

Windows Presentation
Foundation 4.5
Cookbook

Over 80 recipes to effectively and efficiently
develop rich Windows client applications on
the Windows platform

Pavel Yosifovich

BIRMINGHAM - MUMBAI

Windows Presentation Foundation 4.5
Cookbook

Copyright © 2012 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: September 2012

Production Reference: 1150912

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84968-622-8

www.packtpub.com

Cover Image by Mark Holland (m.j.g.holland@bham.ac.uk)

Credits

Author
Pavel Yosifovich

Reviewers
Alon Fliess

Ariel Ben Horesh

Stas Shteinbook

Dan Vestergaard

Acquisition Editor
Rukshana Khambatta

Lead Technical Editor
Kedar Bhat

Technical Editor
Madhuri Das

Project Coordinator
Yashodhan Dere

Proofreaders
Aaron Nash

Maria Gould

Indexer
Rekha Nair

Graphics
Aditi Gajjar

Production Coordinator
Shantanu Zagade

Cover Work
Shantanu Zagade

About the Author

Pavel Yosifovich is the CTO of CodeValue (http://www.codevalue.net), a software
development, consulting, and training company, based in Israel. He writes, consults, and
trains developers on various software development topics, from Windows internals, to .NET
enterprise systems, and almost everything in between. He’s a Microsoft MVP and a frequent
speaker at national events, such as Tech-Ed and DevAcademy.

In the past, he co-founded the startup company Quiksee that was acquired by Google in
September 2010.

Writing a book is a tremendous effort, even if you know what you want to
write (and I didn’t some of the time). It wasn’t possible without the support
of my family: my wife Idit, and my kids, Daniel and Amit, and the latest
recruit, Yoav. Thank you for the making the time and more than that – thank
you for the support and encouragement along the way. It’s certainly easy to
give up, but you wouldn’t let me – so thank you again!

About the Reviewers

Alon Fliess is the chief architect and founder of CodeValue. CodeValue is the home of
software experts. CodeValue builds software tools, foundations, and products for the
software industry and offers mentoring, consulting, and project development services.

Alon got his BSc degree in Electrical and Computer Engineering from the Technion, the Israel
Institute of Technology. He is an expert on many Microsoft technologies, be it Windows client
and server programming using C#/C++/.NET, Windows Azure Cloud Computing, or Windows
internals. Microsoft has recognized his expertise and community activities and granted him
two awards: Microsoft Regional Director (MRD) and a VC++ MVP.

Alon has deep knowledge and understanding of Windows and Windows Internals. He
is a co-author of Windows 7 Microsoft Training Program as well as a co-author of the
Introducing Windows 7 for Developers book (ISBN-10: 0735626820)

Alon delivers courses and lectures in many seminars and conferences around the world,
such as TechEd Europe, TechEd USA, NDC, and in Israel. Alon is a senior Software Architect;
he deals with vast and complex projects. Alon architected and designed the software for the
revolutionary new line of industrial printing machine of Landa Labs. He is also the architect
of one of the largest software project of the Israeli Air Force. Alon is responsible for several
open-source projects.

Many thanks to Pavel and Yashodhan, who gave me the opportunity to take
part in the creation of this book.

Ariel Ben Horesh is a well-known .NET expert, team leader, and community leader.

With more than 10 years of experience in the software industry, Ariel now works at CodeValue, a
company he co-founded, where he creates products for developers, and consults and conducts
courses around the world on UI development: WPF/SL, Web, Mobile, and UI architecture.

You can visit his blog at: http://arielbh.com

Stas Shteinbook is a senior development leader and solution architect who works at
CodeValue. He has a long history in developing large enterprise applications, guiding their
architecture and developing process, and creating end-to-end solutions involving rich user
experience interfaces using WPF technology.

I would like to thank my family, my mother Ludmila and my father Zinoviy, for
all the help and support.

Dan Vestergaard is currently working as a software engineer, with primary focus on .NET,
and in particular, developing user interfaces using WPF.

He has worked in the consultant business and for several years in financial and industrial
businesses. He is now a software engineer in a large world-wide industrial company, writing
WPF applications for factory quality control systems.

He started working with WPF in the early beta days, back in 2006, and has loved it ever since.

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at www.PacktPub.com and as a print book
customer, you are entitled to a discount on the eBook copy. Get in touch with us at service@
packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt’s online digital book library.
Here, you can access, read and search across Packt’s entire library of books.

Why Subscribe?
•	 Fully searchable across every book published by Packt

•	 Copy and paste, print and bookmark content

•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view nine entirely free books. Simply use your login credentials for immediate access.

Instant Updates on New Packt Books
Get notified! Find out when new books are published by following @PacktEnterprise on Twitter,
or the Packt Enterprise Facebook page.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/

Table of Contents
Preface 1
Chapter 1: Foundations 7

Introduction 7
Creating custom type instances in XAML 9
Creating a dependency property 15
Using an attached property 25
Creating an attached property 28
Accessing a static property from XAML 33
Creating a custom markup extension 37
Handling routed events 44

Chapter 2: Resources 51
Introduction 51
Using logical resources 52
Dynamically binding to a logical resource 57
Using user-selected colors and fonts 59
Using binary resources 63
Accessing binary resources in code 70
Accessing binary resources from another assembly 72
Managing logical resources 76

Chapter 3: Layout and Panels 81
Introduction 81
Creating a table-like user interface 83
Dynamically sizing grid rows/columns 90
Creating a scrollable user interface 92
Creating a border around panels and elements 94
Placing elements in exact positions 96
Adding/removing elements to a panel dynamically 98
Creating a tabbed user interface 100
Implementing drag-and-drop 103

ii

Table of Contents

Chapter 4: Using Standard Controls 109
Introduction 109
Working with text 110
Using content controls 114
Displaying images 120
Creating tooltips 126
Creating a list of items 131
Creating a standard menu 134
Creating a context menu 137
Selecting options with checkboxes and radio buttons 139
Manipulating tab order and focus 141

Chapter 5: Application and Windows 145
Introduction 145
Creating a window 145
Creating a dialog box 149
Using the common dialog boxes 153
Creating ownership between windows 156
Creating a custom shaped window 158
Creating a single instance application 162
Handling an unhandled exception 166

Chapter 6: Data Binding 169
Introduction 169
Element to element binding 170
Binding to a single object 173
Binding to a collection 180
Using data templates 184
Using value converters 191
Creating a master-detail view 199
Sorting and filtering bound collections 202
Grouping bound collections 209
Binding to multiple properties 214
Binding hierarchical data to a TreeView 217
Presenting data in a grid 220
Validating data 228

Chapter 7: Commands and MVVM 237
Introduction 237
Using routed commands 238
Implementing a basic MVVM application 246
Building a simple MVVM framework 254

iii

Table of Contents

Building a complete MVVM style application 259
Creating an undo/redo system 276

Chapter 8: Styles, Triggers, and Control Templates 285
Introduction 285
Creating and using styles 286
Applying a style automatically 291
Creating a property trigger 295
Using data triggers 299
Creating an event trigger 302
Creating a multi trigger 304
Using behaviors 306
Replacing the control template of a progress bar 310
Replacing the control template of a scroll bar 317
Customizing selection in a Selector control 321

Chapter 9: Graphics and Animation 325
Introduction 325
Creating a custom shape 326
Applying transforms on elements 333
Manipulating a bitmap programmatically 336
Creating adorners 340
Creating property-based animations 344
Creating path-based animations 350
Creating custom animations 354
Adding animation easing to animations 359
Using custom effects with pixel shaders 363

Chapter 10: Custom Elements 369
Introduction 369
Creating a user control 370
Handling standard commands in a user control 381
Creating a custom (templated) control 384
Customizing a default template of custom control 396
Creating a custom panel 398
Creating a lightweight custom element 404

Chapter 11: Threading 409
Introduction 409
Updating the UI from a non-UI thread 410
Adding cancelation support 416
Using the BackgroundWorker component 419

iv

Table of Contents

Adding cancelation and progress with BackgroundWorker 423
Using a timer to do periodic updates 428
Using C# 5.0 to perform asynchronous operations 430

Index 439

Preface
Windows Presentation Foundation has been in release since late 2006,
as a part of the then .NET 3.0 Framework, also preinstalled on Windows Vista at the time.
It promised to change the way rich client applications are written, and eventually replace
the old, Win32-based Windows Forms.

WPF gained traction slowly because of its enormous breadth and the different kind of thinking
that was required—using XAML, data binding, templates, and styles was very different from
the classic WinForms way of working. The power of WPF was evident, but it was difficult to
master, and had a steep learning curve.

Over the years things changed; developers started to get used to and appreciate the new way
of doing things. XAML began to look convenient and powerful and not just an extra thing to
learn with little benefit. Still, for the newcomer, with or without WinForms experience, WPF
looks daunting and uncontrollable.

Patterns have emerged, most notably the Model-View-View Model (MVVM), a variant of other
existing view-data separation patterns (MVC and MVP), that made life easier (most of the
time) but more importantly set a standard way of interaction of view and data; and although
many implementations are possible (this is just a pattern, after all), it does let an application
be built in more confidence, piece by piece.

This book holds a set of recipes that show how to do common tasks. But don’t just look at the
recipes; instead, look at the other sections to deepen your understanding of WPF. No matter
the number of recipes, there will always be other things an application needs that no book
can cover; by understanding the foundations well, it’s possible to tackle any problem. This is
why I have tried to emphasise the why, and not just the how.

WPF led to a bunch of other technologies being built on similar principles, namely Silverlight
(cross browser web client development in .NET), Windows Phone 7.x (Microsoft’s Phone OS
that uses a Silverlight variant), and lately Windows 8 and Windows Phone 8—all built around
similar concepts such as XAML, dependency properties, templates, styles, and bindings—this
shows the power and impact of WPF.

Preface

2

What this book covers
Chapter 1, Foundations, introduces the most important concepts in WPF. From the XAML
language, to dependency properties, to attached events.

Chapter 2, Resources, discusses WPF’s unique resource system that allows any object to be
placed as a resource and consequently shared in an efficient and flexible way.

Chapter 3, Layout and Panels, discusses how WPF manages layout of elements, including
looking at the standard layout panels, how they work, and how they can be combined to
produce complex and flexible interfaces.

Chapter 4, Using Standard Controls, looks at the major controls in WPF and how they are
typically used. The content model is also discussed, along with other control families.

Chapter 5, Application and Windows, takes a look at a WPF application from a higher
perspective, including application level resources and the way windows are used
and managed.

Chapter 6, Data Binding, discusses the powerful and important concept of data binding and
the way it’s used in WPF, including leveraging data templates, converters, and other ideas that
make WPF so powerful.

Chapter 7, Commands and MVVM, looks at the way a moderately complex application might
be built, by leveraging higher level abstractions known as commands (as opposed to raw
events). The MVVM pattern is introduced with some implementation to show how commands,
data binding and some extra ingredients can produce a complex, yet manageable, application.

Chapter 8, Styles, Triggers, and Control Templates, shows some of the ways controls
can be customized in XAML only, without the need to derive new types for the sake of
appearance only.

Chapter 9, Graphics and Animation, provides a tour of the major graphic and animation
capabilities of WPF and how they integrate with other mechanisms such as styles
and triggers.

Chapter 10, Custom Elements, shows what is required to create custom elements with the
considerations that lead to a particular implementation path.

Chapter 11, Threading, discusses WPF’s support for asynchronous operations, so that
the UI is responsive at all times, including the support provided in C# 5.0 for performing
asynchronous operations more easily.

Preface

3

What you need for this book
The books assumes the reader is a .NET developer working with C# (at least version 2.0, but
3.0 is preferred), and is comfortable working with generics, virtual methods, delegates, and
lambdas (C# 3.0). Some WPF exposure is assumed. Visual Studio 2010 as well as Visual
Studio 2012 for some features of .NET 4.5.

Who this book is for
The book is intended for developers who are relatively new to WPF, or those who have been
working with WPF for a while, but want to a get a deeper understanding of its mechanisms
and concepts.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "the typical Window class is declared as partial,
meaning there may be more source files describing the same class".

A block of code is set as follows:

class Book {
 public string Name { get; set; }
 public string Author { get; set; }
 public decimal Price { get; set; }
 public int YearPublished { get; set; }
 }

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are set in bold:

<Window x:Class="CH01.CustomTypes.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="clr-namespace:CH01.CustomTypes"

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "right-click on the project
node and select Add and then Class…".

Preface

4

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to
develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title through the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from your
account at http://www.packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

Preface

5

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find
any errata, please report them by visiting http://www.packtpub.com/support, selecting
your book, clicking on the errata submission form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will be
uploaded to our website, or added to any list of existing errata, under the Errata section of
that title.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

mailto:copyright@packtpub.com

1
Foundations

In this chapter we will cover the following:

 f Creating custom type instances in XAML

 f Creating a dependency property

 f Using an attached property

 f Creating an attached property

 f Accessing a static property in XAML

 f Creating a custom markup extension

 f Handling routed events

Introduction
Any attempt at mastering a technology, any technology, requires a good understanding of its
foundations. This understanding makes it possible to grasp the more complex aspects of that
technology; Windows Presentation Foundation (WPF) is no different.

In this first chapter, we'll discuss recipes concerning the very foundations of WPF – what
makes it tick—and also along the way, what makes it unique.

Foundations

8

XAML
The first noticeable facet of WPF is XAML (eXtensible Markup Language). XAML is an
XML based language used in WPF to declaratively create user interfaces. Actually, XAML
has nothing to do with UI. It's merely a declarative way of constructing objects and setting
their properties. In fact, it's leveraged in other technologies, such as the Windows Workflow
Foundation (WF), where it's used as a way of constructing workflows. To create objects in
XAML, they must be "XAML friendly" – meaning they must have the following:

 f A public default constructor

 f Settable public properties

The second item is not strictly a requirement, but the lack of settable properties would
make the object a bit dull. Note that starting with .NET 4, XAML is in fact capable of
handling parameterized constructors, but WPF's XAML parser currently does not
leverage that capability.

XAML is not an absolute requirement. In fact, you can create an entire application using C# or
VB (or whichever .NET language you fancy) without a single XAML tag. However, that would be
much more difficult and error prone with high maintenance costs, not to mention the difficulty
of integration with your fellow designers.

XAML is about the what, not the how. This declarative style makes things easier (granted, after
some getting used to), and is a paradigm shift in software development in general (the classic
example in .NET being the LINQ-based technologies). XAML is neutral—it's not C# or anything
like that—so other, non-developer tools can create or manipulate it. Microsoft provides the
Expression Blend tool, which at its core, is a glorified XAML producer/consumer.

XAML and compilation
What happens to a XAML file? How is it tied to the code behind file created by Visual Studio?
A XAML file is compiled by a XAML compiler that produces a binary version of the XAML,
known as BAML. This BAML is stored as a resource inside the assembly and is parsed at
runtime in the InitializeComponent call to create the actual objects. The result is
bundled with the code behind file (the typical Window class is declared as partial,
meaning there may be more source files describing the same class) to produce the
final code for that class.

Browsing a typical WPF application, we won't find the canonical Main method, because it's
generated by WPF. It constructs the singleton Application object instance and creates the first
window specified by the Application.StartupUri property (if not null). We can find that
code in the file App.g.cs (g stands for generated) inside the Obj\x86\Debug sub-folder.

Chapter 1

9

Dependency properties
.NET properties are nothing more than syntactic sugar over set and get methods. What
those methods do is up to the property's developer. More often than not, a property is
a thin wrapper over a private field, perhaps adding some validation logic in its setter.

WPF requires more out of its properties. Specifically, WPF's dependency properties provide
the following:

 f Change notifications when the property's value is changed.

 f Validation handler called as part of a set operation.

 f Coercion handler that is able to "coerce" the provided value to an acceptable value.

 f Various providers can attempt to set the property's value, but only one such provider
wins at a time. Nevertheless, all values are retained. If the winning provider goes
away, the property's value is set to the next winner in line.

 f Property value inheritance down the visual tree (if so desired).

 f No memory is allocated for a property's value if that value is never changed from
its default.

These features provide the basis of some of WPF's strong features, such as data binding
and animation.

On the surface, these properties look the same as any other property—a getter and a setter.
But no private fields are involved, as we'll see in the following recipes.

Creating custom type instances in XAML
Sometimes there's a need to create instances of your own types, or other .NET Framework,
non-WPF types within XAML. A classic example is a data binding value converter (which we'll
explore in Chapter 6, Data Binding, but other scenarios might call for it).

Getting ready
Make sure you have Visual Studio 2010 up and running.

Foundations

10

How to do it...
We'll create a simple application that creates an instance of a custom type in XAML to
demonstrate the entire procedure:

1. Create a new WPF Application project named CH01.CustomTypes.

2. Let's create a custom type named Book. In the Solution Explorer window,
right-click on the project node and select Add and then Class…:

Chapter 1

11

3. Type Book in the Name box and click on Add:

4. Add four simple properties to the resulting class:
class Book {
 public string Name { get; set; }
 public string Author { get; set; }
 public decimal Price { get; set; }
 public int YearPublished { get; set; }
 }

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.PacktPub.com. If you
purchased this book elsewhere, you can visit http://www.PacktPub.
com/support and register to have the files e-mailed directly to you.

Foundations

12

5. Open the MainWindow.xaml file (using the Solution Explorer), which was created
automatically by the project wizard. We would like to create an instance of the Book
class. As a Book is not an element (does not derive from UIElement), we cannot
simply create it inside our Grid. But, we can make it the Content property (that
can be anything, as its type is Object) of a ContentControl-derived type,
such as Button. Add a button control to the existing grid, as follows:
<Grid>
 <Button FontSize="20">
 </Button>
</Grid>

6. To create an instance of Book, we first need to map the .NET namespace
(and assembly) where Book is defined to an XML namespace that can be used
by the XAML compiler. Let's add a mapping at the top of the XAML near the
default mappings added by the application wizard:
<Window x:Class="CH01.CustomTypes.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/
presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="clr-namespace:CH01.CustomTypes"

7. This says that anything prefixed by the string local (we can select anything
here), should be looked up in the CH01.CustomTypes namespace (in the
current assembly).

8. Now, we can finally create a Book instance. Add the following inside the Button tag:
<Button FontSize="20">
 <local:Book Name="Windows Internals"
 Author="Mark Russinovich" Price="40"
 YearPublished="2009" />
</Button>

9. That's it. We can verify this by adding a suitable ToString implementation to the
Book type, and running the application:
public override string ToString() {
return string.Format("{0} by {1}\nPublished {2}", Name,
 Author, YearPublished);

}

Chapter 1

13

How it works...
The XAML compiler needs to be able to resolve type names such as Button or
Book. A simple name like Button is not necessarily unique, not in the XML sense
and certainly not in the .NET sense (there are at least four Button types in .NET,
naturally in different namespaces) .

A mapping is required between an XML namespace and a .NET namespace, so that the XAML
compiler can reference the correct type. By default, two XML namespaces are declared by
a typical XAML file: the first, which is the default XML namespace, is mapped to the normal
WPF namespaces (System.Windows, System.Windows.Controls, and so on). The other,
typically with the x prefix, is mapped to the XAML namespace (System.Windows.Markup).

For our own types, we need to do similar mapping (but with a different syntax) means
map the XML namespace prefix local to the .NET namespace CH01.CustomTypes.
The following line:

xmlns:local="clr-namespace:CH01.CustomTypes"

This allows our Book class to be recognized and used within the XAML.

If the type was defined in a referenced assembly (not our own assembly), then the mapping
would continue to something like the following:

xmlns:local="clr-namespace:CH01.CustomTypes;assembly=MyAssembly"

For example, suppose we want the ability to create instances of the System.Random type.
Here's how we'd map an XML namespace to the .NET namespace and assembly where
System.Random resides:

xmlns:sys="clr-namespace:System;assembly=mscorlib"

Foundations

14

Now, we could create an instance of anything in the System namespace (that is XAML
friendly) and the mscorlib assembly (such as Random):

 <sys:Random x:Key="rnd" />

In this case, it's hosted in a ResourceDictionary (which is a kind of dictionary, meaning
every value requires a key; we'll discuss these in more detail in the next chapter).

There's more...
It's possible to map a single XML namespace to multiple .NET namespaces. This is the same
technique used by the WPF assemblies itself: a single XML namespace maps to multiple
WPF namespaces, such as System.Windows, System.Windows.Controls, and
System.Windows.Media.

The trick is to use the XmlnsDefinition attribute within the assembly where the exported
types reside. This only works for referenced assemblies; that is, it's typically used in class
library assemblies.

For example, suppose we create a MyClassLibrary class library assembly, with a type like
the Book introduced earlier:

namespace MyClassLibrary {
 public class Book {
 public string Name { get; set; }
 public string Author { get; set; }
 public decimal Price { get; set; }
 public int YearPublished { get; set; }
 }
}

We can make all types within this assembly and the MyClassLibrary namespace part of an
XML namespace by adding the following attribute:

[assembly: XmlnsDefinition("http://mylibrary.com",
"MyClassLibrary")]

The first argument to the attribute is the XML namespace name. This can be anything, but is
typically some form of fictitious URL (usually a variation on the company's URL), so as to lower
chances of collisions (this is exactly the same idea used by WPF). The second string is the
.NET namespace mapped by this XML namespace.

Chapter 1

15

Now, suppose we have another .NET namespace within that same assembly with some types
declared within it:

namespace MyClassLibrary.MyOtherTypes {
 public class MyType1 {
 //...
 }

 public class MyType2 {
 //...
 }
}

We can add another attribute to map the same XML namespace to the new .NET namespace:

[assembly: XmlnsDefinition("http://mylibrary.com",
"MyClassLibrary.MyOtherTypes")]

This means that a single XML prefix (in some client application) can now map to multiple
.NET namespaces:

xmlns:mylib="http://mylibrary.com"

This scheme can save multiple distinct XML prefix declarations. One consequence of this idea
is that all public type names must be unique across the mapped .NET namespaces (as they
are indeed within WPF itself).

Creating a dependency property
Dependency properties are the workhorse of WPF. This infrastructure provides for many of
WPF's features, such as data binding, animations, and visual inheritance. In fact, most of the
various element properties are Dependency Properties. Sometimes we need to create such
properties for our own controls or windows.

Getting ready
Make sure you have Visual Studio up and running.

Foundations

16

How to do it...
We'll create a simple user control with one new dependency property to illustrate the
entire procedure:

1. Within Visual Studio 2010, create a new WPF Application named
CH01.DependencyProperties.

2. We'll add a simple User Control, to which we'll add a dependency property. Don't
worry if you don't understand exactly what a user control is; we'll discuss those in a
later chapter. For now, just concentrate on the dependency properties we'll create
and use. To create the User Control, right-click on the Project node in the Solution
Explorer and select Add and then User Control….

Chapter 1

17

3. In the resulting dialog, type SimpleControl in the Name box, and then click on Add:

4. We'll add a dependency property to the SimpleControl class. A dependency
property needs to be "registered" with the property system. Open the
SimpleControl.xaml.cs file and type propdp just after the closing
brace of the constructor. This is how it would look in the Visual Studio editor:

Foundations

18

5 This is a code snippet that helps with the (somewhat unpleasant) details of properly
registering the property. Press Tab; the code snippet is expanded to something
like the following:

The first part looks like a normal getter/setter of a property (although the
implementation is anything but "normal"). The second part actually registers the
property with some information (more on that in the How it works… section). Let's
create a property named YearPublished of type int.

6. Press Tab to skip the int part (as that's what we want here). The focus should jump
to MyProperty. Type YearPublished as the property name.

7. Press Tab again. Note that this changes the property name in the lower Register
call to YearPublished. The focus should jump to the ownerclass part. Type
SimpleControl.

8. Press Tab again. The focus should jump to the 0. This should be the default value of
the property, if not altered. Change the 0 into 2000. After removing the (unhelpful)
comment from the snippet provided, the code should look as follows:
public int YearPublished {
 get { return (int)GetValue(YearPublishedProperty); }
 set { SetValue(YearPublishedProperty, value); }
}

public static readonly DependencyProperty
 YearPublishedProperty = DependencyProperty.Register(
 "YearPublished", typeof(int), typeof(SimpleControl),
 new UIPropertyMetadata(2000));

9. Now let's test it. If that's indeed a dependency property, then there are a few things it
can do, such as data bind. We'll add an instance of the SimpleControl class to our
main window and bind the property we defined to some other control.

10. Open the MainWindow.xaml file. Replace the existing Grid with a StackPanel,
and add an instance of our SimpleControl. The entire markup should look
like as follows:
<Window x:Class="CH01.DependencyProperties.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/
presentation"

Chapter 1

19

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="clr-namespace:CH01.DependencyProperties"
 Title="MainWindow" Height="350" Width="525">
 <StackPanel>
 <local:SimpleControl x:Name="_simple" />
 </StackPanel>
</Window>

11. Note the local prefix pointing to our .NET namespace (as explained in an
earlier recipe of this chapter). Now let's add a TextBlock and a Button
inside the StackPanel. The Text property of TextBlock should bind to
the YearPublished property of the SimpleControl instance:
<TextBlock Text="{Binding YearPublished, ElementName=_simple}"
FontSize="30" />
<Button Content="Change Value" FontSize="20"/>

12. When the button is clicked, we'll increment the YearPublished property and see if
that changes the displayed text in the TextBlock. First, add a Click event handler;
within the Button element type Click=. Visual Studio writes a pair of quotes and
suggests adding a handler. You can press Tab to accept the default handler name,
or type yourself an appropriate name, such as OnChangeValue:
<Button Content="Change Value" FontSize="20"
Click="OnChangeValue"/>

13. Right-click on the handler name (OnChangeValue in this case), and select
Navigate to Event Handler:

14. Visual Studio switches to the MainWindow.xaml.cs file inside the event handler.
Add a simple increment of the YearPublished property of SimpleControl
named _simple. The entire method should look as follows:
private void OnChangeValue(object sender, RoutedEventArgs e) {
 _simple.YearPublished++;
}

Foundations

20

15. Run the application. You should see the TextBlock showing 2000. That's the
default value we set in the DependencyProperty.Register call.

16. Now press the button Change Value a few times— the text should be incremented.
This happened because of the change notifications raised by the dependency
property system, to which the data binding system registered.

How it works...
A dependency property is managed by a public static (readonly) field named with
the property name suffixed with Property; in our case it's MyValueProperty. This
field manages the property value for any instance of the type it's declared in. The call
to DependencyProperty.Register sets the property's name, its type, the owner
type, and set of metadata for that property. The previous code uses an instance of
UIPropertyMetadata (one of several possible types), that accepts (at least) the
default value for the property (10 in our example).

The classic getter/setter method pair includes calls to SetValue and GetValue. These are
defined in the DependencyObject base class, which means any type that wants to leverage
the dependency property system must inherit from this class (directly or indirectly). For WPF
elements, this is not a problem, as everything inherits from DependencyObject eventually.

When a new value is set for the property (as we did for our code), the SetValue method does
"the right thing", meaning (for example), sending notifications to whoever is listening (such as
the data binding system).

Chapter 1

21

There's more...
When we register a dependency property, we can provide a property changed callback
delegate, to be called when that property value changes for whatever reason:

public static readonly DependencyProperty
 YearPublishedProperty = DependencyProperty.Register(
 "YearPublished", typeof(int), typeof(SimpleControl),
 new UIPropertyMetadata(2000, OnValueChanged));

private static void OnValueChanged(DependencyObject obj,
 DependencyPropertyChangedEventArgs e) {
 // do something when property changes
}

We'll examine this technique in a future recipe when we discuss attached properties.

This may seem unnecessary— after all, can't we just add code to the setter, and then just
know when the property value is changed? No. The reason is that the property setter is just
syntactic sugar—it's not always called directly. It is used by developers, as this is the familiar
property syntax, but the XAML parser, for example, just calls SetValue directly—bypassing
the property setter altogether. And it's not the only entity doing so. The setter should have
nothing in it except the SetValue call.

Property value inheritance
User interface needs to be consistent, usually having the same fonts, sizes, and so on.
Setting a font size, for example, on each and every element so they have the same value is
tedious and unmaintainable. One of the ways WPF deals with that (not the only way; we'll
see another powerful way in Chapter 8) is the idea of propagating a property value down the
visual tree. This mechanism, property value inheritance, is supported by the dependency
property infrastructure.

A canonical example is the font-related properties. If we set the FontSize property
(for instance) on some container element, child elements (in any level) would use that
property instead of the default:

<Window x:Class="CH01.InheritDemo.MainWindow"
 Title="MainWindow" FontSize="20"
 Width="400" Height="300">
 <StackPanel>
 <TextBlock Text="Text 1" />
 <TextBlock Text="Text 2" />
 <TextBlock Text="Text 3" />
 </StackPanel>
</Window>

Foundations

22

Note the FontSize is set to 20 on the Window object. All the TextBlocks will now use
the value of 20 for their font size instead of the default. This is a feature a dependency
property may choose to use, specified at registration time. Here's an example of a
dummy property:

public static readonly DependencyProperty DummyProperty =
 DependencyProperty.Register("Dummy", typeof(int),
 typeof(MainWindow), new FrameworkPropertyMetadata(0,
 FrameworkPropertyMetadataOptions.Inherits));

That last flag makes this property inheritable by default (same as the font related properties).

Why "dependency"?
What is the "dependency" part of dependency properties? In the previous section, we looked
at visual inheritance. Suppose that one of those example TextBlocks sets a different
FontSize values like so:

<Window x:Class="CH01.InheritDemo.MainWindow"
 Title="MainWindow" FontSize="20"
 Width="400" Height="300">
 <StackPanel>
 <TextBlock Text="Text 1" />
 <TextBlock Text="Text 2" FontSize="30"/>
 <TextBlock Text="Text 3" />
 </StackPanel>
</Window>

What will be the final result? It turns out 30 is the winner for the second TextBlock. What
we see is a set of priorities for providers of values. The first (and lowest) priority is the default
value registered with DependencyProperty.Register. A higher priority is the inheritance
feature (if registered as such for that property). A higher still priority is a local value (30 in our
example) that takes precedence over inheritance. So, a dependency property depends on one
of several levels or priorities of value providers. In fact, there are about 11 different levels in
all (we have seen three in this example). All provider values are not lost—they may become
effective if the highest provider is cleared. Here's an example:

_text2.ClearValue(TextBlock.FontSizeProperty);

This clears the local value of the (for example) second TextBlock, reverting its FontSize
value to 20 (the inherited value).

By the way, the highest priority provider (except for a coercion callback, explained in the next
section) is an active animation. If this wasn't so, an animation would simply have no effect.
Once the animation is removed, the property value reverts to its previous state (depending
on the highest provider at that time).

Chapter 1

23

We need to take this behavior into consideration. If a property does not seem to get the
expected value, there's a good chance we missed some provider that's "stronger" than the
one we expected to win. The Visual Studio debugger has a visualizer that can be used to view
the current property values of elements, and (very important) the provider that's effectively
providing this value. Here's an example for our famous second TextBlock:

Note the Local reading of the Source column.

The CH11.InheritDemo project, available with the downloadable source for this chapter,
can be used to test it out. To get to this dialog, set a breakpoint where you have easy access
to the required variable (in this case it could be done in the MainWindow constructor after
InitializeComponent), and then click on the small magnifying glass near the variable's
value column:

Foundations

24

If we remove the FontSize="30" local value setting, and use the visualizer again, we get
the following:

The Source column clearly indicates that the value was set because of visual inheritance.

This information is also available by using other tools that don't require Visual Studio or a
debugger of any kind. One such free tool is Snoop (http://snoopwpf.codeplex.com/).
This tool can look at any WPF window and drill down into the visual tree, showing property
values (with their source); since it does not require anything special, it can be used in
production environments, where tools such as Visual Studio are not typically found.

Dependency property levels
As mentioned, there are 11 levels, or priorities, of dependency property providers. Here's the
complete list (highest to lowest precedence):

1. Property coercion: The coercion mechanism allows a delegate to execute before the
final value is set for the property. That coercion delegate is provided as part of the
property metadata at registration time. For example, if a property signifies an hour in
the day, it should have a value between 0 and 23. The coercion callback can look at
the suggested value, and if (say) it's greater than 23, return 23 as the final value.

2. Active animation: If an animation is active, it provides the property's current value.

3. Local value: Set through the property setter in code, or through XAML.

4. Template parent properties: If the control was created as part of a
ControlTemplate or DataTemplate, these properties apply (we'll discuss
data templates in Chapter 6 and control templates in Chapter 8).

http://snoopwpf.codeplex.com/

Chapter 1

25

5. Implicit style: (We'll discuss implicit styles in Chapter 8).

6. Style triggers from Windows or the application (we'll discuss triggers in Chapter 8).

7. Template triggers: Triggers that are part of a template (again, Chapter 8).

8. Style setters: Values from styles defined in the Window or the application (styles are
discussed in Chapter 8).

9. Default style: Set by the control creator and can be based on the current
Windows theme.

10. Inheritance: As discussed in a previous section.

11. Default value: As set in the property metadata.

For a detailed look at all dependency property levels, you can refer to this link in the official
MSDN documentation: http://msdn.microsoft.com/en-us/library/1FBADA8E-
4867-4ED1-8D97-62C07DAD7EBC(v=vs.100,d=loband).aspx

Using an attached property
Attached properties are curious beings. There is no direct analogue to anything else in the
.NET framework. The closest may be extension methods, introduced in C# 3.0. Extension
methods are a way of extending a type without inheriting from it (even if that type is sealed).
Attached properties are dependency properties that are defined by some type, but can be
used by (almost) any other typed object. That is, they can extend a type's properties without
code derivation. In this recipe, we'll see how to use an existing attached property, and in the
next one we'll learn how to create a new attached property.

Getting ready
Make sure Visual Studio is up and running.

How to do it...
We'll create an application that creates a rectangle and places it inside a canvas at exact
coordinates using attached properties:

1. Create a new WPF Application named CH01.SimpleAttached.

2. Open the MainWindow.xaml file and create the following basic layout:
<Grid>
 <Canvas>
 <RepeatButton Content="Move" />
 </Canvas>
</Grid>

http://msdn.microsoft.com/en-us/library/1FBADA8E-4867-4ED1-8D97-62C07DAD7EBC(v=vs.100,d=loband).aspx
http://msdn.microsoft.com/en-us/library/1FBADA8E-4867-4ED1-8D97-62C07DAD7EBC(v=vs.100,d=loband).aspx

Foundations

26

3. This creates a grid which hosts a Canvas and that canvas hosts a RepeatButton.
Let's add a Rectangle element to the Canvas and place it in some position:
<Canvas>
 <RepeatButton Grid.Row="1" Content="Move" />
 <Rectangle x:Name="_rect" Width="50" Height="50"
 Fill="Red" Stroke="Black" StrokeThickness="5"
 Canvas.Left="30" Canvas.Top="40" />
</Canvas>

4. Run the application. You should see something like this:

5. The Canvas.Left and Canvas.Top are attached properties. They are defined by
the Canvas type, but they can be applied to any element (technically, anything that
derives from DependencyObject). In this case, these two properties are applied
to the Rectangle, essentially "extending" its property set with two new properties.
The syntax DefiningClassName.PropertyName is the way to access an attached
property in XAML.

6. Now let's try changing these properties in code. When the repeat button is clicked,
let's move the rectangle a little bit to the right. First, let's name the Rectangle, so
we can easily refer to it in code:
<Rectangle x:Name="_rect" Width="50" Height="50" Fill="Red"
 Stroke="Black" StrokeThickness="5"
 Canvas.Left="30" Canvas.Top="40" />

7. Add a Click event handler to the RepeatButton. In the handler, add the
following code:
 Canvas.SetLeft(_rect, Canvas.GetLeft(_rect) + 5);

8. An attached property is accessed in code using a set of static methods on the
class declaring the property (in this case, the Canvas). The first argument to these
methods is the intended target of the property (in this case the Rectangle). Run
the application. Click on the button (and hold); you should see the rectangle moving
along to the right, 5 units at a time.

Chapter 1

27

How it works...
An attached property is first and foremost a dependency property, meaning it supports all
the capabilities of dependency properties. However, as an attached property is "attached"
to an object that did not define it, a simple property like syntax is not possible – as C# does
not support the concept of attached properties natively. Instead, the declaring class provides
two static methods, named DeclaringType.SetPropertyName and DeclaringType.
GetPropertyName, that provide a way to set or get the property value for some object
passed in as the first argument (as demonstrated in the last code snippet).

In XAML, things are simpler, as the XAML parser is aware of attached properties, and converts
the simpler DeclaringType.PropertyName attribute to the aforementioned Set method.

There's more...
The actual implementation of the Set/Get static methods mentioned above is to call the
regular DependencyObject.SetValue/GetValue as for a regular dependency property.
This means that the code to move the rectangle could have been written as follows:

_rect.SetValue(Canvas.LeftProperty,
 (double)_rect.GetValue(Canvas.LeftProperty) + 5);

Why an attached property?
One may wonder why to go to all this trouble for the Left and Top properties. Would it not be
simpler to define the Left and Top properties on the (for example) UIElement class and be
done with it? These properties could have been normal dependency properties and enjoy the
simpler syntax they carry.

The reason is, that a Left or Top property may not always make sense. In fact, it only makes
sense when the element is placed within a Canvas. What if the rectangle is inside a Grid? Or
a StackPanel? The Left/Top properties wouldn't make sense. This leads to the conclusion
that attached properties are a kind of contextual property – they are relevant under particular
circumstances, so they can be "attached" if and when actually needed.

Does the declaring type "own" the property?
The previous example may lead to a wrong conclusion. It seems Canvas.Left and the
like are only relevant when the element is inside a Canvas. Similarly, the Grid.Row and
Grid.Column attached properties only make sense for elements placed inside a Grid.
Is this somehow necessary from an attached property point of view?

Foundations

28

Not at all. This is just coincidence. The above properties in fact make sense only for elements
placed inside their respective declaring type, but that does not have to be the case. For
example, suppose we have a button with a tool tip defined:

<Button Content="Copy" ToolTip="Copy the Selected Items" />

If the button is disabled (IsEnabled set to true), the tool tip does not appear at runtime.
To make it appear even if the control is disabled, we must set the ToolTipService.
ShowOnDisabled attached property to true:

<Button Content="Copy" ToolTip="Copy the Selected Items"
 ToolTipService.ShowOnDisabled="True"/>

We set the property on the button, but it's defined in the ToolTipService class.
This class is not an element (unlike the Canvas for example). In fact, it's a static class
(instances of it cannot be created). So, there is no relationship between the button and the
ToolTipService class, or between the ToolTip and ToolTipService classes, for that
matter. The way this connection is established (so it can have some effect) will be revealed in
the next recipe in this chapter.

See also
To create your own attached properties, refer to the next recipe, Creating an attached property.

Creating an attached property
An attached property can be used to somehow "enhance" or extend another object. In the
case outlined in the previous recipe, Using an attached property, an element was placed
at exact coordinates within a Canvas using the attached Canvas.Left and Canvas.Top
properties. An attached property is a powerful tool for extending the behavior of any object
without the need to inherit from the type of the object. In this task, we'll see this in action.

Getting ready
Make sure Visual Studio is up and running.

How to do it...
We'll create an attached property that would rotate any element it's attached to:

1. Create a new WPF Application named CH01.CustomAttached.

Chapter 1

29

2. Open MainWindow.xaml. Add some elements in a Canvas (replace the default
Grid) as follows:
<Canvas>
 <Ellipse Fill="Red" Width="100" Height="60" />
 <Rectangle Fill="Blue" Width="80" Height="80"
 Canvas.Left="100" Canvas.Top="100" />
 <Button Content="Hello" Canvas.Left="130" Canvas.Top="30"
 FontSize="20" />
</Canvas>

3. Suppose we want to rotate a particular element around its center. We would have to
write something like this (example for the Ellipse):
<Ellipse Fill="Red" Width="100" Height="60"
 RenderTransformOrigin=".5,.5">
 <Ellipse.RenderTransform>
 <RotateTransform Angle="30" />
 </Ellipse.RenderTransform>
</Ellipse>

Although this is certainly possible, this makes for a lot of typing. Now imagine doing
something similar for other elements. Let's make it shorter by defining and using an
attached property.

4. Add a new class to the project named RotationManager.

5. We'll register a new attached property within this class; a property any other object
can use. To do that, we'll take advantage of a Visual Studio code snippet, propa
(similar in concept to propdp discussed in the task Creating a dependency property
in this chapter). Inside the class definition, type propa (without the quotes). This is
how it should look at this point:

6. Press Tab once, and fill in the property details as follows: the property type should
be double, its name should be Angle, its owner class RotationManager, and
its default value zero. You'll have to add a using statement for System.Windows
namespace. The generated code should look as follows (after removing the comment
and some formatting):
class RotationManager : DependencyObject {
 public static double GetAngle(DependencyObject obj) {
 return (double)obj.GetValue(AngleProperty);
 }

Foundations

30

 public static void SetAngle(DependencyObject obj,
 double value) {
 obj.SetValue(AngleProperty, value);
 }

 public static readonly DependencyProperty AngleProperty =
 DependencyProperty.RegisterAttached("Angle",
 typeof(double), typeof(RotationManager),
 new UIPropertyMetadata(0.0));

}

7. Now that we have an attached property definition, let's use it. We'll set it on our
various elements. The first step is mapping an XML namespace to our namespace
(as we learned in the recipe Creating custom type instances in XAML in this chapter).
Open MainWindow.xaml and add a mapping on the root element, as in the
following code snippet:
xmlns:local="clr-namespace:CH01.CustomAttached"

8. Now let's set the property with various values on the various elements. Here's an
example for the Ellipse (notice the intellisense popping up to help):
 <Ellipse Fill="Red" Width="100" Height="60"
 local:RotationManager.Angle="45"/>

9. Add similar settings for the Rectangle and Button like as follows:
<Rectangle Fill="Blue" Width="80" Height="80"
 Canvas.Left="100" Canvas.Top="100"
 local:RotationManager.Angle="30" />
<Button Content="Hello" Canvas.Left="130" Canvas.Top="30"
 FontSize="20"
 local:RotationManager.Angle="90"/>

10. Notice that the designer preview shows no change. If you run the application,
nothing happens. And why would anything happen? We declared a property and
nothing else. Let's add some behavior logic if the property is actually used. For that,
we'll add a property changed handler notification. Go back to RotationManager.cs
and modify the property registration as follows:
public static readonly DependencyProperty AngleProperty =
 DependencyProperty.RegisterAttached("Angle",
 typeof(double), typeof(RotationManager),
 new UIPropertyMetadata(0.0, OnAngleChanged));

Chapter 1

31

11. The OnAngleChanged method will be called for any change in the property value on
any object it's applied to. Let's add some simple logic that will rotate the element:
private static void OnAngleChanged(DependencyObject obj,
 DependencyPropertyChangedEventArgs e) {
 var element = obj as UIElement;
 if(element != null) {
 element.RenderTransformOrigin = new Point(.5, .5);
 element.RenderTransform = new RotateTransform(
 (double)e.NewValue);
 }
}

12. If we switch back to the designer, we'll see the elements rotated according to the
specified angles. If we run the application, we'll see something like this:

There we have it. An easy way to rotate any element by using an attached property.

How it works...
Attached properties are registered similarly to regular dependency properties. In terms
of functionality, they are dependency properties. This means they support everything a
dependency property supports: data binding, animation, and so on. An attached property can
be defined by any class (RotationManager in our example) and can be applied to any object
whose type derives from DependencyObject.

Foundations

32

Simply registering an attached property has no effect on its own. There must be some
"extra" code that looks for that property and does something when it's applied or changed.
In the example shown, this is done by specifying a property changed handler, called by WPF
whenever the property is changed on any object. In the example code, we restrict using a
UIElement-derived type, as this is the first type that supports RenderTransform and
RenderTransformOrigin. This also shows the weakness of attached properties: it's not
possible to know whether specifying the property on some object is beneficial. We could have
thrown an exception if the object was not UIElement-derived to somewhat rectify this (albeit
at runtime rather than compile time), but this is not typically employed (although we could
have written something with Debug.WriteLine to indicate this needs attention), as there
may be other code that does not consider this an invalid setting.

There's more...
The property change notification scheme is typically used by WPF with attached properties
that are defined by panels, such as Canvas, DockPanel, and Grid. Note that the
panels only look for the relevant attached properties on their immediate children (and not
grandchildren). This is not a limitation of attached properties, it's simply the way these panels
work. Although attached properties within panels are common, there are other ways these
properties can be used.

One possibility is to use the existence of these property values within styles (a complete
treatment of styles is in given Chapter 8) or templates (templates are discussed in Chapter 6
and Chapter 8). For now, think of a style as a grouping of related settings that can be applied
as a group to an element. For example, the following style accomplishes roughly the same
thing as our property change handler:

<Style TargetType="Button">
 <Setter Property="RenderTransformOrigin" Value=".5,.5" />
 <Setter Property="RenderTransform">
 <Setter.Value>
 <RotateTransform Angle="{Binding Path=(local:RotationManager.
Angle), RelativeSource={RelativeSource Mode=FindAncestor,
AncestorType=Button}}" />
 </Setter.Value>
 </Setter>
</Style>

Of course, this example works with buttons only because of the targeted style (style that
works on buttons only), but the result is the same. Note the parentheses around the attached
property name. This is essential – otherwise the XAML parser does not understand this to be
an attached property; it interprets local:RotationManager as the property name (and
expects Angle to be a sub-property). Also, leaving out the "Path=" (as is customary
in binding expressions), causes the expression to fail (for a similar reason).

Chapter 1

33

Reusing existing attached properties
An attached property is (paradoxically) a detached entity. It has no special affinity to the
declaring type. This means we can use an already defined attached property if it's typed
appropriately, named appropriately, and has no use in the needed situation. In our example,
we need an attached property that is of type double, has an intuitive enough name (maybe
something with "angle" or "rotate"), and is unused in scenarios where the use of our property
makes sense.

Clearly, it's not easy finding such a property, but sometimes one may get lucky. For instance,
if we elect to go for the attached property ToolTipService.HorizontalOffset (typed as
double), we can achieve the same effect as previously (with a style setter) without defining
a new attached property. This is not a good choice in this case, as an offset is not an angle,
and clearly tooltips have nothing to do with rotation. The worse problem here is that there may
be a legitimate reason to place that property on a button (to cater offsetting a tooltip), so that
reusing for rotation purposes would collide with the tooltip, making only one a winner. Still, the
general concept holds – any attached property can be reused.

Attached property reuse is possible in styles, templates (data template and control template),
and triggers (within styles and templates).

See also
For background on dependency properties, check out the recipe Creating a dependency
property in this chapter.

Accessing a static property from XAML
XAML provides an easy way to set values of properties—type converters and the extended
property syntax allow for flexible setting of values. However, some things cannot be expressed
as a simple value, such as setting a property to the value of some static property.

Getting ready
Make sure Visual Studio is up and running.

How to do it...
We'll create an application that uses a static property from within XAML:

1. Create a new WPF Application named CH01.StaticProperties.

2. Open MainWindow.xaml. Replace the Grid element with a StackPanel.

Foundations

34

3. Add some shapes as shown in the following code block:
 <StackPanel>
 <Ellipse Stroke="Black" Height="50" />
 <Rectangle Stroke="Black" Height="50" />
 </StackPanel>

4. Suppose we want to fill the ellipse with the desktop color selected by the user in
Windows. WPF provides the SystemColors class, with many static properties
that return a Brush representing the user's choice. For the desktop, this is a
DesktopBrush property. We can try the following:
<Ellipse Stroke="Black" Height="50"
Fill="SystemColors.DesktopBrush" />

5. This throws an exception at runtime, as it cannot be converted to any "known" color
(such as Red or Blue). To access a static property, we must use the {x:Static}
markup extension, as follows:
<Ellipse Stroke="Black" Height="50"
Fill="{x:Static SystemColors.DesktopBrush}" />

6. This works. You can verify this by going to Control Panel, then selecting
Personalization (on Windows 7 or 8).

Chapter 1

35

7. Select Window Color (switch to the classic theme first if the following window is
shown differently). The Window Color and Appearance dialog is displayed:

8. Change the desktop color and run the application again. You should see the ellipse
filled with the new color.

9. Similarly, let's fill the rectangle with the active window caption color:
<Rectangle Stroke="Black" Height="50"
Fill="{x:Static SystemColors.ActiveCaptionBrush}"/>

10. Running the application shows something like the following:

Foundations

36

11. In this case, the active caption color on my system is a gradient, so the
ActiveCaptionBrush provides the left side. The right side is provided by the
GradientActiveCaptionBrush property. They are both brushes. If we wanted to
recreate the caption gradient within the rectangle, we would need color objects, not
brushes. Fortunately, these are provided via properties in the same class, named
ActiveCaptionColor and GradientActiveCaptionColor. Let's combine
these in a LinearGradientBrush:
<Rectangle Stroke="Black" Height="50">
 <Rectangle.Fill>
 <LinearGradientBrush EndPoint="1,0">
 <GradientStop Offset="0"
Color="{x:Static SystemColors.ActiveCaptionColor}" />
 <GradientStop Offset="1"
Color="{x:Static SystemColors.GradientActiveCaptionColor}" />
 </LinearGradientBrush>
 </Rectangle.Fill>
</Rectangle>

12. This is the final result:

How it works...
XAML basically has very few capabilities. It can create objects, set values for properties,
and set up event handlers. This is intentional, as XAML is declarative in nature. It cannot,
for instance, call methods. That would make it closer to an imperative language (such as C#),
which would make its existence dubious at best.

Sometimes, however, declarative operations require more than setting up properties.
A method may be involved, or some other unusual construct, but the intent may still be
declarative. This is where markup extensions come in. They provide a way to extend XAML
with new (hopefully declarative) capabilities.

Chapter 1

37

A markup extension is a class that derives from System.Windows.Markup.
MarkupExtension and implements a single method, ProvideValue. In this example we
have used the {x:Static} markup extension, which allows accessing any static property
(whether it belongs to WPF or not; if not, a XAML namespace mapping is required as explained
in the recipe Creating custom type instances in XAML in this chapter). {x:Static} is
implemented by the System.Windows.Markup.StaticExtension class. Note that if
the markup extension class ends with "Extension" we can remove it when referring to it in
XAML – the XAML compiler will search with and without the word "Extension". This means
{x:Static} can be written {x:StaticExtension}. In fact, most markup extensions
end with "Extension" (a notable exception is the Binding markup extension).

There's more...
There are other built in markup extensions. Here are some of the simplest:

 f {x:Null} specifies the null reference

 f {x:Type SomeType} is the equivalent to the typeof(SomeType) operator in C#

We'll look at other markup extensions in subsequent chapters.

Creating a custom markup extension
Markup extensions are used to extend the capabilities of XAML, by providing declarative
operations that need more than just setting some properties. These can be used to do pretty
much anything, so caution is advised – these extensions must preserve the declarative nature
of XAML, so that non-declarative operations are avoided; these should be handled by normal
C# code.

Getting ready
Make sure Visual Studio is up and running.

Foundations

38

How to do it...
We'll create a new markup extension that would provide random numbers and use it within a
simple application:

1. First, we'll create a class library with the markup extension implementation and then
test it in a normal WPF application. Create a new Class Library project named CH01.
CustomMarkupExtension. Make sure the checkbox Create directory for solution
is checked, and click on OK:

2. The base MarkupExtension class resides in the System.Xaml assembly.
Add a reference to that assembly by right-clicking the References node in the
Solution Explorer, and selecting Add Reference…. Scroll down to System.Xaml
and select it.

3. Delete the file Class1.cs that was created by the wizard.

Chapter 1

39

4. Right-click the project node, and select Add Class…. Name the class
RandomExtension and click on Add. This markup extension will
generate a random number in a given range.

5. Mark the class as public and inherit from MarkupExtension.

6. Add a using statement to System.Windows.Markup or place the caret
somewhere over MarkupExtension, click on the smart tag (or press Ctrl + . (dot),
and allow the smart tag to add the using statement for you. This is how the class
should look right now:
 public class RandomExtension : MarkupExtension {
 }

7. We need to implement the ProvideValue method. The easiest way to get the basic
prototype is to place the caret over MarkupExtension and use the smart tag again,
this time selecting Implement abstract class. This is the result:
public class RandomExtension : MarkupExtension {
 public override object ProvideValue(IServiceProvider sp) {
 throw new NotImplementedException();
 }
}

8. Before we create the actual implementation, let's add some fields and constructors:
readonly int _from, _to;
public RandomExtension(int from, int to) {
 _from = from; _to = to;
}
public RandomExtension(int to)
 : this(0, to) {
}

9. Now we must implement ProvideValue. This should be the return value of the
markup extension – a random number in the range provided by the constructors.
Let's create a simple implementation:
static readonly Random _rnd = new Random();
public override object ProvideValue(IServiceProvider sp) {
 return (double)_rnd.Next(_from, _to);
}

Foundations

40

10. Let's test this. Right-click on the solution node in Solution Explorer and select Add
and then New Project….

11. Create a WPF Application project named CH01.TestRandom.

12. Add a reference to the class library just created.

13. Open MainWindow.xaml. We need to map an XML namespace to the namespace
and assembly our RandomExtension resides in:
xmlns:mext="clr-namespace:CH01.CustomMarkupExtension;
assembly=CH01.CustomMarkupExtension"

14. Replace the Grid with a StackPanel and a couple of TextBlocks as follows:
<StackPanel>
 <TextBlock FontSize="{mext:Random 10, 100}" Text="Hello"
 x:Name="text1"/>
 <TextBlock Text="{Binding FontSize, ElementName=text1}" />
</StackPanel>

Chapter 1

41

15. The result is a TextBlock that uses a random font size between 10 and 100. The
second TextBlock shows the generated random value.

How it works...
A markup extension is a class inheriting from MarkupExtension, providing some service
that cannot be done with a simple property setter. Such a class needs to implement
one method: ProvideValue. Whatever is returned provides the value for the property.
ProvideValue accepts an IServiceProvider interface that allows getting some
"context" around the markup extension execution. In our simple example, it wasn't used.

Any required arguments are passed via constructor(s). Any optional arguments can be
passed by using public properties (as the next section demonstrates).

Let's try using our markup extension on a different property:

 <TextBlock Text="{mext:Random 1000}" />

We hit an exception. The reason is that our ProvideValue returns a double, but the
Text property expects a string. We need to make it a bit more flexible. We can query
for the expected type and act accordingly. This is one such service provided through
IServiceProvider:

public override object ProvideValue(IServiceProvider sp) {
 int value = _rnd.Next(_from, _to);
 Type targetType = null;
 if(sp != null) {
 var target = sp.GetService(typeof(IProvideValueTarget))
 as IProvideValueTarget;
 if(target != null) {
 var clrProp = target.TargetProperty as PropertyInfo;
 if(clrProp != null)
 targetType = clrProp.PropertyType;
 if(targetType == null) {
 var dp = target.TargetProperty
 as DependencyProperty;
 if(dp != null)

Foundations

42

 targetType = dp.PropertyType;
 }
 }
 }
 return targetType != null ?
 Convert.ChangeType(value, targetType) :
 value.ToString();
}

You'll need to add a reference for the WindowsBase assembly (where
DependencyProperty is defined). IServiceProvider is a standard .NET interface that
is a kind of "gateway" to other interfaces. Here we're using IProvideValueTarget, which
enables discovering what property type is expected, with the TargetProperty property.
This is either a PropertyInfo (for a regular CLR property) or a DependencyProperty, so
appropriate checks must be made before the final target type is ascertained. Once we know
the type, we'll try to convert to it automatically using the Convert class, or return it as a string
if that's not possible.

For more information on other interfaces that can be obtained from this IServiceProvider,
check this page on the MSDN documentation: http://msdn.microsoft.com/en-us/
library/B4DAD00F-03DA-4579-A4E9-D8D72D2CCBCE(v=vs.100,d=loband).aspx.

There's more...
Constructors are one way to get parameters for a markup extension. Properties are another,
allowing optional values to be used if necessary. For example, let's extend our random
extension, so that it is able to provide fractional values and not just integral ones. This
option would be set using a simple public property:

 public bool UseFractions { get; set; }

The implementation of ProvideValue should change slightly; specifically, calculation of the
value variable:

 double value = UseFractions ?
 _rnd.NextDouble() * (_to - _from) + _from :
 (double)_rnd.Next(_from, _to);

To use it, we set the property after the mandatory arguments to the constructor:

 <TextBlock Text="{mext:Random 1000, UseFractions=true}" />

http://msdn.microsoft.com/en-us/library/B4DAD00F-03DA-4579-A4E9-D8D72D2CCBCE(v=vs.100,d=loband).aspx
http://msdn.microsoft.com/en-us/library/B4DAD00F-03DA-4579-A4E9-D8D72D2CCBCE(v=vs.100,d=loband).aspx

Chapter 1

43

Don't go overboard
Markup extensions are powerful. They allow arbitrary code to run in the midst of XAML
processing. We just need to remember that XAML is, and should remain, declarative. It's
pretty easy to go overboard, crossing that fine line. Here's an example: let's extend our
RandomExtension to allow modifying the property value at a regular interval. First, a
property to expose the capability:

 public TimeSpan UpdateInterval { get; set; }

Now, some modifications to the ProvideValue implementation:

if(UpdateInterval != TimeSpan.Zero) {
 // setup timer...
 var timer = new DispatcherTimer();
 timer.Interval = UpdateInterval;
 timer.Tick += (sender, e) => {
 value = UseFractions ?
 _rnd.NextDouble() * (_to - _from) + _from :
 (double)_rnd.Next(_from, _to);
 finalValue = targetType != null ?
 Convert.ChangeType(value, targetType) :
 value.ToString();
 if(dp != null)
 ((DependencyObject)targetObject).SetValue(
 dp, finalValue);
 else if(pi != null)
 pi.SetValue(targetObject, value, null);
 };
 timer.Start();
}

targetObject is obtained by calling IProvideValueTarget.TargetObject. This is the
actual object on which the property is to be set.

And the markup:

<TextBlock Text="This is funny"
FontSize="{mext:Random 10, 50, UpdateInterval=0:0:1}" />

This is certainly possible (and maybe fun), but it's probably crossing the line.

Foundations

44

Handling routed events
Events are essentially notifications from an object to the outside world – a variation on the
"observer" design pattern. Most of the time an object is told what to do via properties and
methods. Events are its way of talking back to whoever is interested. The concept of events
existed in .NET since its inception, but WPF has something to say about the way events are
implemented. WPF introduces routed events, an enhanced infrastructure for raising and
handling events, which we'll look at in this recipe.

Getting ready
Make sure Visual Studio is up and running.

How to do it...
We'll create a simple drawing application that uses routed events to handle user interaction:

1. Create a new WPF Application named CH01.SimpleDraw. This will be a simple
drawing program.

2. Add some markup to MainWindows.xaml that includes a Canvas and some
rectangle objects to select drawing brushes:
<Canvas Background="White" Name="_root">
</Canvas>

3. To do some drawing, we'll handle the MouseLeftButtonDown, MouseMove,
and MouseUp events on the canvas object. Within the Canvas tag, type
MouseLeftButtonDown=. Intellisense will pop up, suggesting to add a
default handler name. Resist the temptation, and type OnMouseDown:
<Canvas Background="White" Name="_root"
 MouseLeftButtonDown="OnMouseDown">

4. Right-click on OnMouseDown and select Navigate to Event Handler. Visual Studio
will add the required handler method in the code behind file (MainWindow.xaml.
cs) and jump straight to it:
private void OnMouseDown(object sender,
 MouseButtonEventArgs e) {
}

5. Add similar handlers for the MouseMove and MouseUp events, named
OnMouseMove and OnMouseUp, respectively.

Chapter 1

45

6. Let's add simple drawing logic. First, add the following fields to the
MainWindow class:
 Point _pos;
 bool _isDrawing;
 Brush _stroke = Brushes.Black;

7. Now the OnMouseDown event handler:
void OnMouseDown(object sender, MouseButtonEventArgs e) {
 _isDrawing = true;
 _pos = e.GetPosition(_root);
 _root.CaptureMouse();
}

8. Next, we'll handle mouse movement, like in the following code snippet:
void OnMouseMove(object sender, MouseEventArgs e) {
 if(_isDrawing) {
 Line line = new Line();
 line.X1 = _pos.X;
 line.Y1 = _pos.Y;
 _pos = e.GetPosition(_root);
 line.X2 = _pos.X;
 line.Y2 = _pos.Y;
 line.Stroke = _stroke;
 line.StrokeThickness = 1;
 _root.Children.Add(line);
 }
}

9. If we're in drawing mode, we create a Line object, set its two points locations and
add it to the Canvas.

10. Finally, when the mouse button is released, just revert things to normal:
void OnMouseUp(object sender, MouseButtonEventArgs e) {
 _isDrawing = false;
 _root.ReleaseMouseCapture();
}

Foundations

46

11. Run the application. We now have a functional little drawing program. Event handling
seemed to be as simple as expected.

12. Let's make it a little more interesting, with the ability to change drawing color. We'll
add some rectangle elements in the upper part of the canvas. Clicking any of them
should change the drawing brushing from that point on. First, the rectangles:
 <Rectangle Stroke="Black" Width="25" Height="25"
 Canvas.Left="5" Canvas.Top="5" Fill="Red" />
 <Rectangle Stroke="Black" Width="25" Height="25"
 Canvas.Left="35" Canvas.Top="5" Fill="Blue" />
 <Rectangle Stroke="Black" Width="25" Height="25"
 Canvas.Left="65" Canvas.Top="5" Fill="Yellow" />
 <Rectangle Stroke="Black" Width="25" Height="25"
 Canvas.Left="95" Canvas.Top="5" Fill="Green" />
 <Rectangle Stroke="Black" Width="25" Height="25"
 Canvas.Left="125" Canvas.Top="5" Fill="Black" />

13. How should we handle clicks on the rectangles? One obvious way is to attach an
event handler to each and every rectangle. But that would we wasteful. Events such
as MouseLeftButtonDown "bubble up" the visual tree and can be handled at any
level. In this case, we'll just add code to the OnMouseDown method:
 void OnMouseDown(object sender, MouseButtonEventArgs e) {
 var rect = e.Source as Rectangle;
 if(rect != null) {
 _stroke = rect.Fill;
 }
 else {
 _isDrawing = true;
 _pos = e.GetPosition(_root);
 _root.CaptureMouse();
 }
 }

Chapter 1

47

14. Run the application and click the rectangles to change colors. Draw something nice.

How it works...
WPF events are called routed events because most can be handled by elements that are not
the source of the event. In the preceding example, the MouseLeftButtonDown was handled
on the Canvas element, even though the actual event may have triggered on a particular
Rectangle element. This is referred to as a routing strategy of bubbling.

When the left mouse button is pressed, we make a note that the drawing has started by
setting _isDrawing to true (step 7). Then, we record the current mouse position relative to
the canvas (_root) by calling the MouseButtonEventArgs.GetPosition method. And
finally, although not strictly required, we "capture" the mouse, so that subsequent events will
be sent to the Canvas and not any other window, even if the mouse pointer technically is not
over the Canvas.

To properly ascertain which element was actually the source of the event, the
RoutedEventArgs.Source property should be used (and not the sender,
in our example the sender is always the Canvas).

There's more...
Bubbling is not the only routing strategy WPF supports. The opposite of bubbling is called
tunneling; events with a tunneling strategy are raised first on the top level element (typically
a Window), and then on its child, and so on, towards the element that is the actual source
of the event. After the tunneling event has finished (calling any handlers along the way),
its bubbling counterpart is raised, from the source up the visual tree towards the top level
element (window).

Foundations

48

A tunneling event always has its name starting with Preview. Therefore, there
is PreviewMouseLeftButtonDown and its bubbling counterpart is simply
MouseLeftButtonDown.

A third routing strategy is supported, called Direct. This is the simplest strategy; the event
is raised on the source element of the event and that's it. No bubbling or tunnelling occurs.
By the way, only very few events use the Direct strategy (for example, MouseEnter
and MouseLeave).

Stopping bubbling or tunneling
After a bubbling event is handled by some element – it continues to bubble. The bubbling can
be stopped by setting the RoutedEventArgs.Handled property to true.

If the event is a tunneling one – setting Handled to true stops the tunneling, but it also
prevents the buddy-bubbling event from ever firing.

Attached events
Suppose we want to write a simple calculator application:

This is a Grid that contains various Button controls.

We would like to use as few handlers as we can. For the "=" button, we can attach a specific
handler and prevent further bubbling:

void OnCalculate(object sender, RoutedEventArgs e) {
 // do operation
 e.Handled = true;

}

Chapter 1

49

What about the digit buttons? Again, we could add a click handler to each one, but that would
be wasteful. A better approach would be to leverage the Click event's bubbling strategy and
set a single handler on the container Grid.

Typing "Click=" on the Grid tag seems to fail. Intellisense won't help and in fact this won't
compile. It may be obvious – a Grid has no Click event. Click is specific to buttons.
Does this mean we can't set a Click handler on the Grid? Fortunately, we can.

WPF provides the notion of attached events. Such events can be handled by any element,
even if that element's type does not define any such event. This is achieved through attached
event syntax (similar to attached properties), such as the following code snippet:

<Grid ButtonBase.Click="OnKeyPressed">

The Click event is defined on the ButtonBase class, although Button.Click works just
as well, because Button inherits from ButtonBase. Now we can look at the actual source
of the click with the same RoutedEventArgs.Source described previously:

int digit;
string content = ((Button)e.Source).Content.ToString();
if(int.TryParse(content, out digit)) {
 // a digit
}

You can find the complete calculator sample in the CH01.Calculator project, available with
the downloadable source for this chapter.

2
Resources

In this chapter we will cover:

 f Using logical resources

 f Dynamically binding to a logical resource

 f Using user selected colors and fonts

 f Using binary resources

 f Accessing binary resources in code

 f Accessing binary resources from another assembly

 f Managing logical resources

Introduction
Traditional application resources consist of binary chunks of data, typically representing
things such as icons, bitmaps, strings, and XML. In fact, the .NET framework provides
generic support for these through the ResourceManager class.

WPF is no different—binary resources play an important role in a typical application.
However, WPF goes a lot further with another kind of resource: logical resources.
These are objects, any objects, which can be shared and used in a multitude of locations
throughout the application; they can even be accessed across assemblies. Some
of WPF's features, such as implicit (automatic) styles and type-based data templates,
rely on the logical resources system.

In this chapter, we'll take a look at resources, binary and logical, their definition, and usage
in XAML and code, and discuss various options and typical scenarios, such as combining
resources (even across assemblies) and resource lookup and modifications.

Resources

52

Using logical resources
WPF introduces the concept of logical resources, objects that can be shared (and reused)
across some part of a visual tree or an entire application. Logical resources can be anything,
from WPF objects such as brushes, geometries, or styles, to other objects defined by the .NET
Framework or the developer, such as string, List<>, or some custom typed object. This
gives a whole new meaning to the term resources. These objects are typically placed inside a
ResourceDictionary and located at runtime using a hierarchical search, as demonstrated
in this recipe.

Getting ready
Make sure Visual Studio is up and running.

How to do it...
We'll create a simple application that demonstrates creating and using logical resources:

1. Create a new WPF Application named CH02.SimpleResources.

2. Open MainWindow.xaml and replace the Grid element with a StackPanel.

3. Add a Rectangle element to the StackPanel, as shown in the following
code snippet:
 <Rectangle Height="100" Stroke="Black">
 <Rectangle.Fill>
 <LinearGradientBrush>
 <GradientStop Offset="0" Color="Yellow" />
 <GradientStop Offset="1" Color="Brown" />
 </LinearGradientBrush>
 </Rectangle.Fill>
 </Rectangle>

4. Now we want to add an Ellipse element, whose Stroke is the same as the
previous LinearGradientBrush. One way to do that is to simply make a copy:
<Ellipse StrokeThickness="20" Height="100">
 <Ellipse.Stroke>
 <LinearGradientBrush>
 <GradientStop Offset="0" Color="Yellow" />
 <GradientStop Offset="1" Color="Brown" />
 </LinearGradientBrush>
 </Ellipse.Stroke>
</Ellipse>

Chapter 2

53

This is wasteful – duplication of code causes a maintenance headache
(and eventually a nightmare). More subtly, two brushes are created instead of
one. Using a logical resource can solve this. Cut the LinearGradientBrush
tag and paste it into the Resources property of the Window, as follows:
<Window.Resources>
 <LinearGradientBrush x:Key="brush1">
 <GradientStop Offset="0" Color="Yellow" />
 <GradientStop Offset="1" Color="Brown" />
 </LinearGradientBrush>
</Window.Resources>

The Resources property is a dictionary, so a key must be provided using the x:Key
XAML attribute.

5. To use the brush in XAML, we need the StaticResource markup extension. Here's
the revised markup for the rectangle and ellipse:
<Rectangle Height="100" Stroke="Black"
 Fill="{StaticResource brush1}" />
<Ellipse StrokeThickness="20" Height="100"
 Stroke="{StaticResource brush1}" />

6. Running the application shows the following:

How it works...
Every element (deriving from FrameworkElement) has a Resources property of type
ResourceDictionary. This means that every element can have resources associated with
it. In XAML, the x:Key attribute must be specified (most of the time; exceptions to this rule
will be discussed in relation to styles and data templates). The preceding defined resource
looks as follows inside the Resources collection of the Window:

<Window.Resources>
 <LinearGradientBrush x:Key="brush1">
 <GradientStop Offset="0" Color="Yellow" />

Resources

54

 <GradientStop Offset="1" Color="Brown" />
 </LinearGradientBrush>
</Window.Resources>

Using this resource in XAML requires the StaticResource markup extension (the "static"
part will become clear after the next recipe, Dynamically binding to a logical resource) with
the resource key provided:

 <Rectangle Fill="{StaticResource brush1}" />

This causes a search from the current element (the Rectangle) up the element tree, looking
for a resource with the key brush1; if found, its associated object is used as the property's
value. If not found on any element up to the root Window, the search continues within the
resources of Application (typically located in the App.xaml file). If not found even there,
a runtime exception is thrown. This is depicted in the following diagram:

There's more...
The same lookup effect can be achieved in code by using the FrameworkElement.
FindResource method, as follows:

 Brush brush = (Brush)x.FindResource("brush1");

Chapter 2

55

This has the same effect as using {StaticResource}. If an exception is undesirable in case
of a non-existent resource, the TryFindResource can be used instead:

 Brush brush = (Brush)x.TryFindResource("brush1");
 if(brush == null) { // not found
 }

This method returns null if the specified resource does not exist.

A resource can also be directly accessed using an indexer, provided we know on which object
it's actually defined. In our example, the brush is defined on the resources of Window, so can
be accessed directly as follows:

 Brush brush = (Brush)this.Resources["brush1"];

Adding or deleting resources dynamically
The Resources dictionary can be manipulated at runtime, by adding or removing resources.
Here's how to add a new resource:

this.Resources.Add("brush2", new SolidColorBrush(
 Color.FromRgb(200, 10, 150)));

This adds a new resource (a Brush) to the Window's resources collection. Later, calls to
FindResource can locate the new resource. A resource can be removed as well:

 this.Resources.Remove("brush1");

It's important to realize that any object bound to the resource with {StaticResource}
does not lose the resource in any way—it's still being referenced by it. However, future
FindResource calls will fail to find that resource.

Modifying resources
All {StaticResource} (or FindResource) lookups with a specific key use the same object
instance. This means that modifying the resource properties (not replacing the resource with
a different one), impacts automatically all properties using that resource.

For example, if we modify the brush resource as follows:

var brush = (LinearGradientBrush)this.Resources["brush1"];
brush.GradientStops.Add(new GradientStop(Colors.Blue, .5));

Resources

56

This causes immediate changes to the output:

Resources that use other resources
A resource can use (as part of its definition) another resource. Here's an example:

<LinearGradientBrush x:Key="brush3">
 <GradientStop Offset="0" Color="Red" />
 <GradientStop Offset="1" Color="Orange" />
</LinearGradientBrush>
<DataTemplate x:Key="temp1">
 <Rectangle Fill="{StaticResource brush3}"
 StrokeThickness="4" Stroke="DarkBlue" />
</DataTemplate>

The Rectangle inside the DataTemplate uses the LinearGradientBrush defined
just above it. The important point is that the resource, brush3 must be declared before
referencing it using {StaticResource}; this is due to the way the XAML parser hunts
down resources.

Non-shared resources
Resources are shared by default, meaning there's only one instance created no matter how
many lookups exist for that resource. Sometimes it's useful to get new instances for every
lookup of a particular resource. To do that, we can add the attribute x:Shared="False"
in defining the resource. Note there's no intellisense for that, but it works.

Chapter 2

57

Other locations for resources
Elements are not the only objects that have the Resources property
(a ResourceDictionary). Other objects that are not elements may have
them as well. The canonical example is the template types (deriving from
FrameworkTemplate): DataTemplate, ControlTemplate, and
ItemsPanelTemplate. They can have resources that are available when
those templates are used (the exact way this works will be explained in
Chapter 6, Data Binding, and Chapter 8, Style, Triggers, and Control Templates,
where templates are discussed).

Dynamically binding to a logical resource
As we saw in the previous recipe, Using logical resources, binding to a resource is achieved
in XAML by using the StaticResource markup extension. But what happens if we replace a
specific resource? Would that be reflected in all objects using the resource? And if not, can we
bind to the resource dynamically?

Getting ready
Make a copy of the previous recipe project CH02.SimpleResources, or create a new project
named CH02.DynamicVsStatic and copy the Window XAML contents from the previous
project to the new one.

How to do it...
We'll replace StaticResource with DynamicResource and see the effect:

1. Open MainWindow.xaml. Add a button to the end of the StackPanel labeled
Replace brush and connect it to an event handler named OnReplaceBrush.
This is the added markup:
 <Button Content="Replace brush"
 Click="OnReplaceBrush" />

2. In the event handler, we'll replace the brush resource named brush1 with a
completely new brush:
void OnReplaceBrush(object sender, RoutedEventArgs e) {
 var brush = new RadialGradientBrush();
 brush.GradientStops.Add(new GradientStop(Colors.Blue, 0));
 brush.GradientStops.Add(new GradientStop(Colors.White, 1));
 this.Resources["brush1"] = brush;
}

Resources

58

3. Run the application and click on the button. You'll notice nothing happens. Now
change the StaticResource markup extension to DynamicResource on the
Rectangle:
 <Rectangle Height="100" Stroke="Black"
 Fill="{DynamicResource brush1}" />

4. Now run the application and click on the button. You'll see the Fill property of
Rectangle has changed to the new resource value:

How it works...
The DynamicResource markup extension binds to a resource dynamically, which means that
if the object itself is replaced with a new object (with the same key), the new resource is used.
StaticResource bound properties keep referencing the old object.

This dynamic behavior allows for interesting effects. For instance, themes can be changed by
swapping resources as long as the keys are the same.

There's more...
The StaticResource markup extension causes binding to the resource to occur
at construction time (in the call to InitializeComponent of the Window).
DynamicResource, on the other hand, is only bound when actually needed. This means
that DynamicResource is a bit faster at Window load time, while consuming (naturally)
more resources, as it needs to be notified when the resource is replaced.

Also, DynamicResource does not throw an exception if the key does not exist. If that key
appears later, it will bind to the resource correctly.

StaticResource should be used most of the time unless there is a need to replace
resources on the fly, in which case DynamicResource should be used.

Chapter 2

59

Using user-selected colors and fonts
Sometimes it's useful to use one of the selected colors or fonts the user has chosen in the
Windows Control Panel Personalization applet (or the older Display Settings in Windows XP),
such as Window caption, Desktop color, and Selection color. Furthermore, an application
may want to react dynamically to changes in those values. This can be achieved by accessing
special resource keys within the SystemColors and SystemFonts classes.

Getting ready
Make sure Visual Studio is up and running. Go to the Control Panel Personalization applet
and change the theme to Classic. This will make it easy to see the dynamic changes when
colors of fonts change.

How to do it...
We'll create an application that uses some user-selected color and font, and reacts
automatically to changes in those:

1. Create a new WPF Application named CH02.UserSelectedColorsFonts.
2. Open MainWindow.xaml. Add two rows to the grid.
3. Add a Rectangle covering the first row and a TextBlock in the lower row.

The entire markup should look as follows:
 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition />
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>
 <Rectangle Margin="10" />
 <TextBlock Grid.Row="1"
 Text="Hello from Active Caption Font"
 />
 </Grid>

4. We want the rectangle filled with the color of the desktop as selected by the user in
Control Panel. Add the following markup for the Fill rectangle property:
Fill="{DynamicResource {x:Static SystemColors.DesktopBrushKey}}"

5. The fill color should turn to the one set in Control Panel | Personalization. Now let's
set the font family and font size to those for the window caption as defined in Control
Panel. Add the following markup within the TextBlock:
FontFamily="{DynamicResource {x:Static SystemFonts.
CaptionFontFamilyKey}}"
FontSize="{DynamicResource {x:Static SystemFonts.
CaptionFontSizeKey}}"/>

Resources

60

6. Run the application. This is how it may look (yours may be different depending on the
settings in Control Panel):

7. Let's check if this is, in fact, dynamic. Open Control Panel and find the
Personalization applet (you may need to show all control panel items
before you can locate it):

Chapter 2

61

8. Select Window Color at the bottom of the window:

9. Change the desktop color to something else, and click on Apply:

Resources

62

10. Note the rectangle fill is immediately updated without the need to restart
the application:

How it works...
The resource key supplied as part of an entry in a ResourceDictionary need not be a
string. In fact, it's typed as an object. The following piece of XAML indicates that the key to
a DynamicResource is a static property named SystemColors.DesktopBrushKey:

Fill="{DynamicResource {x:Static SystemColors.DesktopBrushKey}}"

Looking at this property reveals it's type as ResourceKey, which is an abstract class, so this
must be something that derives from it (the exact type is not important, it's internal to the
PresentationFramework assembly).

