

 [image: (missing alt)]

Windows Presentation Foundation 4.5 Cookbook

Windows Presentation Foundation 4.5 Cookbook

Copyright © 2012 Packt Publishing
All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.
Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers and distributors will be held liable for any damages caused or alleged to be caused directly or indirectly by this book.
Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.
First published: September 2012
Production Reference: 1150912
Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.
ISBN 978-1-84968-622-8

www.packtpub.com

Cover Image by Mark Holland (<m.j.g.holland@bham.ac.uk>)

Credits

Author

Pavel Yosifovich

Reviewers

Alon Fliess
Ariel Ben Horesh
Stas Shteinbook
Dan Vestergaard

Acquisition Editor

Rukshana Khambatta

Lead Technical Editor

Kedar Bhat

Technical Editor

Madhuri Das

Project Coordinator

Yashodhan Dere

Proofreaders

Aaron Nash
Maria Gould

Indexer

Rekha Nair

Graphics

Aditi Gajjar

Production Coordinator

Shantanu Zagade

Cover Work

Shantanu Zagade

About the Author

Pavel Yosifovich is the CTO of CodeValue (http://www.codevalue.net), a software development, consulting, and training company, based in Israel. He writes, consults, and trains developers on various software development topics, from Windows internals, to .NET enterprise systems, and almost everything in between. He’s a Microsoft MVP and a frequent speaker at national events, such as Tech-Ed and DevAcademy.
In the past, he co-founded the startup company Quiksee that was acquired by Google in September 2010.

Writing a book is a tremendous effort, even if you know what you want to write (and I didn’t some of the time). It wasn’t possible without the support of my family: my wife Idit, and my kids, Daniel and Amit, and the latest recruit, Yoav. Thank you for the making the time and more than that - thank you for the support and encouragement along the way. It’s certainly easy to give up, but you wouldn’t let me - so thank you again!

About the Reviewers

Alon Fliess is the chief architect and founder of CodeValue. CodeValue is the home of software experts. CodeValue builds software tools, foundations, and products for the software industry and offers mentoring, consulting, and project development services.
Alon got his BSc degree in Electrical and Computer Engineering from the Technion, the Israel Institute of Technology. He is an expert on many Microsoft technologies, be it Windows client and server programming using C#/C++/.NET, Windows Azure Cloud Computing, or Windows internals. Microsoft has recognized his expertise and community activities and granted him two awards: Microsoft Regional Director (MRD) and a VC++ MVP.
Alon has deep knowledge and understanding of Windows and Windows Internals. He is a co-author of Windows 7 Microsoft Training Program as well as a co-author of the Introducing Windows 7 for Developers book (ISBN-10: 0735626820)
Alon delivers courses and lectures in many seminars and conferences around the world, such as TechEd Europe, TechEd USA, NDC, and in Israel. Alon is a senior Software Architect; he deals with vast and complex projects. Alon architected and designed the software for the revolutionary new line of industrial printing machine of Landa Labs. He is also the architect of one of the largest software project of the Israeli Air Force. Alon is responsible for several open-source projects.

Many thanks to Pavel and Yashodhan, who gave me the opportunity to take part in the creation of this book.

Ariel Ben Horesh is a well-known .NET expert, team leader, and community leader.
With more than 10 years of experience in the software industry, Ariel now works at CodeValue, a company he co-founded, where he creates products for developers, and consults and conducts courses around the world on UI development: WPF/SL, Web, Mobile, and UI architecture.
You can visit his blog at: http://arielbh.com

Stas Shteinbook is a senior development leader and solution architect who works at CodeValue. He has a long history in developing large enterprise applications, guiding their architecture and developing process, and creating end-to-end solutions involving rich user experience interfaces using WPF technology.

I would like to thank my family, my mother Ludmila and my father Zinoviy, for all the help and support.

Dan Vestergaard is currently working as a software engineer, with primary focus on .NET, and in particular, developing user interfaces using WPF.
He has worked in the consultant business and for several years in financial and industrial businesses. He is now a software engineer in a large world-wide industrial company, writing WPF applications for factory quality control systems.
He started working with WPF in the early beta days, back in 2006, and has loved it ever since.

www.PacktPub.com

Support files, eBooks, discount offers and more

You might want to visit www.PacktPub.com for support files and downloads related to your book.
Did you know that Packt offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at <service@packtpub.com> for more details.
At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.
[image: Support files, eBooks, discount offers and more]

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt’s online digital book library. Here, you can access, read and search across Packt’s entire library of books.

Why Subscribe?

	Fully searchable across every book published by Packt
	Copy and paste, print and bookmark content
	On demand and accessible via web browser

Free Access for Packt account holders

If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib today and view nine entirely free books. Simply use your login credentials for immediate access.

Instant Updates on New Packt Books

Get notified! Find out when new books are published by following @PacktEnterprise on Twitter, or the Packt Enterprise Facebook page.

Preface

Windows Presentation Foundation has been in release since late 2006, as a part of the then .NET 3.0 Framework, also preinstalled on Windows Vista at the time. It promised to change the way rich client applications are written, and eventually replace the old, Win32-based Windows Forms.
WPF gained traction slowly because of its enormous breadth and the different kind of thinking that was required using XAML, data binding, templates, and styles was very different from the classic WinForms way of working. The power of WPF was evident, but it was difficult to master, and had a steep learning curve.
Over the years things changed; developers started to get used to and appreciate the new way of doing things. XAML began to look convenient and powerful and not just an extra thing to learn with little benefit. Still, for the newcomer, with or without WinForms experience, WPF looks daunting and uncontrollable.
Patterns have emerged, most notably the Model-View-View Model (MVVM), a variant of other existing view-data separation patterns (MVC and MVP), that made life easier (most of the time) but more importantly set a standard way of interaction of view and data; and although many implementations are possible (this is just a pattern, after all), it does let an application be built in more confidence, piece by piece.
This book holds a set of recipes that show how to do common tasks. But don’t just look at the recipes; instead, look at the other sections to deepen your understanding of WPF. No matter the number of recipes, there will always be other things an application needs that no book can cover; by understanding the foundations well, it’s possible to tackle any problem. This is why I have tried to emphasise the why, and not just the how.
WPF led to a bunch of other technologies being built on similar principles, namely Silverlight (cross browser web client development in .NET), Windows Phone 7.x (Microsoft’s Phone OS that uses a Silverlight variant), and lately Windows 8 and Windows Phone 8 all built around similar concepts such as XAML, dependency properties, templates, styles, and bindings this shows the power and impact of WPF.
What this book covers

Chapter 1, Foundations, introduces the most important concepts in WPF. From the XAML language, to dependency properties, to attached events.

Chapter 2, Resources, discusses WPF’s unique resource system that allows any object to be placed as a resource and consequently shared in an efficient and flexible way.

Chapter 3, Layout and Panels, discusses how WPF manages layout of elements, including looking at the standard layout panels, how they work, and how they can be combined to produce complex and flexible interfaces.

Chapter 4, Using Standard Controls, looks at the major controls in WPF and how they are typically used. The content model is also discussed, along with other control families.

Chapter 5, Application and Windows, takes a look at a WPF application from a higher perspective, including application level resources and the way windows are used and managed.

Chapter 6, Data Binding, discusses the powerful and important concept of data binding and the way it’s used in WPF, including leveraging data templates, converters, and other ideas that make WPF so powerful.

Chapter 7, Commands and MVVM, looks at the way a moderately complex application might be built, by leveraging higher level abstractions known as commands (as opposed to raw events). The MVVM pattern is introduced with some implementation to show how commands, data binding and some extra ingredients can produce a complex, yet manageable, application.

Chapter 8, Styles, Triggers, and Control Templates, shows some of the ways controls can be customized in XAML only, without the need to derive new types for the sake of appearance only.

Chapter 9, Graphics and Animation, provides a tour of the major graphic and animation capabilities of WPF and how they integrate with other mechanisms such as styles and triggers.

Chapter 10, Custom Elements, shows what is required to create custom elements with the considerations that lead to a particular implementation path.

Chapter 11, Threading, discusses WPF’s support for asynchronous operations, so that the UI is responsive at all times, including the support provided in C# 5.0 for performing asynchronous operations more easily.

What you need for this book

The books assumes the reader is a .NET developer working with C# (at least version 2.0, but 3.0 is preferred), and is comfortable working with generics, virtual methods, delegates, and lambdas (C# 3.0). Some WPF exposure is assumed. Visual Studio 2010 as well as Visual Studio 2012 for some features of .NET 4.5.

Who this book is for

The book is intended for developers who are relatively new to WPF, or those who have been working with WPF for a while, but want to a get a deeper understanding of its mechanisms and concepts.

Conventions

In this book, you will find a number of styles of text that distinguish between different kinds of information. Here are some examples of these styles, and an explanation of their meaning.
Code words in text are shown as follows: "the typical Window class is declared as partial, meaning there may be more source files describing the same class".
A block of code is set as follows:
class Book {
public string Name { get; set; }
public string Author { get; set; }
public decimal Price { get; set; }
public int YearPublished { get; set; }
}

When we wish to draw your attention to a particular part of a code block, the relevant lines or items are set in bold:
<Window x:Class="CH01.CustomTypes.MainWindow"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:local="clr-namespace:CH01.CustomTypes"

New terms and important words are shown in bold. Words that you see on the screen, in menus or dialog boxes for example, appear in the text like this: "right-click on the project node and select Add and then Class...".
Note
Warnings or important notes appear in a box like this.

Tip
Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this book — what you liked or may have disliked. Reader feedback is important for us to develop titles that you really get the most out of.
To send us general feedback, simply send an e-mail to <feedback@packtpub.com>, and mention the book title through the subject of your message.
If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help you to get the most from your purchase.
Downloading the example code

You can download the example code files for all Packt books you have purchased from your account at http://www.packtpub.com. If you purchased this book elsewhere, you can visit http://www.packtpub.com/support and register to have the files e-mailed directly to you.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you find a mistake in one of our books — maybe a mistake in the text or the — code we would be grateful if you would report this to us. By doing so, you can save other readers from frustration and help us improve subsequent versions of this book. If you find any errata, please report them by visiting http://www.packtpub.com/support, selecting your book, clicking on the errata submission form link, and entering the details of your errata. Once your errata are verified, your submission will be accepted and the errata will be uploaded to our website, or added to any list of existing errata, under the Errata section of that title.

Piracy

Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt, we take the protection of our copyright and licenses very seriously. If you come across any illegal copies of our works, in any form, on the Internet, please provide us with the location address or website name immediately so that we can pursue a remedy.
Please contact us at <copyright@packtpub.com> with a link to the suspected pirated material.
We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions

You can contact us at <questions@packtpub.com> if you are having a problem with any aspect of the book, and we will do our best to address it.

Chapter 1. Foundations

In this chapter we will cover the following:
	Creating custom type instances in XAML
	Creating a dependency property
	Using an attached property
	Creating an attached property
	Accessing a static property in XAML
	Creating a custom markup extension
	Handling routed events

Introduction

Any attempt at mastering a technology, any technology, requires a good understanding of its foundations. This understanding makes it possible to grasp the more complex aspects of that technology; Windows Presentation Foundation (WPF) is no different.

In this first chapter, we'll discuss recipes concerning the very foundations of WPF what makes it tick and also along the way, what makes it unique.
XAML

The first noticeable facet of WPF is XAML (eXtensible Markup Language). XAML is an XML based language used in WPF to declaratively create user interfaces. Actually, XAML has nothing to do with UI. It's merely a declarative way of constructing objects and setting their properties. In fact, it's leveraged in other technologies, such as the Windows Workflow Foundation (WF), where it's used as a way of constructing workflows. To create objects in XAML, they must be "XAML friendly" — meaning they must have the following:

	A public default constructor
	Settable public properties

The second item is not strictly a requirement, but the lack of settable properties would make the object a bit dull. Note that starting with .NET 4, XAML is in fact capable of handling parameterized constructors, but WPF's XAML parser currently does not leverage that capability.
XAML is not an absolute requirement. In fact, you can create an entire application using C# or VB (or whichever .NET language you fancy) without a single XAML tag. However, that would be much more difficult and error prone with high maintenance costs, not to mention the difficulty of integration with your fellow designers.
XAML is about the what, not the how. This declarative style makes things easier (granted, after some getting used to), and is a paradigm shift in software development in general (the classic example in .NET being the LINQ-based technologies). XAML is neutral—it's not C# or anything like that so other, non-developer tools can create or manipulate it. Microsoft provides the Expression Blend tool, which at its core, is a glorified XAML producer/consumer.

XAML and compilation

What happens to a XAML file? How is it tied to the code behind file created by Visual Studio? A XAML file is compiled by a XAML compiler that produces a binary version of the XAML, known as BAML. This BAML is stored as a resource inside the assembly and is parsed at runtime in the InitializeComponent call to create the actual objects. The result is bundled with the code behind file (the typical Window class is declared as partial, meaning there may be more source files describing the same class) to produce the final code for that class.

Browsing a typical WPF application, we won't find the canonical Main method, because it's generated by WPF. It constructs the singleton Application object instance and creates the first window specified by the Application.StartupUri property (if not null). We can find that code in the file App.g.cs (g stands for generated) inside the Obj\x86\Debug sub-folder.

Dependency properties

.NET properties are nothing more than syntactic sugar over set and get methods. What those methods do is up to the property's developer. More often than not, a property is a thin wrapper over a private field, perhaps adding some validation logic in its setter.

WPF requires more out of its properties. Specifically, WPF's dependency properties provide the following:
	Change notifications when the property's value is changed.
	Validation handler called as part of a set operation.
	Coercion handler that is able to "coerce" the provided value to an acceptable value.
	Various providers can attempt to set the property's value, but only one such provider wins at a time. Nevertheless, all values are retained. If the winning provider goes away, the property's value is set to the next winner in line.
	Property value inheritance down the visual tree (if so desired).
	No memory is allocated for a property's value if that value is never changed from its default.

These features provide the basis of some of WPF's strong features, such as data binding and animation.
On the surface, these properties look the same as any other property—a getter and a setter. But no private fields are involved, as we'll see in the following recipes.

Creating custom type instances in XAML

Sometimes there's a need to create instances of your own types, or other .NET Framework, non-WPF types within XAML. A classic example is a data binding value converter (which we'll explore in Chapter 6, Data Binding, but other scenarios might call for it).

Getting ready

Make sure you have Visual Studio 2010 up and running.

How to do it...

We'll create a simple application that creates an instance of a custom type in XAML to demonstrate the entire procedure:
	Create a new WPF Application project named CH01.CustomTypes.
	Let's create a custom type named Book. In the Solution Explorer window, right-click on the project node and select Add and then Class...:[image: How to do it...]

	Type Book in the Name box and click on Add:[image: How to do it...]

	Add four simple properties to the resulting class:class Book {
public string Name { get; set; }
public string Author { get; set; }
public decimal Price { get; set; }
public int YearPublished { get; set; }
}

Tip

Downloading the example code

You can download the example code files for all Packt books you have purchased from your account at http://www.PacktPub.com. If you purchased this book elsewhere, you can visit http://www.PacktPub.com/support and register to have the files e-mailed directly to you.

	Open the MainWindow.xaml file (using the Solution Explorer), which was created automatically by the project wizard. We would like to create an instance of the Book class. As a Book is not an element (does not derive from UIElement), we cannot simply create it inside our Grid. But, we can make it the Content property (that can be anything, as its type is Object) of a ContentControl-derived type, such as Button. Add a button control to the existing grid, as follows:<Grid>
<Button FontSize="20">
</Button>
</Grid>

	To create an instance of Book, we first need to map the .NET namespace (and assembly) where Book is defined to an XML namespace that can be used by the XAML compiler. Let's add a mapping at the top of the XAML near the default mappings added by the application wizard:<Window x:Class="CH01.CustomTypes.MainWindow"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:local="clr-namespace:CH01.CustomTypes"

	This says that anything prefixed by the string local (we can select anything here), should be looked up in the CH01.CustomTypes namespace (in the current assembly).
	Now, we can finally create a Book instance. Add the following inside the Button tag:<Button FontSize="20">
<local:Book Name="Windows Internals"
Author="Mark Russinovich" Price="40"
YearPublished="2009" />

</Button>

	That's it. We can verify this by adding a suitable ToString implementation to the Book type, and running the application:public override string ToString() {
return string.Format("{0} by {1}\nPublished {2}", Name,
Author, YearPublished);
}

[image: How to do it...]

How it works...

The XAML compiler needs to be able to resolve type names such as Button or Book. A simple name like Button is not necessarily unique, not in the XML sense and certainly not in the .NET sense (there are at least four Button types in .NET, naturally in different namespaces) .

A mapping is required between an XML namespace and a .NET namespace, so that the XAML compiler can reference the correct type. By default, two XML namespaces are declared by a typical XAML file: the first, which is the default XML namespace, is mapped to the normal WPF namespaces (System.Windows, System.Windows.Controls, and so on). The other, typically with the x prefix, is mapped to the XAML namespace (System.Windows.Markup).
For our own types, we need to do similar mapping (but with a different syntax) means map the XML namespace prefix local to the .NET namespace CH01.CustomTypes. The following line:
xmlns:local="clr-namespace:CH01.CustomTypes"

This allows our Book class to be recognized and used within the XAML.
If the type was defined in a referenced assembly (not our own assembly), then the mapping would continue to something like the following:
xmlns:local="clr-namespace:CH01.CustomTypes;assembly=MyAssembly"

For example, suppose we want the ability to create instances of the System.Random type. Here's how we'd map an XML namespace to the .NET namespace and assembly where System.Random resides:

xmlns:sys="clr-namespace:System;assembly=mscorlib"

Now, we could create an instance of anything in the System namespace (that is XAML friendly) and the mscorlib assembly (such as Random):

<sys:Random x:Key="rnd" />

In this case, it's hosted in a ResourceDictionary (which is a kind of dictionary, meaning every value requires a key; we'll discuss these in more detail in the next chapter).

There's more...

It's possible to map a single XML namespace to multiple .NET namespaces. This is the same technique used by the WPF assemblies itself: a single XML namespace maps to multiple WPF namespaces, such as System.Windows, System.Windows.Controls, and System.Windows.Media.

The trick is to use the XmlnsDefinition attribute within the assembly where the exported types reside. This only works for referenced assemblies; that is, it's typically used in class library assemblies.
For example, suppose we create a MyClassLibrary class library assembly, with a type like the Book introduced earlier:
namespace MyClassLibrary {
public class Book {
public string Name { get; set; }
public string Author { get; set; }
public decimal Price { get; set; }
public int YearPublished { get; set; }
}
}

We can make all types within this assembly and the MyClassLibrary namespace part of an XML namespace by adding the following attribute:
[assembly: XmlnsDefinition("http://mylibrary.com",
"MyClassLibrary")]

The first argument to the attribute is the XML namespace name. This can be anything, but is typically some form of fictitious URL (usually a variation on the company's URL), so as to lower chances of collisions (this is exactly the same idea used by WPF). The second string is the .NET namespace mapped by this XML namespace.

Now, suppose we have another .NET namespace within that same assembly with some types declared within it:
namespace MyClassLibrary.MyOtherTypes {
public class MyType1 {
//...
}
public class MyType2 {
//...
}
}

We can add another attribute to map the same XML namespace to the new .NET namespace:
[assembly: XmlnsDefinition("http://mylibrary.com", "MyClassLibrary.MyOtherTypes")]

This means that a single XML prefix (in some client application) can now map to multiple .NET namespaces:
xmlns:mylib="http://mylibrary.com"

This scheme can save multiple distinct XML prefix declarations. One consequence of this idea is that all public type names must be unique across the mapped .NET namespaces (as they are indeed within WPF itself).

Creating a dependency property

Dependency properties are the workhorse of WPF. This infrastructure provides for many of WPF's features, such as data binding, animations, and visual inheritance. In fact, most of the various element properties are Dependency Properties. Sometimes we need to create such properties for our own controls or windows.

Getting ready

Make sure you have Visual Studio up and running.

How to do it...

We'll create a simple user control with one new dependency property to illustrate the entire procedure:
	Within Visual Studio 2010, create a new WPF Application named CH01.DependencyProperties.
	We'll add a simple User Control, to which we'll add a dependency property. Don't worry if you don't understand exactly what a user control is; we'll discuss those in a later chapter. For now, just concentrate on the dependency properties we'll create and use. To create the User Control, right-click on the Project node in the Solution Explorer and select Add and then User Control....[image: How to do it...]

	In the resulting dialog, type SimpleControl in the Name box, and then click on Add:[image: How to do it...]

	We'll add a dependency property to the SimpleControl class. A dependency property needs to be "registered" with the property system. Open the SimpleControl.xaml.cs file and type propdp just after the closing brace of the constructor. This is how it would look in the Visual Studio editor:[image: How to do it...]

	 This is a code snippet that helps with the (somewhat unpleasant) details of properly registering the property. Press Tab; the code snippet is expanded to something like the following:[image: How to do it...]
The first part looks like a normal getter/setter of a property (although the implementation is anything but "normal"). The second part actually registers the property with some information (more on that in the How it works... section). Let's create a property named YearPublished of type int.

	Press Tab to skip the int part (as that's what we want here). The focus should jump to MyProperty. Type YearPublished as the property name.
	Press Tab again. Note that this changes the property name in the lower Register call to YearPublished. The focus should jump to the ownerclass part. Type SimpleControl.
	Press Tab again. The focus should jump to the 0. This should be the default value of the property, if not altered. Change the 0 into 2000. After removing the (unhelpful) comment from the snippet provided, the code should look as follows:public int YearPublished {
get { return (int)GetValue(YearPublishedProperty); }
set { SetValue(YearPublishedProperty, value); }
}
public static readonly DependencyProperty

YearPublishedProperty = DependencyProperty.Register(
"YearPublished", typeof(int), typeof(SimpleControl),
new UIPropertyMetadata(2000));

	Now let's test it. If that's indeed a dependency property, then there are a few things it can do, such as data bind. We'll add an instance of the SimpleControl class to our main window and bind the property we defined to some other control.
	Open the MainWindow.xaml file. Replace the existing Grid with a StackPanel, and add an instance of our SimpleControl. The entire markup should look like as follows:<Window x:Class="CH01.DependencyProperties.MainWindow"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:local="clr-namespace:CH01.DependencyProperties"

Title="MainWindow" Height="350" Width="525">
<StackPanel>
<local:SimpleControl x:Name="_simple" />
</StackPanel>

</Window>

	Note the local prefix pointing to our .NET namespace (as explained in an earlier recipe of this chapter). Now let's add a TextBlock and a Button inside the StackPanel. The Text property of TextBlock should bind to the YearPublished property of the SimpleControl instance:<TextBlock Text="{Binding YearPublished, ElementName=_simple}" FontSize="30" />
<Button Content="Change Value" FontSize="20"/>

	When the button is clicked, we'll increment the YearPublished property and see if that changes the displayed text in the TextBlock. First, add a Click event handler; within the Button element type Click=. Visual Studio writes a pair of quotes and suggests adding a handler. You can press Tab to accept the default handler name, or type yourself an appropriate name, such as OnChangeValue:<Button Content="Change Value" FontSize="20" Click="OnChangeValue"/>

	Right-click on the handler name (OnChangeValue in this case), and select Navigate to Event Handler:[image: How to do it...]

	Visual Studio switches to the MainWindow.xaml.cs file inside the event handler. Add a simple increment of the YearPublished property of SimpleControl named _simple. The entire method should look as follows:private void OnChangeValue(object sender, RoutedEventArgs e) {
_simple.YearPublished++;
}

	Run the application. You should see the TextBlock showing 2000. That's the default value we set in the DependencyProperty.Register call.[image: How to do it...]

	Now press the button Change Value a few times — the text should be incremented. This happened because of the change notifications raised by the dependency property system, to which the data binding system registered.[image: How to do it...]

How it works...

A dependency property is managed by a public static (readonly) field named with the property name suffixed with Property; in our case it's MyValueProperty. This field manages the property value for any instance of the type it's declared in. The call to DependencyProperty.Register sets the property's name, its type, the owner type, and set of metadata for that property. The previous code uses an instance of UIPropertyMetadata (one of several possible types), that accepts (at least) the default value for the property (10 in our example).

The classic getter/setter method pair includes calls to SetValue and GetValue. These are defined in the DependencyObject base class, which means any type that wants to leverage the dependency property system must inherit from this class (directly or indirectly). For WPF elements, this is not a problem, as everything inherits from DependencyObject eventually.
When a new value is set for the property (as we did for our code), the SetValue method does "the right thing", meaning (for example), sending notifications to whoever is listening (such as the data binding system).

There's more...

When we register a dependency property, we can provide a property changed callback delegate, to be called when that property value changes for whatever reason:

public static readonly DependencyProperty

YearPublishedProperty = DependencyProperty.Register(
"YearPublished", typeof(int), typeof(SimpleControl),
new UIPropertyMetadata(2000, OnValueChanged));
private static void OnValueChanged(DependencyObject obj,
DependencyPropertyChangedEventArgs e) {
// do something when property changes
}

We'll examine this technique in a future recipe when we discuss attached properties.
This may seem unnecessary — after all, can't we just add code to the setter, and then just know when the property value is changed? No. The reason is that the property setter is just syntactic sugar — it's not always called directly. It is used by developers, as this is the familiar property syntax, but the XAML parser, for example, just calls SetValue directly — bypassing the property setter altogether. And it's not the only entity doing so. The setter should have nothing in it except the SetValue call.

Property value inheritance

User interface needs to be consistent, usually having the same fonts, sizes, and so on. Setting a font size, for example, on each and every element so they have the same value is tedious and unmaintainable. One of the ways WPF deals with that (not the only way; we'll see another powerful way in Chapter 8) is the idea of propagating a property value down the visual tree. This mechanism, property value inheritance, is supported by the dependency property infrastructure.

A canonical example is the font-related properties. If we set the FontSize property (for instance) on some container element, child elements (in any level) would use that property instead of the default:
<Window x:Class="CH01.InheritDemo.MainWindow"
Title="MainWindow" FontSize="20"
Width="400" Height="300">
<StackPanel>
<TextBlock Text="Text 1" />
<TextBlock Text="Text 2" />
<TextBlock Text="Text 3" />
</StackPanel>
</Window>

Note the FontSize is set to 20 on the Window object. All the TextBlocks will now use the value of 20 for their font size instead of the default. This is a feature a dependency property may choose to use, specified at registration time. Here's an example of a dummy property:
public static readonly DependencyProperty DummyProperty =
DependencyProperty.Register("Dummy", typeof(int),
typeof(MainWindow), new FrameworkPropertyMetadata(0,
FrameworkPropertyMetadataOptions.Inherits));

That last flag makes this property inheritable by default (same as the font related properties).

Why "dependency"?

What is the "dependency" part of dependency properties? In the previous section, we looked at visual inheritance. Suppose that one of those example TextBlocks sets a different FontSize values like so:

<Window x:Class="CH01.InheritDemo.MainWindow"
Title="MainWindow" FontSize="20"
Width="400" Height="300">
<StackPanel>
<TextBlock Text="Text 1" />
<TextBlock Text="Text 2" FontSize="30"/>
<TextBlock Text="Text 3" />
</StackPanel>
</Window>

What will be the final result? It turns out 30 is the winner for the second TextBlock. What we see is a set of priorities for providers of values. The first (and lowest) priority is the default value registered with DependencyProperty.Register. A higher priority is the inheritance feature (if registered as such for that property). A higher still priority is a local value (30 in our example) that takes precedence over inheritance. So, a dependency property depends on one of several levels or priorities of value providers. In fact, there are about 11 different levels in all (we have seen three in this example). All provider values are not lost — they may become effective if the highest provider is cleared. Here's an example:
_text2.ClearValue(TextBlock.FontSizeProperty);

This clears the local value of the (for example) second TextBlock, reverting its FontSize value to 20 (the inherited value).
By the way, the highest priority provider (except for a coercion callback, explained in the next section) is an active animation. If this wasn't so, an animation would simply have no effect. Once the animation is removed, the property value reverts to its previous state (depending on the highest provider at that time).
We need to take this behavior into consideration. If a property does not seem to get the expected value, there's a good chance we missed some provider that's "stronger" than the one we expected to win. The Visual Studio debugger has a visualizer that can be used to view the current property values of elements, and (very important) the provider that's effectively providing this value. Here's an example for our famous second TextBlock:

[image: Why "dependency"?]
Note the Local reading of the Source column.
The CH11.InheritDemo project, available with the downloadable source for this chapter, can be used to test it out. To get to this dialog, set a breakpoint where you have easy access to the required variable (in this case it could be done in the MainWindow constructor after InitializeComponent), and then click on the small magnifying glass near the variable's value column:

[image: Why "dependency"?]
If we remove the FontSize="30" local value setting, and use the visualizer again, we get the following:
[image: Why "dependency"?]
The Source column clearly indicates that the value was set because of visual inheritance.

This information is also available by using other tools that don't require Visual Studio or a debugger of any kind. One such free tool is Snoop (http://snoopwpf.codeplex.com/). This tool can look at any WPF window and drill down into the visual tree, showing property values (with their source); since it does not require anything special, it can be used in production environments, where tools such as Visual Studio are not typically found.

Dependency property levels

As mentioned, there are 11 levels, or priorities, of dependency property providers. Here's the complete list (highest to lowest precedence):

	 Property coercion: The coercion mechanism allows a delegate to execute before the final value is set for the property. That coercion delegate is provided as part of the property metadata at registration time. For example, if a property signifies an hour in the day, it should have a value between 0 and 23. The coercion callback can look at the suggested value, and if (say) it's greater than 23, return 23 as the final value.
	 Active animation: If an animation is active, it provides the property's current value.
	 Local value: Set through the property setter in code, or through XAML.
	 Template parent properties: If the control was created as part of a ControlTemplate or DataTemplate, these properties apply (we'll discuss data templates in Chapter 6 and control templates in Chapter 8).
	 Implicit style: (We'll discuss implicit styles in Chapter 8).
	 Style triggers from Windows or the application (we'll discuss triggers in Chapter 8).
	 Template triggers: Triggers that are part of a template (again, Chapter 8).
	 Style setters: Values from styles defined in the Window or the application (styles are discussed in Chapter 8).
	 Default style: Set by the control creator and can be based on the current Windows theme.
	 Inheritance: As discussed in a previous section.
	 Default value: As set in the property metadata.

For a detailed look at all dependency property levels, you can refer to this link in the official MSDN documentation: http://msdn.microsoft.com/en-us/library/1FBADA8E-4867-4ED1-8D97-62C07DAD7EBC(v=vs.100,d=loband).aspx

Using an attached property

Attached properties are curious beings. There is no direct analogue to anything else in the .NET framework. The closest may be extension methods, introduced in C# 3.0. Extension methods are a way of extending a type without inheriting from it (even if that type is sealed). Attached properties are dependency properties that are defined by some type, but can be used by (almost) any other typed object. That is, they can extend a type's properties without code derivation. In this recipe, we'll see how to use an existing attached property, and in the next one we'll learn how to create a new attached property.

Getting ready

Make sure Visual Studio is up and running.

How to do it...

We'll create an application that creates a rectangle and places it inside a canvas at exact coordinates using attached properties:

	Create a new WPF Application named CH01.SimpleAttached.
	Open the MainWindow.xaml file and create the following basic layout:<Grid>
<Canvas>
<RepeatButton Content="Move" />
</Canvas>
</Grid>

	This creates a grid which hosts a Canvas and that canvas hosts a RepeatButton. Let's add a Rectangle element to the Canvas and place it in some position:<Canvas>
<RepeatButton Grid.Row="1" Content="Move" />
<Rectangle x:Name="_rect" Width="50" Height="50"
Fill="Red" Stroke="Black" StrokeThickness="5"
Canvas.Left="30" Canvas.Top="40" />
</Canvas>

	Run the application. You should see something like this:[image: How to do it...]

	The Canvas.Left and Canvas.Top are attached properties. They are defined by the Canvas type, but they can be applied to any element (technically, anything that derives from DependencyObject). In this case, these two properties are applied to the Rectangle, essentially "extending" its property set with two new properties. The syntax DefiningClassName.PropertyName is the way to access an attached property in XAML.
	Now let's try changing these properties in code. When the repeat button is clicked, let's move the rectangle a little bit to the right. First, let's name the Rectangle, so we can easily refer to it in code:<Rectangle x:Name="_rect" Width="50" Height="50" Fill="Red"
Stroke="Black" StrokeThickness="5"
Canvas.Left="30" Canvas.Top="40" />

	Add a Click event handler to the RepeatButton. In the handler, add the following code:Canvas.SetLeft(_rect, Canvas.GetLeft(_rect) + 5);

	An attached property is accessed in code using a set of static methods on the class declaring the property (in this case, the Canvas). The first argument to these methods is the intended target of the property (in this case the Rectangle). Run the application. Click on the button (and hold); you should see the rectangle moving along to the right, 5 units at a time.

How it works...

An attached property is first and foremost a dependency property, meaning it supports all the capabilities of dependency properties. However, as an attached property is "attached" to an object that did not define it, a simple property like syntax is not possible as C# does not support the concept of attached properties natively. Instead, the declaring class provides two static methods, named DeclaringType.SetPropertyName and DeclaringType.GetPropertyName, that provide a way to set or get the property value for some object passed in as the first argument (as demonstrated in the last code snippet).

In XAML, things are simpler, as the XAML parser is aware of attached properties, and converts the simpler DeclaringType.PropertyName attribute to the aforementioned Set method.

There's more...

The actual implementation of the Set/Get static methods mentioned above is to call the regular DependencyObject.SetValue/GetValue as for a regular dependency property. This means that the code to move the rectangle could have been written as follows:

_rect.SetValue(Canvas.LeftProperty,
(double)_rect.GetValue(Canvas.LeftProperty) + 5);

Why an attached property?

One may wonder why to go to all this trouble for the Left and Top properties. Would it not be simpler to define the Left and Top properties on the (for example) UIElement class and be done with it? These properties could have been normal dependency properties and enjoy the simpler syntax they carry.

The reason is, that a Left or Top property may not always make sense. In fact, it only makes sense when the element is placed within a Canvas. What if the rectangle is inside a Grid? Or a StackPanel? The Left/Top properties wouldn't make sense. This leads to the conclusion that attached properties are a kind of contextual property — they are relevant under particular circumstances, so they can be "attached" if and when actually needed.

Does the declaring type "own" the property?

The previous example may lead to a wrong conclusion. It seems Canvas.Left and the like are only relevant when the element is inside a Canvas. Similarly, the Grid.Row and Grid.Column attached properties only make sense for elements placed inside a Grid. Is this somehow necessary from an attached property point of view?

Not at all. This is just coincidence. The above properties in fact make sense only for elements placed inside their respective declaring type, but that does not have to be the case. For example, suppose we have a button with a tool tip defined:
<Button Content="Copy" ToolTip="Copy the Selected Items" />

If the button is disabled (IsEnabled set to true), the tool tip does not appear at runtime. To make it appear even if the control is disabled, we must set the ToolTipService.ShowOnDisabled attached property to true:

<Button Content="Copy" ToolTip="Copy the Selected Items"
ToolTipService.ShowOnDisabled="True"/>

We set the property on the button, but it's defined in the ToolTipService class. This class is not an element (unlike the Canvas for example). In fact, it's a static class (instances of it cannot be created). So, there is no relationship between the button and the ToolTipService class, or between the ToolTip and ToolTipService classes, for that matter. The way this connection is established (so it can have some effect) will be revealed in the next recipe in this chapter.

See also

To create your own attached properties, refer to the next recipe, Creating an attached property.

Creating an attached property

An attached property can be used to somehow "enhance" or extend another object. In the case outlined in the previous recipe, Using an attached property, an element was placed at exact coordinates within a Canvas using the attached Canvas.Left and Canvas.Top properties. An attached property is a powerful tool for extending the behavior of any object without the need to inherit from the type of the object. In this task, we'll see this in action.

Getting ready

Make sure Visual Studio is up and running.

How to do it...

We'll create an attached property that would rotate any element it's attached to:

	Create a new WPF Application named CH01.CustomAttached.
	Open MainWindow.xaml. Add some elements in a Canvas (replace the default Grid) as follows:<Canvas>
<Ellipse Fill="Red" Width="100" Height="60" />
<Rectangle Fill="Blue" Width="80" Height="80"
Canvas.Left="100" Canvas.Top="100" />
<Button Content="Hello" Canvas.Left="130" Canvas.Top="30"
FontSize="20" />
</Canvas>

	Suppose we want to rotate a particular element around its center. We would have to write something like this (example for the Ellipse):<Ellipse Fill="Red" Width="100" Height="60"
RenderTransformOrigin=".5,.5">
<Ellipse.RenderTransform>
<RotateTransform Angle="30" />
</Ellipse.RenderTransform>
</Ellipse>

Although this is certainly possible, this makes for a lot of typing. Now imagine doing something similar for other elements. Let's make it shorter by defining and using an attached property.

	Add a new class to the project named RotationManager.
	We'll register a new attached property within this class; a property any other object can use. To do that, we'll take advantage of a Visual Studio code snippet, propa (similar in concept to propdp discussed in the task Creating a dependency property in this chapter). Inside the class definition, type propa (without the quotes). This is how it should look at this point:[image: How to do it...]

	Press Tab once, and fill in the property details as follows: the property type should be double, its name should be Angle, its owner class RotationManager, and its default value zero. You'll have to add a using statement for System.Windows namespace. The generated code should look as follows (after removing the comment and some formatting):class RotationManager : DependencyObject {
public static double GetAngle(DependencyObject obj) {
return (double)obj.GetValue(AngleProperty);
}
public static void SetAngle(DependencyObject obj,
double value) {
obj.SetValue(AngleProperty, value);
}
public static readonly DependencyProperty AngleProperty =
DependencyProperty.RegisterAttached("Angle",
typeof(double), typeof(RotationManager),
new UIPropertyMetadata(0.0));
}

	Now that we have an attached property definition, let's use it. We'll set it on our various elements. The first step is mapping an XML namespace to our namespace (as we learned in the recipe Creating custom type instances in XAML in this chapter). Open MainWindow.xaml and add a mapping on the root element, as in the following code snippet:xmlns:local="clr-namespace:CH01.CustomAttached"

	Now let's set the property with various values on the various elements. Here's an example for the Ellipse (notice the intellisense popping up to help):<Ellipse Fill="Red" Width="100" Height="60"
local:RotationManager.Angle="45"/>

	Add similar settings for the Rectangle and Button like as follows:<Rectangle Fill="Blue" Width="80" Height="80"
Canvas.Left="100" Canvas.Top="100"
local:RotationManager.Angle="30" />

<Button Content="Hello" Canvas.Left="130" Canvas.Top="30"
FontSize="20"
local:RotationManager.Angle="90"/>

	Notice that the designer preview shows no change. If you run the application, nothing happens. And why would anything happen? We declared a property and nothing else. Let's add some behavior logic if the property is actually used. For that, we'll add a property changed handler notification. Go back to RotationManager.cs and modify the property registration as follows:public static readonly DependencyProperty AngleProperty =
DependencyProperty.RegisterAttached("Angle",
typeof(double), typeof(RotationManager),
new UIPropertyMetadata(0.0, OnAngleChanged));

	The OnAngleChanged method will be called for any change in the property value on any object it's applied to. Let's add some simple logic that will rotate the element:private static void OnAngleChanged(DependencyObject obj,
DependencyPropertyChangedEventArgs e) {
var element = obj as UIElement;

if(element != null) {
element.RenderTransformOrigin = new Point(.5, .5);
element.RenderTransform = new RotateTransform(

(double)e.NewValue);
}
}

	If we switch back to the designer, we'll see the elements rotated according to the specified angles. If we run the application, we'll see something like this:

[image: How to do it...]
There we have it. An easy way to rotate any element by using an attached property.

How it works...

Attached properties are registered similarly to regular dependency properties. In terms of functionality, they are dependency properties. This means they support everything a dependency property supports: data binding, animation, and so on. An attached property can be defined by any class (RotationManager in our example) and can be applied to any object whose type derives from DependencyObject.

Simply registering an attached property has no effect on its own. There must be some "extra" code that looks for that property and does something when it's applied or changed. In the example shown, this is done by specifying a property changed handler, called by WPF whenever the property is changed on any object. In the example code, we restrict using a UIElement-derived type, as this is the first type that supports RenderTransform and RenderTransformOrigin. This also shows the weakness of attached properties: it's not possible to know whether specifying the property on some object is beneficial. We could have thrown an exception if the object was not UIElement-derived to somewhat rectify this (albeit at runtime rather than compile time), but this is not typically employed (although we could have written something with Debug.WriteLine to indicate this needs attention), as there may be other code that does not consider this an invalid setting.

There's more...

The property change notification scheme is typically used by WPF with attached properties that are defined by panels, such as Canvas, DockPanel, and Grid. Note that the panels only look for the relevant attached properties on their immediate children (and not grandchildren). This is not a limitation of attached properties, it's simply the way these panels work. Although attached properties within panels are common, there are other ways these properties can be used.

One possibility is to use the existence of these property values within styles (a complete treatment of styles is in given Chapter 8) or templates (templates are discussed in Chapter 6 and Chapter 8). For now, think of a style as a grouping of related settings that can be applied as a group to an element. For example, the following style accomplishes roughly the same thing as our property change handler:

<Style TargetType="Button">
<Setter Property="RenderTransformOrigin" Value=".5,.5" />
<Setter Property="RenderTransform">
<Setter.Value>
<RotateTransform Angle="{Binding Path=(local:RotationManager.Angle), RelativeSource={RelativeSource Mode=FindAncestor, AncestorType=Button}}" />
</Setter.Value>
</Setter>
</Style>

Of course, this example works with buttons only because of the targeted style (style that works on buttons only), but the result is the same. Note the parentheses around the attached property name. This is essential — otherwise the XAML parser does not understand this to be an attached property; it interprets local:RotationManager as the property name (and expects Angle to be a sub-property). Also, leaving out the "Path=" (as is customary in binding expressions), causes the expression to fail (for a similar reason).
Reusing existing attached properties

An attached property is (paradoxically) a detached entity. It has no special affinity to the declaring type. This means we can use an already defined attached property if it's typed appropriately, named appropriately, and has no use in the needed situation. In our example, we need an attached property that is of type double, has an intuitive enough name (maybe something with "angle" or "rotate"), and is unused in scenarios where the use of our property makes sense.

Clearly, it's not easy finding such a property, but sometimes one may get lucky. For instance, if we elect to go for the attached property ToolTipService.HorizontalOffset (typed as double), we can achieve the same effect as previously (with a style setter) without defining a new attached property. This is not a good choice in this case, as an offset is not an angle, and clearly tooltips have nothing to do with rotation. The worse problem here is that there may be a legitimate reason to place that property on a button (to cater offsetting a tooltip), so that reusing for rotation purposes would collide with the tooltip, making only one a winner. Still, the general concept holds any attached property can be reused.
Attached property reuse is possible in styles, templates (data template and control template), and triggers (within styles and templates).

See also

For background on dependency properties, check out the recipe Creating a dependency property in this chapter.

Accessing a static property from XAML

XAML provides an easy way to set values of properties type converters and the extended property syntax allow for flexible setting of values. However, some things cannot be expressed as a simple value, such as setting a property to the value of some static property.

Getting ready

Make sure Visual Studio is up and running.

How to do it...

We'll create an application that uses a static property from within XAML:

	Create a new WPF Application named CH01.StaticProperties.
	Open MainWindow.xaml. Replace the Grid element with a StackPanel.
	Add some shapes as shown in the following code block:<StackPanel>
<Ellipse Stroke="Black" Height="50" />
<Rectangle Stroke="Black" Height="50" />
</StackPanel>

	Suppose we want to fill the ellipse with the desktop color selected by the user in Windows. WPF provides the SystemColors class, with many static properties that return a Brush representing the user's choice. For the desktop, this is a DesktopBrush property. We can try the following:<Ellipse Stroke="Black" Height="50"
Fill="SystemColors.DesktopBrush" />

	This throws an exception at runtime, as it cannot be converted to any "known" color (such as Red or Blue). To access a static property, we must use the {x:Static} markup extension, as follows:<Ellipse Stroke="Black" Height="50"
Fill="{x:Static SystemColors.DesktopBrush}" />

	This works. You can verify this by going to Control Panel, then selecting Personalization (on Windows 7 or 8).[image: How to do it...]

	Select Window Color (switch to the classic theme first if the following window is shown differently). The Window Color and Appearance dialog is displayed:[image: How to do it...]

	Change the desktop color and run the application again. You should see the ellipse filled with the new color.
	Similarly, let's fill the rectangle with the active window caption color:<Rectangle Stroke="Black" Height="50"
Fill="{x:Static SystemColors.ActiveCaptionBrush}"/>

	Running the application shows something like the following:[image: How to do it...]

	In this case, the active caption color on my system is a gradient, so the ActiveCaptionBrush provides the left side. The right side is provided by the GradientActiveCaptionBrush property. They are both brushes. If we wanted to recreate the caption gradient within the rectangle, we would need color objects, not brushes. Fortunately, these are provided via properties in the same class, named ActiveCaptionColor and GradientActiveCaptionColor. Let's combine these in a LinearGradientBrush:<Rectangle Stroke="Black" Height="50">
<Rectangle.Fill>
<LinearGradientBrush EndPoint="1,0">
<GradientStop Offset="0"
Color="{x:Static SystemColors.ActiveCaptionColor}" />
<GradientStop Offset="1"
Color="{x:Static SystemColors.GradientActiveCaptionColor}" />
</LinearGradientBrush>
</Rectangle.Fill>
</Rectangle>

	This is the final result:

[image: How to do it...]

How it works...

XAML basically has very few capabilities. It can create objects, set values for properties, and set up event handlers. This is intentional, as XAML is declarative in nature. It cannot, for instance, call methods. That would make it closer to an imperative language (such as C#), which would make its existence dubious at best.

Sometimes, however, declarative operations require more than setting up properties. A method may be involved, or some other unusual construct, but the intent may still be declarative. This is where markup extensions come in. They provide a way to extend XAML with new (hopefully declarative) capabilities.

A markup extension is a class that derives from System.Windows.Markup.MarkupExtension and implements a single method, ProvideValue. In this example we have used the {x:Static} markup extension, which allows accessing any static property (whether it belongs to WPF or not; if not, a XAML namespace mapping is required as explained in the recipe Creating custom type instances in XAML in this chapter). {x:Static} is implemented by the System.Windows.Markup.StaticExtension class. Note that if the markup extension class ends with "Extension" we can remove it when referring to it in XAML the XAML compiler will search with and without the word "Extension". This means {x:Static} can be written {x:StaticExtension}. In fact, most markup extensions end with "Extension" (a notable exception is the Binding markup extension).

There's more...

There are other built in markup extensions. Here are some of the simplest:
	{x:Null} specifies the null reference
	{x:Type SomeType} is the equivalent to the typeof(SomeType) operator in C#

We'll look at other markup extensions in subsequent chapters.

Creating a custom markup extension

Markup extensions are used to extend the capabilities of XAML, by providing declarative operations that need more than just setting some properties. These can be used to do pretty much anything, so caution is advised — these extensions must preserve the declarative nature of XAML, so that non-declarative operations are avoided; these should be handled by normal C# code.

Getting ready

Make sure Visual Studio is up and running.

How to do it...

We'll create a new markup extension that would provide random numbers and use it within a simple application:
	First, we'll create a class library with the markup extension implementation and then test it in a normal WPF application. Create a new Class Library project named CH01.CustomMarkupExtension. Make sure the checkbox Create directory for solution is checked, and click on OK:[image: How to do it...]

	The base MarkupExtension class resides in the System.Xaml assembly. Add a reference to that assembly by right-clicking the References node in the Solution Explorer, and selecting Add Reference.... Scroll down to System.Xaml and select it.
	Delete the file Class1.cs that was created by the wizard.
	Right-click the project node, and select Add Class.... Name the class RandomExtension and click on Add. This markup extension will generate a random number in a given range.
	Mark the class as public and inherit from MarkupExtension.
	Add a using statement to System.Windows.Markup or place the caret somewhere over MarkupExtension, click on the smart tag (or press Ctrl +. (dot), and allow the smart tag to add the using statement for you. This is how the class should look right now:public class RandomExtension : MarkupExtension { }

	We need to implement the ProvideValue method. The easiest way to get the basic prototype is to place the caret over MarkupExtension and use the smart tag again, this time selecting Implement abstract class. This is the result:public class RandomExtension : MarkupExtension {
public override object ProvideValue(IServiceProvider sp) {
throw new NotImplementedException();
}
}

	Before we create the actual implementation, let's add some fields and constructors:readonly int _from, _to;
public RandomExtension(int from, int to) {
_from = from; _to = to;
}
public RandomExtension(int to)
: this(0, to) {
}

	Now we must implement ProvideValue. This should be the return value of the markup extension a random number in the range provided by the constructors. Let's create a simple implementation:static readonly Random _rnd = new Random();
public override object ProvideValue(IServiceProvider sp) {
return (double)_rnd.Next(_from, _to);
}

	Let's test this. Right-click on the solution node in Solution Explorer and select Add and then New Project....[image: How to do it...]

	Create a WPF Application project named CH01.TestRandom.
	Add a reference to the class library just created.
	Open MainWindow.xaml. We need to map an XML namespace to the namespace and assembly our RandomExtension resides in:xmlns:mext="clr-namespace:CH01.CustomMarkupExtension;
assembly=CH01.CustomMarkupExtension"

	Replace the Grid with a StackPanel and a couple of TextBlocks as follows:<StackPanel>
<TextBlock FontSize="{mext:Random 10, 100}" Text="Hello"
x:Name="text1"/>
<TextBlock Text="{Binding FontSize, ElementName=text1}" />
</StackPanel>

	The result is a TextBlock that uses a random font size between 10 and 100. The second TextBlock shows the generated random value.

[image: How to do it...]

How it works...

A markup extension is a class inheriting from MarkupExtension, providing some service that cannot be done with a simple property setter. Such a class needs to implement one method: ProvideValue. Whatever is returned provides the value for the property. ProvideValue accepts an IServiceProvider interface that allows getting some "context" around the markup extension execution. In our simple example, it wasn't used.

Any required arguments are passed via constructor(s). Any optional arguments can be passed by using public properties (as the next section demonstrates).
Let's try using our markup extension on a different property:
<TextBlock Text="{mext:Random 1000}" />

We hit an exception. The reason is that our ProvideValue returns a double, but the Text property expects a string. We need to make it a bit more flexible. We can query for the expected type and act accordingly. This is one such service provided through IServiceProvider:

public override object ProvideValue(IServiceProvider sp) {
int value = _rnd.Next(_from, _to);
Type targetType = null;
if(sp != null) {
var target = sp.GetService(typeof(IProvideValueTarget))
as IProvideValueTarget;
if(target != null) {
var clrProp = target.TargetProperty as PropertyInfo;

if(clrProp != null)
targetType = clrProp.PropertyType;
if(targetType == null) {
var dp = target.TargetProperty
as DependencyProperty;

if(dp != null)
targetType = dp.PropertyType;
}
}
}
return targetType != null ?
Convert.ChangeType(value, targetType) :
value.ToString();
}

You'll need to add a reference for the WindowsBase assembly (where DependencyProperty is defined). IServiceProvider is a standard .NET interface that is a kind of "gateway" to other interfaces. Here we're using IProvideValueTarget, which enables discovering what property type is expected, with the TargetProperty property. This is either a PropertyInfo (for a regular CLR property) or a DependencyProperty, so appropriate checks must be made before the final target type is ascertained. Once we know the type, we'll try to convert to it automatically using the Convert class, or return it as a string if that's not possible.

For more information on other interfaces that can be obtained from this IServiceProvider, check this page on the MSDN documentation: http://msdn.microsoft.com/en-us/library/B4DAD00F-03DA-4579-A4E9-D8D72D2CCBCE(v=vs.100,d=loband).aspx.

There's more...

Constructors are one way to get parameters for a markup extension. Properties are another, allowing optional values to be used if necessary. For example, let's extend our random extension, so that it is able to provide fractional values and not just integral ones. This option would be set using a simple public property:

public bool UseFractions { get; set; }

The implementation of ProvideValue should change slightly; specifically, calculation of the value variable:
double value = UseFractions ?
_rnd.NextDouble() * (_to - _from) + _from :
(double)_rnd.Next(_from, _to);

To use it, we set the property after the mandatory arguments to the constructor:
<TextBlock Text="{mext:Random 1000, UseFractions=true}" />

Don't go overboard

Markup extensions are powerful. They allow arbitrary code to run in the midst of XAML processing. We just need to remember that XAML is, and should remain, declarative. It's pretty easy to go overboard, crossing that fine line. Here's an example: let's extend our RandomExtension to allow modifying the property value at a regular interval. First, a property to expose the capability:

public TimeSpan UpdateInterval { get; set; }

Now, some modifications to the ProvideValue implementation:
if(UpdateInterval != TimeSpan.Zero) {
// setup timer...
var timer = new DispatcherTimer();
timer.Interval = UpdateInterval;
timer.Tick += (sender, e) => {
value = UseFractions ?
_rnd.NextDouble() * (_to - _from) + _from :
(double)_rnd.Next(_from, _to);
finalValue = targetType != null ?
Convert.ChangeType(value, targetType) :
value.ToString();
if(dp != null)
((DependencyObject)targetObject).SetValue(
dp, finalValue);
else if(pi != null)
pi.SetValue(targetObject, value, null);
};
timer.Start();
}

targetObject is obtained by calling IProvideValueTarget.TargetObject. This is the actual object on which the property is to be set.
And the markup:
<TextBlock Text="This is funny"
FontSize="{mext:Random 10, 50, UpdateInterval=0:0:1}" />

This is certainly possible (and maybe fun), but it's probably crossing the line.

Handling routed events

Events are essentially notifications from an object to the outside world a variation on the "observer" design pattern. Most of the time an object is told what to do via properties and methods. Events are its way of talking back to whoever is interested. The concept of events existed in .NET since its inception, but WPF has something to say about the way events are implemented. WPF introduces routed events, an enhanced infrastructure for raising and handling events, which we'll look at in this recipe.

Getting ready

Make sure Visual Studio is up and running.

How to do it...

We'll create a simple drawing application that uses routed events to handle user interaction:

	Create a new WPF Application named CH01.SimpleDraw. This will be a simple drawing program.
	Add some markup to MainWindows.xaml that includes a Canvas and some rectangle objects to select drawing brushes:<Canvas Background="White" Name="_root">
</Canvas>

	To do some drawing, we'll handle the MouseLeftButtonDown, MouseMove, and MouseUp events on the canvas object. Within the Canvas tag, type MouseLeftButtonDown=. Intellisense will pop up, suggesting to add a default handler name. Resist the temptation, and type OnMouseDown:<Canvas Background="White" Name="_root"
MouseLeftButtonDown="OnMouseDown">

	Right-click on OnMouseDown and select Navigate to Event Handler. Visual Studio will add the required handler method in the code behind file (MainWindow.xaml.cs) and jump straight to it:private void OnMouseDown(object sender,
MouseButtonEventArgs e) {

}

	Add similar handlers for the MouseMove and MouseUp events, named OnMouseMove and OnMouseUp, respectively.
	Let's add simple drawing logic. First, add the following fields to the MainWindow class:Point _pos;
bool _isDrawing;
Brush _stroke = Brushes.Black;

	Now the OnMouseDown event handler:void OnMouseDown(object sender, MouseButtonEventArgs e) {
_isDrawing = true;
_pos = e.GetPosition(_root);
_root.CaptureMouse();
}

	Next, we'll handle mouse movement, like in the following code snippet:void OnMouseMove(object sender, MouseEventArgs e) {
if(_isDrawing) {
routed eventshandlingLine line = new Line();
line.X1 = _pos.X;
line.Y1 = _pos.Y;
_pos = e.GetPosition(_root);
line.X2 = _pos.X;
line.Y2 = _pos.Y;
line.Stroke = _stroke;
line.StrokeThickness = 1;
_root.Children.Add(line);
}
}

	If we're in drawing mode, we create a Line object, set its two points locations and add it to the Canvas.
	Finally, when the mouse button is released, just revert things to normal:void OnMouseUp(object sender, MouseButtonEventArgs e) {
_isDrawing = false;
_root.ReleaseMouseCapture();
}

	Run the application. We now have a functional little drawing program. Event handling seemed to be as simple as expected.[image: How to do it...]

	Let's make it a little more interesting, with the ability to change drawing color. We'll add some rectangle elements in the upper part of the canvas. Clicking any of them should change the drawing brushing from that point on. First, the rectangles:<Rectangle Stroke="Black" Width="25" Height="25"
Canvas.Left="5" Canvas.Top="5" Fill="Red" />
<Rectangle Stroke="Black" Width="25" Height="25"
Canvas.Left="35" Canvas.Top="5" Fill="Blue" />
<Rectangle Stroke="Black" Width="25" Height="25"
Canvas.Left="65" Canvas.Top="5" Fill="Yellow" />
<Rectangle Stroke="Black" Width="25" Height="25"
Canvas.Left="95" Canvas.Top="5" Fill="Green" />
<Rectangle Stroke="Black" Width="25" Height="25"
Canvas.Left="125" Canvas.Top="5" Fill="Black" />

	How should we handle clicks on the rectangles? One obvious way is to attach an event handler to each and every rectangle. But that would we wasteful. Events such as MouseLeftButtonDown "bubble up" the visual tree and can be handled at any level. In this case, we'll just add code to the OnMouseDown method:void OnMouseDown(object sender, MouseButtonEventArgs e) {
var rect = e.Source as Rectangle;
if(rect != null) {
_stroke = rect.Fill;
}
else {
_isDrawing = true;
_pos = e.GetPosition(_root);
_root.CaptureMouse();
}
}

	Run the application and click the rectangles to change colors. Draw something nice.

[image: How to do it...]

How it works...

WPF events are called routed events because most can be handled by elements that are not the source of the event. In the preceding example, the MouseLeftButtonDown was handled on the Canvas element, even though the actual event may have triggered on a particular Rectangle element. This is referred to as a routing strategy of bubbling.

When the left mouse button is pressed, we make a note that the drawing has started by setting _isDrawing to true (step 7). Then, we record the current mouse position relative to the canvas (_root) by calling the MouseButtonEventArgs.GetPosition method. And finally, although not strictly required, we "capture" the mouse, so that subsequent events will be sent to the Canvas and not any other window, even if the mouse pointer technically is not over the Canvas.
To properly ascertain which element was actually the source of the event, the RoutedEventArgs.Source property should be used (and not the sender, in our example the sender is always the Canvas).

There's more...

Bubbling is not the only routing strategy WPF supports. The opposite of bubbling is called tunneling; events with a tunneling strategy are raised first on the top level element (typically a Window), and then on its child, and so on, towards the element that is the actual source of the event. After the tunneling event has finished (calling any handlers along the way), its bubbling counterpart is raised, from the source up the visual tree towards the top level element (window).
A tunneling event always has its name starting with Preview. Therefore, there is PreviewMouseLeftButtonDown and its bubbling counterpart is simply MouseLeftButtonDown.

A third routing strategy is supported, called Direct. This is the simplest strategy; the event is raised on the source element of the event and that's it. No bubbling or tunnelling occurs. By the way, only very few events use the Direct strategy (for example, MouseEnter and MouseLeave).

Stopping bubbling or tunneling

After a bubbling event is handled by some element it continues to bubble. The bubbling can be stopped by setting the RoutedEventArgs.Handled property to true.

If the event is a tunneling one — setting Handled to true stops the tunneling, but it also prevents the buddy-bubbling event from ever firing.

Attached events

Suppose we want to write a simple calculator application:
[image: Attached events]
This is a Grid that contains various Button controls.
We would like to use as few handlers as we can. For the "=" button, we can attach a specific handler and prevent further bubbling:
void OnCalculate(object sender, RoutedEventArgs e) {
// do operation
e.Handled = true;
}

What about the digit buttons? Again, we could add a click handler to each one, but that would be wasteful. A better approach would be to leverage the Click event's bubbling strategy and set a single handler on the container Grid.
Typing "Click=" on the Grid tag seems to fail. Intellisense won't help and in fact this won't compile. It may be obvious — a Grid has no Click event. Click is specific to buttons. Does this mean we can't set a Click handler on the Grid? Fortunately, we can.
WPF provides the notion of attached events. Such events can be handled by any element, even if that element's type does not define any such event. This is achieved through attached event syntax (similar to attached properties), such as the following code snippet:
<Grid ButtonBase.Click="OnKeyPressed">

The Click event is defined on the ButtonBase class, although Button.Click works just as well, because Button inherits from ButtonBase. Now we can look at the actual source of the click with the same RoutedEventArgs.Source described previously:
int digit;
string content = ((Button)e.Source).Content.ToString();
if(int.TryParse(content, out digit)) {
// a digit
}

You can find the complete calculator sample in the CH01.Calculator project, available with the downloadable source for this chapter.

Chapter 2. Resources

In this chapter we will cover:
	Using logical resources
	Dynamically binding to a logical resource
	Using user selected colors and fonts
	Using binary resources
	Accessing binary resources in code
	Accessing binary resources from another assembly
	Managing logical resources

Introduction

Traditional application resources consist of binary chunks of data, typically representing things such as icons, bitmaps, strings, and XML. In fact, the .NET framework provides generic support for these through the ResourceManager class.
WPF is no different — binary resources play an important role in a typical application. However, WPF goes a lot further with another kind of resource: logical resources. These are objects, any objects, which can be shared and used in a multitude of locations throughout the application; they can even be accessed across assemblies. Some of WPF's features, such as implicit (automatic) styles and type-based data templates, rely on the logical resources system.

In this chapter, we'll take a look at resources, binary and logical, their definition, and usage in XAML and code, and discuss various options and typical scenarios, such as combining resources (even across assemblies) and resource lookup and modifications.

Using logical resources

WPF introduces the concept of logical resources, objects that can be shared (and reused) across some part of a visual tree or an entire application. Logical resources can be anything, from WPF objects such as brushes, geometries, or styles, to other objects defined by the .NET Framework or the developer, such as string, List<>, or some custom typed object. This gives a whole new meaning to the term resources. These objects are typically placed inside a ResourceDictionary and located at runtime using a hierarchical search, as demonstrated in this recipe.

Getting ready

Make sure Visual Studio is up and running.

How to do it...

We'll create a simple application that demonstrates creating and using logical resources:

	Create a new WPF Application named CH02.SimpleResources.
	Open MainWindow.xaml and replace the Grid element with a StackPanel.
	Add a Rectangle element to the StackPanel, as shown in the following code snippet:<Rectangle Height="100" Stroke="Black">
<Rectangle.Fill>
<LinearGradientBrush>
<GradientStop Offset="0" Color="Yellow" />
<GradientStop Offset="1" Color="Brown" />
</LinearGradientBrush>
</Rectangle.Fill>
</Rectangle>

	Now we want to add an Ellipse element, whose Stroke is the same as the previous LinearGradientBrush. One way to do that is to simply make a copy:<Ellipse StrokeThickness="20" Height="100">
<Ellipse.Stroke>
<LinearGradientBrush>
<GradientStop Offset="0" Color="Yellow" />
<GradientStop Offset="1" Color="Brown" />
</LinearGradientBrush>
</Ellipse.Stroke>
</Ellipse>

This is wasteful duplication — of code causes a maintenance headache (and eventually a nightmare). More subtly, two brushes are created instead of one. Using a logical resource can solve this. Cut the LinearGradientBrush tag and paste it into the Resources property of the Window, as follows:

<Window.Resources>
<LinearGradientBrush x:Key="brush1">
<GradientStop Offset="0" Color="Yellow" />
<GradientStop Offset="1" Color="Brown" />
</LinearGradientBrush>
</Window.Resources>

The Resources property is a dictionary, so a key must be provided using the x:Key XAML attribute.

	To use the brush in XAML, we need the StaticResource markup extension. Here's the revised markup for the rectangle and ellipse:<Rectangle Height="100" Stroke="Black"
Fill="{StaticResource brush1}" />
<Ellipse StrokeThickness="20" Height="100"
Stroke="{StaticResource brush1}" />

	Running the application shows the following:

[image: How to do it...]

How it works...

Every element (deriving from FrameworkElement) has a Resources property of type ResourceDictionary. This means that every element can have resources associated with it. In XAML, the x:Key attribute must be specified (most of the time; exceptions to this rule will be discussed in relation to styles and data templates). The preceding defined resource looks as follows inside the Resources collection of the Window:

<Window.Resources>
<LinearGradientBrush x:Key="brush1">
<GradientStop Offset="0" Color="Yellow" />
<GradientStop Offset="1" Color="Brown" />
</LinearGradientBrush>
</Window.Resources>

Using this resource in XAML requires the StaticResource markup extension (the "static" part will become clear after the next recipe, Dynamically binding to a logical resource) with the resource key provided:

<Rectangle Fill="{StaticResource brush1}" />

This causes a search from the current element (the Rectangle) up the element tree, looking for a resource with the key brush1; if found, its associated object is used as the property's value. If not found on any element up to the root Window, the search continues within the resources of Application (typically located in the App.xaml file). If not found even there, a runtime exception is thrown. This is depicted in the following diagram:
[image: How it works...]

There's more...

The same lookup effect can be achieved in code by using the FrameworkElement.FindResource method, as follows:

Brush brush = (Brush)x.FindResource("brush1");

This has the same effect as using {StaticResource}. If an exception is undesirable in case of a non-existent resource, the TryFindResource can be used instead:
Brush brush = (Brush)x.TryFindResource("brush1");
if(brush == null) { // not found
}

This method returns null if the specified resource does not exist.
A resource can also be directly accessed using an indexer, provided we know on which object it's actually defined. In our example, the brush is defined on the resources of Window, so can be accessed directly as follows:
Brush brush = (Brush)this.Resources["brush1"];

Adding or deleting resources dynamically

The Resources dictionary can be manipulated at runtime, by adding or removing resources. Here's how to add a new resource:

this.Resources.Add("brush2", new SolidColorBrush(
Color.FromRgb(200, 10, 150)));

This adds a new resource (a Brush) to the Window's resources collection. Later, calls to FindResource can locate the new resource. A resource can be removed as well:
this.Resources.Remove("brush1");

It's important to realize that any object bound to the resource with {StaticResource} does not lose the resource in any way — it's still being referenced by it. However, future FindResource calls will fail to find that resource.

Modifying resources

All {StaticResource} (or FindResource) lookups with a specific key use the same object instance. This means that modifying the resource properties (not replacing the resource with a different one), impacts automatically all properties using that resource.

For example, if we modify the brush resource as follows:
var brush = (LinearGradientBrush)this.Resources["brush1"];
brush.GradientStops.Add(new GradientStop(Colors.Blue, .5));

This causes immediate changes to the output:

[image: Modifying resources]

Resources that use other resources

A resource can use (as part of its definition) another resource. Here's an example:

<LinearGradientBrush x:Key="brush3">
<GradientStop Offset="0" Color="Red" />
<GradientStop Offset="1" Color="Orange" />
</LinearGradientBrush>
<DataTemplate x:Key="temp1">
<Rectangle Fill="{StaticResource brush3}"
StrokeThickness="4" Stroke="DarkBlue" />
</DataTemplate>

The Rectangle inside the DataTemplate uses the LinearGradientBrush defined just above it. The important point is that the resource, brush3 must be declared before referencing it using {StaticResource}; this is due to the way the XAML parser hunts down resources.

Non-shared resources

Resources are shared by default, meaning there's only one instance created no matter how many lookups exist for that resource. Sometimes it's useful to get new instances for every lookup of a particular resource. To do that, we can add the attribute x:Shared="False" in defining the resource. Note there's no intellisense for that, but it works.

Other locations for resources

Elements are not the only objects that have the Resources property (a ResourceDictionary). Other objects that are not elements may have them as well. The canonical example is the template types (deriving from FrameworkTemplate): DataTemplate, ControlTemplate, and ItemsPanelTemplate. They can have resources that are available when those templates are used (the exact way this works will be explained in Chapter 6, Data Binding, and Chapter 8, Style, Triggers, and Control Templates, where templates are discussed).

Dynamically binding to a logical resource

As we saw in the previous recipe, Using logical resources, binding to a resource is achieved in XAML by using the StaticResource markup extension. But what happens if we replace a specific resource? Would that be reflected in all objects using the resource? And if not, can we bind to the resource dynamically?

Getting ready

Make a copy of the previous recipe project CH02.SimpleResources, or create a new project named CH02.DynamicVsStatic and copy the Window XAML contents from the previous project to the new one.

How to do it...

We'll replace StaticResource with DynamicResource and see the effect:
	Open MainWindow.xaml. Add a button to the end of the StackPanel labeled Replace brush and connect it to an event handler named OnReplaceBrush. This is the added markup:<Button Content="Replace brush"
Click="OnReplaceBrush" />

	In the event handler, we'll replace the brush resource named brush1 with a completely new brush:void OnReplaceBrush(object sender, RoutedEventArgs e) {
var brush = new RadialGradientBrush();
brush.GradientStops.Add(new GradientStop(Colors.Blue, 0));
brush.GradientStops.Add(new GradientStop(Colors.White, 1));
this.Resources["brush1"] = brush;
}

	Run the application and click on the button. You'll notice nothing happens. Now change the StaticResource markup extension to DynamicResource on the Rectangle:<Rectangle Height="100" Stroke="Black"
Fill="{DynamicResource brush1}" />

	Now run the application and click on the button. You'll see the Fill property of Rectangle has changed to the new resource value:[image: How to do it...]

How it works...

The DynamicResource markup extension binds to a resource dynamically, which means that if the object itself is replaced with a new object (with the same key), the new resource is used. StaticResource bound properties keep referencing the old object.

This dynamic behavior allows for interesting effects. For instance, themes can be changed by swapping resources as long as the keys are the same.

There's more...

The StaticResource markup extension causes binding to the resource to occur at construction time (in the call to InitializeComponent of the Window). DynamicResource, on the other hand, is only bound when actually needed. This means that DynamicResource is a bit faster at Window load time, while consuming (naturally) more resources, as it needs to be notified when the resource is replaced.
Also, DynamicResource does not throw an exception if the key does not exist. If that key appears later, it will bind to the resource correctly.

StaticResource should be used most of the time unless there is a need to replace resources on the fly, in which case DynamicResource should be used.

Using user-selected colors and fonts

Sometimes it's useful to use one of the selected colors or fonts the user has chosen in the Windows Control Panel Personalization applet (or the older Display Settings in Windows XP), such as Window caption, Desktop color, and Selection color. Furthermore, an application may want to react dynamically to changes in those values. This can be achieved by accessing special resource keys within the SystemColors and SystemFonts classes.

Getting ready

Make sure Visual Studio is up and running. Go to the Control Panel Personalization applet and change the theme to Classic. This will make it easy to see the dynamic changes when colors of fonts change.

How to do it...

We'll create an application that uses some user-selected color and font, and reacts automatically to changes in those:

	Create a new WPF Application named CH02.UserSelectedColorsFonts.
	Open MainWindow.xaml. Add two rows to the grid.
	Add a Rectangle covering the first row and a TextBlock in the lower row. The entire markup should look as follows:<Grid>
<Grid.RowDefinitions>
<RowDefinition />
<RowDefinition Height="Auto" />
</Grid.RowDefinitions>
<Rectangle Margin="10" />
<TextBlock Grid.Row="1"
Text="Hello from Active Caption Font"
/>
</Grid>

	We want the rectangle filled with the color of the desktop as selected by the user in Control Panel. Add the following markup for the Fill rectangle property:Fill="{DynamicResource {x:Static SystemColors.DesktopBrushKey}}"

	The fill color should turn to the one set in Control Panel | Personalization. Now let's set the font family and font size to those for the window caption as defined in Control Panel. Add the following markup within the TextBlock:FontFamily="{DynamicResource {x:Static SystemFonts.CaptionFontFamilyKey}}"
FontSize="{DynamicResource {x:Static SystemFonts.CaptionFontSizeKey}}"/>

	Run the application. This is how it may look (yours may be different depending on the settings in Control Panel):[image: How to do it...]

	Let's check if this is, in fact, dynamic. Open Control Panel and find the Personalization applet (you may need to show all control panel items before you can locate it):[image: How to do it...]

	Select Window Color at the bottom of the window:[image: How to do it...]

	Change the desktop color to something else, and click on Apply:[image: How to do it...]

	Note the rectangle fill is immediately updated without the need to restart the application:[image: How to do it...]

How it works...

The resource key supplied as part of an entry in a ResourceDictionary need not be a string. In fact, it's typed as an object. The following piece of XAML indicates that the key to a DynamicResource is a static property named SystemColors.DesktopBrushKey:

Fill="{DynamicResource {x:Static SystemColors.DesktopBrushKey}}"

Looking at this property reveals it's type as ResourceKey, which is an abstract class, so this must be something that derives from it (the exact type is not important, it's internal to the PresentationFramework assembly).
This means that this key object can do whatever is necessary behind the scenes, to be notified of changes in the system colors and reflect those changes back through the standard way when using a DynamicResource.
The font properties use the same idea. There are static properties ending with "Key" for every setting the user can change via the Personalization dialog. A similar class, SystemParameters, contains a bunch of other general properties (with a "Key" suffix), that may be changed (some via the Personalization dialog, some with code only). An example is SystemParameters.CaptionHeightKey, which indicates the current standard height of a caption of a window. This can help (for example) when constructing our own window "template" (meaning it doesn't have to look like a standard window); we may want to use some of these key properties to make our window unique on the one hand, but still have consistent (for example) caption height. We'll see an example of that in Chapter 5, Application and Windows.

There's more...

The aforementioned classes, SystemColors, SystemFonts, and SystemParameters expose the current values of the various properties as regular static properties. This means we could have used the following line to get the current brush color of the desktop:

Fill="{x:Static SystemColors.DesktopBrush}"

Although this is much simpler, and appears to work, it is not dynamic. This means the value is read at runtime, when the XAML is parsed (typically, when the window is constructed), but will remain with that value until that window is recreated (typically, when the application is restarted).
The advantage of this scheme (apart from its simplicity) is that it's lighter; WPF does not have to monitor that color for changes. This may suffice in scenarios when immediate response to colors/fonts/metrics changes is not necessary (and is probably unlikely to happen anyway).

Using binary resources

Binary resources are just that: chunks of bytes that typically mean something to the application, such as image or font files. In this recipe, we'll cover the basics of adding and using a binary resource.

Getting ready

Make sure Visual Studio is up and running.

How to do it...

We'll create a simple application that uses an image file added as a binary resource:

	Create a new WPF Application named CH02.BinaryResources.
	Let's add a logical images folder to the project. Right-click the project node in Solution Explorer, and select Add | New Folder.[image: How to do it...]

	The folder is created as NewFolder1. Change its name to Images.
	Right-click on the newly created Images folder, and select Add | Existing Item...:[image: How to do it...]

	Navigate to some image file on your system (don't forget to change the file type filter to Image files at the bottom of the open file dialog box). I've used apple.png (found in the downloadable source for this chapter), but any image will do, preferably no larger than 48 x 48 pixels. The solution explorer should look something as follows:[image: How to do it...]

	Right-click on the newly added file and select Properties:[image: How to do it...]

	In the Properties windows, make sure the Build Action is set to Resource:[image: How to do it...]

	Open MainWindow.xaml, and replace the Grid panel with a StackPanel.
	Add a Button control with the following markup:<Button Margin="10" HorizontalAlignment="Center" Padding="4">
<StackPanel Orientation="Horizontal">
<Image Source="Images/apple.png" />
<TextBlock VerticalAlignment="Center" Margin="10,0,0,0"
FontSize="16" Text="Click me, please!" />
</StackPanel>
</Button>

	If the image you selected is large, change the Image element's Width and Height properties to something like 32 x 32 units.
	Notice the button shows in the designer with the selected image and text. Running the application produces the following output:[image: How to do it...]

	Add another image to the Images folder, such as Jellyfish.jpg from the {My Pictures}\Sample Pictures folder.
	Right-click on the newly added image and select Properties.
	Change the Build Action to Content.
	Change the Copy to Output Directory property to Copy if newer:[image: How to do it...]

