Windows.Input.
CommandBinding class for each member of System.Windows.Input.ApplicationCommands that you need to
support in your user control. The CommandBinding specifies the type of command you want to receive
notification of, specifies a CanExecute event handler to determine when the command can be executed,
and specifies an Executed event handler to be called when the command is executed.

How It Works
There are many predefined commands in WPF to support common scenarios. These commands are
grouped as static properties on five different classes, mostly in the System.Windows.Input namespace, as
shown in Table 17-4.

Table 17-4. Predefined Common Commands

Value Description

ApplicationCommands Common commands for an application; for example, Copy, Paste, Undo, Redo,
Find, Open, SaveAs, and Print

ComponentCommands Common commands for user interface components; for example, MoveLeft,
MoveToEnd, and ScrollPageDown

MediaCommands Common commands used for multimedia; for example, Play, Pause, NextTrack,
IncreaseVolume, and ToggleMicrophoneOnOff

NavigationCommands A set of commands used for page navigation; for example, BrowseBack, GoToPage,
NextPage, Refresh, and Zoom

EditingCommands A set of commands for editing documents; for example, AlignCenter,
IncreaseFontSize, EnterParagraphBreak, and ToggleBold

Each command has a System.Windows.Input.InputGestureCollection that specifies the possible

mouse or keyboard combinations that trigger the command. These are defined by the command itself,
which is why you are able to register to receive these automatically by registering a CommandBinding for a
particular command.

A CommandBinding for a particular command registers the CanExecute and Executed handlers so that
the execution and the validation of the execution of the command are routed to these event handlers.

The Code
The following example creates a UserControl called FileInputControl that can be used to browse to a file
using Microsoft.Win32.OpenFileDialog and display the file name in a System.Windows.Controls.TextBox.

CHAPTER 17 ■ WINDOWS PRESENTATION FOUNDATION

824

It registers a CommandBinding for two application commands, Open and Find. When the user control
has focus and the keyboard shortcuts for the Open and Find commands (Ctrl+O and Ctrl+F, respectively)
are used, the Executed event handler for the respective command is invoked.

The Executed event handler for the Find command launches the OpenFileDialog, as if the user has
clicked the Browse button. This command can always be executed, so the CanExecute event handler
simply sets the CanExecute property of System.Windows.Input.CanExecuteRoutedEventArgs to True.

The Executed event handler for the Open command launches the file that is currently displayed in the
TextBox. Therefore, the CanExecute event handler for this command sets the CanExecuteRoutedEventArgs
to True only if there is a valid FileName. The XAML for the FileInputControl is as follows:

<UserControl x:Class=" Apress.VisualCSharpRecipes.Chapter17.FileInputControl"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">
 <DockPanel>
 <Button DockPanel.Dock="Right" Margin="2,0,0,0" Click="BrowseButton_Click">
 Browse...
 </Button>
 <TextBox x:Name="txtBox" />
 </DockPanel>
</UserControl>

The code-behind for the FileInputControl is as follows:

using System.Diagnostics;
using System.IO;
using System.Windows.Controls;
using System.Windows.Input;
using Microsoft.Win32;

namespace Apress.VisualCSharpRecipes.Chapter17
{
 public partial class FileInputControl : UserControl
 {
 public FileInputControl()
 {
 InitializeComponent();

 // Register command bindings

 // ApplicationCommands.Find
 CommandManager.RegisterClassCommandBinding(
 typeof(FileInputControl),
 new CommandBinding(
 ApplicationCommands.Find,
 FindCommand_Executed,
 FindCommand_CanExecute));

 // ApplicationCommands.Open
 CommandManager.RegisterClassCommandBinding(
 typeof(FileInputControl),
 new CommandBinding(

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 17 ■ WINDOWS PRESENTATION FOUNDATION

825

 ApplicationCommands.Open,
 OpenCommand_Executed,
 OpenCommand_CanExecute));
 }

 #region Find Command

 private void FindCommand_CanExecute(
 object sender,
 CanExecuteRoutedEventArgs e)
 {
 e.CanExecute = true;
 }

 private void FindCommand_Executed(
 object sender,
 ExecutedRoutedEventArgs e)
 {
 DoFindFile();
 }

 #endregion

 #region Open Command

 private void OpenCommand_CanExecute(
 object sender,
 CanExecuteRoutedEventArgs e)
 {
 e.CanExecute =
 !string.IsNullOrEmpty(this.FileName)
 && File.Exists(this.FileName);
 }

 private void OpenCommand_Executed(
 object sender,
 ExecutedRoutedEventArgs e)
 {
 Process.Start(this.FileName);
 }

 #endregion

 private void BrowseButton_Click(
 object sender,
 System.Windows.RoutedEventArgs e)
 {
 DoFindFile();
 }

CHAPTER 17 ■ WINDOWS PRESENTATION FOUNDATION

826

 private void DoFindFile()
 {
 OpenFileDialog dlg = new OpenFileDialog();
 if(dlg.ShowDialog() == true)
 {
 this.FileName = dlg.FileName;
 }
 }

 public string FileName
 {
 get
 {
 return txtBox.Text;
 }

 set
 {
 txtBox.Text = value;
 }
 }
 }
}

The following XAML shows how to use the FileInputControl in a window. If the TextBox has the
focus, then pressing the keyboard shortcut Ctrl+F will automatically open the OpenFileDialog. If a file is
selected and a valid file name appears in the TextBox, then the shortcut Ctrl+O will launch it.

<Window x:Class="Apress.VisualCSharpRecipes.Chapter17.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="clr-namespace:Apress.VisualCSharpRecipes.Chapter17;assembly="
 Title="Recipe17_13" Height="80" Width="300">
 <Grid>
 <local:FileInputControl Margin="8"/>
 </Grid>
</Window>

17-14. Create a Lookless Custom Control

Problem
You need to create a custom control that encapsulates functionality and behavior logic but can have its
visual appearance changed by consumers. For example, you need consumers to be able to change the
style, template, or visual theme of your control for a particular context, application, or operating system
theme.

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 17 ■ WINDOWS PRESENTATION FOUNDATION

827

Solution
Create a lookless custom control class that contains interaction and behavior logic but little or no
assumptions about its visual implementation. Then declare the default visual elements for it in a control
template within a default style.

■ Tip When creating the code for a custom control, you need to ensure it is lookless and assumes as little as
possible about the actual implementation of the visual elements in the control template, because it could be
different across different consumers. This means ensuring that the UI is decoupled from the interaction logic by
using commands and bindings, avoiding event handlers, and referencing elements in the ControlTemplate
whenever possible.

How It Works
The first step in creating a lookless custom control is choosing which control to inherit from. You could
derive from the most basic option available to you, because it provides the minimum required
functionality and gives the control consumer the maximum freedom. On the other hand, it also makes
sense to leverage as much built-in support as possible by deriving from an existing WPF control if it
possesses similar behavior and functionality to your custom control. For example, if your control will be
clickable, then it might make sense to inherit from the Button class. If your control is not only clickable
but also has the notion of being in a selected or unselected state, then it might make sense to inherit
from ToggleButton.

Some of the most common base classes you will derive from are listed in Table 17-5.

Table 17-5. Common Base Classes for Creating a Custom Control

Name Description

FrameworkElement This is usually the most basic element from which you will derive. Use this when
you need to draw your own element by overriding the OnRender method and
explicitly defining the component visuals. FrameworkElement classes tend not to
interact with the user; for example, the WPF Image and Border controls are
FrameworkElement classes.

Control Control is the base class used by most of the existing WPF controls. It allows you to
define its appearance by using control templates, and it adds properties for setting
the background and foreground, font, padding, tab index, and alignment of content.
It also supports double-clicking through the MouseDoubleClick and
PreviewMouseDoubleClick events.

CHAPTER 17 ■ WINDOWS PRESENTATION FOUNDATION

828

Name Description

ContentControl This inherits from Control and adds a Content property that provides the ability to
contain a single piece of content, which could be a string or another visual element.
For example, a button ultimately derives from ContentControl, which is why it has
the ability to contain any arbitrary visual element such as an image. Use this as your
base class if you need your control to contain other objects defined by the control
consumer.

Panel This has a property called Children that contains a collection of
System.Windows.UIElements, and it provides the layout logic for positioning these
children within it.

Decorator This wraps another control to decorate it with a particular visual effect or feature.
For example, the Border is a Decorator control that draws a line around an element.

After choosing an appropriate base class for your custom control, you can create the class and put

the logic for the interaction, functionality, and behavior of your control in the custom control class.
However, don’t define your visual elements in a XAML file for the class, like you would with a user

control. Instead, put the default definition of visual elements in a System.Windows.ControlTemplate, and
declare this ControlTemplate in a default System.Windows.Style.

The next step is to specify that you will be providing this new style; otherwise, your control will
continue to use the default template of its base class. You specify this by calling the OverrideMetadata
method of DefaultStyleKeyProperty in the static constructor for your class.

Next, you need to place your style in the Generic.xaml resource dictionary in the Themes subfolder of
your project. This ensures it is recognized as the default style for your control. You can also create other
resource dictionaries in this subfolder, which enables you to target specific operating systems and give
your custom controls a different visual appearance for each one.

■ Tip When a custom control library contains several controls, it is often better the keep their styles separate
instead of putting them all in the same Generic.xaml resource dictionary. You can use resource dictionary
merging to keep each style in a separate resource dictionary file and then merge them into the main
Generic.xaml one.

The custom style and template for your control must use the System.Type.TargetType attribute to
attach it to the custom control automatically.

CHAPTER 17 ■ WINDOWS PRESENTATION FOUNDATION

829

■ Tip In Visual Studio, when you add a new WPF custom control to an existing project, it does a number of the
previous steps for you. It automatically creates a code file with the correct call to
DefaultStyleKeyproperty.OverrideMetadata. It creates the Themes subfolder and Generic.xaml resource
dictionary if they don’t already exist, and it defines a placeholder Style and ControlTemplate in there.

When creating your custom control class and default control template, you have to remember to
make as few assumptions as possible about the actual implementation of the visual elements. This is in
order to make the custom control as flexible as possible and to give control consumers as much freedom
as possible when creating new styles and control templates. You can enable this separation between the
interaction logic and the visual implementation of your control in a number of ways.

First, when binding a property of a visual element in the default ControlTemplate to a dependency
property of the control, use the System.Windows.Data.RelativeSource property instead of naming the
element and referencing it via the ElementName property.

Second, instead of declaring event handlers in the XAML for the template—for example, for the
Click event of a Button—either add the event handler programmatically in the control constructor or
bind to commands. If you choose to use event handlers and bind them programmatically, override the
OnApplyTemplate method and locate the controls dynamically.

Furthermore, give names only to those elements without which the control would not be able to
function as intended. By convention, give these intrinsic elements the name PART_ElementName so that
they can be identified as part of the public interface for your control. For example, it is intrinsic to a
ProgressBar that it has a visual element representing the total value at completion and a visual element
indicating the relative value of the current progress. The default ControlTemplate for the
System.Windows.Controls.ProgressBar therefore defines two named elements, PART_Track and
PART_Indicator. These happen to be Border controls in the default template, but there is no reason why a
control consumer could not provide a custom template that uses different controls to display these
functional parts.

■ Tip If your control requires named elements, as well as using the previously mentioned naming convention,
apply the System.Windows.TemplatePart attribute to your control class, which documents and signals this
requirement to users of your control and to design tools such as Expression Blend.

The following code example demonstrates how to separate the interaction logic and the visual
implementation using these methods.

The Code
The following example demonstrates how to create a lookless custom control to encapsulate the
functionality of browsing to a file and displaying the file name. Figure 17-11 shows the control in use.

The FileInputControl class derives from Control and uses the TemplatePart attribute to signal that
it expects a Button control called PART_Browse. It overrides the OnApplyTemplate method and calls

CHAPTER 17 ■ WINDOWS PRESENTATION FOUNDATION

830

GetTemplateChild to find the button defined by its actual template. If this exists, it adds an event handler
to the button’s Click event. The code for the control is as follows:

using System.Windows;
using System.Windows.Controls;
using System.Windows.Markup;
using Microsoft.Win32;

namespace Apress.VisualCSharpRecipes.Chapter17
{
 [TemplatePart(Name = "PART_Browse", Type = typeof(Button))]
 [ContentProperty("FileName")]
 public class FileInputControl : Control
 {
 static FileInputControl()
 {
 DefaultStyleKeyProperty.OverrideMetadata(
 typeof(FileInputControl),
 new FrameworkPropertyMetadata(
 typeof(FileInputControl)));
 }

 public override void OnApplyTemplate()
 {
 base.OnApplyTemplate();

 Button browseButton = base.GetTemplateChild("PART_Browse") as Button;

 if (browseButton != null)
 browseButton.Click += new RoutedEventHandler(browseButton_Click);
 }

 void browseButton_Click(object sender, RoutedEventArgs e)
 {
 OpenFileDialog dlg = new OpenFileDialog();
 if (dlg.ShowDialog() == true)
 {
 this.FileName = dlg.FileName;
 }
 }

 public string FileName
 {
 get
 {
 return (string)GetValue(FileNameProperty);
 }

CHAPTER 17 ■ WINDOWS PRESENTATION FOUNDATION

831

 set
 {
 SetValue(FileNameProperty, value);
 }
 }

 public static readonly DependencyProperty FileNameProperty =
 DependencyProperty.Register("FileName", typeof(string),
typeof(FileInputControl));
 }
}

The default style and control template for FileInputControl is in a ResourceDictionary in the Themes
subfolder and is merged into the Generic ResourceDictionary. The XAML for this style is as follows:

<ResourceDictionary
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="clr-namespace:Apress.VisualCSharpRecipes.Chapter17;assembly=">

 <Style TargetType="{x:Type local:FileInputControl}">
 <Setter Property="Template">
 <Setter.Value>
 <ControlTemplate
 TargetType="{x:Type local:FileInputControl}">
 <Border Background="{TemplateBinding Background}"
 BorderBrush="{TemplateBinding BorderBrush}"
 BorderThickness="{TemplateBinding BorderThickness}">
 <DockPanel>
 <Button x:Name="PART_Browse" DockPanel.Dock="Right"
 Margin="2,0,0,0">
 Browse...
 </Button>
 <TextBox IsReadOnly="True"
 Text="{Binding Path=FileName,
 RelativeSource=
 {RelativeSource TemplatedParent}}" />
 </DockPanel>
 </Border>
 </ControlTemplate>
 </Setter.Value>
 </Setter>
 </Style>
</ResourceDictionary>

The XAML for the window that consumes this custom control is as follows:

<Window x:Class="Apress.VisualCSharpRecipes.Chapter17.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="clr-namespace:Apress.VisualCSharpRecipes.Chapter17;assembly="

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 17 ■ WINDOWS PRESENTATION FOUNDATION

832

 Title="Recipe17_14" Height="200" Width="300">
 <StackPanel>
 <StackPanel.Resources>
 <Style x:Key="fileInputStyle">
 <Setter Property="Control.Height" Value="50" />
 <Setter Property="Control.FontSize" Value="20px" />
 <Setter Property="Control.BorderBrush" Value="Blue" />
 <Setter Property="Control.BorderThickness" Value="2" />
 <Style.Triggers>
 <Trigger Property="Control.IsMouseOver" Value="True">
 <Setter Property="Control.BorderThickness" Value="3" />
 <Setter Property="Control.BorderBrush" Value="RoyalBlue" />
 </Trigger>
 </Style.Triggers>
 </Style>
 <ControlTemplate x:Key="fileInputTemplate"
 TargetType="{x:Type local:FileInputControl}">
 <Border Background="{TemplateBinding Background}"
 BorderBrush="{TemplateBinding BorderBrush}"
 BorderThickness="{TemplateBinding BorderThickness}">
 <DockPanel>
 <Button x:Name="PART_Browse" DockPanel.Dock="Left"
 Background="Lightgreen">
 <TextBlock FontSize="20px" Padding="3px" FontFamily="Arial" Text="Open..."/>
 </Button>
 <TextBlock x:Name="PART_Text" VerticalAlignment="Center"
 Margin="5, 0, 0, 0" FontSize="16px" FontWeight="Bold"
 Text="{Binding Path=FileName,
 RelativeSource=
 {RelativeSource TemplatedParent}}" />
 </DockPanel>
 </Border>
 </ControlTemplate>
 </StackPanel.Resources>
 <!-- Use the default appearance -->
 <local:FileInputControl Margin="8" />
 <!-- Applying a style to the control -->
 <local:FileInputControl Margin="8" Style="{StaticResource fileInputStyle}" />
 <!-- Applying a template to the control -->
 <local:FileInputControl Margin="8" Template="{StaticResource fileInputTemplate}" />
 </StackPanel>
</Window>

CHAPTER 17 ■ WINDOWS PRESENTATION FOUNDATION

833

Figure 17-11. Creating and using a FileInput custom control

17-15. Create a Two-Way Binding

Problem
You need to create a two-way binding so that when the value of either property changes, the other one
automatically updates to reflect it.

Solution
Use the System.Windows.Data.Binding markup extension, and set the Mode attribute to System.Windows.
Data.BindingMode.TwoWay. Use the UpdateSourceTrigger attribute to specify when the binding source
should be updated.

How It Works
The data in a binding can flow from the source property to the target property, from the target property
to the source property, or in both directions. For example, suppose the Text property of a
System.Windows.Controls.TextBox control is bound to the Value property of a System.Windows.
Controls.Slider control. In this case, the Text property of the TextBox control is the target of the
binding, and the Value property of the Slider control is the binding source. The direction of data flow
between the target and the source can be configured in a number of different ways. It could be
configured such that when the Value of the Slider control changes, the Text property of the TextBox is
updated. This is called a one-way binding. Alternatively, you could configure the binding so that when
the Text property of the TextBox changes, the Slider control’s Value is automatically updated to reflect
it. This is called a one-way binding to the source. A two-way binding means that a change to either the
source property or the target property automatically updates the other. This type of binding is useful for
editable forms or other fully interactive UI scenarios.

It is the Mode property of a Binding object that configures its data flow. This stores an instance of the
System.Windows.Data.BindingMode enumeration and can be configured with the values listed in Table
17-6.

CHAPTER 17 ■ WINDOWS PRESENTATION FOUNDATION

834

Table 17-6. BindingMode Values for Configuring the Data Flow in a Binding

Value Description

Default The Binding uses the default Mode value of the binding target, which varies for each
dependency property. In general, user-editable control properties, such as those of
text boxes and check boxes, default to two-way bindings, whereas most other
properties default to one-way bindings.

OneTime The target property is updated when the control is first loaded or when the data
context changes. This type of binding is appropriate if the data is static and won’t
change once it has been set.

OneWay The target property is updated whenever the source property changes. This is
appropriate if the target control is read-only, such as a
System.Windows.Controls.Label or System.Windows.Controls.TextBlock. If the target
property does change, the source property will not be updated.

OneWayToSource This is the opposite of OneWay. The source property is updated when the target
property changes.

TwoWay Changes to either the target property or the source automatically update the other.

Bindings that are TwoWay or OneWayToSource listen for changes in the target property and update the

source. It is the UpdateSourceTrigger property of the binding that determines when this update occurs.
For example, suppose you created a TwoWay binding between the Text property of a TextBox control and
the Value property of a Slider control. You could configure the binding so that the slider is updated
either as soon as you type text into the TextBox or when the TextBox loses its focus. Alternatively, you
could specify that the TextBox is updated only when you explicitly call the UpdateSource property of the
System.Windows.Data.BindingExpression class. These options are configured by the Binding’s
UpdateSourceTrigger property, which stores an instance of the System.Windows.Data.
UpdateSourceTrigger enumeration. Table 17-7 lists the possible values of this enumeration.

Therefore, to create a two-way binding that updates the source as soon as the target property
changes, you need to specify TwoWay as the value of the Binding’s Mode attribute and PropertyChanged for
the UpdateSourceTrigger attribute.

■ Note To detect source changes in OneWay and TwoWay bindings, if the source property is not a System.
Windows.DependencyProperty, it must implement System.ComponentModel.INotifyPropertyChanged to notify
the target that its value has changed.

CHAPTER 17 ■ WINDOWS PRESENTATION FOUNDATION

835

Table 17-7. UpdateSourceTrigger Values for Configuring When the Binding Source Is Updated

Value Description

Default The Binding uses the default UpdateSourceTrigger of the binding target property.
For most dependency properties, this is PropertyChanged, but for the TextBox.Text
property, it is LostFocus.

Explicit Updates the binding source only when you call the
System.Windows.Data.BindingExpression.UpdateSource method.

LostFocus Updates the binding source whenever the binding target element loses focus.

PropertyChanged Updates the binding source immediately whenever the binding target property
changes.

The Code
The following example demonstrates a window containing a System.Windows.Controls.Slider control
and a System.Windows.Controls.TextBlock control. The XAML statement for the Text property of the
TextBlock specifies a Binding statement that binds it to the Value property of the Slider control. In the
binding statement, the Mode attribute is set to TwoWay, and the UpdateSourceTrigger attribute is set to
PropertyChanged. This ensures that when a number from 1 to 100 is typed into the TextBox, the Slider
control immediately updates its value to reflect it. The XAML for the window is as follows:

<Window x:Class="Apress.VisualCSharpRecipes.Chapter17.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="Recipe17_15" Height="100" Width="260">
 <StackPanel>
 <Slider Name="slider" Margin="4" Interval="1"
 TickFrequency="1" IsSnapToTickEnabled="True"
 Minimum="0" Maximum="100"/>
 <StackPanel Orientation="Horizontal" >
 <TextBlock Width="Auto" HorizontalAlignment="Left"
 VerticalAlignment="Center" Margin="4"
 Text="Gets and sets the value of the slider:" />
 <TextBox Width="40" HorizontalAlignment="Center" Margin="4"
 Text="{Binding
 ElementName=slider,
 Path=Value,
 Mode=TwoWay,
 UpdateSourceTrigger=PropertyChanged}" />
 </StackPanel>
 </StackPanel>
</Window>

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 17 ■ WINDOWS PRESENTATION FOUNDATION

836

Figure 17-12 shows the resulting window.

Figure 17-12. Creating a two-way binding

17-16. Bind to a Command

Problem
You need to bind a System.Windows.Controls.Button control directly to a System.Windows.Input.
ICommand. This enables you to execute custom logic when the Button is clicked, without having to handle
its Click event and call a method. You can also bind the IsEnabled property of the Button to the ICommand
object’s CanExecute method.

Solution
Create a class that implements ICommand, and expose an instance of it as a property on another class or
business object. Bind this property to a Button control’s Command property.

How It Works
The Button control derives from the System.Windows.Controls.Primitives.ButtonBase class. This
implements the System.Windows.Input.ICommandSource interface and exposes an ICommand property
called Command. The ICommand interface encapsulates a unit of functionality. When its Execute method is
called, this functionality is executed. The CanExecute method determines whether the ICommand can be
executed in its current state. It returns True if the ICommand can be executed and returns False if not.

To execute custom application logic when a Button is clicked, you would typically attach an event
handler to its Click event. However, you can also encapsulate this custom logic in a command and bind
it directly to the Button control’s Command property. This approach has several advantages. First, the
IsEnabled property of the Button will automatically be bound to the CanExecute method of the ICommand.
This means that when the CanExecuteChanged event is fired, the Button will call the command’s
CanExecute method and refresh its own IsEnabled property dynamically. Second, the application
functionality that should be executed when the Button is clicked does not have to reside in the
code-behind for the window. This enables greater separation of presentation and business logic,
which is always desirable in object-oriented programming in general, and even more so in WPF
development, because it makes it easier for UI designers to work alongside developers without getting
in each other’s way.

CHAPTER 17 ■ WINDOWS PRESENTATION FOUNDATION

837

To bind the Command property of a Button to an instance of an ICommand, simply set the Path attribute
to the name of the ICommand property, just as you would any other property. You can also optionally
specify parameters using the CommandParameter attribute. This in turn can be bound to the properties of
other elements and is passed to the Execute and CanExecute methods of the command.

The Code
The following example demonstrates a window containing three System.Windows.Controls.TextBox
controls. These are bound to the FirstName, LastName, and Age properties of a custom Person object. The
Person class also exposes an instance of the AddPersonCommand and SetOccupationCommand as read-only
properties. There are two Button controls on the window that have their Command attribute bound to these
command properties. Custom logic in the CanExecute methods of the commands specifies when the
Buttons should be enabled or disabled. If the ICommand can be executed and the Button should therefore
be enabled, the code in the CanExecute method returns True. If it returns False, the Button will be
disabled. The Set Occupation Button control also binds its CommandParameter to the Text property of a
System.Windows.Controls.ComboBox control. This demonstrates how to pass parameters to an instance of
an ICommand. Figure 17-13 shows the resulting window. The XAML for the window is as follows:

<Window x:Class="Apress.VisualCSharpRecipes.Chapter17.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="Recipe17_16" Height="233" Width="300">
 <Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="70"/>
 <ColumnDefinition Width="*"/>
 </Grid.ColumnDefinitions>

 <Grid.RowDefinitions>
 <RowDefinition Height="30"/>
 <RowDefinition Height="30"/>
 <RowDefinition Height="30"/>
 <RowDefinition Height="40"/>
 <RowDefinition Height="34"/>
 <RowDefinition Height="30"/>
 </Grid.RowDefinitions>

 <TextBlock Margin="4" Text="First Name" VerticalAlignment="Center"/>
 <TextBox Text="{Binding Path=FirstName}" Margin="4" Grid.Column="1"/>

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 17 ■ WINDOWS PRESENTATION FOUNDATION

838

 <TextBlock Margin="4" Text="Last Name" Grid.Row="1"
 VerticalAlignment="Center"/>
 <TextBox Margin="4" Text="{Binding Path=LastName}"
 Grid.Column="1" Grid.Row="1"/>

 <TextBlock Margin="4" Text="Age" Grid.Row="2"
 VerticalAlignment="Center"/>
 <TextBox Margin="4" Text="{Binding Path=Age}"
 Grid.Column="1" Grid.Row="2"/>

 <!-- Bind the Button to the Add Command -->
 <Button Command="{Binding Path=Add}" Content="Add"
 Margin="4" Grid.Row="3" Grid.Column="2"/>

 <StackPanel Orientation="Horizontal"
 Grid.Column="2" Grid.Row="4">

 <ComboBox x:Name="cboOccupation" IsEditable="False"
 Margin="4" Width="100">
 <ComboBoxItem>Student</ComboBoxItem>
 <ComboBoxItem>Skilled</ComboBoxItem>
 <ComboBoxItem>Professional</ComboBoxItem>
 </ComboBox>

 <Button Command="{Binding Path=SetOccupation}"
 CommandParameter="{Binding ElementName=cboOccupation, Path=Text}"
 Content="Set Occupation" Margin="4" />
 </StackPanel>

 <TextBlock Margin="4" Text="Status"
 Grid.Row="5" VerticalAlignment="Center"/>
 <TextBlock Margin="4"
 Text="{Binding Path=Status, UpdateSourceTrigger=PropertyChanged}"
 VerticalAlignment="Center" FontStyle="Italic" Grid.Column="1"
 Grid.Row="5"/>
 </Grid>
</Window>

The code-behind for the window sets its DataContext property to a new Person object. The code for
this is as follows:

using System.Windows;

namespace Apress.VisualCSharpRecipes.Chapter17
{
 public partial class MainWindow : Window
 {
 public MainWindow()
 {
 InitializeComponent();

CHAPTER 17 ■ WINDOWS PRESENTATION FOUNDATION

839

 // Set the DataContext to a Person object
 this.DataContext = new Person()
 {
 FirstName = "Zander",
 LastName = "Harris"
 };
 }
 }
}

The code for the Person, AddPersonCommand, and SetOccupationCommand classes are as follows:

using System;
using System.ComponentModel;
using System.Windows.Input;

namespace Apress.VisualCSharpRecipes.Chapter17
{
 public class Person : INotifyPropertyChanged
 {
 private string firstName;
 private int age;
 private string lastName;
 private string status;
 private string occupation;

 private AddPersonCommand addPersonCommand;
 private SetOccupationCommand setOccupationCommand;

 public string FirstName
 {
 get
 {
 return firstName;
 }
 set
 {
 if(firstName != value)
 {
 firstName = value;
 OnPropertyChanged("FirstName");
 }
 }
 }

 public string LastName
 {
 get
 {
 return lastName;
 }

CHAPTER 17 ■ WINDOWS PRESENTATION FOUNDATION

840

 set
 {
 if(this.lastName != value)
 {
 this.lastName = value;
 OnPropertyChanged("LastName");
 }
 }
 }

 public int Age
 {
 get
 {
 return age;
 }
 set
 {
 if(this.age != value)
 {
 this.age = value;
 OnPropertyChanged("Age");
 }
 }
 }

 public string Status
 {
 get
 {
 return status;
 }
 set
 {
 if(this.status != value)
 {
 this.status = value;
 OnPropertyChanged("Status");
 }
 }
 }

 public string Occupation
 {
 get
 {
 return occupation;
 }
 set
 {

CHAPTER 17 ■ WINDOWS PRESENTATION FOUNDATION

841

 if(this.occupation != value)
 {
 this.occupation = value;
 OnPropertyChanged("Occupation");
 }
 }
 }

 /// Gets an AddPersonCommand for data binding
 public AddPersonCommand Add
 {
 get
 {
 if(addPersonCommand == null)
 addPersonCommand = new AddPersonCommand(this);

 return addPersonCommand;
 }
 }

 /// Gets a SetOccupationCommand for data binding
 public SetOccupationCommand SetOccupation
 {
 get
 {
 if(setOccupationCommand == null)
 setOccupationCommand = new SetOccupationCommand(this);

 return setOccupationCommand;
 }
 }

 #region INotifyPropertyChanged Members

 /// Implement INotifyPropertyChanged to notify the binding
 /// targets when the values of properties change.
 public event PropertyChangedEventHandler PropertyChanged;

 private void OnPropertyChanged(string propertyName)
 {
 if(this.PropertyChanged != null)
 {
 this.PropertyChanged(
 this, new PropertyChangedEventArgs(propertyName));
 }
 }

 #endregion
 }

CHAPTER 17 ■ WINDOWS PRESENTATION FOUNDATION

842

 public class AddPersonCommand : ICommand
 {
 private Person person;

 public AddPersonCommand(Person person)
 {
 this.person = person;

 this.person.PropertyChanged +=
 new PropertyChangedEventHandler(person_PropertyChanged);
 }

 // Handle the PropertyChanged event of the person to raise the
 // CanExecuteChanged event
 private void person_PropertyChanged(
 object sender, PropertyChangedEventArgs e)
 {
 if(CanExecuteChanged != null)
 {
 CanExecuteChanged(this, EventArgs.Empty);
 }
 }

 #region ICommand Members

 /// The command can execute if there are valid values
 /// for the person's FirstName, LastName, and Age properties
 /// and if it hasn't already been executed and had its
 /// Status property set.
 public bool CanExecute(object parameter)
 {
 if(!string.IsNullOrEmpty(person.FirstName))
 if(!string.IsNullOrEmpty(person.LastName))
 if(person.Age > 0)
 if(string.IsNullOrEmpty(person.Status))
 return true;

 return false;
 }

 public event EventHandler CanExecuteChanged;

 /// When the command is executed, update the
 /// status property of the person.
 public void Execute(object parameter)
 {
 person.Status =
 string.Format("Added {0} {1}",
 person.FirstName, person.LastName);
 }

CHAPTER 17 ■ WINDOWS PRESENTATION FOUNDATION

843

 #endregion
 }

 public class SetOccupationCommand : ICommand
 {
 private Person person;

 public SetOccupationCommand(Person person)
 {
 this.person = person;

 this.person.PropertyChanged +=
 new PropertyChangedEventHandler(person_PropertyChanged);
 }

 // Handle the PropertyChanged event of the person to raise the
 // CanExecuteChanged event
 private void person_PropertyChanged(
 object sender, PropertyChangedEventArgs e)
 {
 if(CanExecuteChanged != null)
 {
 CanExecuteChanged(this, EventArgs.Empty);
 }
 }

 #region ICommand Members

 /// The command can execute if the person has been added,
 /// which means its Status will be set, and if the occupation
 /// parameter is not null
 public bool CanExecute(object parameter)
 {
 if(!string.IsNullOrEmpty(parameter as string))
 if(!string.IsNullOrEmpty(person.Status))
 return true;

 return false;
 }

 public event EventHandler CanExecuteChanged;

 /// When the command is executed, set the Occupation
 /// property of the person, and update the Status.
 public void Execute(object parameter)
 {
 // Get the occupation string from the command parameter
 person.Occupation = parameter.ToString();

CHAPTER 17 ■ WINDOWS PRESENTATION FOUNDATION

844

 person.Status =
 string.Format("Added {0} {1}, {2}",
 person.FirstName, person.LastName, person.Occupation);
 }
 #endregion
 }
}

Figure 17-13. Binding to a command

17-17. Use Data Templates to Display Bound Data

Problem
You need to specify a set of UI elements to use to visualize your bound data objects.

Solution
Create a System.Windows.DataTemplate to define the presentation of your data objects. This specifies the
visual structure of UI elements to use to display your data.

How It Works
When you bind to a data object, the binding target displays a string representation of the object by
default. Internally, this is because without any specific instructions the binding mechanism calls the
ToString method of the binding source when binding to it. Creating a DataTemplate enables you to
specify a different visual structure of UI elements when displaying your data object. When the binding
mechanism is asked to display a data object, it will use the UI elements specified in the DataTemplate to
render it.

CHAPTER 17 ■ WINDOWS PRESENTATION FOUNDATION

845

The Code
The following example demonstrates a window that contains a System.Windows.Controls.ListBox
control. The ItemsSource property of the ListBox is bound to a collection of Person objects. The Person
class is defined in the Data.cs file and exposes FirstName, LastName, Age, and Photo properties. It also
overrides the ToString method to return the full name of the person it represents. Without a
DataTemplate, the ListBox control would just display this list of names. Figure 17-14 shows what this
would look like.

Figure 17-14. Binding to a list of data objects without specifying a DataTemplate

However, the ItemTemplate property of the ListBox is set to a static resource called personTemplate.
This is a DataTemplate resource defined in the window’s System.Windows.ResourceDictionary. The
DataTemplate creates a System.Windows.Controls.Grid control inside a System.Windows.Controls.Border
control. Inside the Grid, it defines a series of System.Windows.Controls.TextBlock controls and a
System.Windows.Controls.Image control. These controls have standard binding statements that bind
their properties to properties on the Person class. When the window opens and the ListBox binds to the
collection of Person objects, the binding mechanism uses the set of UI elements in the DataTemplate to
display each item. Figure 17-15 shows the same ListBox as in Figure 17-14 but with its ItemTemplate
property set to the DataTemplate.

The XAML for the window is as follows:

<Window
 x:Class="Apress.VisualCSharpRecipes.Chapter17.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="clr-namespace:Apress.VisualCSharpRecipes.Chapter17"
 Title="Recipe17_17" Height="298" Width="260">

 <Window.Resources>

 <!-- Creates the local data source for binding -->
 <local:PersonCollection x:Key="people"/>

 <!-- Styles used by the UI elements in the DataTemplate -->
 <Style
 x:Key="lblStyle"
 TargetType="{x:Type TextBlock}">
 <Setter Property="FontFamily" Value="Tahoma"/>
 <Setter Property="FontSize" Value="11pt"/>
 <Setter Property="VerticalAlignment" Value="Center"/>

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 17 ■ WINDOWS PRESENTATION FOUNDATION

846

 <Setter Property="Margin" Value="2"/>
 <Setter Property="Foreground" Value="Red"/>
 </Style>

 <Style
 x:Key="dataStyle"
 TargetType="{x:Type TextBlock}"
 BasedOn="{StaticResource lblStyle}">
 <Setter Property="Margin" Value="10,2,2,2"/>
 <Setter Property="Foreground" Value="Blue"/>
 <Setter Property="FontStyle" Value="Italic"/>
 </Style>

 <!-- DataTemplate to use for displaying each Person item -->
 <DataTemplate x:Key="personTemplate">
 <Border
 BorderThickness="1"
 BorderBrush="Gray"
 Padding="4"
 Margin="4"
 Height="Auto"
 Width="Auto">
 <Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="80"/>
 <ColumnDefinition Width="*"/>
 </Grid.ColumnDefinitions>

 <StackPanel>
 <TextBlock
 Style="{StaticResource lblStyle}"
 Text="First Name" />
 <TextBlock
 Style="{StaticResource dataStyle}"
 Text="{Binding Path=FirstName}"/>

 <TextBlock
 Style="{StaticResource lblStyle}"
 Text="Last Name" />
 <TextBlock
 Style="{StaticResource dataStyle}"
 Text="{Binding Path=LastName}" />

 <TextBlock
 Style="{StaticResource lblStyle}"
 Text="Age" />
 <TextBlock
 Style="{StaticResource dataStyle}"
 Text="{Binding Path=Age}" />
 </StackPanel>

CHAPTER 17 ■ WINDOWS PRESENTATION FOUNDATION

847

 <Image
 Margin="4"
 Grid.Column="1"
 Width="96"
 Height="140"
 Source="{Binding Path=Photo}"/>
 </Grid>
 </Border>
 </DataTemplate>

 </Window.Resources>

 <Grid>
 <!-- The ListBox binds to the people collection, and sets the -->
 <!-- DataTemplate to use for displaying each item -->
 <ListBox
 Margin="10"
 ItemsSource="{Binding Source={StaticResource people}}"
 ItemTemplate="{StaticResource personTemplate}"/>

 <!-- Without specifying a DataTemplate, the ListBox just -->
 <!-- displays a list of names. -->
 <!--<ListBox
 Margin="10"
 ItemsSource="{Binding Source={StaticResource people}}"/>-->
 </Grid>
</Window>

Figure 17-15. Binding to a list of data objects and specifying a DataTemplate

CHAPTER 17 ■ WINDOWS PRESENTATION FOUNDATION

848

17-18. Bind to a Collection with the Master-Detail Pattern

Problem
You need to bind to the items in a data collection and display more information about the selected item.
For example, you might display a list of product names and prices on one side of the screen and a more
detailed view of the selected product on the other side.

Solution
Bind a data collection to the ItemsSource property of a System.Windows.Controls.ItemsControl such as a
System.Windows.Controls.ListBox, System.Windows.Controls.ListView, or System.Windows.Controls.
TreeView. Implement System.Collections.Specialized.INotifyCollectionChanged on the data
collection to ensure that insertions or deletions in the collection update the UI automatically.
Implement the master-detail pattern by binding a System.Windows.Controls.ContentControl to the
same collection.

How It Works
To bind an ItemsControl to a collection object, set its ItemsSource property to an instance of a collection
class. This is a class that implements the System.Collections.IEnumerable interface, such as
System.Collections.Generic.List<T> or System.Collections.ObjectModel.Collection<T>, or the
System.Collections.IList and System.Collections.ICollection interfaces. However, if you bind to any
of these objects, the binding will be one-way and read-only. To set up dynamic bindings so that
insertions or deletions in the collection update the UI automatically, the collection must implement the
System.Collections.Specialized.INotifyCollectionChanged interface. This interface provides the
mechanism for notifying the binding target of changes to the source collection, in much the same way as
the System.ComponentModel.INotifyPropertyChanged interface notifies bindings of changes to properties
in single objects.

