

Web Application
Architecture Guide

Application Architecture Pocket Guide Series

Information in this document, including URL and other Internet Web site references, is
subject to change without notice. Unless otherwise noted, the example companies,
organizations, products, domain names, e-mail addresses, logos, people, places, and
events depicted herein are fictitious, and no association with any real company,
organization, product, domain name, e-mail address, logo, person, place, or event is
intended or should be inferred. Complying with all applicable copyright laws is the
responsibility of the user. Without limiting the rights under copyright, no part of this
document may be reproduced, stored in or introduced into a retrieval system, or
transmitted in any form or by any means (electronic, mechanical, photocopying,
recording, or otherwise), or for any purpose, without the express written permission of
Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other
intellectual property rights covering subject matter in this document. Except as expressly
provided in any written license agreement from Microsoft, the furnishing of this
document does not give you any license to these patents, trademarks, copyrights, or other
intellectual property.

 2008 Microsoft Corporation. All rights reserved.

Microsoft, MS-DOS, Windows, Windows NT, Windows Server, Active Directory,
MSDN, Visual Basic, Visual C++, Visual C#, Visual Studio, and Win32 are either
registered trademarks or trademarks of Microsoft Corporation in the United States and/or
other countries.

The names of actual companies and products mentioned herein may be the trademarks of
their respective owners.

Web Application Architecture Pocket Guide

Microsoft patterns & practices 2

Web Application Architecture
Guide

patterns & practices

J.D. Meier

Alex Homer
David Hill

Jason Taylor
Prashant Bansode

Lonnie Wall
Rob Boucher Jr

Akshay Bogawat

Web Application Architecture Pocket Guide

Microsoft patterns & practices 3

Introduction

Overview
The purpose of the Web Application Architecture Pocket Guide is to improve your effectiveness
when building Web applications on the Microsoft platform. The primary audience is solution
architects and development leads. The guide provides design-level guidance for the
architecture and design of Web applications built on the .NET Platform. It focuses on
partitioning application functionality into layers, components, and services, and walks through
their key design characteristics.

The guidance is task-based and presented in chapters that correspond to major architecture
and design focus points. It is designed to be used as a reference resource, or it can be read from
beginning to end. The guide contains the following chapters and resources:
• Chapter 1, "Web Application Architecture," provides general design guidelines for a Web

application, explains the key attributes, discusses the use of layers, provides guidelines for
performance, security, and deployment, and lists the key patterns and technology
considerations.

• Chapter 2, "Architecture and Design Guidelines,” helps you to understand the concepts of
software architecture, learn the key design principles for software architecture, and
provides the guidelines for the key attributes of software architecture.

• Chapter 3, "Presentation Layer Guidelines,” helps you to understand how the presentation
layer fits into the typical application architecture, learn about the components of the
presentation layer, learn how to design these components, and understand the common
issues faced when designing a presentation layer. It also contains key guidelines for
designing a presentation layer, and lists the key patterns and technology considerations.

• Chapter 4, "Business Layers Guidelines,” helps you to understand how the business layer
fits into the typical application architecture, learn about the components of the business
layer, learn how to design these components, and understand common issues faced when
designing a business layer. It also contains key guidelines for designing the business layer,
and lists the key patterns and technology considerations.

• Chapter 5, "Data Access Layer Guidelines,” helps you top understand how the data layer
fits into the typical application architecture, learn about the components of the data layer,
learn how to design these components, and understand the common issues faced when
designing a data layer. It also contains key guidelines for designing a data layer, and lists the
key patterns and technology considerations.

• Chapter 6, "Service Layer Guidelines,” helps you to understand how the service layer fits
into the typical application architecture, learn about the components of the service layer,
learn how to design these components, and understand common issues faced when
designing a service layer. It also contains key guidelines for designing a service layer, and
lists the key patterns and technology considerations.

• Chapter 7, "Communication Guidelines,” helps you to learn the guidelines for designing a
communication approach, and understand the ways in which components communicate

Web Application Architecture Pocket Guide

Microsoft patterns & practices 4

with each other. It will also help you to learn the interoperability, performance, and security
considerations for choosing a communication approach, and the communication technology
choices available.

• Chapter 8, "Deployment Patterns,” helps you to learn the key factors that influence
deployment choices, and contains recommendations for choosing a deployment pattern. It
also helps you to understand the effect of deployment strategy on performance, security,
and other quality attributes, and learn common deployment patterns.

Why We Wrote This Guide
We wrote this guide to accomplish the following:
• To help you design more effective architectures on the .NET platform.
• To help you choose the right technologies
• To help you make more effective choices for key engineering decisions.
• To help you map appropriate strategies and patterns.
• To help you map relevant patterns & practices solution assets.

Features of This Guide
• Framework for application architecture. The guide provides a framework that helps you to

think about your application architecture approaches and practices.
• Architecture Frame. The guide uses a frame to organize the key architecture and design

decision points into categories, where your choices have a major impact on the success of
your application.

• Principles and practices. These serve as the foundation for the guide, and provide a stable
basis for recommendations. They also reflect successful approaches used in the field.

• Modular. Each chapter within the guide is designed to be read independently. You do not
need to read the guide from beginning to end to get the benefits. Feel free to use just the
parts you need.

• Holistic. If you do read the guide from beginning to end, it is organized to fit together. The
guide, in its entirety, is better than the sum of its parts.

• Subject matter expertise. The guide exposes insight from various experts throughout
Microsoft, and from customers in the field.

• Validation. The guidance is validated internally through testing. In addition, product, field,
and support teams have performed extensive reviews. Externally, the guidance is validated
through community participation and extensive customer feedback cycles.

• What to do, why, how. Each section in the guide presents a set of recommendations. At the
start of each section, the guidelines are summarized using bold, bulleted lists. This gives you
a snapshot view of the recommendations. Then each recommendation is expanded to help
you understand what to do, why, and how.

• Technology matrices. The guide contains a number of cheat sheets that explore key topics
in more depth. Use these cheat sheets to help you make better decisions on technologies,
architecture styles, communication strategies, deployment strategies, and common design
patterns.

Web Application Architecture Pocket Guide

Microsoft patterns & practices 5

• Checklists. The guide contains checklists for communication strategy as well as each web
application layer. Use these checklists to review your design as input to drive architecture
and design reviews for your application.

Audience
This guide is useful to anyone who cares about application design and architecture. The primary
audience for this guide is solution architects and development leads, but any technologist who
wants to understand good application design on the .NET platform will benefit from reading it.

Ways to Use the Guide
You can use this comprehensive guidance in several ways, both as you learn more about the
architectural process and as a way to instill knowledge in the members of your team. The
following are some ideas:
• Use it as a reference. Use the guide as a reference and learn the architecture and design

practices for web applications on the .NET Framework.
• Use it as a mentor. Use the guide as your mentor for learning how to design an application

that meets your business goals and quality attributes objectives. The guide encapsulates the
lessons learned and experience from many subject-matter experts.

• Use it when you design applications. Design applications using the principles and practices
in the guide, and benefit from the lessons learned.

• Create training. Create training from the concepts and techniques used throughout the
guide, as well as from the technical insight into the .NET Framework technologies.

Feedback and Support
We have made every effort to ensure the accuracy of this guide. However, we welcome
feedback on any topics it contains. This includes technical issues specific to the
recommendations, usefulness and usability issues, and writing and editing issues.

If you have comments on this guide, please visit the Application Architecture KB
at http://www.codeplex.com/AppArch.

Technical Support
Technical support for the Microsoft products and technologies referenced in this guidance is
provided by Microsoft Product Support Services (PSS). For product support information, please
visit the Microsoft Product Support Web site at: http://support.microsoft.com.

Community and Newsgroup Support
You can also obtain community support, discuss this guide, and provide feedback by visiting the
MSDN Newsgroups site at http://msdn.microsoft.com/newsgroups/default.asp.

The Team Who Brought You This Guide
This guide was produced by the following .NET architecture and development specialists:

Web Application Architecture Pocket Guide

Microsoft patterns & practices 6

• J.D. Meier
• Alex Homer
• David Hill
• Jason Taylor
• Prashant Bansode
• Lonnie Wall
• Rob Boucher Jr.
• Akshay Bogawat

Contributors and Reviewers
• Test Team. Rohit Sharma; Praveen Rangarajan
• Edit Team. Dennis Rea

Tell Us About Your Success
If this guide helps you, we would like to know. Tell us by writing a short summary of the
problems you faced and how this guide helped you out. Submit your summary
to MyStory@Microsoft.com.

Web Application Architecture Pocket Guide

Microsoft patterns & practices 7

Chapter 1 – Web Application Architecture

Objectives
• Define a Web Application.
• Learn the general design considerations for a Web application.
• Learn the guidelines for key attributes of a Web application.
• Learn the guidelines for layers within a Web application.
• Learn the guidelines for performance, security, and deployment.
• Learn the key patterns and technology considerations.

Overview
The core of a Web application is its server-side logic. The Web application layer itself can be
comprised of many distinct layers. The typical example is a three-layered architecture
comprised of presentation, business, and data layers. Figure 1 illustrates a common Web
application architecture with common components grouped by different areas of concern.

Figure 1. A common Web application architecture

Web Application Architecture Pocket Guide

Microsoft patterns & practices 8

Design Considerations
When designing a Web application, the goals of a software architect are to minimize the
complexity by separating tasks into different areas of concern while designing a secure and high
performance application.

When designing Web application, consider following guidelines:
• Partition your application logically. Use layering to partition your application logically into

presentation, business, and data access layers. This helps you to create maintainable code
and allows you to monitor and optimize the performance of each layer separately. A clear
logical separation also offers more choices for scaling your application.

• Use abstraction to implement loose coupling between layers. This can be accomplished by
defining interface components, such as a façade with well-known inputs and outputs that
translates requests into a format understood by components within the layer. In addition,
you can also use Interface types or abstract base classes to define a shared abstraction that
must be implemented by interface components.

• Understand how components will communicate with each other. This requires an
understanding of the deployment scenarios your application must support. You must
determine if communication across physical boundaries or process boundaries should be
supported, or if all components will run within the same process.

• Reduce round trips. When designing a Web application, consider using techniques such as
caching and output buffering to reduce round trips between the browser and the Web
server, and between the Web server and downstream servers.

• Consider using caching. A well-designed caching strategy is probably the single most
important performance-related design consideration. ASP.NET caching features include
output caching, partial page caching, and the cache API. Design your application to take
advantage of these features.

• Consider using logging and instrumentation. You should audit and log activities across the
layers and tiers of your application. These logs can be used to detect suspicious activity,
which frequently provides early indications of an attack on the system.

• Avoid blocking during long-running tasks. If you have long-running or blocking operations,
consider using an asynchronous approach to allow the Web server to process other
incoming requests.

• Consider authenticating users across trust boundaries. You should design your application
to authenticate users whenever they cross a trust boundary; for example, when accessing a
remote business layer from your presentation layer.

• Do not pass sensitive data in plain text across network. Whenever you need to pass
sensitive data such as a password or authentication cookie across the network, consider
encrypting and signing the data or using SSL.

• Design to run your Web application using a least-privilege account. If an attacker manages
to take control of a process, the process identity should have restricted access to the file
system and other system resources in order to limit the possible damage.

Web Application Architecture Pocket Guide

Microsoft patterns & practices 9

Web Application Frame
There are several common issues that you must consider as your develop your design. These
issues can be categorized into specific areas of the design. The following table lists the common
issues for each category where mistakes are most often made.

Category Key Issues
Authentication • Lack of authentication across trust boundaries.

• Storing passwords in a database as plain text.
• Designing custom authentication mechanism

instead of using built-in capabilities.
Authorization • Lack of authorization across trust boundaries.

• Incorrect role granularity.
• Using impersonation and delegation when not

required.
Caching • Caching volatile data.

• Not considering caching page output.
• Caching sensitive data.
• Failing to cache data in a ready-to-use format.

Exception
Management

• Revealing sensitive information to the end user.
• Not logging sufficient details about the

exception.
• Using exceptions for application logic.

Logging and
Instrumentation

• Failing to implement adequate instrumentation
in all layers.

• Failing to log system-critical and business-critical
events.

• Not supporting runtime configuration of logging
and instrumentation.

• Logging sensitive information.
Navigation • Mixing navigation logic with user interface

components.
• Hard-coding relationships between views.
• Not verifying if the user is authorized to

navigate to a view.
Page Layout (UI) • Using table-based layout for complex layouts.

• Designing complex and overloaded pages.
Page Rendering • Using excessive postbacks that impact user

experience.
• Using excessive page sizes that reduce

performance.
Presentation Entity • Creating custom entity objects when not

required.
• Adding business logic to presentation entities.

Web Application Architecture Pocket Guide

Microsoft patterns & practices 10

Request Processing • Mixing processing and rendering logic.
• Choosing an inappropriate pattern.

Service Interface
Layer

• Breaking the service interface.
• Implementing business rules in a service

interface.
• Failing to consider interoperability

requirements.
Session
Management

• Using an incorrect state store.
• Not considering serialization requirements.
• Not persisting state when required.
• Enabling view state for large data items such as

Datasets
Validation • Relying on client side validation.

• Lack of validation across trust boundaries.
• Not reusing the validation logic.

Authentication
Designing an effective authentication strategy is important for the security and reliability of
your application. Improper or weak authorization can leave your application vulnerable to
spoofing attacks, dictionary attacks, session hijacking, and other types of attack.

When designing an authentication strategy, consider following guidelines:
• Identify trust boundaries within Web application layers. This will help you to determine

where to authenticate.
• Use a platform-supported authentication mechanism such as Windows Authentication

when possible.
• If you are using Forms authentication, use the platform features when possible.
• Enforce strong account management practices such as account lockouts and expirations.
• Enforce strong passwords policies. This includes specifying password length and complexity,

and password expiration policies.

Authorization
Authorization determines the tasks that an authenticated identity can perform and identifies
the resources that can be accessed. Designing an effective authorization strategy is important
for the security and reliability of your application. Improper or weak authorization leads to
information disclosure, data tampering, and elevation of privileges. Defense in depth is the key
security principle to apply to your application's authorization strategy.

When designing an authorization strategy, consider following guidelines:
• Identify trust boundaries within the Web application layers and authorize users across trust

boundaries.
• Use URL authorization for page and directory access control.

Web Application Architecture Pocket Guide

Microsoft patterns & practices 11

• Consider the granularity of your authorization settings. Too fine granularity increases
management overheads and too coarse granularity reduces flexibility.

• Access downstream resources using a trusted identity based on the trusted sub-system
model.

• Use impersonation and delegation to take advantage of the user-specific auditing and
granular access controls of the platform, but consider the effect on performance and
scalability.

Caching
Caching improves the performance and responsiveness of your application. However, incorrect
caching choices and poor caching design can degrade performance and responsiveness. You
should use caching to optimize reference data lookups, avoid network round trips, and avoid
unnecessary and duplicate processing. To implement caching, you must decide when to load
the cache data. Try to load the cache asynchronously or by using a batch process to avoid client
delays.

When designing caching, consider following guidelines:
• Avoid caching volatile data.
• Use output caching to cache pages that are relatively static.
• Consider using partial page caching through user controls for static data in your pages.
• Pool shared resources that are expensive, such as network connections, instead of caching

them.
• Cache data in a ready-to-use format.

Exception Management
Designing an effective exception management strategy is important for the security and
reliability of your application. Correct exception handling in your Web pages prevents sensitive
exception details from being revealed to the user, improves application robustness, and helps
to avoid leaving your application in an inconsistent state in the event of an error.

When designing an exception management strategy, consider following guidelines:
• Do not use exceptions to control logic flow, and design your code to avoid exceptions where

possible.
• Do not catch exceptions unless you can handle them or you need to add information to the

exception.
• Design a global error handler to catch unhandled exceptions.
• Display user-friendly messages to end users whenever an error or exception occurs.
• Do not reveal sensitive information, such as passwords, through exception details.

Logging and Instrumentation
Designing an effective logging and instrumentation strategy is important for the security and
reliability of your application. You should audit and log activity across the tiers of your

Web Application Architecture Pocket Guide

Microsoft patterns & practices 12

application. These logs can be used to detect suspicious activity, which frequently provides
early indications of an attack on the system, and help to address the repudiation threat where
users deny their actions. Log files may be required in legal proceedings to prove the
wrongdoing of individuals. Generally, auditing is considered most authoritative if the audits are
generated at the precise time of resource access and by the same routines that access the
resource.

When designing a logging and instrumentation strategy, consider following guidelines:
• Consider auditing for user management events.
• Consider auditing for unusual activities.
• Consider auditing for business critical operations.
• Create secure log file management policies, such as restricting the access to log files,

allowing only write access to users, etc.
• Do not store sensitive information in the log or audit files.

Navigation
Design your navigation strategy in a way that separates it from the processing logic. It should
allow users to navigate easily through your screens or pages. Designing a consistent navigation
structure for your application will help to minimize user confusion as well as reducing the
apparent complexity of the application.

When designing your navigation strategy, consider the following guidelines:
• Use well-known design patterns, such as Model-View-Presenter (MVP), to decouple UI

processing from output rendering.
• Consider encapsulating navigation in a Master Page so that it is consistent across pages.
• Design a site-map to help users find pages on the site, and to allow search engines to crawl

the site if desired.
• Consider using wizards to implement navigation between forms in a predictable way.
• Consider using visual elements such as embedded links, navigation menus, and breadcrumb

text in the UI to help users understand where they are, what is available on the site, and
how to navigate the site quickly.

Page Layout (UI)
Design your application so that the page layout can be separated from the specific UI
components and UI processing. When choosing a layout strategy, consider whether designers
or developers will be building the layout. If designers will be building the layout, choose a
layout approach that does not require coding or the use of development-focused tools.

When designing your layout strategy, consider the following guidelines:
• Use Cascading Style Sheets (CSS) for layout whenever possible.
• Use table-based layout when you need to support a grid layout, but remember that table-

based layout can be slow to render, does not have full cross browser support, and there
may be issues with complex layout.

Web Application Architecture Pocket Guide

Microsoft patterns & practices 13

• Use a common layout for pages where possible to maximize accessibility and ease of use.
• Use Master Pages in ASP.NET applications to provide a common look and feel for all of the

pages.
• Avoid designing and developing large pages that accomplish multiple tasks, particularly

where usually only a few tasks are executed with each request.

Page Rendering
When designing for page rendering, you must ensure that you render the pages efficiently and
maximize interface usability.

When designing a page rendering strategy, consider following guidelines:
• Consider data binding options. For example, you can bind custom objects or datasets to

controls. However, be aware that binding only applies to rendered data in ASP.NET.
• Consider using AJAX for an improved user experience and better responsiveness.
• Consider using data paging techniques for large amounts of data to minimize scalability

issues.
• Consider designing to support localization in user interface components.
• Abstract the user process components from data rendering and acquisition functions.

Presentation Entity
Presentation entities store the data that you will use to manage the views in your presentation
layer. Presentation entities are not always necessary. Consider using presentation entities only
if the data sets are sufficiently large or complex that they must be stored separately from the UI
controls. Design or choose appropriate presentation entities that you can easily bind to user
interface controls.

When designing presentation entities, consider the following guidelines:
• Determine if you need presentation entities, typically you might need presentations entities

if the data or data format to be displayed is specific to presentation layer.
• Consider the serialization requirements for your presentation entities, if they are to be

passed across the network or stored on the disk.
• Consider implementing input data validation in your presentation entities.
• Consider using presentation entities to store state related to the user interface. If you want

to use this state to help your application recover from a crash, make sure after recovery
that the user interface is in a consistent state.

Request Processing
When designing a request processing strategy, you should ensure separation of concerns by
implementing the request processing logic separately from the user interface.

When designing a request processing strategy, consider the following guidelines:

Web Application Architecture Pocket Guide

Microsoft patterns & practices 14

• Consider centralizing the common pre-processing and post-processing steps of web page
requests to promote logic reuse across pages. For example, consider creating a base class
derived from the Page class to contain your common pre- and post-processing logic.

• Consider dividing UI processing into three distinct roles, model, view, and
controller/presenter, by using the MVC or MVP pattern.

• If you are designing views for handling large amounts of data, consider giving access to the
model from the view using the Supervising Controller pattern, which is a form of the MVP
pattern.

• If your application does not have a dependency on view state and you have a limited
number of control events, consider using MVC pattern.

• Consider using the Intercepting Filter pattern to implement the processing steps as
pluggable filters when appropriate.

Session Management
When designing a Web application, an efficient and secure session management strategy is
important for performance and reliability. You must consider session management factors such
as what to store, where to store it, and how long information will be kept.

When designing a session management strategy, consider the following guidelines
• If you have a single web server, require optimum session state performance, and have a

relatively limited number of concurrent sessions, use the in-process state store.
• If you have a single web server, your sessions are expensive to rebuild, and you require

durability in the event of an ASP.NET restart, use the session state service running on the
local web server.

• Use a remote session state service or the SQL Server state store for web farm scenarios.
• Protect your session state communication channel.
• Prefer basic types for session data to reduce serialization costs.

Validation
Designing an effective validation solution is important for the security and reliability of your
application. Improper or weak authorization can leave your application vulnerable to cross-site
scripting attacks, SQL injection attacks, buffer overflows, and other types of input attack.

When designing a validation strategy, consider following guidelines:
• Identify trust boundaries within Web application layers, and validate all data crossing these

boundaries.
• Assume that all client-controlled data is malicious and needs to be validated.
• Design your validation strategy to constrain, reject, and sanitize malicious input.
• Design to validate input for length, range, format, and type.
• Use client side validation for user experience, and server side validation for security.

Web Application Architecture Pocket Guide

Microsoft patterns & practices 15

Presentation Layer Considerations
The presentation layer of your Web application to displays the user interface and facilitates
user interaction. The design should focus on separation of concerns, where the user interaction
logic is decoupled from the user interface components.

When designing the presentation layer, consider following guidelines:
• Consider separating the user interface components from the user interface process

components.
• Use client-side validation to improve user experience and responsiveness, and server-side

validation for security. Do not rely on just on client-side validation. .
• Use page output caching or fragment caching to cache static pages or parts of pages.
• Use web server controls if you need to compile these controls into an assembly for reuse

across applications, or if you need to add additional features to existing server controls.
• Use web user controls if you need to reuse UI fragments on several pages, or if you want to

cache specific part of the page.

Business Layer Considerations
When designing the business layer for your Web application, consider how to implement the
business logic and long-running workflows. Design business entities that represent the real
world data, and use these to pass data between components.

When designing the business layer, consider following guidelines:
• Design a separate business layer that implements the business logic and workflows. This

improves maintainability and testability of your application.
• Consider centralizing and re-using common business logic functions.
• Design your business layer to be stateless. This helps to reduce resource contention and

increase performance.
• Use a message-based interface for the business layer. This works well with a stateless web

application business layer.
• Design transactions for business critical operations.

Data Layer Considerations
Design a data layer for your Web application to abstract the logic necessary to access the
database. Using a separate data layer makes the application easier to configure and maintain.
The data layer may also need to access external services using service agents.

When designing the data layer, consider following guidelines:
• Design a separate data layer to hide the details of the database from other layers of the

application.
• Design entity objects to interact with other layers, and to pass the data between them.
• Design to take advantage of connection pooling to minimize the number of open

connections.

Web Application Architecture Pocket Guide

Microsoft patterns & practices 16

• Design an exception handling strategy to handle data access errors, and to propagate
exceptions to business layers.

• Consider using batch operations to reduce round trips to the database.

Service Layer Considerations
Consider designing a separate service layer if you plan to deploy your business layer on a
remote tier, or if you plan to expose your business logic using a Web service.

When designing the service layer, consider following guidelines:
• If your business layer is on a remote tier, design coarse-grained service methods to

minimize the number of client-server interactions, and to provide loose coupling.
• Design the services without assuming a specific client type.
• Design the services to be idempotent.

Testing and Testability Considerations
Testability is a measure of how well system or components allow you to create test criteria and
execute tests to determine if the criteria are met. You should consider testability while
designing the architecture because it makes it easier to diagnose problems earlier and reduce
maintenance cost. To improve testability of your application, you can use logging events,
provide monitoring resources, and implement test interfaces.

Consider the following guidelines for testability:
• Clearly define the inputs and outputs of the application or components during the design

phase.
• Consider using the Passive View pattern (a variation of the MVP pattern) in the presentation

layer, which removes the dependency between the View and the Model.
• Design a separate business layer to implement the business logic and workflows, which

improves the testability of your application.
• Design an effective logging strategy, which allows you to detect bugs that might otherwise

be difficult to detect. Logging will help you to focus on faulty code when bugs are found. Log
files should contain information that can be used to replicate the issues.

• Design loosely coupled components that can be tested individually.

Performance Considerations
You should identify your performance objectives early in the design phase of a Web application
by gathering the non-functional requirements. Response time, throughput, CPU, memory, and
disk I/O are few of the key factors you should consider while designing your application.

Consider the following guidelines for performance:
• Ensure the performance requirements are specific, realistic, and flexible.
• Implement caching techniques to improve the performance and scalability of the

application.

Web Application Architecture Pocket Guide

Microsoft patterns & practices 17

• Perform batch operations to minimize the round trips across boundaries.
• Reduce the volume of HTML transferred between server and client.
• Avoid unnecessary round trips over the network.

Security Considerations
Security is an important consideration for protecting the integrity and privacy of the data and
the resources of your Web application. You should design a security strategy for your Web
application that uses tested and proven security solutions; and implement authentication,
authorization, and data validation to protect your application from a range of threats.

Consider the following guidelines for security:
• Consider the use of authentication at every trust boundary.
• Consider implementing a strong authorization mechanism to restrict resource access and

protect business logic.
• Consider the use of input validation and data validation at every trust boundary to mitigate

security threats such as cross-site scripting and code-injection.
• Do not rely on only client-side validation. Use server-side validation as well.
• Consider encrypting and digitally signing any sensitive data that is sent across the network.

Deployment Considerations
When deploying a Web application, you should take into account how layer and component
location will affect the performance, scalability and security of the application. You may also
need to consider design trade-offs. Use either a distributed or a non-distributed deployment
approach, depending on the business requirements and infrastructure constraints.

Consider the following guidelines for deployment:
• Consider using non-distributed deployment to maximize performance.
• Consider using distributed deployment to achieve better scalability and to allow each layer

to be secured separately.

Non-Distributed Deployment
In a non-distributed deployment scenario, all the logically separate layers of the Web
application are physically located on the same Web server, except for the database. You must
consider how the application will handle multiple concurrent users, and how to secure the
layers that reside on the same server. Figure 2 shows this scenario.

Figure 2 - Non-distributed deployment of a Web application.

Web Application Architecture Pocket Guide

Microsoft patterns & practices 18

Consider the following guidelines:
• Consider using non-distributed deployment if your Web application is performance

sensitive, because the local calls to other layers provide performance gains.
• Consider designing a component-based interface for your business layer.
• If your business logic runs in the same process, avoid authentication at the business layer.
• Consider using a trusted identity (through the trusted subsystem model) to access the

database. This improves the performance and scalability of your application.
• Consider encrypting and digitally signing sensitive data passed between the Web server and

database server.

Distributed Deployment
In a distributed deployment, the presentation and business layers of the Web application reside
on separate physical tiers, and communicate remotely. You will typically locate your business
and data access layers on the same sever. Figure 3 shows this scenario.

Figure 3 - Distributed deployment of a Web application.

Consider the following guidelines when choosing a distributed deployment:
• Do not physically separate your business logic components unless this is necessary.
• If your security concerns prohibit you from deploying your business logic on your front-end

web server, consider distributed deployment.
• Consider using a message-based interface for your business layer.
• Consider using the TCP protocol with binary encoding to communicate with the business

layer for best performance.
• Consider protecting sensitive data passed between different physical tiers.

Load Balancing
When you deploy your Web application on multiple servers, you can use load balancing to
distribute requests so that they are handled by different Web servers. This helps to maximize
response times, resource utilization, and throughput. Figure 4 shows this scenario.

Web Application Architecture Pocket Guide

Microsoft patterns & practices 19

Figure 4 - Load balancing a Web application.

Consider the following guidelines when designing your Web application to use load balancing:
• Avoid server affinity when designing scalable Web applications. Server affinity occurs when

all requests from a particular client must be handled by the same server. It usually occurs
when you use locally updatable caches, or in-process or local session state stores.

• Consider designing stateless components for your Web application; for example, a Web
front end that has no in-process state and no stateful business components.

• Consider using Windows Network Load Balancing (NLB) as a software solution to implement
redirection of requests to the servers in an application farm.

Web Farm Considerations
A Web farm allows you to scale out you application, which can also minimize the impact of
hardware failures. When you add more servers, you can use either a load balancing or a
clustering approach.

Consider the following guidelines:
• Consider using clustering to minimize the impact of hardware failures.
• Consider partitioning your database across multiple database servers if your application has

high input/output requirements.
• Consider configuring the web farm to route all requests from the same user to the same

server to provide affinity where this is required.
• Do not use in-process session management in a web farm when requests from the same

user cannot be guaranteed to be routed to the same server. Use an out-of-process state
server service or a database server for this scenario.