	Add a property markup for the Window.Background property as follows:<Window.Background>
<ImageBrush ImageSource="Images/jellyfish.jpg" />
</Window.Background>

	Run the application. You should see the window background turning into a jellyfish image:[image: How to do it...]

	Close the application.
	Right-click on the project node in Solution Explorer and select Open Folder in Windows Explorer:[image: How to do it...]

	Navigate to the Bin\Debug\Images subfolder. Note the Jellyfish.jpg file.
	Delete the file.
	Copy the file desert.jpg from the {My Pictures}\Sample Pictures folder (or some other image to the currently open folder).
	Rename the file to Jellyfish.jpg:[image: How to do it...]

	Navigate back to the Debug folder and run the application directly from Windows Explorer (without doing any rebuilding).
	You should see the window background as the desert image instead of a jellyfish:[image: How to do it...]

	Try the same approach on the apple.png file stored in the main project folder under Images. Note that running the application from Windows Explorer (without rebuilding) does not change the image.

How it works...

The first added binary resource (the image file) is stored as a resource inside the compiled assembly. This is because the Build Action was set to Resource on the image. This makes the actual image file unnecessary when deploying the application.

These resources are part of the assembly and are stored in a resource named MyApplication.g.resources, where MyApplication is the name of the assembly. Here's a snapshot from .NET Reflector:
[image: How it works...]
Accessing the resource in XAML can be done in several ways. In the previous example, an Image was used with the Source property set to the relative URI of the image (Images/apple.png). This works because the Source property (of type ImageSource) has an appropriate type converter. This relative URI can also be used in code, as follows:
_image.Source = new BitmapImage(
new Uri("Images/apple.png", UriKind.Relative));

When the Build Action is set to Content (as in the jellyfish example), the resource is not included in the assembly. This makes it more appropriate when the resource needs to change often (perhaps by a designer) and a rebuild would be undesirable. Also, if the resource is large, and not always needed, it's better to leave it off to the resulting assembly. Note that to access the resource, the exact same syntax is used. This is possible because WPF adds the AssemblyAssociatedContentFile attribute to the assembly, specifying the name of the resource file. Here's a view with .NET Reflector:
[image: How it works...]
That's why we were able to replace the jellyfish image with a desert image and get it to show correctly given the name jellyfish.jpg without doing any kind of rebuilding.

There's more...

The relative URI is actually a shortcut to a more elaborate (and complete) URI scheme, called pack URI. The following markup:
Source="Images/apple.png"

Is equivalent to this (more verbose) markup:
Source="pack://application:,,,/Images/apple.png"

This seems to add no value, but is actually necessary in other cases where no nice type converter exists.
The pack URI scheme is borrowed from the XML Paper Specification (XPS) , and the strange three commas are not optional values with some defaults, but rather escaped slashes. The reason is that this is a URI embedded inside another URI, so some disambiguation is required. You can find more information on pack URIs in the MSDN docs at http://msdn.microsoft.com/EN-US/library/aa970069(VS.110).aspx. We'll see examples of usage of this scheme in later recipes.
Embedded Resource

The Build Action options include something called Embedded Resource. Although resources are embedded by definition, this setting cannot be used with WPF and should be avoided.

Accessing binary resources in code

Accessing a binary resource in XAML is pretty straightforward, but this works for standard resources such as images. Other types of resources may be used in code, and this requires a different approach.

Getting ready

Make sure Visual Studio is up and running.

How to do it...

We'll create an application that shows book information read programmatically from an XML file stored as a resource:
	Create a new WPF Application named CH02.BinaryResourcesInCode.
	Add the books.xml (found in the downloadable source for this chapter) file as a resource (make sure Build Action is set to Resource). As an alternative, you can create the file yourself and type its contents as shown in the next step.
	The books.xml file looks something like the following:<Books>
<Book Name="Windows Internals" Author="Mark Russinovich" />
<Book Name="Essential COM" Author="Don Box" />
<Book Name="Programming Windows with MFC"
Author="Jeff Prosise" />
</Books>

	Open MainWindow.xaml. Add two rows to the Grid with a TextBox and a Button:<Grid>
<Grid.RowDefinitions>
<RowDefinition Height="Auto" />
<RowDefinition />
</Grid.RowDefinitions>
<Button Content="Read Book Data" FontSize="14" />
<TextBox Grid.Row="1" IsReadOnly="True" x:Name="_text"
FontSize="16" Margin="4"/>
</Grid>

	Add a Click event handler to the button.
	Inside the Click event handler, we want to get to the books.xml resource. Add the following code:var info = Application.GetResourceStream(new Uri("books.xml",
UriKind.Relative));

	This returns a StreamResourceInfo. Now we can access the Stream property and use it in any way we want. Here's an example (you'll need to add a using System.Xml.Linq statement):var books = XElement.Load(info.Stream);
var bookList = from book in books.Elements("Book")
orderby (string)book.Attribute("Author")
select new {
Name = (string)book.Attribute("Name"),
Author = (string)book.Attribute("Author")
};
foreach(var book in bookList)
_text.Text += book.ToString() + Environment.NewLine;

	Running the application and clicking the button produces the following:

[image: How to do it...]

How it works...

The Application.GetResourceStream static method provides a programmatic way of accessing a resource using its relative URI (or absolute with the pack scheme). It returns a StreamResourceInfo object, which contains two properties: ContentType returns the MIME type (such as image/jpeg or text/xml) and, more importantly, the Stream property which provides access to the actual binary data.

If the resource has been marked with a Build Action of Content, then the similar looking Application.GetContentStream method should be used instead.
In the previous example, we've used the XElement class (from the relatively new LINQ to XML API) to turn the binary data into a XElement object. Then we use that object to query and display some data.

There's more...

There's actually another way to get to a resource while using core .NET types such as ResourceManager and ResourceSet (that have been around since .NET 1.0) instead of calling Application.GetResourceStream. Here's one way to get the Stream of a resource:

Stream GetResourceStream(string name) {
string asmName = Assembly.GetExecutingAssembly().GetName().Name;
var rm = new ResourceManager(asmName + ".g",
Assembly.GetExecutingAssembly());
using(var set = rm.GetResourceSet(
CultureInfo.CurrentCulture, true, true)) {
return (Stream)set.GetObject(name, true);
}
}

This just shows that WPF has no special support for binary resources and in fact it leverages core .NET functionality in this regard.

Note that there's no counterpart for a resource on which Build Action was set to Content.

Accessing binary resources from another assembly

Sometimes binary resources are defined in one assembly (typically a class library), but are needed in another assembly (another class library or an executable). WPF provides a uniform and consistent way of accessing these resources using the pack URI scheme. Let's see how to do this.

Getting ready

Make sure Visual Studio is up and running.

How to do it...

We'll create two assemblies—one that holds resources, and another that needs to use those resources:

	Create a new blank solution by selecting File | New Project from the main menu and then navigating to Other Project Types | Visual Studio Solutions. Name it BinaryResourceAccess:[image: How to do it...]

	Right-click on the Solution node in Solution explorer, and select Add | New Project...:[image: How to do it...]

	Select a WPF User Control Library project and name it CH02.ClassLibraryResources:[image: How to do it...]

	We're not going to actually use any user controls, but this is a simple way to create a class library with WPF references already included.
	Delete the UserControl1.xaml file from the Solution explorer, as it's not needed.
	Add a new folder to the project, named Images.
	Add some image to the resulting folder, such as apple.png used in the recipe Using logical resources. Make sure its Build Action is set to Resource. The solution should look something like the following:[image: How to do it...]

	Right-click on the solution node and select Add | New Project...
	Select a WPF Application and name it CH02.UsingLibraryResources.
	Right-click on the References node in this new project in the Solution explorer, and select Add Reference...:[image: How to do it...]

	In the Add Reference dialog, click on the Projects tab and select the CH02.ClassLibraryResources project.
	Open MainWindow.xaml. Create a two row Grid with the following markup:<Grid>
<Grid.RowDefinitions>
<RowDefinition Height="Auto" />
<RowDefinition />
</Grid.RowDefinitions>
</Grid>

	Add a Button to the Grid whose content is an Image, and a TextBlock. The image should point to the image file added to the class library project:<Button HorizontalAlignment="Center" Margin="4" Padding="6">
<StackPanel Orientation="Horizontal">
<Image Source="/CH02.ClassLibraryResources;component/Images/apple.png" />
<TextBlock VerticalAlignment="Center" FontSize="14"
Text="Click me!" Margin="10,0,0,0" />
</StackPanel>
</Button>

	The image should show up in the designer preview. Running the application should also show the image correctly:[image: How to do it...]

How it works...

WPF recognizes a pack URI to a referenced assembly in the form:

/AssemblyReference;component/ResourceName

Here, AssemblyReference may be a simple name (as in our example), but may also include a version (with a "v" prefix) and/or the public key token (if the assembly is strongly named). Here's an example:

/MyAssembly;v2.0;4ac42a7f7bd64f34;component/images/apple.png

This is a shorthand for a full pack URI (prefixed by pack://application:,,,), and can also be an argument to Application.GetResourceStream, as demonstrated in the recipe Accessing binary resources in code.

There's more...

This scheme does not work with resources marked with a Build Action of Content. A way around this is to use the full pack URI with a siteOfOrigin base. In the previous example turning the image into a Content requires modifying the Source property of Image to read as follows:

Source="pack://siteOfOrigin:,,,/images/apple.png"

Note that the Visual Studio designer fails to display the image and a squiggly will run under this line in the XAML editor, but it will work at runtime.

Managing logical resources

Logical resources may be of various types, such as brushes, geometries, styles, and templates. Placing all those resources in a single file such as App.xaml hinders maintainability. A better approach would be to separate resources of different types (or based on some other criteria) to their own files. Still, they must be referenced somehow from within a common file such as App.xaml so they are recognized. This recipe shows how to do just that.

Getting ready

Make sure Visual Studio is up and running.

How to do it...

We'll create an application that separates its resources across multiple files for convenience and manageability:

	Create a new WPF Application named CH02.ManagingResources.
	We want to create a separate file that would hold (for example) brush resources. Right-click on the Project node in Solution explorer and select Add | ResourceDictionary...:[image: How to do it...]

	In the Name box, type Brushes.xaml and click on Add.
	A XAML editor is opened with a ResourceDictionary as a root elementVisual studio shows no design surface, because a ResourceDictionary is just a collection of any typed objects, not elements. Let's add one fancy Brush:<LinearGradientBrush EndPoint="1,0" x:Key="brush1">
<GradientStop Color="Yellow" Offset="0" />
<GradientStop Color="Orange" Offset=".7" />
<GradientStop Color="DarkRed" Offset="1" />
</LinearGradientBrush>

	Open MainWindow.xaml. Add an Ellipse within the Grid and set its Fill to be the fancy brush:<Ellipse Fill="{StaticResource brush1}" />

Notice the designer shows nothing. We want Brushes.xaml to be somehow part of the logical resource search.

	Open App.xaml. We need to merge external resource dictionaries into the main application dictionary. Add the following inside the<Application.Resources> tag:<ResourceDictionary>
<ResourceDictionary.MergedDictionaries>
<ResourceDictionary Source="Brushes.xaml" />
</ResourceDictionary.MergedDictionaries>
</ResourceDictionary>

	Now open MainWindow.xaml. The designer should show the brush used correctly (if it doesn't, build the project to refresh the designer). Running the application should show the following:[image: How to do it...]

How it works...

A ResourceDictionary can incorporate other resource dictionaries using its MergedDictionaries property (a collection). This means a ResourceDictionary can reference as many resource dictionaries as desired and can have its own resources as well.

The Source property must point to the location of the ResourceDictionary. If that location is within a subfolder, that subfolder must be included. For example, if our Brushes.xaml was under a logical folder named Resources, merging that into App.xaml would look like as follows:
<ResourceDictionary Source="Resources/Brushes.xaml" />

There's more...

This idea can be also used to reference logical resources stored in other referenced assemblies. The Source property would have to be based on the pack URI syntax. Suppose that Brushes.xaml was placed in a class library within a Resources folder. The main application could merge it into another ResourceDictionary as follows:

<ResourceDictionary Source="/MyClassLibrary;component/Resources/Brushes.xaml" />

Duplicated keys

Merging different resource dictionaries may cause an issue: two or more resources with the same keys that originate from different merged dictionaries. This is not an error and does not throw an exception. Instead, the selected object is the one from the last resource dictionary added (which has a resource with that key). Furthermore, if a resource in the current resource dictionary has the same key as the any of the resources in its merged dictionaries it always wins out. Here's an example:

<ResourceDictionary>
<SolidColorBrush Color="Blue" x:Key="brush1" />
<ResourceDictionary.MergedDictionaries>
<ResourceDictionary Source="Resources/Brushes2.xaml" />
<ResourceDictionary Source="Resources/Brushes.xaml" />
</ResourceDictionary.MergedDictionaries>
</ResourceDictionary>

With this markup, the resource named brush1 is a blue SolidColorBrush because it appears in the ResourceDictionary itself. This "overrides" any resources named brush1 in the merged dictionaries. If this blue brush did not exist, brush1 would be looked up in Brushes.xaml first, as this is the last entry in the merged dictionaries collection.

Chapter 3. Layout and Panels

In this chapter we will cover:
	Creating a table-like user interface
	Dynamically sizing grid rows/columns
	Creating a scrollable user interface
	Creating a border around panels and elements
	Placing elements in exact positions
	Adding/removing elements to a panel dynamically
	Creating a tabbed user interface
	Implementing drag-and-drop

Introduction

Layout is the process of element placement, and how their size and position changes in response to user interactions (such as a window resize). WPF offers a bunch of layout panels that provide different ways to lay out elements. By combining those panels in various ways, complex and adaptive layouts can be created.

The layout process

Layout is a two-step process. First, the layout container asks each of its children for its desired size. In the second step, it uses whatever logic is applicable to determine at what position and what size each child element should be - and places each child in that rectangular area. A more detailed look at this process can be found in the Creating a custom panel recipe in Chapter 10, Custom Elements.

Each element indicates to its parent its requirements. The following diagram summarizes the most important properties related to these requirements:

[image: The layout process]
Here's a quick breakdown of these important properties:
	Width/Height: The width and height of the element in question. This is not typically set (Double.NaN being the default value), meaning the element can be as big as it needs to be. Nevertheless, it may be set if needed.
	Margin: A breathing space around the element. This is of type Thickness (a value type) that has four properties (Left, Top, Right, and Bottom) that determine the amount of space around the element. It can be specified in XAML using four numbers (left, top, right, and bottom), two numbers (the first is left and right, the second is top and bottom), or a single number (same distance in all four directions).
	Padding: The same idea as Margin, but determines the space between the outer edge of the element and its content (if any). This is of type Thickness as well, and is defined by the Control base class and some other special elements, such as Border.
	HorizontalAlignment/VerticalAlignment: Specifies how to align the element against its parent if extra space is available. Possible values are Left, Center, Right, and Stretch for HorizontalAlignment, and Top, Center, Bottom, and Stretch for VerticalAlignment.
	HorizontalContentAlignment/VerticalContentAlignment (not shown in figure): Same idea as Horizontal/VecticalAlignment, but for the Content of the element (if any).
	LayoutTransform: Allows a transformation (of type deriving from Transform) to be applied on the element before its layout requirements are communicated to its parent.
	FlowDirection: Can be used to switch the layout direction from the default (LeftToRight) to RightToLeft, suitable for right to left languages such as Hebrew and Arabic. This effectively turns every left to right and vice versa.

Coordinates systems in WPF

Every size or position in WPF is provided in units known as Device Independent Units (DIU) . Contrary to other UI technologies, such as Windows Forms, these are not device units or pixels and they are not integers; rather, a WPF unit is 1/96 of an inch and always expressed as a double value.
This feature provides a more consistent way to present visuals. On a standard 96 DPI display device, 1 DIU = 1 pixel. With higher DPIs, for instance, a 96 unit line is still one inch long. It may require more pixels to paint because of the higher DPI, but the size is consistent. This helps in making WPF results consistent and predictable.

In XAML, it's possible to provide sizes in several formats. If just a number is provided, it's interpreted as a DIU value; however, some suffixes exist to change the unit of measurement: "in" for inch, "cm" for centimeters, and "pt" for points (1 point = 1/72 inch). If specified, a type converter (LengthConverter) converts the values to DIUs (for example, "2in" is turned into the value 192).
A consequence of using doubles rather than integers is that high precision is maintained if elements (or pure graphics) need to be transformed, for example, rotated or stretched.
In this chapter, we'll take a look at some of WPF's layout panels, including some layout related controls that are not technically panels, to get a better understanding of WPF's layout mechanism and user interface building approach.

Creating a table-like user interface

Table layout is a popular placement strategy, supported by the Grid panel. Let's examine the Grid and see what it's capable of.

Getting ready

Make sure Visual Studio is up and running.

How to do it...

We'll create a simple UI that benefits from a grid-like layout and demonstrate some of its features:

	Create a new WPF application named CH03.GridDemo.
	Open MainWindow.xaml. There's already a Grid placed inside the Window. That's because the Grid is typically used as the main layout panel within a window.
	Change the Title of Window to Grid Demo.
	Inside the Grid, add the following markup to create some rows and columns:<Grid.RowDefinitions>
<RowDefinition Height="Auto" />
<RowDefinition Height="Auto" />
<RowDefinition Height="Auto" />
<RowDefinition />
</Grid.RowDefinitions>
<Grid.ColumnDefinitions>
<ColumnDefinition Width="Auto" />
<ColumnDefinition />
</Grid.ColumnDefinitions>

	This creates a 4 rows by 2 columns Grid. Now let's add some elements and controls to host the grid:<TextBlock Grid.ColumnSpan="2" HorizontalAlignment="Center"
Text="Book Details" FontSize="20" Margin="4"/>
<TextBlock Grid.Row="1" HorizontalAlignment="Right"
Text="Name:" Margin="4" />
<TextBlock Grid.Row="2" HorizontalAlignment="Right"
Text="Author:" Margin="4" />
<TextBlock Grid.Row="1" Grid.Column="1"
Text="Windows internals" Margin="4" />
<TextBlock Grid.Row="2" Grid.Column="1"
Text="Mark Russinovich" Margin="4" />
<Rectangle Grid.Column="1" Grid.Row="3" Margin="4"
StrokeThickness="4" Stroke="Black" Fill="Red" />
<TextBlock Grid.Column="1" Grid.Row="3"
Text="Book Cover" VerticalAlignment="Center"
FontSize="16" HorizontalAlignment="Center"/>

	Run the application. It should look as follows:[image: How to do it...]

	Resize the window and watch the layout changes. Note that the Grid rows marked with a Height of Auto remain fixed in size, while the row that has no Height setting fills the remaining space (it is the same idea for the columns):[image: How to do it...]

How it works...

The Grid panel creates a table-like layout of cells. The number of rows and columns is not specified by simple properties. Instead, it's specified using RowDefinition objects (for rows) and ColumnDefinition objects (for columns). The reason has to do with the size and behavior that can be specified on a row and/or column basis.

A RowDefinition has a Height property, while a ColumnDefintion has a Width property. Both are of type GridLength. There are three options for setting a GridLength:

	A specific length
	A "star" (relative) based factor (this is the default, and factor equals 1)
	Automatic length

Setting Height (of a RowDefintion) or Width (of a ColumnDefinition) to a specific number makes that row/column that particular size. In code it's equivalent to new GridLength(len).
Setting Height or Width to Auto (in XAML) makes the row/column as high/wide as it needs to be based on the tallest/widest element placed within that row/column. In code, it's equivalent to GridLength.Auto.
The last option (which is the default) is setting Height/Width to n* in XAML, where n is some number (1 if omitted). This sets up a relationship with other rows/columns that have a "star" length. For example, here are three rows of a Grid:

<RowDefinition Height="2*" />
<RowDefinition />
<RowDefinition Height="3*" />

This means that the first row is twice as tall as the second row (Height="*"). The last row is three times taller than the second row and is one and a half times taller than the first row. These relations are maintained even if the window is resized.

There's more...

Elements are placed in grid cells using the attached Grid.Row and Grid.Column properties (both default to zero, meaning the first row/column).

Elements occupy one cell by default. This can be changed by using the Grid.RowSpan and Grid.ColumnSpan properties (these were set for the first TextBlock in the code). If we need an element to stretch to the end of the Grid (for example, through all columns from some starting column), it's ok to specify some large number (it will be constrained to the actual number of rows/columns of the Grid).
Shared row/column size

There may be times when more than one grid should have the same row height (or column width). This is possible using the SharedSizeGroup property of DefinitionBase (the base class of RowDefinition and ColumnDefinition). This is just a string; if RowDefinition or ColumnDefinition objects from two separate grids have the same value for this property, they would maintain identical length. To make this work, the attached property Grid.IsSharedSizeScope must be set to true on a common parent of those Grid instances.

This feature is most useful with DataTemplate properties (which are discussed in detail in Chapter 6, Data Binding) when binding to an ItemsControl control (or one of its derivatives).
Here's a quick example: A ListBox defines a DataTemplate for its items (ItemTemplate property) for displaying information on Person objects, defined as follows:
class Person {
public string Name { get; set; }
public int Age { get; set; }
}

The ListBox is defined with the following markup:
<ListBox ItemsSource="{Binding}"
Grid.IsSharedSizeScope="True">
<ListBox.ItemTemplate>
<DataTemplate>
<Grid>
<Grid.ColumnDefinitions>
<ColumnDefinition Width="Auto"
SharedSizeGroup="abc" />
<ColumnDefinition />
</Grid.ColumnDefinitions>
<TextBlock Text="{Binding Name}" FontSize="20"
Margin="4"/>
<TextBlock Grid.Column="1" FontSize="16"
Text="{Binding Age, StringFormat=is {0} years old}"
VerticalAlignment="Bottom" Margin="4"/>
</Grid>
</DataTemplate>
</ListBox.ItemTemplate>
</ListBox>

Note the attached property Grid.IsSharedSizeScope is set to true on a common parent of all involved Grid instances (the ListBox is an obvious choice) and the SharedSizeGroup property of RowDefinition is set to some string ("abc"). The string itself does not matter — what matters is that it's the same string for all relevant Grid instances. Since this is part of a DataTemplate, Grid instances are created for every item in the ListBox. Here's the result when binding to some collection of Person objects:
[image: Shared row/column size]
Here's what happens if one of the above properties is missing (note the misalignments):

[image: Shared row/column size]
The complete project is named CH03.SharedGridSizeDemo and is available in the downloadable source for this chapter.

Placement in the same cell

If more than one element is placed in the same cell, they sit one on top of the other by default, elements appearing later in the XAML are on top. We can change that by using the attached Panel.ZIndex property (default is zero). Higher values make the element on top (negative values are accepted).

The power of the Grid

The Grid is so flexible, that it can emulate most of the standard WPF panels, all except the WrapPanel (which is too chaotic for the Grid), namely the StackPanel, Canvas, and DockPanel. This is why Visual Studio chooses the Grid as the default root layout panel when a new window is generated.

If the Grid can do almost anything, why use other panels at all? There are two reasons. The first is convenience: although a Grid can emulate a StackPanel, that's cumbersome and leads to increased markup with no real gains. The second reason is performance: the StackPanel (for instance) has very little to worry about, while the Grid has a lot. For a layout consisting of many elements the complexity of Grid may degrade performance, so it's usually best to use the lightest panel possible that gets the job done.

Adding rows/columns dynamically

Although Grid instances are typically constructed in XAML and have a fixed number of columns and rows, that doesn't have to be the case. It's possible to add (or remove) rows/columns at runtime if so desired. Here's an example that adds three rows to an existing Grid named _grid:

RowDefinition[] rows = {
new RowDefinition { Height = new GridLength(100) },
new RowDefinition { Height = GridLength.Auto },
new RowDefinition { Height = new GridLength(2,
GridUnitType.Star) }
};
Array.ForEach(rows, row => _grid.RowDefinitions.Add(row));

The first row has a fixed height of 100, the second is auto-sized, and the third is a star row with a factor of 2.

The UniformGrid

There is a simpler grid in WPF, the UniformGrid (in the System.Windows.Controls.Primitives namespace). This grid has two properties to set the grid size: Rows and Columns (both default to 1). Every cell in a UniformGrid is, well, uniform (same width and height). Every new element is placed in the next cell starting from the top left, moving left to right, and then down to the next row, starting from the left again.

The UniformGrid may be used as a simple shortcut for a full-blown grid (it's more lightweight), if the need arises. A more creative use of the UniformGrid is a custom panel hosting elements in an ItemsControl.
Here's a quick example: A ListBox holds a collection of numbers, displayed by default in a row layout (a VirtualizingStackPanel, similar to a StackPanel for our purposes, is the default panel for laying out items in an ListBox). Let's change that to a UniformGrid. Here's the complete ListBox markup:
<ListBox ItemsSource="{Binding}" FontSize="25"
SelectionMode="Multiple">
<ListBox.ItemsPanel>
<ItemsPanelTemplate>
<UniformGrid Rows="4" Columns="4" />
</ItemsPanelTemplate>
</ListBox.ItemsPanel>
</ListBox>

Here's the ListBox at runtime when bound to a list of numbers:

[image: The UniformGrid]
Despite appearances, this is still a regular ListBox! The complete source is in the CH03.UniformGridLayout project available in the downloadable source for this chapter.

Dynamically sizing grid rows/columns

A typical user interface contains multiple parts, each responsible for some UI features. Many times it's useful for the user to manually resize those parts, as she sees fit. It turns out the Grid supports dynamic resizing with the help of a GridSplitter element. Let's see how this can be done.

Getting ready

Make sure Visual Studio is up and running.

How to do it...

We'll create a simple two way splitter, similar to the main view in Windows Explorer, to demonstrate a typical GridSplitter usage:

	Create a new WPF application named CH03.DynamicGridSizing.
	Open MainWindow.xaml. Add two columns to the existing Grid as follows:<Grid.ColumnDefinitions>
<ColumnDefinition MinWidth="40"/>
<ColumnDefinition Width="2*" MinWidth="50" />
</Grid.ColumnDefinitions>

	Place two Ellipse elements in the created columns, so we'd have some content to work with:<Ellipse Stroke="Black" StrokeThickness="2" Fill="Red" />
<Ellipse Stroke="Black" StrokeThickness="2" Fill="Green"
Grid.Column="1"/>

	Running the application at this point would maintain the 1:2 ratio between the widths of the two columns. Let's add a GridSplitter element to the grid to allow dynamic sizing:<GridSplitter Grid.Column="1" HorizontalAlignment="Left"
Width="3" Background="Blue" Margin="-1,0,0,0"/>

	Run the application. You'll be able to resize the grid columns interactively with the mouse.[image: How to do it...]

How it works...

A GridSplitter
 attached itself to two columns or rows, providing interactive sizing. How can something be placed between cells? It can't. It's placed in one cell (doesn't really matter which) and aligned to the other side. Here's a quick rundown for correct GridSplitter usage:

	Place the GridSplitter after the content within the resized content areas. This usually means placing it last in XAML (highest in the Z order).
	For a horizontal splitter, a Width must be set. For a vertical splitter, Height must be set.
	A Background is highly recommended. This can be any brush, not just a SolidColorBrush. This can also be set to Transparent if it's clear where the splitter is located.
	It must be placed in one of the two cells such that its sizing and its HorizontalAlignment (in the case of column resizing) are set to the align on the other side. In our example it's placed in the right cell, but aligned left.

There's more...

It's easy enough to nest
 GridSplitter instances, by placing more than one within the grid. We just need to make sure everything is set up correctly. For example, adding two rows to the previous example, we can set up another splitter for the bottom row (spanning works for the GridSplitter as well):

<GridSplitter Grid.Row="1" VerticalAlignment="Top"
Margin="0,-1,0,0"
Grid.ColumnSpan="2" HorizontalAlignment="Stretch"
Height="3" Background="Blue" />

And this is the result (I've added a third Ellipse):

[image: There's more...]
The complete source is available in the downloadable source for this chapter.
Note

HorizontalAlignment is set to Stretch. This is essential for a horizontal splitter (otherwise it won't be visible).

Creating a scrollable user interface

There are occasions when some data to display is larger than the display area; this requires scrolling capabilities. WPF provides that using a simple control, the ScrollViewer.

Getting ready

Make sure Visual Studio is up and running.

How to do it...

We'll create a simple image viewer that provides scrollbars if necessary when viewing a large image:
	Create a new WPF application named CH03.ScrollDemo.
	Add an image to the project. For example, you could select the Penguins.jpg file from the Pictures | Sample Pictures folder.
	Open MainWindow.xaml. Add a ScrollViewer control inside the existing Grid.
	Inside the ScrollViewer, add an Image element, and set its Source property to the image you added:<ScrollViewer>
<Image Source="penguins.jpg" Stretch="None" />
</ScrollViewer>

	Set the Image Stretch property to None. This ensures the image is displayed in its original size.
	Run the application. You should be able to scroll vertically as needed, but not horizontally:[image: How to do it...]

	Let's fix that. Set the HorizontalScrollBarVisibility on the ScrollViewer to Auto:<ScrollViewer HorizontalScrollBarVisibility="Auto">

	Run the application. You should be able to scroll in both directions:[image: How to do it...]

How it works...

ScrollViewer is a content control (derived from ContentControl) that hosts a single child (its Content property) and uses a pair of ScrollBar controls to support scrolling. The most important properties are VerticalScrollBarVisibility and HorizontalScrollBarVisibility, which indicate the way scrolling should work and the way the scrollbars present themselves. There are four options (ScrollBarVisibility enumeration):

	Visible: The scroll bar is always visible. If the content requires a smaller space, the scroll bar is disabled.
	Auto: The scroll bar appears if needed and disappears if not needed.
	Hidden: The scroll bar is not shown, but scrolling is still possible using the keyboard or programmatically.
	Disabled: The scroll bar is hidden and no scrolling is possible. The ScrollViewer does not give more space than it has to the content (in that dimension).

The default values are Visible for VerticalScrollBarVisibility and Disabled for HorizontalScrollBarVisibility.

There's more...

The HorizontalScrollBarVisibility and VerticalScrollBarVisibility properties are exposed as attached properties as well, so they are relevant to other controls that internally use a ScrollViewer, such as ListBox. Here's a simple example that changes the way a horizontal scroll bar is presented in a ListBox:

<ListBox ScrollViewer.HorizontalScrollBarVisibility="Hidden">

Creating a border around panels and elements

Sometimes a simple decoration is required around some element or panel, such as a border. Luckily, the Border element does just that to anything placed inside it.

Getting ready

Make sure Visual Studio is up and running.

How to do it...

We'll create a simple border encompassing some text, to show most of the capabilities of Border:

	Create a new WPF application named CH03.BorderDemo.
	Open MainWindow.xaml. Replace the existing Grid with a StackPanel, and add a TextBlock inside it, like the following markup shows:<StackPanel Margin="4">
<TextBlock Text="Hello from Center" FontSize="25"
HorizontalAlignment="Center" />
</StackPanel>

	Running the application shows the text centered horizontally within the StackPanel.
	Suppose we want to draw a border around the TextBlock. Add a Border element around the TextBlock as shown in the following markup:<Border BorderThickness="3" BorderBrush="Blue"
CornerRadius="6">
<TextBlock Text="Hello from Center" FontSize="25"
HorizontalAlignment="Center" />
</Border>

	Run the application. It should look as follows:[image: How to do it...]

How it works...

The Border element is a type of decorator (derived from the Decorator class, implementing the so-called "Decorator" design pattern). It provides a simple border around whatever child element is provided (Child property). Typically, the child is a panel, because panels have no border related properties (unlike controls that do have those via the Control base class).

Border provides BorderBrush and BorderThickness properties, but also Background. The CornerRadius property is used to create a rounded rectangular border. The Padding property provides some breathing space between the inner border and the actual child (the same effect can be achieved with the Margin property on the child).
Note
The BorderThickness is of type Thickness, meaning it's possible to draw a border with different widths in the four directions or even remove any of the directions by specifying a value of zero for that direction.

Placing elements in exact positions

WPF's layout panels provide much flexibility in building a user interface. Furthermore, most of the panels adapt well to size and content changes of themselves and their child elements. This means that positions and sizes don't necessarily remain the same as the user resizes or otherwise manipulates the UI.

Most of the time that's a good thing; sometimes, however, we need to place elements in exact positions without them moving unexpectedly. This is typical of highly graphical content, such as graphs, charts, or animations. The Canvas panel provides a convenient container for such content.
Getting ready

Make sure Visual Studio is up and running.

How to do it...

We'll create a simple application that hosts a Canvas with some elements inside to demonstrate the way elements are positioned inside a Canvas:

	Create a new WPF application named CH03.CanvasDemo.
	Open MainWindow.xaml. Replace the existing Grid with a Canvas.
	Add some elements to the Canvas as follows:<Ellipse Stroke="Black" StrokeThickness="2"
Fill="Red" Canvas.Right="50" Canvas.Top="40"
Width="50" Height="50"/>
<TextBlock Text="Canvas Demo" FontSize="20"
Canvas.Left="100" Canvas.Top="20" />
<Rectangle Stroke="Black" StrokeThickness="1" Fill="LightBlue"
Canvas.Bottom="0" Canvas.Left="40"
Width="30" Height="100" />

	The Canvas.Left/Top/Right/Bottom attached properties place the elements exactly where they are needed. Run the application and resize the window to see the effects of these properties.[image: How to do it...]

How it works...

The Canvas panel does very little layout (if one could call it that). Setting two (non-opposite) of the four attached properties it defines, sets the element with the requested distances from the requested sides of the Canvas.

If elements overlap, their Z order is considered. By default, later elements defined in XAML sit on top of previous ones. This can be changed (in XAML or code) using the attached Panel.ZIndex property.

There's more...

Canvas is by far the fastest panel, as it does practically very little layout. This makes it great for graphic intensive work and for running animations with a high frame rate. It's much less suitable for "traditional" user interface layouts (that's what the other panels are for).

Canvas has no background

If we try to intercept events such as mouse events on the Canvas, we get nothing. The reason is that the Canvas has a null background (this is the default setting for all panels), so all mouse events fall through to its containing element. If we need those events on the Canvas, we'll set its Background to something other than null. By the way, Brushes.Transparent works just fine for this purpose.

Canvas is not limited to its bounds

By default, if elements are placed or stretched beyond the Canvas boundaries, they are still drawn as usual, possibly on top of other elements adjacent to the Canvas. If this is undesirable, set the ClipToBounds property to true.

Adding/removing elements to a panel dynamically

Panels contain elements that are typically added in XAML as a base for the user interface. Sometimes, however, we need to add or remove elements dynamically at run time based on user actions or other criteria. Let's see how this can be done.

Getting ready

Make sure Visual Studio is up and running.

How to do it...

We'll create a simple circle drawing program. Every click adds a circle to a Canvas.

	Create a new WPF application named CH03.PaintingCircles.
	Open MainWindow.xaml. Replace the default Grid with a Canvas, name it _canvas, and set its Background to White.
	Add an event handler for the MouseUp event to the Canvas:<Canvas x:Name="_canvas" Background="White"
MouseUp="OnClickCanvas">
</Canvas>

	Navigate to the event handler you just created. We want a left-click to add an ellipse where the mouse pointer is and a right-click to make an Ellipse under the cursor disappear.
	Add the following code to the event handler in case the left button was clicked:void OnClickCanvas(object sender, MouseButtonEventArgs e) {
switch(e.ChangedButton) {
case MouseButton.Left:
// add a random ellipse
var circle = new Ellipse {
Stroke = Brushes.Black,
StrokeThickness = 3,
Fill = Brushes.Red,
Width = 30,
Height = 30
};
var pos = e.GetPosition(_canvas);
Canvas.SetLeft(circle, pos.X -
circle.Width / 2);
Canvas.SetTop(circle, pos.Y -
circle.Height / 2);
_canvas.Children.Add(circle);
break;
}
}

In the preceding code, an Ellipse object is created and positioned in a way that its center is at the point of clicking. Then, the Ellipse is added to the Canvas.

	We want to remove an ellipse when the right mouse button is clicked. Add the following code as another case within the switch statement:case MouseButton.Right:
var ellipse = e.Source as Ellipse;
if(ellipse != null)
_canvas.Children.Remove(ellipse);
break;

	Run the application and draw some circles![image: How to do it...]

How it works...

Every panel maintains a Children property (its ContentProperty for easier usage in XAML) of type UIElementCollection, which is a collection of UIElement objects. This means that any object derived from UIElement can be a child in a Panel. The preceding code uses the Add and Remove methods to dynamically add or remove Ellipse objects to the Canvas.

Creating a tabbed user interface

The tabbed user interface has been popular in recent years, due to its screen real estate savings and ease of use. It replaces the older, MDI (Multiple Document Interface) model that exists within the Windows UI subsystem and popularized by frameworks such as MFC (Microsoft Foundation Classes). Visual Studio itself is a good example of tabbed interface usage (although Visual Studio can work in MDI mode as well). In this recipe, we'll see the basics of a tabbed user interface. Check out the There's more... section for a more realistic way of managing tabs.

Getting ready

Make sure Visual Studio is up and running.

How to do it...

We'll create a bare-bones application showing two simple tabs:

	Create a new WPF application named CH03.SimpleTabs.
	Open MainWindow.xaml. Replace the existing Grid with a TabControl.
	Add a TabItem control to the TabControl as follows:<TabControl>
<Tabitem Header="Header 1">
<Grid>
<Ellipse Stroke="Black" Fill="Blue"
StrokeThickness="4" Margin="10"/>
<TextBlock Text="Data 1" FontSize="30"
Foreground="White"
HorizontalAlignment="Center"
VerticalAlignment="Center" />
</Grid>
</Tabitem>
</TabControl>

	A TabItem maintains a Header and some Content (its ContentProperty). Let's add another TabItem as follows:<Tabitem>
<Tabitem.Header>
<StackPanel Orientation="Horizontal" Margin="2">
<Rectangle Stroke="Black" Fill="Red"
StrokeThickness="2"
Width="20" Height="20" />
<TextBlock Text="Header 2" Margin="4,0,0,0"
VerticalAlignment="Center" />
</StackPanel>
</TabItem.Header>
<Grid>
<Rectangle Stroke="Black" Fill="Green"
RadiusX="20" RadiusY="20"
StrokeThickness="4" Margin="10"/>
<TextBlock Text="Data 2" FontSize="30"
Foreground="White"
HorizontalAlignment="Center"
VerticalAlignment="Center" />
</Grid>
</TabItem>

	Run the application and click to move between the tabs:[image: How to do it...]

How it works...

The TabControl is an ItemsControl derivative (actually derives from Selector), which means it can host a bunch of objects. These should be TabItem controls, which are HeaderedContentControls. This means a TabItem has a Header (of type object, it can be anything) and Content (again can be anything).

The second tab is an example of a richer Header, consisting of a horizontal StackPanel hosting a Rectangle element and a TextBlock.

There's more...

Placing TabItem objects by hand is certainly possible, but a typical scenario would be using a TabItem per some data managed by the application. Consider Visual Studio as an example: the tabs are created dynamically based on the actual open documents.
One way to achieve this by using code is simply to use the Items property of the TabControl and call the Add method whenever a new tab is needed. However, this is a very inconvenient option, as the content of such a tab may be complex, or designed beforehand using a tool such as Expression Blend, thus available as XAML.
A more efficient and robust approach would be to leverage data binding, data templates, styles, and maybe even triggers. A detailed discussion of these topics can be found in Chapter 6, Data Binding.

Suppose our data is a simple type like the following:
class Dataitem {
public string Header { get; set; }
public string Text { get; set; }
}

We want to display the Header property somehow on the Header of a TabItem and the Text should be displayed within the Content of a TabItem. We can customize things by creating a Style for TabItem, and providing DataTemplate objects for the Header and Content properties. Further customization is possible via triggers (only one in the following example). First, the DataTemplates for the Header and Content (as resources):
<Window.Resources>
<DataTemplate x:Key="tabHeaderTemplate">
<StackPanel Orientation="Horizontal" Margin="4">
<Ellipse Stroke="Black" StrokeThickness="1"
Fill="Blue" Width="16" Height="16" />
<TextBlock Margin="4,0,0,0" VerticalAlignment="Center"
FontSize="15" Text="{Binding Header}" />
</StackPanel>
</DataTemplate>
<DataTemplate x:Key="tabContentTemplate">
<Grid>
<TextBlock FontSize="30" VerticalAlignment="Center"
HorizontalAlignment="Center" Text="{Binding Text}" />
</Grid>
</DataTemplate>
</Window.Resources>

Next, we need to plug these templates into a TabItem using the ItemContainerStyle property of the TabControl (inherited from ItemsControl):

<TabControl x:Name="_tabs">
<TabControl.itemContainerStyle>
<Style TargetType="Tabitem">
<Setter Property="HeaderTemplate"
Value="{StaticResource tabHeaderTemplate}" />
<Setter Property="ContentTemplate"
Value="{StaticResource tabContentTemplate}" />
<Style.Triggers>
<Trigger Property="IsSelected" Value="True">
<Setter Property="Background" Value="Yellow" />
</Trigger>
</Style.Triggers>
</Style>
</TabControl.ItemContainerStyle>
</TabControl>

To test this, we'll add some data items in the constructor:

_tabs.ItemsSource = new List<DataItem> {
new DataItem { Header = "Header 1", Text = "Data 1 " },
new DataItem { Header = "Header 2", Text = "Data 2 " },
new DataItem { Header = "Header 3", Text = "Data 3 " },
};

Running the application produces the following tabs:
[image: There's more...]
The complete source code is in the CH03.ComplexTabs project, available in the downloadable source for this chapter.

Implementing drag-and-drop

Drag-and-drop functionality is common in applications, where one object is held down and dragged to some other object with the mouse. This approach is not as common as it used to be, especially with a mouse, because it requires hand coordination skills. Recent tablet devices are touch enabled, where drag and drop makes a lot of sense. As a general rule, always provide an alternative to drag-and-drop. That said, this can be a handy feature for advanced users.

Getting ready

Make sure Visual Studio is up and running.

How to do it...

We'll create an application that allows dragging elements (circles and rectangles) from one part of the window to another container within the same window, showing the necessary steps to get drag-and-drop working properly:

	Create a new WPF application named CH03.SimpleDragDrop.
	Open MainWindow.xaml. Fill the existing Grid with the following markup:<Grid>
<Grid.ColumnDefinitions>
<ColumnDefinition Width="2*"/>
<ColumnDefinition Width="40" />
<ColumnDefinition />
</Grid.ColumnDefinitions>
<Border BorderThickness="2" BorderBrush="Black">
<Canvas x:Name="_source" Background="White" />
</Border>
<Border BorderBrush="Black" BorderThickness="2"
Grid.Column="2" >
<WrapPanel itemWidth="50" itemHeight="50"
x:Name="_target" Background="Yellow">
</WrapPanel>
</Border>
</Grid>

This sets up a Canvas on which we'll place some objects, and a WrapPanel, to be used as the target of drag-and-drop.

	To enable the WrapPanel to be a drag-and-drop target, set its AllowDrop property to true.
	We'll fill the Canvas with some random shapes. Add the following method to the MainWindow class:void initObjects() {
var rnd = new Random();
const int width = 45, height = 45;
for(int i = 0; i < 30; i++) {
var shape = rnd.Next(10) > 4 ? (Shape)new Ellipse() :
(Shape)new Rectangle();
shape.Stroke = Brushes.Black;
shape.StrokeThickness = 2;
shape.Fill = rnd.Next(10) > 4 ? Brushes.Red :
Brushes.LightBlue;
shape.Width = width;
shape.Height = height;
Canvas.SetLeft(shape, rnd.NextDouble() *
(_source.ActualWidth - width));
Canvas.SetTop(shape, rnd.NextDouble() *
(_source.ActualHeight - height));
_source.Children.Add(shape);
}
drag-and-dropimplementing}

This creates a bunch of ellipses and rectangles, placing them at random locations. The user should be able to drag any one of those to the WrapPanel.

	Add the following code in the MainWindow constructor (after the call to InitializeComponent) to invoke InitObjects once the Window is loaded:Loaded += delegate {
InitObjects();
};

	Add an event handler for the MouseLeftButtonDown (called OnBeginDrag) on the Canvas and place the following code inside:void OnBeginDrag(object sender, MouseButtonEventArgs e) {
var obj = e.Source as Shape;
if(obj != null) {
DragDrop.DoDragDrop(obj, obj, DragDropEffects.Move);
}
}

The preceding code checks to see if the clicked object is a kind of shape, and if so, initiates a drag-and-drop operation, specifying that object as source and data (first and second arguments) and the allowed operations.

	When the user drops the object, the Drop event is fired on the target element. Add an event handler for the Drop event on the WrapPanel and implement the event handler with the following code:void OnDrop(object sender, DragEventArgs e) {
var element = e.Data.GetData(e.Data.GetFormats()[0])
as UIElement;
if(element != null) {
_source.Children.Remove(element);
_target.Children.Add(element);
}
}

The preceding code looks at the first data provided, and if it's a UIElement, removes it from the original Canvas and adds it to the WrapPanel.

	Run the application and move some objects across to the WrapPanel:[image: How to do it...]

How it works...

Drag-and-drop support in WPF is pretty similar to that of WinForms. An element has to agree to be the target of a drag-and-drop operation by setting its AllowDrop property to true (it's false by default).

When the (typically left) mouse button is down, the drag-and-drop operation is initiated by using the static DragDrop.DoDragDrop method. This method is kind of weird, because the next statement in that event handler executes when the drag-and-drop operation completes or is canceled (by pressing Esc, for instance). Internally, it captures the mouse and handles mouse messages. One of those turns into the Drop event on a target element that has set itself to be a drop target.
Within Drop, the data object is queried to discover what's available. A sophisticated target may accept more than one type of data. Some types are defined by Windows itself, such as text, bitmap image, or a file drop. Other times, it's a custom object that makes sense within the application only.

To actually make the move from one container to another, the element is first removed from its parent (step 7) and then added to its new parent. This sequence is important, as an element can have a single parent at any one time; trying to add the element to the new parent before removing it from the old one would throw an exception.
The Data property in the DragEventArgs (of type IDataObject) is WPF's representation of things that are part of OLE (Object Linking and Embedding) and COM (Component Object Model) that lie underneath such operations. We typically do not need to concern ourselves with all that just get the available data and use it appropriately.
In the code sample the data has been the Shape itself its type is the typeof of that object. Since we had two kinds of shapes, it was easier to get the first data item and cast it to a Shape — we didn't really care what the exact shape is.

There's more...

In our example, all shapes were good enough. What if the drop target wants to somehow let users know whether the dragged object is actually valid for this target before the actual drop? This is possible through the DragEnter event.
Suppose we decide that only ellipses are good for dropping, but not rectangles. In case the drop is not allowed, a no drop icon shows instead of an allow drop icon. Here's a DragEnter event handler for the WrapPanel that would achieve this:
void OnDragEnter(object sender, DragEventArgs e) {
if(e.Data.GetDataPresent(typeof(Ellipse).FullName))
e.Effects = DragDropEffects.Move;
else
e.Effects = DragDropEffects.None;
e.Handled = true;
}

Curiously enough, you'll need to handle the DragOver and DragLeave events in a similar fashion for this to work properly (check out MainWindow.xaml in the downloadable source for this chapter).
The opposite of DragEnter is DragLeave. This indicates the mouse has moved out of the target element. A more useful event is DragOver. This is fired repeatedly while the cursor is within the target element. This may be useful if the target has different zones and not all zones can accept the source. The DragEventArgs.GetPosition method is helpful here, to determine exactly where the mouse cursor is, relative to the target element.
Built-in drag-and-drop

Some controls naturally support drag-and-drop of certain types of data. TextBox, for instance, and RichTextBox support dragging-and-dropping text, even to/from other applications, unrelated to WPF.

Drag-and-drop to other applications

When using standard formats (available through the DataFormats class), things work out as expected. However, if we're trying to pass custom objects, they must be marked with the Serializable attribute or implement the IDataObject interface (the former is far easier). This allows WPF to reconstruct the object within the target process (as it has a separate address space). The example of a Shape that we used would fail between processes (event two instances of our own executable) because UIElement derived objects are never serializable. This would force us to pass over other information, such as the type name, or some serializable object with all relevant data that would be enough to reconstruct the Shape on the other side.

Chapter 4. Using Standard Controls

In this chapter we will cover:
	Working with text
	Using content controls
	Displaying images
	Creating tooltips
	Creating a list of items
	Creating a standard menu
	Creating a context menu
	Selecting options with checkboxes and radio buttons
	Manipulating tab order and focus

Introduction

Every UI framework must provide a set of standard controls, such as text boxes, buttons, and list boxes. WPF is no different.
The difference between elements and controls is not that important in practice, but it is useful to understand the distinction.

Elements derive from FrameworkElement (directly or indirectly), but not from Control. They have a certain look and provide some functionality that is customizable, mostly by changing properties. For example, an Ellipse is an element. There's no way to change the fundamental appearance of an Ellipse (and it would be illogical to be able to turn an Ellipse into (for example) a triangle). We can still customize an Ellipse in a few ways using properties such as Stroke, StrokeThickness, Fill, and Stretch.

Controls, on the other hand, derive (directly or indirectly) from the Control class. Control adds a bunch of properties, of which the most significant is the Template property. This allows complete changing of the control's appearance without affecting its behavior. And all that can be achieved with XAML alone, without code or any class derivation. This is a dramatic departure from previous UI technologies (such as WinForms) that require a derivation and custom (usually non-trivial) code.

The following class diagram shows some of the fundamental element-related classes in WPF:

[image: Introduction]
In this chapter, we'll take a closer look at some of WPF's standard controls.

Working with text

Text is the most fundamental way of conveying and inputting information. WPF provides a bunch of elements and controls that allow text display and input.

Getting ready

Make sure Visual Studio is up and running.

How to do it...

We'll create a simple application that uses the more common text related controls to demonstrate their usage:

	Create a new WPF application named CH04.TextControls.
	Open MainWindow.xaml. Add four rows and two columns to the existing Grid:<Grid.RowDefinitions>
<RowDefinition Height="Auto" />
<RowDefinition Height="Auto"/>
<RowDefinition />
<RowDefinition Height="Auto"/>
</Grid.RowDefinitions>
<Grid.ColumnDefinitions>
<ColumnDefinition Width="Auto" />
<ColumnDefinition />
</Grid.ColumnDefinitions>

	Add some controls to the grid as follows:<TextBlock FontSize="16" Text="User comment details"
Margin="4"
Grid.ColumnSpan="2" HorizontalAlignment="Center" />
<Label Content="_Name:" Grid.Row="1" Target="_name" />
<TextBox Grid.Row="1" Grid.Column="1"
x:Name="_name" Margin="2"/>
<Label Content="_Comment:" Grid.Row="2" Target="_comment" />
<TextBox AcceptsReturn="True" Grid.Row="2"
Grid.Column="1" x:Name="_comment" Margin="2"/>
<Button HorizontalAlignment="Center" Margin="4"
Grid.Row="3" Grid.ColumnSpan="2" FontSize="16"
Content="Submit Comment" />

The TextBox controls allow input, while the TextBlock and Label display text that cannot be modified by the user.

Note
The Visual Studio 2010 designer may report an exception in this window. This is due to the Target property setting (as explained in the How it works... section). In Visual Studio 2012, the designer survives, but there's still a squiggly under the Target property setting.

	Add a Click event handler to the button and place the following simple code inside:MessageBox.Show(string.Format("User: {0}, Comment:{1}{2}",
_name.Text, Environment.NewLine, _comment.Text));

	Running the application shows the following (after typing some text):[image: How to do it...]

	Pressing Alt + N places the caret inside the Name textbox, while pressing Alt + C places the caret inside the Comment textbox.
	Clicking the button yields a simple message box:[image: How to do it...]

How it works...

This recipe explores the simplest (and most common) text-based controls. TextBlock displays some text via its Text property. It has many properties to control its actual output, such as font-related properties (FontSize, FontFamily, FontWeight, and so on), Foreground (a Brush used for the text glyphs), TextAlignment, and TextWrapping.

The Label control may seem very similar to a TextBlock, but there are at least two major differences.
The Label is actually a ContentControl (more on that in the Using content controls recipe later in this chapter), which means it can display anything, not just text. However, it's really useful only for text, as you'll see shortly.
It provides an access key feature. Any character in its Content string preceded by an underscore becomes an access key (with the Alt key). Pressing that access key (with Alt) causes the input focus to jump to the control designated by the Target property. In the preceding example, pressing Alt + N causes the Name
 TextBox to receive the input focus.
Note
The access key character is an underscore (it's an ampersand (&) in other technologies—Windows Forms and Win32). The underscore was selected because it's XML friendly; otherwise something like "&" would have to be written instead of a simple ampersand.

The Target property of Label is of type UIElement. The reason the preceding code works is because an appropriate type converter does the right thing (curiously enough, Visual Studio 2010/2012 intellisense places a blue squiggly on the Target property, as noted previously; however, it does work correctly at runtime). Otherwise, a binding expression would have been required (this was the case in prior versions of WPF).
A TextBox is the simplest text input control. It provides the actual text via the Text property. It can support multiple lines by setting its AcceptsReturn property to true (programmatically, however, any TextBox can show multiline content if new line characters are embedded within the text).

TextBox provides the expected text related properties, similar to a TextBlock. It also provides methods for clipboard operations, such as Copy, Cut, Paste, Undo, and Redo. It also handles the (related) standard WPF commands for clipboard operations (more on commands in Chapter 7, Commands and MVVM).

There's more...

The TextBlock element is more complex than it seems. Its Text property is the simplest way to get it to display something, but it's not the only one. It actually contains an Inlines property (its ContentProperty for easier XAML entry), which is a collection of types inheriting from Inline, such as Run, LineBreak, Bold, Italic, Underline, and Hyperlink. The following is an example:

<TextBlock>
<Run Foreground="Blue" Text="Hello TextBlock" />
<LineBreak />
<Bold><Italic FontSize="16">This is pronouned text</Italic></Bold>
<LineBreak />
<Run>Click the following link to go to search:</Run>
<Hyperlink>Search in Database</Hyperlink>
</TextBlock>

This markup produces the following result:
[image: There's more...]
Although the same effect can be achieved by multiple TextBlock elements, this is much more economical — there's only one element here, which makes it easier on WPF when (for example) layout is concerned.
Here are the common inlines:
	Run: Represents some text (Text property) with its own formatting properties.
	LineBreak: Represents a line break.
	Italic, Bold, Underline (all deriving from Span): Encapsulate whatever is inside (any other inline) with the particular attribute represented by this inline.
	Hyperlink (derives from Span): Encapsulates its content in a hyperlink style rendering. The NavigationUri property can be set to indicate the link to activate upon clicking, but this only works if the Hyperlink has a NavigationWindow as a parent (not discussed in this book as it's not as useful as it sounds). Otherwise, the Click event can be used to do whatever is needed (such as activating a URL using Process.Start for example). Another nice feature of the Hyperlink is that it's a command source, having the Command, CommandParameter, and CommandTarget properties, meaning it can activate a command when clicked (see Chapter 7, Commands and MVVM for more information on these properties).

Using content controls

Content controls provide a flexible way of customizing the appearance of a control. The ContentControl class includes a Content property, of type object; meaning, it can be anything. A typical example is a Button. The Button inherits from ContentControl (not directly, but this is unimportant for this discussion). A typical button shows text, an image, or perhaps an image and text. But in fact, it can hold anything, such as a graphic drawing, a video playing, any combination of the above, or anything else. This is the power of ContentControl. Let's see how this works.

Getting ready

Make sure Visual Studio is up and running.

How to do it...

We'll create several buttons (which are ContentControls) and show the various ways their content can be set and viewed:
	Create a new WPF Application named CH04.ContentControls.
	Open MainWindow.Xaml. Change the root Grid to a StackPanel.
	Add a Button to the StackPanel and set its Content to some string:<Button Content="Click me" Margin="4" Padding="4"
FontSize="16" HorizontalAlignment="Left"/>

	Add an image file to the project (the following XAML uses copy.png, included in the downloadable source for this chapter, but you can select any image).
	Add another Button to the StackPanel that uses the image like so:<Button Margin="4" HorizontalAlignment="Left" Padding="4">
<StackPanel Orientation="Horizontal">
<Image Source="copy.png" Width="16" Height="16" />
<TextBlock Text="Copy" Margin="10,0,0,0"
VerticalAlignment="Center" FontSize="16"/>
</StackPanel>
</Button>

The Content is set implicitly to a horizontal StackPanel. This makes the button show the Image and TextBlock.

	Let's create a simple data class, named Person:class Person {
public int Age { get; set; }
public string Name { get; set; }
public override string ToString() {
return string.Format("{0} is {1} years old", Name, Age);
}
}

	Now let's create an instance of Person as a resource in the Window. First, we'll have to add an XML namespace mapping (as we did several times before). We'll call the prefix local and map it to the project's namespace:xmlns:local="clr-namespace:CH04.ContentControls"

	Then we'll create the actual Person:<Window.Resources>
<local:Person Age="10" Name="Bart" x:Key="p1" />
</Window.Resources>

	Add another Button to the StackPanel whose content is the Person resource:<Button Content="{StaticResource p1}" FontSize="16"
Margin="4" Padding="4" HorizontalAlignment="Left"/>

	Running the application shows the following:[image: How to do it...]

	Let's add another Button that also has its Content set to the same Person, but shows it differently. This requires setting ContentTemplate to a DataTemplate object and using some data bindings:<Button Content="{StaticResource p1}" FontSize="16"
Margin="4" Padding="4" HorizontalAlignment="Left">
<Button.ContentTemplate>
<DataTemplate>
<Grid TextBlock.FontSize="16">
<Grid.ColumnDefinitions>
<ColumnDefinition Width="Auto" />
<ColumnDefinition />
</Grid.ColumnDefinitions>
<Grid.RowDefinitions>
<RowDefinition Height="Auto" />
<RowDefinition Height="Auto" />
</Grid.RowDefinitions>
<TextBlock Text="Name:" />
<TextBlock Text="{Binding Name}"
Margin="6,0,0,0"
Foreground="Blue" Grid.Column="1" />
<TextBlock Text="Age:" Grid.Row="1"/>
<TextBlock Text="{Binding Age}"
Margin="6,0,0,0" Grid.Row="1"
Foreground="Red" Grid.Column="1"
TextAlignment="Right"/>
</Grid>
</DataTemplate>
</Button.ContentTemplate>
</Button>

	Run the application. It should look as follows:[image: How to do it...]

How it works...

A ContentControl-derived type renders its Content using the following rules:

	If it's a string, a TextBlock is rendered with its Text set to the string value.
	If it derives from UIElement, it's rendered as is (its OnRender method is called).
	If ContentTemplate is null, then it's rendered as a TextBlock with its Text set to the ToString of the Content. Otherwise, the supplied DataTemplate is used for rendering.

The preceding code uses all of these options.
The first button just holds a string in its Content, so it's rendered as a TextBlock.
The second button is used to show an image and text. As the Content property is a single one, multiple items require a Panel — in this case a — StackPanel. This corresponds to the second rule StackPanel (like any Panel) derives (eventually) from UIElement, so is rendered as is.
The third button's Content is a data object (a Person). Without a DataTemplate, it's rendered as a TextBlock with the ToString as its Text. As we created a sensible override for Person.ToString(), this shows the name and age of the person.
The fourth (and last) button is the most interesting one. Its Content is set to a data object (our Person) as well, but this time a DataTemplate object is provided via the ContentTemplate property. This allows for a custom way of rendering a Person. A DataTemplate must contain a single root element (typically some Panel). To use the actual property values, data binding is required (the source of the binding is (implicitly) always the Content). The DataTemplate objects are powerful constructs; they and other data binding features will be discussed fully in Chapter 6, Data Binding.

There's more...

ContentControl itself is not an abstract class. It's sometimes used to bind to something else through its Content property.
There are many ContentControl-derived types (some of which we'll see in later recipes in this chapter), but they all support the same basic concepts: Content and an optional ContentTemplate. The preceding code used buttons, but there are many others, such as ScrollViewer, Label, CheckBox, RadioButton, and ToolTip.
Headered content controls

One common base class deriving from ContentControl is HeaderedContentControl. This adds a Header property (of type object) and an associated optional template (HeaderTemplate property). These two properties serve the same purpose as Content and ContentTemplate. In a sense, these controls have two contents and two content templates. Here's an example with a GroupBox:

<GroupBox Margin="10" >
<GroupBox.Header>
<StackPanel Orientation="Horizontal">
<Image Source="cup.png" />
<TextBlock Text="Tea options"
Margin="6,0,0,0"/>
</StackPanel>
</GroupBox.Header>
<StackPanel>
<CheckBox Margin="4">Sugar</CheckBox>
<CheckBox Margin="4">Mint</CheckBox>
<CheckBox Margin="4">Milk</CheckBox>
<CheckBox Margin="4">Cinnamon</CheckBox>
</StackPanel>
</GroupBox>

[image: Headered content controls]
And a similar example with an Expander (using templates):

<Expander Margin="10" x:Name="_bookInfo"
ExpandDirection="Down">
<Expander.HeaderTemplate>
<DataTemplate>
<Border BorderBrush="Blue" BorderThickness="1"
Padding="4">
<TextBlock Text="{Binding Name,
StringFormat=Book: {0}}" />
</Border>
</DataTemplate>
</Expander.HeaderTemplate>
<Expander.ContentTemplate>
<DataTemplate>
<Border BorderBrush="Blue" BorderThickness="2"
Padding="4">
<StackPanel>
<TextBlock Text="{Binding Name,
StringFormat=Name: {0}}" />
<TextBlock Text="{Binding Author,
StringFormat=Author: {0}}" />
<TextBlock Text="{Binding YearPublished,
StringFormat=Published: {0}}" />
</StackPanel>
</Border>
</DataTemplate>
</Expander.ContentTemplate>
</Expander>

And the code behind (sets the book info to the Header and Content):

_bookInfo.Content = _bookInfo.Header = new Book {
Name = "Windows Internals",
Author = "Mark Russinovich",
YearPublished = 2009
};

[image: Headered content controls]

See also

For more information on data templates, check out Chapter 6, Data Binding.

Displaying images

Images are a common way to convey information, application options, or just make things look pretty. The Image element is typically used to show images, whether they originate from static image files or are generated dynamically. Let's take a look at how this works.

Getting ready

Make sure Visual Studio is up and running.

How to do it...

We'll create a simple image viewer, where the user can browse the file system, select an image and view it.
	Create a new WPF Application named CH04.Images.
	Add an existing image to the project, to serve as an icon. The downloadable source for this chapter includes an open.png image, but you can use any (preferably small) image.
	Open MainWindow.xaml. Replace the existing Grid with a DockPanel.
	Add a single Button to the DockPanel, dock it at the top, and place the added image inside the button using an Image element (with some text):<Button DockPanel.Dock="Top" FontSize="20" Margin="4"
Padding="4">
<StackPanel Orientation="Horizontal">
<Image Source="open.png" Stretch="None" />
<TextBlock Text="Open Image File..." Margin="20,0,0,0"
VerticalAlignment="Center" />
</StackPanel>
</Button>

	Add a ScrollViewer to the DockPanel. Inside it place another Image element, but don't set any Source:<ScrollViewer BorderBrush="Black" Margin="4"
BorderThickness="1"
HorizontalScrollBarVisibility="Auto"
VerticalScrollBarVisibility="Auto">
<Image x:Name="_image" Stretch="None" />
</ScrollViewer>

	This is how it should look now when run:[image: How to do it...]

	When the button is clicked, we want to allow the user to select an image file, so that it's shown by the Image inside the ScrollViewer. Add a Click event handler to the button and place the following code in it (you'll need to add a using statement for the Microsoft.Win32 namespace):void OnOpenImage(object sender, RoutedEventArgs e) {
var dlg = new OpenFileDialog();
dlg.Filter = "Images|*.jpg;*.gif;*.bmp;*.png";
if(dlg.ShowDialog() == true) {
try {
var bmp = new BitmapImage(new Uri(dlg.FileName,
UriKind.Absolute));
_image.Source = bmp;
}
catch(Exception ex) {
MessageBox.Show("Error loading image: " +
ex.Message);
}
}
}

	Run the application, click the button, and select an image file. This is the result:[image: How to do it...]

How it works...

The Image element is capable of displaying an image pointed to by its Source property. This property is of type ImageSource, which is abstract. In step 4, a simple string (open.png) was provided to Source. This works because a type converter has created a BitmapImage (an ImageSource derivative) object out of the image resource.

In step 7, an actual BitmapImage is created in code, as required, to read an image file.
The way an Image is displayed depends on the Stretch property. This indicates how an image is stretched, as the actual size of the Image element typically differs from the natural size of the image source. There are four possible values, Uniform being the default. Here's how setting Stretch affects the displayed image (of the famous penguins):
[image: How it works...]
With Stretch=None, the image is displayed in its original size. In the code sample, a ScrollViewer was used to allow scrolling through large images. Uniform and UniformToFill preserve the aspect ratio (the original image width divided by the height), while Fill simply stretches the image to fill the available space for the Image. UniformToFill may cut out content if the available space has a different aspect ratio than the original.

Note
Do not confuse Image with ImageSource. The Image is an element, so can be placed somewhere in the visual tree. An ImageSource is the actual data; an Image element simply shows the image data in some way. The original image data (ImageSource) is unchanged.

There's more...

ImageSource has some interesting derivatives. One of them is DrawingImage, which is an ImageSource that uses a Drawing object (not to be confused with ImageDrawing, which is a Drawing that uses an ImageSource). A Drawing is a representation of a 2D drawing. Drawing itself is abstract and has some concrete implementations. The following class diagram shows some of the classes deriving from ImageSource:

[image: There's more...]
The following is an example of building a Drawing as a resource, based on a Geometry (more information on geometries can be found in Chapter 9, Graphics and Animation):

<CombinedGeometry x:Key="ringGeometry"
GeometryCombineMode="Exclude">
<CombinedGeometry.Geometry1>
<EllipseGeometry Center="100,100"
RadiusX="100" RadiusY="100" />
</CombinedGeometry.Geometry1>
<CombinedGeometry.Geometry2>
<EllipseGeometry Center="100,100"
RadiusX="80" RadiusY="80" />
</CombinedGeometry.Geometry2>
</CombinedGeometry>
<GeometryDrawing x:Key="ringDrawing"
Geometry="{StaticResource ringGeometry}"
Brush="LightBlue">
<GeometryDrawing.Pen>
<Pen Brush="Black" Thickness="3" />
</GeometryDrawing.Pen>
</GeometryDrawing>

A Drawing is not an element, so it cannot be part of a visual tree — it needs to be hosted somehow. One way is to use a DrawingImage as the ImageSource of an Image, like so:

<Image> <Image.Source>
<DrawingImage Drawing="{StaticResource ringDrawing}" />
</Image.Source>
</Image>

It will look as follows like when run:
[image: There's more...]
Another ImageSource derivative is BitmapSource, which is abstract as well. It's the base class of BitmapImage used in the code example. There are many other derivatives. One I'd like to mention here is WriteableBitmap. This is a bitmap with accessible pixels. The application can manipulate those pixels as desired by calling WritePixels. The following an example of creating a WriteableBitmap and attaching it as a Source of an Image (named _image):

public partial class MainWindow : Window {
WriteableBitmap _bmp;
DispatcherTimer _timer;
Random _rnd = new Random();
int[] _pixel = { 255 };
public MainWindow() {
InitializeComponent();
_bmp = new WriteableBitmap(100, 100, 0, 0,
PixelFormats.Gray8, null);
_image.Source = _bmp;
_timer = new DispatcherTimer();
_timer.Interval = TimeSpan.FromMilliseconds(20);
_timer.Tick += delegate {
int x = _rnd.Next(_bmp.PixelWidth);
int y = _rnd.Next(_bmp.PixelHeight);
_bmp.WritePixels(new Int32Rect(x, y, 1, 1), _pixel,
_bmp.BackBufferStride, 0);
};
_timer.Start();
}
}

The code fills up the bitmap with random white pixels using a timer, 50 times per second. This is how it looks at some captured point:

[image: There's more...]
The complete source code is available in the downloadable source for this chapter under the CH04.ImageSources project.

See also

For more information on WriteableBitmap, check out the Manipulating a bitmap programmatically recipe in Chapter 9, Graphics and Animation.

Creating tooltips

Tooltips are typically those yellowish (or another color, depending on the Windows theme and user customization) pop ups that show up when the mouse pointer hovers over something important within the UI, providing some extra information relevant to that something. WPF makes it easy to create tooltips, either standard ones, or custom.

Getting ready

Make sure Visual Studio is up and running.

How to do it...

	Create a new WPF application named CH04.ToolTips.
	Open MainWindow.xaml. Add two rows to the existing Grid as follows:<Grid.RowDefinitions>
<RowDefinition Height="Auto" />
<RowDefinition />
</Grid.RowDefinitions>

	Add a ToolBar to the Grid, with two buttons in it:<ToolBar>
<Button Content="Copy" FontSize="16" Margin="4"
Padding="4" Command="Copy" />
<Button Content="Paste" FontSize="16" Margin="4"
Padding="4" Command="Paste" />
</ToolBar>

The Command properties used will make the buttons work correctly on the TextBox we'll add in the next step. For more information on commands, check out Chapter 7,
 Commands and MVVM.

	Add a TextBox to the second row of the Grid and make it multiline:<TextBox AcceptsReturn="True" Grid.Row="1" FontSize="14"
VerticalScrollBarVisibility="Auto"
HorizontalScrollBarVisibility="Auto"/>

	Running the application allows for simple copying and pasting of text. This works because of the commands bound to the buttons. Now let's add a simple tool tip to the Copy button. We'll do this by setting the ToolTip property of the Button to some text:<Button Content="Copy" FontSize="16" Margin="4"
Padding="4" Command="Copy"
ToolTip="Copy the selected text to the clipboard"/>

	Run the application. Type some text in the TextBox, then select some text (the Copy button should become enabled) and hover over the button with the mouse:[image: How to do it...]

	Now let's try something more ambitious. Add a custom tool tip for the Paste button by setting its ToolTip property to something more fancy:<Button.ToolTip>
<ToolTip>
<Border CornerRadius="10" BorderThickness="2"
BorderBrush="Black" Padding="4" Background="LightBlue">
<Grid Width="120">
<TextBlock FontSize="15" TextWrapping="Wrap"
Text="Paste text from the clipboard" />
</Grid>
</Border>
</ToolTip>
</Button.ToolTip>

	Run the application and make sure some text is in the clipboard. Then hover over the Paste button:[image: How to do it...]
This certainly looks more interesting, although not perfect (the yellowish background sips through). We'll see in the There's more... section how to remedy that.

How it works...

The ToolTip control is a ContentControl, so can have any content, with the same rules as any other ContentControl (see the Using content controls recipe earlier in this chapter). The ToolTip property (on FrameworkElement) is of type object. If a non-ToolTip control is supplied, WPF automatically creates a ToolTip control to wrap the actual content provided.

The tooltip background originates in the Windows theme and can also change because of user preferences. For example, with the Windows Classic theme, the color can be changed using the personalization options within the Windows Control Panel. Here's how to do it: Open the Control Panel Personalization item, and select Windows Color at the bottom. The following dialog box should appear:
[image: How it works...]
Open the Item combo box, and select ToolTip:

[image: How it works...]
Here we can change the background (and foreground) color of tooltips (as well as the default font). For some themes there's no UI to do this, such as when using the Aero theme in Windows 7.

There's more...

More tooltip customization is possible using the ToolTipService class. This class provides a bunch of attached properties that can be applied to elements on which tooltips exist. For example, in our code sample, the tooltips don't appear if a button is disabled. To make the tooltip appear no matter what the enabled state is, set the ToolTipService.ShowOnDisabled property to true. Other properties you can change include ShowDuration, HasDropShadow, IsEnabled, and InitialShowDelay, to name a few; most of them are self-explanatory.
Deeper tooltip customization

As was evident in the example code, the non-textual tooltip was sitting on top of the default yellowish (or whatever color) background. This is because of the default control template of the ToolTip. Fortunately, there's a way to fix this (without replacing the control template) by setting some properties via a Style (styles will be discussed in Chapter 8). Here's a complete new button which uses this idea:

<Button Content="Undo" Command="Undo" FontSize="16"
Margin="4" Padding="4"
ToolTipService.HasDropShadow="False">
<Button.Resources>
<Style TargetType="ToolTip">
<Setter Property="Background" Value="Transparent" />
<Setter Property="BorderBrush" Value="Transparent" />
</Style>
</Button.Resources>
<Button.ToolTip>
<Border CornerRadius="10" BorderThickness="2"
BorderBrush="Black" Padding="4"
Background="LightBlue">
<Grid>
<TextBlock FontSize="15" TextWrapping="Wrap"
Text="Undo the last action" />
</Grid>
</Border>
</Button.ToolTip>
</Button>

Using the above markup, the tooltip now looks polished, and becomes independent of the Windows theme or the user's preference:

[image: Deeper tooltip customization]

Realistic tooltips

The preceding example is fun enough, but it's impractical to customize every single tooltip in this way. The "proper" way to do this is by defining a DataTemplate that uses data binding expressions to get to the actual text (and maybe other things like images) of that tooltip. Data binding is discussed in Chapter 6.

Creating a list of items

Lists are typically used to show a collection of related objects. WPF provides several controls which can be used for that purpose, such as ListBox and ComboBox (which can be considered classic). All these derive from ItemsControl, which defines some basic functionality, such as an Items property. In this recipe, we'll take a quick look at ListBox and ComboBox. We'll reserve a more detailed explanation for Chapter 6, Data Binding, as this is the typical way list-based controls are used in WPF.

Getting ready

Make sure Visual Studio is up and running.

How to do it...

	Create a new WPF application named CH04.Lists.
	Open MainWindow.Xaml. Add two rows to the existing Grid, as follows:<Grid.RowDefinitions>
<RowDefinition Height="Auto" />
<RowDefinition />
</Grid.RowDefinitions>

	Add a ComboBox to the Grid with some string items:<ComboBox Margin="4" x:Name="_langCombo">
<ComboBoxItem>C++</ComboBoxItem>
<ComboBoxItem>C#</ComboBoxItem>
<ComboBoxItem>Visual Basic</ComboBoxItem>
<ComboBoxItem>F#</ComboBoxItem>
</ComboBox>

	Add a GroupBox containing an empty ListBox to the second row:<GroupBox Header="Some Keywords" Grid.Row="1" Margin="4">
<ListBox x:Name="_keywordList" Margin="4">
</ListBox>
</GroupBox>

	When the selection in the ComboBox changes, we'll populate the ListBox with some keywords from that language. Add an event handler for the SelectionChanged event for the ComboBox and place the following code in the handler:void OnLangChanged(object s, SelectionChangedEventArgs e) {
_keywordList.Items.Clear();
string[] keywords = null;
switch(_langCombo.SelectedIndex) {
case 0: // C++
keywords = new string[] {
"for", "auto", "mutable", "explicit",
"class", "volatile"
};
break;
case 1: // C#
keywords = new string[] {
"while", "var", "implicit", "return",
"where", "enum"
};
break;
case 2: // VB
keywords = new string[] {
"Dim", "Select", "While",
"Property", "Function", "If"
};
break;
case 3: // F#
keywords = new string[] {
"let", "rec", "mutable",
"module", "yield", "type"
};
break;
}
if(keywords != null)
Array.ForEach(keywords,
keyword => _keywordList.Items.Add(keyword));
}

	Run the application. You should be able to select a language from the drop down ComboBox and view a selected set of keywords for that particular language:[image: How to do it...]

How it works...

ItemsControl is the base class of all multiple-item containing controls. It provides for some basic properties, such as Items (a collection of objects) and some customization hooks we'll look at in Chapter 8. The following class diagram depicts the important classes derived from ItemsControl class:

[image: How it works...]

ListBox and ComboBox both inherit from (the abstract) Selector class (which inherits from ItemsControl). Selector adds the notion of selection. ItemsControl itself is not abstract, but does not support selection of any kind), with properties such as SelectedIndex (an integer) and SelectedItem (the actual object) and an event (SelectionChanged), which is leveraged in the preceding code. Another useful property of Selector is SelectedValue, which is based on another property, SelectedValuePath. For example, if the Selector holds Person objects and SelectedValuePath is Name, then SelectedValue would be the currently selected person's Name property.