INotifyCollectionChanged exposes an event called CollectionChanged that should be raised
whenever the underlying collection changes. When you raise this event, you pass in an instance of the
System.Collections.Specialized.NotifyCollectionChangedEventArgs class. This contains properties
that specify the action that caused the event—for example, whether items were added, moved, or
removed from the collection and the list of affected items. The binding mechanism listens for these
events and updates the target UI element accordingly.

You do not need to implement INotifyCollectionChanged on your own collection classes. WPF
provides the System.Collections.ObjectModel.ObservableCollection<T> class, which is a built-in
implementation of a data collection that exposes INotifyCollectionChanged. If your collection classes
are instances of the ObservableCollection<T> class or they inherit from it, you will get two-way dynamic
data binding for free.

CHAPTER 17 ■ WINDOWS PRESENTATION FOUNDATION

849

■ Note To fully support transferring data values from source objects to targets, each object in your collection that
supports bindable properties must also implement the INotifyPropertyChanged interface. It is common practice
to create a base class for all your custom business objects that implements INotifyPropertyChanged and a base
collection class for collections of these objects that inherits from ObservableCollection<T>. This automatically
enables all your custom objects and collection classes for data binding.

To implement the master-detail scenario of binding to a collection, you simply need to bind two or
more controls to the same System.Windows.Data.CollectionView object. A CollectionView represents a
wrapper around a binding source collection that allows you to navigate, sort, filter, and group the
collection, without having to manipulate the underlying source collection itself. When you bind to any
class that implements IEnumerable, the WPF binding engine creates a default CollectionView object
automatically behind the scenes. So if you bind two or more controls to the same
ObservableCollection<T> object, you are in effect binding them to the same default CollectionView
class. If you want to implement custom sorting, grouping, and filtering of your collection, you will need
to define a CollectionView explicitly yourself. You do this by creating a System.Windows.Data.
CollectionViewSource class in your XAML. This approach is demonstrated in the next few recipes in this
chapter. However, for the purpose of implementing the master-detail pattern, you can simply bind
directly to an ObservableCollection<T> and accept the default CollectionView behind the scenes.

To display the master aspect of the pattern, simply bind your collection to the ItemsSource property
of an ItemsControl, such as a System.Windows.Controls.ListBox, System.Windows.Controls.ListView, or
System.Windows.Controls.TreeView. If you do not specify a DataTemplate for the ItemTemplate property
of the ItemsControl, you can use the DisplayMemberPath property to specify the name of the property the
ItemsControl should display. If you do not support a value for DisplayMemberPath, it will display the
value returned by the ToString method of each data item in the collection.

To display the detail aspect of the pattern for the selected item, simply bind a singleton object to the
collection, such as a ContentControl. When a singleton object is bound to a CollectionView, it
automatically binds to the CurrentItem of the view.

If you are explicitly creating a CollectionView using a CollectionViewSource object, it will
automatically synchronize currency and selection between the binding source and targets. However, if
you are bound directly to an ObservableCollection<T> or other such IEnumerable object, then you will
need to set the IsSynchronizedWithCurrentItem property of your ListBox to True for this to work. Setting
the IsSynchronizedWithCurrentItem property to True ensures that the item selected always corresponds
to the CurrentItem property in the ItemCollection. For example, suppose there are two ListBox controls
with their ItemsSource property bound to the same ObservableCollection<T>. If you set
IsSynchronizedWithCurrentItem to True on both ListBox controls, the selected item in each will
be the same.

The Code
The following example demonstrates a window that data-binds to an instance of the PersonCollection
class in its constructor. The PersonCollection class is an ObservableCollection<T> of Person objects.
Each Person object exposes name, age, and occupation data, as well as a description.

In the top half of the window, a ListBox is bound to the window’s DataContext. This is assigned an
instance of the PersonCollection in the code-behind for the window. The ItemTemplate property of the

CHAPTER 17 ■ WINDOWS PRESENTATION FOUNDATION

850

ListBox references a DataTemplate called masterTemplate defined in the window’s Resources collection.
This shows the value of the Description property for each Person object in the collection. It sets the
UpdateSourceTrigger attribute to System.Windows.Data.UpdateSourceTrigger.PropertyChanged. This
ensures that the text in the ListBox item is updated automatically and immediately when the
Description property of a Person changes. In the bottom half of the window, a ContentControl binds to
the same collection. Because it is a singleton UI element and does not display a collection of items, it
automatically binds to the current item in the PersonCollection class. Because the
IsSynchronizedWithCurrentItem property of the ListBox is set to True, this corresponds to the selected
item in the ListBox. The ContentControl uses a DataTemplate called detailTemplate to display the full
details of the selected Person.

When the data displayed in the details section is changed, it automatically updates the
corresponding description in the master section above it. This is made possible for two reasons. First,
the System.Windows.Controls.TextBox controls in the details section specify a System.Windows.
Data.Binding.BindingMode of TwoWay, which means that when new text is input, it is automatically
marshaled to the binding source. Second, the Person class implements the INotifyPropertyChanged
interface. This means that when a value of a property changes, the binding target is automatically
notified.

At the bottom of the window, there is a System.Windows.Controls.Button control marked Add
Person. When this button is clicked, it adds a new Person object to the collection. Because the
PersonCollection class derives from ObservableCollection<T>, which in turn implements
INotifyCollectionChanged, the master list of items automatically updates to show the new item.

The XAML for the window is as follows:

<Window x:Class="Apress.VisualCSharpRecipes.Chapter17.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="Recipe17_18" Height="380" Width="280">
 <Window.Resources>

 <DataTemplate
 x:Key="masterTemplate">
 <TextBlock
 Margin="4"
 Text="{Binding
 Path=Description,
 UpdateSourceTrigger=PropertyChanged}"/>
 </DataTemplate>

 <DataTemplate x:Key="detailTemplate">
 <Border
 BorderBrush="LightBlue"
 BorderThickness="1">
 <Grid Margin="10">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="74"/>
 <ColumnDefinition Width="*"/>
 </Grid.ColumnDefinitions>

 <Grid.RowDefinitions>
 <RowDefinition Height="30"/>
 <RowDefinition Height="30"/>

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 17 ■ WINDOWS PRESENTATION FOUNDATION

851

 <RowDefinition Height="30"/>
 <RowDefinition Height="30"/>
 </Grid.RowDefinitions>

 <TextBlock
 Margin="4"
 Text="First Name"
 VerticalAlignment="Center"/>
 <TextBox
 Text="{Binding Path=FirstName, Mode=TwoWay}"
 Margin="4" Grid.Column="1"/>

 <TextBlock
 Margin="4"
 Text="Last Name"
 Grid.Row="1"
 VerticalAlignment="Center"/>
 <TextBox
 Margin="4"
 Text="{Binding Path=LastName, Mode=TwoWay}"
 Grid.Column="1" Grid.Row="1"/>

 <TextBlock
 Margin="4"
 Text="Age"
 Grid.Row="2"
 VerticalAlignment="Center"/>
 <TextBox
 Margin="4"
 Text="{Binding Path=Age, Mode=TwoWay}"
 Grid.Column="1"
 Grid.Row="2"/>

 <TextBlock
 Margin="4"
 Text="Occupation"
 Grid.Row="3"
 VerticalAlignment="Center"/>

 <ComboBox
 x:Name="cboOccupation"
 IsEditable="False"
 Grid.Column="1"
 Grid.Row="3"
 HorizontalAlignment="Left"
 Text="{Binding Path=Occupation, Mode=TwoWay}"
 Margin="4" Width="140">
 <ComboBoxItem>Student</ComboBoxItem>
 <ComboBoxItem>Engineer</ComboBoxItem>
 <ComboBoxItem>Professional</ComboBoxItem>
 </ComboBox>

CHAPTER 17 ■ WINDOWS PRESENTATION FOUNDATION

852

 </Grid>
 </Border>
 </DataTemplate>
 </Window.Resources>

 <StackPanel Margin="5">

 <TextBlock
 VerticalAlignment="Center"
 FontSize="14"
 Margin="4"
 Text="People"/>

 <!-- The ItemsControls binds to the collection. -->
 <ListBox
 ItemsSource="{Binding}"
 ItemTemplate="{StaticResource masterTemplate}"
 IsSynchronizedWithCurrentItem="True" />

 <TextBlock
 VerticalAlignment="Center"
 FontSize="14"
 Margin="4"
 Text="Details"/>

 <!-- The ContentControl binds to the CurrentItem of the collection. -->
 <ContentControl
 Content="{Binding}"
 ContentTemplate="{StaticResource detailTemplate}" />

 <!-- Add a new person to the collection. -->
 <Button
 Margin="4"
 Width="100"
 Height="34"
 HorizontalAlignment="Right"
 Click="AddButton_Click">
 Add Person
 </Button>
 </StackPanel>
</Window>

The code-behind for the window is as follows:

using System.Windows;

namespace Apress.VisualCSharpRecipes.Chapter17
{
 public partial class MainWindow : Window
 {
 // Create an instance of the PersonCollection class

CHAPTER 17 ■ WINDOWS PRESENTATION FOUNDATION

853

 PersonCollection people =
 new PersonCollection();

 public MainWindow()
 {
 InitializeComponent();

 // Set the DataContext to the PersonCollection
 this.DataContext = people;
 }

 private void AddButton_Click(
 object sender, RoutedEventArgs e)
 {
 people.Add(new Person()
 {
 FirstName = "Simon",
 LastName = "Williams",
 Age = 39,
 Occupation = "Professional"
 });
 }
 }
}

The code for the Person class is omitted for brevity. The code for the PersonCollection class is as
follows:

using System.Collections.ObjectModel;

namespace Apress.VisualCSharpRecipes.Chapter17
{
 public class PersonCollection
 : ObservableCollection<Person>
 {
 public PersonCollection()
 {
 this.Add(new Person()
 {
 FirstName = "Sam",
 LastName = "Bourton",
 Age = 33,
 Occupation = "Engineer"
 });
 this.Add(new Person()
 {
 FirstName = "Adam",
 LastName = "Freeman",
 Age = 37,
 Occupation = "Professional"
 });

CHAPTER 17 ■ WINDOWS PRESENTATION FOUNDATION

854

 this.Add(new Person()
 {
 FirstName = "Sam",
 LastName = "Noble",
 Age = 24,
 Occupation = "Engineer"
 });
 }
 }
}

Figure 17-16 shows the resulting window.

Figure 17-16. Binding to a collection using the master-detail pattern

17-19. Change a Control’s Appearance on Mouseover

Problem
You need to change the appearance of a control when the mouse moves over it.

Solution
Create a System.Windows.Style resource for the System.Windows.Controls.Control, and use a property
trigger to change the properties of the Style when the IsMouseOver property is True.

CHAPTER 17 ■ WINDOWS PRESENTATION FOUNDATION

855

How It Works
Every control ultimately inherits from System.Windows.UIElement. This exposes a dependency property
called IsMouseOverProperty. A System.Windows.Trigger can be defined in the Style of the control, which
receives notification when this property changes and can subsequently change the control’s Style.
When the mouse leaves the control, the property is set back to False, which notifies the trigger, and the
control is automatically set back to the default state.

The Code
The following example demonstrates a window with a Style resource and two
System.Windows.Controls.Button controls. The Style uses a Trigger to change the
System.Windows.FontWeight and BitmapEffect properties of the Button controls when the mouse is over
them. The XAML for the window is as follows:

<Window x:Class="Apress.VisualCSharpRecipes.Chapter17.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="Recipe17_19" Height="120" Width="240">

 <Window.Resources>
 <Style TargetType="{x:Type Button}">
 <Style.Triggers>
 <Trigger Property="IsMouseOver" Value="True">
 <Setter Property="FontWeight" Value="Bold" />
 <Setter Property="BitmapEffect">
 <Setter.Value>
 <DropShadowEffect BlurRadius="15"
 Color="Orange" ShadowDepth="0" />
 </Setter.Value>
 </Setter>
 </Trigger>
 </Style.Triggers>
 </Style>
 </Window.Resources>

 <StackPanel Margin="8">
 <Button Height="25" Width="100" Margin="4">
 Mouse Over Me!
 </Button>
 <Button Height="25" Width="100" Margin="4">
 Mouse Over Me!
 </Button>
 </StackPanel>
</Window>

Figure 17-17 shows the resulting window.

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 17 ■ WINDOWS PRESENTATION FOUNDATION

856

Figure 17-17. Changing a control’s appearance on mouseover

17-20. Change the Appearance of Alternate Items in a List

Problem
You need to give a different appearance to items in alternate rows of a System.Windows.Controls.
ListBox.

Solution
Create a System.Windows.Controls.StyleSelector class, and override the SelectStyle method.

How It Works
When you set the ItemContainerStyleSelector property of a ListBox to a StyleSelector, it will evaluate
each item and apply the correct Style. This allows you to specify custom logic to vary the appearance of
items based on any particular value or criteria.

The Code
The following example demonstrates a window that displays a list of country names in a ListBox. In the
XAML for the ListBox, its ItemContainerStyleSelector property is set to a local StyleSelector class
called AlternatingRowStyleSelector. This class has a property called AlternateStyle, which is set to a
Style resource that changes the Background property of a ListBoxItem.

The AlternatingRowStyleSelector class overrides the SelectStyle property and returns either the
default or the alternate Style, based on a Boolean flag. The XAML for the window is as follows:

<Window x:Class="Apress.VisualCSharpRecipes.Chapter17.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="clr-namespace:Apress.VisualCSharpRecipes.Chapter17;assembly="
 Title="Recipe17_20" Height="248" Width="200">

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 17 ■ WINDOWS PRESENTATION FOUNDATION

857

 <Window.Resources>
 <local:Countries x:Key="countries"/>
 <Style x:Key="AlternateStyle">
 <Setter Property="ListBoxItem.Background" Value="LightGray"/>
 </Style>
 </Window.Resources>

 <Grid Margin="4">
 <ListBox
 DisplayMemberPath="Name"
 ItemsSource="{Binding Source={StaticResource countries}}" >

 <ListBox.ItemContainerStyleSelector>
 <local:AlternatingRowStyleSelector
 AlternateStyle="{StaticResource AlternateStyle}" />
 </ListBox.ItemContainerStyleSelector>
 </ListBox>
 </Grid>
</Window>

The code for the StyleSelector is as follows:

using System.Windows;
using System.Windows.Controls;

namespace Apress.VisualCSharpRecipes.Chapter17
{
 public class AlternatingRowStyleSelector : StyleSelector
 {
 // Flag to track the alternate rows
 private bool isAlternate = false;

 public Style DefaultStyle { get; set; }
 public Style AlternateStyle { get; set; }

 public override Style SelectStyle(object item, DependencyObject container)
 {
 // Select the style, based on the value of isAlternate
 Style style = isAlternate ? AlternateStyle : DefaultStyle;

 // Invert the flag
 isAlternate = !isAlternate;

 return style;
 }
 }
}

Figure 17-18 shows the resulting window.

CHAPTER 17 ■ WINDOWS PRESENTATION FOUNDATION

858

Figure 17-18. Changing the appearance of alternate rows

17-21. Drag Items from a List and Drop Them on a Canvas

Problem
You need to allow the user to drag items from a System.Windows.Controls.ListBox to a System.Windows.
Controls.Canvas.

■ Note Drag-and-drop is relatively simple to implement in WPF, but contains a lot of variations depending on what
you are trying to do and what content you are dragging. This example focuses on dragging content from a ListBox
to a Canvas, but the principles are similar for other types of drag-and-drop operations and can be adapted easily.

Solution
On the ListBox or ListBoxItem, handle the PreviewMouseLeftButtonDown event to identify the start of a
possible drag operation and identify the ListBoxItem being dragged. Handle the PreviewMouseMove event
to determine whether the user is actually dragging the item, and if so, set up the drop operation using
the static System.Windows.DragDrop class. On the Canvas (the target for the drop operation), handle the
DragEnter and Drop events to support the dropping of dragged content.

How It Works
The static DragDrop class provides the functionality central to making it easy to execute drag-and-drop
operations in WPF. First, however, you must determine that the user is actually trying to drag something.

CHAPTER 17 ■ WINDOWS PRESENTATION FOUNDATION

859

There is no single best way to do this, but usually you will need a combination of handling
MouseLeftButtonDown or PreviewMouseLeftButtonDown events to know when the user clicks something,
and MouseMove or PreviewMouseMove events to determine whether the user is moving the mouse while
holding the left button down. Also, you should use the SystemParameters.
MinimumHorizontalDragDistance and SystemParameters.MinimumVerticalDragDistance properties to
make sure the user has dragged the item a sufficient distance to be considered a drag operation;
otherwise, the user will often get false drag operations starting as they click items.

Once you are sure the user is trying to drag something, you configure the DragDrop object using the
DoDragDrop method. You must pass the DoDragDrop method a reference to the source object being
dragged, a System.Object containing the data that the drag operation is taking with it, and a value from
the System.Windows.DragDropEffects enumeration representing the type of drag operation being
performed. Commonly used values of the DragDropEffects enumeration are Copy, Move, and Link. The
type of operation is often driven by special keys being held down at the time of clicking—for example,
holding the Ctrl key signals the user’s intent to copy (see recipe 17-34 for information on how to query
keyboard state).

On the target of the drop operation, implement event handlers for the DragEnter and Drop events.
The DragEnter handler allows you to control the behavior seen by the user as the mouse pointer enters
the target control. This usually indicates whether the control is a suitable target for the type of content
the user is dragging. The Drop event signals that the user has released the left mouse button and
indicates that the content contained in the DragDrop object should be retrieved (using the Data.GetData
method of the DragEventArgs object passed to the Drop event handler) and inserted into the target
control.

The Code
The following XAML demonstrates how to set up a ListBox with ListBoxItem objects that support drag-
and-drop operations (see Figure 17-19):

<Window x:Class="Apress.VisualCSharpRecipes.Chapter17.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="Recipe17_21" Height="300" Width="300">
 <DockPanel LastChildFill="True" >
 <ListBox DockPanel.Dock="Left" Name="lstLabels">
 <ListBox.Resources>
 <Style TargetType="{x:Type ListBoxItem}">
 <Setter Property="FontSize" Value="14" />
 <Setter Property="Margin" Value="2" />
 <EventSetter Event="PreviewMouseLeftButtonDown"
 Handler="ListBoxItem_PreviewMouseLeftButtonDown"/>
 <EventSetter Event="PreviewMouseMove"
 Handler="ListBoxItem_PreviewMouseMove"/>
 </Style>
 </ListBox.Resources>
 <ListBoxItem IsSelected="True">Allen</ListBoxItem>
 <ListBoxItem>Andy</ListBoxItem>
 <ListBoxItem>Antoan</ListBoxItem>
 <ListBoxItem>Bruce</ListBoxItem>
 <ListBoxItem>Ian</ListBoxItem>
 <ListBoxItem>Matthew</ListBoxItem>

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 17 ■ WINDOWS PRESENTATION FOUNDATION

860

 <ListBoxItem>Sam</ListBoxItem>
 <ListBoxItem>Simon</ListBoxItem>
 </ListBox>
 <Canvas AllowDrop="True" Background="Transparent"
 DragEnter="cvsSurface_DragEnter" Drop="cvsSurface_Drop"
 Name="cvsSurface" >
 </Canvas>
 </DockPanel>
</Window>

The following code-behind contains the event handlers that allow the example to identify the
ListBoxItem that the user is dragging, determine whether a mouse movement constitutes a drag
operation, and allow the Canvas to receive the dragged ListBoxItem content.

using System;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Input;

namespace Apress.VisualCSharpRecipes.Chapter17
{
 /// <summary>
 /// Interaction logic for MainWindow.xaml
 /// </summary>
 public partial class MainWindow : Window
 {
 private ListBoxItem draggedItem;
 private Point startDragPoint;

 public MainWindow()
 {
 InitializeComponent();
 }

 // Handles the DragEnter event for the Canvas. Changes the mouse
 // pointer to show the user that copy is an option if the drop
 // text content is over the Canvas.
 private void cvsSurface_DragEnter(object sender, DragEventArgs e)
 {
 if (e.Data.GetDataPresent(DataFormats.Text))
 {
 e.Effects = DragDropEffects.Copy;
 }
 else
 {
 e.Effects = DragDropEffects.None;
 }
 }

 // Handles the Drop event for the Canvas. Creates a new Label
 // and adds it to the Canvas at the location of the mouse pointer.

CHAPTER 17 ■ WINDOWS PRESENTATION FOUNDATION

861

 private void cvsSurface_Drop(object sender, DragEventArgs e)
 {
 // Create a new Label.
 Label newLabel = new Label();
 newLabel.Content = e.Data.GetData(DataFormats.Text);
 newLabel.FontSize = 14;

 // Add the Label to the Canvas and position it.
 cvsSurface.Children.Add(newLabel);
 Canvas.SetLeft(newLabel, e.GetPosition(cvsSurface).X);
 Canvas.SetTop(newLabel, e.GetPosition(cvsSurface).Y);
 }

 // Handles the PreviewMouseLeftButtonDown event for all ListBoxItem
 // objects. Stores a reference to the item being dragged and the
 // point at which the drag started.
 private void ListBoxItem_PreviewMouseLeftButtonDown(object sender,
 MouseButtonEventArgs e)
 {
 draggedItem = sender as ListBoxItem;
 startDragPoint = e.GetPosition(null);
 }

 // Handles the PreviewMouseMove event for all ListBoxItem objects.
 // Determines whether the mouse has been moved far enough to be
 // considered a drag operation.
 private void ListBoxItem_PreviewMouseMove(object sender,
 MouseEventArgs e)
 {
 if (e.LeftButton == MouseButtonState.Pressed)
 {
 Point position = e.GetPosition(null);

 if (Math.Abs(position.X - startDragPoint.X) >
 SystemParameters.MinimumHorizontalDragDistance ||
 Math.Abs(position.Y - startDragPoint.Y) >
 SystemParameters.MinimumVerticalDragDistance)
 {
 // User is dragging, set up the DragDrop behavior.
 DragDrop.DoDragDrop(draggedItem, draggedItem.Content,
 DragDropEffects.Copy);
 }
 }
 }
 }
}

CHAPTER 17 ■ WINDOWS PRESENTATION FOUNDATION

862

Figure 17-19. Dragging items from a ListBox and dropping them on a Canvas

17-22. Display the Progress of a Long-Running Operation and
Allow the User to Cancel It

Problem
You need to execute a method asynchronously on a background thread, show a System.Windows.
Controls.ProgressBar while the process is executing, and allow the user to cancel the background
operation before completion.

Solution
Create an instance of the System.ComponentModel.BackgroundWorker class and attach event handlers to
its DoWork and RunWorkerCompleted events. To report progress, set its WorkerReportsProgress property to
True, and add an event handler to its ProgressChanged event. Call the ReportProgress method of the
BackgroundWorker while processing the operation on the background thread, and in the code for this
ProgressChanged event handler, update the Value property of a ProgressBar.

To support cancellation, set its WorkerSupportsCancellation property to True and call the
CancelAsync method when the user wants to cancel the operation. In the DoWork event handler,
check the CancellationPending property, and if this is True, use the Cancel property of System.
ComponentModel.DoWorkEventArgs to notify the RunWorkerCompleted event handler that the operation
was cancelled.

CHAPTER 17 ■ WINDOWS PRESENTATION FOUNDATION

863

How It Works
The BackgroundWorker component gives you the ability to execute time-consuming operations
asynchronously. It automatically executes the operation on a different thread to the one that created it
and then automatically returns control to the calling thread when it is completed.

The BackgroundWorker’s DoWork event specifies the delegate to execute asynchronously. It is this
delegate that is executed on a background thread when the RunWorkerAsync method is called. When it
has completed the operation, it calls the RunWorkerCompleted event and executes the attached delegate
on the same thread that was used to create it. If the BackgroundWorker object is created on the UI
thread—for example, in the constructor method for a window or control—then you can access and
update the UI in the RunWorkerCompleted event without having to check that you are on the UI thread
again. The BackgroundWorker object handles all the thread marshaling for you.

The DoWork method takes an argument of type System.ComponentModel.DoWorkEventArgs, which
allows you to pass an argument to the method. The RunWorkerCompleted event is passed an instance of
the System.ComponentModel.RunWorkerCompletedEventArgs class, which allows you to receive the result of
the background process and any error that might have been thrown during processing.

The BackgroundWorker class has a Boolean property called WorkerReportsProgress, which indicates
whether the BackgroundWorker can report progress updates. It is set to False by default. When this is set
to True, calling the ReportProgress method will raise the ProgressChanged event. The ReportProgress
method takes an integer parameter specifying the percentage of progress completed by the
BackgroundWorker. This parameter is passed to the ProgressChanged event handler via the
ProgressPercentage property of the System.ComponentModel.ProgressChangedEventArgs class. The
ProgressBar control sets the default value for its Maximum property to 100, which lends itself perfectly and
automatically to receive the ProgressPercentage as its Value property.

The BackgroundWorker class has a Boolean property called WorkerSupportsCancellation, which when
set to True allows the CancelAsync method to interrupt the background operation. It is set to False by
default. In the RunWorkerCompleted event handler, you can use the Cancelled property of the
RunWorkerCompletedEventArgs to check whether the BackgroundWorker was cancelled.

The Code
The following example demonstrates a window that declares a ProgressBar control and a Button. An
instance of the BackgroundWorker class is created in the window’s constructor, and its
WorkerSupportsCancellation property is set to True.

When the Button is clicked, the code in the Click handler runs the BackgroundWorker
asynchronously and changes the text of the Button from Start to Cancel. If it is clicked again, the IsBusy
property of the BackgroundWorker returns True, and the code calls the CancelAsync method to cancel the
operation.

In the RunWorkerCompleted event handler, a System.Windows.MessageBox is shown if the Cancelled
property of the RunWorkerCompletedEventArgs parameter is True. The XAML for the window is as follows:

<Window x:Class="Apress.VisualCSharpRecipes.Chapter17.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="Recipe17_22" Height="100" Width="250">
 <Grid>

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 17 ■ WINDOWS PRESENTATION FOUNDATION

864

 <Grid.RowDefinitions>
 <RowDefinition/>
 <RowDefinition/>
 </Grid.RowDefinitions>

 <ProgressBar Name="progressBar" Margin="4"/>

 <Button Name="button" Grid.Row="1" Click="button_Click"
 HorizontalAlignment="Center" Margin="4" Width="60">
 Start
 </Button>
 </Grid>
</Window>

The code-behind for the window is as follows:

using System.ComponentModel;
using System.Threading;
using System.Windows;
using System.Windows.Input;

namespace Apress.VisualCSharpRecipes.Chapter17
{
 /// <summary>
 /// Interaction logic for MainWindow.xaml
 /// </summary>
 public partial class MainWindow : Window
 {
 private BackgroundWorker worker;

 public MainWindow()
 {
 InitializeComponent();

 // Create a Background Worker
 worker = new BackgroundWorker();
 worker.WorkerReportsProgress = true;

 // Enable support for cancellation
 worker.WorkerSupportsCancellation = true;

 // Attach the event handlers
 worker.DoWork +=
 new DoWorkEventHandler(worker_DoWork);
 worker.RunWorkerCompleted +=
 new RunWorkerCompletedEventHandler(worker_RunWorkerCompleted);
 worker.ProgressChanged +=
 worker_ProgressChanged;
 }

CHAPTER 17 ■ WINDOWS PRESENTATION FOUNDATION

865

 private void button_Click(
 object sender, RoutedEventArgs e)
 {
 if(!worker.IsBusy)
 {
 this.Cursor = Cursors.Wait;

 // Start the Background Worker
 worker.RunWorkerAsync();
 button.Content = "Cancel";
 }
 else
 {
 // Cancel the Background Worker
 worker.CancelAsync();
 }
 }

 private void worker_RunWorkerCompleted(
 object sender, RunWorkerCompletedEventArgs e)
 {
 this.Cursor = Cursors.Arrow;

 if(e.Cancelled)
 {
 // The user cancelled the operation
 MessageBox.Show("Operation was cancelled");
 }
 else if(e.Error != null)
 {
 MessageBox.Show(e.Error.Message);
 }

 button.Content = "Start";
 }

 private void worker_DoWork(
 object sender, DoWorkEventArgs e)
 {
 for(int i = 1; i <= 100; i++)
 {
 // Check if the BackgroundWorker
 // has been cancelled
 if(worker.CancellationPending)
 {
 // Set the Cancel property
 e.Cancel = true;
 return;
 }

CHAPTER 17 ■ WINDOWS PRESENTATION FOUNDATION

866

 // Simulate some processing by sleeping
 Thread.Sleep(100);
 worker.ReportProgress(i);
 }
 }

 private void worker_ProgressChanged(
 object sender, ProgressChangedEventArgs e)
 {
 progressBar.Value = e.ProgressPercentage;
 }
 }
}

Figure 17-20 shows the resulting window.

Figure 17-20. Executing a method asynchronously using a background thread

17-23. Draw Two-Dimensional Shapes

Problem
You need to draw shapes such as circles, rectangles, polygons, or more complex shapes constructed
from a combination of simpler shapes with straight and curved lines.

Solution
Draw simple shapes using the Ellipse, Rectangle, or Polygon classes from the System.Windows.Shapes
namespace. For complex shapes, use a System.Windows.Shapes.Path element to represent the overall
shape. In the Data property of the Path object, include a GeometryGroup element containing one or more
EllipseGeometry, LineGeometry, PathGeometry, or RectangleGeometry elements that together describe
your shape. GeometryGroup, EllipseGeometry, LineGeometry, PathGeometry, and RectangleGeometry are all
classes from the System.Windows.Media namespace.

CHAPTER 17 ■ WINDOWS PRESENTATION FOUNDATION

867

■ Tip Defining complex shapes manually can be time-consuming, error prone, and frustrating. For complex
shapes, you should consider using a visual design tool (such as Microsoft Expression Design) that generates XAML
to draw the shape and then use the output of the tool in your application.

How It Works
The Ellipse, Rectangle, and Polygon classes all derive from the System.Windows.Shapes.Shape class and
provide a quick and easy way to draw simple shapes. To use an Ellipse or Rectangle element, you need
only specify a Height property and a Width property to control the basic size of the shape. The values are
assumed to be px (pixels) but can also be in (inches), cm (centimeters), or pt (points). For the Rectangle
element, you can also specify values for the RadiusX and RadiusY properties, which set the radius of the
ellipse used to round the corners of the rectangle.

The Polygon allows you to create shapes with as many sides as you require by constructing a shape
from a sequence of connected lines. To do this, you specify the sequence of points you want connected
by lines to form your shape. The Polygon automatically draws a final line segment from the final point
back to the first point to ensure the shape is closed.

You can declare the points for the Polygon statically by specifying a sequence of coordinate pairs in
the Points property of the Polygon element. Each of these coordinate pairs represents the x and y offset
of a point from the base position of the Polygon within its container (see recipes 17-6 through 17-9 for
details on how to position UI elements in the various types of containers provided by WPF). For clarity,
you should separate the x and y coordinates of a pair with a comma and separate each coordinate pair
with a space (for example, x1,y1 x2,y2 x3,y3, and so on). To configure the points of a Polygon
programmatically, you need to add System.Windows.Point objects to the System.Windows.
Media.PointsCollection collection contained in the Points property of the Polygon object.

Although the Polygon class allows you to create somewhat complex shapes easily, it allows you to
use only straight edges on those shapes. Polygon also includes significant overhead because of all the
functionality inherited from the System.Windows.Shapes.Shape class.

For complex and lightweight shapes over which you have more control, use a Path element to
represent the overall shape. Path defines the settings—such as color and thickness—used to actually
draw the line and also implements events for handling mouse and keyboard interaction with the line.
You must then construct the desired shape using the classes derived from the System.Windows.
Media.Geometry class, including PathGeometry, EllipseGeometry, LineGeometry, and RectangleGeometry.
To make shapes that consist of multiple simpler shapes, you must encapsulate the collection of simpler
shapes in a GeometryGroup element within the Data property of the Path.

The EllipseGeometry, LineGeometry, and RectangleGeometry elements are lighter-weight equivalents
of the Ellipse, Line, and Rectangle classes from the System.Windows.Shapes namespace, intended for
use when creating more complex shapes. To draw an ellipse with the EllipseGeometry class, position the
ellipse using the Center property, and specify the width and height of the ellipse using the RadiusX and
RadiusY properties. To draw a line with the LineGeometry class, specify the starting point of the line using
the StartPoint property and the end of the line using the EndPoint property. To draw a rectangle with
the RectangleGeometry class, specify the position of the top-left corner of the rectangle as well as the
width and height of the rectangle using the Rect property. You can also specify values for the RadiusX
and RadiusY properties, which set the radius of the ellipse used to round the corners of the rectangle. All
coordinates are relative to the root position of the Path element within its container.

Drawing curved lines in WPF is not as simple as you would hope. Unlike with lines, ellipses, and
rectangles, there is no simple class that draws a curved line for you. However, at the expense of a little

CHAPTER 17 ■ WINDOWS PRESENTATION FOUNDATION

868

complexity, you get a great deal of flexibility and control, which is what you really want if you need to
draw all but the simplest curved lines. To draw a curved line, you must use a PathGeometry element. The
PathGeometry element can define multiple lines, so you must declare each line inside the PathGeometry
element within its own PathFigure element. The StartPoint property of the PathFigure element defines
the point where WPF will start to draw your line. The StartPoint property takes a pair of System.Double
values representing the x and y offsets from the root position of the Path element within its container.

Within the PathFigure element, you finally get to define what your line is going to look like using one
or more ArcSegment, LineSegment, and BezierSegment elements. When rendered, each segment defines
how your line continues from the point where the previous segment ended (or the StartPoint of the
PathFigure if it is the first segment).

A LineSegment defines a straight line drawn from the end of the last segment to the point defined in
its Point property. The Point property takes a pair of Double values representing the x and y offsets from
the root position of the Path element.

An ArcSegment defines an elliptical arc drawn between the end of the last segment and the point
defined in its Point property. The Point property takes a pair of Double values representing the x and y
offsets from the root position of the Path element. Table 17-8 defines the properties of the ArcSegment
class that let you configure the shape of the curved line it defines.

Table 17-8. Properties of the ArcSegment Class

Value Description

IsLargeArc Specifies whether the line drawn between the start and end of the ArcSegment is the
small or large section of the ellipse used to calculate the arc.

IsSmoothJoin A Boolean that defines whether the join between the previous line and the ArcSegment
should be treated as a corner. This determines how the StrokeLineJoin property of the
Path element affects the rendering of the join.

RotationAngle A double that defines the amount in degrees by which the ellipse (from which the arc is
taken) is rotated about the x axis.

Size A pair of Double values that specify the x and y radii of the ellipse used to calculate the
arc.

SweepDirection Defines the direction in which WPF draws the ArcSegment; available values are
Clockwise and Counterclockwise.

A BezierSegment defines a Bezier curve drawn between the end of the last segment and the point

defined in its Point3 property. The Point3 property takes a pair of Double values representing the x and y
offsets from the root position of the Path element. The Point1 and Point2 properties of the BezierSegment
define the control points of the Bezier curve that exert a “pull” on the line, causing it to create a curve.
You can read more about Bezier curves at http://en.wikipedia.org/wiki/Bezier_curves.

http://en.wikipedia.org/wiki/Bezier_curves

CHAPTER 17 ■ WINDOWS PRESENTATION FOUNDATION

869

■ Note WPF defines a minilanguage that provides a concise syntax by which you can define complex geometries.
Because it is terse and difficult to read, this language is primarily intended for tools that generate geometry
definitions automatically, but can also be used in manual definitions. A discussion of this minilanguage is beyond
the scope of this book. To find out more, read the MSDN article at http://msdn.microsoft.com/en-
us/library/ms752293(VS.100).aspx.

The Code
The following XAML demonstrates how to use the various drawing elements mentioned previously to
draw a wide variety of two-dimensional shapes in a System.Windows.Controls.Canvas (see Figure 17-21).

<Window x:Class="Apress.VisualCSharpRecipes.Chapter17.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="Recipe17_23" Height="350" Width="450">
 <Canvas>
 <Canvas.Resources>
 <Style TargetType="Ellipse">
 <Setter Property="Stroke" Value="Black" />
 <Setter Property="StrokeThickness" Value="3" />
 </Style>
 <Style TargetType="Polygon">
 <Setter Property="Stroke" Value="Black" />
 <Setter Property="StrokeThickness" Value="3" />
 </Style>
 <Style TargetType="Rectangle">
 <Setter Property="Stroke" Value="Black" />
 <Setter Property="StrokeThickness" Value="3" />
 </Style>
 </Canvas.Resources>
 <Rectangle Canvas.Top="20" Canvas.Left="10"
 Height="60" Width="90" />
 <Rectangle Canvas.Top="20" Canvas.Left="120"
 Height="100" Width="70"
 RadiusX="10" RadiusY="10"/>
 <Rectangle Canvas.Top="20" Canvas.Left="220"
 Height="70" Width="70"
 RadiusX="5" RadiusY="30"/>
 <Ellipse Canvas.Top="100" Canvas.Left="20"
 Height="100" Width="70"/>
 <Ellipse Canvas.Top="130" Canvas.Left="110"
 Height="50" Width="90"/>
 <Ellipse Canvas.Top="120" Canvas.Left="220"
 Height="70" Width="70"/>
 <Polygon Canvas.Top="200" Canvas.Left="10"
 Margin="5" Points="40,10 70,80 10,80"/>

http://msdn.microsoft.com/en-us/library/ms752293
http://msdn.microsoft.com/en-us/library/ms752293
http://msdn.microsoft.com/en-us/library/ms752293
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 17 ■ WINDOWS PRESENTATION FOUNDATION

870

 <Polygon Canvas.Top="200" Canvas.Left="110"
 Margin="5" Points="20,0 60,0 80,20 80,60 60,80
 20,80 0,60 0,20"/>
 <Polygon Canvas.Top="200" Canvas.Left="210"
 Margin="5" Points="20,0 50,10 50,50 80,60 60,80 0,20"/>
 <Path Canvas.Top="60" Canvas.Left="320"
 Stroke="Black" StrokeThickness="3" >
 <Path.Data>
 <GeometryGroup>
 <!--Head and hat-->
 <PathGeometry>
 <PathFigure IsClosed="True" StartPoint="40,0">
 <LineSegment Point="70,100" />
 <ArcSegment Point="70,110" IsLargeArc="True"
 Size="10,10" SweepDirection="Clockwise"/>
 <ArcSegment Point="10,110" Size="30,30"
 SweepDirection="Clockwise"/>

 <ArcSegment Point="10,100" IsLargeArc="True"
 Size="10,10" SweepDirection="Clockwise"/>
 </PathFigure>
 </PathGeometry>
 <!--Hat buttons-->
 <EllipseGeometry Center="40,40" RadiusX="2" RadiusY="2"/>
 <EllipseGeometry Center="40,50" RadiusX="2" RadiusY="2"/>
 <EllipseGeometry Center="40,60" RadiusX="2" RadiusY="2"/>
 <!--Eyes-->
 <EllipseGeometry Center="30,100" RadiusX="3" RadiusY="2"/>
 <EllipseGeometry Center="50,100" RadiusX="3" RadiusY="2"/>
 <!--Nose-->
 <EllipseGeometry Center="40,110" RadiusX="3" RadiusY="3"/>
 <!--Mouth-->
 <RectangleGeometry Rect="30,120 20,10"/>
 </GeometryGroup>
 </Path.Data>
 </Path>
 </Canvas>
</Window>

CHAPTER 17 ■ WINDOWS PRESENTATION FOUNDATION

871

Figure 17-21. Examples of simple and complex shapes on a canvas

17-24. Create Reusable Shapes

Problem
You need to create a shape that you can use many times without having to define it each time.

