

 [image: cover]

 Silverlight 4 in Action:
 Silverlight 4, MVVM, and WCF RIA Services

 Pete Brown

[image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
 Manning Publications Co.
 180 Broad Street
 Suite 1323
 Stamford, CT 06901
 Email: orders@manning.com

 ©2010 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental
 chlorine.

	[image:]
 	Manning Publications Co.
180 Broad Street, Suite 1323
Stamford, CT 06901

 	
 Development editor: Jeff Bleiel
Copyeditor: Benjamin Berg
Cover designer: Marija Tudor
Typesetter: Gordan Salinovic

Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – MAL – 15 14 13 12 11 10

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About this Book

 About the Cover Illustration

 1. Introducing Silverlight

 Chapter 1. Introducing Silverlight

 Chapter 2. Core XAML

 Chapter 3. The application model and the plug-in

 Chapter 4. Integrating with the browser

 Chapter 5. Integrating with the desktop

 Chapter 6. Rendering, layout, and transforming

 Chapter 7. Panels

 Chapter 8. Human input

 Chapter 9. Text

 Chapter 10. Controls and UserControls

 2. Structuring your application

 Chapter 11. Binding

 Chapter 12. Data controls: DataGrid and DataForm

 Chapter 13. Input validation

 Chapter 14. Networking and communications

 Chapter 15. Navigation and dialogs

 Chapter 16. Structuring and testing with the MVVM/ViewModel pattern

 Chapter 17. WCF RIA Services

 3. Completing the experience

 Chapter 18. Graphics and effects

 Chapter 19. Printing

 Chapter 20. Displaying and capturing media

 Chapter 21. Working with bitmap images

 Chapter 22. Animation and behaviors

 Chapter 23. Resources, styles, and control templates

 Chapter 24. Creating panels and controls

 Chapter 25. The install experience and preloaders

 Appendix A. Database, connection, and data model setup

 Index

 List of Figures

 List of Tables

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About this Book

 About the Cover Illustration

 1. Introducing Silverlight

 Chapter 1. Introducing Silverlight

 1.1. Silverlight and the web

 1.2. Silverlight and WPF

 1.3. Types of Silverlight applications

 1.4. What’s new since the first edition

 1.4.1. Features for business and client applications

 1.4.2. Media and graphics enhancements

 1.4.3. User interaction

 1.4.4. Text

 1.5. Getting started with Silverlight development

 1.5.1. Setting up your development environment

 1.5.2. Helpful sites

 1.6. Building your first Silverlight web application

 1.6.1. Project setup

 1.6.2. User interface

 1.6.3. Calling Twitter search

 1.6.4. Parsing the results and binding the ListBox

 1.6.5. Making the ListBox contents more meaningful

 1.7. Summary

 Chapter 2. Core XAML

 2.1. XAML basics

 2.1.1. Objects

 2.1.2. Namespaces

 2.1.3. Properties

 2.1.4. Dependency properties

 2.1.5. Attached properties

 2.1.6. Events

 2.1.7. Commands

 2.1.8. Behaviors

 2.2. Object trees and namescope

 2.2.1. Object trees

 2.2.2. Namescope

 2.3. XAML extensions and type converters

 2.3.1. Markup extensions

 2.3.2. Type converters

 2.4. Loading XAML at runtime

 2.5. Tools for working in XAML

 2.6. Summary

 Chapter 3. The application model and the plug-in

 3.1. The Silverlight application model

 3.1.1. Application startup process

 3.1.2. XAP

 3.1.3. The application manifest file

 3.1.4. The Silverlight application object

 3.1.5. Application dependencies

 3.1.6. Assembly caching

 3.2. Creating the Silverlight plug-in

 3.2.1. Using the object tag

 3.2.2. Using the Silverlight.js utility file

 3.2.3. Creating an instance of the Silverlight plug-in

 3.3. Integrating the Silverlight plug-in

 3.3.1. Relating the Silverlight application to the HTML DOM

 3.3.2. Clarifying the initial experience

 3.3.3. Handling plug-in events

 3.3.4. Sending initialization parameters

 3.4. Summary

 Chapter 4. Integrating with the browser

 4.1. Silverlight and the HTML DOM

 4.2. Managing the web page from managed code

 4.2.1. Navigating web page contents

 4.2.2. Working with element properties

 4.2.3. Handling CSS information

 4.2.4. Accessing the query string

 4.3. Working with the user’s browser window

 4.3.1. Prompting the user

 4.3.2. Navigating the browser window

 4.3.3. Discovering the browser properties

 4.4. Bridging the scripting and managed code worlds

 4.4.1. Calling managed code from JavaScript

 4.4.2. Using JavaScript from managed code

 4.5. Hosting HTML in Silverlight

 4.5.1. Hosting the WebBrowser control

 4.5.2. Using the WebBrowserBrush

 4.6. Summary

 Chapter 5. Integrating with the desktop

 5.1. Silverlight out of the browser

 5.1.1. Capabilities and restrictions

 5.1.2. The end-user experience

 5.2. Creating out-of-browser applications

 5.2.1. The out-of-browser settings file

 5.2.2. Controlling the experience

 5.2.3. Customizing icons

 5.2.4. Checking the network state

 5.2.5. Alerting the user with Notification toast

 5.2.6. Implementation specifics

 5.3. Escaping the sandbox—elevated trust

 5.3.1. Creating elevated-trust applications

 5.3.2. Detecting elevated trust mode

 5.4. Local file access

 5.4.1. Accessing special folders

 5.4.2. Reading from a file

 5.4.3. Writing to a file

 5.5. COM automation

 5.5.1. Detecting COM automation availability

 5.5.2. Using COM automation to make Silverlight talk

 5.5.3. Accessing GPS data using COM automation

 5.5.4. Automating Excel

 5.6. Controlling the host window

 5.6.1. Basic window properties

 5.6.2. Changing window chrome

 5.6.3. Minimizing, maximizing, restoring, and closing

 5.6.4. Moving

 5.6.5. Resizing

 5.7. Running in full screen

 5.7.1. Normal full-screen mode

 5.7.2. Elevated trust full-screen mode

 5.8. Storing data in isolated storage

 5.8.1. IsolatedStorageFile: the virtual filesystem

 5.8.2. Reading and writing files: the isolated storage way

 5.8.3. Administering isolated storage

 5.9. Summary

 Chapter 6. Rendering, layout, and transforming

 6.1. The UIElement and FrameworkElement

 6.1.1. Properties

 6.1.2. Methods

 6.2. The rendering process

 6.2.1. Clock tick

 6.2.2. Per-frame rendering callback

 6.2.3. Rasterization

 6.3. The layout system

 6.3.1. Multipass layout—measuring and arranging

 6.3.2. The LayoutInformation class

 6.3.3. Performance considerations

 6.4. Render transforms

 6.4.1. RotateTransform

 6.4.2. ScaleTransform

 6.4.3. SkewTransform

 6.4.4. TranslateTransform

 6.4.5. TransformGroup

 6.4.6. CompositeTransform

 6.4.7. MatrixTransform

 6.5. 3D projection transforms

 6.5.1. PlaneProjection

 6.5.2. Matrix3dProjection

 6.6. Summary

 Chapter 7. Panels

 7.1. Canvas

 7.1.1. Arranging content of a Canvas

 7.2. The StackPanel

 7.3. The Grid

 7.3.1. Arranging Grid content

 7.3.2. Positioning Grid content

 7.3.3. Spanning cells

 7.3.4. Sizing it up

 7.3.5. Working with the grid programmatically

 7.3.6. Customizing cell boundaries

 7.4. Summary

 Chapter 8. Human input

 8.1. Capturing the keyboard

 8.1.1. Understanding focus

 8.1.2. Handling keyboard events

 8.1.3. Dealing with modifier keys

 8.2. Mouse input

 8.2.1. Mouse button and movement events

 8.2.2. Using the mouse wheel

 8.3. Using multi-touch

 8.4. Collecting ink drawings

 8.4.1. Creating the InkPresenter

 8.4.2. Collecting ink

 8.4.3. Styling the ink

 8.5. Summary

 Chapter 9. Text

 9.1. The text system

 9.1.1. Subpixel text rendering

 9.1.2. Text hinting

 9.2. Displaying text

 9.2.1. Font properties

 9.2.2. Flow control

 9.2.3. Text properties

 9.2.4. Spacing

 9.3. Embedding fonts

 9.4. Entering and editing text

 9.4.1. Handling basic text input

 9.4.2. Understanding input method editors

 9.4.3. Copying text with the Clipboard API

 9.4.4. Collecting sensitive data

 9.5. Entering and displaying rich text

 9.5.1. Formatting and inline elements

 9.5.2. Working with selected text

 9.6. Summary

 Chapter 10. Controls and UserControls

 10.1. Control

 10.1.1. Appearance

 10.1.2. Navigation and state

 10.1.3. Templating

 10.2. ContentControl

 10.2.1. The ContentPresenter

 10.3. Button controls

 10.3.1. The Button

 10.3.2. The HyperlinkButton

 10.3.3. The RadioButton

 10.3.4. The CheckBox

 10.4. ItemsControls

 10.4.1. The ListBox

 10.4.2. The ComboBox

 10.4.3. The TabControl

 10.5. Creating UserControls

 10.5.1. Defining the appearance

 10.5.2. Defining the behavior

 10.5.3. Calling the control

 10.6. Summary

 2. Structuring your application

 Chapter 11. Binding

 11.1. Binding with your data

 11.1.1. Mastering the binding syntax

 11.1.2. Choosing a binding mode

 11.2. Understanding your binding source

 11.2.1. Binding to a property

 11.2.2. Binding to an object

 11.2.3. Binding to a UI element

 11.2.4. Binding to an indexed element

 11.2.5. Binding to a keyed (string indexed) element

 11.2.6. Binding to an entire collection

 11.3. Customizing the display

 11.3.1. Formatting values

 11.3.2. Converting values during binding

 11.3.3. Providing default fallback values

 11.3.4. Handling null values

 11.4. Creating data templates

 11.4.1. Using a DataTemplate with a ContentControl

 11.4.2. Rendering an ItemsControl with a DataTemplate

 11.5. Summary

 Chapter 12. Data controls: DataGrid and DataForm

 12.1. The DataGrid

 12.1.1. Displaying your data

 12.1.2. Editing grid data

 12.1.3. Sorting items

 12.2. The DataForm

 12.2.1. Displaying your data

 12.2.2. Binding to lists of data

 12.2.3. Customizing display

 12.2.4. Customizing edit, add, and display templates

 12.2.5. Finer control over editing and committing data

 12.3. Annotating for display

 12.3.1. The Display attribute

 12.3.2. The Editable attribute

 12.4. Summary

 Chapter 13. Input validation

 13.1. The validation example source and UI

 13.2. Exception-based property validation

 13.2.1. Handling exception validation errors

 13.2.2. Custom validation code

 13.2.3. Validation error display

 13.3. Synchronous validation with IDataErrorInfo

 13.3.1. The IDataErrorInfo interface

 13.3.2. Simple validation with IDataErrorInfo

 13.3.3. Cross-field validation with IDataErrorInfo

 13.3.4. Combining exceptions and IDataErrorInfo

 13.4. Asynchronous validation with INotifyDataErrorInfo

 13.4.1. The INotifyDataErrorInfo interface

 13.4.2. Implementing the interface

 13.4.3. Binding support

 13.4.4. Building the WCF web service

 13.4.5. Adding the client service code

 13.4.6. Property modifications

 13.5. Annotating for validation

 13.5.1. Validation attributes

 13.5.2. Annotating your entity

 13.5.3. Calling external validation functions

 13.5.4. Creating custom validators

 13.6. Comparison of validation approaches

 13.7. Summary

 Chapter 14. Networking and communications

 14.1. Trust, security, and browser limitations

 14.1.1. Cross-domain network access

 14.1.2. Making your application secure

 14.1.3. Limitations of the browser

 14.2. Connecting to data sources

 14.2.1. Using SOAP services

 14.2.2. RESTful services

 14.3. The client HTTP stack

 14.3.1. Manually creating the client stack

 14.3.2. Automatically using the client stack

 14.3.3. Automatically setting the HTTP Referer and other headers

 14.3.4. Authentication credentials

 14.3.5. Managing cookies with the CookieContainer

 14.4. Making the data usable

 14.4.1. Reading POX

 14.4.2. Converting JSON

 14.5. Using advanced services

 14.5.1. WCF service enhancements

 14.5.2. WCF duplex services

 14.5.3. Connecting to sockets

 14.5.4. Multicast sockets

 14.6. Connecting to other Silverlight applications

 14.6.1. Creating the receiver

 14.6.2. Creating the sender

 14.6.3. Putting it all together

 14.7. Summary

 Chapter 15. Navigation and dialogs

 15.1. Browser navigation background

 15.1.1. Browser journals