ListBox adds the idea of multiple selections, with the SelectedItems property and a SelectionMode property. SelectionMode of Single signifies single item selection (the default), while Multiple allows selection/de-selection with mouse clicks and Extended allows multi-selection with the Ctrl and Shift keys to quickly select/deselect range of items.
In the SelectionChanged event handler, we switch on the currently selected item index, clear the ListBox items, and then add the required strings using the Items property's Add method (this is done with Array.ForEach that simply calls some delegate — in this example provided as a lambda function — for each item in the array, a string in this case).

There's more...

ListBox wraps every object it gets in a ListBoxItem, while ComboBox does the same with ComboBoxItem. These wrapper controls are created automatically for each object added to the ListBox / ComboBox. Both are types of ContentControl, meaning they can hold anything, with the usual rules of ContentControls. A DataTemplate may be provided using the ItemTemplate property (from ItemsControl). This means that the ComboBox in the preceding code sample could have looked as follows:
[image: There's more...]
This can be achieved in two ways: first, by hard coding a horizontal StackPanel with an image and text inside every ComboBoxItem, as follows (the full code sample is in the CH04.Lists2 project available with the downloadable source for this chapter):

<ComboBoxItem Padding="4">
<StackPanel Orientation="Horizontal" >
<Image Source="Images/CS.jpg" Width="32"
Stretch="Uniform" />
<TextBlock Text="C#" VerticalAlignment="Center"
FontSize="20" Margin="10,0,0,0" />
</StackPanel>
</ComboBoxItem>

The second is by using a data object with an appropriate DataTemplate. We'll look at this more closely in Chapter 6, Data Binding, as it's the typical way of working, especially when data binding is involved.

Creating a standard menu

A drop-down menu is one of the most (if the not the most) recognizable aspects of graphical user interfaces. Not as popular today as it was in the early days of GUIs, it's still a vital part of many applications. Let's see how to create one with WPF.

Getting ready

Make sure Visual Studio is up and running.

How to do it...

We'll create a simple Notepad-like text editor with a typical menu:

	Create a new WPF application named CH04.Menus.
	Open MainWindow.xaml. Add two rows to the existing Grid as follows:<Grid.RowDefinitions>
<RowDefinition Height="Auto"/>
<RowDefinition />
</Grid.RowDefinitions>

	Add a TextBox to the second row:<TextBox Grid.Row="1" AcceptsReturn="True" />

	Add a Menu control to the first row with MenuItem objects underneath:<Menu>
<MenuItem Header="_File">
<MenuItem Header=" _Exit" />
</MenuItem>
<MenuItem Header="_Edit">
<MenuItem Command="Copy" />
<MenuItem Header="_Paste" Command="Paste" />
<Separator />
<MenuItem Header="_Undo" Command="Undo" />
</MenuItem>
</Menu>

	Running the application shows two top level menu items, File and Edit. You can type in the text box and use the Copy, Paste, and Undo menu items, which work as expected. Selecting File | Exit does nothing. Let's change that.
	Add a Click event handler to the Exit MenuItem. Add the following code to the handler:void OnExit(object sender, RoutedEventArgs e) {
Close();
}

	Run the application. Note that clicking File | Exit closes the application (by closing the Window).[image: How to do it...]

How it works...

The menu derives from MenuBase (an abstract class that is also the base of ContextMenu), which derives from ItemsControl. This is not surprising, as a menu holds child objects, which technically can be anything, but really should be MenuItem objects.

MenuItem itself derives from HeaderedItemsControl, which is an ItemsControl with a header (similar to a HeaderedContentControl). The Header property (along with HeaderTemplate) typically provides the menu item text (but can be anything, as Header is of type object). A Command property allows binding to a command in the code sample it was the Copy, Paste, and Undo built-in commands which, that a TextBox handles automatically (as demonstrated in the Creating tooltips recipe in this chapter). Note that if the Command is attached to a RoutedUICommand (as all built-in commands are), the Header text is unnecessary. It's automatically supplied by the Text property of RoutedUICommand (more on commands in Chapter 7, Commands and MVVM), as can be seen with the Copy menu item.
A MenuItem raises the Click event when that item is selected. This is used in the preceding code to handle the File | Exit menu item.
A Separator element can be used as a simple separator between items, as shown between Paste and Undo. It serves no other function, and can never receive focus.

There's more...

A MenuItem has an Icon property that is typically used to supply a small image that is placed to the left of the Header. However, Icon is of type object, thus can be anything (there's no IconTemplate property, however).
The underscore character can be used to allow an Alt + Key combination to select a particular menu item. This is similar to the rule for a Label (discussed in the recipe Working with text in this chapter).

MenuItem is an ItemsControl, so can use the same facilities, such as data templates and other customization hooks, as demonstrated in Chapter 6, Data Binding.

Other MenuItem properties and events

MenuItem objects can be checked by setting IsCheckable to true. This provides for a toggling behavior. The current state is available via the IsChecked property. It also fires the Checked and Unchecked events for similar reasons.

The InputGestureText allows a text to be appended to the Header, indicating the keyboard shortcut that fires this item. This, however, does not actually bind the key gesture to anything. Typically, this is done with the RoutedCommand that is attached via the Command property, as a RoutedCommand can be associated with a keyboard gesture (described in Chapter 7 in more detail).

Creating a context menu

Context menus are typically invoked when the user right clicks a certain area or element (or presses Shift + F10 or a designated key on some keyboards). They are called "context" menus because different situations may call for different menus, or at least different available options. The ContextMenu class (a derivative of MenuBase) can host a bunch of MenuItem controls (and separators). Let's see how this works.

Getting ready

Open the CH04.Lists project from the Creating a list of items recipe.

How to do it...

We'll continue with the CH04.Lists project and enhance it to make a context menu available:
	Open MainWindow.xaml.
	Set the ContextMenu property of the ListBox to a ContextMenu object with some MenuItem instances:<ListBox.ContextMenu>
<ContextMenu>
<MenuItem Header="_Language" >
<MenuItem Header="C++" Tag="0" />
<MenuItem Header="C#" Tag="1" />
<MenuItem Header="Visual Basic" Tag="2" />
<MenuItem Header="F#" Tag="3" />
</MenuItem>
<Separator />
<MenuItem Header="_Save..." />
<MenuItem Header="_Load..." />
</ContextMenu>
</ListBox.ContextMenu>

	Let's add a Click handler for changing a language. We'll add that to the Language MenuItem, taking advantage of the bubbling routing strategy of the Click event. In the handler, add the following code:void OnChangeLanugage(object sender, RoutedEventArgs e) {
var item = e.Source as MenuItem;
_langCombo.SelectedIndex = Convert.ToInt32(item.Tag);
}

	Running the application allows changing language by right-clicking somewhere inside the ListBox:[image: How to do it...]

How it works...

A ContextMenu object holds MenuItem objects, similar to a regular Menu. ContextMenu. However, cannot be a direct part of a visual tree; instead, it must be placed with the appropriate property (usually FrameworkElement.ContextMenu). This is exactly how it's done in the preceding code sample. Any right-click inside the ListBox triggers opening the context menu. Any Click event handlers or Command objects are invoked when the user actually selects an item.

The preceding Click event handler leverages the Tag property that every element has for application defined purposes — in this case, the correct selected index in the ComboBox to change the current programming language.

There's more...

There are many properties in ContextMenu to change its placement (by default the top-left corner appears at the mouse pointer location), such as Placement, HorizontalOffset, and VerticalOffset. A bunch of attached properties (that can be set on elements) for ContextMenu customization exist in the ContextMenuService class. For example, the ShowOnDisabled property can be set to true to allow the ContextMenu to open even if the element is disabled. The relationship between ContextMenu and ContextMenuService classes is similar to the one between ToolTip and ToolTipService (as discussed in the Creating tooltips recipe in this chapter). Note that ContextMenuService settings override ContextMenu settings if they conflict.

Selecting options with checkboxes and radio buttons

Checkboxes and radio buttons are some of the most recognizable and useful controls. Checkboxes allow selecting or unselecting options, while radio buttons allow selecting one option out of several. Let's see how to use them in WPF.

Getting ready

Make sure Visual Studio is up and running.

How to do it...

We'll create a simple tea choosing application that uses checkboxes and radio buttons to make some tea:

	Create a new WPF application named CH04.SelectingOptions.
	Open MainWindow.xaml. Replace the Grid with a StackPanel.
	Add a GroupBox with some tea type options to the StackPanel, as follows:<GroupBox Header="What kind of tea would you like?">
<StackPanel Margin="4" x:Name="_teaTypePanel">
<RadioButton Content="Earl Grey" IsChecked="True"/>
<RadioButton Content="Mint" />
<RadioButton Content="Chinese Green" />
<RadioButton Content="Japanese Green" />
</StackPanel>
</GroupBox>

	Add another GroupBox to allow options for tea supplements:<GroupBox Header="Select tea supplements">
<StackPanel Margin="4">
<CheckBox Content="Sugar" x:Name="_isSugar" />
<CheckBox Content="Milk" x:Name="_isMilk" />
<CheckBox Content="Lemon" x:Name="_isLemon" />
</StackPanel>
</GroupBox>

	Add a Button to the StackPanel that would make the actual tea:<Button Content="Make Tea!" Margin="4" FontSize="20"
HorizontalAlignment="Center" Padding="4"/>

	Add a Click event handler to the button with the following code:void OnMakeTea(object sender, RoutedEventArgs e) {
var sb = new StringBuilder("Tea: ");
foreach(RadioButton rb in _teaTypePanel.Children)
if(rb.IsChecked == true) {
sb.AppendLine(rb.Content.ToString());
break;
}
if(_isSugar.IsChecked == true)
sb.AppendLine("With sugar");
if(_isMilk.IsChecked == true)
sb.AppendLine("With milk");
if(_isLemon.IsChecked == true)
sb.AppendLine("With lemon");
if(_isLemon.IsChecked == true && _isMilk.IsChecked == true)
sb.AppendLine("Very unusual!");
MessageBox.Show(sb.ToString(), "Tea Maker");
}

	Run the application and select some tea options, then click the button. You should see something like the following:[image: How to do it...]

How it works...

Both CheckBox and RadioButton derive from ToggleButton, which defines their basic behavior. Specifically, it defines the IsChecked property, typed as Nullable<bool> (bool? in C#). This means it can have three values: true, false, and null. null indicates an intermediate state (useful for scenarios where the CheckBox is used to indicate something for multiple items, and not all have the same value; a classic example is the Read Only checkbox in Windows Explorer's folder properties). This is applicable to checkboxes, but has no real meaning for radio buttons. ToggleButton also defines appropriate events (Checked, Unchecked, and Indeterminate).

The preceding code uses the IsChecked property to make decisions. For radio buttons, selecting one button automatically deselects all others within the group. A radio button group is implicit when all radio buttons are within the same container (StackPanel in this case). However, if groups of radio buttons need to be defined within the same container, the GroupName property (a string) should be set to the same value for a specific group. In fact, GroupName is the only property RadioButton adds with respect to its base class; this should be used with caution, as GroupName takes effect even between panels.

CheckBox adds no new properties — it just provides a different appearance from ToggleButton.

Manipulating tab order and focus

The Tab key in a typical user interface can be used to move the keyboard focus from one control to another (with Shift + Tab working in the reverse order), providing keyboard navigation capabilities without the need to use the mouse. This has to be logical that is, the focus should not jump erratically all over the place, but rather move to the next logical control within the UI. The following recipe shows how to set the tab order and how to set the focus to a given control.

Getting ready

Make sure Visual Studio is up and running.

How to do it...

We'll create a personal information entry form that uses tab order in a logical manner, and places the keyboard focus where it makes sense when the form first appears:
	Create a new WPF application named CH04.TabAndFocus.
	Open MainWindow.xaml. Add some rows and columns to the Grid and some elements, as follows:<Grid Margin="4">
<Grid.RowDefinitions>
<RowDefinition Height="Auto" />
<RowDefinition Height="10" />
<RowDefinition Height="Auto" />
<RowDefinition Height="10" />
<RowDefinition Height="Auto" />
<RowDefinition Height="Auto" />
</Grid.RowDefinitions>
<Grid.ColumnDefinitions>
<ColumnDefinition Width="Auto" />
<ColumnDefinition Width="20" />
<ColumnDefinition />
</Grid.ColumnDefinitions>
<Button Grid.Row="5" FontSize="16" Content="Send Comment"
Grid.ColumnSpan="3" HorizontalAlignment="Center"
Margin="0,20,0,0" Padding="4"/>
<TextBlock Text="Name:" VerticalAlignment="Center"/>
<TextBox Grid.Column="2" x:Name="name"/>
<TextBlock Text="Birthday:" Grid.Row="2"
VerticalAlignment="Center"/>
<DatePicker Grid.Row="2" Grid.Column="2" />
<TextBlock Text="Comments:" Grid.Row="4" />
<TextBox AcceptsReturn="True" Grid.Row="4"
Grid.Column="2" Height="100" />
</Grid>

	Run the application. Press Tab and watch the keyboard focus move.[image: How to do it...]

	The focus moves first to the button, then the top text box, then the date picker, then the large text box. Let's make the top text box first in the tab order by setting its TabIndex property to 0:<TextBox Grid.Column="2" TabIndex="0"/>

	We can do the same, incrementing the TabIndex, for other controls in the required order. When the window starts up, no control has the focus. Let's make the top text box get the focus automatically, in XAML.
	Add the following attached property on the Grid:<Grid FocusManager.FocusedElement="{Binding ElementName=name}"

	Run the application. The keyboard focus should start at the top TextBox. Note that its TabIndex doesn't have to be zero now.

How it works...

The default tab order is based on the order of elements as they are defined in XAML (or the order they are added to a Children element of Panel in code). The TabIndex property (from Control) allows changing the tab order (the default value is Int32.MaxValue), where lower values are first in the tab order.
The IsTabStop property indicates whether a control is included in tab navigation (true by default).
Most of the time, the order of control placement should be enough to achieve the required tab order, but in case it's not, the aforementioned properties should help.
The keyboard focus can be changed at any time by calling the static Keyboard.Focus method, passing the control that should have keyboard focus (that control must have its Focusable property set to true). The Keyboard.FocusedElement static property returns the current control that has keyboard focus (or null if no control has focus at this time, for example, the focus is in some other application).

There's more...

The preceding code sample uses the FocusManager.FocusedElement attached property to set the focus to the top TextBox (using a data binding expression). Curiously enough, setting this property on the Window itself does not achieve the same result. The following section explains why.

Keyboard focus versus logical focus

Keyboard focus is a well-known concept. Only one control at a time can have the keyboard focus in the entire desktop. WPF defines another concept called logical focus. A control can have logical focus in some container that is a focus scope. That is, only one control can have logical focus in a given focus scope, but another control can have logical focus if placed in a different focus scope. What this means is that when the keyboard focus leaves a focus scope, that scope still "remembers" the last control which had keyboard focus. When focus returns to that focus scope, that control will receive keyboard focus.

By default, Window, Menu, ContextMenu, and ToolBar are focus scopes. A focus scope can be set using the FocusManager.IsFocusScope attached property.
In our example, the Window is a focus scope (we did not change that), so its only child (the Grid) becomes the target of keyboard focus. Naturally, the Grid is useless as such. Setting the name textbox to be focused within the Window is pointless, because the Grid is not a focus scope.

We can solve that in several ways. One way is setting the logical focus within the Grid (as was done in the code sample). Another way is keeping the setting on the Window, but marking the Grid with Focusable="False". Yet another way is to remove the focus scope property of Window by setting FocusManager.IsFocusScope to false.
The logical focus is important in particular when dealing with RoutedCommand objects, as we'll discuss in Chapter 7.

Chapter 5. Application and Windows

In this chapter we will cover:
	Creating a window
	Creating a dialog box
	Using the common dialog boxes
	Creating ownership between windows
	Creating a custom shaped window
	Creating a single instance application
	Handling an unhandled exception

Introduction

In the preceding chapters, we dealt with a lot of WPF details, concerning various aspects of its features, such as resources and controls. In this chapter, we'll take a broader look at WPF's application model, including the use of windows within an application.

Creating a window

Windows are the typical top level controls in WPF. By default, a MainWindow class is created by the application wizard and automatically shown upon running the application. In this recipe, we'll take a look at creating and showing other windows that may be required during the lifetime of an application.

Getting ready

Make sure Visual Studio is up and running.

How to do it...

We'll create a new class derived from Window and show it when a button is clicked:

	Create a new WPF application named CH05.NewWindows.
	Right-click on the project node in Solution explorer, and select Add | Window...:[image: How to do it...]

	In the resulting dialog, type OtherWindow in the Name textbox and click on Add.
	A file named OtherWindow.xaml should open in the editor. Add a TextBlock to the existing Grid, as follows:<TextBlock Text="This is the other window" FontSize="20"
VerticalAlignment="Center" HorizontalAlignment="Center" />

	Open MainWindow.xaml. Add a Button to the Grid with a Click event handler:<Button Content="Open Other Window" FontSize="30"
Click="OnOpenOtherWindow" />

	In the Click event handler, add the following code:void OnOpenOtherWindow(object sender, RoutedEventArgs e) {
var other = new OtherWindow();
other.Show();
}

	Run the application, and click the button. The other window should appear and live happily alongside the main window:[image: How to do it...]

How it works...

A Window is technically a ContentControl, so can contain anything. It's made visible using the Show method. This keeps the window open as long as it's not explicitly closed using the classic close button, or by calling the Close method. The Show method opens the window as modeless — meaning the user can return to the previous window without restriction.

We can click the button more than once, and consequently more Window instances would show up.

There's more...

The first window shown can be configured using the Application.StartupUri property, typically set in App.xaml. It can be changed to any other window. For example, to show the OtherWindow from the previous section as the first window, open App.xaml and change the StartupUri property to OtherWindow.xaml:

StartupUri="OtherWindow.xaml"

Selecting the startup window dynamically

Sometimes the first window is not known in advance, perhaps depending on some state or setting. In this case, the StartupUri property is not helpful. We can safely delete it, and provide the initial window (or even windows) by overriding the Application.OnStartup method as follows (you'll need to add a reference to the System.Configuration assembly for the following to compile):

protected override void OnStartup(StartupEventArgs e) {
Window mainWindow = null;
// check some state or setting as appropriate
if(ConfigurationManager.AppSettings["AdvancedMode"] == "1")
mainWindow = new OtherWindow();
else
mainWindow = new MainWindow();
mainWindow.Show();
}

This allows complete flexibility in determining what window or windows should appear at application startup.

Accessing command line arguments

The WPF application created by the New Project wizard does not expose the ubiquitous Main method. WPF provides this for us it instantiates the Application object and eventually loads the main window pointed to by the StartupUri property.

The Main method, however, is not just a starting point for managed code, but also provides an array of strings as the command line arguments passed to the executable (if any). As Main is now beyond our control, how do we get the command line arguments?
Fortunately, the same OnStartup method provides a StartupEventArgs object, in which the Args property is mirrored from Main. The downloadable source for this chapter contains the project CH05.CommandLineArgs, which shows an example of its usage. Here's the OnStartup override:
protected override void OnStartup(StartupEventArgs e) {
string text = "Hello, default!";
if(e.Args.Length > 0)
text = e.Args[0];
var win = new MainWindow(text);
win.Show();
}

The MainWindow instance constructor has been modified to accept a string that is later used by the window. If a command line argument is supplied, it is used.

Creating a dialog box

A dialog box is a Window that is typically used to get some data from the user, before some operation can proceed. This is sometimes referred to as a modal window (as opposed to modeless, or non-modal). In this recipe, we'll take a look at how to create and manage such a dialog box.

Getting ready

Make sure Visual Studio is up and running.

How to do it...

We'll create a dialog box that's invoked from the main window to request some information from the user:

	Create a new WPF application named CH05.Dialogs.
	Add a new Window named DetailsDialog.xaml (a DetailsDialog class is created).
	Visual Studio opens DetailsDialog.xaml. Set some Window properties: FontSize to 16, ResizeMode to NoResize, SizeToContent to Height, and make sure the Width is set to 300:ResizeMode="NoResize" SizeToContent="Height" Width="300"
FontSize="16"

	Add four rows and two columns to the existing Grid, and add some controls for a simple data entry dialog as follows:<Grid.RowDefinitions>
<RowDefinition Height="Auto" />
<RowDefinition Height="Auto"/>
<RowDefinition Height="Auto"/>
<RowDefinition Height="Auto"/>
</Grid.RowDefinitions>
<Grid.ColumnDefinitions>
<ColumnDefinition Width="Auto" />
<ColumnDefinition />
</Grid.ColumnDefinitions>
<TextBlock Text="Please enter details:" Grid.ColumnSpan="2"
Margin="4,4,4,20" HorizontalAlignment="Center"/>
<TextBlock Text="Name:" Grid.Row="1" Margin="4"/>
<TextBox Grid.Column="1" Grid.Row="1" Margin="4"
x:Name="_name"/>
<TextBlock Text="City:" Grid.Row="2" Margin="4"/>
<TextBox Grid.Column="1" Grid.Row="2" Margin="4"
x:Name="_city"/>
<StackPanel Grid.Row="3" Orientation="Horizontal"
Margin="4,20,4,4" Grid.ColumnSpan="2"
HorizontalAlignment="Center">
<Button Content="OK" Margin="4" />
<Button Content="Cancel" Margin="4" />
</StackPanel>

	This is how it should look in the designer:[image: How to do it...]

	The dialog should expose two properties for the name and city the user has typed in. Open DetailsDialog.xaml.cs. Add two simple properties:public string FullName { get; private set; }
public string City { get; private set; }

	We need to show the dialog from somewhere in the main window. Open MainWindow.xaml, and add the following markup to the existing Grid:<Grid.RowDefinitions>
<RowDefinition Height="Auto" />
<RowDefinition />
</Grid.RowDefinitions>
<Button Content="Enter Data" Click="OnEnterData"
Margin="4" FontSize="16"/>
<TextBlock FontSize="24" x:Name="_text" Grid.Row="1"
VerticalAlignment="Center" HorizontalAlignment="Center"/>

	In the OnEnterData handler, add the following:private void OnEnterData(object sender, RoutedEventArgs e) {
var dlg = new DetailsDialog();
if(dlg.ShowDialog() == true) {
_text.Text = string.Format(
"Hi, {0}! I see you live in {1}.",
dlg.FullName, dlg.City);
}
}

	Run the application. Click the button and watch the dialog appear. The buttons don't work yet, so your only choice is to close the dialog using the regular close button. Clearly, the return value from ShowDialog is not true in this case.
	When the OK button is clicked, the properties should be set accordingly. Add a Click event handler to the OK button, with the following code:private void OnOK(object sender, RoutedEventArgs e) {
FullName = _name.Text;
City = _city.Text;
DialogResult = true;
Close();
}

The Close method dismisses the dialog, returning control to the caller. The DialogResult property indicates the returned value from the call to ShowDialog when the dialog is closed.

	Add a Click event handler for the Cancel button with the following code:private void OnCancel(object sender, RoutedEventArgs e) {
DialogResult = false;
Close();
}

	Run the application and click the button. Enter some data and click on OK:[image: How to do it...]

	You will see the following window:[image: How to do it...]

How it works...

A dialog box in WPF is nothing more than a regular window shown using ShowDialog instead of Show. This forces the user to dismiss the window before she can return to the invoking window. ShowDialog returns a Nullable<bool> (can be written as bool? in C#), meaning it can have three values: true, false, and null. The meaning of the return value is mostly up to the application, but typically true indicates the user dismissed the dialog with the intention of making something happen (usually, by clicking some OK or other confirmation button), and false means the user changed her mind, and would like to abort. The null value can be used as a third indicator to some other application-defined condition.

The DialogResult property indicates the value returned from ShowDialog because there is no other way to convey the return value from the dialog invocation directly. That's why the OK button handler sets it to true and the Cancel button handler sets it to false (this also happens when the regular close button is clicked, or Alt + F4 is pressed).
Most dialog boxes are not resizable. This is indicated with the ResizeMode property of the Window set to NoResize. However, because of WPF's flexible layout, it certainly is relatively easy to keep a dialog resizable (and still manageable) where it makes sense (such as when entering a potentially large amount of text in a TextBox - it would make sense if the TextBox could grow if the dialog is enlarged).

There's more...

Most dialogs can be dismissed by pressing Enter (indicating the data should be used) or pressing Esc (indicating no action should take place). This is possible to do by setting the OK button's IsDefault property to true and the Cancel button's IsCancel property to true. The default button is typically drawn with a heavier border to indicate it's the default button, although this eventually depends on the button's control template.

If these settings are specified, the handler for the Cancel button is not needed. Clicking Cancel or pressing Esc automatically closes the dialog (and sets DiaglogResult to false). The OK button handler is still needed as usual, but it may be invoked by pressing Enter, no matter what control has the keyboard focus within the Window. The CH05.DefaultButtons project from the downloadable source for this chapter demonstrates this in action.
Modeless dialogs

A dialog can be show as modeless, meaning it does not force the user to dismiss it before returning to other windows in the application. This is done with the usual Show method call — just like any Window. The term dialog in this case usually denotes some information expected from the user that affects other windows, sometimes with the help of another button labeled "Apply".

The problem here is mostly logical — how to convey the information change. The best way would be using data binding, rather than manually modifying various objects. We'll take an extensive look at data binding in the next chapter.

Using the common dialog boxes

Windows has its own built-in dialog boxes for common operations, such as opening files, saving a file, and printing. Using these dialogs is very intuitive from the user's perspective, because she has probably used those dialogs before in other applications. WPF wraps some of these (native) dialogs. In this recipe, we'll see how to use some of the common dialogs.

Getting ready

Make sure Visual Studio is up and running.

How to do it...

We'll create a simple image viewer that uses the Open common dialog box to allow the user to select an image file to view:
	Create a new WPF Application named CH05.CommonDialogs.
	Open MainWindow.xaml. Add the following markup to the existing Grid:<Grid.RowDefinitions>
<RowDefinition Height="Auto" />
<RowDefinition />
</Grid.RowDefinitions>
<Button Content="Open Image" FontSize="20" Click="OnOpenImage"
HorizontalAlignment="Center" Margin="4" />
<Image Grid.Row="1" x:Name="_img" Stretch="Uniform" />

	Add a Click event handler for the button. In the handler, we'll first create an OpenFileDialog instance and initialize it (add a using to the Microsoft.Win32 namespace):void OnOpenImage(object sender, RoutedEventArgs e) {
var dlg = new OpenFileDialog {
Filter = "Image files|*.png;*.jpg;*.gif;*.bmp",
Title = "Select image to open",
InitialDirectory = Environment.GetFolderPath(
Environment.SpecialFolder.MyPictures)
};

	Now we need to show the dialog and use the selected file (if any):if(dlg.ShowDialog() == true) {
try {
var bmp = new BitmapImage(new Uri(dlg.FileName));
_img.Source = bmp;
}
catch(Exception ex) {
MessageBox.Show(ex.Message, "Open Image");
}
}

	Run the application. Click the button and navigate to an image file and select it. You should see something like the following:[image: How to do it...]

How it works...

The OpenFileDialog class wraps the Win32 open/save file dialog, providing easy enough access to its capabilities. It's just a matter of instantiating the object, setting some properties, such as the file types (Filter property) and then calling ShowDialog. This call, in turn, returns true if the user selected a file and false otherwise (null is never returned, although the return type is still defined as Nullable<bool> for consistency).

Note
The look of the Open file dialog box may be different in various Windows versions. This is mostly unimportant unless some automated UI testing is done. In this case, the way the dialog looks or operates may have to be taken into consideration when creating the tests.

The filename itself is returned in the FileName property (full path). Multiple selections are possible by setting the MultiSelect property to true (in this case the FileNames property returns the selected files).

There's more...

WPF similarly wraps the Save As common dialog with the SaveFileDialog class (in the Microsoft.Win32 namespace as well). Its use is very similar to OpenFileDialog (in fact, both inherit from the abstract FileDialog class).
What about folder selection (instead of files)? The WPF OpenFileDialog does not support that. One solution is to use Windows Forms' FolderBrowseDialog class. Another good solution is to use the Windows API Code Pack described shortly.
Another common dialog box WPF wraps is PrintDialog (in System.Windows.Controls). This shows the familiar print dialog, with options to select a printer, orientation, and so on. The most straightforward way to print would be calling PrintVisual (after calling ShowDialog), providing anything that derives from the Visual abstract class (which include all elements). General printing is a complex topic and is beyond the scope of this book.
What about colors and fonts?

Windows also provides common dialogs for selecting colors and fonts. However, these are not wrapped by WPF. There are several alternatives:

	Use the equivalent Windows Forms classes (FontDialog and ColorDialog, both from System.Windows.Forms)
	Wrap the native dialogs yourself
	Look for alternatives on the Web

The first option is possible, but has two drawbacks: first, it requires adding reference to the System.Windows.Forms assembly; this adds a dependency at compile time, and increases memory consumption at run time, for very little gain. The second drawback has to do with the natural mismatch between Windows Forms and WPF. For example, ColorDialog returns a color as a System.Drawing.Color, but WPF uses System.Windows.Media.Color. This requires mapping a GDI+ color (WinForms) to WPF's color, which is cumbersome at best.
The second option of doing your own wrapping is a non-trivial undertaking and requires good interop knowledge. The other downside is that the default color and font common dialogs are pretty old (especially the color dialog), so there's much room for improvement.

The third option is probably the best one. There are more than a few good candidates for color and font pickers. For a color dialog, for example, you can use the ColorPicker or ColorCanvas provided with the Extended WPF toolkit library on CodePlex (http://wpftoolkit.codeplex.com/). Here's how these may look (ColorCanvas on the left-hand side, and one of the possible views of ColorPicker on the right-hand side):
[image: What about colors and fonts?]

The Windows API Code Pack

The Windows API Code Pack is a Microsoft project on CodePlex (http://archive.msdn.microsoft.com/WindowsAPICodePack) that provides many .NET wrappers to native Windows features, in various areas, such as shell, networking, Windows 7 features (this is less important now as WPF 4 added first class support for Windows 7), power management, and DirectX. One of the Shell features in the library is a wrapper for the Open dialog box that allows selecting a folder instead of a file. This has no dependency on the WinForms assembly.

Creating ownership between windows

Window objects are self-sufficient by default, and are independent of other windows in the application. Sometimes, however, it's useful to connect two (or more) windows in an owner-owned relationship. An owned window obeys the following rules:

	Closed automatically if its owner is closed
	Minimized automatically if its owner is minimized
	Always appears on top of its owner, but unconstrained to its surface (unlike traditional Win32 child windows)
	Never shown in the task bar if it's currently minimized

In this recipe, we'll see how to create such ownership and show a typical use case.
Getting ready

Make sure Visual Studio is up and running.

How to do it...

We'll create a tool-like window that is owned by the main window, demonstrating a typical usage of window ownership:
	Create a new WPF Application project named CH05.OwnerWindows.
	Right-click on the project node in Solution Explorer and select Add | Window....
	Type ToolsWindow in the Name text box and click on Add.
	The ToolsWindow.xaml file should be open. Set the following properties on the Window object:SizeToContent="WidthAndHeight" ResizeMode="NoResize"

	Replace the existing Grid with a ToolBar and add some buttons as follows:<ToolBar FontSize="20">
<RadioButton Content="Pointer" Margin="4"
IsChecked="True"/>
<RadioButton Content="Pencil" Margin="4"/>
<RadioButton Content="Brush" Margin="4"/>
<RadioButton Content="Eraser" Margin="4"/>
<RadioButton Content="Selection" Margin="4"/>
</ToolBar>

	Open App.xaml. Remove the StartupUri property value from the Application object.
	Open App.xaml.cs. Override the OnStartup method as follows:protected override void OnStartup(StartupEventArgs e) {
var mainWindow = new MainWindow();
var toolWindow = new ToolsWindow();
mainWindow.Show();
toolWindow.Owner = mainWindow;
toolWindow.Show();
}

	Run the application. Note that the Tool window is always on top of the main window. Minimize the main window — the tool window is minimized as well. Restore it — both windows are restored.[image: How to do it...]

How it works...

Window ownership is not a WPF specific feature — it's a capability exposed by the Win32 user API. WPF simply makes it easily accessible.

Every Window object has an Owner property. By default, it's null, meaning the Window is unowned, independent of other windows. If an owner is set, the Window now obeys ownership rules, as described in the introduction section of this recipe.
Note
A Window (not a NavigationWindow hosted in a browser) can be removed from the Task Bar by specifying false for the ShowInTaskBar property.

There's more...

Ownership can be removed simply by reverting the Owner property back to null, freeing the window once again.
Each Window also has an OwnedWindows property, which is a collection of that Window's owned windows (of type WindowCollection). This may be useful when some operation needs to be performed on all or some of windows owned by Window.

Creating a custom shaped window

A typical window has several aspects that are not directly controllable by a WPF application, such as the look of the title bar, minimize, maximize, and close buttons; its shape is always rectangular, and so on. These settings (called the non-client area of the window) are defined by the current Windows theme selected by the user using the Control Panel, with some customization possible for font sizes, colors, caption color, and so on, but the basic appearance characteristics of the window remain.

An application may want to customize the way a window looks from the outside. Canonical examples of this are media players. The built-in Windows Media Player, for instance, can be switched to skin mode where its shape becomes something that is far from rectangular (this particular skin was downloaded from Microsoft's website; in Windows Media Player, open the View | Skin chooser menu and click More Skins):

[image: Creating a custom shaped window]
Let's see how we can create a custom shaped window with WPF.
Getting ready

Make sure Visual Studio is up and running.

How to do it...

We'll create a custom shaped window and make it function just like a regular window for moving and closing:

	Create a new WPF Application project named CH05.CustomShapeWindow.
	Open MainWindow.xaml. Set the following properties of the Window object to remove the default window appearance so we can provide our own:AllowsTransparency="True" WindowStyle="None"
Background="Transparent"

	At this point, the window is pretty much invisible. It's time to provide some irregular content. Add the following markup in the existing Grid:<Rectangle RadiusX="30" RadiusY="30">
<Rectangle.Fill>
<LinearGradientBrush EndPoint="0,1">
<GradientStop Color="DarkBlue" Offset="0" />
<GradientStop Color="#80000080" Offset="1" />
</LinearGradientBrush>
</Rectangle.Fill>
</Rectangle>
<TextBlock TextAlignment="Center" VerticalAlignment="Top"
Margin="4" Text="My Window Title" FontSize="18"
Foreground="White" FontWeight="Bold" />
<Button Content="X" HorizontalAlignment="Right"
FontWeight="Bold" VerticalAlignment="Top"
Margin="20,4" FontSize="16" />
<TextBlock Text="Welcome to the new Window!"
Foreground="Yellow" FontSize="25"
VerticalAlignment="Center" HorizontalAlignment="Center" />

	Running the application now shows the following:[image: How to do it...]
The window cannot be moved with the mouse (but can be moved by pressing Alt + Space and selecting Move), and cannot be closed with the mouse (but can be closed with Alt + F4 or Alt + Space and then Close).

	To make the window work as expected with the mouse, we'll add two event handlers.
	The first is a Click handler for the "X" button. Enter the following in the handler:private void OnClose(object sender, RoutedEventArgs e) {
Close();
}

	The second is a MouseLeftButtonDown handler for the Grid. Add the following code in the handler:private void OnMove(object sender, MouseButtonEventArgs e) {
DragMove();
}

	Run the application. You should be able to move the window with the mouse and close it by clicking the button.

How it works...

The AllowsTransparency and WindowStyle settings shown above are the mandatory ingredients that tell windows not to paint anything in the so-called non-client area of the window. Setting Background to Transparent allows other content to show through and flesh out the real look of the window.

In the preceding XAML, a Rectangle with rounded corners is placed first, followed by two TextBlock instances, one for some kind of title and the other to simulate the actual content of the window. A Button is added as well, to provide a convenient way to close the window.
One consequence of the title bar removal is losing the ability to move or close the window with the mouse. Usually such features are desirable, so we need to implement them ourselves. Fortunately, this is not difficult. To close the window, we just wire up some control (in this case a Button) to call the regular Window.Close method. Moving the window seems more complex, and technically it is, but WPF makes this easy with the Window.DragMove method. We just need to call it in a MouseLeftButtonDown event handler; the rest is done for us as part of DragMove.

There's more...

What about custom shaped windows that look like the previous Media Player skin? The trick here is to use an image with transparency (typically a PNG file) as the window's background. The downloadable source for this chapter contains a project named CH05.ImageShapeWindow that shows this in action. This is the required XAML to make this work (apart from the two required property settings):
<Window.Background>
<ImageBrush ImageSource="invader.png" />
</Window.Background>

The invader.png is an image with transparent areas. This is how the window looks when running:
[image: There's more...]
We can add the ability to move and close the window in much the same way as previously shown (check out the source of this example).

What about reusability?

The above examples are fine for a single window that is required to be different. What if we wanted all of an application's windows to have a unique shape? Placing the same XAML and event handlers is not very reusable and becomes a maintenance headache.

A better approach would be to create a custom control template for a window and derive a new class from Window that would handle closing and moving, but potentially also minimizing and restoring. This custom class would be able to expose other special properties if needed. We'll discuss control templates in Chapter 8, Styles, Triggers, and Control Templates.

Creating a single instance application

We may sometimes want to limit the number of running instances of some application to just one. Running some executable creates a new Windows process to host that executable, with its own address space, tables, resources, and so on. Sometimes this is not desirable; if the executable tries to run while another instance is already running, it should quit and optionally make the other instance's main window active. A canonical example in Windows is Windows Media Player. An attempt to open a second media player activates the first Media Player window (although it's debatable whether such behavior is desired for Media Player).

Let's see how this can be achieved.
Getting ready

Make sure Visual Studio is up and running.

How to do it...

We'll create a simple application that will not run with more than one process. A second run will transfer activation to the running instance's window, and quit:

	Create a new WPF Application project named CH05.SingleInstApp.
	Open MainWindow.xaml. Give the window a distinct Title, such as Single Instance.
	Open App.xaml.cs. We'll need to use some Win32 functions. Add the following to the App class:[DllImport("user32", CharSet = CharSet.Unicode)]
static extern IntPtr FindWindow(string cls, string win);
[DllImport("user32")]
static extern IntPtr SetForegroundWindow(IntPtr hWnd);
[DllImport("user32")]
static extern bool IsIconic(IntPtr hWnd);
[DllImport("user32")]
static extern bool OpenIcon(IntPtr hWnd);

	Override the OnStartup method as follows:bool isNew;
var mutex = new Mutex(true, "MySingleInstMutex", out isNew);
if(!isNew) {
ActivateOtherWindow();
Shutdown();
}

	Add the implementation of ActivateOtherWindow:Private static void ActivateOtherWindow() {
var other = FindWindow(null, "Single Instance");
if(other != IntPtr.Zero) {
SetForegroundWindow(other);
if(IsIconic(other))
OpenIcon(other);
}
}

	Run the application without the debugger (Ctrl + F5 or Debug | Start Without Debugging menu). The main window should appear. Now run the application again (you can also use Windows Explorer). The previous window should activate. If it was minimized, it should be restored and activated.

How it works...

A Mutex is a synchronization object, typically used to synchronize access to a shared resource (such as a file), so that only one thread can access the resource at a time, thus preventing data corruption or other inconsistencies within the shared resource. Under the covers it wraps a Win32 Mutex object (represented as a handle), so it's a true kernel object, capable of cross AppDomain and cross process synchronization — something that the roughly equivalent Monitor.Enter/Exit (or the C# lock keyword) cannot do.

In this case the Mutex is not used because of its synchronization capabilities, but simply as a way to identify a singleton object in the user's session. The name string argument passed to its constructor should be unique, to not confuse objects with other processes (its creation may also fail as a result). The isNew returned value indicates whether this is a brand new kernel mutex or another handle to an existing one. If it already exists, then it was created by an already running application instance, so we want to kill this new instance. But before we do that we want to activate the main window of the running instance. This is where ActivateOtherWindow comes in.

ActivateOtherWindow uses the Win32 function FindWindow to look for the other window based on its Title; if found, it brings it to the foreground (SetForegroundWindow). If it's also minimized (IsIconic) — it restores it (OpenIcon).

There's more...

Locating the existing window may be tricky. In the preceding example, the title is a constant string, so that's easily located with FindWindow. What if the window title is something like "My App — somefile.dat", meaning it starts the same ("My App"), but continues with the active file the user is working on? FindWindow can't handle this.
An alternative would be to call the Win32 EnumWindows function, go over each top level window looking for the title (using the Win32 GetWindowText function), and match to the expected pattern.

In an extreme case, the title of the main window may be too unpredictable even for iterating with EnumWindows. A more robust alternative is possible by hosting a WCF service within the application (using the NetNamedPipeBinding binding). The service would expose an operation that instructs the app to activate its main window. All that would be needed now is to connect to the service (easy to do with WCF and Visual Studio) and invoke the operation (a decent treatment of WCF is well beyond the scope of this book). This gives the added benefit of providing a way to send parameters to the other running instance (such as a file name provided as a command line argument); a example of the parameters to pass are Microsoft Word (the file to open) and Media Player (the file to play). The downloadable project for this recipe includes an example WCF hosting for just this purpose.

First, define the service contract:
[ServiceContract]
interface IActivateWindow {
[OperationContract]
void Activate(string[] args);
}

Second, implement:
class ActivationService : IActivateWindow {
public void Activate(string[] args) {
var helper = new WindowInteropHelper(
Application.Current.MainWindow);
if(App.IsIconic(helper.Handle))
App.OpenIcon(helper.Handle);
App.SetForegroundWindow(helper.Handle);
// use args...
}
}

Check for another instance; if it exists, switch to it by calling the service. Otherwise, we're the first, so open a WCF host to listen for clients (all in the App class):
const string _pipeAddress =
"net.pipe://127.0.0.1/pipe/activation";
protected override void OnStartup(StartupEventArgs e) {
bool isNew;
var mutex = new Mutex(true, "MySingleInstanceMutex",
out isNew);
if(!isNew) { // use the service
var svc = ChannelFactory<IActivateWindow>.CreateChannel(
new NetNamedPipeBinding(),
new EndpointAddress(_pipeAddress));
svc.Activate(e.Args);
Shutdown();
}
else {
CreateHost();
}
}
ServiceHost _host;
void CreateHost() {
_host = new ServiceHost(typeof(ActivationService));
_host.AddServiceEndpoint(typeof(IActivateWindow),
new NetNamedPipeBinding(), _pipeAddress);
_host.Open();
}

Handling an unhandled exception

If a .NET exception goes unhandled, the process crashes with an unpleasant dialog presented to the user by Windows. Unpleasantness aside, the user may lose data as a result of the crash.

WPF provides a way to catch unhandled exceptions and perhaps handle them in some meaningful way. At the very least, the application may present a friendlier looking crash report and perhaps write the exception information to some log. At best, the application may recover from the error and continue running normally. Let's see how this can be done.
Getting ready

Make sure Visual Studio is up and running.

How to do it...

We'll create a simple application that throws an unhandled exception and see how we can catch it even if it's unhandled:

	Create a new WPF Application project named CH05.UnhandledExceptions.
	Open MainWindow.xaml. Add a Button to the Grid as follows:<Button Content="Throw Exception" FontSize="20" Margin="10" />

	Add a Click handler to the button. In the handler, add the following:private void OnClick(object sender, RoutedEventArgs e) {
throw new InvalidOperationException("something has gone wrong");
}

	Running the application now without the debugger and clicking the button would crash the process, producing the default crash dialog.
	Open App.xaml.cs. Add an event handler for the DispatcherUnhandledException event (in the constructor):public App() {
DispatcherUnhandledException += OnUnhandledException;
}

	Add a using statement for the System.Diagnostics namespace.
	Add the following code to the handler:Trace.WriteLine(string.Format("{0}: Error: {1}", DateTime.Now,
e.Exception));
MessageBox.Show("Error encountered! Please contact support."
+ Environment.NewLine + e.Exception.Message);
Shutdown(1);
e.Handled = true;

	Run the application and click the button. You should see the following message box. Click on OK and the application is shut down without the unpleasant Windows dialog:[image: How to do it...]

How it works...

The DispatcherUnhandledException event of the Application object is fired when an exception escapes handling, meaning no method on the main thread's call stack has elected to handle the exception. Without this event, the process would crash.

The event allows last minute handling of an error. If the Handled property of the DispatcherUnhandledExceptionEventArgs provided is set to true, the process does not terminate (returning to pumping messages). However, it's usually too dangerous in this situation to let the application continue running as usual, because the application may be in some inconsistent state — after all, an exception has occurred somewhere, and this may have resulted in partial work being done. It's usually safer to shut down the app and inform the user he/she should run the app again. At least the user won't see the disturbing Windows dialog and the application gets to save information about the exception and perhaps some other state before going down.
The preceding code sets Handled to true to prevent crashing, but calls Application.Shutdown to terminate the application, deemed too dangerous to continue running from this point. The call to Trace.WriteLine would show up in any configured TraceListener properties (tracing configuration is beyond the scope of this book); by default, it would go to the debugger window (if a debugger is attached). Otherwise, it can be captured by a custom tool, such as DebugView available from the SysInternals tools (http://www.sysinternals.com).

There's more...

This event can only be used to catch exceptions occurring on the UI thread (usually the main thread). Exceptions occurring on other threads (such as threads from the thread pool) will still crash the process (and not go through the event handler).
This means that letting exceptions slide to the DispatcherUnhandledException event is not generally a good idea. It should be an excepted situation that gets there — and it will never happen from a non-UI thread. Remember, this is a WPF mechanism; WPF has control of the UI thread, but not other threads. If such behavior is desired, we can use standard .NET mechanisms to be notified when an unhandled exception has occurred, such as registering with the UnhandledException event of the AppDomain class (registered on the current domain with AppDomain.CurrentDomain).

Chapter 6. Data Binding

In this chapter we will cover:
	Element to element binding
	Binding to a single object
	Binding to collections
	Using data templates
	Using value converters
	Creating a master-details view
	Sorting and filtering bound collections
	Grouping bound collections
	Binding to multiple properties
	Binding hierarchical data to a TreeView
	Presenting data in a grid
	Validating data

Introduction

WPF is usually advertised as having great graphics and animation capabilities. This is certainly true, as one of the most powerful features of WPF has nothing to do with graphics directly: data binding. This feature is so powerful, that a new way of thinking is required, especially for those coming from a more "traditional" background, such as WinForms or MFC.

Data binding is essentially simple: one property changes in an object—another property in another object reflects the change in some meaningful way. That's the short story. The longer story involves a lot of possible customizations, such as value converters and binding modes. Coupled with data templates, data binding provides a compelling and powerful way to visualize and interact with data.
A new pattern has emerged for WPF (and Silverlight) applications because of the power of data binding, called Model View View-Model (MVVM); it's based on similar ideas from patterns known as Model View Controller (MVC), and Model View Presenter (MVP). The main difference, however, is the zealous use of data binding to declaratively connect objects without resorting to fragile coding and maintenance headaches. We'll take a look at MVVM in the next chapter, but for now we have to get a strong grip on data binding and how to use it, which is the focus of this chapter.

Element to element binding

Data binding is classically done between a user interface element and a data object. Sometimes, however, it's useful to bind one element's property to another's property. This can reduce (or even eliminate) the need for handling conventional events. Let's see how to make this work. This will also serve as a good start for doing bindings of any kind.

Getting ready

Make sure Visual Studio is up and running.

How to do it...

We'll create a Slider that affects the font size of a TextBlock without using any code.

	Create a new WPF application named CH06.ElementToElementBindings.
	Open MainWindow.xaml. Add the following markup to the existing Grid:<Grid.RowDefinitions>
<RowDefinition />
<RowDefinition Height="Auto" />
<RowDefinition Height="Auto" />
</Grid.RowDefinitions>
<TextBlock Text="This is a sizing text"
TextAlignment="Center" VerticalAlignment="Center"/>
<Slider x:Name="_slider" Grid.Row="1" Minimum="10"
Maximum="80" Value="30"/>

	We'd like the FontSize property of TextBlock to match the Value property of Slider. The traditional approach would be to use an event (ValueChanged), but let's use data binding instead. Set the FontSize property of TextBlock as follows:FontSize="{Binding Path=Value, ElementName=_slider}"

	Run the application. Move the slider and watch the font size change.[image: How to do it...]

	Add a TextBox to the last row of the Grid and connect its Text property to the Value property of Slider:<TextBox Text="{Binding Value, ElementName=_slider}"
Grid.Row="2" FontSize="20"/>

	Run the application. Move the slider and watch the text change. Now type a value into the TextBox (for example, 60); nothing happens until you move the focus of the TextBox (for example, press Tab). The font size and slider change to reflect the new value.[image: How to do it...]

How it works...

Data binding connects a source property on a source object to a target property on a target object. Whenever the source changes, the target is updated. This is the classical model, but as we'll see other options are available in WPF. In the example code, both the source and target objects are elements (not plain data).
Binding is specified in XAML using the Binding markup extension, placed on the target property (this property must be a dependency property). The Binding properties we need to set are (at least) the source object and the source property, if any binding is to actually take place.
In the preceding code, the source object is set using the ElementName property and the source property is set through the Path property. Note in the TextBox example, the source property is set implicitly as a constructor argument (omitting Path=). The result is the same, but is usually more convenient, especially when we use Data Templates in the Using data templates recipe later in this chapter.

There's more...

We can hook up the binding in code as well as in XAML. The following is the equivalent code to the FontSize property of TextBox binding to the Slider:

var binding = new Binding("Value");
binding.ElementName = "_slider";
_text.SetBinding(TextBlock.FontSizeProperty, binding);

Why would we want to do that? Most of the time we wouldn't. Creating bindings in code is useful mostly when writing custom controls, as we'll see in Chapter 10,Custom Elements.
Binding mode

The Binding class has numerous properties to customize the binding process. We saw the ElementName and Path properties. Let's take a look at another useful one, Mode (of the type BindingMode enum).

The canonical data binding flow is from a source to a target. This is referred to as one way binding. WPF supports other modes, such as two way (if the target changes, the source is updated). In fact, in our example, the TextBox Text property (target) was bound to the Value property of Slider (source), but writing a new value to the TextBox (and getting the focus out) also moved the slider; this is a two way binding.
By default, the Mode is set to BindingMode.Default. The Default mode here means whatever the target dependency property has been stated at registration time (DependencyProperty.Register) with a FrameworkPropertyMetadata (BindsTwoWayByDefault property, as discussed in Chapter 1). For the TextBox.Text property the default is a two way binding; for the TextBlock.Text property it's one way (as with most properties).
WPF supports two other (less useful) binding modes:
	OneTime: Indicates the binding should occur only when the properties are first connected. Any further changes to the source are not reflected on the target. This is sometimes useful for properties that don't really change after first being bound, such as commands (discussed in the next chapter).
	OneWayToSource: Similar to one way, but works from the target to the source. This is sometimes useful when the required target property is not a dependency property, but the source property is.

Update source trigger

In the preceding example, changing the text in the TextBox did not trigger an immediate change in the source (the slider); we had to move the keyboard focus out of the TextBox. The reason for that is tucked in another Binding property, UpdateSourceTrigger; it's only relevant in a TwoWay or OneWayToSource binding mode, with the following possible values:

	LostFocus: The source is updated when the target element loses focus (which is exactly why the TextBox only updated the Slider after it had lost focus)
	PropertyChanged: The source is updated as soon as the target property changes. This is the default for most properties
	Explicit: The source is updated if the UpdateSource method is called on the binding expression (more on that in the next section)
	Default: This is the default (if not explicitly set otherwise) set by the target property at registration time with the FrameworkPropertyMetadata.DefaultUpdateSourceTrigger property

Updating the source or target manually

Data binding typically occurs automatically, which is usually the desired behavior. Sometimes, however, we may want to "force" data flow from source to target or vice versa (typically in a OneTime binding mode, or when UpdateSourceTrigger is set to Explicit). This is possible with the BindingExpression.UpdateSource and BindingExpression.UpdateTarget methods. Here's an example:

var expr = BindingOperations.GetBindingExpression(_text,
TextBox.TextProperty);
expr.UpdateSource();

Binding to a single object

Although element to element binding is occasionally useful, the classic data binding scenario involves an element bound to pure data. One of the benefits of this kind of binding is a decoupling of data from the way it's presented (if at all). All later changes are performed on the data only, letting the binding take care of updating whatever elements are bound to this data. In this recipe, we'll look at binding to a single data object.
Getting ready

Make sure Visual Studio is up and running.

How to do it...

We'll create some controls that bind to a single Person object, showing the basics of element to data binding.

	Create a new WPF application named CH06.SingleObjectBinding.
	Open MainWindow.xaml. Change the existing Grid to a StackPanel.
	Add two TextBlock elements with their Text property set with binding expressions like so:<StackPanel>
<TextBlock Text="{Binding Name}" />
<TextBlock Text="{Binding Age}" />
</StackPanel>

	Running the application at this time shows nothing. That's because the bindings are missing a source object. Let's fix that.
	Add a new class to the project named Person. Create two automatic properties, like so:class Person {
public string Name { get; set; }
public int Age { get; set; }
}

	Open MainWindow.xaml.cs. Add a private field of type Person to the MainWindow class.
	In the MainWindow constructor, create an instance of Person and set it to the private field. Then set the DataContext property to this value:_person = new Person { Name = "Bart", Age = 10 };
DataContext = _person;

	Run the application. The property values are reflected in the TextBlocks because the DataContext is the default source for the binding.[image: How to do it...]

	Open MainWindow.xaml. Add a Button to the StackPanel with a Click event handler. Enter the following code inside the handler:private void OnChange(object sender, RoutedEventArgs e) {
_person.Age++;
}

	Run the application and click the button. Notice the displayed age doesn't change. The property actually changed, but WPF didn't know about it.
	Open Person.cs and make the Person class implement the INotifyPropetryChanged interface (in the System.ComponentModel namespace). It contains a single event, PropertyChanged:class Person : INotifyPropertyChanged {
public string Name { get; set; }
public int Age { get; set; }
public event PropertyChangedEventHandler PropertyChanged;
}

	We need to raise the event when a property changes. We'll have to remove the automatic property and implement it ourselves. Delete the Age property implementation and add the following code:int _age;
public int Age {
get { return _age; }
set {
_age = value;
var pc = PropertyChanged;
if(pc != null)
pc(this, new PropertyChangedEventArgs("Age"));
}
}

	Run the application and click the button several times. The age is changed and displayed correctly.[image: How to do it...]

How it works...

A binding needs a source object. In the previous recipe, we used the ElementName property to get to a source object. For binding to data, ElementName is not appropriate.
The most useful (and common) option is to use the DataContext property. It's defined on FrameworkElement (and FrameworkContentElement) and indicates the default source object for bindings if none is specified in some other way (such as ElementName). When a binding expression is not given an explicit source, the source becomes the closest non-null DataContext starting from the target object up the visual tree. If none is found, then the binding simply fails.

There's more...

Data binding may seem like magic, but underneath some code does the actual job. In the preceding example, the binding worked initially, but it failed to track changes to the source object until we implemented the INotifyPropertyChanged interface on the data object (Person).
The problem is that with a property implemented as a thin wrapper around a private field, there's no way WPF (or any other entity for that matter) can come to know that it changed. This may require some polling of the property, but that's too expensive. The object must somehow notify interested parties that the property changed.
There are two common ways to do that. The first is to turn the property into a dependency property, which naturally supports change notifications. Although this seems attractive at first, it has two problems:

	It requires the data object to inherit from DependencyObject, which may be inconvenient; the class may already inherit from something, so the base class is taken (as .NET supports single inheritance only).
	Even if the base class is not an issue, the data object must now incur a dependency on WPF; this is far from ideal, as the same data object may also be needed in another type of application, such as ASP.NET or WinForms. Adding this dependency is cumbersome at the very least.

The second option, which is commonly used, is to implement the INotifyPropertyChanged interface. As this is an interface, it does not take the place of an optional base type that may be needed. And this interface is not defined by WPF, but rather is part of System.Dll, one of the core .NET assemblies.
When bindings fail

If a data binding expression has incorrect data, the binding operation may fail; for example, if the name TextBlock in the previous XAML is modified as follows:
<TextBlock Text="{Binding Name1}" />

The property name is somehow misspelled. Running the application throws no exceptions; the binding silently fails. This may seem strange, but this is generally a good thing. To find out about possible failures, we can run the application with the debugger, and watch the Output window (View | Output in the Visual Studio menu). This is what you'll get in this case:

System.Windows.Data Error: 40 : BindingExpression path error: 'Name1' property not found on 'object' ''Person' (HashCode=37814994)'. BindingExpression:Path=Name1; DataItem='Person' (HashCode=37814994); target element is 'TextBlock' (Name=''); target property is 'Text' (type 'String')

This shows the exact error, so it's usually easy to spot and correct.
Why is no exception thrown? The reason is that a data binding may fail at some point in time, and that's ok, because the conditions for this binding have not been met yet; there may be some information that is retrieved from a database, or from a web service, for instance; when the data is finally available, those bindings suddenly begin to work correctly. We'll discuss other ways of debugging data bindings in later recipes.

Other ways of getting a source binding object

There are two more ways of specifying a source object for binding. One of them is a Source property, which seems simple enough, but in fact is almost useless. Source expects some object, but as bindings are mostly expressed in XAML, Source must be something that the XAML parses can see at XAML parsing time. This is usually problematic, as XAML is unable to express dynamic connections to data that may not even be available yet; it is sometimes useful when binding to data from a resource (using Source={StaticResource resourceName}).

The last option is using the RelativeSource property. This allows binding the target object to something that is related to it in some way. RelativeSource offers a Mode property (an enum, also available as a constructor argument) that specifies the relativity kind. Specifying a RelativeSource is done with a RelativeSource markup extension. The possible modes are:

	Self: The source object is the target object itself, meaning binding one property to another property on the same object. Here's an example of binding a content of the Button to its current width:<Button Content="{Binding ActualWidth, RelativeSource=
{RelativeSource Self}}" />

	FindAncestor: The source object is a parent (not necessarily the immediate one) of the target object. You can specify the kind of parent via the AncestorType property (and the Nth ancestor of that type with the AncestorLevel property (default is 1)). Here's an example of binding a text of the TextBlock to the height of its containing window:<TextBlock Text="{Binding ActualHeight, RelativeSource=
{RelativeSource FindAncestor, AncestorType=Window}}" />

	PreviousData: Makes the source the previous data object when binding to a collection (as we'll see in the next recipe)
	TemplatedParent: Indicates the source object is the control whose template is being built. This is relevant inside a control template only (as we'll see in Chapter 8)

Implementing INotifyPropertyChanged

The INotifyPropertyChanged implementation shown is simple enough, but it has its drawbacks. First, most of this code would have to be duplicated in every property, so placing it in a common base class would be beneficial:

public abstract class ObservableObject :
INotifyPropertyChanged {
public event PropertyChangedEventHandler PropertyChanged;
protected virtual void OnPropertyChanged(string propName) {
var pc = PropertyChanged;
if (pc != null)
pc(this, new PropertyChangedEventArgs(propName));
}
}

This is certainly better, and the Person class can be refactored:
class Person : ObservableObject {
public string Name { get; set; }
int _age;
public int Age {
get { return _age; }
set {
if(_age != value) {
_age = value;
OnPropertyChanged("Age");
}
}
}
}

Note the check for a new value that is actually different from the current one.
The most severe problem is the use of a property name as a string, which is at least inelegant, but more importantly can lead to subtle errors if the property name is misspelled or later changed.

One way to improve this is to check at runtime that the property with that name actually exists as the first line in OnPropertyChanged:

Debug.Assert(GetType().GetProperty(propName) != null);

Another way to improve the code is to do the inequality check within a common method. A further improvement would be not specifying the actual property name, but letting the code infer it automatically. Check out the following method:
protected void SetProperty<T>(ref T field, T value,
Expression<Func<T>> expr) {
if(!EqualityComparer<T>.Default.Equals(field, value)) {
field = value;
var lambda = (LambdaExpression) expr;
MemberExpression memberExpr;
if (lambda.Body is UnaryExpression) {
var unaryExpr = (UnaryExpression)lambda.Body;
memberExpr = (MemberExpression)unaryExpr.Operand;
}
else {
memberExpr = (MemberExpression)lambda.Body;
}
OnPropertyChanged(memberExpr.Member.Name);
}
}

The first check uses EqualityComparer<T>.Default object to check for equality. This property returns a default equality comparer that calls object.Equals if it has to, but if the target object implements IEquatable<T>, it uses that implementation (for more information on this please check out the MSDN documentation).

SetProperty<> accepts as the last argument, a lambda expression that the compiler provides for the method in the form of an Expression object, which is a way to look at code as data. This allows the extraction of the property name provided by the caller. A complete look at expressions (System.Linq.Expressions) is beyond the scope of this book; check the MSDN docs or the Web. Bottom line using this method in a data object becomes safer if not simpler:
int _age;
public int Age {
get { return _age; }
set { SetProperty(ref _age, value, () => Age); }
}

Now the property name is deduced automatically, so any errors will be evident at compile time, rather than runtime.

Implementing SetProperty with Visual Studio 2012 and C# 5.0

With Visual Studio 2012 and C# 5.0, the preceding code can be simplified further, thanks to a C# 5.0 feature that provides the caller member name automatically. This is how it looks:

protected void SetProperty<T>(ref T field, T value,
[CallerMemberName] string propName = null) {
if(!EqualityComparer<T>.Default.Equals(field, value)) {
field = value;
var pc = PropertyChanged;
if(pc != null)
pc(this, new PropertyChangedEventArgs(propName));
}
}

The new CallerMemberName attribute makes the compiler provide the calling member name. This means that the property setter is now simplified:
set { SetProperty(ref _age, value); }

That's about as simple as we can get.

Binding to a collection

The previous recipe showed how to bind various properties to a single object, using single data controls, such as TextBlock, TextBox, or Button. Some controls, however, are capable of displaying multiple object data, such as a ListBox. These controls can bind to a collection of data objects, and with the help of data templates and value converters (to be covered in later recipes), become a powerful visualization tool. Let's examine the basic ideas of binding to collection of objects.

Getting ready

Make sure Visual Studio is up and running.

How to do it...

We'll create a collection of Person object and bind them to a ListBox, showing the details we need to take care of.

	Create a new WPF Application named CH06.BindingToCollection.
	Open MainWindow.xaml. Add a ListBox to the existing Grid and give it a name:<ListBox x:Name="_list">
</ListBox>

	Create a new Person class, with two properties, Name and Age, similar to the previous recipe (no need for INotifyPropertyChanged for this example).
	Open MainWindow.xaml.cs. Add a private field of type List<Person> to MainWindow.
	In the MainWindow constructor, after the call to InitailizeComponent, create a list of Person objects as follows:_people = new List<Person> {
new Person { Name = "Bart", Age = 10 },
new Person { Name = "Homer", Age = 45 },
new Person { Name = "Marge", Age = 35 },
new Person { Name = "Lisa", Age = 12 },
new Person { Name = "Maggie", Age = 1 }
};

	Set the ItemsSource property of ListBox to refer to that list:_list.ItemsSource = _people;

	Run the application. You should see the following:[image: How to do it...]

	Clearly, the default ToString of Person is called for each object. We can change the ToString implementation to something more useful:public override string ToString() {
return string.Format("{0} is {1} years old", Name, Age);
}

	Running the application now shows:[image: How to do it...]

	Another way to customize the view is set the DisplayMemebrPath property of the ListBox. Open MainWindow.xaml and set the property as follows:<ListBox x:Name="_list" DisplayMemberPath="Name">

	Running the application shows only the names.
	Create two rows for the Grid:<Grid.RowDefinitions>
<RowDefinition />
<RowDefinition Height="Auto" />
</Grid.RowDefinitions>

	Add a Button to the second row, with a Click event handler as follows:<Button Content="Add" Click="OnAdd" Grid.Row="1" />

	In the event handler, add a Person object to the existing collection:_people.Add(new Person { Name = "Moe", Age = 40 });

	Run the application and click on the button. No person is added to the ListBox. That's because when an object is added to a List<>, no notification is sent.
	To solve that, replace List<Person> with ObservableCollection<Person> (in the System.Collections.ObjectModel namespace).
	Now run the application and click the button. Moe is added to the ListBox.[image: How to do it...]

How it works...

All controls inheriting from ItemsControl provide an ItemsSource property that should be set to some collection object (implementing at least IEnumerable), which sets up the source of the binding.

By default, items are displayed as TextBlocks using the ToString values for each object. One way to change that is using the DisplayMemberPath property. This is a property path, meaning we can use sub-properties, including indexers, to get the actual property we want to display.
Using List<T> is usually not good enough because when objects are added or removed from the list, no notification is sent, so no bound control can be updated. WPF looks for an interface, INotifyCollectionChanged, to be implemented in the source collection object. List<T> does not implement this interface, but an alternative class, ObservableCollection<T>, does.

There's more...

Can we use a DataContext in this case? Certainly. We can set the DataContext of some object which is a parent of the ItemsControl in question and then use an empty binding expression to find it. This will allow us to bind the same collection to other objects. Here's an example with a ComboBox within the same Grid:

<ComboBox ItemsSource="{Binding}" Grid.Row="2"/>

Note the binding expression. Omitting it will fail the binding, as it means the source is a null reference, which means no source. Now we need to set the DataContext in code:
DataContext = _people;

Synchronizing selected items

With the previous example, a ComboBox and a ListBox are bound to the same exact data. If the selection is changed in the ListBox, it does not affect the selected item in the ComboBox and vice versa. If we wanted the selected item to be synchronized between Selector controls that bind to the same data, we could set the IsSynchronizedToCurrentItem property on the ComboBox and ListBox to true:

IsSynchronizedWithCurrentItem="True"

Now moving the selection in one control updates it in the other. How does this work? We'll discuss that in a future recipe in this chapter, Sorting and filtering bound collections.

Data binding and the Items property are mutually exclusive

Using data binding with ItemsControl and its derivatives makes using the Items property for adding or removing elements throw an exception. And with good reason too — with data binding we want to deal with the data itself, and not have to think about which control it's bound to (if any). It is possible to use the Items property in a read-only manner, but it's bad practice to do so; we want to deal with the data only and not with controls that may disappear or be replaced in the future.

What about "real" data?

The preceding code uses collections of objects created locally, but many applications get their data from an external source, such as a relational database or some web service. WPF, however, does not care about that. The result is a collection, obtained in some way, for example, using the Entity Framework (EF) to access a SQL Server database, or by calling some Windows Communication Foundation (WCF) service. The net result is a collection (at least IEnumerable<T>), which is all WPF needs for binding to work correctly.

Using data templates

In previous recipes we showed some Person objects as strings, whether it's the ToString implementation or some specific property. Text is not the only option. Even with text, we may want to change its properties, such as fonts and colors. WPF provides a powerful way to visualize data using the concept of data templates. In this recipe, we'll see how to create and use such templates.

Getting ready

Make sure Visual Studio is up and running.

How to do it...

We'll create a simple application that shows Person objects in a more interesting way using data templates.

	Create a new WPF Application named CH06.DataTemplates.
	Add a new class named Person, with an Age and Name properties, similar to the previous recipe.
	Open MainWindow.xaml. Add two rows to the grid like so:<Grid.RowDefinitions>
<RowDefinition Height="Auto"/>
<RowDefinition />
</Grid.RowDefinitions>

	Add a Button to the first row, with its Content bound to whatever DataContext is effective at the moment:<Button Content="{Binding}" />

	Open MainWindow.xaml.cs. Add the following to the constructor after the call to InitializeComponent:DataContext = new Person { Age = 10, Name = "Bart" };

	Run the application. You should see the button display the default ToString of the Person instance. We can change that by overriding ToString, but let's try something different.
	Set the ContentTemplate property of the Button to a DataTemplate instance and add inside that some markup with binding expressions. The entire Button XAML might look something like this:<Button Content="{Binding}">
<Button.ContentTemplate>
<DataTemplate>
<Border BorderBrush="Green" BorderThickness="2">
<StackPanel Margin="4">
<TextBlock Foreground="Red" FontSize="20"
Text="{Binding Name}"
TextAlignment="Center" />
<TextBlock FontSize="16"
Text="{Binding Age}"
TextAlignment="Right" />
</StackPanel>
</Border>
</DataTemplate>
</Button.ContentTemplate>
</Button>

	Running the application shows the following:[image: How to do it...]

	Open MainWindow.xaml. Add a ListBox to the second row of the Grid and give it a name:<ListBox Grid.Row="1" x:Name="_list"
HorizontalContentAlignment="Stretch" />

	Open MainWindow.xaml.cs. In the constructor, create a bunch of Person objects, and set the ItemsSource property of ListBox to that collection:_list.ItemsSource = new ObservableCollection<Person> {
new Person { Name = "Bart", Age = 10 },
new Person { Name = "Homer", Age = 45 },
new Person { Name = "Marge", Age = 35 }
};

	Running the application shows each person in the list with its ToString representation. We want to use the DataTemplate previously defined.
	To avoid copy/paste, move the previous DataTemplate to a resource in the Window with a key personTemplate:<Window.Resources>
<DataTemplate x:Key="personTemplate">
...
</DataTemplate>
</Window.Resources>

	Change the ContentTemplate property of Button to use the resource:<Button Content="{Binding}"
ContentTemplate="{StaticResource personTemplate}" />

	Set the ItemTemplate property of ListBox to that same resource:<ListBox Grid.Row="1" x:Name="_list"
HorizontalContentAlignment="Stretch"
ItemTemplate="{StaticResource personTemplate}" />

	Run the application. Every person object is displayed in the same way based on the data template.[image: How to do it...]

How it works...

Data templates are just what they sound like: templates for visualizing data; these are in contrast to control templates (which we'll see in Chapter 8), that are templates for controls.

Content controls have a Content property (of type Object) that is rendered as TextBlocks if that object does not derive from UIElement. If, however, their ContentTemplate is non-null, then that DataTemplate provides the visual appearance of that object. This can be a single element only, typically a Panel, which can host just about anything. Binding expressions inside the template should not include a specific Source or ElementName, because the default Source (or DataContext if you will) is the actual data object (a specific person in the preceding code example). This means that the following markup sets the text to be the value of the Name property of the currently bound object (whether this is a Person or not).
<TextBlock Foreground="Red" Text="{Binding Name}" />

If the property does not exist, then the binding fails. This means that for every such Person a copy of the visual tree represented by the DataTemplate is instantiated (that's why it's called "template").
The ItemsControl class and its derivatives provide a property called ItemTemplate that serves the exact same purpose, but affects each item in the collection it's bound to.

The HeaderedContentControl (and its derivatives) provide an additional HeaderTemplate to customize the way the value set to the Header property is displayed.

There's more...

Data templates are not directly connected to data binding; that is, it's possible to use the regular Items property to add or remove objects from, say, a ListBox and still be able to use data templates. Using ItemsControl and its derivatives without data binding is rare, and should be avoided.
Data type based data templates

Providing data templates via the relevant properties (as was done in the preceding code samples) is easy enough, and the use of resources simplifies this further. There is another option, though. We can specify generally that whenever some type is encountered anywhere in the application, a specific DataTemplate should be used without the need to specify it directly via properties.

To do that, we must create the DataTemplate as a resource, setting the DataType property to the required type, but omitting the usual x:Key property. Here's an example for our trusty Person (assuming the XML prefix local points to the current assembly defining the Person type):
<Window.Resources>
<DataTemplate DataType="{x:Type local:Person}">
...
</DataTemplate>
</Window.Resources>

The resource can be placed in App.xaml for a more global effect. A ListBox bound to some Person objects can be written as follows:
<ListBox HorizontalContentAlignment="Stretch"
ItemsSource="{Binding}" />

Note the lack of the ItemTemplate property. It's set automatically because of the resource definition.
The real benefit from this feature is its automatic polymorphism. Suppose there's a class deriving from Person:

class Employee : Person {
public string Department { get; set; }
}

We can build a DataTemplate for displaying employees as follows:
<DataTemplate DataType="{x:Type local:Employee}">
<Border BorderBrush="Black" BorderThickness="1">
<StackPanel Margin="4" Orientation="Horizontal">
<TextBlock Foreground="Blue" FontSize="20"
Text="{Binding Name}" TextAlignment="Center" />
<TextBlock Foreground="Red" FontSize="16"
Text="{Binding Department}"
Margin="20,0,0,0" VerticalAlignment="Center"/>
</StackPanel>
</Border>
</DataTemplate>

Now suppose we create a few objects and bind them to a ListBox, as follows:

DataContext = new ObservableCollection<Person> {
new Person { Name = "Bart", Age = 10 },
new Employee { Name = "Homer", Age = 45,
Department = "Nuclear" },
new Person { Name = "Marge", Age = 35 },
new Employee { Name = "Lisa", Age = 12,
Department = "Accounting" },
new Person { Name = "Maggie", Age = 1 }
};

Some of these are Person objects and some Employee objects, but the DataTemplate is selected correctly based on the actual type:
[image: Data type based data templates]
The complete example is available in the downloadable source for this chapter in the CH06.DataTypedDataTemplates project.

Data template selectors

Another way to select different data templates is based on the concept of a template selector. This is an object that receives each data object bound to an ItemsControl (or its derivatives) and returns the required DataTemplate for this instance. This allows the selecting of different templates for different objects of the same type (something the data type based technique can't do).

To achieve this, we need to create a class deriving from the abstract DataTemplateSelector and override its SelectTemplate abstract method. Here's a selector class that uses different templates for displaying Process objects:
class ProcessTemplateSelector : DataTemplateSelector {
public string SystemProcessTemplate { get; set; }
public string UserProcessTemplate { get; set; }
public override DataTemplate SelectTemplate(object item,
DependencyObject container) {
Process process = (Process)item;
return ((FrameworkElement)container).FindResource(
process.SessionId == 0 ?
SystemProcessTemplate : UserProcessTemplate)
as DataTemplate;
}
}

The selector method is called for each and every item when it's first bound to the control. This particular implementation uses the SessionId property of the Process class to decide what template to use. For flexibility, it exposes two possible template names as properties, which is useful for trying out different templates dynamically. The item argument is the actual object on which decisions should be made (a Process in our case); the container property is the actual control (a ListBox in our case as we shall see in a moment), that may be useful as it is in this case - it's used as a base element for hunting a DataTemplate resource based on the custom properties.
This is just a class, so an instance should be created somehow and used by an ItemsControl object. First, we create two alternative DataTemplates for Process objects in a Resources dictionary:
<DataTemplate x:Key="systemTemplate">
<Border Background="Red" BorderBrush="Black"
BorderThickness="1" Margin="2" Padding="4">
<TextBlock HorizontalAlignment="Center"
VerticalAlignment="Center"
FontSize="16" Text="{Binding ProcessName}" />
</Border>
</DataTemplate>
<DataTemplate x:Key="userTemplate">
<Border Background="White" BorderBrush="Blue"
BorderThickness="1" Margin="2">
<StackPanel Orientation="Horizontal"
TextBlock.FontSize="15" Margin="2">
<TextBlock Text="{Binding ProcessName}" />
<TextBlock Margin="10,0,0,0"
Text="{Binding Id, StringFormat='ID: 0'}" />
<TextBlock Margin="10,0,0,0"
Text="{Binding Threads.Count, StringFormat='Threads: 0'}" />
</StackPanel>
</Border>
</DataTemplate>

Now for the selector object itself. As a control needs to access it, it's easiest to create it as a resource as well:

<local:ProcessTemplateSelector x:Key="_selector"
SystemProcessTemplate="systemTemplate"
UserProcessTemplate="userTemplate" />

All that's left is to create a ListBox that chooses to use the selector:
<ListBox HorizontalContentAlignment="Stretch"
ItemsSource="{Binding}"
ItemTemplateSelector="{StaticResource _selector}"/>

The processes themselves are bound to the ListBox using the usual DataContext:

DataContext = Process.GetProcesses();

That's it. Running this example on my machine produces the following:
[image: Data template selectors]
The complete example is available with the downloadable source for this chapter in a project named CH06.DataTemplateSelectors.
It's important to realize the SelectTemplate is only called once per object. This means that if an object changes internally that would mandate a different data template to be used, this won't happen. In cases like these, a value converter may be more appropriate (as we'll see in the next recipe). It is possible, however, to force the control to re-evaluate all its templates by explicitly setting ItemTemplateSelector to null and then to an actual instance (which could be the same one); this will force the ItemsControl to re-create the items while using the selector to get the chosen DataTemplate for each object.