This means that this key object can do whatever is necessary behind the scenes, to be
notified of changes in the system colors and reflect those changes back through the standard
way when using a DynamicResource.

The font properties use the same idea. There are static properties ending with "Key"
for every setting the user can change via the Personalization dialog. A similar class,
SystemParameters, contains a bunch of other general properties (with a "Key" suffix), that
may be changed (some via the Personalization dialog, some with code only). An example is
SystemParameters.CaptionHeightKey, which indicates the current standard height of a
caption of a window. This can help (for example) when constructing our own window "template"
(meaning it doesn't have to look like a standard window); we may want to use some of these key
properties to make our window unique on the one hand, but still have consistent (for example)
caption height. We'll see an example of that in Chapter 5, Application and Windows.

There's more...
The aforementioned classes, SystemColors, SystemFonts, and SystemParameters
expose the current values of the various properties as regular static properties. This means
we could have used the following line to get the current brush color of the desktop:

Fill="{x:Static SystemColors.DesktopBrush}"

Chapter 2

63

Although this is much simpler, and appears to work, it is not dynamic. This means the value
is read at runtime, when the XAML is parsed (typically, when the window is constructed), but
will remain with that value until that window is recreated (typically, when the application
is restarted).

The advantage of this scheme (apart from its simplicity) is that it's lighter; WPF does not have
to monitor that color for changes. This may suffice in scenarios when immediate response to
colors/fonts/metrics changes is not necessary (and is probably unlikely to happen anyway).

Using binary resources
Binary resources are just that: chunks of bytes that typically mean something to the
application, such as image or font files. In this recipe, we'll cover the basics of adding
and using a binary resource.

Getting ready
Make sure Visual Studio is up and running.

How to do it...
We'll create a simple application that uses an image file added as a binary resource:

1. Create a new WPF Application named CH02.BinaryResources.

2. Let's add a logical images folder to the project. Right-click the project
node in Solution Explorer, and select Add | New Folder.

Resources

64

3. The folder is created as NewFolder1. Change its name to Images.

4. Right-click on the newly created Images folder, and select Add | Existing Item…:

5. Navigate to some image file on your system (don't forget to change the file type
filter to Image files at the bottom of the open file dialog box). I've used apple.png
(found in the downloadable source for this chapter), but any image will do, preferably
no larger than 48 x 48 pixels. The solution explorer should look something as follows:

6. Right-click on the newly added file and select Properties:

Chapter 2

65

7. In the Properties windows, make sure the Build Action is set to Resource:

8. Open MainWindow.xaml, and replace the Grid panel with a StackPanel.

9. Add a Button control with the following markup:
<Button Margin="10" HorizontalAlignment="Center" Padding="4">
 <StackPanel Orientation="Horizontal">
 <Image Source="Images/apple.png" />
 <TextBlock VerticalAlignment="Center" Margin="10,0,0,0"
 FontSize="16" Text="Click me, please!" />
 </StackPanel>
</Button>

10. If the image you selected is large, change the Image element's Width and Height
properties to something like 32 x 32 units.

11. Notice the button shows in the designer with the selected image and text. Running
the application produces the following output:

12. Add another image to the Images folder, such as Jellyfish.jpg from the
{My Pictures}\Sample Pictures folder.

13. Right-click on the newly added image and select Properties.

14. Change the Build Action to Content.

Resources

66

15. Change the Copy to Output Directory property to Copy if newer:

16. Add a property markup for the Window.Background property as follows:
 <Window.Background>
 <ImageBrush ImageSource="Images/jellyfish.jpg" />
 </Window.Background>

17. Run the application. You should see the window background turning into a
jellyfish image:

18. Close the application.

19. Right-click on the project node in Solution Explorer and select Open Folder in
Windows Explorer:

Chapter 2

67

20. Navigate to the Bin\Debug\Images subfolder. Note the Jellyfish.jpg file.

21. Delete the file.

22. Copy the file desert.jpg from the {My Pictures}\Sample Pictures folder
(or some other image to the currently open folder).

23. Rename the file to Jellyfish.jpg:

Resources

68

24. Navigate back to the Debug folder and run the application directly from Windows
Explorer (without doing any rebuilding).

25. You should see the window background as the desert image instead of a jellyfish:

26. Try the same approach on the apple.png file stored in the main project folder
under Images. Note that running the application from Windows Explorer (without
rebuilding) does not change the image.

How it works...
The first added binary resource (the image file) is stored as a resource inside the compiled
assembly. This is because the Build Action was set to Resource on the image. This makes
the actual image file unnecessary when deploying the application.

These resources are part of the assembly and are stored in a resource named
MyApplication.g.resources, where MyApplication is the name of the
assembly. Here's a snapshot from .NET Reflector:

Accessing the resource in XAML can be done in several ways. In the previous example, an
Image was used with the Source property set to the relative URI of the image (Images/
apple.png). This works because the Source property (of type ImageSource) has an
appropriate type converter. This relative URI can also be used in code, as follows:

_image.Source = new BitmapImage(
 new Uri("Images/apple.png", UriKind.Relative));

Chapter 2

69

When the Build Action is set to Content (as in the jellyfish example), the resource is not
included in the assembly. This makes it more appropriate when the resource needs to change
often (perhaps by a designer) and a rebuild would be undesirable. Also, if the resource is
large, and not always needed, it's better to leave it off to the resulting assembly. Note that to
access the resource, the exact same syntax is used. This is possible because WPF adds the
AssemblyAssociatedContentFile attribute to the assembly, specifying the name of the
resource file. Here's a view with .NET Reflector:

That's why we were able to replace the jellyfish image with a desert image and get it to show
correctly given the name jellyfish.jpg without doing any kind of rebuilding.

There's more...
The relative URI is actually a shortcut to a more elaborate (and complete) URI scheme,
called pack URI. The following markup:

Source="Images/apple.png"

Is equivalent to this (more verbose) markup:

Source="pack://application:,,,/Images/apple.png"

This seems to add no value, but is actually necessary in other cases where no nice type
converter exists.

The pack URI scheme is borrowed from the XML Paper Specification (XPS), and the strange
three commas are not optional values with some defaults, but rather escaped slashes.
The reason is that this is a URI embedded inside another URI, so some disambiguation is
required. You can find more information on pack URIs in the MSDN docs at http://msdn.
microsoft.com/EN-US/library/aa970069(VS.110).aspx. We'll see examples of
usage of this scheme in later recipes.

Embedded Resource
The Build Action options include something called Embedded Resource. Although resources
are embedded by definition, this setting cannot be used with WPF and should be avoided.

Resources

70

Accessing binary resources in code
Accessing a binary resource in XAML is pretty straightforward, but this works for standard
resources such as images. Other types of resources may be used in code, and this requires
a different approach.

Getting ready
Make sure Visual Studio is up and running.

How to do it...
We'll create an application that shows book information read programmatically from an
XML file stored as a resource:

1. Create a new WPF Application named CH02.BinaryResourcesInCode.

2. Add the books.xml (found in the downloadable source for this chapter) file as a
resource (make sure Build Action is set to Resource). As an alternative, you can
create the file yourself and type its contents as shown in the next step.

3. The books.xml file looks something like the following:
<Books>
 <Book Name="Windows Internals" Author="Mark Russinovich" />
 <Book Name="Essential COM" Author="Don Box" />
 <Book Name="Programming Windows with MFC"
 Author="Jeff Prosise" />
</Books>

4. Open MainWindow.xaml. Add two rows to the Grid with a TextBox and a Button:
 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition />
 </Grid.RowDefinitions>
 <Button Content="Read Book Data" FontSize="14" />
 <TextBox Grid.Row="1" IsReadOnly="True" x:Name="_text"
 FontSize="16" Margin="4"/>
 </Grid>

5. Add a Click event handler to the button.

Chapter 2

71

6. Inside the Click event handler, we want to get to the books.xml resource. Add the
following code:
var info = Application.GetResourceStream(new Uri("books.xml",
 UriKind.Relative));

7. This returns a StreamResourceInfo. Now we can access the Stream property and
use it in any way we want. Here's an example (you'll need to add a using System.
Xml.Linq statement):
var books = XElement.Load(info.Stream);
var bookList = from book in books.Elements("Book")
 orderby (string)book.Attribute("Author")
 select new {
 Name = (string)book.Attribute("Name"),
 Author = (string)book.Attribute("Author")
 };
foreach(var book in bookList)
 _text.Text += book.ToString() + Environment.NewLine;

8. Running the application and clicking the button produces the following:

How it works...
The Application.GetResourceStream static method provides a programmatic way of
accessing a resource using its relative URI (or absolute with the pack scheme). It returns a
StreamResourceInfo object, which contains two properties: ContentType returns the
MIME type (such as image/jpeg or text/xml) and, more importantly, the Stream property
which provides access to the actual binary data.

If the resource has been marked with a Build Action of Content, then the similar looking
Application.GetContentStream method should be used instead.

In the previous example, we've used the XElement class (from the relatively new LINQ to XML
API) to turn the binary data into a XElement object. Then we use that object to query and
display some data.

Resources

72

There's more...
There's actually another way to get to a resource while using core .NET types such as
ResourceManager and ResourceSet (that have been around since .NET 1.0) instead
of calling Application.GetResourceStream. Here's one way to get the Stream of
a resource:

Stream GetResourceStream(string name) {
 string asmName = Assembly.GetExecutingAssembly().GetName().Name;
 var rm = new ResourceManager(asmName + ".g",
 Assembly.GetExecutingAssembly());
 using(var set = rm.GetResourceSet(
 CultureInfo.CurrentCulture, true, true)) {
 return (Stream)set.GetObject(name, true);
 }
}

This just shows that WPF has no special support for binary resources and in fact it leverages
core .NET functionality in this regard.

Note that there's no counterpart for a resource on which Build Action was set to Content.

Accessing binary resources from another
assembly

Sometimes binary resources are defined in one assembly (typically a class library), but are
needed in another assembly (another class library or an executable). WPF provides a uniform
and consistent way of accessing these resources using the pack URI scheme. Let's see how to
do this.

Getting ready
Make sure Visual Studio is up and running.

How to do it...
We'll create two assemblies—one that holds resources, and another that needs to use
those resources:

1. Create a new blank solution by selecting File | New Project from the main menu
and then navigating to Other Project Types | Visual Studio Solutions. Name it
BinaryResourceAccess:

Chapter 2

73

2. Right-click on the Solution node in Solution explorer, and select
Add | New Project…:

Resources

74

3. Select a WPF User Control Library project and name it
CH02.ClassLibraryResources:

4. We're not going to actually use any user controls, but this is a simple way to create a
class library with WPF references already included.

5. Delete the UserControl1.xaml file from the Solution explorer, as it's not needed.

6. Add a new folder to the project, named Images.

7. Add some image to the resulting folder, such as apple.png used in the recipe Using
logical resources. Make sure its Build Action is set to Resource. The solution should
look something like the following:

Chapter 2

75

8. Right-click on the solution node and select Add | New Project…

9. Select a WPF Application and name it CH02.UsingLibraryResources.

10. Right-click on the References node in this new project in the Solution explorer,
and select Add Reference…:

11. In the Add Reference dialog, click on the Projects tab and select the
CH02.ClassLibraryResources project.

12. Open MainWindow.xaml. Create a two row Grid with the following markup:
<Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition />
 </Grid.RowDefinitions>
</Grid>

13. Add a Button to the Grid whose content is an Image, and a TextBlock.
The image should point to the image file added to the class library project:
<Button HorizontalAlignment="Center" Margin="4" Padding="6">
 <StackPanel Orientation="Horizontal">
 <Image Source="/CH02.ClassLibraryResources;component/Images/
apple.png" />
 <TextBlock VerticalAlignment="Center" FontSize="14"
 Text="Click me!" Margin="10,0,0,0" />
 </StackPanel>
</Button>

14. The image should show up in the designer preview. Running the application should
also show the image correctly:

Resources

76

How it works...
WPF recognizes a pack URI to a referenced assembly in the form:

/AssemblyReference;component/ResourceName

Here, AssemblyReference may be a simple name (as in our example), but may also include
a version (with a "v" prefix) and/or the public key token (if the assembly is strongly named).
Here's an example:

/MyAssembly;v2.0;4ac42a7f7bd64f34;component/images/apple.png

This is a shorthand for a full pack URI (prefixed by pack://application:,,,), and can
also be an argument to Application.GetResourceStream, as demonstrated in the
recipe Accessing binary resources in code.

There's more...
This scheme does not work with resources marked with a Build Action of Content. A way
around this is to use the full pack URI with a siteOfOrigin base. In the previous example
turning the image into a Content requires modifying the Source property of
Image to read as follows:

Source="pack://siteOfOrigin:,,,/images/apple.png"

Note that the Visual Studio designer fails to display the image and a squiggly will run under
this line in the XAML editor, but it will work at runtime.

Managing logical resources
Logical resources may be of various types, such as brushes, geometries, styles, and templates.
Placing all those resources in a single file such as App.xaml hinders maintainability. A better
approach would be to separate resources of different types (or based on some other criteria) to
their own files. Still, they must be referenced somehow from within a common file such as App.
xaml so they are recognized. This recipe shows how to do just that.

Getting ready
Make sure Visual Studio is up and running.

Chapter 2

77

How to do it...
We'll create an application that separates its resources across multiple files for convenience
and manageability:

1. Create a new WPF Application named CH02.ManagingResources.

2. We want to create a separate file that would hold (for example) brush
resources. Right-click on the Project node in Solution explorer and
select Add | ResourceDictionary…:

3. In the Name box, type Brushes.xaml and click on Add.

4. A XAML editor is opened with a ResourceDictionary as a root elementVisual
studio shows no design surface, because a ResourceDictionary is just a
collection of any typed objects, not elements. Let's add one fancy Brush:
 <LinearGradientBrush EndPoint="1,0" x:Key="brush1">
 <GradientStop Color="Yellow" Offset="0" />
 <GradientStop Color="Orange" Offset=".7" />
 <GradientStop Color="DarkRed" Offset="1" />
 </LinearGradientBrush>

Resources

78

5. Open MainWindow.xaml. Add an Ellipse within the Grid and set its Fill to be
the fancy brush:
 <Ellipse Fill="{StaticResource brush1}" />

Notice the designer shows nothing. We want Brushes.xaml to be somehow part of
the logical resource search.

6. Open App.xaml. We need to merge external resource dictionaries into the main
application dictionary. Add the following inside the <Application.Resources>
tag:
 <ResourceDictionary>
 <ResourceDictionary.MergedDictionaries>
 <ResourceDictionary Source="Brushes.xaml" />
 </ResourceDictionary.MergedDictionaries>
 </ResourceDictionary>

7. Now open MainWindow.xaml. The designer should show the brush used correctly
(if it doesn't, build the project to refresh the designer). Running the application should
show the following:

How it works...
A ResourceDictionary can incorporate other resource dictionaries using its
MergedDictionaries property (a collection). This means a ResourceDictionary can
reference as many resource dictionaries as desired and can have its own resources as well.

The Source property must point to the location of the ResourceDictionary. If that
location is within a subfolder, that subfolder must be included. For example, if our Brushes.
xaml was under a logical folder named Resources, merging that into App.xaml would look
like as follows:

<ResourceDictionary Source="Resources/Brushes.xaml" />

Chapter 2

79

There's more...
This idea can be also used to reference logical resources stored in other referenced
assemblies. The Source property would have to be based on the pack URI syntax.
Suppose that Brushes.xaml was placed in a class library within a Resources folder.
The main application could merge it into another ResourceDictionary as follows:

<ResourceDictionary Source="/MyClassLibrary;component/Resources/
Brushes.xaml" />

Duplicated keys
Merging different resource dictionaries may cause an issue: two or more resources with the
same keys that originate from different merged dictionaries. This is not an error and does not
throw an exception. Instead, the selected object is the one from the last resource dictionary
added (which has a resource with that key). Furthermore, if a resource in the current resource
dictionary has the same key as the any of the resources in its merged dictionaries – it always
wins out. Here's an example:

<ResourceDictionary>
 <SolidColorBrush Color="Blue" x:Key="brush1" />
 <ResourceDictionary.MergedDictionaries>
 <ResourceDictionary Source="Resources/Brushes2.xaml" />
 <ResourceDictionary Source="Resources/Brushes.xaml" />
 </ResourceDictionary.MergedDictionaries>
</ResourceDictionary>

With this markup, the resource named brush1 is a blue SolidColorBrush because it
appears in the ResourceDictionary itself. This "overrides" any resources named brush1
in the merged dictionaries. If this blue brush did not exist, brush1 would be looked up in
Brushes.xaml first, as this is the last entry in the merged dictionaries collection.

3
Layout and Panels

In this chapter we will cover:

 f Creating a table-like user interface

 f Dynamically sizing grid rows/columns

 f Creating a scrollable user interface

 f Creating a border around panels and elements

 f Placing elements in exact positions

 f Adding/removing elements to a panel dynamically

 f Creating a tabbed user interface

 f Implementing drag-and-drop

Introduction
Layout is the process of element placement, and how their size and position changes in
response to user interactions (such as a window resize). WPF offers a bunch of layout panels
that provide different ways to lay out elements. By combining those panels in various ways,
complex and adaptive layouts can be created.

The layout process
Layout is a two-step process. First, the layout container asks each of its children for its
desired size. In the second step, it uses whatever logic is applicable to determine at what
position and what size each child element should be – and places each child in that
rectangular area. A more detailed look at this process can be found in the Creating a
custom panel recipe in Chapter 10, Custom Elements.

Layout and Panels

82

Each element indicates to its parent its requirements. The following diagram summarizes the
most important properties related to these requirements:

Here's a quick breakdown of these important properties:

 f Width/Height: The width and height of the element in question. This is not typically
set (Double.NaN being the default value), meaning the element can be as big as it
needs to be. Nevertheless, it may be set if needed.

 f Margin: A breathing space around the element. This is of type Thickness (a value
type) that has four properties (Left, Top, Right, and Bottom) that determine the
amount of space around the element. It can be specified in XAML using four numbers
(left, top, right, and bottom), two numbers (the first is left and right, the second is top
and bottom), or a single number (same distance in all four directions).

 f Padding: The same idea as Margin, but determines the space between the outer
edge of the element and its content (if any). This is of type Thickness as well,
and is defined by the Control base class and some other special elements,
such as Border.

 f HorizontalAlignment/VerticalAlignment: Specifies how to align the element
against its parent if extra space is available. Possible values are Left, Center,
Right, and Stretch for HorizontalAlignment, and Top, Center, Bottom,
and Stretch for VerticalAlignment.

 f HorizontalContentAlignment/VerticalContentAlignment (not shown in
figure): Same idea as Horizontal/VecticalAlignment, but for the Content of
the element (if any).

 f LayoutTransform: Allows a transformation (of type deriving from Transform)
to be applied on the element before its layout requirements are communicated to
its parent.

Chapter 3

83

 f FlowDirection: Can be used to switch the layout direction from the default
(LeftToRight) to RightToLeft, suitable for right to left languages such as
Hebrew and Arabic. This effectively turns every left to right and vice versa.

Coordinates systems in WPF
Every size or position in WPF is provided in units known as Device Independent Units (DIU).
Contrary to other UI technologies, such as Windows Forms, these are not device units or pixels
and they are not integers; rather, a WPF unit is 1/96 of an inch and always expressed as a
double value.

This feature provides a more consistent way to present visuals. On a standard 96 DPI display
device, 1 DIU = 1 pixel. With higher DPIs, for instance, a 96 unit line is still one inch long. It
may require more pixels to paint because of the higher DPI, but the size is consistent. This
helps in making WPF results consistent and predictable.

In XAML, it's possible to provide sizes in several formats. If just a number is provided, it's
interpreted as a DIU value; however, some suffixes exist to change the unit of measurement:
"in" for inch, "cm" for centimeters, and "pt" for points (1 point = 1/72 inch). If specified, a type
converter (LengthConverter) converts the values to DIUs (for example, "2in" is turned into
the value 192).

A consequence of using doubles rather than integers is that high precision is maintained if
elements (or pure graphics) need to be transformed, for example, rotated or stretched.

In this chapter, we'll take a look at some of WPF's layout panels, including some layout
related controls that are not technically panels, to get a better understanding of WPF's
layout mechanism and user interface building approach.

Creating a table-like user interface
Table layout is a popular placement strategy, supported by the Grid panel. Let's examine the
Grid and see what it's capable of.

Getting ready
Make sure Visual Studio is up and running.

Layout and Panels

84

How to do it...
We'll create a simple UI that benefits from a grid-like layout and demonstrate some of
its features:

1. Create a new WPF application named CH03.GridDemo.

2. Open MainWindow.xaml. There's already a Grid placed inside the Window.
That's because the Grid is typically used as the main layout panel within a window.

3. Change the Title of Window to Grid Demo.

4. Inside the Grid, add the following markup to create some rows and columns:
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition />
 </Grid.ColumnDefinitions>

5. This creates a 4 rows by 2 columns Grid. Now let's add some elements and controls
to host the grid:
<TextBlock Grid.ColumnSpan="2" HorizontalAlignment="Center"
 Text="Book Details" FontSize="20" Margin="4"/>
<TextBlock Grid.Row="1" HorizontalAlignment="Right"
 Text="Name:" Margin="4" />
<TextBlock Grid.Row="2" HorizontalAlignment="Right"
 Text="Author:" Margin="4" />
<TextBlock Grid.Row="1" Grid.Column="1"
 Text="Windows internals" Margin="4" />
<TextBlock Grid.Row="2" Grid.Column="1"
 Text="Mark Russinovich" Margin="4" />
<Rectangle Grid.Column="1" Grid.Row="3" Margin="4"
 StrokeThickness="4" Stroke="Black" Fill="Red" />
<TextBlock Grid.Column="1" Grid.Row="3"
 Text="Book Cover" VerticalAlignment="Center"
 FontSize="16" HorizontalAlignment="Center"/>

Chapter 3

85

6. Run the application. It should look as follows:

7. Resize the window and watch the layout changes. Note that the Grid rows marked
with a Height of Auto remain fixed in size, while the row that has no Height setting
fills the remaining space (it is the same idea for the columns):

How it works...
The Grid panel creates a table-like layout of cells. The number of rows and columns is
not specified by simple properties. Instead, it's specified using RowDefinition objects
(for rows) and ColumnDefinition objects (for columns). The reason has to do with the
size and behavior that can be specified on a row and/or column basis.

A RowDefinition has a Height property, while a ColumnDefintion has a Width
property. Both are of type GridLength. There are three options for setting a GridLength:

 f A specific length

 f A "star" (relative) based factor (this is the default, and factor equals 1)

 f Automatic length

Layout and Panels

86

Setting Height (of a RowDefintion) or Width (of a ColumnDefinition) to a specific
number makes that row/column that particular size. In code it's equivalent to new
GridLength(len).

Setting Height or Width to Auto (in XAML) makes the row/column as high/wide as it
needs to be based on the tallest/widest element placed within that row/column. In code,
it's equivalent to GridLength.Auto.

The last option (which is the default) is setting Height/Width to n* in XAML, where n is
some number (1 if omitted). This sets up a relationship with other rows/columns that have
a "star" length. For example, here are three rows of a Grid:

<RowDefinition Height="2*" />
<RowDefinition />
<RowDefinition Height="3*" />

This means that the first row is twice as tall as the second row (Height="*"). The last row
is three times taller than the second row and is one and a half times taller than the first row.
These relations are maintained even if the window is resized.

There's more...
Elements are placed in grid cells using the attached Grid.Row and Grid.Column properties
(both default to zero, meaning the first row/column).

Elements occupy one cell by default. This can be changed by using the Grid.RowSpan and
Grid.ColumnSpan properties (these were set for the first TextBlock in the code). If we
need an element to stretch to the end of the Grid (for example, through all columns from
some starting column), it's ok to specify some large number (it will be constrained to the
actual number of rows/columns of the Grid).

Shared row/column size
There may be times when more than one grid should have the same row height (or column
width). This is possible using the SharedSizeGroup property of DefinitionBase
(the base class of RowDefinition and ColumnDefinition). This is just a string; if
RowDefinition or ColumnDefinition objects from two separate grids have the same
value for this property, they would maintain identical length. To make this work, the attached
property Grid.IsSharedSizeScope must be set to true on a common parent of those
Grid instances.

This feature is most useful with DataTemplate properties (which are discussed in
detail in Chapter 6, Data Binding) when binding to an ItemsControl control (or one
of its derivatives).

Chapter 3

87

Here's a quick example: A ListBox defines a DataTemplate for its items (ItemTemplate
property) for displaying information on Person objects, defined as follows:

class Person {
 public string Name { get; set; }
 public int Age { get; set; }
}

The ListBox is defined with the following markup:

<ListBox ItemsSource="{Binding}"
 Grid.IsSharedSizeScope="True">
 <ListBox.ItemTemplate>
 <DataTemplate>
 <Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto"
 SharedSizeGroup="abc" />
 <ColumnDefinition />
 </Grid.ColumnDefinitions>
 <TextBlock Text="{Binding Name}" FontSize="20"
 Margin="4"/>
 <TextBlock Grid.Column="1" FontSize="16"
 Text="{Binding Age, StringFormat=is {0} years old}"
 VerticalAlignment="Bottom" Margin="4"/>
 </Grid>
 </DataTemplate>
 </ListBox.ItemTemplate>
</ListBox>

Note the attached property Grid.IsSharedSizeScope is set to true on a common
parent of all involved Grid instances (the ListBox is an obvious choice) and the
SharedSizeGroup property of RowDefinition is set to some string ("abc"). The string
itself does not matter – what matters is that it's the same string for all relevant Grid
instances. Since this is part of a DataTemplate, Grid instances are created for every
item in the ListBox. Here's the result when binding to some collection of Person objects:

Layout and Panels

88

Here's what happens if one of the above properties is missing (note the misalignments):

The complete project is named CH03.SharedGridSizeDemo and is available in the
downloadable source for this chapter.

Placement in the same cell
If more than one element is placed in the same cell, they sit one on top of the other – by
default, elements appearing later in the XAML are on top. We can change that by using the
attached Panel.ZIndex property (default is zero). Higher values make the element on top
(negative values are accepted).

The power of the Grid
The Grid is so flexible, that it can emulate most of the standard WPF panels, all except the
WrapPanel (which is too chaotic for the Grid), namely the StackPanel, Canvas, and
DockPanel. This is why Visual Studio chooses the Grid as the default root layout panel
when a new window is generated.

If the Grid can do almost anything, why use other panels at all? There are two reasons.
The first is convenience: although a Grid can emulate a StackPanel, that's cumbersome
and leads to increased markup with no real gains. The second reason is performance: the
StackPanel (for instance) has very little to worry about, while the Grid has a lot. For a
layout consisting of many elements the complexity of Grid may degrade performance,
so it's usually best to use the lightest panel possible that gets the job done.

Adding rows/columns dynamically
Although Grid instances are typically constructed in XAML and have a fixed number of
columns and rows, that doesn't have to be the case. It's possible to add (or remove) rows/
columns at runtime if so desired. Here's an example that adds three rows to an existing
Grid named _grid:

RowDefinition[] rows = {
 new RowDefinition { Height = new GridLength(100) },

Chapter 3

89

 new RowDefinition { Height = GridLength.Auto },
 new RowDefinition { Height = new GridLength(2,
 GridUnitType.Star) }
};
Array.ForEach(rows, row => _grid.RowDefinitions.Add(row));

The first row has a fixed height of 100, the second is auto-sized, and the third is a star row
with a factor of 2.

The UniformGrid
There is a simpler grid in WPF, the UniformGrid (in the System.Windows.Controls.
Primitives namespace). This grid has two properties to set the grid size: Rows and
Columns (both default to 1). Every cell in a UniformGrid is, well, uniform (same width
and height). Every new element is placed in the next cell starting from the top left, moving
left to right, and then down to the next row, starting from the left again.

The UniformGrid may be used as a simple shortcut for a full-blown grid (it's more
lightweight), if the need arises. A more creative use of the UniformGrid is a custom
panel hosting elements in an ItemsControl.

Here's a quick example: A ListBox holds a collection of numbers, displayed by default in a
row layout (a VirtualizingStackPanel, similar to a StackPanel for our purposes, is
the default panel for laying out items in an ListBox). Let's change that to a UniformGrid.
Here's the complete ListBox markup:

<ListBox ItemsSource="{Binding}" FontSize="25"
 SelectionMode="Multiple">
 <ListBox.ItemsPanel>
 <ItemsPanelTemplate>
 <UniformGrid Rows="4" Columns="4" />
 </ItemsPanelTemplate>
 </ListBox.ItemsPanel>
</ListBox>

Here's the ListBox at runtime when bound to a list of numbers:

Layout and Panels

90

Despite appearances, this is still a regular ListBox! The complete source is in the
CH03.UniformGridLayout project available in the downloadable source for this chapter.

Dynamically sizing grid rows/columns
A typical user interface contains multiple parts, each responsible for some UI features. Many
times it's useful for the user to manually resize those parts, as she sees fit. It turns out the
Grid supports dynamic resizing with the help of a GridSplitter element. Let's see how
this can be done.

Getting ready
Make sure Visual Studio is up and running.

How to do it...
We'll create a simple two way splitter, similar to the main view in Windows Explorer,
to demonstrate a typical GridSplitter usage:

1. Create a new WPF application named CH03.DynamicGridSizing.

2. Open MainWindow.xaml. Add two columns to the existing Grid as follows:
<Grid.ColumnDefinitions>
 <ColumnDefinition MinWidth="40"/>
 <ColumnDefinition Width="2*" MinWidth="50" />
</Grid.ColumnDefinitions>

3. Place two Ellipse elements in the created columns, so we'd have some content
to work with:
<Ellipse Stroke="Black" StrokeThickness="2" Fill="Red" />
<Ellipse Stroke="Black" StrokeThickness="2" Fill="Green"
 Grid.Column="1"/>

4. Running the application at this point would maintain the 1:2 ratio between the
widths of the two columns. Let's add a GridSplitter element to the grid to
allow dynamic sizing:
<GridSplitter Grid.Column="1" HorizontalAlignment="Left"
 Width="3" Background="Blue" Margin="-1,0,0,0"/>

5. Run the application. You'll be able to resize the grid columns interactively with
the mouse.

Chapter 3

91

How it works...
A GridSplitter attached itself to two columns or rows, providing interactive sizing.
How can something be placed between cells? It can't. It's placed in one cell (doesn't
really matter which) and aligned to the other side. Here's a quick rundown for correct
GridSplitter usage:

 f Place the GridSplitter after the content within the resized content areas.
This usually means placing it last in XAML (highest in the Z order).

 f For a horizontal splitter, a Width must be set. For a vertical splitter, Height
must be set.

 f A Background is highly recommended. This can be any brush, not just a
SolidColorBrush. This can also be set to Transparent if it's clear where
the splitter is located.

 f It must be placed in one of the two cells such that its sizing and its
HorizontalAlignment (in the case of column resizing) are set to the align
on the other side. In our example it's placed in the right cell, but aligned left.

There's more...
It's easy enough to nest GridSplitter instances, by placing more than one within the grid.
We just need to make sure everything is set up correctly. For example, adding two rows to the
previous example, we can set up another splitter for the bottom row (spanning works for the
GridSplitter as well):

<GridSplitter Grid.Row="1" VerticalAlignment="Top"
 Margin="0,-1,0,0"
 Grid.ColumnSpan="2" HorizontalAlignment="Stretch"
 Height="3" Background="Blue" />

Layout and Panels

92

And this is the result (I've added a third Ellipse):

The complete source is available in the downloadable source for this chapter.

HorizontalAlignment is set to Stretch. This is essential
for a horizontal splitter (otherwise it won't be visible).

Creating a scrollable user interface
There are occasions when some data to display is larger than the display area; this requires
scrolling capabilities. WPF provides that using a simple control, the ScrollViewer.

Getting ready
Make sure Visual Studio is up and running.

How to do it...
We'll create a simple image viewer that provides scrollbars if necessary when viewing a
large image:

1. Create a new WPF application named CH03.ScrollDemo.

2. Add an image to the project. For example, you could select the Penguins.jpg file
from the Pictures | Sample Pictures folder.

3. Open MainWindow.xaml. Add a ScrollViewer control inside the existing Grid.

Chapter 3

93

4. Inside the ScrollViewer, add an Image element, and set its Source property to
the image you added:
<ScrollViewer>
 <Image Source="penguins.jpg" Stretch="None" />
</ScrollViewer>

5. Set the Image Stretch property to None. This ensures the image is displayed in its
original size.

6. Run the application. You should be able to scroll vertically as needed,
but not horizontally:

7. Let's fix that. Set the HorizontalScrollBarVisibility on the ScrollViewer
to Auto:
 <ScrollViewer HorizontalScrollBarVisibility="Auto">

8. Run the application. You should be able to scroll in both directions:

Layout and Panels

94

How it works...
ScrollViewer is a content control (derived from ContentControl) that hosts a
single child (its Content property) and uses a pair of ScrollBar controls to support
scrolling. The most important properties are VerticalScrollBarVisibility and
HorizontalScrollBarVisibility, which indicate the way scrolling should work and
the way the scrollbars present themselves. There are four options (ScrollBarVisibility
enumeration):

 f Visible: The scroll bar is always visible. If the content requires a smaller space, the
scroll bar is disabled.

 f Auto: The scroll bar appears if needed and disappears if not needed.

 f Hidden: The scroll bar is not shown, but scrolling is still possible using the keyboard
or programmatically.

 f Disabled: The scroll bar is hidden and no scrolling is possible. The ScrollViewer
does not give more space than it has to the content (in that dimension).

The default values are Visible for VerticalScrollBarVisibility and Disabled for
HorizontalScrollBarVisibility.

There's more...
The HorizontalScrollBarVisibility and VerticalScrollBarVisibility
properties are exposed as attached properties as well, so they are relevant to other controls
that internally use a ScrollViewer, such as ListBox. Here's a simple example that
changes the way a horizontal scroll bar is presented in a ListBox:

 <ListBox ScrollViewer.HorizontalScrollBarVisibility="Hidden">

Creating a border around panels and
elements

Sometimes a simple decoration is required around some element or panel, such as a border.
Luckily, the Border element does just that to anything placed inside it.

Getting ready
Make sure Visual Studio is up and running.

Chapter 3

95

How to do it...
We'll create a simple border encompassing some text, to show most of the capabilities
of Border:

1. Create a new WPF application named CH03.BorderDemo.

2. Open MainWindow.xaml. Replace the existing Grid with a StackPanel,
and add a TextBlock inside it, like the following markup shows:
<StackPanel Margin="4">
 <TextBlock Text="Hello from Center" FontSize="25"
 HorizontalAlignment="Center" />
</StackPanel>

3. Running the application shows the text centered horizontally within the StackPanel.

4. Suppose we want to draw a border around the TextBlock. Add a Border element
around the TextBlock as shown in the following markup:
<Border BorderThickness="3" BorderBrush="Blue"
 CornerRadius="6">
 <TextBlock Text="Hello from Center" FontSize="25"
HorizontalAlignment="Center" />
</Border>

5. Run the application. It should look as follows:

How it works...
The Border element is a type of decorator (derived from the Decorator class, implementing
the so-called "Decorator" design pattern). It provides a simple border around whatever child
element is provided (Child property). Typically, the child is a panel, because panels have no
border related properties (unlike controls that do have those via the Control base class).

Border provides BorderBrush and BorderThickness properties, but also Background.
The CornerRadius property is used to create a rounded rectangular border. The Padding
property provides some breathing space between the inner border and the actual child (the
same effect can be achieved with the Margin property on the child).

Layout and Panels

96

The BorderThickness is of type Thickness, meaning it's possible to
draw a border with different widths in the four directions or even remove any
of the directions by specifying a value of zero for that direction.

Placing elements in exact positions
WPF's layout panels provide much flexibility in building a user interface. Furthermore, most
of the panels adapt well to size and content changes of themselves and their child elements.
This means that positions and sizes don't necessarily remain the same as the user resizes or
otherwise manipulates the UI.

Most of the time that's a good thing; sometimes, however, we need to place elements in
exact positions without them moving unexpectedly. This is typical of highly graphical content,
such as graphs, charts, or animations. The Canvas panel provides a convenient container for
such content.

Getting ready
Make sure Visual Studio is up and running.

How to do it...
We'll create a simple application that hosts a Canvas with some elements inside to
demonstrate the way elements are positioned inside a Canvas:

1. Create a new WPF application named CH03.CanvasDemo.

2. Open MainWindow.xaml. Replace the existing Grid with a Canvas.

3. Add some elements to the Canvas as follows:
<Ellipse Stroke="Black" StrokeThickness="2"
 Fill="Red" Canvas.Right="50" Canvas.Top="40"
 Width="50" Height="50"/>
<TextBlock Text="Canvas Demo" FontSize="20"
 Canvas.Left="100" Canvas.Top="20" />
<Rectangle Stroke="Black" StrokeThickness="1" Fill="LightBlue"
 Canvas.Bottom="0" Canvas.Left="40"
 Width="30" Height="100" />

4. The Canvas.Left/Top/Right/Bottom attached properties place the elements
exactly where they are needed. Run the application and resize the window to see the
effects of these properties.

Chapter 3

97

How it works...
The Canvas panel does very little layout (if one could call it that). Setting two (non-opposite)
of the four attached properties it defines, sets the element with the requested distances from
the requested sides of the Canvas.

If elements overlap, their Z order is considered. By default, later elements defined in XAML sit
on top of previous ones. This can be changed (in XAML or code) using the attached Panel.
ZIndex property.

There's more...
Canvas is by far the fastest panel, as it does practically very little layout. This makes it great
for graphic intensive work and for running animations with a high frame rate. It's much less
suitable for "traditional" user interface layouts (that's what the other panels are for).

Canvas has no background
If we try to intercept events such as mouse events on the Canvas, we get nothing. The
reason is that the Canvas has a null background (this is the default setting for all panels),
so all mouse events fall through to its containing element. If we need those events on
the Canvas, we'll set its Background to something other than null. By the way,
Brushes.Transparent works just fine for this purpose.

Canvas is not limited to its bounds
By default, if elements are placed or stretched beyond the Canvas boundaries, they are
still drawn as usual, possibly on top of other elements adjacent to the Canvas. If this is
undesirable, set the ClipToBounds property to true.

Layout and Panels

98

Adding/removing elements to a panel
dynamically

Panels contain elements that are typically added in XAML as a base for the user interface.
Sometimes, however, we need to add or remove elements dynamically at run time based
on user actions or other criteria. Let's see how this can be done.

Getting ready
Make sure Visual Studio is up and running.

How to do it...
We'll create a simple circle drawing program. Every click adds a circle to a Canvas.

1. Create a new WPF application named CH03.PaintingCircles.

2. Open MainWindow.xaml. Replace the default Grid with a Canvas,
name it _canvas, and set its Background to White.

3. Add an event handler for the MouseUp event to the Canvas:
<Canvas x:Name="_canvas" Background="White"
 MouseUp="OnClickCanvas">
</Canvas>

4. Navigate to the event handler you just created. We want a left-click to add an
ellipse where the mouse pointer is and a right-click to make an Ellipse under
the cursor disappear.

5. Add the following code to the event handler in case the left button was clicked:
 void OnClickCanvas(object sender, MouseButtonEventArgs e) {
 switch(e.ChangedButton) {
 case MouseButton.Left:
 // add a random ellipse
 var circle = new Ellipse {
 Stroke = Brushes.Black,
 StrokeThickness = 3,
 Fill = Brushes.Red,
 Width = 30,
 Height = 30
 };
 var pos = e.GetPosition(_canvas);
 Canvas.SetLeft(circle, pos.X –
 circle.Width / 2);

Chapter 3

99

 Canvas.SetTop(circle, pos.Y –
 circle.Height / 2);
 _canvas.Children.Add(circle);
 break;
 }
 }

In the preceding code, an Ellipse object is created and positioned in a way that its
center is at the point of clicking. Then, the Ellipse is added to the Canvas.

6. We want to remove an ellipse when the right mouse button is clicked. Add the
following code as another case within the switch statement:
case MouseButton.Right:
 var ellipse = e.Source as Ellipse;
 if(ellipse != null)
 _canvas.Children.Remove(ellipse);
 break;

7. Run the application and draw some circles!

How it works...
Every panel maintains a Children property (its ContentProperty for easier usage in XAML)
of type UIElementCollection, which is a collection of UIElement objects. This means that
any object derived from UIElement can be a child in a Panel. The preceding code uses the
Add and Remove methods to dynamically add or remove Ellipse objects to the Canvas.

Layout and Panels

100

Creating a tabbed user interface
The tabbed user interface has been popular in recent years, due to its screen real estate
savings and ease of use. It replaces the older, MDI (Multiple Document Interface) model
that exists within the Windows UI subsystem and popularized by frameworks such as MFC
(Microsoft Foundation Classes). Visual Studio itself is a good example of tabbed interface
usage (although Visual Studio can work in MDI mode as well). In this recipe, we'll see the
basics of a tabbed user interface. Check out the There's more… section for a more realistic
way of managing tabs.

Getting ready
Make sure Visual Studio is up and running.

How to do it...
We'll create a bare-bones application showing two simple tabs:

1. Create a new WPF application named CH03.SimpleTabs.

2. Open MainWindow.xaml. Replace the existing Grid with a TabControl.

3. Add a TabItem control to the TabControl as follows:
<TabControl>
 <Tabitem Header="Header 1">
 <Grid>
 <Ellipse Stroke="Black" Fill="Blue"
 StrokeThickness="4" Margin="10"/>
 <TextBlock Text="Data 1" FontSize="30"
 Foreground="White"
 HorizontalAlignment="Center"
 VerticalAlignment="Center" />
 </Grid>
 </Tabitem>
</TabControl>

4. A TabItem maintains a Header and some Content (its ContentProperty).
Let's add another TabItem as follows:
<Tabitem>
 <Tabitem.Header>
 <StackPanel Orientation="Horizontal" Margin="2">
 <Rectangle Stroke="Black" Fill="Red"
 StrokeThickness="2"
 Width="20" Height="20" />

Chapter 3

101

 <TextBlock Text="Header 2" Margin="4,0,0,0"
 VerticalAlignment="Center" />
 </StackPanel>
 </TabItem.Header>
 <Grid>
 <Rectangle Stroke="Black" Fill="Green"
 RadiusX="20" RadiusY="20"
 StrokeThickness="4" Margin="10"/>
 <TextBlock Text="Data 2" FontSize="30"
 Foreground="White"
 HorizontalAlignment="Center"
 VerticalAlignment="Center" />
 </Grid>
</TabItem>

5. Run the application and click to move between the tabs:

How it works...
The TabControl is an ItemsControl derivative (actually derives from Selector),
which means it can host a bunch of objects. These should be TabItem controls, which
are HeaderedContentControls. This means a TabItem has a Header (of type
object, it can be anything) and Content (again can be anything).

The second tab is an example of a richer Header, consisting of a horizontal StackPanel
hosting a Rectangle element and a TextBlock.

There's more...
Placing TabItem objects by hand is certainly possible, but a typical scenario would be using a
TabItem per some data managed by the application. Consider Visual Studio as an example:
the tabs are created dynamically based on the actual open documents.

Layout and Panels

102

One way to achieve this by using code is simply to use the Items property of the
TabControl and call the Add method whenever a new tab is needed. However, this
is a very inconvenient option, as the content of such a tab may be complex, or designed
beforehand using a tool such as Expression Blend, thus available as XAML.

A more efficient and robust approach would be to leverage data binding, data templates,
styles, and maybe even triggers. A detailed discussion of these topics can be found in
Chapter 6, Data Binding.

Suppose our data is a simple type like the following:

class Dataitem {
 public string Header { get; set; }
 public string Text { get; set; }
}

We want to display the Header property somehow on the Header of a TabItem and the
Text should be displayed within the Content of a TabItem. We can customize things by
creating a Style for TabItem, and providing DataTemplate objects for the Header and
Content properties. Further customization is possible via triggers (only one in the following
example). First, the DataTemplates for the Header and Content (as resources):

<Window.Resources>
 <DataTemplate x:Key="tabHeaderTemplate">
 <StackPanel Orientation="Horizontal" Margin="4">
 <Ellipse Stroke="Black" StrokeThickness="1"
 Fill="Blue" Width="16" Height="16" />
 <TextBlock Margin="4,0,0,0" VerticalAlignment="Center"
 FontSize="15" Text="{Binding Header}" />
 </StackPanel>
 </DataTemplate>
 <DataTemplate x:Key="tabContentTemplate">
 <Grid>
 <TextBlock FontSize="30" VerticalAlignment="Center"
 HorizontalAlignment="Center" Text="{Binding Text}" />
 </Grid>
 </DataTemplate>
</Window.Resources>

Next, we need to plug these templates into a TabItem using the ItemContainerStyle
property of the TabControl (inherited from ItemsControl):

<TabControl x:Name="_tabs">
 <TabControl.itemContainerStyle>
 <Style TargetType="Tabitem">
 <Setter Property="HeaderTemplate"
 Value="{StaticResource tabHeaderTemplate}" />

Chapter 3

103

 <Setter Property="ContentTemplate"
 Value="{StaticResource tabContentTemplate}" />
 <Style.Triggers>
 <Trigger Property="IsSelected" Value="True">
 <Setter Property="Background" Value="Yellow" />
 </Trigger>
 </Style.Triggers>
 </Style>
 </TabControl.ItemContainerStyle>
</TabControl>

To test this, we'll add some data items in the constructor:

_tabs.ItemsSource = new List<DataItem> {
 new DataItem { Header = "Header 1", Text = "Data 1 " },
 new DataItem { Header = "Header 2", Text = "Data 2 " },
 new DataItem { Header = "Header 3", Text = "Data 3 " },
};

Running the application produces the following tabs:

The complete source code is in the CH03.ComplexTabs project, available in the
downloadable source for this chapter.

Implementing drag-and-drop
Drag-and-drop functionality is common in applications, where one object is held down
and dragged to some other object with the mouse. This approach is not as common as
it used to be, especially with a mouse, because it requires hand coordination skills. Recent
tablet devices are touch enabled, where drag and drop makes a lot of sense. As a general
rule, always provide an alternative to drag-and-drop. That said, this can be a handy feature
for advanced users.

Layout and Panels

104

Getting ready
Make sure Visual Studio is up and running.

How to do it...
We'll create an application that allows dragging elements (circles and rectangles) from one
part of the window to another container within the same window, showing the necessary
steps to get drag-and-drop working properly:

1. Create a new WPF application named CH03.SimpleDragDrop.

2. Open MainWindow.xaml. Fill the existing Grid with the following markup:
<Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="2*"/>
 <ColumnDefinition Width="40" />
 <ColumnDefinition />
 </Grid.ColumnDefinitions>
 <Border BorderThickness="2" BorderBrush="Black">
 <Canvas x:Name="_source" Background="White" />
 </Border>
 <Border BorderBrush="Black" BorderThickness="2"
 Grid.Column="2" >
 <WrapPanel itemWidth="50" itemHeight="50"
 x:Name="_target" Background="Yellow">
 </WrapPanel>
 </Border>
</Grid>

This sets up a Canvas on which we'll place some objects, and a WrapPanel, to be
used as the target of drag-and-drop.

3. To enable the WrapPanel to be a drag-and-drop target, set its AllowDrop property
to true.

4. We'll fill the Canvas with some random shapes. Add the following method to the
MainWindow class:
void initObjects() {
 var rnd = new Random();
 const int width = 45, height = 45;
 for(int i = 0; i < 30; i++) {
 var shape = rnd.Next(10) > 4 ? (Shape)new Ellipse() :
 (Shape)new Rectangle();
 shape.Stroke = Brushes.Black;

Chapter 3

105

 shape.StrokeThickness = 2;
 shape.Fill = rnd.Next(10) > 4 ? Brushes.Red :
 Brushes.LightBlue;
 shape.Width = width;
 shape.Height = height;
 Canvas.SetLeft(shape, rnd.NextDouble() *
 (_source.ActualWidth - width));
 Canvas.SetTop(shape, rnd.NextDouble() *
 (_source.ActualHeight - height));
 _source.Children.Add(shape);
 }
}

This creates a bunch of ellipses and rectangles, placing them at random locations.
The user should be able to drag any one of those to the WrapPanel.

5. Add the following code in the MainWindow constructor (after the call to
InitializeComponent) to invoke InitObjects once the Window is loaded:
Loaded += delegate {
 InitObjects();
};

6. Add an event handler for the MouseLeftButtonDown (called OnBeginDrag) on the
Canvas and place the following code inside:
void OnBeginDrag(object sender, MouseButtonEventArgs e) {
 var obj = e.Source as Shape;
 if(obj != null) {
 DragDrop.DoDragDrop(obj, obj, DragDropEffects.Move);
 }
}

The preceding code checks to see if the clicked object is a kind of shape, and
if so, initiates a drag-and-drop operation, specifying that object as source and
data (first and second arguments) and the allowed operations.

7. When the user drops the object, the Drop event is fired on the target element. Add
an event handler for the Drop event on the WrapPanel and implement the event
handler with the following code:
void OnDrop(object sender, DragEventArgs e) {
 var element = e.Data.GetData(e.Data.GetFormats()[0])
 as UIElement;
 if(element != null) {
 _source.Children.Remove(element);
 _target.Children.Add(element);
 }
}

Layout and Panels

106

The preceding code looks at the first data provided, and if it's a UIElement, removes
it from the original Canvas and adds it to the WrapPanel.

8. Run the application and move some objects across to the WrapPanel:

How it works...
Drag-and-drop support in WPF is pretty similar to that of WinForms. An element has to agree
to be the target of a drag-and-drop operation by setting its AllowDrop property to true
(it's false by default).

When the (typically left) mouse button is down, the drag-and-drop operation is initiated by
using the static DragDrop.DoDragDrop method. This method is kind of weird, because the
next statement in that event handler executes when the drag-and-drop operation completes
or is canceled (by pressing Esc, for instance). Internally, it captures the mouse and handles
mouse messages. One of those turns into the Drop event on a target element that has set
itself to be a drop target.

Within Drop, the data object is queried to discover what's available. A sophisticated target
may accept more than one type of data. Some types are defined by Windows itself, such as
text, bitmap image, or a file drop. Other times, it's a custom object that makes sense within
the application only.

To actually make the move from one container to another, the element is first removed from
its parent (step 7) and then added to its new parent. This sequence is important, as an
element can have a single parent at any one time; trying to add the element to the new
parent before removing it from the old one would throw an exception.

Chapter 3

107

The Data property in the DragEventArgs (of type IDataObject) is WPF's representation
of things that are part of OLE (Object Linking and Embedding) and COM (Component Object
Model) that lie underneath such operations. We typically do not need to concern ourselves
with all that—just get the available data and use it appropriately.

In the code sample the data has been the Shape itself – its type is the typeof of that object.
Since we had two kinds of shapes, it was easier to get the first data item and cast it to a
Shape—we didn't really care what the exact shape is.

There's more...
In our example, all shapes were good enough. What if the drop target wants to somehow let
users know whether the dragged object is actually valid for this target – before the actual
drop? This is possible through the DragEnter event.

Suppose we decide that only ellipses are good for dropping, but not rectangles. In case the
drop is not allowed, a no drop icon shows instead of an allow drop icon. Here's a DragEnter
event handler for the WrapPanel that would achieve this:

void OnDragEnter(object sender, DragEventArgs e) {
 if(e.Data.GetDataPresent(typeof(Ellipse).FullName))
 e.Effects = DragDropEffects.Move;
 else
 e.Effects = DragDropEffects.None;
 e.Handled = true;
}

Curiously enough, you'll need to handle the DragOver and DragLeave events in a similar
fashion for this to work properly (check out MainWindow.xaml in the downloadable source
for this chapter).

The opposite of DragEnter is DragLeave. This indicates the mouse has moved out of the
target element. A more useful event is DragOver. This is fired repeatedly while the cursor
is within the target element. This may be useful if the target has different zones and not all
zones can accept the source. The DragEventArgs.GetPosition method is helpful here,
to determine exactly where the mouse cursor is, relative to the target element.

Built-in drag-and-drop
Some controls naturally support drag-and-drop of certain types of data. TextBox, for
instance, and RichTextBox support dragging-and-dropping text, even to/from other
applications, unrelated to WPF.

Layout and Panels

108

Drag-and-drop to other applications
When using standard formats (available through the DataFormats class), things work out
as expected. However, if we're trying to pass custom objects, they must be marked with
the Serializable attribute or implement the IDataObject interface (the former is far
easier). This allows WPF to reconstruct the object within the target process (as it has a
separate address space). The example of a Shape that we used would fail between processes
(event two instances of our own executable) because UIElement derived objects are never
serializable. This would force us to pass over other information, such as the type name, or
some serializable object with all relevant data that would be enough to reconstruct the Shape
on the other side.

4
Using Standard

Controls

In this chapter we will cover:

 f Working with text

 f Using content controls

 f Displaying images

 f Creating tooltips

 f Creating a list of items

 f Creating a standard menu

 f Creating a context menu

 f Selecting options with checkboxes and radio buttons

 f Manipulating tab order and focus

Introduction
Every UI framework must provide a set of standard controls, such as text boxes, buttons,
and list boxes. WPF is no different.

The difference between elements and controls is not that important in practice, but it is
useful to understand the distinction.

Using Standard Controls

110

Elements derive from FrameworkElement (directly or indirectly), but not from Control.
They have a certain look and provide some functionality that is customizable, mostly by
changing properties. For example, an Ellipse is an element. There's no way to change
the fundamental appearance of an Ellipse (and it would be illogical to be able to turn an
Ellipse into (for example) a triangle). We can still customize an Ellipse in a few ways
using properties such as Stroke, StrokeThickness, Fill, and Stretch.

Controls, on the other hand, derive (directly or indirectly) from the Control class. Control
adds a bunch of properties, of which the most significant is the Template property. This
allows complete changing of the control's appearance without affecting its behavior. And all
that can be achieved with XAML alone, without code or any class derivation. This is a dramatic
departure from previous UI technologies (such as WinForms) that require a derivation and
custom (usually non-trivial) code.

The following class diagram shows some of the fundamental element-related classes in WPF:

In this chapter, we'll take a closer look at some of WPF's standard controls.

Working with text
Text is the most fundamental way of conveying and inputting information. WPF provides a
bunch of elements and controls that allow text display and input.

Chapter 4

111

Getting ready
Make sure Visual Studio is up and running.

How to do it...
We'll create a simple application that uses the more common text related controls to
demonstrate their usage:

1. Create a new WPF application named CH04.TextControls.

2. Open MainWindow.xaml. Add four rows and two columns to the existing Grid:
<Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto"/>
 <RowDefinition />
 <RowDefinition Height="Auto"/>
</Grid.RowDefinitions>
<Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition />
</Grid.ColumnDefinitions>

3. Add some controls to the grid as follows:
<TextBlock FontSize="16" Text="User comment details"
 Margin="4"
 Grid.ColumnSpan="2" HorizontalAlignment="Center" />
<Label Content="_Name:" Grid.Row="1" Target="_name" />
<TextBox Grid.Row="1" Grid.Column="1"
 x:Name="_name" Margin="2"/>

<Label Content="_Comment:" Grid.Row="2" Target="_comment" />

<TextBox AcceptsReturn="True" Grid.Row="2"

 Grid.Column="1" x:Name="_comment" Margin="2"/>

<Button HorizontalAlignment="Center" Margin="4"

 Grid.Row="3" Grid.ColumnSpan="2" FontSize="16"

 Content="Submit Comment" />

The TextBox controls allow input, while the TextBlock and Label display text that
cannot be modified by the user.

Using Standard Controls

112

The Visual Studio 2010 designer may report an exception in
this window. This is due to the Target property setting (as
explained in the How it works… section). In Visual Studio
2012, the designer survives, but there's still a squiggly under
the Target property setting.

4. Add a Click event handler to the button and place the following simple code inside:
MessageBox.Show(string.Format("User: {0}, Comment:{1}{2}",
 _name.Text, Environment.NewLine, _comment.Text));

5. Running the application shows the following (after typing some text):

6. Pressing Alt + N places the caret inside the Name textbox, while pressing Alt + C
places the caret inside the Comment textbox.

7. Clicking the button yields a simple message box:

How it works...
This recipe explores the simplest (and most common) text-based controls. TextBlock
displays some text via its Text property. It has many properties to control its actual output,
such as font-related properties (FontSize, FontFamily, FontWeight, and so on),
Foreground (a Brush used for the text glyphs), TextAlignment, and TextWrapping.

Chapter 4

113

The Label control may seem very similar to a TextBlock, but there are at least two
major differences.

The Label is actually a ContentControl (more on that in the Using content controls recipe
later in this chapter), which means it can display anything, not just text. However, it's really
useful only for text, as you'll see shortly.

It provides an access key feature. Any character in its Content string preceded by an
underscore becomes an access key (with the Alt key). Pressing that access key (with Alt)
causes the input focus to jump to the control designated by the Target property. In the
preceding example, pressing Alt + N causes the Name TextBox to receive the input focus.

The access key character is an underscore (it's an ampersand (&) in other
technologies—Windows Forms and Win32). The underscore was selected
because it's XML friendly; otherwise something like "&" would have to
be written instead of a simple ampersand.

The Target property of Label is of type UIElement. The reason the preceding code works
is because an appropriate type converter does the right thing (curiously enough, Visual Studio
2010/2012 intellisense places a blue squiggly on the Target property, as noted previously;
however, it does work correctly at runtime). Otherwise, a binding expression would have been
required (this was the case in prior versions of WPF).

A TextBox is the simplest text input control. It provides the actual text via the Text
property. It can support multiple lines by setting its AcceptsReturn property to true
(programmatically, however, any TextBox can show multiline content if new line
characters are embedded within the text).

TextBox provides the expected text related properties, similar to a TextBlock. It also
provides methods for clipboard operations, such as Copy, Cut, Paste, Undo, and Redo.
It also handles the (related) standard WPF commands for clipboard operations (more on
commands in Chapter 7, Commands and MVVM).

There's more...
The TextBlock element is more complex than it seems. Its Text property is the simplest
way to get it to display something, but it's not the only one. It actually contains an Inlines
property (its ContentProperty for easier XAML entry), which is a collection of types
inheriting from Inline, such as Run, LineBreak, Bold, Italic, Underline, and
Hyperlink. The following is an example:

<TextBlock>
 <Run Foreground="Blue" Text="Hello TextBlock" />
 <LineBreak />
 <Bold><Italic FontSize="16">This is pronouned text</Italic></Bold>

Using Standard Controls

114

 <LineBreak />
 <Run>Click the following link to go to search:</Run>
 <Hyperlink>Search in Database</Hyperlink>
</TextBlock>

This markup produces the following result:

Although the same effect can be achieved by multiple TextBlock elements, this is much
more economical – there's only one element here, which makes it easier on WPF when
(for example) layout is concerned.

Here are the common inlines:

 f Run: Represents some text (Text property) with its own formatting properties.

 f LineBreak: Represents a line break.

 f Italic, Bold, Underline (all deriving from Span): Encapsulate whatever is inside
(any other inline) with the particular attribute represented by this inline.

 f Hyperlink (derives from Span): Encapsulates its content in a hyperlink style
rendering. The NavigationUri property can be set to indicate the link to activate
upon clicking, but this only works if the Hyperlink has a NavigationWindow as a
parent (not discussed in this book as it's not as useful as it sounds). Otherwise, the
Click event can be used to do whatever is needed (such as activating a URL using
Process.Start for example). Another nice feature of the Hyperlink is that it's a
command source, having the Command, CommandParameter, and CommandTarget
properties, meaning it can activate a command when clicked (see Chapter 7,
Commands and MVVM for more information on these properties).

Using content controls
Content controls provide a flexible way of customizing the appearance of a control. The
ContentControl class includes a Content property, of type object; meaning, it can be
anything. A typical example is a Button. The Button inherits from ContentControl
(not directly, but this is unimportant for this discussion). A typical button shows text, an
image, or perhaps an image and text. But in fact, it can hold anything, such as a graphic
drawing, a video playing, any combination of the above, or anything else. This is the power
of ContentControl. Let's see how this works.

Chapter 4

115

Getting ready
Make sure Visual Studio is up and running.

How to do it...
We'll create several buttons (which are ContentControls) and show the various ways their
content can be set and viewed:

1. Create a new WPF Application named CH04.ContentControls.

2. Open MainWindow.Xaml. Change the root Grid to a StackPanel.

3. Add a Button to the StackPanel and set its Content to some string:
<Button Content="Click me" Margin="4" Padding="4"
 FontSize="16" HorizontalAlignment="Left"/>

4. Add an image file to the project (the following XAML uses copy.png, included in the
downloadable source for this chapter, but you can select any image).

5. Add another Button to the StackPanel that uses the image like so:
<Button Margin="4" HorizontalAlignment="Left" Padding="4">
 <StackPanel Orientation="Horizontal">
 <Image Source="copy.png" Width="16" Height="16" />
 <TextBlock Text="Copy" Margin="10,0,0,0"
 VerticalAlignment="Center" FontSize="16"/>
 </StackPanel>
</Button>

The Content is set implicitly to a horizontal StackPanel. This makes the button
show the Image and TextBlock.

6. Let's create a simple data class, named Person:
class Person {
 public int Age { get; set; }
 public string Name { get; set; }
 public override string ToString() {
 return string.Format("{0} is {1} years old", Name, Age);
 }
}

7. Now let's create an instance of Person as a resource in the Window. First, we'll have
to add an XML namespace mapping (as we did several times before). We'll call the
prefix local and map it to the project's namespace:
xmlns:local="clr-namespace:CH04.ContentControls"

Using Standard Controls

116

8. Then we'll create the actual Person:
<Window.Resources>
 <local:Person Age="10" Name="Bart" x:Key="p1" />
</Window.Resources>

9. Add another Button to the StackPanel whose content is the Person resource:
<Button Content="{StaticResource p1}" FontSize="16"
 Margin="4" Padding="4" HorizontalAlignment="Left"/>

10. Running the application shows the following:

11. Let's add another Button that also has its Content set to the same Person, but
shows it differently. This requires setting ContentTemplate to a DataTemplate
object and using some data bindings:
<Button Content="{StaticResource p1}" FontSize="16"
 Margin="4" Padding="4" HorizontalAlignment="Left">
 <Button.ContentTemplate>
 <DataTemplate>
 <Grid TextBlock.FontSize="16">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition />
 </Grid.ColumnDefinitions>
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>
 <TextBlock Text="Name:" />
 <TextBlock Text="{Binding Name}"
 Margin="6,0,0,0"
 Foreground="Blue" Grid.Column="1" />
 <TextBlock Text="Age:" Grid.Row="1"/>
 <TextBlock Text="{Binding Age}"
 Margin="6,0,0,0" Grid.Row="1"
 Foreground="Red" Grid.Column="1"
 TextAlignment="Right"/>

Chapter 4

117

 </Grid>
 </DataTemplate>
 </Button.ContentTemplate>
</Button>

12. Run the application. It should look as follows:

How it works...
A ContentControl-derived type renders its Content using the following rules:

 f If it's a string, a TextBlock is rendered with its Text set to the string value.

 f If it derives from UIElement, it's rendered as is (its OnRender method is called).

 f If ContentTemplate is null, then it's rendered as a TextBlock with its Text set
to the ToString of the Content. Otherwise, the supplied DataTemplate is used
for rendering.

The preceding code uses all of these options.

The first button just holds a string in its Content, so it's rendered as a TextBlock.

The second button is used to show an image and text. As the Content property is a single
one, multiple items require a Panel – in this case a StackPanel. This corresponds to the
second rule – StackPanel (like any Panel) derives (eventually) from UIElement, so is
rendered as is.

The third button's Content is a data object (a Person). Without a DataTemplate, it's
rendered as a TextBlock with the ToString as its Text. As we created a sensible
override for Person.ToString(), this shows the name and age of the person.

Using Standard Controls

118

The fourth (and last) button is the most interesting one. Its Content is set to a data
object (our Person) as well, but this time a DataTemplate object is provided via the
ContentTemplate property. This allows for a custom way of rendering a Person. A
DataTemplate must contain a single root element (typically some Panel). To use the actual
property values, data binding is required (the source of the binding is (implicitly) always the
Content). The DataTemplate objects are powerful constructs; they and other data binding
features will be discussed fully in Chapter 6, Data Binding.

There's more...
ContentControl itself is not an abstract class. It's sometimes used to bind to something
else through its Content property.

There are many ContentControl-derived types (some of which we'll see in later recipes
in this chapter), but they all support the same basic concepts: Content and an optional
ContentTemplate. The preceding code used buttons, but there are many others, such
as ScrollViewer, Label, CheckBox, RadioButton, and ToolTip.

Headered content controls
One common base class deriving from ContentControl is HeaderedContentControl.
This adds a Header property (of type object) and an associated optional template
(HeaderTemplate property). These two properties serve the same purpose as Content and
ContentTemplate. In a sense, these controls have two contents and two content templates.
Here's an example with a GroupBox:

<GroupBox Margin="10" >
 <GroupBox.Header>
 <StackPanel Orientation="Horizontal">
 <Image Source="cup.png" />
 <TextBlock Text="Tea options"
 Margin="6,0,0,0"/>
 </StackPanel>
 </GroupBox.Header>
 <StackPanel>
 <CheckBox Margin="4">Sugar</CheckBox>
 <CheckBox Margin="4">Mint</CheckBox>
 <CheckBox Margin="4">Milk</CheckBox>
 <CheckBox Margin="4">Cinnamon</CheckBox>
 </StackPanel>
</GroupBox>

Chapter 4

119

And a similar example with an Expander (using templates):

<Expander Margin="10" x:Name="_bookInfo"
 ExpandDirection="Down">
 <Expander.HeaderTemplate>
 <DataTemplate>
 <Border BorderBrush="Blue" BorderThickness="1"
 Padding="4">
 <TextBlock Text="{Binding Name,
 StringFormat=Book: {0}}" />
 </Border>
 </DataTemplate>
 </Expander.HeaderTemplate>
 <Expander.ContentTemplate>
 <DataTemplate>
 <Border BorderBrush="Blue" BorderThickness="2"
 Padding="4">
 <StackPanel>
 <TextBlock Text="{Binding Name,
 StringFormat=Name: {0}}" />
 <TextBlock Text="{Binding Author,
 StringFormat=Author: {0}}" />
 <TextBlock Text="{Binding YearPublished,
 StringFormat=Published: {0}}" />
 </StackPanel>
 </Border>
 </DataTemplate>
 </Expander.ContentTemplate>
</Expander>

Using Standard Controls

120

And the code behind (sets the book info to the Header and Content):

_bookInfo.Content = _bookInfo.Header = new Book {
 Name = "Windows Internals",
 Author = "Mark Russinovich",
 YearPublished = 2009
};

See also
For more information on data templates, check out Chapter 6, Data Binding.

Displaying images
Images are a common way to convey information, application options, or just make things look
pretty. The Image element is typically used to show images, whether they originate from static
image files or are generated dynamically. Let's take a look at how this works.

Getting ready
Make sure Visual Studio is up and running.

How to do it...
We'll create a simple image viewer, where the user can browse the file system, select an
image and view it.

1. Create a new WPF Application named CH04.Images.

2. Add an existing image to the project, to serve as an icon. The downloadable
source for this chapter includes an open.png image, but you can use any
(preferably small) image.

3. Open MainWindow.xaml. Replace the existing Grid with a DockPanel.

Chapter 4

121

4. Add a single Button to the DockPanel, dock it at the top, and place the added
image inside the button using an Image element (with some text):
<Button DockPanel.Dock="Top" FontSize="20" Margin="4"
 Padding="4">
 <StackPanel Orientation="Horizontal">
 <Image Source="open.png" Stretch="None" />
 <TextBlock Text="Open Image File..." Margin="20,0,0,0"
 VerticalAlignment="Center" />
 </StackPanel>
</Button>

5. Add a ScrollViewer to the DockPanel. Inside it place another Image element,
but don't set any Source:
<ScrollViewer BorderBrush="Black" Margin="4"
 BorderThickness="1"
 HorizontalScrollBarVisibility="Auto"
 VerticalScrollBarVisibility="Auto">
 <Image x:Name="_image" Stretch="None" />
</ScrollViewer>

6. This is how it should look now when run:

7. When the button is clicked, we want to allow the user to select an image file, so that
it's shown by the Image inside the ScrollViewer. Add a Click event handler to
the button and place the following code in it (you'll need to add a using statement
for the Microsoft.Win32 namespace):
void OnOpenImage(object sender, RoutedEventArgs e) {
 var dlg = new OpenFileDialog();
 dlg.Filter = "Images|*.jpg;*.gif;*.bmp;*.png";
 if(dlg.ShowDialog() == true) {
 try {
 var bmp = new BitmapImage(new Uri(dlg.FileName,
 UriKind.Absolute));
 _image.Source = bmp;
 }
 catch(Exception ex) {
 MessageBox.Show("Error loading image: " +
 ex.Message);
 }
 }
}

Using Standard Controls

122

8. Run the application, click the button, and select an image file. This is the result:

How it works...
The Image element is capable of displaying an image pointed to by its Source property. This
property is of type ImageSource, which is abstract. In step 4, a simple string (open.png)
was provided to Source. This works because a type converter has created a BitmapImage
(an ImageSource derivative) object out of the image resource.

In step 7, an actual BitmapImage is created in code, as required, to read an image file.

The way an Image is displayed depends on the Stretch property. This indicates how an
image is stretched, as the actual size of the Image element typically differs from the natural
size of the image source. There are four possible values, Uniform being the default. Here's
how setting Stretch affects the displayed image (of the famous penguins):

Chapter 4

123

With Stretch=None, the image is displayed in its original size. In the code sample,
a ScrollViewer was used to allow scrolling through large images. Uniform and
UniformToFill preserve the aspect ratio (the original image width divided by the
height), while Fill simply stretches the image to fill the available space for the Image.
UniformToFill may cut out content if the available space has a different aspect ratio
than the original.

Do not confuse Image with ImageSource. The Image is an element, so
can be placed somewhere in the visual tree. An ImageSource is the actual
data; an Image element simply shows the image data in some way. The
original image data (ImageSource) is unchanged.

There's more...
ImageSource has some interesting derivatives. One of them is DrawingImage, which is an
ImageSource that uses a Drawing object (not to be confused with ImageDrawing, which
is a Drawing that uses an ImageSource). A Drawing is a representation of a 2D drawing.
Drawing itself is abstract and has some concrete implementations. The following class
diagram shows some of the classes deriving from ImageSource:

Using Standard Controls

124

The following is an example of building a Drawing as a resource, based on a Geometry
(more information on geometries can be found in Chapter 9, Graphics and Animation):

<CombinedGeometry x:Key="ringGeometry"
 GeometryCombineMode="Exclude">
 <CombinedGeometry.Geometry1>
 <EllipseGeometry Center="100,100"
 RadiusX="100" RadiusY="100" />
 </CombinedGeometry.Geometry1>
 <CombinedGeometry.Geometry2>
 <EllipseGeometry Center="100,100"
 RadiusX="80" RadiusY="80" />
 </CombinedGeometry.Geometry2>
</CombinedGeometry>
<GeometryDrawing x:Key="ringDrawing"
 Geometry="{StaticResource ringGeometry}"
 Brush="LightBlue">
 <GeometryDrawing.Pen>
 <Pen Brush="Black" Thickness="3" />
 </GeometryDrawing.Pen>
</GeometryDrawing>

A Drawing is not an element, so it cannot be part of a visual tree – it needs to be hosted
somehow. One way is to use a DrawingImage as the ImageSource of an Image, like so:

<Image>
 <Image.Source>
 <DrawingImage Drawing="{StaticResource ringDrawing}" />
 </Image.Source>
</Image>

It will look as follows like when run:

Chapter 4

125

Another ImageSource derivative is BitmapSource, which is abstract as well. It's the base
class of BitmapImage used in the code example. There are many other derivatives. One
I'd like to mention here is WriteableBitmap. This is a bitmap with accessible pixels. The
application can manipulate those pixels as desired by calling WritePixels. The following
an example of creating a WriteableBitmap and attaching it as a Source of an Image
(named _image):

public partial class MainWindow : Window {
 WriteableBitmap _bmp;
 DispatcherTimer _timer;
 Random _rnd = new Random();
 int[] _pixel = { 255 };
 public MainWindow() {
 InitializeComponent();
 _bmp = new WriteableBitmap(100, 100, 0, 0,
 PixelFormats.Gray8, null);
 _image.Source = _bmp;
 _timer = new DispatcherTimer();
 _timer.Interval = TimeSpan.FromMilliseconds(20);
 _timer.Tick += delegate {
 int x = _rnd.Next(_bmp.PixelWidth);
 int y = _rnd.Next(_bmp.PixelHeight);
 _bmp.WritePixels(new Int32Rect(x, y, 1, 1), _pixel,
 _bmp.BackBufferStride, 0);
 };
 _timer.Start();
 }
}

The code fills up the bitmap with random white pixels using a timer, 50 times per second. This
is how it looks at some captured point:

Using Standard Controls

126

The complete source code is available in the downloadable source for this chapter under the
CH04.ImageSources project.

See also
For more information on WriteableBitmap, check out the Manipulating a bitmap
programmatically recipe in Chapter 9, Graphics and Animation.

Creating tooltips
Tooltips are typically those yellowish (or another color, depending on the Windows theme and
user customization) pop ups that show up when the mouse pointer hovers over something
important within the UI, providing some extra information relevant to that something. WPF
makes it easy to create tooltips, either standard ones, or custom.

Getting ready
Make sure Visual Studio is up and running.

How to do it...
1. Create a new WPF application named CH04.ToolTips.

2. Open MainWindow.xaml. Add two rows to the existing Grid as follows:
<Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition />
</Grid.RowDefinitions>

3. Add a ToolBar to the Grid, with two buttons in it:
<ToolBar>
 <Button Content="Copy" FontSize="16" Margin="4"
 Padding="4" Command="Copy" />
 <Button Content="Paste" FontSize="16" Margin="4"
 Padding="4" Command="Paste" />
</ToolBar>

The Command properties used will make the buttons work correctly on the TextBox
we'll add in the next step. For more information on commands, check out Chapter 7,
Commands and MVVM.

4. Add a TextBox to the second row of the Grid and make it multiline:
<TextBox AcceptsReturn="True" Grid.Row="1" FontSize="14"
 VerticalScrollBarVisibility="Auto"
 HorizontalScrollBarVisibility="Auto"/>

Chapter 4

127

5. Running the application allows for simple copying and pasting of text. This works
because of the commands bound to the buttons. Now let's add a simple tool tip to
the Copy button. We'll do this by setting the ToolTip property of the Button to
some text:
<Button Content="Copy" FontSize="16" Margin="4"
 Padding="4" Command="Copy"
 ToolTip="Copy the selected text to the clipboard"/>

6. Run the application. Type some text in the TextBox, then select some text (the Copy
button should become enabled) and hover over the button with the mouse:

7. Now let's try something more ambitious. Add a custom tool tip for the Paste button by
setting its ToolTip property to something more fancy:
<Button.ToolTip>
 <ToolTip>
 <Border CornerRadius="10" BorderThickness="2"
 BorderBrush="Black" Padding="4" Background="LightBlue">
 <Grid Width="120">
 <TextBlock FontSize="15" TextWrapping="Wrap"
 Text="Paste text from the clipboard" />
 </Grid>
 </Border>
 </ToolTip>
</Button.ToolTip>

8. Run the application and make sure some text is in the clipboard. Then hover over the
Paste button:

This certainly looks more interesting, although not perfect (the yellowish background
sips through). We'll see in the There's more… section how to remedy that.

Using Standard Controls

128

How it works...
The ToolTip control is a ContentControl, so can have any content, with the same rules
as any other ContentControl (see the Using content controls recipe earlier in this chapter).
The ToolTip property (on FrameworkElement) is of type object. If a non-ToolTip
control is supplied, WPF automatically creates a ToolTip control to wrap the actual
content provided.

The tooltip background originates in the Windows theme and can also change because of
user preferences. For example, with the Windows Classic theme, the color can be changed
using the personalization options within the Windows Control Panel. Here's how to do it:
Open the Control Panel Personalization item, and select Windows Color at the bottom.
The following dialog box should appear:

Chapter 4

129

Open the Item combo box, and select ToolTip:

Here we can change the background (and foreground) color of tooltips (as well as the
default font). For some themes there's no UI to do this, such as when using the Aero
theme in Windows 7.

There's more...
More tooltip customization is possible using the ToolTipService class. This class
provides a bunch of attached properties that can be applied to elements on which tooltips
exist. For example, in our code sample, the tooltips don't appear if a button is disabled. To
make the tooltip appear no matter what the enabled state is, set the ToolTipService.
ShowOnDisabled property to true. Other properties you can change include ShowDuration,
HasDropShadow, IsEnabled, and InitialShowDelay, to name a few; most of them are
self-explanatory.