Web Application Architecture Pocket Guide

Microsoft patterns & practices 20

Pattern Map
Category Relevant Patterns
Caching • Cache Dependency

• Page Cache
Exception
Management

• Exception Shielding

Logging and
Instrumentation

• Provider

Navigation • Model View Presenter
• Model View Controller

Page Layout (UI) • Template View
• Composite View
• Transform View
• Two Step View

Request
Processing

• Page Controller
• Front Controller
• Passive View
• Supervising Controller

Service Interface
Layer

• Façade
• Service Interface

Pattern Descriptions
• Cache Dependency - Use external information to determine the state of data stored in a

cache.
• Composite View - Combine individual views into a composite representation.
• Exception Shielding - Filter exception data that should not be exposed to external systems

or users.
• Façade – Implement a unified interface to a set of operations to provide a simplified reduce

coupling between systems.
• Front Controller - Consolidate request handling by channeling all requests through a single

handler object, which can be modified at runtime with decorators.
• Model View Controller - Separate the user interface code into three separate units; Model

(data), View (interface), and Presenter (processing logic), with a focus on the View. Two
variations on this pattern include Passive View and Supervising Controller, which define
how the View interacts with the Model.

• Model View Presenter - Separate request processing into three separate roles, with the
View being responsible for handling user input and passing control to a Presenter object..

• Page Cache - Improve the response time for dynamic Web pages that are accessed
frequently, but change less often and consume a large amount of system resources to
construct.

• Page Controller - Accept input from the request and handle it for a specific page or action
on a Web site.

Web Application Architecture Pocket Guide

Microsoft patterns & practices 21

• Passive View – Reduce the view to the absolute minimum by allowing the controller to
process user input and maintain the responsibility for updating the view.

• Provider – Implement a component that exposes an API that is different from the client API
to allow any custom implementation to be seamlessly plugged in.

• Service Interface – A programmatic interface that other systems can use to interact with
the service.

• Supervising Controller – A variation of the MVC pattern in which the controller handles
complex logic, in particular coordinating between views, but the view is responsible for
simple view-specific logic.

• Template View - Implement a common template view, and derive or construct views using
this template view.

• Transform View – Transform the data passed to the presentation tier into HTML to be
displayed on UI.

• Two Step View – Transform the model data into a logical presentation without any specific
formatting, and then convert that logical presentation into the actual formatting required.

Technology Considerations
On the Microsoft platform, from an ASP.NET standpoint, you can combine the ASP.NET Web
Forms model with a range of other technologies, including ASP.NET AJAX, ASP.NET MVC,
Silverlight, and ASP.NET Dynamic Data. Consider the following guidelines:
• If you want to build applications that are accessed through a Web browser or specialized

user agent, consider using ASP.NET.
• If you want to build applications that provide increased interactivity and background

processing, with fewer page reloads, consider using ASP.NET with AJAX.
• If you want to build applications that include rich media content and interactivity, consider

using ASP.NET with Silverlight controls.
• If you are using ASP.NET, consider using Master Pages to implement a consistent UI across

all pages.
• If you are building a data-driven Web application with pages based on the data model of the

underlying database, consider using ASP.NET Dynamic Data.

Additional Resources
• For more information on designing and implementing Web client applications, see Design

and Implementation Guidelines for Web Clients at http://msdn.microsoft.com/en-
us/library/ms978605.aspx.

• For more information on designing distributed Web applications, see Designing Distributed
Applications at http://msdn.microsoft.com/en-us/library/aa292470(VS.71).aspx.

• For more information on Web application performance issues, see Improving .NET
Application Performance and Scalability at http://msdn.microsoft.com/en-
us/library/ms998530.aspx.

• For more information on Web application security, see Improving Web Application Security:
Threats and Countermeasures at http://msdn.microsoft.com/en-us/library/ms994921.aspx.

Web Application Architecture Pocket Guide

Microsoft patterns & practices 22

Chapter 2 – Architecture and Design Guidelines

Objectives
• Understand the concepts of software architecture.
• Learn the key design principles for software architecture.
• Learn the guidelines for key attributes of software architecture.

Overview
Software architecture is often described as the organization or structure of a system, while the
system represents a collection of components that accomplish a specific function or set of
functions. In other words, architecture is focused on organizing components to support specific
functionality. This organization of functionality is often referred to as grouping components into
“areas of concern”. Figure 1. illustrates common application architecture with components
grouped by different areas of concern.

Web Application Architecture Pocket Guide

Microsoft patterns & practices 23

Figure 1. Common application architecture

In addition to the grouping of components, other areas of concern focus on interaction
between the components and how different components work together. The guidelines in this
chapter examine different areas of concern that you should consider when designing the
architecture of your application.

Key Design Principles
When getting started with your design, bear in mind the key principles that will help you to
create an architecture that meets "best practice", minimizes costs and maintenance
requirements, and promotes usability and extendibility. The key principles are the following:
• Separation of Concerns. Break your application into distinct features that overlap in

functionality as little as possible.

Web Application Architecture Pocket Guide

Microsoft patterns & practices 24

• Single Responsibility Principle. Each component or a module should be responsible for only
a specific feature or functionality

• Principle of least knowledge. A component or an object should not know about internal
details of other components or objects. Also known as the Law of Demeter (LoD).

• Don’t Repeat Yourself (DRY). There should be only one component providing a specific
functionality, the functionality should not be duplicated in any other component.

• Avoid doing a big design upfront. If you are not clear with requirements or if there are
possibility of design evolution. This type of design often abbreviated as “BDUF”.

• Prefer Composition over Inheritance. For reusing the functionality prefer using composition
over inheritance, wherever possible, as inheritance increases dependency between parent
and child classes limiting the reuse of child classes.

Design Considerations
When designing an application or system, the goal of a software architect is to minimize the
complexity by separating things into different areas of concern. For example, the user interface
(UI), business processing, and data access all represent different areas of concern. Within each
area, the components you design should focus on that specific area and should not mix code
from other areas of concern. In other words, UI processing components should not include
code that directly accesses a data source. Instead UI processing components should use either
business components or data access components to retrieve data.

The following guidelines should be followed when designing an application:

• Avoid all your design upfront. If you are not clear with requirements or if there is the

possibility of design evolution, it might be a good idea not to do complete design upfront,
rather evolve the design as you progress through the project.

• Separate the areas of concern. Break your application into distinct features that overlap in
functionality as little as possible. The main benefit is that a feature or functionality can be
optimized independently of other features or functionality. Also if one feature fails it won’t
cause other features to fail as well, and they can run independently. It also helps to make
the application easier to understand, design and manage complex interdependent systems.

• Each component or module should have single responsibility. Each component or a
module should be responsible for only a specific feature or functionality. This makes your
components cohesive helping to optimize the components if a specific feature or
functionality changes.

• A component or an object should not rely on internal details of other components or
objects. A component or an object should call a method of another object or component,
and that method should have information about how to process the request and if needed
route to appropriate sub-components or other components. This helps in developing an
application that is more maintainable and adaptable.

• Do not duplicate functionality within an application. There should be only one component
providing a specific functionality. The functionality should not be duplicated in any other

Web Application Architecture Pocket Guide

Microsoft patterns & practices 25

component. Duplication of functionality within application leads to difficulty to change,
decrease in clarity and potential inconsistency.

• Identify the kinds of components you will need in your application. The best way to do this
is to identify patterns that match your scenario and examine the types of components that
are used by the pattern or patterns that match your scenario. For example, a smaller
application may not need business workflow or UI processing components.

• Group different types of components into logical layers. Within a logical layer, the design
of components should be consistent for a particular type. For example, if you choose to use
the Table Data Gateway pattern to create an object that acts as a gateway to a table in a
data source for data access, you should not include another pattern like Query Object to
define an object that represents a database query.

• You should not mix different types of components in the same logical layer. For example,
the User Interface (UI) layer should not contain business processing components. Instead,
the UI layer should contain components used to handle user input and process user
requests.

• Determine the type of layering you want to enforce. In a strict layering system,
components in layer A cannot call components in layer C; they always call components in
layer B. In a more relaxed layering system, components in a layer can call components in
other layers that are not immediately below it. In all cases, you should avoid upstream calls
and dependencies.

• Use abstraction to implement loose coupling between layers. This can be accomplished by
defining interface components such as a façade with well-known inputs and outputs that
translates requests into a format understood by components within the layer. In addition,
you can also use Interface types or abstract base classes to define a common interface or
shared abstraction (Dependency Inversion) that must be implemented by interface
components.

• Do not overload the functionality of a component. For example, a UI processing
component should not contain data access code. A common anti-pattern named Blob is
often found with base classes that attempt to provide too much functionality. A Blob object
will often have hundreds of functions and properties providing business functionality mixed
with cross-cutting functionality such as logging and exception handling. The size is caused
by trying to handle different variations of child functionality requirements, which requires
complex initialization. The end result is a design that is very error prone and difficult to
maintain.

• Understand how components will communicate with each other. This requires an
understanding of the deployment scenarios your application will need to support. You need
to determine if communication across physical boundaries or process boundaries should be
supported, or if all components will run within the same process.

• Prefer composition over inheritance. For reusing the functionality prefer using composition
over inheritance, wherever possible, as inheritance increases dependency between parent
and child classes limiting the reuse of child classes. This also reduces the inheritance
hierarchies which can become quite hard to deal with.

Web Application Architecture Pocket Guide

Microsoft patterns & practices 26

• Keep the data format consistent within a layer or component. Mixing data formats will
make the application more difficult to implement, extend, and maintain. Every time you
need to move data from one format to another you are required to implement translation
code to perform the operation.

• Keep cross-cutting code abstracted from the application business logic as much as
possible. Cross-cutting code refers to code related to security, communications, or
operational management such as logging and instrumentation. Attempting to mix this code
with business logic can lead to a design that is difficult to extend and maintain. Changes to
the cross-cutting code would require touching all of the business logic code that is mixed
with the cross-cutting code. Consider using frameworks that can help implement the cross-
cutting concerns

• Be consistent in the naming conventions used. You should check if naming standards have
been established by the organization. If not, you should establish common standards that
will be used for naming. This provides a consistent model that makes it easier for team
members to evaluate code they did not write, which leads to better maintainability.

• Establish the standards that should be used for exception handling. For example, you
should always catch exceptions at layer boundaries, you should not catch exceptions within
a layer unless you can handle them there, and you should not use exceptions to implement
business logic. The standards should also include policies for logging and instrumentation as
related to exceptions.

Architecture Frame
The following table lists the key areas to consider as you develop your architecture. Use the key
issues in the table to understand where mistakes are most often made. The sections following
this table provide guidelines for each of these areas.

Area Key Issues
Authentication and
Authorization

• Lack of authentication across trust boundaries.
• Lack of authorization across trust boundaries.
• Granular or improper authorization.

Caching • Caching data that is volatile.
• Caching sensitive data.
• Incorrect choice of caching store.

Communication • Incorrect choice of transport protocol.
• Chatty communication across physical and process boundaries.
• Failure to protect sensitive data.

Composition • Cooperating application modules are coupled by dependencies
making development, testing, and maintenance more difficult.

• Dependency changes between modules forces code
recompilation and module redeployment.

• Dynamic UI layout and update difficult due to hardcoded
dependencies.

• Dynamic module loading difficult due to hardcoded
dependencies.

Web Application Architecture Pocket Guide

Microsoft patterns & practices 27

Concurrency and Transactions • Not protecting concurrent access to static data.
• Deadlocks caused by improper locking.
• Not choosing the correct data concurrency model.
• Long running transactions that hold locks on data.
• Using exclusive locks when not required.

Configuration Management • Lack of or incorrect configuration information.
• Not securing sensitive configuration information.
• Unrestricted access to configuration information.

Coupling and Cohesion • Incorrect grouping of functionality.
• No clear separation of concerns.
• Tight coupling across layers.

Data Access • Per user authentication and authorization when not required.
• Chatty calls to the database.
• Business logic mixed with data access code.

Exception Management • Leaving the application in an unstable state.
• Revealing sensitive information to the end user.
• Using exceptions for application logic.
• Not logging sufficient details about the exception.

Layering • Incorrect grouping of components within a layer.
• Not following layering and dependency rules.
• Not considering the physical distribution of layers.

Logging and Instrumentation • Lack of logging and instrumentation.
• Logging and instrumentation that is too fine-grained.
• Not making logging and instrumentation an option that is

configurable at runtime.
• Not suppressing and handling logging failures.
• Not logging business critical functionality.

State Management • Using an incorrect state store.
• Not considering serialization requirements.
• Not persisting state when required.

Structure • Choosing the incorrect structure for your scenario.
• Creating an overly complex structure when not required.
• Not considering deployment scenarios.

User Experience • Not following published guidelines.
• Not considering accessibility
• Creating overloaded interfaces with un-related functionality.

Validation • Lack of validation across trust boundaries.
• Not validating for all appropriate aspects of parameters, such as

“Range”, “Type” and “Format”.
• Not reusing validation logic.

Workflow • Not considering management requirements.
• Choosing an incorrect workflow pattern.
• Not considering exception states and how to handle them.

Web Application Architecture Pocket Guide

Microsoft patterns & practices 28

Authentication
Designing a good authentication strategy is important for the security and reliability of your
application. Failing to design and implement a good authentication strategy can leave your
application vulnerable to spoofing attacks, dictionary attacks, session hijacking, and other types
of attack.

When designing an authentication strategy, consider following guidelines:
• Identify your trust boundaries; authenticate users and calls across trust boundaries.

Consider that calls may need to be authenticated from the client as well as from the server
(mutual authentication).

• If you have multiple systems within the application which use different user repositories,
consider a single sign-on strategy.

• Do not store passwords in a database or data store as plain text. Instead, store a hash of the
password.

• Enforce the use of strong passwords or password phrases.
• Do not transmit passwords over the wire in plain text.

Authorization
Designing a good authorization strategy is important for the security and reliability of your
application. Failing to design and implement a good authorization strategy can make your
application vulnerable to information disclosure, data tampering, and elevation of privileges.

When designing an authorization strategy, consider following guidelines:
• Identify your trust boundaries; authorize users and callers across trust boundary.
• Protect resources by applying authorization to callers based on their identity, groups, or

roles.
• Use role-based authorization for business decisions.
• Use resource-based authorization for system auditing.
• Use claims-based authorization when you need to support federated authorization based

on a mixture of information such as identity, role, permissions, rights, and other factors.

Caching
Caching improves the performance and responsiveness of your application. However, a poorly
designed caching strategy can degrade performance and responsiveness. You should use
caching to optimize reference data lookups, avoid network round trips, and avoid unnecessary
and duplicate processing. To implement caching you must decide when to load the cache data.
Try to load the cache asynchronously or by using a batch process to avoid client delays.

When designing caching, consider following guidelines:
• Do not cache volatile data.
• Consider using ready-to-use cache data when working with an in-memory cache. For

example, use a specific object instead of caching raw database data.

Web Application Architecture Pocket Guide

Microsoft patterns & practices 29

• Do not cache sensitive data unless you encrypt it.
• If your application is deployed in Web Farm, avoid using local caches that needs to be

synchronized, instead consider using a transactional resource manager such as SQL Server
or a product that supports distributed caching.

• Do not depend on data still being in your cache. It may have been removed.

Communication
Communication concerns the interaction between components across different boundary
layers. The mechanism you choose depends on the deployment scenarios your application must
support. When crossing physical boundaries, you should use message-based communication.
When crossing logical boundaries, you should use object-based communication.

When designing communication mechanisms, consider the following guidelines:
• To reduce round trips and improve communication performance, design chunky interfaces

that communicate less often but with more information in each communication.
• Use unmanaged code for communication across AppDomain boundaries.
• Use message-based communication when crossing process or physical boundaries.
• If your messages do not need to be received in exact order and do not have dependencies

on each other, consider using asynchronous communication to unblock processing or UI
threads.

• Consider using Message Queuing to queue messages for later delivery in case of system or
network interruption or failure. Message Queuing can perform transacted message delivery
and supports reliable once-only delivery.

Composition
Composition is the process used to define how interface components in a user interface are
structured to provide a consistent look and feel for the application. One of the goals with user
interface design is to provide a consistent interface in order to avoid confusing users as they
navigate through your application. This can be accomplished by using templates, such as a
master page in ASP.NET, or by implementing one of many common design patterns.

When designing for composition, consider the following guidelines:
• Avoid using dynamic layouts. They can be difficult to load and maintain.
• Be careful with dependencies between components. Use abstraction patterns when

possible to avoid issues with maintainability.
• Consider creating templates with placeholders. For example, use the Template View pattern

to compose dynamic web pages to ensure reuse and consistency.
• Consider composing views from reusable modular parts. For example, use the Composite

View pattern to build a view from modular, atomic component parts.

Web Application Architecture Pocket Guide

Microsoft patterns & practices 30

Concurrency and Transactions
When designing for concurrency and transactions related to accessing a database it is
important to identify the concurrency model you want to use and determine how transactions
will be managed. For concurrency, you can choose between an optimistic model, where the last
update applied is valid, or a pessimistic model where updates can only be applied to the latest
version. In a pessimistic model where two people modify a file concurrently, only the first
person will be able to apply their changes to the original file. The other person will not be
allowed to apply an update to the original version. Transactions can be executed within the
database, or they can be executed in the business layer of an application. Where you choose to
implement transactions depends on your transactional requirements.

When designing concurrency and transactions, consider the following guidelines:
• If you have business critical operations, consider wrapping them in transactions.
• Use connection-based transactions when accessing a single data source.
• Use Transaction Scope (System.Transaction) to manage transactions that span multiple data

sources.
• Where you cannot use transactions, implement compensating methods to revert the data

store to its previous state.
• Avoid holding locks for long periods; for example, when using long-running atomic

transactions.

Concurrency should also be considered when accessing static data within the application or
when using threads to perform asynchronous operations. Static data is not thread-safe, which
means that changes made in one thread will affect other threads using the same data.
Threading in general requires careful consideration when it comes to manipulating data that is
shared by multiple threads and applying locks to that data.

When designing for concurrency at the application code level, consider the following guidelines:
• Updates to shared data should be mutually exclusive, which is accomplished by applying

locks or using thread synchronization. This will prevent two threads from attempting to
update shared data at the same time.

• Locks should be scoped at a very fine grained level. In other words, you should implement
the lock just prior to making a modification and then release it immediately.

• When modifying static fields you should check the value, apply the lock, and check the value
again before making the update. It is possible for another thread to modify the value
between the point that you check the field value and the point that you apply the lock.

• Locks should not be applied against a type definition or the current instance of a type. In
other words, you should not use lock (typeof(MyObject)) or
Monitor.Enter(typeof(MyObject)) and you should not use lock(this) or Monitor.Enter(this).
Using these constructs can lead to deadlock issues that are difficult to locate. Instead,
define a private static field within the type and apply locks against the private field. You can
use a common object instance when locking access to multiple fields or you can lock a
specific field.

Web Application Architecture Pocket Guide

Microsoft patterns & practices 31

• Use synchronization support provided by collections when working with static or shared
collections.

Configuration Management

Designing a good configuration management mechanism is important for the security and
flexibility of your application. Failing to do so can make your application vulnerable to a variety
of attacks, and also leads to an administrative overhead for your application.

When designing configuration management, consider following guidelines:
• Use least-privileged process and service accounts.
• Categorize the configuration items into logical sections if your application has multiple tiers.
• If your server application runs in a farm, decide which parts of the configuration are shares

and which parts are specific to the machine the application is running on. Then choose an
appropriate configuration store for each section.

• Encrypt sensitive information in your configuration store.
• Restrict access to your configuration information.
• Provide a separate administrative UI for editing configuration information.

Coupling and Cohesion
When designing components for your application, you should ensure that these components
are highly cohesive, and that loose coupling is used across layers. Coupling is concerned with
dependencies and functionality. When one component is dependent upon another component,
it is tightly coupled to that component. Functionality can be decoupled by separating different
operations into unique components. Cohesion concerns the functionality provided by a
component. For example, a component that provides operations for validation, logging, and
data access represents a component with very low cohesion. A component that provides
operations for only logging represents high cohesion.

When designing for coupling and cohesion, consider the following guidelines:
• Partition application functionality into logical layers.
• Design for loose coupling between layers. Consider using abstraction to implement loose

coupling between layers with interface components, common interface definitions, or
shared abstraction. Shared abstraction is where concrete components depend on
abstractions and not on other concrete components (the principle of Dependency
Inversion).

• Design for high cohesion. Components should contain only functionality specifically related
to that component.

• Know the benefits and overhead of loosely coupled interfaces. While loose coupling
requires more code the benefits include a shortened dependency chain, and a simplified
build process.

Web Application Architecture Pocket Guide

Microsoft patterns & practices 32

Data Access
Designing an application to use a separate data access layer is important for maintainability and
extensibility. The data access layer should be responsible for managing connections with the
data source and executing commands against the data source. Depending on your business
entity design, the data access layer may have a dependency on business entities; however, the
data access layer should never be aware of business processes or workflow components.

When designing data access components, consider the following guidelines:
• Do not couple your application model to your database schema.
• Open connections as late as possible and release them as early as possible.
• Enforce data integrity in the database, not through data layer code.
• Move code that makes business decisions to the business layer.
• Avoid accessing the database directly from different layers in your application. Instead, all

database interaction should be done through a data access layer.

Exception Management
Designing a good exception management strategy is important for the security and reliability of
your application. Failing to do so can make your application vulnerable to denial of service
(DoS) attacks, and may also reveal sensitive and critical information. Raising and handling
exceptions is an expensive process. It is important that the design also takes into account the
performance considerations. A good approach is to design a centralized exception management
and logging mechanism, and consider providing access points within your exception
management system to support instrumentation and centralized monitoring that assists system
administrators.

When designing an exception management strategy, consider following guidelines:
• Do not catch internal exceptions unless you can handle them or need to add more

information.
• Do not reveal sensitive information in exception messages and log files.
• Design an appropriate exception propagation strategy.
• Design a strategy for dealing with unhandled exceptions.
• Design an appropriate logging and notification strategy for critical errors and exceptions.

Layering
The use of layers in a design allows you to separate functionality into different areas of concern.
In other words, layers represent the logical grouping of components within the design. You
should also define guidelines for communication between layers. For example, layer A can
access layer B, but layer B cannot access layer A.

When designing layers, consider the following guidelines:
• Layers should represent a logical grouping of components. For example, use separate layers

for user interface, business logic, and data access components.

Web Application Architecture Pocket Guide

Microsoft patterns & practices 33

• Components within a layer should be cohesive. In other words, the business layer
components should provide only operations related to application business logic.

• When designing the interface for each layer, consider physical boundaries. If
communication crosses a physical boundary to interact with the layer, use message-based
operations. If communication does not cross a physical boundary, use object-based
operations.

• Consider using an Interface type to define the interface for each layer. This will allow you to
create different implementations of that interface to improve testability.

• For Web applications, implement a message-based interface between the presentation and
business layers, even when the layers are not separated by a physical boundary. A message-
based interface is better suited to stateless Web operations, provides a façade to the
business layer, and allows you to physically decouple the business tier from the
presentation tier if this is required by security policies or in response to a security audit.

Logging and Instrumentation
Designing a good logging and instrumentation strategy is important for the security and
reliability of your application. Failing to do so can make your application vulnerable to
repudiation threats, where users deny their actions. Log files may be required for legal
proceedings to prove the wrongdoing of individuals. You should audit and log activity across
the layers of your application. Using logs, you can detect suspicious activity. This frequently
provides an early indication of a serious attack. Generally, auditing is considered most
authoritative if the audits are generated at the precise time of resource access, and by the
same routines that access the resource. Instrumentation can be implemented using
performance counters and events. System monitoring tools, or other access points, can provide
administrators with information about the state, performance, and health of an application.

When designing a logging and instrumentation strategy, consider following guidelines:
• Centralize your logging and instrumentation mechanism.
• Design instrumentation within your application to detect system and business critical

events.
• Consider how you will access and pass auditing and logging data across application layers.
• Create secure log file management policies; protect log files from unauthorized viewing.
• Do not store sensitive information in the log files.
• Consider allowing your log sinks, or trace listeners, to be configurable so they can be

modified at runtime to meet deployment environment requirements.

State Management
State management concerns the persistence of data that represents the state of a component,
operation, or step in a process. State data can be persisted using different formats and stores.
The design of a state management mechanism can affect the performance of your application.
You should only persist data that is required, and you must understand the options that are
available for managing state.

Web Application Architecture Pocket Guide

Microsoft patterns & practices 34

When designing a state management mechanism, consider following guidelines:
• Keep your state management as lean as possible, persist the minimum amount of data

required to maintain state.
• Make sure that your state data is serializable if it needs to be persisted or shared across

process and network boundaries.
• If you are building a web application and performance is your primary concern, use an in-

process state store such as ASP.NET session state variables.
• If you are building a web application and you want your state to persist through ASP.NET

restarts, use the ASP.NET session state service.
• If your application is deployed in Web Farm, avoid using local state management stores that

needs to be synchronized, instead consider using a remote session state service or the SQL
server state store.

Structure
Software architecture is often defined as being the structure or structures of an application.
When defining these structures, the goal of a software architect is to minimize the complexity
by separating items into areas of concern using different levels of abstraction. You start by
examining the highest level of abstraction while identifying different areas of concern. As the
design evolves, you dive deeper into the levels, expanding the areas of concern, until all of the
structures have been defined.

When designing the application structure, consider the following guidelines:
• Identify common patterns used to represent application structure such as Client/Server and

N-Tier.
• Understand security requirements for the environment in which your application will be

deployed. For example, many security policies require physical separation of presentation
logic from business logic across different sub-nets.

• Consider scalability and reliability requirements for the application.
• Consider deployment scenarios for the application.

User Experience
Designing for an effective user experience can be critical to the success of your application. If
navigation is difficult, or users are directed to unexpected pages, the user experience can be
negative.

When designing for an effective user experience, consider the following guidelines:
• Design for a consistent navigation experience. Use composite patterns for the look-and-feel,

and controller patterns such as MVC, Supervising Controller, and Passive View, for UI
processing.

• Design the interface so that each page or section is focused on a specific task.
• Consider breaking large pages with a lot of functionality into smaller pages.

Web Application Architecture Pocket Guide

Microsoft patterns & practices 35

• Design similar components to have consistent behavior across the application. For example,
a grid used to display data should implement a consistent interface for paging and sorting
the data.

• Consider using published user interface guidelines. In many cases, an organization will have
published guidelines that you should adhere to.

Validation
Designing an effective validation mechanism is important for the security and reliability of your
application. Failing to do so can make your application vulnerable to cross-site scripting, SQL
injection, buffer overflow, and other types of malicious input attack. However, there is no
standard definition that can differentiate valid input from malicious input. In addition, how your
application actually uses the input influences the risks associated with exploit of the
vulnerability.

When designing a validation mechanism, consider following guidelines:
• Identify your trust boundaries, and validate all inputs across trust boundary.
• Centralize your validation approach, if it can be reused.
• Constrain, reject, and sanitize user input. In other words, assume all user input is malicious.
• Validate input data for length, format, and type.
• Do not rely only on client-side validation. Client-side validation will improve the user

experience, but can be disabled. Server-side validation provides an additional layer of
security.

Workflow
Workflow components are used when an application must execute a series of information
processing tasks that are dependent on the information content. The values that affect
information process steps can be anything from data checked against business rules, to human
interaction and input. When designing workflow components, it is important to consider the
options that are available for management of the workflow.

When designing a workflow component, consider the following guidelines:
• Determine management requirements. If a business user needs to manage the workflow,

you require a solution that provides an interface that the business user can understand.
• Determine how exceptions will be handled.
• Use service interfaces to interact with external workflow providers.
• If supported, use designers and metadata instead of code to define the workflow.
• With human workflow, consider the un-deterministic nature of users. In other words, you

cannot determine when a task will be completed, or if it will be completed correctly.

Pattern Map
Category Relevant Patterns
Caching • Cache Dependency

Web Application Architecture Pocket Guide

Microsoft patterns & practices 36

• Page Cache
Communication • Intercepting Filter

• Pipes and Filters
• Service Interface

Concurrency and Transactions • Capture Transaction Details
• Optimistic Offline Lock
• Pessimistic Offline Lock

Coupling and Cohesion • Adapter
• Dependency Injection

Data Access • Active Record
• Data Mapper
• Query Object
• Repository
• Row Data Gateway
• Table Data Gateway

Layering • Façade
• Layered Architecture

Pattern Descriptions
• Active Record – Include a data access object within a domain entity.
• Adapter – An object that supports a common interface and translates operations between

the common interface and other objects that implement similar functionality with different
interfaces.

• Cache Dependency – Use external information to determine the state of data stored in a
cache.

• Capture Transaction Details – Create database objects, such as triggers and shadow tables,
to record changes to all tables belonging to the transaction.

• Data Mapper – Implement a mapping layer between objects and the database structure
that is used to move data from one structure to another while keeping them independent.

• Dependency Injection – Use a base class or interface to define a shared abstraction that can
be used to inject object instances into components that interact with the shared abstraction
interface.

• Façade – Implement a unified interface to a set of operations to provide a simplified reduce
coupling between systems.

• Intercepting Filter - A chain of composable filters (independent modules) that implement
common pre-processing and post-processing tasks during a Web page request.

• Optimistic Offline Lock – Ensure that changes made by one session do not conflict with
changes made by another session.

• Page Cache – Improve the response time for dynamic Web pages that are accessed
frequently, but change less often and consume a large amount of system resources to
construct.