Using value converters

Data templates provide a powerful way to visualize any data. We discussed a few ways to customize the appearance of data templates. In this recipe, we'll look at value converters, which is a flexible mechanism to customize data bindings in general, and data templates in particular. Their power ranges from simple data transformations to significant visual changes.

Getting ready

Make sure Visual Studio is up and running.

How to do it...

We'll create a weather forecast application that uses a value converter to convert a general weather outlook into a brush.

	Create a new WPF application named CH06.WeatherForecast.
	We'll create a simple weather forecasting application. Add a new class named Forecast with some simple properties:enum GeneralForecast {
Sunny,
Rainy,
Snowy,
Cloudy,
Dry
}
class Forecast {
public GeneralForecast GeneralForecast { get; set; }
public double TemperatureHigh { get; set; }
public double TemperatureLow { get; set; }
public double Percipitation { get; set; }
}

	Open MainWindow.xaml. Add three rows in the Grid and some controls:<Grid.RowDefinitions>
<RowDefinition Height="Auto" />
<RowDefinition Height="Auto" />
<RowDefinition />
</Grid.RowDefinitions>
<StackPanel Orientation="Horizontal">
<TextBlock Text="Select number of days to forecast:"
FontSize="15" VerticalAlignment="Center" Margin="4"/>
<ComboBox x:Name="_days" SelectedIndex="0" Width="50"/>
<Button Margin="4" Content="Get Forecast" FontSize="16" />
</StackPanel>
<StackPanel Orientation="Horizontal" Grid.Row="1" Margin="4"
TextBlock.FontSize="15">
<TextBlock Text="Select units:" Margin="4"/>
<RadioButton Content="Celsius" IsChecked="True"
Margin="10,4"/>
<RadioButton Content="Fahrenheit" Margin="20,4"/>
</StackPanel>
<ListBox ItemsSource="{Binding}" Grid.Row="2"
HorizontalContentAlignment="Stretch">
</ListBox>

	We'll generate a dummy forecast when the button is clicked. Add a Click event handler for the button. Inside, add the following code:var data = new List<Forecast>();
int days = (int)_days.SelectedItem;
var rnd = new Random();
for(int i = 0; i < days; i++) {
double temp = rnd.NextDouble() * 40 - 10;
var forecast = new Forecast {
GeneralForecast = (GeneralForecast)rnd.Next(
Enum.GetValues(typeof(GeneralForecast)).Length),
TemperatureLow = temp,
TemperatureHigh = temp + rnd.NextDouble() * 15,
Percipitation = rnd.Next(10)>5 ? rnd.NextDouble()*10 : 0
};
data.Add(forecast);
}
DataContext = data;

	 _days is the ComboBox instance for selecting the number of days. To populate it, add the following to the MainWindow constructor:_days.ItemsSource = Enumerable.Range(1, 10);

	The call to Enumerable.Range returns a collection of integers (1 to 10 in this case). The ListBox is bound to the DataContext, but to see something useful, we need a DataTemplate for the ListBox. Add the following to the ListBox markup:<ListBox.ItemTemplate>
<DataTemplate>
<Border Margin="4" BorderBrush="Black" Padding="4"
BorderThickness="2" Background="White">
<StackPanel Orientation="Horizontal">
<TextBlock FontSize="20" FontWeight="Bold"
Text="{Binding GeneralForecast}" />
<TextBlock FontSize="16" Margin="10,0,0,0"
VerticalAlignment="Bottom"
Text="{Binding TemperatureLow,
StringFormat='Low: \{0:N2\}'}" />
<TextBlock FontSize="16" Margin="10,0,0,0"
VerticalAlignment="Bottom"
Text="{Binding TemperatureHigh,
StringFormat='High: \{0:N2\}'}" />
<TextBlock FontSize="16" Margin="20,0,0,0"
VerticalAlignment="Bottom"
Text="{Binding Percipitation,
StringFormat='Percip: \{0:N2\}'}" />
</StackPanel>
</Border>
</DataTemplate>
</ListBox.ItemTemplate>

	Run the application. Select a number of days from the ComboBox and click the button. Here's a sample output:[image: How to do it...]

	We'd like to change the background of each day's forecast based on the general forecast (for example, a yellow background for sunny weather). For that we'll create a value converter. Add a new class to the project named GeneralForecastToBrushConverter.
	Implement the IValueConverter interface on that class (in the System.Windows.Data namespace). This is what the skeleton looks like:class GeneralForecastToBrushConverter : IValueConverter {
public object Convert(object value, Type targetType, object parameter, System.Globalization.CultureInfo culture) {
throw new NotImplementedException();
}
public object ConvertBack(object value, Type targetType,
object parameter, System.Globalization.CultureInfo culture) {
throw new NotImplementedException();
}
}

	We need to convert a GeneralForecast enum value to a Brush with the appropriate color. Add the following to the Convert method (delete the throw statement):var gf = (GeneralForecast)value;
switch(gf) {
case GeneralForecast.Cloudy:
return Brushes.LightGray;
case GeneralForecast.Dry:
return Brushes.LightYellow;
case GeneralForecast.Rainy:
return Brushes.LightGreen;
case GeneralForecast.Snowy:
return Brushes.LightBlue;
case GeneralForecast.Sunny:
return Brushes.Yellow;
}
return Binding.DoNothing;

	To set everything up, we need to create an instance of the converter and wire it up to a binding expression. We'll create it as a resource in the Window (the local XML namespace maps to the project namespace):<Window.Resources>
<local:GeneralForecastToBrushConverter x:Key="gf2brush" />
</Window.Resources>

	Now we need to change the Background property of (for example) the Border element within the DataTemplate to take the converter into consideration, passing the GeneralForecast value:Background="{Binding GeneralForecast,
Converter={StaticResource gf2brush}}"

	Run the application. Here's a sample output:[image: How to do it...]

How it works...

A value converter is an object implementing the IValueConverter interface. It provides a way to convert, or project, one value to another. The values may be of incompatible types (as in the preceding example — an enum converted into a Brush), or they may be of the same type, but require some transformation that is not possible declaratively.

Value converters are powerful, because they are written in code, not just markup. An instance of the converter is typically created in XAML as a resource and are provided via binding expressions with the Converter property. Whenever the source property changes, the converter gets the opportunity to return a different result through the Convert method.
The ConvertBack method is called in a two way binding, where the roles of source and target are reversed. In a one-way binding, there's no need to implement ConvertBack.

There's more...

The Convert and ConvertBack methods accept other arguments beside the actual bound value. Here's the prototype for Convert:

public object Convert(object value, Type targetType,
object parameter, CultureInfo culture);

targetType indicates the expected return type for the binding to work. In our example, that target property is Background, which is a type of Brush, so targetType is typeof(Brush). This argument can serve several purposes:
	Provide a way to validate that the converter is in fact used in the correct context. In our example, the following code is added as the first line to make sure a Brush is what's requested:if(targetType != typeof(Brush))
throw new ArgumentException("targetType");

	To differentiate between several ways a single converter may work. For instance, a converter may be able to return a Brush or a Color, depending on its exact placement. This would give the method a way to distinguish between the possible return types it supports.

The parameter argument can be specified with the ConverterParameter property of the Binding, providing a way to customize the current requested conversion. This is application specific; WPF does nothing with this argument.

The last culture argument allows specifying a CultureInfo object through the ConverterCulture property of the Binding. This is specified in the usual CultureInfo way, for example, "en", "en-US", "fr-CA", and so on. This allows the converter to base its operation on culture specific information, such as date and time formats and currency type. By default, the system UI culture is provided.
Using converters for debugging

Debugging data bindings is naturally hard, as everything is so "automatic". There's no location to place a breakpoint, for example (in Silverlight 5, however, it is possible to place a breakpoint in XAML bindings, but this feature is unavailable at this time in WPF). One way to get around that is to create a simple converter, which does nothing, but provides a way to set a breakpoint. With that breakpoint in place, you can examine the value coming in, the target type, and so on.

Formatting strings

Strings are a common data type to show in bindings, whether a converter is involved or not. Suppose we want to show the temperature in our forecast, but want to prefix a text, such as Temp: in front of the actual value. One way to do that is to create another TextBlock that shows that constant text. Or we can use a TextBlock with Inline elements, consisting of Run elements that bind to values and simple Span elements that don't.

Another common example is displaying values that have several formats, such as date or time. By default, the ToString method will be called on (for example) a DateTime object. How would we display just the time? Or the date? Or perhaps the date in the long format?
One possible solution is to use a converter, which clearly can do anything. However, for these scenarios there's a simpler way that does not require code: the StringFormat property of a Binding. This is similar to the ToString methods that accept a format string. In the preceding example, each value of the forecast was prefixed with some text using StringFormat. For example:
Text="{Binding TemperatureLow, StringFormat='Low: \{0:N2\}'}"

This indicates that the word Low: should be displayed as is, and the format specifier N2 means (for double values) the number should be displayed with 2 decimal digits. The strange backslashes are escapes for the curly braces; otherwise they might confuse the XAML parser. The single quote is not strictly required in this case, but the intent seems clearer.

Customizing with data triggers

Converters are certainly one of the most powerful tools in the binding toolbox, because they use code, which naturally can do anything. Some changes, however, can be made with XAML alone. One such change was shown in the previous section with StringFormat. What about non-string related customizations?

Data triggers can be applied to DataTemplate objects (via the Triggers property) to make certain changes under certain conditions, with no code needed. For example, our forecast DataTemplate can be rewritten with the use of data triggers to have the same effect without any converter:
<DataTemplate>
<Border x:Name="_border" Margin="4" BorderBrush="Black"
BorderThickness="2" Padding="4" Background="LightGray">
<StackPanel Orientation="Horizontal">
<TextBlock FontSize="20" FontWeight="Bold"
Text="{Binding GeneralForecast}" />
<TextBlock FontSize="16" Margin="10,0,0,0"
VerticalAlignment="Bottom"
Text="{Binding TemperatureLow,
StringFormat=Low: \{0:N2\}}" />
<TextBlock FontSize="16" Margin="10,0,0,0"
VerticalAlignment="Bottom"
Text="{Binding TemperatureHigh,
StringFormat='High: \{0:N2\}'}" />
<TextBlock FontSize="16" Margin="20,0,0,0"
VerticalAlignment="Bottom" Text="{Binding Percipitation,
StringFormat='Percip: \{0:N2\}'}" />
</StackPanel>
</Border>
<DataTemplate.Triggers>
<DataTrigger Binding="{Binding GeneralForecast}"
Value="Sunny">
<Setter Property="Background" Value="Yellow"
TargetName="_border"/>
</DataTrigger>
<DataTrigger Binding="{Binding GeneralForecast}"
Value="Snowy">
<Setter Property="Background" Value="LightBlue"
TargetName="_border"/>
</DataTrigger>
<DataTrigger Binding="{Binding GeneralForecast}"
Value="Rainy">
<Setter Property="Background" Value="LightGreen"
TargetName="_border"/>
</DataTrigger>
<DataTrigger Binding="{Binding GeneralForecast}"
Value="Dry">
<Setter Property="Background" Value="LightYellow"
TargetName="_border"/>
</DataTrigger>
</DataTemplate.Triggers>

</DataTemplate>

The changes are marked in bold. A full discussion of triggers in general, and data triggers in particular, is provided in Chapter 8, Styles, Triggers, and Control Templates, but here we can see the basics.

A DataTrigger object checks a property for equality to a value; the required property is specified using the Binding property of DataTrigger, which should be a binding expression. The comparison is always with an equality operator; there's no way to use something like greater than, less then, and so on; this is one of the shortcomings of triggers. In our case, however, this is good enough — we compare values of the GeneralForecast property to the various enum values. If there is a match, a bunch of Setter objects can be used that set a value to some property on some object (using the TargetName property). Note that our famous Border is named _border, which all setters reference.
The end result is the same — no converter needed. The complete project is named CH06.WeatherForecastWithTriggers and is available with the downloadable source for this chapter.

Creating a master-detail view

A master-detail view is a common way to display lots of information. The master shows a compressed view of some objects, while the detail view shows the selected object (from the master) in greater detail, as appropriate. Let's examine a typical way to achieve this in WPF.

Getting ready

Make sure Visual Studio is up and running.

How to do it...

We'll create an application that shows a list of processes and a detailed look of a selected process.

	Create a new WPF application named CH06.MasterDetail.
	Open MainWindow.xaml. Add the following markup to the existing Grid, creating two columns with first holding a ListBox:<Grid.ColumnDefinitions>
<ColumnDefinition Width="200"/>
<ColumnDefinition />
</Grid.ColumnDefinitions>
<ListBox ItemsSource="{Binding}" FontSize="16"
DisplayMemberPath="ProcessName" x:Name="_master"/>

	The ListBox will serve as the master view, showing a flat list of all running processes on the system. Now we need the detail view. This will be a simple Grid hosting some TextBlock elements bound to various properties of a process:<Grid Grid.Column="1" TextBlock.FontSize="16">
<Grid.RowDefinitions>
<RowDefinition Height="Auto" />
<RowDefinition Height="Auto" />
<RowDefinition Height="Auto" />
<RowDefinition Height="Auto" />
<RowDefinition Height="Auto" />
</Grid.RowDefinitions>
<TextBlock Margin="6" Text="{Binding ProcessName, StringFormat='Name: \{0\}'}" />
<TextBlock Grid.Row="1" Margin="6" Text="{Binding Id, StringFormat='ID: 0'}" />
<TextBlock Grid.Row="2" Margin="6" Text="{Binding PriorityClass, StringFormat='Priority Class: \{0\}'}" />
<TextBlock Grid.Row="3" Margin="6" Text="{Binding Threads.Count, StringFormat='Threads: 0'}" />
<TextBlock Grid.Row="4" Margin="6" Text="{Binding TotalProcessorTime, StringFormat='Processor Time: \{0:G\}'}" />
</Grid>

	Let's add the collection of processes as the base for the ListBox binding. Open MainWindow.xaml.cs and add the following in the constructor:DataContext = Process.GetProcesses();

	Running the application now shows the details of the first process in the list, regardless of selection. To actually view the details of the currently selected process, we need to set the DataContext that the detail Grid sees. Add the following as a property of the inner Grid:DataContext="{Binding SelectedItem, ElementName=_master}"

	Run the application. You should be able to see details of the currently selected process.[image: How to do it...]

How it works...

The source to a binding is typically supplied with a DataContext. In this case, a top level DataContext is used for the "master" ListBox, and an inner DataContext is used for the "details" by binding to the ListBox.SelectedItem property. This is very convenient, making the inner binding expressions simple. Naturally, a converter can be used if appropriate.

There's more...

Binding the SelectedItem of the ListBox is a viable option, but there is another way to achieve this, and it's a bit more elegant.
First, we set the IsSynchronizedWithCurrentItem property of the ListBox to true. Then, we set the inner DataContext to bind to the CurrentItem property like so:
DataContext="{Binding CurrentItem}"

This works without any changes to the inner bindings. It seems odd, though: where did that property come from? And what is the source object? It can't be the nearest DataContext, because that's a list of processes.

The answer lies with a data view object, which always exists between the control and the actual collection. It implements the ICollectionView interface (in the System.ComponentModel namespace). This interface will be discussed more fully in the next recipe, but for now there is a property called CurrentItem on this interface and we're binding to it. Setting IsSynchronizedWithCurrentItem to true on the ListBox is necessary so that the current item on the ICollectionView is actually tracked.
A simpler selected item binding

We can even simplify the use of CurrentItem. We simply drop the inner DataContext expression (with the binding to CurrentItem), but instead we add a forward slash to all the property paths in the inner bindings. For example, the ProcessName property is bound as follows:

Text="{Binding /ProcessName, StringFormat='Name: \{0\}'}"

Note the forward slash before ProcessName. This slash is shorthand for CurrentItem; that's why the inner DataContext is unnecessary.
The full source of this example is in the CH06.MasterDetail2 project available within the downloadable source for this chapter.

Sorting and filtering bound collections

Data templates provide a powerful way to present data using text, images, and anything else WPF is capable of. Often, we need to present the data in some order, typically sorted by some property (or properties). Sometimes we don't want to show all data, but a part of it, such as when a user searches for something and we want to show the result of the search, which maybe just a subset of the original data.

One way to go about it is to operate on the data itself. We can certainly apply sorting on lists (List<T>.Sort, Array.Sort, and so on), as well as filtering (List<T>.FindAll), and by using Language Integrated Query (LINQ) it's even easier (and more versatile) to sort (orderby clause) and/or filter (where clause) to get a new collection. Although this works, it requires explicitly binding the resulting collection to the correct controls (some may show the original collection, some may show sorted/filtered data).
WPF provides an alternative: using a view object that sits between the original data and the control, we can specify sorting and filtering (and as we'll see later, grouping as well), without ever touching the original data collection.

Getting ready

Make sure Visual Studio is up and running.

How to do it...

We'll create an application that shows all processes running on the system and provide for sorting and filtering.

	Create a new WPF application named CH06.SortingAndFiltering.
	Open MainWindow.xaml. Add two rows to the existing Grid. The first holds a ListBox, and the second holds a horizontal StackPanel:<Grid.RowDefinitions>
<RowDefinition />
<RowDefinition Height="Auto" />
</Grid.RowDefinitions>
<ListBox HorizontalContentAlignment="Stretch"
ItemsSource="{Binding}">
</ListBox>
<StackPanel Grid.Row="1" Orientation="Horizontal" Margin="4"
TextBlock.FontSize="14">
</StackPanel>

	The ListBox should display information for System.Diagnostics.Process objects. Add the following data template to the ListBox:<ListBox.ItemTemplate>
<DataTemplate>
<Border Margin="2" Padding="4" BorderBrush="Black"
BorderThickness="1">
<StackPanel Orientation="Horizontal"
TextBlock.FontSize="16">
<TextBlock Foreground="Black" FontWeight="Bold"
Text="{Binding ProcessName}" />
<TextBlock Margin="10,0,0,0" Foreground="Blue"
Text="{Binding Id, StringFormat='(\{0\})'}" />
<TextBlock Margin="20,0,0,0" Foreground="Red"
Text="{Binding Threads.Count, StringFormat='Threads: \{0\}'}" />
</StackPanel>
</Border>
</DataTemplate>
</ListBox.ItemTemplate>

	Open MainWindow.xaml.cs. Add the following to the constructor to set up the binding:DataContext = Process.GetProcesses();

	Running the application now shows the processes in the order they provided by Process.GetProcesses:[image: How to do it...]

	Open MainWindow.xaml. Add the following controls to the StackPanel to be used for sorting purposes:<TextBlock Text="Sort by" VerticalAlignment="Center"/>
<ComboBox Width="150" Margin="6,0,0,0" x:Name="_sortField"
SelectedIndex="0">
</ComboBox>
<CheckBox Margin="10,0,0,0" Content="Ascending"
VerticalAlignment="Center"
IsChecked="true" x:Name="_ascending"/>
<Button Margin="4,0,0,0" Content="Sort" />

	The ComboBox should display allowed properties for sorting. Add a new class named SortField as follows:class SortField {
public string DisplayName { get; set; }
public string PropertyName { get; set; }
}

	A bunch of SortField objects would be required for all the properties we may wish to sort. To create a list of such objects in XAML, we need a non-generic class. Add the following simple class just below the SortField class:class SortFieldList : List<SortField> {
}

	Open MainWindow.xaml. Add an XML namespace mapping to the CH06.SortingAndFiltering namespace on the Window root element:xmlns:local="clr-namespace:CH06.SortingAndFiltering"

	Create an instance of SortFiledList as a Resource and add some SortField objects to be used for sorting:<Window.Resources>
<local:SortFieldList x:Key="sortFields">
<local:SortField DisplayName="(Unsorted)" />
<local:SortField DisplayName="Process Name"
PropertyName="ProcessName" />
<local:SortField DisplayName="Process ID"
PropertyName="Id" />
<local:SortField DisplayName="# Threads"
PropertyName="Threads.Count" />
</local:SortFieldList>
</Window.Resources>

	Now bind the ComboBox to use the list, by adding the following properties:ItemsSource="{StaticResource sortFields}"
DisplayMemberPath="DisplayName"
SelectedValuePath="PropertyName"

	Add a Click event handler for the Sort button. Inside the handler, add the following:var view = CollectionViewSource.GetDefaultView(DataContext);
view.SortDescriptions.Clear();
if(_sortField.SelectedValue != null)
view.SortDescriptions.Add(new SortDescription((string)
_sortField.SelectedValue,_ascending.IsChecked == true ?
ListSortDirection.Ascending :
ListSortDirection.Descending));

	Run the application. Use the ComboBox to select the property to sort and click on Sort.[image: How to do it...]

	Now let's add filtering. Open MainWindow.xaml and add the following elements to the StackPanel:<TextBox Margin="10,0,0,0" x:Name="_filterText" Width="120" />
<Button Margin="4,0,0,0" Content="Filter" />

	Add a Click event handler for the Filter button. Add the following code in the handler:var view = CollectionViewSource.GetDefaultView(DataContext);
if(string.IsNullOrWhiteSpace(_filterText.Text))
view.Filter = null;
else
view.Filter = obj => ((Process)obj).ProcessName.IndexOf(
_filterText.Text,
StringComparison.InvariantCultureIgnoreCase) > -1;

	Run the application. Enter some text in the filter TextBox and click on Filter. You can also combine that with sorting.[image: How to do it...]

How it works...

The view that sits between the data collection and a bound control is an object implementing the ICollectionView interface. A default view always exists and is obtained by the static CollectionViewSource.GetDefaultView method, passing the data collection itself.

With an ICollectionView in hand, sorting is possible by using the SortDescriptions property, which is a collection of SortDescription objects. We can use this collection to set properties to sort (more than one is possible for sub-sorting; for example, we can sort by process name, and if several processes have the same process name we can sort by (for example) process ID), and the direction of the sort (ascending or descending). Note that we don't touch the actual data — just manipulate the view.
To remove the sorting, we call the Clear method on the SortDescriptions property.
Filtering is achieved by setting the Filter property of ICollectionView. This property is of type Predicate<object>, which is a delegate that accepts an object (which is a single data item) and returns true (to display that data in bound controls) or false (to hide it). Naturally, this delegate can be specified by an actual method, an anonymous method, or a lambda expression (just like any other delegate). The delegate is called for each and every item to determine if that particular item is to be shown.
To clear the filter, we set the Filter property to null.
As we can see, sorting and filtering are orthogonal, meaning they can be used in isolation or together for a combined effect.

There's more...

In the preceding example, a single control (ListBox) was bound to the data collection. What would happen if another control (say a ComboBox, or any control derived from ItemsControl) was bound to the same data collection? The sorting and/or filtering would occur in both controls.
This may not be the desired behavior. Perhaps one control should show everything, and another control should show some filtered data. With the previous approach this won't work.
The solution is to create a new view, and use that instead of the default view. To create a new view, we need to create an instance of a CollectionViewSource, set its Source property to the actual data, and use its View property (ICollectionView) to do the sorting/filtering. Creating the CollectionViewSource can be done in XAML or code. Let's see a code-based approach first. We add a field of type CollectionViewSource to the Window and set it up in the constructor:

_cvs = new CollectionViewSource();
_cvs.Source = Process.GetProcesses();
DataContext = _cvs;

The Source property is set to the actual collection. Note that the DataContext is set to the CollectionViewSource instance, and not to the actual data (if it did, the default view would have been used). The binding expressions, however, are completely unchanged, as if binding directly to the data source; this makes it very convenient to use.
To do the actual sorting or filtering, we use the view that's exposed through the View property of CollectionViewSource. The rest of the code remains unchanged:
var view = _cvs.View;

The complete source is in the CH06.SortingAndFiltering2 project available in the downloadable source for this chapter.
Creating a CollectionViewSource in XAML is possible (as a Resource). For example:
<CollectionViewSource x:Key="_cvs" />

Then, we can get it in code and manipulate it in much the same way:
_cvs = Resources["_cvs"] as CollectionViewSource;
_cvs.Source = Process.GetProcesses();
DataContext = _cvs;

The advantage of creating a CollectionViewSource in XAML is that we can create SortDescription objects in XAML as well, especially if there are some fixed sorting criteria.
The project CH06.SortingAndFiltering2 project, available in the downloadable source for this chapter has the full source code for this example.
More features of ICollectionView

As we saw in the previous recipe, ICollectionView can track a single selected item using the properties CurrentItem (the actual data item) and CurrentPosition (the numerical index). For the default view, the Selector-derived control must set IsSynchronizedWithCurrentItem to true, but it's automatically tracked for explicitly created views. This feature can help stay detached from actual controls, and not really care what controls (if any) are bound using that view.

Another feature supported by ICollectionView is navigation. It's occasionally useful to add controls that allow moving forward or backwards through a collection, or moving to the start or end of the collection. Again, this can be done on a control by control basis, but we want to stay clear of the actual controls (this will be more evident in the next chapter when we discuss the MVVM pattern) bound to the data. For this, ICollectionView exposes a bunch of self-explanatory methods: MoveCurrentToFirst, MoveCurrentToLast, MoveCurrentToNext, MoveCurrentToPrevious, MoveCurrentToPosition (to the specified index), MoveCurrentTo (to the specified data object), and two properties that can be used to enable/disable navigating controls (IsCurrentAfterLast, IsCurrentBeforeFirst).
The last useful feature of ICollectionView is grouping. As this is a little more complicated, we'll treat it in its own recipe.

Live shaping

WPF 4.5 introduces a new feature called "live shaping" that reflects dynamic changes in sorting/filtering/grouping. Suppose we create a ListBox that shows stock item values. These values are sorted when the application starts up. Then these values change rapidly the sorting does not operate dynamically unless we remove the sorting and apply it again.

In WPF 4.5 we can instruct the view to keep things "alive" and update the position of items based on dynamic changes. Let's create a simple StockItem class to represent our data item:
class StockItem : INotifyPropertyChanged {
public event PropertyChangedEventHandler PropertyChanged =
delegate { };
public string Name { get; set; }
double _value;
public double Value {
get { return _value; }
set {
_value = value;
PropertyChanged(this,
new PropertyChangedEventArgs("Value"));
}
}
}

Here's the extra code needed, assuming _items is a collection of StockItem objects bound to some ListBox:

var view = CollectionViewSource.GetDefaultView(_items);
view.SortDescriptions.Add(
new SortDescription("Value", ListSortDirection.Ascending));
var liveview = (ICollectionViewLiveShaping)
CollectionViewSource.GetDefaultView(_items);
liveview.IsLiveSorting = true;

The new ICollectionViewLiveShaping interface is the key. Setting IsLiveSorting to true makes sorting aware of dynamic value changes. Similar properties exist for filtering and grouping (IsLiveFiltering and IsLiveGrouping). The CH06.LiveShaping project (which must be opened in Visual Studio 2012), which is available in the downloadable source for this chapter, shows this in action.

Grouping bound collections

The previous recipe used the ICollectionView source for sorting, filtering, and navigating. Another useful feature of ICollectionView is grouping. This allows the partitioning of the data into groups based on some criteria (typically a property). Each such group is subject to sorting and/or filtering, if used.

Getting ready

Make sure Visual Studio is up and running.

How to do it...

We'll use the same collection of process objects used previously, but this time we'll group them by some criteria.
	Create a new WPF Application named CH06.GroupingData.
	Open MainWindow.xaml. Add a ListBox to the existing grid, with a simple data template to display information on process objects:<ListBox ItemsSource="{Binding}" HorizontalContentAlignment="Stretch">
<ListBox.ItemTemplate>
<DataTemplate>
<UniformGrid Rows="1" Columns="2">
<TextBlock Text="{Binding ProcessName}" /> <TextBlock Text="{Binding Id,
StringFormat=ID: \{0\}}" />
</UniformGrid>
</DataTemplate>
</ListBox.ItemTemplate>
</ListBox>

	Open MainWindow.xaml.cs. Add the following in the constructor:var processes = Process.GetProcesses().Where(CanAccess);
DataContext = processes;

	 CanAccess is a simple method that is used to filter out all the inaccessible processes (we'll use a property for grouping that needs access permissions normally given only to the LocalSystem account):public static bool CanAccess(Process process) {
try {
var h = process.Handle;
return true;
}
catch {
return false;
}
}

	Running the application now shows a simple process view:[image: How to do it...]

	Now let's add grouping. We'll group the processes by their PriorityClass property. Open the MainWindow constructor. Add the following lines after the initialization of the processes local variable:var view = CollectionViewSource.GetDefaultView(processes);
view.GroupDescriptions.Add(new PropertyGroupDescription(
"PriorityClass"));

	This sets up grouping based on the PriorityClass property. Run the application. The display shows no visible grouping, but note that the order of processes is different:[image: How to do it...]

	Grouping is happening, but the ListBox disregards that. To make the groups obvious, we'll add a GroupStyle control as the GroupStyle property of the ListBox:<ListBox.GroupStyle>
<GroupStyle>
<GroupStyle.HeaderTemplate>
<DataTemplate>
<Border BorderBrush="Red" BorderThickness="2"
Background="White" Margin="2">
<TextBlock Text="{Binding Name,
StringFormat=Priority: {0}}"
FontSize="16" FontWeight="Bold"
Margin="4" />
</Border>
</DataTemplate>
</GroupStyle.HeaderTemplate>
</GroupStyle>
</ListBox.GroupStyle>

	This indicates what each group is going to look like. Run the application now and scroll to see more groups:[image: How to do it...]

How it works...

The ICollectioView interface discussed in the previous recipe supports grouping with the GroupDescriptions property. It accepts a type derived from GroupDescription (GroupDescription is abstract), PropertyGroupDescription being the only concrete class provided by WPF. The simplest useful constructor accepts a property name (a property path, in fact, so it's possible to use a nested property).
The bound control (in this example a ListBox) rearranges the items to be consistent with the grouping criteria (as well as sorting and filtering if used). However, there is no default visual cue indicating grouping is actually taking place.

To remedy that, all controls derived from ItemControls support the GroupStyle property, which is of type System.Windows.Controls.GroupStyle (not really a control or a Style). This is a kind of group descriptor, with various properties we can utilize. The most useful is HeaderTemplate that we can set with a DataTemplate to indicate how a group header is to look like. The DataContext property of HeaderTemplate is a n object derived from CollectionViewGroup created by WPF. The misleadingly named Name property in the CollectionViewGroup is actually the value of the property that's used for grouping (PriorityClass in our example). All items in that particular group are available through the Items property; this means the Name property in this case is roughly equivalent to Items[0].PriorityClass.

There's more...

There are other properties in GroupStyle that can be used to further customize the group appearance. The HeaderTemplateSelector property can be used for selecting a DataTemplate as a HeaderTemplate based on some group criteria (this is similar to the ItemTemplateSelector property of ItemsControl). HeaderStringFormat may be useful to customize the header if it's a string. The Panel property can change the way groups are laid out (by default using a vertical StackPanel). For example, let's change the Panel property to use a horizontal StackPanel:

<GroupStyle.Panel>
<ItemsPanelTemplate>
<StackPanel Orientation="Horizontal" />
</ItemsPanelTemplate>
</GroupStyle.Panel>

This is the result when running:
[image: There's more...]
Amazingly enough, this is still a ListBox!

Grouping by a non-property

Adding a PropertyGroupDescription object based on a property is easy enough, but what about using some criteria that is not reflected in a property?
Fortunately, PropertyGroupDescirption supports another constructor, accepting a property name and a value converter. The converter has the opportunity to return some value that is indicative of the group based on the property value provided.
For example, suppose we want to group processes by their threads count, but not with a single thread variance, but by groups of 10 threads; the first group is 1-9 threads, the second 10-19, the third 20-29, and so on. Here's the call to create the grouping:

view.GroupDescriptions.Add(new PropertyGroupDescription(
"Threads.Count", new ThreadsToGroupConverter()));

Here's a converter's Convert method that consolidates every 10 threads to one group integer:
public object Convert(object value, Type targetType,
object parameter, CultureInfo culture) {
int count = (int)value;
return count / 10;
}

The CollectionViewGroup.Name property has now become that calculated integer. The HeaderTemplate in this case may need a converter as well, to turn that number into some useful group name. Its Convert method may look like the following:
public object Convert(object value, Type targetType,
object parameter, CultureInfo culture) {
int count = (int)value;
string text = string.Format("{0}-{1}",
count == 0 ? 1 : count * 10, count * 10 + 9);
return text;
}

After creating the converter in XAML, the data template can use it:
<TextBlock Text="{Binding Name, Converter=
{StaticResource threadsToGroupName},
StringFormat=Threads: {0}}"

Here's the result:
[image: Grouping by a non-property]
The full source code is in the CH06.GroupingData2 project available in the downloadable source for this chapter.

See also

For a full discussion of value converters, refer to the Using value converters recipe in this chapter.

Binding to multiple properties

So far we've seen data binding occur for a target property base on a single source property. Sometimes, however, a target property depends on changes of more than one source property. This is supported in WPF through multi binding. Let's see how it's done.

Getting ready

Make sure Visual Studio is up and running.

How to do it...

We'll create a simple color selector using a multi-binding.

	Create a new WPF application named CH06.MultiBindings.
	Open MainWindow.xaml. Add the following to the existing Grid:<Grid.RowDefinitions>
<RowDefinition />
<RowDefinition Height="Auto" />
<RowDefinition Height="Auto" />
<RowDefinition Height="Auto" />
</Grid.RowDefinitions>
<Rectangle Stroke="Black" StrokeThickness="1" Margin="4" >
</Rectangle>
<Slider Minimum="0" Maximum="255" Margin="4"
x:Name="_red" Grid.Row="1" />
<Slider Minimum="0" Maximum="255" Margin="4"
x:Name="_green" Grid.Row="2" />
<Slider Minimum="0" Maximum="255" Margin="4"
x:Name="_blue" Grid.Row="3" />

	We'd like to use the three sliders to change the RGB color fill of the rectangle. This means we need to set one property (Rectangle.Fill) based on three properties (Slider.Value for each one). Since there's no default way to convert more than one property to a single property we need a converter. Add a new class named RGBConverter.
	This class should implement the IMultiValueConverter interface. Implement the class as follows:class RGBConverter : IMultiValueConverter {
SolidColorBrush _brush = new SolidColorBrush();
public object Convert(object[] values, Type targetType,
object parameter, CultureInfo culture) {
_brush.Color = Color.FromRgb(System.Convert.ToByte(
values[0]), System.Convert.ToByte(values[1]),
System.Convert.ToByte(values[2]));
return _brush;
}
public object[] ConvertBack(object value, Type[] tTypes,
object parameter, CultureInfo culture) {
throw new NotImplementedException();
}
}

	Open MainWindow.xaml. We need to create a MultiBinding and connect to the source properties and the converter. First, add an XML namespace mapping for the application namespace with prefix local, and create an instance of the converter:<Window.Resources>
<local:RGBConverter x:Key="rgbConverter" />
</Window.Resources>

	Add the following as Rectangle.Fill:<Rectangle.Fill>
<MultiBinding Converter="{StaticResource rgbConverter}">
<Binding Path="Value" ElementName="_red" />
<Binding Path="Value" ElementName="_green" />
<Binding Path="Value" ElementName="_blue" />
</MultiBinding>
</Rectangle.Fill>

	Run the application and move the sliders. The rectangle changes color accordingly.[image: How to do it...]

How it works...

A MultiBinding object collects a set of property bindings and funnels them through a converter to get the final target property value. This means a MultiBinding must have a converter, as WPF has no way of knowing how to map a set of properties to a single property value.

Each object within a MultiBinding is a Binding in itself, reaching out to a desired source property (in our case using ElementName). Note that we must supply the Binding objects in element syntax. There's no way to provide them with the Binding markup extension.
The converter must implement the IMultiValueConverter interface. It's a different interface than the regular converter, because the Convert method must accept an array of values that are provided in the exact same order they are specified in the XAML. In our example, the red component value is first because the red slider element is used first in the list of child bindings. Also, ConvertBack (much less useful) returns an array of objects and accepts an array of types.

There's more...

MultiBinding has a StringFormat property that can be used to format a string based on strings provided by the individual bindings. For example, suppose we wanted to add a TextBlock on top of the Rectangle to show the exact RGB values currently selected. Here's a MultiBinding that does the trick:

<TextBlock FontSize="18" VerticalAlignment="Center"
HorizontalAlignment="Center">
<TextBlock.Text>
<MultiBinding
StringFormat="R: {0:N0}, G: {1:N0}, B: {2:N0}">
<Binding Path="Value" ElementName="_red" />
<Binding Path="Value" ElementName="_green" />
<Binding Path="Value" ElementName="_blue" />
</MultiBinding>
</TextBlock.Text>
</TextBlock>

Note that a converter is not needed in this special case, because the result is a string. Also, note the use of the indices {0}, {1}, {2} to extract the results from the specific child binding.

Binding hierarchical data to a TreeView

A TreeView is a common control for viewing hierarchical data. It derives from ItemsControl, but it's a bit more complex than standard controls derived from, ItemsControl, such as ListBox, because of its hierarchical nature, although it's possible to use a TreeView without data binding. Binding provides an elegant way to fill the tree with data. Let's examine this in more detail.

Getting ready

Make sure Visual Studio is up and running.

How to do it...

We'll create an application that shows a tree view with processes as the top level objects. For each process, child tree view items will show the modules loaded into that process.

	Create a new WPF Application named CH06.TreeViewBinding.
	Open MainWindow.xaml.cs. In the constructor, set the DataContext to the collection of processes on the system:DataContext = Process.GetProcesses();

	We'd like to show a TreeView of processes with each tree node expanding to show all modules loaded into that process. Open MainWindow.xaml and add a TreeView to the existing Grid:<TreeView ItemsSource="{Binding}">
</TreeView>

	Let's add a data template for displaying processes. Add an ItemTemplate property to the TreeView as follows:<TreeView.ItemTemplate>
<DataTemplate ItemsSource="{Binding Modules}">
<StackPanel Orientation="Horizontal" Margin="2">
<TextBlock Text="{Binding ProcessName}"
FontWeight="Bold" FontSize="16" />
<TextBlock Margin="5,0,0,0" FontSize="16"
Text="{Binding Id, StringFormat=(\{0\})}" />
</StackPanel>
</DataTemplate>
</TreeView.ItemTemplate>

	Running this just shows a list of processes. To show a hierarchy, we'll first turn the DataTemplate to a HierarchicalDataTemplate with an ItemsSource:<TreeView.ItemTemplate>
<HierarchicalDataTemplate ItemsSource="{Binding Modules}">

	Now we need an inner DataTemplate to indicate how modules are shown. Add the following before the closing tag of HierarchicalDataTemplate:<HierarchicalDataTemplate.ItemTemplate>
<DataTemplate>
<StackPanel Orientation="Horizontal" Margin="2">
<TextBlock Text="{Binding ModuleName}"
FontSize="14" FontWeight="Bold"/>
<TextBlock Margin="5,0,0,0" FontSize="12"
Text="{Binding FileName, StringFormat=(\{0\})}"
VerticalAlignment="Center"/>
</StackPanel>
</DataTemplate>
</HierarchicalDataTemplate.ItemTemplate>

	Run the application. Expand some processes and watch the module list unfold (processes that cannot be expanded are those that require system level access to view such information).[image: How to do it...]

How it works...

As an ItemsControl, a TreeView may use its ItemTemplate property to set a DataTemplate for its bound data. However, how should the inherent hierarchy be handled? It's done with the help of a DataTemplate derivative — HierarchicalDataTemplate. HierarchicalDataTemplate is a DataTemplate that can contain a child DataTemplate that specifies how a child object should be presented. This can go on as needed, because that child DataTemplate can be in itself a HierarchicalDataTemplate. The way a HierarchicalDataTemplate indicates what collection its child is bound to is with its ItemsSource property. In the preceding example, the HierarchicalDataTemplate sets its ItemsSource to the Modules property of the current object (which is a Process). The Modules property is a collection of ProcessModule objects, each of which is queried for its ModuleName and FileName properties by the inner DataTemplate.

There's more...

Behind the scenes a TreeView is composed of TreeViewItem objects. A TreeViewItem derives from HeaderedItemsControl, which means it has a header (typically text and/or image, but can be anything) and can host a collection of other TreeViewItems; this nesting can go on as deep as needed. Our data templates create elements that are hosted inside a TreeViewItem.

It's worth noting that the SelectedItem property of a TreeView is read only, and so cannot be data bound for a useful result.

Presenting data in a grid

Some types of data are best shown in a multi row, multi column grid. WPF 4 added support for the DataGrid control, which is capable of showing a collection of objects in tabular form, with many customizations possible, out-of-the-box or programmatically.

Getting ready

Make sure Visual Studio is up and running.

How to do it...

We'll create an application that shows some personal information in a grid layout, showing some of the features of the DataGrid control.
	Create a new WPF application named CH06.DataGridDemo.
	Open MainWindow.xaml. Add a DataGrid to the existing Grid and bind it to whatever DataContext is available:<DataGrid ItemsSource="{Binding}">
</DataGrid>

	The data we're going to use is a simple personal information record. Add a new class named PersonInfo, and implement as follows:enum Gender {
Unknown,
Male,
Female
}
class PersonInfo {
public string FirstName { get; set; }
public string LastName { get; set; }
public string Email { get; set; }
public Gender Gender { get; set; }
public bool IsEmployed { get; set; }
public Uri Avatar { get; set; }
}

	Add an Images folder to the project.
	Add some small images to the newly created folder (you can use the ones from the downloadable source, or even a single image that would be used for every person).
	Open MainWindow.xaml.cs. Add the following to the constructor, so that we have some data to work with (correct the image names if necessary):DataContext = new List<PersonInfo> {
new PersonInfo { FirstName = "Bart", LastName = "Simpson",
Email = "bart@runaway.com", IsEmployed = false,
Gender = Gender.Male,
Avatar = new Uri("Images/sun.png", UriKind.Relative) },
new PersonInfo { FirstName = "Homer", LastName = "Simpson",
Email = "homer@springfield.com", IsEmployed = true,
Gender = Gender.Male, Avatar =
new Uri("Images/worker.png", UriKind.Relative) },
new PersonInfo { FirstName = "Marge", LastName = "Simpson",
Email = "marge@desparatehousewives.com",
IsEmployed = false, Gender = Gender.Female,
Avatar = new Uri("Images/violin.png", UriKind.Relative) },
new PersonInfo { FirstName = "Lisa", LastName = "Simpson",
Email = "lisa@musiclovers.com", IsEmployed = false,
Gender = Gender.Female, Avatar = new Uri(
"Images/woman.png", UriKind.Relative) },
new PersonInfo { FirstName = "Maggie", LastName = "Simpson",
IsEmployed = false, Gender = Gender.Female,
Avatar = new Uri("Images/wine.png", UriKind.Relative) }
};

	Run the application. You should see a grid with all the details. You can also change things such as the first name, last name, e-mail, whether the person is employed, and even his/her gender:[image: How to do it...]

	Note that the avatar does not show the actual image. Also, the column names are based on the property names and may not be entirely appropriate. All this is because the AutoGenerateColums property is set to true by default. Let's try to improve things a bit. What about the avatar image? Open MainWindow.xaml.
	Add a Columns property to the DataGrid with a new template:<DataGrid.Columns>
<DataGridTemplateColumn Header="Avatar" >
<DataGridTemplateColumn.CellTemplate>
<DataTemplate>
<Image Margin="2" Width="32" Height="32"
Source="{Binding Avatar}" />
</DataTemplate>
</DataGridTemplateColumn.CellTemplate>
</DataGridTemplateColumn>
</DataGrid.Columns>

	Run the application. You should see the avatar appearing as the first column.[image: How to do it...]

	The Avatar column from the auto generating process appears as well (at the end). Let's remove it. Add an event handler on the DataGrid for the AutoGeneratingColumn event. In the handler, add the following:if(e.PropertyName == "Avatar") {
e.Cancel = true;
}

	These lines check if the DataGrid is currently generating the avatar column, and if so, cancel the operation. Running the application produces the following:[image: How to do it...]

	The avatar column appears first. What if we wanted to show it last? Add another event handler for the DataGrid, AutoGeneratedColumns. This handler is called after all columns have been generated. Add the following to the handler:var grid = (DataGrid)sender;
grid.Columns[0].DisplayIndex = 5;

	Run the application. The avatar column should be on the far right:[image: How to do it...]

How it works...

The DataGrid binds to any collection just like any control derived from ItemsControl through the ItemsSource property. It actually derives from the more specialized MultiSelector class (which itself inherits from Selector).

If the AutoGenerateColumns property is true (the default), the DataGrid does all the hard work, creating the columns automatically with appropriate controls (up to a point). In the preceding example, FirstName and LastName were rendered as TextBlock instances, and if double clicked for editing, changed automatically to TextBox instances. The IsEmployed column was rendered as a CheckBox, and the Gender column was rendered as a ComboBox, automatically bound to the enum values. The Email column, on the other hand, was rendered as a simple string (not a clickable URI). The Avatar column was totally misjudged and showed no image, but instead used a Hyperlink (with no click behavior).

As the code demonstrated, it's possible to use the AutoGeneratedColumns, and do some customizations, such as creating a new column to show the avatar image. The DataGrid supports several column types: DataGridTextColumn (for strings), DataGridHyperlinkColumn (strings displayed as URIs with the Hyperlink element), DataGridCheckBoxColumns (for Boolean properties), DataGridComboBoxColumn (for enumerations and other fixed collections of values), and the all-powerful DataGridTemplateColumn, which can be used for anything. In fact, this lets us provide our own DataTemplate. This was exactly what was done with the avatar; we created a DataTemplate that holds an Image element with its Source property bound to the Avatar property.

There's more...

Handling events such as AutoGeneratingColumn is possible, but is very fragile and makes it hard to customize column appearance, especially by a designer. More commonly, the auto generating columns feature is abandoned; this requires more XAML, but less code (or none at all), and makes customizations easy. Here's a revised DataGrid that removes column auto generation and does everything manually. First, the basic markup:

<DataGrid ItemsSource="{Binding}" AutoGenerateColumns="False">
<DataGrid.Columns>
</DataGrid.Columns>
</DataGrid>

The FirstName and LastName columns are straightforward:
<DataGridTextColumn Header="First Name"
Binding="{Binding FirstName}" />
<DataGridTextColumn Header="Last Name"
Binding="{Binding LastName}" />

The Binding property of the DataGridTextColumn object locates the correct property on the data object. The DataGridComboBoxColumn is more challenging, because it needs to bind to a predefined set of values. It's not automatic, because it can bind to any collection of values, not just the values of an enumeration:

<DataGridComboBoxColumn Header="Gender"
SelectedItemBinding="{Binding Gender}"
ItemsSource="{Binding Source={StaticResource genderEnum}}"/>

This can be achieved in a number of ways. In this example, an ObjectDataProvider object is used, that can bind to a method on some object. It's created as a Resource and binds to the Enum.GetValues static method:
<ObjectDataProvider x:Key="genderEnum" MethodName="GetValues"
ObjectType="{x:Type sys:Enum}">
<ObjectDataProvider.MethodParameters>
<x:Type Type="local:Gender" />
</ObjectDataProvider.MethodParameters>
</ObjectDataProvider>

This markup declaratively states that the method to call is Enum.GetValues with a parameter of typeof(Gender) (the sys XML prefix is mapped to the mscorlib assembly and the System namespace).
Next is the e-mail. We may want the e-mail to show as a hyperlink, and clicking on it should launch the default mail client on the system (such as Microsoft Outlook). The DataGridHyperlinkColumn is not flexible enough for clicking purposes (it automatically works when the parent is a NavigationWindow, for example, which is not that useful). The alternative is a template-based column (the same idea as with the Avatar column):
<DataGridTemplateColumn Header="Email" >
<DataGridTemplateColumn.CellTemplate>
<DataTemplate>
<TextBlock>
<Hyperlink NavigateUri="{Binding Email}"
Click="OnSendEmail">
<Run Text="{Binding Email, Mode=OneWay}" />
</Hyperlink>
</TextBlock>
</DataTemplate>
</DataGridTemplateColumn.CellTemplate>
</DataGridTemplateColumn>

The Click event handler for the Hyperlink is implemented as follows:
void OnSendEmail(object sender, RoutedEventArgs e) {
var hyperlink = (Hyperlink)sender;
if(hyperlink.NavigateUri != null)
Process.Start("mailto: " + hyperlink.NavigateUri);
}

The next column on the list is IsEmployed. This is the simplest, as we can just use a DataGridCheckBoxColumn:

<DataGridCheckBoxColumn Header="Employed?"
Binding="{Binding IsEmployed}" />

Again, the Binding property points to the actual property to use on the data object. Note the new header text — there's no need to get by with the property name.
The last column, Avatar, is implemented the same way as was described in the recipe.
[image: There's more...]
Editing with a template-based column

Non-template columns, such as DataGridTextColumn and DataGridCheckBoxColumn, provide automatic editing support (assuming the column property IsReadOnly is false). What about DataGridTemplateColumn? Trying to edit the Email and Avatar columns at this time has no effect.

DataGridTemplateColumn provides a CellEditingTemplate property that can be set to an alternative DataTemplate to be used during editing (by double-clicking on the cell). Here's a simple one for changing an e-mail:
<DataGridTemplateColumn.CellEditingTemplate>
<DataTemplate>
<TextBox Text="{Binding Email}" />
</DataTemplate>
</DataGridTemplateColumn.CellEditingTemplate>

This provides a flexible way to customize editing. As another example, consider a DateTime property. It should probably be displayed as a simple string, but for editing purposes it can be replaced with a DatePicker control.
The full source of this example is in the CH06.DataGridDemo2 project, available in the downloadable source for this chapter.

Selecting, resizing, and sorting

The DataGrid supports a few ways to do selection. The SelectionMode property indicates whether one item can be selected (Single) or multiple items (Extended, the default). The meaning of "Item" depends on the SelectionUnit property. It can be an individual cell (Cell), an entire row only (FullRow, the default), and a combination of the two (CellOrRowHeader). When multi-selection is enabled, the usual Shift and Ctrl keys can be used for range and non-contiguous selections.

A column or row can be resized by the user by setting CanUserResizeColumns and CanUserResizeRows properties (both true by default). This can be set on a column by column basis if desired (DataGridColumn.CanUserResize).

Columns can be reordered if CanUserReorderColumns is true (the default). Again, this can be customized for particular columns with the DataGridColumn.CanUserResize property.
Sorting is supported by clicking on column headers (unless CanUserSortColumns is false). For specific columns, use the DataGridColumn.CanUserSort property. The DataGridColumn.SortMemberPath property can be used to change the default property to sort for, and is a must for template-based columns, as there is no binding expression to indicate how this column is to be sorted.

Other customization options

The DataGrid is highly customizable. Almost any aspect of its behavior or look can be changed. Here are some of the possibilities:

	Extra row details: Each row can have extra information set with the RowDetailsTemplate (a DataTemplate). By default, it's shown only for selected rows, but this can be changed with the RowDetailsVisibilityMode property (VisibileWhenSelected— the default, Visible — shown always, Collapsed never shown).
	Columns can be frozen, meaning they never scroll out of view. These must be leftmost columns only, and cannot be reordered with unfrozen columns. To freeze columns, set the FrozenColumnCount to a number greater than zero.
	Many other visual customizations are possible through various styles and templates exposed by the DataGrid itself and by columns and rows. For example, a column header does not have to be a string. The DataGridColumn.HeaderTemplate can be used to provide a DataTemplate that can show anything on a header (an image, for example).

Validating data

Data binding provides automatic updates from a source to a target (and vice versa in a two way binding). Some of these values are provided by some user of the system; consequently, not all values are valid. The binding system should have ways to catch such errors and allow the application to communicate to the user those errors. This is the role of data validation. In this recipe, we'll look at the validation support in data binding scenarios.

Getting ready

Make sure Visual Studio is up and running.

How to do it...

We'll create a simple entry form that validates its inputs according to some application-specific rules.

	Create a new WPF application named CH06.ValidatingData.
	Add a new class to be used as a data object named Person. Implement it as follows:class Person : INotifyPropertyChanged {
protected virtual void OnPropertyChanged(string propName) {
var pc = PropertyChanged;
if(pc != null)
pc(this, new PropertyChangedEventArgs(propName));
}
string _name;
public string Name {
get { return _name; }
set {
_name = value;
OnPropertyChanged("Name");
}
}
int _age;
public int Age {
get { return _age; }
set {
_age = value;
OnPropertyChanged("Age");
}
}
public event PropertyChangedEventHandler PropertyChanged;
}

	This is a simple class, implementing INotifyPropertyChanged, as discussed in the Binding to a single object recipe, earlier in this chapter. Open MainWindow.xaml and add the following elements to the Grid:<Grid TextBlock.FontSize="16">
<Grid.RowDefinitions>
<RowDefinition Height="Auto" />
<RowDefinition Height="Auto" />
</Grid.RowDefinitions>
<Grid.ColumnDefinitions>
<ColumnDefinition Width="Auto" />
<ColumnDefinition />
</Grid.ColumnDefinitions>
<TextBlock Text="Name:" Margin="6"/>
<TextBox Text="{Binding Name}"
Grid.Column="1" Margin="6"/>
<TextBlock Text="Age:" Grid.Row="1" Margin="6"/>
<TextBox Text="{Binding Age}"
Grid.Column="1" Grid.Row="1" Margin="6"/>
</Grid>

	Open MainWindow.xaml.cs. Add the following to the constructor:DataContext = new Person { Name = "Bart", Age = 10 };

	Run the application. You should be able to change values in the Name and Age textboxes. However, if you enter incorrect values (say a negative age, or an empty name), nothing happens. Let's change that. Change the property setters of the Age and Name properties to raise exceptions on incorrect values:public string Name {
get { return _name; }
set {
if(string.IsNullOrWhiteSpace(value))
throw new ArgumentException(
"Name cannot be empty");
_name = value;
OnPropertyChanged("Name");
}
}
public int Age {
get { return _age; }
set {
if(value < 1)
throw new ArgumentException(
"Age must be a positive integer");
_age = value;
OnPropertyChanged("Age");
}
}

	Run the application now and enter some incorrect values. Nothing happens, because by default WPF swallows the exceptions. We need to set the Binding.ValidatesOnExceptions property to true (on both textboxes):Text="{Binding Name, ValidatesOnExceptions=True}"
Text="{Binding Age, ValidatesOnExceptions=True}"

	Now run the application and enter some incorrect values. When a TextBox loses focus and an exception is thrown by the setter, the offending TextBox is highlighted with a thin red border:[image: How to do it...]

	Set the Binding.UpdateSourceTrigger property of each TextBox to PropertyChanged. This will call the setter for any character typed, giving an immediate feedback:Text="{Binding Name, ValidatesOnExceptions=True,
UpdateSourceTrigger=PropertyChanged}"
Text="{Binding Age, ValidatesOnExceptions=True,
UpdateSourceTrigger=PropertyChanged}"

How it works...

Normally, failed setters in data binding, whether caused by an exception thrown in the setter itself, or because of an exception thrown in a value converter, causes WPF to fail the binding. If Binding.ValidatesOnExceptions is false (the default), nothing else happens. If set to true, WPF performs the following actions:

	Sets the attached property Validation.HasError to true on the bound element (TextBox in this example).
	Creates a ValidationError object that holds the error details (such as the Exception object thrown). This object is added to the collection maintained by the attached property Validation.Errors of the bound element.
	If the Binding.NotifyOnValidationError is true, the Validation.Error attached event is raised (a bubbling event).

All binding validation stuff is relevant for a TwoWay or OneWayToSource binding (from the target to the source) only.
Behind the scenes, the Binding object maintains a collection of ValidationRule objects (ValidationRules property). Setting ValidatesOnExceptions to true is a shortcut for adding an ExceptionValidationRule to this collection.

There's more...

Using property setters for validation is convenient, but not always appropriate. First, raising exceptions may not be ideal; perhaps a temporary incorrect value is acceptable while, for example, objects are populated from some data source. Second, some validations require checking a combination of property values, not just a single one.
An alternative (that can be combined with setter validation) is to implement the System.ComponentModel.IDataErrorInfo interface. It has two read only properties: Error (which is never called by WPF) and an indexer that provides the property to evaluate. We need to return null to indicate no error, or some error string otherwise. Here's a simple implementation for our Person class (the implementation of the setters and INotifyPropertyChanged is not shown):
class Person : INotifyPropertyChanged, IDataErrorInfo {
// never called by WPF
public string Error {
get { return null; }
}
public string this[string name] {
get {
switch(name) {
case "Name":
if (string.IsNullOrWhiteSpace(Name))
return "Name cannot be empty";
break;
case "Age":
if (Age < 1)
return "Age must be a positive integer";
break;
}
return null;
}
}
}

To make WPF use this interface, the Binding.ValidatesOnDataErrors property must be set to true (this adds a DataErrorValidationRule to the ValidationRules collection). From that point, the same set of actions is taken if the validation fails.

Custom validation rules

A data object may not have all validation required for a particular application. If custom validation is required, a custom validation rule can be created by deriving from the abstract ValidationRule class, implementing the only abstract method (Validate) and adding that rule to the ValidationRules collection. Here's a validation rule class that requires at least some number of characters in a string (exposed at a property):

class MinCharsRule : ValidationRule{
public int MinimumChars { get; set; }
public override ValidationResult Validate(object value,
CultureInfo cultureInfo) {
if(((string)value).Length < MinimumChars)
return new ValidationResult(false, "Use at least " +
MinimumChars.ToString() + " characters");
return new ValidationResult(true, null);
}
}

Validate returns a ValidationResult, whose constructor accepts a Boolean validity flag and an error message (or null in the case of validation success).

To apply the rule, we need to add it to the validation rules of the binding:

<TextBox.Text>
<Binding Path="Name" ValidatesOnDataErrors="True"
UpdateSourceTrigger="PropertyChanged">
<Binding.ValidationRules>
<local:MinCharsRule MinimumChars="3" />
</Binding.ValidationRules>
</Binding>
</TextBox.Text>

This requires using Binding with element syntax (rather than markup extension syntax).

Custom error template

When validation fails, the offending control is surrounded by a thin red border. This can be customized to give the user a more meaningful and rich experience. Setting Validation.ErrorTemplate to a different control template replaces the default behavior (control templates will be discussed in Chapter 8, Styles, Triggers, and Custom Templates, but for now think of it as a variation of a data template). Here's an example template created as a resource (for convenience):

<ControlTemplate x:Key="errorTemplate">
<Border BorderBrush="Red" BorderThickness="2">
<Grid>
<AdornedElementPlaceholder x:Name="_el" />
<TextBlock Text="{Binding [0].ErrorContent}"
Foreground="Red" HorizontalAlignment="Right"
VerticalAlignment="Center" Margin="0,0,6,0"/>
</Grid>
</Border>
</ControlTemplate>

The interesting part is the AdornedElementPlaceholder — this indicates where the real control is. In this case we surround it with a red border and place a TextBlock on top of it. The DataContext of any binding inside this template is the Validation.Errors collection. In this example, we extract the first error's description and show it. You can imagine a scenario where an ItemsControl would display all errors (validation rule failures) that occur. An alternative is to use the adorned element's AdornedElement property that refers to the actual bound control, and use other properties on the control.
By the way, this template is displayed in the adorner layer of the bound control; this means it's always on top of the control.

To apply the template we set the Validation.ErrorTemplate attached property on the bound element (TextBox in our example):

<TextBox Grid.Column="1" Margin="6"
Validation.ErrorTemplate="{StaticResource errorTemplate}">

Here's the result:
[image: Custom error template]

Using data annotations

There is yet another way we can do validation, in a more declarative manner using custom attributes. The System.ComponentModel.DataAnnotations namespace (in the System.ComponentModel.DataAnnotations.Dll assembly) defines several attributes that can be placed on properties to indicate validation requirements. Once placed, the setter of the property can use methods from the Validator static class to force validation based on the specified attributes.

Here's an example for our Person class. We'll place some attributes on the Name property as follows:

[Required(ErrorMessage = "A name is required"), StringLength(
100, MinimumLength = 3, ErrorMessage =
"Name must have at least 3 characters")]
public string Name {
get { return _name; }
set {
ValidateProperty(value, "Name");
_name = value;
OnPropertyChanged("Name");
}
}

The Required attribute indicates the property's value cannot be null or empty, and StringLength is pretty self-explanatory.

ValidateProperty is a helper method that performs the actual validation using the Validator.ValidateProperty static method implemented with the following code:

protected void ValidateProperty<T>(T value, string name) {
Validator.ValidateProperty(value, new ValidationContext(
this, null, null) { MemberName = name });
}

ValidateProperty throws an exception if validation fails. This is handled in the same way as a regular setter validation exception. The Age property can be similarly decorated:

[Range(1, 120,
ErrorMessage = "Age must be a positive integer")]
public int Age {
get { return _age; }
set {
ValidateProperty(value, "Age");
_age = value;
OnPropertyChanged("Age");
}
}

Range provides a way to specify a range of acceptable values. The ErrorMessage property of all annotation attributes becomes the error content that may be used by the error template. Here's the XAML for the Name TextBox:

<TextBox Grid.Column="1" Margin="6"
Validation.ErrorTemplate="{StaticResource errorTemplate}"
Text="{Binding Name, UpdateSourceTrigger=PropertyChanged,
ValidatesOnExceptions=True}" />

The Age property TextBox is similar. Here's the dialog when both properties fail validation:
[image: Using data annotations]
Other attributes that exist include RegularExpression that validates a string based on a regular expression (useful for e-mails, phone numbers, and so on) with some new attributes introduced in .NET 4.5 that can provide a shortcut such as EmailAddress, Phone, and Url.

Chapter 7. Commands and MVVM

In this chapter we will cover the following:
	Using routed commands
	Implementing a basic MVVM application
	Building a simple MVVM framework
	Building a complete MVVM style application
	Creating an undo/redo system

Introduction

The traditional way of connecting a piece of user interface to some logic has been through events. The canonical example is a button when clicked, some action is undertaken, hopefully accomplishing some goal the user has intended. Although WPF supports this model completely (as other UI frameworks do), it has its drawbacks:

	The event handler is part of the "code behind" where the UI is declared, typically a window or a user control. This makes it difficult to call from other objects that may want to invoke the same logic.
	The aforementioned button may disappear and be replaced by (say) a menu item. This would require the event hooking code to potentially change. What if we wanted both a button and a menu item?
	An action may not be allowed at a certain state — the button (or whatever) needs to be disabled or enabled at the right time. This adds management overhead to the developer — the need to track state and change it for all UI elements that invoke the same functionality.
	An event handler is just a method — there's no easy way to pick it up and save it somewhere, such as for undo/redo purposes.
	It's difficult to test application logic without using actual user interface.

These, and other, more subtle issues, make working with event handlers less than ideal, especially when application logic is involved. If an event is just intended for usability enhancement or for otherwise serving the UI alone, than this is not usually a concern (for example, hovering the mouse cursor over some element causes color changes, enhancing use experience in some way — although even this can be achieved declaratively with triggers — see Chapter 8, Styles, Triggers, and Control Templates).
The typical solution to this UI-logic coupling is the concept of commands. This follows the famous "Command design pattern" that abstracts away application logic into distinct objects. Being an object, a command can be invoked from multiple locations, saved in lists (for example, for undo purposes), and so on. It can even indicate whether it's allowable at certain times, freeing other entities to take care of the actual enabling or disabling of controls that may be bound to that command.

WPF provides a basic support for commands with the ICommand interface and two built-in implementations, RoutedCommand and RoutedUICommand. However, the support isn't perfect, which would force us to come up with other implementations of ICommand. Still, it's worth understanding where WPF's implementation is good enough and where we need to pave a new path.
Commands are just one aspect of more general patterns for dealing with user interface in non-trivial applications. To that end, a number of UI design patterns appeared, such as Model View Controller (MVC), Model View Presenter (MVP), and Model View View-Model (MVVM). All have something in common: the separation of the actual UI (View) from the application logic (Controller, Presenter, and ViewModel) and the underlying data (Model).
In this chapter, we'll first take a look at commands, and WPF's support in that respect. Then we'll develop a basic framework for MVVM-based applications (what exactly MVVM is and the differences from MVC/MVP will be discussed later in this chapter) and show some common scenarios and the way they are typically handled.

Using routed commands

WPF provides two (similar) implementations for the ICommand interface. Commands are invoked (by default) by command sources, implementing the ICommandSource interface. These two interfaces comprise the basic abstraction WPF recognizes as far as commands are concerned. In this recipe, we'll examine these interfaces, their out-of-the-box implementations, and how they are typically used.

Getting ready

Make sure Visual Studio is up and running.

How to do it...

We'll create a simple image viewer that provides its functionality via WPF routed commands:

	Create a new WPF application named CH07.RoutedCommands.
	Open MainWindow.xaml. Add the following to the existing Grid:<Grid.RowDefinitions>
<RowDefinition Height="Auto" />
<RowDefinition />
</Grid.RowDefinitions>
<ToolBar FontSize="14">
</ToolBar>
<ScrollViewer HorizontalScrollBarVisibility="Auto"
VerticalScrollBarVisibility="Auto" Grid.Row="1">
<Image Source="{Binding ImagePath}" Stretch="None">
<Image.LayoutTransform>
<ScaleTransform ScaleX="{Binding Zoom}"
ScaleY="{Binding Zoom}" />
</Image.LayoutTransform>
</Image>
</ScrollViewer>

	The Grid holds a toolbar (empty at the moment) and a scrollable image. The Source property of the Image is bound to an ImagePath property. It uses a ScaleTransform, with its properties bound to a Zoom property. All these properties have no source, so let's create one. Add a new class named ImageData, defined as follows :class ImageData : INotifyPropertyChanged {
public string ImagePath { get; private set; }
public ImageData(string path) {
ImagePath = path;
}
double _zoom = 1.0;
public double Zoom {
get { return _zoom; }
set {
_zoom = value;
OnPropertyChanged("Zoom");
}
}
protected virtual void OnPropertyChanged(string name) {
var pc = PropertyChanged;
if (pc != null)
pc(this, new PropertyChangedEventArgs(name));
}
public event PropertyChangedEventHandler PropertyChanged;
}

	The class exposes an ImagePath and Zoom properties, exactly as expected by the above XAML. Now let's add the following buttons to the ToolBar:<Button Content="Open..." Command="Open" Margin="6"/>
<Button Content="Zoom In" Command="IncreaseZoom" Margin="6"/>
<Button Content="Zoom Out" Command="DecreaseZoom" Margin="6"/>

	Note there are no Click event handlers; instead the Command property of the buttons is set. Running the application at this time shows all buttons as disabled:[image: How to do it...]

	We need to add command bindings so that the commands do something useful. Add a Commandbinding object to the Window's CommandBindings property:<Window.CommandBindings>
<CommandBinding Command="Open" Executed="OnOpen" />
</Window.CommandBindings>

	Right-click on OnOpen and select Navigate to Event Handler. Add a private field of type ImageData to MainWindow:ImageData _image;

	Add the following code for OnOpen, allowing the user to select an image file to view:void OnOpen(object sender, ExecutedRoutedEventArgs e) {
var dlg = new OpenFileDialog {
Filter = "Image Files|*.jpg;*.png;*.bmp;*.gif"
};
if(dlg.ShowDialog() == true) {
_image = new ImageData(dlg.FileName);
DataContext = _image;
}
}

	Run the application. You can now click on Open and select an image to view:[image: How to do it...]

	Now let's take care of the zoom commands. Open MainWindow.xaml and add the following command bindings:<CommandBinding Command="IncreaseZoom" Executed="OnZoomIn"
CanExecute="OnIsImageExist" />
<CommandBinding Command="DecreaseZoom" Executed="OnZoomOut"
CanExecute="OnIsImageExist" />

	Add a handler for the previous CanExecute events:void OnIsImageExist(object s, CanExecuteRoutedEventArgs e) {
e.CanExecute = _image != null;
}

	The above means that the zoom commands should be disabled when no image is present. Now add the handlers for the IncreaseZoom and DecreaseZoom commands:void OnZoomOut(object sender, ExecutedRoutedEventArgs e) {
_image.Zoom /= 1.2;
}
void OnZoomIn(object sender, ExecutedRoutedEventArgs e) {
_image.Zoom *= 1.2;
}

	Run the application. Notice the zoom buttons are disabled until an image is opened. Now let's create a button that would restore the zoom to 1. First, we need a custom command for that. Add a class named Commands and optionally make it static:static class Commands {
}

	Add the following static field and static property to the class:static readonly RoutedUICommand _zoomNormalCommand =
new RoutedUICommand("Zoom Normal", "Normal",
typeof(Commands));
public static RoutedUICommand ZoomNormalCommand {
get { return _zoomNormalCommand; }
}

	Open MainWindow.xaml and add an XML namespace mapping to the CH07.RoutedCommands namespace.
	Now add a fourth button to the ToolBar:<Button Command="local:Commands.ZoomNormalCommand"
Content="Normal" Margin="6"/>

	Add a CommandBinding to the window's CommandBindings collection to handle this command:<CommandBinding Command="local:Commands.ZoomNormalCommand"
Executed="OnZoomNormal" CanExecute="OnIsImageExist" />

	Implement OnZoomNormal as follows:void OnZoomNormal(object sender, ExecutedRoutedEventArgs e) {
_image.Zoom = 1.0;
}

	Run the application. All buttons should operate as expected: with no image, only the Open button is enabled. All buttons are operational when an image is present.

How it works...

The ICommand interface is the abstraction of a command. WPF defines it as follows (in the System.Windows.Input namespace):

public interface ICommand {
bool CanExecute(object parameter);
void Execute(object parameter);
event EventHandler CanExecuteChanged;
}

The Execute method executes the command. CanExecute indicates whether this command is available at this time. If it's not, WPF is smart enough to disable that command source. Both methods accept a parameter that can be anything that affects the way the command is implemented; command sources can set it using the CommandParameter property. The remaining event is used to notify WPF when the CanExecute method should be called again, because something has changed that may make this method return a different result, and so the enabled/disabled state may need to update.

WPF provides two implementations for the ICommand interface: RoutedCommand and RoutedUICommand. The latter inherits from the former and adds a single Text property that is used automatically with menu items. They implement ICommand explicitly and expose its execution members in a different way:
public void Execute(object param, IInputElement target);
public bool CanExecute(object param, IInputElement target);

Why is that? The classic command pattern implementation uses a separate class for each command. In this application, we could have had an OpenCommand class, a ZoomInCommand class, and so on, all implementing ICommand. Instead, we use the same type: RoutedUICommand. How can this work?

Routed(UI)Command objects are essentially empty shells. They cannot contain our own implementation, so they hunt for a CommandBinding object up the visual tree from a target element (this is the second argument to the above methods) that indicates it can handle that command. This means that the following line:
<CommandBinding Command="IncreaseZoom" Executed="OnZoomIn"
CanExecute="OnIsImageExist" />

Causes the XAML parser to convert the string IncreaseZoom (using a Type Converter) to the static property NavigationCommands.IncreaseZoom (of type RoutedUICommand), the same one used in the button:
<Button Content="Zoom In" Command="IncreaseZoom" Margin="6"/>

When the button is clicked, Execute (from ICommand) is called on the IncreaseZoom command instance. This explicit implementation inside RoutedUICommand looks for a corresponding CommandBinding, starting from the target element, which is by default the command source itself (the button) and moving up the visual tree until such a command and a handler is found. If not found, the command source is disabled.
Once the CommandBinding is found, its Executed event handler is called this is where our special implementation is located. Similarly, when WPF calls CanExecute on the RoutedUICommand, the CommandBinding is located in the same way, but this time the CanExecute event handler is called. If it does not exist, but an Executed event does exist, the command source is always enabled (this is the case with our Open button). Otherwise, the Boolean property ExecutedRoutedEventArgs.CanExecute indicates whether this command is currently available. In our case, the zoom commands should be available when an image is displayed.

There's more...

WPF provides five classes that contain many static RoutedUICommand properties for commonly used operations: ApplicationCommands (Open, Print, Copy, and many other properties), MediaCommands class (Play, Pause, Stop, and so on), NavigationCommands (BrowseBack, NextPage, Refresh, Search, and so on), ComponentCommands (MoveLeft, MoveDown, ScrollByLine, and so on) and EditingCommands (AlignLeft, Backspace, Delete, TabForward, and so on). Naturally, this list (no matter how comprehensive) cannot possibly fill every application's needs.
We can create custom RoutedUIComamnd objects as was done in the code sample by using the same tactics as WPF: creating a static property in some class of type RoutedUICommand. Again, this is just a shell; a CommandBinding object will supply the actual logic behind the command. A RoutedUICommand can include a name, text, and optional input gestures, such as a keyboard shortcut that should invoke the command. Here's an example that extends the zoom normal command to use a shortcut (Alt + N):

static readonly RoutedUICommand _zoomNormalCommand =
new RoutedUICommand("Zoom Normal", "Normal",
typeof(Commands), new InputGestureCollection(new [] {
new KeyGesture(Key.N, ModifierKeys.Alt)
}));

Many built-in commands have associated gestures, such as Ctrl + N for ApplicationCommands.New and Ctrl + C for ApplicationCommands.Copy.
Built-in implementations

It may seem that RoutedUICommands provide very little. After all, they don't actually implement the command logic.

Some controls have their own command bindings, and thus implement some well-known commands. The TextBox control, for example, has command bindings for commands such as Copy, Cut, Paste, and Undo. This means we can create a simple Notepad-like clone by using a TextBox with the right commands. The Edit menu for such an implementation is as follows:
<MenuItem Header="_Edit">
<MenuItem Command="Copy" />
<MenuItem Command="Cut" />
<MenuItem Command="Paste" />
<Separator />
<MenuItem Command="Undo" />
<MenuItem Command="Redo" />
</MenuItem>

This is all that's needed for the TextBox to perform these operations. Note that MenuItem objects pick up their Header from the Text property of the RoutedUICommand (unless an explicit Header is specified).
Similarly, we can hook up buttons in a ToolBar:

<ToolBar Grid.Row="1">
<Button Content="Copy" Command="Copy" />
<Button Content="Cut" Command="Cut" />
<Button Content="Paste" Command="Paste" />
</ToolBar>

The complete source is in the CH07.SimpleNotepad project, part of the downloadable source for this chapter.

Command sources

As we've seen, buttons and menu items are capable of invoking commands. This is abstracted by the ICommandSource interface, defined as follows:

public interface ICommandSource {
ICommand Command { get; }
object CommandParameter { get; }
IInputElement CommandTarget { get; }
}

This indicates which command to invoke (Command), an optional parameter (CommandParameter), and which element is the target from which the lookup for a CommandBinding begins (CommandTarget). The following elements implement this interface: MenuItem, ButtonBase, (and thus all buttons) and Hyperlink.
What this means is that other controls cannot invoke commands as easily, because they don't implement ICommandSource. Furthermore, even controls that do implement ICommandSource invoke the command when a specific trigger occurs (such as a click for buttons); but what if we wanted a different trigger to invoke the command? These are things we'll need to address in later recipes, as WPF does not provide solutions to these issues out of the box.

Alternative ICommand implementations

RoutedUICommand's implementation of ICommand is fine for some cases, mainly where pure UI is involved. However, if we want to connect a command to some piece of logic that is not part of a Window's code behind, routed commands are problematic. This is because they require CommandBinding objects that are part of some visual tree, and use an event handler — this must be tied to a specific Window. A more decoupled implementation is preferred, but is not supplied by WPF. We'll see examples in the next recipes.

Implementing a basic MVVM application

The MVC, MVP, and MVVM patterns comprise mostly the same parts: a model, which is the data, a view (or views) that display the data in some meaningful way and provide user interaction, and a third part that is somehow responsible for the logic behind the interactions of view and data. The exact differences between MVC and MVP are not that important (you can find a lot on these topics on the Web). MVVM could be considered a special case of MVP, where data binding is used to connect the View with the ViewModel in a very loose way. This is especially favorable for XAML-based applications, where data binding is both declarative and powerful. In this recipe, we'll move closer to MVVM by taking the previous recipe, Using routed commands, and "moving" it towards MVVM.