Solution
Define the geometry of the shape as a static resource, and give it a Key. You can then use binding syntax
to reference the geometry from the Data property of a System.Windows.Shapes.Path element wherever
you need it.

How It Works
Geometries describing complex shapes can be long and complicated, so you will not want to repeat the
geometry description in multiple places. Instead, you can define the geometry once as a static resource
and refer to the resource wherever you would normally use that geometry.

You can declare instances of any of the classes that inherit from the System.Windows.Media.Geometry
class in the resource dictionary of a suitable container. This includes the PathGeometry, EllipseGeometry,
LineGeometry, RectangleGeometry, and GeometryGroup classes from the System.Windows.Media
namespace. The only special action you need to take is to give the geometry resource a name by
assigning a value to the x:Key property.

Once defined, refer to the geometry resource from the Data property of a Path element using the
following syntax:

... Data="{StaticResource GeometryKey}" ...

CHAPTER 17 ■ WINDOWS PRESENTATION FOUNDATION

872

The Code
The following XAML demonstrates how to create a System.Windows.Media.GeometryGroup static resource
with the key Clown, and its subsequent use to display a clown shape multiple times in a System.
Windows.Controls.UniformGrid. Each clown displayed uses the same underlying geometry but different
stroke settings to change the color and format of the lines (see Figure 17-22).

<Window x:Class="Apress.VisualCSharpRecipes.Chapter17.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="Recipe17_24" Height="350" Width="300">
 <Window.Resources>
 <GeometryGroup x:Key="Clown">
 <!--Head and hat-->
 <PathGeometry>
 <PathFigure IsClosed="True" StartPoint="40,0">
 <LineSegment Point="70,100" />
 <ArcSegment Point="70,110" IsLargeArc="True"
 Size="10,10" SweepDirection="Clockwise"/>
 <ArcSegment Point="10,110" Size="30,30"
 SweepDirection="Clockwise"/>
 <ArcSegment Point="10,100" IsLargeArc="True"
 Size="10,10" SweepDirection="Clockwise"/>
 </PathFigure>
 </PathGeometry>

 <!--Hat buttons-->
 <EllipseGeometry Center="40,40" RadiusX="2" RadiusY="2"/>
 <EllipseGeometry Center="40,50" RadiusX="2" RadiusY="2"/>
 <EllipseGeometry Center="40,60" RadiusX="2" RadiusY="2"/>
 <!--Eyes-->
 <EllipseGeometry Center="30,100" RadiusX="3" RadiusY="2"/>
 <EllipseGeometry Center="50,100" RadiusX="3" RadiusY="2"/>
 <!--Nose-->
 <EllipseGeometry Center="40,110" RadiusX="3" RadiusY="3"/>
 <!--Mouth-->
 <RectangleGeometry Rect="30,120 20,10"/>
 </GeometryGroup>
 </Window.Resources>
 <UniformGrid Columns="2" Rows="2">
 <Path HorizontalAlignment="Center" Data="{StaticResource Clown}"
 Stroke="Black" StrokeThickness="1" Margin="5" Fill="BurlyWood"/>
 <Path HorizontalAlignment="Center" Data="{StaticResource Clown}"
 Stroke="Blue" StrokeThickness="5" Margin="5" />
 <Path HorizontalAlignment="Center" Data="{StaticResource Clown}"
 Stroke="Red" StrokeThickness="3" StrokeDashArray="1 1"/>
 <Path HorizontalAlignment="Center" Data="{StaticResource Clown}"
 Stroke="Green" StrokeThickness="4" StrokeDashArray="2 1"/>
 </UniformGrid>
</Window>

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 17 ■ WINDOWS PRESENTATION FOUNDATION

873

Figure 17-22. Using static geometry resources to create reusable shapes

17-25. Draw or Fill a Shape Using a Solid Color

Problem
You need to draw or fill a shape using a solid color.

Solution
For shapes derived from System.Windows.Shapes.Shape, set the Stroke or Fill property to an instance of
System.Windows.Media.SolidColorBrush configured with the color you want to use.

How It Works
The SolidColorBrush class represents a brush with a single solid color that you can use to draw or fill
shapes. To draw a shape derived from Shape using a solid color, assign an instance of a SolidColorBrush
to the Stroke property of the Shape. To fill a shape derived from Shape using a solid color, assign an
instance of a SolidColorBrush to the Fill property of the Shape.

There are a variety of ways to obtain SolidColorBrush objects in both XAML and code, but you need
to understand how WPF represents color to best understand how to create and use SolidColorBrush
objects.

WPF represents color with the System.Windows.Media.Color structure, which uses four channels
to define a color: alpha, red, green, and blue. Alpha defines the amount of transparency the color has,
and the red, green, and blue channels define how much of that primary color is included in the
aggregate color.

The Color structure supports two common standards for defining the values for these channels:
RGB and scRGB. The RGB standard uses 8-bit values for each channel, and you use a number between 0

CHAPTER 17 ■ WINDOWS PRESENTATION FOUNDATION

874

and 255 to specify the value. This gives you 32 bits of color information, which is usually sufficient when
displaying graphics on a computer screen.

However, when you are creating images for printing or further digital processing, a wider range of
colors is required. The scRGB standard uses 16-bit values for each channel, and you use a floating-point
number between 0 and 1 to specify the value. This gives you 64 bits of color information.

To support both the RGB and scRGB standards, the Color structure provides two sets of properties
to represent the alpha, red, green, and blue channels of a color. The properties that provide RGB support
are named A, R, G, and B, and take System.Byte values. The properties that provide scRGB support are
named ScA, ScR, ScG, and ScB, and take System.Single values. The two sets of properties are
synchronized, so, for example, if you change the A property of a Color object, the ScA property changes
to the equivalent value on its own scale.

To obtain a Color object in code, you can use the static properties of the System.Windows.Media.
Colors class, which provide access to more than 140 predefined Color objects. To create a custom Color
object, call the static FromArgb, FromAValues, FromRgb, FromScRgb, or FromValues methods of the Color
structure.

Once you have a Color object, you can pass it as an argument to the SolidColorBrush constructor
and obtain a SolidColorBrush instance that will draw or fill your shape with that color. You can also
obtain a SolidColorBrush instance preconfigured with current system colors using the static properties
of the System.Windows.SystemColors class.

XAML provides flexible syntax support to allow you to specify the color of a SolidColorBrush within
the Stroke or Fill property of a shape. You can use RGB syntax, scRGB syntax, or the names of the colors
defined in the Colors class.

If you want to reuse a specific SolidColorBrush, you can declare it as a resource within the resources
collection of a suitable container and assign it a key. Once defined, refer to the SolidColorBrush resource
from the Fill or Stroke property of a Shape element using the following syntax:

... Fill="{StaticResource SolidColorBrushKey}" ...

The Code
The following XAML uses a set of Rectangle, Ellipse, and Line objects (from the System.Windows.
Shapes namespace) to demonstrate how to use SolidColorBrush objects to draw and fill shapes (see
Figure 17-23). The XAML demonstrates how to use named colors, RGB syntax, and scRGB syntax, as
well as how to create and use a static SolidColorBrush resource.

<Window x:Class="Apress.VisualCSharpRecipes.Chapter17.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="Recipe17_25" Height="300" Width="300">
 <Canvas Margin="5">
 <Canvas.Resources>
 <!--scRGB semi-transparent color-->
 <SolidColorBrush Color="sc# 0.8,0.3,0.9,0.25" x:Key="Brush1" />
 </Canvas.Resources>

 <!--SolidColorBrush resource-->
 <Rectangle Fill="{StaticResource Brush1}" Height="180" Width="80" />
 <!--Named color-->

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 17 ■ WINDOWS PRESENTATION FOUNDATION

875

 <Rectangle Canvas.Top="10" Canvas.Left="50"
 Fill="RoyalBlue" Height="70" Width="220" />
 <!--RGB semi-transparent color-->
 <Ellipse Canvas.Top="30" Canvas.Left="90"
 Fill="#72ff8805" Height="150" Width="100" />
 <!--RGB solid color-->
 <Ellipse Canvas.Top="150" Canvas.Left="70"
 Fill="#ff0000" Height="100" Width="200" />
 <!--scRGB semi-transparent color-->
 <Line X1="20" X2="260" Y1="200" Y2="50"
 Stroke="sc# 0.6,0.8,0.3,0.0" StrokeThickness="40"/>
 <!--scRGB solid color-->
 <Line X1="20" X2="270" Y1="240" Y2="240"
 Stroke="sc# 0.1,0.5,0.1" StrokeThickness="20"/>
 </Canvas>
</Window>

Figure 17-23. Drawing and filling shapes with solid colors

17-26. Fill a Shape with a Linear or Radial Color Gradient

Problem
You need to draw or fill a shape with a linear or radial color gradient (that is, a fill that transitions
smoothly between two or more colors).

CHAPTER 17 ■ WINDOWS PRESENTATION FOUNDATION

876

Solution
For shapes derived from System.Windows.Shapes.Shape, to use a linear gradient, set the Fill or Stroke
property to an instance of System.Windows.Media.LinearGradientBrush. To use a radial gradient, set the
Fill or Stroke property to an instance of System.Windows.Media.RadialGradientBrush.

How It Works
The LinearGradientBrush and RadialGradientBrush classes allow you to create a blended fill or stroke
that transitions from one color to another. It is also possible to transition through a sequence of colors.

A LinearGradientBrush represents a sequence of linear color transitions that occur according to a set
of gradient stops you define along a gradient axis. The gradient axis is an imaginary line that by default
connects the top-left corner of the area being painted with its bottom-right corner. You define gradient
stops using GradientStop elements inside the LinearGradientBrush element.

To position gradient stops along the gradient axis, you assign a System.Double value between 0 and 1
to the Offset property of a GradientStop. The Offset value represents the percentage distance along the
gradient axis at which the gradient stop occurs. So, for example, 0 represents the start of the gradient
axis, 0.5 represents halfway, and 0.75 represents 75 percent along the gradient axis. You specify the color
associated with a gradient stop using the Color property of the GradientStop element.

You can change the position and orientation of the gradient axis using the StartPoint and EndPoint
properties of the LinearGradientBrush. Each of the StartPoint and EndPoint properties takes a pair of
Double values that allow you to position the point using a coordinate system relative to the area being
painted. The point 0,0 represents the top left of the area, and the point 1,1 represents the bottom right.
So, to change the gradient axis from its default diagonal orientation to a horizontal one, set StartPoint
to the value 0,0.5 and EndPoint to the value 1,0.5; to make the gradient axis vertical, set StartPoint to
the value 0.5,0 and EndPoint to the value 0.5,1.

■ Note By setting the MappingMode property of the LinearGradientBrush to the value Absolute, you change the
coordinate system used by the StartPoint and EndPoint properties from being one relative to the area being
filled to being one expressed as device-independent pixels. For details, refer to the MSDN documentation on the
MappingMode property, at http://msdn.microsoft.com/en-us/library/system.windows.media.
gradientbrush.mappingmode.aspx.

Using the StartPoint and EndPoint properties of the LinearGradientBrush, you can assign negative
numbers or numbers greater than 1 to create a gradient axis that starts or ends outside the area being
filled. You can also define a gradient axis that starts or ends somewhere inside the body of the area
being filled.

Where the gradient axis does not start and end on the boundary of the area being painted, WPF
calculates the gradient as specified but does not paint anything that lies outside the area. Where the
gradient does not completely fill the area, WPF by default fills the remaining area with the final color in
the gradient. You can change this behavior using the SpreadMethod property of the LinearGradientBrush
element. Table 17-9 lists the possible values of the SpreadMethod property.

http://msdn.microsoft.com/en-us/library/system.windows.media

CHAPTER 17 ■ WINDOWS PRESENTATION FOUNDATION

877

Table 17-9. Possible Values of the SpreadMethod Property

Value Description

Pad The default value. The last color in the gradient fills all remaining area.

Reflect The gradient is repeated in reverse order.

Repeat The gradient is repeated in the original order.

The RadialGradientBrush is similar in behavior to the LinearGradientBrush except that it has an

elliptical gradient axis that radiates out from a defined focal point. You still use GradientStop elements in
the RadialGradientBrush to define the position and color of transitions, but you use the RadiusX and
RadiusY properties to define the size of the elliptical area covered by the gradient and the Center
property to position the ellipse within the area being painted. You then use the GradientOrigin property
to specify the location from where the sequence of gradient stops and starts within the gradient ellipse.
As with the LinearGradientBrush, all of these properties’ values are relative to the area being painted.

■ Tip If you want to reuse LinearGradientBrush or RadialGradientBrush elements, you can declare them as a
resource within the resources collection of a suitable container and assign them a key. Once defined, refer to the
gradient resource from the Fill or Stroke property of the Shape element using the following syntax:

... Fill="{StaticResource GradientKey}" ...

The Code
The following XAML uses a set of Rectangle, Ellipse, and Line objects (from the System.Windows.Shapes
namespace) to demonstrate how to use LinearGradientBrush and RadialGradientBrush objects to draw
and fill shapes (see Figure 17-24). The XAML also demonstrates how to create and use static
LinearGradientBrush and RadialGradientBrush resources.

<Window x:Class="Apress.VisualCSharpRecipes.Chapter17.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="Recipe17_26" Height="300" Width="300">
 <Canvas Margin="5">
 <Canvas.Resources>
 <!--Vertical reflected LinearGradientBrush static resource-->
 <LinearGradientBrush x:Key="LGB1" SpreadMethod="Reflect"
 StartPoint="0.5,-0.25" EndPoint="0.5,.5">
 <GradientStop Color="Aqua" Offset="0.5" />
 <GradientStop Color="Navy" Offset="1.0" />
 </LinearGradientBrush>

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 17 ■ WINDOWS PRESENTATION FOUNDATION

878

 <!--Centered RadialGradientBrush static resource-->
 <RadialGradientBrush Center="0.5,0.5" RadiusX=".8" RadiusY=".5"
 GradientOrigin="0.5,0.5" x:Key="RGB1">
 <GradientStop Color="BlanchedAlmond" Offset="0" />
 <GradientStop Color="DarkGreen" Offset=".7" />
 </RadialGradientBrush>
 </Canvas.Resources>

 <!--Fill with LinearGradientBrush static resource-->
 <Rectangle Canvas.Top="5" Canvas.Left="5"
 Fill="{StaticResource LGB1}" Height="180" Width="80" />
 <!--Fill with RadialGradientBrush static resource-->
 <Rectangle Canvas.Top="10" Canvas.Left="50"
 Fill="{StaticResource RGB1}" Height="70" Width="230" />
 <!--Fill with offset RadialGradientBrush-->
 <Ellipse Canvas.Top="130" Canvas.Left="30" Height="100" Width="230">
 <Ellipse.Fill>
 <RadialGradientBrush RadiusX=".8" RadiusY="1"
 Center="0.5,0.5" GradientOrigin="0.05,0.5">
 <GradientStop Color="#ffffff" Offset="0.1" />
 <GradientStop Color="#ff0000" Offset="0.5" />
 <GradientStop Color="#880000" Offset="0.8" />
 </RadialGradientBrush>
 </Ellipse.Fill>
 </Ellipse>
 <!--Fill with diagonal LinearGradientBrush-->
 <Ellipse Canvas.Top="30" Canvas.Left="110" Height="150" Width="150">
 <Ellipse.Fill>
 <LinearGradientBrush StartPoint="1,1" EndPoint="0,0">
 <GradientStop Color="#DDFFFFFF" Offset=".2" />
 <GradientStop Color="#FF000000" Offset=".8" />
 </LinearGradientBrush>
 </Ellipse.Fill>
 </Ellipse>

 <!--Stroke with horizontal multi-color LinearGradientBrush-->
 <Line X1="20" X2="280" Y1="240" Y2="240" StrokeThickness="30">
 <Line.Stroke>
 <LinearGradientBrush StartPoint="0,0.5" EndPoint="1,0.5">
 <GradientStop Color="Red" Offset="0.15" />
 <GradientStop Color="Orange" Offset="0.2" />
 <GradientStop Color="Yellow" Offset="0.35" />
 <GradientStop Color="Green" Offset="0.5" />
 <GradientStop Color="Blue" Offset="0.65" />
 <GradientStop Color="Indigo" Offset="0.75" />
 <GradientStop Color="Violet" Offset="0.9" />
 </LinearGradientBrush>
 </Line.Stroke>
 </Line>
 </Canvas>
</Window>

CHAPTER 17 ■ WINDOWS PRESENTATION FOUNDATION

879

Figure 17-24. Filling and drawing shapes with linear and radial gradients

17-27. Fill a Shape with an Image

Problem
You need to fill a shape derived from System.Windows.Shapes.Shape with an image.

Solution
Assign an instance of System.Windows.Media.ImageBrush to the Fill property of the Shape. Use the
Stretch, AlignmentX, AlignmentY, and ViewBox properties of the ImageBrush element to control the way
the image fills the shape.

How It Works
The abstract System.Windows.Media.TileBrush class contains the functionality required to use a
graphical image to paint a specified area. Classes derived from TileBrush include ImageBrush,
DrawingBrush, and VisualBrush (all from the System.Windows.Media namespace). Each TileBrush
subclassallows you to specify a different source for the graphics used to fill the area: ImageBrush lets you
use a graphics file, DrawingBrush lets you use a drawing object, and VisualBrush lets you use an existing
screen element.

To use an image to fill a shape, you simply assign an ImageBrush element to the Fill property of the
Shape you want to fill. You specify the name of the source image file using the Source property of the
ImageBrush. You can use a local file name or a URL. The image can be loaded from any of the following
image formats:

CHAPTER 17 ■ WINDOWS PRESENTATION FOUNDATION

880

• .bmp

• .gif

• .ico

• .jpg

• .png

• .wdp

• .tiff

The default ImageBrush behavior (inherited from TileBrush) is to stretch the source image to
completely fill the shape. This does not maintain the aspect ratios of the source image and will result in a
stretched and distorted image if the source image is not the same size as the shape. You can override this
behavior using the Stretch property of the ImageBrush. Table 17-10 lists the possible values you can
assign to the Stretch property and describes their effect.

Table 17-10. Possible Values of the Stretch Property

Value Description

None Don’t scale the image at all. If the image is smaller than the area of the shape, the rest of
the area is left empty (transparent fill). If the image is larger than the shape, the image is
cropped.

Uniform Scale the source image so that it all fits in the shape while still maintaining the original
aspect ratio of the image. This will result in some parts of the shape being left
transparent unless the source image and shape have the same aspect ratios.

UniformToFill Scale the source image so that it fills the shape completely while still maintaining the
original aspect ratio of the image. This will result in some parts of the source image
being cropped unless the source image and shape have the same aspect ratios.

Fill The default behavior. Scale the image to fit the shape exactly without maintaining the
original aspect ratio of the source image.

When using None, Uniform, and UniformToFill values for the Stretch property, you will want to

control the positioning of the image within the shape. ImageBrush will center the image by default, but
you can change this with the AlignmentX and AlignmentY properties of the ImageBrush element. Valid
values for the AlignmentX property are Left, Center, and Right. Valid values for the AlignmentY property
are Top, Center, and Bottom.

You can also configure the ImageBrush to use only a rectangular subsection of the source image as
the brush instead of the whole image. You do this with the Viewbox property of the ImageBrush element.
Viewbox takes four comma-separated System.Double values that identify the coordinates of the upper-left
and lower-right corners of the image subsection relative to the original image. The point 0,0 represents
the top left of the original image, and the point 1,1 represents the bottom right. If you want to use

CHAPTER 17 ■ WINDOWS PRESENTATION FOUNDATION

881

absolute pixel values to specify the size of the Viewbox, set the ViewboxUnits property of the ImageBrush to
the value Absolute.

The Code
The following XAML uses a set of Rectangle, Ellipse, Polygon, and Line objects (from the
System.Windows.Shapes namespace) to demonstrate how to use ImageBrush objects to fill shapes with an
image (see Figure 17-25). The XAML also demonstrates how to create and use a static ImageBrush
resource.

<Window x:Class="Apress.VisualCSharpRecipes.Chapter17.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="Recipe17_27" Height="300" Width="300">
 <Canvas Margin="5">
 <!--Define a static ImageBrush resource-->
 <Canvas.Resources>
 <ImageBrush x:Key="IB1" ImageSource="WeeMee.jpg" />
 </Canvas.Resources>

 <!--Fill ellipse using static ImageBrush resource-->
 <Ellipse Height="160" Width="160"
 Canvas.Top="0" Canvas.Left="110"
 Stroke="Black" StrokeThickness="1"
 Fill="{StaticResource IB1}" />
 <!--Fill rectangle with UniformToFill ImageBrush-->
 <Rectangle Height="180" Width="50"
 Canvas.Top="5" Canvas.Left="5"
 Stroke="Black" StrokeThickness="1" >
 <Rectangle.Fill>
 <ImageBrush ImageSource="WeeMee.jpg" Stretch="UniformToFill"/>
 </Rectangle.Fill>
 </Rectangle>
 <!--Fill Polygon with Left aligned Uniform ImageBrush-->
 <Polygon Canvas.Top="110" Canvas.Left="45"
 Points="40,0 150,100 10,100"
 Stroke="Black" StrokeThickness="1">

 <Polygon.Fill>
 <ImageBrush ImageSource="WeeMee.jpg" Stretch="Uniform"
 AlignmentX="Left" />
 </Polygon.Fill>
 </Polygon>

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 17 ■ WINDOWS PRESENTATION FOUNDATION

882

 <!--Draw a line using a part of the source image-->
 <Line X1="20" X2="280" Y1="240" Y2="240" StrokeThickness="30">
 <Line.Stroke>
 <ImageBrush ImageSource="WeeMee.jpg"
 Viewbox="30,46,42,15" ViewboxUnits="Absolute" />
 </Line.Stroke>
 </Line>
 </Canvas>
</Window>

Figure 17-25. Filling and drawing shapes with images

17-28. Fill a Shape with a Pattern or Texture

Problem
You need to fill a shape with a repeating pattern or texture.

Solution
To fill shapes derived from System.Windows.Shapes.Shape, assign an instance of System.Windows.Media.
ImageBrush to the Fill property of the Shape. Use the Stretch, TileMode, ViewBox, and ViewPort
properties of the ImageBrush element to control the way WPF uses the image to fill the shape.

How It Works
Recipe 17-27 describes how to fill a shape with an image using an ImageBrush. To fill a shape with
a pattern or texture, you typically load some abstract graphic or texture from a file and apply it
repeatedly to cover the entire area of a given shape. You do this using the same techniques discussed

CHAPTER 17 ■ WINDOWS PRESENTATION FOUNDATION

883

in recipe 17-27, but you use a number of additional ImageBrush properties (inherited from TileBrush) to
completely fill the shape by drawing the image repeatedly instead of once.

The first step is to define the tile that the ImageBrush will use to fill the shape. The ImageBrush uses
the concept of a viewport to represent the tile. By default, the viewport is a rectangle with dimensions
equal to those of the image that the ImageBrush would normally use to fill the shape. Normally the
viewport would be completely filled with the source image, but you can define what proportion of the
viewport is filled by the source image using the Viewport property of the ImageBrush.

The Viewport property takes four comma-separated System.Double values that identify the
coordinates of the upper-left and lower-right corners of the rectangle within the viewport where you
want the ImageBrush to insert the source image. So, for example, you can take the original image and
configure it to cover only a fraction of the viewport. The point 0,0 represents the top-left corner of the
viewport, and the point 1,1 represents the bottom-right corner.

With your base tile defined, you use the TileMode property of the ImageBrush to define how the
ImageBrush fills the shape using the tile defined by the viewport. Table 17-11 lists the possible values of
the TileMode property you can assign and describes their effect.

Table 17-11. Possible Values of the TileMode Property

Value Description

None The default value. The base tile is drawn but not repeated. You get a single image, and the rest
of the shape is empty (transparent fill).

Tile The base tile is used repeatedly to fill the shape. Each tile is placed next to the other using the
same orientation.

FlipX The base tile is used repeatedly to fill the shape, except that the tiles in alternate columns are
flipped horizontally.

FlipY The base tile is used repeatedly to fill the shape, except that the tiles in alternate rows are
flipped vertically.

FlipXY The base tile is used repeatedly to fill the shape, except that the tiles in alternate columns are
flipped horizontally and the tiles in alternate rows are flipped vertically.

The Code
The following XAML uses a set of Rectangle, Ellipse, and Line objects (from the System.Windows.Shapes
namespace) to demonstrate how to use ImageBrush objects to fill shapes with repeating patterns loaded
from image files (see Figure 17-26). The XAML also demonstrates how to create and use static ImageBrush
resources for the purpose of tiling.

<Window x:Class="Apress.VisualCSharpRecipes.Chapter17.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="Recipe17_28" Height="300" Width="380">
 <StackPanel Orientation="Horizontal">

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 17 ■ WINDOWS PRESENTATION FOUNDATION

884

 <StackPanel Margin="10">
 <StackPanel.Resources>
 <!--Style for the tile swabs-->
 <Style TargetType="{x:Type Image}">
 <Setter Property="Margin" Value="5"/>
 <Setter Property="MaxHeight" Value="50"/>
 </Style>
 </StackPanel.Resources>
 <!--Display the basic tiles used in the example-->
 <TextBlock Text="Tiles:" />
 <Image Source="bubble_dropper.jpg" />
 <Image Source="mini_mountains.jpg" />
 <Image Source="fly_larvae.jpg" />
 <Image Source="fishy_rainbow.jpg" />
 </StackPanel>
 <Canvas Margin="5">
 <Canvas.Resources>
 <!--Define static ImageBrush resource with TileMode FlipXY-->
 <ImageBrush x:Key="IB1" ImageSource="bubble_dropper.jpg"
 Stretch="UniformToFill" TileMode="FlipXY"
 Viewport="0,0,0.2,0.2" />
 <!--Define static ImageBrush resource with TileMode FlipX-->
 <ImageBrush x:Key="IB2" ImageSource="mini_mountains.jpg"
 Stretch="UniformToFill" TileMode="FlipX"
 Viewport="0,0,0.5,0.2" />
 </Canvas.Resources>

 <!--Fill Rectangles with static ImageBrush resources-->
 <Rectangle Canvas.Top="5" Canvas.Left="5"
 Height="180" Width="80"
 Fill="{StaticResource IB1}" />
 <Rectangle Canvas.Top="10" Canvas.Left="50"
 Height="70" Width="230"
 Fill="{StaticResource IB2}" />
 <!--Fill Ellipse with custom ImageBrush - TileMode Tile-->
 <Ellipse Canvas.Top="130" Canvas.Left="30"
 Height="100" Width="230">

 <Ellipse.Fill>
 <ImageBrush ImageSource="fishy_rainbow.jpg"
 Stretch="Fill" TileMode="Tile"
 Viewport="0,0,0.25,0.5" />
 </Ellipse.Fill>
 </Ellipse>

CHAPTER 17 ■ WINDOWS PRESENTATION FOUNDATION

885

 <!--Fill with custom ImageBrush - TileMode Tile-->
 <Ellipse Canvas.Top="30" Canvas.Left="110"
 Height="150" Width="150">
 <Ellipse.Fill>
 <ImageBrush ImageSource="fly_larvae.jpg" Opacity=".7"
 Stretch="Uniform" TileMode="Tile"
 Viewport="0,0,0.5,.5" />
 </Ellipse.Fill>
 </Ellipse>
 <!--Draw Stroke with tiled ImageBrush - TileMode Tile-->
 <Line X1="20" X2="280" Y1="240" Y2="240" StrokeThickness="30">
 <Line.Stroke>
 <ImageBrush ImageSource="ApressLogo.gif"
 Stretch="UniformToFill" TileMode="Tile"
 Viewport="0,0,0.25,1" />
 </Line.Stroke>
 </Line>
 </Canvas>
 </StackPanel>
</Window>

Figure 17-26. Filling and drawing shapes with patterns

CHAPTER 17 ■ WINDOWS PRESENTATION FOUNDATION

886

17-29. Animate the Property of a Control

Problem
You need to change the value of a property on a control with respect to time. This could be the opacity of
a button, the color of a rectangle, or the height of an expander, for example.

Solution
Animate the value of the property using one or more System.Windows.Media.Animation.Timeline objects
in a System.Windows.Media.Animation.Storyboard.

How It Works
Owing to the richness of WPF’s animation framework, there are myriad options when it comes to
animating something. In essence, you are able to animate just about any System.Windows.
DependencyProperty of an object that derives from System.Windows.Media.Animation.Animatable. Couple
that with the range of types for which Timeline objects already exist, and you find yourself in a position
of endless possibilities.

To animate the property of a control, you will generally declare one or more AnimationTimeline
objects that target the data type of the property being animated. These timelines are defined as children
of a System.Windows.Media.Animation.Storyboard, with the root Storyboard being activated by a
System.Windows.Media.Animation.BeginStoryboard when used in markup. It is also possible to nest
Storyboard objects and ParallelTimeline objects as children. Each AnimationTimeline can target a
different property of a different object, a different property of the same object, or the same property of
the same object. The target object or target property can also be defined at the level of the parent
ParallelTimeline or Storyboard.

For each data type that WPF supports, there exists an AnimationTimeline. Each timeline will be
named <Type>Animation, possibly with several variants for special types of Timeline, where <Type> is the
target data type of the Timeline. With the exception of a few AnimationTimeline objects, the animation’s
effect on a target property is defined by specifying values for one or more of the To, From, or By properties.
If the From property of an AnimationTimeline is not specified, the value of the property at the point the
timeline’s clock is applied will be used. This is useful because it means you do not need to worry about
storing a property’s initial value and then restoring it at a later date. If a value for the From property is
specified, the property will be set with that value when the Timeline is applied. Again, the original value
of the property will be restored when the timeline’s clock is removed.

The abstract Timeline class, from which all AnimationTimeline, Storyboard, and ParallelTimeline
objects derive, defines several properties that allow you to define the characteristics of an animation.
Table 17-12 describes these properties of the Timeline class.

CHAPTER 17 ■ WINDOWS PRESENTATION FOUNDATION

887

Table 17-12. Commonly Used Properties of the Timeline Class

Property Description

AccelerationRatio Used to specify a percentage of the timeline’s duration that should be used to
accelerate the speed of the animation from 0 to the animation’s maximum rate.
The value should be a System.Double ranging between 0 and 1, inclusive, and is 0
by default. The sum of a timeline’s AccelerationRatio and DecelerationRatio must
not be greater than 1.

AutoReverse A System.Boolean property that specifies whether the Timeline should play back to
the beginning once the end has been reached.

BeginTime A System.Nullable(TimeSpan) that specifies when a timeline should become active,
relative to its parent’s BeginTime. For a root Timeline, the offset is taken from the
time that it becomes active. This value can be negative and will start the Timeline
from the specified offset, giving the appearance that the Timeline has already been
playing for the given time. The SpeedRatio of a Timeline has no effect on its
BeginTime value, although it is affected by its parent SpeedRatio. If the property is
set to null, the Timeline will never begin.

DecelerationRatio Used to specify a percentage of the timeline’s duration that should be used to
reduce the speed of the animation from the maximum rate to 0. The value should
be a System.Double ranging between 0 and 1, inclusive, and is 0 by default. The
sum of a timeline’s AccelerationRatio and DecelerationRatio must not be greater
than 1.

Duration A nullable System.Windows.Duration specifying the length of time the animation
should take to play from beginning to end. For Storyboard and ParallelTimeline
objects, this value will default to the longest duration of its children. For a basic
AnimationTimeline object—for example,
System.Windows.Media.Animation.DoubleAnimation—this value will default to 1
second, and a keyframe-based animation will have a value equal to the sum of
System.Windows.Media.Animation.KeyTime values for each keyframe.

FillBehavior A value of the System.Windows.Media.Animation.FillBehavior enumeration is used
to define an animation’s behavior once it has completed, but its parent is still
active, or its parent is in its hold period. The FillBehavior.HoldEnd value is used
when an animation should hold its final value for a property until its parent is no
longer active or outside of its hold period. The FillBehavior.Stop value will cause
the timeline to not hold its final value for a property once it completes, regardless
of whether its parent is still active.

CHAPTER 17 ■ WINDOWS PRESENTATION FOUNDATION

888

Property Description

RepeatBehavior A System.Windows.Media.Animation.RepeatBehavior value indicating whether and
how an animation is repeated.

SpeedRatio A property of type System.Double that is used as a multiplier to alter the playback
speed of an animation. A speed ratio of 0.25 will slow the animation down such
that it runs at a quarter of its normal speed. A value of 2 will double the speed of
the animation, and a speed ratio of 1 means the animation will play back at normal
speed. Note that this will affect the actual duration of an animation.

The Code
The following example demonstrates some of the functionality available with animations. Properties of
various controls are animated using different values for the previously discussed properties to give an
example of their effect.

<Window x:Class="Apress.VisualCSharpRecipes.Chapter17.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="Recipe17_29" Height="300" Width="300">
 <Window.Resources>
 <Storyboard x:Key="ellipse1Storyboard"
 Storyboard.TargetName="ellipse1">
 <ParallelTimeline>
 <DoubleAnimation
 To="50"
 Duration="0:0:5"
 AccelerationRatio="0.25"
 DecelerationRatio="0.25"
 Storyboard.TargetProperty="Width"
 RepeatBehavior="5x" />
 <DoubleAnimation
 To="50"
 Duration="0:0:5"
 AccelerationRatio="0.5"
 DecelerationRatio="0.25"
 Storyboard.TargetProperty="Height"
 RepeatBehavior="5x"
 SpeedRatio="4" />
 </ParallelTimeline>
 </Storyboard>

 <Storyboard x:Key="rect1Storyboard"
 Storyboard.TargetName="rect1">
 <ParallelTimeline>
 <DoubleAnimation
 To="50"
 Duration="0:0:10"

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 17 ■ WINDOWS PRESENTATION FOUNDATION

889

 FillBehavior="Stop"
 Storyboard.TargetProperty="Width" />
 <DoubleAnimation
 To="50"
 Duration="0:0:5"
 FillBehavior="HoldEnd"
 AccelerationRatio="0.5"
 DecelerationRatio="0.25"
 Storyboard.TargetProperty="Height" />
 </ParallelTimeline>
 </Storyboard>
 </Window.Resources>

 <Window.Triggers>
 <EventTrigger
 RoutedEvent="Ellipse.Loaded"
 SourceName="ellipse1">
 <BeginStoryboard
 Storyboard="{DynamicResource ellipse1Storyboard}" />
 </EventTrigger>
 <EventTrigger
 RoutedEvent="Rectangle.Loaded"
 SourceName="rect1">
 <BeginStoryboard
 Storyboard="{StaticResource rect1Storyboard}" />
 </EventTrigger>
 </Window.Triggers>

 <Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="0.5*" />
 <ColumnDefinition Width="0.5*" />
 </Grid.ColumnDefinitions>
 <Ellipse x:Name="ellipse1" Margin="10" Width="100" Height="100"
 Fill="CornflowerBlue" />
 <Rectangle x:Name="rect1" Margin="10" Width="100" Height="100"
 Fill="Firebrick" Grid.Column="1" />
 </Grid>
</Window>

17-30. Animate Several Properties in Parallel

Problem
You need to animate several properties of a control at the same time—for example, its height, width, and
color.

CHAPTER 17 ■ WINDOWS PRESENTATION FOUNDATION

890

Solution
Define your animations as discussed in Recipe 17-29, but make them children of a
System.Windows.Media.Animation.ParallelTimeline.

How It Works
The ParallelTimeline is a special type of System.Windows.Media.Animation.Timeline that allows for one
or more child Timeline objects to be defined as its children, with each child Timeline being run in
parallel. Because ParallelTimeline is a Timeline object, it can be used like any other Timeline object.
Unlike a Storyboard, where animations are activated based on the order in which its child Timeline
objects are declared, a ParallelTimeline will activate its children based on the value of their BeginTime
properties. If any of the animations overlap, they will run in parallel.

The Storyboard class actually inherits from ParallelTimeline, and simply gives each child a
BeginTime based on where in the list of child objects a Timeline is declared and the cumulative Duration
and BeginTime values of each preceding Timeline. The Storyboard class goes further to extend the
ParallelTimeline class by adding a number of methods for controlling the processing of its child
Timeline objects. Because ParallelTimeline is the ancestor of a Storyboard, ParallelTimeline objects
are more suited to nesting because they are much slimmer objects.

Like other Timeline objects, the ParallelTimeline has a BeginTime property. This allows you to
specify an offset from the start of the owning Storyboard to the activation of the ParallelTimeline. As a
result, if a value for BeginTime is given by the ParallelTimeline, its children’s BeginTime will work relative
to this value, as opposed to being relative to the Storyboard.

It is important to note that a Storyboard.Completed event will not be raised on the owning
Storyboard until the last child Timeline in the ParallelTimeline finishes. This is because a
ParallelTimeline can contain Timeline objects with different BeginTime and Duration values, meaning
they won’t all necessarily finish at the same time.

The Code
The following example defines a System.Windows.Window that contains a single
System.Windows.Shapes.Rectangle. When the mouse is placed over the rectangle, the Rectangle.Height,
Rectangle.Width, and Rectangle.Fill properties are animated. The animation continues until the
mouse is moved out of the rectangle.

<Window x:Class="Apress.VisualCSharpRecipes.Chapter17.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="Recipe17_30" Height="300" Width="300">
 <Grid>
 <Rectangle Height="100" Width="100" Fill="Firebrick"
 Stroke="Black" StrokeThickness="1">
 <Rectangle.Style>
 <Style TargetType="Rectangle">
 <Style.Triggers>

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 17 ■ WINDOWS PRESENTATION FOUNDATION

891

 <EventTrigger
 RoutedEvent="Rectangle.MouseEnter">
 <BeginStoryboard>
 <Storyboard>
 <ParallelTimeline
 RepeatBehavior="Forever"
 AutoReverse="True">
 <DoubleAnimation
 Storyboard.TargetProperty="Width"
 To="150" />
 <DoubleAnimation
 Storyboard.TargetProperty="Height"
 To="150" />
 <ColorAnimation
 Storyboard.TargetProperty="Fill.Color"
 To="Orange" />
 </ParallelTimeline>
 </Storyboard>
 </BeginStoryboard>
 </EventTrigger>
 <EventTrigger
 RoutedEvent="Rectangle.MouseLeave">
 <BeginStoryboard>
 <Storyboard>
 <ParallelTimeline>
 <DoubleAnimation
 Storyboard.TargetProperty="Width"
 To="100" />
 <DoubleAnimation
 Storyboard.TargetProperty="Height"
 To="100" />
 <ColorAnimation
 Storyboard.TargetProperty="Fill.Color"
 To="Firebrick" />
 </ParallelTimeline>
 </Storyboard>
 </BeginStoryboard>
 </EventTrigger>
 </Style.Triggers>
 </Style>
 </Rectangle.Style>
 </Rectangle>
 </Grid>
</Window>

CHAPTER 17 ■ WINDOWS PRESENTATION FOUNDATION

892

17-31. Create a Keyframe-Based Animation

Problem
You need to create an animation that uses keyframes to specify key points in the animation.