Using Standard Controls

130

Deeper tooltip customization
As was evident in the example code, the non-textual tooltip was sitting on top of the default
yellowish (or whatever color) background. This is because of the default control template of
the ToolTip. Fortunately, there's a way to fix this (without replacing the control template)
by setting some properties via a Style (styles will be discussed in Chapter 8). Here's a
complete new button which uses this idea:

<Button Content="Undo" Command="Undo" FontSize="16"
 Margin="4" Padding="4"
 ToolTipService.HasDropShadow="False">
 <Button.Resources>
 <Style TargetType="ToolTip">
 <Setter Property="Background" Value="Transparent" />
 <Setter Property="BorderBrush" Value="Transparent" />
 </Style>
 </Button.Resources>
 <Button.ToolTip>
 <Border CornerRadius="10" BorderThickness="2"
 BorderBrush="Black" Padding="4"
 Background="LightBlue">
 <Grid>
 <TextBlock FontSize="15" TextWrapping="Wrap"
 Text="Undo the last action" />
 </Grid>
 </Border>
 </Button.ToolTip>
</Button>

Using the above markup, the tooltip now looks polished, and becomes independent of the
Windows theme or the user's preference:

Realistic tooltips
The preceding example is fun enough, but it's impractical to customize every single tooltip in
this way. The "proper" way to do this is by defining a DataTemplate that uses data binding
expressions to get to the actual text (and maybe other things like images) of that tooltip. Data
binding is discussed in Chapter 6.

Chapter 4

131

Creating a list of items
Lists are typically used to show a collection of related objects. WPF provides several
controls which can be used for that purpose, such as ListBox and ComboBox (which can
be considered classic). All these derive from ItemsControl, which defines some basic
functionality, such as an Items property. In this recipe, we'll take a quick look at ListBox
and ComboBox. We'll reserve a more detailed explanation for Chapter 6, Data Binding, as this
is the typical way list-based controls are used in WPF.

Getting ready
Make sure Visual Studio is up and running.

How to do it…
1. Create a new WPF application named CH04.Lists.

2. Open MainWindow.Xaml. Add two rows to the existing Grid, as follows:
<Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition />
</Grid.RowDefinitions>

3. Add a ComboBox to the Grid with some string items:
<ComboBox Margin="4" x:Name="_langCombo">
 <ComboBoxItem>C++</ComboBoxItem>
 <ComboBoxItem>C#</ComboBoxItem>
 <ComboBoxItem>Visual Basic</ComboBoxItem>
 <ComboBoxItem>F#</ComboBoxItem>
</ComboBox>

4. Add a GroupBox containing an empty ListBox to the second row:
<GroupBox Header="Some Keywords" Grid.Row="1" Margin="4">
 <ListBox x:Name="_keywordList" Margin="4">
 </ListBox>
</GroupBox>

5. When the selection in the ComboBox changes, we'll populate the ListBox with some
keywords from that language. Add an event handler for the SelectionChanged
event for the ComboBox and place the following code in the handler:
void OnLangChanged(object s, SelectionChangedEventArgs e) {
 _keywordList.Items.Clear();
 string[] keywords = null;

Using Standard Controls

132

 switch(_langCombo.SelectedIndex) {
 case 0: // C++
 keywords = new string[] {
 "for", "auto", "mutable", "explicit",
 "class", "volatile"
 };
 break;

 case 1: // C#
 keywords = new string[] {
 "while", "var", "implicit", "return",
 "where", "enum"
 };
 break;

 case 2: // VB
 keywords = new string[] {
 "Dim", "Select", "While",
 "Property", "Function", "If"
 };
 break;

 case 3: // F#
 keywords = new string[] {
 "let", "rec", "mutable",
 "module", "yield", "type"
 };
 break;
 }
 if(keywords != null)
 Array.ForEach(keywords,
 keyword => _keywordList.Items.Add(keyword));
}

6. Run the application. You should be able to select a language from the drop down
ComboBox and view a selected set of keywords for that particular language:

Chapter 4

133

How it works...
ItemsControl is the base class of all multiple-item containing controls. It provides for some
basic properties, such as Items (a collection of objects) and some customization hooks we'll
look at in Chapter 8. The following class diagram depicts the important classes derived from
ItemsControl class:

ListBox and ComboBox both inherit from (the abstract) Selector class (which inherits
from ItemsControl). Selector adds the notion of selection. ItemsControl itself
is not abstract, but does not support selection of any kind), with properties such as
SelectedIndex (an integer) and SelectedItem (the actual object) and an event
(SelectionChanged), which is leveraged in the preceding code. Another useful property of
Selector is SelectedValue, which is based on another property, SelectedValuePath.
For example, if the Selector holds Person objects and SelectedValuePath is Name,
then SelectedValue would be the currently selected person's Name property.

ListBox adds the idea of multiple selections, with the SelectedItems property and a
SelectionMode property. SelectionMode of Single signifies single item selection (the
default), while Multiple allows selection/de-selection with mouse clicks and Extended
allows multi-selection with the Ctrl and Shift keys to quickly select/deselect range of items.

In the SelectionChanged event handler, we switch on the currently selected item index,
clear the ListBox items, and then add the required strings using the Items property's Add
method (this is done with Array.ForEach that simply calls some delegate – in this example
provided as a lambda function—for each item in the array, a string in this case).

Using Standard Controls

134

There's more...
ListBox wraps every object it gets in a ListBoxItem, while ComboBox does the same with
ComboBoxItem. These wrapper controls are created automatically for each object added
to the ListBox / ComboBox. Both are types of ContentControl, meaning they can hold
anything, with the usual rules of ContentControls. A DataTemplate may be provided
using the ItemTemplate property (from ItemsControl). This means that the ComboBox
in the preceding code sample could have looked as follows:

This can be achieved in two ways: first, by hard coding a horizontal StackPanel with
an image and text inside every ComboBoxItem, as follows (the full code sample is in
the CH04.Lists2 project available with the downloadable source for this chapter):

<ComboBoxItem Padding="4">
 <StackPanel Orientation="Horizontal" >
 <Image Source="Images/CS.jpg" Width="32"
 Stretch="Uniform" />
 <TextBlock Text="C#" VerticalAlignment="Center"
 FontSize="20" Margin="10,0,0,0" />
 </StackPanel>
</ComboBoxItem>

The second is by using a data object with an appropriate DataTemplate. We'll look at this
more closely in Chapter 6, Data Binding, as it's the typical way of working, especially when
data binding is involved.

Creating a standard menu
A drop-down menu is one of the most (if the not the most) recognizable aspects of graphical
user interfaces. Not as popular today as it was in the early days of GUIs, it's still a vital part
of many applications. Let's see how to create one with WPF.

Chapter 4

135

Getting ready
Make sure Visual Studio is up and running.

How to do it…
We'll create a simple Notepad-like text editor with a typical menu:

1. Create a new WPF application named CH04.Menus.

2. Open MainWindow.xaml. Add two rows to the existing Grid as follows:
<Grid.RowDefinitions>
 <RowDefinition Height="Auto"/>
 <RowDefinition />
</Grid.RowDefinitions>

3. Add a TextBox to the second row:
<TextBox Grid.Row="1" AcceptsReturn="True" />

4. Add a Menu control to the first row with MenuItem objects underneath:
<Menu>
 <MenuItem Header="_File">
 <MenuItem Header=" _Exit" />
 </MenuItem>
 <MenuItem Header="_Edit">
 <MenuItem Command="Copy" />
 <MenuItem Header="_Paste" Command="Paste" />
 <Separator />
 <MenuItem Header="_Undo" Command="Undo" />
 </MenuItem>
</Menu>

5. Running the application shows two top level menu items, File and Edit. You can
type in the text box and use the Copy, Paste, and Undo menu items, which work
as expected. Selecting File | Exit does nothing. Let's change that.

6. Add a Click event handler to the Exit MenuItem. Add the following code to
the handler:
void OnExit(object sender, RoutedEventArgs e) {
 Close();
}

Using Standard Controls

136

7. Run the application. Note that clicking File | Exit closes the application (by closing
the Window).

How it works...
The menu derives from MenuBase (an abstract class that is also the base of ContextMenu),
which derives from ItemsControl. This is not surprising, as a menu holds child objects,
which technically can be anything, but really should be MenuItem objects.

MenuItem itself derives from HeaderedItemsControl, which is an ItemsControl
with a header (similar to a HeaderedContentControl). The Header property (along with
HeaderTemplate) typically provides the menu item text (but can be anything, as Header
is of type object). A Command property allows binding to a command – in the code sample
it was the Copy, Paste, and Undo built-in commands which, that a TextBox handles
automatically (as demonstrated in the Creating tooltips recipe in this chapter). Note that if the
Command is attached to a RoutedUICommand (as all built-in commands are), the Header
text is unnecessary. It's automatically supplied by the Text property of RoutedUICommand
(more on commands in Chapter 7, Commands and MVVM), as can be seen with the Copy
menu item.

A MenuItem raises the Click event when that item is selected. This is used in the preceding
code to handle the File | Exit menu item.

A Separator element can be used as a simple separator between items, as shown between
Paste and Undo. It serves no other function, and can never receive focus.

There's more...
A MenuItem has an Icon property that is typically used to supply a small image that is
placed to the left of the Header. However, Icon is of type object, thus can be anything
(there's no IconTemplate property, however).

The underscore character can be used to allow an Alt + Key combination to select a particular
menu item. This is similar to the rule for a Label (discussed in the recipe Working with text in
this chapter).

MenuItem is an ItemsControl, so can use the same facilities, such as data templates and
other customization hooks, as demonstrated in Chapter 6, Data Binding.

Chapter 4

137

Other MenuItem properties and events
MenuItem objects can be checked by setting IsCheckable to true. This provides for a
toggling behavior. The current state is available via the IsChecked property. It also fires
the Checked and Unchecked events for similar reasons.

The InputGestureText allows a text to be appended to the Header, indicating the
keyboard shortcut that fires this item. This, however, does not actually bind the key gesture to
anything. Typically, this is done with the RoutedCommand that is attached via the Command
property, as a RoutedCommand can be associated with a keyboard gesture (described in
Chapter 7 in more detail).

Creating a context menu
Context menus are typically invoked when the user right clicks a certain area or element
(or presses Shift + F10 or a designated key on some keyboards). They are called "context"
menus because different situations may call for different menus, or at least different
available options. The ContextMenu class (a derivative of MenuBase) can host a bunch
of MenuItem controls (and separators). Let's see how this works.

Getting ready
Open the CH04.Lists project from the Creating a list of items recipe.

How to do it…
We'll continue with the CH04.Lists project and enhance it to make a context menu available:

1. Open MainWindow.xaml.

2. Set the ContextMenu property of the ListBox to a ContextMenu object with some
MenuItem instances:
<ListBox.ContextMenu>
 <ContextMenu>
 <MenuItem Header="_Language" >
 <MenuItem Header="C++" Tag="0" />
 <MenuItem Header="C#" Tag="1" />
 <MenuItem Header="Visual Basic" Tag="2" />
 <MenuItem Header="F#" Tag="3" />
 </MenuItem>
 <Separator />
 <MenuItem Header="_Save..." />
 <MenuItem Header="_Load..." />
 </ContextMenu>
</ListBox.ContextMenu>

Using Standard Controls

138

3. Let's add a Click handler for changing a language. We'll add that to the Language
MenuItem, taking advantage of the bubbling routing strategy of the Click event.
In the handler, add the following code:
void OnChangeLanugage(object sender, RoutedEventArgs e) {
 var item = e.Source as MenuItem;
 _langCombo.SelectedIndex = Convert.ToInt32(item.Tag);
}

4. Running the application allows changing language by right-clicking somewhere inside
the ListBox:

How it works...
A ContextMenu object holds MenuItem objects, similar to a regular Menu. ContextMenu.
However, cannot be a direct part of a visual tree; instead, it must be placed with the
appropriate property (usually FrameworkElement.ContextMenu). This is exactly how it's
done in the preceding code sample. Any right-click inside the ListBox triggers opening the
context menu. Any Click event handlers or Command objects are invoked when the user
actually selects an item.

The preceding Click event handler leverages the Tag property that every element has for
application defined purposes – in this case, the correct selected index in the ComboBox to
change the current programming language.

There's more...
There are many properties in ContextMenu to change its placement (by default the top-left
corner appears at the mouse pointer location), such as Placement, HorizontalOffset,
and VerticalOffset. A bunch of attached properties (that can be set on elements) for
ContextMenu customization exist in the ContextMenuService class. For example, the
ShowOnDisabled property can be set to true to allow the ContextMenu to open even if the
element is disabled. The relationship between ContextMenu and ContextMenuService
classes is similar to the one between ToolTip and ToolTipService (as discussed in the
Creating tooltips recipe in this chapter). Note that ContextMenuService settings override
ContextMenu settings if they conflict.

Chapter 4

139

Selecting options with checkboxes and
radio buttons

Checkboxes and radio buttons are some of the most recognizable and useful controls.
Checkboxes allow selecting or unselecting options, while radio buttons allow selecting
one option out of several. Let's see how to use them in WPF.

Getting ready
Make sure Visual Studio is up and running.

How to do it…
We'll create a simple tea choosing application that uses checkboxes and radio buttons to
make some tea:

1. Create a new WPF application named CH04.SelectingOptions.

2. Open MainWindow.xaml. Replace the Grid with a StackPanel.

3. Add a GroupBox with some tea type options to the StackPanel, as follows:
<GroupBox Header="What kind of tea would you like?">
 <StackPanel Margin="4" x:Name="_teaTypePanel">
 <RadioButton Content="Earl Grey" IsChecked="True"/>
 <RadioButton Content="Mint" />
 <RadioButton Content="Chinese Green" />
 <RadioButton Content="Japanese Green" />
 </StackPanel>
</GroupBox>

4. Add another GroupBox to allow options for tea supplements:
<GroupBox Header="Select tea supplements">
 <StackPanel Margin="4">
 <CheckBox Content="Sugar" x:Name="_isSugar" />
 <CheckBox Content="Milk" x:Name="_isMilk" />
 <CheckBox Content="Lemon" x:Name="_isLemon" />
 </StackPanel>
</GroupBox>

5. Add a Button to the StackPanel that would make the actual tea:
<Button Content="Make Tea!" Margin="4" FontSize="20"
 HorizontalAlignment="Center" Padding="4"/>

Using Standard Controls

140

6. Add a Click event handler to the button with the following code:
void OnMakeTea(object sender, RoutedEventArgs e) {
 var sb = new StringBuilder("Tea: ");
 foreach(RadioButton rb in _teaTypePanel.Children)
 if(rb.IsChecked == true) {
 sb.AppendLine(rb.Content.ToString());
 break;
 }
 if(_isSugar.IsChecked == true)
 sb.AppendLine("With sugar");
 if(_isMilk.IsChecked == true)
 sb.AppendLine("With milk");
 if(_isLemon.IsChecked == true)
 sb.AppendLine("With lemon");
 if(_isLemon.IsChecked == true && _isMilk.IsChecked == true)
 sb.AppendLine("Very unusual!");
 MessageBox.Show(sb.ToString(), "Tea Maker");
}

7. Run the application and select some tea options, then click the button. You should
see something like the following:

How it works...
Both CheckBox and RadioButton derive from ToggleButton, which defines their basic
behavior. Specifically, it defines the IsChecked property, typed as Nullable<bool> (bool?
in C#). This means it can have three values: true, false, and null. null indicates an
intermediate state (useful for scenarios where the CheckBox is used to indicate something
for multiple items, and not all have the same value; a classic example is the Read Only
checkbox in Windows Explorer's folder properties). This is applicable to checkboxes, but
has no real meaning for radio buttons. ToggleButton also defines appropriate events
(Checked, Unchecked, and Indeterminate).

Chapter 4

141

The preceding code uses the IsChecked property to make decisions. For radio buttons,
selecting one button automatically deselects all others within the group. A radio button
group is implicit when all radio buttons are within the same container (StackPanel in this
case). However, if groups of radio buttons need to be defined within the same container, the
GroupName property (a string) should be set to the same value for a specific group. In
fact, GroupName is the only property RadioButton adds with respect to its base class;
this should be used with caution, as GroupName takes effect even between panels.

CheckBox adds no new properties – it just provides a different appearance from
ToggleButton.

Manipulating tab order and focus
The Tab key in a typical user interface can be used to move the keyboard focus from
one control to another (with Shift + Tab working in the reverse order), providing keyboard
navigation capabilities without the need to use the mouse. This has to be logical – that is, the
focus should not jump erratically all over the place, but rather move to the next logical control
within the UI. The following recipe shows how to set the tab order and how to set the focus to
a given control.

Getting ready
Make sure Visual Studio is up and running.

How to do it…
We'll create a personal information entry form that uses tab order in a logical manner,
and places the keyboard focus where it makes sense when the form first appears:

1. Create a new WPF application named CH04.TabAndFocus.

2. Open MainWindow.xaml. Add some rows and columns to the Grid and some
elements, as follows:
<Grid Margin="4">
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="10" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="10" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" />

Using Standard Controls

142

 <ColumnDefinition Width="20" />
 <ColumnDefinition />
 </Grid.ColumnDefinitions>
 <Button Grid.Row="5" FontSize="16" Content="Send Comment"
 Grid.ColumnSpan="3" HorizontalAlignment="Center"
 Margin="0,20,0,0" Padding="4"/>
 <TextBlock Text="Name:" VerticalAlignment="Center"/>
 <TextBox Grid.Column="2" x:Name="name"/>
 <TextBlock Text="Birthday:" Grid.Row="2"
 VerticalAlignment="Center"/>
 <DatePicker Grid.Row="2" Grid.Column="2" />
 <TextBlock Text="Comments:" Grid.Row="4" />
 <TextBox AcceptsReturn="True" Grid.Row="4"
 Grid.Column="2" Height="100" />
</Grid>

3. Run the application. Press Tab and watch the keyboard focus move.

4. The focus moves first to the button, then the top text box, then the date picker, then
the large text box. Let's make the top text box first in the tab order by setting its
TabIndex property to 0:
<TextBox Grid.Column="2" TabIndex="0"/>

5. We can do the same, incrementing the TabIndex, for other controls in the required
order. When the window starts up, no control has the focus. Let's make the top text
box get the focus automatically, in XAML.

6. Add the following attached property on the Grid:
<Grid FocusManager.FocusedElement="{Binding ElementName=name}"

7. Run the application. The keyboard focus should start at the top TextBox. Note that
its TabIndex doesn't have to be zero now.

Chapter 4

143

How it works...
The default tab order is based on the order of elements as they are defined in XAML
(or the order they are added to a Children element of Panel in code). The TabIndex
property (from Control) allows changing the tab order (the default value is Int32.
MaxValue), where lower values are first in the tab order.

The IsTabStop property indicates whether a control is included in tab navigation
(true by default).

Most of the time, the order of control placement should be enough to achieve the required
tab order, but in case it's not, the aforementioned properties should help.

The keyboard focus can be changed at any time by calling the static Keyboard.Focus
method, passing the control that should have keyboard focus (that control must have its
Focusable property set to true). The Keyboard.FocusedElement static property returns
the current control that has keyboard focus (or null if no control has focus at this time, for
example, the focus is in some other application).

There's more...
The preceding code sample uses the FocusManager.FocusedElement attached property
to set the focus to the top TextBox (using a data binding expression). Curiously enough,
setting this property on the Window itself does not achieve the same result. The following
section explains why.

Keyboard focus versus logical focus
Keyboard focus is a well-known concept. Only one control at a time can have the keyboard
focus in the entire desktop. WPF defines another concept called logical focus. A control can
have logical focus in some container that is a focus scope. That is, only one control can have
logical focus in a given focus scope, but another control can have logical focus if placed in a
different focus scope. What this means is that when the keyboard focus leaves a focus scope,
that scope still "remembers" the last control which had keyboard focus. When focus returns to
that focus scope, that control will receive keyboard focus.

By default, Window, Menu, ContextMenu, and ToolBar are focus scopes. A focus scope can
be set using the FocusManager.IsFocusScope attached property.

In our example, the Window is a focus scope (we did not change that), so its only child (the
Grid) becomes the target of keyboard focus. Naturally, the Grid is useless as such. Setting
the name textbox to be focused within the Window is pointless, because the Grid is not a
focus scope.

Using Standard Controls

144

We can solve that in several ways. One way is setting the logical focus within the Grid (as was
done in the code sample). Another way is keeping the setting on the Window, but marking the
Grid with Focusable="False". Yet another way is to remove the focus scope property of
Window by setting FocusManager.IsFocusScope to false.

The logical focus is important in particular when dealing with RoutedCommand objects,
as we'll discuss in Chapter 7.

5
Application and

Windows

In this chapter we will cover:

 f Creating a window

 f Creating a dialog box

 f Using the common dialog boxes

 f Creating ownership between windows

 f Creating a custom shaped window

 f Creating a single instance application

 f Handling an unhandled exception

Introduction
In the preceding chapters, we dealt with a lot of WPF details, concerning various aspects of
its features, such as resources and controls. In this chapter, we'll take a broader look at WPF's
application model, including the use of windows within an application.

Creating a window
Windows are the typical top level controls in WPF. By default, a MainWindow class is
created by the application wizard and automatically shown upon running the application.
In this recipe, we'll take a look at creating and showing other windows that may be required
during the lifetime of an application.

Application and Windows

146

Getting ready
Make sure Visual Studio is up and running.

How to do it...
We'll create a new class derived from Window and show it when a button is clicked:

1. Create a new WPF application named CH05.NewWindows.

2. Right-click on the project node in Solution explorer, and select Add | Window…:

3. In the resulting dialog, type OtherWindow in the Name textbox and click on Add.

4. A file named OtherWindow.xaml should open in the editor. Add a TextBlock to
the existing Grid, as follows:
<TextBlock Text="This is the other window" FontSize="20"
 VerticalAlignment="Center" HorizontalAlignment="Center" />

5. Open MainWindow.xaml. Add a Button to the Grid with a Click event handler:
<Button Content="Open Other Window" FontSize="30"
 Click="OnOpenOtherWindow" />

Chapter 5

147

6. In the Click event handler, add the following code:
void OnOpenOtherWindow(object sender, RoutedEventArgs e) {
 var other = new OtherWindow();
 other.Show();
}

7. Run the application, and click the button. The other window should appear and live
happily alongside the main window:

How it works...
A Window is technically a ContentControl, so can contain anything. It's made visible using
the Show method. This keeps the window open as long as it's not explicitly closed using the
classic close button, or by calling the Close method. The Show method opens the window as
modeless—meaning the user can return to the previous window without restriction.

We can click the button more than once, and consequently more Window instances would
show up.

There's more...
The first window shown can be configured using the Application.StartupUri property,
typically set in App.xaml. It can be changed to any other window. For example, to show the
OtherWindow from the previous section as the first window, open App.xaml and change the
StartupUri property to OtherWindow.xaml:

StartupUri="OtherWindow.xaml"

Application and Windows

148

Selecting the startup window dynamically
Sometimes the first window is not known in advance, perhaps depending on some state or
setting. In this case, the StartupUri property is not helpful. We can safely delete it, and
provide the initial window (or even windows) by overriding the Application.OnStartup
method as follows (you'll need to add a reference to the System.Configuration assembly
for the following to compile):

protected override void OnStartup(StartupEventArgs e) {
 Window mainWindow = null;
 // check some state or setting as appropriate
 if(ConfigurationManager.AppSettings["AdvancedMode"] == "1")
 mainWindow = new OtherWindow();
 else
 mainWindow = new MainWindow();
 mainWindow.Show();
}

This allows complete flexibility in determining what window or windows should appear at
application startup.

Accessing command line arguments
The WPF application created by the New Project wizard does not expose the ubiquitous Main
method. WPF provides this for us – it instantiates the Application object and eventually
loads the main window pointed to by the StartupUri property.

The Main method, however, is not just a starting point for managed code, but also provides
an array of strings as the command line arguments passed to the executable (if any). As Main
is now beyond our control, how do we get the command line arguments?

Fortunately, the same OnStartup method provides a StartupEventArgs object, in which
the Args property is mirrored from Main. The downloadable source for this chapter contains
the project CH05.CommandLineArgs, which shows an example of its usage. Here's the
OnStartup override:

protected override void OnStartup(StartupEventArgs e) {
 string text = "Hello, default!";
 if(e.Args.Length > 0)
 text = e.Args[0];

 var win = new MainWindow(text);
 win.Show();
}

The MainWindow instance constructor has been modified to accept a string that is later used
by the window. If a command line argument is supplied, it is used.

Chapter 5

149

Creating a dialog box
A dialog box is a Window that is typically used to get some data from the user, before some
operation can proceed. This is sometimes referred to as a modal window (as opposed to
modeless, or non-modal). In this recipe, we'll take a look at how to create and manage
such a dialog box.

Getting ready
Make sure Visual Studio is up and running.

How to do it...
We'll create a dialog box that's invoked from the main window to request some information
from the user:

1. Create a new WPF application named CH05.Dialogs.

2. Add a new Window named DetailsDialog.xaml (a DetailsDialog class
is created).

3. Visual Studio opens DetailsDialog.xaml. Set some Window properties:
FontSize to 16, ResizeMode to NoResize, SizeToContent to Height,
and make sure the Width is set to 300:
ResizeMode="NoResize" SizeToContent="Height" Width="300"
FontSize="16"

4. Add four rows and two columns to the existing Grid, and add some controls for a
simple data entry dialog as follows:
<Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto"/>
 <RowDefinition Height="Auto"/>
 <RowDefinition Height="Auto"/>
</Grid.RowDefinitions>
<Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition />
</Grid.ColumnDefinitions>
<TextBlock Text="Please enter details:" Grid.ColumnSpan="2"
 Margin="4,4,4,20" HorizontalAlignment="Center"/>
<TextBlock Text="Name:" Grid.Row="1" Margin="4"/>
<TextBox Grid.Column="1" Grid.Row="1" Margin="4"
 x:Name="_name"/>

Application and Windows

150

<TextBlock Text="City:" Grid.Row="2" Margin="4"/>
<TextBox Grid.Column="1" Grid.Row="2" Margin="4"
 x:Name="_city"/>
<StackPanel Grid.Row="3" Orientation="Horizontal"
 Margin="4,20,4,4" Grid.ColumnSpan="2"
 HorizontalAlignment="Center">
 <Button Content="OK" Margin="4" />
 <Button Content="Cancel" Margin="4" />
</StackPanel>

5. This is how it should look in the designer:

6. The dialog should expose two properties for the name and city the user has typed in.
Open DetailsDialog.xaml.cs. Add two simple properties:
public string FullName { get; private set; }
public string City { get; private set; }

7. We need to show the dialog from somewhere in the main window. Open
MainWindow.xaml, and add the following markup to the existing Grid:
<Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition />
</Grid.RowDefinitions>
<Button Content="Enter Data" Click="OnEnterData"
 Margin="4" FontSize="16"/>
<TextBlock FontSize="24" x:Name="_text" Grid.Row="1"
 VerticalAlignment="Center" HorizontalAlignment="Center"/>

8. In the OnEnterData handler, add the following:
private void OnEnterData(object sender, RoutedEventArgs e) {
 var dlg = new DetailsDialog();
 if(dlg.ShowDialog() == true) {
 _text.Text = string.Format(
 "Hi, {0}! I see you live in {1}.",
 dlg.FullName, dlg.City);
 }
}

Chapter 5

151

9. Run the application. Click the button and watch the dialog appear. The buttons don't
work yet, so your only choice is to close the dialog using the regular close button.
Clearly, the return value from ShowDialog is not true in this case.

10. When the OK button is clicked, the properties should be set accordingly. Add a Click
event handler to the OK button, with the following code:
private void OnOK(object sender, RoutedEventArgs e) {
 FullName = _name.Text;
 City = _city.Text;
 DialogResult = true;
 Close();
}

The Close method dismisses the dialog, returning control to the caller.
The DialogResult property indicates the returned value from the call
to ShowDialog when the dialog is closed.

11. Add a Click event handler for the Cancel button with the following code:
private void OnCancel(object sender, RoutedEventArgs e) {
 DialogResult = false;
 Close();
}

12. Run the application and click the button. Enter some data and click on OK:

13. You will see the following window:

Application and Windows

152

How it works...
A dialog box in WPF is nothing more than a regular window shown using ShowDialog instead
of Show. This forces the user to dismiss the window before she can return to the invoking
window. ShowDialog returns a Nullable<bool> (can be written as bool? in C#), meaning
it can have three values: true, false, and null. The meaning of the return value is mostly
up to the application, but typically true indicates the user dismissed the dialog with the
intention of making something happen (usually, by clicking some OK or other confirmation
button), and false means the user changed her mind, and would like to abort. The null
value can be used as a third indicator to some other application-defined condition.

The DialogResult property indicates the value returned from ShowDialog because there
is no other way to convey the return value from the dialog invocation directly. That's why the
OK button handler sets it to true and the Cancel button handler sets it to false (this also
happens when the regular close button is clicked, or Alt + F4 is pressed).

Most dialog boxes are not resizable. This is indicated with the ResizeMode property of the
Window set to NoResize. However, because of WPF's flexible layout, it certainly is relatively
easy to keep a dialog resizable (and still manageable) where it makes sense (such as
when entering a potentially large amount of text in a TextBox – it would make sense
if the TextBox could grow if the dialog is enlarged).

There's more...
Most dialogs can be dismissed by pressing Enter (indicating the data should be used) or
pressing Esc (indicating no action should take place). This is possible to do by setting the OK
button's IsDefault property to true and the Cancel button's IsCancel property to true.
The default button is typically drawn with a heavier border to indicate it's the default button,
although this eventually depends on the button's control template.

If these settings are specified, the handler for the Cancel button is not needed. Clicking
Cancel or pressing Esc automatically closes the dialog (and sets DiaglogResult to false).
The OK button handler is still needed as usual, but it may be invoked by pressing Enter, no
matter what control has the keyboard focus within the Window. The CH05.DefaultButtons
project from the downloadable source for this chapter demonstrates this in action.

Modeless dialogs
A dialog can be show as modeless, meaning it does not force the user to dismiss it before
returning to other windows in the application. This is done with the usual Show method
call – just like any Window. The term dialog in this case usually denotes some information
expected from the user that affects other windows, sometimes with the help of another
button labeled "Apply".

Chapter 5

153

The problem here is mostly logical—how to convey the information change. The best way would
be using data binding, rather than manually modifying various objects. We'll take an extensive
look at data binding in the next chapter.

Using the common dialog boxes
Windows has its own built-in dialog boxes for common operations, such as opening files,
saving a file, and printing. Using these dialogs is very intuitive from the user's perspective,
because she has probably used those dialogs before in other applications. WPF wraps some
of these (native) dialogs. In this recipe, we'll see how to use some of the common dialogs.

Getting ready
Make sure Visual Studio is up and running.

How to do it...
We'll create a simple image viewer that uses the Open common dialog box to allow the user to
select an image file to view:

1. Create a new WPF Application named CH05.CommonDialogs.

2. Open MainWindow.xaml. Add the following markup to the existing Grid:
<Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition />
</Grid.RowDefinitions>
<Button Content="Open Image" FontSize="20" Click="OnOpenImage"
 HorizontalAlignment="Center" Margin="4" />
<Image Grid.Row="1" x:Name="_img" Stretch="Uniform" />

3. Add a Click event handler for the button. In the handler, we'll first create
an OpenFileDialog instance and initialize it (add a using to the
Microsoft.Win32 namespace):
void OnOpenImage(object sender, RoutedEventArgs e) {
 var dlg = new OpenFileDialog {
 Filter = "Image files|*.png;*.jpg;*.gif;*.bmp",
 Title = "Select image to open",
 InitialDirectory = Environment.GetFolderPath(
 Environment.SpecialFolder.MyPictures)
 };

Application and Windows

154

4. Now we need to show the dialog and use the selected file (if any):
if(dlg.ShowDialog() == true) {
 try {
 var bmp = new BitmapImage(new Uri(dlg.FileName));
 _img.Source = bmp;
 }
 catch(Exception ex) {
 MessageBox.Show(ex.Message, "Open Image");
 }
}

5. Run the application. Click the button and navigate to an image file and select it.
You should see something like the following:

How it works...
The OpenFileDialog class wraps the Win32 open/save file dialog, providing easy enough
access to its capabilities. It's just a matter of instantiating the object, setting some properties,
such as the file types (Filter property) and then calling ShowDialog. This call, in turn,
returns true if the user selected a file and false otherwise (null is never returned,
although the return type is still defined as Nullable<bool> for consistency).

The look of the Open file dialog box may be different in various Windows
versions. This is mostly unimportant unless some automated UI testing is
done. In this case, the way the dialog looks or operates may have to be taken
into consideration when creating the tests.

The filename itself is returned in the FileName property (full path). Multiple selections are
possible by setting the MultiSelect property to true (in this case the FileNames property
returns the selected files).

Chapter 5

155

There's more...
WPF similarly wraps the Save As common dialog with the SaveFileDialog class (in the
Microsoft.Win32 namespace as well). Its use is very similar to OpenFileDialog (in fact,
both inherit from the abstract FileDialog class).

What about folder selection (instead of files)? The WPF OpenFileDialog does not support
that. One solution is to use Windows Forms' FolderBrowseDialog class. Another good
solution is to use the Windows API Code Pack described shortly.

Another common dialog box WPF wraps is PrintDialog (in System.Windows.Controls).
This shows the familiar print dialog, with options to select a printer, orientation, and so on. The
most straightforward way to print would be calling PrintVisual (after calling ShowDialog),
providing anything that derives from the Visual abstract class (which include all elements).
General printing is a complex topic and is beyond the scope of this book.

What about colors and fonts?
Windows also provides common dialogs for selecting colors and fonts. However, these are not
wrapped by WPF. There are several alternatives:

 f Use the equivalent Windows Forms classes (FontDialog and ColorDialog, both
from System.Windows.Forms)

 f Wrap the native dialogs yourself

 f Look for alternatives on the Web

The first option is possible, but has two drawbacks: first, it requires adding reference to the
System.Windows.Forms assembly; this adds a dependency at compile time, and increases
memory consumption at run time, for very little gain. The second drawback has to do with the
natural mismatch between Windows Forms and WPF. For example, ColorDialog returns a
color as a System.Drawing.Color, but WPF uses System.Windows.Media.Color. This
requires mapping a GDI+ color (WinForms) to WPF's color, which is cumbersome at best.

The second option of doing your own wrapping is a non-trivial undertaking and requires good
interop knowledge. The other downside is that the default color and font common dialogs are
pretty old (especially the color dialog), so there's much room for improvement.

Application and Windows

156

The third option is probably the best one. There are more than a few good candidates
for color and font pickers. For a color dialog, for example, you can use the ColorPicker
or ColorCanvas provided with the Extended WPF toolkit library on CodePlex
(http://wpftoolkit.codeplex.com/). Here's how these may look
(ColorCanvas on the left-hand side, and one of the possible views of
ColorPicker on the right-hand side):

The Windows API Code Pack
The Windows API Code Pack is a Microsoft project on CodePlex (http://archive.msdn.
microsoft.com/WindowsAPICodePack) that provides many .NET wrappers to native
Windows features, in various areas, such as shell, networking, Windows 7 features (this is
less important now as WPF 4 added first class support for Windows 7), power management,
and DirectX. One of the Shell features in the library is a wrapper for the Open dialog box that
allows selecting a folder instead of a file. This has no dependency on the WinForms assembly.

Creating ownership between windows
Window objects are self-sufficient by default, and are independent of other windows in the
application. Sometimes, however, it's useful to connect two (or more) windows in an owner-
owned relationship. An owned window obeys the following rules:

http://wpftoolkit.codeplex.com/
http://wpftoolkit.codeplex.com/
http://archive.msdn.microsoft.com/WindowsAPICodePack
http://archive.msdn.microsoft.com/WindowsAPICodePack

Chapter 5

157

 f Closed automatically if its owner is closed
 f Minimized automatically if its owner is minimized
 f Always appears on top of its owner, but unconstrained to its surface (unlike

traditional Win32 child windows)
 f Never shown in the task bar if it's currently minimized

In this recipe, we'll see how to create such ownership and show a typical use case.

Getting ready
Make sure Visual Studio is up and running.

How to do it...
We'll create a tool-like window that is owned by the main window, demonstrating a typical
usage of window ownership:

1. Create a new WPF Application project named CH05.OwnerWindows.
2. Right-click on the project node in Solution Explorer and select Add | Window….
3. Type ToolsWindow in the Name text box and click on Add.
4. The ToolsWindow.xaml file should be open. Set the following properties on the

Window object:
SizeToContent="WidthAndHeight" ResizeMode="NoResize"

5. Replace the existing Grid with a ToolBar and add some buttons as follows:
<ToolBar FontSize="20">
 <RadioButton Content="Pointer" Margin="4"
 IsChecked="True"/>
 <RadioButton Content="Pencil" Margin="4"/>
 <RadioButton Content="Brush" Margin="4"/>
 <RadioButton Content="Eraser" Margin="4"/>
 <RadioButton Content="Selection" Margin="4"/>
</ToolBar>

6. Open App.xaml. Remove the StartupUri property value from the
Application object.

7. Open App.xaml.cs. Override the OnStartup method as follows:
protected override void OnStartup(StartupEventArgs e) {
 var mainWindow = new MainWindow();
 var toolWindow = new ToolsWindow();
 mainWindow.Show();
 toolWindow.Owner = mainWindow;
 toolWindow.Show();
}

Application and Windows

158

8. Run the application. Note that the Tool window is always on top of the main window.
Minimize the main window – the tool window is minimized as well. Restore it – both
windows are restored.

How it works...
Window ownership is not a WPF specific feature – it's a capability exposed by the Win32 user
API. WPF simply makes it easily accessible.

Every Window object has an Owner property. By default, it's null, meaning the Window is
unowned, independent of other windows. If an owner is set, the Window now obeys ownership
rules, as described in the introduction section of this recipe.

A Window (not a NavigationWindow hosted in a browser) can be removed
from the Task Bar by specifying false for the ShowInTaskBar property.

There's more...
Ownership can be removed simply by reverting the Owner property back to null, freeing the
window once again.

Each Window also has an OwnedWindows property, which is a collection of that Window's
owned windows (of type WindowCollection). This may be useful when some operation
needs to be performed on all or some of windows owned by Window.

Creating a custom shaped window
A typical window has several aspects that are not directly controllable by a WPF application,
such as the look of the title bar, minimize, maximize, and close buttons; its shape is always
rectangular, and so on. These settings (called the non-client area of the window) are
defined by the current Windows theme selected by the user using the Control Panel, with
some customization possible for font sizes, colors, caption color, and so on, but the basic
appearance characteristics of the window remain.

Chapter 5

159

An application may want to customize the way a window looks from the outside. Canonical
examples of this are media players. The built-in Windows Media Player, for instance, can be
switched to skin mode where its shape becomes something that is far from rectangular (this
particular skin was downloaded from Microsoft's website; in Windows Media Player, open the
View | Skin chooser menu and click More Skins):

Let's see how we can create a custom shaped window with WPF.

Getting ready
Make sure Visual Studio is up and running.

How to do it...
We'll create a custom shaped window and make it function just like a regular window for
moving and closing:

1. Create a new WPF Application project named CH05.CustomShapeWindow.

2. Open MainWindow.xaml. Set the following properties of the Window object to
remove the default window appearance so we can provide our own:
AllowsTransparency="True" WindowStyle="None"
 Background="Transparent"

3. At this point, the window is pretty much invisible. It's time to provide some irregular
content. Add the following markup in the existing Grid:
<Rectangle RadiusX="30" RadiusY="30">
 <Rectangle.Fill>
 <LinearGradientBrush EndPoint="0,1">
 <GradientStop Color="DarkBlue" Offset="0" />

Application and Windows

160

 <GradientStop Color="#80000080" Offset="1" />
 </LinearGradientBrush>
 </Rectangle.Fill>
</Rectangle>
<TextBlock TextAlignment="Center" VerticalAlignment="Top"
 Margin="4" Text="My Window Title" FontSize="18"
 Foreground="White" FontWeight="Bold" />
<Button Content="X" HorizontalAlignment="Right"
 FontWeight="Bold" VerticalAlignment="Top"
 Margin="20,4" FontSize="16" />
<TextBlock Text="Welcome to the new Window!"
 Foreground="Yellow" FontSize="25"
 VerticalAlignment="Center" HorizontalAlignment="Center" />

4. Running the application now shows the following:

The window cannot be moved with the mouse (but can be moved by pressing
Alt + Space and selecting Move), and cannot be closed with the mouse
(but can be closed with Alt + F4 or Alt + Space and then Close).

5. To make the window work as expected with the mouse, we'll add two event handlers.

6. The first is a Click handler for the "X" button. Enter the following in the handler:
private void OnClose(object sender, RoutedEventArgs e) {
 Close();
}

7. The second is a MouseLeftButtonDown handler for the Grid. Add the following
code in the handler:
private void OnMove(object sender, MouseButtonEventArgs e) {
 DragMove();
}

8. Run the application. You should be able to move the window with the mouse and
close it by clicking the button.

Chapter 5

161

How it works...
The AllowsTransparency and WindowStyle settings shown above are the mandatory
ingredients that tell windows not to paint anything in the so-called non-client area of the
window. Setting Background to Transparent allows other content to show through and
flesh out the real look of the window.

In the preceding XAML, a Rectangle with rounded corners is placed first, followed by two
TextBlock instances, one for some kind of title and the other to simulate the actual content
of the window. A Button is added as well, to provide a convenient way to close the window.

One consequence of the title bar removal is losing the ability to move or close the window with
the mouse. Usually such features are desirable, so we need to implement them ourselves.
Fortunately, this is not difficult. To close the window, we just wire up some control (in this
case a Button) to call the regular Window.Close method. Moving the window seems more
complex, and technically it is, but WPF makes this easy with the Window.DragMove method.
We just need to call it in a MouseLeftButtonDown event handler; the rest is done for us as
part of DragMove.

There's more...
What about custom shaped windows that look like the previous Media Player skin? The
trick here is to use an image with transparency (typically a PNG file) as the window's
background. The downloadable source for this chapter contains a project named CH05.
ImageShapeWindow that shows this in action. This is the required XAML to make this
work (apart from the two required property settings):

<Window.Background>
 <ImageBrush ImageSource="invader.png" />
</Window.Background>

The invader.png is an image with transparent areas. This is how the window looks
when running:

Application and Windows

162

We can add the ability to move and close the window in much the same way as previously
shown (check out the source of this example).

What about reusability?
The above examples are fine for a single window that is required to be different. What if we
wanted all of an application's windows to have a unique shape? Placing the same XAML and
event handlers is not very reusable and becomes a maintenance headache.

A better approach would be to create a custom control template for a window and derive a
new class from Window that would handle closing and moving, but potentially also minimizing
and restoring. This custom class would be able to expose other special properties if needed.
We'll discuss control templates in Chapter 8, Styles, Triggers, and Control Templates.

Creating a single instance application
We may sometimes want to limit the number of running instances of some application to just
one. Running some executable creates a new Windows process to host that executable, with
its own address space, tables, resources, and so on. Sometimes this is not desirable; if the
executable tries to run while another instance is already running, it should quit and optionally
make the other instance's main window active. A canonical example in Windows is Windows
Media Player. An attempt to open a second media player activates the first Media Player
window (although it's debatable whether such behavior is desired for Media Player).

Let's see how this can be achieved.

Getting ready
Make sure Visual Studio is up and running.

How to do it...
We'll create a simple application that will not run with more than one process. A second run
will transfer activation to the running instance's window, and quit:

1. Create a new WPF Application project named CH05.SingleInstApp.

2. Open MainWindow.xaml. Give the window a distinct Title, such as
Single Instance.

Chapter 5

163

3. Open App.xaml.cs. We'll need to use some Win32 functions. Add the following to
the App class:
[DllImport("user32", CharSet = CharSet.Unicode)]
static extern IntPtr FindWindow(string cls, string win);
[DllImport("user32")]
static extern IntPtr SetForegroundWindow(IntPtr hWnd);

[DllImport("user32")]
static extern bool IsIconic(IntPtr hWnd);
[DllImport("user32")]
static extern bool OpenIcon(IntPtr hWnd);

4. Override the OnStartup method as follows:
bool isNew;
var mutex = new Mutex(true, "MySingleInstMutex", out isNew);
if(!isNew) {
 ActivateOtherWindow();
 Shutdown();
}

5. Add the implementation of ActivateOtherWindow:
Private static void ActivateOtherWindow() {
 var other = FindWindow(null, "Single Instance");
 if(other != IntPtr.Zero) {
 SetForegroundWindow(other);
 if(IsIconic(other))
 OpenIcon(other);
 }
}

6. Run the application without the debugger (Ctrl + F5 or Debug | Start Without
Debugging menu). The main window should appear. Now run the application again
(you can also use Windows Explorer). The previous window should activate. If it was
minimized, it should be restored and activated.

How it works...
A Mutex is a synchronization object, typically used to synchronize access to a shared resource
(such as a file), so that only one thread can access the resource at a time, thus preventing
data corruption or other inconsistencies within the shared resource. Under the covers it
wraps a Win32 Mutex object (represented as a handle), so it's a true kernel object, capable
of cross AppDomain and cross process synchronization—something that the roughly
equivalent Monitor.Enter/Exit (or the C# lock keyword) cannot do.

Application and Windows

164

In this case the Mutex is not used because of its synchronization capabilities, but simply as
a way to identify a singleton object in the user's session. The name string argument passed
to its constructor should be unique, to not confuse objects with other processes (its creation
may also fail as a result). The isNew returned value indicates whether this is a brand new
kernel mutex or another handle to an existing one. If it already exists, then it was created
by an already running application instance, so we want to kill this new instance. But before
we do that we want to activate the main window of the running instance. This is where
ActivateOtherWindow comes in.

ActivateOtherWindow uses the Win32 function FindWindow to look for the other window
based on its Title; if found, it brings it to the foreground (SetForegroundWindow). If it's
also minimized (IsIconic)—it restores it (OpenIcon).

There's more...
Locating the existing window may be tricky. In the preceding example, the title is a constant
string, so that's easily located with FindWindow. What if the window title is something like
"My App – somefile.dat", meaning it starts the same ("My App"), but continues with the active
file the user is working on? FindWindow can't handle this.

An alternative would be to call the Win32 EnumWindows function, go over each top level
window looking for the title (using the Win32 GetWindowText function), and match to the
expected pattern.

In an extreme case, the title of the main window may be too unpredictable even for iterating
with EnumWindows. A more robust alternative is possible by hosting a WCF service within
the application (using the NetNamedPipeBinding binding). The service would expose an
operation that instructs the app to activate its main window. All that would be needed now is
to connect to the service (easy to do with WCF and Visual Studio) and invoke the operation
(a decent treatment of WCF is well beyond the scope of this book). This gives the added
benefit of providing a way to send parameters to the other running instance (such as a file
name provided as a command line argument); a example of the parameters to pass are
Microsoft Word (the file to open) and Media Player (the file to play). The downloadable
project for this recipe includes an example WCF hosting for just this purpose.

First, define the service contract:

[ServiceContract]

interface IActivateWindow {
 [OperationContract]

 void Activate(string[] args);
}

Chapter 5

165

Second, implement:

class ActivationService : IActivateWindow {
 public void Activate(string[] args) {
 var helper = new WindowInteropHelper(
 Application.Current.MainWindow);
 if(App.IsIconic(helper.Handle))
 App.OpenIcon(helper.Handle);
 App.SetForegroundWindow(helper.Handle);
 // use args...
 }
}

Check for another instance; if it exists, switch to it by calling the service. Otherwise, we're the
first, so open a WCF host to listen for clients (all in the App class):

const string _pipeAddress =
 "net.pipe://127.0.0.1/pipe/activation";

protected override void OnStartup(StartupEventArgs e) {
 bool isNew;
 var mutex = new Mutex(true, "MySingleInstanceMutex",
 out isNew);
 if(!isNew) { // use the service
 var svc = ChannelFactory<IActivateWindow>.CreateChannel(
 new NetNamedPipeBinding(),
 new EndpointAddress(_pipeAddress));
 svc.Activate(e.Args);
 Shutdown();
 }
 else {
 CreateHost();
 }
}

ServiceHost _host;
void CreateHost() {
 _host = new ServiceHost(typeof(ActivationService));
 _host.AddServiceEndpoint(typeof(IActivateWindow),
 new NetNamedPipeBinding(), _pipeAddress);
 _host.Open();
}

Application and Windows

166

Handling an unhandled exception
If a .NET exception goes unhandled, the process crashes with an unpleasant dialog
presented to the user by Windows. Unpleasantness aside, the user may lose data as
a result of the crash.

WPF provides a way to catch unhandled exceptions and perhaps handle them in some
meaningful way. At the very least, the application may present a friendlier looking crash
report and perhaps write the exception information to some log. At best, the application
may recover from the error and continue running normally. Let's see how this can be done.

Getting ready
Make sure Visual Studio is up and running.

How to do it...
We'll create a simple application that throws an unhandled exception and see how we can
catch it even if it's unhandled:

1. Create a new WPF Application project named CH05.UnhandledExceptions.

2. Open MainWindow.xaml. Add a Button to the Grid as follows:
<Button Content="Throw Exception" FontSize="20" Margin="10" />

3. Add a Click handler to the button. In the handler, add the following:
private void OnClick(object sender, RoutedEventArgs e) {
 throw new InvalidOperationException("something has gone
wrong");
}

4. Running the application now without the debugger and clicking the button would
crash the process, producing the default crash dialog.

5. Open App.xaml.cs. Add an event handler for the
DispatcherUnhandledException event (in the constructor):
public App() {
 DispatcherUnhandledException += OnUnhandledException;
}

6. Add a using statement for the System.Diagnostics namespace.

Chapter 5

167

7. Add the following code to the handler:
Trace.WriteLine(string.Format("{0}: Error: {1}", DateTime.Now,
 e.Exception));
MessageBox.Show("Error encountered! Please contact support."
 + Environment.NewLine + e.Exception.Message);
Shutdown(1);
e.Handled = true;

8. Run the application and click the button. You should see the following message box.
Click on OK and the application is shut down without the unpleasant Windows dialog:

How it works...
The DispatcherUnhandledException event of the Application object is fired when an
exception escapes handling, meaning no method on the main thread's call stack has elected
to handle the exception. Without this event, the process would crash.

The event allows last minute handling of an error. If the Handled property of the
DispatcherUnhandledExceptionEventArgs provided is set to true, the process does
not terminate (returning to pumping messages). However, it's usually too dangerous in this
situation to let the application continue running as usual, because the application may be in
some inconsistent state – after all, an exception has occurred somewhere, and this may have
resulted in partial work being done. It's usually safer to shut down the app and inform the user
he/she should run the app again. At least the user won't see the disturbing Windows dialog
and the application gets to save information about the exception and perhaps some other
state before going down.

The preceding code sets Handled to true to prevent crashing, but calls Application.
Shutdown to terminate the application, deemed too dangerous to continue running from
this point. The call to Trace.WriteLine would show up in any configured TraceListener
properties (tracing configuration is beyond the scope of this book); by default, it would
go to the debugger window (if a debugger is attached). Otherwise, it can be captured
by a custom tool, such as DebugView available from the SysInternals tools
(http://www.sysinternals.com).

http://www.sysinternals.com
http://www.sysinternals.com

Application and Windows

168

There's more...
This event can only be used to catch exceptions occurring on the UI thread (usually the main
thread). Exceptions occurring on other threads (such as threads from the thread pool) will still
crash the process (and not go through the event handler).

This means that letting exceptions slide to the DispatcherUnhandledException event
is not generally a good idea. It should be an excepted situation that gets there – and it will
never happen from a non-UI thread. Remember, this is a WPF mechanism; WPF has control
of the UI thread, but not other threads. If such behavior is desired, we can use standard .NET
mechanisms to be notified when an unhandled exception has occurred, such as registering
with the UnhandledException event of the AppDomain class (registered on the current
domain with AppDomain.CurrentDomain).

6
Data Binding

In this chapter we will cover:

 f Element to element binding

 f Binding to a single object

 f Binding to collections

 f Using data templates

 f Using value converters

 f Creating a master-details view

 f Sorting and filtering bound collections

 f Grouping bound collections

 f Binding to multiple properties

 f Binding hierarchical data to a TreeView

 f Presenting data in a grid

 f Validating data

Introduction
WPF is usually advertised as having great graphics and animation capabilities. This is
certainly true, as one of the most powerful features of WPF has nothing to do with graphics
directly: data binding. This feature is so powerful, that a new way of thinking is required,
especially for those coming from a more "traditional" background, such as WinForms or MFC.

Data Binding

170

Data binding is essentially simple: one property changes in an object – another property
in another object reflects the change in some meaningful way. That's the short story. The
longer story involves a lot of possible customizations, such as value converters and binding
modes. Coupled with data templates, data binding provides a compelling and powerful way
to visualize and interact with data.

A new pattern has emerged for WPF (and Silverlight) applications because of the power of
data binding, called Model View View-Model (MVVM); it's based on similar ideas from patterns
known as Model View Controller (MVC), and Model View Presenter (MVP). The main difference,
however, is the zealous use of data binding to declaratively connect objects without resorting
to fragile coding and maintenance headaches. We'll take a look at MVVM in the next chapter,
but for now we have to get a strong grip on data binding and how to use it, which is the focus
of this chapter.

Element to element binding
Data binding is classically done between a user interface element and a data object.
Sometimes, however, it's useful to bind one element's property to another's property. This can
reduce (or even eliminate) the need for handling conventional events. Let's see how to make
this work. This will also serve as a good start for doing bindings of any kind.

Getting ready
Make sure Visual Studio is up and running.

How to do it...
We'll create a Slider that affects the font size of a TextBlock without using any code.

1. Create a new WPF application named CH06.ElementToElementBindings.

2. Open MainWindow.xaml. Add the following markup to the existing Grid:
<Grid.RowDefinitions>
 <RowDefinition />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
</Grid.RowDefinitions>
<TextBlock Text="This is a sizing text"
 TextAlignment="Center" VerticalAlignment="Center"/>
<Slider x:Name="_slider" Grid.Row="1" Minimum="10"
 Maximum="80" Value="30"/>

Chapter 6

171

3. We'd like the FontSize property of TextBlock to match the Value property of
Slider. The traditional approach would be to use an event (ValueChanged), but
let's use data binding instead. Set the FontSize property of TextBlock as follows:
FontSize="{Binding Path=Value, ElementName=_slider}"

4. Run the application. Move the slider and watch the font size change.

5. Add a TextBox to the last row of the Grid and connect its Text property to the
Value property of Slider:
<TextBox Text="{Binding Value, ElementName=_slider}"
 Grid.Row="2" FontSize="20"/>

6. Run the application. Move the slider and watch the text change. Now type a value
into the TextBox (for example, 60); nothing happens until you move the focus of the
TextBox (for example, press Tab). The font size and slider change to reflect the
new value.

How it works...
Data binding connects a source property on a source object to a target property on a target
object. Whenever the source changes, the target is updated. This is the classical model,
but as we'll see other options are available in WPF. In the example code, both the source
and target objects are elements (not plain data).

Binding is specified in XAML using the Binding markup extension, placed on the target
property (this property must be a dependency property). The Binding properties we need
to set are (at least) the source object and the source property, if any binding is to actually
take place.

Data Binding

172

In the preceding code, the source object is set using the ElementName property and the
source property is set through the Path property. Note in the TextBox example, the source
property is set implicitly as a constructor argument (omitting Path=). The result is the same,
but is usually more convenient, especially when we use Data Templates in the Using data
templates recipe later in this chapter.

There's more...
We can hook up the binding in code as well as in XAML. The following is the equivalent code
to the FontSize property of TextBox binding to the Slider:

var binding = new Binding("Value");
binding.ElementName = "_slider";
_text.SetBinding(TextBlock.FontSizeProperty, binding);

Why would we want to do that? Most of the time we wouldn't. Creating bindings in code is
useful mostly when writing custom controls, as we'll see in Chapter 10, Custom Elements.

Binding mode
The Binding class has numerous properties to customize the binding process. We saw the
ElementName and Path properties. Let's take a look at another useful one, Mode (of the
type BindingMode enum).

The canonical data binding flow is from a source to a target. This is referred to as one way
binding. WPF supports other modes, such as two way (if the target changes, the source is
updated). In fact, in our example, the TextBox Text property (target) was bound to the
Value property of Slider (source), but writing a new value to the TextBox (and getting
the focus out) also moved the slider; this is a two way binding.

By default, the Mode is set to BindingMode.Default. The Default mode here
means whatever the target dependency property has been stated at registration
time (DependencyProperty.Register) with a FrameworkPropertyMetadata
(BindsTwoWayByDefault property, as discussed in Chapter 1). For the TextBox.Text
property the default is a two way binding; for the TextBlock.Text property it's one way (as
with most properties).

WPF supports two other (less useful) binding modes:

 f OneTime: Indicates the binding should occur only when the properties are first
connected. Any further changes to the source are not reflected on the target. This is
sometimes useful for properties that don't really change after first being bound, such
as commands (discussed in the next chapter).

 f OneWayToSource: Similar to one way, but works from the target to the source. This
is sometimes useful when the required target property is not a dependency property,
but the source property is.

Chapter 6

173

Update source trigger
In the preceding example, changing the text in the TextBox did not trigger an immediate
change in the source (the slider); we had to move the keyboard focus out of the TextBox.
The reason for that is tucked in another Binding property, UpdateSourceTrigger; it's only
relevant in a TwoWay or OneWayToSource binding mode, with the following possible values:

 f LostFocus: The source is updated when the target element loses focus (which is
exactly why the TextBox only updated the Slider after it had lost focus)

 f PropertyChanged: The source is updated as soon as the target property changes.
This is the default for most properties

 f Explicit: The source is updated if the UpdateSource method is called on the
binding expression (more on that in the next section)

 f Default: This is the default (if not explicitly set otherwise) set by the target
property at registration time with the FrameworkPropertyMetadata.
DefaultUpdateSourceTrigger property

Updating the source or target manually
Data binding typically occurs automatically, which is usually the desired behavior. Sometimes,
however, we may want to "force" data flow from source to target or vice versa (typically in
a OneTime binding mode, or when UpdateSourceTrigger is set to Explicit). This is
possible with the BindingExpression.UpdateSource and BindingExpression.
UpdateTarget methods. Here's an example:

var expr = BindingOperations.GetBindingExpression(_text,
 TextBox.TextProperty);
expr.UpdateSource();

Binding to a single object
Although element to element binding is occasionally useful, the classic data binding
scenario involves an element bound to pure data. One of the benefits of this kind of binding
is a decoupling of data from the way it's presented (if at all). All later changes are performed
on the data only, letting the binding take care of updating whatever elements are bound to
this data. In this recipe, we'll look at binding to a single data object.

Getting ready
Make sure Visual Studio is up and running.

Data Binding

174

How to do it...
We'll create some controls that bind to a single Person object, showing the basics of element
to data binding.

1. Create a new WPF application named CH06.SingleObjectBinding.

2. Open MainWindow.xaml. Change the existing Grid to a StackPanel.

3. Add two TextBlock elements with their Text property set with binding expressions
like so:
<StackPanel>
 <TextBlock Text="{Binding Name}" />
 <TextBlock Text="{Binding Age}" />
</StackPanel>

4. Running the application at this time shows nothing. That's because the bindings are
missing a source object. Let's fix that.

5. Add a new class to the project named Person. Create two automatic properties,
like so:
class Person {
 public string Name { get; set; }
 public int Age { get; set; }
}

6. Open MainWindow.xaml.cs. Add a private field of type Person to the
MainWindow class.

7. In the MainWindow constructor, create an instance of Person and set it to the
private field. Then set the DataContext property to this value:
_person = new Person { Name = "Bart", Age = 10 };
DataContext = _person;

8. Run the application. The property values are reflected in the TextBlocks because
the DataContext is the default source for the binding.

9. Open MainWindow.xaml. Add a Button to the StackPanel with a Click event
handler. Enter the following code inside the handler:
private void OnChange(object sender, RoutedEventArgs e) {
 _person.Age++;
}

Chapter 6

175

10. Run the application and click the button. Notice the displayed age doesn't change.
The property actually changed, but WPF didn't know about it.

11. Open Person.cs and make the Person class implement the
INotifyPropetryChanged interface (in the System.ComponentModel
namespace). It contains a single event, PropertyChanged:
class Person : INotifyPropertyChanged {
 public string Name { get; set; }
 public int Age { get; set; }

 public event PropertyChangedEventHandler PropertyChanged;
}

12. We need to raise the event when a property changes. We'll have to remove
the automatic property and implement it ourselves. Delete the Age property
implementation and add the following code:
int _age;
public int Age {
 get { return _age; }
 set {
 _age = value;
 var pc = PropertyChanged;
 if(pc != null)
 pc(this, new PropertyChangedEventArgs("Age"));
 }
}

13. Run the application and click the button several times. The age is changed and
displayed correctly.

How it works...
A binding needs a source object. In the previous recipe, we used the ElementName property
to get to a source object. For binding to data, ElementName is not appropriate.

Data Binding

176

The most useful (and common) option is to use the DataContext property. It's defined on
FrameworkElement (and FrameworkContentElement) and indicates the default source
object for bindings if none is specified in some other way (such as ElementName). When a
binding expression is not given an explicit source, the source becomes the closest non-null
DataContext starting from the target object up the visual tree. If none is found, then the
binding simply fails.

There's more...
Data binding may seem like magic, but underneath some code does the actual job.
In the preceding example, the binding worked initially, but it failed to track changes to
the source object until we implemented the INotifyPropertyChanged interface on
the data object (Person).

The problem is that with a property implemented as a thin wrapper around a private field,
there's no way WPF (or any other entity for that matter) can come to know that it changed.
This may require some polling of the property, but that's too expensive. The object must
somehow notify interested parties that the property changed.

There are two common ways to do that. The first is to turn the property into a dependency
property, which naturally supports change notifications. Although this seems attractive at
first, it has two problems:

 f It requires the data object to inherit from DependencyObject, which may be
inconvenient; the class may already inherit from something, so the base class is
taken (as .NET supports single inheritance only).

 f Even if the base class is not an issue, the data object must now incur a
dependency on WPF; this is far from ideal, as the same data object may
also be needed in another type of application, such as ASP.NET or WinForms.
Adding this dependency is cumbersome at the very least.

The second option, which is commonly used, is to implement the
INotifyPropertyChanged interface. As this is an interface, it does not take the
place of an optional base type that may be needed. And this interface is not defined
by WPF, but rather is part of System.Dll, one of the core .NET assemblies.

When bindings fail
If a data binding expression has incorrect data, the binding operation may fail; for example,
if the name TextBlock in the previous XAML is modified as follows:

<TextBlock Text="{Binding Name1}" />

The property name is somehow misspelled. Running the application throws no exceptions;
the binding silently fails. This may seem strange, but this is generally a good thing. To find out
about possible failures, we can run the application with the debugger, and watch the Output
window (View | Output in the Visual Studio menu). This is what you'll get in this case:

Chapter 6

177

System.Windows.Data Error: 40 : BindingExpression path error: 'Name1' property not
found on 'object' ''Person' (HashCode=37814994)'. BindingExpression:Path=Name1;
DataItem='Person' (HashCode=37814994); target element is 'TextBlock' (Name='');
target property is 'Text' (type 'String')

This shows the exact error, so it's usually easy to spot and correct.

Why is no exception thrown? The reason is that a data binding may fail at some point in time,
and that's ok, because the conditions for this binding have not been met yet; there may be
some information that is retrieved from a database, or from a web service, for instance; when
the data is finally available, those bindings suddenly begin to work correctly. We'll discuss
other ways of debugging data bindings in later recipes.

Other ways of getting a source binding object
There are two more ways of specifying a source object for binding. One of them is a Source
property, which seems simple enough, but in fact is almost useless. Source expects some
object, but as bindings are mostly expressed in XAML, Source must be something that
the XAML parses can see at XAML parsing time. This is usually problematic, as XAML is
unable to express dynamic connections to data that may not even be available yet; it is
sometimes useful when binding to data from a resource (using Source={StaticResource
resourceName}).

The last option is using the RelativeSource property. This allows binding the target object
to something that is related to it in some way. RelativeSource offers a Mode property
(an enum, also available as a constructor argument) that specifies the relativity kind.
Specifying a RelativeSource is done with a RelativeSource markup extension.
The possible modes are:

 f Self: The source object is the target object itself, meaning binding one property to
another property on the same object. Here's an example of binding a content of the
Button to its current width:
<Button Content="{Binding ActualWidth, RelativeSource=

 {RelativeSource Self}}" />

 f FindAncestor: The source object is a parent (not necessarily the immediate one)
of the target object. You can specify the kind of parent via the AncestorType
property (and the Nth ancestor of that type with the AncestorLevel property
(default is 1)). Here's an example of binding a text of the TextBlock to the height
of its containing window:
<TextBlock Text="{Binding ActualHeight, RelativeSource=
 {RelativeSource FindAncestor, AncestorType=Window}}" />

 f PreviousData: Makes the source the previous data object when binding to a
collection (as we'll see in the next recipe)

 f TemplatedParent: Indicates the source object is the control whose template is
being built. This is relevant inside a control template only (as we'll see in Chapter 8)

Data Binding

178

Implementing INotifyPropertyChanged
The INotifyPropertyChanged implementation shown is simple enough, but it has its
drawbacks. First, most of this code would have to be duplicated in every property, so placing
it in a common base class would be beneficial:

public abstract class ObservableObject :
 INotifyPropertyChanged {
 public event PropertyChangedEventHandler PropertyChanged;

 protected virtual void OnPropertyChanged(string propName) {
 var pc = PropertyChanged;
 if (pc != null)
 pc(this, new PropertyChangedEventArgs(propName));
 }
}

This is certainly better, and the Person class can be refactored:

class Person : ObservableObject {
 public string Name { get; set; }

 int _age;
 public int Age {
 get { return _age; }
 set {
 if(_age != value) {
 _age = value;
 OnPropertyChanged("Age");
 }
 }
 }
}

Note the check for a new value that is actually different from the current one.

The most severe problem is the use of a property name as a string, which is at least
inelegant, but more importantly can lead to subtle errors if the property name is
misspelled or later changed.

One way to improve this is to check at runtime that the property with that name actually
exists as the first line in OnPropertyChanged:

Debug.Assert(GetType().GetProperty(propName) != null);

Chapter 6

179

Another way to improve the code is to do the inequality check within a common method.
A further improvement would be not specifying the actual property name, but letting the
code infer it automatically. Check out the following method:

protected void SetProperty<T>(ref T field, T value,
 Expression<Func<T>> expr) {
 if(!EqualityComparer<T>.Default.Equals(field, value)) {
 field = value;
 var lambda = (LambdaExpression) expr;
 MemberExpression memberExpr;
 if (lambda.Body is UnaryExpression) {
 var unaryExpr = (UnaryExpression)lambda.Body;
 memberExpr = (MemberExpression)unaryExpr.Operand;
 }
 else {
 memberExpr = (MemberExpression)lambda.Body;
 }

 OnPropertyChanged(memberExpr.Member.Name);
 }
}

The first check uses EqualityComparer<T>.Default object to check for equality. This
property returns a default equality comparer that calls object.Equals if it has to, but if the
target object implements IEquatable<T>, it uses that implementation (for more information
on this please check out the MSDN documentation).

SetProperty<> accepts as the last argument, a lambda expression that the compiler
provides for the method in the form of an Expression object, which is a way to look at code
as data. This allows the extraction of the property name provided by the caller. A complete
look at expressions (System.Linq.Expressions) is beyond the scope of this book; check
the MSDN docs or the Web. Bottom line – using this method in a data object becomes safer
if not simpler:

int _age;
public int Age {
 get { return _age; }
 set { SetProperty(ref _age, value, () => Age); }
}

Now the property name is deduced automatically, so any errors will be evident at compile
time, rather than runtime.

Data Binding

180

Implementing SetProperty with Visual Studio 2012 and C# 5.0
With Visual Studio 2012 and C# 5.0, the preceding code can be simplified further, thanks to
a C# 5.0 feature that provides the caller member name automatically. This is how it looks:

protected void SetProperty<T>(ref T field, T value,
 [CallerMemberName] string propName = null) {
 if(!EqualityComparer<T>.Default.Equals(field, value)) {
 field = value;
 var pc = PropertyChanged;
 if(pc != null)
 pc(this, new PropertyChangedEventArgs(propName));
 }
}

The new CallerMemberName attribute makes the compiler provide the calling member
name. This means that the property setter is now simplified:

 set { SetProperty(ref _age, value); }

That's about as simple as we can get.

Binding to a collection
The previous recipe showed how to bind various properties to a single object, using single
data controls, such as TextBlock, TextBox, or Button. Some controls, however, are
capable of displaying multiple object data, such as a ListBox. These controls can bind to
a collection of data objects, and with the help of data templates and value converters (to be
covered in later recipes), become a powerful visualization tool. Let's examine the basic ideas
of binding to collection of objects.

Getting ready
Make sure Visual Studio is up and running.

How to do it...
We'll create a collection of Person object and bind them to a ListBox, showing the details
we need to take care of.

1. Create a new WPF Application named CH06.BindingToCollection.

2. Open MainWindow.xaml. Add a ListBox to the existing Grid and give it a name:
<ListBox x:Name="_list">
</ListBox>

Chapter 6

181

3. Create a new Person class, with two properties, Name and Age, similar to the
previous recipe (no need for INotifyPropertyChanged for this example).

4. Open MainWindow.xaml.cs. Add a private field of type List<Person> to
MainWindow.

5. In the MainWindow constructor, after the call to InitailizeComponent,
create a list of Person objects as follows:
_people = new List<Person> {
 new Person { Name = "Bart", Age = 10 },
 new Person { Name = "Homer", Age = 45 },
 new Person { Name = "Marge", Age = 35 },
 new Person { Name = "Lisa", Age = 12 },
 new Person { Name = "Maggie", Age = 1 }
};

6. Set the ItemsSource property of ListBox to refer to that list:
_list.ItemsSource = _people;

7. Run the application. You should see the following:

8. Clearly, the default ToString of Person is called for each object. We can change
the ToString implementation to something more useful:
public override string ToString() {
 return string.Format("{0} is {1} years old", Name, Age);
}

9. Running the application now shows:

Data Binding

182

10. Another way to customize the view is set the DisplayMemebrPath property of the
ListBox. Open MainWindow.xaml and set the property as follows:
<ListBox x:Name="_list" DisplayMemberPath="Name">

11. Running the application shows only the names.

12. Create two rows for the Grid:
<Grid.RowDefinitions>
 <RowDefinition />
 <RowDefinition Height="Auto" />
</Grid.RowDefinitions>

13. Add a Button to the second row, with a Click event handler as follows:
<Button Content="Add" Click="OnAdd" Grid.Row="1" />

14. In the event handler, add a Person object to the existing collection:
_people.Add(new Person { Name = "Moe", Age = 40 });

15. Run the application and click on the button. No person is added to the ListBox.
That's because when an object is added to a List<>, no notification is sent.

16. To solve that, replace List<Person> with ObservableCollection<Person>
(in the System.Collections.ObjectModel namespace).

17. Now run the application and click the button. Moe is added to the ListBox.

How it works...
All controls inheriting from ItemsControl provide an ItemsSource property that should be
set to some collection object (implementing at least IEnumerable), which sets up the source
of the binding.

By default, items are displayed as TextBlocks using the ToString values for each object.
One way to change that is using the DisplayMemberPath property. This is a property path,
meaning we can use sub-properties, including indexers, to get the actual property we want
to display.

Chapter 6

183

Using List<T> is usually not good enough because when objects are added or removed
from the list, no notification is sent, so no bound control can be updated. WPF looks
for an interface, INotifyCollectionChanged, to be implemented in the source
collection object. List<T> does not implement this interface, but an alternative class,
ObservableCollection<T>, does.

There's more...
Can we use a DataContext in this case? Certainly. We can set the DataContext of some
object which is a parent of the ItemsControl in question and then use an empty binding
expression to find it. This will allow us to bind the same collection to other objects. Here's an
example with a ComboBox within the same Grid:

<ComboBox ItemsSource="{Binding}" Grid.Row="2"/>

Note the binding expression. Omitting it will fail the binding, as it means the source is a null
reference, which means no source. Now we need to set the DataContext in code:

DataContext = _people;

Synchronizing selected items
With the previous example, a ComboBox and a ListBox are bound to the same exact data. If
the selection is changed in the ListBox, it does not affect the selected item in the ComboBox
and vice versa. If we wanted the selected item to be synchronized between Selector controls
that bind to the same data, we could set the IsSynchronizedToCurrentItem property on
the ComboBox and ListBox to true:

IsSynchronizedWithCurrentItem="True"

Now moving the selection in one control updates it in the other. How does this work? We'll
discuss that in a future recipe in this chapter, Sorting and filtering bound collections.

Data binding and the Items property are mutually exclusive
Using data binding with ItemsControl and its derivatives makes using the Items property
for adding or removing elements throw an exception. And with good reason too – with data
binding we want to deal with the data itself, and not have to think about which control it's
bound to (if any). It is possible to use the Items property in a read-only manner, but it's bad
practice to do so; we want to deal with the data only and not with controls that may disappear
or be replaced in the future.

Data Binding

184

What about "real" data?
The preceding code uses collections of objects created locally, but many applications get
their data from an external source, such as a relational database or some web service.
WPF, however, does not care about that. The result is a collection, obtained in some way, for
example, using the Entity Framework (EF) to access a SQL Server database, or by calling some
Windows Communication Foundation (WCF) service. The net result is a collection (at least
IEnumerable<T>), which is all WPF needs for binding to work correctly.

Using data templates
In previous recipes we showed some Person objects as strings, whether it's the ToString
implementation or some specific property. Text is not the only option. Even with text, we may
want to change its properties, such as fonts and colors. WPF provides a powerful way to
visualize data using the concept of data templates. In this recipe, we'll see how to create
and use such templates.

Getting ready
Make sure Visual Studio is up and running.

How to do it...
We'll create a simple application that shows Person objects in a more interesting way using
data templates.

1. Create a new WPF Application named CH06.DataTemplates.

2. Add a new class named Person, with an Age and Name properties, similar to the
previous recipe.

3. Open MainWindow.xaml. Add two rows to the grid like so:
<Grid.RowDefinitions>
 <RowDefinition Height="Auto"/>
 <RowDefinition />
</Grid.RowDefinitions>

4. Add a Button to the first row, with its Content bound to whatever DataContext is
effective at the moment:
<Button Content="{Binding}" />

5. Open MainWindow.xaml.cs. Add the following to the constructor after the call to
InitializeComponent:
DataContext = new Person { Age = 10, Name = "Bart" };

Chapter 6

185

6. Run the application. You should see the button display the default ToString of
the Person instance. We can change that by overriding ToString, but let's try
something different.

7. Set the ContentTemplate property of the Button to a DataTemplate instance
and add inside that some markup with binding expressions. The entire Button XAML
might look something like this:
<Button Content="{Binding}">
 <Button.ContentTemplate>
 <DataTemplate>
 <Border BorderBrush="Green" BorderThickness="2">
 <StackPanel Margin="4">
 <TextBlock Foreground="Red" FontSize="20"
 Text="{Binding Name}"
 TextAlignment="Center" />
 <TextBlock FontSize="16"
 Text="{Binding Age}"
 TextAlignment="Right" />
 </StackPanel>
 </Border>
 </DataTemplate>
 </Button.ContentTemplate>
</Button>

8. Running the application shows the following:

9. Open MainWindow.xaml. Add a ListBox to the second row of the Grid and give it
a name:
<ListBox Grid.Row="1" x:Name="_list"
 HorizontalContentAlignment="Stretch" />

10. Open MainWindow.xaml.cs. In the constructor, create a bunch of Person objects,
and set the ItemsSource property of ListBox to that collection:
_list.ItemsSource = new ObservableCollection<Person> {
 new Person { Name = "Bart", Age = 10 },
 new Person { Name = "Homer", Age = 45 },
 new Person { Name = "Marge", Age = 35 }
};

Data Binding

186

11. Running the application shows each person in the list with its ToString
representation. We want to use the DataTemplate previously defined.

12. To avoid copy/paste, move the previous DataTemplate to a resource in
the Window with a key personTemplate:
<Window.Resources>
 <DataTemplate x:Key="personTemplate">
…
 </DataTemplate>
</Window.Resources>

13. Change the ContentTemplate property of Button to use the resource:
<Button Content="{Binding}"
 ContentTemplate="{StaticResource personTemplate}" />

14. Set the ItemTemplate property of ListBox to that same resource:
<ListBox Grid.Row="1" x:Name="_list"
 HorizontalContentAlignment="Stretch"
 ItemTemplate="{StaticResource personTemplate}" />

15. Run the application. Every person object is displayed in the same way based on the
data template.

How it works...
Data templates are just what they sound like: templates for visualizing data; these are in
contrast to control templates (which we'll see in Chapter 8), that are templates for controls.

Chapter 6

187

Content controls have a Content property (of type Object) that is rendered as TextBlocks
if that object does not derive from UIElement. If, however, their ContentTemplate is
non-null, then that DataTemplate provides the visual appearance of that object. This can
be a single element only, typically a Panel, which can host just about anything. Binding
expressions inside the template should not include a specific Source or ElementName,
because the default Source (or DataContext if you will) is the actual data object (a specific
person in the preceding code example). This means that the following markup sets the text to
be the value of the Name property of the currently bound object (whether this is a Person
or not).

<TextBlock Foreground="Red" Text="{Binding Name}" />

If the property does not exist, then the binding fails. This means that for every such Person
a copy of the visual tree represented by the DataTemplate is instantiated (that's why it's
called "template").