 15.1.2. Anchor hashtags

 15.1.3. Back and forth

 15.2. The Navigation Application template

 15.2.1. Creating a navigation application

 15.2.2. Adding a new page

 15.2.3. Changing the application theme

 15.3. Navigating to pages

 15.3.1. The Page class

 15.3.2. The NavigationService class

 15.3.3. Frames and URIs

 15.3.4. Caching pages

 15.3.5. Navigating to pages in other assemblies

 15.4. Navigation out of the browser

 15.4.1. Providing custom navigation controls

 15.5. Showing dialogs and pop-ups

 15.5.1. The Popup control

 15.5.2. Displaying a dialog box with the ChildWindow control

 15.5.3. Prompting for a file

 15.6. Summary

 Chapter 16. Structuring and testing with the MVVM/ViewModel pattern

 16.1. Project setup and traditional code-behind approach

 16.1.1. Project and service setup

 16.1.2. A typical code-behind solution

 16.2. Model-View-ViewModel basics

 16.2.1. Keep it simple: a basic ViewModel implementation

 16.3. Factoring out reusable code

 16.3.1. Business rules and logic

 16.3.2. Data access and service calls

 16.4. Better separation from the UI

 16.4.1. Using commands

 16.4.2. Using the CallMethodAction behavior

 16.4.3. View-specific entities and ViewModels

 16.4.4. Interfaces, IoC, and ViewModel locators

 16.5. Testing

 16.5.1. Introduction to the Silverlight Unit Testing Framework

 16.5.2. Testing the ViewModel

 16.5.3. Testing asynchronous operations

 16.6. Summary

 Chapter 17. WCF RIA Services

 17.1. WCF RIA Services architecture, tooling, and template

 17.1.1. RIA Services tooling support

 17.1.2. Creating a project with the template

 17.2. Exposing data with the domain service

 17.2.1. Creating the domain service

 17.2.2. Exposing the domain service to other clients

 17.2.3. Domain service method types

 17.2.4. Using a domain service from Silverlight

 17.3. Filtering, sorting, grouping, and paging

 17.3.1. Filtering

 17.3.2. Sorting

 17.3.3. Grouping

 17.3.4. Paging

 17.4. Updating data

 17.4.1. Using the DataForm UI

 17.4.2. The domain context

 17.4.3. The Entity class

 17.4.4. Using validation and display metadata

 17.5. Loose coupling: using presentation models

 17.5.1. Creating the employee presentation model

 17.5.2. Supporting query operations

 17.5.3. Supporting update operations

 17.5.4. Supporting insert operations

 17.6. Business logic

 17.6.1. Business logic in entities

 17.6.2. Sharing code

 17.7. Authentication and authorization

 17.7.1. Authentication

 17.7.2. Authorization

 17.8. Summary

 3. Completing the experience

 Chapter 18. Graphics and effects

 18.1. Shapes

 18.1.1. Lines

 18.1.2. Rectangle

 18.1.3. Ellipse

 18.1.4. Polyline

 18.1.5. Polygon

 18.2. Geometry

 18.2.1. Simple geometries

 18.2.2. Path geometries

 18.2.3. Composite geometries

 18.3. Brushes

 18.3.1. SolidColorBrush

 18.3.2. LinearGradientBrush

 18.3.3. RadialGradientBrush

 18.3.4. ImageBrush

 18.3.5. VideoBrush

 18.4. Effects

 18.4.1. Using built-in effects

 18.4.2. Creating custom pixel shaders

 18.5. Summary

 Chapter 19. Printing

 19.1. How Silverlight printing works

 19.1.1. The PrintDocument class

 19.1.2. The PrintPage Event

 19.1.3. Rasterization

 19.2. Printing onscreen Information

 19.2.1. Printing the content as is

 19.2.2. Rerooting the elements to fit

 19.2.3. Scaling content to fit

 19.3. Multipage printing dedicated trees

 19.3.1. Prerequisites

 19.3.2. Printing line items

 19.3.3. Adding multipage support

 19.3.4. Adding a header and footer

 19.4. Summary

 Chapter 20. Displaying and capturing media

 20.1. Audio and video

 20.1.1. Media source

 20.1.2. Common properties

 20.1.3. Audio specific properties

 20.1.4. Video specific properties

 20.1.5. The lifecycle of a media file

 20.2. Playlists

 20.2.1. Understanding client-side playlists

 20.2.2. Using server-side playlists

 20.3. Interactive playback

 20.3.1. Controlling the play state

 20.3.2. Working with the timeline

 20.4. Using protected content

 20.4.1. Requesting protected content

 20.4.2. Retrieving the PlayReady components

 20.4.3. Unlocking protected content

 20.5. Using the Silverlight Media Framework

 20.5.1. Using the player libraries

 20.5.2. Creating the player

 20.6. Working with raw media

 20.6.1. A custom MediaStreamSource class

 20.6.2. Creating raw video

 20.6.3. Creating raw audio

 20.7. Using the webcam

 20.7.1. Gaining access to capture devices

 20.7.2. Working with video

 20.7.3. Capturing still images

 20.7.4. Getting the raw video data

 20.7.5. A note about audio

 20.8. Summary

 Chapter 21. Working with bitmap images

 21.1. Basic imaging

 21.2. Creating images at runtime

 21.2.1. Creating from existing images

 21.2.2. Creating from UI elements

 21.2.3. A Mandelbrot fractal generator

 21.3. Deep Zoom

 21.3.1. Showing an image

 21.3.2. Zooming in and out

 21.3.3. Managing the viewport

 21.3.4. Deploying multiscale images

 21.4. Dealing with dead space

 21.4.1. Filling the space

 21.4.2. Uniform sizing

 21.4.3. Fill the area

 21.4.4. UniformToFill

 21.5. Summary

 Chapter 22. Animation and behaviors

 22.1. Animation: it’s about time

 22.2. Mastering the timeline

 22.2.1. What type of property are you animating?

 22.2.2. Where are you starting from and where are you going?

 22.2.3. How long should the animation run?

 22.3. Storyboarding

 22.3.1. Understanding the storyboard

 22.3.2. Hitting the target

 22.3.3. Controlling the Storyboard

 22.3.4. Being resourceful

 22.4. Keyframing

 22.4.1. Interpolation: it’s about acceleration

 22.5. Easing functions

 22.5.1. Using easing functions

 22.5.2. Creating a custom easing function

 22.6. Behaviors, triggers, and actions

 22.6.1. Using existing behaviors

 22.6.2. Creating your own behavior

 22.7. Summary

 Chapter 23. Resources, styles, and control templates

 23.1. Being resourceful

 23.1.1. Declarative resources

 23.1.2. Accessing loose resources

 23.1.3. Bundled resources

 23.2. Giving your elements style

 23.2.1. Defining the look

 23.2.2. Explicitly keyed style definitions

 23.2.3. Implicit style definitions

 23.3. Creating templates

 23.3.1. Building a control template

 23.3.2. Creating reusable templates

 23.4. Dealing with visual states

 23.4.1. Understanding the components

 23.4.2. Leveraging the VisualStateManager

 23.5. Sharing your visual states

 23.6. Summary

 Chapter 24. Creating panels and controls

 24.1. Creating a custom panel

 24.1.1. Project setup

 24.1.2. The OrbitPanel class

 24.1.3. Properties

 24.1.4. Custom layout

 24.1.5. Enhancements

 24.2. Creating a custom control

 24.2.1. Choosing the base type

 24.2.2. Properties

 24.2.3. The control template contract

 24.2.4. The default template

 24.2.5. Visual states

 24.2.6. Visual states in template

 24.3. Summary

 Chapter 25. The install experience and preloaders

 25.1. Handling the “Silverlight not installed” scenarios

 25.1.1. Creating your own install experience

 25.2. Using a custom preloader

 25.2.1. Creating the appearance

 25.2.2. Integrating the custom splash screen

 25.2.3. Monitoring the load progress

 25.3. Summary

 Appendix A. Database, connection, and data model setup

 A.1. Install the AdventureWorks database

 A.1.1. Installing on a dedicated SQL Server instance

 A.1.2. Installing on SQL Server Express

 A.2. Database connection and entities

 A.2.1. Choosing the entities to create

 Index

 List of Figures

 List of Tables

 List of Listings

Preface

 My background is in client application development. I started on the Commodore 64 in seventh grade in the 1980s, later moved
 to DOS with dBase, QuickBasic, and C++, and eventually Windows programming using C++, Borland Delphi 1.0, PowerBuilder, Visual
 Basic 3-6, and .NET.

 Though I’ve written plenty of pure HTML/JavaScript web applications, I’ve always preferred client programming over strict
 web programming because I felt HTML/ JavaScript programming treated the immensely powerful PC as a dumb terminal, squandering
 its CPU cycles for applications that were almost entirely network bound in performance. Only recently is this changing.

 Back when web applications started to become more popular, customers loved the flexibility of the blank canvas of HTML versus
 the old battleship gray look, as well as the ease of deployment of web applications. On the client development side, we had
 some things that came close (WPF for appearance, for one) but nothing that combined the ease of deployment with the modern
 look.

 For a while, it looked like the world was going to move to relatively dumb web applications, treating the local PC as just
 a keyboard and display—a disappointing move to say the least.

 Back in 2006, long before I took my job as a Silverlight and WPF Community PM with Microsoft, I attend the first Microsoft
 MIX conference in Las Vegas. On March 21, day two of the conference, I attended some sessions about WPF/E, the product that
 would later be named Silverlight. Even then, Microsoft had a strong vision for Silverlight, a vision that included desktops,
 mobile devices, and set-top boxes. It was planned to be a lightweight version of WPF optimized for cross-platform scenarios,
 which would both take advantage of client-side processing power (when the .NET CLR was incorporated) as well as provide the
 ease of deployment of a traditional web application. This was exactly what I was looking for!

 I was pretty jazzed about WPF/E at the time. I was also a little concerned about making the case for adoption. I took a wait-and-see
 approach. When Silverlight 1.0 CTPs and betas hit the street, I was less than impressed, because they were JavaScript only.
 I wasn’t a big fan of JavaScript at the time and felt WPF/E wouldn’t make any meaningful impact until they delivered on the
 promise of the CLR inside the browser. Nevertheless, early in 2007 I took on a project to create a carbon offset calculator
 in WPF/E, to be hosted in SharePoint on a public internet site.

 Then, we had MIX07 and the name Silverlight was given to WPF/E. Along with it, Microsoft introduced Silverlight 1.1 alpha—a version that worked with managed code and
 included a cross-platform version of the .NET CLR. Yay! No JavaScript! (Hey, this was before jQuery proved to me that JavaScript
 can also be awesome.) Right at that point, I lobbied the project sponsors to let us work in Silverlight 1.1a. I also spoke
 with some contacts at Microsoft and received permission to go live with the Silverlight 1.1a application, happily foisting
 alpha code on unsuspecting users.

 Despite, or perhaps because of, having to code many primitives from scratch (we needed buttons and drop-down lists, none of
 which existed in Silverlight 1.1a), I was completely hooked. It felt like the old days of DOS programming when you had to
 spelunk without much support and make up your own tricks for how to best accomplish things. It was the Wild West of programming.
 (And, by that, I mean the Wild West with giant Steampunk spiders added into the mix.)

 I still had (and have) a place in my heart for Silverlight’s big brother WPF, but it was easy to see that Silverlight was
 going to take the world by storm. WPF is still an incredibly powerful technology, but it tends to appeal more to niche users
 and ISVs as opposed to the broad group building web-based applications for a living.

 The two of us on the carbon calculator development team released the first Silverlight managed code application ever to go
 live. It included video, Windows Live Maps integration, web services integration with SharePoint, carbon offset calculations
 of course, and a completely data-driven, configurable UI with SharePoint as the backend, supporting everything.