Getting ready

In Visual Studio, open the CH07.RoutedCommands project (from the previous recipe). We'll make changes to this project to make it more MVVM-like.

How to do it...

We'll refactor the image viewer to be more MVVM-like by separating the view from its state and connecting them through data binding:

	First, we need to get rid of the RoutedUICommands. Delete the Commands.cs file.
	Open ImageData.cs. Make the property ImagePath read/write with a change notification and remove the constructor. The result is as follows:class ImageData : INotifyPropertyChanged {
string _imagePath;
double _zoom = 1.0;
public double Zoom {
get { return _zoom; }
set {
_zoom = value;
OnPropertyChanged("Zoom");
}
}
public string ImagePath {
get { return _imagePath; }
set {
_imagePath = value;
OnPropertyChanged("ImagePath");
}
}
protected virtual void OnPropertyChanged(string name) {
var pc = PropertyChanged;
if (pc != null)
pc(this, new PropertyChangedEventArgs(name));
}
public event PropertyChangedEventHandler PropertyChanged;
}

	Add a new project folder named Commands.
	Add a new class to the Commands folder called OpenImageFileCommand.
	Make the class implement the ICommand interface (add a using statement for the System.Windows.Data.Input namespace). The skeleton code should look as follows:class OpenImageFileCommand : ICommand {
public bool CanExecute(object parameter) {
throw new NotImplementedException();
}
public event EventHandler CanExecuteChanged;
public void Execute(object parameter) {
throw new NotImplementedException();
}
}

	Implement CanExecute by returning a simple true:public bool CanExecute(object parameter) {
return true;
}

	Implement Execute by copying the code from the MainWindow.OnOpen method (add a using statement for the Microsoft.Win32 namespace). The code does not compile, as the _image and DataContext do not exist.
	Add a constructor for the OpenImageFileCommand class that accepts an ImageData object and save it in a private field.
	In the Execute method after the dialog is dismissed, set the ImageData.ImagePath property to the obtained filename. The entire class is as follows:class OpenImageFileCommand : ICommand {
ImageData _data;
public OpenImageFileCommand(ImageData data) {
_data = data;
}
public bool CanExecute(object parameter) {
return true;
}
public event EventHandler CanExecuteChanged;
public void Execute(object parameter) {
var dlg = new OpenFileDialog {
Filter = "Image Files|*.jpg;*.png;*.bmp;*.gif"
};
if(dlg.ShowDialog() == true) {
_data.ImagePath = dlg.FileName;
}
}
}

	Add another class to the Commands folder named ZoomCommand that implements ICommand. Create a simple enum to indicate the required zoom:enum ZoomType {
ZoomIn,
ZoomOut,
ZoomNormal
}

	Add a constructor to ZoomCommand that accepts an ImageData and save it in a private field.
	Implement Execute as follows:public void Execute(object parameter) {
var zoomType = (ZoomType)Enum.Parse(typeof(ZoomType),
(string)parameter, true);
switch(zoomType) {
case ZoomType.ZoomIn:
_data.Zoom *= 1.2;
break;
case ZoomType.ZoomOut:
_data.Zoom /= 1.2;
break;
case ZoomType.ZoomNormal:
_data.Zoom = 1.0;
break;
}
}

	The preceding code assumes the parameter of the command holds the zoom type. Implement CanExecute with the following code:public bool CanExecute(object parameter) {
return _data.ImagePath != null;
}

	Let's expose these commands from the ImageData class. This turns out to be our View-Model. Open ImageData.cs.
	Add two private fields of type ICommand that correspond to the two commands we just created:ICommand _openImageFileCommand, _zoomCommand;

	Create a constructor for ImageData and initialize these commands:public ImageData() {
 _openImageFileCommand = new OpenImageFileCommand(this);
 _zoomCommand = new ZoomCommand(this); }

	Expose the commands as read only properties:public ICommand OpenImageFileCommand {
get { return _openImageFileCommand; }
}
public ICommand ZoomCommand {
get { return _zoomCommand; }
}

	Open MainWindow.xaml. Remove the command bindings.
	Replace the command properties of the buttons with simple binding expressions as follows:<Button Command="{Binding OpenImageFileCommand}" Margin="6"
Content="Open..." />
<Button Content="Zoom In" Command="{Binding ZoomCommand}"
CommandParameter="ZoomIn" Margin="6"/>
<Button Content="Zoom Out" Command="{Binding ZoomCommand}"
CommandParameter="ZoomOut" Margin="6"/>
<Button Content="Normal" Command="{Binding ZoomCommand}"
CommandParameter="ZoomNormal" Margin="6"/>

	Open MainWindow.xaml.cs. Remove all methods except the constructor.
	Add to the constructor code to create an ImageData and make it the DataContext. The entire code behind should look as follows:public partial class MainWindow : Window {
public MainWindow() {
InitializeComponent();
DataContext = new ImageData();
}
}

	Run the application. Click on Open to load an image. The image shows, but the zoom buttons remain disabled. Open ZoomCommand.cs and modify the implementation of the CanExecuteChanged event as follows:public event EventHandler CanExecuteChanged {
add { CommandManager.RequerySuggested += value; }
remove { CommandManager.RequerySuggested -= value; }
}

	Run the application again. Everything should work as expected.

How it works...

MVVM has three participants. The Model represents the data, or business logic. This may consist of types generated in some way (such as entity classes in Entity Framework or data objects generated by a WCF service metadata). It's typically neutral; that is, it knows nothing of how it's going to be used. It usually implements change notifications for properties (by implementing INotifyPropertyChanged).

The View is the actual UI. It should display relevant parts of the model and provide the required interactive functionality. The view should not have a direct knowledge of the model, and this is where data binding comes in. All bindings access a property without explicitly knowing what type of object sits at the other end. This magic is satisfied at runtime by setting the view's DataContext to the object providing the data; this is the ViewModel.

The ViewModel is the glue that hands out the required data to the View (based on the Model). The ViewModel is just that — a model for the view. It has several responsibilities:
	Expose properties that allow binding in the view. This may be just by accessing properties on the model, but may be more involved if the model exposes data in another way (such as with methods).
	Expose commands to be invoked by elements in the view.
	Maintain relevant state for the view.

The ImageData class in the example code is our ViewModel. It maintains the zoom value for the view to bind to. This zoom has nothing to do with the actual data. It also exposes a set of ICommand properties to be invoked by the view. The model has no notion of commands (and it shouldn't).
In the example, there is no separate model, as the application is very simple. We could have taken the ImagePath property and put it in a separate class and call that "the model". We'll see a more complex example in the following recipes.
The entire relationship between Model, View, and ViewModel can be summarized with the following diagram:
[image: How it works...]

There's more...

The MainWindow code behind is practically empty, with just a constructor that after calling InitializeComponent creates an instance of ImageData (the ViewModel) and sets it as the DataContext. This is one way to do this — it's called "View first", as the view (MainWindow) is created first and it's responsible for finding its ViewModel (we could do that even in XAML by creating the ViewModel as a resource and making it the value of the View's DataContext). The other common way is for another entity to create the ViewModel and the View and "bind" them together. In our example, this could be achieved inside an Application.OnStartup override:

protected override void OnStartup(StartupEventArgs e) {
base.OnStartup(e);
var mainWindow = new MainWindow();
mainWindow.DataContext = new ImageData();
mainWindow.Show();
}

This assumes that the Application.StartupUri property has been removed from App.xaml. Now MainWindow has virtually no code at all.
Which one is better? This is a matter of taste (and you can find many discussions online), but I prefer the latter approach. This makes things look somewhat "cleaner" as the view remains totally oblivious to the actual ViewModel it binds to. For one, we can change the ViewModel type, and as long as property names remain the same, the view shouldn't know or care.
Implementing ICommand

Clearly, we abandoned WPF's RoutedUICommand objects and instead created our own implementations. A command needs data to work on, and so an ImageData instance is passed to the commands. This keeps the command neutral — it has no idea what controls (if any) would be affected by its execution.

Execute and CanExecute are fairly straightforward to implement. They do what needs to be done, and no more. In our OpenImageFileCommand, CanExecute always returns true, as this command is always valid. ZoomCommand, on the other hand, is only valid if there is an image file (note that the implementation is flawed, as any file path is accepted and never checked if this is in fact a valid image; we'll leave this as an exercise for the reader).
What about the CanExecuteChanged event? In OpenImageFileCommand it's not "implemented" as we don't need to throw this event ever (the command is always valid).
In ZoomCommand, we need to notify WPF when the command validity changes (becomes valid or invalid). How can we do that? In the command we have no way of knowing when the ImagePath changes. Or maybe we do. We can register using INotifyPropertyChanged on ImageData and when that event is raised to raise the CanExecuteChanged event. Although this is possible, there is a simpler approach. WPF raises the CommandManager.RequerySuggested static event when it thinks the execution state of commands may change. This is typically done after some UI actions that may cause something to change in all bound commands. The following implementation causes WPF to call register for its own notification of re-executing CanExecute for all commands that raise the CanExecuteChange event:

public event EventHandler CanExecuteChanged {
add { CommandManager.RequerySuggested += value; }
remove { CommandManager.RequerySuggested -= value; }
}

With this implementation, CanExecute is called more times than it actually should, but since most CanExecute logic is quick, this has no adverse effect.

Blendability

Although we're working mostly with Visual Studio in this book, there is another potentially useful tool for WPF work, Microsoft Expression Blend. This tool is used primarily by designers, and is well beyond the scope of this book. As developers, we may be "forced" to be designers, too, and Blend may be useful in this case, as there are some things that are difficult to create accurately in hand coded XAML (VS 2010's designer is much less powerful than Blend's designer, but VS 2012's designer is on par with Blend's designer), such as animations and other graphic effects. If we're working with a true designer (a person), we may want to give her (or him) a better experience; this is true of Visual Studio's designer as well. If we look at the designer of Visual Studio or Blend with the example application open, we find the following (VS on the left, Blend on the right):

[image: Blendability]
It's more important to note what we don't see: there is no image. A designer (person) may want to know what kind of data the view shows, so she can make the design better she would like to get a "feel" for the application in design time.
This is sometimes termed "blendability", but it applies equally to Visual Studio's designer. What we want is to create a "default" ViewModel, so that something is shown in design mode, but only in design mode.
Blend includes some XML namespace prefixes that it understands, the most important being the following:

xmlns:d=http://schemas.microsoft.com/expression/blend/2008

The "d" prefix can now be used to set properties for design time (in this case on the Window):

d:DataContext="{d:DesignInstance Type=local:ImageData,
IsDesignTimeCreatable=True}"

This instructs the designer to create an instance of ImageData (in design time only). The default constructor of ImageData does not bind to any default image, so we need to fix it:
var prop = DesignerProperties.IsInDesignModeProperty;
bool design = (bool)DependencyPropertyDescriptor.FromProperty(
prop, typeof(FrameworkElement)).Metadata.DefaultValue;
if(design) {
ImagePath = Environment.GetFolderPath(
Environment.SpecialFolder.MyPictures)
+ @"\Sample Pictures\Penguins.jpg";
}

The test for design time may look more complicated than it should be this is required if Visual Studio's designer is to be supported as well as Blend's. After this change, the designers look as follows:
[image: Blendability]

Building a simple MVVM framework

It should be clear at this point that MVVM-based applications have a lot of elements in common, such as change notifications and commands. It would be beneficiary to create a reusable framework that we can simply leverage in many applications. Although there are several good frameworks out there (most are free), building such a framework ourselves will enhance our understanding and may prove easier to extend than other frameworks, which we may be less familiar with.

Getting ready

Make sure Visual Studio is up and running.

How to do it...

We'll create a reusable class library to serve as a basis of a simple MVVM framework and use it (and extend it) in later recipes:

	Create a new WPF UserControl Class Library project named CH07.CookbookMVVM. Make sure the checkbox Create directory for solution is checked. We don't need any user controls, but this automatically adds WPF assembly references.
	Delete the file UserControl1.xaml.
	Add the class ObservableObject from the recipe Binding to a single object in Chapter 6. The entire class is as follows (with one small addition):public abstract class ObservableObject : INotifyPropertyChanged {
public event PropertyChangedEventHandler PropertyChanged;
protected virtual void OnPropertyChanged(string propName) {
Debug.Assert(GetType().GetProperty(propName) != null);
var pc = PropertyChanged;
if(pc != null)
pc(this, new PropertyChangedEventArgs(propName));
}
protected bool SetProperty<T>(ref T field, T value,
string propName) {
if(!EqualityComparer<T>.Default.Equals(field, value)) {
field = value;
OnPropertyChanged(propName);
return true;
}
return false;
}
protected bool SetProperty<T>(ref T field, T value,
Expression<Func<T>> expr) {
if(!EqualityComparer<T>.Default.Equals(field, value)) {
field = value;
var lambda = (LambdaExpression)expr;
MemberExpression memberExpr;
if(lambda.Body is UnaryExpression) {
var unaryExpr = (UnaryExpression)lambda.Body;
memberExpr = (MemberExpression)unaryExpr.Operand;
}
else {
memberExpr = (MemberExpression)lambda.Body;
}
OnPropertyChanged(memberExpr.Member.Name);
return true;
}
return false;
}
}

	For ViewModels, we'll create two abstract base classes that will serve as a basis for any concrete ViewModel. Add a class named ViewModelBase, and implement it in a generic and non-generic way as follows:public abstract class ViewModelBase : ObservableObject {
}
public abstract class ViewModelBase<TModel> : ViewModelBase {
TModel _model;
public TModel Model {
get { return _model; }
set { SetProperty(ref _model, value, () => Model); }
}
}

	This provides convenient access to the underlying model (if such direct access is needed). Next, we need a generic command implementation class, which should not require us to create new command classes (as in the previous recipe), but just create new instances of it. Add a class named RelayCommand and implement it as follows (again, two versions: generic and non-generic). The first is the generic version:public class RelayCommand<T> : ICommand {
private static bool CanExecute(T parameter) {
return true;
}
readonly Action<T> _execute;
readonly Func<T, bool> _canExecute;
public RelayCommand(Action<T> execute,
Func<T, bool> canExecute = null) {
if(execute == null)
throw new ArgumentNullException("execute");
_execute = execute;
_canExecute = canExecute ?? CanExecute;
}
public bool CanExecute(object parameter) {
return _canExecute(TranslateParameter(parameter));
}
public event EventHandler CanExecuteChanged {
add {
if(_canExecute != null)
CommandManager.RequerySuggested += value;
}
remove {
if(_canExecute != null)
CommandManager.RequerySuggested -= value;
}
}
public void Execute(object parameter) {
_execute(TranslateParameter(parameter));
}
private T TranslateParameter(object parameter) {
T value = default(T);
if (parameter != null && typeof (T).IsEnum)
value = (T) Enum.Parse(typeof(T),
(string) parameter);
else
value = (T) parameter;
return value;
}
}

	The class is based on two delegates; one for executing the command and another for returning the validity of the command. The non-generic version is just a special case for the first, in case the command has no parameter:public class RelayCommand : RelayCommand<object> {
public RelayCommand(Action execute,
Func<bool> canExecute = null)
: base(obj => execute(),
(canExecute == null ? null :
new Func<object, bool>(obj => canExecute()))) {
}
}

	That's it for the basic framework. We'll add some more features in later recipes.

How it works...

The framework currently consists of three classes, and we'll look at them next.

ObservableObject implements the class changed notification infrastructure (the INotifyPropertyChanged interface), as we've seen already in Chapter 6. The only addition is the returning of a Boolean value from the SetProperty<> methods. This indicates whether the sent value was actually different than the previous one. Most of the time this is unimportant to the caller, but we'll see some scenarios where it is, and so having this information can be beneficial.
The ViewModelBase classes simply provide a basis for custom ViewModels. Currently, they have very little — they inherit from ObservableObject and the generic ViewModelBase can hold its model as a property named Model. This is sometimes useful, although it might be dangerous, as the connected view can "bypass" the ViewModel and go straight for the model. The advantage here is that it saves duplicating properties from the model on the ViewModel.

RelayCommand is a general purpose command implementation wrapper. In the previous recipe, we created a separate command implementation for each required command (OpenImageFileCommand, ZoomCommand). Although this is fairly easy to do, it can cause a great number of classes to exist in large applications. The alternative is a single class that encapsulates different business logic using delegates accepted as constructor arguments.

We'll see the usage of these classes in the next recipe, Building a complete MVVM style application.

There's more...

There are a number of MVVM frameworks out there; most of them are free and open source, and can be found on Microsoft's CodePlex site (http://www.codeplex.com). Here's a list of some of the well-known frameworks:
	MVVM Light Toolkit (http://mvvmlight.codeplex.com/): A popular framework supporting both WPF and Silverlight (and now with Windows 8 Store apps as well), written by Laurent Bugnion.
	Simple MVVM Toolkit (http://simplemvvmtoolkit.codeplex.com/): Works with WPF, Silverlight, and Windows Phone 7.x. Claims to be more feature rich than MVVM Light Toolkit.
	Caliburn Micro (http://caliburnmicro.codeplex.com/): A feature rich framework, closer to Prism in functionality (see next section) that works with WPF, Silverlight, Windows Phone 7.x, and the new Windows 8 Store style applications.

Non-ICommandSource elements and other events

Commands are invoked by elements implementing ICommandSource, which exposes the Command and CommandParameter properties. What about controls that don't implement that interface? What about using different events to execute commands? For instance, a click of a button causes the bound command to execute. What if we wanted a double click on the button to execute a command?

WPF has no solutions for these issues out of the box. With some creativity, however, this can be solved using attached properties (the general way to extend functionality in WPF) and some clever coding. As the source code is non-trivial, and a large part of it is unrelated directly to WPF (some reflection and dynamic delegate creation), it's not printed here. The complete source is available as part of the CH07.CookbookMVVM project.
Here's an example usage: suppose we want a double-click on a ListBox to execute some command. The required mark up for this is as follows (the "mvvm" XML prefix is assumed to point to the CH07.CookbookMVVM namespace):

<ListBox>
<mvvm:EventsToCommandsMapper.Mapper>
<mvvm:EventToCommandCollection>
<mvvm:EventToCommand Event="MouseDoubleClick"
Command="{Binding SomeCommand}" />
</mvvm:EventToCommandCollection>
</mvvm:EventsToCommandsMapper.Mapper>
</ListBox>

This can be used with any element regardless of ICommandSource.

What about Prism?

The Prism project (http://compositewpf.codeplex.com/) is from Microsoft's Patterns and Practices team. It provides a comprehensive framework for building rich client applications with WPF, Silverlight, and Windows Phone 7.x, by leveraging the MVVM pattern, but also supports Inversion of Control (IoC) containers (it supports Unity and MEF — both are beyond the scope of this book) and more.

It's considered more feature-complete with respect to the toolkits mentioned earlier, but is also more complex. Caliburn Micro is probably the closest one in functionality to Prism.

Building a complete MVVM style application

Now that we have our own (small) framework to assist us with building MVVM applications, it's time to actually build one. Along the way we may find missing features in our framework, but that's ok; it's a normal way for frameworks to evolve.

Getting ready

Run Visual Studio and open the CH07.CookbookFramework project. This is a long recipe, but hopefully the end result would be worth it (in terms of understanding, not visually).

How to do it...

We'll create a sample blog viewer application using the simple framework we just built:
	Add a new WPF project to the current solution, named CH07.BlogReader. This will be a fictitious blog reader application with support for adding posts and comments.
	Add a reference to the CH07.CookbookMVVM project.
	Create three project folders named Model, Views, and ViewModels. The project tree looks as follows:[image: How to do it...]

	We'll start with the models. These will be simple classes that represent some blog properties. Add a class named BlogComment to the Models folder and implement it as follows:class BlogComment : ObservableObject {
string _name;
string _text;
DateTime _when;
public string Name {
get { return _name; }
set { SetProperty(ref _name, value, () => Name); }
}
public string Text {
get { return _text; }
set { SetProperty(ref _text, value, () => Text); }
}
public DateTime When {
get { return _when; }
set { SetProperty(ref _when, value, () => When); }
}
}

	A BlogComment object just holds a few simple properties. Add another class to the Models folder called BlogPost. Implement it as follows:class BlogPost : ObservableObject {
string _title;
string _text;
DateTime _when;
ObservableCollection<BlogComment> _comments =
new ObservableCollection<BlogComment>();
public string Title {
get { return _title; }
set { SetProperty(ref _title, value, () => Title); }
}
public string Text {
get { return _text; }
set { SetProperty(ref _text, value, () => Text); }
}
public DateTime When {
get { return _when; }
set { SetProperty(ref _when, value, () => When); }
}
public IList<BlogComment> Comments {
get { return _comments; }
}
}

	A BlogPost maintains some simple properties and a collection of BlogComment objects (ObservableCollection<T> is used so that adding or removing objects raises a notification for any bound controls). Add yet another class to the Models folder named Blogger. This includes some information on a blogger:class Blogger : ObservableObject {
string _name;
string _email;
Stream _picture;
public string Name {
get { return _name; }
set { SetProperty(ref _name, value, () => Name); }
}
public string Email {
get { return _email; }
set { SetProperty(ref _email, value, () => Email); }
}
public Stream Picture {
get { return _picture; }
set { SetProperty(ref _picture, value, () => Picture); }
}
}

	A blogger has a name, an e-mail, and a picture, represented by a neutral Stream object. Finally, we'll add a Blog class that puts everything together:class Blog : ObservableObject {
Blogger _blogger;
ObservableCollection<BlogPost> _posts =
new ObservableCollection<BlogPost>();
string _blogTitle;
public Blogger Blogger {
get { return _blogger; }
set { SetProperty(ref _blogger, value, () => Blogger); }
}
public IList<BlogPost> Posts {
get { return _posts; }
}
public string BlogTitle {
get { return _blogTitle; }
set {
SetProperty(ref _blogTitle, value, () => BlogTitle);
}
}
}

	A blog has a title, a blogger, and a collection of posts. Next, we need to create views and bind them to ViewModels. Assuming some UI design was done, we need to create the actual views. A view can be a Window, a UserControl, or a data template. As we haven't discussed user controls yet, we'll use data templates and windows.
	Right-click on the Views folder and select Add Resource Dictionary.... Name it BloggerView.xaml.
	Add a DataTemplate object to the ResourceDictionary to indicate how a blogger should be displayed:<DataTemplate x:Key="bloggerTemplate">
<Grid Background="#c0ffffff">
<Grid.RowDefinitions>
<RowDefinition Height="Auto"/>
<RowDefinition />
</Grid.RowDefinitions>
<Grid.ColumnDefinitions>
<ColumnDefinition />
<ColumnDefinition Width="Auto" />
</Grid.ColumnDefinitions>
<TextBlock Text="{Binding Model.Name}"
FontWeight="Bold" FontSize="16" />
<TextBlock Grid.Row="1" FontSize="14">
<Hyperlink>
<Run Text="{Binding Model.Email}" />
</Hyperlink>
</TextBlock>
<Image Grid.Column="1" Grid.RowSpan="2"
Source="{Binding Picture}" Width="48" Height="48"
Stretch="Uniform" Margin="4"/>
</Grid>
</DataTemplate>

	The bindings assume some ViewModel that is yet to exist. Add a class to the ViewModels folder, named BloggerVM, and implement it as follows:class BloggerVM : ViewModelBase<Blogger> {
public ImageSource Picture {
get {
if(Model.Picture == null)
return new BitmapImage(new Uri(
"/Images/blogger.png",
UriKind.Relative));
var bmp = new BitmapImage();
bmp.BeginInit();
bmp.StreamSource = Model.Picture;
bmp.EndInit();
return bmp;
}
}
}

	Add an Images folder to the project. Inside add an image and name it blogger.png or change the above URI to point to the correct image name.
	We want a click on the e-mail of the blogger to open the default e-mail client with the blogger's e-mail in the "to" box. Add the following code to the BloggerVM class that exposes a RelayCommand<string>:ICommand _sendEmailCommand;
public ICommand SendEmailCommand {
get {
return _sendEmailCommand ?? (_sendEmailCommand =
new RelayCommand<string>(email =>
Process.Start("mailto:" + email)));
}
}

	This code creates the command the first time it's requested and stores it in a private field. The command must be exposed through a binding. Open BloggerView.xaml.
	Add the following markup to the Hyperlink element:Command="{Binding SendEmailCommand}"
CommandParameter="{Binding Model.Email}"

	Let's add more Views and ViewModels. Add another ResourceDictionary to the Views folder named BlogView.xaml.
	Add a DataTemplate object, which should display a blog comment:<DataTemplate x:Key="commentTemplate">
<Grid Margin="2,8">
<Grid.RowDefinitions>
<RowDefinition Height="Auto" />
<RowDefinition Height="Auto" />
</Grid.RowDefinitions>
<StackPanel Orientation="Horizontal">
<TextBlock Text="{Binding Model.When,
StringFormat=d}" />
<TextBlock Margin="10,0,0,0" Text="{Binding Name,
StringFormat=From: \{0\}}" FontWeight="Bold"/>
</StackPanel>
<TextBlock Grid.Row="1" Text="{Binding Text}"
TextWrapping="Wrap" />
</Grid>
</DataTemplate>

	This markup shows the date of the comment (Model.When), the name of the commenting user (Name), and the comment itself (Text). The corresponding ViewModel is the BlogCommentVM class, added to the ViewModels folder:class BlogCommentVM : ViewModelBase<BlogComment> {
public string Text {
get { return Model.Text; }
set {
Model.Text = value;
OnPropertyChanged("IsCommentOK");
}
}
public string Name {
get { return Model.Name; }
set {
Model.Name = value;
OnPropertyChanged("IsCommentOK");
}
}
public bool IsCommentOK {
get {
return !string.IsNullOrWhiteSpace(Model.Name) &&
!string.IsNullOrWhiteSpace(Model.Text);
}
}
}

	The Name and Text property are reflected off the model because when they change the IsCommentOK property is raised. This will be used later to validate a comment.
	Open BlogView.xaml. Let's add another DataTemplate for a blog post:<DataTemplate x:Key="blogPostTemplate">
<Grid Background="#b0dddddd" Margin="2,10">
<Grid.RowDefinitions>
<RowDefinition Height="Auto" />
<RowDefinition Height="Auto" />
<RowDefinition Height="Auto" />
</Grid.RowDefinitions>
<StackPanel Orientation="Horizontal">
<TextBlock Text="{Binding Title}"
FontWeight="Bold" />
<TextBlock Margin="10,0,0,0"
Text="{Binding Model.When, StringFormat='(\{0\})'}"
FontStyle="Italic" />
</StackPanel>
<TextBlock Grid.Row="1" Text="{Binding Text}"
Margin="0,10,0,0" TextWrapping="Wrap" />
<Expander Grid.Row="2" ExpandDirection="Down">
<Expander.Header>
<StackPanel Orientation="Horizontal">
<TextBlock Text="Comments" />
<Button Margin="20,0,0,0"
Content="New Comment"
Command="{Binding NewCommentCommand}" />
</StackPanel>
</Expander.Header>
<Border BorderBrush="Blue" BorderThickness="2"
Padding="2" Margin="2">
<ItemsControl ItemsSource="{Binding Model.Comments}" ItemTemplate="{StaticResource commentTemplate}" />
</Border>
</Expander>
</Grid>
</DataTemplate>

	This template is more interesting, as it hosts an ItemsControl that binds to the Model.Comments collection. Also, a New Comment button is rendered, its command bound to the NewCommentCommand property. All this must be backed up by a proper ViewModel.
	Before we do that, we need a dialog window that will be used to create a new comment. Add a new Window class to the Views folder, named NewCommentWindow.xaml.
	Add the following markup to the existing Grid:<Grid.RowDefinitions>
<RowDefinition Height="Auto" />
<RowDefinition />
<RowDefinition Height="Auto" />
</Grid.RowDefinitions>
<DockPanel>
<TextBlock Text="Title:" DockPanel.Dock="Left"
VerticalAlignment="Center"/>
<TextBox Margin="10,0,0,0" Text="{Binding Name,
UpdateSourceTrigger=PropertyChanged}" />
</DockPanel>
<TextBox Margin="4" Grid.Row="1" AcceptsReturn="True"
Text="{Binding Text, UpdateSourceTrigger=PropertyChanged}"/>
<UniformGrid Rows="1" Columns="2" Grid.Row="2"
Margin="2,10,2,2">
<Button HorizontalAlignment="Right" Margin="6,0" Width="50"
IsEnabled="{Binding IsCommentOK}" Content="OK"
IsDefault="True" />
<Button HorizontalAlignment="Left" Margin="6,0" Width="50"
Content="Cancel" IsCancel="True" />
</UniformGrid>

	The markup consists of a title TextBox and a comments TextBox, along with an OK and Cancel button. The properties used are from the BlogCommentVM class, which will be provided as the DataContext at runtime.
	Add a Click event handler to the OK button (yes, we have code in the code behind). The implementation should just dismiss the dialog with a true result:private void OnOK(object sender, RoutedEventArgs e) {
DialogResult = true;
Close();
}

	Add a class named BlogPostVM to the ViewModels folder and implement it as follows:class BlogPostVM : ViewModelBase<BlogPost> {
public string Title {
get { return Model.Title; }
set {
Model.Title = value;
OnPropertyChanged("IsPostOK");
}
}
public string Text {
get { return Model.Text; }
set {
Model.Text = value;
OnPropertyChanged("IsPostOK");
}
}
public bool IsPostOK {
get {
return !string.IsNullOrWhiteSpace(Model.Title) &&
!string.IsNullOrWhiteSpace(Model.Text);
}
}
ICommand _newCommentCommand;
public ICommand NewCommentCommand {
get {
return _newCommentCommand ?? (_newCommentCommand =
new RelayCommand(() => {
var comment = new BlogComment();
var dlg = new NewCommentWindow {
DataContext =
new BlogCommentVM { Model = comment }
};
if(dlg.ShowDialog() == true) {
comment.When = DateTime.Now;
Model.Comments.Add(comment);
}
}));
}
}
}

	Note the implementation of the command. A NewCommentWindow is created (the view) and a DataContext is set to an empty BlogCommentVM. If closed with OK, the comment is added to the model.
	Next we need a view for an entire blog. Open BlogView.xaml and add another DataTemplate for a blog (consisting of a title and posts):<DataTemplate x:Key="blogTemplate">
<Grid Background="LightYellow">
<Grid.RowDefinitions>
<RowDefinition Height="Auto" />
<RowDefinition />
</Grid.RowDefinitions>
<StackPanel Orientation="Horizontal">
<TextBlock Text="{Binding Model.BlogTitle}"
FontWeight="Bold" />
<Button Margin="20,0,0,0" Content="New Post"
Command="{Binding NewPostCommand}" />
</StackPanel>
<ScrollViewer Grid.Row="1" Margin="4"
VerticalScrollBarVisibility="Auto">
<ItemsControl ItemsSource="{Binding Posts}"
ItemTemplate="{StaticResource blogPostTemplate}"
HorizontalContentAlignment="Stretch" />
</ScrollViewer>
</Grid>
</DataTemplate>

	This template consists of a title (Model.BlogTitle) and a collection of blog posts (Posts property). A new post can be added with a button bound to the NewPostCommand property (a command). Again, this must be backed up by a proper ViewModel.
	Once again, we'll first add a Window for entering a new blog post. This is similar to the new comment window. You can copy the class definition (NewPostWindow.xaml/cs) from the downloadable source for this chapter. Now let's add a ViewModel class for a blog, named BlogVM:class BlogVM : ViewModelBase<Blog> {
public BloggerVM Blogger {
get { return new BloggerVM { Model = Model.Blogger }; }
}
ICommand _newPostCommand;
public ICommand NewPostCommand {
get {
return _newPostCommand ?? (_newPostCommand =
new RelayCommand(() => {
var post = new BlogPostVM {
Model = new BlogPost()
};
var dlg = new NewPostWindow {
DataContext = post
};
if(dlg.ShowDialog() == true) {
post.Model.When = DateTime.Now;
Model.Posts.Add(post.Model);
OnPropertyChanged("Posts");
}
}));
}
}
public IEnumerable<BlogPostVM> Posts {
get {
return Model.Posts.Select(post =>
new BlogPostVM {Model = post});
}
}
}

	The command implementation is similar in concept to NewCommentCommand. A NewPostWindow is created, the correct DataContext is set, and if OK is clicked, a new BlogPost is added.
	We want to allow multiple blogs to be managed. We can create another model that is a kind of blog manager that holds a collection of blogs. But in this case, we'll take a shortcut by creating a ViewModel without a separate model class. Add a new class to the ViewModels folder called MainVM and implement it as follows:class MainVM : ViewModelBase<IEnumerable<Blog>> {
BlogVM _selectedBlog;
public IEnumerable<BlogVM> Blogs {
get { return Model.Select(blog =>
new BlogVM { Model = blog });
}
}
public BlogVM SelectedBlog {
get { return _selectedBlog; }
set {
if(SetProperty(ref _selectedBlog, value,
() => SelectedBlog))
OnPropertyChanged("IsSelectedBlog");
}
}
public Visibility IsSelectedBlog {
get {
return SelectedBlog != null ? Visibility.Visible
: Visibility.Collapsed;
}
}
public MainVM(IEnumerable<Blog> blogs) {
Model = new ObservableCollection<Blog>(blogs);
}
}

	 MainVM holds a collection of blogs (provided as via the constructor, or via the Model property) and manages the existence of any selected blog (if any, SelectedBlog and IsSelectedBlog). The corresponding view to MainVM is the MainWindow itself. Open MainWindow.xaml.
	Add the following markup inside the existing Grid:<Grid.RowDefinitions>
<RowDefinition Height="Auto" />
<RowDefinition />
</Grid.RowDefinitions>
<StackPanel Orientation="Horizontal" Panel.ZIndex="1000">
<TextBlock Text="Select blog to read:"
VerticalAlignment="Center" Margin="2"/>
<ComboBox ItemsSource="{Binding Blogs}" Margin="10,0,0,0"
DisplayMemberPath="Model.BlogTitle" Width="170"
SelectedItem="{Binding SelectedBlog, Mode=TwoWay}">
</ComboBox>
<Canvas Visibility="{Binding IsSelectedBlog}" >
<Expander Margin="10,0,0,0" VerticalAlignment="Center"
ExpandDirection="Down" Header="Blog Information"
ContentTemplate="{StaticResource bloggerTemplate}"
Content="{Binding SelectedBlog.Blogger}">
</Expander>
</Canvas>
</StackPanel>
<ContentControl Content="{Binding SelectedBlog}"
ContentTemplate="{StaticResource blogTemplate}"
Grid.Row="1" Visibility="{Binding IsSelectedBlog}"
Margin="2,10,2,2" />

	 MainWindow consists of a ComboBox for selecting a blog to view and a ContentControl that uses the blog template — everything else cascades from there.
	All that's left is to provide some data for the models. Open App.xaml and delete the StartupUri property.
	Open App.xaml.cs and override the OnStartup method as follows:protected override void OnStartup(StartupEventArgs e) {
base.OnStartup(e);
// create some dummy blogs
var blogs = new ObservableCollection<Blog> {
new Blog {
Blogger = new Blogger {
Name = "Bart Simpson",
Email = "bart@springfield.com",
Picture = GetResourceStream(new Uri(
"/Images/bart.png", UriKind.Relative)).Stream
},
BlogTitle = "Bart's adventures",
Posts = {
new BlogPost {
When = new DateTime(2000, 8, 12),
Title = "Post 1",
Text = "This is the first post of Bart",
Comments = {
new BlogComment {
Name = "Homer S.",
Text = "Why you little...",
When = new DateTime(2000, 8, 13)
}
}
},
new BlogPost {
When = new DateTime(2002, 3, 22),
Title = "Post 2",
Text = "This is the the second post",
Comments = {
new BlogComment {
Name = "Lisa S.",
Text = "Come on bart!",
When = new DateTime(2002, 3, 24)
},
new BlogComment {
Name = "Maggie S.",
Text = "Whhhaaa!",
When = DateTime.Now
}
}
}
}
},
};
var vm = new MainVM(blogs);
var win = new MainWindow {
DataContext = vm
};
win.Show();
}

	This code adds a single blog with two posts and some comments. MainVM is created with the generated blogs (in a real application these would come from a database, an XML file, a web service, and so on) and makes the DataContext of the MainWindow.
	Running the application produces the following (when selecting Bart's blog and expanding the blogger information):[image: How to do it...]

How it works...

A ViewModel is responsible for providing everything a View needs. Data binding is the key to exposing the correct functionality from a ViewModel — mainly properties (for one way or two way communication) and commands (for communication from the View to the ViewModel). There's usually a one to one relationship between a View and a ViewModel, although opinions vary. I think this, at least, provides easy maintenance at the possible cost of some code duplication.

The model should be completely neutral in respect to WPF. That is, it should not use any WPF specific types. In our case, the models inherit from ObservableObject, which is part of our little framework, but that's just a convenience for the purpose of the demonstration. The models could have implemented INotifyPropertyChanged in any way they choose.
Accessing the model directly by the view through the Model property (from ViewModelBase<TModel>) is not necessarily ideal, but it can save code duplication that would otherwise be in place to forward relevant property changes to the model. That said, it "feels" a bit lazy, and it means the view knows something about the underlying model, which it ideally should not. This is part of those implementation opinions I mentioned earlier.

There's more...

What about testing? One of the benefits of an MVVM model (that separates the view from the logic behind it) is that we could (at least in theory) test the ViewModels (where the logic lies) without instantiating any views. This is important for automated tests, so that a physical user doesn't have to be present to manipulate an actual UI (which may not even exist yet, or can change).
Currently, this may partially work. For example, we can create a BlogVM object, populate the Model with a Blog object, and start extracting posts, comments, and so on using the existing properties.
However, what about invoking a command? Suppose we want to invoke the NewPostCommand. Doing so will pop up the New Post window and wait for a physical user to input some blog post information. This is undesirable in a testing environment. A similar issue may arise for commands that need to show any kind of UI, such as a simple Yes/No message box ("Are you sure?" message types). For batch testing, all those message boxes should probably be automatically dismissed with a constant response. How do we deal with this?
The basic idea is to raise the abstraction level. Instead of directly creating a NewPostWindow object, we'll abstract that behind an interface. One of the implementations will, in fact, create a dialog. Another implementation could simply pretend there was a dialog and dismiss it. First, we'll create an interface (under our MVVM framework project):

public interface IDialogService {
bool? ShowDialog();
object ViewModel { get; set; }
}

Next, we can provide two implementations. The first shows a real dialog:
public sealed class StandardDialogService<TWindow>
: IDialogService where TWindow : Window, new() {
public bool? ShowDialog() {
var win = new TWindow();
win.DataContext = ViewModel;
return win.ShowDialog();
}
public object ViewModel { get; set; }
}

There is also one that fakes a dialog:
public sealed class AutoDialogService : IDialogService {
public bool? DialogResult { get; set; }
public AutoDialogService() {
DialogResult = true;
}
public bool? ShowDialog() {
return DialogResult;
}
public object ViewModel { get; set; }
}

The dialog service should be exposed as a property on the BlogVM class:
public IDialogService NewPostDialogService { get; set; }

The NewPostCommand would be implemented as follows (we leverage the command parameter to provide an existing blog post if needed):
ICommand _newPostCommand;
public ICommand NewPostCommand {
get {
if(NewPostDialogService == null)
NewPostDialogService = new
StandardDialogService<NewPostWindow>();
return _newPostCommand ?? (_newPostCommand =
new RelayCommand<BlogPost>(post => {
if(post == null)
post = new BlogPost();
var vm = new BlogPostVM { Model = post };
var dlg = NewPostDialogService;
dlg.ViewModel = vm;
if(dlg.ShowDialog() == true) {
post.When = DateTime.Now;
Model.Posts.Add(post);
OnPropertyChanged("Posts");
}
}));
}
}

The default dialog service uses the UI, while an external client (such as a unit test client) would fill the property with an AutoDialogService instance beforehand.

If no post is provided, this means the command is invoked from the regular UI, so a new blank post is created. Otherwise, the provided blog post is used as is. The dialog is invoked through the IDialogService interface only. Here's how a unit test client would invoke the command (this is in a Visual Studio Test project):
[TestMethod]
public void TestAddPost() {
var post = new BlogPost {
Title = "Some title",
Text = "Some text"
};
var vm = new BlogVM { Model = _blog };
vm.NewPostDialogService = new AutoDialogService() {
ViewModel = post
};
vm.NewPostCommand.Execute(post);
Assert.IsTrue(_blog.Posts.Count == 3);
}

This allows batch execution of a multitude of commands without any UI popping up unnecessarily. The full source code is available with the downloadable source for this chapter.
MVVM implementations

It's important to remember that MVVM is a design pattern - it constitutes an idea; it says nothing about the actual implementation. Whenever something seems to be too "hard coded", it should be abstracted away using interfaces, providing a kind of "plugin" model.

Creating an undo/redo system

Up until now we have been executing commands by using the RelayCommand helper class. This allows us to separate the command implementation (in the ViewModel) from the view without creating a separate class for each command. Many applications need to not only execute commands, but also to undo already executed commands; the canonical case may be a text editor, but it can be anything. Let's see one way to build an undo/redo system that integrates with the commands infrastructure we've seen so far.

Getting ready

We'll use two projects we've already created. The first is CH07.CookbookMVVM, our MVVM framework (which we'll expand), and there is also CH07.BlogReader to demonstrate adding undo/redo capabilities.

How to do it...

We'll add undo/redo capabilities to the blog reader application, both at the MVVM framework level and application level:

	Add a new interface to the CH07.CookbookMVVM project and name it IUndoCommand. Define it as follows:public interface IUndoCommand : ICommand {
void Undo();
}

	This interface extends ICommand to allow a command to be undone. Add a new class to the CH07.CookbookMVVM project named UndoManager.
	Add some fields to the class — two lists to hold commands to undo/redo and an optional undo limit:readonly List<IUndoCommand> _undoList, _redoList;
public int UndoLimit { get; private set; }

	Next, add a constructor to initialize the lists and undo limit:public UndoManager(int limit = 0) {
if(limit < 0) throw new ArgumentException(
"undo limit must be a positive integer", "limit");
UndoLimit = limit;
_undoList = new List<IUndoCommand>(limit > 0 ? limit : 16);
_redoList = new List<IUndoCommand>(limit > 0 ? limit : 16);
}

	The undo functionality should have an Undo method and a property indicating whether anything can be undone:public virtual bool CanUndo {
get { return _undoList.Count > 0; }
}
public virtual void Undo() {
if (!CanUndo)
throw new InvalidOperationException("can't undo");
int index = _undoList.Count - 1;
_undoList[index].Undo();
_redoList.Add(_undoList[index]);
_undoList.RemoveAt(index);
}

	Calling Undo gets the last command in the undo list and undoes it, removes it from the undo list, and adds it to the redo list. The redo functionality is similarly implemented:public virtual bool CanRedo {
get { return _redoList.Count > 0; }
}
public virtual void Redo() {
if(!CanRedo)
throw new InvalidOperationException("Can't redo");
var cmd = _redoList[_redoList.Count - 1];
cmd.Execute(null);
_redoList.RemoveAt(_redoList.Count - 1);
_undoList.Add(cmd);
}

	To get commands into the lists, we'll add the following method:public void AddCommand(IUndoCommand cmd) {
_undoList.Add(cmd);
_redoList.Clear();
if(UndoLimit > 0 && _undoList.Count > UndoLimit)
_undoList.RemoveAt(0);
}

	This adds a command to the undo list (and removes the oldest command if an undo limit has been set and was reached).
	To somewhat automate the use of undoable commands we'll add a helper command. Add a class to the same project named ReversibleCommand that implements ICommand as follows:public sealed class ReversibleCommand : ICommand {
readonly IUndoCommand _command;
readonly UndoManager _mgr;
public ReversibleCommand(UndoManager mgr, IUndoCommand cmd) {
_mgr = mgr;
_command = cmd;
}
public bool CanExecute(object parameter) {
return _command.CanExecute(parameter);
}
public event EventHandler CanExecuteChanged {
add { _command.CanExecuteChanged += value; }
remove { _command.CanExecuteChanged -= value; }
}
public void Execute(object parameter) {
_command.Execute(parameter);
_mgr.AddCommand(_command);
}
}

	This class executes the actual command (passed to the constructor) in its Execute method and adds it to the UndoManager object for possible undoing.
	Now let's move to the CH07.BlogReader project. First, we need to add buttons for undo and redo. Open MainWindow.xaml.
	Add two buttons inside the StackPanel between the ComboBox and the Canvas for invoking undo or redo:<Button Content="Undo" Command="{Binding UndoCommand}"
Margin="6,2,2,2"/>
<Button Content="Redo" Command="{Binding RedoCommand}"
Margin="2"/>

	The commands themselves should be exposed from the main ViewModel. Open MainVM.cs and add the following inside the MainVM class:ICommand _undoCommand, _redoCommand;
public ICommand UndoCommand {
get {
return _undoCommand ?? (_undoCommand =
new RelayCommand(() => UndoManager.Undo(),
() => UndoManager.CanUndo));
}
}
public ICommand RedoCommand {
get {
return _redoCommand ?? (_redoCommand =
new RelayCommand(() => UndoManager.Redo(),
() => UndoManager.CanRedo));
}
}

	Add an automatic property to hold an UndoManager and create an instance in the constructor:public UndoManager UndoManager { get; private set; }
public MainVM(IEnumerable<Blog> blogs) {
Model = new ObservableCollection<Blog>(blogs);
UndoManager = new UndoManager();
}

	Undo/redo operations typically span multiple ViewModels. We'll add the ability to link ViewModels in a parent-child relationship, if needed. Open ViewModelBase.cs and add a new generic class named ViewModelBase with two generic arguments as follows:public abstract class ViewModelBase<TModel, TParentVM>
: ViewModelBase<TModel> {
public ViewModelBase(TModel model = default(TModel),
TParentVM parentVM = default(TParentVM)) {
Model = model;
Parent = parentVM;
}
public TParentVM Parent { get; set; }
}

	We'll make adding a blog post an undoable command. RelayCommand alone is not enough here, as we need to maintain a state. First, we'll add a bit more infrastructure; add a new class named CommandBase to the CH07.CookbookMVVM project and implement it as follows:public abstract class CommandBase : IUndoCommand {
public virtual bool CanExecute(object parameter) {
return true;
}
public event EventHandler CanExecuteChanged {
add { CommandManager.RequerySuggested += value; }
remove { CommandManager.RequerySuggested -= value; }
}
public abstract void Execute(object parameter);
public abstract void Undo();
}

	 CommandBase is a helper for implementing reversible commands. Add a project folder named Commands to the CH07.BlogReader project.
	Add a class to the Commands folder named NewBlogPostCommand and implement it as follows:class NewBlogPostCommand : CommandBase {
Blog _blog;
BlogPost _post;
public NewBlogPostCommand(Blog blog) {
_blog = blog;
}
public override void Execute(object parameter) {
if(_post == null) _post = (BlogPost)parameter;
_blog.Posts.Add(_post);
}
public override void Undo() {
_blog.Posts.Remove(_post);
}
}

	The command needs the blog in question and the post. To use it, we'll change the way the new post command is exposed through the blog ViewModel. Open BlogVM.cs.
	Make the BlogVM class use the enhanced ViewModelBase that has a link to its parent ViewModel:public class BlogVM : ViewModelBase<Blog, MainVM> {
public BlogVM(Blog blog, MainVM parent)
: base(blog, parent) {
var notify = (INotifyCollectionChanged)blog.Posts;
if(notify != null) {
notify.CollectionChanged += delegate {
OnPropertyChanged("Posts");
};
}
}

	The additions in the constructor allow the ViewModel to be notified when something interesting has changed in the model, so it can appropriately update itself.
	Change the implementation of the NewPostCommand read only property to use a ReversibleCommand as follows:public ICommand NewPostCommand {
get {
if(NewPostDialogService == null)
NewPostDialogService =
new StandardDialogService<NewPostWindow>();
return _newPostCommand ?? (_newPostCommand =
new RelayCommand<BlogPost>(post => {
if(post == null)
post = new BlogPost();
var vm = new BlogPostVM { Model = post };
var dlg = NewPostDialogService;
dlg.ViewModel = vm;
if(dlg.ShowDialog() == true) {
post.When = DateTime.Now;
var cmd = new ReversibleCommand(
Parent.UndoManager,
new NewBlogPostCommand(Model));
cmd.Execute(post);
}
}));
}
}

	A ReversibleCommand is created, wrapping the "real" NewBlogPostCommand object. When executed, it places the wrapped command in the undo list of the UndoManager.
	Run the application and select a blog to view. The Undo and Redo buttons are grayed out:[image: How to do it...]

	Click on New Post and type a title and some text for the post; then click on OK:[image: How to do it...]

	The Undo button is enabled. Click on Undo and watch the post disappear. Click on Redo and the post returns.

How it works...

WPF does not provide any out-of-the-box functionality as it is related to undo/redo. The ICommand interface is not enough this is why we created the IUndoCommand that adds an Undo method. The regular Execute is the "Redo" method, as it naturally complements Undo.

The classic "command pattern" is typically implemented using a class for each unique command. We used the RelayCommand class to implement a command generically by supplying delegates as implementations for Execute and CanExecute. This works up to a point. When dealing with undo/redo, a state must be maintained, so using RelayCommand is not enough in most cases.
The NewBlogPostCommand class created in step 18 is a standalone command, which has all the information it needs to do its job and to undo it. It holds the relevant blog and the blog post to add or remove, provided (one time only) by the command parameter, and saved by the command for later invocations of Undo or Execute (Redo).
Managing commands in undo/redo lists is the responsibility of the UndoManager class. It holds an undo list and a redo list, managing their dependencies as commands are added, undone, or redone. Notice how easy it is to create an undo limit, which may be required if objects are large and memory footprint should be constrained; for small objects, leaving the undo limit as unbounded is probably acceptable.

The placement of an UndoManager instance is important. In our example, it was placed in MainVM and used by sub-ViewModels, such as BlogVM; this means that switching blogs and clicking on Undo would undo the last operation in the blog where that post was created. If, however, each BlogVM had its own UndoManager, then switching between blogs would not allow undoing commands executed within another blog. This is something that needs consideration when using an undo/redo system — the operations' scope.

ReversibleCommand is a helper class that communicates with the passed in UndoManager and adds the command to the undo list (by calling UndoManager.AddCommand).

Chapter 8. Styles, Triggers, and Control Templates

In this chapter we will cover the following:
	Creating and using styles
	Applying a style automatically
	Creating a property trigger
	Using data triggers
	Creating an event trigger
	Creating a multi trigger
	Using behaviors
	Replacing the control template of a progress bar
	Replacing the control template of a scroll bar
	Customizing selection in a Selector control

Introduction

Consistency in a user interface is an important trait; there are many facets of consistency, one of which is the consistent look and feel of controls. For example, all buttons should look roughly the same similar colors, the same — margins, and so on.
Styles are objects that hold property setters to provide a way to apply a bunch of settings as a group to elements and controls. Control templates provide the ultimate control customization power, allowing the complete replacing of a control's look and feel without affecting its behavior. This is one of the most famous of WPF's traits, very different from the old Win32/WinForms model where looks and behavior were tightly bundled; any customization required code that subclassed/inherited from the base control and provides the appropriate painting logic. In the WPF world, a control template is created entirely in XAML with no code required; designer oriented tools such as Expression Blend make this even easier — and more productive in the hands of true designers.

In this chapter, we'll take a look at styles, triggers, control templates, their relationships, and typical scenarios where they are applied.

Creating and using styles

Styles provide a convenient way to group a set of properties (and triggers) under a single object, and then selectively (or automatically as we'll see later) apply it to elements. In this recipe, we'll create some styles and apply them to elements to show how useful these are in any application.

Getting ready

Make sure Visual Studio is up and running.

How to do it...

We'll create a calculator-like user interface and use styles to change its look:

	Create a new WPF Application named CH08.StyledCalculator.
	Open MainWindow.xaml and change the following Window properties:Title="Styled Calculator" SizeToContent="WidthAndHeight"
ResizeMode="CanMinimize"

	Add four columns and five rows to the existing Grid, all with auto sizing:<Grid.ColumnDefinitions>
<ColumnDefinition Width="Auto" />
<ColumnDefinition Width="Auto" />
<ColumnDefinition Width="Auto" />
<ColumnDefinition Width="Auto" />
</Grid.ColumnDefinitions>
<Grid.RowDefinitions>
<RowDefinition Height="Auto" />
<RowDefinition Height="Auto" />
<RowDefinition Height="Auto" />
<RowDefinition Height="Auto" />
<RowDefinition Height="Auto" />
</Grid.RowDefinitions>

	Add the following controls to the Grid:<TextBox Background="Cyan" IsReadOnly="True"
Grid.ColumnSpan="4"/>
<Button Content="7" Grid.Row="1"/>
<Button Content="8" Grid.Row="1" Grid.Column="1"/>
<Button Content="9" Grid.Row="1" Grid.Column="2"/>
<Button Content="4" Grid.Row="2"/>
<Button Content="5" Grid.Row="2" Grid.Column="1"/>
<Button Content="6" Grid.Row="2" Grid.Column="2"/>
<Button Content="1" Grid.Row="3"/>
<Button Content="2" Grid.Row="3" Grid.Column="1"/>
<Button Content="3" Grid.Row="3" Grid.Column="2"/>
<Button Content="0" Grid.Row="4"/>
<Button Content="=" Grid.Row="4" Grid.Column="1"
Grid.ColumnSpan="2"/>
<Button Content="+" Grid.Row="4" Grid.Column="3"/>
<Button Content="-" Grid.Row="3" Grid.Column="3"/>
<Button Content="X" Grid.Row="2" Grid.Column="3"/>
<Button Content="/" Grid.Row="1" Grid.Column="3"/>

	Looking at the XAML designer, the calculator UI looks something like the following screenshot:[image: How to do it...]

	We'd like to get some margins for the buttons, change fonts, and so on. Let's create a style to be used for the "numeric" buttons. Add a Style object in the Resources property of the Window and set its TargetType property and give it a name:<Window.Resources>
<Style TargetType="Button" x:Key="numericStyle">
</Style>
</Window.Resources>

	Inside the Style, add the following Setter objects:<Setter Property="FontSize" Value="20" />
<Setter Property="Margin" Value="4" />
<Setter Property="Padding" Value="6" />
<Setter Property="Effect">
<Setter.Value>
<DropShadowEffect Color="Blue"/>
</Setter.Value>
</Setter>

	This sets up some properties common to all buttons. To apply the style, we'll change the Style property for all numeric buttons. The following is an example of one such button:<Button Content="7" Grid.Row="1"
Style="{StaticResource numericStyle}"/>

	Let's create another style that inherits from the first, to be used by operator buttons:<Style TargetType="Button" x:Key="operatorStyle"
BasedOn="{StaticResource numericStyle}">
<Setter Property="FontWeight" Value="ExtraBold" />
<Setter Property="Effect">
<Setter.Value>
<DropShadowEffect Color="Red" />
</Setter.Value>
</Setter>
</Style>

	Let's apply this style to the operator buttons. Here's one of them:<Button Content="+" Grid.Row="4" Grid.Column="3"
Style="{StaticResource operatorStyle}"/>

	Change the font size of the TextBox to 20. The following screenshot shows how this looks in the designer right now:[image: How to do it...]

	We want the "=" operator to have a different drop shadow color, so we can change it for that button only. The complete markup is as follows:<Button Content="=" Grid.Row="4" Grid.Column="1"
Grid.ColumnSpan="2" Style="{StaticResource operatorStyle}">
<Button.Effect>
<DropShadowEffect Color="Green" />
</Button.Effect>
</Button>

How it works...

A Style is a container for a bunch of Setter objects (and triggers, as we'll see later). Each setter indicates which property should have which value; the property must be a dependency property. The FrameworkElement class exposes a Style property that can be set to such a Style object. Styles are always built as resources, as any other way defeats the purpose of a style — that is, bundling a set of properties that can be applied to more than one element.

The TargetType property of a Style is typically set, which makes the Style applicable to that particular type (this can be any type, even a type of a custom control) and any derived types. In this example, these styles work on Button objects (and anything that inherits from Button). Trying to apply such Style to some other element type causes a runtime exception to be thrown.
An element that uses a style can change a property that is set explicitly by a Style (a local value), and this is stronger than a Style property setter. This is exactly what we did for the "=" operator; although it should have had a red drop shadow that was placed there by the Style it uses, it "overrides" the Effect property to have a different value (this is due to the dependency property priority system described in Chapter 1, Foundations).

There's more...

The TargetType property is not mandatory. The first Style could have been written as follows to get the same result:

<Style x:Key="numericStyle">
<Setter Property="Button.FontSize" Value="20" />
<Setter Property="Button.Margin" Value="4" />
<Setter Property="Button.Padding" Value="6" />
<Setter Property="Button.MinWidth" Value="40" />
<Setter Property="Button.Effect">
<Setter.Value>
<DropShadowEffect Color="Blue"/>
</Setter.Value>
</Setter>
</Style>

The difference is the full property qualifications. Why would that be useful? With this Style defined, it can be used with any element, such as a TextBox. However, the Style would not have any effect on a TextBox, unless we write Setter(s) a bit differently. For example:

<Setter Property="Control.Effect">
<Setter.Value>
<DropShadowEffect Color="Blue"/>
</Setter.Value>
</Setter>

This setting will work on anything deriving from Control, such as a TextBox. If the element does not support such a property, no exception is thrown. Practically speaking, using this capability is not recommended, as it's difficult to maintain these settings in complex styles. For example, we may want to change some property on a TextBox specifically and this would require adding a specific setting for a TextBox to the same style, but this could affect other TextBox controls in an unintended way. So, in practice, TargetType is always specified, even if this causes some Setter duplication. The up side is that if a change is needed for some specific element type, no other element type would be affected.
Style inheritance

Styles support the notion of inheritance, somewhat similar to the same concept in object orientation. This is done using the BasedOn property that must point to another Style to inherit from. If a TargetType is specified in the base Style, it must be specified by the derived Style as well (with the same type or a more derived type).

An inherited style can add Setter objects for new properties to set, or it can provide a different value for a property that was set by the base Style. In the code example, the second style (for operators) inherits from the first, adds a FontWeight setting, and changes the Effect property setting.
Style inheritance may seem very useful, but should be used with caution. It suffers from the same issues as object oriented inheritance in a deep inheritance hierarchy: a change in a base style up in the hierarchy can affect a lot of styles, being somewhat unpredictable, leading to a maintenance nightmare. Thus, a good rule of thumb to use is to have no more than two inheritance levels. Any more than that may cause things to get out of hand.

Other places to set styles

The example shows styles applied to the FrameworkElement.Style property, but this is not the only property that can accept a Style. Other examples include the following:

	FrameworkElement.FocusVisualStyle property: Accepts a Style that affects the way the focus indicator is rendered when that element has the keyboard focus.
	ItemsControl.ItemContainerStyle property: Accepts a Style that affects the container element of each data item (for example, ListBoxItem for a ListBox).
	DataGrid.CellStyle: Accepts a Style that affects the way a cell is rendered. Similar properties exposed by the DataGrid include ColumnHeaderStyle, DragIndicatorStyle, DropLocationIndicatorStyle, RowHeaderStyle, and RowStyle.

Some style keys are exposed by specific controls that use a Style with a specific key, which can be replaced seamlessly. For example, the MenuItem.SeparatorStyleKey static property is a resource key that if used, will be applied to separators in that MenuItem. Another example is the ToolBar, with static properties such as ButtonStyleKey, CheckBoxStyleKey, RadioButtonStyleKey, and MenuStyleKey.

Applying a style automatically

The previous recipe showed how to create styles that have a name (x:Key) and how to apply them. Sometimes, however, we would like a style to be applied automatically to all elements of a certain type, to give the application a consistent look. For example, we may want all buttons to have a font size of 14 by default (unless a specific button chooses a different value). This makes creating new buttons easier, as the developer/designer doesn't have to know what style to apply (if any) — if an automatic style has been configured it will be used automatically. Let's see how this is done.

Getting ready

Open the project CH08.StyledCalculator from the previous recipe. We'll modify it to use automatic styles. Alternatively, you can copy the project with a new folder and project name, so as not to disturb the previous project.

How to do it...

We'll modify the calculator to use automatic styles where possible, only using named styles where necessary:

	We'd like to make the numeric button style the default for all buttons unless otherwise specified. Open MainWindow.xaml.
	Remove all references to the numericStyle style in the buttons. For example, the 8 button's markup should look as follows:<Button Content="8" Grid.Row="1" Grid.Column="1" />

	Cut the numericStyle Style and paste it in the resources section of App.xaml and remove its x:Key attribute. This applies the Style automatically to all buttons (I added a MinWidth setting):<Application.Resources>
<Style TargetType="Button">
<Setter Property="FontSize" Value="20" />
<Setter Property="Margin" Value="4" />
<Setter Property="Padding" Value="6" />
<Setter Property="MinWidth" Value="40" />
<Setter Property="Effect">
<Setter.Value>
<DropShadowEffect Color="Blue"/>
</Setter.Value>
</Setter>
</Style>
</Application.Resources>

	Open MainWindow.xaml. The operatorStyle now fails to find its base Style. Change the BasedOn property to point to the automatic style in App.xaml:<Style TargetType="Button" x:Key="operatorStyle"
BasedOn="{StaticResource {x:Type Button}}">

	Run the application. The calculator UI should look as it did before:[image: How to do it...]

How it works...

Automatic styles are created as resources without a key. This does not mean there is no key, because it's still a dictionary. The key becomes the actual type to apply the style to defined by the TargetType property (this also means TargetType is mandatory with automatic styles). We've seen a similar approach with DataTemplates that have a DataType property and no key.

This is typically set in the application's resources so it can affect all windows in the application. The Style is applied to all elements of the target type, but not derived types. Any element that does not set its style explicitly obtains that style automatically. If an element wishes to revert to its default style, it can set its Style property to null ({x:Null} in XAML) or set its Style to another named style.
The operatorStyle in the example derives from the automatic style and this is specified by looking up a resource with the key of typeof(Button), expressed in XAML as {x:Type Button}.

There's more...

Automatic styles are a great way to create a consistent look and feel without burdening the developer (or the designer) with the details of the various visual properties. It can also be used as a quick way to implement skinning.

A classic example of skinning (sometimes referred to as theming, although themes usually mean the look and feel provided by the operating system as opposed to an application) is Microsoft Word 2007 and up, which support a "Color Scheme" setting in the screenshot:
[image: There's more...]
Selecting a scheme changes the look immediately. We can do the same in WPF by defining separate resource dictionaries with automatic styles for all the controls we're interested in. For example, here's a simple ResourceDictionary that sets some styles for TextBox and Button controls (the default XML namespace mappings are omitted for brevity):

<ResourceDictionary
<Style TargetType="TextBox">
<Setter Property="Background" Value="LightBlue" />
<Setter Property="Foreground" Value="Black" />
<Setter Property="BorderThickness" Value="2" />
<Setter Property="BorderBrush" Value="DarkBlue" />
<Style.Triggers>
<Trigger Property="IsReadOnly" Value="True">
<Setter Property="Background" Value="Blue" />
</Trigger>
</Style.Triggers>
</Style>
<Style TargetType="Button">
<Setter Property="Background" Value="Cyan" />
</Style>
</ResourceDictionary>

This markup includes a simple trigger (discussed in later recipes) that provides an alternative background brush for read-only TextBox controls.
We can create several of those ("skins") with different settings. The following simple application uses three different skins:
[image: There's more...]
The different skins were placed in a project folder, but their Build Action property setting was set to Content and Copy to Output Directory set to Copy if newer:

[image: There's more...]
These settings prevent the default compilation to BAML and also provide the flexibility to change the skins without recompilation. To do the actual switch, a helper method is used:
void ChangeSkin(string skinRelativeUri) {
var si = Application.GetContentStream(new Uri(
skinRelativeUri, UriKind.Relative));
var rd = (ResourceDictionary)XamlReader.Load(si.Stream);
Application.Current.Resources.MergedDictionaries.Clear();
Application.Current.Resources.MergedDictionaries.Add(rd);
}

This method extracts the specified skin, loads its XAML, clears all application's MergedDictionaries collection, and adds the newly loaded one. Of course, clearing the collection may be too disruptive (there may be other general purpose dictionaries lurking inside), so we can just replace the specific dictionary index. The complete source is available in the CH08.SkinningDemo project.

Creating a property trigger

So far we've used styles that have a collection of setters. A Style also has a Triggers collection property that provides a declarative way to make some property changes without a need for actual code. As such triggers are part of a style, they are naturally applied to more than one element. There are three types of triggers supported by WPF, and in this recipe we'll examine the simplest one - the property trigger.

Getting ready

Open the CH08.StyledCalculator project.

How to do it...

We'll add an effect when clicking a button in the calculator project using a property trigger:

	We want to add a trigger to one of the styles we created in an earlier recipe. Open MainWindow.xaml and look for the style with the key numericStyle.
	Add a Triggers property inside the style:<Style.Triggers>
</Style.Triggers>

	Add a property trigger inside the style (after the setters, before the closing style tag). The trigger will be invoked when the IsPressed property is changed to true:<Trigger Property="IsPressed" Value="True">
</Trigger>

	If the button is clicked, we want some of its properties changed. This is done with setters, placed inside the trigger:<Setter Property="Effect" Value="{x:Null}" />
<Setter Property="RenderTransform">
<Setter.Value>
<TranslateTransform X="4" Y="4" />
</Setter.Value>
</Setter>

	We remove the effect and move the button slightly to the right and down, if the button is clicked.
	Run the application and press some buttons. Notice the change in appearance (the digit 6 in the following screenshot):[image: How to do it...]

How it works...

A trigger contains a condition to be checked and a set of actions to execute if that condition is satisfied. The trigger in this example is the poorly named Trigger class, which is a property trigger, meaning it compares a dependency property to a specific value; if they are equal, a set of actions can execute. In the code sample, these are Setter objects (the same ones used by a Style), which change properties on the styled element.

When the condition becomes false, the setters are logically removed, reverting the properties to their previous values. This means that it's unnecessary to provide an "opposite" trigger (and problematic in the general case because only the "equals" operator is supported by triggers).

There's more...

Another set of actions available for triggers involve animations. These are provided by the EnterActions and ExitActions properties of triggers (inherited from the base TriggerBase class).

Suppose we want to create some animation for the operator buttons of the calculator when the mouse pointer hovers over such a button. We can add a property trigger to the operator button Style. First, we'll add some default setters. The following is the basic Style:

<Style TargetType="Button" x:Key="operatorStyle"
BasedOn="{StaticResource numericStyle}" >
<Setter Property="FontWeight" Value="ExtraBold" />
<Setter Property="Effect">
<Setter.Value>
<DropShadowEffect Color="Red" />
</Setter.Value>
</Setter>
<Setter Property="RenderTransformOrigin" Value=".5,.5" />
<Setter Property="RenderTransform">
<Setter.Value>
<ScaleTransform ScaleX="1" ScaleY="1"/>
</Setter.Value>
</Setter>

Now let's add the property trigger itself. When it's triggered, we'll set the Panel.ZIndex property to a large value to make sure the button is on top of all others:
<Style.Triggers>
<Trigger Property="IsMouseOver" Value="True">
<Setter Property="Panel.ZIndex" Value="100" />

Next, we'll start animations when the trigger fires via the EnterActions property:
<Trigger.EnterActions>
<BeginStoryboard>
<Storyboard >
<DoubleAnimation To="1.3" Duration="0:0:0.3"
Storyboard.TargetProperty="RenderTransform.ScaleX" />
<DoubleAnimation To="1.3" Duration="0:0:0.3"
Storyboard.TargetProperty="RenderTransform.ScaleY" />
</Storyboard>
</BeginStoryboard>
</Trigger.EnterActions>

We'll discuss animations in the next chapter; in essence, an action that starts an animation (BeginAnimation) is used to start an animation timeline (Stroyboard) containing two property based animations, each working on the ScaleTransform object within the RenderTransform property of the button, going to 1.3 over 300 milliseconds.

When the mouse leaves the button, we want to reverse the animation by using the ExitActions property:
<Trigger.ExitActions>
<BeginStoryboard>
<Storyboard >
<DoubleAnimation Duration="0:0:0.1"
Storyboard.TargetProperty="RenderTransform.ScaleX" />
<DoubleAnimation Duration="0:0:0.1"
Storyboard.TargetProperty="RenderTransform.ScaleY" />
</Storyboard>
</BeginStoryboard>
</Trigger.ExitActions>

The following screenshot shows how it looks when the mouse hovers over the multiplication operator:
[image: There's more...]
Trigger limitations

Property triggers and data triggers (discussed in the next recipe) suffer from one serious limitation: the comparison of the property to the value is an equality comparison only. There is no way to check for (for example) greater than, less than, not equal, and so on.

Furthermore, all triggers suffer from two other limitations:
	Custom triggers cannot be created. At first, it may seem that to create a custom trigger type, you just need to derive a class from TriggerBase and override a method. However, this doesn't work, because the constructor of TriggerBase is declared as internal, so cannot be used outside the declaring WPF assembly.
	Custom actions cannot be created either; again, the obvious thing to do is inherit from TriggerAction, the base class of all existing actions (such as BeginStoryboard), but this cannot be done because its constructor is internal, and it has two abstract methods (named Invoke) that are internal as well, so cannot be overridden outside the declaring assembly.

These last two points mean that the trigger mechanism of WPF cannot be extended directly - not with new triggers and not with new actions. This is certainly a shame, and led to other triggers and actions being defined by the Expression Blend tool (technically, it's SDK) that can be used instead, or in conjunction with the native WPF trigger. We'll see how to use those in the Using behaviors recipe later in this chapter.

When to use triggers

It's important to note that triggers are useful for changing appearance in various ways; they are not meant to be used as part of an application's logic. In ideal scenarios, a developer should not know anything about triggers that may or may not be used. This is the job of the UI designer (typically working with a designer oriented tool, such as Expression Blend).

Other locations of triggers

A Style is not the only object that contains a Triggers property. There are three other such properties found in WPF:

	DataTemplate.Triggers: A DataTemplate can have triggers, as is demonstrated in the next recipe, Using data triggers (these can be any triggers, not just data triggers).
	ControlTemplate.Triggers: A ControlTemplate can have triggers as well, as we'll see in the recipe Replacing the control template of a progress bar, later in this chapter.
	FrameworkElement.Triggers: An element can host triggers as well, but these are limited to EventTrigger objects only. This limitation is a bit artificial, but in practice, using triggers on some specific element is rare. It's much more common to use triggers to tweak the behavior of many elements, through a Style, DataTemplate, or ControlTemplate.

Trigger priorities

Several triggers may be present within a style (or a template), which may overlap. For example, two property triggers may want to set the background of an element to different brushes; both triggers may be triggered (they check different properties). In such cases, the later appearing trigger (in the markup) wins out.

This means that the order of triggers may be important. For example, styling a button may involve checking if it's being hovered over by the mouse, and if so, making a change to its background brush. If, however, the button is disabled (IsEnabled = false), it should have a different background, regardless of the hovering state. This means that the IsEnabled trigger should be placed after the IsMouseOver trigger, so it could win in case both triggers fire.

See also

For discussion of data triggers, see the next recipe, Using data triggers. For discussion of other trigger actions, see the recipe Creating an event trigger, later in this chapter.

Using data triggers

Property triggers work with dependency properties only, but what about regular properties? This is where data triggers come in. They are able to inspect any property, but their usefulness lies within data templates that naturally bind to data objects (which utilize non-dependency properties). Let's see how to set that up.

Getting ready

Make sure Visual Studio is up and running.

How to do it...

We'll create a simple application to show books with a DataTemplate that is customized with data triggers to show some books a bit differently:

	Create a new WPF application named CH08.DataTriggerDemo.
	Add a new class to the project named Book and implement it as follows:class Book {
public string BookName { get; set; }
public string AuthorName { get; set; }
public bool IsFree { get; set; }
}

	Open MainWindow.xaml. Add a ListBox to the existing Grid and set a few properties:<ListBox HorizontalContentAlignment="Stretch"
ItemsSource="{Binding}">

	We'll create a DataTemplate that shows a Book instance. Set a DataTemplate to the ListBox.ItemTemplate property with some markup that binds to the properties of a Book:<DataTemplate>
<Border Margin="2" BorderBrush="Blue" BorderThickness="1"
Padding="2" x:Name="_border">
<Grid>
<Grid.RowDefinitions>
<RowDefinition Height="Auto" />
<RowDefinition Height="Auto" />
</Grid.RowDefinitions>
<TextBlock Text="{Binding BookName}" FontSize="20"
FontWeight="Bold" />
<TextBlock Grid.Row="1" Text="{Binding AuthorName}"
FontSize="16" Foreground="Blue" />
<TextBlock Opacity=".5" FontWeight="Bold"
FontStyle="Italic" Foreground="Red"
TextAlignment="Right" Grid.RowSpan="2"
VerticalAlignment="Center" Visibility="Hidden"
x:Name="_free" Text="Free!"
Margin="4" FontSize="25"/>
</Grid>
</Border>
</DataTemplate>

	Note that the last TextBlock is not visible. We'll show it when a trigger fires later on.
	Open MainWindow.xaml.cs. In the constructor, create a few books and set them as the DataContext:DataContext = new List<Book> {
new Book { BookName = "Windows Internals",
AuthorName = "Mark Russinovich", IsFree = false },
new Book { BookName = "AJAX Introduction",
AuthorName = "Bhanwar Gupta", IsFree = true },
new Book { BookName = "Essential COM",
AuthorName = "Don Box", IsFree = false },
new Book {
BookName = "Blueprint for a Successful Presentation",
AuthorName = "Biswajit Tripathy", IsFree = true }
};

	Run the application. You should see the books displayed with the supplied data template:[image: How to do it...]

	We want the display of a book to change if that book is free. Add a Triggers property to DataTemplate:<DataTemplate.Triggers>
</DataTemplate.Triggers>

	Add a DataTrigger object that fires when Book.IsFree is true, making the hidden TextBlock appear and changing the background brush of the Border element:<DataTrigger Binding="{Binding IsFree}" Value="True">
<Setter Property="Background" TargetName="_border"
Value="Yellow" />
<Setter Property="Visibility" Value="Visible"
TargetName="_free" />
</DataTrigger>

[image: How to do it...]

How it works...

Data triggers find their property via the Binding property, which should be a binding expression. In our case, it's bound to the IsFree property of the current Book. Similar to a property trigger, it tests equality with a value (true, in this case) and if equal, executes a bunch of actions, based on Setter objects (it can also use the EnterActions and ExitActions properties to manipulate animations).

Notice that the setters can use the TargetName property (which cannot be used in a style trigger) to change a property on a particular element in the data template's markup.

Creating an event trigger

We've seen property triggers and data triggers. Both triggers are based on comparing a property to a value. The third type of supported trigger is an event trigger. This trigger type fires when a routed event occurs, executing animation-related actions. Let's see how to configure an event trigger.

Getting ready

Open the CH08.StyledCalculator project.

How to do it...

We'll continue with the calculator sample by making the UI come into view with an animation set up by an event trigger:

	We want the calculator UI to start from a zero size and reach its full size using an animation when the application starts. Open MainWindow.xaml.
	Add a starting point for the animation with a transformation properties to the main Grid as follows:<Grid Margin="8" RenderTransformOrigin=".5,.5">
<Grid.RenderTransform>
<ScaleTransform ScaleX="0" ScaleY="0" />
</Grid.RenderTransform>

	We'll use an event trigger to start the animation when the grid loads (the Loaded routed event):<Grid.Triggers>
<EventTrigger RoutedEvent="Loaded">
<BeginStoryboard>
<Storyboard>
<DoubleAnimation To="1" Duration="0:0:.8"
Storyboard.TargetProperty="RenderTransform.ScaleX" />
<DoubleAnimation To="1" Duration="0:0:.8"
Storyboard.TargetProperty="RenderTransform.ScaleY" />
</Storyboard>
</BeginStoryboard>
</EventTrigger>
</Grid.Triggers>

	The code starts two simultaneous animations that scale the Grid from 0 to 1 (normal size). Run the application and watch the calculator pop into view.