The ItemsControl class and its derivatives provide a property called ItemTemplate that
serves the exact same purpose, but affects each item in the collection it's bound to.

The HeaderedContentControl (and its derivatives) provide an additional
HeaderTemplate to customize the way the value set to the Header property is displayed.

There's more...
Data templates are not directly connected to data binding; that is, it's possible to use the
regular Items property to add or remove objects from, say, a ListBox and still be able to use
data templates. Using ItemsControl and its derivatives without data binding is rare, and
should be avoided.

Data type based data templates
Providing data templates via the relevant properties (as was done in the preceding code
samples) is easy enough, and the use of resources simplifies this further. There is another
option, though. We can specify generally that whenever some type is encountered anywhere
in the application, a specific DataTemplate should be used without the need to specify it
directly via properties.

To do that, we must create the DataTemplate as a resource, setting the DataType
property to the required type, but omitting the usual x:Key property. Here's an example for
our trusty Person (assuming the XML prefix local points to the current assembly defining
the Person type):

<Window.Resources>
 <DataTemplate DataType="{x:Type local:Person}">
…
 </DataTemplate>
</Window.Resources>

Data Binding

188

The resource can be placed in App.xaml for a more global effect. A ListBox bound to some
Person objects can be written as follows:

<ListBox HorizontalContentAlignment="Stretch"
 ItemsSource="{Binding}" />

Note the lack of the ItemTemplate property. It's set automatically because of the
resource definition.

The real benefit from this feature is its automatic polymorphism. Suppose there's a class
deriving from Person:

class Employee : Person {
 public string Department { get; set; }
}

We can build a DataTemplate for displaying employees as follows:

<DataTemplate DataType="{x:Type local:Employee}">
 <Border BorderBrush="Black" BorderThickness="1">
 <StackPanel Margin="4" Orientation="Horizontal">
 <TextBlock Foreground="Blue" FontSize="20"
 Text="{Binding Name}" TextAlignment="Center" />
 <TextBlock Foreground="Red" FontSize="16"
 Text="{Binding Department}"
 Margin="20,0,0,0" VerticalAlignment="Center"/>
 </StackPanel>
 </Border>
</DataTemplate>

Now suppose we create a few objects and bind them to a ListBox, as follows:

DataContext = new ObservableCollection<Person> {
 new Person { Name = "Bart", Age = 10 },
 new Employee { Name = "Homer", Age = 45,
 Department = "Nuclear" },
 new Person { Name = "Marge", Age = 35 },
 new Employee { Name = "Lisa", Age = 12,
 Department = "Accounting" },
 new Person { Name = "Maggie", Age = 1 }
};

Chapter 6

189

Some of these are Person objects and some Employee objects, but the DataTemplate is
selected correctly based on the actual type:

The complete example is available in the downloadable source for this chapter in the
CH06.DataTypedDataTemplates project.

Data template selectors
Another way to select different data templates is based on the concept of a template
selector. This is an object that receives each data object bound to an ItemsControl (or
its derivatives) and returns the required DataTemplate for this instance. This allows the
selecting of different templates for different objects of the same type (something the data
type based technique can't do).

To achieve this, we need to create a class deriving from the abstract
DataTemplateSelector and override its SelectTemplate abstract method. Here's a
selector class that uses different templates for displaying Process objects:

class ProcessTemplateSelector : DataTemplateSelector {
 public string SystemProcessTemplate { get; set; }
 public string UserProcessTemplate { get; set; }

 public override DataTemplate SelectTemplate(object item,
 DependencyObject container) {
 Process process = (Process)item;
 return ((FrameworkElement)container).FindResource(
 process.SessionId == 0 ?
 SystemProcessTemplate : UserProcessTemplate)
 as DataTemplate;
 }
}

Data Binding

190

The selector method is called for each and every item when it's first bound to the control.
This particular implementation uses the SessionId property of the Process class to decide
what template to use. For flexibility, it exposes two possible template names as properties,
which is useful for trying out different templates dynamically. The item argument is the actual
object on which decisions should be made (a Process in our case); the container property
is the actual control (a ListBox in our case as we shall see in a moment), that may be
useful – as it is in this case - it's used as a base element for hunting a DataTemplate
resource based on the custom properties.

This is just a class, so an instance should be created somehow and used by an
ItemsControl object. First, we create two alternative DataTemplates for
Process objects in a Resources dictionary:

<DataTemplate x:Key="systemTemplate">
 <Border Background="Red" BorderBrush="Black"
 BorderThickness="1" Margin="2" Padding="4">
 <TextBlock HorizontalAlignment="Center"
 VerticalAlignment="Center"
 FontSize="16" Text="{Binding ProcessName}" />
 </Border>
</DataTemplate>
<DataTemplate x:Key="userTemplate">
 <Border Background="White" BorderBrush="Blue"
 BorderThickness="1" Margin="2">
 <StackPanel Orientation="Horizontal"
 TextBlock.FontSize="15" Margin="2">
 <TextBlock Text="{Binding ProcessName}" />
 <TextBlock Margin="10,0,0,0"
 Text="{Binding Id, StringFormat='ID: 0'}" />
 <TextBlock Margin="10,0,0,0"
 Text="{Binding Threads.Count, StringFormat='Threads: 0'}" />
 </StackPanel>
 </Border>
</DataTemplate>

Now for the selector object itself. As a control needs to access it, it's easiest to create it as a
resource as well:

<local:ProcessTemplateSelector x:Key="_selector"
 SystemProcessTemplate="systemTemplate"
 UserProcessTemplate="userTemplate" />

All that's left is to create a ListBox that chooses to use the selector:

<ListBox HorizontalContentAlignment="Stretch"
 ItemsSource="{Binding}"
 ItemTemplateSelector="{StaticResource _selector}"/>

Chapter 6

191

The processes themselves are bound to the ListBox using the usual DataContext:

DataContext = Process.GetProcesses();

That's it. Running this example on my machine produces the following:

The complete example is available with the downloadable source for this chapter in a project
named CH06.DataTemplateSelectors.

It's important to realize the SelectTemplate is only called once per object. This means that
if an object changes internally that would mandate a different data template to be used, this
won't happen. In cases like these, a value converter may be more appropriate (as we'll see in
the next recipe). It is possible, however, to force the control to re-evaluate all its templates by
explicitly setting ItemTemplateSelector to null and then to an actual instance (which
could be the same one); this will force the ItemsControl to re-create the items while using
the selector to get the chosen DataTemplate for each object.

Using value converters
Data templates provide a powerful way to visualize any data. We discussed a few ways to
customize the appearance of data templates. In this recipe, we'll look at value converters,
which is a flexible mechanism to customize data bindings in general, and data templates in
particular. Their power ranges from simple data transformations to significant visual changes.

Data Binding

192

Getting ready
Make sure Visual Studio is up and running.

How to do it...
We'll create a weather forecast application that uses a value converter to convert a general
weather outlook into a brush.

1. Create a new WPF application named CH06.WeatherForecast.

2. We'll create a simple weather forecasting application. Add a new class named
Forecast with some simple properties:
enum GeneralForecast {
 Sunny,
 Rainy,
 Snowy,
 Cloudy,
 Dry
}

class Forecast {
 public GeneralForecast GeneralForecast { get; set; }
 public double TemperatureHigh { get; set; }
 public double TemperatureLow { get; set; }
 public double Percipitation { get; set; }
}

3. Open MainWindow.xaml. Add three rows in the Grid and some controls:
<Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition />
</Grid.RowDefinitions>
<StackPanel Orientation="Horizontal">
 <TextBlock Text="Select number of days to forecast:"
 FontSize="15" VerticalAlignment="Center" Margin="4"/>
 <ComboBox x:Name="_days" SelectedIndex="0" Width="50"/>
 <Button Margin="4" Content="Get Forecast" FontSize="16" />
</StackPanel>
<StackPanel Orientation="Horizontal" Grid.Row="1" Margin="4"
 TextBlock.FontSize="15">
 <TextBlock Text="Select units:" Margin="4"/>
 <RadioButton Content="Celsius" IsChecked="True"

Chapter 6

193

 Margin="10,4"/>
 <RadioButton Content="Fahrenheit" Margin="20,4"/>
</StackPanel>
<ListBox ItemsSource="{Binding}" Grid.Row="2"
 HorizontalContentAlignment="Stretch">
</ListBox>

4. We'll generate a dummy forecast when the button is clicked. Add a Click event
handler for the button. Inside, add the following code:
var data = new List<Forecast>();
int days = (int)_days.SelectedItem;
var rnd = new Random();
for(int i = 0; i < days; i++) {
 double temp = rnd.NextDouble() * 40 - 10;
 var forecast = new Forecast {
 GeneralForecast = (GeneralForecast)rnd.Next(
 Enum.GetValues(typeof(GeneralForecast)).Length),
 TemperatureLow = temp,
 TemperatureHigh = temp + rnd.NextDouble() * 15,
 Percipitation = rnd.Next(10)>5 ? rnd.NextDouble()*10 : 0
 };
 data.Add(forecast);
}
DataContext = data;

5. _days is the ComboBox instance for selecting the number of days. To populate it,
add the following to the MainWindow constructor:
_days.ItemsSource = Enumerable.Range(1, 10);

6. The call to Enumerable.Range returns a collection of integers (1 to 10 in this case).
The ListBox is bound to the DataContext, but to see something useful, we need a
DataTemplate for the ListBox. Add the following to the ListBox markup:
<ListBox.ItemTemplate>
 <DataTemplate>
 <Border Margin="4" BorderBrush="Black" Padding="4"
 BorderThickness="2" Background="White">
 <StackPanel Orientation="Horizontal">
 <TextBlock FontSize="20" FontWeight="Bold"
 Text="{Binding GeneralForecast}" />
 <TextBlock FontSize="16" Margin="10,0,0,0"
 VerticalAlignment="Bottom"
 Text="{Binding TemperatureLow,
 StringFormat='Low: \{0:N2\}'}" />
 <TextBlock FontSize="16" Margin="10,0,0,0"

Data Binding

194

 VerticalAlignment="Bottom"
 Text="{Binding TemperatureHigh,
 StringFormat='High: \{0:N2\}'}" />
 <TextBlock FontSize="16" Margin="20,0,0,0"
 VerticalAlignment="Bottom"
 Text="{Binding Percipitation,
 StringFormat='Percip: \{0:N2\}'}" />
 </StackPanel>
 </Border>
 </DataTemplate>
</ListBox.ItemTemplate>

7. Run the application. Select a number of days from the ComboBox and click the
button. Here's a sample output:

8. We'd like to change the background of each day's forecast based on the
general forecast (for example, a yellow background for sunny weather). For
that we'll create a value converter. Add a new class to the project named
GeneralForecastToBrushConverter.

9. Implement the IValueConverter interface on that class (in the
System.Windows.Data namespace). This is what the skeleton looks like:
class GeneralForecastToBrushConverter : IValueConverter {
 public object Convert(object value, Type targetType, object
parameter, System.Globalization.CultureInfo culture) {
 throw new NotImplementedException();
 }

 public object ConvertBack(object value, Type targetType,
object parameter, System.Globalization.CultureInfo culture) {
 throw new NotImplementedException();
 }
}

Chapter 6

195

10. We need to convert a GeneralForecast enum value to a Brush with the
appropriate color. Add the following to the Convert method (delete the
throw statement):
var gf = (GeneralForecast)value;
switch(gf) {
 case GeneralForecast.Cloudy:
 return Brushes.LightGray;
 case GeneralForecast.Dry:
 return Brushes.LightYellow;
 case GeneralForecast.Rainy:
 return Brushes.LightGreen;
 case GeneralForecast.Snowy:
 return Brushes.LightBlue;
 case GeneralForecast.Sunny:
 return Brushes.Yellow;
}
return Binding.DoNothing;

11. To set everything up, we need to create an instance of the converter and wire it up
to a binding expression. We'll create it as a resource in the Window (the local XML
namespace maps to the project namespace):
<Window.Resources>
 <local:GeneralForecastToBrushConverter x:Key="gf2brush" />
</Window.Resources>

12. Now we need to change the Background property of (for example) the Border
element within the DataTemplate to take the converter into consideration,
passing the GeneralForecast value:
Background="{Binding GeneralForecast,
 Converter={StaticResource gf2brush}}"

13. Run the application. Here's a sample output:

Data Binding

196

How it works...
A value converter is an object implementing the IValueConverter interface. It provides a
way to convert, or project, one value to another. The values may be of incompatible types (as
in the preceding example – an enum converted into a Brush), or they may be of the same
type, but require some transformation that is not possible declaratively.

Value converters are powerful, because they are written in code, not just markup. An instance
of the converter is typically created in XAML as a resource and are provided via binding
expressions with the Converter property. Whenever the source property changes, the
converter gets the opportunity to return a different result through the Convert method.

The ConvertBack method is called in a two way binding, where the roles of source and
target are reversed. In a one-way binding, there's no need to implement ConvertBack.

There's more...
The Convert and ConvertBack methods accept other arguments beside the actual bound
value. Here's the prototype for Convert:

public object Convert(object value, Type targetType,
 object parameter, CultureInfo culture);

targetType indicates the expected return type for the binding to work. In our example,
that target property is Background, which is a type of Brush, so targetType is
typeof(Brush). This argument can serve several purposes:

 f Provide a way to validate that the converter is in fact used in the correct context. In
our example, the following code is added as the first line to make sure a Brush is
what's requested:
if(targetType != typeof(Brush))
 throw new ArgumentException("targetType");

 f To differentiate between several ways a single converter may work. For instance,
a converter may be able to return a Brush or a Color, depending on its exact
placement. This would give the method a way to distinguish between the possible
return types it supports.

The parameter argument can be specified with the ConverterParameter property of the
Binding, providing a way to customize the current requested conversion. This is application
specific; WPF does nothing with this argument.

Chapter 6

197

The last culture argument allows specifying a CultureInfo object through the
ConverterCulture property of the Binding. This is specified in the usual CultureInfo
way, for example, "en", "en-US", "fr-CA", and so on. This allows the converter to base its
operation on culture specific information, such as date and time formats and currency
type. By default, the system UI culture is provided.

Using converters for debugging
Debugging data bindings is naturally hard, as everything is so "automatic". There's no
location to place a breakpoint, for example (in Silverlight 5, however, it is possible to place a
breakpoint in XAML bindings, but this feature is unavailable at this time in WPF). One way to
get around that is to create a simple converter, which does nothing, but provides a way to set
a breakpoint. With that breakpoint in place, you can examine the value coming in, the target
type, and so on.

Formatting strings
Strings are a common data type to show in bindings, whether a converter is involved or not.
Suppose we want to show the temperature in our forecast, but want to prefix a text, such
as Temp: in front of the actual value. One way to do that is to create another TextBlock
that shows that constant text. Or we can use a TextBlock with Inline elements, consisting
of Run elements that bind to values and simple Span elements that don't.

Another common example is displaying values that have several formats, such as date or
time. By default, the ToString method will be called on (for example) a DateTime object.
How would we display just the time? Or the date? Or perhaps the date in the long format?

One possible solution is to use a converter, which clearly can do anything. However, for
these scenarios there's a simpler way that does not require code: the StringFormat
property of a Binding. This is similar to the ToString methods that accept a format
string. In the preceding example, each value of the forecast was prefixed with some text
using StringFormat. For example:

Text="{Binding TemperatureLow, StringFormat='Low: \{0:N2\}'}"

This indicates that the word Low: should be displayed as is, and the format specifier N2
means (for double values) the number should be displayed with 2 decimal digits. The strange
backslashes are escapes for the curly braces; otherwise they might confuse the XAML parser.
The single quote is not strictly required in this case, but the intent seems clearer.

Customizing with data triggers
Converters are certainly one of the most powerful tools in the binding toolbox, because they
use code, which naturally can do anything. Some changes, however, can be made with XAML
alone. One such change was shown in the previous section with StringFormat. What about
non-string related customizations?

Data Binding

198

Data triggers can be applied to DataTemplate objects (via the Triggers property) to
make certain changes under certain conditions, with no code needed. For example, our
forecast DataTemplate can be rewritten with the use of data triggers to have the same
effect without any converter:

<DataTemplate>
 <Border x:Name="_border" Margin="4" BorderBrush="Black"
 BorderThickness="2" Padding="4" Background="LightGray">
 <StackPanel Orientation="Horizontal">
 <TextBlock FontSize="20" FontWeight="Bold"
 Text="{Binding GeneralForecast}" />
 <TextBlock FontSize="16" Margin="10,0,0,0"
 VerticalAlignment="Bottom"
 Text="{Binding TemperatureLow,
 StringFormat=Low: \{0:N2\}}" />
 <TextBlock FontSize="16" Margin="10,0,0,0"
 VerticalAlignment="Bottom"
 Text="{Binding TemperatureHigh,
 StringFormat='High: \{0:N2\}'}" />
 <TextBlock FontSize="16" Margin="20,0,0,0"
 VerticalAlignment="Bottom" Text="{Binding Percipitation,
 StringFormat='Percip: \{0:N2\}'}" />
 </StackPanel>
 </Border>
 <DataTemplate.Triggers>
 <DataTrigger Binding="{Binding GeneralForecast}"
 Value="Sunny">
 <Setter Property="Background" Value="Yellow"
 TargetName="_border"/>
 </DataTrigger>
 <DataTrigger Binding="{Binding GeneralForecast}"
 Value="Snowy">
 <Setter Property="Background" Value="LightBlue"
 TargetName="_border"/>
 </DataTrigger>
 <DataTrigger Binding="{Binding GeneralForecast}"
 Value="Rainy">
 <Setter Property="Background" Value="LightGreen"
 TargetName="_border"/>
 </DataTrigger>
 <DataTrigger Binding="{Binding GeneralForecast}"
 Value="Dry">
 <Setter Property="Background" Value="LightYellow"
 TargetName="_border"/>
 </DataTrigger>
 </DataTemplate.Triggers>
</DataTemplate>

Chapter 6

199

The changes are marked in bold. A full discussion of triggers in general, and data triggers
in particular, is provided in Chapter 8, Styles, Triggers, and Control Templates, but here we
can see the basics.

A DataTrigger object checks a property for equality to a value; the required property
is specified using the Binding property of DataTrigger, which should be a binding
expression. The comparison is always with an equality operator; there's no way to use
something like greater than, less then, and so on; this is one of the shortcomings of triggers.
In our case, however, this is good enough – we compare values of the GeneralForecast
property to the various enum values. If there is a match, a bunch of Setter objects can be
used that set a value to some property on some object (using the TargetName property).
Note that our famous Border is named _border, which all setters reference.

The end result is the same – no converter needed. The complete project is named
CH06.WeatherForecastWithTriggers and is available with the downloadable
source for this chapter.

Creating a master-detail view
A master-detail view is a common way to display lots of information. The master shows a
compressed view of some objects, while the detail view shows the selected object (from the
master) in greater detail, as appropriate. Let's examine a typical way to achieve this in WPF.

Getting ready
Make sure Visual Studio is up and running.

How to do it...
We'll create an application that shows a list of processes and a detailed look of a
selected process.

1. Create a new WPF application named CH06.MasterDetail.

2. Open MainWindow.xaml. Add the following markup to the existing Grid, creating
two columns with first holding a ListBox:
<Grid.ColumnDefinitions>
 <ColumnDefinition Width="200"/>
 <ColumnDefinition />
</Grid.ColumnDefinitions>
<ListBox ItemsSource="{Binding}" FontSize="16"
 DisplayMemberPath="ProcessName" x:Name="_master"/>

Data Binding

200

3. The ListBox will serve as the master view, showing a flat list of all running
processes on the system. Now we need the detail view. This will be a simple
Grid hosting some TextBlock elements bound to various properties of a process:
<Grid Grid.Column="1" TextBlock.FontSize="16">
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>
 <TextBlock Margin="6" Text="{Binding ProcessName,
StringFormat='Name: \{0\}'}" />
 <TextBlock Grid.Row="1" Margin="6" Text="{Binding Id,
StringFormat='ID: 0'}" />
 <TextBlock Grid.Row="2" Margin="6" Text="{Binding
PriorityClass, StringFormat='Priority Class: \{0\}'}" />
 <TextBlock Grid.Row="3" Margin="6" Text="{Binding Threads.
Count, StringFormat='Threads: 0'}" />
 <TextBlock Grid.Row="4" Margin="6" Text="{Binding
TotalProcessorTime, StringFormat='Processor Time: \{0:G\}'}" />
</Grid>

4. Let's add the collection of processes as the base for the ListBox binding. Open
MainWindow.xaml.cs and add the following in the constructor:
DataContext = Process.GetProcesses();

5. Running the application now shows the details of the first process in the list,
regardless of selection. To actually view the details of the currently selected process,
we need to set the DataContext that the detail Grid sees. Add the following as a
property of the inner Grid:
DataContext="{Binding SelectedItem, ElementName=_master}"

6. Run the application. You should be able to see details of the currently
selected process.

Chapter 6

201

How it works...
The source to a binding is typically supplied with a DataContext. In this case, a top level
DataContext is used for the "master" ListBox, and an inner DataContext is used for the
"details" by binding to the ListBox.SelectedItem property. This is very convenient, making
the inner binding expressions simple. Naturally, a converter can be used if appropriate.

There's more...
Binding the SelectedItem of the ListBox is a viable option, but there is another way to
achieve this, and it's a bit more elegant.

First, we set the IsSynchronizedWithCurrentItem property of the ListBox to true.
Then, we set the inner DataContext to bind to the CurrentItem property like so:

DataContext="{Binding CurrentItem}"

This works without any changes to the inner bindings. It seems odd, though: where did that
property come from? And what is the source object? It can't be the nearest DataContext,
because that's a list of processes.

The answer lies with a data view object, which always exists between the control and
the actual collection. It implements the ICollectionView interface (in the System.
ComponentModel namespace). This interface will be discussed more fully in the next recipe,
but for now there is a property called CurrentItem on this interface and we're binding to it.
Setting IsSynchronizedWithCurrentItem to true on the ListBox is necessary so that
the current item on the ICollectionView is actually tracked.

A simpler selected item binding
We can even simplify the use of CurrentItem. We simply drop the inner DataContext
expression (with the binding to CurrentItem), but instead we add a forward slash to all
the property paths in the inner bindings. For example, the ProcessName property is bound
as follows:

Text="{Binding /ProcessName, StringFormat='Name: \{0\}'}"

Note the forward slash before ProcessName. This slash is shorthand for CurrentItem;
that's why the inner DataContext is unnecessary.

The full source of this example is in the CH06.MasterDetail2 project available within the
downloadable source for this chapter.

Data Binding

202

Sorting and filtering bound collections
Data templates provide a powerful way to present data using text, images, and anything else
WPF is capable of. Often, we need to present the data in some order, typically sorted by some
property (or properties). Sometimes we don't want to show all data, but a part of it, such as
when a user searches for something and we want to show the result of the search, which
maybe just a subset of the original data.

One way to go about it is to operate on the data itself. We can certainly apply sorting on lists
(List<T>.Sort, Array.Sort, and so on), as well as filtering (List<T>.FindAll), and
by using Language Integrated Query (LINQ) it's even easier (and more versatile) to sort
(orderby clause) and/or filter (where clause) to get a new collection. Although this works,
it requires explicitly binding the resulting collection to the correct controls (some may show
the original collection, some may show sorted/filtered data).

WPF provides an alternative: using a view object that sits between the original data and the
control, we can specify sorting and filtering (and as we'll see later, grouping as well), without
ever touching the original data collection.

Getting ready
Make sure Visual Studio is up and running.

How to do it...
We'll create an application that shows all processes running on the system and provide for
sorting and filtering.

1. Create a new WPF application named CH06.SortingAndFiltering.

2. Open MainWindow.xaml. Add two rows to the existing Grid. The first
holds a ListBox, and the second holds a horizontal StackPanel:
<Grid.RowDefinitions>
 <RowDefinition />
 <RowDefinition Height="Auto" />
</Grid.RowDefinitions>
<ListBox HorizontalContentAlignment="Stretch"
 ItemsSource="{Binding}">
</ListBox>
<StackPanel Grid.Row="1" Orientation="Horizontal" Margin="4"
 TextBlock.FontSize="14">
</StackPanel>

Chapter 6

203

3. The ListBox should display information for System.Diagnostics.Process
objects. Add the following data template to the ListBox:
<ListBox.ItemTemplate>
 <DataTemplate>
 <Border Margin="2" Padding="4" BorderBrush="Black"
 BorderThickness="1">
 <StackPanel Orientation="Horizontal"
 TextBlock.FontSize="16">
 <TextBlock Foreground="Black" FontWeight="Bold"
 Text="{Binding ProcessName}" />
 <TextBlock Margin="10,0,0,0" Foreground="Blue"
 Text="{Binding Id, StringFormat='(\{0\})'}" />
 <TextBlock Margin="20,0,0,0" Foreground="Red"
Text="{Binding Threads.Count, StringFormat='Threads: \{0\}'}"
/>
 </StackPanel>
 </Border>
 </DataTemplate>
</ListBox.ItemTemplate>

4. Open MainWindow.xaml.cs. Add the following to the constructor to set up
the binding:
DataContext = Process.GetProcesses();

5. Running the application now shows the processes in the order they provided by
Process.GetProcesses:

Data Binding

204

6. Open MainWindow.xaml. Add the following controls to the StackPanel to be used
for sorting purposes:
<TextBlock Text="Sort by" VerticalAlignment="Center"/>
<ComboBox Width="150" Margin="6,0,0,0" x:Name="_sortField"
 SelectedIndex="0">
</ComboBox>
<CheckBox Margin="10,0,0,0" Content="Ascending"
 VerticalAlignment="Center"
 IsChecked="true" x:Name="_ascending"/>
<Button Margin="4,0,0,0" Content="Sort" />

7. The ComboBox should display allowed properties for sorting. Add a new class named
SortField as follows:
class SortField {
 public string DisplayName { get; set; }
 public string PropertyName { get; set; }
}

8. A bunch of SortField objects would be required for all the properties we may wish
to sort. To create a list of such objects in XAML, we need a non-generic class. Add the
following simple class just below the SortField class:
class SortFieldList : List<SortField> {
}

9. Open MainWindow.xaml. Add an XML namespace mapping to the CH06.
SortingAndFiltering namespace on the Window root element:
xmlns:local="clr-namespace:CH06.SortingAndFiltering"

10. Create an instance of SortFiledList as a Resource and add some SortField
objects to be used for sorting:
<Window.Resources>
 <local:SortFieldList x:Key="sortFields">
 <local:SortField DisplayName="(Unsorted)" />
 <local:SortField DisplayName="Process Name"
 PropertyName="ProcessName" />
 <local:SortField DisplayName="Process ID"
 PropertyName="Id" />
 <local:SortField DisplayName="# Threads"
 PropertyName="Threads.Count" />
 </local:SortFieldList>
</Window.Resources>

Chapter 6

205

11. Now bind the ComboBox to use the list, by adding the following properties:
ItemsSource="{StaticResource sortFields}"
 DisplayMemberPath="DisplayName"
 SelectedValuePath="PropertyName"

12. Add a Click event handler for the Sort button. Inside the handler, add the following:
var view = CollectionViewSource.GetDefaultView(DataContext);
view.SortDescriptions.Clear();
if(_sortField.SelectedValue != null)
 view.SortDescriptions.Add(new SortDescription((string)
 _sortField.SelectedValue,_ascending.IsChecked == true ?
 ListSortDirection.Ascending :
 ListSortDirection.Descending));

13. Run the application. Use the ComboBox to select the property to sort and
click on Sort.

14. Now let's add filtering. Open MainWindow.xaml and add the following elements to
the StackPanel:
<TextBox Margin="10,0,0,0" x:Name="_filterText" Width="120" />
<Button Margin="4,0,0,0" Content="Filter" />

15. Add a Click event handler for the Filter button. Add the following code in
the handler:
var view = CollectionViewSource.GetDefaultView(DataContext);
if(string.IsNullOrWhiteSpace(_filterText.Text))
 view.Filter = null;
else
 view.Filter = obj => ((Process)obj).ProcessName.IndexOf(
 _filterText.Text,
 StringComparison.InvariantCultureIgnoreCase) > -1;

Data Binding

206

16. Run the application. Enter some text in the filter TextBox and click on Filter. You can
also combine that with sorting.

How it works...
The view that sits between the data collection and a bound control is an object implementing
the ICollectionView interface. A default view always exists and is obtained by the static
CollectionViewSource.GetDefaultView method, passing the data collection itself.

With an ICollectionView in hand, sorting is possible by using the SortDescriptions
property, which is a collection of SortDescription objects. We can use this collection to
set properties to sort (more than one is possible for sub-sorting; for example, we can sort
by process name, and if several processes have the same process name we can sort by (for
example) process ID), and the direction of the sort (ascending or descending). Note that we
don't touch the actual data – just manipulate the view.

To remove the sorting, we call the Clear method on the SortDescriptions property.

Filtering is achieved by setting the Filter property of ICollectionView. This property is of
type Predicate<object>, which is a delegate that accepts an object (which is a single data
item) and returns true (to display that data in bound controls) or false (to hide it). Naturally,
this delegate can be specified by an actual method, an anonymous method, or a lambda
expression (just like any other delegate). The delegate is called for each and every item to
determine if that particular item is to be shown.

To clear the filter, we set the Filter property to null.

As we can see, sorting and filtering are orthogonal, meaning they can be used in isolation or
together for a combined effect.

Chapter 6

207

There's more...
In the preceding example, a single control (ListBox) was bound to the data collection. What
would happen if another control (say a ComboBox, or any control derived from ItemsControl)
was bound to the same data collection? The sorting and/or filtering would occur in both controls.

This may not be the desired behavior. Perhaps one control should show everything, and
another control should show some filtered data. With the previous approach this won't work.

The solution is to create a new view, and use that instead of the default view. To create a new
view, we need to create an instance of a CollectionViewSource, set its Source property
to the actual data, and use its View property (ICollectionView) to do the sorting/filtering.
Creating the CollectionViewSource can be done in XAML or code. Let's see a code-based
approach first. We add a field of type CollectionViewSource to the Window and set it up
in the constructor:

_cvs = new CollectionViewSource();
_cvs.Source = Process.GetProcesses();
DataContext = _cvs;

The Source property is set to the actual collection. Note that the DataContext is set to
the CollectionViewSource instance, and not to the actual data (if it did, the default view
would have been used). The binding expressions, however, are completely unchanged, as if
binding directly to the data source; this makes it very convenient to use.

To do the actual sorting or filtering, we use the view that's exposed through the View property
of CollectionViewSource. The rest of the code remains unchanged:

var view = _cvs.View;

The complete source is in the CH06.SortingAndFiltering2 project available in the
downloadable source for this chapter.

Creating a CollectionViewSource in XAML is possible (as a Resource). For example:

<CollectionViewSource x:Key="_cvs" />

Then, we can get it in code and manipulate it in much the same way:

_cvs = Resources["_cvs"] as CollectionViewSource;
_cvs.Source = Process.GetProcesses();
DataContext = _cvs;

The advantage of creating a CollectionViewSource in XAML is that we can create
SortDescription objects in XAML as well, especially if there are some fixed sorting criteria.

The project CH06.SortingAndFiltering2 project, available in the downloadable source
for this chapter has the full source code for this example.

Data Binding

208

More features of ICollectionView
As we saw in the previous recipe, ICollectionView can track a single selected item
using the properties CurrentItem (the actual data item) and CurrentPosition
(the numerical index). For the default view, the Selector-derived control must set
IsSynchronizedWithCurrentItem to true, but it's automatically tracked for explicitly
created views. This feature can help stay detached from actual controls, and not really care
what controls (if any) are bound using that view.

Another feature supported by ICollectionView is navigation. It's occasionally useful to
add controls that allow moving forward or backwards through a collection, or moving to the
start or end of the collection. Again, this can be done on a control by control basis, but we
want to stay clear of the actual controls (this will be more evident in the next chapter when
we discuss the MVVM pattern) bound to the data. For this, ICollectionView exposes
a bunch of self-explanatory methods: MoveCurrentToFirst, MoveCurrentToLast,
MoveCurrentToNext, MoveCurrentToPrevious, MoveCurrentToPosition (to
the specified index), MoveCurrentTo (to the specified data object), and two properties
that can be used to enable/disable navigating controls (IsCurrentAfterLast,
IsCurrentBeforeFirst).

The last useful feature of ICollectionView is grouping. As this is a little more complicated,
we'll treat it in its own recipe.

Live shaping
WPF 4.5 introduces a new feature called "live shaping" that reflects dynamic changes in sorting/
filtering/grouping. Suppose we create a ListBox that shows stock item values. These values
are sorted when the application starts up. Then these values change rapidly – the sorting does
not operate dynamically unless we remove the sorting and apply it again.

In WPF 4.5 we can instruct the view to keep things "alive" and update the position of items
based on dynamic changes. Let's create a simple StockItem class to represent our
data item:

class StockItem : INotifyPropertyChanged {
 public event PropertyChangedEventHandler PropertyChanged =
 delegate { };

 public string Name { get; set; }

 double _value;

 public double Value {
 get { return _value; }
 set {
 _value = value;

Chapter 6

209

 PropertyChanged(this,
 new PropertyChangedEventArgs("Value"));
 }
 }
}

Here's the extra code needed, assuming _items is a collection of StockItem objects bound
to some ListBox:

var view = CollectionViewSource.GetDefaultView(_items);
view.SortDescriptions.Add(
 new SortDescription("Value", ListSortDirection.Ascending));
var liveview = (ICollectionViewLiveShaping)
 CollectionViewSource.GetDefaultView(_items);
liveview.IsLiveSorting = true;

The new ICollectionViewLiveShaping interface is the key. Setting IsLiveSorting to
true makes sorting aware of dynamic value changes. Similar properties exist for filtering and
grouping (IsLiveFiltering and IsLiveGrouping). The CH06.LiveShaping project
(which must be opened in Visual Studio 2012), which is available in the downloadable source
for this chapter, shows this in action.

Grouping bound collections
The previous recipe used the ICollectionView source for sorting, filtering, and navigating.
Another useful feature of ICollectionView is grouping. This allows the partitioning of the
data into groups based on some criteria (typically a property). Each such group is subject to
sorting and/or filtering, if used.

Getting ready
Make sure Visual Studio is up and running.

How to do it...
We'll use the same collection of process objects used previously, but this time we'll group
them by some criteria.

1. Create a new WPF Application named CH06.GroupingData.

2. Open MainWindow.xaml. Add a ListBox to the existing grid, with a simple data
template to display information on process objects:
<ListBox ItemsSource="{Binding}" HorizontalContentAlignment="Stret
ch">
 <ListBox.ItemTemplate>

Data Binding

210

 <DataTemplate>
 <UniformGrid Rows="1" Columns="2">
 <TextBlock Text="{Binding ProcessName}" />
<TextBlock Text="{Binding Id,
 StringFormat=ID: \{0\}}" />
 </UniformGrid>
 </DataTemplate>
 </ListBox.ItemTemplate>
</ListBox>

3. Open MainWindow.xaml.cs. Add the following in the constructor:
var processes = Process.GetProcesses().Where(CanAccess);
DataContext = processes;

4. CanAccess is a simple method that is used to filter out all the inaccessible
processes (we'll use a property for grouping that needs access permissions
normally given only to the LocalSystem account):
public static bool CanAccess(Process process) {
 try {
 var h = process.Handle;
 return true;
 }
 catch {
 return false;
 }
}

5. Running the application now shows a simple process view:

6. Now let's add grouping. We'll group the processes by their PriorityClass property.
Open the MainWindow constructor. Add the following lines after the initialization of
the processes local variable:
var view = CollectionViewSource.GetDefaultView(processes);
view.GroupDescriptions.Add(new PropertyGroupDescription(
 "PriorityClass"));

Chapter 6

211

7. This sets up grouping based on the PriorityClass property. Run the
application. The display shows no visible grouping, but note that the order
of processes is different:

8. Grouping is happening, but the ListBox disregards that. To make the groups
obvious, we'll add a GroupStyle control as the GroupStyle property of
the ListBox:
<ListBox.GroupStyle>
 <GroupStyle>
 <GroupStyle.HeaderTemplate>
 <DataTemplate>
 <Border BorderBrush="Red" BorderThickness="2"
 Background="White" Margin="2">
 <TextBlock Text="{Binding Name,
 StringFormat=Priority: {0}}"
 FontSize="16" FontWeight="Bold"
 Margin="4" />
 </Border>
 </DataTemplate>
 </GroupStyle.HeaderTemplate>
 </GroupStyle>
</ListBox.GroupStyle>

9. This indicates what each group is going to look like. Run the application now
and scroll to see more groups:

Data Binding

212

How it works...
The ICollectioView interface discussed in the previous recipe supports grouping with
the GroupDescriptions property. It accepts a type derived from GroupDescription
(GroupDescription is abstract), PropertyGroupDescription being the only concrete
class provided by WPF. The simplest useful constructor accepts a property name (a property
path, in fact, so it's possible to use a nested property).

The bound control (in this example a ListBox) rearranges the items to be consistent with the
grouping criteria (as well as sorting and filtering if used). However, there is no default visual
cue indicating grouping is actually taking place.

To remedy that, all controls derived from ItemControls support the GroupStyle property,
which is of type System.Windows.Controls.GroupStyle (not really a control or a
Style). This is a kind of group descriptor, with various properties we can utilize. The most
useful is HeaderTemplate that we can set with a DataTemplate to indicate how a group
header is to look like. The DataContext property of HeaderTemplate is a n object derived
from CollectionViewGroup created by WPF. The misleadingly named Name property in
the CollectionViewGroup is actually the value of the property that's used for grouping
(PriorityClass in our example). All items in that particular group are available through
the Items property; this means the Name property in this case is roughly equivalent to
Items[0].PriorityClass.

There's more...
There are other properties in GroupStyle that can be used to further customize the
group appearance. The HeaderTemplateSelector property can be used for selecting a
DataTemplate as a HeaderTemplate based on some group criteria (this is similar to the
ItemTemplateSelector property of ItemsControl). HeaderStringFormat may be
useful to customize the header if it's a string. The Panel property can change the way groups
are laid out (by default using a vertical StackPanel). For example, let's change the Panel
property to use a horizontal StackPanel:

<GroupStyle.Panel>
 <ItemsPanelTemplate>
 <StackPanel Orientation="Horizontal" />
 </ItemsPanelTemplate>
</GroupStyle.Panel>

This is the result when running:

Chapter 6

213

Amazingly enough, this is still a ListBox!

Grouping by a non-property
Adding a PropertyGroupDescription object based on a property is easy enough,
but what about using some criteria that is not reflected in a property?

Fortunately, PropertyGroupDescirption supports another constructor, accepting a
property name and a value converter. The converter has the opportunity to return some
value that is indicative of the group based on the property value provided.

For example, suppose we want to group processes by their threads count, but not with a single
thread variance, but by groups of 10 threads; the first group is 1-9 threads, the second 10-19,
the third 20-29, and so on. Here's the call to create the grouping:

view.GroupDescriptions.Add(new PropertyGroupDescription(
 "Threads.Count", new ThreadsToGroupConverter()));

Here's a converter's Convert method that consolidates every 10 threads to one
group integer:

public object Convert(object value, Type targetType,
 object parameter, CultureInfo culture) {
 int count = (int)value;
 return count / 10;
}

The CollectionViewGroup.Name property has now become that calculated integer.
The HeaderTemplate in this case may need a converter as well, to turn that number
into some useful group name. Its Convert method may look like the following:

public object Convert(object value, Type targetType,
 object parameter, CultureInfo culture) {
 int count = (int)value;
 string text = string.Format("{0}-{1}",
 count == 0 ? 1 : count * 10, count * 10 + 9);
 return text;
}

After creating the converter in XAML, the data template can use it:

<TextBlock Text="{Binding Name, Converter=
 {StaticResource threadsToGroupName},
 StringFormat=Threads: {0}}"

Data Binding

214

Here's the result:

The full source code is in the CH06.GroupingData2 project available in the downloadable
source for this chapter.

See also
For a full discussion of value converters, refer to the Using value converters recipe in
this chapter.

Binding to multiple properties
So far we've seen data binding occur for a target property base on a single source property.
Sometimes, however, a target property depends on changes of more than one source
property. This is supported in WPF through multi binding. Let's see how it's done.

Getting ready
Make sure Visual Studio is up and running.

How to do it...
We'll create a simple color selector using a multi-binding.

1. Create a new WPF application named CH06.MultiBindings.

Chapter 6

215

2. Open MainWindow.xaml. Add the following to the existing Grid:
<Grid.RowDefinitions>
 <RowDefinition />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
</Grid.RowDefinitions>
<Rectangle Stroke="Black" StrokeThickness="1" Margin="4" >
</Rectangle>
<Slider Minimum="0" Maximum="255" Margin="4"
 x:Name="_red" Grid.Row="1" />
<Slider Minimum="0" Maximum="255" Margin="4"
 x:Name="_green" Grid.Row="2" />
<Slider Minimum="0" Maximum="255" Margin="4"
 x:Name="_blue" Grid.Row="3" />

3. We'd like to use the three sliders to change the RGB color fill of the rectangle. This
means we need to set one property (Rectangle.Fill) based on three properties
(Slider.Value for each one). Since there's no default way to convert more than
one property to a single property we need a converter. Add a new class named
RGBConverter.

4. This class should implement the IMultiValueConverter interface. Implement the
class as follows:
class RGBConverter : IMultiValueConverter {
 SolidColorBrush _brush = new SolidColorBrush();

 public object Convert(object[] values, Type targetType,
 object parameter, CultureInfo culture) {
 _brush.Color = Color.FromRgb(System.Convert.ToByte(
 values[0]), System.Convert.ToByte(values[1]),
 System.Convert.ToByte(values[2]));
 return _brush;
 }

 public object[] ConvertBack(object value, Type[] tTypes,
 object parameter, CultureInfo culture) {
 throw new NotImplementedException();
 }
}

Data Binding

216

5. Open MainWindow.xaml. We need to create a MultiBinding and connect to the
source properties and the converter. First, add an XML namespace mapping for the
application namespace with prefix local, and create an instance of the converter:
<Window.Resources>
 <local:RGBConverter x:Key="rgbConverter" />
</Window.Resources>

6. Add the following as Rectangle.Fill:
<Rectangle.Fill>
 <MultiBinding Converter="{StaticResource rgbConverter}">
 <Binding Path="Value" ElementName="_red" />
 <Binding Path="Value" ElementName="_green" />
 <Binding Path="Value" ElementName="_blue" />
 </MultiBinding>
</Rectangle.Fill>

7. Run the application and move the sliders. The rectangle changes color accordingly.

How it works...
A MultiBinding object collects a set of property bindings and funnels them through a
converter to get the final target property value. This means a MultiBinding must have
a converter, as WPF has no way of knowing how to map a set of properties to a single
property value.

Each object within a MultiBinding is a Binding in itself, reaching out to a desired source
property (in our case using ElementName). Note that we must supply the Binding objects in
element syntax. There's no way to provide them with the Binding markup extension.

Chapter 6

217

The converter must implement the IMultiValueConverter interface. It's a different
interface than the regular converter, because the Convert method must accept an array
of values that are provided in the exact same order they are specified in the XAML. In our
example, the red component value is first because the red slider element is used first in the
list of child bindings. Also, ConvertBack (much less useful) returns an array of objects and
accepts an array of types.

There's more...
MultiBinding has a StringFormat property that can be used to format a string based
on strings provided by the individual bindings. For example, suppose we wanted to add a
TextBlock on top of the Rectangle to show the exact RGB values currently selected.
Here's a MultiBinding that does the trick:

<TextBlock FontSize="18" VerticalAlignment="Center"
 HorizontalAlignment="Center">
 <TextBlock.Text>
 <MultiBinding
 StringFormat="R: {0:N0}, G: {1:N0}, B: {2:N0}">
 <Binding Path="Value" ElementName="_red" />
 <Binding Path="Value" ElementName="_green" />
 <Binding Path="Value" ElementName="_blue" />
 </MultiBinding>
 </TextBlock.Text>
</TextBlock>

Note that a converter is not needed in this special case, because the result is a string. Also,
note the use of the indices {0}, {1}, {2} to extract the results from the specific child binding.

Binding hierarchical data to a TreeView
A TreeView is a common control for viewing hierarchical data. It derives from
ItemsControl, but it's a bit more complex than standard controls derived from,
ItemsControl, such as ListBox, because of its hierarchical nature, although it's
possible to use a TreeView without data binding. Binding provides an elegant way to
fill the tree with data. Let's examine this in more detail.

Getting ready
Make sure Visual Studio is up and running.

Data Binding

218

How to do it...
We'll create an application that shows a tree view with processes as the top level objects.
For each process, child tree view items will show the modules loaded into that process.

1. Create a new WPF Application named CH06.TreeViewBinding.

2. Open MainWindow.xaml.cs. In the constructor, set the DataContext to the
collection of processes on the system:
DataContext = Process.GetProcesses();

3. We'd like to show a TreeView of processes with each tree node expanding to
show all modules loaded into that process. Open MainWindow.xaml and add
a TreeView to the existing Grid:
<TreeView ItemsSource="{Binding}">
</TreeView>

4. Let's add a data template for displaying processes. Add an ItemTemplate property
to the TreeView as follows:
<TreeView.ItemTemplate>
 <DataTemplate ItemsSource="{Binding Modules}">
 <StackPanel Orientation="Horizontal" Margin="2">
 <TextBlock Text="{Binding ProcessName}"
 FontWeight="Bold" FontSize="16" />
 <TextBlock Margin="5,0,0,0" FontSize="16"
 Text="{Binding Id, StringFormat=(\{0\})}" />
 </StackPanel>
 </DataTemplate>
</TreeView.ItemTemplate>

5. Running this just shows a list of processes. To show a hierarchy, we'll first turn the
DataTemplate to a HierarchicalDataTemplate with an ItemsSource:
<TreeView.ItemTemplate>
 <HierarchicalDataTemplate ItemsSource="{Binding Modules}">

6. Now we need an inner DataTemplate to indicate how modules are shown.
Add the following before the closing tag of HierarchicalDataTemplate:
<HierarchicalDataTemplate.ItemTemplate>
 <DataTemplate>
 <StackPanel Orientation="Horizontal" Margin="2">
 <TextBlock Text="{Binding ModuleName}"
 FontSize="14" FontWeight="Bold"/>
 <TextBlock Margin="5,0,0,0" FontSize="12"
 Text="{Binding FileName, StringFormat=(\{0\})}"
 VerticalAlignment="Center"/>
 </StackPanel>
 </DataTemplate>
</HierarchicalDataTemplate.ItemTemplate>

Chapter 6

219

7. Run the application. Expand some processes and watch the module list unfold
(processes that cannot be expanded are those that require system level access
to view such information).

How it works...
As an ItemsControl, a TreeView may use its ItemTemplate property to set a
DataTemplate for its bound data. However, how should the inherent hierarchy be handled?
It's done with the help of a DataTemplate derivative – HierarchicalDataTemplate.
HierarchicalDataTemplate is a DataTemplate that can contain a child DataTemplate
that specifies how a child object should be presented. This can go on as needed, because
that child DataTemplate can be in itself a HierarchicalDataTemplate. The way a
HierarchicalDataTemplate indicates what collection its child is bound to is with its
ItemsSource property. In the preceding example, the HierarchicalDataTemplate sets
its ItemsSource to the Modules property of the current object (which is a Process). The
Modules property is a collection of ProcessModule objects, each of which is queried for its
ModuleName and FileName properties by the inner DataTemplate.

There's more...
Behind the scenes a TreeView is composed of TreeViewItem objects. A TreeViewItem
derives from HeaderedItemsControl, which means it has a header (typically text and/or
image, but can be anything) and can host a collection of other TreeViewItems; this nesting
can go on as deep as needed. Our data templates create elements that are hosted inside a
TreeViewItem.

It's worth noting that the SelectedItem property of a TreeView is read only, and so cannot
be data bound for a useful result.

Data Binding

220

Presenting data in a grid
Some types of data are best shown in a multi row, multi column grid. WPF 4 added support
for the DataGrid control, which is capable of showing a collection of objects in tabular form,
with many customizations possible, out-of-the-box or programmatically.

Getting ready
Make sure Visual Studio is up and running.

How to do it...
We'll create an application that shows some personal information in a grid layout, showing
some of the features of the DataGrid control.

1. Create a new WPF application named CH06.DataGridDemo.

2. Open MainWindow.xaml. Add a DataGrid to the existing Grid and bind it to
whatever DataContext is available:
<DataGrid ItemsSource="{Binding}">
</DataGrid>

3. The data we're going to use is a simple personal information record. Add a new class
named PersonInfo, and implement as follows:
enum Gender {
 Unknown,
 Male,
 Female
}

class PersonInfo {
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public string Email { get; set; }
 public Gender Gender { get; set; }
 public bool IsEmployed { get; set; }
 public Uri Avatar { get; set; }
}

4. Add an Images folder to the project.

5. Add some small images to the newly created folder (you can use the ones from the
downloadable source, or even a single image that would be used for every person).

Chapter 6

221

6. Open MainWindow.xaml.cs. Add the following to the constructor, so that we have
some data to work with (correct the image names if necessary):
DataContext = new List<PersonInfo> {
 new PersonInfo { FirstName = "Bart", LastName = "Simpson",
 Email = "bart@runaway.com", IsEmployed = false,
 Gender = Gender.Male,
 Avatar = new Uri("Images/sun.png", UriKind.Relative) },
 new PersonInfo { FirstName = "Homer", LastName = "Simpson",
 Email = "homer@springfield.com", IsEmployed = true,
 Gender = Gender.Male, Avatar =
 new Uri("Images/worker.png", UriKind.Relative) },
 new PersonInfo { FirstName = "Marge", LastName = "Simpson",
 Email = "marge@desparatehousewives.com",
 IsEmployed = false, Gender = Gender.Female,
 Avatar = new Uri("Images/violin.png", UriKind.Relative) },
 new PersonInfo { FirstName = "Lisa", LastName = "Simpson",
 Email = "lisa@musiclovers.com", IsEmployed = false,
 Gender = Gender.Female, Avatar = new Uri(
 "Images/woman.png", UriKind.Relative) },
 new PersonInfo { FirstName = "Maggie", LastName = "Simpson",
 IsEmployed = false, Gender = Gender.Female,
 Avatar = new Uri("Images/wine.png", UriKind.Relative) }
};

7. Run the application. You should see a grid with all the details. You can also change
things such as the first name, last name, e-mail, whether the person is employed,
and even his/her gender:

8. Note that the avatar does not show the actual image. Also, the column names are
based on the property names and may not be entirely appropriate. All this is because
the AutoGenerateColums property is set to true by default. Let's try to improve
things a bit. What about the avatar image? Open MainWindow.xaml.

Data Binding

222

9. Add a Columns property to the DataGrid with a new template:
<DataGrid.Columns>
 <DataGridTemplateColumn Header="Avatar" >
 <DataGridTemplateColumn.CellTemplate>
 <DataTemplate>
 <Image Margin="2" Width="32" Height="32"
 Source="{Binding Avatar}" />
 </DataTemplate>
 </DataGridTemplateColumn.CellTemplate>
 </DataGridTemplateColumn>
</DataGrid.Columns>

10. Run the application. You should see the avatar appearing as the first column.

11. The Avatar column from the auto generating process appears as well
(at the end). Let's remove it. Add an event handler on the DataGrid for
the AutoGeneratingColumn event. In the handler, add the following:
if(e.PropertyName == "Avatar") {
 e.Cancel = true;
}

12. These lines check if the DataGrid is currently generating the avatar column,
and if so, cancel the operation. Running the application produces the following:

Chapter 6

223

13. The avatar column appears first. What if we wanted to show it last? Add another
event handler for the DataGrid, AutoGeneratedColumns. This handler is
called after all columns have been generated. Add the following to the handler:
var grid = (DataGrid)sender;
grid.Columns[0].DisplayIndex = 5;

14. Run the application. The avatar column should be on the far right:

How it works...
The DataGrid binds to any collection just like any control derived from ItemsControl
through the ItemsSource property. It actually derives from the more specialized
MultiSelector class (which itself inherits from Selector).

Data Binding

224

If the AutoGenerateColumns property is true (the default), the DataGrid does all the
hard work, creating the columns automatically with appropriate controls (up to a point).
In the preceding example, FirstName and LastName were rendered as TextBlock
instances, and if double clicked for editing, changed automatically to TextBox instances. The
IsEmployed column was rendered as a CheckBox, and the Gender column was rendered
as a ComboBox, automatically bound to the enum values. The Email column, on the other
hand, was rendered as a simple string (not a clickable URI). The Avatar column was totally
misjudged and showed no image, but instead used a Hyperlink (with no click behavior).

As the code demonstrated, it's possible to use the AutoGeneratedColumns, and
do some customizations, such as creating a new column to show the avatar image.
The DataGrid supports several column types: DataGridTextColumn (for strings),
DataGridHyperlinkColumn (strings displayed as URIs with the Hyperlink element),
DataGridCheckBoxColumns (for Boolean properties), DataGridComboBoxColumn
(for enumerations and other fixed collections of values), and the all-powerful
DataGridTemplateColumn, which can be used for anything. In fact, this lets us provide
our own DataTemplate. This was exactly what was done with the avatar; we created a
DataTemplate that holds an Image element with its Source property bound to the
Avatar property.

There's more...
Handling events such as AutoGeneratingColumn is possible, but is very fragile and makes
it hard to customize column appearance, especially by a designer. More commonly, the auto
generating columns feature is abandoned; this requires more XAML, but less code (or none at
all), and makes customizations easy. Here's a revised DataGrid that removes column auto
generation and does everything manually. First, the basic markup:

<DataGrid ItemsSource="{Binding}" AutoGenerateColumns="False">
 <DataGrid.Columns>
 </DataGrid.Columns>
</DataGrid>

The FirstName and LastName columns are straightforward:
<DataGridTextColumn Header="First Name"
 Binding="{Binding FirstName}" />
<DataGridTextColumn Header="Last Name"
 Binding="{Binding LastName}" />

The Binding property of the DataGridTextColumn object locates the correct property on
the data object. The DataGridComboBoxColumn is more challenging, because it needs to
bind to a predefined set of values. It's not automatic, because it can bind to any collection of
values, not just the values of an enumeration:

<DataGridComboBoxColumn Header="Gender"
 SelectedItemBinding="{Binding Gender}"
 ItemsSource="{Binding Source={StaticResource genderEnum}}"/>

Chapter 6

225

This can be achieved in a number of ways. In this example, an ObjectDataProvider object
is used, that can bind to a method on some object. It's created as a Resource and binds to
the Enum.GetValues static method:

<ObjectDataProvider x:Key="genderEnum" MethodName="GetValues"
 ObjectType="{x:Type sys:Enum}">
 <ObjectDataProvider.MethodParameters>
 <x:Type Type="local:Gender" />
 </ObjectDataProvider.MethodParameters>
</ObjectDataProvider>

This markup declaratively states that the method to call is Enum.GetValues with
a parameter of typeof(Gender) (the sys XML prefix is mapped to the mscorlib
assembly and the System namespace).

Next is the e-mail. We may want the e-mail to show as a hyperlink, and clicking on it
should launch the default mail client on the system (such as Microsoft Outlook). The
DataGridHyperlinkColumn is not flexible enough for clicking purposes (it automatically
works when the parent is a NavigationWindow, for example, which is not that useful).
The alternative is a template-based column (the same idea as with the Avatar column):

<DataGridTemplateColumn Header="Email" >
 <DataGridTemplateColumn.CellTemplate>
 <DataTemplate>
 <TextBlock>
 <Hyperlink NavigateUri="{Binding Email}"
 Click="OnSendEmail">
 <Run Text="{Binding Email, Mode=OneWay}" />
 </Hyperlink>
 </TextBlock>
 </DataTemplate>
 </DataGridTemplateColumn.CellTemplate>
</DataGridTemplateColumn>

The Click event handler for the Hyperlink is implemented as follows:

void OnSendEmail(object sender, RoutedEventArgs e) {
 var hyperlink = (Hyperlink)sender;
 if(hyperlink.NavigateUri != null)
 Process.Start("mailto: " + hyperlink.NavigateUri);
}

The next column on the list is IsEmployed. This is the simplest, as we can just use a
DataGridCheckBoxColumn:

<DataGridCheckBoxColumn Header="Employed?"
 Binding="{Binding IsEmployed}" />

Data Binding

226

Again, the Binding property points to the actual property to use on the data object. Note the
new header text – there's no need to get by with the property name.

The last column, Avatar, is implemented the same way as was described in the recipe.

Editing with a template-based column
Non-template columns, such as DataGridTextColumn and DataGridCheckBoxColumn,
provide automatic editing support (assuming the column property IsReadOnly is false).
What about DataGridTemplateColumn? Trying to edit the Email and Avatar columns
at this time has no effect.

DataGridTemplateColumn provides a CellEditingTemplate property that can be set
to an alternative DataTemplate to be used during editing (by double-clicking on the cell).
Here's a simple one for changing an e-mail:

<DataGridTemplateColumn.CellEditingTemplate>
 <DataTemplate>
 <TextBox Text="{Binding Email}" />
 </DataTemplate>
</DataGridTemplateColumn.CellEditingTemplate>

This provides a flexible way to customize editing. As another example, consider a DateTime
property. It should probably be displayed as a simple string, but for editing purposes it can be
replaced with a DatePicker control.

The full source of this example is in the CH06.DataGridDemo2 project, available in the
downloadable source for this chapter.

Chapter 6

227

Selecting, resizing, and sorting
The DataGrid supports a few ways to do selection. The SelectionMode property indicates
whether one item can be selected (Single) or multiple items (Extended, the default).
The meaning of "Item" depends on the SelectionUnit property. It can be an individual
cell (Cell), an entire row only (FullRow, the default), and a combination of the two
(CellOrRowHeader). When multi-selection is enabled, the usual Shift and Ctrl keys
can be used for range and non-contiguous selections.

A column or row can be resized by the user by setting CanUserResizeColumns and
CanUserResizeRows properties (both true by default). This can be set on a column
by column basis if desired (DataGridColumn.CanUserResize).

Columns can be reordered if CanUserReorderColumns is true (the default). Again, this
can be customized for particular columns with the DataGridColumn.CanUserResize
property.

Sorting is supported by clicking on column headers (unless CanUserSortColumns is
false). For specific columns, use the DataGridColumn.CanUserSort property. The
DataGridColumn.SortMemberPath property can be used to change the default property
to sort for, and is a must for template-based columns, as there is no binding expression to
indicate how this column is to be sorted.

Other customization options
The DataGrid is highly customizable. Almost any aspect of its behavior or look can be
changed. Here are some of the possibilities:

 f Extra row details: Each row can have extra information set with the
RowDetailsTemplate (a DataTemplate). By default, it's shown only for
selected rows, but this can be changed with the RowDetailsVisibilityMode
property (VisibileWhenSelected – the default, Visible – shown always,
Collapsed – never shown).

 f Columns can be frozen, meaning they never scroll out of view. These must
be leftmost columns only, and cannot be reordered with unfrozen columns.
To freeze columns, set the FrozenColumnCount to a number greater than zero.

 f Many other visual customizations are possible through various styles and templates
exposed by the DataGrid itself and by columns and rows. For example, a column
header does not have to be a string. The DataGridColumn.HeaderTemplate can
be used to provide a DataTemplate that can show anything on a header (an image,
for example).

Data Binding

228

Validating data
Data binding provides automatic updates from a source to a target (and vice versa in a two
way binding). Some of these values are provided by some user of the system; consequently,
not all values are valid. The binding system should have ways to catch such errors and allow
the application to communicate to the user those errors. This is the role of data validation.
In this recipe, we'll look at the validation support in data binding scenarios.

Getting ready
Make sure Visual Studio is up and running.

How to do it...
We'll create a simple entry form that validates its inputs according to some
application-specific rules.

1. Create a new WPF application named CH06.ValidatingData.

2. Add a new class to be used as a data object named Person. Implement it as follows:
class Person : INotifyPropertyChanged {
 protected virtual void OnPropertyChanged(string propName) {
 var pc = PropertyChanged;
 if(pc != null)
 pc(this, new PropertyChangedEventArgs(propName));
 }

 string _name;
 public string Name {
 get { return _name; }
 set {
 _name = value;
 OnPropertyChanged("Name");
 }
 }

 int _age;
 public int Age {
 get { return _age; }
 set {
 _age = value;
 OnPropertyChanged("Age");
 }
 }

 public event PropertyChangedEventHandler PropertyChanged;
}

Chapter 6

229

3. This is a simple class, implementing INotifyPropertyChanged, as discussed
in the Binding to a single object recipe, earlier in this chapter. Open MainWindow.
xaml and add the following elements to the Grid:
<Grid TextBlock.FontSize="16">
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition />
 </Grid.ColumnDefinitions>
 <TextBlock Text="Name:" Margin="6"/>
 <TextBox Text="{Binding Name}"
 Grid.Column="1" Margin="6"/>
 <TextBlock Text="Age:" Grid.Row="1" Margin="6"/>
 <TextBox Text="{Binding Age}"
 Grid.Column="1" Grid.Row="1" Margin="6"/>
</Grid>

4. Open MainWindow.xaml.cs. Add the following to the constructor:
DataContext = new Person { Name = "Bart", Age = 10 };

5. Run the application. You should be able to change values in the Name and Age
textboxes. However, if you enter incorrect values (say a negative age, or an empty
name), nothing happens. Let's change that. Change the property setters of the
Age and Name properties to raise exceptions on incorrect values:
public string Name {
 get { return _name; }
 set {
 if(string.IsNullOrWhiteSpace(value))
 throw new ArgumentException(
 "Name cannot be empty");
 _name = value;
 OnPropertyChanged("Name");
 }
}
public int Age {
 get { return _age; }
 set {
 if(value < 1)
 throw new ArgumentException(
 "Age must be a positive integer");
 _age = value;
 OnPropertyChanged("Age");
 }
}

Data Binding

230

6. Run the application now and enter some incorrect values. Nothing happens,
because by default WPF swallows the exceptions. We need to set the Binding.
ValidatesOnExceptions property to true (on both textboxes):
Text="{Binding Name, ValidatesOnExceptions=True}"
Text="{Binding Age, ValidatesOnExceptions=True}"

7. Now run the application and enter some incorrect values. When a TextBox loses
focus and an exception is thrown by the setter, the offending TextBox is highlighted
with a thin red border:

8. Set the Binding.UpdateSourceTrigger property of each TextBox to
PropertyChanged. This will call the setter for any character typed, giving
an immediate feedback:
Text="{Binding Name, ValidatesOnExceptions=True,
 UpdateSourceTrigger=PropertyChanged}"
Text="{Binding Age, ValidatesOnExceptions=True,
 UpdateSourceTrigger=PropertyChanged}"

How it works...
Normally, failed setters in data binding, whether caused by an exception thrown in the setter
itself, or because of an exception thrown in a value converter, causes WPF to fail the binding.
If Binding.ValidatesOnExceptions is false (the default), nothing else happens. If set
to true, WPF performs the following actions:

 f Sets the attached property Validation.HasError to true on the bound element
(TextBox in this example).

 f Creates a ValidationError object that holds the error details (such as the
Exception object thrown). This object is added to the collection maintained by the
attached property Validation.Errors of the bound element.

 f If the Binding.NotifyOnValidationError is true, the Validation.Error
attached event is raised (a bubbling event).

All binding validation stuff is relevant for a TwoWay or OneWayToSource binding (from the
target to the source) only.

Chapter 6

231

Behind the scenes, the Binding object maintains a collection of ValidationRule objects
(ValidationRules property). Setting ValidatesOnExceptions to true is a shortcut for
adding an ExceptionValidationRule to this collection.

There's more...
Using property setters for validation is convenient, but not always appropriate. First, raising
exceptions may not be ideal; perhaps a temporary incorrect value is acceptable while, for
example, objects are populated from some data source. Second, some validations require
checking a combination of property values, not just a single one.

An alternative (that can be combined with setter validation) is to implement the System.
ComponentModel.IDataErrorInfo interface. It has two read only properties: Error
(which is never called by WPF) and an indexer that provides the property to evaluate.
We need to return null to indicate no error, or some error string otherwise. Here's a
simple implementation for our Person class (the implementation of the setters and
INotifyPropertyChanged is not shown):

class Person : INotifyPropertyChanged, IDataErrorInfo {
 // never called by WPF
 public string Error {
 get { return null; }
 }

 public string this[string name] {
 get {
 switch(name) {
 case "Name":
 if (string.IsNullOrWhiteSpace(Name))
 return "Name cannot be empty";
 break;

 case "Age":
 if (Age < 1)
 return "Age must be a positive integer";
 break;
 }
 return null;
 }
 }
}

To make WPF use this interface, the Binding.ValidatesOnDataErrors property must
be set to true (this adds a DataErrorValidationRule to the ValidationRules
collection). From that point, the same set of actions is taken if the validation fails.

Data Binding

232

Custom validation rules
A data object may not have all validation required for a particular application. If custom
validation is required, a custom validation rule can be created by deriving from the abstract
ValidationRule class, implementing the only abstract method (Validate) and adding
that rule to the ValidationRules collection. Here's a validation rule class that requires at
least some number of characters in a string (exposed at a property):

class MinCharsRule : ValidationRule{
 public int MinimumChars { get; set; }

 public override ValidationResult Validate(object value,
 CultureInfo cultureInfo) {
 if(((string)value).Length < MinimumChars)
 return new ValidationResult(false, "Use at least " +
 MinimumChars.ToString() + " characters");
 return new ValidationResult(true, null);
 }
}

Validate returns a ValidationResult, whose constructor accepts a Boolean validity
flag and an error message (or null in the case of validation success).

To apply the rule, we need to add it to the validation rules of the binding:

<TextBox.Text>
 <Binding Path="Name" ValidatesOnDataErrors="True"
 UpdateSourceTrigger="PropertyChanged">
 <Binding.ValidationRules>
 <local:MinCharsRule MinimumChars="3" />
 </Binding.ValidationRules>
 </Binding>
</TextBox.Text>

This requires using Binding with element syntax (rather than markup extension syntax).

Custom error template
When validation fails, the offending control is surrounded by a thin red border. This can be
customized to give the user a more meaningful and rich experience. Setting Validation.
ErrorTemplate to a different control template replaces the default behavior (control
templates will be discussed in Chapter 8, Styles, Triggers, and Custom Templates, but for
now think of it as a variation of a data template). Here's an example template created as a
resource (for convenience):

<ControlTemplate x:Key="errorTemplate">
 <Border BorderBrush="Red" BorderThickness="2">
 <Grid>

Chapter 6

233

 <AdornedElementPlaceholder x:Name="_el" />
 <TextBlock Text="{Binding [0].ErrorContent}"
 Foreground="Red" HorizontalAlignment="Right"
 VerticalAlignment="Center" Margin="0,0,6,0"/>
 </Grid>
 </Border>
</ControlTemplate>

The interesting part is the AdornedElementPlaceholder – this indicates where the
real control is. In this case we surround it with a red border and place a TextBlock on top
of it. The DataContext of any binding inside this template is the Validation.Errors
collection. In this example, we extract the first error's description and show it. You can imagine
a scenario where an ItemsControl would display all errors (validation rule failures) that
occur. An alternative is to use the adorned element's AdornedElement property that refers
to the actual bound control, and use other properties on the control.

By the way, this template is displayed in the adorner layer of the bound control; this means
it's always on top of the control.

To apply the template we set the Validation.ErrorTemplate attached property on the
bound element (TextBox in our example):

<TextBox Grid.Column="1" Margin="6"
 Validation.ErrorTemplate="{StaticResource errorTemplate}">

Here's the result:

Using data annotations
There is yet another way we can do validation, in a more declarative manner using custom
attributes. The System.ComponentModel.DataAnnotations namespace (in the
System.ComponentModel.DataAnnotations.Dll assembly) defines several attributes
that can be placed on properties to indicate validation requirements. Once placed, the setter
of the property can use methods from the Validator static class to force validation based
on the specified attributes.

Data Binding

234

Here's an example for our Person class. We'll place some attributes on the Name property
as follows:

[Required(ErrorMessage = "A name is required"), StringLength(
 100, MinimumLength = 3, ErrorMessage =
 "Name must have at least 3 characters")]
public string Name {
 get { return _name; }
 set {
 ValidateProperty(value, "Name");
 _name = value;
 OnPropertyChanged("Name");
 }
}

The Required attribute indicates the property's value cannot be null or empty, and
StringLength is pretty self-explanatory.

ValidateProperty is a helper method that performs the actual validation using the
Validator.ValidateProperty static method implemented with the following code:

protected void ValidateProperty<T>(T value, string name) {
 Validator.ValidateProperty(value, new ValidationContext(
 this, null, null) { MemberName = name });
}

ValidateProperty throws an exception if validation fails. This is handled in the same way
as a regular setter validation exception. The Age property can be similarly decorated:

[Range(1, 120,
 ErrorMessage = "Age must be a positive integer")]
public int Age {
 get { return _age; }
 set {
 ValidateProperty(value, "Age");
 _age = value;
 OnPropertyChanged("Age");
 }
}

Chapter 6

235

Range provides a way to specify a range of acceptable values. The ErrorMessage property
of all annotation attributes becomes the error content that may be used by the error template.
Here's the XAML for the Name TextBox:

<TextBox Grid.Column="1" Margin="6"
 Validation.ErrorTemplate="{StaticResource errorTemplate}"
 Text="{Binding Name, UpdateSourceTrigger=PropertyChanged,
 ValidatesOnExceptions=True}" />

The Age property TextBox is similar. Here's the dialog when both properties fail validation:

Other attributes that exist include RegularExpression that validates a string based on a
regular expression (useful for e-mails, phone numbers, and so on) with some new attributes
introduced in .NET 4.5 that can provide a shortcut such as EmailAddress, Phone, and Url.

7
Commands and MVVM

In this chapter we will cover the following:

 f Using routed commands

 f Implementing a basic MVVM application

 f Building a simple MVVM framework

 f Building a complete MVVM style application

 f Creating an undo/redo system

Introduction
The traditional way of connecting a piece of user interface to some logic has been through
events. The canonical example is a button – when clicked, some action is undertaken,
hopefully accomplishing some goal the user has intended. Although WPF supports this
model completely (as other UI frameworks do), it has its drawbacks:

 f The event handler is part of the "code behind" where the UI is declared, typically a
window or a user control. This makes it difficult to call from other objects that may
want to invoke the same logic.

 f The aforementioned button may disappear and be replaced by (say) a menu item.
This would require the event hooking code to potentially change. What if we wanted
both a button and a menu item?

 f An action may not be allowed at a certain state – the button (or whatever) needs to
be disabled or enabled at the right time. This adds management overhead to the
developer – the need to track state and change it for all UI elements that invoke
the same functionality.

Commands and MVVM

238

 f An event handler is just a method – there's no easy way to pick it up and save it
somewhere, such as for undo/redo purposes.

 f It's difficult to test application logic without using actual user interface.

These, and other, more subtle issues, make working with event handlers less than ideal,
especially when application logic is involved. If an event is just intended for usability
enhancement or for otherwise serving the UI alone, than this is not usually a concern
(for example, hovering the mouse cursor over some element causes color changes,
enhancing use experience in some way – although even this can be achieved
declaratively with triggers – see Chapter 8, Styles, Triggers, and Control Templates).

The typical solution to this UI-logic coupling is the concept of commands. This follows
the famous "Command design pattern" that abstracts away application logic into distinct
objects. Being an object, a command can be invoked from multiple locations, saved in lists
(for example, for undo purposes), and so on. It can even indicate whether it's allowable at
certain times, freeing other entities to take care of the actual enabling or disabling of
controls that may be bound to that command.

WPF provides a basic support for commands with the ICommand interface and two built-in
implementations, RoutedCommand and RoutedUICommand. However, the support isn't
perfect, which would force us to come up with other implementations of ICommand. Still,
it's worth understanding where WPF's implementation is good enough and where we need
to pave a new path.

Commands are just one aspect of more general patterns for dealing with user interface in
non-trivial applications. To that end, a number of UI design patterns appeared, such as Model
View Controller (MVC), Model View Presenter (MVP), and Model View View-Model (MVVM). All
have something in common: the separation of the actual UI (View) from the application logic
(Controller, Presenter, and ViewModel) and the underlying data (Model).

In this chapter, we'll first take a look at commands, and WPF's support in that respect. Then
we'll develop a basic framework for MVVM-based applications (what exactly MVVM is and the
differences from MVC/MVP will be discussed later in this chapter) and show some common
scenarios and the way they are typically handled.

Using routed commands
WPF provides two (similar) implementations for the ICommand interface. Commands are
invoked (by default) by command sources, implementing the ICommandSource interface.
These two interfaces comprise the basic abstraction WPF recognizes as far as commands are
concerned. In this recipe, we'll examine these interfaces, their out-of-the-box implementations,
and how they are typically used.

Chapter 7

239

Getting ready
Make sure Visual Studio is up and running.

How to do it...
We'll create a simple image viewer that provides its functionality via WPF routed commands:

1. Create a new WPF application named CH07.RoutedCommands.

2. Open MainWindow.xaml. Add the following to the existing Grid:
<Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition />
</Grid.RowDefinitions>
<ToolBar FontSize="14">
</ToolBar>
<ScrollViewer HorizontalScrollBarVisibility="Auto"
 VerticalScrollBarVisibility="Auto" Grid.Row="1">
 <Image Source="{Binding ImagePath}" Stretch="None">
 <Image.LayoutTransform>
 <ScaleTransform ScaleX="{Binding Zoom}"
 ScaleY="{Binding Zoom}" />
 </Image.LayoutTransform>
 </Image>
</ScrollViewer>

3. The Grid holds a toolbar (empty at the moment) and a scrollable image. The
Source property of the Image is bound to an ImagePath property. It uses a
ScaleTransform, with its properties bound to a Zoom property. All these properties
have no source, so let's create one. Add a new class named ImageData, defined
as follows :
class ImageData : INotifyPropertyChanged {
 public string ImagePath { get; private set; }

 public ImageData(string path) {
 ImagePath = path;
 }
 double _zoom = 1.0;

 public double Zoom {
 get { return _zoom; }
 set {
 _zoom = value;
 OnPropertyChanged("Zoom");
 }
 }

Commands and MVVM

240

 protected virtual void OnPropertyChanged(string name) {
 var pc = PropertyChanged;
 if (pc != null)
 pc(this, new PropertyChangedEventArgs(name));
 }

 public event PropertyChangedEventHandler PropertyChanged;
}

4. The class exposes an ImagePath and Zoom properties, exactly as expected by the
above XAML. Now let's add the following buttons to the ToolBar:
<Button Content="Open..." Command="Open" Margin="6"/>
<Button Content="Zoom In" Command="IncreaseZoom" Margin="6"/>
<Button Content="Zoom Out" Command="DecreaseZoom" Margin="6"/>

5. Note there are no Click event handlers; instead the Command property of the
buttons is set. Running the application at this time shows all buttons as disabled:

6. We need to add command bindings so that the commands do something useful.
Add a Commandbinding object to the Window's CommandBindings property:
<Window.CommandBindings>
 <CommandBinding Command="Open" Executed="OnOpen" />
</Window.CommandBindings>

7. Right-click on OnOpen and select Navigate to Event Handler. Add a private field of
type ImageData to MainWindow:
ImageData _image;

8. Add the following code for OnOpen, allowing the user to select an image file to view:
void OnOpen(object sender, ExecutedRoutedEventArgs e) {
 var dlg = new OpenFileDialog {
 Filter = "Image Files|*.jpg;*.png;*.bmp;*.gif"
 };
 if(dlg.ShowDialog() == true) {
 _image = new ImageData(dlg.FileName);
 DataContext = _image;
 }
}

Chapter 7

241

9. Run the application. You can now click on Open and select an image to view:

10. Now let's take care of the zoom commands. Open MainWindow.xaml and add the
following command bindings:
<CommandBinding Command="IncreaseZoom" Executed="OnZoomIn"
 CanExecute="OnIsImageExist" />
<CommandBinding Command="DecreaseZoom" Executed="OnZoomOut"
 CanExecute="OnIsImageExist" />

11. Add a handler for the previous CanExecute events:
void OnIsImageExist(object s, CanExecuteRoutedEventArgs e) {
 e.CanExecute = _image != null;
}

12. The above means that the zoom commands should be disabled when
no image is present. Now add the handlers for the IncreaseZoom and
DecreaseZoom commands:
void OnZoomOut(object sender, ExecutedRoutedEventArgs e) {
 _image.Zoom /= 1.2;
}

void OnZoomIn(object sender, ExecutedRoutedEventArgs e) {
 _image.Zoom *= 1.2;
}

13. Run the application. Notice the zoom buttons are disabled until an image is opened.
Now let's create a button that would restore the zoom to 1. First, we need a custom
command for that. Add a class named Commands and optionally make it static:
static class Commands {
}

Commands and MVVM

242

14. Add the following static field and static property to the class:
static readonly RoutedUICommand _zoomNormalCommand =
 new RoutedUICommand("Zoom Normal", "Normal",
 typeof(Commands));

public static RoutedUICommand ZoomNormalCommand {
 get { return _zoomNormalCommand; }
}

15. Open MainWindow.xaml and add an XML namespace mapping to the CH07.
RoutedCommands namespace.

16. Now add a fourth button to the ToolBar:
<Button Command="local:Commands.ZoomNormalCommand"
 Content="Normal" Margin="6"/>

17. Add a CommandBinding to the window's CommandBindings collection to handle
this command:
<CommandBinding Command="local:Commands.ZoomNormalCommand"
 Executed="OnZoomNormal" CanExecute="OnIsImageExist" />

18. Implement OnZoomNormal as follows:
void OnZoomNormal(object sender, ExecutedRoutedEventArgs e) {
 _image.Zoom = 1.0;
}

19. Run the application. All buttons should operate as expected: with no image, only the
Open button is enabled. All buttons are operational when an image is present.