Web Application Architecture Pocket Guide

Microsoft patterns & practices 37

• Pessimistic Offline Lock – Prevent conflicts by forcing a transaction to obtain a lock on data
before using it.

• Pipes and Filters - Route messages through pipes and filters that can modify or examine the
message as it passes through the pipe.

• Query Object – An object that represents a database query.
• Repository – An in-memory representation of a data source that works with domain

entities.
• Row Data Gateway – An object that acts as a gateway to a single record in a data source.
• Service Interface – A programmatic interface that other systems can use to interact with

the service.
• Table Data Gateway –An object that acts as a gateway to a table in a data source.

Additional Resources
• For more information, see Enterprise Solution Patterns Using Microsoft .NET at

http://msdn.microsoft.com/en-us/library/ms998469.aspx.
• For more information, see Integration Patterns at http://msdn.microsoft.com/en-

us/library/ms978729.aspx.
• For more information, see Cohesion and Coupling at http://msdn.microsoft.com/en-

us/magazine/cc947917.aspx.
• For more information on authentication, see Designing Application-Managed Authorization

at http://msdn.microsoft.com/en-us/library/ms954586.aspx.
• For more information on caching, see Caching Architecture Guide for .NET Framework

Applications at http://msdn.microsoft.com/en-us/library/ms978498.aspx.
• For more information, see Designing Data Tier Components and Passing Data Through Tiers

at http://msdn.microsoft.com/en-us/library/ms978496.aspx.
• For more information on exception management, see Exception Management Architecture

Guide at http://msdn.microsoft.com/en-us/library/ms954599.aspx.

Web Application Architecture Pocket Guide

Microsoft patterns & practices 38

Chapter 3 – Presentation Layer Guidelines

Objectives
• Understand how the presentation layer fits into typical application architecture.
• Understand the components of the presentation layer.
• Learn the steps for designing the presentation layer.
• Learn the common issues faced while designing the presentation layer.
• Learn the key guidelines to design the presentation layer.
• Learn the key patterns and technology considerations.

Overview
The presentation layer contains the components that implement and display the user interface,
and manage user interaction. This layer includes controls for user input and display, in addition
to components that organize user interaction. Figure 1. shows how the presentation layer fits
into a common application architecture.

Web Application Architecture Pocket Guide

Microsoft patterns & practices 39

Figure 1 - A typical application showing the presentation layer and the components it may
contain.

Presentation Layer Components
• User interface (UI) components. User interface components provide a way for users to

interact with the application. They render and format data for users. They also acquire and
validate data input by the user.

• User process components. User process components synchronize and orchestrate user
interactions. Separate user process components may be useful if you have a complicated
user interface. Implementing common user interaction patterns as separate user process
components allows you to reuse them in multiple user interfaces.

Approach
The following steps describe the process you should adopt when designing the presentation
layer for your Web application. This approach will ensure that you consider all of the relevant
factors as you develop your architecture:
1. Determine how you will present data. Choose the data format for your presentation layer

and decide how you will present the data in your User Interface (UI).
2. Determine your data validation strategy. Use data validation techniques to protect your

system from un-trusted input.
3. Determine your business logic strategy. Factor out your business logic to decouple it from

your presentation layer code.
4. Determine your strategy for communication with other layers. If your application has

multiple layers, such as a data access layer and a business layer, determine a strategy for
communication between your presentation layer and other layers.

Design Considerations
There are several key factors that you should consider when designing your Web presentation
layer. Use the following principles to ensure that your design meets the requirements for your
application, and follows best practices:
• Use the relevant patterns. Review the presentation layer patterns for proven solutions to

common presentation problems.
• Design for separation of concerns. Use dedicated UI components that focus on rendering

and display. Use dedicated presentation entities to manage the data required to present
your views. Use dedicated UI process components to manage the processing of user
interaction.

• Consider human interface guidelines. Review your organization's guidelines for user
interface design. Review established user interface guidelines based upon the client type
and technologies that you have chosen.

• Adhere to user-driven design principles. Before designing your presentation layer,
understand your customer. Use surveys, usability studies, and interviews to determine the
best presentation design to meet your customer’s requirements.

Web Application Architecture Pocket Guide

Microsoft patterns & practices 40

Presentation Layer Frame
There are several common issues that you must consider as your develop your design. These
issues can be categorized into specific areas of the design. The following table lists the common
issues for each category where mistakes are most often made.

Category Common issues
Caching • Caching volatile data.

• Caching unencrypted sensitive data.
• Incorrect choice of caching store.
• Failing to choose a suitable caching mechanism for use in

a Web farm.
• Assuming that data will still be available in the cache – it

may have expired and been removed.
Composition • Failing to consider use of patterns and libraries that support

dynamic layout and injection of views and presentation at
runtime.

• Using presentation components that have dependencies on
support classes and services instead of considering patterns
that support run-time dependency injection.

• Failing to use the Publish/Subscribe pattern to support events
between components.

• Failing to properly decouple the application as separate
modules that can be added easily.

Exception Management • Failing to catch unhandled exceptions.
• Failing to clean up resources and state after an exception

occurs.
• Revealing sensitive information to the end user.
• Using exceptions to implement application logic.
• Catching exceptions you do not handle.
• Using custom exceptions when not necessary.

Input • Failing to design for intuitive use, or implementing over-
complex interfaces.

• Failing to design for accessibility.
• Failing to design for different screen sizes and resolutions.
• Failing to design for different device and input types, such as

mobile devices, touch-screen, and pen and ink enabled
devices.

Layout • Using an inappropriate layout style for Web pages.
• Implementing an overly-complex layout.
• Failing to choose appropriate layout components and

technologies.
• Failing to adhere to accessibility and usability guidelines and

standards.
• Implementing an inappropriate workflow interface.
• Failing to support localization and globalization.

Web Application Architecture Pocket Guide

Microsoft patterns & practices 41

Navigation • Inconsistent navigation.
• Duplication of logic to handle navigation events.
• Using hard-coded navigation.
• Failing to manage state with wizard navigation.

Presentation Entities • Defining entities that are not necessary.
• Failing to implement serialization when necessary.

Request Processing • Blocking the user interface during long-running requests.
• Mixing processing and rendering logic.
• Choosing an inappropriate request-handling pattern.

User Experience • Displaying unhelpful error messages.
• Lack of responsiveness.
• Over-complex user interfaces.
• Lack of user personalization.
• Lack of user empowerment.
• Designing inefficient user interfaces.

UI Components • Creating custom components that are not necessary.
• Failing to maintain state in the MVC pattern.
• Choosing inappropriate UI components.

UI Process Components • Implementing UI process components when not necessary.
• Implementing the wrong design patterns.
• Mixing business logic with UI process logic.
• Mixing rendering logic with UI process logic.

Validation • Failing to validate all input.
• Relying only on client-side input validation. You must always

validate input on the server or in the business layer as well.
• Failing to correctly handle validation errors.
• Not identifying business rules that are appropriate for

validation.
• Failing to log validation failures.

Caching
Caching is one of the best mechanisms you can use to improve application performance and UI
responsiveness. Use data caching to optimize data lookups and avoid network round trips.
Cache the results of expensive or repetitive processes to avoid unnecessary duplicate
processing.

When designing your caching strategy, consider the following guidelines:
• Do not cache volatile data.
• Consider using ready-to-use cache data when working with an in-memory cache. For

example, use a specific object instead of caching raw database data.
• Do not cache sensitive data unless you encrypt it.
• If your application is deployed in Web Farm, avoid using local caches that needs to be

synchronized, instead consider using a transactional resource manager such as SQL Server
or a product that supports distributed caching.

Web Application Architecture Pocket Guide

Microsoft patterns & practices 42

• Do not depend on data still being in your cache. It may have been removed.

Composition
Consider whether your application will be easier to develop and maintain if the presentation
layer uses independent modules and views that are easily composed at runtime. Composition
patterns support the creation of views and the presentation layout at runtime. These patterns
also help to minimize code and library dependencies that would otherwise force recompilation
and redeployment of a module when the dependencies change. Composition patterns help you
to implement sharing, reuse, and replacement of presentation logic and views.

When designing your composition strategy, consider the following guidelines:
• Avoid using dynamic layouts. They can be difficult to load and maintain.
• Be careful with dependencies between components. Use abstraction patterns when

possible to avoid issues with maintainability.
• Consider creating templates with placeholders. For example use the Template View pattern

to compose dynamic web pages to ensure reuse and consistency.
• Consider composing views from reusable modular parts. For example use the Composite

View pattern to build a view from modular, atomic component parts.
• If you need to allow communication between presentation components, consider

implementing the Publish/Subscribe pattern. This will lower the coupling between the
components and improve testability.

Exception Management
Design a centralized exception management mechanism for your application that catches and
throws exceptions consistently. Pay particular attention to exceptions that propagate across
layer or tier boundaries, as well as exceptions that cross trust boundaries. Design for unhandled
exceptions so they do not impact application reliability or expose sensitive information.

When designing your exception management strategy, consider the following guidelines:
• Use user-friendly error messages to notify users of errors in the application.
• Avoid exposing sensitive data in error pages, error messages, log files and audit files.
• Design a global exception handler that displays a global error page or an error message for

all unhandled exceptions.
• Differentiate between system exceptions and business errors. In case of business errors,

display a user-friendly error message and allow user to retry the operation. In case of
system exceptions, check if it is caused because of issues like system or database failure,
display user-friendly error message and log the error message which will help in
troubleshooting.

• Avoid using exceptions to control application logic.

Web Application Architecture Pocket Guide

Microsoft patterns & practices 43

Input
Design a user input strategy based upon your application input requirements. For maximum
usability, follow the established guidelines defined in your organization, and the many
established industry usability guidelines based on years of user research into input design and
mechanisms.

When designing your input collection strategy, consider the following guidelines:
• Use forms-based input controls for normal data collection tasks.
• Use a document-based input mechanism for collecting input in Office-style documents.
• Implement a wizard-based approach for more complex data collection tasks, or input that

requires a workflow.
• Design to support localization by avoiding hard coded strings and using external resources

for text and layout.
• Consider accessibility in your design. You should consider users with disabilities while

designing your input strategy; for example, implement text-to-speech software for blind
users, or enlarge text and images for users with poor sight. Support keyboard-only scenarios
where possible for users who cannot manipulate a pointing device.

Layout
Design your UI layout so that the layout mechanism itself is separate from the individual UI
components and UI processing components. When choosing a layout strategy, consider
whether you will have a separate team of designers building the layout, or whether the
development team will create the UI. If designers will be creating the UI, choose a layout
approach that does not require code or the use of development-focused tools.

When designing your layout strategy, consider the following guidelines:
• Use templates to provide a common look and feel to all the UI screens.
• Use a common look-and-feel for all elements of your UI to maximize accessibility and ease

of use.
• Consider device-dependent input, such as touch screens, ink or speech, in your layout. For

example, with touch screen input you will typically use larger buttons with more spacing
between them than you would with mouse or keyboard inputs.

• Use Cascading Style Sheets (CSS) for layout whenever possible. This will improve rendering
performance and maintainability.

• Use design patterns, such as Model-View-Presenter, to separate the layout design from
interface processing.

Navigation
Design your navigation strategy so that users can navigate easily through your screens or pages,
and so that you can separate navigation from presentation and UI processing. Ensure that you
display navigation links and controls in a consistent way throughout your application to reduce
user confusion and hide application complexity.

Web Application Architecture Pocket Guide

Microsoft patterns & practices 44

When designing your navigation strategy, consider the following guidelines:
• Use well-known design patterns to decouple the user interface from the navigation logic

where this logic is complex
• Design tool-bars and menus to help users find functionality provided by the UI.
• Consider using wizards to implement navigation between forms in a predictable way.
• Determine how you will preserve navigation state if the application must preserve this state

between sessions.
• Consider using the Command Pattern to handle common actions from multiple sources.

Presentation Entities
Use presentation entities to store the data you will use in your presentation layer to manage
your views. Presentation entities are not always necessary; use them only if your data sets are
sufficiently large and complex to require separate storage from the UI controls.

When designing presentation entities, consider the following guidelines:
• Determine if you require presentation entities. Typically, you may require presentations

entities only if the data or the format to be displayed is specific to the presentation layer.
• If you are working with data-bound controls, consider using custom objects, collections, or

DataSets as your presentation entity format.
• If you want to map data directly to business entities, use a custom class for your

presentation entities.
• Do not add business logic to presentation entities.
• If you need to perform data type validation, consider adding it in your presentation entities.

Request Processing
Design your request processing with user responsiveness in mind, as well as code
maintainability and testability.

When designing request processing, consider the following guidelines:
• Use asynchronous operations or worker threads to avoid blocking the user interface for

long-running actions.
• Avoid mixing your user interface processing and rendering logic.
• Consider using the Passive View pattern (MVP) for interfaces that do not manage a lot of

data.
• Consider using the Supervising Controller pattern (MVP) for interfaces that manage large

amounts of data.

User Experience
Good user experience can make the difference between a usable application and one that is
unusable. Carry out usability studies, surveys, and interviews to understand what users require
and expect from your application, and design with these results in mind.

Web Application Architecture Pocket Guide

Microsoft patterns & practices 45

When designing for user experience, consider the following guidelines:
• Utilize AJAX to improve responsiveness, and reduce postbacks and page reloads.
• Do not design overloaded or over-complex interfaces. Provide a clear path through the

application for each key user scenario.
• Design to support user personalization, localization, and accessibility.
• Design for user empowerment. Allow the user to control how they interact with the

application, and how it displays data to them.

UI Components
UI components are the controls and components used to display information to the user and
accept user input. Be careful not to create custom controls unless it is necessary for specialized
display or data collection.

When designing UI components, consider the following guidelines:
• Take advantage of the data-binding features of the controls you use in the user interface.
• Create custom controls or use third party controls only for specialized display and data

collection tasks.
• When creating custom controls, extend existing controls if possible instead of creating the

control from scratch.
• Implement designer support for custom controls.
• Consider maintaining the state of controls as the user interacts with the application instead

of reloading controls with each action.

UI Processing Components
UI process components synchronize and orchestrate user interactions. UI processing
components are not always necessary. Create them only if you need to perform significant
processing in the presentation layer that must be separated from the UI controls. Be careful not
to mix business and display logic within the process components; they should be focused on
organizing user interactions with your UI.

When designing UI processing components, consider the following guidelines:
• Don’t create UI process components unless you need them.
• If your UI requires complex processing or needs to talk to other layers, use UI process

components to decouple this processing from the UI.
• Consider dividing UI processing into three distinct roles: Model, View, and

Controller/Presenter by using the MVC or MVP pattern.
• Avoid business rules, with the exception of input and data validation, in UI processing

components.
• Consider using abstraction patterns, such as dependency inversion, when UI processing

behavior needs to change based on the runtime environment.

Web Application Architecture Pocket Guide

Microsoft patterns & practices 46

• Where the UI requires complex workflow support, create separate workflow components
that use a workflow system such as Windows Workflow or a custom mechanism.

Validation
Designing an effective input and data validation strategy is critical to the security of your
application. Determine the validation rules for user input as well as for business rules that exist
in the presentation layer.

When designing your input and data validation strategy, consider the following guidelines:
• Validate all input data client-side where possible to improve interactivity and reduce errors

caused by invalid data.
• Do not rely on just client side validation. Use server-side validation as well to constrain input

for security purposes and to make security-related decisions.
• Design your validation strategy to constrain, reject, and sanitize malicious input.
• Use the built-in validation controls where possible.
• Consider using AJAX to provide real-time validation.

Pattern Map
Category Relevant Patterns
Caching • Cache Dependency

• Page Cache
Composition • Composite View

• Transform View
• Two-step View

Exception Management • Exception Shielding
Layout • Template View
Navigation • Front Controller

• Page Controller
Presentation Entities • Entity Translator
User Experience • Asynchronous Callback

• Chain of Responsibility
UI Processing Components • Model View Controller (MVC)

• Passive View
• Supervisor Controller

Pattern Descriptions
• Asynchronous Callback – Execute long running tasks on a separate thread that executes in

the background, and provide a function for the thread to call back into when the task is
complete.

• Cache Dependency – Use external information to determine the state of data stored in a
cache.

• Chain of Responsibility – Avoid coupling the sender of a request to its receiver by giving
more than one object a chance to handle the request.

Web Application Architecture Pocket Guide

Microsoft patterns & practices 47

• Composite View – Combine individual views into a composite representation.
• Entity Translator – An object that transforms message data types into business types for

requests, and reverses the transformation for responses.
• Exception Shielding – Prevent a service from exposing information about its internal

implementation when an exception occurs.
• Front Controller – Consolidate request handling by channeling all requests through a single

handler object, which can be modified at runtime with decorators.
• Model View Controller – Separate the user interface code into three separate units; Model

(data), View (interface), and Presenter (processing logic), with a focus on the View. Two
variations on this pattern include Passive View and Supervising Controller, which define
how the View interacts with the Model.

• Page Cache – Improve the response time for dynamic Web pages that are accessed
frequently, but change less often and consume a large amount of system resources to
construct.

• Page Controller – Accept input from the request and handle it for a specific page or action
on a Web site.

• Passive View – Reduce the view to the absolute minimum by allowing the controller to
process user input and maintain the responsibility for updating the view.

• Presentation Model – Move all view logic and state out of the view, and render the view
through data-binding and templates.

• Supervising Controller – A variation of the MVC pattern in which the controller handles
complex logic, in particular coordinating between views, but the view is responsible for
simple view-specific logic.

• Template View – Implement a common template view, and derive or construct views using
this template view.

• Transform View – Transform the data passed to the presentation tier into HTML for display
in the UI.

• Two-Step View – Transform the model data into a logical presentation without any specific
formatting, and then convert that logical presentation to add the actual formatting
required.

Technology Considerations
The following guidelines will help you to choose an appropriate implementation technology.
The guidelines also contain suggestions for common patterns that are useful for specific types
of application and technology.
Consider the following guidelines when designing a Web application:
• If you want to build applications that are accessed through a Web browser or specialist user

agent, consider using ASP.NET.
• If you want to build applications that provide increased interactivity and background

processing, with fewer page reloads, consider using ASP.NET with AJAX.
• If you want to build applications that include islands of rich media content and interactivity,

consider using ASP.NET with Silverlight controls.

Web Application Architecture Pocket Guide

Microsoft patterns & practices 48

• If you are using ASP.NET and you want to implement a control-centric model with separate
controllers and improved testability, consider using the ASP.NET MVC Framework.

• If you are using ASP.NET, consider using Master Pages to simplify development and
implement a consistent UI across all pages.

patterns & practices Solution Assets
• Web Client Software Factory at http://msdn.microsoft.com/en-us/library/bb264518.aspx

Additional Resources
For more information on patterns, standards, and usability guidelines, see the following
resources:
• Microsoft Inductive User Interface Guidelines at http://msdn.microsoft.com/en-

us/library/ms997506.aspx.
• User Interface Control Guidelines at http://msdn.microsoft.com/en-

us/library/bb158625.aspx.
• User Interface Text Guidelines at http://msdn.microsoft.com/en-us/library/bb158574.aspx.
• Design and Implementation Guidelines for Web Clients at http://msdn.microsoft.com/en-

us/library/ms978631.aspx.
• Web Presentation Patterns at http://msdn.microsoft.com/en-us/library/ms998516.aspx.

Web Application Architecture Pocket Guide

Microsoft patterns & practices 49

Chapter 4 – Business Layers Guidelines

Objectives
• Understand how the business layer fits into the application architecture.
• Understand the components of the business layer.
• Learn the steps for designing these components.
• Learn the common issues faced while designing the business layer.
• Learn the key guidelines to design the business layer.
• Learn the key patterns and technology considerations.

Overview
This chapter describes the design process for business layers, and contains key guidelines that
cover the important aspects you should consider when designing business layers and business
components. These guidelines are organized into categories that include designing business
layers and implementing appropriate functionality such as security, caching, exception
management, logging, and validation. These represent the key areas for business layer design
where mistakes occur most often. Figure 1. shows how the business layer fits into common
application architecture.

Web Application Architecture Pocket Guide

Microsoft patterns & practices 50

Figure 1 - A typical application showing the business layer and the components it may contain.

Business Components
The following list explains the roles and responsibilities of the main components within the
business layer:

• Application Facade. (Optional). An application façade combines multiple business

operations into single message-based operation. You might access the application façade
from the presentation layer using different communication technologies.

• Business components. After a user process collects the data it requires, the data can be
operated on using business rules. The rules will describe how the data should be
manipulated and transformed as dictated by the business itself. The rules may be simple or
complex, depending on the business itself. The rules can be updated as the business
requirements evolve.

• Business entity components. Business entities are used to pass data between components.
The data represents real-world business entities, such as products and orders. The business
entities that the application uses internally are usually data structures such as DataSets,
Extensible Markup Language (XML) streams. Alternatively, they can be implemented using

Web Application Architecture Pocket Guide

Microsoft patterns & practices 51

custom object-oriented classes that represent the real-world entities your application has to
work with, such as a product or an order.

• Business workflow. Many business processes involve multiple steps that must be
performed in the correct order and orchestrated. Business workflows define and coordinate
long-running, multi-step business processes, and can be implemented using business
process management tools.

Approach
When designing a business layer, you must also take into account the design requirements for
the main constituents of the layer, such as business components, business entities and business
workflow components. This section briefly explains the main activities involved in designing
each of the components and the business layer itself. Perform the following key activities in
each of these areas when designing your data layer:
1. Create an overall design for your business layer:

o Identify the consumers of your business layer.
o Determine how you will expose your business layer.
o Determine the security requirements for your business layer.
o Determine the validation requirements and strategy for your business layer.
o Determine the caching strategy for your business layer.
o Determine the exception management strategy for your business layer.

2. Design your business components:
o Identify business components your application will use.
o Make key decisions about location, coupling and interactions for business

components.
o Choose appropriate transaction support.
o Identify how you business rules are handled.
o Identify patterns that fit the requirements

3. Design your business entity components:
o Identify common data formats for the business entities.
o Choose the data format.
o Optionally, choose a design for your custom objects.
o Optionally, determine what serialization support you will need.

4. Design your workflow components:
o Identify workflow style using scenarios.
o Choose an authoring mode.
o Determine how rules will be handled.
o Choose a workflow solution.
o Design business components to support workflow.

Design Considerations
When designing a business layer, the goal of a software architect is to minimize the complexity
by separating tasks into different areas of concern. For example, business processing, business
workflow, and business entities all represent different areas of concern. Within each area, the

Web Application Architecture Pocket Guide

Microsoft patterns & practices 52

components you design should focus on that specific area and should not include code related
to other areas of concern.

When designing the business layer, consider following guidelines:
• Decide if you need a separate business layer. It is always a good idea to use a separate

business layer where possible to improve the maintainability of your application
• Identify the responsibilities of your business layer. Use a business layer for processing

complex business rules, transforming data, applying policies, and for validation.
• Do not mix different types of components in your business layer. Use a business layer to

decouple business logic from presentation and data access code, and to simplify the testing
of business logic.

• Reuse common business logic. Use a business layer to centralize common business logic
functions and promote reuse.

• Identify the consumers of your business layer. This will help to determine how you expose
you business layer. For example, if your business layer will be used by your presentation
layer and by an external application, you may choose to expose your business layer through
a service.

• Reduce round trips when accessing a remote business layer. If you are using a message-
based interface, consider using coarse-grained packages for data, such as Data Transfer
Objects. In addition, consider implementing a remote façade for the business layer
interface.

• Avoid tight coupling between layers. Use abstraction when creating an interface for the
business layer. The abstraction can be implemented using public object interfaces, common
interface definitions, abstract base classes, or messaging. For Web applications, consider a
message-based interface between the presentation layer and the business layer.

Business Layer Frame
There are several common issues that you must consider as your develop your design. These
issues can be categorized into specific areas of the design. The following table lists the common
issues for each category where mistakes are most often made.
Category Common Issues
Authentication • Applying authentication in a business layer when not

required.
• Designing a custom authentication mechanism.
• Failing to use single-sign-on where appropriate.

Authorization • Using incorrect granularity for roles.
• Using impersonation and delegation when not required.
• Mixing authorization code and business processing code.

Business Components • Overloading business components, by mixing unrelated
functionality.

• Mixing data access logic within business logic in business
components.

• Not considering the use of message-based interfaces to

Web Application Architecture Pocket Guide

Microsoft patterns & practices 53

expose business components.
Business Entities • Using the Domain Model when not appropriate.

• Choosing incorrect data formats for your business entities.
• Not considering serialization requirements.

Caching • Caching volatile data.
• Caching too much data in the business layer.
• Failing to cache data in a ready-to-use format.
• Caching sensitive data in unencrypted form.

Coupling and Cohesion • Tight coupling across layers.
• No clear separation of concerns within the business layer.
• Failing to use a message-based interface between layers.

Concurrency and Transactions • Not preventing concurrent access to static data, that is not
read-only.

• Not choosing the correct data concurrency model.
• Using long running transactions that hold locks on data.

Data Access • Accessing the database directly from business layer.
• Mixing data access logic within business logic in business

components.
Exception Management • Revealing sensitive information to the end user.

• Using exceptions for application logic.
• Not logging sufficient detail from exceptions.

Logging and Instrumentation • Failing to add adequate instrumentation to business
components.

• Failing to log system-critical and business-critical events.
• Not suppressing logging failures.

Service Interface • Breaking the service interface.
• Implementing business rules in the service interface.
• Failing to consider interoperability requirements.

Validation • Relying on validation that occurs in the presentation layer.
• Not validating all aspects of parameters, such as “Range”,

“Type” and “Format”.
• Not reusing the validation logic.

Workflows • Not considering application management requirements.
• Choosing an incorrect workflow pattern.
• Not considering how to handle all exception states.
• Choosing an incorrect workflow technology.

Authentication
Designing an effective authentication strategy for your business layer is important for the
security and reliability of your application. Failing to design a good authentication strategy can
leave your application vulnerable to spoofing attacks, dictionary attacks, session hijacking, and
other types of attack.

Web Application Architecture Pocket Guide

Microsoft patterns & practices 54

When designing an authentication strategy, consider following guidelines:
• Only authenticate users in the business layer if it is shared by other applications. If the

business layer will be used only by a presentation layer or a service layer on the same tier,
avoid authentication in the business layer.

• If your business layer will be used in multiple applications, using separate user stores,
consider implementing a single-sign-on mechanism.

• Only flow the caller’s identity to the business layer if you need to authenticate based on the
original caller’s ID.

• Consider using a trusted subsystem for access to back-end services to maximize the use of
pooled database connections.

• If the presentation and business layers are deployed to the same machine and you need to
access resources based on the original caller’s ACL permissions, consider using
impersonation.

• If the presentation and business layers are deployed to separate machines and you need to
access resources based on the original caller’s ACL permissions, consider using delegation.
Only use delegation if it’s absolutely necessary as many environments don’t allow
delegation. Instead authenticate the user at the boundary and use trusted subsystems in
subsequent calls to lower layers.

• If using Web services, consider using IP Filtering to restrict call only from the presentation
layer.

Authorization
Designing an effective authorization strategy for your business layer is important for the
security and reliability of your application. Failing to design a good authorization strategy can
leave your application vulnerable to information disclosure, data tampering, and elevation of
privileges.

When designing an authorization strategy, consider following guidelines:
• Protect resources by applying authorization to callers based on their identity, account

groups, or roles.
• Use role-based authorization for business decisions.
• Use resource-based authorization for system auditing.
• Use claims-based authorization when you need to support federated authorization based

on a mixture of information such as identity, role, permissions, rights, and other factors.
• Avoid using impersonation and delegation as it can significantly affect performance and

scaling. It is generally more expensive to impersonate a client on a call than to make the call
directly.

Business Components
Business components implement business rules in diverse patterns, and accept and return
simple or complex data structures. Your business components should expose functionality in a
way that is agnostic to the data stores and services required to perform the work. Compose

Web Application Architecture Pocket Guide

Microsoft patterns & practices 55

your business components in meaningful and transactionally-consistent ways. Designing
business components is an important task. If you fail to design business components correctly,
the result is likely to be code that is impossible to maintain.

When designing business components, consider following guidelines:
• Avoid mixing data access logic and business logic within your business components.
• Design components to be highly cohesive. In other words, you should not overload business

components by adding unrelated or mixed functionality.
• If you want to keep business rules separate from business data, consider using business

process components to implement your business rules.
• If your application has volatile business rules, store them in a rules engine.
• If the business process involves multiple steps and long-running transactions, consider using

workflow components.

Business Entities
Business entities store data values and expose them through properties; they provide stateful
programmatic access to the business data and related functionality. Therefore, designing or
choosing appropriate business entities is vitally important for maximizing the performance and
efficiency of your business layer.

When designing business entities, consider following guidelines:
• Choose appropriate data formats for your business entities. As a general rule, you should

use custom objects. However, for smaller data-driven applications or document centric
data, consider using XML for the data format.

• Consider analysis requirements and complexity associated with a Domain Model design
before choosing to use it for business entities. A Domain Model is very good for handling
complex business rules and works best with a stateful application.

• If the tables in the database represent business entities, consider using the Table Module
pattern.

• Consider the serialization requirements of your business entities. For example, if storing
business entities in a central location for state management or passing business entities
across process or network boundaries they will need to support serialization.

• Minimize the number of calls made across physical tiers. For example, use the Data Transfer
Object (DTO) pattern.