Solution
Use a keyframe-based animation such as System.Windows.Media.Animation.
DoubleAnimationUsingKeyFrames. You can then use several System.Windows.Media.Animation.
IKeyFrame objects to define the keyframes in your animation.

How It Works
Keyframes allow you to specify key points in an animation where the object being animated needs to be
at a required position or in a required state. The frames in between are then interpolated between these
two keyframes, effectively filling in the blanks in the animation. This process of interpolating the in-
between frames is often referred to as tweening.

When defining an animation using keyframes, you will need to specify one or more keyframes that
define the animation’s flow. These keyframes are defined as children of your keyframe animation. It is
important to note that the target type of the keyframe must match that of the parent animation. For
example, if you are using a System.Windows.Media.Animation.DoubleAnimationUsingKeyFrames, any
keyframes must be derived from the abstract class System.Windows.Media.Animation.DoubleKeyFrame.

You will be pleased to hear that a good number of types have keyframe objects, from System.Int to
System.String and System.Windows.Thickness to System.Windows.Media.Media3D.Quarternion. (For a
more complete list of the types covered, please see http://msdn.microsoft.com/en-us/library/
ms742524(VS.100).aspx.) All but a few of the types covered by animations have a choice of interpolation
methods, allowing you to specify how the frames between two keyframes are generated. Each
interpolation method is defined as a prefix to the keyframe’s class name, and is listed in Table 17-13.

Table 17-13. Interpolation Methods for Keyframe Animation

Type Description

Discrete A discrete keyframe will not create any frames between it and the following keyframe. Once
the discrete keyframe’s duration has elapsed, the animation will jump to the value specified
in the following keyframe.

Linear Linear keyframes will create a smooth transition between it and the following frame. The
generated frames will animate the value steadily at a constant rate to its endpoint.

Spline Spline keyframes allow you to vary the speed at which a property is animated using the shape
of a Bezier curve. The curve is described by defining its control points in unit coordinate
space. The gradient of the curve defines the speed or rate of change in the animation.

http://msdn.microsoft.com/en-us/library

CHAPTER 17 ■ WINDOWS PRESENTATION FOUNDATION

893

Although keyframes must match the type of the owning animation, it is possible to mix the different
types of interpolation, offering variable speeds throughout.

The Code
The following XAML demonstrates how to use linear and double keyframes to animate the Height and
Width properties of a System.Windows.Shapes.Ellipse control (see Figure 17-27). The animation is
triggered when the System.Windows.Controls.Button is clicked.

<Window x:Class="Apress.VisualCSharpRecipes.Chapter17.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="Recipe17_31" Height="300" Width="300">
 <Window.Resources>
 <Storyboard x:Key="ResizeEllipseStoryboard">
 <ParallelTimeline>
 <DoubleAnimationUsingKeyFrames
 Storyboard.TargetName="ellipse"
 Storyboard.TargetProperty="Height">
 <LinearDoubleKeyFrame Value="150" KeyTime="0:0:1" />
 <LinearDoubleKeyFrame Value="230" KeyTime="0:0:2" />
 <LinearDoubleKeyFrame Value="150" KeyTime="0:0:2.5" />
 <LinearDoubleKeyFrame Value="230" KeyTime="0:0:5" />
 <LinearDoubleKeyFrame Value="40" KeyTime="0:0:9" />
 </DoubleAnimationUsingKeyFrames>
 <DoubleAnimationUsingKeyFrames
 Storyboard.TargetName="ellipse"
 Storyboard.TargetProperty="Width">
 <DiscreteDoubleKeyFrame Value="150" KeyTime="0:0:1" />
 <DiscreteDoubleKeyFrame Value="230" KeyTime="0:0:2" />
 <DiscreteDoubleKeyFrame Value="150" KeyTime="0:0:2.5" />
 <DiscreteDoubleKeyFrame Value="230" KeyTime="0:0:5" />
 <DiscreteDoubleKeyFrame Value="40" KeyTime="0:0:9" />
 </DoubleAnimationUsingKeyFrames>
 </ParallelTimeline>
 </Storyboard>
 </Window.Resources>

 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition />
 <RowDefinition Height="40" />
 </Grid.RowDefinitions>

 <Ellipse Height="40" Width="40" x:Name="ellipse"
 HorizontalAlignment="Center" VerticalAlignment="Center">
 <Ellipse.Fill>
 <RadialGradientBrush GradientOrigin="0.75,0.25">
 <GradientStop Color="Yellow" Offset="0.0" />
 <GradientStop Color="Orange" Offset="0.5" />

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 17 ■ WINDOWS PRESENTATION FOUNDATION

894

 <GradientStop Color="Red" Offset="1.0" />
 </RadialGradientBrush>
 </Ellipse.Fill>
 </Ellipse>

 <Button Content="Start..." Margin="10" Grid.Row="1">
 <Button.Triggers>
 <EventTrigger RoutedEvent="Button.Click">
 <BeginStoryboard
 Storyboard="{DynamicResource ResizeEllipseStoryboard}" />
 </EventTrigger>
 </Button.Triggers>
 </Button>
 </Grid>
</Window>

Figure 17-27. An animated ellipse in its initial state (left) and after several seconds have passed (right)

17-32. Animate an Object Along a Path

Problem
You need to animate some control so that it moves along a path.

Solution
Use one of the three available path animation timeline objects.

CHAPTER 17 ■ WINDOWS PRESENTATION FOUNDATION

895

How It Works
WPF kindly provides you with three ways of animating an object along a path. Each of these methods
takes a System.Windows.Media.PathGeometry as its input, defining the shape of the path that the object
will follow, and produces some kind of output, depending on the timeline’s target type. All three
timelines generate their output values by linearly interpolating between the values of the input path.
Table 17-14 describes each of these three methods.

Table 17-14. Path Animation Types

Type Description

DoubleAnimationUsingPath Outputs a single System.Double value, generated from the input
PathGeometry. Unlike the other two path-based timelines, the
DoubleAnimationUsingPath also exposes a Source property that is a
System.Windows.Media.Animation.PathAnimationSource. Table 17-15
describes the value of this enumeration.

PointAnimationUsingPath Generates a series of System.Windows.Point objects, describing a position
along the input PathGeometry, based on the current time of the animation.
PointAnimationUsingPath is the only timeline of the three that does not
provide any values for the angle of rotation to the tangent of the path at the
current point.

MatrixAnimationUsingPath Generates a series of System.Windows.Media.Matrix objects describing
a translation matrix relating to a point in the input path. If the
DoesRotateWithTangent property of a MatrixAnimationUsingPath timeline is
set to True, the output matrix is composed of a translation and rotation
matrix, allowing both the position and orientation of the target to be
animated with a single animation.

Table 17-15. Values of the PathAnimationSource Enumeration

Value Description

X Values output by the DoubleAnimationUsingPath correspond to the interpolated x component of
the current position along the input path.

Y Values output by the DoubleAnimationUsingPath correspond to the interpolated y component of
the current position along the input path.

Angle Values output by the DoubleAnimationUsingPath correspond to the angle of rotation to the
tangent of the line at the current point along the input path.

It should be clear that each of the path timelines has a specific use and offers different levels of

functionality. The MatrixAnimationUsingPath provides the neatest method for animating both the
position and the orientation of an object. The same effect is not possible using a

CHAPTER 17 ■ WINDOWS PRESENTATION FOUNDATION

896

PointAnimationUsingPath, and would require three DoubleAnimationUsingPath timelines, each with a
different PathAnimationSource value for the Source property.

When using a value of PathAnimationSource.Angle for the Source property of a
DoubleAnimationUsingPath timeline or setting the DoesRotateWithTangent property of a
MatrixAnimationUsingPath timeline to True, you ensure that the object being animated is correctly
rotated so that it follows the gradient of the path. If an arrow is translated using a path-driven animation,
its orientation will remain the same throughout the timeline’s duration. If, however, the arrow’s
orientation is animated to coincide with the path, the arrow will be rotated relative to its initial
orientation, based on the gradient of the path. If you have a path defining a circle and the arrow initially
points in to the center of the circle, the arrow will continue to point into the center of the circle as it
moves around the circle’s circumference.

Although the MatrixAnimationUsingPath has the most compact output, controls will rarely expose a
Matrix property that you can directly animate. The target property of a MatrixAnimationUsingPath
timeline will most commonly be the Matrix property of a System.Windows.Media.MatrixTransform, where
the MatrixTransform is used in the render transform or layout transform of the control you want to
animate. In a similar fashion, DoubleAnimationUsingPath can be used to animate the properties of a
System.Windows.Media.TranslateTransform and System.Windows.Media.RotateTransform, or just about
any System.Double property of the target control.

The Code
The following XAML demonstrates how to use a MatrixAnimationUsingPath, where a
System.Windows.Controls.Border is translated and rotated according to the shape of the path. The path
is also drawn on the screen so you can better visualize the motion of the border (see Figure 17-28).

<Window x:Class="Apress.VisualCSharpRecipes.Chapter17.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="Recipe17_32" Height="300" Width="550">
 <Window.Resources>
 <PathGeometry x:Key="AnimationPathGeometry"
 Figures="M 50,150 C 100,-200 500,400 450,100 400,-100 285,400 50,150" />

 <Storyboard x:Key="MatrixAnimationStoryboard">
 <MatrixAnimationUsingPath
 RepeatBehavior="Forever"
 Duration="0:0:5"
 AutoReverse="True"
 Storyboard.TargetName="BorderMatrixTransform"
 Storyboard.TargetProperty="Matrix"
 DoesRotateWithTangent="True"
 PathGeometry="{StaticResource AnimationPathGeometry}" />
 </Storyboard>
 </Window.Resources>

 <Grid>
 <Path
 Stroke="Black"
 StrokeThickness="1"
 Data="{StaticResource AnimationPathGeometry}" />

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 17 ■ WINDOWS PRESENTATION FOUNDATION

897

 <Border HorizontalAlignment="Left" VerticalAlignment="Top"
 Width="100" Height="50" CornerRadius="5" BorderBrush="Black"
 BorderThickness="1" RenderTransformOrigin="0,0">
 <Border.Background>
 <LinearGradientBrush StartPoint="0.5,0" EndPoint="0.5,1">
 <GradientStop Color="CadetBlue" Offset="0" />
 <GradientStop Color="CornflowerBlue" Offset="1" />
 </LinearGradientBrush>
 </Border.Background>
 <Border.RenderTransform>
 <MatrixTransform x:Name="BorderMatrixTransform" />
 </Border.RenderTransform>
 <Border.Triggers>
 <EventTrigger RoutedEvent="Border.Loaded">
 <BeginStoryboard
 Storyboard="{StaticResource MatrixAnimationStoryboard}"/>
 </EventTrigger>
 </Border.Triggers>
 <TextBlock Text="^ This way up ^" HorizontalAlignment="Center"
 VerticalAlignment="Center" />
 </Border>
 </Grid>
</Window>

Figure 17-28. A control midway through a path animation. Notice how the control is oriented such that it

follows a tangent to the gradient of the curve.

CHAPTER 17 ■ WINDOWS PRESENTATION FOUNDATION

898

17-33. Play a Media File

Problem
You need to play a sound or music file and allow the user to control the progress of the playback,
volume, or balance.

Solution
Use a System.Windows.Controls.MediaElement to handle the playback of the media file. Use a
System.Windows.Media.MediaTimeline to control the playback of the desired media through the
MediaElement. Declare the set of controls that will enable the user to control the playback and associate
triggers with the controls that start, stop, pause, and resume the animation controlling the
MediaTimeline. For volume and balance, data-bind controls to the Volume and Balance properties
of the MediaElement.

How It Works
A MediaElement performs the playback of a media file, and you control that playback via animation using
a MediaTimeline. To control the playback, you use a set of EventTrigger elements to start, stop, pause,
and resume the animation Storyboard containing the MediaTimeline.

You can either define the EventTrigger elements in the Triggers collection on the controls that
control the playback or centralize their declaration by placing them on the container in which you place
the controls. Within the Actions element of the Triggers collection, declare the Storyboard elements to
control the MediaTimeline.

One complexity arises when you want a control such as a System.Windows.Controls.Slider to show
the current position within the media file as well as allow the user to change the current play position.
To update the display of the current play position, you must attach an event handler to the
MediaTimeline.CurrentTimeInvalidated event, which updates the Slider position when it fires.

To move the play position in response to the Slider position changing, you attach an event handler
to the Slider.ValueChanged property, which calls the Stoyboard.Seek method to change the current
MediaTimeline play position. However, you must include logic in the event handlers to stop these events
from triggering each other repeatedly as the user and MediaTimeline try to update the Slider position
(and in turn the media play position) at the same time.

The Code
The following XAML demonstrates how to play an AVI file using a MediaElement and allow the user to
start, stop, pause, and resume the playback. The user can also move quickly back and forth through the
media file using a slider to position the current play position, as well as control the volume and balance
of the audio (see Figure 17-29).

CHAPTER 17 ■ WINDOWS PRESENTATION FOUNDATION

899

<Window x:Class="Apress.VisualCSharpRecipes.Chapter17.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="Recipe17_33" Height="450" Width="300">
 <StackPanel x:Name="Panel">
 <StackPanel.Resources>
 <!-- Style all buttons the same. -->
 <Style TargetType="{x:Type Button}">
 <Setter Property="Height" Value="25" />
 <Setter Property="MinWidth" Value="50" />
 </Style>
 </StackPanel.Resources>
 <StackPanel.Triggers>
 <!-- Triggers for handling playback of media file. -->
 <EventTrigger RoutedEvent="Button.Click" SourceName="btnPlay">
 <EventTrigger.Actions>
 <BeginStoryboard Name="ClockStoryboard">
 <Storyboard x:Name="Storyboard" SlipBehavior="Slip"
 CurrentTimeInvalidated="Storyboard_Changed">
 <MediaTimeline BeginTime="0" Source="clock.avi"
 Storyboard.TargetName="meMediaElement"
 RepeatBehavior="Forever" />
 </Storyboard>
 </BeginStoryboard>
 </EventTrigger.Actions>
 </EventTrigger>
 <EventTrigger RoutedEvent="Button.Click" SourceName="btnPause">
 <EventTrigger.Actions>
 <PauseStoryboard BeginStoryboardName="ClockStoryboard" />
 </EventTrigger.Actions>
 </EventTrigger>
 <EventTrigger RoutedEvent="Button.Click" SourceName="btnResume">
 <EventTrigger.Actions>
 <ResumeStoryboard BeginStoryboardName="ClockStoryboard" />
 </EventTrigger.Actions>
 </EventTrigger>
 <EventTrigger RoutedEvent="Button.Click" SourceName="btnStop">
 <EventTrigger.Actions>
 <StopStoryboard BeginStoryboardName="ClockStoryboard" />
 </EventTrigger.Actions>
 </EventTrigger>
 <EventTrigger RoutedEvent="Slider.PreviewMouseLeftButtonDown"
 SourceName="sldPosition" >
 <PauseStoryboard BeginStoryboardName="ClockStoryboard" />
 </EventTrigger>
 <EventTrigger RoutedEvent="Slider.PreviewMouseLeftButtonUp"
 SourceName="sldPosition" >
 <ResumeStoryboard BeginStoryboardName="ClockStoryboard" />
 </EventTrigger>
 </StackPanel.Triggers>

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 17 ■ WINDOWS PRESENTATION FOUNDATION

900

 <!-- Media element to play the sound, music, or video file. -->
 <MediaElement Name="meMediaElement" HorizontalAlignment="Center"
 Margin="5" MinHeight="300" Stretch="Fill"
 MediaOpened="MediaOpened" />

 <!-- Button controls for play, pause, resume, and stop. -->
 <StackPanel HorizontalAlignment="Center" Orientation="Horizontal">
 <Button Content="_Play" Name="btnPlay" />
 <Button Content="P_ause" Name="btnPause" />
 <Button Content="_Resume" Name="btnResume" />
 <Button Content="_Stop" Name="btnStop" />
 </StackPanel>

 <!-- Slider shows the position within the media. -->
 <Slider HorizontalAlignment="Center" Margin="5"
 Name="sldPosition" Width="250"
 ValueChanged="sldPosition_ValueChanged">
 </Slider>

 <!-- Sliders to control volume and balance. -->
 <Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="1*"/>
 <ColumnDefinition Width="4*"/>
 </Grid.ColumnDefinitions>
 <Grid.RowDefinitions>
 <RowDefinition />
 <RowDefinition />
 </Grid.RowDefinitions>
 <TextBlock Grid.Column="0" Grid.Row="0" Text="Volume:"
 HorizontalAlignment="Right" VerticalAlignment="Center"/>
 <Slider Grid.Column="1" Grid.Row="0" Minimum="0" Maximum="1"
 TickFrequency="0.1" TickPlacement="TopLeft"
 Value="{Binding ElementName=meMediaElement, Path=Volume, Mode=TwoWay}" />
 <TextBlock Grid.Column="0" Grid.Row="1" Text="Balance:"
 HorizontalAlignment="Right" VerticalAlignment="Center"/>
 <Slider Grid.Column="1" Grid.Row="1" Minimum="-1" Maximum="1"
 TickFrequency="0.2" TickPlacement="TopLeft"
 Value="{Binding ElementName=meMediaElement, Path=Balance, Mode=TwoWay}" />
 </Grid>
 </StackPanel>
</Window>

The following code-behind shows the event handlers that allow the user to set the current play
position using a slider and update the position of the slider to reflect the current play position:

using System;
using System.Windows;
using System.Windows.Input;
using System.Windows.Media;
using System.Windows.Media.Animation;

CHAPTER 17 ■ WINDOWS PRESENTATION FOUNDATION

901

namespace Apress.VisualCSharpRecipes.Chapter17
{
 /// <summary>
 /// Interaction logic for MainWindow.xaml
 /// </summary>
 public partial class MainWindow : Window
 {
 bool ignoreValueChanged = false;

 public MainWindow()
 {
 InitializeComponent();
 }

 // Handles the opening of the media file and sets the Maximum
 // value of the position slider based on the natural duration
 // of the media file.
 private void MediaOpened(object sender, EventArgs e)
 {
 sldPosition.Maximum =
 meMediaElement.NaturalDuration.TimeSpan.TotalMilliseconds;
 }

 // Updates the position slider when the media time changes.
 private void Storyboard_Changed(object sender, EventArgs e)
 {
 ClockGroup clockGroup = sender as ClockGroup;

 MediaClock mediaClock = clockGroup.Children[0] as MediaClock;

 if (mediaClock.CurrentProgress.HasValue)
 {
 ignoreValueChanged = true;
 sldPosition.Value = meMediaElement.Position.TotalMilliseconds;
 ignoreValueChanged = false;
 }
 }

 // Handles the movement of the slider and updates the position
 // being played.
 private void sldPosition_ValueChanged(object sender,
 RoutedPropertyChangedEventArgs<double> e)
 {
 if (ignoreValueChanged)
 {
 return;
 }

CHAPTER 17 ■ WINDOWS PRESENTATION FOUNDATION

902

 Storyboard.Seek(Panel,
 TimeSpan.FromMilliseconds(sldPosition.Value),
 TimeSeekOrigin.BeginTime);
 }
 }
}

Figure 17-29. Controlling the playback of media files

17-34. Query Keyboard State

Problem
You need to query the state of the keyboard to determine whether the user is pressing any special keys.

Solution
Use the IsKeyDown and IsKeyToggled methods of the static System.Windows.Input.Keyboard class.

CHAPTER 17 ■ WINDOWS PRESENTATION FOUNDATION

903

How It Works
The static Keyboard class contains two methods that allow you to determine whether a particular key
is currently pressed or whether keys that have a toggled state (for example, Caps Lock) are currently on
or off.

To determine whether a key is currently pressed, call the IsKeyDown method and pass a member of
the System.Windows.Input.Keys enumeration that represents the key you want to test. The method
returns True if the key is currently pressed. To test the state of toggled keys, call the IsKeyToggled
method, again passing a member of the Keys enumeration to identify the key to test.

The Code
The following XAML defines a set of CheckBox controls representing various special keys on the
keyboard. When the key is pressed, the program uses the Keyboard class to test the state of each button
and update the IsSelected property of the appropriate CheckBox (see Figure 17-30).

<Window x:Class="Apress.VisualCSharpRecipes.Chapter17.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="Recipe17_34" Height="190" Width="210">
 <StackPanel HorizontalAlignment="Center">
 <UniformGrid Columns="2">
 <UniformGrid.Resources>
 <Style TargetType="{x:Type CheckBox}">
 <Setter Property="IsHitTestVisible" Value="False" />
 <Setter Property="Margin" Value="5" />
 </Style>
 </UniformGrid.Resources>
 <CheckBox Content="LeftShift" Name="chkLShift"/>
 <CheckBox Content="RightShift" Name="chkRShift"/>
 <CheckBox Content="LeftControl" Name="chkLControl"/>
 <CheckBox Content="RightControl" Name="chkRControl"/>
 <CheckBox Content="LeftAlt" Name="chkLAlt"/>
 <CheckBox Content="RightAlt" Name="chkRAlt"/>
 <CheckBox Content="CapsLock" Name="chkCaps"/>
 <CheckBox Content="NumLock" Name="chkNum"/>
 </UniformGrid>
 <Button Content="Check Keyboard" Margin="10" Click="Button_Click"/>
 </StackPanel>
</Window>

The following code-behind contains the Button.Click event that checks the keyboard and updates
the CheckBox controls:

using System.Windows;
using System.Windows.Input;

namespace Apress.VisualCSharpRecipes.Chapter17
{
 /// <summary>

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 17 ■ WINDOWS PRESENTATION FOUNDATION

904

 /// Interaction logic for MainWindow.xaml
 /// </summary>
 public partial class MainWindow : Window
 {
 public MainWindow()
 {
 InitializeComponent();
 CheckKeyboardState();
 }

 // Handles the Click event on the Button.
 private void Button_Click(object sender, RoutedEventArgs e)
 {
 CheckKeyboardState();
 }

 // Checks the state of the keyboard and updates the check boxes.
 private void CheckKeyboardState()
 {
 // Control keys.
 chkLControl.IsChecked = Keyboard.IsKeyDown(Key.LeftCtrl);
 chkRControl.IsChecked = Keyboard.IsKeyDown(Key.RightCtrl);

 // Shift keys.
 chkLShift.IsChecked = Keyboard.IsKeyDown(Key.LeftShift);
 chkRShift.IsChecked = Keyboard.IsKeyDown(Key.RightShift);

 // Alt keys.
 chkLAlt.IsChecked = Keyboard.IsKeyDown(Key.LeftAlt);
 chkRAlt.IsChecked = Keyboard.IsKeyDown(Key.RightAlt);

 // Num Lock and Caps Lock.
 chkCaps.IsChecked = Keyboard.IsKeyToggled(Key.CapsLock);
 chkNum.IsChecked = Keyboard.IsKeyToggled(Key.NumLock);
 }
 }
}

Figure 17-30. Querying keyboard state

905

Index

■Numbers & Symbols
+ (addition operator), 75

& (AND operator), 211

= (assignment operator), 75

* (asterisk), 273

#define directive, 16

#elif directive, 14–15

#else directive, 14–15

#endif directive, 14–15

== (equality operator), 15, 75

> (greater than operator), 75

#if directive, 14–15

!= (inequality operator), 15, 75

&& (logical AND operator), 15

|| (logical OR operator), 15

< (less than operator), 76

<= (less than or equal to operator), 76

() (parantheses operator), 15

- (subtraction operator), 75

- (unary negation operator), 76

+ (unary plus operator), 76

#undef directive, 16

2D shapes

drawing, 866–871

with solid colors, 873–874

filling

with images, 879–882

with linear color gradients, 875–878

with patterns, 882–885

with radial color gradients, 875–878

with solid colors, 873–874

with textures, 882–885

reusable, 871–872

■A
A property, 874

Abort method

HttpListenerContext class, 494

Thread class, 124, 192

AcceptsTab property, 814

AcceptTcpClient method, TcpListener
class, 511, 515

access control lists (ACLs), manipulating,
250–253

access tokens, 572

■ INDEX

906

accessing

ADO objects using COM interop, 611

command-line arguments 12–13

elements with same name as keywords,
18

AccountOperator value,
WindowsBuiltInRole enumeration,
565

Action delegates, 730

Actions element, 898

Activator class, 133

ActiveMovie COM component, 394–395

ActiveMovie Quartz library, 394

ActiveX controls, 615–616

Add method

ControlCollection class, 309

HttpListenerPrefixCollection collection,
493

Interlocked class, 188

Parameters collection, 441–442, 457

XElement class, 299

AddClosedCurve method, GraphicsPath
class, 377

AddEllipse method, GraphicsPath class,
377

Addition (+) operator, 75

/addmodule compiler switch, 9

AddPersonCommand class, 839–842

AddPrinterConnection method,
Win32_Printer class, 417

AddRectangle method, GraphicsPath class,
377

AddString method, GraphicsPath class,
377

AddValue method, SerializationInfo class,
622

AddXXXX methods, DateTime structure,
76

Administrator value, WindowsBuiltInRole
enumeration, 565

ADO.NET, 424

AffectsArrange property, 792

AffectsMeasure property, 792

AffectsParentArrange property, 792

AffectsParentMeasure property, 792

AffectsRender property, 792

Aggregate<> extension method, 778

AggregateException class, Handle method,
742–743

aggregations, 778–780

algorithms

cooperative, 739–741

hash code, 232, 578

AlignmentX property, 880

All value, AttributeTargets enumeration,
134

AllDirectories value, SearchOption
enumeration, 230

AllowDrop property, Control class, 351

AllowMultiple property,
AttributeUsageAttribute class, 134

AllowNavigation property, WebBrowser
control, 357

AllowPartiallyTrustedCallersAttribute
class, 544–546

■ INDEX

907

Alt value, ConsoleModifiers enumeration,
94

AlternatingRowStyleSelector class, 856

AND (&) arithmetic operator, 211

animated system tray icon, 346–348

animation

of control properties, 886–889

keyframe-based, 892–894

object along path, 894–897

of parallel properties, 889–892

using DirectShow, 395–398

AnimationTimeline objects, 886–887

anonymous delegates, 46

anonymous functions, event handling
with, 46–47

anonymous types, 761

creating, 35–37

limitations, 36–37

uses of, 35

App.xaml file, 800

AppDomain class, 244–245

CreateDomain method, 104

CreateInstance method, 116–117

CreateInstanceAndUnwrap method,
117

CreateInstanceFrom method, 116

CreateInstanceFromAndUnwrap
method, 117

ExecuteAssembly method, 114–116

ExecuteAssemlyByName method, 114

GetData method, 121–122

IsFinalizingForUnload method, 124

SetData method, 121–122

SetPrincipalPolicy method, 569

SetThreadPrincipal method, 569

System namespace, 569

Unload method, 124

AppDomainSetup class, 104, 121

AppendChar method, SecureString class,
589

AppendChild method, XmlNode class, 266

AppendText method, 815

Application class

OpenForms property, 315–316

Run() method, 5

System.Windows.Forms namespace, 5

application commands, supporting in user
controls, 822–826

application development, 1–2

application domains, 103–125

avoiding loading unnecessary
assemblies into, 109–111

creating, 104–105

creating types that cannot cross
application domain boundaries,
111

creating types that can be passed across
application domain boundaries,
106–109

executing assembly into different, 114–
116

instantiating type into different, 116–
121

loading assembly into, 111–114

■ INDEX

908

passing data between, 121–124

unloading at runtime, 124–125

Application Settings, 322

ApplicationBase property,
AppDomainSetup class, 104

ApplicationCommands class, 814

ApplicationCommands command, 823

ApplicationDirectory class

applications, ensuring only one instance of
can execute concurrently, 201–203

application-wide resources, 799–801

apply templates command, 293

ArcSegment class, 868

args argument, 12

ArgumentException class, System
namespace, 80, 432, 493

ArgumentNullException class, System
namespace, 130, 655

ArgumentOutOfRangeException class,
System namespace, 54, 655

Array class, 77–78

ArrayList class, 53, 78

Sort method, 77–78, 632

System.Collections namespace, 87, 122,
632

ToArray method, 79

arrays

byte, converting basic value types to,
59–61

copying a collection to, 79–81

removing duplicate entries from, 100

selecting elements from, 97–100

selecting from collection or array, 97–
100

sorting, 77–79

as operator, 128

ASCII encoding, 59, 223

ASCII property

ASCIIEncoding class, 57

Encoding class, 501, 502

ASCIIEncoding class, 57

AsEnumerable instance method, 469

assemblies

allowing partially trusted code to use
strongly-named assemblies, 544–
547

avoiding loading unnecessary, into
application domains, 109–111

delay signing, 24–26

determining specific permissions of,
558–559

ensuring runtime grants specific
permissions to, 549–552

executing into different application
domain, 114–116

inspecting evidence, 562–564

installing, 30

limiting permissions granted to, 552–
554

loading into application domain, 111–
114

preventing decompilation of, 30–31

signing with Authenticode, 26, 27

strongly-named, verifiying have not
been modified, 23–24

■ INDEX

909

strongly-naming, 21–23

unloading at runtime, 124–125

viewing installed, 30

viewing permissions required by, 554–
558

Assembly class

Evidence property, 562

GetType method, 125–126

GetTypes method, 125–126

Load method, 112–113, 117

LoadFrom method, 111, 113

System.Reflection namespace, 111, 562

assembly evidence, 562

AssemblyCultureAttribute class,
System.Reflection namespace, 22

AssemblyDelaySignAttribute class,
System.Reflection namespace, 26

AssemblyName class, 71

management of objects, 82

System.Reflection namespace, 71, 112

AssemblyVersionAttribute class,
System.Reflection namespace, 22

Assignment (=) operator, 75

asterisk (*), 273

Asterisk property, SystemSounds class, 391

AsyncCallback delegate, System
namespace, 453

AsyncCompletedEventHandler delegate,
System.ComponentModel
namespace, 487

AsynchCallback delegate, System
namespace, 493

asynchronous communications, TCP
server for, 515–523

asynchronous database operations, 452–
456

asynchronous methods, determining if
finished, 453

AsyncProcessor class, 227–228

AsyncWaitHandle property, 156–157

at sign (@), 18

Atom feeds, processing content of, 534–
538

Atom10FeedFormatter class, 534

attached properties, 795–798, 803–805

Attachment class, System.Net.Mail
namespace, 501

AttachmentCollection class,
System.Net.Mail namespace, 501

Attachments property, MailMessage class,
501

Attribute class, System namespace, 133–
134

attributes

creating custom, 133–35

inspecting, using reflection, 136–137

setting for files and directories, 211–213

Attributes property

DirectoryInfo class, 206, 211

FileInfo class, 206, 211

NotifyFilters enumeration, 246

XmlNode class, 262

AttributeTargets enumeration, 134

AttributeUsageAttribute class, 133–134

■ INDEX

910

authentication, getting HTML pages from
site that requires, 497–499

Authenticode

signing assembly with, 26–27

testing, 28–29

autocomplete feature, 329–331

AutoCompleteSource property, 329

AutoLog property, ServiceBase class, 701

automatically implemented properties,
39–41

AutoResetEvent class, 168, 178–179

AutoScroll property, Panel class, 309, 383

AvailableFreeSpace property, DriveInfo
class, 207, 239–240

Average<> extension method, 778

AxHost control, 615

■B
B property, 874

background operations, cancelling, 862–
866

Background property, 856

BackgroundColor property, 32

BackgroundImage property, 378

BackgroundWorker class, 863

BackgroundWorker component, 863

BackgroundWorker object, 862–863

BackgroundWorker threads, executing
methods asynchronously using,
862–866

backslash character (\), 14

BackupOperator value,
WindowsBuiltInRole enumeration,
565

bags, 84

Barrier class, 739–740

Base64-encoding binary data, 62–65

Bcc property, MailMessage class, 501

Beep method, Console class, 391

BeepOnError property, MaskedTextBox
control, 327

BeforeExpand event, TreeView control, 219

BeginAcceptTcpClient method,
TcpListener class, 515–516

BeginExecuteNonQuery method,
SqlCommand class, 452–453

BeginExecuteReader method,
SqlCommand class, 452–453

BeginExecuteXmlReader method,
SqlCommand class, 452–453

BeginGetContext method, HttpListener
class, 493–494

BeginGetHostEntry method, Dns class, 505

BeginInvoke method, 154–157, 354

BeginPrint event, PrintDocument class,
401

BeginRead method, NetworkStream class,
515

BeginWrite method, NetworkStream class,
515

BezierSegment, 868

BigEndianUnicode property,
UnicodeEncoding class, 57

BigInteger class, 96

binary data, Base64-encoding, 62–65

■ INDEX

911

binary files, reading and writing, 224–226

BinaryFormatter class, 87, 267

BinaryReader class

Read method, 225

ReadDecimal method, 225

reading from MemoryStream, 60

ReadString method, 225

System.IO namespace, 59, 225, 490

BinaryWriter class

converting decimal type to byte array,
60

System.IO namespace, 59, 225

Write method, 225

Binding statement, 835

bindingRedirect<> elements, 112

BindsTwoWayByDefault property, 792

BitConverter class

converting bool type to and from byte
array, 60–61

converting int type to and from byte
array, 60

GetBytes method, 59

System namespace, 583

ToBoolean method, 60

ToInt32 method, 60

ToString method, 61

ToString() method, 583–584

Bitmap class, 385

BitVector32 class, 194

blocking, 155, 453

BlockingCollection class, 669–670

Body property, MailMessage class, 501

BodyEncoding property, MailMessage
class, 501

bool type, converting to and from byte
array using BitConverter class, 60–
61

Boolean property, 863

borderless forms, moveable, 343–346

bound data, displaying, 844–847

BufferHeight property, Console class, 32

BufferWidth property, Console class, 32

Button 4 property, 806

Button 5 property, 806

Button class, 827

Button control, 829

Button.Click event, 903

button1_Click method, 366

byte arrays

Base64 encoding and decoding using
Convert class, 62

converting basic value types to, 59–61

converting to standard value types, 59

■C
C# classes, generating from schema, 291

callbacks, 156, 454

CancelAllJobs method, Win32_Printer
class, 417

CancelAsync method, 487, 862–863

CancellationPending property, 862

CancellationToken class, 743

CancellationTokenSource class, 743

■ INDEX

912

Cancelled property, 863

CanExecute event handler, 823–824

CanExecute method, 824, 836–837, 842–
843

CanExecuteChanged event, 836, 842–843

CanExecuteRoutedEventArgs class, 824

CanGoBack property, WebBrowser
control, 357

CanGoForward property, WebBrowser
control, 357

CanHandlePowerEvent property,
ServiceBase class, 700

CanHandleSessionChangeEvent property,
ServiceBase class, 701

CannotUnloadAppDomainException
class, System namespace, 124

CanPauseAndContinue property,
ServiceBase class, 700

CanShutdown property, ServiceBase class,
700

CanStop property, ServiceBase class, 700

canvas, dropping items on, 858–861

Canvas panel, 812

Canvas.Bottom value, 812

Canvas.Top value, 812

Canvas.ZIndex property, 812

Capacity property, StringBuilder class, 54

CaretPostion property, 814

caspol –e off command, 548–549

caspol –e on command, 549

Caspol.exe, 547–549

Cast method, 77

casting, specialized collection classes, 195

CC property, MailMessage class, 502

CCW (COM callable wrapper), 616

Center property, 877

CenterX property, 818

CenterY property, 818

cert2spc.exe. See Software Publisher
Certificate Test tool

certificate authorities (CAs), 27

Certificate Creation tool, 28–29

certificate file (.cer), 27

Certificates class, 497–498

Certificates.Find method, 498

Change method, Timer class, 164

Changed event, FileSystemWatcher class,
246

ChangeExtension method, Path class,
233–234

ChannelFactory class, 533–534

char array, converting binary data to and
from, 62

character encoding, 56–59, 223

character-encoding classes, 56–58

CheckBox control, 903

CheckExecutionRights property,
SecurityManager class, 548–549

CheckFileExists property, OpenFileDialog
class, 241

ChildNodes property

XmlDocument class, 263

XmlNode class, 262

■ INDEX

913

classes

entity, 471

generating from schema, 291

implementing operators in, 41

restricting who can extend and override
members, 559–562

static, 34, 675

ClassesRoot field, Registry class, 695

Clear method

Console class, 33

SecureString class, 590

Click event, 829–830, 836

ClientCertificates collection,
HttpWebRequest class, 498

ClientCertificates property, SmtpClient
class, 500

ClientHandler class, 516

ClientRectangle property, Control class,
379

Clone method, ICloneable interface, 626–
628

cloneable types, implementing, 626–631

CloneMenu method, MenuItem class, 336

CloneNode method

XmlDocument class, 269

XmlNode class, 270

Close method

connection objects, 426

data reader classes, 447

HttpListenerContext class, 494

CloseAllFigures method, GraphicsPath
class, 377

CloseMainWindow method, Process class,
199–200

code

database-independent, 456–460

preventing decompilation, 30–31

restricting execution of, 568–572

selectively include at build time with
command-line, 14–17

See also unmanaged code

code access security (CAS), 543

disabling, 547–548

permissions, 552, 683

Code Access Security Policy tool, 547–549

code library

create and use from command-line, 11–
12

strongly naming, 11

code module, 9–11

codeBase<> elements, 112

CodePack, 709–711, 716–720

CoerceValueCallback argument, 793

collections

copying to arrays, 79–81

with master-detail pattern, 848–854

parallel processing elements in, 736–
738

removing duplicate entries from, 100

selecting elements from, 97–100

sorting, 77–78

strongly typed, using, 81–82

synchronizing thread access to, 193–
195

■ INDEX

914

color gradients, filling shapes with, 875–
878

Color property, 874, 876

Color structure, 873–874

ColumnCount property, TableLayoutPanel
container, 335

ColumnDefinition element, 810

COM, exposing .NET components, 616–
617

COM callable wrapper. See CCW (COM
callable wrapper)