How it works...
The ICommand interface is the abstraction of a command. WPF defines it as follows (in the
System.Windows.Input namespace):

public interface ICommand {
 bool CanExecute(object parameter);
 void Execute(object parameter);
 event EventHandler CanExecuteChanged;
}

The Execute method executes the command. CanExecute indicates whether this command
is available at this time. If it's not, WPF is smart enough to disable that command source.
Both methods accept a parameter that can be anything that affects the way the command
is implemented; command sources can set it using the CommandParameter property. The
remaining event is used to notify WPF when the CanExecute method should be called again,
because something has changed that may make this method return a different result, and so
the enabled/disabled state may need to update.

Chapter 7

243

WPF provides two implementations for the ICommand interface: RoutedCommand and
RoutedUICommand. The latter inherits from the former and adds a single Text property that
is used automatically with menu items. They implement ICommand explicitly and expose its
execution members in a different way:

public void Execute(object param, IInputElement target);
public bool CanExecute(object param, IInputElement target);

Why is that? The classic command pattern implementation uses a separate class
for each command. In this application, we could have had an OpenCommand class,
a ZoomInCommand class, and so on, all implementing ICommand. Instead, we use
the same type: RoutedUICommand. How can this work?

Routed(UI)Command objects are essentially empty shells. They cannot contain our own
implementation, so they hunt for a CommandBinding object up the visual tree from a target
element (this is the second argument to the above methods) that indicates it can handle that
command. This means that the following line:

<CommandBinding Command="IncreaseZoom" Executed="OnZoomIn"
 CanExecute="OnIsImageExist" />

Causes the XAML parser to convert the string IncreaseZoom (using a Type Converter) to the
static property NavigationCommands.IncreaseZoom (of type RoutedUICommand), the
same one used in the button:

<Button Content="Zoom In" Command="IncreaseZoom" Margin="6"/>

When the button is clicked, Execute (from ICommand) is called on the IncreaseZoom
command instance. This explicit implementation inside RoutedUICommand looks for a
corresponding CommandBinding, starting from the target element, which is by default the
command source itself (the button) and moving up the visual tree until such a command
and a handler is found. If not found, the command source is disabled.

Once the CommandBinding is found, its Executed event handler is called – this is where
our special implementation is located. Similarly, when WPF calls CanExecute on the
RoutedUICommand, the CommandBinding is located in the same way, but this time the
CanExecute event handler is called. If it does not exist, but an Executed event does exist,
the command source is always enabled (this is the case with our Open button). Otherwise,
the Boolean property ExecutedRoutedEventArgs.CanExecute indicates whether this
command is currently available. In our case, the zoom commands should be available when
an image is displayed.

Commands and MVVM

244

There's more...
WPF provides five classes that contain many static RoutedUICommand properties for
commonly used operations: ApplicationCommands (Open, Print, Copy, and many other
properties), MediaCommands class (Play, Pause, Stop, and so on), NavigationCommands
(BrowseBack, NextPage, Refresh, Search, and so on), ComponentCommands
(MoveLeft, MoveDown, ScrollByLine, and so on) and EditingCommands (AlignLeft,
Backspace, Delete, TabForward, and so on). Naturally, this list (no matter how
comprehensive) cannot possibly fill every application's needs.

We can create custom RoutedUIComamnd objects as was done in the code sample by using
the same tactics as WPF: creating a static property in some class of type RoutedUICommand.
Again, this is just a shell; a CommandBinding object will supply the actual logic behind the
command. A RoutedUICommand can include a name, text, and optional input gestures, such
as a keyboard shortcut that should invoke the command. Here's an example that extends the
zoom normal command to use a shortcut (Alt + N):

static readonly RoutedUICommand _zoomNormalCommand =
 new RoutedUICommand("Zoom Normal", "Normal",
 typeof(Commands), new InputGestureCollection(new [] {
 new KeyGesture(Key.N, ModifierKeys.Alt)
 }));

Many built-in commands have associated gestures, such as Ctrl + N for
ApplicationCommands.New and Ctrl + C for ApplicationCommands.Copy.

Built-in implementations
It may seem that RoutedUICommands provide very little. After all, they don't actually
implement the command logic.

Some controls have their own command bindings, and thus implement some well-known
commands. The TextBox control, for example, has command bindings for commands such
as Copy, Cut, Paste, and Undo. This means we can create a simple Notepad-like clone by
using a TextBox with the right commands. The Edit menu for such an implementation is
as follows:

<MenuItem Header="_Edit">
 <MenuItem Command="Copy" />
 <MenuItem Command="Cut" />
 <MenuItem Command="Paste" />
 <Separator />
 <MenuItem Command="Undo" />
 <MenuItem Command="Redo" />
</MenuItem>

Chapter 7

245

This is all that's needed for the TextBox to perform these operations. Note that MenuItem
objects pick up their Header from the Text property of the RoutedUICommand (unless an
explicit Header is specified).

Similarly, we can hook up buttons in a ToolBar:

<ToolBar Grid.Row="1">
 <Button Content="Copy" Command="Copy" />
 <Button Content="Cut" Command="Cut" />
 <Button Content="Paste" Command="Paste" />
</ToolBar>

The complete source is in the CH07.SimpleNotepad project, part of the downloadable
source for this chapter.

Command sources
As we've seen, buttons and menu items are capable of invoking commands. This is abstracted
by the ICommandSource interface, defined as follows:

public interface ICommandSource {
 ICommand Command { get; }
 object CommandParameter { get; }
 IInputElement CommandTarget { get; }
}

This indicates which command to invoke (Command), an optional parameter
(CommandParameter), and which element is the target from which the lookup for a
CommandBinding begins (CommandTarget). The following elements implement this
interface: MenuItem, ButtonBase, (and thus all buttons) and Hyperlink.

What this means is that other controls cannot invoke commands as easily, because
they don't implement ICommandSource. Furthermore, even controls that do implement
ICommandSource invoke the command when a specific trigger occurs (such as a click for
buttons); but what if we wanted a different trigger to invoke the command? These are things
we'll need to address in later recipes, as WPF does not provide solutions to these issues out
of the box.

Alternative ICommand implementations
RoutedUICommand's implementation of ICommand is fine for some cases, mainly where
pure UI is involved. However, if we want to connect a command to some piece of logic that is
not part of a Window's code behind, routed commands are problematic. This is because they
require CommandBinding objects that are part of some visual tree, and use an event handler
– this must be tied to a specific Window. A more decoupled implementation is preferred, but
is not supplied by WPF. We'll see examples in the next recipes.

Commands and MVVM

246

Implementing a basic MVVM application
The MVC, MVP, and MVVM patterns comprise mostly the same parts: a model, which is
the data, a view (or views) that display the data in some meaningful way and provide user
interaction, and a third part that is somehow responsible for the logic behind the interactions
of view and data. The exact differences between MVC and MVP are not that important (you
can find a lot on these topics on the Web). MVVM could be considered a special case of MVP,
where data binding is used to connect the View with the ViewModel in a very loose way. This is
especially favorable for XAML-based applications, where data binding is both declarative and
powerful. In this recipe, we'll move closer to MVVM by taking the previous recipe, Using routed
commands, and "moving" it towards MVVM.

Getting ready
In Visual Studio, open the CH07.RoutedCommands project (from the previous recipe). We'll
make changes to this project to make it more MVVM-like.

How to do it...
We'll refactor the image viewer to be more MVVM-like by separating the view from its state
and connecting them through data binding:

1. First, we need to get rid of the RoutedUICommands. Delete the Commands.cs file.

2. Open ImageData.cs. Make the property ImagePath read/write with a change
notification and remove the constructor. The result is as follows:
class ImageData : INotifyPropertyChanged {
 string _imagePath;
 double _zoom = 1.0;
 public double Zoom {
 get { return _zoom; }
 set {
 _zoom = value;
 OnPropertyChanged("Zoom");
 }
 }

 public string ImagePath {
 get { return _imagePath; }
 set {
 _imagePath = value;
 OnPropertyChanged("ImagePath");
 }
 }

 protected virtual void OnPropertyChanged(string name) {

Chapter 7

247

 var pc = PropertyChanged;
 if (pc != null)
 pc(this, new PropertyChangedEventArgs(name));
 }

 public event PropertyChangedEventHandler PropertyChanged;
}

3. Add a new project folder named Commands.

4. Add a new class to the Commands folder called OpenImageFileCommand.

5. Make the class implement the ICommand interface (add a using statement for
the System.Windows.Data.Input namespace). The skeleton code should
look as follows:
class OpenImageFileCommand : ICommand {
 public bool CanExecute(object parameter) {
 throw new NotImplementedException();
 }

 public event EventHandler CanExecuteChanged;

 public void Execute(object parameter) {
 throw new NotImplementedException();
 }
}

6. Implement CanExecute by returning a simple true:
public bool CanExecute(object parameter) {
 return true;
}

7. Implement Execute by copying the code from the MainWindow.OnOpen method
(add a using statement for the Microsoft.Win32 namespace). The code does
not compile, as the _image and DataContext do not exist.

8. Add a constructor for the OpenImageFileCommand class that accepts an
ImageData object and save it in a private field.

9. In the Execute method after the dialog is dismissed, set the ImageData.
ImagePath property to the obtained filename. The entire class is as follows:
class OpenImageFileCommand : ICommand {
 ImageData _data;
 public OpenImageFileCommand(ImageData data) {
 _data = data;
 }

 public bool CanExecute(object parameter) {

Commands and MVVM

248

 return true;
 }

 public event EventHandler CanExecuteChanged;

 public void Execute(object parameter) {
 var dlg = new OpenFileDialog {
 Filter = "Image Files|*.jpg;*.png;*.bmp;*.gif"
 };
 if(dlg.ShowDialog() == true) {
 _data.ImagePath = dlg.FileName;
 }
 }
}

10. Add another class to the Commands folder named ZoomCommand that implements
ICommand. Create a simple enum to indicate the required zoom:
enum ZoomType {
 ZoomIn,
 ZoomOut,
 ZoomNormal
}

11. Add a constructor to ZoomCommand that accepts an ImageData and save it in a
private field.

12. Implement Execute as follows:
public void Execute(object parameter) {
 var zoomType = (ZoomType)Enum.Parse(typeof(ZoomType),
 (string)parameter, true);
 switch(zoomType) {
 case ZoomType.ZoomIn:
 _data.Zoom *= 1.2;
 break;
 case ZoomType.ZoomOut:
 _data.Zoom /= 1.2;
 break;
 case ZoomType.ZoomNormal:
 _data.Zoom = 1.0;
 break;
 }
}

Chapter 7

249

13. The preceding code assumes the parameter of the command holds the zoom type.
Implement CanExecute with the following code:
public bool CanExecute(object parameter) {
 return _data.ImagePath != null;
}

14. Let's expose these commands from the ImageData class. This turns out to be our
View-Model. Open ImageData.cs.

15. Add two private fields of type ICommand that correspond to the two commands we
just created:
ICommand _openImageFileCommand, _zoomCommand;

16. Create a constructor for ImageData and initialize these commands:
public ImageData() {
 _openImageFileCommand = new OpenImageFileCommand(this);
 _zoomCommand = new ZoomCommand(this);
}

17. Expose the commands as read only properties:
public ICommand OpenImageFileCommand {
 get { return _openImageFileCommand; }
}

public ICommand ZoomCommand {
 get { return _zoomCommand; }
}

18. Open MainWindow.xaml. Remove the command bindings.

19. Replace the command properties of the buttons with simple binding expressions
as follows:
<Button Command="{Binding OpenImageFileCommand}" Margin="6"
 Content="Open..." />
<Button Content="Zoom In" Command="{Binding ZoomCommand}"
 CommandParameter="ZoomIn" Margin="6"/>
<Button Content="Zoom Out" Command="{Binding ZoomCommand}"
 CommandParameter="ZoomOut" Margin="6"/>
<Button Content="Normal" Command="{Binding ZoomCommand}"
 CommandParameter="ZoomNormal" Margin="6"/>

20. Open MainWindow.xaml.cs. Remove all methods except the constructor.

Commands and MVVM

250

21. Add to the constructor code to create an ImageData and make it the DataContext.
The entire code behind should look as follows:
public partial class MainWindow : Window {
 public MainWindow() {
 InitializeComponent();
 DataContext = new ImageData();
 }
}

22. Run the application. Click on Open to load an image. The image shows, but the zoom
buttons remain disabled. Open ZoomCommand.cs and modify the implementation of
the CanExecuteChanged event as follows:
public event EventHandler CanExecuteChanged {
 add { CommandManager.RequerySuggested += value; }
 remove { CommandManager.RequerySuggested -= value; }
}

23. Run the application again. Everything should work as expected.

How it works...
MVVM has three participants. The Model represents the data, or business logic. This may
consist of types generated in some way (such as entity classes in Entity Framework or data
objects generated by a WCF service metadata). It's typically neutral; that is, it knows nothing
of how it's going to be used. It usually implements change notifications for properties
(by implementing INotifyPropertyChanged).

The View is the actual UI. It should display relevant parts of the model and provide the
required interactive functionality. The view should not have a direct knowledge of the model,
and this is where data binding comes in. All bindings access a property without explicitly
knowing what type of object sits at the other end. This magic is satisfied at runtime by
setting the view's DataContext to the object providing the data; this is the ViewModel.

The ViewModel is the glue that hands out the required data to the View (based on the Model).
The ViewModel is just that – a model for the view. It has several responsibilities:

 f Expose properties that allow binding in the view. This may be just by accessing
properties on the model, but may be more involved if the model exposes data in
another way (such as with methods).

 f Expose commands to be invoked by elements in the view.

 f Maintain relevant state for the view.

Chapter 7

251

The ImageData class in the example code is our ViewModel. It maintains the zoom value for
the view to bind to. This zoom has nothing to do with the actual data. It also exposes a set
of ICommand properties to be invoked by the view. The model has no notion of commands
(and it shouldn't).

In the example, there is no separate model, as the application is very simple. We could have
taken the ImagePath property and put it in a separate class and call that "the model". We'll
see a more complex example in the following recipes.

The entire relationship between Model, View, and ViewModel can be summarized with the
following diagram:

There's more...
The MainWindow code behind is practically empty, with just a constructor that after calling
InitializeComponent creates an instance of ImageData (the ViewModel) and sets
it as the DataContext. This is one way to do this – it's called "View first", as the view
(MainWindow) is created first and it's responsible for finding its ViewModel (we could do
that even in XAML by creating the ViewModel as a resource and making it the value of the
View's DataContext). The other common way is for another entity to create the ViewModel
and the View and "bind" them together. In our example, this could be achieved inside an
Application.OnStartup override:

protected override void OnStartup(StartupEventArgs e) {
 base.OnStartup(e);

 var mainWindow = new MainWindow();
 mainWindow.DataContext = new ImageData();
 mainWindow.Show();
}

This assumes that the Application.StartupUri property has been removed from
App.xaml. Now MainWindow has virtually no code at all.

Which one is better? This is a matter of taste (and you can find many discussions online), but
I prefer the latter approach. This makes things look somewhat "cleaner" as the view remains
totally oblivious to the actual ViewModel it binds to. For one, we can change the ViewModel
type, and as long as property names remain the same, the view shouldn't know or care.

Commands and MVVM

252

Implementing ICommand
Clearly, we abandoned WPF's RoutedUICommand objects and instead created our own
implementations. A command needs data to work on, and so an ImageData instance is
passed to the commands. This keeps the command neutral – it has no idea what controls
(if any) would be affected by its execution.

Execute and CanExecute are fairly straightforward to implement. They do what needs to
be done, and no more. In our OpenImageFileCommand, CanExecute always returns true,
as this command is always valid. ZoomCommand, on the other hand, is only valid if there is
an image file (note that the implementation is flawed, as any file path is accepted and never
checked if this is in fact a valid image; we'll leave this as an exercise for the reader).

What about the CanExecuteChanged event? In OpenImageFileCommand it's not
"implemented" as we don't need to throw this event ever (the command is always valid).

In ZoomCommand, we need to notify WPF when the command validity changes (becomes
valid or invalid). How can we do that? In the command we have no way of knowing when the
ImagePath changes. Or maybe we do. We can register using INotifyPropertyChanged
on ImageData and when that event is raised to raise the CanExecuteChanged event.
Although this is possible, there is a simpler approach. WPF raises the CommandManager.
RequerySuggested static event when it thinks the execution state of commands
may change. This is typically done after some UI actions that may cause something to
change in all bound commands. The following implementation causes WPF to call register
for its own notification of re-executing CanExecute for all commands that raise the
CanExecuteChange event:

public event EventHandler CanExecuteChanged {
 add { CommandManager.RequerySuggested += value; }
 remove { CommandManager.RequerySuggested -= value; }
}

With this implementation, CanExecute is called more times than it actually should, but since
most CanExecute logic is quick, this has no adverse effect.

Blendability
Although we're working mostly with Visual Studio in this book, there is another potentially
useful tool for WPF work, Microsoft Expression Blend. This tool is used primarily by designers,
and is well beyond the scope of this book. As developers, we may be "forced" to be designers,
too, and Blend may be useful in this case, as there are some things that are difficult to create
accurately in hand coded XAML (VS 2010's designer is much less powerful than Blend's
designer, but VS 2012's designer is on par with Blend's designer), such as animations and
other graphic effects. If we're working with a true designer (a person), we may want to give her
(or him) a better experience; this is true of Visual Studio's designer as well. If we look at the
designer of Visual Studio or Blend with the example application open, we find the following
(VS on the left, Blend on the right):

Chapter 7

253

It's more important to note what we don't see: there is no image. A designer (person) may
want to know what kind of data the view shows, so she can make the design better – she
would like to get a "feel" for the application in design time.

This is sometimes termed "blendability", but it applies equally to Visual Studio's designer.
What we want is to create a "default" ViewModel, so that something is shown in design
mode, but only in design mode.

Blend includes some XML namespace prefixes that it understands, the most important
being the following:

xmlns:d=http://schemas.microsoft.com/expression/blend/2008

The "d" prefix can now be used to set properties for design time (in this case on the Window):

d:DataContext="{d:DesignInstance Type=local:ImageData,
 IsDesignTimeCreatable=True}"

This instructs the designer to create an instance of ImageData (in design time only). The
default constructor of ImageData does not bind to any default image, so we need to fix it:

var prop = DesignerProperties.IsInDesignModeProperty;
bool design = (bool)DependencyPropertyDescriptor.FromProperty(
 prop, typeof(FrameworkElement)).Metadata.DefaultValue;
if(design) {
 ImagePath = Environment.GetFolderPath(
 Environment.SpecialFolder.MyPictures)
 + @"\Sample Pictures\Penguins.jpg";
}

http://schemas.microsoft.com/expression/blend/2008
http://schemas.microsoft.com/expression/blend/2008

Commands and MVVM

254

The test for design time may look more complicated than it should be – this is required if
Visual Studio's designer is to be supported as well as Blend's. After this change, the
designers look as follows:

Building a simple MVVM framework
It should be clear at this point that MVVM-based applications have a lot of elements in
common, such as change notifications and commands. It would be beneficiary to create a
reusable framework that we can simply leverage in many applications. Although there are
several good frameworks out there (most are free), building such a framework ourselves will
enhance our understanding and may prove easier to extend than other frameworks, which we
may be less familiar with.

Getting ready
Make sure Visual Studio is up and running.

How to do it...
We'll create a reusable class library to serve as a basis of a simple MVVM framework and use
it (and extend it) in later recipes:

1. Create a new WPF UserControl Class Library project named CH07.
CookbookMVVM. Make sure the checkbox Create directory for solution is
checked. We don't need any user controls, but this automatically adds WPF
assembly references.

2. Delete the file UserControl1.xaml.

Chapter 7

255

3. Add the class ObservableObject from the recipe Binding to a single object in
Chapter 6. The entire class is as follows (with one small addition):
public abstract class ObservableObject : INotifyPropertyChanged {
 public event PropertyChangedEventHandler PropertyChanged;

 protected virtual void OnPropertyChanged(string propName) {
 Debug.Assert(GetType().GetProperty(propName) != null);
 var pc = PropertyChanged;
 if(pc != null)
 pc(this, new PropertyChangedEventArgs(propName));
 }

 protected bool SetProperty<T>(ref T field, T value,
 string propName) {
 if(!EqualityComparer<T>.Default.Equals(field, value)) {
 field = value;
 OnPropertyChanged(propName);
 return true;
 }
 return false;
 }

 protected bool SetProperty<T>(ref T field, T value,
 Expression<Func<T>> expr) {
 if(!EqualityComparer<T>.Default.Equals(field, value)) {
 field = value;
 var lambda = (LambdaExpression)expr;
 MemberExpression memberExpr;
 if(lambda.Body is UnaryExpression) {
 var unaryExpr = (UnaryExpression)lambda.Body;
 memberExpr = (MemberExpression)unaryExpr.Operand;
 }
 else {
 memberExpr = (MemberExpression)lambda.Body;
 }

 OnPropertyChanged(memberExpr.Member.Name);
 return true;
 }
 return false;
 }
}

Commands and MVVM

256

4. For ViewModels, we'll create two abstract base classes that will serve as a basis for
any concrete ViewModel. Add a class named ViewModelBase, and implement it in
a generic and non-generic way as follows:
public abstract class ViewModelBase : ObservableObject {
}

public abstract class ViewModelBase<TModel> : ViewModelBase {
 TModel _model;

 public TModel Model {
 get { return _model; }
 set { SetProperty(ref _model, value, () => Model); }
 }

}

5. This provides convenient access to the underlying model (if such direct access is
needed). Next, we need a generic command implementation class, which should not
require us to create new command classes (as in the previous recipe), but just create
new instances of it. Add a class named RelayCommand and implement it as follows
(again, two versions: generic and non-generic). The first is the generic version:
public class RelayCommand<T> : ICommand {
 private static bool CanExecute(T parameter) {
 return true;
 }

 readonly Action<T> _execute;
 readonly Func<T, bool> _canExecute;

 public RelayCommand(Action<T> execute,
 Func<T, bool> canExecute = null) {
 if(execute == null)
 throw new ArgumentNullException("execute");
 _execute = execute;
 _canExecute = canExecute ?? CanExecute;
 }

 public bool CanExecute(object parameter) {
 return _canExecute(TranslateParameter(parameter));
 }

 public event EventHandler CanExecuteChanged {
 add {
 if(_canExecute != null)
 CommandManager.RequerySuggested += value;
 }
 remove {
 if(_canExecute != null)

Chapter 7

257

 CommandManager.RequerySuggested -= value;
 }
 }

 public void Execute(object parameter) {
 _execute(TranslateParameter(parameter));
 }

 private T TranslateParameter(object parameter) {
 T value = default(T);
 if (parameter != null && typeof (T).IsEnum)
 value = (T) Enum.Parse(typeof(T),
 (string) parameter);
 else
 value = (T) parameter;
 return value;
 }
}

6. The class is based on two delegates; one for executing the command and another for
returning the validity of the command. The non-generic version is just a special case
for the first, in case the command has no parameter:
public class RelayCommand : RelayCommand<object> {
 public RelayCommand(Action execute,
 Func<bool> canExecute = null)
 : base(obj => execute(),
 (canExecute == null ? null :
 new Func<object, bool>(obj => canExecute()))) {
 }
}

7. That's it for the basic framework. We'll add some more features in later recipes.

How it works...
The framework currently consists of three classes, and we'll look at them next.

ObservableObject implements the class changed notification infrastructure (the
INotifyPropertyChanged interface), as we've seen already in Chapter 6. The only
addition is the returning of a Boolean value from the SetProperty<> methods. This
indicates whether the sent value was actually different than the previous one. Most of the
time this is unimportant to the caller, but we'll see some scenarios where it is, and so having
this information can be beneficial.

Commands and MVVM

258

The ViewModelBase classes simply provide a basis for custom ViewModels. Currently, they
have very little – they inherit from ObservableObject and the generic ViewModelBase
can hold its model as a property named Model. This is sometimes useful, although it might
be dangerous, as the connected view can "bypass" the ViewModel and go straight for the
model. The advantage here is that it saves duplicating properties from the model on
the ViewModel.

RelayCommand is a general purpose command implementation wrapper. In the previous
recipe, we created a separate command implementation for each required command
(OpenImageFileCommand, ZoomCommand). Although this is fairly easy to do, it can cause
a great number of classes to exist in large applications. The alternative is a single class that
encapsulates different business logic using delegates accepted as constructor arguments.

We'll see the usage of these classes in the next recipe, Building a complete MVVM
style application.

There's more...
There are a number of MVVM frameworks out there; most of them are free and open source,
and can be found on Microsoft's CodePlex site (http://www.codeplex.com). Here's a list
of some of the well-known frameworks:

 f MVVM Light Toolkit (http://mvvmlight.codeplex.com/): A popular framework
supporting both WPF and Silverlight (and now with Windows 8 Store apps as well),
written by Laurent Bugnion.

 f Simple MVVM Toolkit (http://simplemvvmtoolkit.codeplex.com/): Works
with WPF, Silverlight, and Windows Phone 7.x. Claims to be more feature rich than
MVVM Light Toolkit.

 f Caliburn Micro (http://caliburnmicro.codeplex.com/): A feature rich
framework, closer to Prism in functionality (see next section) that works with WPF,
Silverlight, Windows Phone 7.x, and the new Windows 8 Store style applications.

Non-ICommandSource elements and other events
Commands are invoked by elements implementing ICommandSource, which exposes the
Command and CommandParameter properties. What about controls that don't implement
that interface? What about using different events to execute commands? For instance, a click
of a button causes the bound command to execute. What if we wanted a double click on the
button to execute a command?

WPF has no solutions for these issues out of the box. With some creativity, however, this can
be solved using attached properties (the general way to extend functionality in WPF) and
some clever coding. As the source code is non-trivial, and a large part of it is unrelated directly
to WPF (some reflection and dynamic delegate creation), it's not printed here. The complete
source is available as part of the CH07.CookbookMVVM project.

http://www.codeplex.com
http://mvvmlight.codeplex.com/
http://mvvmlight.codeplex.com/
http://simplemvvmtoolkit.codeplex.com/
http://simplemvvmtoolkit.codeplex.com/
http://caliburnmicro.codeplex.com/
http://caliburnmicro.codeplex.com/

Chapter 7

259

Here's an example usage: suppose we want a double-click on a ListBox to execute some
command. The required mark up for this is as follows (the "mvvm" XML prefix is assumed to
point to the CH07.CookbookMVVM namespace):

<ListBox>
 <mvvm:EventsToCommandsMapper.Mapper>
 <mvvm:EventToCommandCollection>
 <mvvm:EventToCommand Event="MouseDoubleClick"
 Command="{Binding SomeCommand}" />
 </mvvm:EventToCommandCollection>
 </mvvm:EventsToCommandsMapper.Mapper>
</ListBox>

This can be used with any element regardless of ICommandSource.

What about Prism?
The Prism project (http://compositewpf.codeplex.com/) is from Microsoft's
Patterns and Practices team. It provides a comprehensive framework for building rich client
applications with WPF, Silverlight, and Windows Phone 7.x, by leveraging the MVVM pattern,
but also supports Inversion of Control (IoC) containers (it supports Unity and MEF – both are
beyond the scope of this book) and more.

It's considered more feature-complete with respect to the toolkits mentioned earlier, but is
also more complex. Caliburn Micro is probably the closest one in functionality to Prism.

Building a complete MVVM style application
Now that we have our own (small) framework to assist us with building MVVM applications, it's
time to actually build one. Along the way we may find missing features in our framework, but
that's ok; it's a normal way for frameworks to evolve.

Getting ready
Run Visual Studio and open the CH07.CookbookFramework project. This is a long recipe,
but hopefully the end result would be worth it (in terms of understanding, not visually).

How to do it...
We'll create a sample blog viewer application using the simple framework we just built:

1. Add a new WPF project to the current solution, named CH07.BlogReader. This will
be a fictitious blog reader application with support for adding posts and comments.

2. Add a reference to the CH07.CookbookMVVM project.

http://compositewpf.codeplex.com/

Commands and MVVM

260

3. Create three project folders named Model, Views, and ViewModels. The project
tree looks as follows:

4. We'll start with the models. These will be simple classes that represent some blog
properties. Add a class named BlogComment to the Models folder and implement
it as follows:
class BlogComment : ObservableObject {
 string _name;
 string _text;
 DateTime _when;

 public string Name {
 get { return _name; }
 set { SetProperty(ref _name, value, () => Name); }
 }

 public string Text {
 get { return _text; }
 set { SetProperty(ref _text, value, () => Text); }
 }

 public DateTime When {
 get { return _when; }
 set { SetProperty(ref _when, value, () => When); }
 }
}

5. A BlogComment object just holds a few simple properties. Add another class to the
Models folder called BlogPost. Implement it as follows:
class BlogPost : ObservableObject {
 string _title;
 string _text;
 DateTime _when;
 ObservableCollection<BlogComment> _comments =
 new ObservableCollection<BlogComment>();

Chapter 7

261

 public string Title {
 get { return _title; }
 set { SetProperty(ref _title, value, () => Title); }
 }

 public string Text {
 get { return _text; }
 set { SetProperty(ref _text, value, () => Text); }
 }

 public DateTime When {
 get { return _when; }
 set { SetProperty(ref _when, value, () => When); }
 }

 public IList<BlogComment> Comments {
 get { return _comments; }
 }
}

6. A BlogPost maintains some simple properties and a collection of BlogComment
objects (ObservableCollection<T> is used so that adding or removing objects
raises a notification for any bound controls). Add yet another class to the Models
folder named Blogger. This includes some information on a blogger:
class Blogger : ObservableObject {
 string _name;
 string _email;
 Stream _picture;

 public string Name {
 get { return _name; }
 set { SetProperty(ref _name, value, () => Name); }
 }

 public string Email {
 get { return _email; }
 set { SetProperty(ref _email, value, () => Email); }
 }

 public Stream Picture {
 get { return _picture; }
 set { SetProperty(ref _picture, value, () => Picture); }
 }
}

Commands and MVVM

262

7. A blogger has a name, an e-mail, and a picture, represented by a neutral
Stream object. Finally, we'll add a Blog class that puts everything together:
class Blog : ObservableObject {
 Blogger _blogger;
 ObservableCollection<BlogPost> _posts =
 new ObservableCollection<BlogPost>();
 string _blogTitle;

 public Blogger Blogger {
 get { return _blogger; }
 set { SetProperty(ref _blogger, value, () => Blogger); }
 }

 public IList<BlogPost> Posts {
 get { return _posts; }
 }

 public string BlogTitle {
 get { return _blogTitle; }
 set {
 SetProperty(ref _blogTitle, value, () => BlogTitle);
 }
 }
}

8. A blog has a title, a blogger, and a collection of posts. Next, we need to create views
and bind them to ViewModels. Assuming some UI design was done, we need to create
the actual views. A view can be a Window, a UserControl, or a data template. As
we haven't discussed user controls yet, we'll use data templates and windows.

9. Right-click on the Views folder and select Add Resource Dictionary…. Name it
BloggerView.xaml.

10. Add a DataTemplate object to the ResourceDictionary to indicate how a
blogger should be displayed:
<DataTemplate x:Key="bloggerTemplate">
 <Grid Background="#c0ffffff">
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto"/>
 <RowDefinition />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition />
 <ColumnDefinition Width="Auto" />
 </Grid.ColumnDefinitions>

Chapter 7

263

 <TextBlock Text="{Binding Model.Name}"
 FontWeight="Bold" FontSize="16" />
 <TextBlock Grid.Row="1" FontSize="14">
 <Hyperlink>
 <Run Text="{Binding Model.Email}" />
 </Hyperlink>
 </TextBlock>
 <Image Grid.Column="1" Grid.RowSpan="2"
 Source="{Binding Picture}" Width="48" Height="48"
 Stretch="Uniform" Margin="4"/>
 </Grid>
</DataTemplate>

11. The bindings assume some ViewModel that is yet to exist. Add a class to the
ViewModels folder, named BloggerVM, and implement it as follows:
class BloggerVM : ViewModelBase<Blogger> {
 public ImageSource Picture {
 get {
 if(Model.Picture == null)
 return new BitmapImage(new Uri(
 "/Images/blogger.png",
 UriKind.Relative));
 var bmp = new BitmapImage();
 bmp.BeginInit();
 bmp.StreamSource = Model.Picture;
 bmp.EndInit();
 return bmp;
 }
 }
}

12. Add an Images folder to the project. Inside add an image and name it blogger.png
or change the above URI to point to the correct image name.

13. We want a click on the e-mail of the blogger to open the default e-mail client with the
blogger's e-mail in the "to" box. Add the following code to the BloggerVM class that
exposes a RelayCommand<string>:
ICommand _sendEmailCommand;
public ICommand SendEmailCommand {
 get {
 return _sendEmailCommand ?? (_sendEmailCommand =
 new RelayCommand<string>(email =>
 Process.Start("mailto:" + email)));
 }
}

Commands and MVVM

264

14. This code creates the command the first time it's requested and stores it in a private
field. The command must be exposed through a binding. Open BloggerView.xaml.

15. Add the following markup to the Hyperlink element:
Command="{Binding SendEmailCommand}"
CommandParameter="{Binding Model.Email}"

16. Let's add more Views and ViewModels. Add another ResourceDictionary to the
Views folder named BlogView.xaml.

17. Add a DataTemplate object, which should display a blog comment:
<DataTemplate x:Key="commentTemplate">
 <Grid Margin="2,8">
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>
 <StackPanel Orientation="Horizontal">
 <TextBlock Text="{Binding Model.When,
 StringFormat=d}" />
 <TextBlock Margin="10,0,0,0" Text="{Binding Name,
 StringFormat=From: \{0\}}" FontWeight="Bold"/>
 </StackPanel>
 <TextBlock Grid.Row="1" Text="{Binding Text}"
 TextWrapping="Wrap" />
 </Grid>
</DataTemplate>

18. This markup shows the date of the comment (Model.When), the name of the
commenting user (Name), and the comment itself (Text). The corresponding
ViewModel is the BlogCommentVM class, added to the ViewModels folder:
class BlogCommentVM : ViewModelBase<BlogComment> {
 public string Text {
 get { return Model.Text; }
 set {
 Model.Text = value;
 OnPropertyChanged("IsCommentOK");
 }
 }

 public string Name {
 get { return Model.Name; }
 set {
 Model.Name = value;
 OnPropertyChanged("IsCommentOK");

Chapter 7

265

 }
 }

 public bool IsCommentOK {
 get {
 return !string.IsNullOrWhiteSpace(Model.Name) &&
 !string.IsNullOrWhiteSpace(Model.Text);
 }
 }
}

19. The Name and Text property are reflected off the model because when they change
the IsCommentOK property is raised. This will be used later to validate a comment.

20. Open BlogView.xaml. Let's add another DataTemplate for a blog post:
<DataTemplate x:Key="blogPostTemplate">
 <Grid Background="#b0dddddd" Margin="2,10">
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>
 <StackPanel Orientation="Horizontal">
 <TextBlock Text="{Binding Title}"
 FontWeight="Bold" />
 <TextBlock Margin="10,0,0,0"
 Text="{Binding Model.When, StringFormat='(\{0\})'}"
 FontStyle="Italic" />
 </StackPanel>
 <TextBlock Grid.Row="1" Text="{Binding Text}"
 Margin="0,10,0,0" TextWrapping="Wrap" />
 <Expander Grid.Row="2" ExpandDirection="Down">
 <Expander.Header>
 <StackPanel Orientation="Horizontal">
 <TextBlock Text="Comments" />
 <Button Margin="20,0,0,0"
 Content="New Comment"
 Command="{Binding NewCommentCommand}" />
 </StackPanel>
 </Expander.Header>
 <Border BorderBrush="Blue" BorderThickness="2"
 Padding="2" Margin="2">
 <ItemsControl ItemsSource="{Binding Model.
Comments}" ItemTemplate="{StaticResource commentTemplate}" />
 </Border>
 </Expander>
 </Grid>
</DataTemplate>

Commands and MVVM

266

21. This template is more interesting, as it hosts an ItemsControl that binds to
the Model.Comments collection. Also, a New Comment button is rendered, its
command bound to the NewCommentCommand property. All this must be backed
up by a proper ViewModel.

22. Before we do that, we need a dialog window that will be used to create
a new comment. Add a new Window class to the Views folder, named
NewCommentWindow.xaml.

23. Add the following markup to the existing Grid:
<Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition />
 <RowDefinition Height="Auto" />
</Grid.RowDefinitions>
<DockPanel>
 <TextBlock Text="Title:" DockPanel.Dock="Left"
 VerticalAlignment="Center"/>
 <TextBox Margin="10,0,0,0" Text="{Binding Name,
 UpdateSourceTrigger=PropertyChanged}" />
</DockPanel>
<TextBox Margin="4" Grid.Row="1" AcceptsReturn="True"
 Text="{Binding Text, UpdateSourceTrigger=PropertyChanged}"/>
<UniformGrid Rows="1" Columns="2" Grid.Row="2"
 Margin="2,10,2,2">
 <Button HorizontalAlignment="Right" Margin="6,0" Width="50"
 IsEnabled="{Binding IsCommentOK}" Content="OK"
 IsDefault="True" />
 <Button HorizontalAlignment="Left" Margin="6,0" Width="50"
 Content="Cancel" IsCancel="True" />
</UniformGrid>

24. The markup consists of a title TextBox and a comments TextBox, along with an OK
and Cancel button. The properties used are from the BlogCommentVM class, which
will be provided as the DataContext at runtime.

25. Add a Click event handler to the OK button (yes, we have code in the code behind).
The implementation should just dismiss the dialog with a true result:
private void OnOK(object sender, RoutedEventArgs e) {
 DialogResult = true;
 Close();
}

Chapter 7

267

26. Add a class named BlogPostVM to the ViewModels folder and implement it
as follows:
class BlogPostVM : ViewModelBase<BlogPost> {
 public string Title {
 get { return Model.Title; }
 set {
 Model.Title = value;
 OnPropertyChanged("IsPostOK");
 }
 }
 public string Text {
 get { return Model.Text; }
 set {
 Model.Text = value;
 OnPropertyChanged("IsPostOK");
 }
 }
 public bool IsPostOK {
 get {
 return !string.IsNullOrWhiteSpace(Model.Title) &&
 !string.IsNullOrWhiteSpace(Model.Text);
 }
 }

 ICommand _newCommentCommand;
 public ICommand NewCommentCommand {
 get {
 return _newCommentCommand ?? (_newCommentCommand =
 new RelayCommand(() => {
 var comment = new BlogComment();
 var dlg = new NewCommentWindow {
 DataContext =
 new BlogCommentVM { Model = comment }
 };
 if(dlg.ShowDialog() == true) {
 comment.When = DateTime.Now;
 Model.Comments.Add(comment);
 }
 }));
 }
 }
}

Commands and MVVM

268

27. Note the implementation of the command. A NewCommentWindow is created (the
view) and a DataContext is set to an empty BlogCommentVM. If closed with OK,
the comment is added to the model.

28. Next we need a view for an entire blog. Open BlogView.xaml and add another
DataTemplate for a blog (consisting of a title and posts):
<DataTemplate x:Key="blogTemplate">
 <Grid Background="LightYellow">
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition />
 </Grid.RowDefinitions>
 <StackPanel Orientation="Horizontal">
 <TextBlock Text="{Binding Model.BlogTitle}"
 FontWeight="Bold" />
 <Button Margin="20,0,0,0" Content="New Post"
 Command="{Binding NewPostCommand}" />
 </StackPanel>
 <ScrollViewer Grid.Row="1" Margin="4"
 VerticalScrollBarVisibility="Auto">
 <ItemsControl ItemsSource="{Binding Posts}"
 ItemTemplate="{StaticResource blogPostTemplate}"
 HorizontalContentAlignment="Stretch" />
 </ScrollViewer>
 </Grid>
</DataTemplate>

29. This template consists of a title (Model.BlogTitle) and a collection of blog
posts (Posts property). A new post can be added with a button bound to the
NewPostCommand property (a command). Again, this must be backed up by
a proper ViewModel.

30. Once again, we'll first add a Window for entering a new blog post. This is similar
to the new comment window. You can copy the class definition (NewPostWindow.
xaml/cs) from the downloadable source for this chapter. Now let's add a ViewModel
class for a blog, named BlogVM:
class BlogVM : ViewModelBase<Blog> {
 public BloggerVM Blogger {
 get { return new BloggerVM { Model = Model.Blogger }; }
 }

 ICommand _newPostCommand;
 public ICommand NewPostCommand {
 get {

Chapter 7

269

 return _newPostCommand ?? (_newPostCommand =
 new RelayCommand(() => {
 var post = new BlogPostVM {
 Model = new BlogPost()
 };
 var dlg = new NewPostWindow {
 DataContext = post
 };
 if(dlg.ShowDialog() == true) {
 post.Model.When = DateTime.Now;
 Model.Posts.Add(post.Model);
 OnPropertyChanged("Posts");
 }
 }));
 }
 }

 public IEnumerable<BlogPostVM> Posts {
 get {
 return Model.Posts.Select(post =>
 new BlogPostVM {Model = post});
 }
 }
}

31. The command implementation is similar in concept to NewCommentCommand.
A NewPostWindow is created, the correct DataContext is set, and if OK is
clicked, a new BlogPost is added.

32. We want to allow multiple blogs to be managed. We can create another model that is
a kind of blog manager that holds a collection of blogs. But in this case, we'll take a
shortcut by creating a ViewModel without a separate model class. Add a new class to
the ViewModels folder called MainVM and implement it as follows:
class MainVM : ViewModelBase<IEnumerable<Blog>> {
 BlogVM _selectedBlog;

 public IEnumerable<BlogVM> Blogs {
 get { return Model.Select(blog =>
 new BlogVM { Model = blog });
 }
 }

 public BlogVM SelectedBlog {
 get { return _selectedBlog; }
 set {

Commands and MVVM

270

 if(SetProperty(ref _selectedBlog, value,
 () => SelectedBlog))
 OnPropertyChanged("IsSelectedBlog");
 }
 }

 public Visibility IsSelectedBlog {
 get {
 return SelectedBlog != null ? Visibility.Visible
 : Visibility.Collapsed;
 }
 }

 public MainVM(IEnumerable<Blog> blogs) {
 Model = new ObservableCollection<Blog>(blogs);
 }
}

33. MainVM holds a collection of blogs (provided as via the constructor, or via the Model
property) and manages the existence of any selected blog (if any, SelectedBlog
and IsSelectedBlog). The corresponding view to MainVM is the MainWindow
itself. Open MainWindow.xaml.

34. Add the following markup inside the existing Grid:
<Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition />
</Grid.RowDefinitions>
<StackPanel Orientation="Horizontal" Panel.ZIndex="1000">
 <TextBlock Text="Select blog to read:"
 VerticalAlignment="Center" Margin="2"/>
 <ComboBox ItemsSource="{Binding Blogs}" Margin="10,0,0,0"
 DisplayMemberPath="Model.BlogTitle" Width="170"
 SelectedItem="{Binding SelectedBlog, Mode=TwoWay}">
 </ComboBox>
 <Canvas Visibility="{Binding IsSelectedBlog}" >
 <Expander Margin="10,0,0,0" VerticalAlignment="Center"
 ExpandDirection="Down" Header="Blog Information"
 ContentTemplate="{StaticResource bloggerTemplate}"
 Content="{Binding SelectedBlog.Blogger}">
 </Expander>
 </Canvas>
</StackPanel>
<ContentControl Content="{Binding SelectedBlog}"
 ContentTemplate="{StaticResource blogTemplate}"
 Grid.Row="1" Visibility="{Binding IsSelectedBlog}"
 Margin="2,10,2,2" />

Chapter 7

271

35. MainWindow consists of a ComboBox for selecting a blog to view and a
ContentControl that uses the blog template – everything else cascades
from there.

36. All that's left is to provide some data for the models. Open App.xaml and delete the
StartupUri property.

37. Open App.xaml.cs and override the OnStartup method as follows:
protected override void OnStartup(StartupEventArgs e) {
 base.OnStartup(e);

 // create some dummy blogs
 var blogs = new ObservableCollection<Blog> {
 new Blog {
 Blogger = new Blogger {
 Name = "Bart Simpson",
 Email = "bart@springfield.com",
 Picture = GetResourceStream(new Uri(
 "/Images/bart.png", UriKind.Relative)).Stream
 },
 BlogTitle = "Bart's adventures",
 Posts = {
 new BlogPost {
 When = new DateTime(2000, 8, 12),
 Title = "Post 1",
 Text = "This is the first post of Bart",
 Comments = {
 new BlogComment {
 Name = "Homer S.",
 Text = "Why you little...",
 When = new DateTime(2000, 8, 13)
 }
 }
 },
 new BlogPost {
 When = new DateTime(2002, 3, 22),
 Title = "Post 2",
 Text = "This is the the second post",
 Comments = {
 new BlogComment {
 Name = "Lisa S.",
 Text = "Come on bart!",
 When = new DateTime(2002, 3, 24)
 },
 new BlogComment {

Commands and MVVM

272

 Name = "Maggie S.",
 Text = "Whhhaaa!",
 When = DateTime.Now
 }
 }
 }

 }
 },
 };

 var vm = new MainVM(blogs);
 var win = new MainWindow {
 DataContext = vm
 };
 win.Show();
}

38. This code adds a single blog with two posts and some comments. MainVM is
created with the generated blogs (in a real application these would come from a
database, an XML file, a web service, and so on) and makes the DataContext
of the MainWindow.

39. Running the application produces the following (when selecting Bart's blog and
expanding the blogger information):

Chapter 7

273

How it works...
A ViewModel is responsible for providing everything a View needs. Data binding is the key to
exposing the correct functionality from a ViewModel – mainly properties (for one way or two
way communication) and commands (for communication from the View to the ViewModel).
There's usually a one to one relationship between a View and a ViewModel, although
opinions vary. I think this, at least, provides easy maintenance at the possible cost
of some code duplication.

The model should be completely neutral in respect to WPF. That is, it should not use any WPF
specific types. In our case, the models inherit from ObservableObject, which is part of
our little framework, but that's just a convenience for the purpose of the demonstration.
The models could have implemented INotifyPropertyChanged in any way they choose.

Accessing the model directly by the view through the Model property (from
ViewModelBase<TModel>) is not necessarily ideal, but it can save code duplication that
would otherwise be in place to forward relevant property changes to the model. That said, it
"feels" a bit lazy, and it means the view knows something about the underlying model, which
it ideally should not. This is part of those implementation opinions I mentioned earlier.

There's more...
What about testing? One of the benefits of an MVVM model (that separates the view from the
logic behind it) is that we could (at least in theory) test the ViewModels (where the logic lies)
without instantiating any views. This is important for automated tests, so that a physical
user doesn't have to be present to manipulate an actual UI (which may not even exist yet,
or can change).

Currently, this may partially work. For example, we can create a BlogVM object, populate
the Model with a Blog object, and start extracting posts, comments, and so on using the
existing properties.

However, what about invoking a command? Suppose we want to invoke the
NewPostCommand. Doing so will pop up the New Post window and wait for a physical user to
input some blog post information. This is undesirable in a testing environment. A similar issue
may arise for commands that need to show any kind of UI, such as a simple Yes/No message
box ("Are you sure?" message types). For batch testing, all those message boxes should
probably be automatically dismissed with a constant response. How do we deal with this?

Commands and MVVM

274

The basic idea is to raise the abstraction level. Instead of directly creating a NewPostWindow
object, we'll abstract that behind an interface. One of the implementations will, in fact, create
a dialog. Another implementation could simply pretend there was a dialog and dismiss it. First,
we'll create an interface (under our MVVM framework project):

public interface IDialogService {
 bool? ShowDialog();
 object ViewModel { get; set; }
}

Next, we can provide two implementations. The first shows a real dialog:

public sealed class StandardDialogService<TWindow>
 : IDialogService where TWindow : Window, new() {
 public bool? ShowDialog() {
 var win = new TWindow();
 win.DataContext = ViewModel;
 return win.ShowDialog();
 }

 public object ViewModel { get; set; }
}

There is also one that fakes a dialog:

public sealed class AutoDialogService : IDialogService {
 public bool? DialogResult { get; set; }

 public AutoDialogService() {
 DialogResult = true;
 }

 public bool? ShowDialog() {
 return DialogResult;
 }

 public object ViewModel { get; set; }
}

The dialog service should be exposed as a property on the BlogVM class:

public IDialogService NewPostDialogService { get; set; }

Chapter 7

275

The NewPostCommand would be implemented as follows (we leverage the command
parameter to provide an existing blog post if needed):

ICommand _newPostCommand;
public ICommand NewPostCommand {
 get {
 if(NewPostDialogService == null)
 NewPostDialogService = new
 StandardDialogService<NewPostWindow>();
 return _newPostCommand ?? (_newPostCommand =
 new RelayCommand<BlogPost>(post => {
 if(post == null)
 post = new BlogPost();
 var vm = new BlogPostVM { Model = post };
 var dlg = NewPostDialogService;
 dlg.ViewModel = vm;
 if(dlg.ShowDialog() == true) {
 post.When = DateTime.Now;
 Model.Posts.Add(post);
 OnPropertyChanged("Posts");
 }
 }));
 }
}

The default dialog service uses the UI, while an external client (such as a unit test client)
would fill the property with an AutoDialogService instance beforehand.

If no post is provided, this means the command is invoked from the regular UI, so a new blank
post is created. Otherwise, the provided blog post is used as is. The dialog is invoked through
the IDialogService interface only. Here's how a unit test client would invoke the command
(this is in a Visual Studio Test project):

[TestMethod]
public void TestAddPost() {
 var post = new BlogPost {
 Title = "Some title",
 Text = "Some text"
 };
 var vm = new BlogVM { Model = _blog };
 vm.NewPostDialogService = new AutoDialogService() {
 ViewModel = post
 };
 vm.NewPostCommand.Execute(post);
 Assert.IsTrue(_blog.Posts.Count == 3);
}

Commands and MVVM

276

This allows batch execution of a multitude of commands without any UI popping up
unnecessarily. The full source code is available with the downloadable source for
this chapter.

MVVM implementations
It's important to remember that MVVM is a design pattern - it constitutes an idea; it
says nothing about the actual implementation. Whenever something seems to be too "hard
coded", it should be abstracted away using interfaces, providing a kind of "plugin" model.

Creating an undo/redo system
Up until now we have been executing commands by using the RelayCommand helper class.
This allows us to separate the command implementation (in the ViewModel) from the view
without creating a separate class for each command. Many applications need to not only
execute commands, but also to undo already executed commands; the canonical case may
be a text editor, but it can be anything. Let's see one way to build an undo/redo system that
integrates with the commands infrastructure we've seen so far.

Getting ready
We'll use two projects we've already created. The first is CH07.CookbookMVVM, our MVVM
framework (which we'll expand), and there is also CH07.BlogReader to demonstrate adding
undo/redo capabilities.

How to do it...
We'll add undo/redo capabilities to the blog reader application, both at the MVVM framework
level and application level:

1. Add a new interface to the CH07.CookbookMVVM project and name it
IUndoCommand. Define it as follows:
public interface IUndoCommand : ICommand {
 void Undo();
}

2. This interface extends ICommand to allow a command to be undone. Add a new class
to the CH07.CookbookMVVM project named UndoManager.

3. Add some fields to the class—two lists to hold commands to undo/redo and an
optional undo limit:
readonly List<IUndoCommand> _undoList, _redoList;
public int UndoLimit { get; private set; }

Chapter 7

277

4. Next, add a constructor to initialize the lists and undo limit:
public UndoManager(int limit = 0) {
 if(limit < 0) throw new ArgumentException(
 "undo limit must be a positive integer", "limit");
 UndoLimit = limit;
 _undoList = new List<IUndoCommand>(limit > 0 ? limit : 16);
 _redoList = new List<IUndoCommand>(limit > 0 ? limit : 16);
}

5. The undo functionality should have an Undo method and a property indicating
whether anything can be undone:
public virtual bool CanUndo {
 get { return _undoList.Count > 0; }
}

public virtual void Undo() {
 if (!CanUndo)
 throw new InvalidOperationException("can't undo");
 int index = _undoList.Count - 1;
 _undoList[index].Undo();
 _redoList.Add(_undoList[index]);
 _undoList.RemoveAt(index);
}

6. Calling Undo gets the last command in the undo list and undoes it, removes
it from the undo list, and adds it to the redo list. The redo functionality is
similarly implemented:
public virtual bool CanRedo {
 get { return _redoList.Count > 0; }
}

public virtual void Redo() {
 if(!CanRedo)
 throw new InvalidOperationException("Can't redo");
 var cmd = _redoList[_redoList.Count - 1];
 cmd.Execute(null);
 _redoList.RemoveAt(_redoList.Count - 1);
 _undoList.Add(cmd);
}

Commands and MVVM

278

7. To get commands into the lists, we'll add the following method:
public void AddCommand(IUndoCommand cmd) {
 _undoList.Add(cmd);
 _redoList.Clear();
 if(UndoLimit > 0 && _undoList.Count > UndoLimit)
 _undoList.RemoveAt(0);
}

8. This adds a command to the undo list (and removes the oldest command if an undo
limit has been set and was reached).

9. To somewhat automate the use of undoable commands we'll add a helper command.
Add a class to the same project named ReversibleCommand that implements
ICommand as follows:
public sealed class ReversibleCommand : ICommand {
 readonly IUndoCommand _command;
 readonly UndoManager _mgr;
 public ReversibleCommand(UndoManager mgr, IUndoCommand cmd) {
 _mgr = mgr;
 _command = cmd;
 }

 public bool CanExecute(object parameter) {
 return _command.CanExecute(parameter);
 }
 public event EventHandler CanExecuteChanged {
 add { _command.CanExecuteChanged += value; }
 remove { _command.CanExecuteChanged -= value; }
 }

 public void Execute(object parameter) {
 _command.Execute(parameter);
 _mgr.AddCommand(_command);
 }
}

10. This class executes the actual command (passed to the constructor) in its Execute
method and adds it to the UndoManager object for possible undoing.

11. Now let's move to the CH07.BlogReader project. First, we need to add buttons for
undo and redo. Open MainWindow.xaml.

12. Add two buttons inside the StackPanel between the ComboBox and the Canvas for
invoking undo or redo:
<Button Content="Undo" Command="{Binding UndoCommand}"
 Margin="6,2,2,2"/>
<Button Content="Redo" Command="{Binding RedoCommand}"
 Margin="2"/>

Chapter 7

279

13. The commands themselves should be exposed from the main ViewModel. Open
MainVM.cs and add the following inside the MainVM class:
ICommand _undoCommand, _redoCommand;

public ICommand UndoCommand {
 get {
 return _undoCommand ?? (_undoCommand =
 new RelayCommand(() => UndoManager.Undo(),
 () => UndoManager.CanUndo));
 }
}

public ICommand RedoCommand {
 get {
 return _redoCommand ?? (_redoCommand =
 new RelayCommand(() => UndoManager.Redo(),
 () => UndoManager.CanRedo));
 }
}

14. Add an automatic property to hold an UndoManager and create an instance in
the constructor:
public UndoManager UndoManager { get; private set; }

public MainVM(IEnumerable<Blog> blogs) {
 Model = new ObservableCollection<Blog>(blogs);
 UndoManager = new UndoManager();
}

15. Undo/redo operations typically span multiple ViewModels. We'll add the ability to
link ViewModels in a parent-child relationship, if needed. Open ViewModelBase.cs
and add a new generic class named ViewModelBase with two generic arguments
as follows:
public abstract class ViewModelBase<TModel, TParentVM>
 : ViewModelBase<TModel> {
 public ViewModelBase(TModel model = default(TModel),
 TParentVM parentVM = default(TParentVM)) {
 Model = model;
 Parent = parentVM;
 }

 public TParentVM Parent { get; set; }
}

Commands and MVVM

280

16. We'll make adding a blog post an undoable command. RelayCommand
alone is not enough here, as we need to maintain a state. First, we'll add
a bit more infrastructure; add a new class named CommandBase to the
CH07.CookbookMVVM project and implement it as follows:
public abstract class CommandBase : IUndoCommand {
 public virtual bool CanExecute(object parameter) {
 return true;
 }

 public event EventHandler CanExecuteChanged {
 add { CommandManager.RequerySuggested += value; }
 remove { CommandManager.RequerySuggested -= value; }
 }

 public abstract void Execute(object parameter);
 public abstract void Undo();
}

17. CommandBase is a helper for implementing reversible commands. Add a project
folder named Commands to the CH07.BlogReader project.

18. Add a class to the Commands folder named NewBlogPostCommand and implement
it as follows:
class NewBlogPostCommand : CommandBase {
 Blog _blog;
 BlogPost _post;
 public NewBlogPostCommand(Blog blog) {
 _blog = blog;
 }

 public override void Execute(object parameter) {
 if(_post == null) _post = (BlogPost)parameter;
 _blog.Posts.Add(_post);
 }

 public override void Undo() {
 _blog.Posts.Remove(_post);
 }
}

19. The command needs the blog in question and the post. To use it, we'll change
the way the new post command is exposed through the blog ViewModel. Open
BlogVM.cs.

Chapter 7

281

20. Make the BlogVM class use the enhanced ViewModelBase that has a link to its
parent ViewModel:
public class BlogVM : ViewModelBase<Blog, MainVM> {
 public BlogVM(Blog blog, MainVM parent)
 : base(blog, parent) {
 var notify = (INotifyCollectionChanged)blog.Posts;
 if(notify != null) {
 notify.CollectionChanged += delegate {
 OnPropertyChanged("Posts");
 };
 }
 }

21. The additions in the constructor allow the ViewModel to be notified when something
interesting has changed in the model, so it can appropriately update itself.

22. Change the implementation of the NewPostCommand read only property to use a
ReversibleCommand as follows:
public ICommand NewPostCommand {
 get {
 if(NewPostDialogService == null)
 NewPostDialogService =
 new StandardDialogService<NewPostWindow>();
 return _newPostCommand ?? (_newPostCommand =
 new RelayCommand<BlogPost>(post => {
 if(post == null)
 post = new BlogPost();
 var vm = new BlogPostVM { Model = post };
 var dlg = NewPostDialogService;
 dlg.ViewModel = vm;
 if(dlg.ShowDialog() == true) {
 post.When = DateTime.Now;
 var cmd = new ReversibleCommand(
 Parent.UndoManager,
 new NewBlogPostCommand(Model));
 cmd.Execute(post);
 }
 }));
 }
}

23. A ReversibleCommand is created, wrapping the "real" NewBlogPostCommand
object. When executed, it places the wrapped command in the undo list of the
UndoManager.

Commands and MVVM

282

24. Run the application and select a blog to view. The Undo and Redo buttons are
grayed out:

25. Click on New Post and type a title and some text for the post; then click on OK:

26. The Undo button is enabled. Click on Undo and watch the post disappear. Click on
Redo and the post returns.

How it works...
WPF does not provide any out-of-the-box functionality as it is related to undo/redo. The
ICommand interface is not enough – this is why we created the IUndoCommand that adds an
Undo method. The regular Execute is the "Redo" method, as it naturally complements Undo.

The classic "command pattern" is typically implemented using a class for each unique
command. We used the RelayCommand class to implement a command generically by
supplying delegates as implementations for Execute and CanExecute. This works up to a
point. When dealing with undo/redo, a state must be maintained, so using RelayCommand is
not enough in most cases.

Chapter 7

283

The NewBlogPostCommand class created in step 18 is a standalone command, which has
all the information it needs to do its job and to undo it. It holds the relevant blog and the blog
post to add or remove, provided (one time only) by the command parameter, and saved by the
command for later invocations of Undo or Execute (Redo).

Managing commands in undo/redo lists is the responsibility of the UndoManager class. It
holds an undo list and a redo list, managing their dependencies as commands are added,
undone, or redone. Notice how easy it is to create an undo limit, which may be required if
objects are large and memory footprint should be constrained; for small objects, leaving the
undo limit as unbounded is probably acceptable.

The placement of an UndoManager instance is important. In our example, it was placed
in MainVM and used by sub-ViewModels, such as BlogVM; this means that switching blogs
and clicking on Undo would undo the last operation in the blog where that post was created.
If, however, each BlogVM had its own UndoManager, then switching between blogs would
not allow undoing commands executed within another blog. This is something that needs
consideration when using an undo/redo system – the operations' scope.

ReversibleCommand is a helper class that communicates with the passed in UndoManager
and adds the command to the undo list (by calling UndoManager.AddCommand).

8
Styles, Triggers, and

Control Templates

In this chapter we will cover the following:

 f Creating and using styles

 f Applying a style automatically

 f Creating a property trigger

 f Using data triggers

 f Creating an event trigger

 f Creating a multi trigger

 f Using behaviors

 f Replacing the control template of a progress bar

 f Replacing the control template of a scroll bar

 f Customizing selection in a Selector control

Introduction
Consistency in a user interface is an important trait; there are many facets of consistency,
one of which is the consistent look and feel of controls. For example, all buttons should
look roughly the same – similar colors, the same margins, and so on.

Styles, Triggers, and Control Templates

286

Styles are objects that hold property setters to provide a way to apply a bunch of settings
as a group to elements and controls. Control templates provide the ultimate control
customization power, allowing the complete replacing of a control's look and feel without
affecting its behavior. This is one of the most famous of WPF's traits, very different from
the old Win32/WinForms model where looks and behavior were tightly bundled; any
customization required code that subclassed/inherited from the base control and provides
the appropriate painting logic. In the WPF world, a control template is created entirely in
XAML with no code required; designer oriented tools such as Expression Blend make this
even easier – and more productive in the hands of true designers.

In this chapter, we'll take a look at styles, triggers, control templates, their relationships,
and typical scenarios where they are applied.

Creating and using styles
Styles provide a convenient way to group a set of properties (and triggers) under a single
object, and then selectively (or automatically as we'll see later) apply it to elements. In this
recipe, we'll create some styles and apply them to elements to show how useful these are
in any application.

Getting ready
Make sure Visual Studio is up and running.

How to do it...
We'll create a calculator-like user interface and use styles to change its look:

1. Create a new WPF Application named CH08.StyledCalculator.

2. Open MainWindow.xaml and change the following Window properties:
Title="Styled Calculator" SizeToContent="WidthAndHeight"
ResizeMode="CanMinimize"

3. Add four columns and five rows to the existing Grid, all with auto sizing:
<Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition Width="Auto" />
</Grid.ColumnDefinitions>
<Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />

Chapter 8

287

 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
</Grid.RowDefinitions>

4. Add the following controls to the Grid:
<TextBox Background="Cyan" IsReadOnly="True"
 Grid.ColumnSpan="4"/>
<Button Content="7" Grid.Row="1"/>
<Button Content="8" Grid.Row="1" Grid.Column="1"/>
<Button Content="9" Grid.Row="1" Grid.Column="2"/>
<Button Content="4" Grid.Row="2"/>
<Button Content="5" Grid.Row="2" Grid.Column="1"/>
<Button Content="6" Grid.Row="2" Grid.Column="2"/>
<Button Content="1" Grid.Row="3"/>
<Button Content="2" Grid.Row="3" Grid.Column="1"/>
<Button Content="3" Grid.Row="3" Grid.Column="2"/>
<Button Content="0" Grid.Row="4"/>
<Button Content="=" Grid.Row="4" Grid.Column="1"
 Grid.ColumnSpan="2"/>
<Button Content="+" Grid.Row="4" Grid.Column="3"/>
<Button Content="-" Grid.Row="3" Grid.Column="3"/>
<Button Content="X" Grid.Row="2" Grid.Column="3"/>
<Button Content="/" Grid.Row="1" Grid.Column="3"/>

5. Looking at the XAML designer, the calculator UI looks something like the
following screenshot:

6. We'd like to get some margins for the buttons, change fonts, and so on. Let's create
a style to be used for the "numeric" buttons. Add a Style object in the Resources
property of the Window and set its TargetType property and give it a name:
<Window.Resources>
 <Style TargetType="Button" x:Key="numericStyle">
 </Style>
</Window.Resources>

Styles, Triggers, and Control Templates

288

7. Inside the Style, add the following Setter objects:
<Setter Property="FontSize" Value="20" />
<Setter Property="Margin" Value="4" />
<Setter Property="Padding" Value="6" />
<Setter Property="Effect">
 <Setter.Value>
 <DropShadowEffect Color="Blue"/>
 </Setter.Value>
</Setter>

8. This sets up some properties common to all buttons. To apply the style, we'll change
the Style property for all numeric buttons. The following is an example of one
such button:
<Button Content="7" Grid.Row="1"
 Style="{StaticResource numericStyle}"/>

9. Let's create another style that inherits from the first, to be used by operator buttons:
<Style TargetType="Button" x:Key="operatorStyle"
 BasedOn="{StaticResource numericStyle}">
 <Setter Property="FontWeight" Value="ExtraBold" />
 <Setter Property="Effect">
 <Setter.Value>
 <DropShadowEffect Color="Red" />
 </Setter.Value>
 </Setter>
</Style>

10. Let's apply this style to the operator buttons. Here's one of them:
<Button Content="+" Grid.Row="4" Grid.Column="3"
 Style="{StaticResource operatorStyle}"/>

11. Change the font size of the TextBox to 20. The following screenshot shows how this
looks in the designer right now:

Chapter 8

289

12. We want the "=" operator to have a different drop shadow color, so we can change it
for that button only. The complete markup is as follows:

<Button Content="=" Grid.Row="4" Grid.Column="1"
 Grid.ColumnSpan="2" Style="{StaticResource operatorStyle}">
 <Button.Effect>
 <DropShadowEffect Color="Green" />
 </Button.Effect>
</Button>

How it works...
A Style is a container for a bunch of Setter objects (and triggers, as we'll see later). Each
setter indicates which property should have which value; the property must be a dependency
property. The FrameworkElement class exposes a Style property that can be set to such a
Style object. Styles are always built as resources, as any other way defeats the purpose of a
style – that is, bundling a set of properties that can be applied to more than one element.

The TargetType property of a Style is typically set, which makes the Style applicable to
that particular type (this can be any type, even a type of a custom control) and any derived
types. In this example, these styles work on Button objects (and anything that inherits from
Button). Trying to apply such Style to some other element type causes a runtime exception
to be thrown.

An element that uses a style can change a property that is set explicitly by a Style (a local
value), and this is stronger than a Style property setter. This is exactly what we did for the
"=" operator; although it should have had a red drop shadow that was placed there by the
Style it uses, it "overrides" the Effect property to have a different value (this is due to
the dependency property priority system described in Chapter 1, Foundations).

There's more...
The TargetType property is not mandatory. The first Style could have been written as
follows to get the same result:

<Style x:Key="numericStyle">
 <Setter Property="Button.FontSize" Value="20" />
 <Setter Property="Button.Margin" Value="4" />
 <Setter Property="Button.Padding" Value="6" />
 <Setter Property="Button.MinWidth" Value="40" />
 <Setter Property="Button.Effect">
 <Setter.Value>
 <DropShadowEffect Color="Blue"/>
 </Setter.Value>
 </Setter>
</Style>

Styles, Triggers, and Control Templates

290

The difference is the full property qualifications. Why would that be useful? With this Style
defined, it can be used with any element, such as a TextBox. However, the Style would not
have any effect on a TextBox, unless we write Setter(s) a bit differently. For example:

<Setter Property="Control.Effect">
 <Setter.Value>
 <DropShadowEffect Color="Blue"/>
 </Setter.Value>
</Setter>

This setting will work on anything deriving from Control, such as a TextBox. If the element
does not support such a property, no exception is thrown. Practically speaking, using this
capability is not recommended, as it's difficult to maintain these settings in complex styles.
For example, we may want to change some property on a TextBox specifically and this would
require adding a specific setting for a TextBox to the same style, but this could affect other
TextBox controls in an unintended way. So, in practice, TargetType is always specified,
even if this causes some Setter duplication. The up side is that if a change is needed for
some specific element type, no other element type would be affected.

Style inheritance
Styles support the notion of inheritance, somewhat similar to the same concept in object
orientation. This is done using the BasedOn property that must point to another Style to
inherit from. If a TargetType is specified in the base Style, it must be specified by the
derived Style as well (with the same type or a more derived type).

An inherited style can add Setter objects for new properties to set, or it can provide a
different value for a property that was set by the base Style. In the code example, the
second style (for operators) inherits from the first, adds a FontWeight setting, and
changes the Effect property setting.

Style inheritance may seem very useful, but should be used with caution. It suffers from the
same issues as object oriented inheritance in a deep inheritance hierarchy: a change in a
base style up in the hierarchy can affect a lot of styles, being somewhat unpredictable, leading
to a maintenance nightmare. Thus, a good rule of thumb to use is to have no more than two
inheritance levels. Any more than that may cause things to get out of hand.

Other places to set styles
The example shows styles applied to the FrameworkElement.Style property, but this is
not the only property that can accept a Style. Other examples include the following:

 f FrameworkElement.FocusVisualStyle property: Accepts a Style that affects
the way the focus indicator is rendered when that element has the keyboard focus.

 f ItemsControl.ItemContainerStyle property: Accepts a Style that affects the
container element of each data item (for example, ListBoxItem for a ListBox).

Chapter 8

291

 f DataGrid.CellStyle: Accepts a Style that affects the way a cell is rendered.
Similar properties exposed by the DataGrid include ColumnHeaderStyle,
DragIndicatorStyle, DropLocationIndicatorStyle, RowHeaderStyle,
and RowStyle.

Some style keys are exposed by specific controls that use a Style with a specific key, which
can be replaced seamlessly. For example, the MenuItem.SeparatorStyleKey static
property is a resource key that if used, will be applied to separators in that MenuItem.
Another example is the ToolBar, with static properties such as ButtonStyleKey,
CheckBoxStyleKey, RadioButtonStyleKey, and MenuStyleKey.

Applying a style automatically
The previous recipe showed how to create styles that have a name (x:Key) and how to apply
them. Sometimes, however, we would like a style to be applied automatically to all elements of
a certain type, to give the application a consistent look. For example, we may want all buttons
to have a font size of 14 by default (unless a specific button chooses a different value). This
makes creating new buttons easier, as the developer/designer doesn't have to know what
style to apply (if any) – if an automatic style has been configured it will be used automatically.
Let's see how this is done.

Getting ready
Open the project CH08.StyledCalculator from the previous recipe. We'll modify it to use
automatic styles. Alternatively, you can copy the project with a new folder and project name,
so as not to disturb the previous project.

How to do it...
We'll modify the calculator to use automatic styles where possible, only using named styles
where necessary:

1. We'd like to make the numeric button style the default for all buttons unless
otherwise specified. Open MainWindow.xaml.

2. Remove all references to the numericStyle style in the buttons. For example, the 8
button's markup should look as follows:
<Button Content="8" Grid.Row="1" Grid.Column="1" />

3. Cut the numericStyle Style and paste it in the resources section of App.xaml
and remove its x:Key attribute. This applies the Style automatically to all buttons (I
added a MinWidth setting):
<Application.Resources>
 <Style TargetType="Button">

Styles, Triggers, and Control Templates

292

 <Setter Property="FontSize" Value="20" />
 <Setter Property="Margin" Value="4" />
 <Setter Property="Padding" Value="6" />
 <Setter Property="MinWidth" Value="40" />
 <Setter Property="Effect">
 <Setter.Value>
 <DropShadowEffect Color="Blue"/>
 </Setter.Value>
 </Setter>
 </Style>
</Application.Resources>

4. Open MainWindow.xaml. The operatorStyle now fails to find its base Style.
Change the BasedOn property to point to the automatic style in App.xaml:
<Style TargetType="Button" x:Key="operatorStyle"
 BasedOn="{StaticResource {x:Type Button}}">

5. Run the application. The calculator UI should look as it did before:

How it works...
Automatic styles are created as resources without a key. This does not mean there is no key,
because it's still a dictionary. The key becomes the actual type to apply the style to defined by
the TargetType property (this also means TargetType is mandatory with automatic styles).
We've seen a similar approach with DataTemplates that have a DataType property and
no key.

This is typically set in the application's resources so it can affect all windows in the
application. The Style is applied to all elements of the target type, but not derived types.
Any element that does not set its style explicitly obtains that style automatically. If an element
wishes to revert to its default style, it can set its Style property to null ({x:Null} in XAML)
or set its Style to another named style.

Chapter 8

293

The operatorStyle in the example derives from the automatic style and this is
specified by looking up a resource with the key of typeof(Button), expressed in
XAML as {x:Type Button}.

There's more...
Automatic styles are a great way to create a consistent look and feel without burdening the
developer (or the designer) with the details of the various visual properties. It can also be
used as a quick way to implement skinning.

A classic example of skinning (sometimes referred to as theming, although themes usually
mean the look and feel provided by the operating system as opposed to an application) is
Microsoft Word 2007 and up, which support a "Color Scheme" setting in the screenshot:

Selecting a scheme changes the look immediately. We can do the same in WPF by defining
separate resource dictionaries with automatic styles for all the controls we're interested in.
For example, here's a simple ResourceDictionary that sets some styles for TextBox
and Button controls (the default XML namespace mappings are omitted for brevity):

<ResourceDictionary
 <Style TargetType="TextBox">
 <Setter Property="Background" Value="LightBlue" />
 <Setter Property="Foreground" Value="Black" />
 <Setter Property="BorderThickness" Value="2" />
 <Setter Property="BorderBrush" Value="DarkBlue" />
 <Style.Triggers>
 <Trigger Property="IsReadOnly" Value="True">
 <Setter Property="Background" Value="Blue" />
 </Trigger>
 </Style.Triggers>
 </Style>
 <Style TargetType="Button">
 <Setter Property="Background" Value="Cyan" />
 </Style>
</ResourceDictionary>

This markup includes a simple trigger (discussed in later recipes) that provides an alternative
background brush for read-only TextBox controls.

Styles, Triggers, and Control Templates

294

We can create several of those ("skins") with different settings. The following simple
application uses three different skins:

The different skins were placed in a project folder, but their Build Action property setting was
set to Content and Copy to Output Directory set to Copy if newer:

These settings prevent the default compilation to BAML and also provide the flexibility to
change the skins without recompilation. To do the actual switch, a helper method is used:

void ChangeSkin(string skinRelativeUri) {
 var si = Application.GetContentStream(new Uri(
 skinRelativeUri, UriKind.Relative));
 var rd = (ResourceDictionary)XamlReader.Load(si.Stream);
 Application.Current.Resources.MergedDictionaries.Clear();
 Application.Current.Resources.MergedDictionaries.Add(rd);
}

This method extracts the specified skin, loads its XAML, clears all application's
MergedDictionaries collection, and adds the newly loaded one. Of course, clearing the
collection may be too disruptive (there may be other general purpose dictionaries lurking
inside), so we can just replace the specific dictionary index. The complete source is available
in the CH08.SkinningDemo project.

Chapter 8

295

Creating a property trigger
So far we've used styles that have a collection of setters. A Style also has a Triggers
collection property that provides a declarative way to make some property changes without
a need for actual code. As such triggers are part of a style, they are naturally applied to more
than one element. There are three types of triggers supported by WPF, and in this recipe we'll
examine the simplest one - the property trigger.

Getting ready
Open the CH08.StyledCalculator project.

How to do it...
We'll add an effect when clicking a button in the calculator project using a property trigger:

1. We want to add a trigger to one of the styles we created in an earlier recipe. Open
MainWindow.xaml and look for the style with the key numericStyle.

2. Add a Triggers property inside the style:
<Style.Triggers>
</Style.Triggers>

3. Add a property trigger inside the style (after the setters, before the closing style tag).
The trigger will be invoked when the IsPressed property is changed to true:
<Trigger Property="IsPressed" Value="True">
</Trigger>

4. If the button is clicked, we want some of its properties changed. This is done with
setters, placed inside the trigger:
<Setter Property="Effect" Value="{x:Null}" />
<Setter Property="RenderTransform">
 <Setter.Value>
 <TranslateTransform X="4" Y="4" />
 </Setter.Value>
</Setter>

5. We remove the effect and move the button slightly to the right and down, if the button
is clicked.

Styles, Triggers, and Control Templates

296

6. Run the application and press some buttons. Notice the change in appearance (the
digit 6 in the following screenshot):

How it works...
A trigger contains a condition to be checked and a set of actions to execute if that condition is
satisfied. The trigger in this example is the poorly named Trigger class, which is a property
trigger, meaning it compares a dependency property to a specific value; if they are equal, a set
of actions can execute. In the code sample, these are Setter objects (the same ones used
by a Style), which change properties on the styled element.

When the condition becomes false, the setters are logically removed, reverting the properties
to their previous values. This means that it's unnecessary to provide an "opposite" trigger (and
problematic in the general case because only the "equals" operator is supported by triggers).

There's more...
Another set of actions available for triggers involve animations. These are provided by
the EnterActions and ExitActions properties of triggers (inherited from the base
TriggerBase class).