 At the time, there was no real ecosystem around Silverlight, and the idea of using real designers on client applications in
 the Microsoft stack hadn’t yet caught on. Despite the primitive UI we designed, I’m still impressed with what we put together.
 I was thrilled to be able to use .NET skills in something that was truly unique in the .NET space.

 Later that year, Silverlight 1.1a would be updated to a stronger subset of WPF and rebranded as Silverlight 2, laying the
 groundwork required for Silverlight 4, a release that continues to impress and engage me every day I use it.

 PETE BROWN

Acknowledgments

 A book like this is a team effort from start to finish. Though my name may be on the cover, there’s no way I could’ve completed
 this without the support and hard work of many others. I’d like to thank:

 	Chad Campbell and John Stockton for creating such an excellent first edition. Without their hard work covering Silverlight
 2, I would never have thought to create a Silverlight 4 edition.

 	Marshal Agnew, Brendan Clark, and Jordan Parker on the Silverlight product team for their help in digging into the darkest
 recesses of the rendering and layout system. If not for these folks, I wouldn’t have been able to provide the level of detail
 chapter 6 includes.

 	David Ferguson and Seema Ramchandani, both on the Silverlight product team, for help on performance questions around transformations.

 	Tim Heuer on the Silverlight product team for help on the Silverlight installation experience covered in chapter 25.

 	Jeff Handley on the WCF RIA Services product team for reviewing the RIA Services chapter on a really tight schedule.

 	Ashish Shetty on the Silverlight product team for encouraging my Silverlight blogging very early on, including much of the
 app model and startup process content that ended up in this book.

 	Tom McKearney, Tad Van Fleet, Al Pascual, and Ben Hayat for their excellent tech reviews. They caught a ton of mistakes, including
 differences between Silverlight 2, 3, and 4, and changes from the early builds through to the release of Silverlight 4.

 	René Schulte for keeping my imaging and pixel shader sections honest and up to date. René is the go-to guy for working with
 bitmaps and shaders.

 	Mike Street on the forums for his helpful and thorough review of many of the chapters on the forums. Mike was a great unofficial
 tech reviewer for this book.

In addition, there were numerous editors, proofreaders, and reviewers at Manning Publications who deserve thanks for their
 hard work. I dropped on them a book twice as large as they were expecting with a third of the production time they normally
 take. People like Benjamin Berg, Mary Piergies, Nermina Miller, Gordan Salinovic, and others worked tirelessly to get this
 book published in time. I thank them and the rest of the folks at Manning for not freaking out when the book missed two deadlines,
 came in three months late, and at twice the expected length.

 Unique in this thanks is my editor, Jeff Bleiel. This was the first book I’ve written, so I wasn’t sure what to expect. A
 good editor can make the difference between a horrible authoring experience and a good one. Jeff definitely made that difference,
 respected our different areas of expertise, and kept the book on track. He was my interface with Manning and my mentor as
 an author. Jeff made a positive contribution to this book and to my writing in general.

 In addition to the individuals who helped me with the book itself, there are those who have made it possible through their
 presence or actions.

 Most of all, I’d like to thank my wife Melissa for being a single mom for most of 2010 and my children Ben and Abby for understanding
 when mom told them “Papa’s writing and can’t play right now.” Writing a book this size, for a product that revs every 10 to
 12 months, is an undertaking that involves your whole family.

 I’d like to thank my manager at Microsoft, Scott Hanselman, for making sure I had time to finish the book. This book took
 an incredible amount of time to write and, if not for Scott offering me some flexibility, it simply wouldn’t have been completed.

 Of course, I thank the Silverlight and WPF community, my Twitter followers, the Silverlight and WPF insiders, the MVPs, and
 all the people who’ve read and commented on my blog posts since Silverlight was first released. The community support for
 and excitement around these technologies kept me motivated to create the best book possible.

 My gratitude also to my mum for encouraging me in my computer work and for helping me get that first job writing a database
 application from scratch in C++. I wouldn’t be where I am today without her.

 I’d like to thank my dad, who passed away during the writing of this book. He never quite understood what I was doing with
 the Commodore in my room, typing in all that hex code from the back of a magazine, but he supported me from the start and
 encouraged me to pursue a career doing what I love.

 Finally, I’d like to thank you, my readers.

About this Book

 The overall goal of this book is to inform and educate you about the exciting and powerful Silverlight 4 platform. Think of
 it as a guided tour through the Silverlight 4 plug-in, runtime libraries, and SDK. After you’ve read this book, you should
 be able to confidently design, develop, and deliver your first rich interactive applications using Silverlight. To facilitate
 the learning process, I’ve structured the book to get you developing as soon as possible, while providing quality, in-depth
 content.

 Within each chapter, I’ve included a collection of devices to help you build a firm understanding of Silverlight. The following
 list explains how each agent helps along the journey:

 	Figures— Visual depictions that summarize data and help with the connection of complex concepts.

 	Listings— Small, concise pieces of code primarily used for showing syntactical formats. These individual segments generally can’t be
 run on their own.

 	Tables— Easy-to-read summaries.

In addition to these learning devices, my personal site http://10rem.net contains links to the code samples used in this book. Additionally, http://silverlightinaction.com, the web site for the first edition, includes assets, images, and services used in this book.

 Audience

 This book is intended for developers who want to create nontrivial applications using Microsoft Silverlight 4. Though Silverlight
 provides numerous avenues for interactions with designers, this book primarily targets people who live and breathe inside
 Visual Studio. Team members in the integration role (those who take designs and implement in Silverlight) will also find the
 information valuable and useful.

 This book assumes you have at least a passing familiarity with common web standards such as HTML, CSS, XML, and JavaScript.
 In addition, this book assumes you have a background using the .NET framework and Microsoft Visual Studio. Although we’ll
 be using C# as the primary development language, we won’t be reviewing the C# language or explaining basic programming constructs
 such as classes, methods, and variables.

 Experience with previous versions of Silverlight isn’t required for this book.

 The bits: what you need

 This book provides ample opportunity for hands-on learning. But, it also provides a great deal of flexibility by allowing
 you to learn the material without using the hands-on content or optional tools. If you want to get the greatest value out
 of this book and use the hands-on opportunities, the following tools are recommended:

 	Visual Studio 2010 Pro or higher, or Visual Studio Web Developer 2010 (free)

 	Silverlight 4 tools for Visual Studio 2010, including the Silverlight 4 SDK and WCF RIA Services 1.0

 	The Silverlight toolkit

 	Microsoft Expression Blend 4 (optional)

 	Microsoft Expression Blend 4 SDK for Silverlight 4 (installed with Blend 4) for creating and using behaviors

You’ll find links to all of these tools at http://silverlight.net/GetStarted.

 Roadmap

 This book is designed to give you a guided tour of Silverlight 4. This tour will focus on three main areas: introducing Silverlight,
 structuring your application, and completing the experience.

 Part 1: Introducing Silverlight

 Chapter 1 introduces Silverlight. The introduction shows you the advantages of Silverlight and explains its place in the desktop and
 web applications arenas. The chapter wraps up with a walkthrough of building your first Silverlight application.

 Chapter 2 covers one of the most fundamental parts of Silverlight: XAML. Though most of the book covers XAML in one form or another,
 this chapter takes you from the fundamentals all the way through the visual and logical trees, the dependency property system,
 and XAML extensions.

 Chapter 3 explains how the Silverlight plug-in and application startup process work. You’ll learn about the application object, the
 .xap file, and caching assemblies. We’ll also look at how to instantiate the plug-in and use it on a web page.

 Chapter 4 builds on the browser integration introduced in chapter 3 and shows how to manipulate the HTML DOM from Silverlight, work with the browser window, and bridge the scripting and managed
 code worlds. This chapter also introduces the Silverlight WebBrowser control, used to display web content within Silverlight itself when running out of the browser.

 Chapter 5 takes us out of the Web and onto the desktop. Silverlight supports creating both sandboxed and elevated trust desktop applications.
 This chapter covers out-of-browser applications, local file access, COM automation, custom window chrome, working full screen,
 and using isolated storage.

 Chapter 6 covers the layout and rendering system and both 2D and 3D transformations. If you truly want to understand what’s happening
 when you put pixels on the screen, knowledge of the layout and rendering system is a must. This is information that I personally
 found deeply interesting; I hope you do as well. This chapter also covers 2D transformations, such as skew and translate,
 as well as 3D plane and matrix projection.

 Chapter 7 builds on the layout information from chapter 6 to show how to use the various types of layout panels in Silverlight including the Grid, StackPanel, and Canvas.

 Chapter 8 brings us the human connection. Though everything so far has been about presenting, this is about gathering. We’ll learn
 how to use the keyboard, mouse, ink, and touch interfaces to perform actions in our applications.

 Chapter 9 covers text input and output. I start off with a discussion of the text stack, including information on antialiasing strategies
 and the common text properties of controls and the TextBlock element. From there, I look at text input controls such as the TextBox and RichTextBox, with a side journey into IME and international text.

 Chapter 10 introduces several of the nontext controls including the Button, RadioButton, CheckBox, ComboBox, ListBox, and more. This chapter also covers the base control types common to the stock and custom controls, such as ContentControl and ItemsControl.

 Part 2: Structuring your application

 Chapter 11 covers binding. In Silverlight, if you find yourself assigning values directly to controls in the code-behind, as the meme
 goes, “you’re doing it wrong.” Binding is one of the most powerful features of Silverlight and is something we’ll build upon
 in the chapters that follow.

 Chapter 12 builds on what we learned in chapter 11 to make use of the DataGrid and DataForm controls. In this chapter, I also cover the use of data annotations to control display attributes for your entities.

 Chapter 13 also builds on chapter 11 and 12 to provide validation capabilities to our applications. I cover exception-based validation, synchronous and asynchronous
 validation using interfaces, validation using attributes, and creating your own custom validators.

 Chapter 14 helps our Silverlight applications break out of the client and communicate with servers on the Internet and intranet. In
 this chapter, we learn how to use SOAP and REST web services, the underlying web stack, sockets, and even local connections
 between Silverlight applications.

 Chapter 15 is a deep dive into using the Navigation Framework, windows, and dialogs in your application. We’ll look at how to structure
 your application as a series of pages, handle URL addressing and mapping, and parameter passing. We’ll also learn about the
 built-in dialogs and the ChildWindow class.

 Chapter 16 covers the MVVM pattern and unit testing. Without picking any one specific MVVM (or ViewModel) framework, I show you the
 concepts behind the View-Model pattern and how to implement them in your own application. This chapter wraps up with information
 on testing Silverlight applications using the Silverlight Unit Testing Framework.

 Chapter 17 covers one of the most exciting developments for business and other data-oriented applications: WCF RIA Services. We’ll walk
 through creating a RIA Services application using the Business Application template and look at everything from query and
 update operations to business rules and validation to security.

 Part 3: Completing the experience

 Chapter 18 dives into vector graphics and brushes—key concepts for creating applications that move beyond the usual controls. This chapter
 also goes into depth on effects and pixel shaders, wrapping up with information on how to build your own custom shader in
 HLSL and C#.

 Chapter 19 covers working with the printer from Silverlight. Silverlight 4 introduced the ability to print short documents or handle
 print-screen functionality. We go over the API and wrap up this chapter with an implementation of a custom reporting solution
 for short reports.

 Chapter 20 is all about media: video and audio. In this chapter, I go over the various ways to present video and audio in your application,
 including IIS Smooth Streaming and custom managed code codecs using MediaStreamSource. I also dive into the webcam and microphone API covering basic use as well as creating your own Video-Sink to manipulate the returned data.

 Chapter 21 is to still images as chapter 20 is to video and audio. In this chapter, we look at how to use bitmap images in your application, including approaches for
 generating images at runtime.

 Chapter 22 covers animation and behaviors. You’ll learn how to use storyboards to liven up your interface. After that, we take a look
 at using and creating behaviors to package up your own reusable functionality, often containing animations.

 Chapter 23 covers styles, templates, and resources. We look at how to package up style information for controls and how to create completely
 new templates using the lookless control model.

 Chapter 24 teaches us how to create layout panels and custom controls. Though you can do almost anything in Silverlight with a new control
 template, there are times when creating your own control or panel is the way to go.

 Chapter 25 wraps up the book with information on creating the best possible install experience for the plug-in, as well as the best
 possible loading experience for your own applications.