COM clients, 616–617

COM components

releasing quickly, 613–614

using in .NET clients, 610–613

COM Interop

accessing ADO objects, 611

all code full trust, 545

COM port, accessing, 248–249

Combo Box class, creating autocomplete
version, 329–331

Command attribute, 837

command objects, 437–438

Command property, 836–837

CommandBinding method, 823

command-line

accessing arguments, 12–13

creating and using code library, 11–12

creating and using a code module, 9–10

creating console application, 2–4

creating Windows-based application,
5–8

including code selectively at build time,
14–17

CommandLine property, Environment
class, 12, 684

command-line utilities, 290, 611, 616

CommandParameter attribute, 837–838

commands, binding to, 836–844

CommandText property, 437

CommandTimeout property, 437

CommandType property, 437

Common Language Runtime (CLR), 598

CommonDialog class,
System.Windows.Forms
namespace, 241

comparable types, implementing, 631–636

Compare method, IComparer interface,
332, 631– 632

CompareExchange method, Interlocked
class, 188

CompareTo method, IComparable
interface, 631

Compiled option, RegexOptions
enumeration, 70

compiled regular expressions, 70–71

CompileToAssembly method, Regex class,
70–71

complex types, XML schemas, 282

Component class

System.ComponentModel namespace,
111, 487, 508

WebClient class derives from, 487

ComponentCommands command, 823

ComputeHash method, HashAlgorithm
class, 232, 579, 581, 587

■ INDEX

915

Concat<> extention method, 767

concurrent execution, 201

concurrent tasks, returning results from,
732–734

ConcurrentBag class, 746

ConcurrentDictionary class, 746

ConcurrentQueue class, 669, 746

ConcurrentStack class, 746

conditional compilation directives, 15

ConditionalAttribute class, 16

applying to a method, 16

System.Diagnostics namespace, 14

used by Trace and Debug classes, 18

conditions, 712

Configuration class, System.Configuration
namespace, 434

ConfigurationFile property,
AppDomainSetup class, 104

ConfigurationManager class, 434

Connect method, 257

Connection Lifetime setting, 429

connection pooling, 428–431

Connection property, 438

Connection Reset setting, 429

connection strings, 425

creating programmatically, 431–33

secure storage of, 433–436

ConnectionString property

ConnectionStringSettings class, 434

IDbConnection interface, 425, 432

ConnectionStrings property, 434

ConnectionStringSettings class, 434

ConnectionStringsSection collection, 434

console

manipulating appearance, 31–34

reading user input, 93–96

console applications, creating, 2–4

Console class

Beep method, 391

example, 391–392

KeyAvailable method, 94

properties and methods, 32

Read method, 93

ReadKey method, 93

ReadLine method, 93

System namespace, 32, 93, 651

ConsoleColor enumeration, System
namespace, 32

ConsoleKeyInfo class, 93–94

ConsoleModifiers enumeration, 94

ConstructorInfo class, 130

Container class, 309

Contains method, Rectangle struct, 372

ContentControl class, 828

ContentControl property, 852

context menu, using main menu for, 336–
338

ContextMenu property, NotifyIcon
control, 346, 348

ContinueWith method, Task class, 738

contravariance, 680

Control class, 827

■ INDEX

916

AllowDrop property, 351

ClientRectangle property, 379

deriving class from, 379

DoDragDrop method, 350

DragDrop event, 350–351

DragEnter event, 350

Handle property, 395, 601

MouseDown event, 343, 351

MouseMove event, 343

MouseUp event, 343

Region property, 376, 377, 379

System.Windows.Forms namespace,
379

Tag property, 312

control properties, animating, 889–892

Control value, ConsoleModifiers
enumeration, 94

ControlBox property, Form class, 341

ControlCollection class, 309, 314

ControlPolicy element, SecurityPermission
class, 548

ControlPrincipal element,
SecurityPermission class, 569, 573

controls

ActiveX, 615–616

adding programmatically, 309–311

animation of, 894–897

changing appearance on mouse over,
854–855

creating irregularly shaped, 376–379

custom

creating, 379–382

lookless, 826–831

displaying rotated, 818–820

iterating through, 314

process all, on form, 314–315

properties, animating, 886–889

storing data associated with, 311–313

user

creating, 820–822

supporting application commands
in, 822–826

user input, rich text, 813–817

Controls property

Container class, 309

Form class, 314

ControlTemplate class, 828–829

ControlTemplate property, 827

conversion operators, defining, 44

Convert class, 62

Convert method, Encoding class, 59

cooperative algorithms, writing, 739–741

Copy method, 815

CopyFromScreen method, 385

CopyTo method

FileInfo class, 213

ICollection interface, 79

Count<> extension method, 778

CounterCreationData class, 721

CounterSample class, 725

■ INDEX

917

covariance, 680

Covington, Michael A, 203

Create method

DirectoryInfo class, 214

FileInfo class, 213

HashAlgorithm class, 232, 579, 581

KeyedHashAlgorithm class, 587

RandomNumberGenerator class, 576

WebRequest class, 490

XmlReader class, 278, 281, 283

XmlWriter class, 278

CreateAdapter factory method,
DbProviderFactory class, 457

CreateAttribute method, XmlDocument
class, 266

CreateCommand method

connection objects, 437

DbProviderFactory class, 457

IDbConnection interface, 438, 457

CreateConnection method,
DbProviderFactory class, 457

Created event, FileSystemWatcher class,
246, 247

CreateDomain method, AppDomain class,
104

CreateElement method, XmlDocument
class, 266

CreateInstance method

Activator class, 133

AppDomain class, 116, 117

CreateInstanceAndUnwrap method,
AppDomain class, 117

CreateInstanceFrom method

Activator class, 133

AppDomain class, 116

CreateInstanceFromAndUnwrap method,
AppDomain class, 117

CreateNode method, XmlDocument class,
266

CreateParameter factory method,
DbProviderFactory class, 457

CreateParameter method, IDbCommand
interface, 442, 457

CreatePrompt property, SaveFileDialog
class, 241

CreateShortcut method, WshShell class,
707

CreateSubdirectory method, DirectoryInfo
class, 207, 214

CreateSubKey method, RegistryKey class,
696

CreateText method, FileInfo class, 213

CreationTime property, 206, 246

CredentialCache class

DefaultCredentials property, 498, 501

implements ICredentialsByHost
interface, 500

System.Net namespace, 498

Credentials property

SmtpClient class, 500

WebClient class, 497

WebRequest class, 497–498

critical sections, 173

cross-platform integration, 683

■ INDEX

918

CrossProcess value,
MemoryProtectionScope
enumeration, 593

CryptGenRandom function, 576

CryptoAPI, 19

cryptographic service provider (CSP), 19

cryptography, 543–544

calculating hash code of a file, 581–583

calculating hash code of a password,
577–581

creating a cryptographically random
number, 575–577

encrypting and decrypting data using
data protection API, 592–596

ensuring data integrity using keyed
hash code, 586–589

verifying a hash code, 583–586

working with security-sensitive strings
in memory, 589–592

CS1555 compilation error, 3

CultureInfo class, 652

Currency value, DbType enumeration, 442

Current property, IEnumerator interface,
641

CurrentConfig field, Registry class, 695

CurrentCulture method, CultureInfo class,
652

CurrentDirectory property, Environment
class, 684

CurrentItem property, 849

CurrentPrincipal property, Thread class,
568, 569, 573

CurrentUICulture property, Thread class,
340

CurrentUser field, Registry class, 695

CurrentUser value, DataProtectionScope
enumeration, 593

CursorLeft property, Console class, 32

CursorSize property, Console class, 32

CursorTop property, Console class, 32

CursorVisible property, Console class, 32

curved lines, drawing, 867

custom attributes

creating, 133–136

inspecting, using reflection, 136–137

custom controls

creating, 379–382

lookless, 826–831

custom dynamic types, creating, 143–147

custom event argument, implementing,
659–661

custom exception class, implementing,
655–659

custom indexer, implementing, 48–51

custom extension methods, implementing
and calling, 675–677

Cut method, 815

■D
data

downloading over HTTP or FTP, 486–
490

logging to file, 254–256

sharing between tasks, 745–747

storing sensitive, 589–592

■ INDEX

919

storing, associated with control, 311–
313

data access, synchronization of, 187–190

data binding(s)