How it works...

An event trigger can be used with routed events only, providing a set of actions that execute when that event occurs. These actions inherit from the TriggerAction abstract base class with several concrete implementations, most of them targeting a Storyboard object (representing an animation time line), as in the code example (BeginStoryboard action). Apart from animations, there is a System.Windows.Controls.SoundPlayerAction class used to play WAV audio files (by setting its Source property).

As mentioned previously, TriggerAction has internal constructors only, so the list of supported actions cannot be extended. A possible solution is to use behaviors, as discussed in a later recipe, Using behaviors.

There's more...

There seems to be an overlap of the functionality provided by property triggers and event triggers. For example, the IsMouseOver property seems to add no real value that is gained by using the MouseEnter and MouseLeave routed events.

The problem is that event triggers can only execute actions based on TriggerAction objects — they cannot use setters to change property values. Property triggers, on the other hand, support using setters, and can also use TriggerActions with the EnterActions and ExitActions properties. This means that a property trigger that seemingly gives out the same information as a routed event is actually opening up the possibility of using setters, something that's not possible with TriggerActions objects.

Creating a multi trigger

An active trigger can execute actions, but sometimes a trigger needs to be composed of multiple conditions that activate the entire trigger if all conditions are met. This is exactly what the MultiTrigger and MultiDataTrigger types are capable of. Let's see how to create a MultiTrigger.

Getting ready

Make sure Visual Studio is up and running.

How to do it...

We'll create a simple application that changes the way a button appears by using multiple properties set up inside a MultiTrigger:

	Create a new WPF application named CH08.MultiTriggerDemo.
	Open MainWindow.xaml. Replace the existing Grid with a StackPanel.
	Add the following controls inside the StackPanel:<Button Content="Move mouse over me" FontSize="20"
HorizontalAlignment="Center" Margin="20" Padding="6"
x:Name="theButton" />
<CheckBox Content="Default button" Margin="10"
IsChecked="{Binding IsDefault, ElementName=theButton,
Mode=TwoWay}" FontSize="15"/>

	Add a Resources property to the Window.
	Add a Style object targeting buttons with a key of hoverStyle.
	Add the following trigger to the Triggers collection of the Style:<MultiTrigger>
<MultiTrigger.Conditions>
<Condition Property="IsMouseOver" Value="True" />
<Condition Property="IsDefault" Value="True" />
</MultiTrigger.Conditions>
<Setter Property="Background" Value="Cyan" />
<Setter Property="Effect">
<Setter.Value>
<DropShadowEffect />
</Setter.Value>
</Setter>
</MultiTrigger>

	Run the application. Hover with the mouse over the button when the checkbox is unchecked; nothing should happen. Now check the checkbox (making the button the default button) and hover over the button again. It should change background and have a drop shadow:

[image: How to do it...]

How it works...

A MultiTrigger object hosts a collection of Condition objects (in its Conditions property), each of which indicates the (dependency) Property and Value to check for. If all conditions are satisfied, the entire trigger — fires any Setters execute (EnterActions and ExitActions exist as well, as they do for a regular property trigger).

In the code sample, the Button's IsDefault and IsMouseOver properties are used as conditions. Only when both are true, does the trigger fire.

There's more...

Similarly to a MultiTrigger, a MultiDataTrigger class exists, hosting multiple DataTrigger objects exposed as a collection of Condition objects (the same as for MultiTrigger), but this time the Binding property must be set (using a binding expression as used by a DataTrigger) as well as the Value property to compare with.
Curiously enough, these types of multi triggers cannot be combined. That is, a MultiTrigger can only contain property triggers, and a MultiDataTrigger can only contain data triggers. Event triggers are unsupported as multiple triggers go.

What about an OR style operator (instead of AND)? There's no explicit support for that; we can, however, create separate triggers with the same set of actions to execute to simulate an OR type multi trigger.

Using behaviors

Triggers have inherent limitations; new trigger types cannot be created, nor new trigger actions. These decisions made by the WPF designers are somewhat arbitrary, as there may be useful triggers and actions that could have been created by developers. It may be somewhat justified, however, preventing abuse of this feature that may degrade performance (for heavy duty triggers or actions). Still, abuse is possible almost everywhere that software exists.

Whether this decision is justified or not is a matter of opinion; it is a fact nonetheless.
A possible solution to the extensibility problem is to write a similar open-ended mechanism and expose it through attached properties. This is exactly what was done by the Expression Blend team that wanted to expose new trigger and action types to be provided as a reusable library. They created a trigger/action mechanism that is packaged as two assemblies, one of which provides the core capabilities, and the other providing a set of built-in triggers and actions. A trigger and a set of actions can be logically grouped together, known as behaviors.
In this recipe, we'll see how to use Expression Blend's support for behaviors from within Expression Blend and from Visual Studio, leading to new opportunities for XAML use and reuse.
Getting ready

Make sure Visual Studio and Expression Blend are up and running.

How to do it...

We'll create a simple circle that may be moved across a Canvas without using event handling code; instead we'll use a behavior:

	Switch Visual Studio. Create a new WPF application named CH08.MovingCircle.
	Open MainWindow.xaml. Change the existing Grid to a Canvas.
	Add the following Ellipse to the Canvas:<Ellipse Width="50" Height="50" Fill="Red" Stroke="Black"
StrokeThickness="2" />

	Switch to Expression Blend. Open the existing project (or solution) using the File | Open Project/Solution menu item:[image: How to do it...]

	Make sure the Projects tab is selected. Open MainWindow.xaml. The file should be shown within the main (designer) view of Blend.
	Select the Assets tab and click on Behaviors:[image: How to do it...]

	Hold and drag the MouseDragElementBehavior behavior over the circle in the designer:[image: How to do it...]

	Press F5 to build and run the application from within Blend. You can now drag the circle around.
	Switch back to Visual Studio and accept its offer to reload changes.

How it works...

Dragging the behavior in Blend did several things. First, it added two references to the Blend SDK assemblies that provide the generic support (System.Windows.Interactivity) and the behaviors library (Microsoft.Expression.Interactions).

Second, it mapped two XAML namespaces pointing at those two assemblies (look at MainWindow.xaml):

xmlns:i="http://schemas.microsoft.com/expression/2010/interactivity"
xmlns:ei="http://schemas.microsoft.com/expression/2010/interactions"

Third, it added the actual behavior to the required element (within an Interaction.Behaviors attached property):
<Ellipse Width="50" Height="50" Fill="Red" Stroke="Black"
StrokeThickness="2">
<i:Interaction.Behaviors>
<ei:MouseDragElementBehavior/>
</i:Interaction.Behaviors>
</Ellipse>

Other behaviors can be added to the same element in a similar manner.

There's more...

Expression Blend itself is not required to get the support for behaviors, as the two required assemblies are part of the Blend SDK, and can be downloaded from Microsoft independently of Blend. Using the actual Blend tool simplifies adding the assembly references themselves and the XAML mappings; these can be added in the usual way from within Visual Studio (albeit without the drag-and-drop experience).

Custom behaviors

Behaviors are classes that inherit from Behavior<T>, where T is the minimal element type that can be used as a target for the behavior. The AssociatedObject property provides the actual object on which the behavior operates. The OnAttached and OnDetaching methods should be overridden to provide a way to connect to the object in question so that the behavior can actually do something. The following is an example of a simple behavior that opens a process when the element is clicked:

class RunProcessBehavior : Behavior<FrameworkElement> {
public string Program { get; set; }
public string Arguments { get; set; }
protected override void OnAttached() {
AssociatedObject.MouseLeftButtonUp += OnMouseClick;
}
void OnMouseClick(object sender, RoutedEventArgs e) {
Process.Start(Program, Arguments);
}
protected override void OnDetaching() {
AssociatedObject.MouseLeftButtonUp -= OnMouseClick;
}
}

OnAttached is used to register for the appropriate event and OnDetaching unregisters to keep things clean and avoid leaks. Two custom properties have been added so that the behavior can be customized. The following is an an example usage of an Rectangle object:
<Rectangle Fill="Yellow" Width="100" Height="50"
Canvas.Top="100" Stroke="Black">
<i:Interaction.Behaviors>
<local:RunProcessBehavior Program="Notepad" />
</i:Interaction.Behaviors>
</Rectangle>

Clicking the Rectangle (in this example) launches notepad.exe.
The Program and Arguments properties can be turned into dependency properties, so that they can be targets for data binding, which is very useful in practice.

Replacing the control template of a progress bar

WPF prides itself on separating appearance from behavior. This is more evident with control templates than anything else. A control template is just that: a template for a control's appearance, which does not affect its behavior. In this recipe, we'll take a look at the basics of writing a control template by creating a custom template for a ProgressBar control. In later recipes we'll discuss other, more complex control templates.

Getting ready

Make sure Visual Studio is up and running.

How to do it...

We'll create an alternative control template for a ProgressBar to demonstrate the basics of control template authoring:
	Create a new WPF application named CH08.CustomProgressBar.
	Open App.xaml. Add a new resource of type ControlTemplate as follows:<ControlTemplate TargetType="ProgressBar" x:Key="pt1">
</ControlTemplate>

	Inside the ControlTemplate add the following markup:<Grid>
<Rectangle x:Name="PART_Track">
<Rectangle.Fill>
<LinearGradientBrush EndPoint="1,0">
<GradientStop Color="DarkBlue" Offset="0" />
<GradientStop Color="LightBlue" Offset="1" />
</LinearGradientBrush>
</Rectangle.Fill>
</Rectangle>
<Rectangle x:Name="PART_Indicator" Fill="Orange"
Stroke="Black" StrokeThickness="1"
HorizontalAlignment="Left" />
</Grid>

	Open MainWindow.xaml. Change the existing Grid into a StackPanel.
	Add a ProgressBar control to the StackPanel that uses the previous template:<ProgressBar Height="30" Value="60" Margin="20"
Template="{StaticResource pt1}" x:Name="pb1" />

	Add another ProgressBar that does not use the new template:<ProgressBar Height="30" Value="60" Margin="20" />

	Run the application and note the differences between the new look and the default look (the default look depends on the current Windows theme):[image: How to do it...]

	Open MainWindow.xaml. Add a checkbox that binds to the IsIntermediate property of the first progress bar:<CheckBox Content="Indeterminate" FontSize="16" Margin="4"
IsChecked="{Binding IsIndeterminate, ElementName=pb1}" />

	Run the application and check the checkbox. The progress bar doesn't look too interesting. Let's add a trigger to make it a bit more interesting. Open App.xaml.
	Add a Triggers property to the ControlTemplate with a property trigger for the IsIndeterminate property:<ControlTemplate.Triggers>
<Trigger Property="IsIndeterminate" Value="True">
<Setter Property="Fill" TargetName="PART_Indicator">
<Setter.Value>
<LinearGradientBrush EndPoint=".1,1"
SpreadMethod="Repeat">
<GradientStop Offset="0" Color="Orange" />
<GradientStop Offset="1" Color="Red" />
</LinearGradientBrush>
</Setter.Value>
</Setter>
</Trigger>
</ControlTemplate.Triggers>

	Run the application and check the checkbox:

[image: How to do it...]

How it works...

Every control (deriving from Control) has a Template property that points to a ControlTemplate object that holds the visual appearance of the control. Every control provides a default control template (that may be different depending on the current Windows theme), but that template can be changed without harming the control's functionality.

The ProgressBar is one of the simplest controls to template because it's not interactive the user can't click it, drag it, or anything like that. The example template uses two rectangles placed on top of each other. It seems that the second rectangle changes its width in correct relation to the progress bar's Value property. But how does that happen? There is no binding expression for the Width property of that rectangle.
The secret lies in the name of the rectangle (PART_Indicator in this case). This "part" is looked up by the progress bar control, and if found, it changes its Width appropriately without us needing to intervene. How did I know this particular name would work? This is published by attributes on the control's class. If we take a look at the ProgressBar class (with Visual Studio for example), this is what we'll find:
[TemplatePart(Name="PART_Indicator",
Type=typeof(FrameworkElement))]
[TemplatePart(Name="PART_Track",
Type=typeof(FrameworkElement)))]
[TemplatePart(Name="PART_GlowRect",
Type=typeof(FrameworkElement))]
public class ProgressBar : RangeBase

The ProgressBar control "advertises" the named parts it knows about, which we can use. Each part indicates the minimal element type that can be used. In this case, it's FrameworkElement, which means it can be anything.

There's more...

Many controls have internal states that influence the way a control looks (and sometimes behaves). For example, a button can be clicked or not, enabled or disabled, and so on. A progress bar can be in the indeterminate state, meaning the application can't tell when that long operation finishes or how it's coming along.
These "states" can be handled by triggers. In the code example, a property trigger is used with the IsIndeterminate property, changing some aspect of the template so it would be obvious that the progress bar is not displaying a real progress indicator. An animation would be more appropriate here, hopefully to be accomplished by a designer.
What about the control's properties?

The above template is pretty static in the sense that changing the progress bar properties makes little difference. For example, changing properties such as Background or Foreground will have no effect. That's because the template doesn't bind to any of the progress bar properties. Sometimes it's not appropriate to do that, especially if that would change the look and feel that the template tries to convey. However, sometimes that's very relevant.

Suppose we want to add some text on top of the progress indicator displaying the Value property with a per cent sign. This would require tapping into the Value property and perhaps some other properties. Here's how to do it:
<TextBlock Text="{Binding Value, RelativeSource={RelativeSource TemplatedParent}, StringFormat=\{0\}%}"
Foreground="{TemplateBinding Foreground}"
VerticalAlignment="Center" HorizontalAlignment="Center"/>

There are a couple of points here. The first is the use of the TemplateBinding markup extension. This extension does a one way binding to a property on the templated control. This is the preferred way of binding to a control's property from within its control template as it's very concise. The second point involves using the RelativeSource markup extension with the TemplatedParent mode to bind to a control's property from its control template in all other cases (such as a two way binding, or in this case, because a StringFormat is needed, which unfortunately does not exist on a TemplateBinding).
Binding to a control's own properties makes the template more flexible, which is a good thing most of the time.

Combining a control template with a style

A control template cannot be applied automatically on its own. Typically, the template would be combined with a style, that can be applied automatically as we've already see in the recipe Applying a style automatically in this chapter.

Even if an automatic style is not used, the style can still be used to set default properties, one of which is the Template property, just like any other. Here's a skeletal example (the complete source code is available with the downloadable code for this chapter):
<Style TargetType="ProgressBar">
<Setter Property="Template">
<Setter.Value>
<ControlTemplate TargetType="ProgressBar" >
...
</ControlTemplate>
</Setter.Value>
</Setter>
<Setter Property="Background">
<Setter.Value>
<LinearGradientBrush EndPoint="1,0">
<GradientStop Color="DarkBlue" Offset="0" />
<GradientStop Color="LightBlue" Offset="1" />
</LinearGradientBrush>
</Setter.Value>
</Setter>
<Setter Property="Foreground" Value="Black" />
</Style>

Extending a template with attached properties

Binding to a control's template is certainly useful. However, what happens if there is no appropriate property to bind to? In the progress bar's template, a TextBlock is used to show the current value of the progress bar. What if we wanted to provide the option to hide that text? We would have wanted to have a Boolean property on the progress bar that we can bind to. Although we may be able to find a Boolean property and "hijack" it for this purpose, this rarely sits well and is usually unintuitive.

A better solution is to create attached properties and bind to those. For the progress bar we can create the following simple class:
public static class ProgressBarAttributes {
public static bool GetShowText(DependencyObject obj) {
return (bool)obj.GetValue(ShowTextProperty);
}
public static void SetShowText(DependencyObject obj,
bool value) {
obj.SetValue(ShowTextProperty, value);
}
public static readonly DependencyProperty ShowTextProperty
= DependencyProperty.RegisterAttached("ShowText",
typeof(bool), typeof(ProgressBarAttributes),
new UIPropertyMetadata(true));
}

Given this ShowText property we can set the Visibility of the TextBlock as follows:

Visibility="{TemplateBinding local:ProgressBarAttributes.ShowText, Converter={StaticResource bool2vis}}"

The bool2vis resource points to the System.Windows.Controls.BooleanToVisibilityConverter class provided by WPF, which allows quick conversions between a simple Boolean and the Visibility enumeration:
<BooleanToVisibilityConverter x:Key="bool2vis" />

Can we replace just part of a template?

Creating a full control template is a lot of work. Wouldn't it be better if we could replace just part of a control's template — and leave the rest of it as is? Unfortunately, that's not directly supported. The control template is an all or nothing proposition. The best we can do is start with some existing template and then tweak or extend it.

One way to get a control's default template to be used as a starting point is by leveraging Expression Blend. In Blend, we can drag the required control on the design surface, right-click on it, and select Edit Template | Edit a Copy....
[image: Can we replace just part of a template?]
This can also give us some ideas for implementing the template. This is especially important if complex triggers are involved (because of non-trivial state management inside the control).

Note
This is also possible directly from within Visual Studio 2012, which shares the same designer with Blend.

Another option (often a better one) is to use the "SimpleStyles" sample available in the MSDN docs and through Blend:
[image: Can we replace just part of a template?]
"SimpleStyles" provides relatively simple control templates for most controls; these can be used as a starting point for our own templates. The "real" templates are often very complex and contain various (usually unnecessary) decorators and other adornments that most custom templates don't need or want.

What about the Visual State Manager?

Silverlight, WPF's little brother, doesn't have the support WPF has for triggers (in fact, only the Loaded event trigger is supported). Instead, Silverlight introduced something known as the Visual State Manager (VSM) that provides an alternative means for controlling state changes in controls. A typical control template in Silverlight defines state transitions and other related ingredients, based on the control's advertisement of its supported states (using attributes, similar to named parts).

WPF added support for the Visual State Manager starting from version 4. However, these cannot actually be used for authoring control templates, because the current control implementation uses triggers and not the VSM. That means the control does not change states via the VSM, so any template that relies on such behavior is doomed to fail.
The VSM can still be used in WPF when authoring custom controls, but because the built-in controls are already implemented, it's not possible to add support for the VSM unless Microsoft changes the way the built-in controls operate.

Replacing the control template of a scroll bar

The ScrollBar control is rarely used on its own. This is hinted by the fact that it's located in the System.Windows.Controls.Primitives namespace. It is, however, an important building block for many elements, such as ScrollViewer and ListBox. Instead of trying to customize the template for a ScrollViewer or a ListBox to get a different look for the scroll bars, it's better to customize the ScrollBar itself (usually with an automatic style), causing all ScrollBar controls to appear the same way no matter which other, higher-level controls, use them. Let's see what it takes to replace a scroll bar's control template.

Getting ready

Make sure Visual Studio is up and running.

How to do it...

We'll create a simple application that uses a custom ScrollBar template, showing the ingredients of such a template:
	Create a new WPF application named CH08.CustomScrollBars.
	Open App.xaml. First, we need to create some helper templates for RepeatButton controls and for a Thumb control.
	Add the following inside the application resources:<ControlTemplate TargetType="RepeatButton"
x:Key="repeatTransTemplate">
<Rectangle Fill="Transparent" />
</ControlTemplate>
<ControlTemplate TargetType="RepeatButton"
x:Key="plainTemplate">
<Grid>
<ContentPresenter Margin="{TemplateBinding Padding}" />
</Grid>
</ControlTemplate>
<ControlTemplate TargetType="Thumb" x:Key="vthumbTemplate">
<Rectangle RadiusX="5" RadiusY="10"
Stroke="{TemplateBinding BorderBrush}"
StrokeThickness="{TemplateBinding BorderThickness}"
Fill="{TemplateBinding Background}" />
</ControlTemplate>

	Add the basic ControlTemplate for a vertical ScrollBar:<ControlTemplate TargetType="ScrollBar"
x:Key="verticalScrollBarTemplate">
</ControlTemplate>

	The template will be composed of three parts, laid out with a Grid. Add the following inside the template:<Grid>
<Grid.RowDefinitions>
<RowDefinition Height="Auto" />
<RowDefinition />
<RowDefinition Height="Auto" />
</Grid.RowDefinitions>

	The most important part (the middle) should contain a Track control (a named part) that the ScrollBar is looking for:<Border BorderBrush="DarkBlue" BorderThickness="1"
Background="LightBlue" Grid.Row="1">
<Track x:Name="PART_Track" IsDirectionReversed="True">
</Track>
</Border>

	The Track contains two RepeatButtons that serve as "page up" and "page down" for scrolling (connected through commands):<Track.DecreaseRepeatButton>
<RepeatButton Command="ScrollBar.PageUpCommand"
Template="{StaticResource repeatTransTemplate}" />
</Track.DecreaseRepeatButton>
<Track.IncreaseRepeatButton>
<RepeatButton Command="ScrollBar.PageDownCommand"
Template="{StaticResource repeatTransTemplate}" />
</Track.IncreaseRepeatButton>

	The moving part of the Track is a Thumb, set using the Track.Thumb property:<Track.Thumb>
<Thumb Template="{StaticResource vthumbTemplate}"
BorderBrush="Black" BorderThickness="1">
<Thumb.Background>
<LinearGradientBrush EndPoint="0,1">
<GradientStop Offset="0" Color="DarkGreen" />
<GradientStop Offset="1" Color="LightGreen" />
</LinearGradientBrush>
</Thumb.Background>
</Thumb>
</Track.Thumb>

	We want to add an element to the first row of the Grid to be used for smooth scrolling up (insert right after the closing Border tag):<Viewbox>
<RepeatButton Command="{x:Static ScrollBar.LineUpCommand}" Template="{StaticResource plainTemplate}">
<Path Data="M 25,0 L 50,50 L 0,50 Z" Fill="Blue" />
</RepeatButton>
</Viewbox>

	Similarly, the third row should include an element to scroll smoothly down:<Viewbox Grid.Row="2">
<RepeatButton Command="{x:Static ScrollBar.LineDownCommand}" Template="{StaticResource plainTemplate}">
<Path Data="M 25,50 L 0,0 L 50,0 Z" Fill="Blue" />
</RepeatButton>
</Viewbox>

	A similar ControlTemplate is built for a horizontal scroll bar:<ControlTemplate TargetType="ScrollBar"
x:Key="horizontalScrollBarTemplate">
</ControlTemplate>

	The complete source can be found with the downloadable code for this chapter. The template is largely the same; changes reflect the horizontal orientation (Grid contains columns, not rows, brush gradient slanted horizontally, and so on). Finally, an automatic Style selects the correct template based on the ScrollBar orientation:<Style TargetType="ScrollBar">
<Style.Triggers>
<Trigger Property="Orientation" Value="Vertical">
<Setter Property="Template"
Value="{StaticResource verticalScrollBarTemplate}" />
</Trigger>
<Trigger Property="Orientation" Value="Horizontal">
<Setter Property="Template"
Value="{StaticResource horizontalScrollBarTemplate}" />
</Trigger>
</Style.Triggers>
</Style>

	To test this, open MainWindow.xaml. Add an existing large image to the project (such as penguin.jpg from the Sample Pictures folder).
	Add the following markup to the existing Grid:<ScrollViewer VerticalScrollBarVisibility="Auto"
HorizontalScrollBarVisibility="Auto">
<Image Source="penguins.jpg" Stretch="None" />
</ScrollViewer>

	Run the application and make sure the window is small enough so that the scroll bars will be forced to display:[image: How to do it...]

How it works...

A ScrollBar control template contains only one named part, PART_Track, of type Track. This element expects two RepeatButton controls (Track.DecreaseRepeatButton and Track.IncreaseRepeatButton) and a Thumb control (Track.Thumb property) — the rest is taken care of by the ScrollBar. The RepeatButtons are typically used to do page level scrolling, connected as such with the Command property of those buttons. The line (small step) based scrolling is not an essential part of the ScrollBar and need not be supplied. In the demoed template, two extra RepeatButtons are provided and connected using commands to the line scrolling functionality. The ScrollBar control is built as follows:

[image: How it works...]
The middle RepeatButtons (part of the Track) are themselves templated as empty rectangles filled with a transparent brush. It's important this is transparent and not null, otherwise no clicks would be registered on these buttons.

The top and bottom little arrows are RepeatButtons themselves templated as simple content containers. This is achieved using a ContentPresenter, which is an element that is roughly equivalent to a ContentControl whose Content property binds to the button's Content property. The actual content of these buttons is composed of a ViewBox (that provides automatic scaling) containing a Path element that is shaped like a little triangular arrow.
The Style for the ScrollBar selects (using a property trigger) the correct template (vertical or horizontal) based on the Orientation property.

Customizing selection in a Selector control

Controls deriving from Selector such as ListBox and CombobBox have rich template support with the ItemTemplate property. There is no direct support, however, for customizing the way a selected item is rendered. At first, this seems easily fixable with a property trigger for the Selector.IsSelected property; however, due to the way the default ListBoxItem/ComboBoxItem control template is designed, the result is suboptimal. Let's see how to customize selection rendering despite this inconvenience.

Getting ready

Run Visual Studio and open the CH08.DataTriggerDemo project.

How to do it...

We'll customize the appearance of selection in the ListBox used to show books with a fancy DataTemplate:

	Run the application as is. Click an item; it's back-filled with a blue color (the exact color depends on the Windows theme and any personalization that may have been made), causing a not-so-nice effect (for example, the author name becomes invisible for non-free books).
	Open MainWindow.xaml. Add the following property to the ListBox:<ListBox.ItemContainerStyle>
<Style TargetType="ListBoxItem">
</Style>
</ListBox.ItemContainerStyle>

	Add a setter for a new ControlTemplate for the ListBoxItem:<Setter Property="Template">
<Setter.Value>
<ControlTemplate TargetType="ListBoxItem">
<Border BorderBrush="{TemplateBinding BorderBrush}"
Background="{TemplateBinding Background}"
Margin="{TemplateBinding Padding}"
BorderThickness="{TemplateBinding BorderThickness}">
<ContentPresenter HorizontalAlignment="{TemplateBinding HorizontalContentAlignment}"
VerticalAlignment="{TemplateBinding VerticalContentAlignment}" />
</Border>
</ControlTemplate>
</Setter.Value>
</Setter>

	This sets an alternative template that we can control. Let's add some more setters as default values:<Setter Property="Background" Value="Transparent" />
<Setter Property="BorderThickness" Value="2" />
<Setter Property="BorderBrush" Value="Transparent" />

	To change the way selection looks, we'll add a property trigger:<Style.Triggers>
<Trigger Property="IsSelected" Value="True">
<Setter Property="BorderBrush" Value="Red" />
</Trigger>
</Style.Triggers>

	Run the application and select an item. A red border marks the selection:[image: How to do it...]

How it works...

The container of each item in a ListBox is a ListBoxItem (a ContentControl); similarly, ComboBoxItem objects wrap the content in a ComboBox. The container item style can be changed (for every ItemsControl-derived type) using the ItemContainerStyle property. In this case, the Template property needs to change, because the default template uses the current selection color (configured through the Personalization applet in Control Panel) in an internal element that we cannot reach from a simple style.

Our only reasonable alternative is to replace the entire control template of that ListBoxItem, which is not difficult to do — a ContentPresenter (to show the actual data template associated with each item) inside something like a Border (we can use something more complex if desired). The rest is just a regular property trigger to get the required effect.
Note

ContentPresenter is an element used mostly in control templates, which renders the Content of the templated control based on the usual rules of the Content property (meaning it uses a DataTemplate if provided, and so on). It can technically bind to another property (of type Object) by setting the ContentSource property to the base property name; for example, for HeaderedContentControl template, a ContentPresenter would set ContentSource to "Header", so that it looks at Header and HeaderTemplate as appropriate.
A similar element, ItemsPresenter is used for the ItemsControl-derived templates to show a collection of objects.

There's more...

ItemsControl-derived types have another interesting template customization hook: the ItemsPanel property (of type ItemsPanelTemplate). This changes the way items are arranged in the ItemsControl-derived control. ListBox, for instance, uses a vertical VirtualizingStackPanel by default — that's why items are placed one below the other. A VirtualizingStackPanel is similar to a regular StackPanel, but items that are out of view are not created until actually needed this increases responsiveness if the ListBox holds many items. ItemsControl uses a vertical StackPanel; StatusBar uses a DockPanel; MenuItem uses a WrapPanel.
What can we place instead of the default items panel? One option is to continue to use a (Virtualizing)StackPanel, but make it horizontal.
Another useful possibility is to use a WrapPanel; this has a similar effect to the "icon" style views seen in Windows Explorer.
Yet another interesting idea is to use a UniformGrid, setting an appropriate number of Rows and Columns. This places items in a tabular grid, while still maintaining all the characteristics of a ListBox.
Here are some examples of arranging a bunch of circles in a ListBox with various panels:
[image: There's more...]
The complete source is located in the CH08.CustomLItemsPanel project available with the downloadable source for this chapter.

Chapter 9. Graphics and Animation

In this chapter we will cover the following:
	Creating a custom shape
	Applying transforms on elements
	Manipulating a bitmap programmatically
	Creating adorners
	Creating property-based animations
	Creating path-based animations
	Creating custom animations
	Adding animation easing to animations
	Using custom effects with pixel shaders

Introduction

WPF has a very impressive graphic stack. That's one of the obvious selling points of the technology, as it's very visual and immediately recognizable. WPF's graphic capabilities range from simple 2D to arbitrarily complex 3D, with the typical integration we come to expect from WPF; everything can be interacted with anything - a 3D scene can be animating inside a button and that button still behaves like a button.

WPF also provides a powerful, declarative, animation engine. This makes using animations easy, removing the need to use timers, do refresh updates, and other low level tasks that are typical with other graphic frameworks.
This chapter explores some of WPF's graphic and animation capabilities. Missing from the chapter is discussion of WPF's 3D graphic support; this is simply beyond the scope of this book, as it must maintain a reasonable number of pages. 3D is a complex topic in itself; WPF makes using 3D relatively easy. Other sources have discussions on 3D in general and WPF in particular. The interested reader can do a simple web search to find relevant information. 2D however, is not as easy as it may sound - WPF has a variety of ways of creating 2D graphics. This chapter has recipes that show ways to effectively use WPF's capabilities.

Creating a custom shape

Shapes are (mostly) simple elements deriving from the Shape abstract base class, which derives directly from FrameworkElement; shapes providing an inherent graphical representation that can easily be filled, stroked and stretched. Shapes are not controls they have no template associated with them. They are, however, full elements, providing support for the full range of capabilities, including participation in layout, hit testing, and the multitude of properties and events that make working with these entities as easy as any control.

We can create new shapes by deriving from Shape, providing a new graphical representation, and taking advantage of the functionality provided by the base Shape class.
Getting ready

Make sure Visual Studio is up and running.

How to do it...

We'll create a ring shape element, demonstrating the steps necessary to create custom Shape classes that fit naturally with the rest of WPF, just as the built-in shapes do:

	Create a new WPF application named CH09.CustomShape.
	We're going to create a ring shape that should function like any of the built in shapes. Add a new class to the project named RingShape.
	Add using statements for System.Windows, System.Windows.Media, and System.Windows.Shapes.
	Make RingShape derive from Shape:public class RingShape : Shape {
}

	Add a private field of type Rect that we'll use to manage the bounds of a shape:Rect _rect;

	We'd like to provide a property to customize the width of the ring. Add a dependency property named RingWidth of type double:public double RingWidth {
get { return (double)GetValue(RingWidthProperty); }
set { SetValue(RingWidthProperty, value); }
}
public static readonly DependencyProperty RingWidthProperty =
DependencyProperty.Register("RingWidth", typeof(double),
typeof(RingShape), new FrameworkPropertyMetadata(
.1, FrameworkPropertyMetadataOptions.AffectsRender));

	 RingWidth will be a percentage fraction of the width/height of the shape (for example, 0.2=20% of width/height). A custom shape must override the DefiningGeometry protected property and return a Geometry representing the shape. Override the property as follows:protected override Geometry DefiningGeometry {
get {
if(_rect.IsEmpty)
return Geometry.Empty;
var rc = _rect;
rc.Inflate(-RingWidth * _rect.Width,
-RingWidth * _rect.Height);
return new CombinedGeometry(GeometryCombineMode.Exclude,
new EllipseGeometry(_rect), new EllipseGeometry(rc));
}
}

	The _rect field must be updated if the size of the shape is queried. For this purpose, we'll override the MeasureOverride method (commonly overridden by panels) and compute _rect based on the current Stretch property value:protected override Size MeasureOverride(Size constraint) {
if(double.IsInfinity(constraint.Width) ||
double.IsInfinity(constraint.Height)) {
_rect = Rect.Empty;
return Size.Empty;
}
double size;
switch(Stretch) {
case Stretch.Fill:
_rect = new Rect(constraint);
break;
case Stretch.Uniform:
size = Math.Min(constraint.Width, constraint.Height);
_rect = new Rect(new Size(size, size));
break;
case Stretch.UniformToFill:
size = Math.Max(constraint.Width, constraint.Height);
_rect = new Rect(new Size(size, size));
break;
case Stretch.None:
_rect = double.IsNaN(Width) || double.IsNaN(Height)
? Rect.Empty : new Rect(new Size(Width, Height));
break;
}
return _rect.Size;
}

	Finally, the default value of the Stretch property (inherited from Shape) is None. This would cause the RingShape to have zero size. Let's change the default in the static constructor:static RingShape() {
StretchProperty.OverrideMetadata(typeof(RingShape),
new FrameworkPropertyMetadata(Stretch.Uniform,
FrameworkPropertyMetadataOptions.AffectsMeasure |
FrameworkPropertyMetadataOptions.AffectsRender));
}

	We need to test this. Open MainWindow.xaml.
	Map an XML namespace to the CH09.CustomShape namespace:xmlns:local="clr-namespace:CH09.CustomShape"

	Add a RingShape inside the existing Grid:<local:RingShape Fill="Red" Stroke="Black" StrokeThickness="4"
RingWidth=".15"/>

	Run the application:[image: How to do it...]

	You can change the Stretch property value, or set an explicit Width/Height to see the effects.

How it works...

The Shape abstract class defines one abstract member, the DefiningGeometry property. This property must be overridden and return a Geometry (see There's more... section for more information on geometries) that defines the shape's shape. Everything else is taken care of by the base Shape class.

The actual size of the shape should be calculated based on the Stretch inherited property (that's the reason MeasureOverride is needed). Strictly speaking, we could have removed MeasureOverride entirely and just initialized the _rect field to some non-empty rectangle. This would cause a Stretch value of None to just use the default rectangle-initialized size. This is acceptable, but using a zero size shape when Stretch is None is consistent with the way the built in shapes operate.
The geometry provided by the RingShape consists of a small ellipse (EllipseGeometry) subtracted from a larger ellipse (using a CombinedGeometry object combined with mode of Exclude).

There's more...

The Shape class does the actual drawing of the geometry by overriding the UIElement.OnRender method. This method accepts a DrawingContext, which is an abstraction of a painting capable object (similar in concept to a GDI+ Graphics object or Win32 device context).

Overriding OnRender provides the ability to add other graphical effects outside the Geometry provided by the DefiningGeometry property. However, if this method is overridden, the base class implementation must be called; otherwise DefiningGeometry will have no effect. Here's a proper implementation skeleton:
protected override void OnRender(DrawingContext dc) {
base.OnRender(dc);
// do custom drawing
}

Geometries

Geometry is a mathematical abstraction that defines some 2D construct. Geometry is an abstract base class that defines some basic functionality common to all geometries. The Bounds property returns the minimal axis-aligned bounding rectangle (Rect struct) that encapsulates the geometry. The Transform property allows transformations to be applied on the geometry (see the Applying transforms on elements recipe later in this chapter for a discussion of transforms). The GetArea method calculates the area occupied by the geometry and FillContains can be used to check if a given point or another geometry is contained within the given geometry (with a rich set of overloads). There are other interesting methods on the base Geometry class that make geometries useful in other scenarios.

Note
Some of the interesting Geometry methods are as follows: GetArea calculates the area of the Geometry (no matter how complex); FillContains indicates whether the Geometry contains the specified Point or another Geometry; GetRenderBounds returns a rectangle that contains the Geometry painted with a specified Pen; GetFlattenedGeometry returns a PathGeometry that is a polygonal approximation of the Geometry; the static Combine method combines two Geometry objects based on a GeometryCombineMode value (Exclude, Union, Xor, or Intersect) with an optional Transform applied.

Geometry derives from Animatable (itself deriving from Freezable), thus supports all Freezable features, such as cloning, becoming read only, and easy sharing through resources.
The simple geometries are LineGeometry, EllipseGeometry, and RectangleGeometry, all pretty self-explanatory. The more complex geometries include:
	GeometryGroup: Can host any number of geometries as a single unit. Adds a FillRule property to indicate the way intersections are handled in the geometry (similar to FillRule of the Polygon and Polyline shapes).
	CombinedGeometry: Combines two geometries (Geometry1 and Geometry2 properties) with a set operator (GeometryCombineMode property), resulting in a new geometry. Possible values are Intersect, Exclude, Union, and Xor. The following illustration shows the various modes in action:[image: Geometries]

	PathGeometry: The most complex geometry that can replace all others and do much more. It contains a collection of PathFigure objects (Figures property). Each PathFigure represents a connected series of lines and curves, represented as a collection of PathSegment objects (Segments property). PathSegment is an abstract class - its derivatives provide concrete lines or curves. These include simple segments (LineSegment, PolyLineSegment), an arc (ArgSegment), and an assortment of Bezier curves (BezierSegment, PolyBezierSegment, QuadraticBezierSegment, and PolyQuadraticBezierSegment).Building a complex PathGeometry may take a lot of XAML (or code). To mitigate that from a practical perspective, a "geometry mini language" has been created that allows creating figures and segments using a string in XAML that's converted (using a GeometryConverter type converter) into a PathGeometry. For example, the following XAML is a long way to create a triangle geometry:

<PathGeometry>
<PathFigure IsClosed="True" StartPoint="10,100">
<LineSegment Point="100,100" />
<LineSegment Point="100,50" />
</PathFigure>
</PathGeometry>

The short version is as follows:

<Geometry>M 10,100 L 100,100 L 100,50 Z</Geometry>

	Here's a quick rundown of this string: M starts a new figure followed by the starting point of that figure. L means line, followed by the end point of the line (there are two lines) and finally Z means the figure is done and closed (which creates the third triangle line). All possible segment types are included in the mini language.For complex shapes, this "mini language" shortens markup considerably. The resulting object is actually a StreamGeometry, not a PathGeometry (StreamGeometry is discussed in the next bullet). To create an actual PathGeometry, the markup needs to change a bit:

<PathGeometry Figures="M 10,100 L 100,100 L 100,50 Z" />

	StreamGeometry: Similar to a PathGeometry in terms of its contents - contains figures, each of which contains segments; however, these are not exposed as properties. Instead, we must call the Open method on the StreamGeometry, getting back a StreamGeometryContext that exposes the ability to create figures (BeginFigure and Close methods) and add segments (LineTo, ArcTo, BezierTo, PolyBezierTo, QuadraticBezierTo, and PolyQuadraticBezierTo methods).A StreamGeometry is a lightweight version of PathGeometry. It does not support data binding, animations, or modifications.

As geometries are abstract entities (in the mathematical sense, not the object oriented sense), they appear in other objects. Examples include path-based animations that use a PathGeometry (see the recipe Creating custom animations later in this chapter), the UIElement.Clip property that accepts any geometry, and some Drawing-derived types (GeometryDrawing.Geometry and DrawingGroup.ClipGeometry).

Built-in shapes

WPF provides six built-in shapes. The simplest shapes are Line, Ellipse, and Rectangle. The more complex shapes are Polygon and Polyline, which are very similar and contain a collection of points (the Points property). The only difference between them is that a Polygon adds a line from the last point to the first automatically, whereas Polyline does not (both are filled in the exact same way-a Polyline is assumed to be closed for this purpose, as if it were a Polygon).

The most complex shape (by far) is the Path, which can replace all other shapes. It renders a Geometry (set with the Data property), which means it can render anything.
Expression Blend provides more custom shapes through its Assets | Shapes window (implemented in the Microsoft.Expression.Drawing.dll assembly), such as arrows and callouts:
[image: Built-in shapes]

Shapes versus geometries

Sometimes there is some confusion between shapes and geometries; they seem similar, such as Rectangle and RectangleGeometry, Path and PathGeometry.

There is a fundamental difference, however: shapes are elements - they are visual objects, can be placed somewhere in the visual tree and are part of the layout phase within a panel, and so on.
Geometries, on the other hand, are mathematical abstractions. They cannot be placed in the visual tree and cannot draw themselves.

Applying transforms on elements

Transforms allow manipulating an entity's coordinates in various ways, the most common being translating (moving), scaling, and rotating. This ability provides a lot of flexibility in the way elements (and other objects) present themselves. Combined with animations and some creativity, transforms are even more powerful. In this recipe, we'll examine the ways to use transforms and discuss the available transform types.

Getting ready

Make sure Visual Studio is up and running.

How to do it...

We'll create some images and apply a rotation transform to some, showing the common properties that accept transforms:

	Create a new WPF application named CH09.Transforms.
	Add an existing image to the project, such as "penguins.jpg" from the Sample Pictures folder.
	Open MainWindow.xaml. Add the following properties to the Window:SizeToContent="WidthAndHeight" FontSize="16"
ResizeMode="CanMinimize"

	Remove the Width and Height property settings of the Window.
	Add three columns to the existing Grid:<Grid.ColumnDefinitions>
<ColumnDefinition />
<ColumnDefinition Width="40"/>
<ColumnDefinition />
</Grid.ColumnDefinitions>

	Add a StackPanel in the first column that contains three images, the middle being rotated 45 degrees using a RotateTransform:<StackPanel>
<Image Source="Penguins.jpg" Height="100" Margin="5" />
<Image Source="Penguins.jpg" Height="100" Margin="5">
<Image.LayoutTransform>
<RotateTransform Angle="45" />
</Image.LayoutTransform>
</Image>
<Image Source="Penguins.jpg" Height="100" Margin="5" />
</StackPanel>

	Add another StackPanel with three images to the third column of the Grid, this time rotating the second image with the RenderTransform property:<StackPanel Grid.Column="2">
<Image Source="Penguins.jpg" Height="100" Margin="5" />
<Image Source="Penguins.jpg" Height="100" Margin="5"
RenderTransformOrigin=".5,.5">
<Image.RenderTransform>
<RotateTransform Angle="45" />
</Image.RenderTransform>
</Image>
<Image Source="Penguins.jpg" Height="100" Margin="5" />
</StackPanel>

	Run the application and observe the results:[image: How to do it...]

How it works...

Transforms are based around the abstract Transform class. A transform is inherently represented by a 3 x 3 matrix (Matrix struct). In fact, we can specify the exact matrix element using one of the derivatives of Transform, MatrixTransform (although that is uncommon).

The example code creates a RotateTransform object with an Angle of 45 degrees (angles are not expressed in radians, as they are with the Math class methods). That transform is applied to an element using the UIElement.RenderTransform or FrameworkElement.LayoutTransform properties. The former makes the transformation after the layout pass is over, while the latter takes the transform changes into consideration as part of the layout phase.
This means that RenderTransform does not take into account the new size requirements (either bigger or smaller) for layout purposes, so the element may overlap other elements (depending on the particular transform). The middle right image overlaps the first and third images because its new space requirements were not taken into account. The middle left image, on the other hand, using LayoutTransform, received the extra space it needs because of the actual transform.
As RenderTransform happens after the layout phase, it is important to the anchor point where transform begins. This can be changed using the RenderTransformOrigin property (of type Point), (0,0) being the default - meaning the top left corner of the affected element. The value is relative to the size of the element, so (0.5,0.5) means the element center and (1,1) means the bottom right corner of the element's bounding rectangle. Technically, the value may be outside the (0,0)-(1,1) range if desirable.
Here's an example of the effect RenderTransformOrigin has when rotation is used:

[image: How it works...]
The middle left image has RenderTransformOrigin equal to (.5,.5). The middle right image maintains the default value of (0,0). Notice the rotation is happening around the top-left corner of the image.
Using RenderTransform is more light weight than using LayoutTransform, especially when animations are involved. Try to use RenderTransform whenever possible in lieu of LayoutTransform.

There's more...

The common Transform derivatives to use are TranslateTransform (translations being set with the X and Y properties), ScaleTransform (resizing with the ScaleX and ScaleY properties, as well as the center point around which scaling happens with the CenterX and CenterY properties), and RotateTransform (rotating by the angle specified with the Angle property as well setting an alternate center of rotation with the CenterX and CenterY properties).

ScaleTransform can be used to flip the coordinate system by specifying negative values for ScaleX and/or ScaleY (effecting flipping the affected objects). Note that their default value is 1.0, that is maintain original size. A value larger than 1 increases size while a value between 0 and 1 decreases size.
The last useful transform is TransformGroup. This simply allows combining transforms to create a new transform. Behind the scenes this means multiplying matrices to get a result matrix. The important thing to note is that matrix multiplication is not commutative meaning that in general the order of transforms matters.
The last transform type is SkewTransform, the weirdest of them all. This transform can be simply explained as turning a rectangle into a parallelogram. The AngleX and AngleY properties are used to set the skew angle and the CenterX and CenterY properties may be used to change the reference point of skewing.
Other uses for transforms

Transforms are powerful tools, not just because of their direct capabilities, but also because they are animatable - every property can be independently animated to produce effects only limited by creativity and imagination.

Transforms are not used just for elements. Geometries can be arbitrarily transformed using the Geometry.Transform property. Brushes can be transformed as well using the Brush.Transform property. Both properties, coupled with possible animation, are a powerful tool in the WPF graphics arsenal.

Manipulating a bitmap programmatically

Bitmaps are used in one form or another mainly to display existing images. These typically are placed as a source of an Image element. When a static image is added to a project and set to the Image.Source property, a BitmapImage is created behind the scenes. This simple class provides a read-only view to the bitmap's bits.

Sometime it's desirable to manipulate a bitmap's bit values dynamically based on a runtime algorithm. WPF provides the WriteableBitmap that allows us to do just that. Let's look at how to use this capability.
Getting ready

Make sure Visual Studio is up and running.

How to do it...

We'll create an application that displays the famous Mandelbrot set, requiring calculating colors for each pixel in the resulting image. This will show a typical usage of WriteableBitmap.
	Create a new WPF application named CH09.MandelbrotSet.
	Open MainWindow.xaml. Add the following Image element inside the existing Grid:<Image Width="600" Height="600" x:Name="_image" />

	Set the following properties on the Window itself:Title="Mandelbrot Set" SizeToContent="WidthAndHeight"
ResizeMode="CanMinimize"

	Remove the Width and Height property settings of the Window.
	Open MainWindow.xaml.cs. Add a private field of type WriteableBitmap:WriteableBitmap _bmp;

	In the constructor, after the call to InitializeComponent, we'll create a WriteableBitmap object (having a potential grayscale image) and connect it to the Image element:_bmp = new WriteableBitmap(600, 600, 0, 0, PixelFormats.Gray8,
null);
_image.Source = _bmp;

	Add a reference to the System.Numeric assembly. This is required to get the support for the Complex value type.
	Add a using statement for the System.Numeric namespace for the same reason.
	The application calculates something known as the Mandelbrot Set. Add a private method named MandelbrotColor that calculates the color of a given point expressed as a complex number:int MandelbrotColor(Complex c) {
int color = 256;
Complex z = Complex.Zero;
while(z.Real + z.Imaginary < 4 && color > 0) {
z = z * z + c;
color--;
}
return color;
}

	Add a private method named CalcMandelbrotSet:void CalcMandelbrotSet() {
}

	Let's implement its body. First, we'll set up the boundaries for calculations:var from = new Complex(-1.5, -1);
var to = new Complex(1, 1);
double deltax = (to.Real - from.Real) / _bmp.Width;
double deltay = (to.Imaginary - from.Imaginary) / _bmp.Height;

	Next, we'll allocate an array of bytes that would hold color values for an entire row:byte[] pixels = new byte[_bmp.PixelWidth];

	Now we should create a double loop to walk through all pixels in the bitmap (600 x 600) and calculate the color values for each row:for(int y = 0; y < _bmp.PixelHeight; y++) {
for (int x = 0; x < _bmp.PixelWidth; x++)
pixels[x] = (byte)MandelbrotColor(from + new Complex(
x * deltax, y * deltay));

	After the x loop is done, we'll update that particular line in the actual bitmap:_bmp.WritePixels(new Int32Rect(0, y, _bmp.PixelWidth, 1),
pixels, _bmp.BackBufferStride, 0);

	Close the outer loop and the method itself.
	Add a call to CalcMandelbrot as the last operation in the constructor.
	Run the application. You should see output similar to this:[image: How to do it...]

How it works...

WriteableBitmap inherits from the abstract BitmapSource class, which itself derives from ImageSource. This means WriteableBitmap is accepted as any other ImageSource, such as with the Image.Source property.

Creating a WriteableBitmap involves selecting the bitmap width and height and its format. The preceding code uses PixelFormats.Gray8, which means one byte per pixel consisting of gray levels only. PixelFormats is a static class, consisting of many predefined pixel formats, such as Bgr24, Gray2, Rgb24, and bgra32. The format is important when changing actual pixels.
To change the actual pixels, the code uses the WritePixels method, which accepts an appropriate array with the values that need to be set (in this case, byte values representing gray levels) and a Rect specifying the region to change. The stride parameter indicates the byte difference between two consecutive lines in the bitmap. This may seem obvious - the pixel width of the bitmap multiplied by the number of bytes per pixel. This is not always the case (because of alignment issues), so it's always a good idea to get that information from the bitmap itself (using the BackBufferStride property).

There's more...

An alternative method for changing the contents of a WriteableBitmap is to call the Lock method and then retrieve a direct pointer to the underlying bitmap bits using the BackBuffer property (of type IntPtr). Lock causes WPF not to update whoever is holding that bitmap until the Unlock method has been called.

This returned pointer may be handed off to native code, or manipulated in C# inside an unsafe context. This allows many updates to happen without bothering WPF with updates. Before calling Unlock, the AddDirtyRect should be called to give WPF a hint to location of the changed bits.

WritePixels conceptually calls Lock, writes the pixels, calls AddDirtyRect, and calls Unlock. It does, however, make a lot of parameter and other checks, which makes it slower compared to directly calling Lock/Unlock and manipulating the bits.
How about higher-level access to WriteableBitmap?

WriteableBitmap is really a bare-bones object. It provides the most primitive type of access to the bitmap bits. Calling WritePixels or using the BackBuffer property is too low level for some scenarios. There are no methods to draw 2D constructs such as lines, ellipses, or rectangles; no easy way to copy parts of images to a given WriteableBitmap; no transforms on the existing bits.

Codeplex, Microsoft's open source community, has a project named WriteableBitmapEx, that provides an impressive set of extension methods that fill this gap (http://writeablebitmapex.codeplex.com/). The library is available not just for WPF, but for Silverlight, Windows Phone, and Windows Runtime (Windows 8 runtime for Metro style applications).

See also

For more information on the Mandelbrot Set, check out Wikipedia at http://en.wikipedia.org/wiki/Mandelbrot_set.

Creating adorners

Adorners are elements that exist in a distinct adorner layer, not part of the normal visual tree. All adorners in a particular layer always sit on top (higher Z index) of the element they adorn. This characteristic of adorners makes them an excellent choice for things such as selection handles, popup elements, and other special tasks where bothering with the normal visual tree is impossible or complicated at best.

In this recipe, we'll take a look at creating and using adorners to indicate selection.
Getting ready

Make sure Visual Studio is up and running.

How to do it...

We'll create an application that draws a bunch of circles that can be dragged with the mouse. The currently selected circle will be marked with an adorner.

	Create a new WPF application named CH09.AdornerDemo.
	Open MainWindow.xaml. Replace the existing Grid with a Canvas as follows:<Canvas x:Name="_canvas" Background="White">
</Canvas>

	Open MainWindow.xaml.cs. We want to create a bunch of random circles that can be dragged with the mouse.
	Create a private method named CreateCircles and implement as follows:void CreateCircles() {
var rnd = new Random();
int start = rnd.Next(30);
for(int i = 0; i < 10; i++) {
var circle = new Ellipse {
Stroke = Brushes.Black,
StrokeThickness = 1,
Width = 50,
Height = 50
};
var fill = typeof(Brushes).GetProperties(
BindingFlags.Static | BindingFlags.Public)[start]
.GetValue(null, null) as Brush;
circle.Fill = fill;
Canvas.SetLeft(circle, rnd.NextDouble() * ActualWidth);
Canvas.SetTop(circle, rnd.NextDouble() * ActualHeight);
_canvas.Children.Add(circle);
start += 2;
}
}

	This method creates 10 randomly colored, randomly positioned circles. Add to the constructor a call to this method when the Loaded event fires (important so that ActualWidth and ActualHeight are updated):Loaded += delegate {
CreateCircles();
};

	An adorner type must be created. Add a new class named SelectionAdorner.
	Add using statements for the System.Windows, System.Windows.Media, and System.Windows.Documents namespaces.
	Make the SelectionAdorner inherit from Adorner and implement a constructor that accepts an element and calls the base constructor:class SelectionAdorner : Adorner {
public SelectionAdorner(UIElement element)
: base(element) {
}

	An adorner needs to override OnRender and provide its visual appearance. Add the following static helper graphic objects to the SelectionAdorner class:static readonly Pen _pen = new Pen(Brushes.Black, 1) {
DashStyle = DashStyles.Dash };
static readonly Brush _rectFill = new SolidColorBrush(
Color.FromArgb(30, 0, 0, 255));
static readonly Brush _circleFill = new SolidColorBrush(
Color.FromArgb(60, 255, 0, 0));
const double _circleRadius = 6;

	Override OnRender as follows:protected override void OnRender(DrawingContext dc) {
dc.DrawRectangle(_rectFill, _pen, new Rect(
AdornedElement.DesiredSize));
dc.DrawEllipse(_circleFill, null, new Point(0, 0),
_circleRadius, _circleRadius);
dc.DrawEllipse(_circleFill, null, new Point(
AdornedElement.DesiredSize.Width, 0),
_circleRadius, _circleRadius);
dc.DrawEllipse(_circleFill, null, new Point(
AdornedElement.DesiredSize.Width,
AdornedElement.DesiredSize.Height),
_circleRadius, _circleRadius);
dc.DrawEllipse(_circleFill, null, new Point(
0, AdornedElement.DesiredSize.Height),
_circleRadius, _circleRadius);
}

	Open MainWindow.xaml. Add event handlers to the Canvas for the MouseLeftButtonDown, MouseLeftButtonUp, and MouseMove events.
	Open MainWindow.xaml.cs. Add the following private fields that will help manage the state in the Window:Point _current;
FrameworkElement _currentShape;
bool _moving;
Adorner _adorner;

	We'll now implement the MouseLeftButtonDown event handler. First, we'll remove any previous adorner if it exists:var layer = AdornerLayer.GetAdornerLayer(_canvas);
if(_adorner != null) {
layer.Remove(_adorner);
_adorner = null;
}

	Next, we'll check if a circle was clicked or an empty space. If it's a circle, we'll save some state and add an adorner for that circle:var shape = e.Source as Shape;
if(shape != null) {
_moving = true;
_current = e.GetPosition(_canvas);
_currentShape = shape;
// draw adorner
_adorner = new SelectionAdorner(shape);
layer.Add(_adorner);
_canvas.CaptureMouse();
}

	Now we'll implement the MouseMove event handler. In the case we're dragging a circle, we need to change its position accordingly:if(_moving) {
var pt = e.GetPosition(_canvas);
Canvas.SetLeft(_currentShape, Canvas.GetLeft(_currentShape)
+ pt.X - _current.X);
Canvas.SetTop(_currentShape, Canvas.GetTop(_currentShape)
+ pt.Y - _current.Y);
_current = pt;
}

	In the MouseLeftButtonUp event handler, we simply do some cleanup:if(_moving) {
_moving = false;
_canvas.ReleaseMouseCapture();
}

	Run the application and drag some circles. Notice the adorner on the currently selected circle. If you click an empty space, the adorner is removed.[image: How to do it...]

How it works...

Adorners are placed in their own layer, away from the accessible visual tree. This layer can be accessed only programmatically via the static AdornerLayer.GetAdornerLayer method. Given that AdornerLayer, adorners can be added with Add and removed with Remove.

An adorner must inherit from the abstract Adorner class and provide some visual representation by overriding the OnRender method. The AdornedElement property inherited from Adorner provides the information necessary to create the required graphical representation, such as the size of an element.

There's more...

The adorner layer itself is hosted in an AdornerDecorator (a Decorator). This can be viewed using the WPF Visualizer with the debugger. Here's a screenshot with an application running and an existing adorner:

[image: There's more...]

Creating property-based animations

WPF includes a sophisticated and elegant animation engine that takes animations to the declarative level. Instead of dealing with timers and graphic updates, an animation object holds all the required information for the animation to commence. WPF does the rest. In this recipe, we'll take a look at property-based animations - the simplest and most often used kind.

Getting ready

Make sure Visual Studio is up and running.

How to do it...

We'll create some property-based animations on some shapes inside a Canvas, showing the basic steps involved in creating animations:

	Create a new WPF application named CH09.SimpleAnimation.
	Open MainWindow.xaml. Add the following two rows to the existing Grid:<Grid.RowDefinitions>
<RowDefinition Height="Auto" />
<RowDefinition />
</Grid.RowDefinitions>

	Add a Canvas to the second row with a bunch of elements:<Canvas Grid.Row="1">
<Rectangle Canvas.Left="60" Canvas.Top="40" Width="40"
Height="40" x:Name="r1" Fill="Red" Stroke="Black"
StrokeThickness="2">
<Rectangle.RenderTransform>
<RotateTransform x:Name="rot1" />
</Rectangle.RenderTransform>
</Rectangle>
<Ellipse Canvas.Left="20" Canvas.Top="100" Width="40"
Height="40" x:Name="e1" Fill="Blue" Stroke="Black"
StrokeThickness="2"/>
<Rectangle Canvas.Left="20" Canvas.Top="160" Width="350"
Height="60" x:Name="r2" Stroke="Black"
StrokeThickness="2">
<Rectangle.Fill>
<LinearGradientBrush EndPoint="1,0">
<GradientStop Offset="0" Color="Yellow" />
<GradientStop Offset="1" Color="Black"
x:Name="g1" />
</LinearGradientBrush>
</Rectangle.Fill>
</Rectangle>
</Canvas>

	Add a horizontal StackPanel in the first row of the Grid.
	Add a button to the StackPanel as follows:<Button Content="Rotate rectangle" Margin="4" />

	Add a Click event handler for this button. In the first example, we'll create the animation in code to rotate the first rectangle within the Canvas.
	Add the following to the Click event handler:var animation = new DoubleAnimation(360,
TimeSpan.FromSeconds(2), FillBehavior.Stop);
Storyboard.SetTarget(animation, rot1);
rot1.BeginAnimation(RotateTransform.AngleProperty, animation);

	Run the application and click the button. The Rectangle should rotate 360 degrees around its top-left corner.
	Open MainWindow.xaml. The next animation should move the ellipse to the right (and back) - this time entirely in XAML.
	Add a button to the StackPanel with an event trigger:<Button Content="Move Circle" Margin="4">
<Button.Triggers>
<EventTrigger RoutedEvent="Button.Click">
<BeginStoryboard>
<Storyboard>
<DoubleAnimation
Storyboard.TargetName="e1"
Storyboard.TargetProperty="(Canvas.Left)"
To="400" Duration="0:0:3"
AutoReverse="True"/>
</Storyboard>
</BeginStoryboard>
</EventTrigger>
</Button.Triggers>
</Button>

	Run the application and click this button. The ellipse should move to the right and then reverse its motion back to the starting point.
	The next animation will be of a color. Add another button to the StackPanel and set up an event trigger as follows:<Button Content="Animate Color" Margin="4">
<Button.Triggers>
<EventTrigger RoutedEvent="Button.Click">
<BeginStoryboard>
<Storyboard>
<ColorAnimation To="Red" Duration="0:0:4"
Storyboard.TargetName="g1"
Storyboard.TargetProperty="Color"
AutoReverse="True" />
</Storyboard>
</BeginStoryboard>
</EventTrigger>
</Button.Triggers>
</Button>

	Run the application and click the third button - watch one of the gradients change from black to red and then reverse. Click more than one button - you should see multiple animations running at the same time. Here's a snapshot:[image: How to do it...]

How it works...

Property-based animations are based on a single idea: changing a dependency property from one value to another in a specified amount of time. Various animation classes exist, based on the type of property being animated, such as DoubleAnimation, ColorAnimation, and PointAnimation (all in the System.Windows.Media.Animation namespace). All animation types inherit from the abstract Timeline class that provides most of the common properties to all animation types.

Animations may be created manually by constructing the appropriate animation type, specifying properties and then calling BeginAnimation on the element to animate, providing the dependency property to animate and the animation object. This is illustrated in step 7: a DoubleAnimation object is created to animate the Angle property (a double) of a RotateTransform object. Various constructors exist - and there's always a way to use simple properties - in this case the To value is set, the duration (a Duration object, convertible from a TimeSpan) and a FillBehavior (what to do when the animation ends - see more in the next section). Then BeginAnimation is called on the rectangle object to animate with the dependency property field and the just created animation object.

Although animations in code are sometimes useful when the animation parameters are highly dynamic, more often than not animations are created in XAML.
The most useful object to use is a Storyboard, which is a kind of Timeline (a ParallelTimeline to be exact), that can contain multiple animations that are guaranteed to be synchronized (start at the same time); there can even be other Storyboard objects if needed. The other advantage of a Storyboard is its ability to be manipulated by TriggerAction objects related to animations (such as BeginStoryboard) available with event triggers and property triggers.
To set up an animation with a Storyboard, child animation objects are created (such as DoubleAnimation) with the relevant properties. Two attached properties defined on Storyboard should be used, TargetProperty and TargetName (or Target if more convenient). In the ellipse example, TargetName is "e1" (the ellipse name) and TargetProperty is "(Canvas.Left)". Note the parenthesis - these are required when animating an attached property.
The Storyboard class defines several Begin methods that can be used to run a Storyboard programmatically. A BeginStoryboard object is typically used in XAML to start a Storyboard.
The third example uses a ColorAnimation, to demonstrate how similar the various animation types are - they mainly differ in the type, but the same concepts apply.

There's more...

The following common properties are available on most animation types (partial list):
	From: Indicates the starting value for animation. If omitted, uses the current value.
	To: It is the target value of the animation. If omitted, it means the property value without the animation effect.
	By: Sometimes more convenient to use instead of the To property. Not all animation types support it - for example, for ColorAnimation there is no meaning to By.
	Duration: The duration of animation and is similar (and convertible from) to a TimeSpan. Adds two special values, Duration.Automatic (one second for true animation types such as DoubleAnimation, end of child animations for container Timelines) and Duration.Forever (infinite length). Mostly specified in XAML using the format "hrs:min:sec.msec".
	FillBehavior: Indicates the animation's behavior when it ends. FillEnd (the default) means the last animation value is kept; the previous value (before the animation) will have no effect. The other value, Stop, destroys the animation, and reverts the property to its value without the animation present.
	BeginTime: Sets a delay before the animation really begins. Can be used to synchronize follow-ups in Storyboards.
	AutoReverse: Indicates if the animation should reverse automatically. If true, the total animation duration is effectively doubled.
	SpeedRatio: Allows speeding up or slowing down the timeline (effectively changing the duration).
	RepeatBehavior: Specifies how many times, or the total time, to repeat the animation; can be RepeatBehavior.Forever to repeat the animation for eternity (mostly useful when AutoReverse is true).

Alternative way to specify the animation property

Sometimes the property we want to animate is not available on an easily named object. For example, the following LinearGradientBrush is used in the code example:

<LinearGradientBrush EndPoint="1,0">
<GradientStop Offset="0" Color="Yellow" />
<GradientStop Offset="1" Color="Black" x:Name="g1" />
</LinearGradientBrush>

We want to animate the color of the second GradientStop and that's conveniently named "g1". However, if that brush is the result of (for example) data binding, the second gradient will not be named. Still we can get to it in a slightly longer way starting from the actual element itself (the Rectangle, named "r2") as follows:
Storyboard.TargetName="r2" Storyboard.TargetProperty=
"Fill.(LinearGradientBrush.GradientStops)[1].Color"

The parentheses are required. This indicates that the property Fill is in fact of type LinearGradientBrush (and not a generic Brush) and that the interesting property is GradientStops; then we use the required index because that property has an indexer.

More on storyboards

Storyboard objects can be started with the BeginStoryboard action, but there are other actions that can be used to otherwise control an animation, including StopStoryboard, PauseStoryboard, ResumeStoryboard, SeekStoryboard, SkipStoryboardToFill, SetStoryboardSpeedRatio, and RemoveStoryboard. These are less commonly used, but it's good to know they're there if needed.

Storyboard (and other Timeline based types) supports a bunch of events (all regular .NET events, not routed events), of which the most useful is Completed that notifies when a Timeline completes. This can be used to remove the Storyboard, set some properties, or anything else that requires special logic when an animation is done.

Animations with Expression Blend

Although simple animations are possible to do with direct XAML coding, more complex animations that require precision are usually done using Expression Blend (preferably by a graphic designer). Blend has a timeline view accessible from the Objects and Timeline window that allows dragging to a specific time stamp and then changing properties to their values at that time stamp. This can go on as needed - the correct XAML will be generated by Blend (although usually more verbose than would be created by careful XAML manipulation). Working with Expression Blend is beyond the scope of this book, but some experimentation can go a long way.

[image: Animations with Expression Blend]

Should I always use animations?

Some applications benefit directly from animations, such as graphic-heavy applications, data visualization, and games .

For other, more "traditional" applications, it may seem that animations may not be very important - even something to be avoided. Out of place animations that exist just for their own sake is certainly something to avoid. However, done right, animations can enhance the user experience in a subtle and unforgettable way. Small animations that may not be noticeable at all can have an impact that is only realized when those animations are removed.

Creating path-based animations

Property-based animations are certainly the most common animations to use. WPF supports another form of animation - path-based animation; that is, an animation that runs along a PathGeometry. Let's see how to achieve that.

Getting ready

Make sure Visual Studio is up and running.

How to do it...

We'll create a circle that moves along a path laid out by a PathGeometry object:

	Create a new WPF application named CH09.PathBasedAnimation.
	Open MainWindow.xaml. Add a PathGeometry object to the Resources property of Window that describes a rectangular path:<Window.Resources>
<PathGeometry x:Key="rg">
<PathFigure IsClosed="True" StartPoint="20,20">
<PolyLineSegment
Points="300,20 300,200 20,200 20,200" />
</PathFigure>
</PathGeometry>
</Window.Resources>

	Add two rows to the existing Grid as follows:<Grid.RowDefinitions>
<RowDefinition Height="Auto" />
<RowDefinition />
</Grid.RowDefinitions>

	Add a Canvas to the second row of the Grid that holds an Ellipse that would be animated to move along the path defined by the geometry:<Canvas Grid.Row="1">
<Ellipse Fill="Red" Stroke="Black" StrokeThickness="2"
Width="40" Height="40" x:Name="e1"
Canvas.Left="20" Canvas.Top="20"/>
</Canvas>

	Add a button to the first row, with an event trigger for the Click event:<Button Content="Start Animation" FontSize="16" Margin="8">
<Button.Triggers>
<EventTrigger RoutedEvent="Button.Click">
</EventTrigger>
</Button.Triggers>
</Button>

	When that event hits, we want to start a Storyboard to animate the Canvas.Left and Canvas.Top properties (at the same time) based on the defined PathGeometry. Add the following inside the EventTrigger:<BeginStoryboard>
<Storyboard RepeatBehavior="Forever">
<DoubleAnimationUsingPath Duration="0:0:3"
Storyboard.TargetName="e1"
Storyboard.TargetProperty="(Canvas.Left)"
PathGeometry="{StaticResource rg}" Source="X" />
<DoubleAnimationUsingPath Duration="0:0:3"
Storyboard.TargetName="e1"
Storyboard.TargetProperty="(Canvas.Top)"
PathGeometry="{StaticResource rg}" Source="Y"/>
</Storyboard>
</BeginStoryboard>

	Run the application and click the button. The circle should move in a rectangular fashion (repeating its path indefinitely).[image: How to do it...]

How it works...

Path based animations use a PathGeometry (see the Creating a custom shape recipe for more information on a PathGeometry) as a path (composed of the figures making up the PathGeometry). As PathGeometry is a 2D representation of a path, it can be provided directly to a Point based animation (PointAnimationUsingPath), but in this case, where Canvas.Left and Canvas.Top are the target properties to be animated, we use the DoubleAnimationUsingPath.Source property to indicate which coordinate we want to use for a "regular" double value (X or Y):

<DoubleAnimationUsingPath ... PathGeometry="{StaticResource rg}"
Source="X" />

There's more...

There is another type of animation supported by WPF - key frame animations. These animations work with "key frames" - specific values along an animation, where WPF interpolates between points in one of several ways (such as linear or Bezier).
Here's a simple example that animates a property of type double (the Offset of GradientStop) in linear piecewise steps:
<Storyboard>
<DoubleAnimationUsingKeyFrames Storyboard.TargetName="gs"
Storyboard.TargetProperty="Offset" AutoReverse="True"
RepeatBehavior="Forever">
<LinearDoubleKeyFrame Value="0" KeyTime="0:0:0" />
<LinearDoubleKeyFrame Value=".3" KeyTime="0:0:2" />
<LinearDoubleKeyFrame Value=".8" KeyTime="0:0:5" />
<LinearDoubleKeyFrame Value="1" KeyTime="0:0:7" />
<LinearDoubleKeyFrame Value="1.5" KeyTime="0:0:8" />
</DoubleAnimationUsingKeyFrames>
</Storyboard>

Animation performance

Complex or multiple animations may take their toll on application performance. Although WPF works by leveraging DirectX, this is not "raw" DirectX, and in any case may depend on graphic hardware capabilities. Potentially, resource hogging animations should be optional there should be a way for the user to turn them off, or at least remove some of them to keep the application from consuming too many resources.

Here are some tips on animation performance:

	Animating font sizes is typically slow - avoid these.
	If opacity animation is required, try to animate a brush opacity (Brush.Opacity) instead of element opacity (UIElement.Opacity
	Decrease the frame rate for slow changing animations; there's no need for WPF to refresh more times than necessary. To set the desired frame rate, set the attached Timeline.DesiredFrameRate property on a top-level Storyboard object. The opposite may also be desired - increase the frame rate for fast changing animations to reduce tearing effects.
	Stop running animations when the application is deactivated (the user has switched to another application; use the Application.Deactivated event).

Creating custom animations

The three types of animations provided by WPF (property, path, and key frame) are declarative in nature, which is in large part what makes them easy to use. There's no need to handle timers, change positions manually, or anything like that.

Occasionally, dynamic changes are required which cannot be represented using the built-in animations. Examples include movements that use complex formulas and changes based on user interaction. In such scenarios, it's possible to perform the changes manually with some help from WPF.
Getting ready

Make sure Visual Studio is up and running.

How to do it...

We'll create a bouncing ball application that uses complex movements and optional user interaction to control the ball:
	Create a new WPF application named CH09.CustomAnimation.
	Add a new class named Ball. Add using statements to the System.ComponentModel and System.Windows namespaces.
	Implement the INotifyPropertyChanged interface with the event declaration and a simple OnPropertyChanged method:class Ball : INotifyPropertyChanged {
public event PropertyChangedEventHandler PropertyChanged;
void OnPropertyChanged(string propName) {
var pc = PropertyChanged;
if (pc != null)
pc(this, new PropertyChangedEventArgs(propName));
}

	Add some fields and properties controlling the position, size, and speed of the ball:Point _position, _velocity;
public double X {
get { return _position.X; }
set {
_position.X = value;
OnPropertyChanged("X");
}
}
public double Y {
get { return _position.Y; }
set {
_position.Y = value;
OnPropertyChanged("Y");
}
}
public double Width { get; set; }
public double Height { get; set; }
public Point Velocity {
get { return _velocity; }
set {
_velocity = value;
OnPropertyChanged("Velocity");
}
}

	Add a new class named Environment that adds some realism to the bouncing ball simulation. Implement with the following code:class Environment : INotifyPropertyChanged {
public static double Traction = .95;
double _gravity;
public double Gravity {
get { return _gravity; }
set {
_gravity = value;
OnPropertyChanged("Gravity");
}
}
public event PropertyChangedEventHandler PropertyChanged;
void OnPropertyChanged(string propName) {
var pc = PropertyChanged;
if(pc != null)
pc(this, new PropertyChangedEventArgs(propName));
}
}

	The Traction value will be used to slow down the ball when impacting a wall; the Gravity property is pretty self-evident.
	Open Ball.cs. Add a property and a constructor for the Environment type:public Environment Environment { get; private set; }
public Ball(Environment env) {
Environment = env;
}

	We need to set up a method that moves the ball in the current direction (Velocity property) and flips the direction if it collides with the bounds of the environment. Add a method to the Ball class implemented with the following code:public void Move(Rect bounds) {
_velocity.Y += Environment.Gravity;
X += Velocity.X;
Y += Velocity.Y;
bool xhit = false, yhit = false;
if(X < bounds.Left) {
X = bounds.Left;
xhit = true;
}
else if(X > bounds.Right - Width) {
X = bounds.Right - Width;
xhit = true;
}
if(Y < bounds.Top) {
Y = bounds.Top;
yhit = true;
}
else if(Y > bounds.Bottom - Height) {
Y = bounds.Bottom - Height;
yhit = true;
}
if(xhit) {
_velocity.X = -_velocity.X;
_velocity.X *= Environment.Traction;
}
if(yhit) {
_velocity.Y = -_velocity.Y;
_velocity.Y *= Environment.Traction;
}
}

	Open MainWindow.xaml. Add two rows to the exiting Grid:<Grid.RowDefinitions>
<RowDefinition Height="Auto" />
<RowDefinition />
</Grid.RowDefinitions>

	Add a StackPanel to the first row with a Slider bound to the Gravity property:<StackPanel Orientation="Horizontal" Margin="8">
<TextBlock Text="Gravity:" VerticalAlignment="Center"
FontSize="15" />
<Slider Minimum="0" Maximum="3" Margin="10,0,0,0"
Value="{Binding Environment.Gravity}"
Width="100"/>
</StackPanel>

	Add a Canvas to the second row holding an Ellipse, to serve as the ball:<Canvas x:Name="_canvas" Grid.Row="1">
<Ellipse Fill="Red" Stroke="Black" StrokeThickness="2"
Cursor="Hand" Width="{Binding Width, Mode=TwoWay}"
Height="{Binding Height, Mode=TwoWay}"
Canvas.Left="{Binding X}" Canvas.Top="{Binding Y}" />
</Canvas>

	Open MainWindow.xaml.cs. Add some private fields to the MainWindow class:Ball _ball;
bool _grabbing;
private Point _mousePos, _lastDelta;
const double MaxSpeed = 20;

	Add the following lines to the constructor (after the call to InitializeComponent) to create a Ball object, initialize it, and register for the CompositionTarget.Rendering static event, which is the key to custom animations:var env = new Environment { Gravity = .8 };
_ball = new Ball(env) { Width = 40, Height = 40,
Velocity = new Point(3, 1) };
DataContext = _ball;
CompositionTarget.Rendering += CompositionTarget_Rendering;

	Implement the static event with the following code:void CompositionTarget_Rendering(object sender, EventArgs e) {
if(!_grabbing)
_ball.Move(new Rect(new Point(0, 0), _canvas.RenderSize));
}

	Open MainWindow.xaml. Add an event handler or the MouseLeftButtonDown, MouseMove, and MouseLeftButtonUp events on the Ellipse, so that the user can grab it and send it hurling in some direction:MouseLeftButtonDown="OnGrabObject" MouseMove="OnMouseMove"
MouseLeftButtonUp="OnReleaseObject"

	Implement OnGrabObject with the following code:void OnGrabObject(object sender, MouseButtonEventArgs e) {
_grabbing = true;
_mousePos = e.GetPosition(_canvas);
e.Handled = true;
var element = sender as FrameworkElement;
element.CaptureMouse();
}

	Implement OnMouseMove with the following code:void OnMouseMove(object sender, MouseEventArgs e) {
if(_grabbing) {
Point pt = e.GetPosition(_canvas);
_lastDelta = new Point(pt.X - _mousePos.X,
pt.Y - _mousePos.Y);
_ball.X += _lastDelta.X; _ball.Y += _lastDelta.Y;
_mousePos = pt;
}
}

	Implement OnReleaseObject with the following code:void OnReleaseObject(object sender, MouseButtonEventArgs e) {
if(_grabbing) {
_grabbing = false;
e.Handled = true;
((FrameworkElement)sender).ReleaseMouseCapture();
if(Math.Abs(_lastDelta.X) > MaxSpeed)
_lastDelta.X = MaxSpeed * Math.Sign(_lastDelta.X);
if(Math.Abs(_lastDelta.Y) > MaxSpeed)
_lastDelta.Y = MaxSpeed * Math.Sign(_lastDelta.Y);
_ball.Velocity = _lastDelta;
}
}

	Run the application. Move the slider to change the gravity factor. Grab the ball with the mouse and drag it in some direction.[image: How to do it...]