 Code conventions and downloads

 All the code used in this book is presented in a monospace font like this. This code can be in one of a variety of languages; the language used is indicated at the beginning of the code block. For
 longer lines of code, a wrapping character may be used to be technically correct while forming to the limitations of a printed
 page. Annotations accompany many of the code listings and numbered cueballs are used when longer explanations are needed.

 The source code for all of the examples in the book is available for download from the publisher’s website at www.manning.com/Silverlight4inAction and from the author’s website at http://10rem.net.

 Author online

 The purchase of Silverlight 4 in Action includes free access to a private forum run by Manning Publications where you can make comments about the book, ask technical
 questions, and receive help from the author and other users. You can access and subscribe to the forum at www.manning.com/Silverlight4inAction. This page provides information on how to get on the forum once you’re registered, what kind of help is available, and the
 rules of conduct in the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between
 readers and the author can take place. It isn’t a commitment to any specific amount of participation on the part of the author,
 whose contributions to the book’s forum remains voluntary (and unpaid). We suggest you try asking the author some challenging
 questions, lest his interest stray!

 The Author Online forum and the archives of previous discussions will be accessible from the publisher’s web site as long
 as the book is in print.

 In addition to the Author Online forum available on Manning’s website, you may also contact us regarding this book, or anything
 else, through one of the following avenues:

 	Pete’s site and blog http://10rem.net

 	Pete’s Twitter account http://twitter.com/pete_brown

About the author

 Pete Brown is a Community Program Manager with Microsoft on the developer community team led by Scott Hanselman, as well as
 a former Microsoft Silverlight MVP, INETA speaker, and RIA Architect for Applied Information Sciences, where he worked for
 more than 13 years. Pete’s focus at Microsoft is the community around client application development (WPF, Silverlight, Windows
 Phone, Surface, Windows Forms, C++, Native Windows API, and more).

 From his first sprite graphics and custom character sets on the Commodore 64 to 3D modeling and design through to Silverlight,
 Surface, XNA, and WPF, Pete has always had a deep interest in programming, design, and user experience. His involvement in
 Silverlight goes back to the Silverlight 1.1 alpha application that he co-wrote and put into production in July 2007. Pete
 has been programming for fun since 1984 and professionally since 1992.

 In his spare time, Pete enjoys programming, blogging, designing and building his own woodworking projects, and raising his
 two children with his wife in the suburbs of Maryland.

 About the title

 By combining introductions, overviews, and how-to examples, the In Action books are designed to help learning and remembering. According to research in cognitive science, the things people remember
 are things they discover during self-motivated exploration.

 Although no one at Manning is a cognitive scientist, we are convinced that for learning to become permanent it must pass through
 stages of exploration, play, and, interestingly, retelling of what is being learned. People understand and remember new things,
 which is to say they master them, only after actively exploring them. Humans learn in action. An essential part of an In Action book is that it’s example driven. It encourages the reader to try things out, to play with new code, and explore new ideas.

 There is another, more mundane, reason for the title of this book: our readers are busy. They use books to do a job or solve
 a problem. They need books that allow them to jump in and jump out easily and learn just what they want just when they want
 it. They need books that aid them in action. The books in this series are designed for such readers.

About the Cover Illustration

 The figure on the cover of Silverlight 4 in Action is a “Janissary in Dress of Ceremony.” Janissaries were the personal troops and bodyguards of the Ottoman sultan. The illustration
 is taken from a collection of costumes of the Ottoman Empire published on January 1, 1802, by William Miller of Old Bond Street,
 London. The title page is missing from the collection and we have been unable to track it down to date. The book’s table of
 contents identifies the figures in both English and French, and each illustration bears the names of two artists who worked
 on it, both of whom would no doubt be surprised to find their art gracing the front cover of a computer programming book...two
 hundred years later.

 The collection was purchased by a Manning editor at an antiquarian flea market in the “Garage” on West 26th Street in Manhattan.
 The seller was an American based in Ankara, Turkey, and the transaction took place just as he was packing up his stand for
 the day. The Manning editor did not have on his person the substantial amount of cash that was required for the purchase and
 a credit card and check were both politely turned down. With the seller flying back to Ankara that evening the situation was
 getting hopeless. What was the solution? It turned out to be nothing more than an old-fashioned verbal agreement sealed with
 a handshake. The seller simply proposed that the money be transferred to him by wire and the editor walked out with the bank
 information on a piece of paper and the portfolio of images under his arm. Needless to say, we transferred the funds the next
 day, and we remain grateful and impressed by this unknown person’s trust in one of us. It recalls something that might have
 happened a long time ago.

 The pictures from the Ottoman collection, like the other illustrations that appear on our covers, bring to life the richness
 and variety of dress customs of two centuries ago. They recall the sense of isolation and distance of that period—and of every
 other historic period except our own hyperkinetic present. Dress codes have changed since then and the diversity by region,
 so rich at the time, has faded away. It is now often hard to tell the inhabitant of one continent from another. Perhaps, trying
 to view it optimistically, we have traded a cultural and visual diversity for a more varied personal life. Or a more varied
 and interesting intellectual and technical life.

 We at Manning celebrate the inventiveness, the initiative, and, yes, the fun of the computer business with book covers based
 on the rich diversity of regional life of two centuries ago, brought back to life by the pictures from this collection.

Part 1. Introducing Silverlight

 The first part of this book starts by building your first Silverlight application and then dives into what makes Silverlight
 tick. We’ll cover the markup language used for creating the interface, drill into the application model, and look at integrating
 with both the browser and the desktop. You’ll then learn about the layout system and panels—two concepts critical for an effective
 UI design. The part wraps up with mouse, touch, and keyboard input; display and input of text; and a discussion of the common
 types of controls you’ll use in your projects.

Chapter 1. Introducing Silverlight

 This chapter covers

 	Silverlight, the web, and WPF

 	The best applications for Silverlight

 	Getting started with Silverlight

 	Changes in Silverlight since the first edition of this book

 	Building your first Silverlight “Hello World!” application

First of all, let me thank you for starting at chapter 1. I’m one of those people who tend to read magazines backwards and skim technology books, so I appreciate it when someone
 reads a book’s chapters in order. Then again, maybe you read this book backwards as well. In that case, you’ll find the “Hello
 World!” walkthrough in this chapter to be a refreshingly simple take on building Silverlight applications unencumbered with
 patterns such as Model View ViewModel (MVVM), words such as DependencyProperty, and technologies such as Windows Communication Foundation (WCF) Rich Internet Application (RIA) Services. For the rest of
 you, don’t worry—we’ll cover each of those throughout the rest of the book, steadily building our Silverlight skills as we
 go.

 Since you’ve picked up a Silverlight book, you would probably like to know what Silverlight is. Luckily, I’m horrible at marketing,
 so I’ll put it simply: Silverlight is a cross-platform .NET runtime, cross-browser plug-in, and a set of Windows-based developer
 tools for building RIAs. At its heart, Silverlight is an implementation of the concepts and standards from Windows Presentation
 Foundation (WPF) such as binding, the property system, and Extensible Application Markup Language (XAML) in a cross-platform
 version of the .NET Common Language Runtime (CLR) and libraries.

 There. I think that paragraph managed to get all of the acronyms defined for the rest of the book. Then again, this is a Microsoft
 technology, so expect more acronyms before we’re through.

 Silverlight runs on Windows and Mac as well as on Linux through the Moonlight project. It runs on Windows Phone 7 and Nokia
 Symbian S60 phones. We’ve seen demos of it running on set-top boxes connected to televisions and serving up ads and content
 on the Xbox. Put simply, short of ASP.NET, Silverlight is the broadest reaching technology ever produced by Microsoft.

 Silverlight applications work on the web as well as on the client. You can create virtually any type of application in Silverlight,
 from web content, to widgets, to media players to full-blown client applications.

 In this section, we’ll introduce Silverlight, looking at how it fits into the developer stack both on the web and on the desktop.
 We’ll then look at some of the different types of applications Silverlight is well suited for. Then, we’ll check out the features
 and capabilities that have been added since the first edition of this book, before we wrap up with a walkthrough of creating
 your own first Silverlight application.

 Silverlight got its start as a web page plug-in, so that’s where we’ll start as well.

 1.1. Silverlight and the web

 Silverlight sits in that interesting place between desktop applications and browser applications. In many ways, it’s like
 a little traditional desktop application embedded in HTML. Of course, the same can be said of many JavaScript Ajax applications,
 themselves modeled on the code-on-the-client desktop application paradigm.

 Great frameworks such as jQuery and the impending, somewhat nebulously defined HTML 5 further muddy the waters. Where’s Silverlight’s
 place on the web? Why should you use Silverlight instead of these other technologies?

 I’ll give you a few reasons:

 	Silverlight is here, now.

 	Silverlight works across platforms and browsers, now.

 	Silverlight has top-tier media support, including digital rights management (DRM), far more advanced than the proposed HTML
 5 standards.

 	Silverlight is a no-brainer if you’re already a .NET developer looking to expand to other platforms.

Don’t get me wrong; I think HTML 5, when fully spec’d and adopted, will be a great thing for the web—both exciting and capable.
 Having said that, Silverlight has more advanced authoring tools, faster execution, and more capabilities than HTML 5 is expected to have. Rather than carrying out
 a zero-sum game, I believe HTML 5 will raise the floor, driving the quality and experience up across the spectra of platforms
 and developer tools.

 I don’t personally think that the code-on-the-client application development approach is going to disappear. Though doom has
 been forecast for many major development approaches over the years, few have actually declined when another rose in popularity.
 Silverlight and HTML 5 will just provide more options for how to implement the solution you need in the most optimal way,
 using the tools you’re comfortable with and the skills you already have.

 Also remember that HTML/JavaScript and Silverlight aren’t mutually exclusive. Silverlight applications can happily coexist
 on a page with Ajax applications, each complementing the other with features that play to their strengths.

 Silverlight is far more than a web technology. Though it can live on a web page, it’s also common to have out-of-browser Silverlight
 applications, either connected to services or simply using resources on the client. In those instances, you may wonder when
 to use WPF and when to use Silverlight.

 1.2. Silverlight and WPF

 Silverlight and WPF were born of the same ideas. WPF came first and broke the ground required to make XAML a UI-friendly markup
 language. WPF also introduced us to dependency properties and binding, storyboard-based animation, and subpixel-rendered vector
 UI.

 But WPF is large and complex. It’s also deeply rooted in Windows, with no good way to substitute alternate stacks for those
 it relies on. WPF also relies on the rather outdated and web-unfriendly code access security model for application security.
 So, when Microsoft decided to enter the RIA space with a CLR based vector UI technology, they took the concepts and some of
 the code from WPF and reimplemented it in a smaller, tighter, and more platform-independent way.

 Silverlight primarily is a subset of WPF with some additions. Some of the additions, such as the Visual State Manager, have
 been migrated back from Silverlight into WPF. Others, such as Deep Zoom, Media Stream Source, and the webcam and microphone
 APIs, are currently Silverlight-only features. Ignoring alternative solutions to the same problems, figure 1.1 shows this relationship using our friend, the Venn diagram.

 Figure 1.1. Silverlight primarily is a subset of WPF with a few extras added. Ignoring alternative solutions to the same problems, the
 places where WPF differs most are in the integration with the Windows OS and the access to the full .NET framework.

 [image:]

 I recommend that developers new to both technologies learn Silverlight before learning WPF. In general, you’ll find it easier
 to learn Silverlight first and then scale up to WPF, should your needs dictate. Silverlight is smaller, typically having a
 single approach to solving a given problem, whereas WPF may have several solutions for the same task. Though Silverlight doesn’t
 have everything WPF has, Silverlight is an excellent, capable development platform and can cover many types of applications
 we would’ve previously written in Windows Forms, WPF, or even HTML.

 1.3. Types of Silverlight applications

 You can build just about anything you’d like using Silverlight. Of course, Silverlight is better suited for some types of
 applications over others. For example, though possible, you wouldn’t necessarily want to build an entire website using Silverlight;
 there are better tools for the job.

 Silverlight excels at media. When Silverlight 1.0 was first introduced, one of the few capabilities it had was an excellent
 media stack. Silverlight through version 4 has built upon that to include new media capabilities such as smooth streaming,
 pluggable codecs using the Media Stream Source API, and even the DRM technologies required for the large content producers
 to adopt Silverlight.