bound data, displaying, 844–847

collections, with master-detail pattern,
848–854

to commands, 836–844

debugging

with attached properties, 803–805

with IValueConverter, 801–803

two-way, 833–836

data compression, 253

data integrity, ensuring, with keyed hash
code, 586–589

data manipulation, 53

alternate character encoding, 56–59

Base64-encoding data, 61–65

converting basic value types to byte
arrays, 59–61

String objects, 54–55

Data property, 866, 871

Data Protection API (DPAPI), 433, 592–596

data provider interfaces, 457

data providers, 423

data reader classes, 446

data sources

aggregating, 778–780

applying LINQ query to part of, 759–760

comparing, 776–778

concatenate, 767–769

filtering and selecting from multiple,
762–765

filtering by type, 757–759

filtering items from, 755–757

for LINQ queries, 469

permutations of, 765–767

data templates, displaying bound data
using, 844–847

Data.cs file, 845

Data.GetData method, 859

database, creating in-memory cache of,
462–466

database access, 423–424

connecting to a database, 425–428

connection pooling, 428–431

creating a connection string
programmatically end, 433

data providers, 423

discover all instances of SQL Server on
network, 460–462

executing a SQL command or stored
procedure, 436–441

obtaining XML document from SQL
Server query, 448–452

performing asynchronous operations
against SQL Server, 452–456

processing results of SQL query using
data reader, 445–448

storing a connection string securely,
433–436

using parameters in SQL command or
stored procedure, 441–445

writing database independent code,
456–460

■ INDEX

920

database connection strings

creating programmatically, 431–433

secure storage of, 433–436

DataContext class, 471

DataContext property, 839, 853

DataContractAttribute attribute, 527

DataContractAttribute class, 527

DataContractJsonSerializer class, 91–92

DataMemberAttribute attribute, 527

DataMemberAttribute class, 527

DataProtectionScope enumeration,
System.Security.Cryptography
namespace, 593

DataRow class, System.Data namespace,
461

DataSet class, 462,–465

creating instance of, manually, 466–467

System.Data namespace, 110, 457

DataTable class, 446, 458, 461–469

DataTemplate property, 845–847, 850, 852

dates and times

add, subtract and compare, 74–77

creating from strings, 72–74

DateTime class

Parse method, 72–73

ParseExact method, 72–73

System namespace, 53, 72

DateTime objects, 53

DateTime structure

add, subtract and compare dates and
times, 74–77

AddXXXX methods, 76

operators supported by, 75

System namespace, 166, 206, 631

DateTime value, DbType enumeration,
442

DateTimeFormatInfo class, 73, 652

DbConnectionStringBuilder class

implementations for standard data
providers, 432

System.Data.Common namespace, 431

DbProviderFactories class, 458–459

DbProviderFactory class

CreateAdapter factory method, 457

CreateCommand factory method, 457

CreateConnection factory method, 457

CreateParameter factory method, 457

instantiating, 459

subclasses, 457

System.Data.Common namespace, 442,
457

DbType enumeration, 442

Debug class, System.Diagnostics
namespace, 18

debugging data bindings

using attached properties, 803–805

using IValueConverter, 801–803

decimal type

Base64 encoding and decoding using
Convert class, 62

converting to byte array, 59–60

reading using BinaryReader instance,
59

■ INDEX

921

decompiling code prevention, 30–31

Decorator class, 828

Decrement method, Interlocked class, 188

Decrypt method, FileInfo class, 213

deep copy, 627

Default property, Encoding class, 57

Default value, 834–835

DefaultCredentials property,
CredentialCache class, 498, 501

DefaultPageSettings property,
PrintDocument class, 402

DefaultStyleKeyProperty property, 828

DefaultStyleKeyproperty.OverrideMetadat
a class, 829

/define compiler switch, 16

DeflateStream class, 253

delay signing assemblies, 24,–26

/delaysign switch, 25

delegate keyword, 150

delegates, 150

Delete method

DirectoryInfo class, 214

FileInfo class, 213

Deleted event, FileSystemWatcher class,
246, 247

DeleteSubKey method, RegistryKey class,
696

DeleteSubKeyTree method, RegistryKey
class, 696

DeleteValue method, RegistryKey class,
696

dependency properties, creating and
using, 790–795

DependencyObject object, 791

DependencyProperty property, 791, 793

DependencyProperty.Register method,
791

DependencyProperty.RegisterAttached
method, 796

descending keyword, 774

Description property, 481, 850

deserialization, attributes, 621

Deserialize method, IFormatter interface,
87

destructor, 647

dialog boxes, showing, 241–243

Dictionary class,
System.Collections.Generic
namespace, 82, 319

Direction property, parameter objects, 442

Direction value, ParameterDirection
enumeration, 442

directories

attribute setting, 211–212

calculating size of, 216–17

copying, moving, or deleting, 213–216

determining whether path is directory
or file, 235

retrieving information about, 206–211

Directory class

Exists method, 235

GetCurrentDirectory method, 236

GetLogicalDrives method, 239

SetCurrentDirectory method, 236

System.IO namespace, 235, 236

■ INDEX

922

Directory property, FileInfo class, 207

DirectoryInfo class, 205

Attributes property, 211

copy method is missing from class, 214

derives from FileSystemInfo class, 207

GetDirectories method, 230

GetFiles method, 230

members, 206

methods, 214

Refresh method, 208

System.IO namespace, 206, 211, 213,
230

DirectoryName property, FileInfo class,
207

DirectoryName value, NotifyFilters
enumeration, 246

DirectoryNotFoundException class, 208

DirectorySecurity class, 251

DirectShow, showing animation, 395–398

DisallowPublisherPolicy property,
AppDomainSetup class, 105

Discrete keyframe, 892

displaying

bound data, 844–847

name of assembly, 112

rotated controls, 818–820

DisplayMemberPath property, 849

DisplayName property, ServiceInstaller
class, 705

disposable class, implementing, 647–651

disposable objects, 648

Dispose method

IDisposable interface, 647–648, 697

SecureString class, 590

Timer class, 164

Dispose pattern

example, 649–651

implementing, 648

using statement, 648

Distinct method, 100

DllImportAttribute class

EntryPoint portion, 598

SetLastError field, 608

System.Runtime.InteropServices
namespace, 598

Dns class, 504–505

docking, UI elements to edge of forms,
807–808

DockPanel property, 808

DockPanel.Dock property, 807–808

Document property, 814

PrintDialog class, 402

PrintPreviewControl class, 411

PrintPreviewDialog class, 411

WebBrowser control, 358

DocumentCompleted event, WebBrowser
control, 357

DocumentElement class, containing
nested XMLNode objects, 262

DocumentElement property,
XmlDocument class, 262

documents, validating against a schema,
281–286

■ INDEX

923

DocumentText property

WebBrowser class, 295

WebBrowser control, 358

DoDragDrop method, 350, 859

DoesRotateWithTangent property, 896

DOM (W3C Document Object Model), 262

Domain property, ProcessStartInfo class,
197

Dotfuscator, 31

double buffering

defined, 387

using to increase redraw speed, 386–
389

double quotes, 14

DoubleAnimationUsingPath timeline, 896

DoubleBuffered property, Form class, 386

Down value, OperationalStatus
enumeration, 481

DownloadData method, WebClient class,
486

DownloadDataAsync method, WebClient
class, 486

DownloadDataCompleted event,
WebClient class, 486

DownloadFile method, WebClient class,
487

DownloadFileAsync method, WebClient
class, 487

DownloadString method, WebClient class,
487

DownloadStringAsync method, WebClient
class, 487

DownloadStringCompleted event,
WebClient class, 487

DoWork event, 862

DPAPIProtectedConfigurationProvider
class, 434

drag-and-drop operations, 350

DragDrop event, Control class, 350, 351

DragDrop object, 859

DragDropEffects enumeration, 859

DragEnter event, 250, 860

DragEventArgs class, 351

DragEventArgs object, 859

dragging items, from lists and dropping
them on canvas, 858–861

DrawImage method, Graphics class, 401

drawing

curved lines, 867

shapes

two-dimensional, 866–871

using solid colors, 873–874

using double buffering to increase
redraw speed, 386–389

DrawString method, Graphics class, 383,
401, 408

DriveInfo class

AvailableFreeSpace property, 239, 240

example, 239, 240

GetDrives method, 239

IsReady property, 208

members, 206

System.IO namespace, 206

TotalFreeSpace property, 240

■ INDEX

924

drives

free space on, 239–240

retrieving information about, 206–211

DriveType enumeration, 207

DriveType property, DriveInfo class, 207

Drop events, 858–859

dropping items, dragged from lists onto
canvas, 858–861

duplicate entries, removing from arrays or
collections, 100

dynamic keyword, 38, 145, 677

dynamic types, 142

calls to, 37

custom, creating, 143–147

ExpandoObject, creating, 37

DynData field, Registry class, 695

■E
eager initialization, 672

earchConditionFactory.CreateAndOrCond
ition method, 712

EditingCommands class, 814

EditingCommands command, 823

Effect property, DragEventArgs class, 351

ElementHost control, 363–366

ElementName attribute, 835, 838

ElementName property, 829

elements

accessing, with same name as keyword,
18

finding by name, 271–272

finding with XPath search, 274–278

ELEMENTS keyword, 449

elevated (administrator) privileges,
obtaining, 726–727

Ellipse class, 866–867

EllipseGeometry class, 866

EllipseGeometry element, 866

EllipseShape control, creating, 379–382

e-mail, sending using SMTP, 499–504

EmptyTypes field, Type class, 130

EnableRaisingEvents property,
FileSystemWatcher class, 246

EnableSsl property, SmtpClient class, 500

Encoding class

ASCII property, 501, 502

Convert method, 59

Default property, 57

GetBytes method, 57

GetEncoding method, 56–57

GetString method, 57

System.Text namespace, 56, 225, 502,
579

Encrypt method, FileInfo class, 213

encryption, connection strings storage
and, 433–436

EndAcceptTcpClient method, TcpListener
class, 515

EndExecuteNonQuery method,
SqlCommand class, 452–453

EndExecuteReader method, SqlCommand
class, 452–453

EndExecuteXmlReader method,
SqlCommand class, 452–453

■ INDEX

925

EndGetContext method, HttpListener
class, 493

EndGetHostEntry method, Dns class, 505

EndInvoke method, 155, 156, 355

EndPoint property, 876

endpoints, 510

EndPrint event, PrintDocument class, 401

Enter method, Monitor class, 172–173

entity classes, 471

entity types, performing LINQ query with,
471–473

entropy, 594

EntryPoint portion, DllImportAttribute
class, 598

Enum class, 129

enumerable collection, implementing,
636–640

enumerable type, implementing using
custom iterator, 640–647

Enumerable.OrderBy method, 77–78

enumerators, 640

EnumWindows function, 606–608

Environment class

CommandLine property, 12

example, 686–690

ExpandEnvironmentVariables method,
688

GetCommandLineArgs() method, 12

GetEnvironmentVariable method, 688

GetEnvironmentVariables method, 688

members, 684

System namespace, 12, 684

environment variable, 688–690

Environment.SpecialFolder enumeration,
685

EnvironmentVariableTarget enumeration,
688

equality, testing two files for, 231–233

Equality (==) operator, 75

equality operator ==, 15

Error value, EventLogEntryType
enumeration, 690

ErrorDialog property, ProcessStartInfo
class, 197

ErrorProvider component, 348

errors

retrieving unmanaged error
information, 608–610

Ethernet value, NetworkInterfaceType
enumeration, 481

event argument, custom, 659–661

event handling, with anonymous
functions, 46–47

event logs, writing event to Windows, 690–
692

Event pattern, 663

EventArg class, 659

EventArgs class, 663

EventLog class

example, 691–692

System.Diagnostics namespace, 690

WriteEntry method, 690

EventLog property, ServiceBase class, 701

EventLogEntryType enumeration, 690

EventResetMode enumeration, 179

■ INDEX

926

EventTrigger property, 899

EventWaitHandle class, 178–179

Evidence class, 104, 562

Evidence property, Assembly class, 562

evidence types, 560

Except method, 474, 477

Exception class, 655–656

exception class, custom, 655–659

exception handling, in tasks, 741–743

ExceptionState property,
ThreadAbortException class, 192

Exchange method, Interlocked class, 188

Execute method, 836, 842, 843

ExecuteAssembly method, AppDomain
class, 114, 115, 116

ExecuteAssemlyByName method,
AppDomain class, 114

Executed event handler, 824

ExecuteNonQuery method

IDbCommand interface, 437–438

SqlCommand class, 453

ExecuteReader method

IDbCommand interface, 437, 438, 445,
457

SqlCommand class, 453

ExecuteScalar method, IDbCommand
interface, 437–438

ExecuteXmlReader method, SqlCommand
class, 448–450, 453

Execution element, SecurityPermission
class, 548

execution permission checks, 548–549

Exists method, 235

Exists property, 206

Exit method, Monitor class, 172–173

ExpandEnvironmentVariables method,
Environment class, 685, 688

ExpandoObject dynamic type, creating,
37–38

explicit keyword, 44

Explicit property, LayoutKind class, 604

Explicit value, 835

expression syntax table, XPath, 276

extension methods, 759–760

aggregation, 778–780

creating custom, 782–784

implementing and calling, 675–677

LINQ, 757

Extension property, 206

■F
FailureAudit value, EventLogEntryType

enumeration, 690

Families property, FontCollection class,
370

FastEthernetTvalue,
NetworkInterfaceType
enumeration, 481

FieldCount property, data reader classes,
446

FieldOffsetAttribute class, 604

File class

Exists method, 235

GetAccessControl method, 250

■ INDEX

927

SetAccessControl method, 250

System.IO namespace, 235

file system classes, 205

File.ReadLines method, 256

File.WriteAllLines method, 255

FileAttributes enumeration, System.IO
namespace, 206

FileInfo class, 205, 230

Attributes property, 211

derives from FileSystemInfo class, 207

Length property, 216

members, 206

methods, 213

Refresh method, 208

System.IO namespace, 206, 211, 213,
312

FileInputControl class, 829

FileInputControl control, 824, 826

FileInputControl control, 821

FileIOPermission class, 243, 244

FileLoadException class, System.IO
namespace, 23, 550

FileName property

ProcessStartInfo class, 197

SaveFileDialog class, 241

FileName value, NotifyFilters
enumeration, 246

filenames, generating random, 249, 250

FileNames collection, 241

FileNotFoundException class, 10, 112, 208

files, 205

accessing a COM port end, 249

attribute setting, 211–212

calculating size of directory end, 217

calculating size of, 216–217

creating a temporary file, 238–239

determining if path is directory or file,
235–236

determining whether contents have
changed, 581–583

downloading, 490–492

finding files matching wildcard
expressions, 230–231

getting a random filename end, 249

getting total free space on drive, 239–
241

log, 254–255

manipulating access control lists of file
or directory, 250–253

manipulating strings representing
filenames, 233–235

monitoring file system for changes, 246

moving, copying or deleting a file and
directory, 213–216

processing using stream, 490–492

reading a file asynchronously, 226–230

reading and writing a binary file, 224–
226

reading and writing a text file, 222–224

retrieving information about, 206–211

retrieving version information for a file,
217–219

setting file and directory attributes, 211

■ INDEX

928

showing common file dialog boxes,
241–243

showing JIT directory tree in the
TreeView control, 219–222

testing two files for equality, 231–231

using an isolated store, 243–246

working with relative paths, 236–238

FileSecurity class, 251

FileStream class

Handle property, 601

System.IO namespace, 87, 222, 225

FileStream.BeginRead method, 226

FileStream.EndRead, 226

FileSystemEventArgs class, 246

FileSystemWatcher class, 246–247

FileVersionInfo class, 217

FileWebRequest class, 490

FilgraphManager class, 395

Fill method, TreeView control, 220

Fill property, 873– 879

Fill value, 880

Filter property

FileSystemWatcher class, 246

OpenFileDialog class, 241

finalizer, 647

finally block, 173

FinalReleaseComObject method, Marshal
class, 613

Find method, Certificates class, 498

FindTypes method,
SystemReflection.Module class,
125

FlipX value, 883

FlipXY value, 883

FlipY value, 883

FlowDirection property, FlowLayoutPanel
container, 335

FlowDocument element, 813

FlowDocument object, 813

FlowDocument property, 815

FlowLayoutPanel container, 335

FolderBrowserDialog class, 241

FontCollection class, Families property,
370

FontFamily class, 370

fonts, finding all installed fonts, 370–372

FOR XML AUTO clause, 449

FOR XML clause, 448, 450

FOR XML EXPLICIT syntax, 449

ForegroundColor property, Console class,
32

Form class

BackgroundImage property, 378

ControlBox property, 341

Controls property, 314

DoubleBuffered property, 386

extending, 5

FormBorderStyle property, 341

Language property, 339

Load event, 220

Localizable property, 339

MaximizeBox property, 341

MdiChildren property, 319

■ INDEX

929

MdiParent property, 319

MinimizeBox property, 341

MouseMove event, 373

OnClosed method, 319

OnClosing method, 319

OnLoad method, 319

Paint event handler, 373, 387

Region property, 376, 377

SetStyle method, 387

System.Windows.Forms namespace, 5

Text property, 341

TopMost property, 601

TransparentKey property, 378

Form.Handle property, 601

format argument, 652

Format method, String class, 652

format string, 652

FormatException class, System
namespace, 73, 656

FormatMessage function, 608

formatProvider argument, 652

formattable type, implementing, 651–655

formatters, 87

FormBorderStyle property, Form class, 341

FormCollection class, 315–316

forms. See Windows forms

FrameworkElement class, 827

FrameworkPropertyMetadataOptions
enumeration, 791

free space on drive, calculating, 239–241

from keyword, 98, 301, 750

From property, 502, 886

from statement, 765

FromArgb method, 874

FromAValues method, 874

FromBase64CharArray method, 62

FromBase64String method, 62

FromDays property, TimeSpan structure,
166

FromFile method, Image class, 389

FromRgb method, 874

FromScRgb method, 874

FromValues method, 874

FTP, downloading data over, 486–490

FtpWebRequest class, 490

Full Unicode (UTF-16), 223

FullName property

DirectoryInfo class, 206

FileInfo class, 206

FullTrust permission, 545, 547

functions

anonymous, 46–47

calling in unmanaged DLLs, 597–601

■G
G property, 874

GAC (global assembly cache), 29–30, 545

GC class

SuppressFinalize method, 648

System namespace, 647

GDI32.dll, 598

■ INDEX

930

generic types

creating, 83–87

creating variant, 679–681

Generic.xaml resource dictionary, 828–829

GeometryGroup class, 866

GeometryGroup element, 866

GetAccessControl method, File class, 250

GetAddressBytes method, PhysicalAddress
class, 482

GetAllNetworkInterfaces method,
NetworkInterface class, 480, 484

GetAssemblyEnumerator method,
Evidence class, 562

GetAttribute method, XmlReader class, 279

GetAvailableThreads method, ThreadPool
class, 154

GetBytes method

BitConverter class, 59

Encoding class, 57

RandomNumberGenerator class, 576

GetCommandLineArgs method,
Environment class, 12, 685

GetConstructor method

compared to Activator class, 133

Type class, 130

GetConstructors method, System.Type
class, 138

GetContext method, HttpListener class,
493

GetCurrent method, WindowsIdentity
class, 564

GetCurrentDirectory method, Directory
class, 236

GetCurrentProcess method, 199

GetCustomAttributes method, 136

GetData method, AppDomain class, 121–
122

GetDataSources method,
SqlDataSourceEnumerator class,
460

GetDataTypeName method, data reader
classes, 446

GetDirectories method, DirectoryInfo
class, 230

GetDirectories property, DirectoryInfo
class, 207

GetDirectoryName method, Path class,
234

GetDrives method, DriveInfo class, 239

GetDrives property, DriveInfo class, 207

GetElementsByTagName method

XmlDocument class, 271

XmlElement class, 272, 273

GetEncoding method, 57

GetEnumerator method

Evidence class, 562

IEnumerable interface, 636, 640, 641

GetEnvironmentVariable method,
Environment class, 685, 688

GetEnvironmentVariables method,
Environment class, 685, 688

GetFactory method, DbProviderFactories
class, 458

GetFactoryClasses method,
DbProviderFactories class, 458

GetFieldType method, data reader classes,
446

■ INDEX

931

GetFileName method, Path class, 233

GetFileNameWithoutExtension method,
Path class, 234

GetFiles method, DirectoryInfo class, 230

GetFiles property, DirectoryInfo class, 207

GetFolderPath method, Environment
class, 685

GetForegroundWindow function, 601

GetFullPath method, Path class, 234

GetHostByName method, Dns class, 504

GetHostEntry method, Dns class, 504

GetHostEnumerator method, Evidence
class, 562

GetHostName method, Dns class, 505

GetInvalidPathChars method, Path class,
234

GetIPProperties method,
NetworkInterface class, 481

GetIPv4Statistics method,
NetworkInterface class, 482

GetIsNetworkAvailable method,
NetworkInterface class, 482

GetLastWin32Error method, Marshal class,
608

GetLogicalDrives method,

Directory class, 239

Environment class, 685

GetMemberBinder class, 144

GetMembers method, System.Type class,
138

GetMethods method, System.Type class,
138

GetName method, data reader classes, 446

GetNestedType method, Type class, 125

GetNestedTypes method, Type class, 125

GetNetworks method, 716

GetNonZeroBytes method,
RandomNumberGenerator class,
576

GetObjectData method, ISerializable
interface, 622, 656

GetOracleLob method, OracleDataReader
class, 446

GetOracleMonthSpan method,
OracleDataReader class, 446

GetOracleNumber method,
OracleDataReader class, 446

GetOrdinal method, data reader classes,
446

GetPhysicalAddress method,
NetworkInterface class, 482

GetPrivateProfileString method, 598

GetPrivateProfileString method, 600

GetProcessById method, 199

GetProcesses method, 199

GetProcessesByName method, 199

GetPropertiesmethod, 138

GetRandomFileName method, 249

GetResponse method, WebRequest class,
490

GetResponseStream method,
WebResponse class, 491

GetSchemaTable method, data reader
classes, 446

GetSqlByte method, SqlDataReader class,
446

■ INDEX

932

GetSqlDecimal method, SqlDataReader
class, 446

GetSqlMoney method, SqlDataReader
class, 446

GetString method, Encoding class, 57

GetSubKeyNames method, RegistryKey
class, 696

GetTable method, 471

GetTempFileName method, Path class,
238, 249

GetTemplateChild class, 830

GetThumbnailImage method, Image class,
389

GetType method, 91

Assembly class, 125

Object class, 127

System.Type class, 125

SystemReflection.Module class, 125

GetTypes method, 125

GetUnderlyingType method, Enum class,
129

GetValue method

Registry class, 692

RegistryKey class, 696

GetValueKind method, RegistryKey class,
696

GetValueNames method, RegistryKey
class, 697

GetVersionEx function

declaring and using, 604

Kernel32.dll file, 603

GetVersionInfo method, FileVersionInfo
class, 217

GetWindowText function, 601

GetXXX methods

data reader classes, 446

SerializationInfo class, 622

Global Assembly Cache (GAC), 11, 29–30,
112, 545

Global Assembly Cache tool (gacutil.exe),
30

GoBack method, WebBrowser control, 357

GoForward method, WebBrowser control,
357

GoHome method, WebBrowser control,
357

GradientOrigin property, 877

GradientStop element, 877

graphics, 369

Graphics class

CopyFromScreen method, 385

DrawImage method, 401

DrawString method, 383, 401, 408

System.Drawing namespace, 401

GraphicsPath class

adding shapes to, 377

CloseAllFigures method, 377

IsVisible method, 372

System.Drawing.Drawing2D
namespace, 372, 373, 377

greater than (>) operator, 75

grid layout, UI elements, 809–811

Grid.Column property, 809

Grid.ColumnDefinitions element, 810

Grid.Row property, 809

■ INDEX

933

Grid.RowDefinitions element, 810

group...by... keywords, 769, 772

GrowStyle property, TableLayoutPanel
container, 335

Guest value, WindowsBuiltInRole
enumeration, 565

GuidAttribute class,
System.Runtime.InteropServices
namespace, 617

GZipStream class, 253

■H
Handle method, AggregateException class,

742, 743

Handle property

classes that use this property, 601

Control class, 395, 601

FileStream class, 601

PictureBox control, 395

Process class, 601

Handled property, KeyPressEventArgs
class, 329

handles, 601–603

HasAttributes property, XmlReader class,
279

HasExited property, Process class, 200

HasExtension method, Path class, 234

Hash class, 560

hash code

algorithms, 232

calculating, of file, 581–583

calculating, of password, 577–581

ensuring data integrity using keyed,
586–589

verifying, 583–586

HashAlgorithm class, 582

ComputeHash method, 232, 579, 581,
587

Create method, 232, 579, 581

System.Security.Cryptography
namespace, 231, 577, 581, 586

Hashtable class, 195

HasMorePages property,
PrintPageEventArgs class, 404, 406

HasShutdownStarted property,
Environment class, 684

Height property, 810, 859, 867, 899, 903

Hidden value, ProcessWindowStyle
enumeration, 197

High property, 804

hit testing, performing with shapes, 372–
376

HMACSHA1 class, 587

horizontal stacks, 805–806

HorizontalAlignment property, 806

HorizontalScrollBarVisibility property, 814

host evidence, Evidence class, 562

host name, resolving to an IP address, 504–
507

HTML pages, getting from site that
requires authentication, 497–499

HtmlDocument class, 358

■ INDEX

934

HTTP

downloading data over, 486–490

responding to requests from within
application, 492–497

HttpListener class, 493–494

HttpListenerContext class, 493–494

HttpListenerException class, 493

HttpListenerPrefixCollection class, 493

HttpListenerRequest class, 493

HttpListenerResponse class, 493

HttpWebRequest class

ClientCertificates collection, 498

creating instance, 490

■I
I/O classes, 205

IAsyncResult interface, System
namespace, 452

ICloneable interface

Clone method, 626, 628

System namespace, 626

ICollection interface

CopyTo method, 79

IsSynchronized property, 194

SyncRoot property, 194, 195

ICommand object, 842, 843

IComparable interface, 634

CompareTo method, 631

implementation, 632

IComparer interface

Compare method, 332, 631, 632

implementation, 632, 634

System.Collections namespace, 332

System.Collections.Generic
namespace, 631

Icon property, NotifyIcon control, 346, 348

ICredentialsByHost interface, 500

ICustomAttributeProvider interface, 136

Id property, NetworkInterface Class, 481

IDataParameter interface

creating, 457

data provider implementations, 441,
445

System.Data namespace, 441, 445

IDataParameterCollection interface,
System.Data namespace, 438

IDataReader interface, 457

ExecuteReader returns, 438

extends IDataRecord interface, 445

extends System.IDisposable, 447

IDataRecord interface, IDataReader
interface extends, 445

IDbCommand interface, 457

CommandText property, 437

CommandType property, 437

CreateParameter method, 442, 457

data provider implementations, 437

ExecuteNonQuery method, 437, 438

ExecuteReader method, 437, 438, 445,
457

ExecuteScalar method, 437, 438

Parameters collection, 441, 442, 457

System.Data namespace, 437

■ INDEX

935

IDbConnection interface, 457

ConnectionString property, 425, 432

CreateCommand method, 438, 457

data provider implementations, 425

System.Data namespace, 425

IDbDataAdapter interface, 457

IDbTransaction interface, System.Data
namespace, 438

identity permissions, 560, 561

IDisposable interface

Dispose method, 647, 648, 697

extended by IDataReader interface, 447

RegistryKey class implements, 697

System namespace, 84, 426, 590, 647

IEnumerable interface, 641, 750

converting from, 784–787

GetEnumerator method, 636, 640, 641

System.Collections namespace, 640

System.Collections.Generic
namespace, 636

IEnumerator interface, 641

Current property, 641

GetEnumerator method, 636

members, 640

MoveNext method, 641

Reset method, 641

System.Collections namespace, 562,
640

System.Collections.Generic
namespace, 636

IEqualityComparer, 100, 776

IFormatProvider interface, 73

IFormattable interface, 651–652

IFormatter interface, 87

IIdentity interface, 564

Image class, 389

ImageBrush class, 879, 880

ImageBrush element, 879

ImageBrush objects, 881–883

images

creating scrollable, 383–385

filling shapes with, 879–882

recognizing characters in, 419, 421

showing thumbnails for, 389–391

thumbnail, 389–391

IMediaControl interface, 395

loading and playing a movie, 395

RenderFile method, 394

Impersonate method, WindowsIdentity
class, 572–573

impersonation, 572–575

implicit keyword, 44

in modifier, 679

Increment method, Interlocked class, 188

indexer, custom, 48, 51

inequality (!=) operator, 75

inequality operator !=, 15

Infinite property, Timeout class, 164, 166

information retrieval

files, directories or drives, 206–211

version information for a file, 217–219

■ INDEX

936

Information value, EventLogEntryType
enumeration, 690

InheritanceDemand value

implementing, 561

SecurityAction enumeration, 560

Inherited property,
AttributeUsageAttribute class, 134

Inherits property, 792

initialization

eager, 672

lazy, 672–673

InitializeComponent method, 309

in-memory cache, creating, 462–466

InnerException class, 508

InnerText property, XmlNode class, 262

InnerXml property, XmlNode class, 263

INotifyPropertyChanged interface, 839,
841, 849, 850

input validation, 65–69, 348–350

Input value, ParameterDirection
enumeration, 442

InputOutput value, ParameterDirection
enumeration, 442

InsertAfter method, XmlNode class, 266

InsertAt method, SecureString class, 589

InsertBefore method, XmlNode class, 266

InstalledFontCollection class, 370

InstalledPrinters collection,
PrinterSettings class, 398–399

Installer class

Installers property, 705

System.Configuration.Install
namespace, 704

InstallerCollection class, 705

Installers property, Installer class, 705

Instance property,
SqlDataSourceEnumerator class,
461

instantiation using reflection, 129–133

int type

Base64 encoding and decoding using
Convert class, 62

converting to and from byte array using
BitConverter class, 60–61

Int32 value, DbType enumeration, 442

integer values, large, using, 96

interfaces and patterns, implementing, 619

cloneable type, 626–631

comparable type, 631–636

custom event argument, 659–661

custom exception class, 655–659

disposable class, 647–651

formattable type, 651–655

serializable type, 620–626

enumerable collection, 636–640

enumerable type using custom iterator,
640–647

Observer pattern, 663–668

parallel Producer-Consumer pattern,
669–671

Singleton pattern, 661–663

Interlock class, 188

Interlocked class, 187–188

■ INDEX

937

intermediate language (IL), 150

Internet connectivity, checking, 716–717

Interop class, 394

interoperability features, 597

interoperability. See unmanaged code
interoperability

interpolation methods, 892

Intersect method, 474, 477

IntPtr class, System namespace, 590, 601

IntPtr type, System namespace, 573

invalid data, preventing in forms, 326

InvalidCastException class, System
namespace, 128

InvalidOperationException class, System
namespace, 508, 590, 641

Invoke method, 354

ConstructorInfo class, 130

MemberInfo class, 140

Parallel class, 729, 730, 732

InvokeMember method, System.Type
class, 140

InvokeRequired property, 354

IP address

pinging, 507–510

resolving host name to, 504–507

IPGlobalProperties class,
System.Net.NetworkInformation
namespace, 481

IPrincipal class, System.Security.Principal
namespace, 494

IPrincipal interface, 569

representing user, 568

System.Security.Principal namespace,
564, 573

WindowsPrincipal class implements,
564

IProducerConsumerCollection interface,
669

IPStatus enumeration, 508

irregularly shaped control, creating, 376–
379

is operator, 127

IsAlive property, Thread class, 190

IsBodyHtml property, MailMessage class,
502

IsBusy property, WebBrowser control, 357

IsCancellationRequested property, 744

IsChecked property, 801

IsClosed property, 446

IsCompleted property, 734

IsConnectedToInternet property, 716

IsDBNull method, data reader classes, 446

IsDefined method, 136

IsEnabled property, 836

ISerializable class,
System.Runtime.Serialization
namespace, 660

ISerializable interface

Exception class implements, 656

GetObjectData method, 622, 656

implementing, 622, 623

System.Runtime.Serialization
namespace, 620, 656

IsExpanded property, 801

■ INDEX

938

IsFinalizingForUnload method,
AppDomain class, 124

IsGranted method, SecurityManager class,
558–559

IsInRole method, WindowsPrincipal class,
564, 565

IsKeyDown method, 904

IsKeyToggled method, 904

IsLargeArc property, 868

IsMatch method, Regex class, 68–69

IsMouseOver property, 854

IsNullable property, parameter objects,
442

isolated stores, 243–246

IsolatedStorageFile class, 244

IsolatedStorageFileStream class, 244

IsolatedStoragePermission class, 244

IsPathRooted method, Path class, 234

IsPublic property, RegexCompilationInfo
class, 71

IsReadOnly property, 206, 814

IsReady property, 208

IsReceiveOnly property, 481

IsSelected property, 903

IsSmoothJoin property, 868

IsSupported property, 493

IsSynchronized property, 194

IsSynchronizedWithCurrentItem property,
849, 850

IsVisible method

GraphicsPath class, 372

Region class, 372, 373

Item property, data reader classes, 446

ItemContainerStyleSelector property, 856

ItemsSource property, 845, 848, 849

ItemTemplate property, 845, 849

IValueConverter, to debug data bindings,
801–803

IVideoWindow interface, 395

IWshShortcut interface, 707

■J
JavaScript Object Notation (JSON), 90–93

JIT directory tree, showing in TreeView
control, 219–222

Join method, Thread class, 190

join...in...on...equals... keyword sequence,
762

Journal property, 792

JumpList class, 709–711

■K
Kernel32.dll file, 598

FormatMessage function, 608

GetVersionEx function, 603

/keycontainer compiler switch, 22

key pairs, creating and managing strongly
named, 19–20

Key property

ConsoleKeyInfo class, 94

KeyedHashAlgorithm class, 587

KeyAvailable method, Console class, 94

Keyboard class, 903

keyboard state, querying, 902–904

■ INDEX

939

KeyChar property

ConsoleKeyInfo class, 94

KeyPressEventArgs class, 329

keyed hash code, ensuring data integrity,
586–589

KeyedHashAlgorithm class, 586–587

/keyfile compiler switch, 22

keyframe-based animation, 892–894

KeyPress event, TextBox control, 329

KeyPressEventArgs class, 329

keywords, accessing program element that
has same name as keyword, 18

Kill method, Process class, 199–200

■L
Label class, 343

Label control, adding to Panel control, 370

lambda expressions, event handling with,
46

lambda operator, 46

Language property, Form class, 339

Language-Integrated Query (LINQ), 97–98

large integer values, 96

LargestWindowHeight property, Console
class, 32

LargestWindowWidth property, Console
class, 32

LastAccess value, NotifyFilters
enumeration, 246

LastAccessTime property

DirectoryInfo class, 206

FileInfo class, 206

LastChildFill property, 808

LastWrite value, NotifyFilters
enumeration, 246

LastWriteTime property

DirectoryInfo class, 206

FileInfo class, 206

Layout class, 421

layout management

UI elements

docking to edge of form, 807–808

grid layout, 809–811

horizontal or vertical stacking, 805–
806

positioning to exact coordinates,
811–812

LayoutKind class, 604

LayoutTransform property, 818

LayoutTransform property, 818

lazy initialization, 672

lazy object initialization, 671–673

LeftButton property, 861

Length property,

FileInfo class, 206, 216

StringBuilder class, 54

Less than (<) operator, 76

Less than or equal to (<=) operator, 76

let keyword, 781

Line object, 881

linear color gradients, filling shapes with,
875–878

Linear keyframe, 892

■ INDEX

940

LinearGradientBrush class, 876–877

LineGeometry class, 866

LineGeometry element, 866

LinkDemand, FullTrust permission, 545

LinkedList class, 82

LINQ

aggregating data sources, 778–780

comparing data sources, 776–778

comparing LINQ dataset results, 473–
474, 477

concatenate data sources, 767–769

converting from IEnumerable<>, 784–
787

creating custom extension methods,
782–784

creating new XML tree to use with, 298–
300

extension methods, 473, 759, 760

features, 749

filtering and selecting from multiple
data sources, 762–765

filtering contents from data source,
755–757

filtering data source by type, 757–759

filtering range of elements, 759–760

modifying XML tree with, 303

OfType extension method, 757, 758

performing LINQ queries, 468–470

performing LINQ queries with entity
types, 471, 472, 473

query XML with, 300–303

selecting multiple member values, 760–
762

using permutations of data sources,
765–767

LINQ queries

from keyword, 750

from statements, using multiple, 765

group result elements by attribute, 769–
772

group...by... keywords, 769, 772

join...in...on...equals... keyword
sequence, 762

let keyword, 781

new keyword, 760

orderby keyword, 774

performing simple, 749–755

select keyword, 750

sharing results within, 780–782

sorting results, 774–775

where keyword, 755

LINQ to XML operations, 296, 298

list boxes, scrolling, 325–326

List class, 82

list items, changing appearance of
alternate, 856–857

ListBox class, 325

ListBox property, 858–862

ListBoxItem property, 859–861

lists, dragging items from, and dropping
on canvas, 858–861

ListView control

ListViewItemSorter property, 332

Sort method, 332

sorting by any column, 332–335

■ INDEX

941

ListViewItem class, 312

ListViewItemSorter property, ListView
control, 332

literals, 66

Load event, Form class, 220

Load method

Assembly class, 112, 113, 117

SoundPlayer class, 392

XmlDocument class, 262

XslCompiledTransform class, 292

LoadFrom method, Assembly class, 111,
113

LoadSync method, SoundPlayer class, 392

LoadUserProfile property,
ProcessStartInfo class, 197

LoadXML method, XmlDocument class,
262

local network interface, 480–484

Localizable property, Form class, 339

localization, multilingual forms, 338–341

LocalMachine field, Registry class, 695

LocalMachine value, DataProtectionScope
enumeration, 593

locations, 712

lock statements, 173, 194

log files

logging data to, 254–256

processing, 256–257

logical AND (&&) operator, 15

logical operators, 15

LogonUser function, 573

long-running operations, displaying
progress of, 862–866

lookless custom controls, 826–831

LoopbackInterfaceIndex property,
NetworkInterface class, 482

Loopbackvalue, NetworkInterfaceType
enumeration, 481

LostFocus value, 835

Low property, 804

■M
MachineName property, Environment

class, 684

MACTripleDES class, 587

MailAddress class, 502

MailAddressCollection class, 501–502

MailMessage class

properties, 501

Send method, 502

SendAsync method, 502

SendCompleted event, 502

System.Net.Mail namespace, 500

main menu, using for context menu, 336–
338

Main method, 12, 149

/main switch, 3

MainWindow.Rotation property, 796, 798

MainWindow.xaml file, 800

MainWindowHandle property, Process
class, 601

makecert.exe. See Certificate Creation tool

MakeReadOnly method, SecureString
class, 590

■ INDEX

942

manipulating strings representing
filenames, 233–235

ManualResetEvent class

Reset method, 179

Set method, 179

System.Threading namespace, 178

used as a trigger, 168

MappingMode property, 876

Marshal class

FinalReleaseComObject method, 613

GetLastWin32Error method, 608

ReleaseComObject method, 613

SizeOf method, 603, 604

System.Runtime.InteropServices
namespace, 590, 603

MarshalAsAttribute class, 604

marshal-by-reference types. See MBR
types

MarshalByRefObject class

classes that derive from, 111

creating a type that does not derive
from, 111

System namespace, 106

marshal-by-value types. See MBV types

Mask property, MaskedTextBox control,
326

MaskedTextBox control, 326–329, 348

MaskInputRejected event, MaskedTextBox
control, 327

master-detail pattern, collections with,
848–854

MatrixAnimationUsingPath object, 896

Max Pool Size setting, 429

Max<> extension method, 778

MaxCapacity property, StringBuilder class,
54

MaxDegreeOfParallelism property, 737

MaximizeBox property, Form class, 341

Maximized value, ProcessWindowStyle
enumeration, 197

Maximum property, 863

MBR types, 106

MBV types

introduction, 106

passing MBV references across
application domains, 109

MD5CryptoServiceProvider class, 579

MDI applications

finding forms displayed in, 319

finding forms displayed in end, 321

MdiParent property, Form class, 319

media files, playing, 898–901

MediaCommands command, 823

MediaElement property, 900

MediaTimeline.CurrentTimeInvalidated
event, 898

Medium property, 804

MemberInfo class, 140

MemberwiseClone method, Object class,
627–628

MemoryProtectionScope enumeration,
593

■ INDEX

943

MemoryStream class, 91

converting decimal type to byte array,
59, 60

System.IO namespace, 627

ToArray method, 59

MenuItem class

CloneMenu method, 336

Tag property, 312

menus, context, 336–338

MessageBox class, Show method, 312

metacharacters, 66

metadata, 103–104

MethodBase class, 136

methods

adding to types, without modifying,
675–677

asynchronous execution of, 154–163

dynamically calling, 677–679

executing, at specific time, 166, 167

executing, using new thread, 169–172

executing, using Thread Pool class,
151–154

executing, with WaitHandle class, 167–
169

periodic execution of, 163–166

Microsoft .NET Framework. See .NET
Framework

Microsoft ADO.NET, 423

Microsoft Office Document Imaging
(MODI), 420–421

Microsoft Root Certificate Program
Members, 27

Microsoft.Win32 namespace

Registry class, 692, 695

RegistryKey class, 695

RegistryValueKind enumeration, 696

RegistyValueKind enumeration, 693

Microsoft.Win32.OpenFileDialog file, 823

Microsoft.WindowsAPICodePack.Dialogs.
TaskDialog class, 717–718

Microsoft.WindowsAPICodePack.Net.Net
workListManager class, 716

MIME standards, 65

Min Pool Size setting, 429

Min<> extension method, 778

MinimizeBox property, Form class, 341

Minimized value, ProcessWindowStyle
enumeration, 197

minimum permission requests, 558

Missing field, Type class, 614

MissingMethodException class, 115

Mode attribute, 833,–835

Mode property, 833

MODI. See Microsoft Office Document
Imaging (MODI)

Modifiers property, ConsoleKeyInfo class,
94

Module.FindTypes method, 126

Module.GetType method, 126

Module.GetTypes method, 126

modules, 9–10

Monitor class

compared to Mutex class, 182

constructing in a using statement, 203

■ INDEX

944

Enter method, 172–173

Exit method, 172–173

Pulse method, 173–174

PulseAll method, 173–174

synchronize the execution of multiple
threads using a Monitor, 172

System.Threading namespace, 173

Wait method, 174

monitoring file system, 246

Monitors, 173

MouseDown event, 343, 351

MouseMove event, 343, 373

MouseUp event, 343

moveable sprite, creating, 379–383

MoveNext method, IEnumerator interface,
641

MoveTo method, 214

multilingual forms, 338–341

multimedia, 369

user input and

dragging items from lists and
dropping them on canvas, 858–861

playing media files, 898–901

querying keyboard state, 902–904

multiple document interface (MDI)
applications, 307

multiple threads

execution of, 149

synchronize execution of

using a Monitor, 172–178

using a Mutex, 182–184

using a Semaphore, 185–187

using an event, 178–182

Multiselect property, OpenFileDialog
class, 241

multitasking, 730

multithreaded applications

BackgroundWorker threads, executing
methods asynchronously using,
862–866

creating, 149

updating user interface, 354–356

mutable strings, 600

Mutex, 184

compared to Monitor, 182

execution synchronization using, 201

ReleaseMutex method, 182

syncronization execution of multiple
threads using, 182–184

System.Threading namespace, 182, 201

used as a trigger, 168

MyCertificate.pfx file, 27

■N
Name property

DirectoryInfo class, 206

FileInfo class, 206

NetworkInterface Class, 481

RegexCompilationInfo class, 71

XmlNode class, 262

XmlReader class, 278

named pipes, 257

■ INDEX

945

Namespace property,
RegexCompilationInfo class, 71

Navigate method, WebBrowser control,
357

NavigationCommands command, 823

.NET assemblies, preventing
decompilation of, 30, 31

.NET classes, creating schemas for, 290–
291

.NET clients

using ActiveX controls, 615–616

using COM components, 610–613

.NET Compact Framework Data Provider
for SQL Server CE, 423

.NET components

exposing through COM, 616–617

.NET Framework

accessing ADO objects, 611

data providers, 423

data types compared to XML schema
data types, 281

generics capabilities of, 83

integration with XML, 261

method overloading, 614

PInvoke, 598

security policy

optional permission request, 553

refuse request, 553

unmanaged code interoperability, 597–
617

.NET Framework Application Settings
functionality, 322

.NET Framework Data Provider for ODBC,
423

.NET Framework Data Provider for OLE
DB, 423

.NET Framework Data Provider for Oracle,
423

.NET Framework Data Provider for SQL
Server, 423

.NET Remoting system, 106

Net.NetworkListManager class, 716

NetFx40_LegacySecurityPolicy
configuration element, 543

NetworkAddressChanged event,
NetworkChange class, 484

NetworkAvailabilityChanged event,
NetworkChange class, 484

NetworkAvailabilityChangedEventHandler
delegate, 484

NetworkChange class, 484

NetworkCredential class

implements ICredentialsByHost
interface, 500

System.Net namespace, 498

networking and remoting

calling a web method asynchronously
end, 526

calling WCF service, 532–534

communicating using TCP, 510–515

communicating using UDP, 523

creating SOAP-based web service, 526–
532

detecting changes in network
connectivity, 484–486

■ INDEX

946

downloading a file and process it using
stream, 490–492

downloading data over HTTP or FTP,
486–490

getting HTML page using
authentication, 497–499

manipulation of URIs, 538–541

multithreaded TCP server for
asynchronous communications,
515–523

obtaining information about local
network interface, 480–484

pinging an IP address, 507–510

processing content of Atom or RSS
feed, 534–538

resolving a host name to an IP address,
504–507

respond to HTTP requests from within
application, 492–497

sending e-mail using SMPT, 499–504

NetworkInterface class

example, 482, 484

GetAllNetworkInterfaces method, 480,
484

members, 481

System.Net.NetworkInformation
namespace, 480

NetworkInterfaceComponent
enumeration, 482

NetworkInterfaceType enumeration, 481

NetworkInterfaceType property,
NetworkInterface Class, 481

NetworkStream, 510

NetworkStream class

BeginRead method, 515

BeginWrite method, 515

System.Net.Sockets namespace, 510,
515

UDP applications cannot use, 524

new Document() method, 421

new keyword, 35, 760

NextResult method, data reader classes,
446

nodes

inserting, into XML documents, 266–
268

retrieving from specific namespace,
272–274

NodeType property

XmlNode class, 262

XmlReader class, 278

None property, 792, 804

None value, 880, 883

nonremotable types, 106

NonSerializedAttribute class

implementing ISerializable interface,
622

System namespace, 620

NoPrincipal value, PrincipalPolicy
enumeration, 570

Normal value, ProcessWindowStyle
enumeration, 197

Northwind sample database, 425

NotDataBindable property, 792

NotifyFilter property, FileSystemWatcher
class, 246

NotifyFilters enumeration, 246

■ INDEX

947

NotifyIcon control, Icon property, 346, 348

notifyPhaseEnd method, 740

Now property, DateTime structure, 166

NumberFormatInfo class, 652

■O
obfuscators, 31

Object class, 127

GetType method, 127

MemberwiseClone method, 627–628

System namespace, 81, 626

ToString method, 562

object members, dynamically calling, 677–
679

object serialization, using JSON, 90–93

object type, testing, 127–129

ObjectDisposedException class, 648

ObjectHandle class, 110

reference to new object wrapped in,
117

System.Runtime.Remoting namespace,
109

objects

instantiation of, using reflection, 129,
130, 131, 133

lazy object initialization, 671–673

ObservableCollection<> class, 849

Observer pattern, implementing, 663–668

OCR. See optical character recognition
(OCR)

OdbcCommand class, System.Data.Odbc
namespace, 437

OdbcConnection class, System.Data.Odbc
namespace, 425

OdbcConnectionStringBuilder class,
System.Data.Odbc namespace,
432

OdbcDataReader class, System.Data.Odbc
namespace, 445

OdbcFactory class, System.Data.Odbc
namespace, 457

OdbcParameter class, System.Data.Odbc
namespace, 441

Offset property, 876

OfType extension method, 757–758

OleDbCommand class,
System.Data.OleDb namespace,
437

OleDbConnection class

example, 426

System.Data.OleDb namespace, 425

OleDbConnectionStringBuilder class,
System.Data.OleDb namespace,
432

OleDbDataReader class,
System.Data.OleDb namespace,
445

OleDbFactory class, System.Data.OleDb
namespace, 458

OleDbParameter class, System.Data.OleDb
namespace, 441

OnApplyTemplate method, 829

OnClosed method, Form class, 319

OnClosing method, Form class, 319

OnCompletedRead callback, 227

OnContinue method, ServiceBase class,
700

■ INDEX

948

OnCustomCommand method,
ServiceBase class, 701

OnDeserializedAttribute class, 622

OnDeserializingAttribute class, 621

OneTime value, 834

one-way binding, 833

OneWay value, 834

OneWayToSource value, 834

OnLoad method, Form class, 319

OnPause method, ServiceBase class, 700

OnPowerEvent method, ServiceBase class,
700

OnPropertyChanged method, 839–841

OnSerializedAttribute class, 621

OnSerializingAttribute class, 621

OnSessionChange method, ServiceBase
class, 701

OnShutdown method, ServiceBase class,
700

OnStart method, ServiceBase class, 700

OnStop method, ServiceBase class, 700

Open method

connection objects, 426

FileInfo class, 213

OpenExeConfiguration method,
ConfigurationManager class, 434

OpenExisting method, EventWaitHandle
class, 179

OpenFileDialog, 242

OpenFileDialog class, 241

OpenFileDialog command, 826

OpenForms property, Application class,
315, 316

OpenRead method

FileInfo class, 213

WebClient class, 486, 490

OpenReadAsync method, WebClient class,
486

OpenReadCompleted event, WebClient
class, 486

OpenRemoteBaseKey method, RegistryKey
class, 696

OpenSubKey method, RegistryKey class,
696

OpenText method, FileInfo class, 213

OpenWrite method, FileInfo class, 213

operating system, determining current,
686

OperatingSystem class

properties, 686

System namespace, 684

OperationalStatus enumeration, 481

OperationalStatus property,
NetworkInterface class, 481

OperationCanceledException, 744

OperationContractAttribute attribute, 526–
527

operator keyword, 41

operators, overloading, 41–43

optical character recognition (OCR), 419–
421

optional parameters, using, 673,–675

optional permission request, 553

optional permission requests, 552, 558

■ INDEX

949

OptionalFieldAttribute class, 622

Options property, RegexCompilationInfo
class, 71

Options value, RegexOptions
enumeration, 71

OR (|) arithmetic operator, 211

OR (||) operator, 15

OracleClientFactory class,
System.Data.OracleClient
namespace, 458

OracleCommand class,
System.Data.OracleClient
namespace, 437

OracleConnection class,
System.Data.OracleClient
namespace, 425

OracleConnectionStringBuilder class,
System.Data.OracleClient
namespace, 432

OracleDataReader class

methods, 446

System.Data.OracleClient namespace,
445

OracleParameter class,
System.Data.OracleClient
namespace, 441

orderby keyword, 98, 774

Orientation property, 805, 806

OSVersion property, Environment class,
684

OSVersionInfo class, 604

out modifier, 679

OuterXml property, XmlNode class, 263

Output value, ParameterDirection
enumeration, 442

/out switch, 3

overloading methods, .NET Framework,
614

overloading operators, 41–43

OverrideMetadata method, 828

OverridesInheritenceBehaviour property,
792

OverwritePrompt property, SaveFileDialog
class, 241

Owner property, IVideoWindow interface,
395

■P
P/Invoke, 545

Pad value, 877

Paint event handler, Form class, 373, 387

Panel class, 309, 828

Panel control

adding Label control, 370

AutoScroll property, 383

placing PictureBox control inside, 383

System.Windows.Forms namespace,
383

Parallel class, 729–732

Parallel Producer-Consumer pattern, 669–
671

parallel programming, 729

advantages and disadvanatges of, 729

canceling tasks, 743–745

chaining tasks together, 738–739

cooperative algorithms, 739–741

exception handling in tasks, 741–743

■ INDEX

950

parallel processing elements in
collection, 736–738

perform parallel tasks, 729–732

returning results from tasks, 732–734

sharing data between tasks, 745–747

waiting for tasks to complete, 734–736

parallel properties, animating, 889–892

Parallel.ForEach method, 736

ParallelOptions.MaxDegreeOfParallelism
property, 736

ParallelTimeline class, 890

ParallelTimeline objects, 886, 890

parameter objects, 442

ParameterDirection enumeration, 442

ParameterizedThreadStart delegate, 169–
170

ParameterName property, 442

parameters, using optional, 614–615, 673–
675

Parameters collection

Add method, 441–442, 457

IDbCommand interface, 441–442, 457

Parameters property, 438

Parent property, DirectoryInfo class, 207

parentheses operator (), 15

Parse method, DateTime class, 72, 73

ParseExact method, DateTime class, 72, 73

PART_Browse element, 829

PART_ElementName element, 829

PART_Indicator element, 829

PART_Track element, 829

partially trusted code, 544–547

Password property, ProcessStartInfo class,
197

passwords, calculating the hash code of,
577–581

Paste method, 815

path animation, 894–897

Path attribute, 837

Path class

ChangeExtension method, 233

GetFileName method, 233

GetInvalidPathChars method, 234

GetRandomFileName method, 249

GetTempFileName method, 238, 249

methods, 234

System.IO namespace, 233, 236, 238,
249

Path element, 871

path names, invalid, 234

Path object, 866

Path property, FileSystemWatcher class,
246

PathAnimationSource value, 896

PathAnimationSource.Angle object, 896

PathFigure element, 868

PathGeometry class, 866

PathGeometry class, 867

PathGeometry element, 866, 868

paths

determining whether path is directory
or file, 235–236

relative, 236, 237

■ INDEX

951

Pattern property, RegexCompilationInfo
class, 71

patterns, filling shapes with, 882–885

patterns. See interfaces and patterns, 619

Pause method, 412

performance counters

creating and writing to, 720–724

reading, 724–726

PerformanceCategory.Exists method, 721

PerformanceCounter class, 721, 724

PerformanceData field, Registry class, 695

permcalc -sandbox Recipe11-06.exe
command, 557

Permcalc.exe, 554

permission refusal requests, 552

permission requests, 549–552

minimum, 558

optional, 552–553, 558

permissions

determining specific permissions at
runtime, 558–559

ensuring runtime grants, to assemblies,
549–552

identity, 560–561

limiting, granted to assemblies, 552–
554

viewing, required by assemblies, 554–
557

Permissions Calculator. See Permcalc.exe

Permissions View tool. See Permview.exe

PermissionSet class, System.Security
namespace, 556

PermissionSetAttribute class, 561

permutations, of data sources, 765–767

permview Recipe11-06.exe command, 556

Permview.exe, 554

Person class, 837, 839, 845, 850, 853

Personal Information Exchange (PFX) file,
27

Personal Information Exchange file, 27

PersonCollection class, 849, 850, 852, 853

PhysicalAddress class, 482

PIA (primary interop assembly), 611

PictureBox control

Handle property, 395

placing inside Panel control, 383

SizeChanged event, 396

System.Windows.Forms namespace,
383

Ping class

PingCompleted event, 508

Send method, 507

SendAsync method, 508

System.Net.NetworkInformation
namespace, 507

PingCompleted event, Ping class, 508

PingCompletedEventHandler delegate,
508

pinging an IP address, 507–510

PingOptions class, 507

PingReply class, 508

PInvoke, 598

pipe character (|), 241

■ INDEX

952

pipe client, 257

pipe server, 257

Platform Invoke. See PInvoke

Platform property, OperatingSystem class,
686

PlatformNotSupportedException class,
493

Play method

SoundPlayer class, 392

SystemSound class, 391

playing, media files, 898–901

PlaySync method, SoundPlayer class, 392

Point property, 868

Point3 property, 868

Points property, 867

PolicyException class, 550–551, 569

polling, 156, 453

Polygon class, 866–867

Pooling setting, 429

Port property, SmtpClient class, 500

ports, COM, accessing, 248

PowerUser value, WindowsBuiltInRole
enumeration, 565

Prefixes property, HttpListener class, 493

PresentationTraceLevel.SetTraceLevel
static method, 803

PresentationTraceSource.TraceLevel
property, 805

PresentationTraceSources.TraceLevel
property, 804

PreviewMouseLeftButtonDown event, 858,
859, 861

PreviewMouseMove event, 858, 861

Primary Interop Assembly (PIA), 610

primary interop assembly. See PIA
(primary interop assembly)

PrincipalPermission class,
System.Security.Permissions
namespace, 568

PrincipalPermissionAttribute class,
System.Security.Permissions
namespace, 568

PrincipalPolicy enumeration, 569

PrintDialog class, 399

attaching to PrintDocument class, 402

Document property, 402

System.Windows.Forms namespace,
402

PrintDocument class, 399, 410

attaching PrintDialog class, 402

BeginPrint event, 401

custom class inheriting from, 405, 406

DefaultPageSettings property, 402

EndPrint event, 401

PrinterSettings property, 402

PrintPage event, 401, 403, 404, 406

System.Drawing.Printing namespace,
401

PrinterName property, PrinterSettings
class, 399

PrinterSettings class, 398–399

PrinterSettings property, PrintDocument
class, 402

printing, 369

managing print jobs, 412–417

■ INDEX

953

multipage document, 404–408

retrieving information about printers,
398–401

showing a dynamic print preview, 410–
412

simple document, 401–404

wrapped text, 408–410

PrintOperator value, WindowsBuiltInRole
enumeration, 565

PrintPage event, PrintDocument class,
401, 403, 404, 406

PrintPageEventArgs class, 404, 406

PrintPreviewControl class

Document property, 411

System.Windows.Forms namespace,
410

PrintPreviewDialog class

Document property, 411

Show method, 411

System.Windows.Forms namespace,
410

PrintTestPage method, Win32_Printer
class, 417

private key file (.pvk), 27

private keys, 20

private methods, renaming, 31

PrivateBinPath property,
AppDomainSetup class, 105

privileges, obtaining elevated, 726–727

Process class, 196

CloseMainWindow method, 199, 200

Handle property, 601

HasExited property, 200

Kill method, 199, 200

MainWindowHandle property, 601

methods, 199

Start method, 196, 197

System.Diagnostics namespace, 196,
601

WaitForExit method, 197, 200

processes, 149, 150

communicating between, 257

showing progress of, 862–866

starting, 195–199

terminating a process, 199–201

ProcessInfo class, System.Diagnostics
namespace, 196

ProcessorCount property, Environment
class, 684

ProcessStartInfo class, 726

properties, 196, 197

System.Diagnostics namespace, 590

ProcessWindowStyle enumeration, 197

Producer-Consumer pattern,
implementing, 669–671

program elements, inspecting attributes
of, 136, 137

ProgressBar control, 863

ProgressChanged event, 862–863

ProgressChanged event handler, 862

ProgressChangedEventArgs class, 863

ProgressPercentage class, 863

properties

animating, 886–889

animating parallel, 889–892

■ INDEX

954

automatically implemented, declaring,
39–41

dynamically calling, 677, 679

Property property, 793

PropertyChanged value, 835, 838, 841, 842,
843, 850

Protect method, ProtectedMemory class,
593

protected configuration, 433

ProtectedData class

example, 594, 596

System.Security.Cryptography
namespace, 592

Unprotect method, 593

ProtectedMemory class

Protect method, 593

System.Security.Cryptography
namespace, 592

Unprotect method, 593

ProtectSection method,
SectionInformation class, 434

ProviderName property,
ConnectionStringSettings class,
434

proxies, 106

public keys, 20

Publisher class, System.Security.Policy
namespace, 560

PublisherIdentityPermission class, 560–
561

PublisherIdentityPermissionAttribute
class, 561

Pulse method, Monitor class, 173–174

PulseAll method, Monitor class, 173–174

■Q
Quartz library, 394

queries. See LINQ queries

Queue class, System.Collections.Generic
namespace, 79, 82

QueueUserWorkItem method, ThreadPool
class, 151

■R
R property, 874

radial color gradients, filling shapes with,
875–878

RadialGradientBrush class, 876–877

RadiusX property, 877

RadiusY property, 877

Random class, System namespace, 576

random filenames, 249–250

random numbers, creating
cryptographically , 575–577

RandomNumberGenerator class, 576

Range<> extension method, 759–760

RBS. See role-based security (RBS)

RCW (runtime callable wrapper)