How it works...

The static CompositionTarget.Rendering event is fired before every frame is rendered by WPF - the last chance to change things before they are handed off to the rendering layer. The ball (ellipse) is moved in a way that is too complex, or at least unpredictable, for declarative animations.

Every frame the Ball.Move method is called is to change the ball's position, which is bound to the Canvas.Left and Canvas.Top properties of the Ellipse element, representing the ball. The Move method also checks if the ball is out of bounds; if it is, it reverses direction and the speed of the ball decreases a bit (based on the Environment.Traction field). The vertical speed is also changed by the amount of gravity to provide more realistic movement (if gravity is greater than zero).
The mouse event handlers in MainWindow allow the user to "grab" the ball (if she's quick enough) and drag it, sending it flying in that particular direction.

Adding animation easing to animations

Property-based animations are linear - they progress at a constant rate. This is fine for many scenarios, but for some scenarios this feels too mechanical. Key frame animations can use Bezier-based interpolations (which are certainly not linear), but it's not easy to configure or guess their effects.
Animation easing (introduced in WPF 4) provides a viable alternative that can turn a (maybe boring) linear animation into a non-linear one.

Getting ready

Make sure Visual Studio is up and running.

How to do it...

We'll create a linear animation and another same animation mutated with animation easing:

	Create a new WPF application named CH09.AnimationEasing.
	Open MainWindow.xaml. Add two rows to the existing Grid:<Grid.RowDefinitions>
<RowDefinition Height="Auto" />
<RowDefinition />
</Grid.RowDefinitions>

	Add a StackPanel to the first row of the Grid. Place two buttons inside similar to the following:<StackPanel Orientation="Horizontal">
<Button Content="Linear Animation" Margin="8"
FontSize="16" />
<Button Content="Animation with Easing" Margin="8"
FontSize="16" />
</StackPanel>

	Add a Canvas to the second row of the Grid. Add an Ellipse to the Canvas to be used for animation purposes:<Canvas Grid.Row="1">
<Ellipse Fill="Red" Stroke="Black" StrokeThickness="2"
Width="40" Height="40" Canvas.Left="20"
Canvas.Top="30" x:Name="e1"/>
</Canvas>

	Let's set the animations using an event trigger. Add the following Triggers property for the first button that uses a regular linear animation:<Button.Triggers>
<EventTrigger RoutedEvent="Button.Click">
<BeginStoryboard>
<Storyboard>
<DoubleAnimation To="400" From="20"
Storyboard.TargetName="e1"
Storyboard.TargetProperty="(Canvas.Left)"
Duration="0:0:3" />
</Storyboard>
</BeginStoryboard>
</EventTrigger>
</Button.Triggers>

	The animation moves the circle across the window in 3 seconds. Add a similar Triggers property to the second button, but this time set up animation easing for the DoubleAnimation object:<Button.Triggers>
<EventTrigger RoutedEvent="Button.Click">
<BeginStoryboard>
<Storyboard>
<DoubleAnimation To="400" From="20"
Storyboard.TargetName="e1"
Storyboard.TargetProperty="(Canvas.Left)"
Duration="0:0:3" >
<DoubleAnimation.EasingFunction>
<CircleEase />
</DoubleAnimation.EasingFunction>
</DoubleAnimation>
</Storyboard>
</BeginStoryboard>
</EventTrigger>
</Button.Triggers>

	Run the application. Click the first button a regular linear animation runs. Click the second button, and the result is certainly noticeably different (unfortunately, no image can convey this; you'll need to actually run this to see the effects).[image: How to do it...]

How it works...

Animation easing applies a function to the animation value, altering it from its normally linear value (the value changes uniformly with time). There are 11 built-in easing functions in WPF 4.5, all deriving from the abstract EasingFunctionBase class. EasingFunctionBase implements the IEasingFunction interface (having just one method: Ease) and adds the EasingMode property that indicates whether the "easing" function should be applied at the start of the animation (EaseIn) the end of the animation (EaseOut), or both (EaseInOut).

The example uses the CircleEase function. As the EasingMode property was not modified, it uses its default value of EaseOut. The exact function used can be found in the documentation. CircleEase does not add any properties to customize its behavior, but many do. For example, the ElasticEase class (providing a spring-like behavior) adds two properties, Oscillations and Springiness, allowing fine tuning of its effects.

There's more...

The built-in easing functions should suffice for most needs. Special needs, however, may require creating a new easing function. To do that, we need to derive a class from EasingFunctionBase and implement two abstract methods: EaseInCore (which EasingFunctionBase defines) and CreateInstanceCore (required by Freezable, the base class of EasingFunctionBase). Here's a simple implementation that reverses the animation and slows it down at the start and/or end (depending on the EasingMode property):

class CustomEaseFunction : EasingFunctionBase {
protected override double EaseInCore(double time) {
return 1 - time * time;
}
protected override Freezable CreateInstanceCore() {
return new CustomEaseFunction();
}
}

The relevant function is EaseInCore. It accepts a normalized time argument, between 0 and 1, and should return a new normalized value. In the trivial case, we can return the same value we get, and that is a regular linear animation.
We should return something different, typically based on some formula. However, it's important to make sure the formula provides values in the 0 to 1 range, otherwise the animation will move out of its from/to values (which may be ok in some cases). Creating a good function is not an easy task. The preceding function, for instance, behaves ok in EaseIn and EaseOut modes, but becomes weird in EaseInOut mode. Getting the function just right may not be easy.

Thankfully, with EasingFunctionBase, there's no need to tackle the EaseOut or EaseInOut easing modes, as these are computed automatically (by using a symmetric approach).

Using custom effects with pixel shaders

WPF 4 includes two special effect classes, BlurEffect and DropShadowEffect. These are built internally using pixel shaders, which are little programs that run on the graphics processing unit (GPU) as one of the final parts of rendering. These shaders originate from DirectX (WPF's lowest level rendering engine), so other effects can be used with the proper setup. Let's take a look at using a custom pixel shader to get special effects, otherwise very difficult or slow to achieve.

Getting ready

To compile shader files, you'll need the DirectX SDK, which can be downloaded from the DirectX portal at http://msdn.microsoft.com/en-US/directx. Click on Get the latest DirectX SDK, download the installer, and install the SDK.

How to do it...

We'll create a simple shader effect and make it available to WPF:
	Create a new WPF application named CH09.CustomEffect.
	Add a folder to the project named Effects.
	Add a new text file to the newly created folder and name it red.fx. This is the pixel shader code.
	Add the following High Level Shader Language (HLSL) code to the newly created file:sampler2D input : register(s0);
float4 main(float2 uv : TEXCOORD) : COLOR {
float4 src = tex2D(input, uv);
float4 dst = src;
dst.gb = 0;
return dst;
}

	This code strips the green and blue components of every pixel color. Save the file.
	We need to compile the HLSL file to its binary format by using the fxc.exe compiler (the effects compiler), part of the DirectX SDK. Open the DirectX command prompt by clicking the Start button, going to Programs | DirectX SDK | DirectX SDK Command Prompt (in Windows 8 go to the Start screen and type DirectX, and locate the DirectX SDK Command Prompt result).
	In the command prompt, navigate to the Effects folder that was created and type in the following command:fxc /T ps_2_0 /E main /Fo red.ps red.fx

	If everything goes well, a success message should be displayed:[image: How to do it...]

	If the compiler complains about a bad character at position (1,1), make sure you save the red.fx file with an ASCII based code page. To do this, select from the menu File | Advanced Save Options... and then select the Western European encoding as shown here:[image: How to do it...]

	The resulting file is red.ps, which is what we want. Add the file to Effects folder and change its Build Action to Resource.
	Now we need to create a custom effect class to wrap the effect. Add a new class to the project, named RedEffect.
	Derive the class from ShaderEffect (in the System.Windows.Media.Effects namespace).
	Add a special dependency property to the class to represent the implicit input to the shader using the following code inside the class:public static readonly DependencyProperty InputProperty =
RegisterPixelShaderSamplerProperty("Input",
typeof(RedEffect), 0);
public Brush Input {
get { return (Brush)GetValue(InputProperty); }
set { SetValue(InputProperty, value); }
}

	Add a public constructor to the class that loads the correct compiled shader, as shown in the following code snippet:public RedEffect() {
PixelShader = new PixelShader();
PixelShader.UriSource = new Uri("/Effects/red.ps",
UriKind.Relative);
UpdateShaderValue(InputProperty);
}

	We're now ready to test the effect. Open MainWindow.xaml and add two equal sized columns to the existing Grid:<Grid.ColumnDefinitions>
<ColumnDefinition />
<ColumnDefinition />
</Grid.ColumnDefinitions>

	Add an image file to the project, such as the Penguins.jpg from the Sample Images folder.
	Add an XML namespace mapping to the local namespace:xmlns:local="clr-namespace:CH09.CustomEffect"

	Add two images of penguins to each cell of the Grid, with the second image with the created effect applied on it:<Image Source="Penguins.jpg" />
<Image Source="Penguins.jpg" Grid.Column="1">
<Image.Effect>
<local:RedEffect />
</Image.Effect>
</Image>

	The designer view should already be a clue as to how this would look at runtime. Run the application anyway:[image: How to do it...]

How it works...

A pixel shader is practically the last stage of graphic processing (known as the rendering pipeline) done by the graphic card before the final pixel color is rendered to the frame buffer. This is the last chance to make changes to the resulting pixel color coming from previous processing stages.

To make actual changes, we need to execute code in the context of the GPU - that's the job of the little program typically written in High Level Shader Language (HLSL). HLSL is beyond the scope of this book, as it has nothing special to do with WPF it originates in DirectX -but briefly, HLSL is a C-like language with relevant extensions, able to receive a pixel (in the case of pixel shaders) and transform its color in any way desired. In our case, the pixel color was stripped of its B (blue) and G (green) components, maintaining the R (red) and A (alpha) from the original color:
float4 dst = src;
dst.gb = 0;

The syntax may be somewhat weird, but that's just a part of HLSL. Once the effect file is compiled with the FXC.exe compiler, it's added as a resource (the original source file is not needed), and a custom class is created to host the effect, loading it in the constructor.

The compilation line:
fxc /T ps_2_0 /E main /Fo red.ps red.fx

Roughly means: compile with pixel shader version 2.0 (guaranteed to work in WPF), with main being the entry function, send the output to the red.ps file and the input file (last argument) is red.fx.
The static PixelShader.RegisterPixelShaderSamplerProperty method connects a dependency property (in this case named Input) to the pixel input provided to the shader. This is the minimum requirement so that the shader class can interact with the actual shader. The rest is handled by PixelShader itself.
The effect object is applied to the UIElement.Effect property (of type System.Windows.Media.Effects.Effect) - this means it can be used on anything, not just an image.

There's more...

Naturally, writing shaders is not easy, except for very simple effects. A large list of shaders ready to be plugged into WPF (and Silverlight) can be found at a CodePlex project named wpffx (http://wpffx.codeplex.com/).
Another useful tool called Shazzam Shader Editor (by Walt Ritschter) is available free of charge from http://shazzam-tool.com. This tool provides a graphic way to visualize shaders, tweak their parameters with immediate feedback, and even get the C# (or VB) source code required to use them in a WPF (or Silverlight) application. A side benefit of the tool is that the DirectX SDK is not needed, as it compiles the shaders on its own by calling DirectX shader compilation functions directly using P/Invoke.
Using the built-in effects

Two built in effects exist - BlurEffect and DropShadowEffect, and both are used like any other effect. Here's an example of two buttons using these effects:

<StackPanel>
<Button Content="Blurred Button" FontSize="25" Margin="10">
<Button.Effect>
<BlurEffect Radius="6" />
</Button.Effect>
</Button>
<Button Content="Drop Shadow Button" FontSize="25"
Margin="10">
<Button.Effect>
<DropShadowEffect BlurRadius="10" Color="Black"
Opacity=".7" />
</Button.Effect>
</Button>
</StackPanel>

Here's the result:

[image: Using the built-in effects]

Other shader types

Direct3D supports other type of shaders, namely vertex shaders and geometry shaders. Using these shaders is unsupported in WPF, as these are too low level, and only make sense in a lower-level DirectX application or game. WPF does all vertex and geometry setup on its own and there's no way to customize that. Only pixel shaders are supported, as they don't interfere with WPF's work.

What about the BitmapEffect class and its derivatives?

The fi rst version of WPF provided a set of six built-in graphic effects, deriving from
BitmapEffect and applied using the UIElement.BitmapEffect property (and similar
properties on other objects). These effects are obsolete starting from WPF 4 – they simply
don't work anymore

One problem these effects faced was the fact that they were never hardware-accelerated,
meaning they always executed on the CPU, never on the GPU; performance suffered,
especially for large affected elements. Starting with WPF 4 they have no effect if used;
the alternative is using the effects discussed in this recipe, as these execute on the GPU
whenever possible.

Chapter 10. Custom Elements

In this chapter we will cover the following:
	Creating a user control
	Handling standard commands in a user control
	Creating a custom (templated) control
	Customizing a custom control's default template
	Creating a custom panel
	Creating a lightweight custom element

Introduction

WPF provides several ways to customize elements, from simple property changes, through content changes of content controls with data templates, up to using an entirely new control template.
All these options change the way an element appears, but its functionality is unchanged. If a new functionality is desired, a custom element is needed.

In this chapter, we'll take a look at a number of ways of creating custom elements and controls. Some are simple, but lack flexibility, while others are extremely flexible, but require more work.

Creating a user control

A user control is typically used to group related elements and controls together, for the purpose of reuse. Appropriate properties and events are exposed from this control, providing easy access to its functionality. As an added bonus, the Visual Studio designer supports user control design, just as it does for a window.

In WPF, user controls derive from the UserControl class (in itself a ContentControl). The UI design is effectively the Content property of the control, just like any other content control. The UserControl class just changes some property values (with respect to its base ContentControl class), and has a control template that provides a border that can be used to alter the basic outlook of the user control.

In this recipe, we'll build a user control with all the typical features.
Getting ready

Make sure Visual Studio is up and running.

How to do it...

We'll create a color picker user control that we will be able to reuse where needed. Here's a preview of the control in action:
[image: How to do it...]
	Create a new WPF User Control Library named CH10.UserControls.
	A default UserControl1.xaml and associated C# files are created. Delete the UserControl1.xaml file using the Solution Explorer.
	Right-click on the project node in Solution Explorer and select Add | User Control.
	Type ColorPicker in the Name textbox and click on Add.
	First, we'll add dependency properties for our control. In this case, just one: SelectedColor. Open ColorPicker.xaml.cs. Add a dependency property to the ColorPicker class (you can use the propdp code snippet):public static readonly DependencyProperty
SelectedColorProperty = DependencyProperty.Register(
"SelectedColor", typeof(Color), typeof(ColorPicker),
new UIPropertyMetadata(Colors.Black,
OnSelectedColorChanged));
public Color SelectedColor {
get { return (Color)GetValue(SelectedColorProperty); }
set { SetValue(SelectedColorProperty, value); }
}

	 OnSelectedColorChanged will be used to fire an event signifying a color change. For this purpose, let's define a routed event, SelectedColorChanged, to be fired whenever the selected color changes (using the UI or programmatically). There is no code snippet for that, so we have to type things manually:public static RoutedEvent SelectedColorChangedEvent =
EventManager.RegisterRoutedEvent("SelectedColorChanged",
RoutingStrategy.Bubble,
typeof(RoutedPropertyChangedEventHandler<Color>),
typeof(ColorPicker));
public event RoutedPropertyChangedEventHandler<Color>
SelectedColorChanged {
add { AddHandler(SelectedColorChangedEvent, value); }
remove { RemoveHandler(SelectedColorChangedEvent, value); }
}

	 RoutedPropertyChangedEventHandler<T> is a convenient delegate that uses a RoutedPropertyChangedEventArgs<T> to convey a property change with the OldValue and NewValue properties. To raise the actual event, we need to know when the selected color changes. Implement the OnSelectedColorChanged method with the following code:static void OnSelectedColorChanged(DependencyObject obj,
DependencyPropertyChangedEventArgs e) {
var cp = (ColorPicker)obj;
cp.RaiseEvent(new RoutedPropertyChangedEventArgs<Color>(
(Color)e.OldValue, (Color)e.NewValue,
SelectedColorChangedEvent));
}
}

	Let's switch to building the actual color picker UI. We're aiming for the following layout (seen in design view):[image: How to do it...]

	Open ColorPicker.xaml. Add 4 rows to the existing Grid like the following:<Grid.RowDefinitions>
<RowDefinition Height="Auto" />
<RowDefinition Height="Auto" />
<RowDefinition Height="Auto" />
<RowDefinition Height="Auto" />
<RowDefinition />
</Grid.RowDefinitions>

	We're going to need some TextBlock elements as well as Rectangle elements and Slider elements. Let's add styles for those to encapsulate common properties:<UserControl.Resources>
<Style TargetType="Rectangle">
<Setter Property="Margin" Value="2" />
<Setter Property="Width" Value="50" />
<Setter Property="Height" Value="30" />
<Setter Property="Stroke" Value="Black" />
<Setter Property="StrokeThickness" Value="1" />
</Style>
<Style TargetType="TextBlock">
<Setter Property="Margin" Value="6,0,0,0" />
<Setter Property="Foreground" Value="White" />
<Setter Property="VerticalAlignment" Value="Center" />
<Setter Property="FontSize" Value="14" />
</Style>
<Style TargetType="Slider">
<Setter Property="Maximum" Value="255" />
<Setter Property="VerticalAlignment" Value="Center" />
<Setter Property="Margin" Value="10,0,0,0" />
<Setter Property="LargeChange" Value="10" />
</Style>
</UserControl.Resources>

	Give the user control a name, for data binding purposes:x:Name="uc"

	The big Rectangle is the easiest to add, as its fill color can be bound directly to the SelectedColor property:<Rectangle Grid.Row="4" Margin="4" Style="{x:Null}"
StrokeThickness="1" Stroke="Black">
<Rectangle.Fill>
<SolidColorBrush Color="{Binding SelectedColor,
ElementName=uc}" />
</Rectangle.Fill>
</Rectangle>

	The sliders and other rectangles are more challenging. First, we need to bind a Value of the slider to a color component (red, green, blue, or alpha) in both directions. As a Color cannot be mapped automatically to a double (and vice versa), we need a converter. Add a class named ColorToDoubleConverter to serve as a converter.
	Add using statements to the System.Windows.Input, System.Windows.Media, System.Globalization, and System.Windows namespaces.
	Implement the IValueConverter interface:class ColorToDoubleConverter : IValueConverter {

	The conversion should be both ways: a change in a slider affects the selected color, and a change in the selected color should affect the slider. First, let's convert a Color to a double; for that, we need to use a parameter to indicate which component of the color to return:public object Convert(object value, Type targetType,
object parameter, CultureInfo culture) {
var color = (Color)value;
switch((string)parameter) {
case "r": return color.R;
case "g": return color.G;
case "b": return color.B;
case "a": return color.A;
}
return Binding.DoNothing;
}

	Going in the other direction is a little more complex. We need to take a double and change the intensity of the component specified by the converter parameter, while leaving all other components intact. This requires the converter to keep track of the last used color. Add a private field to the converter to keep that information:private Color _lastColor;

	Given this definition, we can implement ConvertBack with the following code:public object ConvertBack(object value, Type targetType,
object parameter, CultureInfo culture) {
Color color = _lastColor;
var intensity = (byte)(double)value;
switch((string)parameter) {
case "r":
color.R = intensity;
break;
case "g":
color.G = intensity;
break;
case "b":
color.B = intensity;
break;
case "a":
color.A = intensity;
break;
}
_lastColor = color;
return color;
}

	The currently selected color will simply get updated by the Convert method. These are the first two lines of Convert (the second line is new):var color = (Color)value;
_lastColor = color;

	To fill the remaining rectangles correctly we require another converter from the selected color to a brush, with a single color component. Add a new class named ColorToBrushConverter that implements IValueConverter.
	Add four private fields representing the four distinct brushes we need, one for each color component:SolidColorBrush _red = new SolidColorBrush(),
_green = new SolidColorBrush(),
_blue = new SolidColorBrush(),
_alpha = new SolidColorBrush();

	Implement the Convert method using the following code:public object Convert(object value, Type targetType,
object parameter, CultureInfo culture) {
var color = (Color)value;
switch((string)parameter) {
case "r":
_red.Color = Color.FromRgb(color.R, 0, 0);
return _red;
case "g":
_green.Color = Color.FromRgb(0, color.G, 0);
return _green;
case "b":
_blue.Color = Color.FromRgb(0, 0, color.B);
return _blue;
case "a":
_alpha.Color = Color.FromArgb(color.A,
128, 128, 128);
return _alpha;
}
return Binding.DoNothing;
}

	Open ColorPicker.xaml. Add instances for these converters to the user control's resources (also add an XML namespace mapping named local to the CH10.UserControls namespace):<local:ColorToBrushConverter x:Key="color2brush" />
<local:ColorToDoubleConverter x:Key="color2double" />

	Here's the markup for the first (red) component, consisting of a Rectangle, a TextBlock and a Slider (all wrapped in a Grid), that use the preceding converters:<Grid Margin="4">
<Grid.ColumnDefinitions>
<ColumnDefinition Width="Auto" />
<ColumnDefinition />
</Grid.ColumnDefinitions>
<Rectangle Fill="{Binding SelectedColor, ElementName=uc,
Converter={StaticResource color2brush},
ConverterParameter=r}" />
<Slider Grid.Column="1" Value="{Binding SelectedColor,
ElementName=uc, Converter={StaticResource color2double},
ConverterParameter=r}" />
<TextBlock Text="{Binding SelectedColor, ElementName=uc,
Converter={StaticResource color2double},
ConverterParameter=r, StringFormat=R: {0}}" />
</Grid>

	Repeat the same idea for the green, blue, and alpha components, changing the converter parameter and the grid row:<Grid Margin="4" Grid.Row="1">
<Grid.ColumnDefinitions>
<ColumnDefinition Width="Auto" />
<ColumnDefinition />
</Grid.ColumnDefinitions>
<Rectangle Fill="{Binding SelectedColor, ElementName=uc,
Converter={StaticResource color2brush},
ConverterParameter=g}" />
<Slider Grid.Column="1" Value="{Binding SelectedColor,
ElementName=uc, Converter={StaticResource color2double},
ConverterParameter=g}" />
<TextBlock Text="{Binding SelectedColor, ElementName=uc,
Converter={StaticResource color2double},
ConverterParameter=g, StringFormat=G: {0}}" />
</Grid>
<Grid Margin="4" Grid.Row="2">
<Grid.ColumnDefinitions>
<ColumnDefinition Width="Auto" />
<ColumnDefinition />
</Grid.ColumnDefinitions>
<Rectangle Fill="{Binding SelectedColor, ElementName=uc,
Converter={StaticResource color2brush},
ConverterParameter=b}" />
<Slider Grid.Column="1" Value="{Binding SelectedColor,
ElementName=uc, Converter={StaticResource color2double},
ConverterParameter=b}" />
<TextBlock Text="{Binding SelectedColor, ElementName=uc,
Converter={StaticResource color2double},
ConverterParameter=b, StringFormat=B: {0}}" />
</Grid>
<Grid Margin="4" Grid.Row="3">
<Grid.ColumnDefinitions>
<ColumnDefinition Width="Auto" />
<ColumnDefinition />
</Grid.ColumnDefinitions>
<Rectangle Fill="{Binding SelectedColor, ElementName=uc,
Converter={StaticResource color2brush},
ConverterParameter=a}" />
<Slider Grid.Column="1" Value="{Binding SelectedColor,
ElementName=uc, Converter={StaticResource color2double},
ConverterParameter=a}" />
<TextBlock Foreground="Black"
Text="{Binding SelectedColor, ElementName=uc,
Converter={StaticResource color2double},
ConverterParameter=a, StringFormat=A: {0}}" />
</Grid>

	The control is done. To test it, add a new WPF application project to the solution named CH10.TestUserControls.
	Add an assembly reference to the CH10.UserControls project.
	Open MainWindow.xaml. Add an XML namespace mapping to the user control library:xmlns:ctls="clr-namespace:CH10.UserControls;assembly=Ch10.UserControls"

	Add the following markup to the existing Grid:<Grid.RowDefinitions>
<RowDefinition />
<RowDefinition Height="Auto" />
</Grid.RowDefinitions>
<ctls:ColorPicker SelectedColorChanged="OnColorChanged" />
<TextBlock x:Name="_tbColor" FontSize="20"
Grid.Row="1" Margin="8"/>

	Notice the event handler for the SelectedColorChanged event. Implement the handler using the following code:void OnColorChanged(object sender,
RoutedPropertyChangedEventArgs<Color> e) {
if(_tbColor != null)
_tbColor.Text = string.Format("Selected Color: {0}",
e.NewValue);
}

	Run the application and adjust the sliders to your favorite color.[image: How to do it...]

How it works...

A user control wraps a piece of UI with appropriate properties and events for reuse. With the color picker, we expose a new property, SelectedColor (step 5); it should always be a dependency property, as we want the control's user to benefit from all that the dependency properties can provide: data binding as targets, animations, and so on. Similarly, we're defining a routed event (with the Bubble routing strategy, step 6). Again, we don't want a regular .NET event, but a routed one. Raising the event is done when the SelectedColor property changes (step 7); notice that we don't raise the event as a regular .NET event, because that would not get us the "bubbling" behavior (firing the event on elements up the visual tree, as explained in Chapter 1, Foundations). Instead, we call UIElement.RaiseEvent which does the right thing.

A user control can have any content, and this is exactly what we build with XAML in the usual way. Note the data bindings; they use ElementName to get to the user control itself (and the SelectedColor property). A more elegant way would be to use RelativeSource with a Mode of FindAncestor, but ElementName is simply easier to use.
The converters are required for this example, but simpler controls may not need them.
Using the control is simply a matter of referencing its assembly (step 28) and creating it (typically in XAML, step 29) just like any other control.

There's more...

The main advantage of a user control is its ease of use. Creating many instances of a user control is easy, and there is full design time support in Visual Studio. Its main disadvantage is the difficulty of customization. For example, suppose we didn't want the user to select an alpha level for the color. There's no easy way to remove that. If we, as the control's authors consider that in advance, we could add a Boolean property just for this:

public bool ShowAlphaChannel {
get { return (bool)GetValue(ShowAlphaChannelProperty); }
set { SetValue(ShowAlphaChannelProperty, value); }
}
public static readonly DependencyProperty
ShowAlphaChannelProperty = DependencyProperty.Register(
"ShowAlphaChannel", typeof(bool), typeof(ColorPicker),
new UIPropertyMetadata(true));

And use the property with the Visibility of the Grid holding the alpha channel UI:
Visibility="{Binding ShowAlphaChannel, ElementName=uc,
Converter={StaticResource bool2vis}}"

The code assumes the bool2vis resource name is of type BooleanToVisibilityConverter, provided by WPF for mapping Boolean values (true/false) to Visibility values (Visible/Collapsed), and vice versa.
Other customizations may be more subtle. For example, suppose the control user wants to change the rectangle showing the final color to an ellipse? Or perhaps make the sliders vertical? Or place the big rectangle on the right side (instead of at the bottom)? Although it's possible to provide properties for these configurations, there's no way we can anticipate every possible customization option.
This leads to the conclusion that user controls are great when customization requirements are limited, such as a piece of UI that needs to repeat in various windows in the same application and should look basically the same. Further customizations require changing a control's template, and for that we should build the control differently, as we'll see in the recipe Creating a custom (templated) control in this chapter.
Optimizing converters

You may be wondering why the ColorToBrushConverter defines four SolidColorBrush objects and then returns the appropriate one based on the converter parameter. Wouldn't it be easier to simply change a single SolidColorBrush object and return that? Take a look at an alternative:

var color = (Color)value;
var brush = new SolidColorBrush();
switch((string)parameter) {
case "r":
brush.Color = Color.FromRgb(color.R, 0, 0);
break;
case "g":
brush.Color = Color.FromRgb(0, color.G, 0);
break;
case "b":
brush.Color = Color.FromRgb(0, 0, color.B);
break;
case "a":
brush.Color = Color.FromArgb(color.A, 128, 128, 128);
break;
}
return brush;

Although this code works, it's inefficient. We construct a new SolidColorBrush every time Convert is called, which may be many times each time any slider moves. This causes a lot of objects to be created and then deemed garbage as we're not holding on to any of them except the four currently in use by the four color channel rectangles. This is wasteful and will increase memory consumption and the frequency of garbage collection.

A better approach would be to reuse the same four objects throughout the lifetime of the converter, thus creating no new brushes whatsoever. This keeps memory consumption to a minimum and does not promote garbage collection.

Adding a tunneling event

The SelectedColorChanged event we used is of the bubbling routing strategy. Suppose we wanted to provide its tunneling counterpart, PreviewSelectedColorChanged, similar to the existing pairs in WPF, such as MouseDown/PreviewMouseDown and KeyUp/PreviewKeyUp.

First, we declare the event with the Tunnel RoutingStrategy :
public static RoutedEvent PreviewSelectedColorChangedEvent =
EventManager.RegisterRoutedEvent(
"PreviewSelectedColorChanged", RoutingStrategy.Tunnel,
typeof(RoutedPropertyChangedEventHandler<Color>),
typeof(ColorPicker));
public event RoutedPropertyChangedEventHandler<Color>
PreviewSelectedColorChanged {
add {
AddHandler(PreviewSelectedColorChangedEvent, value);
}
remove {
RemoveHandler(PreviewSelectedColorChangedEvent, value);
}
}

When the selected color changes, we need to raise the preview event first, and if it wasn't handled, raise its bubbling buddy:
static void OnSelectedColorChanged(DependencyObject obj,
DependencyPropertyChangedEventArgs e) {
var cp = (ColorPicker)obj;
var args = new RoutedPropertyChangedEventArgs<Color>(
(Color)e.OldValue, (Color)e.NewValue,
PreviewSelectedColorChangedEvent);
cp.RaiseEvent(args);
if(!args.Handled)
cp.RaiseEvent(new RoutedPropertyChangedEventArgs<Color>(
(Color)e.OldValue, (Color)e.NewValue,
SelectedColorChangedEvent));
}

The Handled property needs to be checked manually, and only if it's unset, the bubbling event is raised.

Handling standard commands in a user control

A typical user control exposes properties and events, but it can also handle commands. These can be standard commands (RoutedUICommands defined by WPF) or custom commands exposed as properties and invoked by the control. In this recipe, we'll see how to add command handling to a user control.

Getting ready

We'll use the projects we created in the previous recipe, Creating a user control, so make sure the solution is open.

How to do it...

We'll add handling for the standard MediaCommands.ChannelUp and MediaCommands.ChannelDown commands. ChannelUp will increase each of the RGB values and ChannelDown will decrease them.

	Open ColorPicker.xaml.cs. Add a static constructor to the class that registers for command handling:static ColorPicker() {
CommandManager.RegisterClassCommandBinding(
typeof(ColorPicker), new CommandBinding(
MediaCommands.ChannelUp,
ChannelUpExecute, ChannelUpCanExecute));
CommandManager.RegisterClassCommandBinding(
typeof(ColorPicker), new CommandBinding(
MediaCommands.ChannelDown,
ChannelDownExecute, ChannelDownCanExecute));
}

	To make this work, we need to implement the preceding methods. First, let's implement ChannelUpExecute:static void ChannelUpExecute(object sender,
ExecutedRoutedEventArgs e) {
var cp = (ColorPicker)sender;
var color = cp.SelectedColor;
if(color.R < 255) color.R++;
if(color.G < 255) color.G++;
if(color.B < 255) color.B++;
cp.SelectedColor = color;
}

	The code simply increments the red, green, and blue of the selected color (if possible). This should be enabled if any of the channels has not yet reached 255:static void ChannelUpCanExecute(object sender,
CanExecuteRoutedEventArgs e) {
var color = ((ColorPicker)sender).SelectedColor;
e.CanExecute = color.R < 255 || color.G < 255
|| color.B < 255;
}

	The code for handling the ChannelDown command is very similar:static void ChannelDownExecute(object sender,
ExecutedRoutedEventArgs e) {
var cp = (ColorPicker)sender;
var color = cp.SelectedColor;
if(color.R > 0) color.R--;
if(color.G > 0) color.G--;
if(color.B > 0) color.B--;
cp.SelectedColor = color;
}
static void ChannelDownCanExecute(object sender,
CanExecuteRoutedEventArgs e) {
var color = ((ColorPicker)sender).SelectedColor;
e.CanExecute = color.R > 0 || color.G > 0 || color.B > 0;
}

	To test this, open MainWindow.xaml from the CH10.TestUserControls project, and add a third row to the Grid:<RowDefinition Height="Auto" />

	Name the ColorPicker picker (x:Name) .
	Add a UniformGrid for the third row, hosting two RepeatButton objects that execute the required commands on the color picker:<UniformGrid Grid.Row="2" Columns="2">
<RepeatButton Content="<<" FontSize="30"
Command="ChannelDown" Margin="4"
CommandTarget="{Binding ElementName=picker}" />
<RepeatButton Content=">>" FontSize="30"
Command="ChannelUp" Margin="4"
CommandTarget="{Binding ElementName=picker}" />
</UniformGrid>

	Run the application. Click the repeat buttons and watch the RGB sliders move:[image: How to do it...]

How it works...

The control registers itself for command handling using the static CommandManager.RegisterClassCommandBinding, specifying a CommandBinding that connects to the requested command. As this is called in the static constructor, the handlers must be static methods. Otherwise, they're handled in a pretty standard way, as discussed in Chapter 7.

It's also possible to register commands to the current instance using the property of Commandbinding inherited from UIElement, but that's a bit wasteful, as it's called for each ColorPicker instance as opposed to a single call from the static constructor.

The CommandTarget property value bound to the ColorPicker is necessary in this case because without it the RepeatButton itself becomes the target - going up the visual tree we will not find the command bindings attached to the color picker, as the color picker is not a parent of those buttons.

There's more...

An alternative to implementing standard commands is to implement the ICommandSource interface (just like buttons do), thus providing the Command (ICommand), CommandParameter (object), and CommandTarget (IInputElement) properties that a client can set. The control, in turn, will invoke the command if appropriate.

Creating a custom (templated) control

User controls are great for encapsulating a piece of UI functionality that can be easily reused. Their potential disadvantage is the lack of deep customization. In case such customization is required (or at least anticipated), a custom control should be built. This is a class deriving from Control, that provides a default look (through a control template), but that template can be changed if needed, without harming the control's functionality. In fact, this is how all WPF controls work - they provide some default template (look), but we can replace that template while preserving the control's behavior, as we've seen in Chapter 8,Styles, Triggers,
and Control Templates.

In this recipe, we'll take a look at creating a custom control, and highlight the differences with respect to a user control.
Getting ready

Open the CH10.UserControls project from the Creating a user control recipe. We'll use that as a reference and even copy some things that don't need to change with a custom control. Open a second Visual Studio instance for creating the custom control.

How to do it...

We'll create an alternative color picker control (as a custom control), so that its look can be changed by replacing its control template.

	Create a new WPF Custom Control Library project named CH10.CustomControls. Technically, you can use a User Control Library as well.
	A default control file named CustomControl1.cs is created. Delete that file using Solution Explorer.
	A Generic.xaml file was created by Visual Studio and placed in a project folder named Themes. Open this file and delete the Style inside to get rid of the last remains of that default custom control.
	Right-click on the project in Solution Explorer and select Add | New Item... and then select Custom Control under the WPF folder. Type the name ColorPicker in the Name box and click on Add.[image: How to do it...]

	Open ColorPicker.cs. Copy the SelectedColor dependency property definition (including the OnSelectedColorChanged method) and the SelectedColorChanged routed event definitions from the ColorPicker.xaml.cs file in the CH10.UserControls project. This code does not need to change at all.
	Build the project and make sure it is successful. If not, check the code you copied to make sure nothing was left behind. This is the entire code of ColorPicker.cs:public class ColorPicker : Control {
static ColorPicker() {
DefaultStyleKeyProperty.OverrideMetadata(
typeof(ColorPicker), new FrameworkPropertyMetadata(
typeof(ColorPicker)));
}
public static readonly DependencyProperty
SelectedColorProperty =
DependencyProperty.Register("SelectedColor",
typeof(Color), typeof(ColorPicker),
new UIPropertyMetadata(Colors.Black,
OnSelectedColorChanged));
public Color SelectedColor {
get { return (Color)GetValue(SelectedColorProperty); }
set { SetValue(SelectedColorProperty, value); }
}
public static RoutedEvent SelectedColorChangedEvent =
EventManager.RegisterRoutedEvent(
"SelectedColorChanged", RoutingStrategy.Bubble,
typeof(RoutedPropertyChangedEventHandler<Color>),
typeof(ColorPicker));
public event RoutedPropertyChangedEventHandler<Color>
SelectedColorChanged {
add { AddHandler(SelectedColorChangedEvent, value); }
remove {
RemoveHandler(SelectedColorChangedEvent, value);
}
}
static void OnSelectedColorChanged(DependencyObject obj,
DependencyPropertyChangedEventArgs e) {
var cp = (ColorPicker)obj;
cp.RaiseEvent(
new RoutedPropertyChangedEventArgs<Color>(
(Color)e.OldValue, (Color)e.NewValue,
SelectedColorChangedEvent));
}
}

	Now let's turn our attention to the user interface. We need to create a default template for the control (otherwise, it won't have a default look). Open Generic.xaml. An automatic style was placed there by Visual Studio. It has a setting for the Template property (a ControlTemplate) that has a border. Copy the XAML from ColorPicker.xaml (in the CH10.UserControls project), starting from the outermost Grid into the existing Border.
	We'll have to do some work for this XAML do the right thing. First, copy the ColorToBrushConverter.cs and ColorToDoubleConverter.cs files from the CH10.UserControls project to the current one. You can do that by selecting the files from Solution Explorer, right-clicking on it and selecting Copy and then right-clicking on the target project and selecting Paste:[image: How to do it...]

	Next, open the new ColorToBrushConverter.cs and ColorToDoubleConverter.cs files and rename the namespaces from CH10.UserControls to CH10.CustomControls, so that the namespace is consistent across all files in the project.
	Copy the UserControls.Resources section from ColorPicker.xaml (in the CH10.UserControls project) to the Generic.Xaml file, under the ControlTemplate.
	Replace the UserControl occurrences with ControlTemplate. The entire Resources collection should look like this:<ControlTemplate.Resources>
<Style TargetType="Rectangle">
<Setter Property="Margin" Value="2" />
<Setter Property="Width" Value="50" />
<Setter Property="Height" Value="30" />
<Setter Property="Stroke" Value="Black" />
<Setter Property="StrokeThickness" Value="1" />
</Style>
<Style TargetType="TextBlock">
<Setter Property="Margin" Value="6,0,0,0" />
<Setter Property="Foreground" Value="White" />
<Setter Property="VerticalAlignment" Value="Center" />
<Setter Property="FontSize" Value="14" />
</Style>
<Style TargetType="Slider">
<Setter Property="Maximum" Value="255" />
<Setter Property="VerticalAlignment" Value="Center" />
<Setter Property="Margin" Value="10,0,0,0" />
<Setter Property="LargeChange" Value="10" />
</Style>
<local:ColorToBrushConverter x:Key="color2brush" />
<local:ColorToDoubleConverter x:Key="color2double" />
</ControlTemplate.Resources>

	Make sure the project is built successfully.
	All data binding expressions use the ElementName=uc property. This works fine for a user control, but we have no control to name when writing a template, so the bindings need to change. However, we'll do something else we'll create the bindings in code. The exact reason will become apparent in the next steps (with a detailed explanation in the How it works... section). Remove all bindings from the XAML; that means removing any property whose value is set with a binding expression.
	To find elements from code, we need to name them. Each element or control that may be replaced by a custom template should have a name. Add names to certain elements as shown below, after the bindings have been deleted. This is the new, simplified, control template with named parts:<Border Background="{TemplateBinding Background}"
BorderBrush="{TemplateBinding BorderBrush}"
BorderThickness="{TemplateBinding BorderThickness}">
<Grid>
<Grid.RowDefinitions>
<RowDefinition Height="Auto" />
<RowDefinition Height="Auto" />
<RowDefinition Height="Auto" />
<RowDefinition Height="Auto" />
<RowDefinition />
</Grid.RowDefinitions>
<Grid Margin="4">
<Grid.ColumnDefinitions>
<ColumnDefinition Width="Auto" />
<ColumnDefinition />
</Grid.ColumnDefinitions>
<Rectangle x:Name="PART_RedShape"/>
<Slider Grid.Column="1" x:Name="PART_RedSlider"/>
<TextBlock x:Name="PART_RedText"/>
</Grid>
<Grid Margin="4" Grid.Row="1">
<Grid.ColumnDefinitions>
<ColumnDefinition Width="Auto" />
<ColumnDefinition />
</Grid.ColumnDefinitions>
<Rectangle x:Name="PART_GreenShape"/>
<Slider Grid.Column="1" x:Name="PART_GreenSlider" />
<TextBlock x:Name="PART_GreenText"/>
</Grid>
<Grid Margin="4" Grid.Row="2">
<Grid.ColumnDefinitions>
<ColumnDefinition Width="Auto" />
<ColumnDefinition />
</Grid.ColumnDefinitions>
<Rectangle x:Name="PART_BlueShape" />
<Slider Grid.Column="1" x:Name="PART_BlueSlider" />
<TextBlock x:Name="PART_BlueText" />
</Grid>
<Grid Margin="4" Grid.Row="3" >
<Grid.ColumnDefinitions>
<ColumnDefinition Width="Auto" />
<ColumnDefinition />
</Grid.ColumnDefinitions>
<Rectangle x:Name="PART_AlphaShape" />
<Slider Grid.Column="1" x:Name="PART_AlphaSlider" />
<TextBlock Foreground="Black"
x:Name="PART_AlphaText"/>
</Grid>
<Rectangle Grid.Row="4" Margin="4" Style="{x:Null}"
StrokeThickness="1" Stroke="Black">
<Rectangle.Fill>
<SolidColorBrush x:Name="PART_SelectedColor" />
</Rectangle.Fill>
</Rectangle>
</Grid>
</Border>

	Remove all the converter creation in the XAML resources; we won't need them in XAML as we don't have any bindings in XAML.
	We need to create the bindings in code if we want to have any functionality. Open ColorPicker.cs and add an override to the virtual OnApplyTemplate method:public override void OnApplyTemplate() {
base.OnApplyTemplate();
}

	This method is called whenever a new control template is applied to the control. We'll create some helper methods first, and then call them from OnApplyTemplate. Add two private fields to the ColorPicker class to hold the converters we'll need:ColorToBrushConverter _color2brush =
new ColorToBrushConverter();
ColorToDoubleConverter _color2double =
new ColorToDoubleConverter();

	Add a private method named BindShape that's used to bind shapes (rectangles in our default template), implemented with the following code:void BindShape(string partName, string parameter) {
var shape = GetTemplateChild(partName) as Shape;
if(shape == null) return;
var binding = new Binding("SelectedColor");
binding.Source = this;
binding.Converter = _color2brush;
binding.ConverterParameter = parameter;
shape.SetBinding(Shape.FillProperty, binding);
}

	 GetTemplateChild returns the named part, and if it exists, binds it using the same logic as in the user control case, but all done programmatically. Note that we look for any Shape-derived type, not necessarily a Rectangle. This provides more flexibility with custom templates, and is good enough because we're interested in the Fill property, which is defined by the base Shape class. Add another private method named BindSlider, to provide bindings to the sliders in a similar manner:void BindSlider(string partName, string parameter) {
var slider = GetTemplateChild(partName) as RangeBase;
if(slider == null) return;
var binding = new Binding("SelectedColor");
binding.Source = this;
binding.Converter = _color2double;
binding.ConverterParameter = parameter;
binding.Mode = BindingMode.TwoWay;
slider.SetBinding(RangeBase.ValueProperty, binding);
}

	Notice that we look for a type derived from RangeBase similar to the preceding Shape example. Add yet another private method named BindText, used to bind the TextBlock instances, with the following implementation:void BindText(string partName, string parameter,
string format) {
var tb = GetTemplateChild(partName) as TextBlock;
if(tb == null) return;
var binding = new Binding("SelectedColor");
binding.Source = this;
binding.Converter = _color2double;
binding.ConverterParameter = parameter;
binding.StringFormat = format;
tb.SetBinding(TextBlock.TextProperty, binding);
}

	Now it's time to implement OnApplyTemplate, and bind to the main selected color, using the following code:public override void OnApplyTemplate() {
// bind component shapes
BindShape("PART_RedShape", "r");
BindShape("PART_GreenShape", "g");
BindShape("PART_BlueShape", "b");
BindShape("PART_AlphaShape", "a");
// bind sliders
BindSlider("PART_RedSlider", "r");
BindSlider("PART_GreenSlider", "g");
BindSlider("PART_BlueSlider", "b");
BindSlider("PART_AlphaSlider", "a");
// bind text blocks
BindText("PART_RedText", "r", "R: {0}");
BindText("PART_GreenText", "g", "G: {0}");
BindText("PART_BlueText", "b", "B: {0}");
BindText("PART_AlphaText", "a", "A: {0}");
// bind main color
var solidBrush = GetTemplateChild("PART_SelectedColor")
as SolidColorBrush;
if(solidBrush != null) {
var binding = new Binding("SelectedColor");
binding.Source = this;
BindingOperations.SetBinding(solidBrush,
SolidColorBrush.ColorProperty, binding);
}
}

	That should be enough to test the control. Add a new WPF application project named CH10.TestCustomControls.
	Add a reference to the CH10.CustomControls project.
	Open MainWindow.xaml. Add an XML namespace mapping to the CH10.CustomControls library:xmlns:ctls="clr-namespace:CH10.CustomControls;assembly=CH10.CustomControls"

	Add an instance of the color picker control to the existing Grid:<ctls:ColorPicker />

	Run the application. You should find the color picker custom control looks and behaves in much the same way as the color picker that was built as a user control.[image: How to do it...]

How it works...

A custom control derives from Control, and exposes properties and events, just like a user control. In fact, we used the exact same code copied from the color picker user control. The difference is the way the user interface is built.

The control provides an automatic style that has a Template property setting that provides a default control template (look) for the control. Much of the XAML was copied from the user control version; there are, however, some important changes. The most striking is the removal of all binding expressions and setting them up in code. Why? Couldn't we just change the ElementName=uc to something else that worked?
We could. The way to do that is to use the TemplateBinding markup extension (for one way binding) or RelativeSource markup extension (with a Mode of TemplatedParent) for two way bindings (and when something like StringFormat needs to be set because TemplateBinding does not support it). For example, the red rectangle Fill property binding could change to this:
Fill="{TemplateBinding SelectedColor, Converter={StaticResource color2brush}, ConverterParameter=r}"

And it would have worked just fine. So why didn't we do that?
The problem is that if a custom control template is provided, the provider would have to construct such bindings manually, which is difficult at best (and impossible at times if the required converters are not publicly available). We want to make it easy to change templates, so the control author takes upon himself the task of setting the bindings correctly in code, so that a custom control template becomes easier to write, as it requires no bindings.
This poses a problem, though: how would we know which control we should bind to if we don't know which template is actually used and how those controls are located within it? The solution is to look for the parts with specific names (such as PART_RedSlider) and bind to those (if they exist). This means a custom template just needs to name the appropriate elements with the correct names, and the rest is taken care of by the control (in OnApplyTemplate). We'll see an example of changing the control template in the next recipe.
Creating bindings in code is not super-fun, but it's not difficult either. A Binding instance is created with an optional constructor accepting the source property path to bind to (the alternative is to use the Path property explicitly). Other properties are set as appropriate (Converter, Mode, Source, and so on) and finally, the FrameworkElement.SetBinding method is called, or the static BindingOperations.SetBinding method (this was used in the SolidColorBrush case, as it does not derive from FrameworkElement), connecting the target object, target property, and the Binding object together.
The code that looks for named parts is tolerant of non-existing parts if parts are not found, no exception is thrown. We don't want to force certain parts to exist. For example, a custom template may not require a slider for the alpha component. The control should not mind, but simply disregard that part and move on. This maintains template flexibility, as we can't know in advance how the custom control would be used in all scenarios.

There's more...

How would a custom control user know which named parts are searched for by the control? One obvious way is to read conventional documentation. The other is to document the possible parts and their types by the control author via the TemplatePart custom attribute. In the color picker case, this should look like the following:

[TemplatePart(Name = "PART_RedShape", Type = typeof(Shape))]
[TemplatePart(Name = "PART_GreenShape", Type = typeof(Shape))]
[TemplatePart(Name = "PART_BlueShape", Type = typeof(Shape))]
[TemplatePart(Name = "PART_AlphaShape", Type = typeof(Shape))]
[TemplatePart(Name = "PART_RedSlider",
Type = typeof(RangeBase))]
[TemplatePart(Name = "PART_GreenSlider",
Type = typeof(RangeBase))]
[TemplatePart(Name = "PART_BlueSlider",
Type = typeof(RangeBase))]
[TemplatePart(Name = "PART_AlphaSlider",
Type = typeof(RangeBase))]
[TemplatePart(Name = "PART_RedText",
Type = typeof(TextBlock))]
[TemplatePart(Name = "PART_GreenText",
Type = typeof(TextBlock))]
[TemplatePart(Name = "PART_BlueText",
Type = typeof(TextBlock))]
[TemplatePart(Name = "PART_AlphaText",
Type = typeof(TextBlock))]
[TemplatePart(Name = "PART_SelectedColor",
Type = typeof(SolidColorBrush))]
public class ColorPicker : Control {

Part names start with PART_ by convention, but technically any name can be set.
This "documentation" can not only be used by us humans, but also by tools such as Expression Blend.
It's best to use the most common element type possible so as to maintain as much flexibility as possible, for example, using Shape instead of Rectangle. In the case of the TextBlock and SolidColorBrush, which these are very specific (in fact, nothing in WPF inherits from those); this limits flexibility. A possible solution is to provide alternative parts (such as a Run object as well as TextBlock).
Other things to set in code

The main issue that needs to be dealt with in OnApplyTemplate is bindings but there may be others. Some properties may need to be set to get correct behavior. For example, the sliders in the color picker need to have a maximum of 255. Currently, this is set via a Style within the default template, but that becomes problematic if the control template is replaced. It's best to make that change in code (in ColorPicker.BindSlider):

slider.Maximum = 255;
slider.Minimum = 0;

Another thing that may be needed is the handling of certain events for elements within the template. This is not required in the color picker example, but may be required elsewhere. For instance, the Click event of a Button may need to be handled to trigger some desired behavior. Again, doing so in XAML is impractical - it must be done in code. The common thread for all of this is simple: make replacing the default control template easy, leaving the hard stuff to the control's author.

What is that Generic.xaml?

The automatic style is placed in a file called Generic.xaml in a project folder named Themes. Why?

A default control template can technically be built differently for different Windows themes. Perhaps we want the control to look one way in the Windows 7 Aero theme, but look different in the Classic theme. In such cases, several templates can be built and placed in appropriate files under the Themes folder (the file name must be something like Aero.NormalColor.xaml). We won't delve into that too much because it's not that useful in practice. It's something Microsoft uses to make the WPF controls look consistent with the currently selected Windows theme.

Custom controls typically don't care about the Windows theme (and in any case, there are many possible themes), and so Generic.xaml acts as a fallback for any non-theme specific style.

Refactoring of Generic.xaml

Because of the reasons just discussed, all custom controls' styles in the project end up in Generic.xaml. This is less than ideal, as that file grows larger all the time, making maintenance difficult; also, from a practical perspective, that single file may be required by several developers at the same time (working on different controls), and that would require multiple check-outs from a source control repository and then merging the changes adding to the maintenance hassle.

The solution is to segregate the controls' style into different files and to reference them from Generic.xaml. For example, we'll create a ColorPicker.xaml resource dictionary file inside the Themes folder, and place the style inside:

<ResourceDictionary xmlns=http://schemas.microsoft.com/winfx/2006/xaml/presentation
xmlns:x=http://schemas.microsoft.com/winfx/2006/xaml
xmlns:local="clr-namespace:CH10.CustomControls">
<Style TargetType="{x:Type local:ColorPicker}">
...
<Style>

In Generic.xaml, we reference ColorPicker.xaml with the ResourceDictionary.MergedDictionaries collection:
<ResourceDictionary.MergedDictionaries>
<ResourceDictionary Source="pack://application:,,,/CH10.CustomControls;component/Themes/ColorPicker.xaml" />
</ResourceDictionary.MergedDictionaries>

In this way, each control has its own file; Generic.xaml simply aggregates the files.

Customizing a default template of custom control

Custom controls provide default control templates so that they have some look if used as is. However, the real power of custom controls is the ability to change the template without harming any functionality. In this recipe, we'll change the template for our color picker control to get a different look with the same functionality without writing any code just a different control template.

Getting ready

Open the CH10.TestCustomControls project. We'll use that project to create the new template and compare it to the default one.

How to do it...

We'll create a different control template that utilizes just some of the capabilities of the color picker control and makes sure the control is tolerant of missing pieces.
	Open App.xaml.
	Add a ControlTemplate resource that builds an alternative look for a color picker. Notice the part names:<ControlTemplate x:Key="cpTemplate">
<Grid>
<Grid.ColumnDefinitions>
<ColumnDefinition Width="Auto" />
<ColumnDefinition Width="Auto" />
<ColumnDefinition Width="Auto" />
<ColumnDefinition />
</Grid.ColumnDefinitions>
<Slider x:Name="PART_RedSlider" Margin="5"
Orientation="Vertical" />
<Slider x:Name="PART_GreenSlider" Margin="5"
Orientation="Vertical" Grid.Column="1" />
<Slider x:Name="PART_BlueSlider" Margin="5"
Orientation="Vertical" Grid.Column="2" />
<Grid Grid.Column="3">
<Rectangle RadiusX="20" RadiusY="20" Margin="5"
Stroke="Black" StrokeThickness="1">
<Rectangle.Fill>
<SolidColorBrush x:Name="PART_SelectedColor" />
</Rectangle.Fill>
</Rectangle>
<StackPanel VerticalAlignment="Center"
TextBlock.FontSize="16">
<TextBlock x:Name="PART_RedText"
Foreground="White" HorizontalAlignment="Center"/>
<TextBlock x:Name="PART_GreenText"
Foreground="White" HorizontalAlignment="Center"/>
<TextBlock x:Name="PART_BlueText"
Foreground="White" HorizontalAlignment="Center"/>
</StackPanel>
</Grid>
</Grid>
</ControlTemplate>

	Open MainWindow.xaml. and create two columns for the existing Grid:<Grid.ColumnDefinitions>
<ColumnDefinition />
<ColumnDefinition />
</Grid.ColumnDefinitions>

	One color picker is already in that Grid. Add another ColorPicker control that uses the newly created control template:<ctls:ColorPicker Template="{StaticResource cpTemplate}"
Grid.Column="1"/>

	Run the application. Two color pickers are shown, both of the same type, both behave in the same way, but they look quite different:[image: How to do it...]

How it works...

Replacing the control template of our custom ColorPicker is no different than replacing any other WPF control's template - we just set the Template property and we're done.
The simple requirement for this magic to work is to provide the correct named parts, such as PART_RedSlider. The rest is taken care of by the control itself. This is exactly what makes custom controls so powerful.

Creating a custom panel

WPF panels are layout containers. Each Panel provides its own layout logic; combining them in various ways allows the creation of a complex yet flexible user interface. The built-in panels, such as Grid, StackPanel, and Canvas seem to provide everything we need to create a conceivable user interface. Sometimes, however, there is a need to go beyond the built-in panels, to create some other unique way to lay out elements. Although everything is possible using transforms, using a custom panel has its benefits, one of which is ease of use. Other benefits include the ability to use the panel in an unorthodox way, such as with the ItemsPanel property of an ItemsControl and its derivatives.

In this recipe, we'll create a custom panel, showing a typical way of implementing such functionality.

Getting ready

Make sure Visual Studio is up and running.

How to do it...

We'll create a radial panel that arranges its children along the circumference of an ellipse.

	Create a new WPF application named CH10.CustomPanel.
	Add a new class to the project named RadialPanel and derive it from Panel (add a using statement for System.Windows.Controls):class RadialPanel : Panel {
}

	Add a using namespace for System.Windows.
	First we need to override the MeasureOverride method, and ask every child element its desired size. We'll also keep track of the largest element.protected override Size MeasureOverride(Size availableSize) {
Size maxSize = Size.Empty;
foreach(UIElement child in Children) {
child.Measure(availableSize);
maxSize = new Size(
Math.Max(maxSize.Width, child.DesiredSize.Width),
Math.Max(maxSize.Height, child.DesiredSize.Height));
}

	The last thing to do is to return the desired size of the RadialPanel itself. We should never return the available size passed to this method, as it may contain an infinite size in one or both directions (double.PositiveInfinity). In this case, we'll return the available size if possible, or the largest element multiplied by a factor otherwise:return new Size(double.IsPositiveInfinity(availableSize.Width) ? maxSize.Width * 2 : availableSize.Width,
double.IsPositiveInfinity(availableSize.Height) ?
maxSize.Height * 2 : availableSize.Height);

	The RadialPanel should arrange its child elements along the circumference of an ellipse. Each element would be evenly spaced (angle-wise), starting from angle zero. To make the panel more customizable, we'll add a dependency property for a different starting angle:public double StartAngle {
get { return (double)GetValue(StartAngleProperty); }
set { SetValue(StartAngleProperty, value); }
}
public static readonly DependencyProperty StartAngleProperty =
DependencyProperty.Register("StartAngle", typeof(double),
typeof(RadialPanel), new FrameworkPropertyMetadata(
0.0, FrameworkPropertyMetadataOptions.AffectsRender));

	The next, and more complex step, is to override the ArrangeOverride method. Here we need to tell each child element its exact position and size; that's what makes our panel unique. Add an override for that method:protected override Size ArrangeOverride(Size finalSize) {
return base.ArrangeOverride(finalSize);
}

	We'll implement the method by placing the elements across the entire 360 degree circle, taking into consideration the starting angle. This requires some trigonometry:var count = Children.Count;
if(count > 0) {
Point center = new Point(finalSize.Width / 2,
finalSize.Height / 2);
double step = 360 / count;
int index = 0;
foreach(UIElement element in Children) {
double angle = StartAngle + step * index++;
// reverse default angle increment, shift and
// convert to radians
angle = (90 - angle) * Math.PI / 180;
Rect rc = new Rect(new Point(
center.X - element.DesiredSize.Width / 2 +
(center.X - element.DesiredSize.Width / 2) *
Math.Cos(angle),
center.Y - element.DesiredSize.Height / 2 -
(center.Y - element.DesiredSize.Height / 2) *
Math.Sin(angle)), element.DesiredSize);
element.Arrange(rc);
}
}
return finalSize;

	Let's test the panel. Open MainWindow.xaml and map an XML namespace to the CH10.CustomPanel namespace:xmlns:local="clr-namespace:CH10.CustomPanel"

	Add two rows to the existing Grid:<Grid.RowDefinitions>
<RowDefinition />
<RowDefinition Height="Auto" />
</Grid.RowDefinitions>

	Add a Slider to the second row of the grid, to be used for manipulating the panel's starting angle:<Slider Margin="4" Maximum="360" x:Name="_startAngle"
Grid.Row="1" />

	Add a RadialPanel to the first row of the grid with some elements:<local:RadialPanel
StartAngle="{Binding Value, ElementName=_startAngle}">
<Ellipse Fill="Red" Stroke="Black" StrokeThickness="2"
Width="40" Height="40" />
<Ellipse Fill="Green" Stroke="Black" StrokeThickness="2"
Width="40" Height="40" />
<Ellipse Fill="Blue" Stroke="Black" StrokeThickness="2"
Width="40" Height="40"/>
<Ellipse Fill="Red" Stroke="Black" StrokeThickness="2"
Width="40" Height="40" />
<Ellipse Fill="Yellow" Stroke="Black" StrokeThickness="2"
Width="40" Height="40" />
<Ellipse Fill="Brown" Stroke="Black" StrokeThickness="2"
Width="40" Height="40"/>
<Ellipse Fill="Orange" Stroke="Black" StrokeThickness="2"
Width="40" Height="40"/>
<Ellipse Fill="Red" Stroke="Black" StrokeThickness="2"
Width="40" Height="40"/>
<Ellipse Fill="LightBlue" Stroke="Black"
StrokeThickness="2" Width="40" Height="40"/>
<Ellipse Fill="Red" Stroke="Black" StrokeThickness="2"
Width="40" Height="40"/>
<Ellipse Fill="Cyan" Stroke="Black" StrokeThickness="2"
Width="40" Height="40"/>
<Ellipse Fill="Red" Stroke="Black" StrokeThickness="2"
Width="40" Height="40"/>
</local:RadialPanel>

	Run the application. Move the slider and watch the elements rotate.[image: How to do it...]

How it works...

The layout process is a two-step process: measure and arrange. This is modeled precisely by the panel's need to override two methods for this exact purpose, MeasureOverride and ArrangeOverride.

MeasureOverride asks the panel (or any element that overrides it, for that matter) what size it requires. For a panel, the main concern is the requirements of its child elements. The call to UIElement.Measure is mandatory and causes the MeasureOverride method of element to be called (and this may go on if that child is a panel, or acts like a panel, in itself).
The panel needs to decide what size it requires based on its children's requirements and the layout logic it wants to employ. The parameter sent to MeasureOverride is the available size provided by that panel's container. This can be double.PositiveInfinity in either or both dimensions (for example, a ScrollViewer indicates it has infinite space in directions where scrolling is available). It's important to return a finite size; otherwise WPF has no way of knowing how much space to leave for the panel and throws an exception. In our example, if the input is infinite, the returned size is based on twice the size of the largest element (however, any size can be arbitrarily selected).

ArrangeOverride is the more interesting method that actually implements that special layout logic, for which the panel was created. In this case, the implementation calculates the position and size of the elements along the circumference of an imaginary ellipse stretched over the entire size the panel was given by its parent (through the input size argument). Each element receives a call to UIElement.Arrange that forces that element to be placed within a specific rectangle. Note that this doesn't mean the element is actually rectangular it can be any shape; the rectangle is the bounds to which its layout is confined.
The mathematics involved may seem complicated or not, based on your trigonometric prowess. The generally interesting part is the UIElement.DesiredSize property, which indicates the size of a particular child. In this case, this is used to attach the element to the outer boundary of the panel.

The StartAngle dependency property is used in the calculations, and affects rendering, indicated with the FrameworkPropertyMetadataOptions.AffectsRender flag. This is a hint to WPF to redraw the panel if that property changes. In the test window, the Value property of Slider is bound to StartAngle, demonstrating nicely its effect on the final result.

There's more...

This and other panels can be extended in a multitude of ways. One such way is to define attached properties that children can use to affect their layout strategy (this is exactly the case with properties such as Canvas.Left and Grid.Row). For example, we may want to allow an element to be placed in a specific angle, regardless of other elements. Here's one way to do it. First, define the attached property:

[AttachedPropertyBrowsableForChildren]
public static double GetAngle(DependencyObject obj) {
return (double)obj.GetValue(AngleProperty);
}
[AttachedPropertyBrowsableForChildren]
public static void SetAngle(DependencyObject obj, double value) {
obj.SetValue(AngleProperty, value);
}
public static readonly DependencyProperty AngleProperty =
DependencyProperty.RegisterAttached("Angle",
typeof(double), typeof(RadialPanel),
new FrameworkPropertyMetadata(double.NaN,
FrameworkPropertyMetadataOptions.AffectsRender));

The AttachedPropertyBrowsableForChildren custom attributes is a hint to the XAML intellisense engine that suggests this property automatically on elements placed inside a RadialPanel; it has no other effect.
The default value for this property is set to double.NaN, as an indicator that it wasn't set. We now need to modify ArrangeOverride to take this property into consideration:

double angle = StartAngle + step * index++;
double pangle = RadialPanel.GetAngle(element);
if(!double.IsNaN(pangle))
angle = pangle;

The last 3 lines are new. We can apply this property on elements, such as the following:
<Ellipse Fill="Red" Stroke="Black" StrokeThickness="2"
Width="40" Height="40" local:RadialPanel.Angle="30"/>

Running the test application with two elements set with angles equal to 30 and 170 degrees yields the following while dragging the slider:
[image: There's more...]
The downloadable source for this chapter has some more customizations for the RadialPanel, such as the ability to specify an angle increment between elements, thus not necessarily filling an entire 360 dial (or filling more than 360 degrees).
Where are custom panels used?

A custom panel can be used just like any other panel. First, it's an element, which means it can be anywhere in the visual tree. Second, as a panel it can be used as a host for types derived from ItemsControl through the ItemsPanel property. This is a very interesting capability, that coupled with data binding, can be used to create interesting effects. For example, a solar system simulation can hold the planets in some collection and bind them to a ListBox that uses a RadialPanel as its ItemsPanel (through the ItemsPanelTemplate object). Binding the attached RadialPanel.Angle property to similar information on a planet object can be used to easily move or animate the planet around its sun.

Creating a lightweight custom element

Custom controls provide a way to create a user interface based on XAML elements. Sometimes, however, a more complex UI is required, that cannot be easily achieved by XAML alone, or where low level control is desired. In such cases, we can create a lightweight element, deriving from FrameworkElement that does its own drawing without creating any particular element. This makes the control consume less memory and WPF layout logic does not need to consider many elements.

In this recipe, we'll take a look at the way to implement such lightweight elements.
Getting ready

Make sure Visual Studio is up and running.

How to do it...

We'll create a simple bar graph control to demonstrate the ability to draw in a more "manual" fashion.

	Create a new WPF application project named CH10.CustomRendering.
	Add a new class named BarGraph that derives from FrameworkElement. This class will hold an array of values to show as a bar graph.
	Add a dependency property named Values to the BarGraph class to hold the data to display:public static readonly DependencyProperty ValuesProperty =
DependencyProperty.Register("Values", typeof(double[]),
typeof(BarGraph), new FrameworkPropertyMetadata(null,
FrameworkPropertyMetadataOptions.AffectsRender));
public double[] Values {
get { return (double[])GetValue(ValuesProperty); }
set { SetValue(ValuesProperty, value); }
}

	Let's add some more properties that allow some control over the rendering aspects:public static readonly DependencyProperty FillProperty =
Shape.FillProperty.AddOwner(typeof(BarGraph),
new FrameworkPropertyMetadata(Brushes.White,
FrameworkPropertyMetadataOptions.AffectsRender));
public static readonly DependencyProperty StrokeProperty =
Shape.StrokeProperty.AddOwner(typeof(BarGraph),
new FrameworkPropertyMetadata(Brushes.Black,
FrameworkPropertyMetadataOptions.AffectsRender));
public static readonly DependencyProperty
StrokeThicknessProperty = Shape.StrokeThicknessProperty.
AddOwner(typeof(BarGraph), new FrameworkPropertyMetadata(
1.0, FrameworkPropertyMetadataOptions.AffectsRender));
public Brush Fill {
get { return (Brush)GetValue(FillProperty); }
set { SetValue(FillProperty, value); }
}
public Brush Stroke {
get { return (Brush)GetValue(StrokeProperty); }
set { SetValue(StrokeProperty, value); }
}
public double StrokeThickness {
get { return (double)GetValue(StrokeThicknessProperty); }
set { SetValue(StrokeThicknessProperty, value); }
}

	Finally, let's add a property that allows the drawing of an average line for the values in question:public bool ShowAverage {
get { return (bool)GetValue(ShowAverageProperty); }
set { SetValue(ShowAverageProperty, value); }
}
public static readonly DependencyProperty
ShowAverageProperty = DependencyProperty.Register(
"ShowAverage", typeof(bool), typeof(BarGraph),
new FrameworkPropertyMetadata(false,
FrameworkPropertyMetadataOptions.AffectsRender));

	The element has no XAML associated with it. Its entire rendering is based on overriding the OnRender method. Add a using statement for the System.Windows.Media namespace.
	Override the OnRender method with the following code:protected override void OnRender(DrawingContext dc) {
if(Values == null || Values.Length == 0) return;
double max = Values.Max();
var pen = new Pen(Stroke, StrokeThickness);
var barSize = ActualWidth / Values.Length;
for(int i = 0; i < Values.Length; i++) {
dc.DrawRectangle(Fill, pen, new Rect(
new Point(i * barSize, ActualHeight -
Values[i] * ActualHeight / max),
new Point((i + 1) * barSize, ActualHeight)));
}
if(ShowAverage) {
var avg = ActualHeight - Values.Average()
* ActualHeight / max;
dc.DrawLine(pen, new Point(0, avg),
new Point(ActualWidth, avg));
}
}

	The code uses a DrawingContext to do all the required drawing. Let's set up a bar graph with some data. Open MainWindow.xaml and add an XAML namespace, mapping to the CH10.CustomRendering namespace:xmlns:local="clr-namespace:CH10.CustomRendering"

	Create a BarGraph element inside the existing Grid with the following markup:<local:BarGraph x:Name="_graph" ShowAverage="True">
<local:BarGraph.Fill>
<LinearGradientBrush EndPoint="0,1">
<GradientStop Color="LightBlue" Offset="0" />
<GradientStop Color="Blue" Offset="1" />
</LinearGradientBrush>
</local:BarGraph.Fill>
</local:BarGraph>

	Open MainWindow.xaml.cs and add the following code inside the constructor after the call to InitalizeComponent:double[] values = { 45, 22, 104, 77, 18, 56, 39, 120 };
_graph.Values = values;

	Run the application. You should see a simple bar graph with an average line:[image: How to do it...]

How it works...

The UIElement.OnRender method is used to render the entire UI of the custom element. It accepts a DrawingContext object, which is an abstraction over some drawing tools. It's similar in concept to the System.Drawing.Graphics GDI+ class (used by WinForms) or to the Win32 device context. There is an important difference, however, that goes beyond the fact that WPF works through DirectX. WPF has a retained mode graphics system, meaning the "drawing" done with DrawingContext as opposed to (say) Graphics. DrawingContext is a kind of cache for graphic operations. For example, OnRender is not called when minimizing and restoring the window. WPF remembers the commands to use and redraws automatically. On the other hand, in GDI+ it's necessary to invoke the drawing code explicitly from a Paint event - otherwise the drawing would disappear if the window is minimized and restored, for instance; this is known as an immediate mode rendering system.

DrawingContext contains a bunch of methods, such as DrawRectangle, DrawLine, and DrawText. In the bar graph, DrawRectangle and DrawLine are used with a Pen and a Brush (a Pen encapsulates a Brush with line-related properties such as thickness and dashes).

There's more...

Using UIElement.OnRender is also possible for "regular" custom controls that derive from control. This method is called as part of the rendering cycle, thus providing a way to use XAML for the basic control and a DrawingContext for other, more complex drawing operations.
Dependency property ownership

The Stroke, StrokeThickness, and Fill dependency properties were not defined from scratch using DependencyProperty.Register. As some form of these exists elsewhere in WPF, and the required meaning for this control is practically the same, it's cheaper to add the control as an owner to an existing property, rather than defining it from scratch. The DependencyProperty.AddOwner provides a way to do that, optionally changing the property metadata (as was used here so that the default brushes are not null).

More DrawingContext

Apart from the obvious methods, a DrawingContext has some other interesting methods:

	DrawGeometry provides a way to draw any Geometry-derived object
	DrawDrawing draws a object derived from Drawing (a lightweight object representing a 2D drawing).
	DrawVideo draws a MediaPlayer object inside a rectangle, essentially showing a running movie
	Push methods that allow changing the state of the DrawingContext, such as PushOpacity and PushTransform, until a Pop method is called, restoring the state before the last Push call
	Most methods have overloads that accept an AnimationClock object, which provides animation control capabilities for the drawn element

Chapter 11. Threading

In this chapter we will cover:
	Updating the UI from a non-UI thread
	Adding cancelation support
	Using the BackgroundWorker component
	Adding cancelation and progress with BackgroundWorker
	Using a timer to do periodic updates
	Using C# 5.0 to perform asynchronous operations

Introduction

The computer world is going through a revolution in terms of the way code is written. From (mostly) single CPU systems, current computers have multi-core processors, capable of performing concurrent operations. The shift is mostly due to hardware limitations that don't allow current technology to increase CPU clock frequency by much (if at all). The solution: create more cores.
But, more cores means the "free lunch is over" (as Herb Sutter put it nicely). If we continue writing single threaded code, no amount of cores can help us speed things up. A lot of effort is now going in to getting back "the free lunch". One such effort is the Task Parallel Library introduced in .NET 4.
The UI world remains mainly single threaded. What concerns a UI framework, such as WPF, is keeping the UI responsive, which means offloading any significant work or significant wait to some background thread in some way so that the UI thread can keep pumping messages, keeping the application responsive. One problem that arises, however, is that a background operation cannot touch the user interface on a non-UI thread. WPF has to provide some facility to marshal the required call to the UI thread for processing.
In this chapter, we'll take a look at WPF's (and .NET's) support for working with asynchronous operations, including cancelation and reporting progress. We won't discuss actual threading techniques in depth as this is not specific to WPF; still, we'll see some typical examples that use the thread pool and the Task Parallel Library.

Updating the UI from a non-UI thread

User interface in WPF (as with WinForms) is managed by a single thread. More accurately, a thread that creates windows is the owner of those windows; it means that thread must process UI messages, a process usually known as message pumping. This message pumping activity is provided by the framework (in WPF it's in the Dispatcher.Run static method; in WinForms it's Application.Run, but the idea is the same). If the UI thread is doing a lot of work or enters a wait state (by doing some I/O, for example), it won't be able to process UI messages, causing the UI to freeze, also known as "not responding". This is very bad from a user experience standpoint, and should be avoided at all costs. The simple rule is that if some operation may be long, offload it to another thread in some way, keeping the UI thread responsive.

Sounds simple, doesn't it? Sometimes it is simple, sometimes not so much. One of the common issues is the need to update something in the user interface from a non-UI thread. The direct approach causes an exception to be thrown. In this recipe, we'll see one way to circumvent that exception and update the user interface correctly.
Getting ready

Make sure Visual Studio is up and running.

How to do it...

We'll create a simple application that counts prime numbers on a non-UI thread and updates the UI when the result is available.