Suppose we want to create some animation for the operator buttons of the calculator when
the mouse pointer hovers over such a button. We can add a property trigger to the operator
button Style. First, we'll add some default setters. The following is the basic Style:

<Style TargetType="Button" x:Key="operatorStyle"
 BasedOn="{StaticResource numericStyle}" >
 <Setter Property="FontWeight" Value="ExtraBold" />
 <Setter Property="Effect">
 <Setter.Value>
 <DropShadowEffect Color="Red" />
 </Setter.Value>

Chapter 8

297

 </Setter>
 <Setter Property="RenderTransformOrigin" Value=".5,.5" />
 <Setter Property="RenderTransform">
 <Setter.Value>
 <ScaleTransform ScaleX="1" ScaleY="1"/>
 </Setter.Value>
 </Setter>

Now let's add the property trigger itself. When it's triggered, we'll set the Panel.ZIndex
property to a large value to make sure the button is on top of all others:

<Style.Triggers>
 <Trigger Property="IsMouseOver" Value="True">
 <Setter Property="Panel.ZIndex" Value="100" />

Next, we'll start animations when the trigger fires via the EnterActions property:

<Trigger.EnterActions>
 <BeginStoryboard>
 <Storyboard >
 <DoubleAnimation To="1.3" Duration="0:0:0.3"
 Storyboard.TargetProperty="RenderTransform.ScaleX" />
 <DoubleAnimation To="1.3" Duration="0:0:0.3"
 Storyboard.TargetProperty="RenderTransform.ScaleY" />
 </Storyboard>
 </BeginStoryboard>
</Trigger.EnterActions>

We'll discuss animations in the next chapter; in essence, an action that starts an animation
(BeginAnimation) is used to start an animation timeline (Stroyboard) containing
two property based animations, each working on the ScaleTransform object within the
RenderTransform property of the button, going to 1.3 over 300 milliseconds.

When the mouse leaves the button, we want to reverse the animation by using the
ExitActions property:

<Trigger.ExitActions>
 <BeginStoryboard>
 <Storyboard >
 <DoubleAnimation Duration="0:0:0.1"
 Storyboard.TargetProperty="RenderTransform.ScaleX" />
 <DoubleAnimation Duration="0:0:0.1"
 Storyboard.TargetProperty="RenderTransform.ScaleY" />
 </Storyboard>
 </BeginStoryboard>
</Trigger.ExitActions>

Styles, Triggers, and Control Templates

298

The following screenshot shows how it looks when the mouse hovers over the
multiplication operator:

Trigger limitations
Property triggers and data triggers (discussed in the next recipe) suffer from one serious
limitation: the comparison of the property to the value is an equality comparison only.
There is no way to check for (for example) greater than, less than, not equal, and so on.

Furthermore, all triggers suffer from two other limitations:

 f Custom triggers cannot be created. At first, it may seem that to create a custom
trigger type, you just need to derive a class from TriggerBase and override a
method. However, this doesn't work, because the constructor of TriggerBase
is declared as internal, so cannot be used outside the declaring WPF assembly.

 f Custom actions cannot be created either; again, the obvious thing to do is
inherit from TriggerAction, the base class of all existing actions (such as
BeginStoryboard), but this cannot be done because its constructor is internal,
and it has two abstract methods (named Invoke) that are internal as well, so
cannot be overridden outside the declaring assembly.

These last two points mean that the trigger mechanism of WPF cannot be extended
directly – not with new triggers and not with new actions. This is certainly a shame, and
led to other triggers and actions being defined by the Expression Blend tool (technically, it's
SDK) that can be used instead, or in conjunction with the native WPF trigger. We'll see how
to use those in the Using behaviors recipe later in this chapter.

When to use triggers
It's important to note that triggers are useful for changing appearance in various ways; they
are not meant to be used as part of an application's logic. In ideal scenarios, a developer
should not know anything about triggers that may or may not be used. This is the job of the
UI designer (typically working with a designer oriented tool, such as Expression Blend).

Chapter 8

299

Other locations of triggers
A Style is not the only object that contains a Triggers property. There are three other such
properties found in WPF:

 f DataTemplate.Triggers: A DataTemplate can have triggers, as is
demonstrated in the next recipe, Using data triggers (these can be any
triggers, not just data triggers).

 f ControlTemplate.Triggers: A ControlTemplate can have triggers as well,
as we'll see in the recipe Replacing the control template of a progress bar, later in
this chapter.

 f FrameworkElement.Triggers: An element can host triggers as well, but
these are limited to EventTrigger objects only. This limitation is a bit artificial,
but in practice, using triggers on some specific element is rare. It's much more
common to use triggers to tweak the behavior of many elements, through a
Style, DataTemplate, or ControlTemplate.

Trigger priorities
Several triggers may be present within a style (or a template), which may overlap. For example,
two property triggers may want to set the background of an element to different brushes; both
triggers may be triggered (they check different properties). In such cases, the later appearing
trigger (in the markup) wins out.

This means that the order of triggers may be important. For example, styling a button may
involve checking if it's being hovered over by the mouse, and if so, making a change to its
background brush. If, however, the button is disabled (IsEnabled = false), it should
have a different background, regardless of the hovering state. This means that the
IsEnabled trigger should be placed after the IsMouseOver trigger, so it could win
in case both triggers fire.

See also
For discussion of data triggers, see the next recipe, Using data triggers. For discussion of
other trigger actions, see the recipe Creating an event trigger, later in this chapter.

Using data triggers
Property triggers work with dependency properties only, but what about regular properties?
This is where data triggers come in. They are able to inspect any property, but their usefulness
lies within data templates that naturally bind to data objects (which utilize non-dependency
properties). Let's see how to set that up.

Styles, Triggers, and Control Templates

300

Getting ready
Make sure Visual Studio is up and running.

How to do it...
We'll create a simple application to show books with a DataTemplate that is customized
with data triggers to show some books a bit differently:

1. Create a new WPF application named CH08.DataTriggerDemo.

2. Add a new class to the project named Book and implement it as follows:
class Book {
 public string BookName { get; set; }
 public string AuthorName { get; set; }
 public bool IsFree { get; set; }
}

3. Open MainWindow.xaml. Add a ListBox to the existing Grid and set a
few properties:
<ListBox HorizontalContentAlignment="Stretch"
 ItemsSource="{Binding}">

4. We'll create a DataTemplate that shows a Book instance. Set a DataTemplate
to the ListBox.ItemTemplate property with some markup that binds to the
properties of a Book:
<DataTemplate>
 <Border Margin="2" BorderBrush="Blue" BorderThickness="1"
 Padding="2" x:Name="_border">
 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>
 <TextBlock Text="{Binding BookName}" FontSize="20"
 FontWeight="Bold" />
 <TextBlock Grid.Row="1" Text="{Binding AuthorName}"
 FontSize="16" Foreground="Blue" />
 <TextBlock Opacity=".5" FontWeight="Bold"
 FontStyle="Italic" Foreground="Red"
 TextAlignment="Right" Grid.RowSpan="2"
 VerticalAlignment="Center" Visibility="Hidden"
 x:Name="_free" Text="Free!"

Chapter 8

301

 Margin="4" FontSize="25"/>
 </Grid>
 </Border>
</DataTemplate>

5. Note that the last TextBlock is not visible. We'll show it when a trigger fires later on.

6. Open MainWindow.xaml.cs. In the constructor, create a few books and set them
as the DataContext:
DataContext = new List<Book> {
 new Book { BookName = "Windows Internals",
 AuthorName = "Mark Russinovich", IsFree = false },
 new Book { BookName = "AJAX Introduction",
 AuthorName = "Bhanwar Gupta", IsFree = true },
 new Book { BookName = "Essential COM",
 AuthorName = "Don Box", IsFree = false },
 new Book {
 BookName = "Blueprint for a Successful Presentation",
 AuthorName = "Biswajit Tripathy", IsFree = true }
};

7. Run the application. You should see the books displayed with the supplied
data template:

8. We want the display of a book to change if that book is free. Add a Triggers
property to DataTemplate:
<DataTemplate.Triggers>
</DataTemplate.Triggers>

Styles, Triggers, and Control Templates

302

9. Add a DataTrigger object that fires when Book.IsFree is true, making
the hidden TextBlock appear and changing the background brush of the
Border element:

<DataTrigger Binding="{Binding IsFree}" Value="True">
 <Setter Property="Background" TargetName="_border"
 Value="Yellow" />
 <Setter Property="Visibility" Value="Visible"
 TargetName="_free" />

</DataTrigger>

How it works...
Data triggers find their property via the Binding property, which should be a binding
expression. In our case, it's bound to the IsFree property of the current Book. Similar to
a property trigger, it tests equality with a value (true, in this case) and if equal, executes
a bunch of actions, based on Setter objects (it can also use the EnterActions and
ExitActions properties to manipulate animations).

Notice that the setters can use the TargetName property (which cannot be used in a style
trigger) to change a property on a particular element in the data template's markup.

Creating an event trigger
We've seen property triggers and data triggers. Both triggers are based on comparing a
property to a value. The third type of supported trigger is an event trigger. This trigger type
fires when a routed event occurs, executing animation-related actions. Let's see how to
configure an event trigger.

Chapter 8

303

Getting ready
Open the CH08.StyledCalculator project.

How to do it...
We'll continue with the calculator sample by making the UI come into view with an animation
set up by an event trigger:

1. We want the calculator UI to start from a zero size and reach its full size using an
animation when the application starts. Open MainWindow.xaml.

2. Add a starting point for the animation with a transformation properties to the main
Grid as follows:
<Grid Margin="8" RenderTransformOrigin=".5,.5">
 <Grid.RenderTransform>
 <ScaleTransform ScaleX="0" ScaleY="0" />
 </Grid.RenderTransform>

3. We'll use an event trigger to start the animation when the grid loads (the Loaded
routed event):
<Grid.Triggers>
 <EventTrigger RoutedEvent="Loaded">
 <BeginStoryboard>
 <Storyboard>
 <DoubleAnimation To="1" Duration="0:0:.8"
 Storyboard.TargetProperty="RenderTransform.ScaleX" />
 <DoubleAnimation To="1" Duration="0:0:.8"
 Storyboard.TargetProperty="RenderTransform.ScaleY" />
 </Storyboard>
 </BeginStoryboard>
 </EventTrigger>
</Grid.Triggers>

4. The code starts two simultaneous animations that scale the Grid from 0 to 1
(normal size). Run the application and watch the calculator pop into view.

How it works...
An event trigger can be used with routed events only, providing a set of actions that execute
when that event occurs. These actions inherit from the TriggerAction abstract base
class with several concrete implementations, most of them targeting a Storyboard object
(representing an animation time line), as in the code example (BeginStoryboard action).
Apart from animations, there is a System.Windows.Controls.SoundPlayerAction
class used to play WAV audio files (by setting its Source property).

Styles, Triggers, and Control Templates

304

As mentioned previously, TriggerAction has internal constructors only, so the list
of supported actions cannot be extended. A possible solution is to use behaviors, as
discussed in a later recipe, Using behaviors.

There's more...
There seems to be an overlap of the functionality provided by property triggers and event
triggers. For example, the IsMouseOver property seems to add no real value that is gained
by using the MouseEnter and MouseLeave routed events.

The problem is that event triggers can only execute actions based on TriggerAction
objects – they cannot use setters to change property values. Property triggers, on the other
hand, support using setters, and can also use TriggerActions with the EnterActions
and ExitActions properties. This means that a property trigger that seemingly gives out
the same information as a routed event is actually opening up the possibility of using setters,
something that's not possible with TriggerActions objects.

Creating a multi trigger
An active trigger can execute actions, but sometimes a trigger needs to be composed of
multiple conditions that activate the entire trigger if all conditions are met. This is exactly what
the MultiTrigger and MultiDataTrigger types are capable of. Let's see how to create a
MultiTrigger.

Getting ready
Make sure Visual Studio is up and running.

How to do it...
We'll create a simple application that changes the way a button appears by using multiple
properties set up inside a MultiTrigger:

1. Create a new WPF application named CH08.MultiTriggerDemo.

2. Open MainWindow.xaml. Replace the existing Grid with a StackPanel.

3. Add the following controls inside the StackPanel:
<Button Content="Move mouse over me" FontSize="20"
 HorizontalAlignment="Center" Margin="20" Padding="6"
 x:Name="theButton" />
<CheckBox Content="Default button" Margin="10"
 IsChecked="{Binding IsDefault, ElementName=theButton,
 Mode=TwoWay}" FontSize="15"/>

Chapter 8

305

4. Add a Resources property to the Window.

5. Add a Style object targeting buttons with a key of hoverStyle.

6. Add the following trigger to the Triggers collection of the Style:
<MultiTrigger>
 <MultiTrigger.Conditions>
 <Condition Property="IsMouseOver" Value="True" />
 <Condition Property="IsDefault" Value="True" />
 </MultiTrigger.Conditions>
 <Setter Property="Background" Value="Cyan" />
 <Setter Property="Effect">
 <Setter.Value>
 <DropShadowEffect />
 </Setter.Value>
 </Setter>
</MultiTrigger>

7. Run the application. Hover with the mouse over the button when the checkbox is
unchecked; nothing should happen. Now check the checkbox (making the button the
default button) and hover over the button again. It should change background and
have a drop shadow:

How it works...
A MultiTrigger object hosts a collection of Condition objects (in its Conditions
property), each of which indicates the (dependency) Property and Value to check for. If all
conditions are satisfied, the entire trigger fires – any Setters execute (EnterActions and
ExitActions exist as well, as they do for a regular property trigger).

In the code sample, the Button's IsDefault and IsMouseOver properties are used as
conditions. Only when both are true, does the trigger fire.

Styles, Triggers, and Control Templates

306

There's more...
Similarly to a MultiTrigger, a MultiDataTrigger class exists, hosting multiple
DataTrigger objects exposed as a collection of Condition objects (the same as for
MultiTrigger), but this time the Binding property must be set (using a binding
expression as used by a DataTrigger) as well as the Value property to compare with.

Curiously enough, these types of multi triggers cannot be combined. That is, a
MultiTrigger can only contain property triggers, and a MultiDataTrigger can
only contain data triggers. Event triggers are unsupported as multiple triggers go.

What about an OR style operator (instead of AND)? There's no explicit support for that; we
can, however, create separate triggers with the same set of actions to execute to simulate
an OR type multi trigger.

Using behaviors
Triggers have inherent limitations; new trigger types cannot be created, nor new trigger
actions. These decisions made by the WPF designers are somewhat arbitrary, as there may be
useful triggers and actions that could have been created by developers. It may be somewhat
justified, however, preventing abuse of this feature that may degrade performance (for heavy
duty triggers or actions). Still, abuse is possible almost everywhere that software exists.

Whether this decision is justified or not is a matter of opinion; it is a fact nonetheless.

A possible solution to the extensibility problem is to write a similar open-ended mechanism
and expose it through attached properties. This is exactly what was done by the Expression
Blend team that wanted to expose new trigger and action types to be provided as a reusable
library. They created a trigger/action mechanism that is packaged as two assemblies, one
of which provides the core capabilities, and the other providing a set of built-in triggers and
actions. A trigger and a set of actions can be logically grouped together, known as behaviors.

In this recipe, we'll see how to use Expression Blend's support for behaviors from within
Expression Blend and from Visual Studio, leading to new opportunities for XAML use
and reuse.

Getting ready
Make sure Visual Studio and Expression Blend are up and running.

How to do it...
We'll create a simple circle that may be moved across a Canvas without using event handling
code; instead we'll use a behavior:

Chapter 8

307

1. Switch Visual Studio. Create a new WPF application named CH08.MovingCircle.

2. Open MainWindow.xaml. Change the existing Grid to a Canvas.

3. Add the following Ellipse to the Canvas:
<Ellipse Width="50" Height="50" Fill="Red" Stroke="Black"
 StrokeThickness="2" />

4. Switch to Expression Blend. Open the existing project (or solution) using the File |
Open Project/Solution menu item:

5. Make sure the Projects tab is selected. Open MainWindow.xaml. The file should be
shown within the main (designer) view of Blend.

6. Select the Assets tab and click on Behaviors:

Styles, Triggers, and Control Templates

308

7. Hold and drag the MouseDragElementBehavior behavior over the circle in
the designer:

8. Press F5 to build and run the application from within Blend. You can now drag the
circle around.

9. Switch back to Visual Studio and accept its offer to reload changes.

How it works...
Dragging the behavior in Blend did several things. First, it added two references to the Blend
SDK assemblies that provide the generic support (System.Windows.Interactivity) and
the behaviors library (Microsoft.Expression.Interactions).

Second, it mapped two XAML namespaces pointing at those two assemblies (look at
MainWindow.xaml):

xmlns:i="http://schemas.microsoft.com/expression/2010/interactivity"
xmlns:ei="http://schemas.microsoft.com/expression/2010/interactions"

Third, it added the actual behavior to the required element (within an Interaction.
Behaviors attached property):

<Ellipse Width="50" Height="50" Fill="Red" Stroke="Black"
 StrokeThickness="2">
 <i:Interaction.Behaviors>
 <ei:MouseDragElementBehavior/>
 </i:Interaction.Behaviors>
</Ellipse>

Other behaviors can be added to the same element in a similar manner.

Chapter 8

309

There's more...
Expression Blend itself is not required to get the support for behaviors, as the two required
assemblies are part of the Blend SDK, and can be downloaded from Microsoft independently
of Blend. Using the actual Blend tool simplifies adding the assembly references themselves
and the XAML mappings; these can be added in the usual way from within Visual Studio
(albeit without the drag-and-drop experience).

Custom behaviors
Behaviors are classes that inherit from Behavior<T>, where T is the minimal element type
that can be used as a target for the behavior. The AssociatedObject property provides
the actual object on which the behavior operates. The OnAttached and OnDetaching
methods should be overridden to provide a way to connect to the object in question so that
the behavior can actually do something. The following is an example of a simple behavior that
opens a process when the element is clicked:

class RunProcessBehavior : Behavior<FrameworkElement> {
 public string Program { get; set; }
 public string Arguments { get; set; }
 protected override void OnAttached() {
 AssociatedObject.MouseLeftButtonUp += OnMouseClick;
 }

 void OnMouseClick(object sender, RoutedEventArgs e) {
 Process.Start(Program, Arguments);
 }

 protected override void OnDetaching() {
 AssociatedObject.MouseLeftButtonUp -= OnMouseClick;
 }
}

OnAttached is used to register for the appropriate event and OnDetaching unregisters
to keep things clean and avoid leaks. Two custom properties have been added so that the
behavior can be customized. The following is an an example usage of an Rectangle object:

<Rectangle Fill="Yellow" Width="100" Height="50"
 Canvas.Top="100" Stroke="Black">
 <i:Interaction.Behaviors>
 <local:RunProcessBehavior Program="Notepad" />
 </i:Interaction.Behaviors>
</Rectangle>

Clicking the Rectangle (in this example) launches notepad.exe.

Styles, Triggers, and Control Templates

310

The Program and Arguments properties can be turned into dependency properties, so that
they can be targets for data binding, which is very useful in practice.

Replacing the control template of a
progress bar

WPF prides itself on separating appearance from behavior. This is more evident with control
templates than anything else. A control template is just that: a template for a control's
appearance, which does not affect its behavior. In this recipe, we'll take a look at the basics
of writing a control template by creating a custom template for a ProgressBar control.
In later recipes we'll discuss other, more complex control templates.

Getting ready
Make sure Visual Studio is up and running.

How to do it...
We'll create an alternative control template for a ProgressBar to demonstrate the basics of
control template authoring:

1. Create a new WPF application named CH08.CustomProgressBar.

2. Open App.xaml. Add a new resource of type ControlTemplate as follows:
<ControlTemplate TargetType="ProgressBar" x:Key="pt1">
</ControlTemplate>

3. Inside the ControlTemplate add the following markup:
<Grid>
 <Rectangle x:Name="PART_Track">
 <Rectangle.Fill>
 <LinearGradientBrush EndPoint="1,0">
 <GradientStop Color="DarkBlue" Offset="0" />
 <GradientStop Color="LightBlue" Offset="1" />
 </LinearGradientBrush>
 </Rectangle.Fill>
 </Rectangle>
 <Rectangle x:Name="PART_Indicator" Fill="Orange"
 Stroke="Black" StrokeThickness="1"
 HorizontalAlignment="Left" />
</Grid>

Chapter 8

311

4. Open MainWindow.xaml. Change the existing Grid into a StackPanel.

5. Add a ProgressBar control to the StackPanel that uses the previous template:
<ProgressBar Height="30" Value="60" Margin="20"
 Template="{StaticResource pt1}" x:Name="pb1" />

6. Add another ProgressBar that does not use the new template:
<ProgressBar Height="30" Value="60" Margin="20" />

7. Run the application and note the differences between the new look and the default
look (the default look depends on the current Windows theme):

8. Open MainWindow.xaml. Add a checkbox that binds to the IsIntermediate
property of the first progress bar:
<CheckBox Content="Indeterminate" FontSize="16" Margin="4"
 IsChecked="{Binding IsIndeterminate, ElementName=pb1}" />

9. Run the application and check the checkbox. The progress bar doesn't look too
interesting. Let's add a trigger to make it a bit more interesting. Open App.xaml.

10. Add a Triggers property to the ControlTemplate with a property trigger for the
IsIndeterminate property:
<ControlTemplate.Triggers>
 <Trigger Property="IsIndeterminate" Value="True">
 <Setter Property="Fill" TargetName="PART_Indicator">
 <Setter.Value>
 <LinearGradientBrush EndPoint=".1,1"
 SpreadMethod="Repeat">
 <GradientStop Offset="0" Color="Orange" />
 <GradientStop Offset="1" Color="Red" />
 </LinearGradientBrush>
 </Setter.Value>
 </Setter>
 </Trigger>
</ControlTemplate.Triggers>

Styles, Triggers, and Control Templates

312

11. Run the application and check the checkbox:

How it works...
Every control (deriving from Control) has a Template property that points to a
ControlTemplate object that holds the visual appearance of the control. Every control
provides a default control template (that may be different depending on the current Windows
theme), but that template can be changed without harming the control's functionality.

The ProgressBar is one of the simplest controls to template because it's not interactive –
the user can't click it, drag it, or anything like that. The example template uses two rectangles
placed on top of each other. It seems that the second rectangle changes its width in correct
relation to the progress bar's Value property. But how does that happen? There is no binding
expression for the Width property of that rectangle.

The secret lies in the name of the rectangle (PART_Indicator in this case). This "part" is
looked up by the progress bar control, and if found, it changes its Width appropriately without
us needing to intervene. How did I know this particular name would work? This is published
by attributes on the control's class. If we take a look at the ProgressBar class (with Visual
Studio for example), this is what we'll find:

[TemplatePart(Name="PART_Indicator",
 Type=typeof(FrameworkElement))]
[TemplatePart(Name="PART_Track",
 Type=typeof(FrameworkElement)))]
[TemplatePart(Name="PART_GlowRect",
 Type=typeof(FrameworkElement))]
public class ProgressBar : RangeBase

The ProgressBar control "advertises" the named parts it knows about, which we can
use. Each part indicates the minimal element type that can be used. In this case, it's
FrameworkElement, which means it can be anything.

Chapter 8

313

There's more...
Many controls have internal states that influence the way a control looks (and sometimes
behaves). For example, a button can be clicked or not, enabled or disabled, and so on. A
progress bar can be in the indeterminate state, meaning the application can't tell when that
long operation finishes or how it's coming along.

These "states" can be handled by triggers. In the code example, a property trigger is used
with the IsIndeterminate property, changing some aspect of the template so it would be
obvious that the progress bar is not displaying a real progress indicator. An animation would
be more appropriate here, hopefully to be accomplished by a designer.

What about the control's properties?
The above template is pretty static in the sense that changing the progress bar properties
makes little difference. For example, changing properties such as Background or
Foreground will have no effect. That's because the template doesn't bind to any of the
progress bar properties. Sometimes it's not appropriate to do that, especially if that would
change the look and feel that the template tries to convey. However, sometimes that's
very relevant.

Suppose we want to add some text on top of the progress indicator displaying the Value
property with a per cent sign. This would require tapping into the Value property and
perhaps some other properties. Here's how to do it:

<TextBlock Text="{Binding Value, RelativeSource={RelativeSource
TemplatedParent}, StringFormat=\{0\}%}"
 Foreground="{TemplateBinding Foreground}"
 VerticalAlignment="Center" HorizontalAlignment="Center"/>

There are a couple of points here. The first is the use of the TemplateBinding markup
extension. This extension does a one way binding to a property on the templated control. This
is the preferred way of binding to a control's property from within its control template as it's
very concise. The second point involves using the RelativeSource markup extension with
the TemplatedParent mode to bind to a control's property from its control template in all
other cases (such as a two way binding, or in this case, because a StringFormat is needed,
which unfortunately does not exist on a TemplateBinding).

Binding to a control's own properties makes the template more flexible, which is a good thing
most of the time.

Combining a control template with a style
A control template cannot be applied automatically on its own. Typically, the template would
be combined with a style, that can be applied automatically as we've already see in the recipe
Applying a style automatically in this chapter.

Styles, Triggers, and Control Templates

314

Even if an automatic style is not used, the style can still be used to set default properties,
one of which is the Template property, just like any other. Here's a skeletal example
(the complete source code is available with the downloadable code for this chapter):

<Style TargetType="ProgressBar">
 <Setter Property="Template">
 <Setter.Value>
 <ControlTemplate TargetType="ProgressBar" >
…
 </ControlTemplate>
 </Setter.Value>
 </Setter>
 <Setter Property="Background">
 <Setter.Value>
 <LinearGradientBrush EndPoint="1,0">
 <GradientStop Color="DarkBlue" Offset="0" />
 <GradientStop Color="LightBlue" Offset="1" />
 </LinearGradientBrush>
 </Setter.Value>
 </Setter>
 <Setter Property="Foreground" Value="Black" />
</Style>

Extending a template with attached properties
Binding to a control's template is certainly useful. However, what happens if there is no
appropriate property to bind to? In the progress bar's template, a TextBlock is used to show
the current value of the progress bar. What if we wanted to provide the option to hide that
text? We would have wanted to have a Boolean property on the progress bar that we can bind
to. Although we may be able to find a Boolean property and "hijack" it for this purpose, this
rarely sits well and is usually unintuitive.

A better solution is to create attached properties and bind to those. For the progress bar we
can create the following simple class:

public static class ProgressBarAttributes {
 public static bool GetShowText(DependencyObject obj) {
 return (bool)obj.GetValue(ShowTextProperty);
 }

 public static void SetShowText(DependencyObject obj,
 bool value) {
 obj.SetValue(ShowTextProperty, value);
 }

Chapter 8

315

 public static readonly DependencyProperty ShowTextProperty
 = DependencyProperty.RegisterAttached("ShowText",
 typeof(bool), typeof(ProgressBarAttributes),
 new UIPropertyMetadata(true));
}

Given this ShowText property we can set the Visibility of the TextBlock as follows:

Visibility="{TemplateBinding local:ProgressBarAttributes.ShowText,
Converter={StaticResource bool2vis}}"

The bool2vis resource points to the System.Windows.Controls.
BooleanToVisibilityConverter class provided by WPF, which allows
quick conversions between a simple Boolean and the Visibility enumeration:

<BooleanToVisibilityConverter x:Key="bool2vis" />

Can we replace just part of a template?
Creating a full control template is a lot of work. Wouldn't it be better if we could replace just
part of a control's template – and leave the rest of it as is? Unfortunately, that's not directly
supported. The control template is an all or nothing proposition. The best we can do is start
with some existing template and then tweak or extend it.

One way to get a control's default template to be used as a starting point is by leveraging
Expression Blend. In Blend, we can drag the required control on the design surface,
right-click on it, and select Edit Template | Edit a Copy….

Styles, Triggers, and Control Templates

316

This can also give us some ideas for implementing the template. This is especially important if
complex triggers are involved (because of non-trivial state management inside the control).

This is also possible directly from within Visual Studio 2012, which shares the
same designer with Blend.

Another option (often a better one) is to use the "SimpleStyles" sample available in the MSDN
docs and through Blend:

"SimpleStyles" provides relatively simple control templates for most controls; these can be
used as a starting point for our own templates. The "real" templates are often very complex
and contain various (usually unnecessary) decorators and other adornments that most
custom templates don't need or want.

What about the Visual State Manager?
Silverlight, WPF's little brother, doesn't have the support WPF has for triggers (in fact,
only the Loaded event trigger is supported). Instead, Silverlight introduced something known
as the Visual State Manager (VSM) that provides an alternative means for controlling state
changes in controls. A typical control template in Silverlight defines state transitions and
other related ingredients, based on the control's advertisement of its supported states
(using attributes, similar to named parts).

WPF added support for the Visual State Manager starting from version 4. However,
these cannot actually be used for authoring control templates, because the current
control implementation uses triggers and not the VSM. That means the control does not
change states via the VSM, so any template that relies on such behavior is doomed to fail.

Chapter 8

317

The VSM can still be used in WPF when authoring custom controls, but because the
built-in controls are already implemented, it's not possible to add support for the VSM
unless Microsoft changes the way the built-in controls operate.

Replacing the control template of a
scroll bar

The ScrollBar control is rarely used on its own. This is hinted by the fact that it's located in
the System.Windows.Controls.Primitives namespace. It is, however, an important
building block for many elements, such as ScrollViewer and ListBox. Instead of trying
to customize the template for a ScrollViewer or a ListBox to get a different look for the
scroll bars, it's better to customize the ScrollBar itself (usually with an automatic style),
causing all ScrollBar controls to appear the same way no matter which other, higher-level
controls, use them. Let's see what it takes to replace a scroll bar's control template.

Getting ready
Make sure Visual Studio is up and running.

How to do it...
We'll create a simple application that uses a custom ScrollBar template, showing the
ingredients of such a template:

1. Create a new WPF application named CH08.CustomScrollBars.

2. Open App.xaml. First, we need to create some helper templates for RepeatButton
controls and for a Thumb control.

3. Add the following inside the application resources:
<ControlTemplate TargetType="RepeatButton"
 x:Key="repeatTransTemplate">
 <Rectangle Fill="Transparent" />
</ControlTemplate>
<ControlTemplate TargetType="RepeatButton"
 x:Key="plainTemplate">
 <Grid>
 <ContentPresenter Margin="{TemplateBinding Padding}" />
 </Grid>
</ControlTemplate>
<ControlTemplate TargetType="Thumb" x:Key="vthumbTemplate">
 <Rectangle RadiusX="5" RadiusY="10"
 Stroke="{TemplateBinding BorderBrush}"

Styles, Triggers, and Control Templates

318

 StrokeThickness="{TemplateBinding BorderThickness}"
 Fill="{TemplateBinding Background}" />
</ControlTemplate>

4. Add the basic ControlTemplate for a vertical ScrollBar:
<ControlTemplate TargetType="ScrollBar"
 x:Key="verticalScrollBarTemplate">
</ControlTemplate>

5. The template will be composed of three parts, laid out with a Grid. Add the following
inside the template:
<Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition />
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>

6. The most important part (the middle) should contain a Track control (a named part)
that the ScrollBar is looking for:
<Border BorderBrush="DarkBlue" BorderThickness="1"
 Background="LightBlue" Grid.Row="1">
 <Track x:Name="PART_Track" IsDirectionReversed="True">
 </Track>
</Border>

7. The Track contains two RepeatButtons that serve as "page up" and "page down"
for scrolling (connected through commands):
<Track.DecreaseRepeatButton>
 <RepeatButton Command="ScrollBar.PageUpCommand"
 Template="{StaticResource repeatTransTemplate}" />
</Track.DecreaseRepeatButton>
<Track.IncreaseRepeatButton>
 <RepeatButton Command="ScrollBar.PageDownCommand"
 Template="{StaticResource repeatTransTemplate}" />
</Track.IncreaseRepeatButton>

8. The moving part of the Track is a Thumb, set using the Track.Thumb property:
<Track.Thumb>
 <Thumb Template="{StaticResource vthumbTemplate}"
 BorderBrush="Black" BorderThickness="1">
 <Thumb.Background>
 <LinearGradientBrush EndPoint="0,1">
 <GradientStop Offset="0" Color="DarkGreen" />
 <GradientStop Offset="1" Color="LightGreen" />

Chapter 8

319

 </LinearGradientBrush>
 </Thumb.Background>
 </Thumb>
</Track.Thumb>

9. We want to add an element to the first row of the Grid to be used for smooth
scrolling up (insert right after the closing Border tag):
<Viewbox>
 <RepeatButton Command="{x:Static ScrollBar.LineUpCommand}"
Template="{StaticResource plainTemplate}">
 <Path Data="M 25,0 L 50,50 L 0,50 Z" Fill="Blue" />
 </RepeatButton>
</Viewbox>

10. Similarly, the third row should include an element to scroll smoothly down:
<Viewbox Grid.Row="2">
 <RepeatButton Command="{x:Static ScrollBar.LineDownCommand}"
Template="{StaticResource plainTemplate}">
 <Path Data="M 25,50 L 0,0 L 50,0 Z" Fill="Blue" />
 </RepeatButton>
</Viewbox>

11. A similar ControlTemplate is built for a horizontal scroll bar:
<ControlTemplate TargetType="ScrollBar"
 x:Key="horizontalScrollBarTemplate">
</ControlTemplate>

12. The complete source can be found with the downloadable code for this
chapter. The template is largely the same; changes reflect the horizontal
orientation (Grid contains columns, not rows, brush gradient slanted
horizontally, and so on). Finally, an automatic Style selects the correct
template based on the ScrollBar orientation:
<Style TargetType="ScrollBar">
 <Style.Triggers>
 <Trigger Property="Orientation" Value="Vertical">
 <Setter Property="Template"
 Value="{StaticResource verticalScrollBarTemplate}" />
 </Trigger>
 <Trigger Property="Orientation" Value="Horizontal">
 <Setter Property="Template"
 Value="{StaticResource horizontalScrollBarTemplate}" />
 </Trigger>

 </Style.Triggers>
</Style>

Styles, Triggers, and Control Templates

320

13. To test this, open MainWindow.xaml. Add an existing large image to the project
(such as penguin.jpg from the Sample Pictures folder).

14. Add the following markup to the existing Grid:
<ScrollViewer VerticalScrollBarVisibility="Auto"
 HorizontalScrollBarVisibility="Auto">
 <Image Source="penguins.jpg" Stretch="None" />
</ScrollViewer>

15. Run the application and make sure the window is small enough so that the scroll bars
will be forced to display:

How it works...
A ScrollBar control template contains only one named part, PART_Track, of type Track.
This element expects two RepeatButton controls (Track.DecreaseRepeatButton and
Track.IncreaseRepeatButton) and a Thumb control (Track.Thumb property) – the rest
is taken care of by the ScrollBar. The RepeatButtons are typically used to do page level
scrolling, connected as such with the Command property of those buttons. The line (small step)
based scrolling is not an essential part of the ScrollBar and need not be supplied. In the
demoed template, two extra RepeatButtons are provided and connected using commands
to the line scrolling functionality. The ScrollBar control is built as follows:

Chapter 8

321

The middle RepeatButtons (part of the Track) are themselves templated as empty
rectangles filled with a transparent brush. It's important this is transparent and not null,
otherwise no clicks would be registered on these buttons.

The top and bottom little arrows are RepeatButtons themselves templated as simple
content containers. This is achieved using a ContentPresenter, which is an element
that is roughly equivalent to a ContentControl whose Content property binds to
the button's Content property. The actual content of these buttons is composed of a
ViewBox (that provides automatic scaling) containing a Path element that is shaped
like a little triangular arrow.

The Style for the ScrollBar selects (using a property trigger) the correct template
(vertical or horizontal) based on the Orientation property.

Customizing selection in a Selector control
Controls deriving from Selector such as ListBox and CombobBox have rich template support
with the ItemTemplate property. There is no direct support, however, for customizing the
way a selected item is rendered. At first, this seems easily fixable with a property trigger for
the Selector.IsSelected property; however, due to the way the default ListBoxItem/
ComboBoxItem control template is designed, the result is suboptimal. Let's see how to
customize selection rendering despite this inconvenience.

Styles, Triggers, and Control Templates

322

Getting ready
Run Visual Studio and open the CH08.DataTriggerDemo project.

How to do it...
We'll customize the appearance of selection in the ListBox used to show books with a fancy
DataTemplate:

1. Run the application as is. Click an item; it's back-filled with a blue color (the exact
color depends on the Windows theme and any personalization that may have been
made), causing a not-so-nice effect (for example, the author name becomes invisible
for non-free books).

2. Open MainWindow.xaml. Add the following property to the ListBox:
<ListBox.ItemContainerStyle>
 <Style TargetType="ListBoxItem">
 </Style>
</ListBox.ItemContainerStyle>

3. Add a setter for a new ControlTemplate for the ListBoxItem:
<Setter Property="Template">
 <Setter.Value>
 <ControlTemplate TargetType="ListBoxItem">
 <Border BorderBrush="{TemplateBinding BorderBrush}"
 Background="{TemplateBinding Background}"
 Margin="{TemplateBinding Padding}"
 BorderThickness="{TemplateBinding BorderThickness}">
 <ContentPresenter HorizontalAlignment="{TemplateBindi
ng HorizontalContentAlignment}"
 VerticalAlignment="{TemplateBinding
VerticalContentAlignment}" />
 </Border>
 </ControlTemplate>
 </Setter.Value>
</Setter>

4. This sets an alternative template that we can control. Let's add some more setters as
default values:
<Setter Property="Background" Value="Transparent" />
<Setter Property="BorderThickness" Value="2" />
<Setter Property="BorderBrush" Value="Transparent" />

Chapter 8

323

5. To change the way selection looks, we'll add a property trigger:
<Style.Triggers>
 <Trigger Property="IsSelected" Value="True">
 <Setter Property="BorderBrush" Value="Red" />
 </Trigger>
</Style.Triggers>

6. Run the application and select an item. A red border marks the selection:

How it works...
The container of each item in a ListBox is a ListBoxItem (a ContentControl); similarly,
ComboBoxItem objects wrap the content in a ComboBox. The container item style can be
changed (for every ItemsControl-derived type) using the ItemContainerStyle property.
In this case, the Template property needs to change, because the default template uses the
current selection color (configured through the Personalization applet in Control Panel) in an
internal element that we cannot reach from a simple style.

Our only reasonable alternative is to replace the entire control template of that
ListBoxItem, which is not difficult to do – a ContentPresenter (to show the actual data
template associated with each item) inside something like a Border (we can use something
more complex if desired). The rest is just a regular property trigger to get the required effect.

ContentPresenter is an element used mostly in control templates, which
renders the Content of the templated control based on the usual rules of
the Content property (meaning it uses a DataTemplate if provided, and
so on). It can technically bind to another property (of type Object) by setting
the ContentSource property to the base property name; for example,
for HeaderedContentControl template, a ContentPresenter
would set ContentSource to "Header", so that it looks at Header
and HeaderTemplate as appropriate.
A similar element, ItemsPresenter is used for the ItemsControl-
derived templates to show a collection of objects.

Styles, Triggers, and Control Templates

324

There's more...
ItemsControl-derived types have another interesting template customization hook: the
ItemsPanel property (of type ItemsPanelTemplate). This changes the way items are
arranged in the ItemsControl-derived control. ListBox, for instance, uses a vertical
VirtualizingStackPanel by default – that's why items are placed one below the other.
A VirtualizingStackPanel is similar to a regular StackPanel, but items that are out
of view are not created until actually needed – this increases responsiveness if the ListBox
holds many items. ItemsControl uses a vertical StackPanel; StatusBar uses a
DockPanel; MenuItem uses a WrapPanel.

What can we place instead of the default items panel? One option is to continue to use a
(Virtualizing)StackPanel, but make it horizontal.

Another useful possibility is to use a WrapPanel; this has a similar effect to the "icon" style
views seen in Windows Explorer.

Yet another interesting idea is to use a UniformGrid, setting an appropriate number of Rows
and Columns. This places items in a tabular grid, while still maintaining all the characteristics
of a ListBox.

Here are some examples of arranging a bunch of circles in a ListBox with various panels:

The complete source is located in the CH08.CustomLItemsPanel project available with the
downloadable source for this chapter.

9
Graphics and

Animation

In this chapter we will cover the following:

 f Creating a custom shape

 f Applying transforms on elements

 f Manipulating a bitmap programmatically

 f Creating adorners

 f Creating property-based animations

 f Creating path-based animations

 f Creating custom animations

 f Adding animation easing to animations

 f Using custom effects with pixel shaders

Introduction
WPF has a very impressive graphic stack. That's one of the obvious selling points of the
technology, as it's very visual and immediately recognizable. WPF's graphic capabilities range
from simple 2D to arbitrarily complex 3D, with the typical integration we come to expect from
WPF; everything can be interacted with anything – a 3D scene can be animating inside a
button and that button still behaves like a button.

WPF also provides a powerful, declarative, animation engine. This makes using animations
easy, removing the need to use timers, do refresh updates, and other low level tasks that are
typical with other graphic frameworks.

Graphics and Animation

326

This chapter explores some of WPF's graphic and animation capabilities. Missing from the
chapter is discussion of WPF's 3D graphic support; this is simply beyond the scope of this
book, as it must maintain a reasonable number of pages. 3D is a complex topic in itself; WPF
makes using 3D relatively easy. Other sources have discussions on 3D in general and WPF in
particular. The interested reader can do a simple web search to find relevant information. 2D
however, is not as easy as it may sound – WPF has a variety of ways of creating 2D graphics.
This chapter has recipes that show ways to effectively use WPF's capabilities.

Creating a custom shape
Shapes are (mostly) simple elements deriving from the Shape abstract base class, which
derives directly from FrameworkElement; shapes providing an inherent graphical
representation that can easily be filled, stroked and stretched. Shapes are not controls – they
have no template associated with them. They are, however, full elements, providing support
for the full range of capabilities, including participation in layout, hit testing, and the multitude
of properties and events that make working with these entities as easy as any control.

We can create new shapes by deriving from Shape, providing a new graphical representation,
and taking advantage of the functionality provided by the base Shape class.

Getting ready
Make sure Visual Studio is up and running.

How to do it...
We'll create a ring shape element, demonstrating the steps necessary to create custom
Shape classes that fit naturally with the rest of WPF, just as the built-in shapes do:

1. Create a new WPF application named CH09.CustomShape.

2. We're going to create a ring shape that should function like any of the built in shapes.
Add a new class to the project named RingShape.

3. Add using statements for System.Windows, System.Windows.Media, and
System.Windows.Shapes.

4. Make RingShape derive from Shape:
public class RingShape : Shape {
}

5. Add a private field of type Rect that we'll use to manage the bounds of a shape:
Rect _rect;

Chapter 9

327

6. We'd like to provide a property to customize the width of the ring. Add a dependency
property named RingWidth of type double:
public double RingWidth {
 get { return (double)GetValue(RingWidthProperty); }
 set { SetValue(RingWidthProperty, value); }
}

public static readonly DependencyProperty RingWidthProperty =
 DependencyProperty.Register("RingWidth", typeof(double),
 typeof(RingShape), new FrameworkPropertyMetadata(
 .1, FrameworkPropertyMetadataOptions.AffectsRender));

7. RingWidth will be a percentage fraction of the width/height of the shape
(for example, 0.2=20% of width/height). A custom shape must override the
DefiningGeometry protected property and return a Geometry representing
the shape. Override the property as follows:
protected override Geometry DefiningGeometry {
 get {
 if(_rect.IsEmpty)
 return Geometry.Empty;

 var rc = _rect;
 rc.Inflate(-RingWidth * _rect.Width,
 -RingWidth * _rect.Height);
 return new CombinedGeometry(GeometryCombineMode.Exclude,
 new EllipseGeometry(_rect), new EllipseGeometry(rc));
 }
}

8. The _rect field must be updated if the size of the shape is queried. For this purpose,
we'll override the MeasureOverride method (commonly overridden by panels) and
compute _rect based on the current Stretch property value:
protected override Size MeasureOverride(Size constraint) {
 if(double.IsInfinity(constraint.Width) ||
 double.IsInfinity(constraint.Height)) {
 _rect = Rect.Empty;
 return Size.Empty;
 }

 double size;
 switch(Stretch) {
 case Stretch.Fill:
 _rect = new Rect(constraint);
 break;
 case Stretch.Uniform:
 size = Math.Min(constraint.Width, constraint.Height);
 _rect = new Rect(new Size(size, size));
 break;

Graphics and Animation

328

 case Stretch.UniformToFill:
 size = Math.Max(constraint.Width, constraint.Height);
 _rect = new Rect(new Size(size, size));
 break;

 case Stretch.None:
 _rect = double.IsNaN(Width) || double.IsNaN(Height)
 ? Rect.Empty : new Rect(new Size(Width, Height));
 break;
 }
 return _rect.Size;
}

9. Finally, the default value of the Stretch property (inherited from Shape) is None.
This would cause the RingShape to have zero size. Let's change the default in the
static constructor:
static RingShape() {
 StretchProperty.OverrideMetadata(typeof(RingShape),
 new FrameworkPropertyMetadata(Stretch.Uniform,
 FrameworkPropertyMetadataOptions.AffectsMeasure |
 FrameworkPropertyMetadataOptions.AffectsRender));
}

10. We need to test this. Open MainWindow.xaml.

11. Map an XML namespace to the CH09.CustomShape namespace:
 xmlns:local="clr-namespace:CH09.CustomShape"

12. Add a RingShape inside the existing Grid:
<local:RingShape Fill="Red" Stroke="Black" StrokeThickness="4"
 RingWidth=".15"/>

13. Run the application:

14. You can change the Stretch property value, or set an explicit Width/Height to see
the effects.

Chapter 9

329

How it works...
The Shape abstract class defines one abstract member, the DefiningGeometry property.
This property must be overridden and return a Geometry (see There's more... section for
more information on geometries) that defines the shape's shape. Everything else is taken
care of by the base Shape class.

The actual size of the shape should be calculated based on the Stretch inherited property
(that's the reason MeasureOverride is needed). Strictly speaking, we could have removed
MeasureOverride entirely and just initialized the _rect field to some non-empty rectangle.
This would cause a Stretch value of None to just use the default rectangle-initialized size.
This is acceptable, but using a zero size shape when Stretch is None is consistent with the
way the built in shapes operate.

The geometry provided by the RingShape consists of a small ellipse (EllipseGeometry)
subtracted from a larger ellipse (using a CombinedGeometry object combined with mode
of Exclude).

There's more...
The Shape class does the actual drawing of the geometry by overriding the
UIElement.OnRender method. This method accepts a DrawingContext,
which is an abstraction of a painting capable object (similar in concept to a
GDI+ Graphics object or Win32 device context).

Overriding OnRender provides the ability to add other graphical effects outside the
Geometry provided by the DefiningGeometry property. However, if this method is
overridden, the base class implementation must be called; otherwise DefiningGeometry
will have no effect. Here's a proper implementation skeleton:

protected override void OnRender(DrawingContext dc) {
 base.OnRender(dc);
 // do custom drawing
}

Geometries
Geometry is a mathematical abstraction that defines some 2D construct. Geometry is an
abstract base class that defines some basic functionality common to all geometries. The
Bounds property returns the minimal axis-aligned bounding rectangle (Rect struct) that
encapsulates the geometry. The Transform property allows transformations to be applied
on the geometry (see the Applying transforms on elements recipe later in this chapter for
a discussion of transforms). The GetArea method calculates the area occupied by the
geometry and FillContains can be used to check if a given point or another geometry is
contained within the given geometry (with a rich set of overloads). There are other interesting
methods on the base Geometry class that make geometries useful in other scenarios.

Graphics and Animation

330

Some of the interesting Geometry methods are as follows: GetArea
calculates the area of the Geometry (no matter how complex);
FillContains indicates whether the Geometry contains the
specified Point or another Geometry; GetRenderBounds returns
a rectangle that contains the Geometry painted with a specified Pen;
GetFlattenedGeometry returns a PathGeometry that is a polygonal
approximation of the Geometry; the static Combine method combines two
Geometry objects based on a GeometryCombineMode value (Exclude,
Union, Xor, or Intersect) with an optional Transform applied.

Geometry derives from Animatable (itself deriving from Freezable), thus supports
all Freezable features, such as cloning, becoming read only, and easy sharing
through resources.

The simple geometries are LineGeometry, EllipseGeometry, and RectangleGeometry,
all pretty self-explanatory. The more complex geometries include:

 f GeometryGroup: Can host any number of geometries as a single unit. Adds a
FillRule property to indicate the way intersections are handled in the geometry
(similar to FillRule of the Polygon and Polyline shapes).

 f CombinedGeometry: Combines two geometries (Geometry1 and Geometry2
properties) with a set operator (GeometryCombineMode property), resulting in a
new geometry. Possible values are Intersect, Exclude, Union, and Xor. The
following illustration shows the various modes in action:

 f PathGeometry: The most complex geometry that can replace all others and do
much more. It contains a collection of PathFigure objects (Figures property).
Each PathFigure represents a connected series of lines and curves, represented
as a collection of PathSegment objects (Segments property). PathSegment is
an abstract class – its derivatives provide concrete lines or curves. These include
simple segments (LineSegment, PolyLineSegment), an arc (ArgSegment),
and an assortment of Bezier curves (BezierSegment, PolyBezierSegment,
QuadraticBezierSegment, and PolyQuadraticBezierSegment).

Chapter 9

331

Building a complex PathGeometry may take a lot of XAML (or code). To mitigate
that from a practical perspective, a "geometry mini language" has been created that
allows creating figures and segments using a string in XAML that's converted (using
a GeometryConverter type converter) into a PathGeometry. For example, the
following XAML is a long way to create a triangle geometry:
<PathGeometry>
 <PathFigure IsClosed="True" StartPoint="10,100">
 <LineSegment Point="100,100" />
 <LineSegment Point="100,50" />
 </PathFigure>
</PathGeometry>

The short version is as follows:
<Geometry>M 10,100 L 100,100 L 100,50 Z</Geometry>

 f Here's a quick rundown of this string: M starts a new figure followed by the starting
point of that figure. L means line, followed by the end point of the line (there are
two lines) and finally Z means the figure is done and closed (which creates the
third triangle line). All possible segment types are included in the mini language.

For complex shapes, this "mini language" shortens markup considerably.
The resulting object is actually a StreamGeometry, not a PathGeometry
(StreamGeometry is discussed in the next bullet). To create an actual
PathGeometry, the markup needs to change a bit:
<PathGeometry Figures="M 10,100 L 100,100 L 100,50 Z" />

 f StreamGeometry: Similar to a PathGeometry in terms of its contents
– contains figures, each of which contains segments; however, these are
not exposed as properties. Instead, we must call the Open method on the
StreamGeometry, getting back a StreamGeometryContext that exposes the
ability to create figures (BeginFigure and Close methods) and add segments
(LineTo, ArcTo, BezierTo, PolyBezierTo, QuadraticBezierTo, and
PolyQuadraticBezierTo methods).

A StreamGeometry is a lightweight version of PathGeometry. It does not
support data binding, animations, or modifications.

As geometries are abstract entities (in the mathematical sense, not the object
oriented sense), they appear in other objects. Examples include path-based animations
that use a PathGeometry (see the recipe Creating custom animations later in this chapter),
the UIElement.Clip property that accepts any geometry, and some Drawing-derived types
(GeometryDrawing.Geometry and DrawingGroup.ClipGeometry).

Graphics and Animation

332

Built-in shapes
WPF provides six built-in shapes. The simplest shapes are Line, Ellipse, and Rectangle.
The more complex shapes are Polygon and Polyline, which are very similar and contain
a collection of points (the Points property). The only difference between them is that a
Polygon adds a line from the last point to the first automatically, whereas Polyline does
not (both are filled in the exact same way – a Polyline is assumed to be closed for this
purpose, as if it were a Polygon).

The most complex shape (by far) is the Path, which can replace all other shapes. It renders
a Geometry (set with the Data property), which means it can render anything.

Expression Blend provides more custom shapes through its Assets | Shapes window
(implemented in the Microsoft.Expression.Drawing.dll assembly), such as
arrows and callouts:

Shapes versus geometries
Sometimes there is some confusion between shapes and geometries; they seem
similar, such as Rectangle and RectangleGeometry, Path and PathGeometry.

There is a fundamental difference, however: shapes are elements – they are visual objects,
can be placed somewhere in the visual tree and are part of the layout phase within a panel,
and so on.

Geometries, on the other hand, are mathematical abstractions. They cannot be placed in the
visual tree and cannot draw themselves.

Chapter 9

333

Applying transforms on elements
Transforms allow manipulating an entity's coordinates in various ways, the most common
being translating (moving), scaling, and rotating. This ability provides a lot of flexibility in the
way elements (and other objects) present themselves. Combined with animations and some
creativity, transforms are even more powerful. In this recipe, we'll examine the ways to
use transforms and discuss the available transform types.

Getting ready
Make sure Visual Studio is up and running.

How to do it...
We'll create some images and apply a rotation transform to some, showing the common
properties that accept transforms:

1. Create a new WPF application named CH09.Transforms.

2. Add an existing image to the project, such as "penguins.jpg" from the Sample
Pictures folder.

3. Open MainWindow.xaml. Add the following properties to the Window:
SizeToContent="WidthAndHeight" FontSize="16"
 ResizeMode="CanMinimize"

4. Remove the Width and Height property settings of the Window.

5. Add three columns to the existing Grid:
<Grid.ColumnDefinitions>
 <ColumnDefinition />
 <ColumnDefinition Width="40"/>
 <ColumnDefinition />
</Grid.ColumnDefinitions>

6. Add a StackPanel in the first column that contains three images, the middle being
rotated 45 degrees using a RotateTransform:
<StackPanel>
 <Image Source="Penguins.jpg" Height="100" Margin="5" />
 <Image Source="Penguins.jpg" Height="100" Margin="5">
 <Image.LayoutTransform>
 <RotateTransform Angle="45" />
 </Image.LayoutTransform>
 </Image>
 <Image Source="Penguins.jpg" Height="100" Margin="5" />
</StackPanel>

Graphics and Animation

334

7. Add another StackPanel with three images to the third column of the Grid, this
time rotating the second image with the RenderTransform property:
<StackPanel Grid.Column="2">
 <Image Source="Penguins.jpg" Height="100" Margin="5" />
 <Image Source="Penguins.jpg" Height="100" Margin="5"
 RenderTransformOrigin=".5,.5">
 <Image.RenderTransform>
 <RotateTransform Angle="45" />
 </Image.RenderTransform>
 </Image>
 <Image Source="Penguins.jpg" Height="100" Margin="5" />
</StackPanel>

8. Run the application and observe the results:

How it works...
Transforms are based around the abstract Transform class. A transform is inherently
represented by a 3 x 3 matrix (Matrix struct). In fact, we can specify the exact matrix
element using one of the derivatives of Transform, MatrixTransform (although
that is uncommon).

The example code creates a RotateTransform object with an Angle of 45 degrees (angles
are not expressed in radians, as they are with the Math class methods). That transform is
applied to an element using the UIElement.RenderTransform or FrameworkElement.
LayoutTransform properties. The former makes the transformation after the layout
pass is over, while the latter takes the transform changes into consideration as part of
the layout phase.

Chapter 9

335

This means that RenderTransform does not take into account the new size requirements
(either bigger or smaller) for layout purposes, so the element may overlap other elements
(depending on the particular transform). The middle right image overlaps the first and third
images because its new space requirements were not taken into account. The middle left
image, on the other hand, using LayoutTransform, received the extra space it needs
because of the actual transform.

As RenderTransform happens after the layout phase, it is important to the anchor point
where transform begins. This can be changed using the RenderTransformOrigin property
(of type Point), (0,0) being the default – meaning the top left corner of the affected element.
The value is relative to the size of the element, so (0.5,0.5) means the element center and
(1,1) means the bottom right corner of the element's bounding rectangle. Technically, the
value may be outside the (0,0)-(1,1) range if desirable.

Here's an example of the effect RenderTransformOrigin has when rotation is used:

The middle left image has RenderTransformOrigin equal to (.5,.5). The middle right
image maintains the default value of (0,0). Notice the rotation is happening around the
top-left corner of the image.

Using RenderTransform is more light weight than using LayoutTransform, especially
when animations are involved. Try to use RenderTransform whenever possible in lieu of
LayoutTransform.

Graphics and Animation

336

There's more...
The common Transform derivatives to use are TranslateTransform (translations being
set with the X and Y properties), ScaleTransform (resizing with the ScaleX and ScaleY
properties, as well as the center point around which scaling happens with the CenterX
and CenterY properties), and RotateTransform (rotating by the angle specified with
the Angle property as well setting an alternate center of rotation with the CenterX and
CenterY properties).

ScaleTransform can be used to flip the coordinate system by specifying negative values
for ScaleX and/or ScaleY (effecting flipping the affected objects). Note that their default
value is 1.0, that is maintain original size. A value larger than 1 increases size while a value
between 0 and 1 decreases size.

The last useful transform is TransformGroup. This simply allows combining transforms to
create a new transform. Behind the scenes this means multiplying matrices to get a result
matrix. The important thing to note is that matrix multiplication is not commutative – meaning
that in general the order of transforms matters.

The last transform type is SkewTransform, the weirdest of them all. This transform can
be simply explained as turning a rectangle into a parallelogram. The AngleX and AngleY
properties are used to set the skew angle and the CenterX and CenterY properties may
be used to change the reference point of skewing.

Other uses for transforms
Transforms are powerful tools, not just because of their direct capabilities, but also because
they are animatable – every property can be independently animated to produce effects only
limited by creativity and imagination.

Transforms are not used just for elements. Geometries can be arbitrarily transformed
using the Geometry.Transform property. Brushes can be transformed as well using
the Brush.Transform property. Both properties, coupled with possible animation, are
a powerful tool in the WPF graphics arsenal.

Manipulating a bitmap programmatically
Bitmaps are used in one form or another mainly to display existing images. These typically are
placed as a source of an Image element. When a static image is added to a project and set
to the Image.Source property, a BitmapImage is created behind the scenes. This simple
class provides a read-only view to the bitmap's bits.

Sometime it's desirable to manipulate a bitmap's bit values dynamically based on a runtime
algorithm. WPF provides the WriteableBitmap that allows us to do just that. Let's look at
how to use this capability.

Chapter 9

337

Getting ready
Make sure Visual Studio is up and running.

How to do it...
We'll create an application that displays the famous Mandelbrot set, requiring
calculating colors for each pixel in the resulting image. This will show a typical
usage of WriteableBitmap.

1. Create a new WPF application named CH09.MandelbrotSet.

2. Open MainWindow.xaml. Add the following Image element inside the
existing Grid:
<Image Width="600" Height="600" x:Name="_image" />

3. Set the following properties on the Window itself:
Title="Mandelbrot Set" SizeToContent="WidthAndHeight"
 ResizeMode="CanMinimize"

4. Remove the Width and Height property settings of the Window.

5. Open MainWindow.xaml.cs. Add a private field of type WriteableBitmap:
WriteableBitmap _bmp;

6. In the constructor, after the call to InitializeComponent, we'll create a
WriteableBitmap object (having a potential grayscale image) and connect
it to the Image element:
_bmp = new WriteableBitmap(600, 600, 0, 0, PixelFormats.Gray8,
 null);
_image.Source = _bmp;

7. Add a reference to the System.Numeric assembly. This is required to get the
support for the Complex value type.

8. Add a using statement for the System.Numeric namespace for the same reason.

9. The application calculates something known as the Mandelbrot Set. Add a private
method named MandelbrotColor that calculates the color of a given point
expressed as a complex number:
int MandelbrotColor(Complex c) {
 int color = 256;
 Complex z = Complex.Zero;
 while(z.Real + z.Imaginary < 4 && color > 0) {
 z = z * z + c;
 color--;
 }
 return color;
}

Graphics and Animation

338

10. Add a private method named CalcMandelbrotSet:
void CalcMandelbrotSet() {
}

11. Let's implement its body. First, we'll set up the boundaries for calculations:
var from = new Complex(-1.5, -1);
var to = new Complex(1, 1);
double deltax = (to.Real - from.Real) / _bmp.Width;
double deltay = (to.Imaginary - from.Imaginary) / _bmp.Height;

12. Next, we'll allocate an array of bytes that would hold color values for an entire row:
byte[] pixels = new byte[_bmp.PixelWidth];

13. Now we should create a double loop to walk through all pixels in the bitmap (600 x
600) and calculate the color values for each row:
for(int y = 0; y < _bmp.PixelHeight; y++) {
 for (int x = 0; x < _bmp.PixelWidth; x++)
 pixels[x] = (byte)MandelbrotColor(from + new Complex(
 x * deltax, y * deltay));

14. After the x loop is done, we'll update that particular line in the actual bitmap:
 _bmp.WritePixels(new Int32Rect(0, y, _bmp.PixelWidth, 1),
 pixels, _bmp.BackBufferStride, 0);

15. Close the outer loop and the method itself.

16. Add a call to CalcMandelbrot as the last operation in the constructor.

17. Run the application. You should see output similar to this:

Chapter 9

339

How it works...
WriteableBitmap inherits from the abstract BitmapSource class, which itself
derives from ImageSource. This means WriteableBitmap is accepted as any
other ImageSource, such as with the Image.Source property.

Creating a WriteableBitmap involves selecting the bitmap width and height and its format.
The preceding code uses PixelFormats.Gray8, which means one byte per pixel consisting
of gray levels only. PixelFormats is a static class, consisting of many predefined pixel
formats, such as Bgr24, Gray2, Rgb24, and bgra32. The format is important when changing
actual pixels.

To change the actual pixels, the code uses the WritePixels method, which accepts an
appropriate array with the values that need to be set (in this case, byte values representing
gray levels) and a Rect specifying the region to change. The stride parameter indicates the
byte difference between two consecutive lines in the bitmap. This may seem obvious – the
pixel width of the bitmap multiplied by the number of bytes per pixel. This is not always the
case (because of alignment issues), so it's always a good idea to get that information from
the bitmap itself (using the BackBufferStride property).

There's more...
An alternative method for changing the contents of a WriteableBitmap is to call the
Lock method and then retrieve a direct pointer to the underlying bitmap bits using the
BackBuffer property (of type IntPtr). Lock causes WPF not to update whoever is
holding that bitmap until the Unlock method has been called.

This returned pointer may be handed off to native code, or manipulated in C# inside an
unsafe context. This allows many updates to happen without bothering WPF with updates.
Before calling Unlock, the AddDirtyRect should be called to give WPF a hint to location
of the changed bits.

WritePixels conceptually calls Lock, writes the pixels, calls AddDirtyRect, and calls
Unlock. It does, however, make a lot of parameter and other checks, which makes it slower
compared to directly calling Lock/Unlock and manipulating the bits.

How about higher-level access to WriteableBitmap?
WriteableBitmap is really a bare-bones object. It provides the most primitive type of access
to the bitmap bits. Calling WritePixels or using the BackBuffer property is too low level
for some scenarios. There are no methods to draw 2D constructs such as lines, ellipses, or
rectangles; no easy way to copy parts of images to a given WriteableBitmap; no transforms
on the existing bits.

Graphics and Animation

340

Codeplex, Microsoft's open source community, has a project named WriteableBitmapEx,
that provides an impressive set of extension methods that fill this gap (http://
writeablebitmapex.codeplex.com/). The library is available not just for WPF, but
for Silverlight, Windows Phone, and Windows Runtime (Windows 8 runtime for Metro
style applications).

See also
For more information on the Mandelbrot Set, check out Wikipedia at
http://en.wikipedia.org/wiki/Mandelbrot_set.

Creating adorners
Adorners are elements that exist in a distinct adorner layer, not part of the normal visual tree.
All adorners in a particular layer always sit on top (higher Z index) of the element they adorn.
This characteristic of adorners makes them an excellent choice for things such as selection
handles, popup elements, and other special tasks where bothering with the normal visual tree
is impossible or complicated at best.

In this recipe, we'll take a look at creating and using adorners to indicate selection.

Getting ready
Make sure Visual Studio is up and running.

How to do it...
We'll create an application that draws a bunch of circles that can be dragged with the mouse.
The currently selected circle will be marked with an adorner.

1. Create a new WPF application named CH09.AdornerDemo.

2. Open MainWindow.xaml. Replace the existing Grid with a Canvas as follows:
<Canvas x:Name="_canvas" Background="White">
</Canvas>

3. Open MainWindow.xaml.cs. We want to create a bunch of random circles that can
be dragged with the mouse.

4. Create a private method named CreateCircles and implement as follows:
void CreateCircles() {
 var rnd = new Random();
 int start = rnd.Next(30);
 for(int i = 0; i < 10; i++) {

http://writeablebitmapex.codeplex.com/
http://writeablebitmapex.codeplex.com/

Chapter 9

341

 var circle = new Ellipse {
 Stroke = Brushes.Black,
 StrokeThickness = 1,
 Width = 50,
 Height = 50
 };
 var fill = typeof(Brushes).GetProperties(
 BindingFlags.Static | BindingFlags.Public)[start]
 .GetValue(null, null) as Brush;
 circle.Fill = fill;
 Canvas.SetLeft(circle, rnd.NextDouble() * ActualWidth);
 Canvas.SetTop(circle, rnd.NextDouble() * ActualHeight);
 _canvas.Children.Add(circle);
 start += 2;
 }
}

5. This method creates 10 randomly colored, randomly positioned circles. Add to the
constructor a call to this method when the Loaded event fires (important so
that ActualWidth and ActualHeight are updated):
Loaded += delegate {
 CreateCircles();
};

6. An adorner type must be created. Add a new class named SelectionAdorner.

7. Add using statements for the System.Windows, System.Windows.Media,
and System.Windows.Documents namespaces.

8. Make the SelectionAdorner inherit from Adorner and implement a constructor
that accepts an element and calls the base constructor:
class SelectionAdorner : Adorner {
public SelectionAdorner(UIElement element)
 : base(element) {
 }

9. An adorner needs to override OnRender and provide its visual appearance.
Add the following static helper graphic objects to the SelectionAdorner class:
static readonly Pen _pen = new Pen(Brushes.Black, 1) {
 DashStyle = DashStyles.Dash };
static readonly Brush _rectFill = new SolidColorBrush(
 Color.FromArgb(30, 0, 0, 255));
static readonly Brush _circleFill = new SolidColorBrush(
 Color.FromArgb(60, 255, 0, 0));
const double _circleRadius = 6;

Graphics and Animation

342

10. Override OnRender as follows:
protected override void OnRender(DrawingContext dc) {
 dc.DrawRectangle(_rectFill, _pen, new Rect(
 AdornedElement.DesiredSize));
 dc.DrawEllipse(_circleFill, null, new Point(0, 0),
 _circleRadius, _circleRadius);
 dc.DrawEllipse(_circleFill, null, new Point(
 AdornedElement.DesiredSize.Width, 0),
 _circleRadius, _circleRadius);
 dc.DrawEllipse(_circleFill, null, new Point(
 AdornedElement.DesiredSize.Width,
 AdornedElement.DesiredSize.Height),
 _circleRadius, _circleRadius);
 dc.DrawEllipse(_circleFill, null, new Point(
 0, AdornedElement.DesiredSize.Height),
 _circleRadius, _circleRadius);
}

11. Open MainWindow.xaml. Add event handlers to the Canvas for the
MouseLeftButtonDown, MouseLeftButtonUp, and MouseMove events.

12. Open MainWindow.xaml.cs. Add the following private fields that will help
manage the state in the Window:
Point _current;
FrameworkElement _currentShape;
bool _moving;
Adorner _adorner;

13. We'll now implement the MouseLeftButtonDown event handler. First, we'll remove
any previous adorner if it exists:
var layer = AdornerLayer.GetAdornerLayer(_canvas);
if(_adorner != null) {
 layer.Remove(_adorner);
 _adorner = null;
}

14. Next, we'll check if a circle was clicked or an empty space. If it's a circle, we'll save
some state and add an adorner for that circle:
var shape = e.Source as Shape;
if(shape != null) {
 _moving = true;
 _current = e.GetPosition(_canvas);
 _currentShape = shape;

 // draw adorner

Chapter 9

343

 _adorner = new SelectionAdorner(shape);
 layer.Add(_adorner);

 _canvas.CaptureMouse();
}

15. Now we'll implement the MouseMove event handler. In the case we're dragging a
circle, we need to change its position accordingly:
if(_moving) {
 var pt = e.GetPosition(_canvas);
 Canvas.SetLeft(_currentShape, Canvas.GetLeft(_currentShape)
 + pt.X - _current.X);
 Canvas.SetTop(_currentShape, Canvas.GetTop(_currentShape)
 + pt.Y - _current.Y);
 _current = pt;
}

16. In the MouseLeftButtonUp event handler, we simply do some cleanup:
if(_moving) {
 _moving = false;
 _canvas.ReleaseMouseCapture();
}

17. Run the application and drag some circles. Notice the adorner on the currently
selected circle. If you click an empty space, the adorner is removed.

Graphics and Animation

344

How it works...
Adorners are placed in their own layer, away from the accessible visual tree. This layer can be
accessed only programmatically via the static AdornerLayer.GetAdornerLayer method.
Given that AdornerLayer, adorners can be added with Add and removed with Remove.

An adorner must inherit from the abstract Adorner class and provide some visual
representation by overriding the OnRender method. The AdornedElement property
inherited from Adorner provides the information necessary to create the required
graphical representation, such as the size of an element.

There's more...
The adorner layer itself is hosted in an AdornerDecorator (a Decorator). This can be
viewed using the WPF Visualizer with the debugger. Here's a screenshot with an application
running and an existing adorner:

Creating property-based animations
WPF includes a sophisticated and elegant animation engine that takes animations to the
declarative level. Instead of dealing with timers and graphic updates, an animation object
holds all the required information for the animation to commence. WPF does the rest.
In this recipe, we'll take a look at property-based animations – the simplest and most
often used kind.

Chapter 9

345

Getting ready
Make sure Visual Studio is up and running.

How to do it...
We'll create some property-based animations on some shapes inside a Canvas, showing the
basic steps involved in creating animations:

1. Create a new WPF application named CH09.SimpleAnimation.

2. Open MainWindow.xaml. Add the following two rows to the existing Grid:
<Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition />
</Grid.RowDefinitions>

3. Add a Canvas to the second row with a bunch of elements:
<Canvas Grid.Row="1">
 <Rectangle Canvas.Left="60" Canvas.Top="40" Width="40"
 Height="40" x:Name="r1" Fill="Red" Stroke="Black"
 StrokeThickness="2">
 <Rectangle.RenderTransform>
 <RotateTransform x:Name="rot1" />
 </Rectangle.RenderTransform>
 </Rectangle>
 <Ellipse Canvas.Left="20" Canvas.Top="100" Width="40"
 Height="40" x:Name="e1" Fill="Blue" Stroke="Black"
 StrokeThickness="2"/>
 <Rectangle Canvas.Left="20" Canvas.Top="160" Width="350"
 Height="60" x:Name="r2" Stroke="Black"
 StrokeThickness="2">
 <Rectangle.Fill>
 <LinearGradientBrush EndPoint="1,0">
 <GradientStop Offset="0" Color="Yellow" />
 <GradientStop Offset="1" Color="Black"
 x:Name="g1" />
 </LinearGradientBrush>
 </Rectangle.Fill>
 </Rectangle>
</Canvas>

4. Add a horizontal StackPanel in the first row of the Grid.

Graphics and Animation

346

5. Add a button to the StackPanel as follows:
<Button Content="Rotate rectangle" Margin="4" />

6. Add a Click event handler for this button. In the first example, we'll create the
animation in code to rotate the first rectangle within the Canvas.

7. Add the following to the Click event handler:
var animation = new DoubleAnimation(360,
 TimeSpan.FromSeconds(2), FillBehavior.Stop);
Storyboard.SetTarget(animation, rot1);
rot1.BeginAnimation(RotateTransform.AngleProperty, animation);

8. Run the application and click the button. The Rectangle should rotate 360 degrees
around its top-left corner.

9. Open MainWindow.xaml. The next animation should move the ellipse to the right
(and back) – this time entirely in XAML.

10. Add a button to the StackPanel with an event trigger:
<Button Content="Move Circle" Margin="4">
 <Button.Triggers>
 <EventTrigger RoutedEvent="Button.Click">
 <BeginStoryboard>
 <Storyboard>
 <DoubleAnimation
 Storyboard.TargetName="e1"
 Storyboard.TargetProperty="(Canvas.Left)"
 To="400" Duration="0:0:3"
 AutoReverse="True"/>
 </Storyboard>
 </BeginStoryboard>
 </EventTrigger>
 </Button.Triggers>
</Button>

11. Run the application and click this button. The ellipse should move to the right and
then reverse its motion back to the starting point.

12. The next animation will be of a color. Add another button to the StackPanel and set
up an event trigger as follows:
<Button Content="Animate Color" Margin="4">
 <Button.Triggers>
 <EventTrigger RoutedEvent="Button.Click">
 <BeginStoryboard>
 <Storyboard>
 <ColorAnimation To="Red" Duration="0:0:4"
 Storyboard.TargetName="g1"

Chapter 9

347

 Storyboard.TargetProperty="Color"
 AutoReverse="True" />
 </Storyboard>
 </BeginStoryboard>
 </EventTrigger>
 </Button.Triggers>
</Button>

13. Run the application and click the third button – watch one of the gradients change
from black to red and then reverse. Click more than one button – you should see
multiple animations running at the same time. Here's a snapshot:

How it works...
Property-based animations are based on a single idea: changing a dependency property from
one value to another in a specified amount of time. Various animation classes exist, based
on the type of property being animated, such as DoubleAnimation, ColorAnimation,
and PointAnimation (all in the System.Windows.Media.Animation namespace). All
animation types inherit from the abstract Timeline class that provides most of the common
properties to all animation types.

Animations may be created manually by constructing the appropriate animation type,
specifying properties and then calling BeginAnimation on the element to animate,
providing the dependency property to animate and the animation object. This is illustrated
in step 7: a DoubleAnimation object is created to animate the Angle property (a double)
of a RotateTransform object. Various constructors exist – and there's always a way to
use simple properties – in this case the To value is set, the duration (a Duration object,
convertible from a TimeSpan) and a FillBehavior (what to do when the animation ends
– see more in the next section). Then BeginAnimation is called on the rectangle object to
animate with the dependency property field and the just created animation object.

Graphics and Animation

348

Although animations in code are sometimes useful when the animation parameters are highly
dynamic, more often than not animations are created in XAML.

The most useful object to use is a Storyboard, which is a kind of Timeline (a
ParallelTimeline to be exact), that can contain multiple animations that are
guaranteed to be synchronized (start at the same time); there can even be other
Storyboard objects if needed. The other advantage of a Storyboard is its ability
to be manipulated by TriggerAction objects related to animations (such as
BeginStoryboard) available with event triggers and property triggers.

To set up an animation with a Storyboard, child animation objects are created (such
as DoubleAnimation) with the relevant properties. Two attached properties defined
on Storyboard should be used, TargetProperty and TargetName (or Target if
more convenient). In the ellipse example, TargetName is "e1" (the ellipse name) and
TargetProperty is "(Canvas.Left)". Note the parenthesis – these are required
when animating an attached property.

The Storyboard class defines several Begin methods that can be used to run a
Storyboard programmatically. A BeginStoryboard object is typically used in
XAML to start a Storyboard.

The third example uses a ColorAnimation, to demonstrate how similar the various
animation types are – they mainly differ in the type, but the same concepts apply.

There's more...
The following common properties are available on most animation types (partial list):

 f From: Indicates the starting value for animation. If omitted, uses the current value.

 f To: It is the target value of the animation. If omitted, it means the property value
without the animation effect.

 f By: Sometimes more convenient to use instead of the To property. Not all animation
types support it – for example, for ColorAnimation there is no meaning to By.

 f Duration: The duration of animation and is similar (and convertible from) to a
TimeSpan. Adds two special values, Duration.Automatic (one second for true
animation types such as DoubleAnimation, end of child animations for container
Timelines) and Duration.Forever (infinite length). Mostly specified in XAML
using the format "hrs:min:sec.msec".

 f FillBehavior: Indicates the animation's behavior when it ends. FillEnd (the
default) means the last animation value is kept; the previous value (before the
animation) will have no effect. The other value, Stop, destroys the animation,
and reverts the property to its value without the animation present.

 f BeginTime: Sets a delay before the animation really begins. Can be used to
synchronize follow-ups in Storyboards.

Chapter 9

349

 f AutoReverse: Indicates if the animation should reverse automatically. If true, the
total animation duration is effectively doubled.

 f SpeedRatio: Allows speeding up or slowing down the timeline (effectively changing
the duration).

 f RepeatBehavior: Specifies how many times, or the total time, to repeat the
animation; can be RepeatBehavior.Forever to repeat the animation for eternity
(mostly useful when AutoReverse is true).

Alternative way to specify the animation property
Sometimes the property we want to animate is not available on an easily named object. For
example, the following LinearGradientBrush is used in the code example:

<LinearGradientBrush EndPoint="1,0">
 <GradientStop Offset="0" Color="Yellow" />
 <GradientStop Offset="1" Color="Black" x:Name="g1" />
</LinearGradientBrush>

We want to animate the color of the second GradientStop and that's conveniently named
"g1". However, if that brush is the result of (for example) data binding, the second gradient
will not be named. Still we can get to it in a slightly longer way starting from the actual
element itself (the Rectangle, named "r2") as follows:

Storyboard.TargetName="r2" Storyboard.TargetProperty=
 "Fill.(LinearGradientBrush.GradientStops)[1].Color"

The parentheses are required. This indicates that the property Fill is in fact of type
LinearGradientBrush (and not a generic Brush) and that the interesting property is
GradientStops; then we use the required index because that property has an indexer.