creating, 611

creating for ActiveX controls, 615

generating using Visual Studio, 611

options, 610

Read method

BinaryReader class, 225

Console class, 93

data reader classes, 446

■ INDEX

955

StreamReader class, 222, 223

XmlReader class, 278, 281

ReadDecimal method, BinaryReader class,
225

ReadElementString method, XmlReader
class, 280

reading XML. See XML processing

ReadKey method, Console class, 93

ReadLine method

Console class, 93

StreamReader class, 222, 223

ReadObject method, 91

ReadString method, BinaryReader class,
225

ReadToDescendant method, XmlReader
class, 280

ReadToEnd method, StreamReader class,
223

ReadToFollowing method, XmlReader
class, 280

ReadToNextSibling method, XmlReader
class, 280

ready queue, 173–174

Rectangle class, 866–867

Rectangle struct

Contains method, 372

System.Drawing namespace, 372

RectangleGeometry class, 866

RectangleGeometry element, 866

redraw speed, using double buffering to
increase, 386–389

ref keyword, 187

reference counting, 613

/reference compiler switch, 11

Reflect value, 877

reflection, 103–104

inspecting attributes of program
element, 136–137

instantiating an object using reflection,
129–133

invoking type members using, 140, 142

Refresh method

DirectoryInfo class, 208

FileInfo class, 208

refuse request, 553

Regex class

CompileToAssembly method, 70–71

creating instance that is compiled to
MSIL, 71

IsMatch method, 68– 69

System.Text.RegularExpressions
namespace, 68–70

testing multiple strings, 69

RegexCompilationInfo class, 71

RegExDesigner.NET, 6

RegexOptions enumeration

Compiled option, 70

Options value, 71

System.Text.RegularExpressions
namespace, 70

Region class

creating object from GraphicsPath, 377

IsVisible method, 372–373

System.Drawing namespace, 372–373,
376

■ INDEX

956

Region property

Control class, 376, 377, 379

Form class, 376, 377

Register method, 791

RegisteredWaitHandle class, 168

RegisterWaitForSingleObject method,
ThreadPool class, 167–68

Registry class

example, 693, 695

fields, 695

GetValue method, 692

Microsoft.Win32 namespace, 692, 695

SetValue method, 692

RegistryKey class, 696

example, 697, 699

GetSubKeyNames method, 696

implements IDisposable, 697

methods, 696

Microsoft.Win32 namespace, 695

OpenRemoteBaseKey method, 696

OpenSubKey method, 696

SubKeyCount property, 696

RegistryValueKind enumeration, 696

RegistyValueKind enumeration, 693

regular expressions

commonly used, 67

using compiled, 70–72

validating input, 65–69

relative paths, 236–238

Release method, Semaphore class, 185

ReleaseComObject method, Marshal class,
613

ReleaseMutex method, Mutex class, 182

RemoveAt method, SecureString class, 589

Renamed event, FileSystemWatcher class,
246

RenamedEventArgs class, 246

RenderTransform property, 818

RenderTransformOrigin property, 818

Repeat value, 877

Replace method, FileInfo class, 214

Replicator value, WindowsBuiltInRole
enumeration, 565

ReplyTo property, MailMessage class, 502

ReportProgress class, 862–863

ReportProgress method, 862–863

Request property, HttpListenerContext
class, 493

RequestAdditionalTime method,
ServiceBase class, 700

RequestHandler method, HttpListener
class, 494

RequestMinimum value, SecurityAction
enumeration, 551

RequestRefuse value, SecurityAction
enumeration, 553

Reset method

IEnumerator interface, 641

ManualResetEvent class, 179

ResetAbort method, Thread class, 192

ResetColor method, Console class, 33

ResourceDictionary class, 831

ResourceDictionary objects, 799

■ INDEX

957

ResourceDictionary property, 799

resources, application-wide, 799–801

Response property, HttpListenerContext
class, 493–494

Resume method

Win32_Printer class, 412

Win32_PrintJob class, 412

ResumeLayout method, Control class, 309

retrieving

handles, 602

unmanaged error information, 610

ReturnValue value, ParameterDirection
enumeration, 442

reusable shapes, 871–872

ReverseString method, StringBuilder class,
55

RGB standard, 873

rich text, user input in form of, 813–817

RichTextBox class, 242

RichTextBox control, 814–817

RichTextBox property, 813

RichTextBox.Document property, 813

RIPEMD160Managed class, 579

RNGCryptoServiceProvider class

as wrapper for CryptGenRandom
function, 576

example, 576, 577

System.Security.Cryptography
namespace, 575

role-based security (RBS), 543

Root property, DirectoryInfo class, 207

rotated controls, displaying, 818–820

RotateTransform property, 818

RotationAngle property, 868

RoutedEventArgs class, 904

RowCount property, TableLayoutPanel
container, 335

RowDefinition element, 810

rows, changing appearance of items in
alternate, 856–857

RsaProtectedConfigurationProvider class,
434

RSS feeds, processing content of, 534–538

Rss20FeedFormatter class, 534

Run method, 5, 699, 704

runas command, 726

RunInstallerAttribute class,
System.ComponentModel
namespace, 704

Running method, ThreadState class, 170

runtime

locating and loading assemblies by,
112–113

type instances and, 128

unloading assemblies or application
domains at, 124

runtime callable wrapper. See RCW

runtime environment information, 684–
688

RunWorkerAsync method, 863

RunWorkerCompleted event, 862–863

RunWorkerCompletedEventArgs class, 863

RunWorkerCompletedEventArgs
parameter, 863

■ INDEX

958

■S
SameLogon value,

MemoryProtectionScope
enumeration, 593

SameProcess value,
MemoryProtectionScope
enumeration, 594

Save method

IWshShortcut interface, 707

XmlDocument class, 266

SaveFileDialog class, 241

SavePolicy method, SecurityManager
class, 548, 549

ScA property, 874

ScB property, 874

ScG property, 874

schemas. See also XML schemas

creating for .NET classes, 290–291

generating a class from, 291–291

validating documents against a
schema, 281–286

Schemas property, XmlDocument class,
286

SCM (Windows Service Control Manager),
700

scollable images, creating, 383–385

ScR property, 874

screen capture, performing, 385–386

scRGB standard, 874

SearchConditionOperation class, 713

SearchConditionOperation enumeration,
712

SearchOption enumeration, 230

SectionInformation class, 434

SecureString class, 589–590

security, 543–544

allow partially trusted code to use
strongly-named assemblies, 544–
547

determining at runtime if code has
specific permission, 558–559

determining if user is member of
Windows group, 564–568

disabling code access security, 547–548

disabling execution permission checks,
548–549

ensuring runtime grants specific
permissions to assembly, 549–552

impersonating a Windows user, 572–
575

inspecting assembly’s evidence, 562–
564

limiting permissions granted to
assembly, 552–554

optional permission request, 553

refuse request, 553

restricting which user can execute
code, 568–572

restricting who can extend classes and
override members, 559–562

viewing permissions required by
assembly, 554–558

working with security-sensitive strings
in memory, 589–592

Security value, NotifyFilters enumeration,
246

SecurityAction enumeration

InheritanceDemand value, 560

■ INDEX

959

RequestMinimum value, 551

System.Security.Permissions
namespace, 553

SecurityException class, System.Security
namespace, 550, 554, 558, 568

SecurityIdentifier class,
System.Security.Principal
namespace, 565

SecurityManager class

CheckExecutionRights property, 548–
549

IsGranted method, 558–559

SavePolicy method, 548–549

System.Security namespace, 558

SecurityPermission class, 551

ControlPolicy element, 548

ControlPrincipal element, 569, 573

Execution element, 548

select keyword, 98, 301, 750

SelectAll method, 815

SelectedPath property,
FolderBrowserDialog class, 241

SelectFromCollection method,
X509Certificate2UI class, 498

Selection property, 814

SelectNodes method, 275

SelectSingleNode method, 275

SelectStyle method, 856

self-hosting, 527

Sells, Chris, 66

Semaphore class

Release method, 185

synchronize execution of multiple
threads using, 185–187

System.Threading namespace, 185

used as a trigger, 168

Send method

MailMessage class, 502

Ping class, 507

SendAsync method

MailMessage class, 502

Ping class, 508

SendCompleted event, MailMessage class,
502

SequenceEquals<> extension method, 776

sequential layout, 604

serial ports, sending data to, 248

serializable objects, storing to a file, 87

serializable types, implementing, 620–626

SerializableAttribute class, 620

implementing ISerializable interface,
622

System namespace, 111, 620, 656, 660

serialization

attributes, 621

object, using JSON, 90–93

XML serialization with custom objects,
286–290

SerializationException class,
System.Runtime.Serialization
namespace, 121

SerializationInfo class, 622

Serialize method, IFormatter interface, 87

■ INDEX

960

SerialPort class, System.IO.Ports
namespace, 248

service contracts, 527

service host, 527

service implementation, 527

service proxy, dynamically generated,
calling WCF service using, 532–534

ServiceBase class

methods, 700

properties, 700–701

RequestAdditionalTime method, 700

Run method, 699, 704

System.ServiceProcess namespace, 699

ServiceContractAttribute attribute, 526–
527

ServiceDependsUpon property,
ServiceInstaller class, 705

ServiceInstaller class, 705

ServiceModel Metadata Utility Tool
(svcutil.exe), 527

ServiceName property

ServiceBase class, 701

ServiceInstaller class, 705

ServicePack property, OperatingSystem
class, 686

ServiceProcessInstaller class,
System.ServiceProcess
namespace, 704

SessionChangeDescription class,
System.ServiceProcess
namespace, 701

Set method, 179

Set Registry tool, 29

SetAccessControl method, File class, 250

SetAt method, SecureString class, 589

SetCurrentDirectory method, Directory
class, 236

SetData method, AppDomain class, 121–
122

SetDefaultPrinter method, Win32_Printer
class, 417

SetLastError field, DllImportAttribute
class, 608

SetMaxThreads method, ThreadPool class,
153–154

SetOccupationCommand class, 839–843

SetPrincipalPolicy method, AppDomain
class, 569

setreg.exe. See Set Registry tool

SetStyle method, Form class, 387

SetThreadPrincipal method, AppDomain
class, 569

SetValue method

Registry class, 692

RegistryKey class, 697

SetWindowPosition method,
IVideoWindow interface, 395

SetWindowSize method, Console class, 33

SHA1CryptoServiceProvider class, 579

SHA1Managed class, 579

SHA256Managed class, 579

SHA384Managed class, 579

shallow copy, 627

Shape class, 867

Shape property, 873

■ INDEX

961

shapes

creating manipulatible, 379–382

drawing

two-dimensional, 866–871

using solid colors, 874–875

filling

 using solid colors, 873–874

with images, 879–882

with linear color gradients, 875–878

with patterns, 882–885

with textures, 882–885

hit testing, 372–376

reusable, 871–872

shared data, synchronize access to, 187–
190

ShellSearchFolder, 711

ShellSearchFolder class, 712

Shift value, ConsoleModifiers
enumeration, 94

shortcuts, creating on Desktop or Start
menu, 706–709

Show method

MessageBox class, 312

PrintPreviewDialog class, 411

Sign Tool, 26, 27

SignalAndWait method

Barrier class, 739–740

WaitHandle class, 179

simple types, XML schemas, 282

singing authority, 20

single quotes, 14

Singleton pattern, implementing, 661–663

Site class, System.Security.Policy
namespace, 560

SiteIdentityPermission class,
System.Security.Permissions
namespace, 560

Size property, 868

Size value, NotifyFilters enumeration, 246

SizeChanged event, PictureBox control,
396

SizeOf method, Marshal class, 603–604

Skip<> extension method, 759–760

Slider control, 833–835

Slider.ValueChanged property, 898

SMTP, sending e-mail, 499–504

SmtpClient class

example, 502–504

properties, 500

System.Net.Mail namespace, 500

sn.exe. See Strong Name tool

SOAP-based web service, creating, 526–532

SoapFormatter class, 87, 287

SocketPermission class, 550

SocketPermissionAttribute class, 550

software publisher certificate (SPC), 26–29

Software Publisher Certificate Test tool, 28

solid colors, drawing and filling shapes
using, 873–874

SolidColorBrush class, 873–874

SolidColorBrush objects, 874

Sort method

Array class, 77–78

■ INDEX

962

ArrayList class, 77–78, 632

ListView control, 332

sorting arrays, 77–79

sound

playing simple beep or system sound,
391–392

playing sound files, 393–395

playing WAV files, 392–393

SoundPlayer class, 391–392

source code, selectively include at build
time, 14–17

Source property, 835, 847, 879

SPC (.spc) file, 27

SpecialFolders property, WshShell class,
707

speech synthesis, 417–419

SpeechSynthesizer class, 418

Speed property, NetworkInterface class,
481

Spline keyframe, 892

SpreadMethod property, 876

sprites, creating moveable, 379–383

SQL commands

executing, 436–441

using parameters in, 441–445

SQL Server

discover all instances on network, 460–
462

performing asynchronous database
operations against, 452–456

SQL Server 2008 Express Edition, 425

SQL Server query

obtaining XML document from, 448–
452

processing results with data reader,
445–448

SqlCeCommand class,
System.Data.SqlServerCe
namespace, 437

SqlCeConnection class,
System.Data.SqlServerCe
namespace, 425

SqlCeDataReader class,
System.Data.SqlServerCe
namespace, 445

SqlCeParameter class,
System.Data.SqlServerCe
namespace, 441

SqlClientFactory class, 459–459

SqlCommand class

ExecuteXmlReader method, 448–450

methods, 452

System.Data.SqlClient namespace, 437

SqlConnection class

example, 426

System.Data.SqlClient namespace,
425–453

SqlConnectionStringBuilder class

parsing and constructing SQL Server
connection strings, 432–433

System.Data.SqlClient namespace, 432

SqlDataAdapter class, 462

SqlDataReader class

methods, 446

System.Data.SqlClient namespace, 445

■ INDEX

963

SqlDataSourceEnumerator class, 461

GetDataSources method, 460

Instance property, 461

System.Data.SqlClient namespace, 460

SqlParameter class, System.Data.SqlClient
namespace, 441

Stack class, System.Collections.Generic
namespace, 82

Stack collection, ToArray method, 79

StackPanel property, 805–806

Start method

HttpListener class, 493

Process class, 196–197

Thread class, 169–170, 192

StartNew method, 732

StartPoint property, 868, 876

StartPoint property, 876

StartProcess method, AsyncProcessor
class, 227

StartType property, ServiceInstaller class,
705

static classes, 34, 675

static keyword, 34, 675

Status property, PingReply class, 508

Stop method, WebBrowser control, 357

stored procedure

executing, 436–441

using parameters in, 441–445

StoredProcedure value, CommandType
enumeration, 437

Storyboard objects, 886

Storyboard.Completed event, 890

Stoyboard.Seek method, 898

str parameter, 675

Stream class, System.IO namespace, 84,
111, 486, 581, 587

stream-based classes, 205

StreamingContext class, 622

StreamReader class

Read method, 222–223

ReadLine method, 222–223

ReadToEnd method, 223

System.IO namespace, 490

StreamWriter class

System.IO namespace, 222

Write method, 222

WriteLine method, 223

Stretch property, 880

Stretch property, 882

String class

as connection strings, 431

Format method, 652

immutability of objects, 54

insecurity of, 589

System namespace, 627, 652

String objects, 54–55

String value, DbType enumeration, 442

StringBuilder class, 295

Capacity property, 54

Length property, 54

MaxCapacity property, 54

ReverseString method, 55

■ INDEX

964

System.Text namespace, 54, 130, 584

ToString method, 54

strings. See also mutable strings

creating dates and times from, 72–74

fixed-length strings, 604

manipulation of, 54–56, 233–234

security-sensitive, 589–592

using alternate character encoding, 56–
59

Stroke property, 873–874, 876

Strong Name tool, 19–26

verifying assembly’s strong name, 23

-Vr switch, 25

-Vu switch, 26

strong names, 11, 21–26

strongly typed collections, using, 81–83

strongly-named assemblies

allowing partially trusted code to use,
544–547

delay signing, 24–26

verifying that assembly has not been
modified, 23–24

strongly-named key pairs, creating and
managing, 19–21

StrongName class, System.Security.Policy
namespace, 560

StrongNameIdentityPermission class, 560–
561

StrongNameIdentityPermissionAttribute
class, 561

StructLayoutAttribute class, 603

StructLayoutAttribute class, 603

StructLayoutAttribute class, 604

styles

controls, changing appearance on
mouse over, 854–855

list items, changing appearance of
alternate, 856–857

StyleSelector class, 856

Subject property, MailMessage class, 502

SubjectEncoding property, MailMessage
class, 502

SubKeyCount property, RegistryKey class,
696

SubPropertiesDoNotAffectRender
property, 792

subtraction (-) operator, 75

Success value, IPStatus enumeration, 508

SuccessAudit value, EventLogEntryType
enumeration, 690

Sum<> extension method, 778

Supports method, NetworkInterface class,
482

SupportsMulticast property,
NetworkInterface class, 481

SuppressFinalize method, GC class, 648

SuspendLayout method, Control class, 309

SweepDirection property, 868

synchronization, 149–150

access to shared data, 187–190

execution of multiple threads using a
Monitor, 172–178

execution of multiple threads using a
Mutex, 182–184

execution of multiple threads using a
Semaphore, 185–187

■ INDEX

965

execution of multiple threads using an
event, 178–182

Synchronized method, 194

SyncRoot property, 194–195

SyndicationFeed class, 534

SyndicationFeed.Items property, 535

SyndicationFeedFormatter.Feed property,
534–535

SyndicationFeedFormatter.Items
property, 534

SyndicationFeedFormatter.ReadFrom
method, 535

SyndicationFeedItem class, 534

SyndicationItem class, 536

System class, 712–13

System namespace

Activator class, 133

AppDomain class, 104, 569

ArgumentException class, 80, 432, 493

ArgumentNullException class, 130, 655

ArgumentOutOfRangeException class,
54, 655

AsyncCallback delegate, 453

AsynchCallback delegate, 493

Attribute class, 133–134

AttributeTargets enumeration, 134

AttributeUsageAttribute class, 133

BitConverter class, 59, 583

CannotUnloadAppDomainException
class, 124

Console class, 32, 93, 651

ConsoleColor enumeration, 32

ConsoleKeyInfo class, 93

Convert class, 62

DateTime class, 53, 72

DateTime structure, 166, 206, 631

Enum class, 129

Environment class, 12, 684

Environment.SpecialFolder
enumeration, 685

EnvironmentVariableTarget
enumeration, 688

EventArg class, 659

EventArgs class, 663

Exception class, 655

FormatException class, 73, 656

GC class, 647

IAsyncResult interface, 452

ICloneable interface, 626

IDisposable interface, 84, 426, 590, 647

IFormattable interface, 651

IntPtr class, 590, 601

IntPtr type, 573

InvalidCastException class, 128

InvalidOperationException class, 508,
590, 641

MarshalByRefObject class, 106

MissingMethodException class, 115

NonSerializedAttribute class, 620

Object class, 81, 626

ObjectDisposedException class, 648

OperatingSystem class, 684

■ INDEX

966

PlatformNotSupportedException class,
493

Random class, 576

SerializableAttribute class, 111, 620,
656, 660

String class, 627, 652

TimeSpan structure, 164

Type class, 80, 446

Version class, 685

System.AggregateException exception, 742

System.AsyncCallback delegate instance,
155

System.Collections namespace, 194

ArrayList class, 87, 122, 632

deep copying, 627

IComparer interface, 332

IEnumerable interface, 640

IEnumerator interface, 562, 640

System.Collections.Concurrent
namespace, 745–746

System.Collections.Concurrent.BlockingC
ollection class, 669–670

System.Collections.Concurrent.IProducer
ConsumerCollection interface, 669

System.Collections.Generic namespace,
81, 194

Dictionary class, 319

generic collections, 82

IComparer interface, 631

IEnumerable interface, 636

IEnumerator interface, 636

no built-in synchronization
mechanisms, 194

System.Collections.Generic.IEnumerable<
> interface, 750

System.Collections.IEnumerable interface,
848

System.Collections.ObjectModel.Observab
leCollection<T> class, 848

System.Collections.Specialized
namespace, 194

System.Collections.Specialized.INotifyColl
ectionChanged control, 848

System.Collections.Specialized.NotifyColle
ctionChangedEventArgs class, 848

System.ComponentModel namespace

AsyncCompletedEventHandler
delegate, 487

Component class, 111, 487, 508

RunInstallerAttribute class, 704

Win32Exception class, 197

System.ComponentModel.BackgroundWo
rker class, 862

System.ComponentModel.DoWorkEventA
rgs class, 862–863

System.ComponentModel.INotifyProperty
Changed control, 834

System.ComponentModel.ProgressChang
edEventArgs class, 863

System.ComponentModel.RunWorkerCo
mpletedEventArgs class, 863

System.Configuration namespace

Configuration class, 434

ConfigurationManager class, 434

ConnectionStringSettings class, 434

■ INDEX

967

System.Configuration.Install namespace

Installer class, 704

InstallerCollection class, 705

System.Data namespace, 456

CommandType enumeration, 437

DataRow class, 461

DataSet class, 110, 457

DataTable class, 446, 458, 461

DbType enumeration, 442

IDataParameter interface, 441, 445

IDataParameterCollection interface,
438

IDbCommand interface, 437

IDbConnection interface, 425

IDbTransaction interface, 438

ParameterDirection enumeration, 442

System.Data.Common namespace

DbConnectionStringBuilder class, 431

DbProviderFactory class, 442, 457

System.Data.DataSet class, 462, 463, 465

System.Data.DataTable class, 462

System.Data.Linq.DataContext class, 471

System.Data.Linq.dll assembly, 472

System.Data.Odbc namespace, 423

OdbcCommand class, 437

OdbcConnection class, 425

OdbcDataReader class, 445

OdbcFactory class, 457

OdbcParameter class, 441

System.Data.OleDb namespace, 423

OleDbCommand class, 437

OleDbConnection class, 425

OleDbConnectionStringBuilder class,
432

OleDbDataReader class, 445

OleDbFactory class, 458

OleDbParameter class, 441

System.Data.OracleClient namespace, 423

OracleClientFactory class, 458

OracleCommand class, 437

OracleConnection class, 425

OracleConnectionStringBuilder class,
432

OracleDataReader class, 445

OracleParameter class, 441

System.Data.SqlClient namespace, 423

SqlClientFactory class, 458

SqlCommand class, 437, 452

SqlConnection class, 425, 453

SqlConnectionStringBuilder class, 432

SqlDataReader class, 445

SqlDataSourceEnumerator class, 460

SqlParameter class, 441

System.Data.SqlServerCe namespace, 423

SqlCeCommand class, 437

SqlCeConnection class, 425

SqlCeDataReader class, 445

SqlCeParameter class, 441

System.Diagnostics namespace

ConditionalAttribute class, 14

■ INDEX

968

Debug class, 18

EventLog class, 690

EventLogEntryType enumeration, 690

FileVersionInfo class, 217

Process class, 196, 601

ProcessInfo class, 196

ProcessStartInfo class, 590

ProcessWindowStyle enumeration, 197

Trace class, 18

System.Diagnostics.CounterSample class,
725

System.Diagnostics.PerformanceCounter
class, 724

System.Diagnostics.PerformanceCounterc
lass, 721

System.Diagnostics.PresentationTraceLev
el value, 804

System.Diagnostics.PresentationTraceSou
rces.TraceLevel property, 803

System.Diagnostics.ProcessStartInfo class,
726

System.Drawing namespace

Graphics class, 401

Image class, 389

Rectangle struct, 372

Region class, 372, 373, 376

System.Drawing.Drawing2D namespace,
372–373, 377

System.Drawing.Printing namespace

PrintDocument class, 401

PrinterSettings class, 398

System.Drawing.Text namespace, 370

System.Dynamic.DynamicObject class,
143–147

System.Dynamic.ExpandoObject class, 37

System.Environment class, 12

System.GC.KeepAlive(mutex) statement

System.Globalization namespace

CultureInfo class, 652

DateTimeFormatInfo class, 73

System.IO namespace

BinaryReader class, 59, 225, 490

BinaryWriter class, 59, 225

Directory class, 235, 236

DirectoryInfo class, 206, 211, 213, 230

DriveInfo class, 206

File class, 235

FileAttributes enumeration, 206

FileInfo class, 206, 211, 213, 312

FileLoadException class, 23, 550

FileNotFoundException class, 10, 112

FileStream class, 87, 222, 225

FileSystemWatcher class, 246

MemoryStream class, 59, 627

NotifyFilters enumeration, 246

Path class, 233, 236, 238, 249

Stream class, 84, 111, 486, 581, 587

StreamReader class, 490

StreamWriter class, 222

TextReader class, 111

TextWriter class, 111

System.IO.Compression.DeflateStream
class, 253

■ INDEX

969

System.IO.Compression.GZipStream class,
253

System.IO.File.ReadLines method, 256

System.IO.File.WriteAllLines method, 254

System.IO.IsolatedStorage namespace

IsolatedStorageFile class, 244

IsolatedStorageFileStream class, 244

System.IO.Pipes.NamedPipeClientStream,
257

System.IO.Pipes.NamedPipeServerStream,
257

System.IO.Ports namespace, SerialPort
class, 248

System.Lazy class, 671

System.Linq namespace, 757

System.Media namespace

classes for playing sound files, 391

SoundPlayer class, 391–392

SystemSound class, 391

SystemSounds class, 391

System.Net namespace

CredentialCache class, 498

HttpListenerException class, 493

HttpListenerRequest class, 493

HttpListenerResponse class, 493

IPAddress class, 507

NetworkCredential class, 498

SocketPermission class, 550

WebClient class, 486, 490

WebException class, 490

WebPermission class, 550

WebRequest class, 497

WebResponse class, 497

System.NET namespace

Dns class, 504

HttpListenerContext class, 493

HttpListenerPrefixCollection collection,
493

ICredentialsByHost interface, 500

WebRequest class, 111, 490

WebResponse class, 111, 490

System.Net.Mail namespace

Attachment class, 501

AttachmentCollection class, 501

MailAddress class, 502

MailAddressCollection class, 501, 502

MailMessage class, 500

SmtpClient class, 500

System.Net.NetworkInformation
namespace

IPGlobalProperties class, 481

IPStatus enumeration, 508

NetworkChange class, 484

NetworkInterface class, 480

NetworkInterfaceComponent
enumeration, 482

NetworkInterfaceType enumeration,
481

OperationalStatus enumeration, 481

PhysicalAddress class, 482

Ping class, 507

PingCompletedEventHandler delegate,
508

■ INDEX

970

PingOptions class, 507

PingReply class, 508

System.Net.Sockets namespace

NetworkStream class, 510, 515

TcpClient class, 510

TcpListener class, 510, 515

UdpClient class, 523

System.Numerics.BigInteger class, 96

System.Reflection namespace

Assembly class, 111, 562

AssemblyDelaySignAttribute class, 26

AssemblyName class, 71, 112

AssemblyVersionAttribute class, 22

ConstructorInfo class, 130

ICustomAttributeProvider interface,
136

System.Reflection.Module class

FindTypes method, 125

GetType method, 125

GetTypes method, 125

System.Runtime.InteropServices
namespace

creating RCW, 611

DllImportAttribute class, 598

GuidAttribute class, 617

Marshal class, 590, 603

StructLayoutAttribute class, 603

System.Runtime.Remoting namespace

ObjectHandle class, 109

System.Runtime.Serialization namespace

IFormatter interface, 87

ISerializable class, 660

ISerializable interface, 620, 656

OptionalFieldAttribute class, 622

SerializationException class, 121

SerializationInfo class, 622

StreamingContext class, 622

System.Runtime.Serialization.Formatters.
Binary namespace

BinaryFormatter class, 87, 627

System.Runtime.Serialization.Formatters.
Soap namespace, 87, 287

System.Security namespace, 554

AllowPartiallyTrustedCallersAttribute
class, 544

PermissionSet class, 556

SecureString class, 196, 589

SecurityException class, 550, 554, 558,
568

SecurityManager class, 558

System.Security.Cryptography namespace

DataProtectionScope enumeration, 593

HashAlgorithm class, 231, 577, 581, 586

hashing algorithm implementations,
578

keyed hashing algorithm
implementations, 586

KeyedHashAlgorithm class, 586

MemoryProtectionScope enumeration,
593

ProtectedData class, 592

ProtectedMemory class, 592

RandomNumberGenerator class, 576

■ INDEX

971

RNGCryptoServiceProvider class, 575

System.Security.Cryptography.X509Certifi
cates namespace

X509Certificate2 class, 498

X509Certificate2UI class, 498

X509CertificatesCollection class, 500

X509Store class, 498

System.Security.Permissions namespace

FileIOPermission class, 554

identity permission types, 560

PrincipalPermission class, 568

PrincipalPermissionAttribute class, 568

SecurityAction enumeration, 553

System.Security.Policy namespace

Evidence class, 104, 562

evidence types, 560

PolicyException class, 550, 569

System.Security.Principal namespace

IIdentity interface, 564

IPrincipal class, 494

IPrincipal interface, 564, 573

PrincipalPolicy enumeration, 569

SecurityIdentifier class, 565

WindowsBuiltInRole enumeration, 565

WindowsIdentity class, 564, 572, 573

WindowsPrincipal class, 564

WindowsSecurityContext class, 573

System.ServiceModel.ChannelFactory
class, 533, 534

System.ServiceModel.Syndication.Syndica
tionFeed object, 534

System.ServiceModel.Syndication.Syndica
tionFeedFormatter, 534

System.ServiceModel.Syndication.Syndica
tionItem objects, 534

System.ServiceProcess namespace

ServiceBase class, 699

ServiceProcessInstaller class, 704

SessionChangeDescription class, 701

System.Speech assembly, 417

System.Sql.DataSet class, 466–467

System.Text namespace, 223

Encoding class, 56, 225, 502, 579

StringBuilder class, 54, 130, 584

System.Text.RegularExpressions
namespace

Regex class, 68, 70

RegexCompilationInfo class, 71

RegexOptions enumeration, 70

System.Threading namespace

AutoResetEvent class, 178

EventResetMode enumeration, 179

EventWaitHandle class, 178

Interlocked class, 187

ManualResetEvent class, 178

Monitor class, 173

Mutex class, 182, 201

ParameterizedThreadStart delegate,
169

Semaphore class, 185

Thread class, 568

ThreadAbortException class, 192

■ INDEX

972

ThreadStart class, 169

ThreadState enumeration, 170

ThreadStateException class, 170

Timeout class, 164

Timer class, 164, 166

TimerCallback delegate, 164, 166

WaitCallback delegate, 151

WaitHandle class, 167, 178, 454

WaitOrTimerCallback delegate, 167

System.Threading.Barrier class, 739–740

System.Threading.CancellationTokenSour
ce class, 743

System.Threading.Parallel class, 729–32

System.Threading.Parallel.ForEach
method, 736

System.Threading.ParallelOptions class,
736

System.Threading.Task class, 734–735

System.Threading.Task<>.Factory.StartNe
w method, 732

System.Threading.WaitHandle class, 156

System.Timers namespace, 164, 701

System.Type class

GetMembers method, 138

GetType method, 125

InvokeMember method, 140

System.Type.TargetType attribute, 828

System.Uri class, 538

System.UriBuilder class, 538

System.UriFormatException, 538

System.Windows.Controls.Border control,
845

System.Windows.Controls.Border object,
896

System.Windows.Controls.Button control,
836, 850

System.Windows.Controls.Button
property, 806, 808, 812, 855

System.Windows.Controls.Canvas
property, 812

System.Windows.Controls.CheckBox
property, 801

System.Windows.Controls.ComboBox
control, 837

System.Windows.Controls.ContentControl
control, 820

System.Windows.Controls.Control
property, 799

System.Windows.Controls.DockPanel
property, 807

System.Windows.Controls.Expander
property, 801

System.Windows.Controls.Grid control,
845

System.Windows.Controls.Grid property,
809

System.Windows.Controls.Grid property,
800, 801

System.Windows.Controls.Grid.Row
property, 796

System.Windows.Controls.Image control,
845

System.Windows.Controls.ListBox control,
848

System.Windows.Controls.ListView
control, 848

System.Windows.Controls.Primitives.Butt
onBase class, 836

■ INDEX

973

System.Windows.Controls.ProgressBar
class, 829, 862

System.Windows.Controls.RichTextBox
control, 813

System.Windows.Controls.Slider control,
833, 835

System.Windows.Controls.StackPanel
property, 808

System.Windows.Controls.StyleSelector
class, 856

System.Windows.Controls.TextBlock
control, 834, 835

System.Windows.Controls.TextBlock
property, 800

System.Windows.Controls.TextBox
control, 813, 833

System.Windows.Controls.TextBox
controls, 837, 850

System.Windows.Controls.TextBox file,
823

System.Windows.Controls.TreeView
control, 848

System.Windows.Controls.UserControl
control, 820, 822

System.Windows.Controls.UserControl
property, 793, 798

System.Windows.ControlTemplate class,
828

System.Windows.Data.Binding markup
extension, 833

System.Windows.Data.BindingExpression
class, 834

System.Windows.Data.BindingMode
enumeration, 833

System.Windows.Data.CollectionView
object, 849

System.Windows.Data.CollectionViewSour
ce class, 849

System.Windows.Data.RelativeSource
property, 829

System.Windows.Data.UpdateSourceTrigg
er enumeration, 834

System.Windows.DependencyObject
object, 790

System.Windows.DependencyProperty
property, 796, 834

System.Windows.DependencyProperty
property, 790

System.Windows.Documents.FlowDocum
ent property, 813

System.Windows.Documents.TextSelectio
n object, 814

System.Windows.DragDrop class, 858

System.Windows.DragDropEffects
enumeration, 859

System.Windows.Forms namespace

Application class, 5

AxHost control, 615

classes, 307

CommonDialog class, 241

Control class, 379

FolderBrowserDialog class, 241

Form class, 5

OpenFileDialog class, 241

Panel control, 383

PictureBox control, 383

PrintDialog class, 402

PrintPreviewControl class, 410

PrintPreviewDialog class, 410

■ INDEX

974

SaveFileDialog class, 241

Timer class, 164

TreeNode class, 262

System.Windows.Forms.Integration.Eleme
ntHost control, 363

System.Windows.FrameworkPropertyMet
adata object, 791

System.Windows.FrameworkPropertyMet
adataOptions enumeration, 791

System.Windows.Input namespace, 814,
823

System.Windows.Input.ApplicationComm
ands class, 823

System.Windows.Input.CommandBinding
class, 823

System.Windows.Input.CommandManage
r class, 823

System.Windows.Input.InputGestureColle
ction class, 823

System.Windows.Input.Keyboard class,
902

System.Windows.Input.Keys enumeration,
903

System.Windows.Media namespace, 871

System.Windows.Media.Animation.Paralle
lTimeline object, 890

System.Windows.Media.Animation.Timeli
ne objects, 886

System.Windows.Media.Color structure,
873

System.Windows.Media.Colors class, 874

System.Windows.Media.Geometry class,
867, 871

System.Windows.Media.GeometryGroup
static resource, 872

System.Windows.Media.ImageBrush class,
879, 882

System.Windows.Media.LinearGradientBr
ush class, 876

System.Windows.Media.SolidColorBrush
class, 873

System.Windows.Media.SolidColorBrush
property, 800

System.Windows.Media.TileBrush class,
879

System.Windows.PropertyMetadata
object, 791

System.Windows.ResourceDictionary
object, 799

System.Windows.Shapes.Path element,
866, 867, 871

System.Windows.Shapes.Rectangle object,
890

System.Windows.Shapes.Shape class, 867,
873, 876, 879

System.Windows.Style class, 828

System.Windows.Style resource, 854

System.Windows.SystemColors class, 874

System.Windows.TemplatePart attribute,
829

System.Windows.UIElement object, 363

System.Windows.ValidateValueCallback
property, 793

System.Windows.Window object, 360, 890

System.Windows.Window property, 796,
801

System.Windows.Window property, 800

System.Windows.Window.RenderTransfor
m property, 793

■ INDEX

975

System.Xml namespace

XmlDocument class, 262, 449

XmlNode class, 627

XmlNodeList class, 271

XmlNodeType enumeration, 262

XmlReader class, 448

System.Xml.Linq.LoadOptions
enumeration, 296

System.Xml.Linq.XElement class, 296, 298,
301

System.Xml.Serialization namespace

attribute classes, 287

XmlSerializer class, 286

System.Xml.Xsl namespace, 292

SystemDirectory property, Environment
class, 684

SystemOperator value,
WindowsBuiltInRole enumeration,
565

SystemParameters.MinimumHorizontalDr
agDistance property, 861

SystemParameters.MinimumVerticalDrag
Distance property, 861

SystemProperties.System class, 712–713

SystemSound class

example, 391–392

Play method, 391

System.Media namespace, 391

SystemSounds class, 391

SystemWidows.Window property, 799

SystemWindows.UIElement property, 796

■T
TableDirect value, CommandType

enumeration, 437

TableLayoutPanel container, 335

Tag property, 312

Take<> extension method, 759–760

/target:exe switch, 3

/target:module compiler switch, 9

Task class, 732–733

ContinueWith method, 738

IsCompleted property, 734

Wait method, 734–735, 742

WaitAll method, 734–735, 742

WaitAny method, 734,–735

task dialog, displaying, 717–720

Task Parallel Library, 149, 729

Task.Result property, 732–733

TaskDialog class, 717–718

tasks

canceling, 743–745

chaining together, 738–739

exception handling in, 741–743

sharing data between, 745–747

waiting for completion of, 734–736

TCP

communicating with, 510–515

multithreaded TCP server for
asynchronous communications,
515–523

TCP client, template for, 513–514

TCP server, template for, 511–513

■ INDEX

976

TcpClient class, 510, 513

TcpListener class

AcceptTcpClient method, 511, 515

BeginAcceptTcpClient method, 515,
516

EndAcceptTcpClient method, 515

System.Net.Sockets namespace, 510,
515

TemplatePart attribute, 829

templates

TCP client, 513–514

TCP server, 511–513

XSL stylesheets, 293

temporary files, 238–239

text

printing wrapped, 408–410

reading aloud, 417–419

rich text, 813–817

text boxes

autocomplete, 329–331

restricting input, 326–329

text files, reading and writing, 222–224

Text property, 341, 833–835, 837

Text value, CommandType enumeration,
437

TextBox class

configuring context menu for, 336

finding all instances on a form, 314

restricting input, 326–329

TextBox control, 833–834

KeyPress event, 329

providing input error for with
ErrorProvider component, 348

TextBox object, 835–838, 851

TextChanged event, 815

TextReader class, System.IO namespace,
111

TextSelection object, 814

text-to-speech, 417–419

textures, filling shapes with, 882–885

TextWriter class, System.IO namespace,
111

Themes subfolder, 828, 831

this keyword, 48

Thread class

Abort method, 124, 192

creating and controling threads, 169

creating new object, 170

CurrentPrincipal property, 568–569,
573

CurrentUICulture property, 340

IsAlive property, 190

Join method, 190

ResetAbort method, 192

Start method, 169–170, 192

System.Threading namespace, 568

Thread Pool class, method execution
using, 151–154

thread synchronization, 172

ThreadAbortException class, 192

ThreadPool class

GetAvailableThreads method, 154

QueueUserWorkItem method, 151

■ INDEX

977

RegisterWaitForSingleObject method,
167, 168

SetMaxThreads method, 153, 154

threads, 149–150

creating a thread-safe collection
instance, 193

creating and managing, 169–170

execute a method asynchronously, 154–
163

execute a method at a specific time,
166–167

execute a method by signaling a
WaitHandle class, 167–169

execute a method periodically, 163–166

execute a method using new thread,
169–172

execute a method using ThreadPool
class, 151–154

in ready queu, 174

in wait queue, 173

knowing when a thread finishes, 190–
191

synchronize

access to shared data, 187–190

execution of multiple threads using
a Monitor, 172–178

execution of multiple threads using
a Mutex, 182–184

execution of multiple threads using
a Semaphore, 185–187

execution of multiple threads using
an event, 178–182

terminating execution of thread, 191–
193

thread-safety, 194

ThreadStart class, 169

ThreadStart delegate, 170

ThreadState class, 170

ThreadStateException class, 170

thumbnails, showing for image, 389–391

TickCount property, Environment class,
685

Tile value, 883

TileBrush class, 879

TileMode property, 882–883

TimedOut value, IPStatus enumeration,
508

Timeline class, 886

Timeout class

Infinite property, 164, 166

System.Threading namespace, 164

Timeout property

SmtpClient class, 500

WebRequest class, 490

Timer class

Change method, 164

Dispose method, 164

periodic execution of methods, 164

System.Threading namespace, 164, 166

System.Timers namespace, 164, 701

System.Windows.Forms namespace,
164

Timer object, 164, 166

TimerCallback delegate, 164, 166

times. See dates and times

■ INDEX

978

TimeSpan structure, 166

add, subtract and compare dates and
times, 75–77

operators supported by, 75

System namespace, 164

Title property, Console class, 32

Tlbexp.exe, 616

Tlbimp.exe, 394, 610–611, 707

To property, MailMessage class, 502

ToArray method, 59, 79

ToBase64CharArray method, Convert
class, 62

ToBase64String method, Convert class, 62

ToBoolean method, BitConverter class, 60

ToggleButton method, 827

ToInt32 method, BitConverter class, 60

tools, 2

TopIndex property, ListBox class, 325

TopMost property, Form class, 601

ToString method, 844–845, 849

BitConverter class, 61, 583–584

IFormattable interface, 652

Object class, 562

PhysicalAddress class, 482

SecureString class, 590

StringBuilder class, 54

TotalFreeSpace property, DriveInfo class,
240

Trace class, System.Diagnostics
namespace, 18

trailing backslash (\), 234

Transaction property, command objects,
438

Transform method,
XslCompiledTransform class, 292

TransparentKey property, Form class, 378

TreeNode class, 220

System.Windows.Forms namespace,
262

Tag property, 312

TreeView control

BeforeExpand event, 219

Fill method, 220

showing a JIT directory tree, 219–222

showing XML document structure,
261–266

TryXXX methods, 143–145

tweening, 892

two-way binding, 833–836

TwoWay value, 834–835, 851

Type class, 125

EmptyTypes field, 130

GetConstructor method, 130

GetNestedType method, 125

GetNestedTypes method, 125

Missing field, 614

System namespace, 80, 446

type information, retrieving, 125–127

Type Library Exporter (Tlbexp.exe), 626

Type Library Importer (Tlbimp.exe), 394,
610–611, 707

type members

determining, at runtime, 137–140

■ INDEX

979

invoking, dynamically, 142

invoking, using reflection, 140–142

Type objects, methods that return, 125

Type.GetNestedType method, 126

Type.GetNestedTypes method, 126

typeof keyword, 125, 138, 314

type(s)

adding method to, without modifying,
675–677

creating custom dynamic, 143–147

creating variant generic, 679,–681

testing object, 127–129

■U
UDP, communicating with, 523

UdpClient class, System.Net.Sockets
namespace, 523

UI elements

docking to edge of form, 807–808

grid layout, 809–811

horizontal or vertical stacking, 805–806

positioning to exact coordinates, 811–
812

Unary negation (-) operator, 76

Unary plus (+) operator, 76

UnauthenticatedPrincipal value,
PrincipalPolicy enumeration, 570

Undo method, 573, 815

Unicode, 56

Unicode property, 57

Unicode string, Base64 encoding and
decoding using Convert class, 62

UnicodeEncoding class, 57

Uniform value, 880

UniformGrid event, 903

UniformToFill value, 880

Union method, 474, 477

Unload method, AppDomain class, 124

unmanaged code interoperability

calling a function in an unmanaged
DLL, 597–601

calling an unmanaged function that
uses a callback, 606–608

calling an unmanaged function that
uses a structure, 603–606

exposing .NET component through
COM, 616–617

releasing COM components quickly,
613–614

retrieving handles for controls,
Windows or files, 601–603

retrieving unmanaged error
information, 608–610

using ActiveX controls in .NET clients,
615–616

using COM components in .NET
clients, 610–613

using optional parameters , 614–615

unmanaged code interoperability, 597–617

unmanaged errors, retrieving information,
608–610

unmanaged functions

calling function that uses a callback,
606–608

using structure parameters, 603–606

■ INDEX

980

Unprotect method

ProtectedData class, 593

ProtectedMemory class, 593

SectionInformation class, 434

Unregister method, RegisteredWaitHandle
class, 168

Up value, OperationalStatus enumeration,
481

UpdateSource property, 834

UpdateSourceTrigger attribute, 833–835,
850

uploading methods, WebClient class, 489

Uri class, 538–540

UriBuilder class, 539–540

URIs, manipulation of, 538–541

Url class, 560

Url property, WebBrowser control, 357

UrlIdentityPermission class, 560

UseDefaultCredentials property,
SmtpClient class, 501

user controls

application commands, supporting,
822–826

creating, 820–822

user input

reading from console, 93–96

rich text, 813–817

multimedia and

dragging items from lists and
dropping them on canvas, 858–861

playing media files, 898–901

querying keyboard state, 902–904

user interface, updating in multithreaded
application, 354–356

User property, HttpListenerContext class,
494

User value, WindowsBuiltInRole
enumeration, 565

User32.dll, 598

UserControl control, 793, 820

UserDomainName property, Environment
class, 685

UserInteractive property, Environment
class, 685

UserName property

Environment class, 685

ProcessStartInfo class, 197

users

impersonating a Windows user, 572–
575

restricting which user can execute
code, 568–572

Users field, Registry class, 695

using statement, 197

constructing Monitor class in, 203

Dispose pattern, 648

using statements, 550

UTF-16 character encoding, 56–58, 223

UTF7 property, UTF7Encoding class, 57

UTF-7 Unicode, 223

UTF7Encoding class, 57

UTF-8 encoding, 59

UTF8 property, UTF8Encoding class, 57

■ INDEX

981

UTF-8 Unicode, 223

UTF8Encoding class, 57

■V
Validate method, XmlDocument class, 286

ValidateInput method, 69

validation

input control, 348

input, using regular expressions, 65–69

XML documents against schema, 281–
286

ValidationEventHandler event,
XmlReaderSettings class, 281–283

ValidOn property, AttributeUsageAttribute
class, 134

value of command, 293

Value property, 833–835, 863

parameter objects, 442

XmlNode class, 262

XmlReader class, 278

value types

converting from byte arrays, 59

converting to byte arrays, 59

converting to byte arrays, 60–61

var type, 761

variant generic types, creating, 679–681

Velocity property, 793

VelocityProperty property, 793

VerifyB64Hash method, 584

VerifyByteHash method, 584

VerifyHexHash method, 584

verifying

assembly’s strong name, 23

strong name assembly has not been
modified, 23–24

Version class, System namespace, 685

version information, retrieving, 217–218

Version property

Environment class, 685

OperatingSystem class, 686

VersionString property, OperatingSystem
class, 686

vertical stacks, 805–806

VerticalAlignment property, 806

VerticalScrollBarVisibility property, 814

video files, playing, 395–397

Viewbox property, 880, 882

Viewport property, 882–883

Visual Studio

Application Settings, 322

generating RCWs, 611

Windows Forms and, 308

-Vr switch, Strong Name tool, 25

-Vu switch, Strong Name tool, 26

■W
W3C Document Object Model (DOM). See

DOM (W3C Document Object
Model)