Caching
Designing an appropriate caching strategy for your business layer is important for the
performance and responsiveness of your application. Use caching to optimize reference data
lookups, avoid network round trips, and avoid unnecessary and duplicated processing. As part
of your caching strategy, you must decide when and how to load the cache data. To avoid client
delays, load the cache asynchronously or by using a batch process.

When designing a caching strategy, consider following guidelines:

Web Application Architecture Pocket Guide

Microsoft patterns & practices 56

• Cache static data that will be reused regularly within the business layer.
• Consider caching data that cannot be retrieved from the database quickly and efficiently.
• Consider caching data in a ready-to-use format within your business layer.
• Avoid caching sensitive data if possible, or design a mechanism to protect sensitive data in

the cache.
• Consider how Web farm deployment will affect the design of your business layer caching

solution. If a request can be handled by any server in the farm you will need to support the
synchronization of cached data that can change.

Coupling and Cohesion
When designing components for your business layer, ensure that they are highly cohesive, and
implement loose coupling between layers. This helps to improve the scalability of your
application.

When designing for coupling and cohesion, consider following guidelines:
• Avoid circular dependencies. The business layer should know only about the layer below

(the data access layer), and not the layer above (the presentation layer or external
applications that access the business layer directly).

• Use abstraction to implement a loosely coupled interface. This can be achieved with
interface components, common interface definitions, or shared abstraction where concrete
components depend on abstractions and not on other concrete components (the principle
of Dependency Inversion).

• Design for tight coupling within the business layer unless dynamic behavior requires loose
coupling.

• Design for high cohesion. Components should contain only functionality specifically related
to that component.

• Avoid mixing data access logic with business logic in your business components.

Concurrency and Transactions
When designing for concurrency and transactions, it is important to identify the appropriate
concurrency model and determine how you will manage transactions. You can choose between
an optimistic model and a pessimistic model for concurrency. With optimistic concurrency,
locks are not held on data and updates require code to check, usually against a timestamp, that
the data has not changed since it was last retrieved. With pessimistic concurrency, data is
locked and cannot be updated by another operation until the lock is released.

When designing for concurrency and transactions, consider the following guidelines:
• Use connection-based transactions when accessing a single data source.
• Consider transaction boundaries, so that retries and composition are possible.
• Where you cannot apply a commit or rollback, or if you use a long-running transaction,

implement compensating methods to revert the data store to its previous state should an
operation within the transaction fail.

Web Application Architecture Pocket Guide

Microsoft patterns & practices 57

• Avoid holding locks for long periods; for example, when executing long-running atomic
transactions or when locking access to shared data.

• Choose an appropriate transaction isolation level, which defines how and when changes
become available to other operations.

Data Access
Designing an effective data access strategy for your business layer is important to maximize
maintainability and the separation of concerns. Failing to do so can make your application
difficult to manage and extend as business requirements change. An effective data access
strategy will allow your business layer to adapt to changes in the underlying data sources. It will
also make it easier to reuse functionality and components in other applications.

When designing a data access strategy, consider the following guidelines:
• Avoid mixing data access code and business logic within your business components.
• Avoid directly accessing the database from your business layer.
• Consider using a separate data access layer for access to the database.

Exception Management
Designing an effective exception management solution for your business layer is important for
the security and reliability of your application. Failing to do so can leave your application
vulnerable to Denial of Service (DoS) attacks, and may allow it to reveal sensitive and critical
information about your application. Raising and handling exceptions is an expensive operation,
and it is important that your exception management design takes into account the impact on
performance.

When designing an exception management strategy, consider following guidelines:
• Do not use exceptions to control business logic.
• Only catch internal exceptions that you can handle or if you need to add information. For

example, catch data conversion exceptions that can occur when trying to convert null
values.

• Design an appropriate exception propagation strategy. For example, allow exceptions to
bubble up to boundary layers where they can be logged and transformed as necessary
before passing them to the next layer.

• Design an approach for catching and handling unhandled exceptions.
• Design an appropriate logging and notification strategy for critical errors and exceptions

that does not reveal sensitive information.

Logging and Instrumentation
Designing a good logging and instrumentation solution for your business layer is important for
the security and reliability of your application. Failing to do so can leave your application
vulnerable to repudiation threats, where users deny their actions. Log files may also be
required to prove wrongdoing in legal proceedings. Auditing is generally considered most

Web Application Architecture Pocket Guide

Microsoft patterns & practices 58

authoritative if the log information is generated at the precise time of resource access, and by
the same routine that accesses the resource. Instrumentation can be implemented using
performance counters and events. System monitoring tools can use this instrumentation, or
other access points, to provide administrators with information about the state, performance,
and health of an application.

When designing a logging and instrumentation strategy, consider following guidelines:
• Centralize logging and instrumentation for your business layer.
• Include instrumentation for system-critical and business-critical events in your business

components.
• Do not store business-sensitive information in the log files.
• Ensure that a logging failure does not affect normal business layer functionality.
• Consider auditing and logging all access to functions within business layer.

Service Interface
When the business layer is deployed to a separate tier, or when implementing the business
layer for a service, you must consider the guidelines for service interfaces. When designing a
service interface, you must to consider the granularity of service operations and
interoperability requirements. Generally, services should provide coarse-grained operations
that reduce round-trips between the service and service consumer. In addition, you should use
common data formats for the interface schema that can be extended without affecting
consumers of the service.

When designing a service interface, consider following guidelines:
• Design your services interfaces in such a way that changes to the business logic do not

affect the interface.
• Do not implement business rules in a service interface or in the service implementation

layer.
• Design service interfaces for maximum interoperability with other platforms and services by

using common protocols and data formats.
• Design the service to expose schema and contract information only, and make no

assumptions on how the service will be used.
• Choose an appropriate transport protocol. For example, choose named pipes or shared

memory when the service and service consumer are on the same physical machine, TCP
when a service is accessed by consumers within the same network, or HTTP for services
exposed over the Internet.

Validation
Designing an effective validation solution for your business layer is important for the security
and reliability of your application. Failing to do so can leave your application vulnerable to
cross-site scripting attacks, SQL injection attacks, buffer overflows, and other types of input
attack. There is no comprehensive definition of what constitutes a valid input or malicious
input. In addition, how your application uses input influences the risk of the exploit.

Web Application Architecture Pocket Guide

Microsoft patterns & practices 59

When designing a validation strategy, consider following guidelines:
• Validate all input and method parameters within the business layer, even when input

validation occurs in the presentation layer.
• Centralize your validation approach, if it can be reused.
• Constrain, reject, and sanitize user input. In other words, assume all user input is malicious.
• Validate input data for length, format, and type.

Workflows
Workflow components are used only when your application must support a series of tasks that
are dependent on the information being processed. This information can be anything from data
checked against business rules, to human interaction. When designing workflow components, it
is important to consider how you will manage the workflows, and understand the options that
are available.

When designing a workflow strategy, consider the following guidelines:
• Implement workflows within components that involve a multi-step or long-running process.
• Choose an appropriate workflow style depending on the application scenario.
• Handle fault conditions within workflows, and expose suitable exceptions.
• If the component must execute a specified set of steps sequentially and synchronously,

consider using the pipeline pattern.
• If the process steps can be executed asynchronously in any order, consider using the event

pattern.

Deployment Considerations
When deploying a business layer, you must consider performance and security issues within the
production environment.

When deploying a business layer, consider following guidelines:
• Deploy the business layer to the same physical tier as the presentation or service layer to

maximize application performance.
• If you must support a remote business layer, consider using TCP protocol to improve

performance of the application.
• Use IPSec to protect data passed between physical tiers for all business layers for all

applications.
• Use SSL to protect calls from business layer components to remote Web services.

Pattern Map
Category Relevant Patterns
Business Components • Application Façade

• Chain of Responsibility
• Command

Web Application Architecture Pocket Guide

Microsoft patterns & practices 60

Business Entities • Domain Model
• Entity Translator
• Table Module

Concurrency and
Transactions

• Capture Transaction Details
• Coarse Grained Lock
• Implicit Lock
• Optimistic Offline Lock
• Pessimistic Offline Lock
• Transaction Script

Data Access • Active Record
• Data Mapper
• Query Object
• Repository
• Row Data Gateway
• Table Data Gateway

Workflows • Data-driven workflow
• Human workflow
• Sequential workflow
• State-driven workflow

Pattern Descriptions
• Active Record – Include a data access object within a domain entity.
• Application Façade – Centralize and aggregate behavior to provide a uniform service layer.
• Capture Transaction Details – Create database objects, such as triggers and shadow tables,

to record changes to all tables belonging to the transaction.
• Chain of Responsibility – Avoid coupling the sender of a request to its receiver by allowing

more than one object to handle the request.
• Coarse Grained Lock – Lock a set of related objects with a single lock.
• Command – Encapsulate request processing in a separate command object with a common

execution interface.
• Data Mapper – Implement a mapping layer between objects and the database structure

that is used to move data from one structure to another while keeping them independent.
• Data-driven Workflow – A workflow that contains tasks whose sequence is determined by

the values of data in the workflow or the system.
• Domain Model – A set of business objects that represents the entities in a domain and the

relationships between them.
• Entity Translator – An object that transforms message data types to business types for

requests, and reverses the transformation for responses.
• Human Workflow – A workflow that involves tasks performed manually by humans.
• Implicit Lock – Use framework code to acquire locks on behalf of code that accesses shared

resources.

Web Application Architecture Pocket Guide

Microsoft patterns & practices 61

• Optimistic Offline Lock – Ensure that changes made by one session do not conflict with
changes made by another session.

• Pessimistic Offline Lock – Prevent conflicts by forcing a transaction to obtain a lock on data
before using it.

• Query Object – An object that represents a database query.
• Repository – An in-memory representation of a data source that works with domain

entities.
• Row Data Gateway – An object that acts as a gateway to a single record in a data source.
• Sequential Workflow – A workflow that contains tasks that follow a sequence, where one

task is initiated after completion of the preceding task.
• State-driven Workflow – A workflow that contains tasks whose sequence is determined by

the state of the system.
• Table Data Gateway – An object that acts as a gateway to a table or view in a data source

and centralizes all the select, insert, update, and delete queries.
• Table Module – A single component that handles the business logic for all rows in a

database table or view.
• Transaction Script - Organize the business logic for each transaction in a single procedure,

making calls directly to the database or through a thin database wrapper.

Technology Considerations
The following guidelines will help you to choose an appropriate implementation technology,
and implement transaction support:
• If you require workflows that automatically support secure, reliable, transacted data

exchange, a broad choice of transport and encoding options, and provide built-in
persistence and activity tracking, consider using Windows Workflow (WF).

• If you require workflows that implement complex orchestrations and support reliable store
and forward messaging capabilities, consider using BizTalk Server.

• If you must interact with non-Microsoft systems, perform EDI operations, or implement
Enterprise Service Bus (ESB) patterns, consider using the ESB Guidance for BizTalk Server.

• If your business layer is confined to a single SharePoint site and does not require access to
information in other sites, consider using MOSS. MOSS is not suitable for multiple-site
scenarios.

• If you are designing transactions that span multiple data sources, consider using a
transaction scope (System.Transaction) to manage the entire transaction.

Additional Resources
For more information, see the following resources:
• Concurrency Control at http://msdn.microsoft.com/en-us/library/ms978457.aspx.
• Integration Patterns at http://msdn.microsoft.com/en-us/library/ms978729.aspx.

Web Application Architecture Pocket Guide

Microsoft patterns & practices 62

Chapter 5 – Data Access Layer Guidelines

Objectives
• Understand how the data layer fits into the application architecture.
• Understand the components of the data layer.
• Learn the steps for designing these components.
• Learn the common issues faced while designing the data layer.
• Learn the key guidelines to design the data layer.
• Learn the key patterns and technology considerations.

Overview
This chapter describes the key guidelines for the design of the data layer of an application. The
guidelines are organized by category. They cover the common issues encountered, and
mistakes commonly made, when designing the data layer. Figure 1. shows how the data layer
fits into common application architecture.

Web Application Architecture Pocket Guide

Microsoft patterns & practices 63

Figure 1 - A typical application showing the data layer and the components it may contain.

Data Layer Components
• Data access logic components. Data access components abstract the logic necessary to

access your underlying data stores. Doing so centralizes the data access functionality, which
makes the application easier to configure and maintain.

• Data Helpers / Utilities. Helper functions and utilities assist in data manipulation, data
transformation, and data access within the layer. They consist of specialized libraries and/or
custom routines especially designed to maximize data access performance and reduce the
development requirements of the logic components and the service agent parts of the
layer.

• Service agents. When a business component must use functionality exposed by an external
service, you may need to create code that manages the semantics of communicating with
that service. Service agents isolate your application from the idiosyncrasies of calling diverse
services, and can provide additional services such as basic mapping between the format of
the data exposed by the service and the format your application requires.

Approach
A correct approach to designing the data layer will reduce development time and assist in
maintenance of the data layer after the application is deployed. This section briefly outlines an
effective design approach for the data layer. Perform the following key activities in each of
these areas when designing your data layer:

1. Create an overall design for your data access layer:

a. Identify your data source requirements
b. Determine your data access approach
c. Choose how to map data structures to the data source
d. Determine how to connect to the data source
e. Determine strategies for handling data source errors.

2. Design your data access components:
a. Enumerate the data sources that you will access
b. Decide on the method of access for each data source
c. Determine whether helper components are required or desirable to simplify data

access component development and maintenance
d. Determine relevant design patterns. For example, consider using the Table Data

Gateway, Query Object, Repository, and other patterns.
3. Design your data helper components:

a. Identify functionality that could be moved out of the data access components and
centralized for reuse

b. Research available helper component libraries
c. Consider custom helper components for common problems such as connection

strings, data source authentication, monitoring, and exception processing

Web Application Architecture Pocket Guide

Microsoft patterns & practices 64

d. Consider implementing routines for data access monitoring and testing in your
helper components

e. Consider the setup and implementation of logging for your helper components.
4. Design your service agents:

a. Use the appropriate tool to add a service reference. This will generate a proxy and
the data classes that represent the data contract from the service

b. Determine how the service will be used in your application. For most applications,
you should use an abstraction layer between the business layer and the data access
layer, which will provide a consistent interface regardless of the data source. For
smaller applications, the business layer, or even the presentation layer, may access
the service agent directly.

Design Guidelines
The following design guidelines provide information about different aspects of the data access
layer that you should consider. Follow these guidelines to ensure that your data access layer
meets the requirements of your application, performs efficiently and securely, and is easy to
maintain and extend as business requirements change.

• Choose the data access technology. The choice of an appropriate data access technology

will depend on the type of data you are dealing with, and how you want to manipulate the
data within the application. Certain technologies are better suited for specific scenarios. The
following sections of this guide discuss these options and enumerate the benefits and
drawbacks of each data access technology.

• Use abstraction to implement a loosely coupled interface to the data access layer. This can
be accomplished by defining interface components, such as a gateway with well-known
inputs and outputs, which translate requests into a format understood by components
within the layer. In addition, you can use interface types or abstract base classes to define a
shared abstraction that must be implemented by interface components.

• Consider consolidating data structures. If you are dealing with table-based entities in your
data access layer, consider using Data Transfer Objects (DTOs) to help you organize the data
into unified structures. In addition, DTOs encourage coarse-grained operations while
providing a structure that is designed to move data across different boundary layers.

• Encapsulate data access functionality within the data access layer. The data access layer
hides the details of data source access. It is responsible for managing connections,
generating queries, and mapping application entities to data source structures. Consumers
of the data access layer interact through abstract interfaces using application entities such
as custom objects, DataSets, DataReaders, and XML documents. Other application layers
that access the data access layer will manipulate this data in more complex ways to
implement the functionality of the application. Separating concerns in this way assists in
application development and maintenance.

• Decide how to map application entities to data source structures. The type of entity you
use in your application is the main factor in deciding how to map those entities to data
source structures.

Web Application Architecture Pocket Guide

Microsoft patterns & practices 65

• Decide how you will manage connections. As a rule, the data access layer should create
and manage all connections to all data sources required by the application. You must
choose an appropriate method for storing and protecting connection information that
conforms to application and security requirements.

• Determine how you will handle data exceptions. The data access layer should catch and (at
least initially) handle all exceptions associated with data sources and CRUD operations.
Exceptions concerning the data itself, and data source access and timeout errors, should be
handled in this layer and passed to other layers only if the failures affect application
responsiveness or functionality.

• Consider security risks. The data access layer should protect against attacks that try to steal
or corrupt data, and protect the mechanisms used to gain access to the data source. It
should also use the “least privilege” design approach to restrict privileges to only those
needed to perform the operations required by the application. If the data source itself has
the ability to limit privileges, security should be considered and implemented in the data
access layer as well as in the source.

• Reduce round trips. Consider batching commands into a single database operation.
• Consider performance and scalability objectives. Scalability and performance objectives for

the data access layer should be taken into account during design. For example, when
designing an Internet-based merchant application, data layer performance is likely to be a
bottleneck for the application. When data layer performance is critical, use profiling to
understand and then limit expensive data operations.

Data Layer Frame
There are several common issues that you must consider as your develop your design. These
issues can be categorized into specific areas of the design. The following table lists the common
issues for each category where mistakes are most often made.

Category Common Issues
BLOB • Improperly storing BLOBs in the database instead of the file system.

• Using an incorrect type for BLOB data in database.
• Searching and manipulating BLOB data.

Batching • Failing to use batching to reduce database round-trips .
• Holding onto locks for excessive periods when batching.
• Failing to consider a strategy for reducing database round-trips with

batching.
Connections • Improper configuration of connection pooling.

• Failing to handle connection timeouts and disconnections.
• Performing transactions that span multiple connections.
• Holding connections open for excessive periods.
• Using individual identities instead of a trusted subsystem to access

the database.
Data Format • Choosing the wrong data format.

• Failing to consider serialization requirements.

Web Application Architecture Pocket Guide

Microsoft patterns & practices 66

• Not Mapping objects to a relational data store.
Exception Management • Not handling data access exceptions.

• Failing to shield database exceptions from the original caller.
• Failing to log critical exceptions.

Queries • Using string concatenation to build queries.
• Mixing queries with business logic.
• Not optimizing the database for query execution.

Stored Procedures • Not passing parameters to stored procedures correctly.
• Implementing business logic in stored procedures.
• Not considering how dynamic SQL in stored procedures can impact

performance, security, and maintainability.
Transactions • Using the incorrect isolation level.

• Using exclusive locks, which can cause contention and deadlocks.
• Allowing long-running transactions to blocking access to data.

Validation • Failing to perform data type validation against data fields.
• Not handling NULL values.
• Not filtering for invalid characters.

XML • Not considering how to handle extremely large XML data sets.
• Not choosing the appropriate technology for XML to relational

database interaction.
• Failure to set up proper indexes on applications that do heavy

querying with XML
• Failing to validate XML inputs using schemas.

BLOB
A BLOB is a Binary Large Object. When data is stored and retrieved as a single stream of data, it
can be considered to be a BLOB. BLOBs may have structure within them, but that structure is
not apparent to the database that stores it or the data layer that reads and writes it. Databases
can store the BLOB data or can store pointers to them within the database. The BLOB data is
usually stored in a file system if not stored directly in the database. BLOBs are typically used to
store image data, but can also be used to store binary representations of objects

When designing for BLOBs, consider the following guidelines:
• Store images in a database only when it is not practical to store them on the disk.
• Use BLOBs to simplify synchronization of large binary objects between servers.
• Consider whether you need to search the BLOB data. If so, create and populate other

searchable database fields instead of parsing the BLOB data.
• When retrieving the BLOB, cast it to the appropriate type for manipulation within your

business or presentation layer.
• Do not consider storing BLOB in the database when using buffered transmission.

Web Application Architecture Pocket Guide

Microsoft patterns & practices 67

Batching
Batching database commands can improve the performance of your data layer. Each request to
the database execution environment incurs an overhead. Batching can reduce the total
overhead by increasing throughput and decreasing latency. Batching similar queries is better
because the database caches and can reuse a query execution plan for a similar query.

When designing batching, consider the following guidelines:
• Use batched commands to reduce round trips to the database and minimize network traffic.
• Batch similar queries for maximum benefit. Batching dissimilar or random queries provides

less reduction in overhead
• Use batched commands and a DataReader to load or copy multiple sets of data.
• When loading large volumes of file-based data into the database, use bulk copy utilities.
• Do not consider placing locks on long running batch commands.

Connections
Connections to data sources are a fundamental part of the data layer. All data source
connections should be managed by the data layer. Creating and managing connections uses
valuable resources in both the data layer and the data source. To maximize performance, follow
guidelines for creating, managing, and closing connections

When designing for data layer connections, consider the following guidelines:
• In general, open connections as late as possible and close them as early as possible.
• To maximize the effectiveness of connection pooling, use a trusted sub-system security

model and avoid impersonation if possible.
• Perform transactions through a single connection where possible.
• For security reasons, avoid using a System or User Data Source Name (DSN) to store

connection information.
• Design retry logic to manage the situation where the connection to the data source is lost or

times out.

Data Format
Data formats and types are important to properly interpret the raw bytes stored in the
database and transferred by the data layer. Choosing the appropriate data format provides
interoperability with other applications, and facilitates serialized communications across
different processes and physical machines. Data format and serialization are also important to
allow the storage and retrieval of application state by the business layer.

When designing your data format, consider the following guidelines:
• In most cases, you should use custom data or business entities for improved application

maintainability. This will require additional code to map the entities to database operations.
However, new O/RM solutions are available to reduce the amount of custom code required.

Web Application Architecture Pocket Guide

Microsoft patterns & practices 68

• Use XML for interoperability with other systems and platforms or when working with data
structures that can change over time.

• Consider using DataSets for disconnected scenarios in simple CRUD-based applications.
• Understand the serilization and interoperability requirements of your application.

Exception Management
Design a centralized exception management strategy so that exceptions are caught and thrown
consistently in your data layer. If possible, centralize exception-handling logic in your database
helper components. Pay particular attention to exceptions that propagate through trust
boundaries and to other layers or tiers. Design for unhandled exceptions so they do not result
in application reliability issues or exposure of sensitive application information.

When designing your exception management strategy, consider the following guidelines:
• Determine exceptions that should be caught and handled in the data access layer.

Deadlocks, connection issues, and optimistic concurrency checks can often be resolved at
the data layer.

• Consider implementing a retry process for operations where data source errors or timeouts
occur where it is safe to do so.

• Design an appropriate exception propagation strategy. For example, allow exceptions to
bubble up to boundary layers where they can be logged and transformed as necessary
before passing them to the next layer.

• Design an approach for catching and handling unhandled exceptions.
• Design an appropriate logging and notification strategy for critical errors and exceptions

that does not reveal sensitive information.

Object Relational Mapping Considerations
When designing an Object Oriented (OO) application, consider the impedance mismatch
between the OO model and the relational model that makes it difficult to translate between
them. For example, encapsulation in OO designs, where fields are hidden, contradicts the public
nature of properties in a database. Other examples of impedance mismatch include differences
in the data types, structural differences, transactional differences, and differences in how data
is manipulated. The two common approaches to handling the mismatch are data access design
patterns such as Repository, and Object/Relational Mapping (O/RM) tools. A common model
associated with OO design is the Domain Model, which is based on modeling entities after
objects within a domain. As a result, the term domain represents an object-oriented design in
the following guidelines.

When designing for object relational mapping, consider following guidelines:
• Consider using or developing a framework that provides a layer between domain entities

and the database.
• If you are working in a Greenfield environment, where you have full control over the

database schema, choose an O/RM tool that will generate a schema to support the object
model and provide a mapping between the database and domain entities.

Web Application Architecture Pocket Guide

Microsoft patterns & practices 69

• If you are working in a Brownfield environment, where you must work with an existing
database schema, consider tools that will help you to map between the domain model and
relational model.

• If you are working with a smaller application or do not have access to O/RM tools,
implement a common data access pattern such as Repository. With the Repository pattern,
the repository objects allow you to treat domain entities as if they were located in memory.

• When working with Web applications or services, group entities and support options that
will partially load domain entities with only the required data. This allows applications to
handle the higher user load required to support stateless operations, and limit the use of
resources by avoiding holding initialized domain models for each user in memory.

Queries
Queries are the primary data manipulation operations for the data layer. They are the
mechanism that translates requests from the application into create, retrieve, update and
delete (CRUD) actions on the database. As queries are so essential, they should be optimized to
maximize database performance and throughput.

When using queries in your data layer, consider the following guidelines:
• Use parameterized SQL statements and typed parameters to mitigate security issues and

reduce the chance of SQL injection attacks succeeding.
• When it is necessary to build queries dynamically, ensure that you validate user input data

used in the query.
• Do not use string concatenation to build dynamic queries in the data layer.
• Use objects to build the query. For example, implement the Query Object pattern or use the

object support provided by ADO.NET.
• When building dynamic SQL, avoid mixing business-processing logic with logic used to

generate the SQL statement. Doing so can lead to code that is very difficult to maintain and
debug.

Stored Procedures
In the past, stored procedures represented a performance improvement over dynamic SQL
statements. However, with modern database engines, performance is no longer a major factor.
When considering the use of stored procedures, the primary factors are abstraction,
maintainability, and your environment. This section contains guidelines to help you design your
application when using stored procedures. For guidance on choosing between using stored
procedures and dynamic SQL statements, see the section that follows.

When it comes to security and performance, the primary guidelines are to use typed
parameters and avoid dynamic SQL within the stored procedure. Parameters are one of the
factors that influence the use of cached query plans instead of rebuilding the query plan from
scratch. When parameter types and the number of parameters change, new query execution
plans are generated, which can reduce performance.

Web Application Architecture Pocket Guide

Microsoft patterns & practices 70

When designing stored procedures, consider the following guidelines:
• Use typed parameters as input values to the procedure and output parameters to return

single values.
• Use parameter or database variables if it is necessary to generate dynamic SQL within a

stored procedures.
• Consider using XML parameters for passing lists or tabular data.
• Design appropriate error handling and return errors that can be handled by the application

code.
• Avoid the creation of temporary tables while processing data. However, if temporary tables

need to be used, consider creating them in-memory rather than on disk.

Stored Procedures vs. Dynamic SQL
The choice between stored procedures and dynamic SQL focuses primarily on the use of SQL
statements dynamically generated in code instead of SQL implemented within a stored
procedure in the database. When choosing between stored procedures and dynamic SQL, you
must consider the abstraction requirements, maintainability, and environment constraints.

The main advantages of stored procedures are:
• They provide an abstraction layer to the database, which can minimize the impact on

application code when the database schema changes.
• Security is easier to implement and manage because you can restrict access to everything

except the stored procedure.

The main advantages of dynamic SQL statements are:
• You can take advantage of fine-grained security features supported by most databases.
• They require less in terms of specialist skills than stored procedures.
• They are easier to debug than stored procedures.

When choosing between stored procedures and dynamic SQL. Consider the following
guidelines:
• If you have a small application that has a single client and few business rules, dynamic SQL is

often the best choice.
• If you have a larger application that has multiple clients, consider how you can achieve the

required abstraction. Decide where that abstraction should exist: at the database in the
form of stored procedures, or in the data layer of your application in the form of data access
patterns or object/relational mapping (O/RM) products.

• If you want to minimize code changes when the database schema changes, consider using
stored procedures to provide an abstraction layer. Changes associated with normalization
or schema optimization will often have no affect on application code. If a schema change
does affect inputs and outputs in a procedure then application code is affected; however,
the changes are limited to clients of the stored procedure.

Web Application Architecture Pocket Guide

Microsoft patterns & practices 71

• Consider the resources you have for development of the application. If you do not have
resources intimately familiar with database programming, consider tools or patterns that
are more familiar to your development staff.

• Consider debugging support. Dynamic SQL is easier for application developers to debug.
• When considering dynamic SQL, you must understand the impact that changes to database

schemas will have on your application. You must provide an abstraction in the data layer to
decouple the interface between business components and the database when not using
stored procedures.

Transactions
A transaction is an exchange of sequential information and associated actions that are treated
as an atomic unit in order to satisfy a request and ensure database integrity. A transaction is
only considered complete if all information and actions are complete, and the associated
database changes made permanent. Transactions support undo (rollback) database actions
following an error, which helps to preserve the integrity of data in the database.

When designing transactions, consider the following guidelines:
• Enable transactions only when you need them. For example, you should not use a

transaction for an individual SQL statement because SQL Server automatically executes
each statement as an individual transaction.

• Keep transactions as short as possible to minimize the amount of time that locks are held.
• Use the appropriate isolation level. The tradeoff is data consistency versus contention. A

high isolation level will offer higher data consistency at the price of overall concurrency. A
lower isolation level improves performance by lowering contention at the cost of
consistency.

• If using manual or explicit transactions, consider implementing the transaction within a
stored procedure.

• Consider the use of Multiple Active Result Sets (MARS) in transaction heavy concurrent
applications to avoid potential deadlock issues.

Validation
Designing an effective input and data validation strategy is critical to the security of your
application. Determine the validation rules for data received from other layers, from third party
components, as well as from the database or data store. Understand your trust boundaries so
that you can validate any data that crosses these boundaries.

• Validate all data received by the data layer from all callers.
• Consider the purpose to which data will be put when designing validation. For example,

user input used in the creation of dynamic SQL should be examined for characters or
patterns that occur in SQL injection attacks.