 Silverlight’s early focus on media was both helpful and hurtful. Video on the web is a great way to gain product adoption,
 especially when you have a capable high-def video technology. Early on, many potential Silverlight developers failed to see
 past the media roots and missed the rich business capabilities Silverlight provides.

 Starting with versions 3 and 4, Silverlight gained serious business capabilities. From simple things such as sync and async
 validation, to patterns such as MVVM and Prism, and entire middle-tier frameworks such as WCF RIA Services, Silverlight showed
 itself to be a mature platform, able to absorb the best practices from other areas and build upon them.

 Though business and media applications certainly are great staples, another fun application type is games. Silverlight has
 good support for casual games, including the ability to generate bitmaps on the fly, create sound from bits, loop audio in
 the background, and more. The community has successfully ported over physics and gaming engines to Silverlight, making it
 even easier to create complex casual games. Future versions of Silverlight are expected to be even more gaming friendly; we’ve
 just seen the tip of the iceberg so far.

 There are many other types of Silverlight applications ranging from ads, to photo viewers, to social media clients, to analogs
 for virtually every type of major desktop and web application. Some of those, such as desktop applications, weren’t possible
 with Silverlight 2, the version used in the first edition of this book. Let’s take a high-level view of what has changed in
 that time.

 1.4. What’s new since the first edition

 The first edition of this book was written for Silverlight 2. Silverlight 3 and 4 have added an amazing number of new capabilities
 to the platform in all areas, from core capabilities, to device access, to the introduction of both trusted and sandboxed
 out-of-browser client applications. The advancements in Silverlight can be loosely grouped into four main areas: business
 and client applications, media and graphics, user interaction, and text.

 1.4.1. Features for business and client applications

 When the first edition of this book was released, Silverlight 2 was just starting to gain adoption. It was a brand new technology
 from Microsoft (the managed code version was, anyway), one with strong competition. Though Silverlight 2 could have been used
 to build rich business applications, it didn’t have the chops to be a strong contender in that space yet. Many of the features
 in this section are useful in applications of all sorts; I hate to classify them under the heading of “business,” but that’s
 the largest consumer of these features.

 Validation, covered in chapter 13, was one of the biggest new features for business applications. Silverlight didn’t add just validation but included support
 for validation through attributes, validation through exceptions, and even asynchronous validation, all of which work with
 the Silverlight controls. Silverlight even made it possible to completely customize the style of the validation information
 provided to the end-user.

 One technology that builds heavily on the validation stack is WCF RIA Services (chapter 17). A good bit of the validation functionality rolled into the Silverlight runtime actually came from that project. WCF RIA
 Services provides a way to share validation and logic between the client and server as well as a framework for validation,
 data access, and security, shareable between Silverlight and other clients.

 WCF RIA Services builds upon the WCF stack, but it’s not the only enhancement there. The Silverlight networking stack, described
 in chapter 14, was greatly enhanced to support in-browser and out-of-browser operation, as well as SOAP 1.2 and a number of new protocol
 enhancements. These changes make it easier to use Silverlight behind a firewall where the services often have different requirements
 than those on the Internet.

 Despite the promises of a paperless office, printing (covered in chapter 19) is still a staple of business applications everywhere. Printing in Silverlight is optimized for relatively short reports
 or documents, as well as for the equivalent of print-screen operations. It’s super simple to use—as easy as working with XAML
 on the pages.

 Finally, we come to a biggie: out-of-browser sandboxed and trusted applications. Covered in section 5.1, out-of-browser mode was one of the most significant enhancements made to how Silverlight operates. Silverlight 3 introduced
 the basic out-of-browser mode with a sandbox roughly equivalent to the one in browser. Silverlight 4 opened up whole new classes
 of applications by adding the trusted application mode with its reduction in prompts, increased file access, and (on Windows)
 access to IDispatch COM Automation servers. All of these features add up to a platform that’s more than capable of being the
 client for our complex business applications.

 One of the next major areas of enhancement for Silverlight is media.

 1.4.2. Media and graphics enhancements

 Silverlight was first and best known for its media capabilities. The Silverlight media team didn’t rest on that, instead pumping
 out enormous advances in media in both Silverlight 3 and 4.

 Silverlight 2 included a Media Stream Source API for pushing media through the pipeline. But that API required that the bits
 be preencoded into one of the formats natively understood at the time. Though useful, this could lead to double-encoding and made transcoding even more difficult.

 Silverlight 3 added support for pushing raw video and audio out of custom Media Stream Source implementations, as covered
 in section 20.6. As a result, you can write a managed codec for any type of media or even do something crazy like I did and use it to generate
 audio and video in real time for an emulator. Another option for generating video or at least images in real-time is the new
 bitmap API covered in section 21.2.

 Speaking of codecs, one of the new codecs added was H.264 for video. H.264 has emerged as one of the most popular codecs for
 TV and video for devices. It was a logical choice for an additional native Silverlight format because now content producers
 can use even more of their content without reencoding. To appeal to the same audience, Silverlight 3 and 4 also continued
 to improve DRM capabilities, including the addition of offline DRM.

 A new and exciting feature for Silverlight 4 is built-in support for video and audio capture devices or, specifically, webcams
 and microphones. Though not yet quite at the level that would allow you to create a real-time video chat application, the
 support does open up a number of new possibilities for application development. Webcam and microphone support are both covered
 in section 20.7.

 Under the covers, Silverlight now has support for all formats of portable network graphics (PNG), something that was only
 partially supported in previous versions. Silverlight 4 also has support for pixel shaders and a set of built-in performance-tuned
 effects such as drop-shadow and blur, covered in section 18.4.

 With all of these advancements plus a number of performance optimizations and even additions such as the Silverlight Media
 Framework, Silverlight continues its leadership in the media space, offering everything you need to build rich media-centric
 applications.

 Sometimes, what you want is more than just a media experience; you want an application that can be truly interactive. Silverlight
 has your back there, too.

 1.4.3. User interaction

 Since Silverlight 2, user interaction has received a number of important enhancements. Two of the most requested features,
 mouse scroll wheel and right-click mouse support (both covered in section 8.2), are now baked into the Silverlight core runtime.

 One of the newer and hotter user interaction mechanisms is multi-touch, covered in section 8.3. The ability to support multipoint interaction with the user interface, especially in kiosk and handheld/tablet scenarios,
 is quickly becoming a requirement for many applications. Silverlight now includes core runtime support for multipoint touch
 interaction with Silverlight application.

 Another user interaction piece missing from Silverlight 2 was the easy ability to show dialogs and pop-up windows (simulated)
 within your applications. Silverlight now not only has those (covered in chapter 15) but also notification toast, covered in chapter 5.

 Finally, all the interaction in the world has no value if your user can’t read the text on the screen. Happily, Silverlight
 includes plenty of improvements in text as well.

 1.4.4. Text

 By far, the biggest improvement to text since Silverlight 2 is proper ClearType font rendering. Silverlight 2 performed only
 grayscale rendering, giving text a fuzzy appearance unless you carefully picked your color schemes.

 While ClearType may be important for font rendering in general, right-to-left or bidirectional (BiDi) text is something that’s
 absolutely essential for the correct rendering of many non-European languages. Silverlight supports not only BiDi text but
 also input method editors (IMEs) for complex composite characters for many languages, especially eastern languages.

 Finally, one great improvement to text rendering and entry is the inclusion of the new rich text box control. This control
 allows you to display or edit text that includes multiple fonts and styles. The control can even embed other elements that
 can be interactive when the control is in read-only mode.

 ClearType, BiDi and IME text, and the rich text box are all covered in chapter 9, along with insight into the text rendering stack in general and how to apply these new features to text throughout Silverlight.

 Those are the major items. Of course, there are many more improvements sprinkled throughout. In addition to capturing the
 major items in this book, I’ve also added information based on the experience gained from working with Silverlight since its
 inception as well as recent knowledge gained from working closely with the Silverlight product team. In important areas, such
 as layout and rendering, I’ve gone deeper than needed by the average developer to provide some insight into the inner workings
 of Silverlight.

 That was a lot to cover. I hope you enjoy reading it as much as I enjoyed writing it. Before we start covering individual
 feature areas, we’ll need to get our development environment set up and build a small “Hello World!” application.

 1.5. Getting started with Silverlight development

 If you’re a .NET developer, you’re already well on your way to becoming a Silverlight developer. Silverlight builds on the
 .NET framework and uses the same tools as other .NET framework applications. You’ll use Visual Studio and, optionally, Expression
 Blend to build your applications. You’ll be able to turn to CodePlex and other open-source sites for sample code to use. And,
 of course, you’ll have a huge community of peers to lean on when trying to figure out those hard problems.

 Before you can do any of that, though, you need to make sure your development environment is set up.

 1.5.1. Setting up your development environment

 Silverlight 4 requires Visual Studio 2010 to work with projects and build the solutions. The multitargeting support of Visual
 Studio 2010 means that your applications can target either Silverlight 3 or Silverlight 4, once you have the Silverlight 4
 tools installed.

 If you don’t already have a version of Visual Studio 2010, you can get the free Visual Web Developer 2010 Express from Microsoft
 at www.microsoft.com/express/Web/. The free web developer tools will enable you to create Silverlight 4 applications as well as ASP.NET applications. If you
 want additional features and tools as well as the ability to create more than just web applications, upgrade to Visual Studio
 2010 Pro or higher.

 Once you have installed Visual Studio 2010, visit http://silverlight.net/getstarted/ and use the Web Platform Installer to install the Silverlight 4 tools and SDK as well as any optional components.

 The Silverlight tools for Visual Studio 2010 and the SDK contain everything you need to develop Silverlight 4 applications,
 including WCF RIA Services 1.0.

 Optionally, you may want to install Microsoft Expression Blend 4. The link for that is also available on the Get Started page
 on Silverlight.net. Expression Blend 4 provides a designer-friendly set of tooling that makes creating complex animations,
 behaviors, and layouts a snap.

 Microsoft and the community have created a number of helpful sites that will make your learning process go smoothly.

 1.5.2. Helpful sites

 The official Microsoft Silverlight developer site is http://silverlight.net. There you’ll find videos, sample applications, tutorials, add-ons and the community forums, all designed to help you be
 the best and most efficient Silverlight developer you can be.

 In addition to Silverlight.net, http://channel9.msdn.com includes interviews with community and product team members, as well as tutorials. Silverlight.TV, located on Channel 9 at
 http://channel9.msdn.com/shows/SilverlightTV/, is a great resource for timely insight into the Silverlight products and releases.

 The MSDN documentation for Silverlight 4 may be found at http://bit.ly/SL4MSDN.

 Also, as a completely shameless plug, you may want to subscribe to my own blog at http://10rem.net. You can also follow me on twitter; my id is @pete_brown.

 Finally, one other place you’ll want to visit is Dave Campbell’s Silverlight Cream: http://bit.ly/SilverlightCream. Dave has done a spectacular job, daily compiling the best Silverlight posts on the web. From Dave’s link blog, you’ll get
 an idea of what other community member blogs to subscribe to.

 At this point, your developer machine is set up, you’ve subscribed to a few blogs, created an account at Silverlight.net,
 and maybe even poked around a little on the sites. Before we get into the features in detail in the rest of the book, I thought
 it would be good to see just how easy it is to build your first Silverlight “Hello World!” application.

 1.6. Building your first Silverlight web application

 Expectations have come a long way since the days of C, where just getting “Hello World!” to compile and output to the screen
 was considered a great accomplishment. Rather than rehash that tired example, I think it would be neat if our “Hello World!”
 example actually did something interesting-like hit a public service on the web. Twitter is the ubiquitous example, and far
 be it for me to buck a trend.

 Using Twitter—Twitter search in this example—also allows us to explore a number of the features of Silverlight, including
 layout, network access, LINQ to XML, and more.

 1.6.1. Project setup

 Open Visual Studio 2010. Choose File > New Project and create a new Silverlight Application project. The name isn’t important
 but I chose FirstSilverlightApplication for mine. Figure 1.2 shows the dialog with the correct project type selected and named.

 Figure 1.2. Visual Studio 2010 New Project dialog with the correct project type selected and named

 [image:]

 Once you click OK, you’ll be presented with another dialog. This dialog provides options specific to the Silverlight project.
 Figure 1.3 shows the dialog.