More on storyboards
Storyboard objects can be started with the BeginStoryboard action, but there are other
actions that can be used to otherwise control an animation, including StopStoryboard,
PauseStoryboard, ResumeStoryboard, SeekStoryboard, SkipStoryboardToFill,
SetStoryboardSpeedRatio, and RemoveStoryboard. These are less commonly used,
but it's good to know they're there if needed.

Storyboard (and other Timeline based types) supports a bunch of events (all regular
.NET events, not routed events), of which the most useful is Completed that notifies when a
Timeline completes. This can be used to remove the Storyboard, set some properties, or
anything else that requires special logic when an animation is done.

Graphics and Animation

350

Animations with Expression Blend
Although simple animations are possible to do with direct XAML coding, more complex
animations that require precision are usually done using Expression Blend (preferably by
a graphic designer). Blend has a timeline view accessible from the Objects and Timeline
window that allows dragging to a specific time stamp and then changing properties to their
values at that time stamp. This can go on as needed – the correct XAML will be generated by
Blend (although usually more verbose than would be created by careful XAML manipulation).
Working with Expression Blend is beyond the scope of this book, but some experimentation
can go a long way.

Should I always use animations?
Some applications benefit directly from animations, such as graphic-heavy applications,
data visualization, and games .

For other, more "traditional" applications, it may seem that animations may not be very
important – even something to be avoided. Out of place animations that exist just for their
own sake is certainly something to avoid. However, done right, animations can enhance
the user experience in a subtle and unforgettable way. Small animations that may not
be noticeable at all can have an impact that is only realized when those animations
are removed.

Creating path-based animations
Property-based animations are certainly the most common animations to use. WPF supports
another form of animation – path-based animation; that is, an animation that runs along a
PathGeometry. Let's see how to achieve that.

Getting ready
Make sure Visual Studio is up and running.

Chapter 9

351

How to do it...
We'll create a circle that moves along a path laid out by a PathGeometry object:

1. Create a new WPF application named CH09.PathBasedAnimation.

2. Open MainWindow.xaml. Add a PathGeometry object to the Resources
property of Window that describes a rectangular path:
<Window.Resources>
 <PathGeometry x:Key="rg">
 <PathFigure IsClosed="True" StartPoint="20,20">
 <PolyLineSegment
 Points="300,20 300,200 20,200 20,200" />
 </PathFigure>
 </PathGeometry>
</Window.Resources>

3. Add two rows to the existing Grid as follows:
<Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition />
</Grid.RowDefinitions>

4. Add a Canvas to the second row of the Grid that holds an Ellipse that would be
animated to move along the path defined by the geometry:
<Canvas Grid.Row="1">
 <Ellipse Fill="Red" Stroke="Black" StrokeThickness="2"
 Width="40" Height="40" x:Name="e1"
 Canvas.Left="20" Canvas.Top="20"/>
</Canvas>

5. Add a button to the first row, with an event trigger for the Click event:
<Button Content="Start Animation" FontSize="16" Margin="8">
 <Button.Triggers>
 <EventTrigger RoutedEvent="Button.Click">
 </EventTrigger>
 </Button.Triggers>
</Button>

6. When that event hits, we want to start a Storyboard to animate the Canvas.
Left and Canvas.Top properties (at the same time) based on the defined
PathGeometry. Add the following inside the EventTrigger:
<BeginStoryboard>
 <Storyboard RepeatBehavior="Forever">
 <DoubleAnimationUsingPath Duration="0:0:3"

Graphics and Animation

352

 Storyboard.TargetName="e1"
 Storyboard.TargetProperty="(Canvas.Left)"
 PathGeometry="{StaticResource rg}" Source="X" />
 <DoubleAnimationUsingPath Duration="0:0:3"
 Storyboard.TargetName="e1"
 Storyboard.TargetProperty="(Canvas.Top)"
 PathGeometry="{StaticResource rg}" Source="Y"/>
 </Storyboard>
</BeginStoryboard>

7. Run the application and click the button. The circle should move in a rectangular
fashion (repeating its path indefinitely).

How it works...
Path based animations use a PathGeometry (see the Creating a custom shape recipe for
more information on a PathGeometry) as a path (composed of the figures making up the
PathGeometry). As PathGeometry is a 2D representation of a path, it can be provided
directly to a Point based animation (PointAnimationUsingPath), but in this case,
where Canvas.Left and Canvas.Top are the target properties to be animated, we use the
DoubleAnimationUsingPath.Source property to indicate which coordinate we want to
use for a "regular" double value (X or Y):

<DoubleAnimationUsingPath … PathGeometry="{StaticResource rg}"
 Source="X" />

Chapter 9

353

There's more...
There is another type of animation supported by WPF – key frame animations. These
animations work with "key frames" – specific values along an animation, where WPF
interpolates between points in one of several ways (such as linear or Bezier).

Here's a simple example that animates a property of type double (the Offset of
GradientStop) in linear piecewise steps:

<Storyboard>
 <DoubleAnimationUsingKeyFrames Storyboard.TargetName="gs"
 Storyboard.TargetProperty="Offset" AutoReverse="True"
 RepeatBehavior="Forever">
 <LinearDoubleKeyFrame Value="0" KeyTime="0:0:0" />
 <LinearDoubleKeyFrame Value=".3" KeyTime="0:0:2" />
 <LinearDoubleKeyFrame Value=".8" KeyTime="0:0:5" />
 <LinearDoubleKeyFrame Value="1" KeyTime="0:0:7" />
 <LinearDoubleKeyFrame Value="1.5" KeyTime="0:0:8" />
 </DoubleAnimationUsingKeyFrames>
</Storyboard>

Animation performance
Complex or multiple animations may take their toll on application performance. Although WPF
works by leveraging DirectX, this is not "raw" DirectX, and in any case may depend on graphic
hardware capabilities. Potentially, resource hogging animations should be optional – there
should be a way for the user to turn them off, or at least remove some of them to keep the
application from consuming too many resources.

Here are some tips on animation performance:

 f Animating font sizes is typically slow – avoid these.

 f If opacity animation is required, try to animate a brush opacity (Brush.Opacity)
instead of element opacity (UIElement.Opacity).

 f Decrease the frame rate for slow changing animations; there's no need for WPF to
refresh more times than necessary. To set the desired frame rate, set the attached
Timeline.DesiredFrameRate property on a top-level Storyboard object. The
opposite may also be desired – increase the frame rate for fast changing animations
to reduce tearing effects.

 f Stop running animations when the application is deactivated (the user has switched
to another application; use the Application.Deactivated event).

Graphics and Animation

354

Creating custom animations
The three types of animations provided by WPF (property, path, and key frame) are declarative
in nature, which is in large part what makes them easy to use. There's no need to handle
timers, change positions manually, or anything like that.

Occasionally, dynamic changes are required which cannot be represented using the built-in
animations. Examples include movements that use complex formulas and changes based on
user interaction. In such scenarios, it's possible to perform the changes manually with some
help from WPF.

Getting ready
Make sure Visual Studio is up and running.

How to do it...
We'll create a bouncing ball application that uses complex movements and optional user
interaction to control the ball:

1. Create a new WPF application named CH09.CustomAnimation.

2. Add a new class named Ball. Add using statements to the System.
ComponentModel and System.Windows namespaces.

3. Implement the INotifyPropertyChanged interface with the event declaration and
a simple OnPropertyChanged method:
class Ball : INotifyPropertyChanged {
 public event PropertyChangedEventHandler PropertyChanged;

 void OnPropertyChanged(string propName) {
 var pc = PropertyChanged;
 if (pc != null)
 pc(this, new PropertyChangedEventArgs(propName));
 }

4. Add some fields and properties controlling the position, size, and speed of the ball:
Point _position, _velocity;
public double X {
 get { return _position.X; }
 set {
 _position.X = value;
 OnPropertyChanged("X");
 }
}

Chapter 9

355

public double Y {
 get { return _position.Y; }
 set {
 _position.Y = value;
 OnPropertyChanged("Y");
 }
}

public double Width { get; set; }
public double Height { get; set; }
public Point Velocity {
 get { return _velocity; }
 set {
 _velocity = value;
 OnPropertyChanged("Velocity");
 }
}

5. Add a new class named Environment that adds some realism to the bouncing ball
simulation. Implement with the following code:
class Environment : INotifyPropertyChanged {
 public static double Traction = .95;
 double _gravity;
 public double Gravity {
 get { return _gravity; }
 set {
 _gravity = value;
 OnPropertyChanged("Gravity");
 }
 }
 public event PropertyChangedEventHandler PropertyChanged;

 void OnPropertyChanged(string propName) {
 var pc = PropertyChanged;
 if(pc != null)
 pc(this, new PropertyChangedEventArgs(propName));
 }
}

6. The Traction value will be used to slow down the ball when impacting a wall; the
Gravity property is pretty self-evident.

Graphics and Animation

356

7. Open Ball.cs. Add a property and a constructor for the Environment type:
public Environment Environment { get; private set; }

public Ball(Environment env) {
 Environment = env;
}

8. We need to set up a method that moves the ball in the current direction (Velocity
property) and flips the direction if it collides with the bounds of the environment. Add
a method to the Ball class implemented with the following code:
public void Move(Rect bounds) {
 _velocity.Y += Environment.Gravity;
 X += Velocity.X;
 Y += Velocity.Y;
 bool xhit = false, yhit = false;
 if(X < bounds.Left) {
 X = bounds.Left;
 xhit = true;
 }
 else if(X > bounds.Right - Width) {
 X = bounds.Right - Width;
 xhit = true;
 }
 if(Y < bounds.Top) {
 Y = bounds.Top;
 yhit = true;
 }
 else if(Y > bounds.Bottom - Height) {
 Y = bounds.Bottom - Height;
 yhit = true;
 }

 if(xhit) {
 _velocity.X = -_velocity.X;
 _velocity.X *= Environment.Traction;
 }
 if(yhit) {
 _velocity.Y = -_velocity.Y;
 _velocity.Y *= Environment.Traction;
 }
}

Chapter 9

357

9. Open MainWindow.xaml. Add two rows to the exiting Grid:
<Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition />
</Grid.RowDefinitions>

10. Add a StackPanel to the first row with a Slider bound to the Gravity property:
<StackPanel Orientation="Horizontal" Margin="8">
 <TextBlock Text="Gravity:" VerticalAlignment="Center"
 FontSize="15" />
 <Slider Minimum="0" Maximum="3" Margin="10,0,0,0"
 Value="{Binding Environment.Gravity}"
 Width="100"/>
</StackPanel>

11. Add a Canvas to the second row holding an Ellipse, to serve as the ball:
<Canvas x:Name="_canvas" Grid.Row="1">
 <Ellipse Fill="Red" Stroke="Black" StrokeThickness="2"
 Cursor="Hand" Width="{Binding Width, Mode=TwoWay}"
 Height="{Binding Height, Mode=TwoWay}"
 Canvas.Left="{Binding X}" Canvas.Top="{Binding Y}" />
</Canvas>

12. Open MainWindow.xaml.cs. Add some private fields to the MainWindow class:
Ball _ball;
bool _grabbing;
private Point _mousePos, _lastDelta;
const double MaxSpeed = 20;

13. Add the following lines to the constructor (after the call to InitializeComponent)
to create a Ball object, initialize it, and register for the CompositionTarget.
Rendering static event, which is the key to custom animations:
var env = new Environment { Gravity = .8 };
_ball = new Ball(env) { Width = 40, Height = 40,
 Velocity = new Point(3, 1) };
DataContext = _ball;

CompositionTarget.Rendering += CompositionTarget_Rendering;

Graphics and Animation

358

14. Implement the static event with the following code:
void CompositionTarget_Rendering(object sender, EventArgs e) {
 if(!_grabbing)
 _ball.Move(new Rect(new Point(0, 0), _canvas.RenderSize));
}

15. Open MainWindow.xaml. Add an event handler or the MouseLeftButtonDown,
MouseMove, and MouseLeftButtonUp events on the Ellipse, so that the user
can grab it and send it hurling in some direction:
MouseLeftButtonDown="OnGrabObject" MouseMove="OnMouseMove"
 MouseLeftButtonUp="OnReleaseObject"

16. Implement OnGrabObject with the following code:
void OnGrabObject(object sender, MouseButtonEventArgs e) {
 _grabbing = true;
 _mousePos = e.GetPosition(_canvas);
 e.Handled = true;
 var element = sender as FrameworkElement;
 element.CaptureMouse();
}

17. Implement OnMouseMove with the following code:
void OnMouseMove(object sender, MouseEventArgs e) {
 if(_grabbing) {
 Point pt = e.GetPosition(_canvas);
 _lastDelta = new Point(pt.X - _mousePos.X,
 pt.Y - _mousePos.Y);
 _ball.X += _lastDelta.X; _ball.Y += _lastDelta.Y;
 _mousePos = pt;
 }
}

18. Implement OnReleaseObject with the following code:
void OnReleaseObject(object sender, MouseButtonEventArgs e) {
 if(_grabbing) {
 _grabbing = false;
 e.Handled = true;
 ((FrameworkElement)sender).ReleaseMouseCapture();
 if(Math.Abs(_lastDelta.X) > MaxSpeed)
 _lastDelta.X = MaxSpeed * Math.Sign(_lastDelta.X);
 if(Math.Abs(_lastDelta.Y) > MaxSpeed)
 _lastDelta.Y = MaxSpeed * Math.Sign(_lastDelta.Y);
 _ball.Velocity = _lastDelta;
 }
}

Chapter 9

359

19. Run the application. Move the slider to change the gravity factor. Grab the ball with
the mouse and drag it in some direction.

How it works...
The static CompositionTarget.Rendering event is fired before every frame is rendered
by WPF – the last chance to change things before they are handed off to the rendering
layer. The ball (ellipse) is moved in a way that is too complex, or at least unpredictable,
for declarative animations.

Every frame the Ball.Move method is called is to change the ball's position, which is bound
to the Canvas.Left and Canvas.Top properties of the Ellipse element, representing
the ball. The Move method also checks if the ball is out of bounds; if it is, it reverses direction
and the speed of the ball decreases a bit (based on the Environment.Traction field). The
vertical speed is also changed by the amount of gravity to provide more realistic movement
(if gravity is greater than zero).

The mouse event handlers in MainWindow allow the user to "grab" the ball (if she's quick
enough) and drag it, sending it flying in that particular direction.

Adding animation easing to animations
Property-based animations are linear – they progress at a constant rate. This is fine for many
scenarios, but for some scenarios this feels too mechanical. Key frame animations can use
Bezier-based interpolations (which are certainly not linear), but it's not easy to configure or
guess their effects.

Animation easing (introduced in WPF 4) provides a viable alternative that can turn a (maybe
boring) linear animation into a non-linear one.

Graphics and Animation

360

Getting ready
Make sure Visual Studio is up and running.

How to do it...
We'll create a linear animation and another same animation mutated with animation easing:

1. Create a new WPF application named CH09.AnimationEasing.

2. Open MainWindow.xaml. Add two rows to the existing Grid:
<Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition />
</Grid.RowDefinitions>

3. Add a StackPanel to the first row of the Grid. Place two buttons inside similar to
the following:
<StackPanel Orientation="Horizontal">
 <Button Content="Linear Animation" Margin="8"
 FontSize="16" />
 <Button Content="Animation with Easing" Margin="8"
 FontSize="16" />
</StackPanel>

4. Add a Canvas to the second row of the Grid. Add an Ellipse to the Canvas to be
used for animation purposes:
<Canvas Grid.Row="1">
 <Ellipse Fill="Red" Stroke="Black" StrokeThickness="2"
 Width="40" Height="40" Canvas.Left="20"
 Canvas.Top="30" x:Name="e1"/>
</Canvas>

5. Let's set the animations using an event trigger. Add the following Triggers property
for the first button that uses a regular linear animation:
<Button.Triggers>
 <EventTrigger RoutedEvent="Button.Click">
 <BeginStoryboard>
 <Storyboard>
 <DoubleAnimation To="400" From="20"
 Storyboard.TargetName="e1"
 Storyboard.TargetProperty="(Canvas.Left)"
 Duration="0:0:3" />
 </Storyboard>
 </BeginStoryboard>
 </EventTrigger>
</Button.Triggers>

Chapter 9

361

6. The animation moves the circle across the window in 3 seconds. Add a similar
Triggers property to the second button, but this time set up animation easing
for the DoubleAnimation object:
<Button.Triggers>
 <EventTrigger RoutedEvent="Button.Click">
 <BeginStoryboard>
 <Storyboard>
 <DoubleAnimation To="400" From="20"
 Storyboard.TargetName="e1"
 Storyboard.TargetProperty="(Canvas.Left)"
 Duration="0:0:3" >
 <DoubleAnimation.EasingFunction>
 <CircleEase />
 </DoubleAnimation.EasingFunction>
 </DoubleAnimation>
 </Storyboard>
 </BeginStoryboard>
 </EventTrigger>
</Button.Triggers>

7. Run the application. Click the first button – a regular linear animation runs. Click
the second button, and the result is certainly noticeably different (unfortunately,
no image can convey this; you'll need to actually run this to see the effects).

How it works...
Animation easing applies a function to the animation value, altering it from its normally linear
value (the value changes uniformly with time). There are 11 built-in easing functions in WPF
4.5, all deriving from the abstract EasingFunctionBase class. EasingFunctionBase
implements the IEasingFunction interface (having just one method: Ease) and adds the
EasingMode property that indicates whether the "easing" function should be applied at the
start of the animation (EaseIn), the end of the animation (EaseOut), or both (EaseInOut).

Graphics and Animation

362

The example uses the CircleEase function. As the EasingMode property was not
modified, it uses its default value of EaseOut. The exact function used can be found in the
documentation. CircleEase does not add any properties to customize its behavior, but
many do. For example, the ElasticEase class (providing a spring-like behavior) adds two
properties, Oscillations and Springiness, allowing fine tuning of its effects.

There's more...
The built-in easing functions should suffice for most needs. Special needs, however,
may require creating a new easing function. To do that, we need to derive a class from
EasingFunctionBase and implement two abstract methods: EaseInCore (which
EasingFunctionBase defines) and CreateInstanceCore (required by Freezable,
the base class of EasingFunctionBase). Here's a simple implementation that reverses the
animation and slows it down at the start and/or end (depending on the EasingMode property):

class CustomEaseFunction : EasingFunctionBase {
 protected override double EaseInCore(double time) {
 return 1 - time * time;
 }

 protected override Freezable CreateInstanceCore() {
 return new CustomEaseFunction();
 }
}

The relevant function is EaseInCore. It accepts a normalized time argument, between 0 and
1, and should return a new normalized value. In the trivial case, we can return the same value
we get, and that is a regular linear animation.

We should return something different, typically based on some formula. However, it's
important to make sure the formula provides values in the 0 to 1 range, otherwise the
animation will move out of its from/to values (which may be ok in some cases). Creating a
good function is not an easy task. The preceding function, for instance, behaves ok in EaseIn
and EaseOut modes, but becomes weird in EaseInOut mode. Getting the function just right
may not be easy.

Thankfully, with EasingFunctionBase, there's no need to tackle the EaseOut or EaseInOut
easing modes, as these are computed automatically (by using a symmetric approach).

Chapter 9

363

Using custom effects with pixel shaders
WPF 4 includes two special effect classes, BlurEffect and DropShadowEffect. These
are built internally using pixel shaders, which are little programs that run on the graphics
processing unit (GPU) as one of the final parts of rendering. These shaders originate from
DirectX (WPF's lowest level rendering engine), so other effects can be used with the proper
setup. Let's take a look at using a custom pixel shader to get special effects, otherwise very
difficult or slow to achieve.

Getting ready
To compile shader files, you'll need the DirectX SDK, which can be downloaded from the
DirectX portal at http://msdn.microsoft.com/en-US/directx. Click on Get the
latest DirectX SDK, download the installer, and install the SDK.

How to do it...
We'll create a simple shader effect and make it available to WPF:

1. Create a new WPF application named CH09.CustomEffect.

2. Add a folder to the project named Effects.

3. Add a new text file to the newly created folder and name it red.fx. This is the pixel
shader code.

4. Add the following High Level Shader Language (HLSL) code to the newly created file:
sampler2D input : register(s0);

float4 main(float2 uv : TEXCOORD) : COLOR {
 float4 src = tex2D(input, uv);
 float4 dst = src;
 dst.gb = 0;

 return dst;
}

5. This code strips the green and blue components of every pixel color. Save the file.

6. We need to compile the HLSL file to its binary format by using the fxc.exe compiler
(the effects compiler), part of the DirectX SDK. Open the DirectX command prompt by
clicking the Start button, going to Programs | DirectX SDK | DirectX SDK Command
Prompt (in Windows 8 go to the Start screen and type DirectX, and locate the
DirectX SDK Command Prompt result).

http://msdn.microsoft.com/en-US/directx

Graphics and Animation

364

7. In the command prompt, navigate to the Effects folder that was created and type in
the following command:
fxc /T ps_2_0 /E main /Fo red.ps red.fx

8. If everything goes well, a success message should be displayed:

9. If the compiler complains about a bad character at position (1,1), make sure you save
the red.fx file with an ASCII based code page. To do this, select from the menu File
| Advanced Save Options… and then select the Western European encoding as
shown here:

10. The resulting file is red.ps, which is what we want. Add the file to Effects folder
and change its Build Action to Resource.

11. Now we need to create a custom effect class to wrap the effect. Add a new class to
the project, named RedEffect.

12. Derive the class from ShaderEffect (in the System.Windows.Media.Effects
namespace).

13. Add a special dependency property to the class to represent the implicit input to the
shader using the following code inside the class:
public static readonly DependencyProperty InputProperty =
 RegisterPixelShaderSamplerProperty("Input",
 typeof(RedEffect), 0);

public Brush Input {
 get { return (Brush)GetValue(InputProperty); }
 set { SetValue(InputProperty, value); }
}

Chapter 9

365

14. Add a public constructor to the class that loads the correct compiled shader,
as shown in the following code snippet:
public RedEffect() {
 PixelShader = new PixelShader();
 PixelShader.UriSource = new Uri("/Effects/red.ps",
 UriKind.Relative);
 UpdateShaderValue(InputProperty);
}

15. We're now ready to test the effect. Open MainWindow.xaml and add two equal
sized columns to the existing Grid:
<Grid.ColumnDefinitions>
 <ColumnDefinition />
 <ColumnDefinition />
</Grid.ColumnDefinitions>

16. Add an image file to the project, such as the Penguins.jpg from the Sample
Images folder.

17. Add an XML namespace mapping to the local namespace:
xmlns:local="clr-namespace:CH09.CustomEffect"

18. Add two images of penguins to each cell of the Grid, with the second image with the
created effect applied on it:
<Image Source="Penguins.jpg" />
<Image Source="Penguins.jpg" Grid.Column="1">
 <Image.Effect>
 <local:RedEffect />
 </Image.Effect>
</Image>

19. The designer view should already be a clue as to how this would look at runtime. Run
the application anyway:

Graphics and Animation

366

How it works...
A pixel shader is practically the last stage of graphic processing (known as the rendering
pipeline) done by the graphic card before the final pixel color is rendered to the frame buffer.
This is the last chance to make changes to the resulting pixel color coming from previous
processing stages.

To make actual changes, we need to execute code in the context of the GPU – that's the job
of the little program typically written in High Level Shader Language (HLSL). HLSL is beyond
the scope of this book, as it has nothing special to do with WPF – it originates in DirectX – but
briefly, HLSL is a C-like language with relevant extensions, able to receive a pixel (in the case
of pixel shaders) and transform its color in any way desired. In our case, the pixel color was
stripped of its B (blue) and G (green) components, maintaining the R (red) and A (alpha) from
the original color:

 float4 dst = src;
 dst.gb = 0;

The syntax may be somewhat weird, but that's just a part of HLSL. Once the effect file is
compiled with the FXC.exe compiler, it's added as a resource (the original source file is
not needed), and a custom class is created to host the effect, loading it in the constructor.

The compilation line:

fxc /T ps_2_0 /E main /Fo red.ps red.fx

Roughly means: compile with pixel shader version 2.0 (guaranteed to work in WPF), with main
being the entry function, send the output to the red.ps file and the input file (last argument)
is red.fx.

The static PixelShader.RegisterPixelShaderSamplerProperty method connects
a dependency property (in this case named Input) to the pixel input provided to the shader.
This is the minimum requirement so that the shader class can interact with the actual shader.
The rest is handled by PixelShader itself.

The effect object is applied to the UIElement.Effect property (of type System.Windows.
Media.Effects.Effect) – this means it can be used on anything, not just an image.

There's more...
Naturally, writing shaders is not easy, except for very simple effects. A large list of shaders
ready to be plugged into WPF (and Silverlight) can be found at a CodePlex project named
wpffx (http://wpffx.codeplex.com/).

http://wpffx.codeplex.com/
http://wpffx.codeplex.com/

Chapter 9

367

Another useful tool called Shazzam Shader Editor (by Walt Ritschter) is available free of
charge from http://shazzam-tool.com. This tool provides a graphic way to visualize
shaders, tweak their parameters with immediate feedback, and even get the C# (or VB)
source code required to use them in a WPF (or Silverlight) application. A side benefit of the
tool is that the DirectX SDK is not needed, as it compiles the shaders on its own by calling
DirectX shader compilation functions directly using P/Invoke.

Using the built-in effects
Two built in effects exist – BlurEffect and DropShadowEffect, and both are used like
any other effect. Here's an example of two buttons using these effects:

<StackPanel>
 <Button Content="Blurred Button" FontSize="25" Margin="10">
 <Button.Effect>
 <BlurEffect Radius="6" />
 </Button.Effect>
 </Button>
 <Button Content="Drop Shadow Button" FontSize="25"
 Margin="10">
 <Button.Effect>
 <DropShadowEffect BlurRadius="10" Color="Black"
 Opacity=".7" />
 </Button.Effect>
 </Button>
</StackPanel>

Here's the result:

Other shader types
Direct3D supports other type of shaders, namely vertex shaders and geometry shaders.
Using these shaders is unsupported in WPF, as these are too low level, and only make sense
in a lower-level DirectX application or game. WPF does all vertex and geometry setup on its
own and there's no way to customize that. Only pixel shaders are supported, as they don't
interfere with WPF's work.

http://shazzam-tool.com
http://shazzam-tool.com

Graphics and Animation

368

What about the BitmapEffect class and its derivatives?
The first version of WPF provided a set of six built-in graphic effects, deriving from
BitmapEffect and applied using the UIElement.BitmapEffect property (and similar
properties on other objects). These effects are obsolete starting from WPF 4 – they simply
don't work anymore.

One problem these effects faced was the fact that they were never hardware-accelerated,
meaning they always executed on the CPU, never on the GPU; performance suffered,
especially for large affected elements. Starting with WPF 4 they have no effect if used;
the alternative is using the effects discussed in this recipe, as these execute on the GPU
whenever possible.

10
Custom Elements

In this chapter we will cover the following:

 f Creating a user control

 f Handling standard commands in a user control

 f Creating a custom (templated) control

 f Customizing a custom control's default template

 f Creating a custom panel

 f Creating a lightweight custom element

Introduction
WPF provides several ways to customize elements, from simple property changes, through
content changes of content controls with data templates, up to using an entirely new
control template.

All these options change the way an element appears, but its functionality is unchanged.
If a new functionality is desired, a custom element is needed.

In this chapter, we'll take a look at a number of ways of creating custom elements and
controls. Some are simple, but lack flexibility, while others are extremely flexible, but
require more work.

Custom Elements

370

Creating a user control
A user control is typically used to group related elements and controls together, for the
purpose of reuse. Appropriate properties and events are exposed from this control, providing
easy access to its functionality. As an added bonus, the Visual Studio designer supports user
control design, just as it does for a window.

In WPF, user controls derive from the UserControl class (in itself a ContentControl).
The UI design is effectively the Content property of the control, just like any other content
control. The UserControl class just changes some property values (with respect to its base
ContentControl class), and has a control template that provides a border that can be used
to alter the basic outlook of the user control.

In this recipe, we'll build a user control with all the typical features.

Getting ready
Make sure Visual Studio is up and running.

How to do it...
We'll create a color picker user control that we will be able to reuse where needed. Here's a
preview of the control in action:

1. Create a new WPF User Control Library named CH10.UserControls.

Chapter 10

371

2. A default UserControl1.xaml and associated C# files are created. Delete the
UserControl1.xaml file using the Solution Explorer.

3. Right-click on the project node in Solution Explorer and select Add | User Control.

4. Type ColorPicker in the Name textbox and click on Add.

5. First, we'll add dependency properties for our control. In this case, just one:
SelectedColor. Open ColorPicker.xaml.cs. Add a dependency property
to the ColorPicker class (you can use the propdp code snippet):
public static readonly DependencyProperty
 SelectedColorProperty = DependencyProperty.Register(
 "SelectedColor", typeof(Color), typeof(ColorPicker),
 new UIPropertyMetadata(Colors.Black,
 OnSelectedColorChanged));

public Color SelectedColor {
 get { return (Color)GetValue(SelectedColorProperty); }
 set { SetValue(SelectedColorProperty, value); }
}

6. OnSelectedColorChanged will be used to fire an event signifying a color change.
For this purpose, let's define a routed event, SelectedColorChanged, to be fired
whenever the selected color changes (using the UI or programmatically). There is no
code snippet for that, so we have to type things manually:
public static RoutedEvent SelectedColorChangedEvent =
 EventManager.RegisterRoutedEvent("SelectedColorChanged",
 RoutingStrategy.Bubble,
 typeof(RoutedPropertyChangedEventHandler<Color>),
 typeof(ColorPicker));

public event RoutedPropertyChangedEventHandler<Color>
 SelectedColorChanged {
 add { AddHandler(SelectedColorChangedEvent, value); }
 remove { RemoveHandler(SelectedColorChangedEvent, value); }
}

7. RoutedPropertyChangedEventHandler<T> is a convenient delegate that uses
a RoutedPropertyChangedEventArgs<T> to convey a property change with the
OldValue and NewValue properties. To raise the actual event, we need to know
when the selected color changes. Implement the OnSelectedColorChanged
method with the following code:
static void OnSelectedColorChanged(DependencyObject obj,
 DependencyPropertyChangedEventArgs e) {
 var cp = (ColorPicker)obj;
cp.RaiseEvent(new RoutedPropertyChangedEventArgs<Color>(

Custom Elements

372

 (Color)e.OldValue, (Color)e.NewValue,
 SelectedColorChangedEvent));
 }
}

8. Let's switch to building the actual color picker UI. We're aiming for the following layout
(seen in design view):

9. Open ColorPicker.xaml. Add 4 rows to the existing Grid like the following:
<Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition />
</Grid.RowDefinitions>

10. We're going to need some TextBlock elements as well as Rectangle elements
and Slider elements. Let's add styles for those to encapsulate common properties:
<UserControl.Resources>
 <Style TargetType="Rectangle">
 <Setter Property="Margin" Value="2" />
 <Setter Property="Width" Value="50" />
 <Setter Property="Height" Value="30" />
 <Setter Property="Stroke" Value="Black" />
 <Setter Property="StrokeThickness" Value="1" />
 </Style>
 <Style TargetType="TextBlock">
 <Setter Property="Margin" Value="6,0,0,0" />

Chapter 10

373

 <Setter Property="Foreground" Value="White" />
 <Setter Property="VerticalAlignment" Value="Center" />
 <Setter Property="FontSize" Value="14" />
 </Style>
 <Style TargetType="Slider">
 <Setter Property="Maximum" Value="255" />
 <Setter Property="VerticalAlignment" Value="Center" />
 <Setter Property="Margin" Value="10,0,0,0" />
 <Setter Property="LargeChange" Value="10" />
 </Style>
</UserControl.Resources>

11. Give the user control a name, for data binding purposes:
x:Name="uc"

12. The big Rectangle is the easiest to add, as its fill color can be bound directly to the
SelectedColor property:
<Rectangle Grid.Row="4" Margin="4" Style="{x:Null}"
 StrokeThickness="1" Stroke="Black">
 <Rectangle.Fill>
 <SolidColorBrush Color="{Binding SelectedColor,
 ElementName=uc}" />
 </Rectangle.Fill>
</Rectangle>

13. The sliders and other rectangles are more challenging. First, we need to bind a
Value of the slider to a color component (red, green, blue, or alpha) in both
directions. As a Color cannot be mapped automatically to a double (and vice
versa), we need a converter. Add a class named ColorToDoubleConverter to
serve as a converter.

14. Add using statements to the System.Windows.Input, System.Windows.
Media, System.Globalization, and System.Windows namespaces.

15. Implement the IValueConverter interface:
class ColorToDoubleConverter : IValueConverter {

16. The conversion should be both ways: a change in a slider affects the selected
color, and a change in the selected color should affect the slider. First, let's
convert a Color to a double; for that, we need to use a parameter to indicate
which component of the color to return:
public object Convert(object value, Type targetType,
 object parameter, CultureInfo culture) {
 var color = (Color)value;
 switch((string)parameter) {
 case "r": return color.R;

Custom Elements

374

 case "g": return color.G;
 case "b": return color.B;
 case "a": return color.A;
 }
 return Binding.DoNothing;
}

17. Going in the other direction is a little more complex. We need to take a double and
change the intensity of the component specified by the converter parameter, while
leaving all other components intact. This requires the converter to keep track of the
last used color. Add a private field to the converter to keep that information:
private Color _lastColor;

18. Given this definition, we can implement ConvertBack with the following code:
public object ConvertBack(object value, Type targetType,
 object parameter, CultureInfo culture) {
 Color color = _lastColor;
 var intensity = (byte)(double)value;
 switch((string)parameter) {
 case "r":
 color.R = intensity;
 break;
 case "g":
 color.G = intensity;
 break;
 case "b":
 color.B = intensity;
 break;
 case "a":
 color.A = intensity;
 break;
 }
 _lastColor = color;
 return color;
}

19. The currently selected color will simply get updated by the Convert method.
These are the first two lines of Convert (the second line is new):
var color = (Color)value;
_lastColor = color;

20. To fill the remaining rectangles correctly we require another converter from the
selected color to a brush, with a single color component. Add a new class named
ColorToBrushConverter that implements IValueConverter.

Chapter 10

375

21. Add four private fields representing the four distinct brushes we need, one for each
color component:
SolidColorBrush _red = new SolidColorBrush(),
 _green = new SolidColorBrush(),
 _blue = new SolidColorBrush(),
 _alpha = new SolidColorBrush();

22. Implement the Convert method using the following code:
public object Convert(object value, Type targetType,
 object parameter, CultureInfo culture) {
 var color = (Color)value;
 switch((string)parameter) {
 case "r":
 _red.Color = Color.FromRgb(color.R, 0, 0);
 return _red;
 case "g":
 _green.Color = Color.FromRgb(0, color.G, 0);
 return _green;
 case "b":
 _blue.Color = Color.FromRgb(0, 0, color.B);
 return _blue;
 case "a":
 _alpha.Color = Color.FromArgb(color.A,
 128, 128, 128);
 return _alpha;
 }
 return Binding.DoNothing;
}

23. Open ColorPicker.xaml. Add instances for these converters to the user control's
resources (also add an XML namespace mapping named local to the CH10.
UserControls namespace):
<local:ColorToBrushConverter x:Key="color2brush" />
<local:ColorToDoubleConverter x:Key="color2double" />

24. Here's the markup for the first (red) component, consisting of a Rectangle,
a TextBlock and a Slider (all wrapped in a Grid), that use the preceding
converters:
<Grid Margin="4">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition />
 </Grid.ColumnDefinitions>

Custom Elements

376

 <Rectangle Fill="{Binding SelectedColor, ElementName=uc,
 Converter={StaticResource color2brush},
 ConverterParameter=r}" />
 <Slider Grid.Column="1" Value="{Binding SelectedColor,
 ElementName=uc, Converter={StaticResource color2double},
 ConverterParameter=r}" />
 <TextBlock Text="{Binding SelectedColor, ElementName=uc,
 Converter={StaticResource color2double},
 ConverterParameter=r, StringFormat=R: {0}}" />
</Grid>

25. Repeat the same idea for the green, blue, and alpha components, changing the
converter parameter and the grid row:
<Grid Margin="4" Grid.Row="1">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition />
 </Grid.ColumnDefinitions>
 <Rectangle Fill="{Binding SelectedColor, ElementName=uc,
 Converter={StaticResource color2brush},
 ConverterParameter=g}" />
 <Slider Grid.Column="1" Value="{Binding SelectedColor,
 ElementName=uc, Converter={StaticResource color2double},
 ConverterParameter=g}" />
 <TextBlock Text="{Binding SelectedColor, ElementName=uc,
 Converter={StaticResource color2double},
 ConverterParameter=g, StringFormat=G: {0}}" />
</Grid>
<Grid Margin="4" Grid.Row="2">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition />
 </Grid.ColumnDefinitions>
 <Rectangle Fill="{Binding SelectedColor, ElementName=uc,
 Converter={StaticResource color2brush},
 ConverterParameter=b}" />
 <Slider Grid.Column="1" Value="{Binding SelectedColor,
 ElementName=uc, Converter={StaticResource color2double},
 ConverterParameter=b}" />
 <TextBlock Text="{Binding SelectedColor, ElementName=uc,
 Converter={StaticResource color2double},
 ConverterParameter=b, StringFormat=B: {0}}" />
</Grid>
<Grid Margin="4" Grid.Row="3">

Chapter 10

377

 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition />
 </Grid.ColumnDefinitions>
 <Rectangle Fill="{Binding SelectedColor, ElementName=uc,
 Converter={StaticResource color2brush},
 ConverterParameter=a}" />
 <Slider Grid.Column="1" Value="{Binding SelectedColor,
 ElementName=uc, Converter={StaticResource color2double},
 ConverterParameter=a}" />
 <TextBlock Foreground="Black"
 Text="{Binding SelectedColor, ElementName=uc,
 Converter={StaticResource color2double},
 ConverterParameter=a, StringFormat=A: {0}}" />
</Grid>

26. The control is done. To test it, add a new WPF application project to the solution
named CH10.TestUserControls.

27. Add an assembly reference to the CH10.UserControls project.

28. Open MainWindow.xaml. Add an XML namespace mapping to the user
control library:
xmlns:ctls="clr-namespace:CH10.UserControls;assembly=Ch10.
UserControls"

29. Add the following markup to the existing Grid:
<Grid.RowDefinitions>
 <RowDefinition />
 <RowDefinition Height="Auto" />
</Grid.RowDefinitions>
<ctls:ColorPicker SelectedColorChanged="OnColorChanged" />
<TextBlock x:Name="_tbColor" FontSize="20"
 Grid.Row="1" Margin="8"/>

30. Notice the event handler for the SelectedColorChanged event. Implement the
handler using the following code:
void OnColorChanged(object sender,
 RoutedPropertyChangedEventArgs<Color> e) {
 if(_tbColor != null)
 _tbColor.Text = string.Format("Selected Color: {0}",
 e.NewValue);
 }

Custom Elements

378

31. Run the application and adjust the sliders to your favorite color.

How it works...
A user control wraps a piece of UI with appropriate properties and events for reuse. With
the color picker, we expose a new property, SelectedColor (step 5); it should always be a
dependency property, as we want the control's user to benefit from all that the dependency
properties can provide: data binding as targets, animations, and so on. Similarly, we're
defining a routed event (with the Bubble routing strategy, step 6). Again, we don't want a
regular .NET event, but a routed one. Raising the event is done when the SelectedColor
property changes (step 7); notice that we don't raise the event as a regular .NET event,
because that would not get us the "bubbling" behavior (firing the event on elements up
the visual tree, as explained in Chapter 1, Foundations). Instead, we call UIElement.
RaiseEvent which does the right thing.

A user control can have any content, and this is exactly what we build with XAML in the usual
way. Note the data bindings; they use ElementName to get to the user control itself (and the
SelectedColor property). A more elegant way would be to use RelativeSource with a
Mode of FindAncestor, but ElementName is simply easier to use.

The converters are required for this example, but simpler controls may not need them.

Using the control is simply a matter of referencing its assembly (step 28) and creating it
(typically in XAML, step 29) just like any other control.

Chapter 10

379

There's more...
The main advantage of a user control is its ease of use. Creating many instances of a user
control is easy, and there is full design time support in Visual Studio. Its main disadvantage
is the difficulty of customization. For example, suppose we didn't want the user to select an
alpha level for the color. There's no easy way to remove that. If we, as the control's authors
consider that in advance, we could add a Boolean property just for this:

public bool ShowAlphaChannel {
 get { return (bool)GetValue(ShowAlphaChannelProperty); }
 set { SetValue(ShowAlphaChannelProperty, value); }
}
public static readonly DependencyProperty
 ShowAlphaChannelProperty = DependencyProperty.Register(
 "ShowAlphaChannel", typeof(bool), typeof(ColorPicker),
 new UIPropertyMetadata(true));

And use the property with the Visibility of the Grid holding the alpha channel UI:

Visibility="{Binding ShowAlphaChannel, ElementName=uc,
 Converter={StaticResource bool2vis}}"

The code assumes the bool2vis resource name is of type
BooleanToVisibilityConverter, provided by WPF for mapping Boolean values
(true/false) to Visibility values (Visible/Collapsed), and vice versa.

Other customizations may be more subtle. For example, suppose the control user wants
to change the rectangle showing the final color to an ellipse? Or perhaps make the sliders
vertical? Or place the big rectangle on the right side (instead of at the bottom)? Although it's
possible to provide properties for these configurations, there's no way we can anticipate every
possible customization option.

This leads to the conclusion that user controls are great when customization requirements are
limited, such as a piece of UI that needs to repeat in various windows in the same application
and should look basically the same. Further customizations require changing a control's
template, and for that we should build the control differently, as we'll see in the recipe
Creating a custom (templated) control in this chapter.

Optimizing converters
You may be wondering why the ColorToBrushConverter defines four SolidColorBrush
objects and then returns the appropriate one based on the converter parameter. Wouldn't it
be easier to simply change a single SolidColorBrush object and return that? Take a look
at an alternative:

var color = (Color)value;
var brush = new SolidColorBrush();

Custom Elements

380

switch((string)parameter) {
 case "r":
 brush.Color = Color.FromRgb(color.R, 0, 0);
 break;
 case "g":
 brush.Color = Color.FromRgb(0, color.G, 0);
 break;
 case "b":
 brush.Color = Color.FromRgb(0, 0, color.B);
 break;
 case "a":
 brush.Color = Color.FromArgb(color.A, 128, 128, 128);
 break;
}
return brush;

Although this code works, it's inefficient. We construct a new SolidColorBrush every time
Convert is called, which may be many times – each time any slider moves. This causes a
lot of objects to be created and then deemed garbage as we're not holding on to any of them
except the four currently in use by the four color channel rectangles. This is wasteful and will
increase memory consumption and the frequency of garbage collection.

A better approach would be to reuse the same four objects throughout the lifetime of the
converter, thus creating no new brushes whatsoever. This keeps memory consumption to
a minimum and does not promote garbage collection.

Adding a tunneling event
The SelectedColorChanged event we used is of the bubbling routing strategy. Suppose
we wanted to provide its tunneling counterpart, PreviewSelectedColorChanged,
similar to the existing pairs in WPF, such as MouseDown/PreviewMouseDown and KeyUp/
PreviewKeyUp.

First, we declare the event with the Tunnel RoutingStrategy :

public static RoutedEvent PreviewSelectedColorChangedEvent =
 EventManager.RegisterRoutedEvent(
 "PreviewSelectedColorChanged", RoutingStrategy.Tunnel,
 typeof(RoutedPropertyChangedEventHandler<Color>),
 typeof(ColorPicker));
public event RoutedPropertyChangedEventHandler<Color>
 PreviewSelectedColorChanged {
 add {
 AddHandler(PreviewSelectedColorChangedEvent, value);
 }
 remove {
 RemoveHandler(PreviewSelectedColorChangedEvent, value);
 }
}

Chapter 10

381

When the selected color changes, we need to raise the preview event first, and if it wasn't
handled, raise its bubbling buddy:

static void OnSelectedColorChanged(DependencyObject obj,
 DependencyPropertyChangedEventArgs e) {
 var cp = (ColorPicker)obj;
 var args = new RoutedPropertyChangedEventArgs<Color>(
 (Color)e.OldValue, (Color)e.NewValue,
 PreviewSelectedColorChangedEvent);
 cp.RaiseEvent(args);
 if(!args.Handled)
 cp.RaiseEvent(new RoutedPropertyChangedEventArgs<Color>(
 (Color)e.OldValue, (Color)e.NewValue,
 SelectedColorChangedEvent));
}

The Handled property needs to be checked manually, and only if it's unset, the bubbling
event is raised.

Handling standard commands in a user
control

A typical user control exposes properties and events, but it can also handle commands.
These can be standard commands (RoutedUICommands defined by WPF) or custom
commands exposed as properties and invoked by the control. In this recipe, we'll see
how to add command handling to a user control.

Getting ready
We'll use the projects we created in the previous recipe, Creating a user control, so make sure
the solution is open.

How to do it...
We'll add handling for the standard MediaCommands.ChannelUp and MediaCommands.
ChannelDown commands. ChannelUp will increase each of the RGB values and
ChannelDown will decrease them.

1. Open ColorPicker.xaml.cs. Add a static constructor to the class that registers
for command handling:
static ColorPicker() {
 CommandManager.RegisterClassCommandBinding(
 typeof(ColorPicker), new CommandBinding(

Custom Elements

382

 MediaCommands.ChannelUp,
 ChannelUpExecute, ChannelUpCanExecute));
 CommandManager.RegisterClassCommandBinding(
 typeof(ColorPicker), new CommandBinding(
 MediaCommands.ChannelDown,
 ChannelDownExecute, ChannelDownCanExecute));
}

2. To make this work, we need to implement the preceding methods. First, let's
implement ChannelUpExecute:
static void ChannelUpExecute(object sender,
 ExecutedRoutedEventArgs e) {
 var cp = (ColorPicker)sender;
 var color = cp.SelectedColor;
 if(color.R < 255) color.R++;
 if(color.G < 255) color.G++;
 if(color.B < 255) color.B++;
 cp.SelectedColor = color;
}

3. The code simply increments the red, green, and blue of the selected color (if
possible). This should be enabled if any of the channels has not yet reached 255:
static void ChannelUpCanExecute(object sender,
 CanExecuteRoutedEventArgs e) {
 var color = ((ColorPicker)sender).SelectedColor;
 e.CanExecute = color.R < 255 || color.G < 255
 || color.B < 255;
}

4. The code for handling the ChannelDown command is very similar:
static void ChannelDownExecute(object sender,
 ExecutedRoutedEventArgs e) {
 var cp = (ColorPicker)sender;
 var color = cp.SelectedColor;
 if(color.R > 0) color.R--;
 if(color.G > 0) color.G--;
 if(color.B > 0) color.B--;
 cp.SelectedColor = color;
}
static void ChannelDownCanExecute(object sender,
 CanExecuteRoutedEventArgs e) {
 var color = ((ColorPicker)sender).SelectedColor;
 e.CanExecute = color.R > 0 || color.G > 0 || color.B > 0;
}

Chapter 10

383

5. To test this, open MainWindow.xaml from the CH10.TestUserControls project,
and add a third row to the Grid:
<RowDefinition Height="Auto" />

6. Name the ColorPicker picker (x:Name).

7. Add a UniformGrid for the third row, hosting two RepeatButton objects that
execute the required commands on the color picker:
<UniformGrid Grid.Row="2" Columns="2">
 <RepeatButton Content="<<" FontSize="30"
 Command="ChannelDown" Margin="4"
 CommandTarget="{Binding ElementName=picker}" />
 <RepeatButton Content=">>" FontSize="30"
 Command="ChannelUp" Margin="4"
 CommandTarget="{Binding ElementName=picker}" />
</UniformGrid>

8. Run the application. Click the repeat buttons and watch the RGB sliders move:

How it works...
The control registers itself for command handling using the static CommandManager.
RegisterClassCommandBinding, specifying a CommandBinding that connects to the
requested command. As this is called in the static constructor, the handlers must be static
methods. Otherwise, they're handled in a pretty standard way, as discussed in Chapter 7.

It's also possible to register commands to the current instance using the property of
Commandbinding inherited from UIElement, but that's a bit wasteful, as it's called
for each ColorPicker instance as opposed to a single call from the static constructor.

Custom Elements

384

The CommandTarget property value bound to the ColorPicker is necessary in this case
because without it the RepeatButton itself becomes the target – going up the visual tree
we will not find the command bindings attached to the color picker, as the color picker is
not a parent of those buttons.

There's more...
An alternative to implementing standard commands is to implement the ICommandSource
interface (just like buttons do), thus providing the Command (ICommand),
CommandParameter (object), and CommandTarget (IInputElement) properties
that a client can set. The control, in turn, will invoke the command if appropriate.

Creating a custom (templated) control
User controls are great for encapsulating a piece of UI functionality that can be easily reused.
Their potential disadvantage is the lack of deep customization. In case such customization
is required (or at least anticipated), a custom control should be built. This is a class deriving
from Control, that provides a default look (through a control template), but that template
can be changed if needed, without harming the control's functionality. In fact, this is how
all WPF controls work – they provide some default template (look), but we can replace that
template while preserving the control's behavior, as we've seen in Chapter 8, Styles, Triggers,
and Control Templates.

In this recipe, we'll take a look at creating a custom control, and highlight the differences with
respect to a user control.

Getting ready
Open the CH10.UserControls project from the Creating a user control recipe. We'll use
that as a reference and even copy some things that don't need to change with a custom
control. Open a second Visual Studio instance for creating the custom control.

How to do it...
We'll create an alternative color picker control (as a custom control), so that its look can be
changed by replacing its control template.

1. Create a new WPF Custom Control Library project named CH10.CustomControls.
Technically, you can use a User Control Library as well.

2. A default control file named CustomControl1.cs is created. Delete that file using
Solution Explorer.

Chapter 10

385

3. A Generic.xaml file was created by Visual Studio and placed in a project folder
named Themes. Open this file and delete the Style inside to get rid of the last
remains of that default custom control.

4. Right-click on the project in Solution Explorer and select Add | New Item… and
then select Custom Control under the WPF folder. Type the name ColorPicker
in the Name box and click on Add.

5. Open ColorPicker.cs. Copy the SelectedColor dependency property
definition (including the OnSelectedColorChanged method) and the
SelectedColorChanged routed event definitions from the ColorPicker.xaml.
cs file in the CH10.UserControls project. This code does not need to change
at all.

6. Build the project and make sure it is successful. If not, check the code you copied to
make sure nothing was left behind. This is the entire code of ColorPicker.cs:
public class ColorPicker : Control {
 static ColorPicker() {
 DefaultStyleKeyProperty.OverrideMetadata(
 typeof(ColorPicker), new FrameworkPropertyMetadata(
 typeof(ColorPicker)));
 }

Custom Elements

386

 public static readonly DependencyProperty
 SelectedColorProperty =
 DependencyProperty.Register("SelectedColor",
 typeof(Color), typeof(ColorPicker),
 new UIPropertyMetadata(Colors.Black,
 OnSelectedColorChanged));

 public Color SelectedColor {
 get { return (Color)GetValue(SelectedColorProperty); }
 set { SetValue(SelectedColorProperty, value); }
 }

 public static RoutedEvent SelectedColorChangedEvent =
 EventManager.RegisterRoutedEvent(
 "SelectedColorChanged", RoutingStrategy.Bubble,
 typeof(RoutedPropertyChangedEventHandler<Color>),
 typeof(ColorPicker));

 public event RoutedPropertyChangedEventHandler<Color>
 SelectedColorChanged {
 add { AddHandler(SelectedColorChangedEvent, value); }
 remove {
 RemoveHandler(SelectedColorChangedEvent, value);
 }
 }

 static void OnSelectedColorChanged(DependencyObject obj,
 DependencyPropertyChangedEventArgs e) {
 var cp = (ColorPicker)obj;
 cp.RaiseEvent(
 new RoutedPropertyChangedEventArgs<Color>(
 (Color)e.OldValue, (Color)e.NewValue,
 SelectedColorChangedEvent));
 }
}

7. Now let's turn our attention to the user interface. We need to create a default
template for the control (otherwise, it won't have a default look). Open Generic.
xaml. An automatic style was placed there by Visual Studio. It has a setting for the
Template property (a ControlTemplate) that has a border. Copy the XAML from
ColorPicker.xaml (in the CH10.UserControls project), starting from the
outermost Grid into the existing Border.

Chapter 10

387

8. We'll have to do some work for this XAML do the right thing. First, copy the
ColorToBrushConverter.cs and ColorToDoubleConverter.cs files from the
CH10.UserControls project to the current one. You can do that by selecting the
files from Solution Explorer, right-clicking on it and selecting Copy and then right-
clicking on the target project and selecting Paste:

9. Next, open the new ColorToBrushConverter.cs and
ColorToDoubleConverter.cs files and rename the namespaces from CH10.
UserControls to CH10.CustomControls, so that the namespace is consistent
across all files in the project.

10. Copy the UserControls.Resources section from ColorPicker.xaml
(in the CH10.UserControls project) to the Generic.Xaml file, under the
ControlTemplate.

11. Replace the UserControl occurrences with ControlTemplate. The entire
Resources collection should look like this:
<ControlTemplate.Resources>
 <Style TargetType="Rectangle">
 <Setter Property="Margin" Value="2" />
 <Setter Property="Width" Value="50" />
 <Setter Property="Height" Value="30" />
 <Setter Property="Stroke" Value="Black" />
 <Setter Property="StrokeThickness" Value="1" />
 </Style>
 <Style TargetType="TextBlock">
 <Setter Property="Margin" Value="6,0,0,0" />
 <Setter Property="Foreground" Value="White" />
 <Setter Property="VerticalAlignment" Value="Center" />
 <Setter Property="FontSize" Value="14" />
 </Style>
 <Style TargetType="Slider">
 <Setter Property="Maximum" Value="255" />

Custom Elements

388

 <Setter Property="VerticalAlignment" Value="Center" />
 <Setter Property="Margin" Value="10,0,0,0" />
 <Setter Property="LargeChange" Value="10" />
 </Style>
 <local:ColorToBrushConverter x:Key="color2brush" />
 <local:ColorToDoubleConverter x:Key="color2double" />
</ControlTemplate.Resources>

12. Make sure the project is built successfully.

13. All data binding expressions use the ElementName=uc property. This works fine for a
user control, but we have no control to name when writing a template, so the bindings
need to change. However, we'll do something else – we'll create the bindings in code.
The exact reason will become apparent in the next steps (with a detailed explanation
in the How it works… section). Remove all bindings from the XAML; that means
removing any property whose value is set with a binding expression.

14. To find elements from code, we need to name them. Each element or control that
may be replaced by a custom template should have a name. Add names to certain
elements as shown below, after the bindings have been deleted. This is the new,
simplified, control template with named parts:
<Border Background="{TemplateBinding Background}"
 BorderBrush="{TemplateBinding BorderBrush}"
 BorderThickness="{TemplateBinding BorderThickness}">
 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition />
 </Grid.RowDefinitions>
 <Grid Margin="4">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition />
 </Grid.ColumnDefinitions>
 <Rectangle x:Name="PART_RedShape"/>
 <Slider Grid.Column="1" x:Name="PART_RedSlider"/>
 <TextBlock x:Name="PART_RedText"/>
 </Grid>
 <Grid Margin="4" Grid.Row="1">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition />
 </Grid.ColumnDefinitions>

Chapter 10

389

 <Rectangle x:Name="PART_GreenShape"/>
 <Slider Grid.Column="1" x:Name="PART_GreenSlider" />
 <TextBlock x:Name="PART_GreenText"/>
 </Grid>
 <Grid Margin="4" Grid.Row="2">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition />
 </Grid.ColumnDefinitions>
 <Rectangle x:Name="PART_BlueShape" />
 <Slider Grid.Column="1" x:Name="PART_BlueSlider" />
 <TextBlock x:Name="PART_BlueText" />
 </Grid>
 <Grid Margin="4" Grid.Row="3" >
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition />
 </Grid.ColumnDefinitions>
 <Rectangle x:Name="PART_AlphaShape" />
 <Slider Grid.Column="1" x:Name="PART_AlphaSlider" />
 <TextBlock Foreground="Black"
 x:Name="PART_AlphaText"/>
 </Grid>
 <Rectangle Grid.Row="4" Margin="4" Style="{x:Null}"
 StrokeThickness="1" Stroke="Black">
 <Rectangle.Fill>
 <SolidColorBrush x:Name="PART_SelectedColor" />
 </Rectangle.Fill>
 </Rectangle>
 </Grid>
</Border>

15. Remove all the converter creation in the XAML resources; we won't need them in
XAML as we don't have any bindings in XAML.

16. We need to create the bindings in code if we want to have any functionality. Open
ColorPicker.cs and add an override to the virtual OnApplyTemplate method:
public override void OnApplyTemplate() {
 base.OnApplyTemplate();
}

Custom Elements

390

17. This method is called whenever a new control template is applied to the control. We'll
create some helper methods first, and then call them from OnApplyTemplate. Add
two private fields to the ColorPicker class to hold the converters we'll need:
ColorToBrushConverter _color2brush =
 new ColorToBrushConverter();
ColorToDoubleConverter _color2double =
 new ColorToDoubleConverter();

18. Add a private method named BindShape that's used to bind shapes (rectangles in
our default template), implemented with the following code:
void BindShape(string partName, string parameter) {
 var shape = GetTemplateChild(partName) as Shape;
 if(shape == null) return;

 var binding = new Binding("SelectedColor");
 binding.Source = this;
 binding.Converter = _color2brush;
 binding.ConverterParameter = parameter;
 shape.SetBinding(Shape.FillProperty, binding);
}

19. GetTemplateChild returns the named part, and if it exists, binds it using the same
logic as in the user control case, but all done programmatically. Note that we look for
any Shape-derived type, not necessarily a Rectangle. This provides more flexibility
with custom templates, and is good enough because we're interested in the Fill
property, which is defined by the base Shape class. Add another private method
named BindSlider, to provide bindings to the sliders in a similar manner:
void BindSlider(string partName, string parameter) {
 var slider = GetTemplateChild(partName) as RangeBase;
 if(slider == null) return;

 var binding = new Binding("SelectedColor");
 binding.Source = this;
 binding.Converter = _color2double;
 binding.ConverterParameter = parameter;
 binding.Mode = BindingMode.TwoWay;
 slider.SetBinding(RangeBase.ValueProperty, binding);
}

20. Notice that we look for a type derived from RangeBase – similar to the preceding
Shape example. Add yet another private method named BindText, used to bind
the TextBlock instances, with the following implementation:
void BindText(string partName, string parameter,
 string format) {

Chapter 10

391

 var tb = GetTemplateChild(partName) as TextBlock;
 if(tb == null) return;
 var binding = new Binding("SelectedColor");
 binding.Source = this;
 binding.Converter = _color2double;
 binding.ConverterParameter = parameter;
 binding.StringFormat = format;
 tb.SetBinding(TextBlock.TextProperty, binding);
}

21. Now it's time to implement OnApplyTemplate, and bind to the main selected color,
using the following code:
public override void OnApplyTemplate() {
 // bind component shapes
 BindShape("PART_RedShape", "r");
 BindShape("PART_GreenShape", "g");
 BindShape("PART_BlueShape", "b");
 BindShape("PART_AlphaShape", "a");
 // bind sliders
 BindSlider("PART_RedSlider", "r");
 BindSlider("PART_GreenSlider", "g");
 BindSlider("PART_BlueSlider", "b");
 BindSlider("PART_AlphaSlider", "a");
 // bind text blocks
 BindText("PART_RedText", "r", "R: {0}");
 BindText("PART_GreenText", "g", "G: {0}");
 BindText("PART_BlueText", "b", "B: {0}");
 BindText("PART_AlphaText", "a", "A: {0}");
 // bind main color
 var solidBrush = GetTemplateChild("PART_SelectedColor")
 as SolidColorBrush;
 if(solidBrush != null) {
 var binding = new Binding("SelectedColor");
 binding.Source = this;
 BindingOperations.SetBinding(solidBrush,
 SolidColorBrush.ColorProperty, binding);
 }
}

22. That should be enough to test the control. Add a new WPF application project named
CH10.TestCustomControls.

23. Add a reference to the CH10.CustomControls project.

Custom Elements

392

24. Open MainWindow.xaml. Add an XML namespace mapping to the CH10.
CustomControls library:
xmlns:ctls="clr-namespace:CH10.CustomControls;assembly=CH10.
CustomControls"

25. Add an instance of the color picker control to the existing Grid:
<ctls:ColorPicker />

26. Run the application. You should find the color picker custom control looks and
behaves in much the same way as the color picker that was built as a user control.

How it works...
A custom control derives from Control, and exposes properties and events, just like a user
control. In fact, we used the exact same code copied from the color picker user control. The
difference is the way the user interface is built.

The control provides an automatic style that has a Template property setting that provides
a default control template (look) for the control. Much of the XAML was copied from the user
control version; there are, however, some important changes. The most striking is the removal
of all binding expressions and setting them up in code. Why? Couldn't we just change the
ElementName=uc to something else that worked?

We could. The way to do that is to use the TemplateBinding markup extension (for one
way binding) or RelativeSource markup extension (with a Mode of TemplatedParent)
for two way bindings (and when something like StringFormat needs to be set because
TemplateBinding does not support it). For example, the red rectangle Fill property
binding could change to this:

Fill="{TemplateBinding SelectedColor, Converter={StaticResource
color2brush}, ConverterParameter=r}"

Chapter 10

393

And it would have worked just fine. So why didn't we do that?

The problem is that if a custom control template is provided, the provider would have to
construct such bindings manually, which is difficult at best (and impossible at times if the
required converters are not publicly available). We want to make it easy to change templates,
so the control author takes upon himself the task of setting the bindings correctly in code, so
that a custom control template becomes easier to write, as it requires no bindings.

This poses a problem, though: how would we know which control we should bind to if we don't
know which template is actually used and how those controls are located within it? The solution
is to look for the parts with specific names (such as PART_RedSlider) and bind to those (if
they exist). This means a custom template just needs to name the appropriate elements with the
correct names, and the rest is taken care of by the control (in OnApplyTemplate). We'll see an
example of changing the control template in the next recipe.

Creating bindings in code is not super-fun, but it's not difficult either. A Binding instance
is created with an optional constructor accepting the source property path to bind to (the
alternative is to use the Path property explicitly). Other properties are set as appropriate
(Converter, Mode, Source, and so on) and finally, the FrameworkElement.SetBinding
method is called, or the static BindingOperations.SetBinding method (this was used
in the SolidColorBrush case, as it does not derive from FrameworkElement), connecting
the target object, target property, and the Binding object together.

The code that looks for named parts is tolerant of non-existing parts – if parts are not found,
no exception is thrown. We don't want to force certain parts to exist. For example, a custom
template may not require a slider for the alpha component. The control should not mind, but
simply disregard that part and move on. This maintains template flexibility, as we can't know
in advance how the custom control would be used in all scenarios.

There's more...
How would a custom control user know which named parts are searched for by the control?
One obvious way is to read conventional documentation. The other is to document the
possible parts and their types by the control author via the TemplatePart custom
attribute. In the color picker case, this should look like the following:

[TemplatePart(Name = "PART_RedShape", Type = typeof(Shape))]
[TemplatePart(Name = "PART_GreenShape", Type = typeof(Shape))]
[TemplatePart(Name = "PART_BlueShape", Type = typeof(Shape))]
[TemplatePart(Name = "PART_AlphaShape", Type = typeof(Shape))]
[TemplatePart(Name = "PART_RedSlider",
 Type = typeof(RangeBase))]
[TemplatePart(Name = "PART_GreenSlider",
 Type = typeof(RangeBase))]
[TemplatePart(Name = "PART_BlueSlider",
 Type = typeof(RangeBase))]

Custom Elements

394

[TemplatePart(Name = "PART_AlphaSlider",
 Type = typeof(RangeBase))]
[TemplatePart(Name = "PART_RedText",
 Type = typeof(TextBlock))]
[TemplatePart(Name = "PART_GreenText",
 Type = typeof(TextBlock))]
[TemplatePart(Name = "PART_BlueText",
 Type = typeof(TextBlock))]
[TemplatePart(Name = "PART_AlphaText",
 Type = typeof(TextBlock))]
[TemplatePart(Name = "PART_SelectedColor",
 Type = typeof(SolidColorBrush))]
public class ColorPicker : Control {

Part names start with PART_ by convention, but technically any name can be set.

This "documentation" can not only be used by us humans, but also by tools such as
Expression Blend.

It's best to use the most common element type possible so as to maintain as much flexibility
as possible, for example, using Shape instead of Rectangle. In the case of the TextBlock
and SolidColorBrush, which these are very specific (in fact, nothing in WPF inherits from
those); this limits flexibility. A possible solution is to provide alternative parts (such as a Run
object as well as TextBlock).

Other things to set in code
The main issue that needs to be dealt with in OnApplyTemplate is bindings but there may
be others. Some properties may need to be set to get correct behavior. For example, the
sliders in the color picker need to have a maximum of 255. Currently, this is set via a Style
within the default template, but that becomes problematic if the control template is replaced.
It's best to make that change in code (in ColorPicker.BindSlider):

slider.Maximum = 255;
slider.Minimum = 0;

Another thing that may be needed is the handling of certain events for elements within the
template. This is not required in the color picker example, but may be required elsewhere.
For instance, the Click event of a Button may need to be handled to trigger some desired
behavior. Again, doing so in XAML is impractical – it must be done in code. The common
thread for all of this is simple: make replacing the default control template easy, leaving the
hard stuff to the control's author.

What is that Generic.xaml?
The automatic style is placed in a file called Generic.xaml in a project folder named
Themes. Why?

Chapter 10

395

A default control template can technically be built differently for different Windows themes.
Perhaps we want the control to look one way in the Windows 7 Aero theme, but look different
in the Classic theme. In such cases, several templates can be built and placed in appropriate
files under the Themes folder (the file name must be something like Aero.NormalColor.
xaml). We won't delve into that too much because it's not that useful in practice. It's
something Microsoft uses to make the WPF controls look consistent with the currently
selected Windows theme.

Custom controls typically don't care about the Windows theme (and in any case, there
are many possible themes), and so Generic.xaml acts as a fallback for any non-theme
specific style.

Refactoring of Generic.xaml
Because of the reasons just discussed, all custom controls' styles in the project end up
in Generic.xaml. This is less than ideal, as that file grows larger all the time, making
maintenance difficult; also, from a practical perspective, that single file may be required
by several developers at the same time (working on different controls), and that would
require multiple check-outs from a source control repository and then merging the changes
adding to the maintenance hassle.

The solution is to segregate the controls' style into different files and to reference them from
Generic.xaml. For example, we'll create a ColorPicker.xaml resource dictionary file
inside the Themes folder, and place the style inside:

<ResourceDictionary xmlns=http://schemas.microsoft.com/winfx/2006/
xaml/presentation
 xmlns:x=http://schemas.microsoft.com/winfx/2006/xaml
 xmlns:local="clr-namespace:CH10.CustomControls">
 <Style TargetType="{x:Type local:ColorPicker}">
…
 <Style>

In Generic.xaml, we reference ColorPicker.xaml with the ResourceDictionary.
MergedDictionaries collection:

<ResourceDictionary.MergedDictionaries>
 <ResourceDictionary Source="pack://application:,,,/CH10.
CustomControls;component/Themes/ColorPicker.xaml" />
</ResourceDictionary.MergedDictionaries>

In this way, each control has its own file; Generic.xaml simply aggregates the files.

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

Custom Elements

396

Customizing a default template of custom
control

Custom controls provide default control templates so that they have some look if used as
is. However, the real power of custom controls is the ability to change the template without
harming any functionality. In this recipe, we'll change the template for our color picker control
to get a different look with the same functionality without writing any code – just a different
control template.

Getting ready
Open the CH10.TestCustomControls project. We'll use that project to create the new
template and compare it to the default one.

How to do it...
We'll create a different control template that utilizes just some of the capabilities of the color
picker control and makes sure the control is tolerant of missing pieces.

1. Open App.xaml.

2. Add a ControlTemplate resource that builds an alternative look for a color picker.
Notice the part names:
<ControlTemplate x:Key="cpTemplate">
 <Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition />
 </Grid.ColumnDefinitions>
 <Slider x:Name="PART_RedSlider" Margin="5"
 Orientation="Vertical" />
 <Slider x:Name="PART_GreenSlider" Margin="5"
 Orientation="Vertical" Grid.Column="1" />
 <Slider x:Name="PART_BlueSlider" Margin="5"
 Orientation="Vertical" Grid.Column="2" />
 <Grid Grid.Column="3">
 <Rectangle RadiusX="20" RadiusY="20" Margin="5"
 Stroke="Black" StrokeThickness="1">
 <Rectangle.Fill>
 <SolidColorBrush x:Name="PART_SelectedColor"
/>

Chapter 10

397

 </Rectangle.Fill>
 </Rectangle>
 <StackPanel VerticalAlignment="Center"
 TextBlock.FontSize="16">
 <TextBlock x:Name="PART_RedText"
 Foreground="White" HorizontalAlignment="Center"/>
 <TextBlock x:Name="PART_GreenText"
 Foreground="White" HorizontalAlignment="Center"/>
 <TextBlock x:Name="PART_BlueText"
 Foreground="White" HorizontalAlignment="Center"/>
 </StackPanel>
 </Grid>
 </Grid>
</ControlTemplate>

3. Open MainWindow.xaml. and create two columns for the existing Grid:
<Grid.ColumnDefinitions>
 <ColumnDefinition />
 <ColumnDefinition />
</Grid.ColumnDefinitions>

4. One color picker is already in that Grid. Add another ColorPicker control that
uses the newly created control template:
<ctls:ColorPicker Template="{StaticResource cpTemplate}"
 Grid.Column="1"/>

5. Run the application. Two color pickers are shown, both of the same type, both behave
in the same way, but they look quite different:

Custom Elements

398

How it works...
Replacing the control template of our custom ColorPicker is no different than replacing any
other WPF control's template – we just set the Template property and we're done.

The simple requirement for this magic to work is to provide the correct named parts, such as
PART_RedSlider. The rest is taken care of by the control itself. This is exactly what makes
custom controls so powerful.

Creating a custom panel
WPF panels are layout containers. Each Panel provides its own layout logic; combining
them in various ways allows the creation of a complex yet flexible user interface. The built-in
panels, such as Grid, StackPanel, and Canvas seem to provide everything we need to
create a conceivable user interface. Sometimes, however, there is a need to go beyond the
built-in panels, to create some other unique way to lay out elements. Although everything is
possible using transforms, using a custom panel has its benefits, one of which is ease of
use. Other benefits include the ability to use the panel in an unorthodox way, such as with
the ItemsPanel property of an ItemsControl and its derivatives.

In this recipe, we'll create a custom panel, showing a typical way of implementing
such functionality.

Getting ready
Make sure Visual Studio is up and running.

How to do it...
We'll create a radial panel that arranges its children along the circumference of an ellipse.

1. Create a new WPF application named CH10.CustomPanel.

2. Add a new class to the project named RadialPanel and derive it from Panel
(add a using statement for System.Windows.Controls):
class RadialPanel : Panel {
}

3. Add a using namespace for System.Windows.

4. First we need to override the MeasureOverride method, and ask every child
element its desired size. We'll also keep track of the largest element.
protected override Size MeasureOverride(Size availableSize) {
 Size maxSize = Size.Empty;
 foreach(UIElement child in Children) {

Chapter 10

399

 child.Measure(availableSize);
 maxSize = new Size(
 Math.Max(maxSize.Width, child.DesiredSize.Width),
 Math.Max(maxSize.Height, child.DesiredSize.Height));
 }

5. The last thing to do is to return the desired size of the RadialPanel itself. We
should never return the available size passed to this method, as it may contain an
infinite size in one or both directions (double.PositiveInfinity). In this case,
we'll return the available size if possible, or the largest element multiplied by a
factor otherwise:
return new Size(double.IsPositiveInfinity(availableSize.Width) ?
maxSize.Width * 2 : availableSize.Width,
 double.IsPositiveInfinity(availableSize.Height) ?
 maxSize.Height * 2 : availableSize.Height);

6. The RadialPanel should arrange its child elements along the circumference of
an ellipse. Each element would be evenly spaced (angle-wise), starting from angle
zero. To make the panel more customizable, we'll add a dependency property for a
different starting angle:
public double StartAngle {
 get { return (double)GetValue(StartAngleProperty); }
 set { SetValue(StartAngleProperty, value); }
}

public static readonly DependencyProperty StartAngleProperty =
 DependencyProperty.Register("StartAngle", typeof(double),
 typeof(RadialPanel), new FrameworkPropertyMetadata(
 0.0, FrameworkPropertyMetadataOptions.AffectsRender));

7. The next, and more complex step, is to override the ArrangeOverride method.
Here we need to tell each child element its exact position and size; that's what
makes our panel unique. Add an override for that method:
protected override Size ArrangeOverride(Size finalSize) {
 return base.ArrangeOverride(finalSize);
}

8. We'll implement the method by placing the elements across the entire 360 degree
circle, taking into consideration the starting angle. This requires some trigonometry:
var count = Children.Count;
if(count > 0) {
 Point center = new Point(finalSize.Width / 2,
 finalSize.Height / 2);
 double step = 360 / count;
 int index = 0;

Custom Elements

400

 foreach(UIElement element in Children) {
 double angle = StartAngle + step * index++;
 // reverse default angle increment, shift and
 // convert to radians
 angle = (90 - angle) * Math.PI / 180;
 Rect rc = new Rect(new Point(
 center.X - element.DesiredSize.Width / 2 +
 (center.X - element.DesiredSize.Width / 2) *
 Math.Cos(angle),
 center.Y - element.DesiredSize.Height / 2 –
 (center.Y - element.DesiredSize.Height / 2) *
 Math.Sin(angle)), element.DesiredSize);
 element.Arrange(rc);
 }
}
return finalSize;

9. Let's test the panel. Open MainWindow.xaml and map an XML namespace to the
CH10.CustomPanel namespace:
xmlns:local="clr-namespace:CH10.CustomPanel"

10. Add two rows to the existing Grid:
<Grid.RowDefinitions>
 <RowDefinition />
 <RowDefinition Height="Auto" />
</Grid.RowDefinitions>

11. Add a Slider to the second row of the grid, to be used for manipulating the panel's
starting angle:
<Slider Margin="4" Maximum="360" x:Name="_startAngle"
 Grid.Row="1" />

12. Add a RadialPanel to the first row of the grid with some elements:
<local:RadialPanel
 StartAngle="{Binding Value, ElementName=_startAngle}">
 <Ellipse Fill="Red" Stroke="Black" StrokeThickness="2"
 Width="40" Height="40" />
 <Ellipse Fill="Green" Stroke="Black" StrokeThickness="2"
 Width="40" Height="40" />
 <Ellipse Fill="Blue" Stroke="Black" StrokeThickness="2"
 Width="40" Height="40"/>
 <Ellipse Fill="Red" Stroke="Black" StrokeThickness="2"
 Width="40" Height="40" />

Chapter 10

401

 <Ellipse Fill="Yellow" Stroke="Black" StrokeThickness="2"
 Width="40" Height="40" />
 <Ellipse Fill="Brown" Stroke="Black" StrokeThickness="2"
 Width="40" Height="40"/>
 <Ellipse Fill="Orange" Stroke="Black" StrokeThickness="2"
 Width="40" Height="40"/>
 <Ellipse Fill="Red" Stroke="Black" StrokeThickness="2"
 Width="40" Height="40"/>
 <Ellipse Fill="LightBlue" Stroke="Black"
 StrokeThickness="2" Width="40" Height="40"/>
 <Ellipse Fill="Red" Stroke="Black" StrokeThickness="2"
 Width="40" Height="40"/>
 <Ellipse Fill="Cyan" Stroke="Black" StrokeThickness="2"
 Width="40" Height="40"/>
 <Ellipse Fill="Red" Stroke="Black" StrokeThickness="2"
 Width="40" Height="40"/>
</local:RadialPanel>

13. Run the application. Move the slider and watch the elements rotate.

How it works...
The layout process is a two-step process: measure and arrange. This is modeled precisely by
the panel's need to override two methods for this exact purpose, MeasureOverride and
ArrangeOverride.

Custom Elements

402

MeasureOverride asks the panel (or any element that overrides it, for that matter) what
size it requires. For a panel, the main concern is the requirements of its child elements. The
call to UIElement.Measure is mandatory and causes the MeasureOverride method
of element to be called (and this may go on if that child is a panel, or acts like a panel,
in itself).

The panel needs to decide what size it requires based on its children's requirements and the
layout logic it wants to employ. The parameter sent to MeasureOverride is the available
size provided by that panel's container. This can be double.PositiveInfinity in either
or both dimensions (for example, a ScrollViewer indicates it has infinite space in directions
where scrolling is available). It's important to return a finite size; otherwise WPF has no way
of knowing how much space to leave for the panel and throws an exception. In our example,
if the input is infinite, the returned size is based on twice the size of the largest element
(however, any size can be arbitrarily selected).

ArrangeOverride is the more interesting method that actually implements that special
layout logic, for which the panel was created. In this case, the implementation calculates the
position and size of the elements along the circumference of an imaginary ellipse stretched
over the entire size the panel was given by its parent (through the input size argument). Each
element receives a call to UIElement.Arrange that forces that element to be placed within
a specific rectangle. Note that this doesn't mean the element is actually rectangular – it can
be any shape; the rectangle is the bounds to which its layout is confined.