• Understand your trust boundaries so that you can validate data that crosses these
boundaries.

• Return informative error messages if validation fails.

Web Application Architecture Pocket Guide

Microsoft patterns & practices 72

XML
XML is useful for interoperability and for maintaining data structure outside the database. For
performance reasons, be careful when using XML for very large amounts of data. If you must
handle large amounts of data, use attribute-based schemas instead of element-based schemas.
Use schemas to validate the XML structure and content.

When designing for the use of XML, consider the following guidelines:
• Use XML readers and writers to access XML-formatted data.
• Use an XML schema to define formats and to provide validation for data stored and

transmitted as XML.
• Use custom validators for complex data parameters within your XML schema.
• Store XML in typed columns in the database, if available, for maximum performance.
• For read-heavy applications that use XML in SQL Server, consider XML indexes.

Manageability Considerations
Manageability is an important factor in your application. A manageable application is easier for
administrators and operators to install, configure, and monitor. It also makes it easier to detect,
validate, resolve, and verify errors at runtime. You should always strive to maximize
manageability when designing your application.

When designing for manageability, consider the following guidelines:
• Use common interface types or a shared abstraction (Dependency Inversion) to provide an

interface to the data access layer.
• Consider the use of custom entities, or decide if other data representations will better meet

your requirements. Coding custom entities can increase development costs; however, they
also provide improved performance through binary serialization and a smaller data
footprint.

• Implement business entities by deriving them from a base class that provides basic
functionality and encapsulates common tasks. However, be careful not to overload the base
class with unrelated operations, which would reduce the cohesiveness of entities derived
from the base class, and cause maintainability and performance issues.

• Design business entities to rely on data access logic components for database interaction.
Centralize implementation of all data access policies and related business logic. For
example, if your business entities access SQL Server databases directly, all applications
deployed to clients that use the business entities will require SQL connectivity and logon
permissions.

• Use stored procedures to abstract data access from the underlying data schema. However,
be careful not to overuse them because this will severely impact code maintenance and
reuse and thus the maintainability of your application. A symptom of overuse is a large
trees of stored procedures that call each other. Avoid using them to implement control
flow, to manipulate individual values (for example, perform string manipulation), and other
functionality difficult to implement in Transact-SQL.

Web Application Architecture Pocket Guide

Microsoft patterns & practices 73

Performance Considerations
Performance is a function of both your data layer design and your database design. Consider
both together when tuning your system for maximum data throughput.

When designing for performance, consider the following guidelines:
• Use connection pooling and tune performance based on results obtained by running

simulated load scenarios.
• Consider tuning isolation levels for data queries. If you are building an application with high

throughput requirements, special data operations may be performed at lower isolation
levels than the rest of the transaction. Combining isolation levels can have a negative
impact on data consistency, so you must carefully analyze this option on a case-by-case
basis.

• Consider batching commands to reduce round-trips to the database server.
• Use optimistic concurrency with non-volatile data to mitigate the cost of locking data in the

database. This avoids the overhead of locking database rows, including the connection that
must be kept open during a lock.

• If using a DataReader, use ordinal lookups to for faster performance.

Security Considerations
The data layer should protect the database against attacks that try to steal or corrupt data. It
should allow only as much access to the various parts of the data source as is required. It should
also protect the mechanisms used to gain access to the data source.

When designing for security, consider the following guidelines:
• When using Microsoft SQL Server, consider using Windows authentication with a trusted

sub-system.
• Encrypt connection strings in configuration files instead of using a system or user Data

Source Name (DSN).
• When storing passwords, use a salted hash instead of an encrypted version of the

password.
• Require that callers send identity information to the data layer for auditing purposes.
• If you are using SQL statements, consider the parameterized approach instead of string

concatenation to protect against SQL injection attacks.

Deployment Considerations
When deploying a data access layer, the goal of a software architect is to consider the
performance and security issues in the production environment.

When deploying the data access layer, consider the following guidelines:
• Locate the data access layer on the same tier as the business layer to improve application

performance.

Web Application Architecture Pocket Guide

Microsoft patterns & practices 74

• If you need to support a remote data access layer, consider using the TCP protocol to
improve performance.

• You should not locate the data access layer on the same server as the database.

Pattern Map
Category Relevant Patterns
General • Active Record

• Application Service
• Domain Model
• Data Transfer Object
• Repository
• Table Data Gateway
• Table Module

Batching • Parallel Processing
• Partitioning

Transactions • Coarse Grained Lock
• Capture Transaction Details
• Implicit Lock
• Optimistic Offline Lock
• Pessimistic Offline Lock
• Transaction Script

Pattern Descriptions
• Active Record - Include a data access object within a domain entity.
• Application Service – Centralize and aggregate behavior to provide a uniform service layer.
• Capture Transaction Details – Create database objects, such as triggers and shadow tables,

to record changes to all tables belonging to the transaction.
• Coarse Grained Lock – Lock a set of related objects with a single lock.
• Data Transfer Object - An object that stores the data transported between processes,

reducing the number of method calls required.
• Domain Model – A set of business objects that represents the entities in a domain and the

relationships between them.
• Implicit Lock – Use framework code to acquire locks on behalf of code that accesses shared

resources.
• Optimistic Offline Lock – Ensure that changes made by one session do not conflict with

changes made by another session.
• Parallel Processing - Allow multiple batch jobs to run in parallel to minimize the total

processing time.
• Partitioning - Partition multiple large batch jobs to run concurrently.
• Pessimistic Offline Lock – Prevent conflicts by forcing a transaction to obtain a lock on data

before using it.

Web Application Architecture Pocket Guide

Microsoft patterns & practices 75

• Repository - An in-memory representation of a data source that works with domain
entities.

• Table Data Gateway - An object that acts as a gateway to a table or view in a data source
and centralizes all the select, insert, update, and delete queries.

• Table Module – A single component that handles the business logic for all rows in a
database table or view.

• Transaction Script - Organize the business logic for each transaction in a single procedure,
making calls directly to the database or through a thin database wrapper.

Technology Considerations
The following guidelines will help you to choose an appropriate implementation technology and
techniques depending on the type of application you are designing and the requirements of
that application:
• If you require basic support for queries and parameters, consider using ADO.NET objects

directly.
• If you require support for more complex data-access scenarios, or need to simplify your

data access code, consider using the Enterprise Library Data Access Application Block.
• If you are building a data-driven Web application with pages based on the data model of the

underlying database, consider using ASP.NET Dynamic Data.
• If you want to manipulate XML-formatted data, consider using the classes in the System.Xml

namespace and its subsidiary namespaces.
• If you are using ASP.NET to create user interfaces, consider using a DataReader to access

data to maximize rendering performance. DataReaders are ideal for read-only, forward-only
operations in which each row is processed quickly.

• If you are accessing Microsoft SQL Server, consider using classes in the ADO.NET SqlClient
namespace to maximize performance.

• If you are accessing Microsoft SQL Server 2008, consider using a FILESTREAM for greater
flexibility in the storage and access of BLOB data.

• If you are designing an object oriented business layer based on the Domain Model pattern,
consider using the ADO.NET Entity Framework.

patterns & practices Solution Assets
For information about p&p solution assets, see the following resources:
• Enterprise Library - Data Access Application Block at http://msdn.microsoft.com/en-

us/library/cc309504.aspx
• Performance Testing Guidance

at http://www.codeplex.com/PerfTesting/Wiki/View.aspx?title=Whats%20New&referringTi
tle=Home

Additional Resources
For more information on general data access guidelines, see the following resources:

Web Application Architecture Pocket Guide

Microsoft patterns & practices 76

• Typing, storage, reading, and writing BLOBs at http://msdn.microsoft.com/en-
us/library/ms978510.aspx#daag_handlingblobs

• Using stored procedures instead of SQL statements at http://msdn.microsoft.com/en-
us/library/ms978510.aspx.

• .NET Data Access Architecture Guide at http://msdn.microsoft.com/en-
us/library/ms978510.aspx.

• Data Patterns at http://msdn.microsoft.com/en-us/library/ms998446.aspx.
• Designing Data Tier Components and Passing Data Through Tiers

at http://msdn.microsoft.com/en-us/library/ms978496.aspx

Web Application Architecture Pocket Guide

Microsoft patterns & practices 77

Chapter 6 – Service Layer Guidelines

Objectives
• Understand how the service layer fits into the application architecture.
• Understand the components of the service layer.
• Learn the steps for designing the service layer.
• Learn the common issues faced while designing the service layer.
• Learn the key guidelines to design the service layer.
• Learn the key patterns and technology considerations.

Overview
When providing application functionality through services, it is important to separate the
service functionality into a separate service layer. Within the service layer, you define the
service interface, implement the service interface, and provide translator components that
translate data formats between the business layer and external data contracts. One of the
more important concepts to keep in mind is that a service should never expose internal entities
that are used by the business layer. Figure 1. shows where a service layer fits in the overall
design of your application.

Web Application Architecture Pocket Guide

Microsoft patterns & practices 78

Figure 1 - An overall view of a typical application showing the service layer.

Service Layer Components
• Service Interfaces. Services expose a service interface to which all inbound messages are

sent. The definition of the set of messages that must be exchanged with a service, in order
for the service to perform a specific business task, constitutes a contract. You can think of a
service interface as a façade that exposes the business logic implemented in the service to
potential consumers.

• Message Types. When exchanging data across the service layer, data structures are
wrapped by message structures that support different types of operations. For example,
you might have a Command message, a Document message, or another type of message.
These message types are the “message contracts” for communication between service
consumers and providers.

Web Application Architecture Pocket Guide

Microsoft patterns & practices 79

Approach
The approach used to design a service layer starts by defining the service interface, which
consists of the contracts that you plan to expose from your service. Once the service interface is
defined, the next step is to design the service implementation; which is used to translate data
contracts into business entities and interact with the business layer.

The following steps can be used when designing a service layer:
• Define the Data and Message contracts that represent the schema used for messages.
• Define the Service contracts that represent operations supported by your service.
• Define the Fault contracts that return error information to consumers of the service.
• Design transformation objects that translate between business entities and data contracts.
• Design the abstraction approach used to interact with the business layer.

Design Considerations
When designing the service layer, there are many factors that you should consider. Many of the
design considerations relate to proven practices concerned with layered architectures.
However, with a service, you must take into account message related factors. The main thing to
consider is that a service uses message-based interaction, which is inherently slower than
object-based interaction. In addition, messages passed between a service and a consumer can
be routed, modified, or lost; which requires a design that will account for the non-deterministic
behavior of messaging.

• Design services to be application scoped and not component scoped. Service operations

should be coarse grained and focused on application operations. For example, with
demographics data you should provide an operation that returns all of the data in one call.
You should not use multiple operations to return subsets of the data with multiple calls.

• Design entities for extensibility. In other words, data contracts should be designed so that
you can extend them without affecting consumers of the service.

• Compose entities from standard elements. When possible, use standard elements to
compose the complex types used by your service.

• Use a layered approach to designing services. Separate the business rules and data access
functions into distinct components where appropriate.

• Avoid tight coupling across layers. Use abstraction to provide an interface into the business
layer. This abstraction can be implemented using public object interfaces, common
interface definitions, abstract base classes, or messaging. For Web applications, consider a
message-based interface between the presentation and business layers.

• Design without the assumption that you know who the client is. You should not make
assumptions about the client, or about how they plan to use the service that you provide.

• Design only for service contract. In other words, you should not implement functionality
that is not reflected by the service contract. In addition, the implementation of a service
should never be exposed to external consumers.

Web Application Architecture Pocket Guide

Microsoft patterns & practices 80

• Design to assume the possibility of invalid requests. You should never assume that all
messages received by the service are valid.

• Separate functional business concerns from infrastructure operational concerns. Cross
cutting logic should never be combined with application logic. Doing so can lead to
implementations that are difficult to extend and maintain.

• Ensure that the service can detect and manage repeated messages (idempotency). When
designing the service, implement well-known patterns to ensure that duplicate messages
are not processed.

• Ensure that the service can manage messages arriving out of order (commutativity). If
there is a possibility that messages arrive out of order, implement a design that will store
messages and then process them in the correct order.

• Versioning of Contracts. A new version for service contracts mean new operations exposed
by the service whereas for data contracts it means new schema type definitions being
added.

Services Layer Frame
There are several common issues that you must consider as your develop your design. These
issues can be categorized into specific areas of the design. The following table lists the common
issues for each category where mistakes are most often made.

Area Key Issues
Authentication and
Authorization

• Lack of authentication across trust boundaries.
• Lack of authorization across trust boundaries.
• Granular or improper authorization.

Communication • Incorrect choice of transport protocol.
• Use of a chatty service communication interface.
• Failing to protect sensitive data.

Data Consistency • Failing to check for data consistency.
• Improper handling of transactions in a disconnected model.

Exception Management • Not catching exceptions that can be handled.
• Not logging exceptions.
• Not dealing with message integrity when an exception occurs.

Messaging Channels • Choosing an inappropriate message channel
• Failing to handle exception conditions on the channel.
• Providing access to non-messaging clients.

Message Construction • Failing to handle time-sensitive message content.
• Incorrect message construction for the operation.
• Passing too much data in a single message.

Message Endpoint • Not supporting idempotent operations.
• Not supporting commutative operations.
• Subscribing to an endpoint while disconnected.

Message Protection • Not protecting sensitive data.

Web Application Architecture Pocket Guide

Microsoft patterns & practices 81

• Not using transport layer protection for messages that cross
multiple servers.

• Not considering data integrity.
Message Routing • Not choosing the appropriate router design.

• Ability to access a specific item from a message.
• Ensuring that messages are handled in the correct order.

Message Transformation • Performing unnecessary transformations.
• Implementing transformations at the wrong point.
• Using a canonical model when not necessary.

REST • There is limited schema support.
• Current tools for REST are primitive.
• Using hypertext to manage state.

SOAP • Not choosing the appropriate security model.
• Not planning for fault conditions.
• Using complex types in the message schema.

Authentication
Designing an effective authentication strategy for your service layer is important for the
security and reliability of your application. Failing to design a good authentication strategy can
leave your application vulnerable to spoofing attacks, dictionary attacks, session hijacking, and
other types of attack.

When designing an authentication strategy, consider following guidelines:
• Identify a suitable mechanism for securely authenticating users.
• Consider the implications of using different trust settings for executing service code.
• Ensure that secure protocols such as SSL are used with basic authentication, or when

credentials are passed as plain text.
• Use secure mechanisms such as WS Security with SOAP messages.

Authorization
Designing an effective authorization strategy for your service layer is important for the security
and reliability of your application. Failing to design a good authorization strategy can leave your
application vulnerable to information disclosure, data tampering, and elevation of privileges.

When designing an authorization strategy, consider following guidelines:
• Set appropriate access permissions on resources for users, groups, and roles.
• Use URL authorization and/or file authorization when using Windows authentication.
• Where appropriate, restrict access to publicly accessible Web methods using declarative

principle permission demands.
• Execute services under the most restrictive account that is appropriate.

Web Application Architecture Pocket Guide

Microsoft patterns & practices 82

Communication
When designing the communication strategy for your service, the protocol you choose should
be based on the deployment scenario your service must support. If the service will be deployed
within a closed network, you can use TCP for more efficient communications. If the service will
be deployed in to a public facing network, you should choose the HTTP protocol.

When designing a communication strategy, consider following guidelines:
• Determine how to handle unreliable or intermittent communication.
• Use dynamic URL behavior with configured endpoints for maximum flexibility.
• Validate endpoint addresses in messages.
• Determine whether you need to make asynchronous calls.
• Determine if you need request-response or duplex communication.
• Decide if message communication must be one-way or two-way.

Data Consistency
Designing for data consistency is critical to the stability and integrity of your service
implementation. Failing to validate the consistency of data received by the service can lead to
invalid data being inserted into the data store, unexpected exceptions, and security breaches.
As a result, you should always include data consistency checks when implementing a service.

When designing for data consistency, consider following guidelines:
• Validate all parameters passed to the service components.
• Check input for dangerous or malicious content.
• Determine your signing, encryption and encoding strategies.
• Use an XML schema to validate incoming SOAP messages.

Exception Management
Designing an effective exception management strategy for your service layer is important for
the security and reliability of your application. Failing to do so can make your application
vulnerable to denial of service (DoS) attacks, and may also allow it to reveal sensitive and
critical information.
Raising and handling exceptions is an expensive operation, and it is important for the design to
take into account the impact on performance. A good approach is to design a centralized
exception management and logging mechanism, and consider providing access points that
support instrumentation and centralized monitoring in order to assist system administrators.

When designing an exception management strategy, consider following guidelines:
• Do not use exceptions to control business logic.
• Design a strategy for handling unhandled exceptions.
• Do not reveal sensitive information in exception messages or log files.

Web Application Architecture Pocket Guide

Microsoft patterns & practices 83

• Use SOAP Fault elements or custom extensions to return exception details to the caller.
Disable tracing and debug-mode compilation for all services except during development and
testing.

Messaging Channels
Communication between a service and its consumers consists of sending data through a
channel. In most cases you will use channels provided by your chosen service infrastructure,
such as WCF. You must understand which patterns your chosen infrastructure supports, and
determine the appropriate channel for interaction with consumers of the service.

When designing message channels, consider following guidelines:
• Determine appropriate patterns for messaging channels, such as Channel Adapter,

Messaging Bus, and Messaging Bridge.
• Determine how you will intercept and inspect the data between endpoints if necessary.

Message Construction
When data is exchanged between a service and consumer, it must be wrapped inside a
message. The format of that message is based on the type of operations you need to support.
For example, you may be exchanging documents, executing commands, or raising events. When
using slow message delivery channels, you should also consider using expiration information in
the message.

When designing a message construction strategy, consider following guidelines:
• Determine the appropriate patterns for message constructions, such as Command,

Document, Event, and Request-Reply.
• Divide very large quantities of data into smaller chunks, and send them in sequence.
• Include expiration information in messages that are time-sensitive. The service should

ignore expired messages.

Message Endpoint
The message endpoint represents the connection that applications use to interact with your
service. The implementation of your service interface represents the message endpoint. When
designing the service implementation, you must consider the possibility that duplicate or invalid
messages can be sent to your service.

When designing message endpoints, consider following guidelines:
• Determine relevant patterns for message endpoints such as Gateway, Mapper, Competing

Consumers, and Message Dispatcher.
• Determine if you should accept all messages, or implement a filter to handle specific

messages.
• Design for idempotency in your message interface. Idempotency is the situation where you

could receive duplicate messages from the same consumer, but should only handle one. In

Web Application Architecture Pocket Guide

Microsoft patterns & practices 84

other words, an idempotent endpoint will guarantee that only one message will be handled,
and all duplicate messages will be ignored.

• Design for commutativity in your message interface. Commutativity is related to the order
that messages are received. In some cases, you may need to store inbound messages so
that they can be processed in the correct order.

• Design for disconnected scenarios. For instance, you may need to support guaranteed
delivery.

Message Protection
When transmitting sensitive data between a service and its consumer, you should design for
message protection. You can use transport layer protection or message-based protection.
However, in most cases, you should use message-based protection. For example, you should
encrypt sensitive sections within a message and use a signature to protect from tampering.

When designing message protection, consider following guidelines:
• If interactions between the service and the consumer are not routed through other

services, you can use just transport layer security such as SSL.
• If the message passes through one or more servers, always use message-based protection.

In addition, you can also use transport layer security with message-based security. With
transport layer security, the message is decrypted and then encrypted at each server it
passes through; which represents a security risk.

• Consider using both transport layer and message-based security in your design.
• Use encryption to protect sensitive data in messages.
• Use digital signatures to protect messages and parameters from tampering.

Message Routing
A message router is used to decouple a service consumer from the service implementation.
There are three main types of routers you might use: simple, composed, and pattern based.
Simple routers use a single router to determine the final destination of a message. Composed
routers combine multiple simple routers to handle more complex message flows. Architectural
patterns are used to describe different routing styles based on simple message routers.

When designing message routing, consider following guidelines:
• Determine relevant patterns for message routing, such as Aggregator, Content-Based

Router, Dynamic Router, and Message Filter.
• If sequential messages are sent from a consumer, the router must ensure they are all

delivered to the same endpoint in the required order (commutativity).
• A message router will normally inspect information in the message to determine how to

route the message. As a result, you must ensure that the router can access that
information.

Web Application Architecture Pocket Guide

Microsoft patterns & practices 85

Message Transformation
When passing messages between a service and consumer, there are many cases where the
message must be transformed into a format that the consumer can understand. This normally
occurs in cases where non-message based consumers need to process data from a message-
based system. You can use adapters to provide access to the message channel for a non-
message based consumer, and translators to convert the message data into a format that the
consumer understands.

When designing message transformation, consider following guidelines:
• Determine relevant patterns for message transformation, such as Canonical Data Mapper,

Envelope Wrapper, and Normalizer.
• Use metadata to define the message format.
• Consider using an external repository to store the metadata.

Representational State Transfer (REST)
Representational state transfer (REST) represents an architecture style for distributed systems.
It is designed to reduce complexity by dividing a system into resources. The operations
supported by a resource represent the functionality provided by a service that uses REST.

When designing REST resources, consider following guidelines:
• Identify and categorize resources that will be available to clients.
• Choose an approach for resource representation. A good practice would be to use

meaningful names for REST starting points and unique identifiers, such as a GUID, for
specific resource instances. For example, http://www.contoso.com/employee/8ce762d5-
b421-6123-a041-5fbd07321bac4 represents an employee starting point while with a GUID
that represents a specific employee appended to it.

• Decide if multiple views should be supported for different resources. For example, decide if
the resource should support GET and POST operations, or only GET operations.

Service Interface
The service interface represents the contract exposed by your service. When designing a
service interface, you should consider boundaries that must be crossed and the type of
consumers accessing your service. For instance, service operations should be coarse-grained
and application scoped. One of the biggest mistakes with service interface design is to treat the
service as a component with fine-grained operations. This results in a design that requires
multiple calls across physical or process boundaries, which are very expensive in terms of
performance and latency.

When designing a service interface, consider following guidelines:
• Use a coarse-grained interface that minimizes the number of calls required to achieve a

specific result.

Web Application Architecture Pocket Guide

Microsoft patterns & practices 86

• Design services interfaces in such a way that changes to the business logic do not affect the
interface.

• Do not implement business rules in a service interface.
• Use standard formats for parameters to provide maximum compatibility with different

types of client.
• Do not make assumptions in your interface design about the way that clients will use the

service.
• Do not use object inheritance to implement versioning for the service interface.

SOAP
SOAP is a message-based protocol used to implement the message layer of a service. The
message is composed of an envelope that contains a header and body. The header can be used
to provide information that is external to the operation being performed by the service. For
instance, a header may contain security, transaction, or routing information. The body contains
contracts, in the form of XML schemas, which are used to implement the service.

When designing SOAP messages, consider following guidelines:
• Define the schema for the operations that can be performed by a service.
• Define the schema for the data structures passed with a service request.
• Define the schema for the errors or faults that can be returned from a service request.

Deployment Considerations
The service layer can be deployed on the same tier as other layers of the application, or on a
separate tier where performance and isolation requirements demand this. However, in most
cases the service layer will reside on the same physical tier as the business layer to minimize
performance impact when exposing business functionality.

When deploying the service layer, consider following guidelines:
• Deploy the service layer to the same tier as the business layer to improve application

performance unless performance and security issues inherent within the production
environment prevent this.

• If the service is located on the same physical tier as the service consumer, consider using
named pipes or shared memory protocols.

• If the service is accessed only by other applications within a local network, consider using
TCP for communications.

• If the service is publicly accessible from the Internet, use HTTP for your transport protocol.

Pattern Map
Category Relevant Patterns
Communication • Duplex

• Fire and Forget
• Reliable Sessions

Web Application Architecture Pocket Guide

Microsoft patterns & practices 87

• Request Response
Data Consistency • Atomic Transactions

• Cross-service Transactions
• Long running transactions

Messaging Channels • Channel Adapter
• Message Bus
• Messaging Bridge
• Point-to-point Channel
• Publish-subscribe Channel

Message Construction • Command Message
• Document Message
• Event Message
• Request-Reply

Message Endpoint • Competing Consumer
• Durable Subscriber
• Idempotent Receiver
• Message Dispatcher
• Messaging Gateway
• Messaging Mapper
• Polling Consumer
• Selective Consumer
• Service Activator
• Transactional Client

Message Protection • Data Confidentiality
• Data Integrity
• Data Origin Authentication
• Exception Shielding
• Federation
• Replay Protection
• Validation

Message Routing • Aggregator
• Content-Based Router
• Dynamic Router
• Message Broker (Hub-and-Spoke)
• Message Filter
• Process Manager

Message Transformation • Canonical Data Mapper
• Claim Check
• Content Enricher
• Content Filter
• Envelope Wrapper
• Normalizer

Web Application Architecture Pocket Guide

Microsoft patterns & practices 88

REST • Behavior
• Container
• Entity
• Store
• Transaction

Service Interface • Remote Façade
SOAP • Data Contracts

• Fault Contracts
• Service Contracts

Pattern Descriptions
• Aggregator - A filter that collects and stores individual related messages, combines these

messages, and publishes a single aggregated message to the output channel for further
processing.

• Atomic Transactions - Transactions that are scoped to a single service operation.
• Behavior - (REST) Applies to resources that carry out operations. These resources generally

contain no state of their own, and only support the POST operation.
• Canonical Data Mapper - Use a common data format to perform translations between two

disparate data formats.
• Channel Adapter - A component that can access the application's API or data and publish

messages on a channel based on this data, and can receive messages and invoke
functionality inside the application.

• Claim Check - Retrieve data from a persistent store when required.
• Command Message - A message structure used to support commands.
• Competing Consumer - Set multiple consumers on a single message queue and have them

compete for the right to process the messages, which allows the messaging client to
process multiple messages concurrently.

• Container - Builds on the entity pattern by providing the means to dynamically add and/or
update nested resources.

• Content Enricher - A component that enriches messages with missing information obtained
from an external data source.

• Content Filter - Remove sensitive data from a message and reduce network traffic by
removing unnecessary data from a message.

• Content-Based Router - Route each message to the correct consumer based on the
contents of the message; such as existence of fields, specified field values, and so on.

• Cross-service Transactions - Transactions that can span multiple services.
• Data Confidentiality - Use message-based encryption to protect sensitive data in a

message.
• Data Contract - A schema that defines data structures passed with a service request.
• Data Integrity - Ensure that messages have not been tampered with in transit.
• Data Origin Authentication - Validate the origin of a message as an advanced form of data

integrity.

Web Application Architecture Pocket Guide

Microsoft patterns & practices 89

• Document Message – A structure used to reliably transfer documents or a data structure
between application.

• Duplex – Two-way message communication where both the service and the client send
messages to each other independently, irrespective of the use of the one-way or the
request/reply pattern.

• Durable Subscriber - In a disconnected scenario, messages are saved and then made
accessible to the client when connecting to the message channel to provide guaranteed
delivery.

• Dynamic Router - A component that dynamically routes the message to a consumer after
evaluating the conditions/rules that the consumer has specified.

• Entity - (REST) Resources that can be read with a GET operation, but can only be changed by
PUT and DELETE operations.

• Envelope Wrapper - A wrapper for messages that contains header information used, for
example, to protect, route, or authenticate a message.

• Event Message - A structure that provides reliable asynchronous event notification
between applications.

• Exception Shielding - Prevent a service from exposing information about its internal
implementation when an exception occurs.

• Façade – Implement a unified interface to a set of operations to provide a simplified reduce
coupling between systems.

• Fault Contracts - A schema that defines errors or faults that can be returned from a service
request.

• Federation - An integrated view of information distributed across multiple services and
consumers.

• Fire and Forget - A one-way message communication mechanism used when no response is
expected.

• Idempotent Receiver - Ensure that a service will only handle a message once.
• Long-running Transaction - Transactions that are part of a workflow process.
• Message Broker (Hub-and-Spoke) - A central component that communicates with multiple

applications to receive messages from multiple sources, determine the correct destination,
and route the message to the correct channel.

• Message Bus - Structure the connecting middleware between applications as a
communication bus that enables them to work together using messaging.

• Message Dispatcher - A component that sends messages to multiple consumers.
• Message Filter - Eliminate undesired messages, based on a set of criteria, from being

transmitted over a channel to a consumer.
• Messaging Bridge - A component that connects messaging systems and replicates messages

between these systems.
• Messaging Gateway - Encapsulate message-based calls into a single interface in order to

separate it from the rest of the application code.
• Messaging Mapper - Transform requests into business objects for incoming messages, and

reverse the process to convert business objects into response messages.

Web Application Architecture Pocket Guide

Microsoft patterns & practices 90

• Normalizer - Convert or transform data into a common interchange format when
organizations use different formats.

• Point-to-point Channel - Send a message on a Point-to-Point Channel to ensure that only
one receiver will receive a particular message.

• Polling Consumer - A service consumer that checks the channel for messages at regular
intervals.

• Process Manager - A component that enables routing of messages through multiple steps in
a workflow.

• Publish-subscribe Channel - Create a mechanism to send messages only to the applications
that are interested in receiving the messages without knowing the identity of the receivers.

• Reliable Sessions - End-to-end reliable transfer of messages between a source and a
destination, regardless of the number or type of intermediaries that separate endpoints.