Wait method

Monitor class, 174

Task class, 734–735, 742

■ INDEX

982

wait queue, 173

WaitAll method

Task class, 734–735, 742

WaitHandle class, 178

WaitAny method

Task class, 734–735

WaitHandle class, 178

WaitCallback delegate, System.Threading
namespace, 151

WaitForConnection method, 257

WaitForExit method, Process class, 197,
200

WaitHandle class, 167

method execution using, 167–169

methods for synchronizing thread
execution, 178

Mutex class derives from, 182

Semaphore class derives from, 185

System.Threading namespace, 167,
178, 454

waiting, 453–454

WaitOne method, WaitHandle class, 178

WaitOrTimerCallback delegate, 167

Warning value, EventLogEntryType
enumeration, 690

WAV files, playing, 392–393

WCF (Windows Communication
Foundation), 479

WCF service, calling, 532–534

web method, calling asynchronously, 526

web pages, displaying, 356–359

web service, creating SOAP-based, 526–532

WebBrowser class, 295

WebBrowser control, 294, 356–358

displaying a web page, 356

members, 357–358

WebClient class

CancelAsync method, 487

Certificates property, 497

Credentials property, 497

data download methods, 486

OpenRead method, 490

System.Net namespace, 486, 490

uploading methods, 489

WebException class, 490

WebPermission class, 550

WebPermissionAttribute class, 550

WebRequest class

Certificates property, 497

Create method, 490

Credentials property, 497–498

GetResponse method, 490

System.Net namespace, 497

System.NET namespace, 111, 490

Timeout property, 490

WebResponse class

GetResponseStream method, 491

System.Net namespace, 497

System.NET namespace, 111, 490

where keyword, 98, 755

Width property, 810, 859, 867, 899–900, 903

Width property, 810

■ INDEX

983

wildcard expressions, find files that match,
230–231

Win32 API

core libraries, 598

functions for writing and reading INI
files, 598

LogonUser function, 573

Win32 CryptoAPI, 19, 576

Win32_Printer class, 412, 417

Win32_PrintJob class, 412

Win32Exception class, 197

WinAPI functions, 601

Window.Closing event, 360

WindowHeight property, Console class, 33

Windows 7 Jump List, 709–711

Windows API CodePack, 709–711

creating and displaying task dialogs
using, 717–720

determining Internet connectivity
using, 716–717

Windows applications

creating from command-line, 5–6

example, 6–8

Windows Communication Foundation
(WCF), 479

Windows event logs, writing to, 690–692

Windows forms, 307

adding a control programmatically,
309–311

animated system tray icon, 346–246

autocomplete Combo Box, 329–331

classes, 307

compared with WPF, 789

creating an immovable form, 341

displaying a web page, 356–359

displaying WPF Windows in, 360–363

docking UI elements to edge of, 807–
808

drag-and-drop operations, 350

finding all MDI child forms, 319–321

forcing a ListBox to scroll to most
recently added item, 325–326

laying out controls automatically, 335–
336

making a borderless form movable,
343–346

multilingual forms, 338–341

process all controls on form, 314–315

restrictingTextBox class input, 326–329

saving configuration settings for forms,
322–329

sorting a ListView by column, 332–335

tracking visible forms in application,
315–319

updating user interface in
multithreaded application, 354–
356

using part of a main menu for a context
menu, 336–338

using WPF controls in, 363–367

validating an input control, 348

Windows groups, determining if user is
member of, 564–568

Windows integration, 683

accessing runtime environment
information, 684–688

■ INDEX

984

checking Internet connectivity, 716–717

creating a shortcut on Desktop or Start
menu, 706–709

creating a Windows service, 699–704

creating a Windows service installer,
704–706

creating Windows 7 Jump List, 709–711

displaying task dialog, 717–720

obtaining elevated privileges, 726–727

reading and writing to the Windows
registry, 692–695

reading performance counters, 724–726

retrieving the value of environment
variable, 688–690

searching the Windows registry, 695–
699

writing event to Windows event log,
690–692

writing to custom performance
counters, 720–724

Windows Management Instrumentation
(WMI), 412

Windows Presentation Foundation (WPF),
798. See also WPF applications

Windows registry

reading and writing to, 692–695

searching, 695–699

Windows Script Host, 706

Windows search feature, 711–716

Windows service, creating, 699–704

Windows Service Control Manager. See
SCM

Windows service installer, creating, 704–
706

WindowsBase assembly, 803

WindowsBuiltInRole enumeration, 565

WindowsIdentity class

GetCurrent method, 564

Impersonate method, 572–573

implements IIdentity interface, 564

overloaded constructors, 565

System.Security.Principal namespace,
564, 572–573

WindowsPrincipal class

implements IPrincipal interface, 564

IsInRole method, 564, 565

System.Security.Principal namespace,
564

WindowsPrincipal value, PrincipalPolicy
enumeration, 570

WindowsSecurityContext class, 573

WindowStyle property, ProcessStartInfo
class, 197

WindowWidth property, Console class, 33

WM_CLOSE message, 200

WorkerReportsProgress property, 862–863

WorkerSupportsCancellation property,
862–863

WorkingDirectory property,
ProcessStartInfo class, 197

WPF (Windows Presentation Foundation),
798

WPF applications

application-wide resources, 799–801

attached properties, 795–798

creating user controls, 820–820

■ INDEX

985

debugging bindings

using attached properties, 803–805

using IValueConverter, 801–803

dependency properties, creating and
using, 790–795

displaying rotated controls, 818–820

lookless custom controls, 826–831

supporting application commands in
user controls, 822–826

WPF controls, using in Windows forms,
367–367

WPF Windows, displaying in Windows
forms, 360–363

WrapContents property, FlowLayoutPanel
container, 335

Write method

BinaryWriter class, 225

StreamWriter class, 222

WriteAttributeString method, XmlWriter
class, 278

WriteElementString method, XmlWriter
class, 278

WriteEndDocument method, XmlWriter
class, 278

WriteEndElement method, XmlWriter
class, 278

WriteEntry method, EventLog class, 690

WriteLine method, StreamWriter class, 223

WriteObject method, 91

WritePrivateProfileString function, 598

WriteStartDocument method, XmlWriter
class, 278

WriteStartElement method, XmlWriter
class, 278

writing XML. See XML processing

wshom.ocx file, 707

WshShell class, 707

■X
x:Key property, 871

X509Certificate2 class, 498

X509Certificate2UI class, 498

X509CertificatesCollection class, 500

X509Store class, 498

XAttribute, 298–299

XCData class, 299

XComment class, 299

XDeclaration class, 299

XElement, 298–299

XElement class, 301

Add method, 299, 303

Remove* method, 303

Replace* method, 303

XElement.Load method, 296

XML, and .NET Framework integration,
261

XML documents

creating new, 267–268

obtaining from SQL Server query, 448–
452

XML processing, 261

appending notes in XML documents,
268–271

creating new XML tree to use with
LINQ, 298–300

■ INDEX

986

creating schemas for .NET classes, 290–
291

finding elements with XPath search,
274–278

finding specific elements by name,
271–272

generating a class from schemas, 291–
292

inserting nodes into XML documents,
266–268

loading XMLwith LINQ, 296–298

modifying XML tree with LINQ, 303

performing an XSL Transform, 292–295

query XML with LINQ, 300–303

reading and writing without loading
document into memory, 278–281

retrieving nodes from specific
namespace, 272–274

serialization with custom objects, 286–
290

showing document structure in
TreeView, 261–266

validating documents against a
schema, 281–286

XML Schema Definition (XSD), 281

XML Schema Definition Tool (xsd.exe),
290–291

XML schemas, 281

XmlAttribute class

basic properties derived from
XmlNode, 262, 263

System.Xml.Serialization namespace,
287

XmlDocument class, 262

ChildNodes property, 263

CloneNode method, 269

create methods, 266

creating and inserting nodes, 266

DocumentElement property, 262

GetElementsByTagName method, 271

Load method, 262

LoadXML method, 262

Save method, 266

Schemas property, 286

SelectNodes method, 275

SelectSingleNode method, 275

System.Xml namespace, 262, 449

Validate method, 286

XmlTextReader class and, 279

XmlElement class

basic properties derived from
XmlNode, 262, 263

GetElementsByTagName method, 272,
273

System.Xml.Serialization namespace,
287

XmlEnum class, 287

XmlException class, 283

XmlIgnore class, 287

XmlNode class, 271

AppendChild method, 266

basic properties, 262–263

casting to XmlElement class, 272

CloneNode method, 270

description, 262

■ INDEX

987

InsertAfter method, 266

InsertBefore method, 266

SelectNodes method, 275

SelectSingleNode method, 275

System.Xml namespace, 627

XmlNodeList class, 271

XmlNodeList collection, ChildNodes
property, XmlNode class, 262

XmlNodeType enumeration, 262

XmlReader class

closing, 449

Create method, 278, 281, 283

enforcing schema rules, 283

example, 279, 280

GetAttribute method, 279

HasAttributes property, 279

properties, 278

Read method, 278, 281

ReadElementString method, 280

reading XML, 278

ReadToDescendant method, 280

ReadToFollowing method, 280

ReadToNextSibling method, 280

System.Xml namespace, 448

XmlReaderSettings class, 281, 283

XmlRoot class, 287

XmlSerializer class, 287, 290–291

requirements for using, 287

System.Xml.Serialization namespace,
286

translating XML into objects, 289

XmlTextReader class, 279

XmlTextWriter class, 278

XmlWriter class, 295

Create method, 278

example, 279, 280

Write methods, 278

XPath, expression syntax table, 276

XPath search, 274–278

XSD (XML Schema Definition), 281

xsd.exe (XML Schema Definition Tool),
290–291

XSL stylesheets, 293

XSL transforms, 292–295

XslCompiledTransform class, 292, 294–295

XSLT (XSL transforms), 292–295

XSLT stylesheet example, 293

XslTransform class, 294

■Y
yield break statement, 636–637

yield return statement, 637, 640

ypeof operator, 127

■Z
Zone class, 560

ZoneIdentityPermission class, 560

	Prelim
	Contents at a Glance
	Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Application Development
	1-1. Create a Console Application from the Command Line
	Problem
	Solution
	How It Works
	The Code
	Usage

	1-2. Create a Windows-Based Application from the Command Line
	Problem
	Solution
	How It Works
	The Code
	Usage

	1-3. Create and Use a Code Module
	Problem
	Solution
	How It Works
	Usage

	1-4. Create and Use a Code Library from the Command Line
	Problem
	Solution
	How It Works
	Usage

	1-5. Access Command-Line Arguments
	Problem
	Solution
	How It Works
	The Code
	Usage

	1-6. Include Code Selectively at Build Time
	Problem
	Solution
	How It Works
	The Code
	Usage
	Notes

	1-7. Access a Program Element That Has the Same Name As a Keyword
	Problem
	Solution
	How It Works
	The Code

	1-8. Create and Manage Strongly Named Key Pairs
	Problem
	Solution
	How It Works

	1-9. Give an Assembly a Strong Name
	Problem
	Solution
	How It Works
	The Code
	Usage

	1-10. Verify That a Strongly Named Assembly Has Not Been Modified
	Problem
	Solution
	How It Works

	1-11. Delay-Sign an Assembly
	Problem
	Solution
	How It Works

	1-12. Sign an Assembly with an Authenticode Digital Signature
	Problem
	Solution
	How It Works
	Usage

	1-13. Create and Trust a Test Software Publisher Certificate
	Problem
	Solution
	How It Works

	1-14. Manage the Global Assembly Cache
	Problem
	Solution
	How It Works

	1-15. Prevent People from Decompiling Your Code
	Problem
	Solution
	How It Works

	1-16. Manipulate the Appearance of the Console
	Problem
	Solution
	How It Works
	The Code

	1-17. Create a Static Class
	Problem
	Solution
	How It Works
	The Code

	1-18. Create an Anonymous Type
	Problem
	Solution
	How It Works
	The Code

	1-19. Create an ExpandoObject Dynamic Type
	Problem
	Solution
	How It Works
	The Code

	1-20. Define an Automatically Implemented Property
	Problem
	Solution
	How It Works
	The Code

	1-21. Overload an Operator
	Problem
	Solution
	How It Works
	The Code

	1-22. Define a Conversion Operator
	Problem
	Solution
	How It Works
	The Code

	1-23. Handle an Event with an Anonymous Function
	Problem
	Solution
	How It Works
	The Code

	1-24. Implement a Custom Indexer
	Problem
	Solution
	How It Works
	The Code

	Data Manipulation
	2-1. Manipulate the Contents of a String Efficiently
	Problem
	Solution
	How It Works
	The Code

	2-2. Encode a String Using Alternate Character Encoding
	Problem
	Solution
	How It Works
	The Code
	Usage
	Notes

	2-3. Convert Basic Value Types to Byte Arrays
	Problem
	Solution
	How It Works
	The Code

	2-4. Base64 Encode Binary Data
	Problem
	Solution
	How It Works
	The Code

	2-5. Validate Input Using Regular Expressions
	Problem
	Solution
	How It Works
	The Code
	Usage
	Notes

	2-6. Use Compiled Regular Expressions
	Problem
	Solution
	How It Works
	The Code

	2-7. Create Dates and Times from Strings
	Problem
	Solution
	How It Works
	The Code

	2-8. Add, Subtract, and Compare Dates and Times
	Problem
	Solution
	How It Works
	The Code

	2-9. Sort an Array or a Collection
	Problem
	Solution
	How It Works
	The Code

	2-10. Copy a Collection to an Array
	Problem
	Solution
	How It Works
	The Code

	2-11. Use a Strongly Typed Collection
	Problem
	Solution
	How It Works
	The Code

	2-12. Create a Generic Type
	Problem
	Solution
	How It Works
	The Code

	2-13. Store a Serializable Object to a File
	Problem
	Solution
	How It Works
	The Code

	2-14. Serialize an Object Using JSON
	Problem
	Solution
	How It Works
	The Code

	2-15. Read User Input from the Console
	Problem
	Solution
	How It Works
	The Code

	2-16. Using Large Integer Values
	Problem
	Solution
	How It Works
	The Code

	2-17. Select Collection or Array Elements
	Problem
	Solution
	How It Works
	The Code

	2-18. Remove Duplicate Items from an Array or Collection
	Problem
	Solution
	How It Works
	The Code

	Application Domains, Reflection, and Metadata
	3-1. Create an Application Domain
	Problem
	Solution
	How It Works
	The Code

	3-2. Create Types That Can Be Passed Across Application Domain Boundaries
	Problem
	Solution
	How It Works
	The Code

	3-3. Avoid Loading Unnecessary Assemblies into Application Domains
	Problem
	Solution
	How It Works
	The Code

	3-4. Create a Type That Cannot Cross Application Domain Boundaries
	Problem
	Solution
	How It Works

	3-5. Load an Assembly into the Current Application Domain
	Problem
	Solution
	How It Works
	The Code

	3-6. Execute an Assembly in a Different Application Domain
	Problem
	Solution
	How It Works
	The Code
	Usage

	3-7. Instantiate a Type in a Different Application Domain
	Problem
	Solution
	How It Works
	The Code

	3-8. Pass Data Between Application Domains
	Problem
	Solution
	How It Works
	The Code

	3-9. Unload Assemblies and Application Domains
	Problem
	Solution
	How It Works
	The Code

	3-10. Retrieve Type Information
	Problem
	Solution
	How It Works
	The Code

	3-11. Test an Object’s Type
	Problem
	Solution
	How It Works
	The Code

	3-12. Instantiate an Object Using Reflection
	Problem
	Solution
	How It Works
	The Code

	3-13. Create a Custom Attribute
	Problem
	Solution
	How It Works
	The Code
	Usage

	3-14. Inspect the Attributes of a Program Element Using Reflection
	Problem
	Solution
	How It Works
	The Code

	3-15. Programmatically Discover the Members of a Type
	Problem
	Solution
	How It Works
	The Code

	3-16. Invoke a Type Member Using Reflection
	Problem
	Solution
	How It Works
	The Code

	3-17. Dynamically Invoke a Type Member
	Problem
	Solution
	How It Works
	The Code

	3-18. Create a Custom Dynamic Type
	Problem
	Solution
	How It Works
	The Code

	Threads, Processes, and Synchronization
	4-1. Execute a Method Using the Thread Pool
	Problem
	Solution
	How It Works
	The Code
	Notes

	4-2. Execute a Method Asynchronously
	Problem
	Solution
	How It Works
	The Code

	4-3. Execute a Method Periodically
	Problem
	Solution
	How It Works
	The Code

	4-4. Execute a Method at a Specific Time
	Problem
	Solution
	How It Works
	The Code

	4-5. Execute a Method by Signaling a WaitHandle Object
	Problem
	Solution
	How It Works
	The Code

	4-6. Execute a Method Using a New Thread
	Problem
	Solution
	How It Works
	The Code

	4-7. Synchronize the Execution of Multiple Threads Using a Monitor
	Problem
	Solution
	How It Works
	The Code

	4-8. Synchronize the Execution of Multiple Threads Using an Event
	Problem
	Solution
	How It Works
	The Code

	4-9. Synchronize the Execution of Multiple Threads Using a Mutex
	Problem
	Solution
	How It Works
	The Code

	4-10. Synchronize the Execution of Multiple Threads Using a Semaphore
	Problem
	Solution
	How It Works
	The Code

	4-11. Synchronize Access to a Shared Data Value
	Problem
	Solution
	How It Works
	The Code

	4-12. Know When a Thread Finishes
	Problem
	Solution
	How It Works
	The Code

	4-13. Terminate the Execution of a Thread
	Problem
	Solution
	How It Works
	The Code

	4-14. Create a Thread-Safe Collection Instance
	Problem
	Solution
	How It Works
	The Code

	4-15. Start a New Process
	Problem
	Solution
	How It Works
	The Code

	4-16. Terminate a Process
	Problem
	Solution
	How It Works
	The Code

	4-17. Ensure That Only One Instance of an Application Can Execute Concurrently
	Problem
	Solution
	How It Works
	The Code

	Files, Directories, and I/O
	5-1. Retrieve Information About a File, Directory, or Drive
	Problem
	Solution
	How It Works
	The Code
	Usage

	5-2. Set File and Directory Attributes
	Problem
	Solution
	How It Works
	The Code

	5-3. Copy, Move, or Delete a File or Directory
	Problem
	Solution
	How It Works
	The Code

	5-4. Calculate the Size of a Directory
	Problem
	Solution
	How It Works
	The Code

	5-5. Retrieve Version Information for a File
	Problem
	Solution
	How It Works
	The Code
	Usage

	5-6. Show a Just-in-Time Directory Tree in the TreeView Control
	Problem
	Solution
	How It Works
	The Code

	5-7. Read and Write a Text File
	Problem
	Solution
	How It Works
	The Code

	5-8. Read and Write a Binary File
	Problem
	Solution
	How It Works
	The Code

	5-9. Read a File Asynchronously
	Problem
	Solution
	How It Works
	The Code
	Usage

	5-10. Find Files That Match a Wildcard Expression
	Problem
	Solution
	How It Works
	The Code

	5-11. Test Two Files for Equality
	Problem
	Solution
	How It Works
	The Code

	5-12. Manipulate Strings Representing File Names
	Problem
	Solution
	How It Works

	5-13. Determine If a Path Is a Directory or a File
	Problem
	Solution
	How It Works
	The Code

	5-14. Work with Relative Paths
	Problem
	Solution
	How It Works
	The Code
	Usage

	5-15. Create a Temporary File
	Problem
	Solution
	How It Works
	The Code

	5-16. Get the Total Free Space on a Drive
	Problem
	Solution
	How It Works
	The Code

	5-17. Show the Common File Dialog Boxes
	Problem
	Solution
	How It Works
	The Code

	5-18. Use an Isolated Store
	Problem
	Solution
	How It Works
	The Code

	5-19. Monitor the File System for Changes
	Problem
	Solution
	How It Works
	The Code

	5-20. Access a COM Port
	Problem
	Solution
	How It Works
	The Code

	5-21. Get a Random File Name
	Problem
	Solution
	How It Works
	The Code

	5-22. Manipulate the Access Control List of a File or Directory
	Problem
	Solution
	How It Works
	The Code

	5-23. Compress Data
	Problem
	Solution
	How It Works
	The Code

	5-24. Log Data to a File
	Problem
	Solution
	How It Works
	The Code

	5-25. Process a Log File
	Problem
	Solution
	How It Works
	The Code

	5-26. Communicate Between Processes
	Problem
	Solution
	How It Works
	The Code

	XML Processing
	6-1. Show the Structure of an XML Document in a TreeView
	Problem
	Solution
	How It Works
	The Code
	Usage

	6-2. Insert Nodes in an XML Document
	Problem
	Solution
	How It Works
	The Code

	6-3. Quickly Append Nodes in an XML Document
	Problem
	Solution
	How It Works
	The Code

	6-4. Find Specific Elements by Name
	Problem
	Solution
	How It Works
	The Code
	Notes

	6-5. Get XML Nodes in a Specific XML Namespace
	Problem
	Solution
	How It Works
	The Code

	6-6. Find Elements with an XPath Search
	Problem
	Solution
	How It Works
	The Code
	Notes

	6-7. Read and Write XML Without Loading an Entire Document into Memory
	Problem
	Solution
	How It Works
	The Code

	6-8. Validate an XML Document Against a Schema
	Problem
	Solution
	How It Works
	The Code

	6-9. Use XML Serialization with Custom Objects
	Problem
	Solution
	How It Works
	The Code

	6-10. Create a Schema for a .NET Class
	Problem
	Solution
	How It Works
	Usage

	6-11. Generate a Class from a Schema
	Problem
	Solution
	How It Works
	Usage

	6-12. Perform an XSL Transform
	Problem
	Solution
	How It Works
	The Code

	6-13. Load XML with LINQ
	Problem
	Solution
	How It Works
	The Code

	6-14. Create a New XML Tree with LINQ
	Problem
	Solution
	How It Works
	The Code

	6-15. Query XML with LINQ
	Problem
	Solution
	How It Works
	The Code

	6-16. Modify an XML Tree with LINQ
	The Problem
	The Solution
	How It Works
	The Code

	Windows Forms
	7-1. Add a Control Programmatically
	Problem
	Solution
	How It Works
	The Code

	7-2. Store Data with a Control
	Problem
	Solution
	How It Works
	The Code

	7-3. Process All the Controls on a Form
	Problem
	Solution
	How It Works
	The Code

	7-4. Track the Visible Forms in an Application
	Problem
	Solution
	How It Works
	The Code
	Notes

	7-5. Find All MDI Child Forms
	Problem
	Solution
	How It Works
	The Code

	7-6. Save Configuration Settings for a Form
	Problem
	Solution
	How It Works
	The Code

	7-7. Force a List Box to Scroll to the Most Recently Added Item
	Problem
	Solution
	How It Works
	The Code

	7-8. Restrict a Text Box to Accept Only Specific Input
	Problem
	Solution
	How It Works
	The Code
	Notes

	7-9. Use an Autocomplete Combo Box or Text Box
	Problem
	Solution
	How It Works
	The Code

	7-10. Sort a List View by Any Column
	Problem
	Solution
	How It Works
	The Code

	7-11. Lay Out Controls Automatically
	Problem
	Solution
	How It Works

	7-12. Use Part of a Main Menu for a Context Menu
	Problem
	Solution
	How It Works
	The Code

	7-13. Make a Multilingual Form
	Problem
	Solution
	How It Works
	The Code

	7-14. Create a Form That Cannot Be Moved
	Problem
	Solution
	How It Works
	The Code

	7-15. Make a Borderless Form Movable
	Problem
	Solution
	How It Works
	The Code

	7-16. Create an Animated System Tray Icon
	Problem
	Solution
	How It Works
	The Code

	7-17. Validate an Input Control
	Problem
	Solution
	How It Works
	The Code

	7-18. Use a Drag-and-Drop Operation
	Problem
	Solution
	How It Works
	The Code

	7-19. Update the User Interface in a Multithreaded Application
	Problem
	Solution
	How It Works
	The Code

	7-20. Display a Web Page in a Windows-Based Application
	Problem
	Solution
	How It Works
	The Code

	7-21. Display WPF Windows in a Windows Forms Application
	Problem
	Solution
	How It Works
	The Code

	7-22. Display WPF Controls in Windows Forms
	Problem
	Solution
	How It Works
	The Code

	Graphics, Multimedia, and Printing
	8-1. Find All Installed Fonts
	Problem
	Solution
	How It Works
	The Code

	8-2. Perform Hit Testing with Shapes
	Problem
	Solution
	How It Works
	The Code

	8-3. Create an Irregularly Shaped Control
	Problem
	Solution
	How It Works
	The Code

	8-4. Create a Movable Sprite
	Problem
	Solution
	How It Works
	The Code

	8-5. Create a Scrollable Image
	Problem
	Solution
	How It Works
	The Code

	8-6. Perform a Screen Capture
	Problem
	Solution
	How It Works
	The Code

	8-7. Use Double Buffering to Increase Redraw Speed
	Problem
	Solution
	How It Works
	The Code

	8-8. Show a Thumbnail for an Image
	Problem
	Solution
	How It Works
	The Code

	8-9. Play a Simple Beep or System Sound
	Problem
	Solution
	How It Works
	The Code

	8-10. Play a WAV File
	Problem
	Solution
	How It Works
	The Code

	8-11. Play a Sound File
	Problem
	Solution
	How It Works
	The Code

	8-12. Play a Video
	Problem
	Solution
	How It Works
	The Code

	8-13. Retrieve Information About Installed Printers
	Problem
	Solution
	How It Works
	The Code
	Usage

	8-14. Print a Simple Document
	Problem
	Solution
	How It Works
	The Code

	8-15. Print a Multipage Document
	Problem
	Solution
	How It Works
	The Code

	8-16. Print Wrapped Text
	Problem
	Solution
	How It Works
	The Code

	8-17. Show a Dynamic Print Preview
	Problem
	Solution
	How It Works
	The Code

	8-18. Manage Print Jobs
	Problem
	Solution
	How It Works
	The Code

	8-19. Perform Text-to-Speech
	Problem
	Solution
	How It Works
	The Code

	8-20. Recognize Characters in an Image (OCR)
	Problem
	Solution
	How It Works
	The Code

	Database Access
	9-1. Connect to a Database
	Problem
	Solution
	How It Works
	The Code

	9-2. Use Connection Pooling
	Problem
	Solution
	How It Works
	The Code
	Notes

	9-3. Create a Database Connection String Programmatically
	Problem
	Solution
	How It Works
	The Code

	9-4. Store a Database Connection String Securely
	Problem
	Solution
	How It Works
	The Code

	9-5. Execute a SQL Command or Stored Procedure
	Problem
	Solution
	How It Works
	The Code

	9-6. Use Parameters in a SQL Command or Stored Procedure
	Problem
	Solution
	How It Works
	The Code

	9-7. Process the Results of a SQL Query Using a Data Reader
	Problem
	Solution
	How It Works
	The Code

	9-8. Obtain an XML Document from a SQL Server Query
	Problem
	Solution
	How It Works
	The Code

	9-9. Perform Asynchronous Database Operations Against SQL Server
	Problem
	Solution
	How It Works
	The Code

	9-10. Write Database-Independent Code
	Problem
	Solution
	How It Works
	The Code

	9-11. Discover All Instances of SQL Server on Your Network
	Problem
	Solution
	How It Works
	The Code

	9-12. Create an In-Memory Cache
	Problem
	Solution
	How It Works
	The Code

	9-13. Create a DataSet Programmatically
	Problem
	Solution
	How It Works
	The Code

	9-14. Perform a LINQ Query
	Problem
	Solution
	How It Works
	The Code

	9-15. Perform a LINQ Query with Entity Types
	Problem
	Solution
	How It Works
	The Code

	9-16. Compare LINQ DataSet Results
	Problem
	Solution
	How It Works
	The Code

	Networking
	10-1. Obtain Information About the Local Network Interface
	Problem
	Solution
	How It Works
	The Code

	10-2. Detect Changes in Network Connectivity
	Problem
	Solution
	How It Works
	The Code

	10-3. Download Data over HTTP or FTP
	Problem
	Solution
	How It Works
	The Code
	Notes

	10-4. Download a File and Process It Using a Stream
	Problem
	Solution
	How It Works
	The Code

	10-5. Respond to HTTP Requests from Within Your Application
	Problem
	Solution
	How It Works
	The Code

	10-6. Get an HTML Page from a Site That Requires Authentication
	Problem
	Solution
	How It Works
	The Code

	10-7. Send E-mail Using SMTP
	Problem
	Solution
	How It Works
	The Code

	10-8. Resolve a Host Name to an IP Address
	Problem
	Solution
	How It Works
	The Code
	Usage

	10-9. Ping an IP Address
	Problem
	Solution
	How It Works
	The Code
	Usage

	10-10. Communicate Using TCP
	Problem
	Solution
	How It Works
	The Code
	Usage

	10-11. Create a Multithreaded TCP Server That Supports Asynchronous Communications
	Problem
	Solution
	How It Works
	The Code

	10-12. Communicate Using UDP
	Problem
	Solution
	How It Works
	The Code

	10-13. Create a SOAP-Based Web Service
	Problem
	Solution
	How It Works
	The Code

	10-14. Call a WCF Service Using a Dynamically Generated Service Proxy
	Problem
	Solution
	How It Works
	The Code

	10-15. Process the Content of an Atom or RSS Feed
	Problem
	Solution
	How It Works
	The Code

	10-16. Manipulate URIs
	Problem
	Solution
	How It Works
	The Code

	Security and Cryptography
	11-1. Allow Partially Trusted Code to Use Your Strongly Named Assembly
	Problem
	Solution
	How It Works
	The Code
	Notes

	11-2. Disable Code Access Security
	Problem
	Solution
	How It Works

	11-3. Disable Execution Permission Checks
	Problem
	Solution
	How It Works
	The Code
	Notes

	11-4. Ensure the Runtime Grants Specific Permissions to Your Assembly
	Problem
	Solution
	How It Works
	The Code

	11-5. Limit the Permissions Granted to Your Assembly
	Problem
	Solution
	How It Works
	The Code

	11-6. View the Permissions Required by an Assembly
	Problem
	Solution
	How It Works
	The Code
	Usage

	11-7. Determine at Runtime If Your Code Has a Specific Permission
	Problem
	Solution
	How It Works
	The Code

	11-8. Restrict Who Can Extend Your Classes and Override Class Members
	Problem
	Solution
	How It Works
	The Code

	11-9. Inspect an Assembly’s Evidence
	Problem
	Solution
	How It Works
	The Code

	11-10. Determine If the Current User Is a Member of a Specific Windows Group
	Problem
	Solution
	How It Works
	The Code
	Usage

	11-11. Restrict Which Users Can Execute Your Code
	Problem
	Solution
	How It Works
	The Code

	11-12. Impersonate a Windows User
	Problem
	Solution
	How It Works
	The Code
	Usage

	11-13. Create a Cryptographically Random Number
	Problem
	Solution
	How It Works
	The Code

	11-14. Calculate the Hash Code of a Password
	Problem
	Solution
	How It Works
	The Code
	Usage

	11-15. Calculate the Hash Code of a File
	Problem
	Solution
	How It Works
	The Code
	Usage

	11-16. Verify a Hash Code
	Problem
	Solution
	How It Works
	The Code

	11-17. Ensure Data Integrity Using a Keyed Hash Code
	Problem
	Solution
	How It Works
	The Code
	Usage

	11-18. Work with Security-Sensitive Strings in Memory
	Problem
	Solution
	How It Works
	The Code

	11-19. Encrypt and Decrypt Data Using the Data Protection API
	Problem
	Solution
	How It Works
	The Code

	Unmanaged Code Interoperability
	12-1. Call a Function in an Unmanaged DLL
	Problem
	Solution
	How It Works
	The Code

	12-2. Get the Handle for a Control, Window, or File
	Problem
	Solution
	How It Works
	The Code

	12-3. Call an Unmanaged Function That Uses a Structure
	Problem
	Solution
	How It Works
	The Code

	12-4. Call an Unmanaged Function That Uses a Callback
	Problem
	Solution
	How It Works
	The Code

	12-5. Retrieve Unmanaged Error Information
	Problem
	Solution
	How It Works
	The Code

	12-6. Use a COM Component in a .NET Client
	Problem
	Solution
	How It Works
	The Code

	12-7. Release a COM Component Quickly
	Problem
	Solution
	How It Works

	12-8. Use Optional Parameters
	Problem
	Solution
	How It Works
	The Code

	12-9. Use an ActiveX Control in a .NET Client
	Problem
	Solution
	How It Works

	12-10. Expose a .NET Component Through COM
	Problem
	Solution
	How It Works

	Commonly Used Interfaces and Patterns
	13-1. Implement a Custom Serializable Type
	Problem
	Solution
	How It Works
	The Code

	13-2. Implement a Cloneable Type
	Problem
	Solution
	How It Works
	The Code

	13-3. Implement a Comparable Type
	Problem
	Solution
	How It Works
	The Code
	Usage

	13-4. Implement an Enumerable Collection
	Problem
	Solution
	How It Works
	The Code

	13-5. Implement an Enumerable Type Using a Custom Iterator
	Problem
	Solution
	How It Works
	The Code

	13-6. Implement a Disposable Class
	Problem
	Solution
	How It Works
	The Code

	13-7. Implement a Formattable Type
	Problem
	Solution
	How It Works
	The Code
	Usage

	13-8. Implement a Custom Exception Class
	Problem
	Solution
	How It Works
	The Code

	13-9. Implement a Custom Event Argument
	Problem
	Solution
	How It Works
	The Code

	13-10. Implement the Singleton Pattern
	Problem
	Solution
	How It Works
	The Code
	Usage

	13-11. Implement the Observer Pattern
	Problem
	Solution
	How It Works
	The Code
	Usage

	13-12. Implement a Parallel Producer-Consumer Pattern
	Problem
	Solution
	How It Works
	The Code

	13-13. Perform Lazy Object Initialization
	Problem
	Solution
	How It Works
	The Code

	13-14. Use Optional Parameters
	Problem
	Solution
	How It Works
	The Code

	13-15. Add a Method to a Type Without Modifying It
	Problem
	Solution
	How It Works
	The Code

	13-16. Call an Object Member Dynamically
	Problem
	Solution
	How It Works
	The Code

	13-17. Create a Variant Generic Type
	Problem
	Solution
	How It Works
	The Code

	Windows Integration
	14-1. Access Runtime Environment Information
	Problem
	Solution
	How It Works
	The Code

	14-2. Retrieve the Value of an Environment Variable
	Problem
	Solution
	How It Works
	The Code

	14-3. Write an Event to the Windows Event Log
	Problem
	Solution
	How It Works
	The Code

	14-4. Read and Write to the Windows Registry
	Problem
	Solution
	How It Works
	The Code

	14-5. Search the Windows Registry
	Problem
	Solution
	How It Works
	The Code
	Usage

	14-6. Create a Windows Service
	Problem
	Solution
	How It Works
	The Code
	Usage

	14-7. Create a Windows Service Installer
	Problem
	Solution
	How It Works
	The Code
	Usage

	14-8. Create a Shortcut on the Desktop or Start Menu
	Problem
	Solution
	How It Works
	The Code

	14-9. Create a Windows 7 Jump List
	Problem
	Solution
	How It Works
	The Code

	14-10. Use Windows Search
	Problem
	Solution
	How It Works
	The Code

	14-11. Check Internet Connectivity
	Problem
	Solution
	How It Works
	The Code

	14-12. Display a Task Dialog
	Problem
	Solution
	How It Works
	The Code

	14-13. Write Custom Performance Counters
	Problem
	Solution
	How It Works
	The Code

	14-14. Read Performance Counters
	Problem
	Solution
	How It Works
	The Code

	14-15. Obtain Elevated Privileges
	Problem
	Solution
	How It Works
	The Code

	Parallel Programming
	15-1. Perform Simple Parallel Tasks
	Problem
	Solution
	How It Works
	The Code

	15-2. Return a Result from a Task
	Problem
	Solution
	How It Works
	The Code

	15-3. Wait for Tasks to Complete
	Problem
	Solution
	How It Works
	The Code

	15-4. Parallel Process a Collection
	Problem
	Solution
	How It Works
	The Code

	15-5. Chain Tasks Together
	Problem
	Solution
	How It Works
	The Code

	15-6. Write a Cooperative Algorithm
	Problem
	Solution
	How It Works
	The Code

	15-7. Handle Exceptions in Tasks
	Problem
	Solution
	How It Works
	The Code

	15-8. Cancel a Task
	Problem
	Solution
	How It Works
	The Code

	15-9. Share Data Between Tasks
	Problem
	Solution
	How It Works
	The Code

	Using LINQ
	16-1. Perform a Simple LINQ Query
	Problem
	Solution
	How It Works
	The Code

	16-2. Filter Items from a Data Source
	Problem
	Solution
	How It Works
	The Code

	16-3. Filter a Data Source by Type
	Problem
	Solution
	How It Works
	The Code

	16-4. Filter Ranges of Elements
	Problem
	Solution
	How It Works
	The Code

	16-5. Select Multiple Member Values
	Problem
	Solution
	How It Works
	The Code

	16-6. Filter and Select from Multiple Data Sources
	Problem
	Solution
	How It Works
	The Code

	16-7. Use Permutations of Data Sources
	Problem
	Solution
	How It Works
	The Code

	16-8. Concatenate Data Sources
	Problem
	Solution
	How It Works
	The Code

	16-9. Group Result Elements by Attribute
	Problem
	Solution
	How It Works
	The Code

	16-10. Sort Query Results
	Problem
	Solution
	How It Works
	The Code

	16-11. Compare Data Sources
	Problem
	The Solution
	How It Works
	The Code

	16-12. Aggregate Data Sources
	Problem
	Solution
	How It Works
	The Code

	16-13. Share Values Within a Query
	Problem
	Solution
	How It Works
	The Code

	16-14. Create Custom LINQ Extension Methods
	Problem
	Solution
	How It Works
	The Code

	16-15. Convert from IEnumerable<>
	Problem
	Solution
	How It Works
	The Code

	Windows Presentation Foundation
	17-1. Create and Use a Dependency Property
	Problem
	Solution
	How It Works
	The Code

	17-2. Create and Use an Attached Property
	Problem
	Solution
	How It Works
	The Code

	17-3. Define Application-Wide Resources
	Problem
	Solution
	How It Works
	The Code

	17-4. Debug Data Bindings Using an IValueConverter
	Problem
	Solution
	How It Works
	The Code

	17-5. Debug Bindings Using Attached Properties
	Problem
	Solution
	How It Works
	The Code

	17-6. Arrange UI Elements in a Horizontal or Vertical Stack
	Problem
	Solution
	How It Works
	The Code

	17-7. Dock UI Elements to the Edges of a Form
	Problem
	Solution
	How It Works
	The Code

	17-8. Arrange UI Elements in a Grid
	Problem
	Solution
	How It Works
	The Code

	17-9. Position UI Elements Using Exact Coordinates
	Problem
	Solution
	How It Works
	The Code

	17-10. Get Rich Text Input from a User
	Problem
	Solution
	How It Works
	The Code

	17-11. Display a Control Rotated
	Problem
	Solution
	How It Works
	The Code

	17-12. Create a User Control
	Problem
	Solution
	How It Works
	The Code

	17-13. Support Application Commands in a User Control
	Problem
	Solution
	How It Works
	The Code

	17-14. Create a Lookless Custom Control
	Problem
	Solution
	How It Works
	The Code

	17-15. Create a Two-Way Binding
	Problem
	Solution
	How It Works
	The Code

	17-16. Bind to a Command
	Problem
	Solution
	How It Works
	The Code

	17-17. Use Data Templates to Display Bound Data
	Problem
	Solution
	How It Works
	The Code

	17-18. Bind to a Collection with the Master-Detail Pattern
	Problem
	Solution
	How It Works
	The Code

	17-19. Change a Control’s Appearance on Mouseover
	Problem
	Solution
	How It Works
	The Code

	17-20. Change the Appearance of Alternate Items in a List
	Problem
	Solution
	How It Works
	The Code

	17-21. Drag Items from a List and Drop Them on a Canvas
	Problem
	Solution
	How It Works
	The Code

	17-22. Display the Progress of a Long-Running Operation and Allow the User to Cancel It
	Problem
	Solution
	How It Works
	The Code

	17-23. Draw Two-Dimensional Shapes
	Problem
	Solution
	How It Works
	The Code

	17-24. Create Reusable Shapes
	Problem
	Solution
	How It Works
	The Code

	17-25. Draw or Fill a Shape Using a Solid Color
	Problem
	Solution
	How It Works
	The Code

	17-26. Fill a Shape with a Linear or Radial Color Gradient
	Problem
	Solution
	How It Works
	The Code

	17-27. Fill a Shape with an Image
	Problem
	Solution
	How It Works
	The Code

	17-28. Fill a Shape with a Pattern or Texture
	Problem
	Solution
	How It Works
	The Code

	17-29. Animate the Property of a Control
	Problem
	Solution
	How It Works
	The Code

	17-30. Animate Several Properties in Parallel
	Problem
	Solution
	How It Works
	The Code

	17-31. Create a Keyframe-Based Animation
	Problem
	Solution
	How It Works
	The Code

	17-32. Animate an Object Along a Path
	Problem
	Solution
	How It Works
	The Code

	17-33. Play a Media File
	Problem
	Solution
	How It Works
	The Code

	17-34. Query Keyboard State
	Problem
	Solution
	How It Works
	The Code

	Index
	¦Numbers & Symbols
	¦A
	¦B
	¦C
	¦D
	¦E
	¦F
	¦G
	¦H
	I
	¦
	¦J
	K
	¦
	¦L
	¦M
	¦N
	¦O
	¦P
	¦Q
	R
	¦
	¦S
	¦T
	¦U
	¦V
	¦W
	¦X
	¦Y
	¦Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