The mathematics involved may seem complicated or not, based on your trigonometric
prowess. The generally interesting part is the UIElement.DesiredSize property, which
indicates the size of a particular child. In this case, this is used to attach the element to the
outer boundary of the panel.

The StartAngle dependency property is used in the calculations, and affects rendering,
indicated with the FrameworkPropertyMetadataOptions.AffectsRender flag.
This is a hint to WPF to redraw the panel if that property changes. In the test window, the
Value property of Slider is bound to StartAngle, demonstrating nicely its effect on
the final result.

There's more...
This and other panels can be extended in a multitude of ways. One such way is to define
attached properties that children can use to affect their layout strategy (this is exactly the
case with properties such as Canvas.Left and Grid.Row). For example, we may want to
allow an element to be placed in a specific angle, regardless of other elements. Here's one
way to do it. First, define the attached property:

[AttachedPropertyBrowsableForChildren]
public static double GetAngle(DependencyObject obj) {
 return (double)obj.GetValue(AngleProperty);
}

Chapter 10

403

[AttachedPropertyBrowsableForChildren]
public static void SetAngle(DependencyObject obj, double value) {
 obj.SetValue(AngleProperty, value);
}

public static readonly DependencyProperty AngleProperty =
 DependencyProperty.RegisterAttached("Angle",
 typeof(double), typeof(RadialPanel),
 new FrameworkPropertyMetadata(double.NaN,
 FrameworkPropertyMetadataOptions.AffectsRender));

The AttachedPropertyBrowsableForChildren custom attributes is a hint to the XAML
intellisense engine that suggests this property automatically on elements placed inside a
RadialPanel; it has no other effect.

The default value for this property is set to double.NaN, as an indicator that it wasn't set.
We now need to modify ArrangeOverride to take this property into consideration:

double angle = StartAngle + step * index++;
double pangle = RadialPanel.GetAngle(element);
if(!double.IsNaN(pangle))
 angle = pangle;

The last 3 lines are new. We can apply this property on elements, such as the following:

<Ellipse Fill="Red" Stroke="Black" StrokeThickness="2"
 Width="40" Height="40" local:RadialPanel.Angle="30"/>

Running the test application with two elements set with angles equal to 30 and 170 degrees
yields the following while dragging the slider:

Custom Elements

404

The downloadable source for this chapter has some more customizations for the
RadialPanel, such as the ability to specify an angle increment between elements,
thus not necessarily filling an entire 360 dial (or filling more than 360 degrees).

Where are custom panels used?
A custom panel can be used just like any other panel. First, it's an element, which means
it can be anywhere in the visual tree. Second, as a panel it can be used as a host for
types derived from ItemsControl through the ItemsPanel property. This is a very
interesting capability, that coupled with data binding, can be used to create interesting
effects. For example, a solar system simulation can hold the planets in some collection
and bind them to a ListBox that uses a RadialPanel as its ItemsPanel (through the
ItemsPanelTemplate object). Binding the attached RadialPanel.Angle property to
similar information on a planet object can be used to easily move or animate the planet
around its sun.

Creating a lightweight custom element
Custom controls provide a way to create a user interface based on XAML elements.
Sometimes, however, a more complex UI is required, that cannot be easily achieved by
XAML alone, or where low level control is desired. In such cases, we can create a lightweight
element, deriving from FrameworkElement that does its own drawing without creating any
particular element. This makes the control consume less memory and WPF layout logic does
not need to consider many elements.

In this recipe, we'll take a look at the way to implement such lightweight elements.

Getting ready
Make sure Visual Studio is up and running.

How to do it...
We'll create a simple bar graph control to demonstrate the ability to draw in a more
"manual" fashion.

1. Create a new WPF application project named CH10.CustomRendering.

2. Add a new class named BarGraph that derives from FrameworkElement.
This class will hold an array of values to show as a bar graph.

3. Add a dependency property named Values to the BarGraph class to hold the
data to display:
public static readonly DependencyProperty ValuesProperty =
 DependencyProperty.Register("Values", typeof(double[]),

Chapter 10

405

 typeof(BarGraph), new FrameworkPropertyMetadata(null,
 FrameworkPropertyMetadataOptions.AffectsRender));
public double[] Values {
 get { return (double[])GetValue(ValuesProperty); }
 set { SetValue(ValuesProperty, value); }
}

4. Let's add some more properties that allow some control over the rendering aspects:
public static readonly DependencyProperty FillProperty =
 Shape.FillProperty.AddOwner(typeof(BarGraph),
 new FrameworkPropertyMetadata(Brushes.White,
 FrameworkPropertyMetadataOptions.AffectsRender));
public static readonly DependencyProperty StrokeProperty =
 Shape.StrokeProperty.AddOwner(typeof(BarGraph),
 new FrameworkPropertyMetadata(Brushes.Black,
 FrameworkPropertyMetadataOptions.AffectsRender));
public static readonly DependencyProperty
 StrokeThicknessProperty = Shape.StrokeThicknessProperty.
 AddOwner(typeof(BarGraph), new FrameworkPropertyMetadata(
 1.0, FrameworkPropertyMetadataOptions.AffectsRender));

public Brush Fill {
 get { return (Brush)GetValue(FillProperty); }
 set { SetValue(FillProperty, value); }
}

public Brush Stroke {
 get { return (Brush)GetValue(StrokeProperty); }
 set { SetValue(StrokeProperty, value); }
}

public double StrokeThickness {
 get { return (double)GetValue(StrokeThicknessProperty); }
 set { SetValue(StrokeThicknessProperty, value); }
}

5. Finally, let's add a property that allows the drawing of an average line for the values
in question:
public bool ShowAverage {
 get { return (bool)GetValue(ShowAverageProperty); }
 set { SetValue(ShowAverageProperty, value); }
}
public static readonly DependencyProperty
 ShowAverageProperty = DependencyProperty.Register(

Custom Elements

406

 "ShowAverage", typeof(bool), typeof(BarGraph),
 new FrameworkPropertyMetadata(false,
 FrameworkPropertyMetadataOptions.AffectsRender));

6. The element has no XAML associated with it. Its entire rendering is based
on overriding the OnRender method. Add a using statement for the
System.Windows.Media namespace.

7. Override the OnRender method with the following code:
protected override void OnRender(DrawingContext dc) {
 if(Values == null || Values.Length == 0) return;

 double max = Values.Max();
 var pen = new Pen(Stroke, StrokeThickness);
 var barSize = ActualWidth / Values.Length;
 for(int i = 0; i < Values.Length; i++) {
 dc.DrawRectangle(Fill, pen, new Rect(
 new Point(i * barSize, ActualHeight -
 Values[i] * ActualHeight / max),
 new Point((i + 1) * barSize, ActualHeight)));
 }
 if(ShowAverage) {
 var avg = ActualHeight - Values.Average()
 * ActualHeight / max;
 dc.DrawLine(pen, new Point(0, avg),
 new Point(ActualWidth, avg));
 }
}

8. The code uses a DrawingContext to do all the required drawing. Let's set up a
bar graph with some data. Open MainWindow.xaml and add an XAML namespace,
mapping to the CH10.CustomRendering namespace:
xmlns:local="clr-namespace:CH10.CustomRendering"

9. Create a BarGraph element inside the existing Grid with the following markup:
<local:BarGraph x:Name="_graph" ShowAverage="True">
 <local:BarGraph.Fill>
 <LinearGradientBrush EndPoint="0,1">
 <GradientStop Color="LightBlue" Offset="0" />
 <GradientStop Color="Blue" Offset="1" />
 </LinearGradientBrush>
 </local:BarGraph.Fill>
</local:BarGraph>

Chapter 10

407

10. Open MainWindow.xaml.cs and add the following code inside the constructor after
the call to InitalizeComponent:
double[] values = { 45, 22, 104, 77, 18, 56, 39, 120 };
_graph.Values = values;

11. Run the application. You should see a simple bar graph with an average line:

How it works...
The UIElement.OnRender method is used to render the entire UI of the custom element.
It accepts a DrawingContext object, which is an abstraction over some drawing tools. It's
similar in concept to the System.Drawing.Graphics GDI+ class (used by WinForms) or to
the Win32 device context. There is an important difference, however, that goes beyond the
fact that WPF works through DirectX. WPF has a retained mode graphics system, meaning the
"drawing" done with DrawingContext as opposed to (say) Graphics. DrawingContext is
a kind of cache for graphic operations. For example, OnRender is not called when minimizing
and restoring the window. WPF remembers the commands to use and redraws automatically.
On the other hand, in GDI+ it's necessary to invoke the drawing code explicitly from a Paint
event – otherwise the drawing would disappear if the window is minimized and restored, for
instance; this is known as an immediate mode rendering system.

DrawingContext contains a bunch of methods, such as DrawRectangle, DrawLine,
and DrawText. In the bar graph, DrawRectangle and DrawLine are used with a Pen
and a Brush (a Pen encapsulates a Brush with line-related properties such as thickness
and dashes).

Custom Elements

408

There's more...
Using UIElement.OnRender is also possible for "regular" custom controls that derive from
control. This method is called as part of the rendering cycle, thus providing a way to use XAML
for the basic control and a DrawingContext for other, more complex drawing operations.

Dependency property ownership
The Stroke, StrokeThickness, and Fill dependency properties were not defined from
scratch using DependencyProperty.Register. As some form of these exists elsewhere
in WPF, and the required meaning for this control is practically the same, it's cheaper to
add the control as an owner to an existing property, rather than defining it from scratch.
The DependencyProperty.AddOwner provides a way to do that, optionally changing the
property metadata (as was used here so that the default brushes are not null).

More DrawingContext
Apart from the obvious methods, a DrawingContext has some other interesting methods:

 f DrawGeometry provides a way to draw any Geometry-derived object

 f DrawDrawing draws a object derived from Drawing (a lightweight object
representing a 2D drawing).

 f DrawVideo draws a MediaPlayer object inside a rectangle, essentially showing
a running movie

 f Push methods that allow changing the state of the DrawingContext, such as
PushOpacity and PushTransform, until a Pop method is called, restoring the
state before the last Push call

 f Most methods have overloads that accept an AnimationClock object,
which provides animation control capabilities for the drawn element

11
Threading

In this chapter we will cover:

 f Updating the UI from a non-UI thread

 f Adding cancelation support

 f Using the BackgroundWorker component

 f Adding cancelation and progress with BackgroundWorker

 f Using a timer to do periodic updates

 f Using C# 5.0 to perform asynchronous operations

Introduction
The computer world is going through a revolution in terms of the way code is written.
From (mostly) single CPU systems, current computers have multi-core processors, capable
of performing concurrent operations. The shift is mostly due to hardware limitations that
don't allow current technology to increase CPU clock frequency by much (if at all).
The solution: create more cores.

But, more cores means the "free lunch is over" (as Herb Sutter put it nicely). If we continue
writing single threaded code, no amount of cores can help us speed things up. A lot of effort
is now going in to getting back "the free lunch". One such effort is the Task Parallel Library
introduced in .NET 4.

The UI world remains mainly single threaded. What concerns a UI framework, such as WPF,
is keeping the UI responsive, which means offloading any significant work or significant wait
to some background thread in some way so that the UI thread can keep pumping messages,
keeping the application responsive. One problem that arises, however, is that a background
operation cannot touch the user interface on a non-UI thread. WPF has to provide some
facility to marshal the required call to the UI thread for processing.

Threading

410

In this chapter, we'll take a look at WPF's (and .NET's) support for working with asynchronous
operations, including cancelation and reporting progress. We won't discuss actual threading
techniques in depth as this is not specific to WPF; still, we'll see some typical examples that
use the thread pool and the Task Parallel Library.

Updating the UI from a non-UI thread
User interface in WPF (as with WinForms) is managed by a single thread. More accurately,
a thread that creates windows is the owner of those windows; it means that thread must
process UI messages, a process usually known as message pumping. This message pumping
activity is provided by the framework (in WPF it's in the Dispatcher.Run static method; in
WinForms it's Application.Run, but the idea is the same). If the UI thread is doing a lot
of work or enters a wait state (by doing some I/O, for example), it won't be able to process
UI messages, causing the UI to freeze, also known as "not responding". This is very bad
from a user experience standpoint, and should be avoided at all costs. The simple rule is
that if some operation may be long, offload it to another thread in some way, keeping the
UI thread responsive.

Sounds simple, doesn't it? Sometimes it is simple, sometimes not so much. One of the
common issues is the need to update something in the user interface from a non-UI thread.
The direct approach causes an exception to be thrown. In this recipe, we'll see one way to
circumvent that exception and update the user interface correctly.

Getting ready
Make sure Visual Studio is up and running.

How to do it...
We'll create a simple application that counts prime numbers on a non-UI thread and updates
the UI when the result is available.

1. Create a new WPF Application named CH11.AsyncCalc.

2. Open MainWindow.xaml. Set the following Window properties:
Title="Prime Counter" SizeToContent="WidthAndHeight"
ResizeMode="CanMinimize"

3. Build the following simple user interface starting with the existing Grid:
<Grid TextBlock.FontSize="16">
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto"/>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />

Chapter 11

411

 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>
 <StackPanel Orientation="Horizontal" Margin="6">
 <TextBlock Text="From:" />
 <TextBox Margin="10,2,2,2" Width="120"
 MaxLength="10" x:Name="_from"/>
 <TextBlock Text="To:" Margin="20,0,0,0"/>
 <TextBox Margin="10,2,2,2" Width="120"
 MaxLength="10" x:Name="_to"/>
 </StackPanel>
 <StackPanel Orientation="Horizontal" Grid.Row="1"
 Margin="6">
 <Button Content="Calculate" Padding="4" />
 </StackPanel>
 <TextBlock x:Name="_result" Grid.Row="3" FontSize="20"
 Margin="6" HorizontalAlignment="Center" />
</Grid>

4. Open MainWindow.xaml.cs. We'll create a general method that counts the number
of prime numbers in a given range. Add a static method named CountPrimes and
implement with the following code:
static int CountPrimes(int from, int to) {
 int total = 0;
 for(int i = from; i <= to; i++) {
 bool isPrime = true;
 int limit = (int)Math.Sqrt(i);
 for(int j = 2; j <= limit; j++)
 if(i % j == 0) {
 isPrime = false;
 break;
 }
 if(isPrime)
 total++;
 }
 return total;
}

5. The method searches for prime numbers (not with the most efficient way, but that's
unimportant for our purposes). Now we need to invoke it at the right time. Add a
Click event handler for the button.

6. The first thing to do in the event handler is to get the range of numbers to look for
primes and disable the button until the calculation is done:
int first = int.Parse(_from.Text), last = int.Parse(_to.Text);
var button = (Button)sender;
button.IsEnabled = false;

Threading

412

7. Note that there is no proper error handling in the preceding code (int.Parse may
throw an exception); that's not the focus here. As identifying prime numbers can be
time consuming for a large set of numbers, it's best to set the operation in motion in
another thread so that the UI thread is kept responding. There are a few ways to do
an operation on a different thread (explicitly creating a thread, using the thread pool,
using a task - to name the common ways); here we'll use the thread pool by calling
ThreadPool.QueueUserWorkItem:
ThreadPool.QueueUserWorkItem(_ => {
 int total = CountPrimes(first, last);

8. CountPrimes runs on a thread pool thread. When the call returns we want to show
results by accessing the TextBlock.Text property. Direct access would cause an
exception (InvalidOperationException). One way to "return" to the UI thread is
to use the Dispatcher on any UI element like the following code demonstrates:
Dispatcher.BeginInvoke(new Action(() => {
 _result.Text = "Total Primes: " + total.ToString();
 button.IsEnabled = true;
 }));
});

9. Dispatcher.BeginInvoke causes the specified delegate to be scheduled
to execute on the UI thread as soon as possible (it actually depends on a
DispatcherPriority and the actual work the UI thread is doing).

10. Run the application. Enter 3 for From and 10000000 for To and click the button.
During the calculation the UI is responsive – you can drag the window around.
Eventually, the result should be displayed (664578 prime numbers in that range).

How it works...
All WPF elements inherit from DispatcherObject (which only inherits from object),
which means an element is always associated with a System.Windows.Threading.
Dispatcher, or to be more precise, a UI thread is associated with a Dispatcher. This
Dispatcher can be accessed at any time using the DispatcherObject.Dispatcher
property inherited by all WPF elements.

Chapter 11

413

Calling Dispatcher.Invoke or Dispatcher.BeginInvoke schedules a delegate
(of whatever kind) to execute on the thread associated with that dispatcher. The dispatcher
is also accessible from the UI thread using the Dispatcher.CurrentDispatcher static
property (this may be useful when non-UI aware code is running on the UI thread).

The call to ThreadPool.QueueUserWorkItem (step 7) causes a delegate to execute as
soon as possible on the CLR's thread pool (one thread pool in a process). This means the
passed in delegate never executes on the UI thread. When the operation completes and
the UI needs to be updated, it must be done on the UI thread. This is where the Dispatcher
comes in. The call to Dispatcher.BeginInvoke causes a delegate to run on the UI
thread, making accessing the UI possible.

There's more...
The Dispatcher supports two ways of invocation: Invoke and BeginInvoke. Invoke
does not return until the operation runs on the UI thread, whereas BeginInvoke returns
immediately to do other work while the delegate to run on UI thread is scheduled for
execution. The choice doesn't matter most of the time, but BeginInvoke is preferred
unless there is a specific reason to wait for the UI operation to complete, such as when
a result is expected.

The Dispatcher maintains queues of requests that need to be processed on the UI thread.
There are several priorities available, DispatcherPriority.Normal being the default.

Some overloads for Invoke and BeginInvoke accept a DispatcherPriority as well as
the delegate to execute. Here are the existing priority levels (from lowest to highest):

 f Inactive: Operations are not processed

 f SystemIdle: Processed when the system is idle

 f ApplicationIdle: Processed when the application is idle

 f ContextIdle: Processed after background operations are complete

 f Background: Processed after all non-idle operations are complete

 f Input: Processed in the same priority as input

 f Loaded: Processed after layout and render have finished (this is when the
Loaded event fires)

 f Render: Processed at the same priority as render

 f DataBind: Processed at same priority as data binding operations

 f Normal: Processed at normal application priority (the default)

 f Send: Highest priority level, processed before any asynchronous operations

Threading

414

The default value of Normal would suffice in most cases, but for frequent updates we
may choose a lower priority level, making sure important operations such as data binding
occur first.

Dispatcher alternative
Using the dispatcher is not the only way to schedule something on the UI thread. Another,
more agnostic way is to use a SynchronizationContext. A SynchronizationContext
can be obtained by calling the static SynchronizationContext.Current property. For
a UI thread, the synchronization context represents the affinity with that thread. For non-UI
threads, the context may be different or even null (which it is on a thread pool thread).

The way to use the SynchronizationContext is to "capture" it on the UI thread, and later
call its Post or Send methods to schedule a delegate to run on a thread represented by that
context (always a single thread in the UI case). Here's an alternative event handler that does
essentially the same thing (steps 6 to 8):

int first = int.Parse(_from.Text), last = int.Parse(_to.Text);
var button = (Button)sender;
button.IsEnabled = false;
var sc = SynchronizationContext.Current;
ThreadPool.QueueUserWorkItem(_ => {
 int total = CountPrimes(first, last);
 sc.Post(delegate {
 _result.Text = "Total Primes: " + total.ToString();
 button.IsEnabled = true;
 }, null);
});

SynchronizationContext.Post is an asynchronous call (non-blocking), similar to
Dispatcher.BeginInvoke, while SynchronizationContext.Send is similar to
Dispatcher.Invoke.

What's the advantage of using a SynchronizationContext? Although it's less flexible than
Dispatcher, it's technology-agnostic. This means the same code works in WPF, WinForms,
Silverlight, and even Windows Phone 7.x.

The secret to its operation is the returned object from SynchronizationContext.
Current. It's a different one in WPF (System.Windows.Threading.
DispatcherSynchronizationContext) than in WinForms (System.Windows.Forms.
WindowsFormsSynchronizationContext) – each provides a different implementation
to Send and Post (WPF uses its Dispatcher, WinForms uses its ISynchronizeInvoke
interface implementation on System.Windows.Forms.Control). Because of its neutrality,
it can be used without specifically referencing WPF or WinForms assemblies.

Chapter 11

415

Dispatcher enhancements in WPF 4.5
The Dispatcher that's available with WPF 4.5 has some enhancements worth noting:

 f The Invoke method has more overloads. Some accept an Action delegate
(instead of the base Delegate class), which simplifies coding. A generic
Invoke<T> exists that returns a T as a result from the synchronous call.

 f The InvokeAsync method (with overloads) was added that allows using the
C# await keyword to wait for the operation to complete without blocking.
We'll see an example of the C# 5.0 await keyword in a later recipe.

More Dispatcher
Some extension methods exist for Dispatcher from the System.Windows.Threading.
DispatcherExtension class for Invoke and BeginInvoke that accept an Action
instead of any Delegate. Strangely, this class resides in the System.Windows.
Presentation assembly, which is not added by Visual Studio by default.

WPF uses Dispatcher.VerifyAccess in many code paths to make sure the call happens
on the UI thread. If not, VerifyAccess throws an InvalidOperationException.
Alternatively, it's possible to call Dispatcher.CheckAccess that returns true if called on
the correct (UI) thread and false otherwise. This could help in certain scenarios, where the
Dispatcher may be circumvented if the call happens to be on the UI thread.

What about data binding?
In a more realistic code, data binding would be used. In such a case, if a property is changed
from a non-UI thread, what would happen if that property is data bound by some element?
It turns out this works ok for simple properties.

Collections, however, cannot be modified from a non-UI thread if that collection is data bound;
that would generate an exception. In WPF 4 or earlier, such an operation would have to be
marshaled to the UI thread with the aid of the Dispatcher or SynchronizationContext.

Starting from WPF 4.5, collections (such as ObservableCollection<T>) can be modified
from non-UI threads, provided they are registered correctly using the BindingOperations.
EnableCollectionSynchronization static method. Here's an example for a list of
simple integers:

public partial class MainWindow : Window {
 ObservableCollection<int> _numbers =
 new ObservableCollection<int>();
 object _lock = new object();

 public MainWindow() {
 InitializeComponent();

Threading

416

 _list.ItemsSource = _numbers;
 BindingOperations.EnableCollectionSynchronization(
 _numbers, _lock);

 ThreadPool.QueueUserWorkItem(_ => {
 var rnd = new Random();
 for(; ;) {
 lock(_lock) {
 _numbers.Add(rnd.Next(1000));
 }
 Thread.Sleep(1000);
 }
 });
 }
}

_list is a ListBox reference, bound to the ObservableCollection<int>. The
BindingOperations.EnableCollectionSynchronization accepts the collection
for which to allow modifications, and a lock object. That's the same idea behind the C# lock
keyword (Monitor.Enter/Exit of the framework), which means it can be any reference
type, but the actual object is unimportant. This lock object is required so that the collection
can be synchronized when accessed from a non-UI thread or accessed on the UI thread for
binding purposes.

It's important to note that this still means that our code needs to use locking with the same
lock object to make sure the collection is not corrupted in any way.

Adding cancelation support
Long running operations are typically performed on a different thread, which keeps the UI
responsive, but that may not be enough. Applications may want to provide a way to cancel
a long-running operation. Prior to .NET 4, developers used various ways to orchestrate
cancelations. Starting from .NET 4 there is a standard way to convey cancelation requests.

In this recipe, we'll see how to use this cancelation mechanism.

Getting ready
Open the CH11.AsyncCalc project. We'll enhance it with cancelation support.

How to do it...
We'll add the option to cancel the prime calculation operation.

Chapter 11

417

1. Open MainWindow.xaml. Add another button to the second StackPanel with the
following markup:
<Button Content="Cancel" Padding="4" Margin="10,0,0,0"
 IsEnabled="False" x:Name="_cancelButton" />

2. Name the Calculate button _calcButton.

3. Open MainWindow.xaml.cs. Change the CountPrimes method to accept a
CancellationToken:
static int CountPrimes(int from, int to,
 CancellationToken ct) {

4. Modify CountPrimes to check whether CancellationToken.
IsCancellationRequested is true, and if so, return immediately.
This is how the loop should look:
for(int i = from; i <= to; i++) {
 if(ct.IsCancellationRequested)
 return -1;
 bool isPrime = true;
 int limit = (int)Math.Sqrt(i);
 for(int j = 2; j <= limit; j++)
 if(i % j == 0) {
 isPrime = false;
 break;
 }
 if(isPrime)
 total++;
}

5. To make this work, we need to create a CancellationTokenSource, which
is the provider of CancellationToken objects. Add a private field of type
CancellationTokenSource to the MainWindow class:
public partial class MainWindow : Window {
 CancellationTokenSource _cts;

6. Change the Calculate button event handler to create a CancellationTokenSource
and use it to provide a CancellationToken to CountPrimes, and act upon
the result:
int first = int.Parse(_from.Text), last = int.Parse(_to.Text);
_calcButton.IsEnabled = false;
_cancelButton.IsEnabled = true;
_cts = new CancellationTokenSource();
ThreadPool.QueueUserWorkItem(_ => {
 int total = CountPrimes(first, last, _cts.Token);
 Dispatcher.BeginInvoke(new Action(() => {

Threading

418

 _result.Text = total < 0 ? "Cancelled!" :
 "Total Primes: " + total.ToString();
 _cancelButton.IsEnabled = false;
 _calcButton.IsEnabled = true;
 }));
});

7. To set all this in motion, add a Click event handler for the Cancel button. Implement
it with the following code:
if(_cts != null) {
 _cts.Cancel();
 _cts = null;
}

8. Run the application. Start a long calculation and cancel it midway; alternatively,
let it run all the way through. The UI should remain responsive at all times.

How it works...
A CancellationTokenSource represents a logical operation that may be canceled.
That source provides CancellationToken objects through its Token property to individual
objects or methods that provide part of that logical operation. In the simplest case (as it is in
the above code), only one such token is distributed, meaning a single entity (a method in this
case) does all the work.

Whenever the Cancel method is called on a CancellationTokenSource instance, all
distributed tokens from that source have their IsCancellationRequested property set to
true. Hopefully, the code holding on to a CancellationToken is able to poll that property
in sufficiently small intervals, and if true, make an effort to bail out early. In our example, the
loop simply returns with a special value (-1) indicating cancellation.

There's more...
It's important to realize that the CancellationTokenSource and CancellationToken
types have no abilities of their own in terms of actually canceling anything. They provide a
piece of logic for cooperative cancellation. Calling CancellationTokenSource.Cancel
does not guarantee cancellation – it's merely a request to cancel, that can hopefully be
carried out by entities holding CancellationToken objects obtained from that source.

Chapter 11

419

Never cancel by aborting a thread
Sometimes developers try to abort asynchronous operations by aborting the thread that
carries the operation. This is almost always a bad idea. There are several reasons for this, one
of which is the difficulty in knowing what that thread has done and what it had yet to do before
being terminated. The application may be left in an inconsistent state as a result of an abrupt
thread termination.

It's much better to facilitate termination with some piece of logic involving synchronization
objects, such as AutoResetEvent or ManualResetEvent(Slim). Using these objects is
beyond the scope of this book as these have nothing special to do with WPF.

Using the BackgroundWorker component
The asynchronous operation we used in the previous examples used the thread pool explicitly
to do the long running work on another thread. Updating the UI required marshaling code
to the UI thread from another thread, to keep the rule of updating the UI from the UI thread
intact. All this required some manually managed code.

An alternative is using the BackgroundWorker class that provides automatic
management and marshaling for the purpose of performing a long running operation
on a background thread.

In this recipe, we'll use the BackgroundWorker to do asynchronous operations without
blocking the UI thread and understand its pros and cons.

Getting ready
We'll duplicate most of the UI from the CH11.AsyncCalc project, so keep it open while we
create the new project.

How to do it...
We'll count prime numbers (as before) on a different thread, but we'll let the
BackgroundWorker take care of all the gory details.

1. Create a new WPF Application named CH11.AsyncCalcWithBackgroundWorker.

2. Copy the XAML from MainWindow.xaml from the CH11.AsyncCalc project to
this project's MainWindow.xaml. Remove the cancel button markup for now. Also
remove the Click event setting from the calculate button's markup. This is the
resulting XAML (without the x:Class and default XAML namespace mappings):
<Window Title="Primes Counter" ResizeMode="CanMinimize"
 SizeToContent="WidthAndHeight">
 <Grid TextBlock.FontSize="16">

Threading

420

 <Grid.RowDefinitions>
 <RowDefinition Height="Auto"/>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>
 <StackPanel Orientation="Horizontal" Margin="6">
 <TextBlock Text="From:" />
 <TextBox Margin="10,2,2,2" Width="120"
 MaxLength="10" x:Name="_from"/>
 <TextBlock Text="To:" Margin="20,0,0,0"/>
 <TextBox Margin="10,2,2,2" Width="120"
 MaxLength="10" x:Name="_to"/>
 </StackPanel>
 <StackPanel Orientation="Horizontal" Grid.Row="1"
 Margin="6">
 <Button Content="Calculate" Padding="4"
 x:Name="_calcButton"/>
 </StackPanel>
 <TextBlock x:Name="_result" Grid.Row="3" Margin="6"
 HorizontalAlignment="Center" FontSize="20" />
 </Grid>
</Window>

3. Open MainWindow.xaml.cs. Add a private field to the MainWindow class of type
BackgroundWorker:
BackgroundWorker _worker;

4. Add a Click event handler to the Calculate button named OnCalculate. The first
thing to do in the event handler is to set up the BackgroundWorker. This is done by
wiring up two events, DoWork and RunWorkerCompleted (you can press Tab twice
to let Visual Studio create the actual event handlers):
_worker = new BackgroundWorker();
_worker.DoWork += _worker_DoWork;
_worker.RunWorkerCompleted += _worker_RunWorkerCompleted;

5. Next, we want to disable the Calculate button to prevent another operation from
starting and then kick off the operation. First, we'll create a small class to hold the
information that needs to be passed to the DoWork event handler. Add a class
named PrimeInputData defined with the following simple code:
class PrimeInputData {
 public int First { get; set; }
 public int Last { get; set; }
}

Chapter 11

421

6. Continuing in the Click handler of a button, add the following code that sets up the
data to work with and initiates the work asynchronously:
_calcButton.IsEnabled = false;
_result.Text = "Calculating...";

var data = new PrimeInputData {
 First = int.Parse(_from.Text),
 Last = int.Parse(_to.Text)
};
_worker.RunWorkerAsync(data);

7. RunWorkerAsync causes the DoWork event handler to be called on a thread pool
thread. Implement the DoWork event handler with the following code:
void _worker_DoWork(object sender, DoWorkEventArgs e) {
 var data = (PrimeInputData)e.Argument;
 int count = 0;
 for(int i = data.First; i <= data.Last; i++) {
 int limit = (int)Math.Sqrt(i);
 bool isPrime = true;
 for(int j = 2; j <= limit; j++)
 if(i % j == 0) {
 isPrime = false;
 break;
 }
 if(isPrime)
 count++;
 }
 e.Result = count;
}

8. When the DoWork event handler is done, the RunWorkerCompleted event is fired
on the UI thread (automatically). Implement the handler as follows:
void _worker_RunWorkerCompleted(object sender,
 RunWorkerCompletedEventArgs e) {
 _result.Text = string.Format("Total Primes: {0}",
 e.Result);
 _calcButton.IsEnabled = true;
}

Threading

422

9. Run the application. Enter some numbers and click on Calculate. Make sure the
window is responsive throughout the calculation.

How it works...
The BackgroundWorker class uses events to coordinate the work. The DoWork event is
raised on a thread pool thread when the RunWorkerAsync method is called. The DoWork
event handler is where the long running code is used. An optional argument can be passed
to RunWorkerAsync which is passed to the DoWork handlers in the DoWorkEventArgs.
Argument property. This is used here to pass information about the prime numbers to be
counted (step 6). Any result can be stored in the DoWorkEventArgs.Result property.

When the DoWork event handler completes, the BackgroundWorker raises the
RunWorkerCompleted event, always on the UI thread, which is convenient as we probably
want to update the UI when the work is done. Any result passed from the DoWork handler is
received in the RunWorkerCompletedEventArgs.Result property. Here it's the count of
prime numbers (step 8).

The BackgroundWorker is easy to use as we didn't create any threads, used the thread
pool, or marshaled calls to the UI thread.

There's more...
The BackgroundWorker was introduced in .NET 2.0, and one of its curious attributes
is that it works in all UI technologies in .NET: WPF, WinForms, Silverlight, and Windows
Phone 7.x. It may seem like a kind of magic, as WPF (for example) was created after the
BackgroundWorker was.

The secret to its work is that it uses the SynchronizationContext class we met
already. This makes it agnostic to the actual technology used because the correct
SynchronizationContext would be created by the relevant technology when
SynchronizationContext.Current is called by the BackgroundWorker.

Chapter 11

423

Did we really have to pass the argument to RunWorkerAsync?
The DoWork event handler is part of the MainWindow class, so why did we pass the
information to the handler via the Argument property? Wouldn't it be simpler to just
call int.Parse in the DoWork event handler for both TextBox objects?

We must remember that this code is called by a thread pool thread, meaning accessing
any UI element would cause an exception. This is why we first got values on the UI thread
before invoking the BackgroundWorker. The DoWork event handler is too late to access
UI elements.

What about the Task Parallel Library?
.NET 4 introduced the Task Parallel Library (TPL) for working more conveniently and efficiently
with concurrent operations. These can be used in cases where it's possible to run things
faster by using multiple CPU cores. For example, our prime counting code is single threaded.
We could change it to the following parallel code that would use the available cores on the
machine to count primes faster with Parallel.For:

Parallel.For(data.First, data.Last + 1, i => {
 int limit = (int)Math.Sqrt(i);
 bool isPrime = true;
 for(int j = 2; j <= limit; j++)
 if(i % j == 0) {
 isPrime = false;
 break;
 }
 if(isPrime)
 Interlocked.Increment(ref count);
});

The TPL is beyond the scope of this book as it's not specific to WPF. You can find a lot of
information online (you can start at http://msdn.microsoft.com/concurrency).

Adding cancellation and progress with
BackgroundWorker

The BackgroundWorker supports two extra features: cancellation and progress. We
already looked at cooperative cancellation with the CancellationTokenSource and
CancellationToken types, but the BackgroundWorker defines its own mechanism
(it was created long before the latter types were).

In this recipe, we'll take a look at adding cancelation to the primes counting endeavor. Also,
in a long running operation it's nice to indicate to the user how things are progressing. The
BackgroundWorker has good support for that, too.

http://msdn.microsoft.com/concurrency

Threading

424

Getting ready
We'll continue with the CH11.AsyncCalcWithBackgroundWorker project. Alternatively,
you can make a copy of it and work on that.

How to do it...
We'll add a Cancel button and a ProgressBar and use the support of BackgroundWorker
for these features.

1. Open MainWindow.xaml. Add a Cancel button to the second StackPanel, right
after the Calculate button:
<Button Content="Cancel" Padding="4" x:Name="_cancelButton"
 IsEnabled="False" Margin="10,0,0,0" />

2. Add a ProgressBar to the third row of the Grid like so:
<ProgressBar x:Name="_progress" Grid.Row="2" Height="30"
 Margin="4"/>

3. Open MainWindow.xaml.cs. To set up cancellation, we first need to enable it for
the BackgroundWorker. In the Calculate button's Click event handler, after the
BackgroundWorker creation, add the following code:
_worker.WorkerSupportsCancellation = true;

4. After the Calculate button is disabled, enable the Cancel button:
_cancelButton.IsEnabled = true;

5. Add a Click event handler to the Cancel button. Implement the handler as follows:
private void OnCancel(object sender, RoutedEventArgs e) {
 _worker.CancelAsync();
}

6. Cancellation support is cooperative. The long running operation needs to check
the BackgroundWorker.CancellationPending property periodically, and if it
returns true, this means a cancellation is requested. We'll modify the DoWork event
handler to check for this property with every iteration:
for(int i = data.First; i <= data.Last; i++) {
 if(_worker.CancellationPending) {
 e.Cancel = true;
 break;
 }

Chapter 11

425

7. Setting DoWorkEventArgs.Cancelled to true indicates that the operation was
in fact canceled. When the RunWorkerCompleted event handler fires, we need to
check the RunWorkerCompletedEventArgs.Cancelled property, and if true,
do something different. Replace the RunWorkerCompleted event handler with the
following code:
_result.Text = e.Cancelled ? "Operation Cancelled" :
 string.Format("Total Primes: {0}", e.Result);
_calcButton.IsEnabled = true;
_cancelButton.IsEnabled = false;

8. Run the application. Enter some numbers and click on Calculate. Click on Cancel
mid operation and watch the cancellation result.

9. Now we want to indicate progress. First, we need to enable support for
progress reporting in the BackgroundWorker. Add the following line after the
BackgroundWorker creation in the Click event handler of the Calculate button:
_worker.WorkerReportsProgress = true;

10. Next, we need to register for another event the BackgroundWorker supports,
ProgressChanged. This event is fired on the UI thread whenever the long
running operation reports a progress change. Add the following line after the
RunWorkerCompleted event registration (you can press Tab twice to get
Visual Studio's auto completion):
_worker.ProgressChanged += _worker_ProgressChanged;

11. In the created handler, add the following code:
_progress.Value = e.ProgressPercentage;

12. This sets the Value property of Progress bar based on the
ProgressChangedEventArgs.ProgressPercentage property. Who is providing
that value? That's part of the DoWork event handler. Modify the DoWork event
handler to incorporate progress related code. Here's the complete implementation:
var data = (PrimeInputData)e.Argument;
int count = 0;
_worker.ReportProgress(0);

Threading

426

int range = data.Last - data.First + 1, progressCount = 0;
for(int i = data.First; i <= data.Last; i++) {
 if(_worker.CancellationPending) {
 e.Cancel = true;
 break;
 }
 int limit = (int)Math.Sqrt(i);
 bool isPrime = true;
 for(int j = 2; j <= limit; j++)
 if(i % j == 0) {
 isPrime = false;
 break;
 }
 if(isPrime)
 count++;
 if(++progressCount % 100 == 0)
 _worker.ReportProgress(progressCount * 100 / range);
}
if(!e.Cancel) {
 _worker.ReportProgress(100);
 e.Result = count;
}

13. Run the application. Enter numbers to work with, click on Calculate and watch the
progress change.

How it works...
Cancellation initiation with the BackgroundWorker works by calling the CancelAsync
method. This sets the CancellationPending property to true, that (hopefully) the DoWork
event handler inspects from time to time. This is, just like CancellationToken(Source),
cooperative cancellation. In our case, if the flag is set, the DoEventArgs.Cancel
property is explicitly set to true, indicating the operation has actually been canceled. The
RunWorkerCompletedEventArgs.Cancelled conveys that information, allowing the
correct result to be presented.

Chapter 11

427

Reporting progress is a matter of calling BackgroundWorker.ReportProgress method
with some number indicating progress. Note that the number doesn't have to be between
zero and 100, but can be anything that makes sense for the application. In the preceding
code, for every 100 numbers the progress is reported. Reporting the progress causes the
ProgressChanged event to be fired on the UI thread where some UI can be modified – the
Value of ProgressBar in this case.

There's more...
It may be tempting to report progress after each and every number, but that would stress
the UI thread too much and cause the dreaded "not responding" result, defeating the very
purpose the BackgroundWorker was designed for. This is why the progress should be
reported in reasonable intervals, so that the UI thread is busy only momentarily.

What about Parallel.For?
If we use the Parallel.For to parallelize the computation to make better use of the
available cores, how do we cancel the operation? Using the following code does not compile:

if(_worker.CancellationPending) {
 e.Cancel = true;
 break;
}

Why? The break instruction fails to compile because there is no loop here – it's just a delegate
that's passed in to Parallel.For. How can we handle that? Fortunately, Parallel.For
can accept an alternative delegate, Action<int, ParallelLoopState> (instead of
Action<int>) that can be used for such matters. The entire Parallel.For call should
be changed to this:

Parallel.For(data.First, data.Last + 1, (i, state) => {
 if(_worker.CancellationPending) {
 e.Cancel = true;
 state.Stop();
 }
 int limit = (int)Math.Sqrt(i);
 bool isPrime = true;
 for(int j = 2; j <= limit; j++)
 if(i % j == 0) {
 isPrime = false;
 break;
 }
 if(isPrime)
 Interlocked.Increment(ref count);
});

Threading

428

Calling ParallelLoopState.Stop breaks out of the entire parallel loop as soon as
possible; this is exactly what we want.

Implementing progress correctly with Parallel.For is left as an exercise for the reader.

Using a timer to do periodic updates
It is sometimes useful to update parts of the user interface periodically. For example, an
application may need to display the current time in some part of the UI. Or some color
changes need to be made on a regular basis based on some runtime criteria. Although
it's possible to create a thread that sleeps for a certain amount of time and then does the
updates, this has two flaws: the first is that most of the time the thread sleeps. Threads are
supposed to do useful work and not sleep most of the time – the very fact the thread exists
requires it to have its stack space (1MB by default), which may be wasteful in such a case.
The second flaw is that we would have to marshal the UI update call using some mechanism
we've already seen (Dispatcher, SynchronizationContext, and so on), which makes
the code cumbersome.

A timer can be used instead if such updates are required, without the need to create
additional threads. In this recipe, we'll use the DispatcherTimer class to implement a
timer that can be used easily to update the UI, as its Tick event always fires on the UI thread.

Getting ready
Make sure Visual Studio is up and running.

How to do it...
We'll create a simple demo that changes some text and a brush in regular time intervals.

1. Create a new WPF application named CH11.PeriodicUpdates.

2. Open MainWindow.xaml. We'll create a TextBlock and an Ellipse to be
modified by a timer. Add the following markup to the existing Grid:
<Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition />
</Grid.RowDefinitions>
<TextBlock x:Name="_time" HorizontalAlignment="Center"
 FontSize="20" Margin="8"/>
<Ellipse Margin="10" Stroke="Black" StrokeThickness="2"
 x:Name="_e1" Grid.Row="1" />

Chapter 11

429

3. Open MainWindow.xaml.cs. Add using statements for the System.Reflection
and System.Windows.Threading namespaces.

4. Add the following private fields to the MainWindow class:
DispatcherTimer _timer = new DispatcherTimer();
int _counter;
Random _rnd = new Random();

5. Add the following code to set up the timer and handle its Tick event in the
constructor, after the call to InitializeComponent:
_timer.Interval = TimeSpan.FromSeconds(.5);
_timer.Tick += delegate {
 _time.Text = DateTime.Now.ToLongTimeString();
 if(++_counter == 3) {
 var brushes = typeof(Brushes).GetProperties(
 BindingFlags.Public | BindingFlags.Static);
 _e1.Fill = (Brush)brushes[_rnd.Next(brushes.Length)].
 GetValue(null, null);
 _counter = 0;
 }
};
_timer.Start();

6. Run the application. You should see the time being updated, while the Ellipse
Fill Brush changes every 1.5 seconds.

Threading

430

How it works...
The System.Windows.Threading.DispatcherTimer class represents a timer that is
bound to the UI thread. The Interval property indicates the period of the timer; the Tick
event is raised every such interval on the UI thread. The timer can be started by calling the
Start method or setting the IsEnabled property to true (same effect).

Similarly, stopping the timer can be done with the Stop method or by setting IsEnabled
to false.

As the Tick event is raised on the UI thread, we should make sure the work being done is
not a lengthy one. If it is, the UI may become unresponsive; in such a case, offload the work
to another thread.

There's more...
.NET defines no less than four timers. One such timer is WinForm's equivalent to
DispatcherTimer, namely System.Windows.Forms.Timer.

The System.Threading.Timer is a general purpose timer that invokes a delegate
(TimerCallback, provided in the constructor) on a thread pool thread. This means that if a
UI update is required, marshaling must be used to do the UI update. On the other hand, long
running work is possible without blocking the UI thread.

The System.Timers.Timer derives from System.ComponentModel.Component, which
means it has designer-friendly features, and was mostly used in the WinForms world. Its
Elapsed event can be raised in the UI thread if its SynchronizationObject property is
set to an object that implements the ISynchronizeInvoke interface (which all WinForms
controls do), otherwise it's raised on a thread pool thread.

I recommend using System.Threading.Timer for things that don't require UI updates.

Using C# 5.0 to perform asynchronous
operations

Using synchronous operations is really easy. Just call some operation, wait for it to return,
and use the result. As we've seen, the problem is that slow operations block the calling (UI)
thread or that thread does some hard CPU bound work; in both cases, the UI may become
unresponsive. We have seen several ways to deal with that. These require running the long
operation on a different thread, and when the results are finally available, marshal some
code to update the UI.

Chapter 11

431

The net result is code complexity, which grows quickly with more and more asynchronous
operations happening. And if we consider more than one operation at a time, potential
cancellations, adding timeouts, handling exceptions conveniently – code complexity
climbs quickly.

C# 5.0 has a new feature related to calling operations running asynchronously and waiting
efficiently for the result without all the required marshaling and code complexity. In this recipe,
we'll take a brief look at using this feature to make asynchronous calls look very similar to
synchronous ones, but still maintain responsive UI.

Getting ready
We'll need Visual Studio 2012 or later for this recipe. Make sure it's up and running.

How to do it...
We'll use the same prime counting example, but convert that to a C# 5.0 version, along with
cancellation and progress.

1. Create a new WPF application named CH11.AsyncCalcWithCS5.

2. Open MainWindow.xaml. Add the following properties to the Window (remove the
Width and Height properties):
Title="Async Calc with C# 5.0" ResizeMode="CanMinimize"
SizeToContent="WidthAndHeight"

3. Add the following inside the existing Grid (this is pretty much the same UI as the
other prime counting samples):
<Grid.RowDefinitions>
 <RowDefinition Height="Auto"/>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
</Grid.RowDefinitions>
<StackPanel Orientation="Horizontal" Margin="6">
 <TextBlock Text="From:" />
 <TextBox Margin="10,2,2,2" Width="120"
 MaxLength="10" x:Name="_from"/>
 <TextBlock Text="To:" Margin="20,0,0,0"/>
 <TextBox Margin="10,2,2,2" Width="120" MaxLength="10"
 x:Name="_to"/>
</StackPanel>
<StackPanel Orientation="Horizontal" Grid.Row="1" Margin="6">
 <Button Content="Calculate" Padding="4"
 x:Name="_calcButton" Margin="4"/>

Threading

432

 <Button Content="Cancel" Padding="4" Margin="4"
 x:Name="_cancelButton" IsEnabled="False"/>
</StackPanel>
<ProgressBar x:Name="_progress" Grid.Row="2" Margin="4"
 Height="30" />
<TextBlock x:Name="_result" Grid.Row="3" Margin="6"
 HorizontalAlignment="Center" FontSize="20" />

4. Open MainWindow.xaml.cs. Add using statement for the System.Threading
and System.Threading.Tasks namespaces.

5. Add a method that would count prime numbers asynchronously with the
following implementation:
async Task<int> CountPrimesAsync(int first, int last,
 CancellationToken ct, IProgress<double> progress) {
 var task = Task.Run(() => {
 int total = 0;
 int range = last - first + 1;
 int pcount = 0;
 for(int i = first; i <= last; i++) {
 ct.ThrowIfCancellationRequested();
 bool isPrime = true;
 int limit = (int)Math.Sqrt(i);
 for(int j = 2; j <= limit; j++)
 if(i % j == 0) {
 isPrime = false;
 break;
 }
 if(isPrime)
 total++;
 if(++pcount % 1000 == 0)
 progress.Report(pcount * 100.0 / range);
 }
 return total;
 });
 return await task;
}

6. The async and await keywords are new in C# 5.0. A detailed explanation of the
way this method works follows in the How it works… section. Add a private field to
the MainWindow class of type CancellationTokenSource:
CancellationTokenSource _cts;

Chapter 11

433

7. Add a Click event handler for the Calculate button. Implement the handler as
follows (note the async keyword must be added to the event handler for this
method to compile successfully):
async void OnCalculate(object sender, RoutedEventArgs e) {
 int first = int.Parse(_from.Text),
 last = int.Parse(_to.Text);
 _cts = new CancellationTokenSource();
 _calcButton.IsEnabled = false;
 _cancelButton.IsEnabled = true;
 _result.Text = "Calculating...";
 var progress = new Progress<double>(
 value => _progress.Value = value);

 try {
 int count = await CountPrimesAsync(first, last,
 _cts.Token, progress);
 _result.Text = "Total Primes: " + count;
 }
 catch(OperationCanceledException ex) {
 _result.Text = "Operation cancelled";
 }
 finally {
 _cts.Dispose();
 _calcButton.IsEnabled = true;
 _cancelButton.IsEnabled = false;
 }
}

8. CountPrimesAsync returns a Task<int> but we just "await" the actual result and
use it very naturally, just as if it was a synchronous call (and it's not). Add a Click
event handler for the Cancel button and implement with the following code:
void OnCancel(object sender, RoutedEventArgs e) {
 _cts.Cancel();
}

9. That's it. Run the application and try counting some primes. Try the Cancel button
as well.

Threading

434

How it works...
C# 5.0 adds two keywords related to asynchronous programming: async and await. The
await keyword can be used on anything that is "awaitable", which means following a certain
pattern the compiler looks for in that particular object. Most of the time await is used on
Task or Task<T>, which are the most common built-in "awaitables". The result of awaiting
Task<T> is T. As CountPrimesAsync returns a Task<int>, awaiting that task yields an
int (which is the required result).

Clearly, await must return only when the awaited Task is done. What does the thread do
until that time? It returns to its caller. In our case, it simply returns to processing UI messages,
which keeps the UI responsive. This is not the same as calling Task<T>.Result or Task.
Wait – these methods may block the calling thread, and since it's the UI thread, the UI will
become unresponsive; and that's a very big difference.

You may wonder how all this works. The full details are beyond the scope of this recipe, but
here's the gist of it: the compiler splits the method into two parts: before the call to await,
and everything after that. The latter is invoked as a continuation when the task is complete
(on the same SynchronizationContext). You can open a tool, such as Reflector, and
view the generated code; it's not pretty, but it works.

All this means that the following line waits asynchronously for the returned Task to complete
and harvests the result:

int count = await CountPrimesAsync(first, last, _cts.Token,
 progress);

The calling thread literally returns from the call at the await point and somehow returns to the
call after await is done and the result is available. If we were to write a synchronous version
of this code it would look something like this:

int count = CountPrimes(first, last, _cts.Token, progress);

Note the high degree of similarity – this is the power of C# 5.0 – of asynchronous code
looking like synchronous code; and this is just the tip of the iceberg.

What's the purpose of the async keyword? On a purely syntactic level, a method that uses
await must be marked with async. This method can only return void, Task, or Task<T>.
In the case of a non-void return, the method may return the expected Task, but it can
alternatively return the value itself in the case of Task<T>(of type T), just like the
CountPrimesAsync method does: it explicitly returns an int, although the method
itself returns a Task<int>. This works because the compiler wraps that return value in a
Task<int> - after all, there is an await in there somewhere, which means the method
returns sooner than its actual end.

Chapter 11

435

To clarify, CountPrimesAsync builds a Task<int> object and returns the total primes
found from its task delegate. Then the actual return value is:

return await task;

Remember that await "strips" the Task and just uses the result (once it's available).
This await actually returns immediately to its caller as a Task<int> that is awaited
upon by the Calculate Click event handler as shown above. Note that we could make
CountPrimesAsync a non-async method and simply return the created Task<int>
without any awaits inside – the effect would be the same.

There's more...
The Task<int> is built using Task.Run which is a shortcut introduced in .NET 4.5 to create
and start a Task and get the Task reference back in one stroke. It's also possible to use
the Task.Factory.StartNew method to get the same effect (available from .NET 4), but
Task.Run is shorter.

Cancellation uses the familiar CancellationToken, but to cancel a Task we can't simply
return; if we did, that task would simply be considered as completed successfully. Cancellation
with tasks is conveyed via an exception of type OperationCanceledException, which is
the one thrown by the call to CancellationToken.ThrowifCancellationRequested.
This is why the try/catch block is required in the calling code.

Reporting progress is done with the IProgress<T> interface defined in .NET 4.5. We can
provide our own implementation, but we can also use the stock implementation provided by
.NET 4.5 called Progress<T>, that accepts a delegate in the constructor that is invoked any
time the code calls the IProgress<T>.Report method. In our case, that delegate simply
hands off the provided value to the Value property of ProgressBar.

What about non-CPU bound operations?
This await/async stuff has a name; Task Asynchronous Pattern (TAP), similar to other
asynchronous patterns that exist in .NET, Asynchronous Programming Model (APM) and
Event Asynchronous Pattern (EAP).

Here's an example of a non-CPU operation: getting information from a network. Here's a
simple synchronous code to get the job done (_result is a TextBox):

var wc = new WebClient();
_result.Text = "Please wait...";
try {
 _result.Text = wc.DownloadString("http://msdn.microsoft.com");
}
catch(WebException ex) {
 _result.Text = "Error: " + ex.Message;
}

Threading

436

Simple and to the point (although the "Please wait…" message will never show). Error handling
is also simple with a normal try/catch block. However, the thread blocks while the call is
out and this freezes the UI, assuming it started on a UI thread.

Fortunately, WebClient supports the EAP model for asynchronous calls like so:

var wc = new WebClient();
_result.Text = "Please wait...";
wc.DownloadStringCompleted += (s, args) => {
 if(args.Error != null)
 _result.Text = "Error: " + args.Error.Message;
 else
 _result.Text = args.Result;
};
wc.DownloadStringAsync(new Uri("http://msdn.microsoft.com"));

This looks very awkward; no straightforward exception handling. The event handler
must come before the actual code that starts the operation with WebClient.
DownloadStringAsync. We know the order is different, but it looks unnatural; and that's for
just one operation. Also, we had some "luck" here: the completed event is raised on the same
SyhnchronizationContext as the calling code; WebClient is "polite"; not every class is.

The C# 5.0 version looks like this:

async void OnGetDataAsync(object sender, RoutedEventArgs e) {
 var wc = new WebClient();
 _result.Text = "Please wait...";
 try {
 _result.Text = await wc.DownloadStringTaskAsync(
 "http://msdn.microsoft.com");
 }
 catch(WebException ex) {
 _result.Text = "Error: " + ex.Message;
 }
}

Notice the similarity with the synchronous code. Exception handling is as usual. The
compiler breaks the method behind the scenes, but that doesn't concern us. WebClient.
DownloadStringTaskAsync returns a Task<string>, which means it can be awaited
upon ("awaitable"). The UI remains responsive during the I/O call.

Chapter 11

437

More async
The async/await feature of C# 5.0 is a major one, and complete treatment of this is beyond
the scope of this recipe. Here are a few more notes on this feature:

 f Many new APIs in .NET 4.5 use this Task Asynchronous Pattern. WebClient
is one such class. Another one is WebRequest that originally uses the APM
(BeginGetResponse/EndGetResponse), but now also has a TAP version
with GetResponseAsync that is awaitable.

 f The System.IO.Stream class that uses the APM (for example,
BeginRead/EndRead), now has a TAP version (ReadAsync, WriteAsync).

 f The Task class has some helpers for TAP usage. Task.Delay for example,
returns a Task that completes in the specified time. This can be used for
timeouts without blocking.

 f Awaiting can be combined with Task.WhenAll and Task.WhenAny that return
Task objects that are naturally awaitable. For example, suppose we want to use
WebClient to get some data, but will wait no more than 3 seconds for the result,
otherwise it should be considered a timeout. Here's an elegant solution:

async void OnGetData(object sender, RoutedEventArgs e) {
 var wc = new WebClient();
 var t1 = wc.DownloadStringTaskAsync(
 "http://msdn.microsoft.com");
 var t2 = Task.Delay(3000);
 var tresult = await Task.WhenAny(t1, t2);
 if(tresult == t1)
 _result.Text = t1.Result;
 else
 _result.Text = "Timeout!";
}

Task.WhenAny returns a Task<Task> which sounds complicated, but when awaited upon,
simply returns the Task that completed first.

Anything can be awaited provided it follows a predefined pattern. That pattern includes
a GetAwaiter method that must be implemented on the awaited object (either on the
actual type or as an extension method), and that returned "awaiter" must implement the
INotifyCompletion interface (with one method named OnCompleted that accepts an
Action delegate provided by the compiler, which is the compiler-generated continuation),
an IsCompleted property, and a GetResult method. Anything that satisfies these
demands can be awaited; the Task and Task<T> classes implement this pattern.

Index
Symbols
2D 326
3D 326
- BlurEffect 367

A
AcceptsReturn property 113
AdornedElement property 233
adorners

about 340
adorner layer 344
creating 340, 341-343
working 344

Alt + C 112
Alt key 113
Alt + Key 136
Alt + N 113
animation easing

about 359
adding 360
working 361, 362

Application.StartupUri property 8, 251
ArrangeOverride method 402
async/await feature, C# 5.0 437
asynchronous operations

performing, C# 5.0 used 430-435
async keyword

purpose 434
attached events 48, 49
attached property

about 25
creating 28-31
declaring type, relating to 27, 28
existing property, reusing 33
need for 27

using 25-28
working 27, 31, 32

AttachedPropertyBrowsableForChildren cus-
tom attributes 403

AutoGenerateColumns property 224
AutoGeneratingColumn event 222
automatic styles

about 293, 294
applying 291
working 292

Avatar column 222

B
BackgroundWorker

Parallel.For 427
used, for cancelation adding 423-426
used, for progress adding 423-426

BackgroundWorker component
about 419
DoWork event handler 423
Task Parallel Library 423
using 419-422
working 422

BackgroundWorker.ReportProgress method
427

basic MVVM application
about 246
blendability 252, 253
ICommand, implementing 252
implementing 246-249
working 250, 251

behaviors
about 306
custom behaviors 309, 310
using 306-308
working 308, 309

440

binary resources
about 63
accessing, from another assembly 72-75
accessing, in code 70-72
embedded resource 69
using 63-67
working 68, 69, 76

binding modes, WPF
OneTime 172
OneWayToSource 172

BindingOperations.SetBinding method
382, 393

Binding.UpdateSourceTrigger property 230
Binding.ValidatesOnDataErrors property 231
Binding.ValidatesOnExceptions property 230
bitmap

manipulating programmatically 336-338
WriteableBitmap content, modifying 339
WriteableBitmap, higher-level access

339, 340
WriteableBitmap, working 339

BitmapEffect class 368
blendability 252
bound collections

about 202
filtering 202-205
grouping 209-211
grouping, by non-property 213, 214
ICollectionView, features 208
live shaping 208, 209
sorting 202-205
working 206, 207, 212, 213

bubbling
about 47
stopping 48

ButtonBase class 49

C
C# 5.0

async 434
async/await feature 437
await 434
non-CPU bound operations 435, 436
SetProperty, implementing 180
used, for asynchronous operation performing

430-435

Calculate button 433
CallerMemberName attribute 180
CanAccess method 210
cancelation support

about 416
adding 416-418
thread aborting method, avoiding 419
working 418

Cancel button 433
CanExecuteChange event 252
canvas 97
CellEditingTemplate property 226
checkboxes 139
CircleEase function 362
classic data binding. See element to data

binding
Click event 49, 351
Click event handler 71
collection binding

about 180
ItemsControl 183
real data 184
selected items, synchronizing 183
steps 180-182
working 182, 183

CollectionViewGroup.Name property 213
CombinedGeometry 330
CommandTarget property 384
common dialog boxes

colors, selecting 155
using 153, 154
Windows API Code Pack 156
working 154

complete MVVM style application
about 259
building 259-272
MVVM implementations 276
working 273-275

CompositionTarget.Rendering event 359
content controls

headered content controls 118-120
using 114-117
working 117, 118

ContentPresenter 323
Content property 187
ContentTemplate property 118, 185

441

context menu
about 137
creating 137, 138
working 138

controls
about 110

control template, for progress bar
combining, with style 313
extending, with attached properties 314, 315
parts, replacing 315, 316
properties 313
replacing 310-312
Visual State Manager 316
working 312

control template, for scroll bar
replacing 317-320
working 320, 321

ControlTemplate.Triggers property 299
ConvertBack method 196
ConverterParameter property 196
Convert method 195
coordinates systems, WPF 83
CornerRadius property 95
CurrentItem property 201
custom animations

about 354
creating 354-359
working 359

custom control
about 384
bindings 394
creating 384-391
default template, customizing 396, 397
events, handling 394
Generic.xaml 394
named parts, searching 393
working 392, 393

custom effects
using, with pixel shaders 363-365

custom error template
about 232
applying 233

custom markup extension
about 37
creating 37- 40
uses 43
working 41, 42

custom panel
about 398
creating 398-401
using 404
working 401-403

custom shape
about 326
built-in shapes 332
creating 326-328
geometries 329, 331
versus geometries 332
working 329

custom shaped window
about 158, 159
creating 159, 160
reusability 162
working 161, 162

custom type instances, XAML
creating 9-14

custom validation rules 232

D
data

custom error template 232, 233
customization options 227
custom validation rules 232
data annotations, using 233-235
presenting, in grid 220-225
template-based column, editing with 226
validating 228-231

data annotations
about 233
using 234, 235

data binding 169, 415, 416
DataContext property 176
DataGrid

column, resizing 227
selection methods 227
sorting technique 227
working 223

DataGrid.CellStyle property 291
DataGridColumn.CanUserSort property 227
data template

about 184
data type based data templates 187, 188
selectors 189-191

442

using 184-186
working 186, 187

DataTemplate.Triggers property 299
data triggers

about 299
using 300, 301
working 302

data type based data templates 187, 188
data validation

about 228
custom error template 232, 233
custom validation rules 232
data annotations, using 233-235
steps 228-230
working 230

DebugView 167
default template, of custom control

customizing 396, 397
working 398

DefiningGeometry property 329
dependency property

about 15
creating 15-19
inheritance 21
levels 24
need for 22-24
working 20, 21

dependency property, levels
active animation 24
default style 25
default value 25
Implicit style 25
Inheritance 25
local value 24
property coercion 24
style setters 25
style triggers 25
template parent properties 24
template triggers 25

DesktopBrush property 34
Device Independent Units. See DIU
dialog box

about 149-151
modeless dialog 152, 153
working 152

Dispatcher
alternatives 414
enhancements, in WPF 4.5 415
extension methods 415
InvokeAsync method 415
options 415
working 413

DispatcherUnhandledException event 167
DisplayMemberPath property 182
DIU 83
DoubleAnimationUsingPath.Source property

352
DoWorkEventArgs.Argument property 422
DoWork event handler 423
drag-and-drop

about 103
implementing 104-106
using, in other application 108
working 106

DragDrop.DoDragDrop method 106
DragEventArgs.GetPosition method 107
DragOver event 107
DrawingContext

DrawDrawing 408
DrawGeometry 408
DrawLine 407
DrawText 407
DrawVideo 408
Push methods 408

DropShadowEffect 367

E
EaseInCore function 362
EasingMode property 361
ElementName property 172
elements

about 110
adding, to panel 98, 99
placing, in exact positions 96, 97
transforms, applying 333, 334

element to data binding
about 174, 175
binding error 176
issues 176

443

source binding object, obtaining 177
working 176

element to element binding
about 170
binding mode 172
source trigger, updating 173
source, updating manually 173
steps 170-172
target, updating manually 173

ErrorMessage property 235
event trigger

about 302
creating 303
working 303, 304

Execute method 242
eXtensible Markup Language. See XAML

F
FindAncestor modes 177
FontSize property 21, 171
FrameworkElement.FocusVisualStyle property

290
FrameworkElement.SetBinding method 393
FrameworkElement.Triggers property 299

G
GeneralForecast property 199
Generic.xaml

about 395
refactoring 395

GeometryGroup 330
Geometry methods

FillContains 330
GetArea 330
GetFlattenedGeometry 330
GetRenderBounds 330

Geometry.Transform property 336
GetArea method 329
GetAwaiter method 437
GradientActiveCaptionBrush property 36
graphics processing unit (GPU) 363
grid rows/columns

sizing 90
working 91, 92

GroupStyle property 211

H
Height property 85
hierarchical data

binding, to TreeView 217-219
High Level Shader Language. See HLSL
HLSL 366

I
ICommand

implementing 252
ImageData class 251
ImageData.ImagePath property 247
images

displaying 120-122
working 122-125

ImageSource 123
INotifyPropertyChanged

implementing 178, 179
InvokeAsync method 415
Invoke method 415
IProgress<T>.Report method 435
IsCommentOK property 265
IsCompleted property 437
IsSynchronizedToCurrentItem property 183
IsTabStop property 143
item list

creating 131, 132
working 133, 134

ItemsControl class 187
ItemsControl.ItemContainerStyle property

290
ItemsPanel property 398
ItemsPresenter 323
Items property 183
ItemsSource property 185
ItemTemplateSelector property 212

K
keyboard focus

placing 141-143
versus logical focus 143

444

L
Language Integrated Query. See LINQ
layout

about 81, 82
contents 82
FlowDirection 83
HorizontalAlignment/VerticalAlignment 82
LayoutTransform 82
Margin 82
padding 82
Width/Height 82

lightweight custom element
about 404
creating 404-407
dependency property ownership 408
DrawingContext 408
working 407

LINQ 202
ListBox.SelectedItem property 201
live shaping 208
logical focus

versus keyboard focus 143
logical resources

about 51
adding dynamically 55
deleting dynamically 55
duplicate keys 79
dynamically binding to 57, 58
DynamicResource markup extension, working

58
locations 57
managing 76-78
modifying 55, 56
non-shared resources 56
other resources, using 56
using 52, 53
working 53, 54, 78, 79

M
master-detail view

about 199
creating 199, 200
selected item binding 201
working 201

MeasureOverride method 327
Model property 273
Model View Presenter. See MVP
Model View View-Model. See MVVM
MouseButtonEventArgs.GetPosition method

47
multi binding

about 214
StringFormat property 217
using 214, 215, 216
working 216, 217

multi trigger
about 304
creating 304, 305
working 305, 306

MVC 170
MVP 170
MVVM 170
MVVM framework

about 254
building 254-257
Caliburn Micro 258
MVVM Light Toolkit 258
non-ICommandSource elements 258, 259
Prism 259
Simple MVVM Toolkit 258
working 257, 258

N
NavigationUri property 114
NewBlogPostCommand class 283
NewBlogPostCommand object 281
New Comment button 266
NewCommentCommand property 266
NewPostCommand property 268
non-UI thread

UI, updating 410-412

O
OnAngleChanged method 31
OnRender method 406
OnSelectedColorChanged method 371
OwnedWindows property 158

445

P
Paint event 407
panel

elements, adding 98, 99
panel border

creating 94, 95
working 95

Parallel.For 427
Paste button 127
path-based animations

about 350
creating 351
performance 353
working 352

PathGeometry 330
periodic updates

conducting, timer used 428-430
PixelShader.RegisterPixelShaderSampler-

Property method 366
pixel shaders

BitmapEffect class 368
built-in effects, using 367
custom effects, using 363-365
types 367
working 366

Pop method 408
PreviousData modes 177
PriorityClass property 211
Prism 259
ProcessName property 201
progress bar

about 312
control template, replacing 310-312

property-based animations
about 344, 345
animation property, specifying 349
AutoReverse property 349
BeginTime property 348
By property 348
creating 345-347
Duration property 348
Expression Blend, using 350
FillBehavior property 348
From property 348

RepeatBehavior property 349
SpeedRatio property 349
storyboards 349
To property 348
using 350
working 347

property trigger
about 295-297
creating 295
limitations 298
locations 299
priorities 299
using 298
working 296

ProvideValue method 39

R
radio buttons

about 139
checkboxes, selecting 139, 140
options, selecting 139, 140

RelativeSource property 177
RelayCommand class 282
RenderTransformOrigin effect 335
RenderTransform property 297, 334
Required attribute 234
ResourceManager class 51
Resources folder 79
ReversibleCommand 283
RotateTransform 336
routed commands

about 238
alternative ICommand implementations 245
built-in implementations 244, 245
command sources 245
using 239-241
working 242, 243

RoutedEventArgs.Source property 47
routed events

about 44
handling 44- 46
working 47, 48

RowDetailsVisibilityMode property 227
RunWorkerCompletedEventArgs.Cancelled

property 425

446

S
ScaleTransform 336
scrollable user interface

about 92
creating 92, 93
working 94

scroll bar
control template, replacing 317-319

SelctionMode property 227
SelectedItem property 219
SelectedItems property 133
SelectionChanged event 131
SelectionUnit property 227
Selector control

selection, customizing 321-323
working 323, 324

Self modes 177
serializable 108
SessionId property 190
SetProperty

implementing, with C# 5.0 180
implementing, with Visual Studio 2012 180

SharedSizeGroup property 87
Shazzam Shader Editor 367
single instance application

creating 162, 164
working 163-165

Source property 79
standard commands, in user control

handling 381-383
working 383, 384

standard controls, WPF
checkboxes 139
content controls, using 114
context menu, creating 137
images, displaying 120
list of items, creating 131
radio buttons 139
standard menu, creating 134
tab order, manipulating 141
text, working with 110
tooltips, creating 126

standard menu
creating 135, 136
events 137

MenuItem properties 137
working 136

StartupUri property 271
static property, XAML

accessing 33-36
built in markup extensions 37
working 36

StockItem class 208
StreamGeometry 331
styles

about 286
applying automatically 291
creating 286-289
inheriting 290
setting, at different locations 290
TargetType property 289, 290
using 286-289
working 289

SysInternals tools 167
System.IO.Stream class 437
System.Windows.Threading.DispatcherTimer

class 430

T
tabbed user interface

about 100
creating 100, 101
working 101-103

TabIndex property 143
Tab key 141
table-like user interface

about 83
creating 84, 85
Grid 88
placing, in same cell 88
rows/columns, adding 88
SharedSizeGroup property, using 86, 88
UniformGrid 89
working 85, 86

tab order
setting 141-143

TAP 435
Target property 113
TargetType property 289

447

Task Asynchronous Pattern. See TAP
Task class 437
Task Parallel Library 423
TemplatedParent modes 177
Template property 110
text

working with 110-114
Timeline.DesiredFrameRate property 353
timer

used, for periodic update conducting
428-430

tooltips
about 126
creating 126, 127
customizing 130
DataTemplate defining 130
working 128, 129

ToString methods 197
transforms

applying, on elements 333, 334
RenderTransformOrigin effect 335
uses 336
working 334

TranslateTransform 336
TreeView

hierarchical data, binding 217-219
working 219

Triggers property 361
tunneling

about 47, 48
stopping 48

U
UIElement.Effect property 366
UI, from non-UI thread

Dispatcher 413
Dispatcher alternative 414
priority levels 413
updating 410-412
working 412

UndoManager class 283
Undo method 282
undo/redo system

about 276
creating 276-282
working 282, 283

unhandled exception
about 166
handling 166, 167
working 167

user control
about 370
converters, optimizing 379, 380
creating 370-377
standard commands, handling

381-383
tunneling event, adding 380, 381
working 378, 379

user-selected colors
using 59-62
working 62

user-selected fonts
using 59-62
working 62

V
ValidationRule class 232
ValidationRules property 231
value converters

about 191-195
converters, used for debugging 197
data triggers, customizing 197, 199
strings, formatting 197
working 196

Visual Studio 2012
SetProperty, implementing 180

W
window

about 145
command line arguments, accessing 148
creating 146, 147
startup window, selecting 148
working 147

Window.Background property 66
window ownership

creating 156-158
working 158

Windows API Code Pack 156
Windows Presentation Foundation. See WPF
WPF

about 7, 325

448

coordinates systems 83
data binding 169
dependency properties 9
drawbacks 237, 238
elements, customizing 369
fundamental element-related classes 110
logical resources 52
standard controls 109

WPF 4.5
Dispatcher enhancements 415

WPF events. See routed events
wpffx 366

X
XAML

about 8
compiling 8

custom type instances, creating 9-14
objects creating, requirements 8
static property, accessing 33-36
static property, working 36, 37

x:Key attribute 53
XML Paper Specification. See XPS
XPS 69

Z
ZoomCommand 252

Thank you for buying
Windows Presentation Foundation 4.5 Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution-based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.PacktPub.com.

About Packt Enterprise
In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order
to continue its focus on specialization. This book is part of the Packt Enterprise brand, home
to books published on enterprise software – software created by major vendors, including (but
not limited to) IBM, Microsoft and Oracle, often for use in other corporations. Its titles will offer
information relevant to a range of users of this software, including administrators, developers,
architects, and end users.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should be
sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

WCF 4.0 Multi-tier Services
Development with LINQ to
Entities
ISBN: 978-1-84968-114-8 Paperback: 348 pages

Build SOA applications on the Microsoft platform with
this hands-on guide updated for VS2010

1. Master WCF and LINQ to Entities concepts by
completing practical examples and applying
them to your real-world assignments

2. The first and only book to combine WCF and LINQ
to Entities in a multi-tier real-world WCF service

3. Ideal for beginners who want to build scalable,
powerful, easy-to-maintain WCF services

MVVM Survival Guide for
Enterprise Architectures in
Silverlight and WPF
ISBN: 978-1-84968-342-5 Paperback: 490 pages

Eliminate unnecessary code by taking advantage of the
MVVM pattern—less code, fewer bugs

1. Build an enterprise application using Silverlight
and WPF, taking advantage of the powerful
MVVM pattern

2. Discover the evolution of presentation patterns—
by example—and see the benefits of MVVM
in the context of the larger picture of
presentation patterns

3. Customize the MVVM pattern for your
projects’ needs by comparing the various
implementation styles

Please check www.PacktPub.com for information on our titles

Microsoft Windows Workflow
Foundation 4.0 Cookbook
ISBN: 978-1-84968-078-3 Paperback: 255 pages

Over 70 recipes with hands-on, ready-to-implement
solutions for authoring workflows

1. Customize Windows Workflow 4.0 applications to
suit your needs

2. A hands-on guide with real-world illustrations,
screenshots, and step-by-step instructions

3. Explore various functions that you can perform
using WF 4.0 with running code examples

Microsoft Visual Studio
LightSwitch Business
Application Development
ISBN: 978-1-84968-286-2 Paperback: 384 pages

A jump-start guide to application development with
Microsoft's Visual Studio LightSwitch

1. A hands-on guide, packed with screenshots and
step-by-step instructions and relevant background
information—making it easy to build your own
application

2. Easily connect to various data sources with
practical examples and easy-to-follow instructions

3. Create entities and screens both from scratch and
using built-in templates

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Foundations
	Introduction
	Creating custom type instances in XAML
	Creating a dependency property
	Using an attached property
	Creating an attached property
	Accessing a static property from XAML
	Creating a custom markup extension
	Handling routed events

	Chapter 2: Resources
	Introduction
	Using logical resources
	Dynamically binding to a logical resource
	Using user-selected colors and fonts
	Using binary resources
	Accessing binary resources in code
	Accessing binary resources from another assembly
	Managing logical resources

	Chapter 3: Layout and Panels
	Introduction
	Creating a table-like user interface
	Dynamically sizing grid rows/columns
	Creating a scrollable user interface
	Creating a border around panels and
elements
	Placing elements in exact positions
	Adding/removing elements to a panel
dynamically
	Creating a tabbed user interface
	Implementing drag-and-drop

	Chapter 4: Using Standard Controls
	Introduction
	Working with text
	Using content controls
	Displaying images
	Creating tooltips
	Creating a list of items
	Creating a standard menu
	Creating a context menu
	Selecting options with checkboxes and
radio buttons
	Manipulating tab order and focus

	Chapter 5: Application and Windows
	Introduction
	Creating a window
	Creating a dialog box
	Using the common dialog boxes
	Creating ownership between windows
	Creating a custom shaped window
	Creating a single instance application
	Handling an unhandled exception

	Chapter 6: Data Binding
	Introduction
	Element to element binding
	Binding to a single object
	Binding to a collection
	Using data templates
	Using value converters
	Creating a master-detail view
	Sorting and filtering bound collections
	Grouping bound collections
	Binding to multiple properties
	Binding hierarchical data to a TreeView
	Presenting data in a grid
	Validating data

	Chapter 7: Commands and MVVM
	Introduction
	Using routed commands
	Implementing a basic MVVM application
	Building a simple MVVM framework
	Building a complete MVVM style application
	Creating an undo/redo system

	Chapter 8: Styles, Triggers, and Control Templates
	Introduction
	Creating and using styles
	Applying a style automatically
	Creating a property trigger
	Using data triggers
	Creating an event trigger
	Creating a multi trigger
	Using behaviors
	Replacing the control template of a
progress bar
	Replacing the control template of a
scroll bar
	Customizing selection in a Selector control

	Chapter 9: Graphics and Animation
	Introduction
	Creating a custom shape
	Applying transforms on elements
	Manipulating a bitmap programmatically
	Creating adorners
	Creating property-based animations
	Creating path-based animations
	Creating custom animations
	Adding animation easing to animations
	Using custom effects with pixel shaders

	Chapter 10: Custom Elements
	Introduction
	Creating a user control
	Handling standard commands in a user control
	Creating a custom (templated) control
	Customizing a default template of custom control
	Creating a custom panel
	Creating a lightweight custom element

	Chapter 11: Threading
	Introduction
	Updating the UI from a non-UI thread
	Adding cancelation support
	Using the BackgroundWorker component
	Adding cancelation and progress with
BackgroundWorker
	Using a timer to do periodic updates
	Using C# 5.0 to perform asynchronous operations

	Index