• Remote Façade – Create a high-level unified interface to a set of operations or processes in
a remote subsystem to make that subsystem easier to use, by providing a course-grained
interface over fine-grained operations to minimize calls across the network.

• Replay Protection - Enforce message idempotency by preventing an attacker from
intercepting a message and executing it multiple times.

• Request Response - A two-way message communication mechanism where the client
expects to receive a response for every message sent.

• Request-Reply - Use separate channels to send the request and reply.
• Selective Consumer - The service consumer uses filters to receive messages that match

specific criteria.
• Service Activator - A service that receives asynchronous requests to invoke operations in

business components.
• Service Contract – A schema that defines operations that the service can perform.
• Service Interface – A programmatic interface that other systems can use to interact with

the service.
• Store - (REST) Allows entries to be created and updated with PUT.
• Transaction - (REST) Resources that support transactional operations.
• Transactional Client - A client that can implement transactions when interacting with a

service.
• Validation - Check the content and values in messages to protect a service from malformed

or malicious content.

Technology Considerations
The following guidelines will help you to choose an appropriate implementation technology for
your service layer:
• Consider using ASP.NET Web services (ASMX) for simplicity, but only when a suitable Web

server will be available.
• Consider using Windows Communication Foundation (WCF) services for advanced features

and support for multiple transport protocols.
• If you are using ASP.NET Web Services, and you require message-based security and binary

data transfer, consider using Web Service Extensions (WSE).

Web Application Architecture Pocket Guide

Microsoft patterns & practices 91

• If you are using WCF and you want interoperability with non-WCF or non-Windows clients,
consider using HTTP transport based on SOAP specifications.

• If you are using WCF and you want to support clients within an intranet, consider using the
TCP protocol and binary message encoding with transport security and Windows
authentication.

• If you are using WCF and you want to support WCF clients on the same machine, consider
using the named pipes protocol and binary message encoding.

• If you are using WCF, consider defining service contracts that use an explicit message
wrapper instead of an implicit one. This allows you to define message contracts as inputs
and outputs for your operations, which then allows you to extend the data contracts
included in the message contract without affecting the service contract.

Additional Resources
For more information, see the following resources:
• Enterprise Solution Patterns Using Microsoft .NET at http://msdn.microsoft.com/en-

us/library/ms998469.aspx.
• Web Service Security Guidance at http://msdn.microsoft.com/en-us/library/aa480545.aspx
• Improving Web Services Security: Scenarios and Implementation Guidance for WCF at

http://www.codeplex.com/WCFSecurityGuide

Web Application Architecture Pocket Guide

Microsoft patterns & practices 92

Chapter 7 - Communication Guidelines

Objectives
• Learn the guidelines for designing a communication approach.
• Learn the ways in which components communicate with each other.
• Learn the interoperability, performance, and security considerations for choosing a

communication approach.
• Learn the communication technology choices.

Overview
One of the key factors that affect the design of an application, particularly a distributed
application, is the way that you design the communication infrastructure for each part of the
application. Components must communicate with each other, for example to send user input to
the business layer, and then to update the data store through the data layer. When
components are located on the same physical tier, you can often rely on direct communication
between these components. However, if you deploy components and layers on physically
separate servers and client machines - as is likely in most scenarios - you must consider how the
components in these layers will communicate with each other efficiently and reliably.

In general, you must choose between direct communication where components calls methods
on each other, and message-based communication. There are many advantages to using
message-based communication, such as decoupling and the capability to change your
deployment strategy in the future. However, message-based communication raises issues that
you must consider, such as performance, reliability, and - in particular - security.

This chapter contains design guidelines that will help you to choose the appropriate
communication approach, understand how to get the most from it, and understand security
and reliability issues that may arise.

Design Guidelines
When designing a communication strategy for your application, consider the performance
impact of communicating between layers, as well as between tiers. Because each
communication across a logical or a physical boundary increases processing overhead, design
for efficient communication by reducing round trips and minimizing the amount of data sent
over the network.

• Consider communication strategies when crossing boundaries. Understand each of your

boundaries, and how they affect communication performance. For example, the application
domain (AppDomain), computer process, machine, and unmanaged code all represent

Web Application Architecture Pocket Guide

Microsoft patterns & practices 93

boundaries that that can be crossed when communicating with components of the
application or external services and applications.

• Consider using unmanaged code for communication across AppDomain boundaries. Use
unmanaged code to communicate across AppDomain boundaries. This approach requires
assemblies to run in full trust in order to interact with unmanaged code.

• Consider using message-based communication when crossing process boundaries. Use
Windows Communication Foundation (WCF) with either the TCP or named pipes protocols
to package data into a single call that can be serialized across process boundaries.

• Consider message-based communication when crossing physical boundaries. Consider
using Windows Communication Foundation (WCF) or Microsoft Message Queuing (MSMQ)
to communicate with remote machines across physical boundaries. Message-based
communication supports coarse-grained operations that reduce round trips when
communicating across a network.

• Reduce round trips when accessing remote layers. When communicating with remote
layers, reduce communication requirements by using coarse-grained message-based
communication methods, and use asynchronous communication if possible to avoid
blocking or freezing the user interface.

• Consider the serialization capabilities of the data formats passed across boundaries. If you
require interoperability with other systems, consider XML serialization. Keep in mind that
XML serialization imposes increased overhead. If performance is critical, consider binary
serialization because it is faster and the resulting serialized data is smaller than the XML
equivalent.

• Consider hotspots while designing your communication policy. Hotspots include
asynchronous and synchronous communication, data format, communication protocol,
security, performance, and interoperability.

Message-Based Communication
Message-based communication allow you to expose a service to your callers by defining a
service interface that clients call by passing XML-based messages over a transport channel.
Message-based calls are generally made from remote clients, but message-based service
interfaces can support local callers as well. A message-based communication style is well suited
to the following scenarios:
• You are implementing a business system that represents a medium- to long-term

investment; for example, when building a service that will be exposed to and used by
partners for a considerable time.

• You are implementing large-scale systems with high availability characteristics.
• You are building a service that you want to isolate from other services it uses, and from

services that consume it.
• You expect communication at either of the endpoints to be sporadically unavailable, as in

the case of wireless networks or applications that can be used offline.
• You are dealing with real-world business processes that use the asynchronous model. This

will provide a cleaner mapping between your requirements and the behavior of the
application.

Web Application Architecture Pocket Guide

Microsoft patterns & practices 94

When using message-based communication, consider the following guidelines:
• Consider that a connection will not always be present, and messages may need to be stored

and then sent when a connection becomes available.
• Consider how to handle the case when a message response is not received. To manage the

conversation state, your business logic can log the sent messages for later processing in
case a response is not received.

• Use acknowledgements to force the correct sequencing of messages.
• If message response timing is critical for your communication, consider a synchronous

programming model in which your client waits for each response message.
• Do not implement a custom communication channel unless there is no default combination

of endpoint, protocol, and format that suits your needs.

Asynchronous and Synchronous Communication
Consider the key tradeoffs when choosing between synchronous and asynchronous
communication styles. Synchronous communication is best suited to scenarios in which you
must guarantee the order in which calls are received, or when you must wait for the call to
return before proceeding. Asynchronous communication is best suited to scenarios in which
responsiveness is important or you cannot guarantee the target will be available.

Consider the following guidelines when deciding whether to use synchronous or asynchronous
communication:
• For maximum performance, loose-coupling, and minimized system overhead, consider using

an asynchronous communication model.
• Where you must guarantee the order in which operations take place, or you use operations

that depend on the outcome of previous operations, consider a synchronous model.
• For asynchronous local in-process calls, use the platform features (such as Begin and End

versions of methods and callbacks) to implement asynchronous method calls.
• Implement asynchronous interfaces as close as possible to the caller to obtain maximum

benefit.
• If some recipients can only accept synchronous calls, and you need to support synchronous

communication, consider wrapping existing asynchronous calls in a component that
performs synchronous communication.

If you choose asynchronous communication and cannot guarantee network connectivity or the
availability of the target, consider using a store-and-forward message delivery mechanism to
avoid losing messages. When choosing a store-and-forward design strategy:
• Consider using local caches to store messages for later delivery in case of system or network

interruption.
• Consider using Message Queuing to queue messages for later delivery in case of system or

network interruption or failure. Message Queuing can perform transacted message delivery
and supports reliable once-only delivery.

Web Application Architecture Pocket Guide

Microsoft patterns & practices 95

• Consider using BizTalk Server to interoperate with other systems and platforms at
enterprise level, or for Electronic Data Interchange (EDI).

Coupling and Cohesion
Communication methods that impose interdependencies between the distributed parts of the
application will result in a tightly coupled application. A loosely coupled application uses
methods that impose a minimum set of requirements for communication to occur.

When designing for coupling and cohesion, consider the following guidelines:
• For loose coupling, choose a message-based technology such as ASMX or WCF.
• For loose coupling, consider using self-describing data and ubiquitous protocols such as

HTTP and SOAP.
• To maintain cohesion, ensure that services and interfaces contain only methods that are

closely related in purpose and functional area.

State Management
It may be necessary for the communicating parties in an application to maintain state across
multiple requests.

When deciding how to implement state management, consider the following guidelines:
• Only maintain state between calls if it is absolutely necessary, since maintaining state

consumes resources and can impact the performance of your application.
• If you are using a state-full programming model within a component or service, consider

using a durable data store, such as a database, to store state information and use a token to
access the information.

• If you are designing an ASMX service, use the Application Context class to preserve state,
since it provides access to the default state stores for application scope and session scope.

• If you are designing a WCF service, consider using the extensible objects that are provided
by the platform for state management. These extensible objects allow state to be stored in
various scopes such as service host, service instance context and operation context. Note
that all of these states are kept in memory and are not durable. If you need durable state,
you can use the durable storage (introduced in .NET 3.5) or implement your own custom
solution.

Message Format
The format you choose for messages, and the communication synchronicity, affect the ability of
participants to exchange data, the integrity of that data, and the performance of the
communication channel.

Consider the following guidelines when choosing a message format and handling messages:
• Ensure that type information is not lost during the communication process. Binary

serialization preserves type fidelity, which is useful when passing objects between client

Web Application Architecture Pocket Guide

Microsoft patterns & practices 96

and server. Default XML serialization serializes only public properties and fields and does
not preserve type fidelity.

• Ensure that your application code can detect and manage messages that arrive more than
once (idempotency).

• Ensure that your application code can detect and manage multiple messages that arrive out
of order (commutativity).

Passing Data Through Tiers - Data Formats
To support a diverse range of business processes and applications, consider the following
guidelines when selecting a data format for a communication channel:
• Consider the advantage of using custom objects; these can impose a lower overhead than

DataSets and support both binary and XML serialization.
• If your application works mainly with sets of data, and needs functionality such as sorting,

searching and data binding, consider using DataSets. Consider that DataSets introduce
serialization overhead.

• If your application works mainly with instance data, consider using scalar values for better
performance.

Data Format Considerations
The most common data formats for passing data across tiers are Scalar values, XML, DataSets,
and custom objects. Scalar values will reduce your upfront development costs, however they
produce tight coupling that can increase maintenance costs if the value types need to change.
XML may require additional up front schema definition but it will result in loose coupling that
can reduce future maintenance costs and increase interoperability (for example, if you want to
expose your interface to additional XML-compliant callers). DataSets work well for complex
data types, especially if they are populated directly from your database. However, it is
important to understand that DataSets also contain schema and state information that
increases the overall volume of data passed across the network. Custom objects work best
when none of the other options meets your requirements, or when you are communicating
with components that expect a custom object.

Use the following table to understand the key considerations for choosing a data type.

Type Considerations
Scalar Values • You want built-in support for serialization.

• You can handle the likelihood of schema changes. Scalar values produce tight
coupling that will require method signatures to be modified, thereby affecting the
calling code.

XML • You need loose coupling, where the caller must know about only the data that
defines the business entity and the schema that provides metadata for the
business entity.

• You need to support different types of callers, including third-party clients.
• You need built-in support for serialization.

DataSet • You need support for complex data structures.

Web Application Architecture Pocket Guide

Microsoft patterns & practices 97

• You need to handle sets and complex relationships.
• You need to track changes to data within the DataSet.

Custom
Objects

• You need support for complex data structures.
• You are communicating with components that know about the object type.
• You want to support binary serialization for performance.

Interoperability Considerations
The main factors that influence interoperability of applications and components are the
availability of suitable communication channels, and the formats and protocols that the
participants can understand.

Consider the following guidelines for maximizing interoperability:
• To enable communication with wide variety of platforms and devices, consider using

standard protocols such as SOAP or REST. With both protocols, the structure of message
data is defined using XML schemas.

• Keep in mind that protocol decisions may affect the availability of clients you are targeting.
For example, target systems may be protected by firewalls that block some protocols.

• Keep in mind that data format decision may affect interoperability. For example, target
systems may not understand platform-specific types, or may have different ways of
handling and serializing types.

• Keep in mind that security encryption and decryption decisions may affect interoperability.
For example, some message encryption/decryption techniques may not be available on all
systems.

Performance Considerations
The design of your communication interfaces and the data formats you use will also have a
considerable impact on performance, especially when crossing process or machine boundaries.
While other considerations, such as interoperability, may require specific interfaces and data
formats, there are techniques you can use to improve performance related to communication
between different layers or tiers of your application.

Consider the following guidelines for performance:
• Avoid fine-grained "chatty" interfaces for cross-process and cross-machine communication.

These require the client to make multiple method calls to perform a single logical unit of
work. Consider using the Façade pattern to provide a coarse-grained wrapper for existing
chatty interfaces.

• Use Data Transfer Objects to pass data as a single unit instead of passing individual data
types one at a time.

• Reduce the volume of data passed to remote methods where possible. This reduces
serialization overhead and network latency.

• If serialization performance is critical for your application, consider using custom classes
with binary serialization.

Web Application Architecture Pocket Guide

Microsoft patterns & practices 98

• If XML is required for interoperability, use attribute based structures for large amounts of
data instead of element based structures.

Security Considerations
Communication security consists primarily of data protection. A secure communication strategy
will protect sensitive data from being read when passed over the network, it will protect
sensitive data from being tampered with, and if necessary, it will guarantee the identity of the
caller. There are two fundamental areas of concern for securing communications: transport
security and message-based security.

Transport Security.
Transport security is used to provide point-to-point security between the two endpoints.
Protecting the channel prevents attackers from accessing all messages on the channel.
Common approaches to transport security are Secure Sockets Layer (SSL) and IPSec.

Consider the following when deciding to use transport security:
• When using transport security, the transport layer passes user credentials and claims to the

recipient.
• Transport security uses common industry standards that provide good interoperability.
• Transport security supports a limited set of credentials and claims compared to message

security.
• If interactions between the service and the consumer are not routed through other

services, you can use just transport layer security.
• If the message passes through one or more servers, use message-based protection as well

as transport layer security. With transport layer security, the message is decrypted and then
encrypted at each server it passes through; which represents a security risk.

• Transport security is usually faster for encryption and signing since it is accomplished at
lower layers, sometimes even on the network hardware.

Message Security
Message security can be used with any transport protocol. You should protect the content of
individual messages passing over the channel whenever they pass outside your own secure
network, and even within your network for highly sensitive content. Common approaches to
message security are encryption and digital signatures.

Consider the following guidelines for message security:
• Always implement message-based security for sensitive messages that pass out of your

secure network.
• Always use message-based security where there are intermediate systems between the

client and the service. Intermediate servers will receive the message, handle it, then create
a new SSL or IPSec connection, and can therefore access the unprotected message.

• Combine transport and message-based security techniques for maximum protection.

Web Application Architecture Pocket Guide

Microsoft patterns & practices 99

WCF Technology Options
WCF provides a comprehensive mechanism for implementing services in a range of situations,
and allows you to exert fine control over the configuration and content of the services. The
following guidelines will help you to understand how you can use WCF:
• You can use WCF to communicate with Web services to achieve interoperability with other

platforms that also support SOAP, such as the J2EE-based application servers.
• You can use WCF to communicate with Web services using messages not based on SOAP for

applications with formats such as RSS.
• You can use WCF to communicate using SOAP messages and binary encoding for data

structures when both the server and the client use WCF.
• You can use WS-MetadataExchange in SOAP requests to obtain descriptive information

about a service, such as its WSDL definition and policies.
• You can use WS-Security to implement authentication, data integrity, data privacy, and

other security features.
• You can use WS-Reliable Messaging to implement reliable end-to-end communication, even

when one or more Web services intermediaries must be traversed.
• You can use WS-Coordination to coordinate two-phase commit transactions in the context

of Web services conversations.
• You can use WCF to build REST Singleton & Collection Services, ATOM Feed and Publishing

Protocol Services, and HTTP Plain XML Services.

WCF supports several different protocols for communication:
• When providing public interfaces that are accessed from the Internet, use the HTTP

protocol.
• When providing interfaces that are accessed from within a private network, use the TCP

protocol.
• When providing interfaces that are accessed from the same machine, use the named pipes

protocol, which supports a shared buffer or streams for passing data.

ASMX Technology Options
ASP.NET Web Services (ASMX) provide a simpler solution for building Web services based on
ASP.NET and exposed through an IIS Web server. The following guidelines will help you to
understand how you can use ASMX Web services:
• ASPX services can be accessed over the Internet.
• ASPX services use port 80 by default, but this can be easily reconfigured.
• ASPX services support only the HTTP protocol.
• ASPX services have no support for DTC transaction flow. You must program long-running

transactions using custom implementations.
• ASPX services support IIS authentication.
• ASPX services support Roles stored as Windows groups for authorization.
• ASPX services support IIS and ASP.NET impersonation.
• ASPX services support SSL transport security.

Web Application Architecture Pocket Guide

Microsoft patterns & practices 100

• ASPX services support the endpoint technology implemented in IIS.
• ASPX services provide cross-platform interoperability and cross-company computing.

REST vs. SOAP
There are two general approaches to the design of service interfaces, and the format of
requests sent to services. These approaches are REpresentational State Transfer (REST) and
SOAP. The REST approach encompasses a series of network architecture principles that specify
target resource and address formats. It effectively means the use of a simple interface that
does not require session maintenance or a messaging layer such as SOAP, but instead sends
information about the target domain and resource as part of the request URI. The SOAP
approach serializes data into an XML format passed as values in an XML message. The XML
document is placed into a SOAP envelope that defines the communication parameters such as
address, security, and other factors.

When choosing between REST and SOAP, consider the following guidelines:
• SOAP is a protocol that provides a basic messaging framework upon which abstract layers

can be built.
• SOAP is commonly used as a remote procedure call (RPC) framework that passes calls and

responses over networks using XML-formatted messages.
• SOAP handles issues such as security and addressing through its internal protocol

implementation, but requires a SOAP stack to be available.
• REST can be implemented over other protocols, such as JSON and custom Plain Old XML

(POX) formats.
• REST exposes an application as a state machine, not just a service endpoint. It has an

inherently stateless nature, and allows standard HTTP calls such as GET and PUT to be used
to query and modify the state of the system.

• REST gives users the impression that the application is a network of linked resources, as
indicated by the URI for each resource.

Web Application Architecture Pocket Guide

Microsoft patterns & practices 101

Chapter 8 – Deployment Patterns

Objectives
• Learn the key factors that influence deployment choices.
• Understand the recommendations for choosing a deployment pattern.
• Understand the effect of deployment strategy on performance, security, and other quality

attributes.
• Understand the deployment scenarios for Web applications.
• Learn common deployment patterns.

Overview
Application architecture designs exist as models, documents, and scenarios. However,
applications must be deployed into a physical environment where infrastructure limitations
may negate some of the architectural decisions. Therefore, you must consider the proposed
deployment scenario and the infrastructure as part of your application design process.

This chapter describes the options available for deployment of Web applications, including
distributed and non-distributed styles, ways to scale the hardware, and the patterns that
describe performance, reliability, and security issues. By considering the possible deployment
scenarios for your application as part of the design process, you prevent a situation where the
application cannot be successfully deployed, or fails to perform to its design requirements due
to technical infrastructure limitations.

Choosing a Deployment Strategy
Choosing a deployment strategy requires design tradeoffs; for example, because of protocol or
port restrictions, or specific deployment topologies in your target environment. Identify your
deployment constraints early in the design phase to avoid surprises later. To help you avoid
surprises, involve members of your network and infrastructure teams to help with this process.

When choosing a deployment strategy:
• Know your target physical deployment environment early when you are planning your

design and architecture.
• Clearly understand and communicate the environmental constraints that drive software

design and architecture decisions.
• Clearly communicate the software design decisions that drive specific infrastructure

requirements.

Distributed vs. Non-Distributed Deployment
When creating your deployment strategy first determine if you will use a distributed or a non-
distributed deployment model. If you are building a simple application for which you want to

Web Application Architecture Pocket Guide

Microsoft patterns & practices 102

minimize the number of required servers, consider a non-distributed deployment. If you are
building a more complex application that you will want to optimize for scalability and
maintainability, consider a distributed deployment.

Non-Distributed Deployment
A non-distributed deployment is where all of the functionality and layers reside on a single
server except for data storage functionality, as shown in Figure 1.

Figure 1. Non-distributed deployment

This approach has the advantage of simplicity and minimizes the number of physical servers
required. It also minimizes the performance impact inherent when communication between
layers has to cross physical boundaries between servers or server clusters. Keep in mind that by
using a single server even though you minimize communication performance overhead you can
hamper performance in other ways. Since all of your layers are sharing resources, one layer can
negatively impact all the other layers when it is under heavy utilization. The use of a single tier
reduces your overall scalability and maintainability because all of the layers share the same
physical hardware.

Distributed Deployment
A distributed deployment is where the layers of the application reside on separate physical
tiers. Distributed deployment allows you to separate the layers of an application on different
physical tiers as shown in Figure 2.

Figure 2. Distributed deployment

A distributed approach allows you to configure the application servers that host the various
layers to best meet the requirements of each layer. Distributed deployment also allows you to
apply more stringent security to the application servers; for example, by adding a firewall
between the Web server and the applications servers and by using different authentication and
authorization options. For example, in a rich client application, the client may use Web services

Web Application Architecture Pocket Guide

Microsoft patterns & practices 103

exposed through a Web server, or may access functionality in the application server tier using
DCOM or Windows Communication Foundation (WCF) services.

Distributed deployment provides a more flexible environment where you can more easily scale
out or scale up each physical tier as performance limitations arise, and when processing
demands increase.

Performance and Design Considerations for Distributed Environments
Distributing components across physical tiers reduces performance due to the cost of remote
calls across server boundaries. However, distributed components can improve scalability
opportunities, improve manageability, and reduce costs over time.

Consider the following guidelines when designing an application that will run on a physically
distributed infrastructure:
• Choose communication paths and protocols between tiers to ensure that components can

securely interact with minimum performance degradation.
• Use services and operating system features such as distributed transaction support and

authentication that can simplify your design and improve interoperability.
• Reduce the complexity of your component interfaces. Highly granular interfaces ("chatty"

interfaces) that require many calls to perform a task work best when on the same physical
machine. Interfaces that make only one call to accomplish each task ("chunky" interfaces)
provide the best performance when the components are distributed across separate
physical machines.

• Consider separating long-running critical processes from other processes that might fail by
using a separate physical cluster.

• Determine your failover strategy. For example, Web servers typically provide plenty of
memory and processing power, but may not have robust storage capabilities (such as RAID
mirroring) that can be replaced rapidly in the event of a hardware failure.

• Take advantage of asynchronous calls, one-way calls, or message queuing to minimize
blocking when making calls across physical boundaries.

• How best to plan for the addition of extra servers or resources that will increase
performance and availability.

Recommendations for locating components within a distributed
deployment
When you are designing a distributed deployment, you will need to determine which layers and
components you put into each physical tier. In most cases you will place the presentation layer
on the client or on the Web server, the business, data access and service layers on the
application server and the database on its own server. In some cases you will want to modify
this pattern. Consider the following guidelines when determining where to locate components
in a distributed environment:

Web Application Architecture Pocket Guide

Microsoft patterns & practices 104

• Only distribute components where necessary. Common reasons for implementing
distributed deployment include security policies, physical constraints, shared business logic,
and scalability.

• Deploy business components that are used synchronously by user interfaces or user process
components in the same physical tier as the user interface to maximize performance and
ease operational management.

• Do not locate UI and business components on the same tier if there are security
implications that require a trust boundary between them.

• Deploy service agent components on the same tier as the code that calls the components,
unless there are security implications that require a trust boundary between them.

• Deploy asynchronous business components, workflow components, and business services
on a separate physical tier where possible.

• Deploy business entities on the same physical tier as the code that uses them.

Scale Up vs. Scale Out
Your approach to scaling is a critical design consideration because whether you plan to scale
out your solution through a Web farm, a load-balanced middle tier, or a partitioned database,
you need to ensure that your design supports this. When you scale your application, you can
choose from and combine two basic choices:
• Scale up: get a bigger box.
• Scale out: get more boxes.

Scale Up: Get a Bigger Box
With this approach, you add hardware such as processors, RAM, and network interface cards to
your existing servers to support increased capacity. This is a simple option and one that can be
cost effective. It does not introduce additional maintenance and support costs. However, any
single points of failure remain, which is a risk. Beyond a certain threshold, adding more
hardware to the existing servers may not produce the desired results. For an application to
scale up effectively, the underlying framework, runtime, and computer architecture must scale
up as well. When scaling up, consider which resources the application is bound by. If it is
memory-bound or network-bound, adding CPU resources will not help.

Scale Out: Get More Boxes
To scale out, you add more servers and use load balancing and clustering solutions. In addition
to handling additional load, the scale-out scenario also protects against hardware failures. If
one server fails, there are additional servers in the cluster that can take over the load. For
example, you might host multiple Web servers in a Web farm that hosts presentation and
business layers, or you might physically partition your application's business logic and use a
separately load-balanced middle tier along with a load-balanced front tier hosting the
presentation layer. If your application is I/O-constrained and you must support an extremely
large database, you might partition your database across multiple database servers. In general,
the ability of an application to scale out depends more on its architecture than on underlying
infrastructure.

Web Application Architecture Pocket Guide

Microsoft patterns & practices 105

Consider Whether You Need to Support Scale Out
Scaling up with additional processor power and increased memory can be a cost-effective
solution. It also avoids introducing the additional management cost associated with scaling out
and using Web farms and clustering technology. You should look at scale-up options first and
conduct performance tests to see whether scaling up your solution meets your defined
scalability criteria and supports the necessary number of concurrent users at an acceptable
level of performance. You should have a scaling plan for your system that tracks its observed
growth.

If scaling up your solution does not provide adequate scalability because you reach CPU, I/O, or
memory thresholds, you must scale out and introduce additional servers. To ensure that your
application can be scaled out successfully, consider the following practices in your design:
• You need to be able to scale out your bottlenecks, wherever they are. If the bottlenecks

are on a shared resource that cannot be scaled, you have a problem. However, having a
class of servers that have affinity with one resource type could be beneficial, but they must
then be independently scaled. For example, if you have a single SQL Server™ that provides a
directory, everyone uses it. In this case, when the server becomes a bottleneck, you can
scale out and use multiple copies. Creating an affinity between the data in the directory and
the SQL Servers that serve the data allows you to concentrate those servers and does not
cause scaling problems later, so in this case affinity is a good idea.

• Define a loosely coupled and layered design. A loosely coupled, layered design with clean,
remotable interfaces is more easily scaled out than tightly-coupled layers with "chatty"
interactions. A layered design will have natural clutch points, making it ideal for scaling out
at the layer boundaries. The trick is to find the right boundaries. For example, business logic
may be more easily relocated to a load-balanced, middle-tier application server farm.

Consider Design Implications and Tradeoffs Up Front
You need to consider aspects of scalability that may vary by application layer, tier, or type of
data. Know your tradeoffs up front and know where you have flexibility and where you do not.
Scaling up and then out with Web or application servers may not be the best approach. For
example, although you can have an 8-processor server in this role, economics would probably
drive you to a set of smaller servers instead of a few big ones. On the other hand, scaling up
and then out may be the right approach for your database servers, depending on the role of the
data and how the data is used. Apart from technical and performance considerations, you also
need to take into account operational and management implications and related total cost of
ownership costs.

Stateless Components
If you have stateless components (for example, a Web front end with no in-process state and
no stateful business components), this aspect of your design supports both scaling up and
scaling out. Typically, you optimize the price and performance within the boundaries of the
other constraints you may have. For example, 2-processor Web or application servers may be
optimal when you evaluate price and performance compared with 4-processor servers; that is,

Web Application Architecture Pocket Guide

Microsoft patterns & practices 106

four 2-processor servers may be better than two 4-processor servers. You also need to consider
other constraints, such as the maximum number of servers you can have behind a particular
load-balancing infrastructure. In general, there are no design tradeoffs if you adhere to a
stateless design. You optimize price, performance, and manageability.

Data
For data, decisions largely depend on the type of data:
• Static, reference, and read-only data. For this type of data, you can easily have many

replicas in the right places if this helps your performance and scalability. This has minimal
impact on design and can be largely driven by optimization considerations. Consolidating
several logically separate and independent databases on one database server may or may
not be appropriate even if you can do it in terms of capacity. Spreading replicas closer to
the consumers of that data may be an equally valid approach. However, be aware that
whenever you replicate, you will have a loosely synchronized system.