 Figure 1.3. The New Silverlight Application options dialog

 [image:]

 Typically, you’ll leave the options at their default values and just click through this dialog. But it’s important to understand
 what’s available to you. Table 1.1 describes each of the options presented in this dialog.

 Table 1.1. The New Silverlight Application dialog options

 	
 Option

 	
 Description

	Host in a new website
 	Silverlight applications, even out-of-browser apps, are served from a website. You can also serve them from a static HTML
 page on the file system but this is a limiting option. You’ll typically want to leave this checked, unless you have an existing
 website you want to use when building your application.

	New Web Project Name
 	Provide a project name for the website. The default is usually sufficient.

	New Web Project Type
 	If you’re an ASP.NET programmer and have a preference as to the ASP.NET project type, set it here. Otherwise, leave at the
 default.

	Silverlight Version
 	This allows you to select either Silverlight 3 or Silverlight 4. For this book, every example will assume Silverlight 4.

	Enable WCF RIA Services
 	Check this if you want to link the web project to the Silverlight project as a WCF RIA Services endpoint. This enables additional
 compile-time tooling.

Once the new solution is created, you’ll see two projects. The first one is the Silverlight application; the second is the
 website. The website project contains a folder ClientBin, which will contain the compiled output (.xap file) from your Silverlight
 application. It also contains two test pages that may be used to test your Silverlight application. By default, the .aspx
 page is set as the startup page but you may use the HTML page if you later plan to host on a non-.NET server. (Yes, Silverlight
 applications may be hosted by any HTTP server and not just Internet Information Services [IIS] running ASP.NET.)

 With the project open and ready, it’s time to turn to the user interface.

 1.6.2. User interface

 Open the MainPage.xaml file; it’s usually open by default when you create a new Silverlight project. MainPage.xaml is the
 start page for your application, set as such by a single line of code inside App.xaml.cs.

 Inside the opening and closing Grid tags, add the following XAML markup:

 <Button Content="Get Tweets"
 Height="23"
 HorizontalAlignment="Left"
 Margin="12,12,0,0"
 x:Name="GetTweets"
 VerticalAlignment="Top"
 Width="75"/>
<ListBox x:Name="TweetList"
 Margin="12,41,12,12"/>

 That markup creates two elements on the page: a Button and a ListBox. You could’ve dragged those controls from the toolbox onto the design view but that would be hard to describe in detail in
 this book. In the design view, you should end up with a form that looks like figure 1.4.

 Figure 1.4. The Visual Studio 2010 IDE showing the markup correctly entered for MainPage.xaml

 [image:]

 Next, double-click the Get Tweets button to create an event handler in the code-behind. Incidentally, this code, like all
 code in Silverlight, will run on the client inside the Silverlight plug-in. The event handler will be used in the next section,
 where we make a call to the Twitter search API.

 1.6.3. Calling Twitter search

 The next step is to call out to the Twitter search API. Fill out the event handler we just created in the code-behind to include
 this code:

 private void GetTweets_Click(object sender, RoutedEventArgs e)
{
 WebClient client = new WebClient();

 client.DownloadStringCompleted += (s,ea) =>
 {
 System.Diagnostics.Debug.WriteLine(ea.Result);
 };

 client.DownloadStringAsync(
 new Uri("http://search.twitter.com/search.atom?q=silverlight"));
}

 The code here does a few interesting things. First, it creates an instance of WebClient, one of the easiest to use network clients in Silverlight. It then sets up an event handler using a lambda expression to
 respond to the results. Finally, it asynchronously calls the method to download the result string from search.twitter.com.
 The search is for tweets mentioning “silverlight”.

	

Tip

 The lambda expression approach here simply uses an anonymous delegate (an unnamed function) as the event handler. The beauty
 of this approach is that it doesn’t clutter up your code with tons of event handlers that are really part of discrete processes.
 You can learn more about lambda expressions in the C# language on MSDN at http://bit.ly/CSharpLambda.

 	

The network call is asynchronous because all network calls in Silverlight are asynchronous. This can take a little getting
 used to at first but is easy to deal with once you’ve done it a few times. Chapter 14 goes into detail on how to use the asynchronous methods as well as the reasons behind them.

 If you run the application, click the Get Tweets button, and view the output window, you’ll see that you’ve already built
 enough to call Twitter and pull back the results in XML format. Not bad for a few lines of code! Our next step is to parse
 the results and display them in the ListBox control.

 1.6.4. Parsing the results and binding the ListBox

 If you look in the output window from your last run, you’ll see that the result format is an AtomPub document with an entry node for each of the results. In Silverlight, you can parse Atom a couple ways: you can use the built-in parsing of the Syndication-Feed class or you can use LINQ to XML to parse the results.

 LINQ to XML is a great technology and has many uses above and beyond AtomPub document parsing, so I’m going to go that route.
 We’ll end up with a little more code than the alternative approach, but I think it’s worth it.

 Tweet Class

 Before we do the actual parsing, we’ll need to create a simple class to hold the content we’re interested in. In Visual Studio,
 right-click the Silverlight project and choose Add > Class. Name the class Tweet.cs and fill it out so it looks like this:

 public class Tweet
{
 public string Message { get; set; }
 public Uri Image { get; set; }
}

 Save that class and move back to MainPage.xaml.cs. Somewhere inside the MainPage class, add the following collection variable. Above the GetTweets_Click method would be a perfect location:

 private ObservableCollection<Tweet> _tweets =
 new ObservableCollection<Tweet>();

 Be sure to right-click the ObservableCollection type name and choose Resolve to add the appropriate using statement to your code. This collection will be the location where we place all of the parsed tweets. It’s also what we’ll bind the ListBox to. We’ll use the ObservableCollection class in chapter 11 when we cover binding.

 Parsing with LINQ to XML

 LINQ is something you may have used on other .NET projects. If so, you’ll feel right at home because it’s supported in Silverlight
 as well. If not, it’s pretty easy to pick up. Think of it almost like SQL but in code and working on objects and written backwards,
 with no database in sight. Okay, it’s not exactly like SQL, but it’s a great query language that lets you perform iterations
 and filters in a single line of code. In any case, you won’t need to be a LINQ expert for this example.

 Right-click the project and choose Add Reference; add a reference to System.Xml.Linq. Figure 1.5 shows the dialog with the correct reference selected.

 Figure 1.5. The Add Reference dialog with System.Xml.Linq selected for LINQ to XML functionality

 [image:]

 Once the reference is added, replace the Debug.WriteLine statement and the event handler declaration in the code-behind with the code from listing 1.1. This code performs the actual parsing of the XML document returned by Twitter search and loads the tweets collection with the processed results.

 Listing 1.1. Processing the Twitter search results using LINQ to XML

 [image:]

 Be sure to right-click and resolve the XDocument class in order to add the correct using statement to the top of your code.

 The code does some interesting processing. It first loads the results into an XDocument [image:] so that it may be processed using LINQ statements. It then goes through the document selecting each entry element [image:] and creating a new Tweet object from each [image:]. The Tweet object itself is filled out by first grabbing the title element’s value and assigning that to the Message and then doing another LINQ query to find the link element that has a type of image/png and assigning that to the Image property [image:]. Finally, the code loops through each of the results and adds them to the tweets collection [image:].

 The namespace declaration at the top is necessary because the Atom namespace is the default xmlns in the document. When parsing XML, you need to have the default namespace declared or the results will be empty.

 With the parsing out of the way, the next step is to bind the ListBox to the _tweets collection so that it has a place to pull the data from.

 Binding the Listbox

 Silverlight is all about binding data. Chapter 11 goes into detail on how binding works and how to use it. For now, it’s important to understand that rarely in Silverlight
 will you find yourself assigning data directly to controls. Instead, you’ll set up binding relationships and let the elements
 pull the data as it becomes available.

 In this case, we want to set the ListBox’s ItemsSource property to our collection, so that it knows to load its individual items from the collection when the collection is updated.
 Since we’re using an ObservableCollection, the ListBox will be alerted whenever an item is added to or removed from that collection.

 Add the following line of code to the MainPage constructor, under the InitializeComponent call:

 TweetList.ItemsSource = _tweets;

 That’s all you need to do to set up the binding relationship for the ListBox. Run the application and retrieve the tweets. You should end up with something that looks like figure 1.6.

 Figure 1.6. The default presentation for the ListBox items leaves something to be desired. It looks like WinForms or something! I demand more from our first Silverlight example.

 [image:]

 That’s not really what we want, though. All we see are a bunch of type names. We want to display images and text. The reason
 you see the type name is because this is the default item template behavior. By default, the individual items are presented
 as their ToString call. This works fine for a string or numbers or similar, but with complex types? Not so much.

 Our final step in this walkthrough is to pretty up the ListBox results so we can see something more meaningful.

 1.6.5. Making the ListBox contents more meaningful

 To make the ListBox present items using a format of our own choosing, we need to use a DataTemplate. DataTemplates are covered in detail in section 11.4. For now, understand that they’re a chunk of XAML that’ll be used to format each item in the list.

 The DataTemplate for this ListBox will contain two columns for each row. The first column will contain the picture of the tweeter; the second will contain
 the body of the tweet.

 Open MainPage.xaml and replace the entire ListBox declaration with the XAML from listing 1.2.

 Listing 1.2. DataTemplate to format the tweets

 [image:]

 In this markup, we first tell the ListBox that we want its content to take up the full width of the ListBox, without any horizontal scrolling [image:]. The next bit of markup defines the grid, with an autosized first column and a full-width second column [image:]. Then, we bind an Image to the Image property [image:] of the Tweet class and a TextBlock to the Message property [image:].

 The end result of the work we’ve done, including this fine ListBox DataTemplate, is shown in figure 1.7.

 Figure 1.7. The end result of the Twitter search “Hello World!” example looks good!

 [image:]

 I’ve been working with Silverlight and WPF for a number of years now, but it never fails to impress me just how easy it is
 to have complete control over what your application displays. I remember the days when you had to purchase specialty controls
 to do something as simple as display an image inside a ListBox. Now, all you need to do is a little XAML. And, if you don’t feel like typing in XAML, you can crack open Expression Blend
 and use it to design the DataTemplate interactively on the design surface. As a famous dark lord of the Sith once said, “Impressive...most impressive.”

 1.7. Summary

 Silverlight is one of the most promising development platforms to come from Microsoft since the original release of .NET a
 decade ago. Silverlight fills a niche that sits solidly between traditional desktop applications and web applications, while
 offering capabilities that both lack. It does all this via a small plug-in that takes only minutes to install and runs on
 different browsers and different operating systems.

 The code your write and the skills you gain are portable between the desktop and the web, devices in your pocket, game consoles
 in your living room, and the set-top box on your TV. That’s a pretty good return on your investment.

 Silverlight has come a long way since the Silverlight 2 version covered in the original edition of this book. It’s amazing
 just how much the product teams have been able to pack into the product in those two years. Before I joined Microsoft, I heard
 rumors about people with sleeping bags in their offices and coffee delivered by the gallon. I suspect I now know which team
 they work for, and I have to say that I’m “super” impressed with the results.

 Your environment is all set up, and you’ve whetted your appetite by building a simple “Hello World!” application in Silverlight
 4. In the next chapter, we’ll dive right into the meat of what makes Silverlight UI work: XAML. From there, we’ll take a tour
 of all the features this platform has to offer.

Chapter 2. Core XAML

 This chapter covers

 	The basics of XAML, including how to represent objects, properties, events, commands, and behaviors

 	The structures Silverlight uses when working with XAML

 	Using and creating XAML extensions

 	Creating XAML at runtime

 	Tooling choices for working with XAML

Before the sibling inventions of WPF and Silverlight, individual programming languages and platforms had a variety of ways
 of specifying the user interface (UI). Most of them touted the concept of separating the UI from the implementation code. In some cases, such as on the web with
 HTML and CSS, the representation of the UI was theoretically separated from its underlying implementation but not truly so
 until tried and true patterns, such as Model-View-Controller (MVC), were applied. In others, such as Windows Forms, the separation
 was due only to hidden autogenerated, uneditable files that contained the language-specific code necessary to create the UI.

 With WPF, Microsoft introduced XAML to provide a cleaner separation of concerns between the definition of the user interface
 and the code that makes it work. This not only allows for some sleek design patterns such as the MVVM or ViewModel pattern (discussed in chapter 16 and here referred to simply as the ViewModel pattern) but also makes it easier to create tooling.