	Create a new WPF Application named CH11.AsyncCalc.
	Open MainWindow.xaml. Set the following Window properties:Title="Prime Counter" SizeToContent="WidthAndHeight"
ResizeMode="CanMinimize"

	Build the following simple user interface starting with the existing Grid:<Grid TextBlock.FontSize="16">
<Grid.RowDefinitions>
<RowDefinition Height="Auto"/>
<RowDefinition Height="Auto" />
<RowDefinition Height="Auto" />
<RowDefinition Height="Auto" />
</Grid.RowDefinitions>
<StackPanel Orientation="Horizontal" Margin="6">
<TextBlock Text="From:" />
<TextBox Margin="10,2,2,2" Width="120"
MaxLength="10" x:Name="_from"/>
<TextBlock Text="To:" Margin="20,0,0,0"/>
<TextBox Margin="10,2,2,2" Width="120"
MaxLength="10" x:Name="_to"/>
</StackPanel>
<StackPanel Orientation="Horizontal" Grid.Row="1"
Margin="6">
<Button Content="Calculate" Padding="4" />
</StackPanel>
<TextBlock x:Name="_result" Grid.Row="3" FontSize="20"
Margin="6" HorizontalAlignment="Center" />
</Grid>

	Open MainWindow.xaml.cs. We'll create a general method that counts the number of prime numbers in a given range. Add a static method named CountPrimes and implement with the following code:static int CountPrimes(int from, int to) {
int total = 0;
for(int i = from; i <= to; i++) {
bool isPrime = true;
int limit = (int)Math.Sqrt(i);
for(int j = 2; j <= limit; j++)
if(i % j == 0) {
isPrime = false;
break;
}
if(isPrime)
total++;
}
return total;
}

	The method searches for prime numbers (not with the most efficient way, but that's unimportant for our purposes). Now we need to invoke it at the right time. Add a Click event handler for the button.
	The first thing to do in the event handler is to get the range of numbers to look for primes and disable the button until the calculation is done:int first = int.Parse(_from.Text), last = int.Parse(_to.Text);
var button = (Button)sender;
button.IsEnabled = false;

	Note that there is no proper error handling in the preceding code (int.Parse may throw an exception); that's not the focus here. As identifying prime numbers can be time consuming for a large set of numbers, it's best to set the operation in motion in another thread so that the UI thread is kept responding. There are a few ways to do an operation on a different thread (explicitly creating a thread, using the thread pool, using a task - to name the common ways); here we'll use the thread pool by calling ThreadPool.QueueUserWorkItem:ThreadPool.QueueUserWorkItem(_ => {
int total = CountPrimes(first, last);

	 CountPrimes runs on a thread pool thread. When the call returns we want to show results by accessing the TextBlock.Text property. Direct access would cause an exception (InvalidOperationException). One way to "return" to the UI thread is to use the Dispatcher on any UI element like the following code demonstrates:Dispatcher.BeginInvoke(new Action(() => {
_result.Text = "Total Primes: " + total.ToString();
button.IsEnabled = true;
}));
});

	 Dispatcher.BeginInvoke causes the specified delegate to be scheduled to execute on the UI thread as soon as possible (it actually depends on a DispatcherPriority and the actual work the UI thread is doing).
	Run the application. Enter 3 for From and 10000000 for To and click the button. During the calculation the UI is responsive - you can drag the window around. Eventually, the result should be displayed (664578 prime numbers in that range).[image: How to do it...]

How it works...

All WPF elements inherit from DispatcherObject (which only inherits from object), which means an element is always associated with a System.Windows.Threading.Dispatcher, or to be more precise, a UI thread is associated with a Dispatcher. This Dispatcher can be accessed at any time using the DispatcherObject.Dispatcher property inherited by all WPF elements.

Calling Dispatcher.Invoke or Dispatcher.BeginInvoke schedules a delegate (of whatever kind) to execute on the thread associated with that dispatcher. The dispatcher is also accessible from the UI thread using the Dispatcher.CurrentDispatcher static property (this may be useful when non-UI aware code is running on the UI thread).
The call to ThreadPool.QueueUserWorkItem (step 7) causes a delegate to execute as soon as possible on the CLR's thread pool (one thread pool in a process). This means the passed in delegate never executes on the UI thread. When the operation completes and the UI needs to be updated, it must be done on the UI thread. This is where the Dispatcher comes in. The call to Dispatcher.BeginInvoke causes a delegate to run on the UI thread, making accessing the UI possible.

There's more...

The Dispatcher supports two ways of invocation: Invoke and BeginInvoke. Invoke does not return until the operation runs on the UI thread, whereas BeginInvoke returns immediately to do other work while the delegate to run on UI thread is scheduled for execution. The choice doesn't matter most of the time, but BeginInvoke is preferred unless there is a specific reason to wait for the UI operation to complete, such as when a result is expected.

The Dispatcher maintains queues of requests that need to be processed on the UI thread. There are several priorities available, DispatcherPriority.Normal being the default.
Some overloads for Invoke and BeginInvoke accept a DispatcherPriority as well as the delegate to execute. Here are the existing priority levels (from lowest to highest):
	Inactive: Operations are not processed
	SystemIdle: Processed when the system is idle
	ApplicationIdle: Processed when the application is idle
	ContextIdle: Processed after background operations are complete
	Background: Processed after all non-idle operations are complete
	Input: Processed in the same priority as input
	Loaded: Processed after layout and render have finished (this is when the Loaded event fires)
	Render: Processed at the same priority as render
	DataBind: Processed at same priority as data binding operations
	Normal: Processed at normal application priority (the default)
	Send: Highest priority level, processed before any asynchronous operations

The default value of Normal would suffice in most cases, but for frequent updates we may choose a lower priority level, making sure important operations such as data binding occur first.
Dispatcher alternative

Using the dispatcher is not the only way to schedule something on the UI thread. Another, more agnostic way is to use a SynchronizationContext. A SynchronizationContext can be obtained by calling the static SynchronizationContext.Current property. For a UI thread, the synchronization context represents the affinity with that thread. For non-UI threads, the context may be different or even null (which it is on a thread pool thread).

The way to use the SynchronizationContext is to "capture" it on the UI thread, and later call its Post or Send methods to schedule a delegate to run on a thread represented by that context (always a single thread in the UI case). Here's an alternative event handler that does essentially the same thing (steps 6 to 8):
int first = int.Parse(_from.Text), last = int.Parse(_to.Text);
var button = (Button)sender;
button.IsEnabled = false;
var sc = SynchronizationContext.Current;
ThreadPool.QueueUserWorkItem(_ => {
int total = CountPrimes(first, last);
sc.Post(delegate {
_result.Text = "Total Primes: " + total.ToString();
button.IsEnabled = true;
}, null);
});

SynchronizationContext.Post is an asynchronous call (non-blocking), similar to Dispatcher.BeginInvoke, while SynchronizationContext.Send is similar to Dispatcher.Invoke.
What's the advantage of using a SynchronizationContext? Although it's less flexible than Dispatcher, it's technology-agnostic. This means the same code works in WPF, WinForms, Silverlight, and even Windows Phone 7.x.
The secret to its operation is the returned object from SynchronizationContext.Current. It's a different one in WPF (System.Windows.Threading.DispatcherSynchronizationContext) than in WinForms (System.Windows.Forms.WindowsFormsSynchronizationContext) - each provides a different implementation to Send and Post (WPF uses its Dispatcher, WinForms uses its ISynchronizeInvoke interface implementation on System.Windows.Forms.Control). Because of its neutrality, it can be used without specifically referencing WPF or WinForms assemblies.

Dispatcher enhancements in WPF 4.5

The Dispatcher that's available with WPF 4.5 has some enhancements worth noting:

	The Invoke method has more overloads. Some accept an Action delegate (instead of the base Delegate class), which simplifies coding. A generic Invoke<T> exists that returns a T as a result from the synchronous call.
	The InvokeAsync method (with overloads) was added that allows using the C# await keyword to wait for the operation to complete without blocking. We'll see an example of the C# 5.0 await keyword in a later recipe.

More Dispatcher

Some extension methods exist for Dispatcher from the System.Windows.Threading.DispatcherExtension class for Invoke and BeginInvoke that accept an Action instead of any Delegate. Strangely, this class resides in the System.Windows.Presentation assembly, which is not added by Visual Studio by default.

WPF uses Dispatcher.VerifyAccess in many code paths to make sure the call happens on the UI thread. If not, VerifyAccess throws an InvalidOperationException. Alternatively, it's possible to call Dispatcher.CheckAccess that returns true if called on the correct (UI) thread and false otherwise. This could help in certain scenarios, where the Dispatcher may be circumvented if the call happens to be on the UI thread.

What about data binding?

In a more realistic code, data binding would be used. In such a case, if a property is changed from a non-UI thread, what would happen if that property is data bound by some element? It turns out this works ok for simple properties.
Collections, however, cannot be modified from a non-UI thread if that collection is data bound; that would generate an exception. In WPF 4 or earlier, such an operation would have to be marshaled to the UI thread with the aid of the Dispatcher or SynchronizationContext.
Starting from WPF 4.5, collections (such as ObservableCollection<T>) can be modified from non-UI threads, provided they are registered correctly using the BindingOperations.EnableCollectionSynchronization static method. Here's an example for a list of simple integers:
public partial class MainWindow : Window {
ObservableCollection<int> _numbers =
new ObservableCollection<int>();
object _lock = new object();
public MainWindow() {
InitializeComponent();
_list.ItemsSource = _numbers;
BindingOperations.EnableCollectionSynchronization(
_numbers, _lock);
ThreadPool.QueueUserWorkItem(_ => {
var rnd = new Random();
for(; ;) {
lock(_lock) {
_numbers.Add(rnd.Next(1000));
}
Thread.Sleep(1000);
}
});
}
}

_list is a ListBox reference, bound to the ObservableCollection<int>. The BindingOperations.EnableCollectionSynchronization accepts the collection for which to allow modifications, and a lock object. That's the same idea behind the C# lock keyword (Monitor.Enter/Exit of the framework), which means it can be any reference type, but the actual object is unimportant. This lock object is required so that the collection can be synchronized when accessed from a non-UI thread or accessed on the UI thread for binding purposes.
It's important to note that this still means that our code needs to use locking with the same lock object to make sure the collection is not corrupted in any way.

Adding cancelation support

Long running operations are typically performed on a different thread, which keeps the UI responsive, but that may not be enough. Applications may want to provide a way to cancel a long-running operation. Prior to .NET 4, developers used various ways to orchestrate cancelations. Starting from .NET 4 there is a standard way to convey cancelation requests.

In this recipe, we'll see how to use this cancelation mechanism.
Getting ready

Open the CH11.AsyncCalc project. We'll enhance it with cancelation support.

How to do it...

We'll add the option to cancel the prime calculation operation.

	Open MainWindow.xaml. Add another button to the second StackPanel with the following markup:<Button Content="Cancel" Padding="4" Margin="10,0,0,0"
IsEnabled="False" x:Name="_cancelButton" />

	Name the Calculate button _calcButton.
	Open MainWindow.xaml.cs. Change the CountPrimes method to accept a CancellationToken:static int CountPrimes(int from, int to,
CancellationToken ct) {

	Modify CountPrimes to check whether CancellationToken.IsCancellationRequested is true, and if so, return immediately. This is how the loop should look:for(int i = from; i <= to; i++) {
if(ct.IsCancellationRequested)
return -1;
bool isPrime = true;
int limit = (int)Math.Sqrt(i);
for(int j = 2; j <= limit; j++)
if(i % j == 0) {
isPrime = false;
break;
}
if(isPrime)
total++;
}

	To make this work, we need to create a CancellationTokenSource, which is the provider of CancellationToken objects. Add a private field of type CancellationTokenSource to the MainWindow class:public partial class MainWindow : Window {
CancellationTokenSource _cts;

	Change the Calculate button event handler to create a CancellationTokenSource and use it to provide a CancellationToken to CountPrimes, and act upon the result:int first = int.Parse(_from.Text), last = int.Parse(_to.Text);
_calcButton.IsEnabled = false;
_cancelButton.IsEnabled = true;
_cts = new CancellationTokenSource();
ThreadPool.QueueUserWorkItem(_ => {
int total = CountPrimes(first, last, _cts.Token);
Dispatcher.BeginInvoke(new Action(() => {
_result.Text = total < 0 ? "Cancelled!" :
"Total Primes: " + total.ToString();
_cancelButton.IsEnabled = false;
_calcButton.IsEnabled = true;
}));
});

	To set all this in motion, add a Click event handler for the Cancel button. Implement it with the following code:if(_cts != null) {
_cts.Cancel();
_cts = null;
}

	Run the application. Start a long calculation and cancel it midway; alternatively, let it run all the way through. The UI should remain responsive at all times.[image: How to do it...]

How it works...

A CancellationTokenSource represents a logical operation that may be canceled. That source provides CancellationToken objects through its Token property to individual objects or methods that provide part of that logical operation. In the simplest case (as it is in the above code), only one such token is distributed, meaning a single entity (a method in this case) does all the work.

Whenever the Cancel method is called on a CancellationTokenSource instance, all distributed tokens from that source have their IsCancellationRequested property set to true. Hopefully, the code holding on to a CancellationToken is able to poll that property in sufficiently small intervals, and if true, make an effort to bail out early. In our example, the loop simply returns with a special value (-1) indicating cancellation.

There's more...

It's important to realize that the CancellationTokenSource and CancellationToken types have no abilities of their own in terms of actually canceling anything. They provide a piece of logic for cooperative cancellation. Calling CancellationTokenSource.Cancel does not guarantee cancellation - it's merely a request to cancel, that can hopefully be carried out by entities holding CancellationToken objects obtained from that source.

Never cancel by aborting a thread

Sometimes developers try to abort asynchronous operations by aborting the thread that carries the operation. This is almost always a bad idea. There are several reasons for this, one of which is the difficulty in knowing what that thread has done and what it had yet to do before being terminated. The application may be left in an inconsistent state as a result of an abrupt thread termination.

It's much better to facilitate termination with some piece of logic involving synchronization objects, such as AutoResetEvent or ManualResetEvent(Slim). Using these objects is beyond the scope of this book as these have nothing special to do with WPF.

Using the BackgroundWorker component

The asynchronous operation we used in the previous examples used the thread pool explicitly to do the long running work on another thread. Updating the UI required marshaling code to the UI thread from another thread, to keep the rule of updating the UI from the UI thread intact. All this required some manually managed code.

An alternative is using the BackgroundWorker class that provides automatic management and marshaling for the purpose of performing a long running operation on a background thread.
In this recipe, we'll use the BackgroundWorker to do asynchronous operations without blocking the UI thread and understand its pros and cons.
Getting ready

We'll duplicate most of the UI from the CH11.AsyncCalc project, so keep it open while we create the new project.

How to do it...

We'll count prime numbers (as before) on a different thread, but we'll let the BackgroundWorker take care of all the gory details.

	Create a new WPF Application named CH11.AsyncCalcWithBackgroundWorker.
	Copy the XAML from MainWindow.xaml from the CH11.AsyncCalc project to this project's MainWindow.xaml. Remove the cancel button markup for now. Also remove the Click event setting from the calculate button's markup. This is the resulting XAML (without the x:Class and default XAML namespace mappings):<Window Title="Primes Counter" ResizeMode="CanMinimize"
SizeToContent="WidthAndHeight">
<Grid TextBlock.FontSize="16">
<Grid.RowDefinitions>
<RowDefinition Height="Auto"/>
<RowDefinition Height="Auto" />
<RowDefinition Height="Auto" />
<RowDefinition Height="Auto" />
</Grid.RowDefinitions>
<StackPanel Orientation="Horizontal" Margin="6">
<TextBlock Text="From:" />
<TextBox Margin="10,2,2,2" Width="120"
MaxLength="10" x:Name="_from"/>
<TextBlock Text="To:" Margin="20,0,0,0"/>
<TextBox Margin="10,2,2,2" Width="120"
MaxLength="10" x:Name="_to"/>
</StackPanel>
<StackPanel Orientation="Horizontal" Grid.Row="1"
Margin="6">
<Button Content="Calculate" Padding="4"
x:Name="_calcButton"/>
</StackPanel>
<TextBlock x:Name="_result" Grid.Row="3" Margin="6"
HorizontalAlignment="Center" FontSize="20" />
</Grid>
</Window>

	Open MainWindow.xaml.cs. Add a private field to the MainWindow class of type BackgroundWorker:BackgroundWorker _worker;

	Add a Click event handler to the Calculate button named OnCalculate. The first thing to do in the event handler is to set up the BackgroundWorker. This is done by wiring up two events, DoWork and RunWorkerCompleted (you can press Tab twice to let Visual Studio create the actual event handlers):_worker = new BackgroundWorker();
_worker.DoWork += _worker_DoWork;
_worker.RunWorkerCompleted += _worker_RunWorkerCompleted;

	Next, we want to disable the Calculate button to prevent another operation from starting and then kick off the operation. First, we'll create a small class to hold the information that needs to be passed to the DoWork event handler. Add a class named PrimeInputData defined with the following simple code:class PrimeInputData {
public int First { get; set; }
public int Last { get; set; }
}

	Continuing in the Click handler of a button, add the following code that sets up the data to work with and initiates the work asynchronously:_calcButton.IsEnabled = false;
_result.Text = "Calculating...";
var data = new PrimeInputData {
First = int.Parse(_from.Text),
Last = int.Parse(_to.Text)
};
_worker.RunWorkerAsync(data);

	 RunWorkerAsync causes the DoWork event handler to be called on a thread pool thread. Implement the DoWork event handler with the following code:void _worker_DoWork(object sender, DoWorkEventArgs e) {
var data = (PrimeInputData)e.Argument;
int count = 0;
for(int i = data.First; i <= data.Last; i++) {
int limit = (int)Math.Sqrt(i);
bool isPrime = true;
for(int j = 2; j <= limit; j++)
if(i % j == 0) {
isPrime = false;
break;
}
if(isPrime)
count++;
}
e.Result = count;
}

	When the DoWork event handler is done, the RunWorkerCompleted event is fired on the UI thread (automatically). Implement the handler as follows:void _worker_RunWorkerCompleted(object sender,
RunWorkerCompletedEventArgs e) {
_result.Text = string.Format("Total Primes: {0}",
e.Result);
_calcButton.IsEnabled = true;
}

	Run the application. Enter some numbers and click on Calculate. Make sure the window is responsive throughout the calculation.[image: How to do it...]

How it works...

The BackgroundWorker class uses events to coordinate the work. The DoWork event is raised on a thread pool thread when the RunWorkerAsync method is called. The DoWork event handler is where the long running code is used. An optional argument can be passed to RunWorkerAsync which is passed to the DoWork handlers in the DoWorkEventArgs.Argument property. This is used here to pass information about the prime numbers to be counted (step 6). Any result can be stored in the DoWorkEventArgs.Result property.

When the DoWork event handler completes, the BackgroundWorker raises the RunWorkerCompleted event, always on the UI thread, which is convenient as we probably want to update the UI when the work is done. Any result passed from the DoWork handler is received in the RunWorkerCompletedEventArgs.Result property. Here it's the count of prime numbers (step 8).
The BackgroundWorker is easy to use as we didn't create any threads, used the thread pool, or marshaled calls to the UI thread.

There's more...

The BackgroundWorker was introduced in .NET 2.0, and one of its curious attributes is that it works in all UI technologies in .NET: WPF, WinForms, Silverlight, and Windows Phone 7.x. It may seem like a kind of magic, as WPF (for example) was created after the BackgroundWorker was.
The secret to its work is that it uses the SynchronizationContext class we met already. This makes it agnostic to the actual technology used because the correct SynchronizationContext would be created by the relevant technology when SynchronizationContext.Current is called by the BackgroundWorker.

Did we really have to pass the argument to RunWorkerAsync?

The DoWork event handler is part of the MainWindow class, so why did we pass the information to the handler via the Argument property? Wouldn't it be simpler to just call int.Parse in the DoWork event handler for both TextBox objects?
We must remember that this code is called by a thread pool thread, meaning accessing any UI element would cause an exception. This is why we first got values on the UI thread before invoking the BackgroundWorker. The DoWork event handler is too late to access UI elements.

What about the Task Parallel Library?

.NET 4 introduced the Task Parallel Library (TPL) for working more conveniently and efficiently with concurrent operations. These can be used in cases where it's possible to run things faster by using multiple CPU cores. For example, our prime counting code is single threaded. We could change it to the following parallel code that would use the available cores on the machine to count primes faster with Parallel.For:

Parallel.For(data.First, data.Last + 1, i => {
int limit = (int)Math.Sqrt(i);
bool isPrime = true;
for(int j = 2; j <= limit; j++)
if(i % j == 0) {
isPrime = false;
break;
}
if(isPrime)
Interlocked.Increment(ref count);
});

The TPL is beyond the scope of this book as it's not specific to WPF. You can find a lot of information online (you can start at http://msdn.microsoft.com/concurrency).

Adding cancellation and progress with BackgroundWorker

The BackgroundWorker supports two extra features: cancellation and progress. We already looked at cooperative cancellation with the CancellationTokenSource and CancellationToken types, but the BackgroundWorker defines its own mechanism (it was created long before the latter types were).

In this recipe, we'll take a look at adding cancelation to the primes counting endeavor. Also, in a long running operation it's nice to indicate to the user how things are progressing. The BackgroundWorker has good support for that, too.
Getting ready

We'll continue with the CH11.AsyncCalcWithBackgroundWorker project. Alternatively, you can make a copy of it and work on that.

How to do it...

We'll add a Cancel button and a ProgressBar and use the support of BackgroundWorker for these features.
	Open MainWindow.xaml. Add a Cancel button to the second StackPanel, right after the Calculate button:<Button Content="Cancel" Padding="4" x:Name="_cancelButton"
IsEnabled="False" Margin="10,0,0,0" />

	Add a ProgressBar to the third row of the Grid like so:<ProgressBar x:Name="_progress" Grid.Row="2" Height="30"
Margin="4"/>

	Open MainWindow.xaml.cs. To set up cancellation, we first need to enable it for the BackgroundWorker. In the Calculate button's Click event handler, after the BackgroundWorker creation, add the following code:_worker.WorkerSupportsCancellation = true;

	After the Calculate button is disabled, enable the Cancel button:_cancelButton.IsEnabled = true;

	Add a Click event handler to the Cancel button. Implement the handler as follows:private void OnCancel(object sender, RoutedEventArgs e) {
_worker.CancelAsync();
}

	Cancellation support is cooperative. The long running operation needs to check the BackgroundWorker.CancellationPending property periodically, and if it returns true, this means a cancellation is requested. We'll modify the DoWork event handler to check for this property with every iteration:for(int i = data.First; i <= data.Last; i++) {
if(_worker.CancellationPending) {
e.Cancel = true;
break;
}

	Setting DoWorkEventArgs.Cancelled to true indicates that the operation was in fact canceled. When the RunWorkerCompleted event handler fires, we need to check the RunWorkerCompletedEventArgs.Cancelled property, and if true, do something different. Replace the RunWorkerCompleted event handler with the following code:_result.Text = e.Cancelled ? "Operation Cancelled" :
string.Format("Total Primes: {0}", e.Result);
_calcButton.IsEnabled = true;
_cancelButton.IsEnabled = false;

	Run the application. Enter some numbers and click on Calculate. Click on Cancel mid operation and watch the cancellation result.[image: How to do it...]

	Now we want to indicate progress. First, we need to enable support for progress reporting in the BackgroundWorker. Add the following line after the BackgroundWorker creation in the Click event handler of the Calculate button:_worker.WorkerReportsProgress = true;

	Next, we need to register for another event the BackgroundWorker supports, ProgressChanged. This event is fired on the UI thread whenever the long running operation reports a progress change. Add the following line after the RunWorkerCompleted event registration (you can press Tab twice to get Visual Studio's auto completion):_worker.ProgressChanged += _worker_ProgressChanged;

	In the created handler, add the following code:_progress.Value = e.ProgressPercentage;

	This sets the Value property of Progress bar based on the ProgressChangedEventArgs.ProgressPercentage property. Who is providing that value? That's part of the DoWork event handler. Modify the DoWork event handler to incorporate progress related code. Here's the complete implementation:var data = (PrimeInputData)e.Argument;
int count = 0;
_worker.ReportProgress(0);
int range = data.Last - data.First + 1, progressCount = 0;
for(int i = data.First; i <= data.Last; i++) {
if(_worker.CancellationPending) {
e.Cancel = true;
break;
}
int limit = (int)Math.Sqrt(i);
bool isPrime = true;
for(int j = 2; j <= limit; j++)
if(i % j == 0) {
isPrime = false;
break;
}
if(isPrime)
count++;
if(++progressCount % 100 == 0)
_worker.ReportProgress(progressCount * 100 / range);
}
if(!e.Cancel) {
_worker.ReportProgress(100);
e.Result = count;
}

	Run the application. Enter numbers to work with, click on Calculate and watch the progress change.[image: How to do it...]

How it works...

Cancellation initiation with the BackgroundWorker works by calling the CancelAsync method. This sets the CancellationPending property to true, that (hopefully) the DoWork event handler inspects from time to time. This is, just like CancellationToken(Source), cooperative cancellation. In our case, if the flag is set, the DoEventArgs.Cancel property is explicitly set to true, indicating the operation has actually been canceled. The RunWorkerCompletedEventArgs.Cancelled conveys that information, allowing the correct result to be presented.

Reporting progress is a matter of calling BackgroundWorker.ReportProgress method with some number indicating progress. Note that the number doesn't have to be between zero and 100, but can be anything that makes sense for the application. In the preceding code, for every 100 numbers the progress is reported. Reporting the progress causes the ProgressChanged event to be fired on the UI thread where some UI can be modified the Value of ProgressBar in this case.

There's more...

It may be tempting to report progress after each and every number, but that would stress the UI thread too much and cause the dreaded "not responding" result, defeating the very purpose the BackgroundWorker was designed for. This is why the progress should be reported in reasonable intervals, so that the UI thread is busy only momentarily.
What about Parallel.For?

If we use the Parallel.For to parallelize the computation to make better use of the available cores, how do we cancel the operation? Using the following code does not compile:

if(_worker.CancellationPending) {
e.Cancel = true;
break;
}

Why? The break instruction fails to compile because there is no loop here it's just a delegate that's passed in to Parallel.For. How can we handle that? Fortunately, Parallel.For can accept an alternative delegate, Action<int, ParallelLoopState> (instead of Action<int>) that can be used for such matters. The entire Parallel.For call should be changed to this:
Parallel.For(data.First, data.Last + 1, (i, state) => {
if(_worker.CancellationPending) {
e.Cancel = true;
state.Stop();
}
int limit = (int)Math.Sqrt(i);
bool isPrime = true;
for(int j = 2; j <= limit; j++)
if(i % j == 0) {
isPrime = false;
break;
}
if(isPrime)
Interlocked.Increment(ref count);
});

Calling ParallelLoopState.Stop breaks out of the entire parallel loop as soon as possible; this is exactly what we want.
Implementing progress correctly with Parallel.For is left as an exercise for the reader.

Using a timer to do periodic updates

It is sometimes useful to update parts of the user interface periodically. For example, an application may need to display the current time in some part of the UI. Or some color changes need to be made on a regular basis based on some runtime criteria. Although it's possible to create a thread that sleeps for a certain amount of time and then does the updates, this has two flaws: the first is that most of the time the thread sleeps. Threads are supposed to do useful work and not sleep most of the time the very fact the thread exists requires it to have its stack space (1MB by default), which may be wasteful in such a case. The second flaw is that we would have to marshal the UI update call using some mechanism we've already seen (Dispatcher, SynchronizationContext, and so on), which makes the code cumbersome.

A timer can be used instead if such updates are required, without the need to create additional threads. In this recipe, we'll use the DispatcherTimer class to implement a timer that can be used easily to update the UI, as its Tick event always fires on the UI thread.

Getting ready

Make sure Visual Studio is up and running.

How to do it...

We'll create a simple demo that changes some text and a brush in regular time intervals.

	Create a new WPF application named CH11.PeriodicUpdates.
	Open MainWindow.xaml. We'll create a TextBlock and an Ellipse to be modified by a timer. Add the following markup to the existing Grid:<Grid.RowDefinitions>
<RowDefinition Height="Auto" />
<RowDefinition />
</Grid.RowDefinitions>
<TextBlock x:Name="_time" HorizontalAlignment="Center"
FontSize="20" Margin="8"/>
<Ellipse Margin="10" Stroke="Black" StrokeThickness="2"
x:Name="_e1" Grid.Row="1" />

	Open MainWindow.xaml.cs. Add using statements for the System.Reflection and System.Windows.Threading namespaces.
	Add the following private fields to the MainWindow class:DispatcherTimer _timer = new DispatcherTimer();
int _counter;
Random _rnd = new Random();

	Add the following code to set up the timer and handle its Tick event in the constructor, after the call to InitializeComponent:_timer.Interval = TimeSpan.FromSeconds(.5);
_timer.Tick += delegate {
_time.Text = DateTime.Now.ToLongTimeString();
if(++_counter == 3) {
var brushes = typeof(Brushes).GetProperties(
BindingFlags.Public | BindingFlags.Static);
_e1.Fill = (Brush)brushes[_rnd.Next(brushes.Length)].
GetValue(null, null);
_counter = 0;
}
};
_timer.Start();

	Run the application. You should see the time being updated, while the Ellipse Fill Brush changes every 1.5 seconds.[image: How to do it...]

How it works...

The System.Windows.Threading.DispatcherTimer class represents a timer that is bound to the UI thread. The Interval property indicates the period of the timer; the Tick event is raised every such interval on the UI thread. The timer can be started by calling the Start method or setting the IsEnabled property to true (same effect).
Similarly, stopping the timer can be done with the Stop method or by setting IsEnabled to false.

As the Tick event is raised on the UI thread, we should make sure the work being done is not a lengthy one. If it is, the UI may become unresponsive; in such a case, offload the work to another thread.

There's more...

.NET defines no less than four timers. One such timer is WinForm's equivalent to DispatcherTimer, namely System.Windows.Forms.Timer.
The System.Threading.Timer is a general purpose timer that invokes a delegate (TimerCallback, provided in the constructor) on a thread pool thread. This means that if a UI update is required, marshaling must be used to do the UI update. On the other hand, long running work is possible without blocking the UI thread.

The System.Timers.Timer derives from System.ComponentModel.Component, which means it has designer-friendly features, and was mostly used in the WinForms world. Its Elapsed event can be raised in the UI thread if its SynchronizationObject property is set to an object that implements the ISynchronizeInvoke interface (which all WinForms controls do), otherwise it's raised on a thread pool thread.
I recommend using System.Threading.Timer for things that don't require UI updates.

Using C# 5.0 to perform asynchronous operations

Using synchronous operations is really easy. Just call some operation, wait for it to return, and use the result. As we've seen, the problem is that slow operations block the calling (UI) thread or that thread does some hard CPU bound work; in both cases, the UI may become unresponsive. We have seen several ways to deal with that. These require running the long operation on a different thread, and when the results are finally available, marshal some code to update the UI.

The net result is code complexity, which grows quickly with more and more asynchronous operations happening. And if we consider more than one operation at a time, potential cancellations, adding timeouts, handling exceptions conveniently code complexity climbs quickly.
C# 5.0 has a new feature related to calling operations running asynchronously and waiting efficiently for the result without all the required marshaling and code complexity. In this recipe, we'll take a brief look at using this feature to make asynchronous calls look very similar to synchronous ones, but still maintain responsive UI.
Getting ready

We'll need Visual Studio 2012 or later for this recipe. Make sure it's up and running.

How to do it...

We'll use the same prime counting example, but convert that to a C# 5.0 version, along with cancellation and progress.
	Create a new WPF application named CH11.AsyncCalcWithCS5.
	Open MainWindow.xaml. Add the following properties to the Window (remove the Width and Height properties):Title="Async Calc with C# 5.0" ResizeMode="CanMinimize" SizeToContent="WidthAndHeight"

	Add the following inside the existing Grid (this is pretty much the same UI as the other prime counting samples):<Grid.RowDefinitions>
<RowDefinition Height="Auto"/>
<RowDefinition Height="Auto" />
<RowDefinition Height="Auto" />
<RowDefinition Height="Auto" />
</Grid.RowDefinitions>
<StackPanel Orientation="Horizontal" Margin="6">
<TextBlock Text="From:" />
<TextBox Margin="10,2,2,2" Width="120"
MaxLength="10" x:Name="_from"/>
<TextBlock Text="To:" Margin="20,0,0,0"/>
<TextBox Margin="10,2,2,2" Width="120" MaxLength="10"
x:Name="_to"/>
</StackPanel>
<StackPanel Orientation="Horizontal" Grid.Row="1" Margin="6">
<Button Content="Calculate" Padding="4"
x:Name="_calcButton" Margin="4"/>
<Button Content="Cancel" Padding="4" Margin="4"
x:Name="_cancelButton" IsEnabled="False"/>
</StackPanel>
<ProgressBar x:Name="_progress" Grid.Row="2" Margin="4"
Height="30" />
<TextBlock x:Name="_result" Grid.Row="3" Margin="6"
HorizontalAlignment="Center" FontSize="20" />

	Open MainWindow.xaml.cs. Add using statement for the System.Threading and System.Threading.Tasks namespaces.
	Add a method that would count prime numbers asynchronously with the following implementation:async Task<int> CountPrimesAsync(int first, int last,
CancellationToken ct, IProgress<double> progress) {
var task = Task.Run(() => {
int total = 0;
int range = last - first + 1;
int pcount = 0;
for(int i = first; i <= last; i++) {
ct.ThrowIfCancellationRequested();
bool isPrime = true;
int limit = (int)Math.Sqrt(i);
for(int j = 2; j <= limit; j++)
if(i % j == 0) {
isPrime = false;
break;
}
if(isPrime)
total++;
if(++pcount % 1000 == 0)
progress.Report(pcount * 100.0 / range);
}
return total;
});
return await task;
}

	The async and await keywords are new in C# 5.0. A detailed explanation of the way this method works follows in the How it works... section. Add a private field to the MainWindow class of type CancellationTokenSource:CancellationTokenSource _cts;

	Add a Click event handler for the Calculate button. Implement the handler as follows (note the async keyword must be added to the event handler for this method to compile successfully):async void OnCalculate(object sender, RoutedEventArgs e) {
int first = int.Parse(_from.Text),
last = int.Parse(_to.Text);
_cts = new CancellationTokenSource();
_calcButton.IsEnabled = false;
_cancelButton.IsEnabled = true;
_result.Text = "Calculating...";
var progress = new Progress<double>(
value => _progress.Value = value);
try {
int count = await CountPrimesAsync(first, last,
_cts.Token, progress);
_result.Text = "Total Primes: " + count;
}
catch(OperationCanceledException ex) {
_result.Text = "Operation cancelled";
}
finally {
_cts.Dispose();
_calcButton.IsEnabled = true;
_cancelButton.IsEnabled = false;
}
}

	 CountPrimesAsync returns a Task<int> but we just "await" the actual result and use it very naturally, just as if it was a synchronous call (and it's not). Add a Click event handler for the Cancel button and implement with the following code:void OnCancel(object sender, RoutedEventArgs e) {
_cts.Cancel();
}

	That's it. Run the application and try counting some primes. Try the Cancel button as well.[image: How to do it...]

How it works...

C# 5.0 adds two keywords related to asynchronous programming: async and await. The await keyword can be used on anything that is "awaitable", which means following a certain pattern the compiler looks for in that particular object. Most of the time await is used on Task or Task<T>, which are the most common built-in "awaitables". The result of awaiting Task<T> is T. As CountPrimesAsync returns a Task<int>, awaiting that task yields an int (which is the required result).

Clearly, await must return only when the awaited Task is done. What does the thread do until that time? It returns to its caller. In our case, it simply returns to processing UI messages, which keeps the UI responsive. This is not the same as calling Task<T>.Result or Task.Wait these methods may block the calling thread, and since it's the UI thread, the UI will become unresponsive; and that's a very big difference.

You may wonder how all this works. The full details are beyond the scope of this recipe, but here's the gist of it: the compiler splits the method into two parts: before the call to await, and everything after that. The latter is invoked as a continuation when the task is complete (on the same SynchronizationContext). You can open a tool, such as Reflector, and view the generated code; it's not pretty, but it works.
All this means that the following line waits asynchronously for the returned Task to complete and harvests the result:
int count = await CountPrimesAsync(first, last, _cts.Token,
progress);

The calling thread literally returns from the call at the await point and somehow returns to the call after await is done and the result is available. If we were to write a synchronous version of this code it would look something like this:
int count = CountPrimes(first, last, _cts.Token, progress);

Note the high degree of similarity - this is the power of C# 5.0 - of asynchronous code looking like synchronous code; and this is just the tip of the iceberg.
What's the purpose of the async keyword? On a purely syntactic level, a method that uses await must be marked with async. This method can only return void, Task, or Task<T>. In the case of a non-void return, the method may return the expected Task, but it can alternatively return the value itself in the case of Task<T>(of type T), just like the CountPrimesAsync method does: it explicitly returns an int, although the method itself returns a Task<int>. This works because the compiler wraps that return value in a Task<int> - after all, there is an await in there somewhere, which means the method returns sooner than its actual end.

To clarify, CountPrimesAsync builds a Task<int> object and returns the total primes found from its task delegate. Then the actual return value is:
return await task;

Remember that await "strips" the Task and just uses the result (once it's available). This await actually returns immediately to its caller as a Task<int> that is awaited upon by the Calculate
 Click event handler as shown above. Note that we could make CountPrimesAsync a non-async method and simply return the created Task<int> without any awaits inside the effect would be the same.

There's more...

The Task<int> is built using Task.Run which is a shortcut introduced in .NET 4.5 to create and start a Task and get the Task reference back in one stroke. It's also possible to use the Task.Factory.StartNew method to get the same effect (available from .NET 4), but Task.Run is shorter.

Cancellation uses the familiar CancellationToken, but to cancel a Task we can't simply return; if we did, that task would simply be considered as completed successfully. Cancellation with tasks is conveyed via an exception of type OperationCanceledException, which is the one thrown by the call to CancellationToken.ThrowifCancellationRequested. This is why the try/catch block is required in the calling code.
Reporting progress is done with the IProgress<T> interface defined in .NET 4.5. We can provide our own implementation, but we can also use the stock implementation provided by .NET 4.5 called Progress<T>, that accepts a delegate in the constructor that is invoked any time the code calls the IProgress<T>.Report method. In our case, that delegate simply hands off the provided value to the Value property of ProgressBar.
What about non-CPU bound operations?

This await/async stuff has a name; Task Asynchronous Pattern (TAP), similar to other asynchronous patterns that exist in .NET, Asynchronous Programming Model (APM) and Event Asynchronous Pattern (EAP).
Here's an example of a non-CPU operation: getting information from a network. Here's a simple synchronous code to get the job done (_result is a TextBox):

var wc = new WebClient();
_result.Text = "Please wait...";
try {
_result.Text = wc.DownloadString("http://msdn.microsoft.com");
}
catch(WebException ex) {
_result.Text = "Error: " + ex.Message;
}

Simple and to the point (although the "Please wait..." message will never show). Error handling is also simple with a normal try/catch block. However, the thread blocks while the call is out and this freezes the UI, assuming it started on a UI thread.

Fortunately, WebClient supports the EAP model for asynchronous calls like so:
var wc = new WebClient();
_result.Text = "Please wait...";
wc.DownloadStringCompleted += (s, args) => {
if(args.Error != null)
_result.Text = "Error: " + args.Error.Message;
else
_result.Text = args.Result;
};
wc.DownloadStringAsync(new Uri("http://msdn.microsoft.com"));

This looks very awkward; no straightforward exception handling. The event handler must come before the actual code that starts the operation with WebClient.DownloadStringAsync. We know the order is different, but it looks unnatural; and that's for just one operation. Also, we had some "luck" here: the completed event is raised on the same SyhnchronizationContext as the calling code; WebClient is "polite"; not every class is.
The C# 5.0 version looks like this:
async void OnGetDataAsync(object sender, RoutedEventArgs e) {
var wc = new WebClient();
_result.Text = "Please wait...";
try {
_result.Text = await wc.DownloadStringTaskAsync(
"http://msdn.microsoft.com");
}
catch(WebException ex) {
_result.Text = "Error: " + ex.Message;
}
}

Notice the similarity with the synchronous code. Exception handling is as usual. The compiler breaks the method behind the scenes, but that doesn't concern us. WebClient.DownloadStringTaskAsync returns a Task<string>, which means it can be awaited upon ("awaitable"). The UI remains responsive during the I/O call.

More async

The async/await feature of C# 5.0 is a major one, and complete treatment of this is beyond the scope of this recipe. Here are a few more notes on this feature:

	Many new APIs in .NET 4.5 use this Task Asynchronous Pattern. WebClient is one such class. Another one is WebRequest that originally uses the APM (BeginGetResponse/EndGetResponse), but now also has a TAP version with GetResponseAsync that is awaitable.
	The System.IO.Stream class that uses the APM (for example, BeginRead/EndRead), now has a TAP version (ReadAsync, WriteAsync).
	The Task class has some helpers for TAP usage. Task.Delay for example, returns a Task that completes in the specified time. This can be used for timeouts without blocking.
	Awaiting can be combined with Task.WhenAll and Task.WhenAny that return Task objects that are naturally awaitable. For example, suppose we want to use WebClient to get some data, but will wait no more than 3 seconds for the result, otherwise it should be considered a timeout. Here's an elegant solution:async void OnGetData(object sender, RoutedEventArgs e) {
var wc = new WebClient();
var t1 = wc.DownloadStringTaskAsync(
"http://msdn.microsoft.com");
var t2 = Task.Delay(3000);
var tresult = await Task.WhenAny(t1, t2);
if(tresult == t1)
_result.Text = t1.Result;
else
_result.Text = "Timeout!";
}

Task.WhenAny returns a Task<Task> which sounds complicated, but when awaited upon, simply returns the Task that completed first.
Anything can be awaited provided it follows a predefined pattern. That pattern includes a GetAwaiter method that must be implemented on the awaited object (either on the actual type or as an extension method), and that returned "awaiter" must implement the INotifyCompletion interface (with one method named OnCompleted that accepts an Action delegate provided by the compiler, which is the compiler-generated continuation), an IsCompleted property, and a GetResult method. Anything that satisfies these demands can be awaited; the Task and Task<T> classes implement this pattern.

OEBPS/graphics/6228_02_03.jpg

OEBPS/graphics/6228_04_01.jpg
Object

DispatcherObject

DependencyObject

UlElement

FrameworkElement

ItemsControl ContentControl

OEBPS/graphics/6228_06_25.jpg
Frsttame _LostName _ Email Gender_IsEmployed _ Avatar

Bt [simpson _[barterunavay.com Male T images/sunpng
Fomer _[Smpson _[homer@sprighield.com e T [magesjnotkerong
Warge _[Simpson | marge@desparatehousewivescomremale | T~ [Images/viinong
U [Smpson_[isa@musidovers com [Female | T {images/womanong|
Maggie [simpson [Female | T~ [imscesiwnesng

OEBPS/graphics/6228_03_08.jpg
=1 MainWindow

OEBPS/graphics/6228_04_09.jpg

OEBPS/graphics/6228_04_24.jpg
LK} =[O x|

mutable

vl IR o

dlass
volat Save.

Load,

\nsuan Basic

OEBPS/graphics/6228_02_11.jpg
o —
o ecasmiross B ——
%) My 0 G

0205 # o

o e 5

Refer (2 Paste Gty ‘

‘:h: X Delete Del

b ™ o &

o2on [CoemEome praves e |

OEBPS/graphics/6228_01_05.jpg
=)

s }:».,«%w

2] vsercomtcorr) —_—
10 et -

e s o

——E e

OEBPS/graphics/6228_04_17.jpg
Normal Selected

[Window Text

o

To turn on Windows Aero, select a Windows theme. Colors and sizes selected
here apply only if you have selected the Windows 7 Basic theme o an Ease of
Access theme.

Color

= -

[=]/ — |

o] o |

OEBPS/graphics/6228_08_16.jpg
) =

¥ Indeterminate

OEBPS/graphics/6228_11_01.jpg
To: 10000000

Total Primes: 664578

OEBPS/graphics/6228_04_14.jpg
Image Sources

OEBPS/graphics/6228_04_19.jpg
Copy Paste u@o

=D Undo the last action

OEBPS/graphics/6228_06_06.jpg
] =
Bart is 10 years old
Homer is 45 years old
Marge is 35 years old
Lisa is 12 years old

Maggie is 1 years old

OEBPS/graphics/6228_01_24.jpg

OEBPS/graphics/6228_04_08.jpg
= HoaderedContentContiols Damal_- [0 1 ||
! [Book: Windows Internals| 12[Book: Windows Intemals|

Name: Windows Internals.
 Author: Mark Russinovich
Published: 2009

OEBPS/graphics/6228_04_20.jpg
clbs M. (D[x]cles M. O[x]ie . 0]x]
E—

| —
e P e

e = ©

e e e

= e =

[o =

o eee

e

OEBPS/graphics/6228_04_07.jpg
¥ Tea options

O sugar

O Mint
I Mtk

O cinnamon

OEBPS/graphics/6228_08_22.jpg

OEBPS/graphics/6228_02_01.jpg
| MainWindowlll_- [O [x

OEBPS/graphics/6228_04_13.jpg

OEBPS/graphics/6228_02_09.jpg
Hello from Active Caption Font

OEBPS/graphics/6228_02_06.jpg

OEBPS/graphics/6228_02_12.jpg
= (@ CHo2BinayResources

&4 Propeties

(3 References

ERey o]
1l apple.png

(<) Appsarml

© = MainWindowxami
) MainWindowxaml.cs

OEBPS/graphics/6228_03_12.jpg
Canvas Demo

OEBPS/graphics/6228_02_30.jpg
& suia
Rebula
clesn
& Puten
| RunCodemnasis
- Catoust Code etcs
ProjectDependencies.
ProectBuld Orcer..
(I | T CrshiteA
AddReterence.. Sistngtem.. Snteatn
Ada Senie Retrenc.. i NowFolder
N— s
Setas stanupPrject @ Page..
Detug » L] usercontol.
5 A Soutonto Sourcs Con. 0 ResouceOtonay |

¥ ou cuex | 75 Ciass

OEBPS/graphics/6228_08_11.jpg
E— o]

™ Oefaut bution Defa button

OEBPS/graphics/6226_05_09.jpg

OEBPS/graphics/6228_09_17.jpg
Cl

Built-in Effects -8

Blurred Button

Drop Shadow Button I

OEBPS/graphics/6228_10_10.jpg

OEBPS/graphics/6228_02_02.jpg
Attempt to u
th sor

InvalidOperationException

OEBPS/graphics/6228_07_06.jpg
= (5 CHO7 BlogReader
24l Properties

(2 References
Hodels
Viewlodels

3 Views

e} Appaxami

B (e Mainwindowxami

OEBPS/graphics/6228_07_07.jpg
Select blog to read: [Bart's adventures ~ Blog Information

. Bart Simpson
Bart's adventures New Post| bart@springfield.com

Post 1 (8/12/2000 12:00:00 AM)

This is the first post of Bart
~ Comments New Comment|

From: Homer S.
Why you litte...

Post 2 (3/22/2002 12:00:00 AM)

This is the the second post
~ Comments New Comment|

From: Lisa S.
Come on bart!

From: Maggie S.
Whhhaaa!

OEBPS/graphics/6228_08_09.jpg
Windows Internals
[Mark Russinovich

/AJAX Introduction
Bhanwar Gupta

Essential COM
Don Box

Blueprint for a Successful Presentation
Biswaiit Tripathy

OEBPS/graphics/6228_02_22.jpg
[assembly: AssemblyConfiguration("")]

ent”,

 AssemblyTitle(
AssesblyConpany(

_BinaryResources™)]
[assembly:

OEBPS/graphics/6228_06_16.jpg
- (o] x]

conhost (6424) Threads: 2

csrss (612) Threads: 63

csrss (532) Threads: 11

devenv (51388) Threads: 86

devenv (20508) Threads: 91

dpupdchk (6184) Threads: 8

Dropbox (6368) Threads: 20

Sort by [Process Name | ® ascending

[sor

OEBPS/graphics/6228_09_04.jpg

OEBPS/graphics/6228_04_03.jpg
User: Pavel, Comment:
This s a fine text box!
And it's mutiine, tool

OEBPS/graphics/6228_04_16.jpg
Copy [Paste

OEBPS/graphics/6228_03_16.jpg
‘WeO
[mle
BOO

OEBPS/graphics/6228_04_12.jpg
D3DImage

Drawinglmage

Bitmaplmage
WriteableBitmap

ColorConverterdBitmap

RenderTargetBitmap

OEBPS/graphics/6228_03_09.jpg

OEBPS/graphics/6228_10_08.jpg
0 Testing Custom Control

OEBPS/graphics/6228_01_19.jpg

OEBPS/graphics/6228_02_21.jpg
= [Resources

2] images/apple.png

mainwindow.baml
CHO2 BinaryResources Properties.Resources.

OEBPS/graphics/6228_03_07.jpg
=1 MainWindow

OEBPS/graphics/6228_06_12.jpg
i
Select number of days to forecast: |5 Get Forecast]

Select units: @ Celsius € Fahrenheit

Dry Low: 5.70 High: 12.65 Percip: 0.72

Sunny Low: 3.79 High: 18.41 Percip: 0.00

Cloudy Low: 29.58 High: 31.14 _Percip: 0.00

Cloudy Low: 23.83 High: 38.41 Percip: 0.00

Sunny Low: -1.86 High: 6.80 Percip: 2.97

OEBPS/graphics/6228_02_24.jpg
e [= 5] =
o [=

7

|

OEBPS/graphics/6228_08_03.jpg

OEBPS/graphics/6228_04_06.jpg
Click me

* Copy
Bart is 10 years old

Name: Bart
Age: 10

OEBPS/graphics/6226_05_03.jpg
etails .

Please enter details:

OK| Cancel

OEBPS/graphics/6228_08_19.jpg
Custom Scroll Bars

OEBPS/graphics/6228_01_25.jpg

OEBPS/graphics/6228_09_01.jpg
= Custom Shape

OEBPS/graphics/6228_04_25.jpg
[What kind oftea would you ie?
C Earl Grey
€ Mint

 Chinese Green Toa Makaf |
€ Japanese Green
Tea: Chinese Green

With sugar
With lemon

OEBPS/graphics/6228_08_08.jpg

OEBPS/graphics/6228_02_13.jpg
ppxam I Qpen

Mamw Openwitn
B Mainl e From Project

102.Dynal

propers{ ¥ Cul cex
Referen| 4 Copy aec
Appxam X Delete Del
[t ‘Rename F2

&) main]

02.Simp|.

OEBPS/graphics/6228_02_17.jpg

OEBPS/graphics/6228_11_02.jpg
From: 3 Tor 12123456 From: 3 Tor 12123456

Cancelled!

OEBPS/graphics/6228_06_11.jpg
7 DataTemplate Selector Demo P = S

svchost

communicator ID: 7756 Threads: 33

salservr

vmware-converter

plugin-container 1D: 42232 Threads: 21

MSOIDSVC

INAMECONTROLSERVER ID: 10764 Threads: 6

BRService

Microsoft. VisualStudio.PerfWatson ID: 35756 Threads: 6

VCDDaemon ID: 7292 Threads: 3

BingApp ID: 1688 Threads: 4

OEBPS/graphics/6228_06_26.jpg
svstr_Frstsme_Lsstiame_Emad Gender_sEmploed_ vatr

8 [[e T Jinsoegnong

e i T | maseatieron

i el e e M

1 e | T [imageomnang

1= [Fomae | T [mageonean
=

OEBPS/graphics/6228_09_05.jpg
m

2

fAm m.

A8
3

S

OEBPS/graphics/6228_03_02.jpg
Book Details
Name: Windows Interals

Author: Mark Russinovich

Book Cover

OEBPS/graphics/6228_08_20.jpg
RepeatButton

RepeatButton

OEBPS/graphics/6228_11_04.jpg
From: 3 Tor 11212332 Tor 121212332

Calculating. Operation Cancelled

OEBPS/graphics/6228_06_32.jpg
Name must have at least 3 characters.

Age must be a positive integer

OEBPS/graphics/6228_11_06.jpg
21:48:12

OEBPS/graphics/6228_02_08.jpg
x|

Widow Cor nd epearnce |

Inactive Wi

Normal _Diczblzd_Selected

[Window Text

To turn on Windows Aero, select a Windows theme. Colors and sizes selected
here apply only if you have selected the Windows 7 Basic theme o an Ease of
Access theme.

Ttem: Sige:
[oestop &=l
Fort: Size;

I £

OEBPS/graphics/6228_06_07.jpg

OEBPS/graphics/6228_09_09.jpg
Rotate rectangle|

Move Circle|

Animate Color|

OEBPS/graphics/6228_09_13.jpg
Linear Animation|

[Animation with Easing|

OEBPS/graphics/PacktLibLogo.jpg

OEBPS/graphics/6228_01_03.jpg
Windows Internals by Mark Russinovich
Published 2009

OEBPS/graphics/6228_01_06.jpg
RILE DANIEET STAEE. SCHERNTOE. - IDNEIRNS |
public SimpleControl() {
TnitializeCouponent();

OEBPS/graphics/6228_09_14.jpg
: \Users \Pavel\Document s \wPFBook \Chapter09\CHO9\CHO9. Customk ffect \Effects>fxc /T ps_2.0 /e

sain /o red.ps red i
Rerosort CE5D Shader Coapiler 9.29.952 3111
opyright (C) Micrasoft Corporation 3002-2009. A1l Fights reserved.

§1ation succeeded; e C:\Users\Pavel\Docusents\WPF ook\Chapt er09\CHO\CHOY. Custont
B Hactoured ps s

OEBPS/graphics/6228_01_23.jpg
Hello

5

OEBPS/graphics/6228_06_21.jpg
T — e —|)|

e B Omcs b 705
e B
By Bl

OEBPS/graphics/6228_06_17.jpg
plore (5952) Threads: 81

explorer (6852) Threads: 35

LifeExp (7804) Threads: 3

iexplore (10040) Threads: 24

iexplore (10540) Threads: 31

iexplore (10976) Threads: 17

Sort by [Process 1D =] = ascending Sort| [exp

Filte

OEBPS/graphics/6228_03_06.jpg

OEBPS/graphics/6228_02_15.jpg

OEBPS/graphics/6228_04_23.jpg
File [Edit
Hellz_Copy Cil-C.
Paste Ctl-y.

OEBPS/graphics/6228_03_05.jpg
Bart is 10 years old
Marge is 35 years old

Homer is 40 years old

Lisa is 12 years old

Maggie is 2 years old

OEBPS/graphics/6228_06_15.jpg
svchost (344) Threads: 37

masvc (2496) Threads: 34
bingsurrogate (11112) Threads: 4
explorer (5076) Threads: 71
svchost (1196) Threads: 13
vmware-authd (4316) Threads: 7
TFSJobAgent (3780) Threads: 13

OEBPS/graphics/6228_06_23.jpg
] Color Selectorill_- [0 [x|

OEBPS/graphics/6228_02_05.jpg
MainWindow

Hello from Active Caption Font

OEBPS/graphics/6228_08_07.jpg
a1
2216l x
4z
o =1+

OEBPS/graphics/6228_06_04.jpg

OEBPS/graphics/6228_06_31.jpg
) =N
Name: |[Ba Use at least 3 characters

Age: 10

OEBPS/graphics/6228_08_21.jpg
71 Book List

Windows Internals
[Mark Russinovich

/AJAX Introduction
Bhanwar Gupta

Free!|

Essential COM
[Don Box

Blueprint for a Successful Presentation
[Biswajit Tripathy

Free!|

OEBPS/graphics/6228_09_06.jpg
| Mandelbrot Set

OEBPS/graphics/6226_05_10.jpg
Welcome to the new Window!

OEBPS/graphics/6228_01_11.jpg

OEBPS/graphics/6228_01_08.jpg

OEBPS/graphics/6228_01_09.jpg
2000

MainWindow

=[a] x|

Change Value

OEBPS/graphics/6228_08_04.jpg
Color scheme:

Sacentip se; (Blue__Jure desa

Personaiize your c|Black__rosoft Office

OEBPS/graphics/6226_05_08.jpg
Pointer|

Pencil Brush Eraser Selection

B

OEBPS/graphics/6228_10_05.jpg

OEBPS/graphics/6228_02_26.jpg
e e] 5

— 3 wmssromsmonn | o s
== B e .| Ee——
= e o
=2 |He= -
e [~ —
e Tl s
R b
N i ==
It () e
= i =

P —

OEBPS/graphics/6228_02_04.jpg
A mainwind® __ [0 | x|

Replace brush

OEBPS/graphics/6228_06_03.jpg

OEBPS/graphics/6228_04_11.jpg
e
Stretch=Uniform _Stretch=UniformToFil

-

N iy

i,

OEBPS/graphics/6228_04_05.jpg
Click me

 Copy

Bart is 10 years old

OEBPS/graphics/6228_07_02.jpg
Open... ZoomIn Zoom Out

J =

OEBPS/graphics/6228_03_10.jpg

OEBPS/graphics/6228_08_17.jpg
Copy.
Paste
Delete.
Order »
Align 3
Auto Size. »
Group Into 3
Ungroup
Set Current Selection »
Make Into Contral,
Make Into UserControl,

dit Templa Edit Current
Edit Additional Templates » |00)
Create Empty.

Apply Resource »

OEBPS/graphics/6228_01_02.jpg
<3 oo e
211 Ao Ve
. e B

e

OEBPS/graphics/6228_10_07.jpg
0 Testing Custom Control ||
I

OEBPS/graphics/6228_01_26.jpg
7,8 9 +
4 5 6

1123 X

OEBPS/graphics/6228_01_22.jpg
N - o

i & pulasouton & Sons. Generic;
Rz Souon -
Goansouton
ok . arkup;
| -
| ol rwpxtension {
) enixtension - MarkipExtension {
Gatute Code s v
& opencommanapromst
I xtension(int from, int to) {
' Unoasproas o - to;
%0 Remos snasonUsings
Compan extension(in o)
| ProsciDspendsncie.) ¢
| Propasusonsr.
[e
[re—
1 25 paasaont ource Conkol
|8 paste oy
Rename v

‘Open Folderin Windows Exploer
Properties.

OEBPS/graphics/6228_02_16.jpg
Properties

Jellyfishjpg File Properties

&l
BuildAction __[Content
Copyifnewer | =

Custom Tool
Custom Tool Nai

OEBPS/graphics/6228_01_18.jpg
& Window Color and Appearance <
i o and scpesance |

Normal Dicziled_Selected
[Window Text

To turn on Windows Aero, select a Windows theme. Colors and sizes selected

here apply only if you have selected the Windows 7 Basic theme o an Ease of
Access theme.

Cr— |
| H = sl

o] oma |

OEBPS/graphics/6228_06_08.jpg

OEBPS/graphics/6228_10_03.jpg
Selected Color: #FF62D4B4

OEBPS/graphics/6228_01_10.jpg
2012

MainWindow

=[a] x|

Change Value

OEBPS/graphics/6228_01_12.jpg
@ sender
o

(e Vindows Routedbventirgs
st Vindows Coniolsuton: e
iPFDeme Mainindon)

OEBPS/graphics/6228_03_15.jpg

OEBPS/graphics/6228_08_12.jpg
Edit _View Object
New ltem,
New Project.

Recent Projects

Close Document
Close Other Documents
Close All Documents
Close Proiect

Project Tools Winds

i
ctri=shift-N

ctri-w.

Ctri=shift-w

OEBPS/graphics/6228_07_03.jpg
Commands,

Data binding

OEBPS/graphics/6228_06_29.jpg
FistName _ LostName _Gender_Emal Employed? _Avatar

eart Simpson [Male _[bart@runaviav.com L=} *

Fomer [Smpson [Male _[pomer@springiel.com 2 3

Warge [Smpson _[Female [ratee@desporstehonenives com T &

=) Smpson _[Female [Iss@musidovers com T]

Wogge [smpson _[Female =] ¢
—

OEBPS/cover/cover.jpg
Windows Presentation
Foundation 4.5 Cookbook

OEBPS/graphics/6228_02_10.jpg
2 Rotoances e

Gean

%) Usinwingow (% Putish..
CHo2Omamicissts Run Cods sl

4 Proprtes Cacaste Codeetics
4 Reteencss

= Aopami ProectDspendences
= Matingowsan ProjectBulaOrdr

o wanbingons
cHo2 SimplResou
S Asoruonce.

2 Rotoences AsaSanice Reerence
= dopram | 2 viewoisssDisgam o
Ep—

i sotasSarp Pt @
oz serselecteat, 02200 NE|
s Prosates | 8 Aga Soutonto Saurca Ca w
4 Retoencss %

b % ou e

OEBPS/graphics/6226_05_07.jpg
Available Colors

#FF12D127

Standard Colors

Recent Colors

OEBPS/graphics/6228_01_20.jpg
1 MainWindowl__ [0 | x|

OEBPS/graphics/6226_05_04.jpg
Enter Data |

Please enter details:

Name: [Bart

City: [Springfield

OEBPS/graphics/6226_05_06.jpg
= MainWindow
Open Image

OEBPS/graphics/6228_09_08.jpg
s

Igiiiiiiigii‘ég?g !

1
LAI

Qe

i.ii“;'
i

P
R EEE e i

i
I

OEBPS/graphics/6228_01_04.jpg
Lot

e

e CisDingrom.
et Stp Pt

Resettentve fom Prject

OEBPS/graphics/6228_02_29.jpg

OEBPS/graphics/6228_06_19.jpg
| communicator
NAMECONTROLSERVER
plugin-container

| VCDDaemon

BingApp

| TfsComProviderSvr

| conhost

: 7292
: 1688
: 12892
: 6424

OEBPS/graphics/6228_02_31.jpg
. MainWi [- (O

OEBPS/graphics/6228_06_28.jpg
Firstame _ Lastame _ Email Gender_Isemployed _ Avater

Bart Simpson [bart@runaway.com Male. =] ‘

Homer |Simpson | homer@springfield.com. Male 3 8

Marge |Simpson | marge@desparatehousewives.com|Female [=] ‘-

s Simpson | isa@musidovers.com. Female =] a

Maggie | Simpson Female =] ‘
=

OEBPS/graphics/6228_02_28.jpg
= (F CHo2 UsingLibranResources
[Properties

OEBPS/graphics/6228_04_02.jpg
User comment details

Name: [Pavel

Comment: [This s a fine text box
And its multine, toof

Submit Comment|

OEBPS/graphics/6228_08_06.jpg
Properties
Blueskin.xaml File Properties

B =)
i :

BuildAction Content

Copyto Output Dire: Copy if newer
Custom Tool MSBuildCompile
Custom Tool Name

cl
File Name BlueSkin xami

OEBPS/graphics/6228_11_03.jpg
e Primes Counter = 2 €| | Primes Counter =1 2 [

From: 3 To: 10000000 From: 3 To: 10000000

Calculating... Total Primes: 664578

OEBPS/graphics/6228_08_05.jpg

OEBPS/graphics/6228_01_13.jpg
veuni o - Propertes of o2 Tk
[sewer oo | | [con|
= o] Nane o o [ol

T oo T o

e || | Sy foma B
Semar || Eopoiann Unipocios Diast |

wiel | |Eratenps Seamecon Oiast

4 | [Edaer R B

Rencemg ot jez oo || | S Samwocon Oiast

Foo, S S

Fansye Nomd et

Femngr Nems e

Fovyors B e

A |

OEBPS/graphics/6228_02_23.jpg
Read Book Data

{ Name = Essential COM, Author = Don Box }
{ Name = Programming Windows with MFC, Author = Jeff Prosise }
{ Name = Windows Internals, Author = Mark Russinovich }

OEBPS/graphics/6226_05_11.jpg

OEBPS/graphics/6228_09_02.jpg
DeP

CombinedGeometry
(Union)

CombinedGeometry
(Intersect)

CombinedGeometry
(Xor)

CombinedGeometry
(Exclude)

OEBPS/graphics/6228_08_14.jpg
Project
» Controls

> styles

Shapes
Effects
Media

> Categories

> Loaations.

OEBPS/graphics/6228_04_26.jpg
LK} [- (O
Name:
Birthday: 27-Feb-12

Comments:

Send Comment

OEBPS/graphics/6228_06_01.jpg
This is a sizing text

OEBPS/graphics/6228_04_10.jpg

OEBPS/graphics/6228_07_01.jpg
Open... ZoomIn Zoom Out

OEBPS/graphics/6228_06_24.jpg
svchost (860) E|

“ communicator (7756)
sqlservr (2736)
vmware-converter (3012)
MSOIDSVC (2576)
© NAMECONTROLSERVER (10764)
BRService (1712)
= devenv (1276)
devenv.exe (C:\Program Fies (x66) Micusoft VisualStudio 11.0\Commen\IDE Gevemyoxe)
DRILI (C:\Windous\SysWOWSH\ntdl. o)
Kernel32.dil (C:\Windowsisyswowsd\keme2.df)
KERNELBASE.dll (C:\Windons\syswons4\KERNELBASE.di)
ADVAPT32.dll (C:\Windows!syswons4\ADVAPI32.)
T |

OEBPS/graphics/6228_03_04.jpg
Bart is 10 years old
Marge s 35 years old
Homer is 40 years old

Lisa is 12 years old

Maggie is 2 years old

OEBPS/graphics/6228_10_06.jpg
] ColorToBrushConverter.cs| I I

&) ColorTo

NDepend (No Analysis Loaded)
NDepend

§ Open

Open With...
E] View Code Ctrl+Alt+0
2 [

Exclude From Project
% cut CrrleX
43 Copy Ctrl+C
X Delete Del

OEBPS/graphics/6228_01_16.jpg

OEBPS/graphics/6228_06_10.jpg
Homer Nuclear

Marge

Lisa Accounting

Maggie

OEBPS/graphics/6226_05_01.jpg
o
Rebulld
=
ot
Rncams
Calculate Code Metrics.
rosctrans
ot
T v
et
i
o LE S
& ViewCiass Diagram [Ppage..
‘Setas StartUp Project] User Control..

OEBPS/graphics/6226_05_05.jpg
Enter Data

Hi, Bart! I see you live in Springfield.

OEBPS/graphics/6228_09_03.jpg
Projects [Assi ") Triggers States _Parts

>0 G0

oBo

0”09 Mm

OEBPS/graphics/6228_01_15.jpg
class RotationManager {

)
) & [tne s stcregDspamsenoprgeny
Gt o e et s spensanPropey 3 e sacong s

OEBPS/graphics/6228_04_04.jpg
Hello TextBlock.

This is pronouned text
Click the following link to go to search: Search in Database

OEBPS/graphics/6228_08_02.jpg

OEBPS/graphics/6228_08_10.jpg
Windows Internals
[Mark Russinovich

/AJAX Introduction

/|
Bhanwar Gupta Free!
Essential COM
[Don Box
Blueprint for a Successful Presentation Free!|

[Biswajit Tripathy

OEBPS/graphics/6228_04_18.jpg

OEBPS/graphics/6228_06_02.jpg
This is a sizing text

[60

OEBPS/graphics/6228_02_19.jpg
e()v [0~ bin + Debug v Images

File Edt View Tools Help

Organize v] Preview v Siideshow Print E

()i Microsoft Robotii]
i My BackupFiles
11y Documents
i WeFBook
[pe—
i Chapterot
B Ry

OEBPS/graphics/6228_08_13.jpg
Project
» Controls

> Styles

Shapes.
Effects
Media

> Categories

> Loaations.

OEBPS/graphics/6228_02_27.jpg
-d Solution BinanResourceAccess' (1 project)
5 (3 CHo2 ClassLibranResources

Ea Properies

1 References

B & Images

oo ol

OEBPS/graphics/6228_08_18.jpg
[y simpleMenuitem

Project
Contrals = SimpleProgressBar
— © SimpleRadioButton
Simplestyies 2 @ SmPleRepeatautton
SimpleScrollBar

Behaviors Mo

@ SimpleScrolRepeatButto.
Shapes.

(2] SimpleScroliViewer
Effects

] simpleSeparator
Media

 SimpleSiider
R " @ smplesiiderThumb
Loations 1

. SimpleTabControl
© SimpleTabitem

L SimpleTextBox

© SimpleThumbstyle
“E SimpleTreeView

OEBPS/graphics/6228_06_22.jpg
TSUNCache

iexplore

Threads: 50-59

‘communicator 1D: 7756
OUTLOOK 1D: 22132
svchost 1D: 604
Wawp

sqlservr

salservr 1D: 2736
Threads: 60-69

cstss 10: 612
ReportingServicesService ID: 3332
Threads: 70-79

explorer 1D: 5076
[Throade: 2020

OEBPS/graphics/6228_11_05.jpg
Calculate| |Cancel

Calculating..

0 Primes Counter | = 9 [FX]|

From: 3 Tor 12121212

OEBPS/graphics/6228_07_05.jpg

OEBPS/graphics/6228_01_07.jpg
Lt e A
et { returs Seialueyprepertytroerty:)
| G

11 sin » oeendecyopery a5 the bcking stoe for Wropery. T enbles sniatic, stylin, bindng, et
T Sl esinty Sopumbanegreperey oreperyPronrsy
Daniuncspraperty.Regtter Cryprorery ypest(nt, pect (BREFELESS), e UTPropertatadsta®));

OEBPS/graphics/6228_11_07.jpg
o Async Calc with o 50 [= [2 3| Async Calc with C# 5.0 | = | 2 [

From: 3 Tor 33333333 From: 3 To: 33333333

][] [Gaae] [
L] |

Calculating... Operation cancelled

OEBPS/graphics/6228_03_01.jpg
VerticalAlignment

HorzontalAlignment
< >

Flowbirection LayoutTransform

OEBPS/graphics/6228_04_15.jpg
aj [- (o1 x]

@ Paste
: B
BllCoss the sfecied ot e dgboard

OEBPS/graphics/6228_04_22.jpg
@ C++
#

1 Visual Basic

F#

OEBPS/graphics/6228_10_02.jpg

OEBPS/graphics/6228_03_11.jpg
Hello from Center

OEBPS/graphics/6228_01_21.jpg

OEBPS/graphics/6228_09_10.jpg

OEBPS/graphics/6228_02_07.jpg
Window Color and Appearance |

Normal Selected
[Window Text

o

To turn on Windows Aero, select a Windows theme. Colors and sizes selected
here apply only if you have selected the Windows 7 Basic theme o an Ease of
Access theme.

Color1:

' = -~

[=]/ — |

o] o |

OEBPS/graphics/6228_02_25.jpg
Gaeuste Code Hetics
[age »| NewProject.

28 Add Soluion to Source Control. Exsting Project.
A paste NewWenste

Rens 2 Exstng Web St

Newtem
Bdsting tem
i New Solton Flder

(5 Open Foldrin Windows Explorer

D Poperies

OEBPS/graphics/6228_02_14.jpg
Properties - ax
‘apple.png File Properties -

Bl =

[Resource | =
‘Copyto Outpu Do ot copy
Custom Tool

Custom Tool !

OEBPS/graphics/6228_06_09.jpg

OEBPS/graphics/6228_07_04.jpg

OEBPS/graphics/6228_02_18.jpg
Propeties
i References
&5 Images
& apple.png
] Jellyfish.pl
(<} Appxami
(e} MainWindow.x
4 MainWindd
CHO02.DynamicVs|
=4 Properties
i References
e} Appxami
(e} MainWindow.x
4 MainWindd
CHO2.SimpleRes|
=4 Properties
i References
(<} App.xami
(e} MainWindow.x
4 MainWindd
CHO2UserSelect
=4 Properties
i References
e} Appxami
%) Appaamlc
(<} MainWindow.x

@ Haimwingd

[

C3

Build
Rebuild

Clean

Publish.

Run Code Analysis

Calculate Code Netrics
Project Dependencies.

Project Build Order

Add

Add Reference.

Add Senice Reference.

View Class Diagram

‘Setas StartUp Project

Debug

‘Add Solution to Source Control
cut

Paste

Remoye.

Rename.

Unload Project

ctrex
ctev
Del
P2

‘Open Folder in Windows Explorer

=]

Properties

OEBPS/graphics/6228_06_18.jpg
| communicator
NAMECONTROLSERVER
plugin-container

| VCDDaemon

BingApp

| TfsComProviderSvr
conhost

: 7292
: 1688
: 12892
6424

OEBPS/graphics/6226_05_12.jpg
Error encountered! Please contact support.
something has gone wrong

OEBPS/graphics/6228_09_15.jpg
C:\Users\Pavel\Documents\WPFBook\ Chapter09\CHOS\CHOS. Customffect
\Effects\red.fx

Encoding:
Wester European (Windows) - Codepage 1252

Line endings:

Current Setting

OEBPS/graphics/6228_06_27.jpg
Email Gender _IsEmployed

* Bart [Simpson [bart@runavay.com Male: B
8 Homer _[Smpson | homer@springfeld.com Male v
‘ Marge [Smpson | marge@desparatehousenives.com| Female =]
a Uss [Simpson [Isa@musidovers.com Female =]
. Wagge [smpson Female =]

=

OEBPS/graphics/6228_03_13.jpg
7] MainWindow

WPF

OEBPS/graphics/6228_04_21.jpg
ListBox

ContextMenu

TabControl

HeaderedltemsControl
Ribbon

Menultem

ToolBar

TreeViewitem

OEBPS/graphics/6228_06_30.jpg

OEBPS/graphics/6228_08_01.jpg
Styled Calc

olm|alN
S
<

OEBPS/graphics/6228_08_15.jpg
N
T

OEBPS/graphics/6228_06_14.jpg
BingApp Name: explorer
TfsComProviderSvr

conhost ID: 6852

o B Priority Class: Normal

CHO6. MasterDetail Threads: 33
0SPPSVC

smss

msnmsgr

FATrayAlert

svchost

Snagit32 =

Processor Time: 0:00:24:16.0821338

OEBPS/graphics/6228_10_04.jpg
Color Picker Test

i

Selected Color: #FF52BA83

<<

>>

OEBPS/graphics/6228_09_16.jpg

OEBPS/graphics/6228_01_17.jpg
ol x]
(JC) &~ AiConsapanstems ~ personazsien ~ @ [swacomrms g

Fle Eat view Toos Holp

@
ContoPanetome Change the visuals and sounds on your computer

lkameme cange h desitopSacgiound, indow color, souns,andscsen

aﬁmmm F

poic T

Change sesiop cons

Change mouse s

Changesouraczounpicars | My Themes 1) ————————

= M= g =

ki s Do Deskiop Backarond Window ol Sonts Saomnsaar
Ease thcsses Ceter

OEBPS/graphics/6228_07_08.jpg
Y ... E)

Bart's adventures New post|

OEBPS/graphics/6228_06_13.jpg
5 Get Forecast]|

Select units: @ Celsius € Fahrenheit

Dry Low: 9.80 High: 21.10 Percip: 0.00

SNOWy Low: -4.81 High: 4.32 Percip: 0.00

Select number of days to forecas

Dry Low: 2.95 High: 6.76 _Percip: 0.28

OEBPS/graphics/6228_10_11.jpg
Custom Rendering Demo [=1o

OEBPS/graphics/6228_06_20.jpg
o
NECOMTROSERVER
e

Braton
TieConpronderse
Pl

e

sy
FaTrayiert

T —

sty 07420

OEBPS/graphics/6228_07_09.jpg
x| [- Tolx]
Select blog to read: [Barts adventures =] Undo| Redo| ¥ Blog Information

Bart's adventures

Post 1 (8/12/2000 12:00:00 AM),

“This is the first post of Bart
v Comments New Comment|

Post 2 (3/22/2002 12:00:00 AM)
“This Is the the second post

v Comments New Comment]

:25 Pm)

Test (5/11/2012 22
Testtext
v Comments New Comment]

OEBPS/graphics/6228_03_14.jpg

OEBPS/graphics/6226_05_02.jpg
T — (o (||

Open Other Window This is the other window

OEBPS/graphics/6228_09_11.jpg
Start Animation

OEBPS/graphics/6228_03_03.jpg
Book Details
Name: Windows Interals

Author: Mark Russinovich

Book Cover

OEBPS/graphics/6228_10_09.jpg

OEBPS/graphics/6228_09_07.jpg

OEBPS/graphics/6228_09_12.jpg
Gravity: =[}——

OEBPS/graphics/6228_01_01.jpg
i
Rebui
NDcpend o Aty Losded

ddSeceReeence..
B MamgeNuGetuckage.
£ Vi CisDisgam

Setas StantpPojct

Debug

Restteactverom Prject

OEBPS/graphics/6228_10_01.jpg

OEBPS/graphics/6228_06_05.jpg
CHO6.BindingToCollection.Person
|CHO6.BindingToCollection.Person
CHO6.BindingToCollection.Person
|CHO6.BindingToCollection.Person
CHO6.BindingToCollection.Person

OEBPS/graphics/6228_02_20.jpg
' Click me, please!