• Dynamic (often transient) data that is easily partitioned. This is data that is relevant to a
particular user or session (and if subsequent requests can come to different Web or
application servers, they all need to access it), but the data for user A is not related in any
way to the data for user B. For example, shopping carts and session state both fall into this
category. This data is slightly more complicated to handle than static, read-only data, but
you can still optimize and distribute quite easily. This is because this type of data can be
partitioned. There are no dependencies between the groups, down to the individual user
level. The important aspect of this data is that you do not query it across partitions. For
example, you ask for the contents of user A's shopping cart but do not ask to show all carts
that contain a particular item.

• Core data. This type of data is well maintained and protected. This is the main case where
the "scale up, then out" approach usually applies. Generally, you do not want to hold this
type of data in many places due to the complexity of keeping it synchronized. This is the
classic case in which you would typically want to scale up as far as you can (ideally,
remaining a single logical instance, with proper clustering), and only when this is not
enough, consider partitioning and distribution scale-out. Advances in database technology
(such as distributed partitioned views) have made partitioning much easier, although you
should do so only if you need to. This is rarely because the database is too big, but more
often it is driven by other considerations such as who owns the data, geographic
distribution, proximity to the consumers and availability.

Consider Database Partitioning at Design Time
If your application uses a very large database and you anticipate an I/O bottleneck, ensure that
you design for database partitioning up front. Moving to a partitioned database later usually
results in a significant amount of costly rework and often a complete database redesign.

Partitioning provides several benefits:
• The ability to restrict queries to a single partition, thereby limiting the resource usage to

only a fraction of the data.

Web Application Architecture Pocket Guide

Microsoft patterns & practices 107

• The ability to engage multiple partitions, thereby getting more parallelism and superior
performance because you can have more disks working to retrieve your data.

• Be aware that in some situations, multiple partitions may not be appropriate and could
have a negative impact. For example, some operations that use multiple disks could be
performed more efficiently with concentrated data. So, when you partition, consider the
benefits together with alternate approaches.

Performance Patterns
Performance deployment patterns represent proven design solutions to common performance
problems. When considering a high-performance deployment, you can scale up or scale out.
Scaling up entails improvements to the hardware you are already running on. Scaling out entails
distributing your application across multiple physical servers to distribute the load. A layered
application lends itself more easily to being scaled out. Consider the use of Web farms or load
balancing clusters when designing a scale out strategy.

Web Farms
A Web farm is a collection of servers that run the same application. Requests from clients are
distributed to each server in the farm, so that each has approximately the same loading.
Depending on the routing technology used, it may detect failed servers and remove them from
the routing list to minimize the impact of a failure. In simple scenarios, the routing may be on a
"round robin" basis where a DNS server hands out the addresses of individual servers in
rotation. Figure 3 illustrates a simple Web farm where each server hosts all of the layers of the
application except for the data store.

Figure 3. A simple Web farm

Affinity and User Sessions
Web applications often rely on the maintenance of session state between requests from the
same user. A Web farm can be configured to route all requests from the same user to the same

Web Application Architecture Pocket Guide

Microsoft patterns & practices 108

server – a process known as affinity – in order to maintain state where this is stored in memory
on the Web server. However, for maximum performance and reliability, you should use a
separate session state store with a Web farm to remove the requirement for affinity.

In ASP.NET, you must also configure all of the Web servers to use a consistent encryption key
and method for viewstate encryption where you do not implement affinity. You should also
enable affinity for sessions that use SSL, or use a separate cluster for SSL requests.

Application Farms
If you use a distributed model for your application, with the business layer and data layer
running on different physical tiers from the presentation layer, you can scale out the business
layer and data layer using an application farm. An application farm is a collection of servers that
run the same application. Requests from the presentation tier are distributed to each server in
the farm so that each has approximately the same loading. You may decide to separate the
business layer components and the data layer components on different application farms
depending on the requirements of each layer and the expected loading and number of users.

Load Balancing Cluster
You can install your service or application onto multiple servers that are configured to share the
workload, as shown in Figure 4. This type of configuration is a load-balanced cluster.

Figure 4. A load-balanced cluster

Load balancing scales the performance of server-based programs, such as a Web server, by
distributing client requests across multiple servers. Load balancing technologies, commonly
referred to as load balancers, receive incoming requests and redirect them to a specific host if
necessary. The load-balanced hosts concurrently respond to different client requests, even
multiple requests from the same client. For example, a Web browser may obtain the multiple
images within a single Web page from different hosts in the cluster. This distributes the load,
speeds up processing, and shortens the response time to clients.

Web Application Architecture Pocket Guide

Microsoft patterns & practices 109

Reliability Patterns
Reliability deployment patterns represent proven design solutions to common reliability
problems. The most common approach to improving the reliability of your deployment is to use
a fail-over cluster to ensure the availability of your application even if a server fails.

Fail-Over Cluster
A failover cluster is a set of servers that are configured so that if one server becomes
unavailable, another server automatically takes over for the failed server and continues
processing. Figure 5 shows a failover cluster.

Figure 5. A failover cluster

Install your application or service on multiple servers that are configured to take over for one
another when a failure occurs. The process of one server taking over for a failed server is
commonly known as failover. Each server in the cluster has at least one other server in the
cluster identified as its standby server.

Security Patterns
Security patterns represent proven design solutions to common security problems. The
Impersonation and Delegation approach is a good solution when you must flow the context of
the original caller to downstream layers or components in your application. The Trusted
Subsystem approach is a good solution when you want to handle authentication and
authorization in upstream components and access a downstream resource with a single trusted
identity.

Impersonation/Delegation
In the impersonation/delegation authorization model, resources and the types of operation
(such as read, write, and delete) permitted for each one are secured using Windows Access
Control Lists (ACLs) or the equivalent security features of the targeted resource (such as tables

Web Application Architecture Pocket Guide

Microsoft patterns & practices 110

and procedures in SQL Server). Users access the resources using their original identity through
impersonation, as illustrated in Figure 6.

Figure 6. The impersonation/delegation authorization model

Trusted Subsystem
In the trusted subsystem (or trusted server) model, users are partitioned into application-
defined, logical roles. Members of a particular role share the same privileges within the
application. Access to operations (typically expressed by method calls) is authorized based on
the role membership of the caller. With this role-based (or operations-based) approach to
security, access to operations (not back-end resources) is authorized based on the role
membership of the caller. Roles, analyzed and defined at application design time, are used as
logical containers that group together users who share the same security privileges or
capabilities within the application. The middle tier service uses a fixed identity to access
downstream services and resources, as illustrated in Figure 7.

Figure 7. The trusted subsystem (or trusted server) model

Multiple Trusted Service Identities
In some situations, you may require more than one trusted identity. For example, you may have
two groups of users, one who should be authorized to perform read/write operations and the

Web Application Architecture Pocket Guide

Microsoft patterns & practices 111

other read-only operations. The use of multiple trusted service identities provides the ability to
exert more granular control over resource access and auditing, without having a large impact
on scalability. Figure 8 illustrates the multiple trusted service identities model.

Figure 8. The multiple trusted service identities model

Network Infrastructure Security Considerations
Make sure you understand the network structure provided by your target environment, and
understand the baseline security requirements of the network in terms of filtering rules, port
restrictions, supported protocols, and so on. Recommendations for maximizing network
security include:
• Identify how firewalls and firewall policies are likely to affect your application's design and

deployment. Firewalls should be used to separate the Internet-facing applications from the
internal network, and to protect the database servers. These can limit the available
communication ports and, therefore, authentication options from the Web server to
remote application and database servers. For example, Windows authentication requires
additional ports.

• Consider what protocols, ports, and services are allowed to access internal resources from
the Web servers in the perimeter network or from rich client applications. Identify the
protocols and ports that the application design requires and analyze the potential threats
that occur from opening new ports or using new protocols.

• Communicate and record any assumptions made about network and application layer
security, and what security functions each component will handle. This prevents security
controls from being missed when both development and network teams assume that the
other team is addressing the issue.

• Pay attention to the security defenses that your application relies upon the network to
provide, and ensure that these defenses are in place.

• Consider the implications of a change in network configuration, and how this will affect
security.

Web Application Architecture Pocket Guide

Microsoft patterns & practices 112

Manageability Considerations
The choices you make when deploying an application affect the capabilities for managing and
monitoring the application. You should take into account the following recommendations:
• Deploy components of the application that are used by multiple consumers in a single

central location to avoid duplication.
• Ensure that data is stored in a location where backup and restore facilities can access it.
• Components that rely on existing software or hardware (such as a proprietary network that

can only be established from a particular computer) must be physically located on the same
computer.

• Some libraries and adaptors cannot be deployed freely without incurring extra cost, or may
be charged on a per-CPU basis, and therefore you should centralized these features.

• Groups within an organization may own a particular service, component, or application that
they need to manage locally.

• Monitoring tools such as System Center Operations Manager require access to physical
machines to obtain management information, and this may impact deployment options.

• The use of management and monitoring technologies such as Windows Management
Instrumentation (WMI) may impact deployment options.

Pattern Map
Category Relevant Patterns

Deployment • Layered Application
• Three-Layered Services Application
• Tiered Distribution
• Three-Tiered Distribution
• Deployment Plan

Manageability • Adapter
• Provider

Performance & Reliability • Server Clustering
• Load-Balanced Cluster
• Failover Cluster

Security • Brokered Authentication
• Direct Authentication
• Federated Authentication (SSO)
• Impersonation and Delegation
• Trusted Sub-System

Key Patterns
• Adapter – An object that supports a common interface and translates operations between

the common interface and other objects that implement similar functionality with different
interfaces.

Web Application Architecture Pocket Guide

Microsoft patterns & practices 113

• Brokered Authentication – Authenticate against a broker, which provides a token to use for
authentication when accessing services or systems.

• Direct Authentication – Authenticate directly against the service or system that is being
accessed.

• Layered Application – An architectural pattern where a system is organized into layers.
• Load-Balanced Cluster – A distribution pattern where multiple servers are configured to

share the workload. Load balancing provides both improvements in performance by
spreading the work across multiple servers, and reliability where one server can fail and the
others will continue to handle the workload.

• Provider – Implement a component that exposes an API that is different from the client API
to allow any custom implementation to be seamlessly plugged in. Many applications that
provide instrumentation expose providers that can be used to capture information about
the state and health of your application and the system hosting the application.

• Tiered Distribution – An architectural pattern where the layers of a design can be
distributed across physical boundaries.

• Trusted Sub-System – The application acts as a trusted subsystem to access additional
resources. It uses its own credentials instead of the user's credentials to access the
resource.

patterns & practices Solution Assets
• Enterprise Library provides a series of application blocks that simplify common tasks such

as caching, exception handling, validation, logging, cryptography, credential management,
and facilities for implementing design patterns such as Inversion of Control and Dependency
Injection. For more information, see http://msdn2.microsoft.com/en-
us/library/cc467894.aspx.

• Unity Application Block is a lightweight, extensible dependency injection container that
helps you to build loosely coupled applications. For more information,
see http://msdn.microsoft.com/en-us/library/cc468366.aspx.

Additional Resources
• For more information on authorization techniques, see Designing Application-Managed

Authorization at http://msdn.microsoft.com/en-us/library/ms954586.aspx.
• For more information on deployment scenarios and considerations, see Deploying .NET

Framework-based Applications at http://msdn.microsoft.com/en-
us/library/ms954585.aspx.

• For more information on design patterns, see Enterprise Solution Patterns Using Microsoft
.NET at http://msdn.microsoft.com/en-us/library/ms998469.aspx.

• For more information on exception management techniques, see Exception Management
Architecture Guide at http://msdn.microsoft.com/en-us/library/ms954599.aspx.

Web Application Architecture Pocket Guide

Microsoft patterns & practices 114

Presentation Technology Matrix

Objectives
• Understand the tradeoffs for each presentation technology choice.
• Understand the design impact of choosing a presentation technology.
• Choose a presentation technology for your scenario and application type.

Overview
Use this cheat sheet to understand your technology choices for the presentation layer. Your
choice of presentation technology will be related to the type of user experience you plan to
deliver. Use the Presentation Layer Technology Summary to review each technology and its
description. Use the Benefits and Considerations Matrix to make an informed choice of
presentation technology based on the advantages and considerations of each one. Use the
Common Scenarios and Solutions to map your application scenario to common presentation
technology solutions.

Presentation Technologies Summary
The following presentation technologies are suitable for use in Web applications:
• ASP.NET Web Forms – The standard UI design and implementation technology for .NET

Web applications. An ASP.NET Web Forms application needs only to be installed on the
Web server, with no components required on the client desktop.

• ASP.NET Web Forms with AJAX – Use AJAX with ASP.NET Web Forms to process requests
between the server and client asynchronously to improve responsiveness, provide richer
experience to the client and reduce the number of post backs to the server. AJAX is an
integral part of ASP.NET in the .NET Framework version 3.5 and later.

• ASP.NET Web Forms with Silverlight Controls - If you have an existing ASP.NET application,
you can use Silverlight controls to improve the user experience and avoid the requirement
to writing a whole new Silverlight application. This is a good approach for creating islands of
Silverlight content in an existing application.

• ASP.NET MVC - Allows you to use ASP.NET to build applications based on the Model View
Controller (MVC) pattern. ASP.NET MVC supports test-driven development and clear
separation of concerns between UI processing and UI rendering. This approach helps to
create clean HTML and avoid mixing presentation information with logic code.

• ASP.NET Dynamic Data - Allows you to create data-driven ASP.NET applications that
leverage LINQ to Entities functionality. It provides a rapid development model for LOB style
data-driven apps allowing simple scaffolding through to full customization.

Benefits and Considerations Matrix
Technology Benefits Considerations
ASP.NET Web
Forms

• Brings a development experience
similar to Windows Forms to the

• UI is limited to HTML and
DHTML support

Web Application Architecture Pocket Guide

Microsoft patterns & practices 115

Web
• No client dependencies
• No installation required on the

client
• Cross-platform and cross-browser

support
• Visual Studio design support
• Large number of controls available

• Client-side storage is limited
to cookies and view-state

• Updating page contents
requires a full post back and
page refresh

• Limited UI responsiveness
because all processing
occurs on the server

ASP.NET Web
Forms with Ajax

• Provides a richer look and feel
than a traditional Web Forms
applications

• Provides improved UI
responsiveness and a richer
experience.

• Supports lazy loading
• Allows partial page refreshes
• An integral part of ASP.NET 3.5

• May be an unfamiliar
programming model if your
team is used to pure
ASP.NET

• Does not work if JavaScript is
disabled on the client

ASP.NET Web
Forms with
Silverlight
Controls

• Allows you to add Silverlight rich
visualization and UI to existing
ASP.NET applications

• Provides a transition strategy to
full Silverlight applications

• Requires the Silverlight plug-
in to be installed on the
client

• Your team may be less
familiar with Expression
Blend compared to Visual
Studio

ASP.NET MVC • Supports test-driven development
• Enforces separation between UI

processing and UI rendering
• Allows you to create user-friendly

and search engine-friendly URLs
• Provides full control over markup.
• Provides full control over how

content is rendered
• Navigation is controlled by

configuration to greatly reduce
the amount of code required

• Does not support View state
• No support for control

events.

ASP.NET Dynamic
Data

• Allows the creation of fully data-
driven sites that render
automatically

• Built in support for LINQ querying
languages

• Built in support for the ADO.NET
Entity Framework

• LINQ allows you to model your

• Currently there are only a
few controls that support
the technology

Web Application Architecture Pocket Guide

Microsoft patterns & practices 116

database to create object to data
mappings

Common Scenarios and Solutions
ASP.NET Web Forms
Consider using ASP.NET Web Forms if:
• Your team already has experience building ASP.NET Web Forms.
• You have an existing ASP.NET Web Forms application that you want to extend or modify.
• You want to run on the widest possible range of client machines.
• You do not want to install anything on the client.
• You want to design simple functionality such as CRUD operations without rich UI or

animation.

ASP. NET Web Forms with AJAX
Consider using ASP. NET Web Forms with AJAX if:
• You want to create ASP.NET Web Forms with a more responsive and richer user experience.
• You u want to support lazy loading and partial page refreshes.

ASP. NET Web Forms with Silverlight Controls
Consider using ASP. NET Web Forms with Silverlight Controls if:
• You already have an ASP.NET Web Forms application and want to leverage the rich

visualization and UI capabilities of Silverlight.
• You are planning to transition your Web application to Silverlight.

ASP.NET MVC
Consider using ASP. NET MVC if:
• You want to implement the Model View Controller (MVC) pattern.
• You want full control over your markup.
• You want to implement a clear separation of concerns between UI processing and UI

rendering.
• You want to follow test-driven development.

ASP.NET Dynamic Data
Consider using ASP.NET Dynamic Data if:
• You want to rapidly build a data-driven application.
• You want to use the LINQ query language or the Entity Framework data model.
• You want to use the built-in modeling capabilities of LINQ to more easily map your objects

to data.

Web Application Architecture Pocket Guide

Microsoft patterns & practices 117

Data Access Technology Matrix

Objectives
• Understand the tradeoffs for each data access technology choice.
• Understand the design impact of choosing a data access technology.
• Choose a data access technology for your scenario.

Overview
Use this cheat sheet to understand your technology choices for the data access layer of a Web
application. Your choice of data access technology will be related to the type of business
entities you choose for your data layer. Use the Data Access Technologies Summary to review
each technology and its description. Use the Benefits and Considerations Matrix to make an
informed choice of data access technology based on advantages and considerations of each
one. Use the Common Scenarios and Solutions section to map your application scenarios to
common data access technology solutions.

Data Access Technologies Summary
Following data access technologies are available with .NET platform
• ADO.NET Core – provides general retrieval, update, and management of data. ADO.NET

includes providers for SQL Server, OLE-DB, ODBC, SQL Server Mobile, and Oracle databases.
• ADO.NET Data Services Framework – exposes data using the Entity Data Model, through

RESTful Web services accessed over HTTP. The data can be addressed directly via a URI. The
Web service can be configured to return the data as plain Atom and JSON formats.

• ADO.NET Entity Framework – gives you a strongly typed data access experience over
relational databases. It moves the data model from the physical structure of relational
tables to a conceptual model that accurately reflects common business objects. The Entity
Framework introduces a common Entity Data Model (EDM) within the ADO.NET
environment, allowing developers to define a flexible mapping to relational data. This
mapping helps to isolate applications from changes in the underlying storage schema. The
Entity Framework also contains support for LINQ to Entities, which provides LINQ support
for business objects exposed through the Entity Framework. Current plans for the Entity
Framework will build in functionality so it can be used to provide a common data model
across high-level functions such as data query and retrieval services, reporting,
synchronization, caching, replication, visualization, and BI. When used as an
Object/Relational Mapping (O/RM) product developers use LINQ to Entities against business
objects, which Entity Framework will convert to Entity SQL that is mapped against an Entity
Data Model managed by Entity Framework. Developers also have the option of working
directly with the Entity Data Model and using Entity SQL in their applications.

• ADO.NET Sync Services – is a provider included in the Microsoft Sync Framework
synchronization for ADO.NET enabled databases. It enables data synchronization to be built

Web Application Architecture Pocket Guide

Microsoft patterns & practices 118

in occasionally connected applications. It periodically gathers information from the client
database and synchronizes it with the server database.

• Language-Integrated Query (LINQ) – provides class libraries that extend C# and Visual Basic
with a native language syntax for queries. Queries can be performed against a variety of
data formats, which include: DataSet (LINQ to DataSet), XML (LINQ to XML), In Memory
Objects (LINQ to Objects), ADO.NET Data Services (LINQ to Data Services), and Relational
data (LINQ to Entities). The main thing to understand is that LINQ is a query technology
supported by different assemblies throughout the .NET Framework. For example, LINQ to
Entities is included with the ADO.NET Entity Framework assemblies, LINQ to XML is included
with the System.Xml assemblies, and LINQ to Objects is included with the .NET core System
assemblies.

• LINQ to SQL – provides a lightweight strongly typed query solution against SQL Server. LINQ
to SQL is designed for easy, fast object persistence scenarios where the classes in the mid-
tier map very closely to database table structures. Starting with .NET 4.0, LINQ to SQL
scenarios will be integrated and supported by ADO.NET Entity Framework, however LINQ to
SQL will continue to be a supported technology. For more information, see this post on
ADO.NET team blog. http://blogs.msdn.com/adonet/archive/2008/10/31/clarifying-the-
message-on-l2s-futures.aspx

Benefits and Considerations Matrix

Object-Relational Access
Technology Benefits Considerations
ADO.NET Entity
Framework (EF)

• Decouples the underlying database
structure from the logical data
model.

• Entity SQL (ESQL) provides a
consistent query language across all
data sources and database types.

• Separates metadata into well-
defined architectural layers.

• Allows business logic developers to
access the data without knowing
database specifics.

• Rich designer support in Visual Studio
to visualize your data entity
structure.

• Provider model allows it to be
mapped to many databases

• Requires you to change the design of your
entities and queries if you are coming from
a more traditional data access method.

• You have separate object model.
• More layers of abstraction than LINQ to

DataSet.
• Can be used with or without LINQ to

Entities
• If your database structure changes, you

need to regenerate the Entity Data Model,
and the EF libraries need to be redeployed.

LINQ to Entities • LINQ based solution for relational
data in the ADO.NET Entity
Framework.

• Provides strongly typed LINQ access
to relational data

• Requires ADO.NET Entity Framework

Web Application Architecture Pocket Guide

Microsoft patterns & practices 119

• Supports LINQ based queries against
objects built on top of ADO.NET EF
Entity Data Model.

• Processing is on the server
LINQ to SQL • Simple way to read/write objects

when object model matches
database model.

• Provides strongly typed LINQ access
to SQL data.

• Processing is on the server

• Functionality to be integrated into Entity
Framework as of .NET 4.0

• Maps LINQ queries directly to the database
instead of through a provider, and therefore
works only with Microsoft SQL Server.

Disconnected and Offline
Technology Benefits Considerations
LINQ to DataSet • Allows full-featured queries against a

data-set
• Processing is all client-side

ADO.NET Sync
Services

• Enables synchronization between
databases, collaboration and offline
scenarios

• Synchronization can execute in the
background.

.

• Provides a Hub-and-Spoke type of
architecture for collaboration
between databases.

• Change tracking ability needs to be
provided.

• Exchanging large chunks of data during
synchronization can reduce performance.

SOA / Service Scenarios
Technology Benefits Considerations
ADO.NET Data
Services
Framework

• Data can be addressed directly via
URI using a REST-like scheme.

• Data can be returned in either Atom
or JSON formats.

• Includes a lightweight versioning
scheme to simplify the release of
new service interfaces.

• .NET, Silverlight and AJAX client
libraries allow developers to work
directly with objects and provide
strongly typed LINQ access to Data
Services

• .NET, Silverlight and AJAX client
libraries provide a familiar API
surface to Windows Azure Tables,
SQL Data Services and other
Microsoft Services.

• Only applicable to service oriented
scenarios.

Web Application Architecture Pocket Guide

Microsoft patterns & practices 120

LINQ to Data
Services

• Allows you to create LINQ based
queries against client-side data
returned from ADO.NET Data
Services.

• Supports LINQ based queries against
REST data.

• Can only be used with the ADO.NET Data
Services client-side framework.

N-Tier
Technology Benefits Considerations
ADO.NET Core • Includes .NET managed code

providers for connected access to a
wide range of data stores.

• Provides facilities for disconnected
data storage and manipulation.

• Code is written directly against specific
providers, reducing reusability.

• Relational database structure may not
match the object model, requiring you to
write a data mapping layer by hand.

ADO.NET Data
Services
Framework

• Simple out-of-the-box solution with
ADO.NET Entity Framework

• Data can be addressed directly via
URI using a REST-like scheme.

• Data can be returned in either Atom
or JSON formats.

• Includes a lightweight versioning
scheme to simplify the release of
new service interfaces.

• Provider model allows any
IQueryable data source to be used.

• Data can be addressed directly via
URI using a REST-like schema.

• Data can be returned in either Atom
or JSON formats.

• Includes a lightweight versioning
scheme to simplify the release of
new service interfaces.

• .NET, Silverlight and AJAX client
libraries provide a familiar API
surface to Windows Azure Tables,
SQL Data Services and other
Microsoft Services.

• Only applicable to service oriented
scenarios.

• Provides a resource-centric service that
maps well to data heavy services, but may
require more work if a majority of the
services are operation centric.

ADO.NET Entity
Framework

• Separates metadata into well-
defined architectural layers.

• Supports LINQ to Entities, for
querying complex object models.

• Provider model allows it to be
mapped to many database types

• Allows you to build services that have

• Requires you to change the design of your
entities and queries if you are coming from
a more traditional data access method.

• Entity objects can be shipped across the
wire, or you can use the Data Mapper
pattern to transform entities into objects
that are more generalized DataContract

Web Application Architecture Pocket Guide

Microsoft patterns & practices 121

well defined boundaries, and
data/service contracts for sending
and receiving well defined entities
across the service boundary

• Instances of entities from your Entity
Data Model are directly serializable
and consumable by the web services

• Full flexibility in structuring the
payload – send individual entities,
collections of entities or an entity
graph to the server

• Eventually will allow for true
persistence ignorant (POCO) objects
to be shipped across service
boundaries

types. Planned addition of POCO support
will eliminate the need to transform objects
when shipping them across the wire.

• Building service endpoints that receive
generalized graph of entities is less “service
oriented” than endpoints that enforce
stricter contracts on the types of payload
that might be accepted

LINQ to Objects • Allows you to create LINQ based
queries against objects in memory.

• Represents a new approach to
retrieving data from collections.

• Can be used directly with any
collections that support IEnumerable
or IEnumerable<T>.

• Can be used to query strings,
reflection based metadata, and file
directories.

• Will only work with objects that implement
the IEnumerable interface.

LINQ to XML • Allows you to create LINQ based
queries against XML data.

• Comparable to the Document Object
Model (DOM), which brings an XML
document into memory, but much
easier to use.

• Query results can be used as
parameters to XElement and
XAttribute object constructors.

• Relies heavily on generic classes.
• Not optimized to work with untrusted XML

documents, which require different
mitigation techniques for security.

LINQ to SQL • LINQ to SQL is a simple way to get
objects in and out of the database
when the object model and the
database model are the same.

• As of .NET 4.0 the Entity Framework will be
the recommended data access solution for
LINQ to relational scenarios.

• LINQ to SQL will continue to be supported
and evolve based on feedback received
from the community.

General Recommendations
• Flexibility and Performance – If you need maximum performance and flexibility, consider

using ADO.NET Core. ADO.NET Core provides the most capabilities and is the most server-

Web Application Architecture Pocket Guide

Microsoft patterns & practices 122

specific solution. When using ADO.NET Core consider the tradeoff of additional flexibility vs.
the need to write custom code. Keep in mind that mapping to custom objects will reduce
performance. If you require a thin framework that uses the ADO.NET providers and
supports database changes through configuration, consider the Data Access Application
Block.

• Object Relational Mapping (ORM) – If you are looking for an ORM based solution and/or
must support multiple databases, consider Entity Framework. This is ideal for implementing
Domain Model scenarios.

• N-Tier Scenario – If you are passing data across layers or tiers, options available to you
include passing entity objects, Data Transfer Objects (DTO) that are mapped to entities,
DataSet and custom objects. If you are building resource-centric services (REST), consider
ADO.NET data services. If you are building operation-centric services (SOAP), consider WCF
services with explicitly defined service and data contracts.

• SOA / Services Scenarios – If you expose your database as a service, consider ADO.NET Data
Services. If you would like to store your data in the cloud consider SQL Data Services.

Note: You may need to mix and match the data access technology options for your scenario.
Start with what you need.

Common Scenarios and Solutions

ADO.NET Core
Consider using ADO.NET Core if you:
• Need to use low level API for full control over data access your application.
• Want to leverage the existing investment made into ADO.NET providers.
• Are using traditional data access logic against the database.
• Do not need the additional functionality offered by the other data access technologies.

ADO.NET Data Services Framework
Consider using ADO.NET Data Services Framework if you:
• Are developing N-tier application and want to access data through data centric service

interface.

ADO.NET Entity Framework
Consider using ADO.NET Entity Framework (EF) if you:
• Need to share a conceptual model across applications and services.
• Need to map a single class to multiple tables via Inheritance.
• Need to query relational stores other than the Microsoft SQL Server family of products.
• Have an object model that you must map to a relational model using a flexible schema.
• Need the flexibility of separating the mapping schema from the object model.

Web Application Architecture Pocket Guide

Microsoft patterns & practices 123

ADO.NET Sync Services
Consider using ADO.NET Sync Services if you:
• Need collaboration between databases.

LINQ to Data Services
Consider using LINQ to Data Services if you:
• Are using data returned from ADO.NET Data Services in a client.
• Want to execute queries against client-side data using LINQ syntax.
• Want to execute queries against REST data using LINQ syntax.

LINQ to DataSets
Consider using LINQ to DataSets if you:
• Want to execute queries against a Dataset, including queries that join tables.
• Want to use a common query language instead of writing iterative code.

LINQ to Entities
Consider using LINQ to Entities if you:
• Are using the ADO.NET Entity Framework
• Need to execute queries over strongly-typed entities.
• Want to execute queries against relational data using LINQ syntax.