 Consider Windows Forms for a moment. The definition of the interface was so tied to the compiler and the existing tooling
 that it was extremely difficult for a third party to create a tool that designed (or assisted in the design) of the UI. The
 files were hidden, made in multiple implementation languages, and had that “don’t even think of editing this file” comment
 at the top of the generated code. It was good at the time but the world has moved on.

 XAML helps fix those problems—it lets you, not the tools, own your UI. XAML files are editable individually and in relative
 isolation from the rest of the project. You can edit XAML in Expression Blend, Visual Studio, Notepad, Kaxaml, and other tools
 listed at the end of this chapter, thereby making it easier to incorporate into your own specific workflow. Even hand-edited
 XAML is round-trippable with tooling because the XAML rules are well-defined and consistent internally and across implementation
 languages.

 XAML is so fundamental to Silverlight that this entire chapter is devoted to introducing you to it. Though XAML appears in
 just about every chapter in this book, we’ll cover the core concepts here and ensure sufficient understanding so that, when
 you open an XAML file in Visual Studio or Notepad, you can read and understand what it’s doing, even as you’re still learning
 Silverlight. For those of you interested in the guts of XAML processing and use, I’ve included information on using tree structures,
 creating your own converters, and working with the property system.

 2.1. XAML basics

 XAML is a declarative language that enables you to create and initialize .NET objects in XML. Everything you can do in XAML
 you can do in code. But to make the most of the platform and its tooling, you’ll want to embrace the code-plus-markup philosophy
 rather than go with a 100 percent code solution.

 The XAML format enables you to easily visualize a hierarchy of elements while separating presentation from code. This separation
 is possible because each XAML element maps to a .NET type. Each attribute within an element corresponds to a property within
 a .NET type. This concept is illustrated in figure 2.1.

 Figure 2.1. XAML markup represents .NET objects. Anything you can do in XAML you can do in code.

 [image:]

 Figure 2.1 shows three code equivalents of an XAML segment. Note that the TextBlock element in the XAML code corresponds to an initialization statement within the code segments. This initialization occurs
 because, each time an element is created in XAML, the corresponding .NET type’s default constructor is called behind the scenes.

 To understand the structure of an XAML file, it’s important to understand the representation and use of objects, namespaces,
 properties, and events.

 2.1.1. Objects

 Objects (or instances of types) are represented in XAML using XML elements. The elements have the same name as the associated
 class and are considered instantiated upon declaration in the markup.

	

Note

 Any type you use in XAML must have a default (parameterless) constructor. Silverlight XAML currently has no provision for
 passing arguments into a constructor or an initialization function, so you’ll need to make sure your types can be initialized
 using defaults and properties alone.

 	

Certain types of objects may contain one or more of other nested objects. For example, a button may contain a single content
 object, which itself may contain one or more other objects. In listing 2.1, the UserControl contains the Grid, the Grid contains the Button, and the Button contains a StackPanel, which is a panel that by default lays its children out in a vertical list. The StackPanel itself contains three TextBlock elements.

 Listing 2.1. XAML showing a hierarchy of nested objects

 Result:

 [image:]

 XAML:

 [image:]

 The UserControl and Button are both content controls, a concept we’ll discuss in greater detail in chapter 10. For now, it’s important to understand that a content control may only have one direct child element, typically a panel that
 holds other elements. The x:Name and x:Class properties are part of the namespace specified by the xmlns:x statement. More on that in a moment... The Grid and StackPanel are both Panels, which is a type that has a Children collection to allow multiple contained elements. We’ll discuss panels in chapter 7.

 The ability to flexibly nest objects permits a composition approach to UI design. Rather than having to purchase or custom-code
 a button control that allows, say, three lines of text and an image, you can simply compose those into an appropriate layout
 panel and make that panel the content of the button control.

 The nesting of objects is part of what gives us an object tree. We’ll cover that in more detail shortly.

 Now that we’ve covered the basic structure of an XAML file, let’s talk about how you differentiate your SuperButton control from my SuperButton control, even though we used the same control name: namespaces.

 2.1.2. Namespaces

 A namespace provides a way of organizing related objects within a common grouping. These groupings, or namespaces, give you a way to
 define where the compiler should look for a type. Namespaces in XAML are similar to namespaces in other languages such as
 C# and Java. To specify where to look, you reference a namespace within an element of an XAML file, typically the root or
 outermost element. Listing 2.2 illustrates the use of the two default namespaces.

 Listing 2.2. A basic XAML file referencing the two default namespaces

 <UserControl x:Class="Xaml01.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Width="400" Height="300">
 <Grid x:Name="LayoutRoot" Background="White">
 <TextBlock x:Name="myTextBlock" Text="Hello" />
 </Grid>
</UserControl>

	

Note

 WPF supports the Name property in both the namespace prefixed with x: and the default namespace, allowing them to be specified as x:Name or just Name. Silverlight supports only x:Name. For compatibility with Silverlight markup, the recommended approach for WPF is to use x:Name.

 	

As listing 2.2 illustrates, you’re permitted to reference multiple namespaces within a single XAML file. When you reference multiple namespaces,
 each namespace must be uniquely prefixed. For instance, the x prefix in this example is used in association with the http://schemas.microsoft.com/winfx/2006/xaml namespace. At the same time, the http://schemas.microsoft.com/winfx/2006/xaml/presentation namespace doesn’t use a prefix.

 Standard XAML Namespaces

 The two namespaces we just mentioned will be used in almost every Silverlight application you work with or see. These namespaces
 are generally defined in the following manner:

 	xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"— This is the default Silverlight namespace. It provides your applications with core Silverlight elements. For that reason,
 this namespace generally omits a prefix, making it the default namespace within the page. Such approach enables you to reference
 elements within this specific namespace without having to include the prefix.

 	xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"— This is the common XAML namespace. It provides functionality that’s common across XAML. It’s important to remember that XAML
 is used by other technologies such as WPF, Oslo, and Windows Workflow Foundation (WF), all of which need access to common
 features such as Name, Key, and Class properties.

	

Note

 In addition to the standard namespaces, the Silverlight runtime supports the Silverlight-specific http://schemas.microsoft.com/client/2007 namespace as a default namespace. But, you should use the previously mentioned http://schemas.microsoft.com/winfx/2006/xaml/presentation namespace as the default because Expression Blend, Visual Studio, and other tools are all configured to recognize that namespace.
 The use of standard namespaces also makes it easier to share your markup with WPF applications.

 	

Referencing Other Libraries

 When another assembly is referenced, it gets copied into the configuration-specific Bin folder of your Silverlight application.
 In fact, when you compile your Silverlight application, it gets compiled into an assembly that’s placed in this directory.
 We’ll discuss the application model later; for now, in order to reference these assemblies, you need to define a new XAML
 namespace, which includes a prefix, CLR namespace, and assembly. Listing 2.3 illustrates this concept.

 Listing 2.3. Using a control from an external assembly

 [image:]

 As listing 2.3 illustrates, referencing other elements, including custom elements, only requires you to provide the namespace and assembly
 name of the external element. Of course, you’ll still need to reference the external assembly so that its types are accessible
 to code and to the XAML parser/compiler. The name my was used as a convenience here; you can use any identifier that makes sense to you.

 If the referenced type is defined in the same assembly as the markup, you’ll still need to create an XAML namespace reference
 for it. But the ;assembly= clause of the namespace definition may optionally be left out, as illustrated in listing 2.4.

 Listing 2.4. Using a control from a different namespace in the same assembly

 [image:]

 Namespaces are typically declared within the outermost element of an XAML file, as in listing 2.4, but that doesn’t always need to be the case. When using XAML generated by tools, you’ll sometimes find namespaces defined
 at lower levels, particularly within control templates (covered in chapter 23). In those cases, the namespace only applies to the elements within the enclosing type (and the enclosing element itself)
 rather than to the XAML document as a whole.

 Listing 2.5 shows the definition of a namespace at the Grid level rather than at the UserControl level. The namespace could also have been defined at the MyControl level, but then we’d need to do it for each instance of MyControl. This approach is sometimes taken when using control templates and other situations where you want to minimize possible namespace
 prefix collisions, while still preserving the ability to reference external code.

 Listing 2.5. Namespace declaration at a level lower than the root

 [image:]

 The namespace shown in listing 2.5 will only apply to the grid LayoutRoot and its children. Controls outside of that hierarchy won’t have access to the controls namespace or prefix. You’ll typically find this inside complex styles in resource dictionaries. The same approaches to referencing
 namespaces and assemblies apply to resource dictionaries, pages, and other types commonly associated with XAML. Though it’s
 important to understand the rules for referencing namespaces, in practice, the tooling will create the namespaces for you
 either by IntelliSense or when you drag and drop items into the markup editor or onto the design surface.

 2.1.3. Properties

 There are two ways to reference properties in XAML: in line with the element as you would any XML attribute and as a nested
 subelement. Which you should choose depends on what you need to represent. Simple values are typically represented with inline
 properties, whereas complex values are typically represented with element properties.

 Inline Properties

 The use of an inline property requires a type converter that will convert the string representation—for example, the "Black" in Background="Black"—into a correct underlying .NET type (in this case, a SolidColorBrush). We’ll cover type converters later in this chapter. The example in listing 2.6 shows a built-in type converter in use to convert the string "Black" for the inline property Background.

 Listing 2.6. Specifying a property value in line using an XML attribute

 [image:]

 Element Properties

 Another way to specify properties is to use the expanded property element syntax. While this can generally be used for any
 property, it’s typically required only when you need to specify something more complex than the inline syntax will easily
 allow. The syntax for element properties is <Type.PropertyName>value</Type.PropertyName>, as seen in listing 2.7.

 Listing 2.7. Specifying a property value using property element syntax

 [image:]

 The use of the string to invoke the type converter is, in its end result, identical to using <SolidColorBrush Color="Black" /> in place of "Black". Though these examples are rarely seen in practice, the more complex example of setting the background to a LinearGradientBrush is common, so we’ll cover that next.

 Rather than have the value represented as a simple string such as "Black", the value can be an element containing a complex set of elements and properties such as the <LinearGradientBrush> seen in listing 2.8.

 Listing 2.8. A more complex example of the property element syntax

 [image:]

 Now that we know how to specify properties in markup, let’s dive deeper into how those properties work.

 2.1.4. Dependency properties

 Dependency properties are part of the property system introduced with WPF and used in Silverlight. In markup and in consuming code, they’re indistinguishable
 from standard .NET CLR properties, except that they can be data bound, serve as the target of an animation, or set by a style.

	

Tip

 A property can’t be the target of an animation or obtain its value through binding unless it’s a dependency property. We’ll
 cover binding in detail in chapter 11.

 	

To have dependency properties in a class, the class must derive from DependencyObject or one of its subclasses. Typically, you’ll do this only for visuals and other elements that you’ll use within XAML and not
 in classes defined outside of the user interface.

 In regular .NET code, when you create a property, you typically back it by a private field in the containing class. Storing
 a dependency property differs in that the location of its backing value depends upon its current state. The way that location
 is determined is called value precedence.

 Value Precedence

 Dependency properties obtain their value from a variety of inputs. What follows is the order the Silverlight property system
 uses when assigning the runtime values of dependency properties, with the highest precedence listed first:

 	Active or hold animations— Animations will operate on the base value for the dependency property, determined by evaluating the precedence for other inputs.
 In order for an animation to have any effect, it must be highest in precedence. Animations may operate on a single dependency
 property from multiple levels of precedence (for example, an animation defined in the control template and an animation defined
 locally). The value typically results from the composite of all animations, depending on the type being animated.

 	Local value— Local values are specified directly in the markup and are accessed via the CLR property wrappers for the dependency property.
 Because local values are higher in precedence than styles and templates, they’re capable of overriding values such as the
 font style or foreground color defined in the default style for a control.

 	Templated properties— Used specifically for elements created within a control or data template, their value is taken from the template itself.

 	Style setters— These are values set in a style in your application via resources defined in or merged into the UserControl or application resource dictionaries. We’ll explore styles in chapter 23.

 	Default value— This is the value provided or assigned when the dependency property was first created. If no default value was provided, normal
 CLR defaults typically apply.

The strict precedence rules allow you to depend on behaviors within Silverlight, such as being able to override elements of
 a style by setting them as local values from within the element itself. In listing 2.9, the foreground of the button will be red as set in the local value and not black as set in the style. The local value has
 a higher precedence than the applied style.