LINQ to Objects
Consider using LINQ to Objects if you:
• Need to execute queries against a collection.
• Want to execute queries against file directories.
• Want to execute queries against in-memory objects using LINQ syntax.

LINQ to XML
Consider using LINQ to XML if you:
• Are using XML data in your application.
• Want to execute queries against XML data using LINQ syntax.

LINQ to SQL Considerations
LINQ to Entities is the recommended solution for LINQ to relational database scenarios. LINQ to
SQL will continue to be supported but will not be a primary focus for innovation or
improvement. If you are already relying upon LINQ to SQL you can continue using it. For new
solutions, consider using LINQ to Entities instead. At the time of this writing, this is the product
group position:

“We will continue make some investments in LINQ to SQL based on customer feedback. This
post was about making our intentions for future innovation clear and to call out the fact that as

Web Application Architecture Pocket Guide

Microsoft patterns & practices 124

of .NET 4.0, LINQ to Entities will be the recommended data access solution for LINQ to
relational scenarios.”

For more information see the ADO.NET team blog.
http://blogs.msdn.com/adonet/archive/2008/10/31/clarifying-the-message-on-l2s-futures.aspx

Additional Resources
For more information, see the following resources:
• ADO.NET at http://msdn.microsoft.com/en-us/library/e80y5yhx(vs.80).aspx.
• ADO.NET Data Services at http://msdn.microsoft.com/en-us/data/bb931106.aspx.
• ADO.NET Entity Framework at http://msdn.microsoft.com/en-us/data/aa937723.aspx.
• Language-Integrated Query (LINQ) at http://msdn.microsoft.com/en-

us/library/bb397926.aspx.
• SQL Server Data Services (SSDS) Primer at http://msdn.microsoft.com/en-

us/library/cc512417.aspx.
• Introduction to the Microsoft Sync Framework Runtime at http://msdn.microsoft.com/en-

us/sync/bb821992.aspx

Web Application Architecture Pocket Guide

Microsoft patterns & practices 125

Checklist - Web Application

Design Considerations
• Abstraction is used to achieve loose coupling between layers.
• Caching is used wherever appropriate to improve performance of the application.
• Business-critical and system-critical events are logged and the application is instrumented

appropriately to gather information for solving any application issue.
• Users are authenticated across trust boundaries.
• Sensitive data passed across the network is encrypted and digitally signed.

Authentication
• Trust boundaries are identified and users are authenticated across the trust boundaries.
• A platform-supported authentication mechanism such as Windows Authentication is used

where possible.
• Platform features are used for Forms Authentication.
• Strong account management practices, such as account lockouts and expirations, are used.
• Strong passwords policies, such as password length, complexity, and expiration, are used.

Authorization
• Trust boundaries are identified and users are authorized across the trust boundaries.
• URL authorization is used for page and directory access control.
• Appropriate role granularity is defined.
• Downstream resources are accessed using a single trusted identity to improve performance

of the application.
• Impersonation and delegation is used, if user-specific auditing and granular access controls

of the platform are used for downstream resources.

Caching
• Volatile data is not cached.
• Relatively static pages are cached using output-caching features.
• Static data in pages is cached using partial-page-caching through user controls.
• Shared expensive resources, such as network connections, are pooled instead of being

cached.
• Data is cached in a ready-to-use format.

Exception Management
• Exceptions are not used to control logic flow.
• Exceptions are caught only if they can be handled.
• A global error handler is used to catch unhandled exceptions.
• User friendly messages are displayed when an exception or error occurs.

Web Application Architecture Pocket Guide

Microsoft patterns & practices 126

• Exception details do not reveal sensitive information.

Logging and Instrumentation
• User management events such as adding a user and assigning a role are audited.
• Unusual activities are audited.
• Business critical operations are audited.
• Log files are managed securely by restricting access or allowing only write access.
• Sensitive information is not written to log or audit files.

Navigation
• Design patterns such as MVC are used to decouple the user interface (UI) from complex

navigation logic.
• Navigation logic is encapsulated in master pages to support consistent navigation across

pages.
• A sitemap is used to help users find pages on the site, and to allow search engines to crawl

the site.
• Wizards are used to implement navigation between forms in a predictable way.
• Visual elements such as embedded links, navigation menus, and breadcrumb text are used

in the UI to help user understand where they are, what is available on the site, and how to
navigate the site quickly.

Page Layout (UI)
• Cascading Style Sheets (CSS) are used for layout whenever possible.
• Table-based layout is used to support a grid layout.
• If using table-based layout, liabilities such as slow rendering, cross browser support,

complex layout support are considered.
• A common layout for pages is used to maximize accessibility and ease of use.
• Master Pages are used in ASP.NET applications to provide a common look and feel to all of

the pages.

Page Rendering
• Data binding is used to render data in ASP.NET pages.
• AJAX is used for better user experience and responsiveness.
• Data paging techniques are used if you are displaying large amounts of data.
• User interface components support localization.
• User process components are abstracted from data rendering and acquisition functions.

Presentation Entity
• Presentation entities are used only if required.
• You have considered using custom classes to map controls directly to business entities.

Web Application Architecture Pocket Guide

Microsoft patterns & practices 127

• Presentation entities support serialization if they are to be passed across network or must
be stored on disk.

• Input data validation is implemented in presentation entities.
• State related to the user interface is stored in presentation entities.

Request Processing
• The common pre-processing and post-processing steps of Web page requests are

centralized to promote logic reuse across pages.
• The MVC pattern is used if the application does not have a dependency on view state and

has a limited number of control events.
• The Front Controller pattern is used if the application has complex navigation and command

processing requirements.
• The view does not implement any request-processing logic.
• The Intercepting Filter pattern is used to implement the processing steps as pluggable

filters.

Session Management
• The in-process state store is used if you have a single Web server, require optimum session

state performance, and have a relatively limited number of concurrent sessions.
• The Session State Service running on the local Web server is used if you have a single Web

server, your sessions are expensive to rebuild, and you require durability in the event of an
ASP.NET restart.

• A SQL Server State Store is used if reliability is the primary concern.
• A remote Session State Service or SQL Server State Store is used for Web farm scenarios.
• The session state communication channel is protected.
• Basic types are used for session data to reduce the serialization overhead.

Validation
• All trust boundaries are identified within Web application layers, and data crossing these

boundaries is validated.
• All client-controlled data is validated appropriately.
• Your validation strategy constrains, rejects, and sanitizes malicious input.
• Input data is validated for length, format, and type.
• Un-trusted input is not echoed directly, instead it is HTML-encoded before writing as

output.
• Client-side validation is used for user experience and server-side validation is used for

security.

Presentation Layer Considerations
• User interface components are separated from the user interface process components.
• Design an input data validation on client side for user experience and server side for

security

Web Application Architecture Pocket Guide

Microsoft patterns & practices 128

• Relatively static pages or parts of the pages are cached, using page output caching and
fragment caching.

• The Page Controller pattern is used to separate business logic from the presentation logic.
• The Front Controller pattern is used to configure complex page navigation logic dynamically.

Business Layer Considerations
• A separate business layer is used to implement business logic and workflows.
• Common business logic functions are centralized and reused.
• Business entities are designed to be coarse-grained packages, such as Data Transfer Objects

(DTOs).
• Business components are highly cohesive and loosely coupled.
• Business-critical operations are wrapped in transactions.

Data Layer Considerations
• A separate data layer is used to hide the details of the database from other layers of the

application.
• Entity objects are used to interact with other layers, and to pass data between them.
• An appropriate data access technology is used to access various types of data store.
• Connection pooling is used to minimize the number of open connections.
• Batch operations are used to reduce round trips to the database.

Service Layer Considerations
• Coarse-grained service methods are used to minimize the number of client-server

interactions.
• Services are designed to be interoperable with all the possible client types.
• Services are designed to be idempotent.

Performance Considerations
• Performance requirements are specific, realistic, and flexible.
• A range of caching techniques is used to improve the performance and scalability of the

application.
• Batch operations are performed to minimize the round trips across boundaries.
• The size of HTML transferred between the server and client is kept to minimum.
• There are no unnecessary round trips over the network.

Security Considerations
• Authentication is performed at every trust boundary.
• Authorization is used to restrict resource access and to protect business logic.
• Input and data is validated at every trust boundary to mitigate security threats.
• In addition to client side validation, server side validation is always used.
• Sensitive data sent across the network is encrypted and digitally signed.

Web Application Architecture Pocket Guide

Microsoft patterns & practices 129

Non-Distributed Deployment
• Non-distributed deployment is used if the Web application is performance-sensitive.
• A component-based interface is used for the business layer if you are using a non-

distributed deployment.
• Authentication is not performed at the business layer if the business logic runs in the same

process.
• The database is accessed using a trusted identity (using the trusted subsystem model) to

improve the performance and scalability of the application.
• Sensitive data passed between the Web server and database server is encrypted and

digitally signed.

Distributed Deployment
• Business logic is deployed on a physically separate machine only if this is actually required.
• Distributed deployment is used if security concerns prohibit the deployment of business

logic on the front-end Web server.
• A message-based interface is used for the business layer.
• The TCP protocol is used to communicate with the business layer.
• Sensitive data passed between physical tiers is encrypted and digitally signed.

Load Balancing
• Locally updatable caches, and in-process or local sessions states, are not used in order to

avoid server affinity when designing scalable Web applications.
• Components are designed to be stateless.
• You have considered using Windows Network Load Balancing (NLB) to implement

redirection of requests to the servers in an application farm.

Web Farm
• Clustering is used to minimize the impact of hardware failures.
• The database is partitioned across multiple database servers if your application has high

input/output requirements.
• All requests from a user are routed to same server in a Web farm if you need support server

affinity.
• An out-of-process state server service or a database server is used to store state if your

application is deployed in a Web farm.

Web Application Architecture Pocket Guide

Microsoft patterns & practices 130

Checklist - Presentation Layer

Design Considerations
• UI technology choice is based on application requirements and constraints; for example,

broad reach across platforms and browsers.
• Relevant patterns presentation layer patterns are identified and used in the design; for

example, use the Template View pattern for dynamic Web pages.
• The application is designed to separate rendering components from components that

manage presentation data and process.
• Organizational UI guidelines are well understood and addressed by the design.
• The design is based upon knowledge of how the user wants to interact with the system.

Caching
• Volatile data is not cached.
• Sensitive data is not cached unless absolutely necessary and encrypted.
• Data is cached is a ready to use format to reduce processing after the cached data is

retrieved.
• An in-memory cache is used unless the cache must be stored persistently.
• Your design includes a strategy for expiration, scavenging and flushing; for example,

scavenging based on absolute expiration if it is in-memory and you can predict the time at
which the data will change.

• The caching strategy has been tested to see if it improves performance

Composition
• Dynamically-loaded, reusable views are used to simplify the design, improve performance,

and increase maintainability.
• The Dependency Injection pattern is used to support dynamic loading and replacement of

modules.
• The Composite View pattern is used if you need to compose views from modular, atomic

components.
• The Template View pattern, through the use of Master Pages, is used to create consistent,

reusable, dynamic web pages.
• The Publish/Subscribe pattern is used for communication between dynamically loaded

modules.
• The Command pattern is used to support menu and command-driven interaction.

Exception Management
• Sensitive data or internal application details are not revealed to users in error messages or

in exceptions that cross trust boundaries.
• User-friendly error messages are displayed in the event of an exception that impacts the

user.

Web Application Architecture Pocket Guide

Microsoft patterns & practices 131

• Unhandled exceptions are captured.
• Exceptions are not used to control application logic.
• The set of exceptions that can be thrown by each component is well understood.
• Exceptions are logged to support troubleshooting when necessary.

Input
• Form-based input is used for normal data collection.
• Wizard-based input is used for complex data collection tasks or input that requires

workflow.
• Device-dependant input, such as ink or speech, is considered in the design.
• Accessibility was considered in the design.
• Localization was considered in the design.

Layout
• Templates are used to provide a common look and feel.
• A common layout is used to maximize accessibility and ease of use.
• User personalization is considered in the layout design.
• The layout has been optimized for search engines.
• Cascading Style Sheets (CSS) are used wherever possible for layout.

Navigation
• Navigation is separated from UI processing.
• If access to navigation state is required across sessions, the application is designed to persist

navigation state.
• If navigation logic is complex, the UI is decoupled from the navigation logic.
• The Page Controller pattern is used to separate business logic from the presentation logic.
• The Front Controller pattern is used to configure complex page navigation logic dynamically.

Presentation Entities
• Presentation entities are used only if you need to manage unique data or data formats in

the presentation layer.
• Presentation entities do not contain business logic.
• Custom classes are used to map data directly to business entities.
• Platform-provided classes, such as DataSets or Arrays, are used for data-bound controls.
• Presentation entities contain input validation logic for the presentation layer.

Request Processing
• Requests do not block the UI.
• Long running requests are identified in the design and optimized for UI responsiveness.
• UI request processing uses unique components that are not mixed with components that

render the UI, or with components that instantiate business rules.

Web Application Architecture Pocket Guide

Microsoft patterns & practices 132

User Experience
• Error messages are designed with the target user in mind.
• UI responsiveness is considered in the design; for example, rich clients do not block UI

threads and Rich Internet Applications avoid synchronous processing.
• AJAX is used if user responsiveness is important.
• The design has identified key user scenarios and has made them as simple to accomplish as

possible.
• The design empowers users, allowing them to control how they interact with the

application and how it displays data.

UI Components
• Platform provided controls are used except for where it is absolutely necessary to use a

custom or third-party control for specialized display or input tasks.
• Platform provided databinding is used where possible.
• State is stored in the user’s session for ASP.NET Mobile Web applications.
• State is stored in platform provided state management features, such as ViewState, for

standard ASP.NET applications.

UI Processing Components
• If the UI requires complex processing, UI processing has been decoupled from rendering

and display into unique UI processing components.
• If the UI requires complex workflow support, the design includes unique workflow

components that use a workflow system such as Windows Workflow.
• UI processing has been divided into model, view and controller or presenter by using the

MVC or MVP pattern.
• UI processing components do not include business rules.

Validation
• The application constrains, rejects and sanitizes all input that comes from the client.
• Server-side validation is used to validate input for security purposes.
• Client-side validation is used to validate input for user experience purposes; for example, to

provide error messages when receiving invalid input.
• Built-in validation controls are used when possible.
• Validation routines are centralized, where possible, to improve maintainability and reuse.

Web Application Architecture Pocket Guide

Microsoft patterns & practices 133

Checklist - Business Layer

Design Considerations
• A separate business layer is used to implement the business logic and workflows.
• Component types are not mixed in the business layer.
• Common business logic functions are centralized and reused.
• Design reduces round trips when accessing a remote business layer.
• Business layer is not tightly coupled to other layers.

Authentication
• Users are authenticated in the business layer, unless they come from another layer on the

same tier to which you are willing to extend full trust.
• Single-sign-on is used, if your business layer will be used by multiple applications in a

trusted environment.
• The original caller is not flowed to the business layer, unless it is necessary to authenticate

based on the original caller’s ID.
• A trusted sub-system is used for access to back-end services to maximize the use of pooled

database connections.
• IP filtering is used when using Web services, to only allow calls from the presentation layer

Authorization
• Users are authorized based on their identity, account groups, claims or roles.
• Role-based authorization is used for business decisions.
• Resource-based authorization is used for system auditing.
• Claims-based authorization is used to support federated authorization.
• Impersonation and delegation are not used unless absolutely necessary and the

performance trade-offs are well understood.

Business Components
• Business components do not mix data access logic and business logic.
• Components are designed to be highly cohesive.
• Business components are invoked with message-based communication.
• All processes exposed through the service interfaces are idempotent.
• Workflow components are used, if the business process involves multiple steps and long-

running transactions.

Business Entities
• Appropriate data format is used to represent business entities.
• The Domain Model pattern is used for designing business entities, if the application needs

to support complex business model.

Web Application Architecture Pocket Guide

Microsoft patterns & practices 134

• The Table Module pattern is used to design business entities, if the tables in the database
represent the business entities.

• Business entities support serialization if they need to be passed over network or stored
directly to the disk.

• The Data Transfer Object (DTO) pattern is used to minimize the number of calls made across
tiers.

Caching
• Static data that will be regularly reused within the business layer is cached.
• Data that cannot be retrieved from the database quickly and efficiently is cached.
• Data is cached in ready-to-use format.
• Sensitive data is not cached.
• Web farm deployment scenario considered, while designing business layer caching solution.

Coupling and Cohesion
• The design does not require tight coupling between the business layer and other layers.
• A message-based interface is used for the business layer.
• The business layer components are highly cohesive.
• Data access logic is not mixed with business logic in the business components.

Concurrency and Transactions
• Business critical operations are wrapped in transactions.
• Connection-based transactions are used when accessing a single data source.
• The design defines transaction boundaries, so that retries and composition are possible.
• A compensating method to revert the data store to its previous state is used, when

transactions are not possible.
• Locks are not held during long-running atomic transactions, compensating locks are used

instead.
• Appropriate transaction isolation level is used.

Data Access
• Data access code and business logic are not mixed with the business components.
• The business layer does not directly access the database; instead, a separate data access

layer is used.

Exception Management
• Exceptions are not used to control business logic.
• Exceptions are caught only if they can be handled
• Appropriate exception propagation strategy is designed.
• Global error handler is used to catch unhandled exceptions.
• The design includes a notification strategy for critical errors and exceptions.

Web Application Architecture Pocket Guide

Microsoft patterns & practices 135

• Exceptions do not reveal sensitive information.

Logging and Instrumentation
• Logging and instrumentation solution is centralized for the business layer.
• System-critical and business-critical events in your business components are logged.
• Access to the business layer is logged.
• Business-sensitive information is not written to log files.
• Logging failure does not impact normal business layer functionality.

Service Interface
• The service interface is abstracted from potential internal changes.
• An interface exists for each client access scenario.
• The service interface does not implement business rules.
• Standard data types are used as interface parameters to enable maximum compatibility

with different clients.
• Service interfaces are designed, for maximum interoperability with other platforms and

services.

Validation
• All input is validated in the business layer, even when input validation occurs in the

presentation layer.
• The validation solution is centralized for reusability.
• Validation strategy constrains, rejects, and sanitizes malicious input.
• Input data is validated for length, format, and type.

Workflow
• Workflows are used within business components that involve multi-step or long-running

processes.
• Appropriate workflow style is used depending on the application scenario.
• The workflow fault conditions are handled appropriately.
• The Pipeline pattern is used, if the component must execute a specified set of steps

sequentially and synchronously.
• The Event pattern is used, if the process steps can be executed asynchronously in any order.

Deployment Considerations
• Business logic is deployed on a physically separate machine, only if it is actually required.
• Message-based interface is used for the business layer if the business layer is to be

deployed on remote tier.
• TCP protocol is used if the business layer must be on a separate physical tier.
• IPSec is used to protect data passed between physical tiers.
• SSL is used to protect data passed to remote Web services.

Web Application Architecture Pocket Guide

Microsoft patterns & practices 136

Web Application Architecture Pocket Guide

Microsoft patterns & practices 137

Checklist - Data Access Layer

Design Considerations
• Abstraction is used to implement a loosely coupled interface to the data access layer.
• Data access functionality is encapsulated within the data access layer.
• Application entities are mapped to data source structures.
• Data exceptions that can be handled are caught and processed.
• Connection information is protected from unauthorized access.

Blob
• Images are stored in a database only when it is not practical to store them on the disk.
• BLOBs are used to simplify synchronization of large binary objects between servers.
• Additional database fields are used to provide query support for BLOB data.
• BLOB data is cast to the appropriate type for manipulation within your business or

presentation layer
• You do not store BLOB in the database when using Buffered transmission.

Batching
• Batched commands are used to reduce round trips to the database and minimize network

traffic.
• Largely similar queries are batched for maximum benefit.
• Batched commands are used with a DataReader to load or copy multiple sets of data.
• Bulk copy utilities are used when loading large amounts of file-based data into the

database.
• You do not place locks on long running batch commands.

Connections
• Connections are opened as late as possible and closed as early as possible.
• Trusted sub-system authentication was used to maximize the advantages of connection

pooling.
• Transactions are performed through a single connection when possible.
• You do not rely on garbage collection to free connections.
• Retry logic is used to manage situations where the connection to the data source is lost or

times out.

Data Format
• You have considered the use of custom data or business entities for improved application

maintainability.
• Business rules are not implemented in data structures associated with the data layer.
• XML is used for structured data that changes over time.

Web Application Architecture Pocket Guide

Microsoft patterns & practices 138

• DataSets have been considered for disconnected operations when dealing with small
amounts of data.

• Serialization and interoperability requirements have been considered.

Exception Management
• You have identified data access exceptions that should be handled in the data layer.
• Global exception handling has been implemented to catch unhandled exceptions.
• Data source information has been included when logging exceptions and errors.
• Sensitive information in exception messages and log files is not revealed to users.
• You have designed an appropriate logging and notification strategy for critical errors and

exceptions.

Queries
• Parameterized SQL statements are used, instead of assembling statements from literal

strings, to protect against SQL Injection attacks.
• User input has been validated when used with dynamically generated SQL queries.
• String concatenation has not been used to build dynamic queries in the data layer.
• Objects are used to build the database query.

Stored Procedures
• Output parameters are used to return single values.
• Individual parameters are used for single data inputs.
• XML parameters have been considered for passing lists or tabular data.
• Memory-based temporary tables are used when required.
• Error handling has been implemented to return errors that can be handled by the

application code.

Transactions
• Transactions are enabled only when actually required.
• Transactions are kept as short as possible to minimize the amount of time that locks are

held.
• Manual or explicit transactions are used when performing transactions against a single

database.
• Automatic or implicit transactions are used when a transaction spans multiple databases.
• You have considered the use of Multiple Active Result Sets (MARS) in transaction heavy

concurrent applications to avoid potential deadlock issues.

Validation
• All data received by the data layer is validated.
• User input used to dynamic SQL has been validated to protect against SQL injection attacks.
• All trust boundaries are identified, and data that crosses these boundaries is validated.

Web Application Architecture Pocket Guide

Microsoft patterns & practices 139

• You have determined whether validation that occurs in other layers is sufficient, or if you
must validate it again.

• The data layer returns informative error messages if validation fails.

XML
• XML readers and writers are used to access XML-formatted data.
• An XML schema is used to define formats for data stored and transmitted as XML.
• XML data is validated against the appropriate schemas.
• Custom validators are used for complex data parameters within your XML schema.
• XML indexes have been considered for read-heavy applications that use XML in SQL Server.

Manageability Considerations
• A common interface or abstraction layer is used to provide an interface to the data layer.
• You have considered creating custom entities, or if other data representations better meet

your requirements.
• Business or data entities are defined by deriving them from a base class that provides basic

functionality and encapsulates common tasks.
• Business or data entities rely on data access logic components for database interaction.
• You have considered the use of stored procedures to abstract data access from the

underlying data schema.

Performance Considerations
• Connection pooling has been optimized based on performance testing.
• Isolation levels have been tuned for data queries.
• Commands are batched to reduce round-trips to the database server.
• Optimistic concurrency is used with non-volatile data to mitigate the cost of locking data in

the database.
• Ordinal lookups are used for faster performance when using a DataReader.

Security Considerations
• Windows authentication has been used instead of SQL authentication when using Microsoft

SQL Server.
• Encrypted connection strings in configuration files are used instead of a System or User

DSN.
• A salted hash is used instead of an encrypted version of the password when storing

passwords.
• Identity information is passed to the data layer for auditing purposes.
• Typed parameters are used with stored procedures and dynamic SQL to protect against SQL

injection attacks.

Web Application Architecture Pocket Guide

Microsoft patterns & practices 140

Deployment Considerations
• The data access layer is located on the same tier as the business layer to improve

application performance.
• The TCP protocol is used to improve performance when you need to support a remote data

access layer.
• The data access layer is not located on the same server as the database.

Web Application Architecture Pocket Guide

Microsoft patterns & practices 141

Checklist - Service Layer

Design Considerations
• Services are designed to be application scoped and not component scoped.
• Entities used by the service are extensible and composed from standard elements.
• Your design does not assume to know who the client is.
• Your design assumes the possibility of invalid requests.
• Your design separates functional business concerns from infrastructure operational

concerns.

Authentication
• Your have identified a suitable mechanism for securely authenticating users.
• Your have considered the implications of using different trust settings for executing service

code.
• SSL protocol is used if you are using basic authentication.
• WS Security is used if you are using SOAP messages.

Authorization
• Appropriate access permissions are set on resources for users, groups, and roles.
• URL authorization and/or file authorization is used appropriately if you are using Windows

authentication.
• Access to Web methods is restricted appropriately using declarative principle permission

demands.
• Services are run using least privileged account.

Communication
• You have determined how to handle unreliable or intermittent communication scenarios.
• Dynamic URL behavior is used to configure endpoints for maximum flexibility.
• Endpoint addresses in messages are validated.
• You have determined the approach for handling asynchronous calls.
• You have decided if the message communication must be one-way or two-way.

Data Consistency
• All parameters passed to the service components are validated.
• All input is validated for malicious content.
• Appropriate signing, encryption, and encoding strategies are used for protecting your

message.
• XML schemas are used to validate incoming SOAP messages.

Web Application Architecture Pocket Guide

Microsoft patterns & practices 142

Exception Management
• Exceptions are not used to control business logic.
• Unhandled exceptions are dealt with appropriately.
• Sensitive information in exception messages and log files is not revealed to users.
• SOAP Fault elements or custom extensions are used to return exception details to the caller

when using SOAP.
• Tracing and debug-mode compilation for all services is disabled except during development

and testing.

Message Channels
• Appropriate patterns, such as Channel Adapter, Messaging Bus, and Messaging Bridge are

used for messaging channels.
• You have determined how you will intercept and inspect the data between endpoints when

necessary.

Message Construction
• Appropriate patterns, such as Command, Document, Event, and Request-Reply are used for

message constructions.
• Very large quantities of data are divided into relatively smaller chunks and sent in sequence.
• Expiration information is included in time-sensitive messages, and the service ignores

expired messages.

Message Endpoint
• Appropriate patterns such as Gateway, Mapper, Competing Consumers, and Message

Dispatcher are used for message endpoints.
• You have determined if you should accept all messages, or implement a filter to handle

specific messages.
• Your interface is designed for idempotency so that, if it receives duplicate messages from

the same consumer, it will handle only one.
• Your interface is designed for commutativity so that, if messages arrive out of order, they

will be stored and then processed in the correct order.
• Your interface is designed for disconnected scenarios, such as providing support for

guaranteed delivery.

Message Protection
• The service is using transport layer security when interactions between the service and

consumer are not routed through other servers.
• The service is using message-based protection when interactions between the service and

consumer are routed through other servers.
• You have considered message-based plus transport layer (mixed) security when you need

additional security.

Web Application Architecture Pocket Guide

Microsoft patterns & practices 143

• Encryption is used to protect sensitive data in messages.
• Digital signatures are used to protect messages and parameters from tampering.

Message Routing
• Appropriate patterns such as Aggregator, Content-Based Router, Dynamic Router, and

Message Filter are used for message routing.
• The router ensures sequential messages sent by a client are all delivered to the same

endpoint in the required order (commutativity).
• The router has access to the message information when it needs to use that information for

determining how to route the message.

Message Transformation
• Appropriate patterns such as Canonical Data Mapper, Envelope Wrapper, and Normalizer

are used for message transformation.
• Metadata is used to define the message format.
• An external repository is used to store the metadata when appropriate.

Representational State Transfer (REST)
• You have identified and categorized resources that will be available to clients.
• You have chosen an approach for resource identification that uses meaningful names for

REST starting points and unique identifiers, such as a GUID, for specific resource instances.
• You have decided if multiple views should be supported for different resources, such as

support for GET and POST operations for a specific resource.

Service Interface
• A coarse-grained interface is used to minimize the number of calls.
• The interface is decoupled from the implementation of the service.
• Business rules are not included in the service interface.
• The schema exposed by the interface is based on standards for maximum compatibility with

different clients.
• The interface is designed without assumptions about how the service will be used by clients.

SOAP
• You have defined the schema for operations that can be performed by a service.
• You have defined the schema for data structures passed with a service request.
• You have defined the schema for errors or faults that can be returned from a service

request.

Deployment Considerations
• The service layer is deployed to the same tier as the business layer in order to maximize

service performance.

Web Application Architecture Pocket Guide

Microsoft patterns & practices 144

• You are using Named Pipes or Shared Memory protocols when a service is located on the
same physical tier as the service consumer.

• You are using the TCP protocol when a service is accessed only by other applications within
a local network.

• You are using the HTTP protocol when a service is publicly accessible from the Internet.

Web Application Architecture Pocket Guide

Microsoft patterns & practices 145

	Cover Page
	Copyrights Page
	Title
	Introduction
	CH 01 - Web Application Architecture
	CH 02 - Design Guidelines
	CH 03 - Presentation Layer Guidelines
	CH 04 - Business Layer Guidelines
	CH 05 - Data Access Layer Guidelines
	CH 06 - Service Layer Guidelines
	CH 07 - Communication Guidelines
	CH 08 - Deployment Patterns
	Technology Matrixes
	Presentation Technology Matrix
	Data Access Technology Matrix

	Checklists
	Web Application Checklist
	Presentation Layer Checklist
	Business Layer Checklist
	Data Access Layer Checklist
	Service Layer Checklist