 Listing 2.9. Dependency property precedence rules in practice

 <UserControl x:Class="Xaml08.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Width="400" Height="300">
 <UserControl.Resources>
 <Style x:Key="ButtonStyle" TargetType="Button">
 <Setter Property="Foreground" Value="Black" />
 <Setter Property="FontSize" Value="24" />
 </Style>
 </UserControl.Resources>
 <Grid x:Name="LayoutRoot">
 <Button Content="Local Values at Work"
 Style="{StaticResource ButtonStyle}"
 Foreground="Red" />
 </Grid>
</UserControl>

 The Style tag in UserControl.Resources is a reusable asset that sets some key properties for our button.

 We’ll cover creating dependency properties in chapter 24 when we create our own controls. For the purposes of this chapter, it’s sufficient to understand that the majority of the
 properties you’ll refer to in XAML are dependency properties. One type of dependency property that has a slightly odd appearance
 is an attached property.

 2.1.5. Attached properties

 Attached properties are a specialized type of dependency property that is immediately recognizable in markup due to the TypeName.AttachedPropertyName syntax. For example, Canvas.Left is an attached property defined by the Canvas type. What makes attached properties interesting is that they’re not defined by the type you use them with; instead, they’re
 defined by another type in a potentially different class hierarchy.

 Attached properties allow flexibility when defining classes because the classes don’t need to take into account every possible
 scenario in which they’ll be used and define properties for those scenarios. Layout is a great example of this. The flexibility
 of the Silverlight layout system allows you to create new panels that may never have been implemented in other technologies—for
 example, a panel that lays elements out by degrees and levels in a circular or radial fashion versus something like the built-in
 Canvas that lays elements out by Left and Top positions.

 Rather than have all elements define Left, Top, Level, and Degrees properties (as well as GridRow and GridColumn properties for grids), we can use attached properties. The buttons in listing 2.10, for example, are contained in panels that have greatly differing layout algorithms, requiring different positioning information.
 In this case, we’ll show a fictional RadialPanel in use.

 Listing 2.10. Attached properties in use

 [image:]

 Attached properties aren’t limited to layout. You’ll find them in the animation engine for things such as Storyboard.TargetProperty as well as in other places of the framework.

 Property Paths

 Before we wrap up our discussion of properties, there’s one concept left to understand: property paths. Property paths provide a way to reference properties of objects in XAML both when you have a name for an element and when
 you need to indirectly refer to an element by its position in the tree.

 Property paths can take several forms, and may dot-down into properties of an object. They can also use parentheticals for
 indirect property targeting as well as for specifying attached properties. Here are some examples of property paths for the
 Storyboard target property:

 <DoubleAnimation Storyboard.TargetName="MyButton"
 Storyboard.TargetProperty="(Canvas.Left)" ... />

<DoubleAnimation Storyboard.TargetName="MyButton"
 Storyboard.TargetProperty="Width" ... />
...
<Button x:Name="MyButton"
 Canvas.Top="50" Canvas.Left="100" />

 We’ll cover property paths in detail in chapter 11 when we discuss binding.

 Properties are one of the pieces that define an object’s interface. Because XAML doesn’t allow us to do anything specifically
 with methods, the only other part of the interface left is the definition of events.

 2.1.6. Events

 Events in Silverlight are used much like events in any other .NET technology. The sender of the event wants to notify zero or more
 receivers of something that happened. Silverlight enhances that, though, in that it may want events to work their way up the
 object tree, from the event source to the root element.

 Silverlight and WPF introduce the concepts of routed events and event bubbling. These allow events to be generated at one level of the tree, and then provide an opportunity to be handled by each level above, until reaching the root of the tree—an effect known as bubbling.

 The main difference between routed events and standard CLR events, to the handler of the event, is that the event sender isn’t
 necessarily the original source of the event. In order to get the original source of the event, you need to check the OriginalSource property of the RoutedEventArgs supplied to the handler.

 User-created events, such as the ones you might create in your own code, can’t bubble. Instead, bubbling is reserved only
 for built-in core events such as MouseLeftButtonDown. Bubbled events include a Handled property in the event arguments, as well as the standard RoutedEventArgs information.

	

 WPF routed events

 If you’re familiar with the eventing system in WPF, you may wonder what happened to the Tunneling and Direct types of routed events. Silverlight doesn’t currently implement these. In fact, Silverlight doesn’t include the EventManager available in WPF, so routed events can’t be created in user code. Some clever folks at control vendors have implemented their
 own analogue that allows for user-created routed events but isn’t built into the core Silverlight runtime.

 	

Events Referenced in XAML

 In XAML, referencing an event handler defined in code-behind is simple. In fact, if you use Visual Studio when doing so, the
 event handler in the code-behind can be created for you automatically.

 For example, if we have a button in XAML:

 <Button Click="MyButton_Click" />

 We can wire it up to an appropriate event handler in the code-behind:

 private void MyButton_Click(object sender, RoutedEventArgs e)
{
 MessageBox.Show("Click event");
}

 The approach is a good shortcut for hooking up events. When working in XAML, the tooling in Visual Studio will even let you
 define a new event handler or use an existing one. One slight advantage of this approach is that you don’t necessarily need
 to define a name for your button.

 Events Referenced in Code

 To attach an event handler from code, you follow the same approach you would for any normal CLR event: create a new event
 handler and add it to the event using the += syntax. So, if we have the same button as earlier and give it a name that can be referenced from the code-behind:

 <Button x:Name="MyButton" />

 We can then wire up the event handler in the constructor. Do this after the InitializeComponent call so that MyButton is valid:

 public MainPage()
{
 InitializeComponent();

 MyButton.Click += new RoutedEventHandler(MyButton_Click);
}
private void MyButton_Click(object sender, RoutedEventArgs e)
{
 MessageBox.Show("Click event");
}

 Both approaches are equally valid. The approach you use will depend primarily on your personal style. My preferred approach
 when not using commands is to wire up events in the code-behind, in the constructor as shown.

 Silverlight 4 added the ability to use commands as a way to clean up event handling and wire-up code. Rather than specify
 an event handler, you can specify one or more command properties in XAML.

 2.1.7. Commands

 One of the more architecturally significant additions to Silverlight 4 was the addition of WPF-style commands. Commands allow
 you to remove the event handler middleman from your code-behind when you want something other than the code-behind to handle
 the action. For example, if you follow the ViewModel pattern, you probably want the button clicks to be handled by the view
 model and not the code-behind. Typical event handler code to forward the event might look like this:

 private void Save_Click(object sender, RoutedEventArgs e)
{
 _viewModel.Save();
}

 That’s extra goo that you don’t necessarily want in your view. It complicates unit testing and makes the code-behind an essential
 ingredient. It also requires separate view-model properties to set the IsEnabled property on the Save button. It’s not terrible, but it’s not great. The command code that eliminates the code-behind goo
 might look like this:

 // no code in code-behind required :)

 I love the code I don’t have to write. It’s all handled in the markup and the view model, so you don’t need any forwarding
 code at all. The controls in the view bind to a command that exists somewhere in the binding path. Assuming you have the page’s
 data context set to the view model, the markup to bind to the exposed view-model command looks like this:

 <Button x:Name="SaveButton"
 Height="25"
 Width="75"
 Content="Save"
 Command="{Binding SaveCommand}" />

 The related bits of the view model might look something like this, assuming you’ve implemented an EmployeeSaveCommand that implements ICommand:

 private EmployeeSaveCommand _saveCommand;
public ICommand SaveCommand
{
 get { return _saveCommand; }
}

 In this way, you avoid having your code-behind stand in the way of separating your view from your view model. Commands also
 provide other capabilities such as automatically disabling the associated controls if the command can’t be run at that time
 via an implicit binding of the ICommand.CanExecute method with IsEnabled property of the Button.

 Commands are supported on any control that inherits from ButtonBase as well as on the Hyperlink control (not to be confused with HyperlinkButton, which inherits from ButtonBase).

 We’ll create our own commands in chapter 16 when we discuss how to build applications using the ViewModel pattern. Another interesting bit of attached functionality
 you may see in the markup is a behavior.

 2.1.8. Behaviors

 Behaviors are bits of designer-friendly packaged interactivity introduced in Silverlight 3, originally tied to Expression Blend to
 make it easy to drag functionality directly onto the design surface and associate it with controls. Behaviors included capabilities
 such as physics, sound, automatic shadows, drag and drop, and even nonvisual behaviors such as one that’s used to wire up
 the window-close events to a view model in WPF. The appeal was much broader than just Blend users, though, so the functionality
 was released for all Silverlight and WPF developers to enjoy.

 The SDK includes a number of default behaviors as well as a ton of community-created behaviors for both Silverlight and WPF
 on the Expression community site. Figure 2.2 shows the Behaviors section of the Assets panel in Expression Blend, listing the eight included behaviors.

 Figure 2.2. The default behaviors in Expression Blend include items from utilitarian, to sound playing, to complex interactions such as
 mouse drag and drop. Additional behaviors may be found on the Microsoft Expression Community Gallery at http://gallery.expression.microsoft.com.

 [image:]

 Behaviors typically don’t require using any code because they’re wired up using XAML. For example, listing 2.11 shows the markup required to use the MouseDragElementBehavior, one of the stock behaviors, with a Border element.

 Listing 2.11. A MouseDragElementBehavior attached to a Border element

 [image:]

 All of the code required to implement the dragging of the border is encapsulated within the behavior. Behaviors are a great
 way to package up common UI functionality that would augment other UI elements.

 We’ll discuss behaviors in more detail in chapter 22, where we’ll also create our own custom behavior.

 Objects, properties, events, commands, and behaviors make up the majority of what you’ll see when you look at an XAML file.
 At this point, you should be able to read XAML and have a general understanding of what you’re looking at. Another thing you
 may see in XAML is object and property names inside curly braces. We’ll cover that later in this chapter, but first we’ll
 go through what Silverlight sees when it looks at XAML source and builds out the in-memory representation of the elements.

 2.2. Object trees and namescope

 In the previous sections, I mentioned the concept of an object tree. In order to understand the object tree, you need to understand
 the layout and contents of XAML files. Once you do, it’s easier to conceptualize the object tree and its related concept,
 namescope.

 A common misconception is that Silverlight creates XAML for any objects you create in code. In fact, the opposite is what
 happens: Silverlight creates objects from XAML. Objects you create in code go right into the trees as their native .NET object form. Elements in XAML are processed and turned
 into objects that go into the same tree.

 2.2.1. Object trees

 Now that we’ve covered the structure of an XAML file, you can look at one and quickly realize it represents a hierarchical
 tree of objects starting from the root (typically a UserControl or Page) and going all the way down to the various shapes, panels, and other elements that make up the control templates in use.
 That hierarchical structure is known as an object tree. Figure 2.3 shows a hypothetical object tree.

 Figure 2.3. A hypothetical object tree showing not only the visual elements such as TextBlocks and ListBoxes, but also the internal collections used to

 [image:]

 Each element has the concept of a parent (the containing element) and may have a child or children in panel-type collection
 properties, content properties, or other general-purpose properties.

	

Note

 Unlike WPF, Silverlight doesn’t expose the concept of a logical tree. Operations that, in WPF, might return logical tree information
 will, in Silverlight, return visual tree information. This distinction is really only important if you’re coming from the
 WPF world or porting code from WPF that happened to use tree traversal functions.

 	

The visual tree is a filtered view of the object tree. While the object tree contains all types regardless of whether they participate in
 rendering (collections, for example), the visual tree contains only those objects with a visual representation. Figure 2.4 shows the visual tree; note the lack of nonvisual objects such as collections.

 Figure 2.4. The visual tree representation of the object tree from figure 2.3. Note that only visual elements, not collections, are represented.

 [image:]

 Walking the Visual Tree

 Silverlight includes the VisualTreeHelper static class to assist in examining the visual tree. Using the GetChild and GetChildrenCount methods, you can recursively walk the tree from any element down as deeply as you want. The GetParent method allows you to trace the tree from a given element up to the visual tree root, as seen in listing 2.12.

 Listing 2.12. Using the VisualTreeHelper to walk the tree from an element to the root

 Result:

 System.Windows.Controls.StackPanel
System.Windows.Controls.Border
System.Windows.Controls.Grid
System.Windows.Controls.Grid
VisualTree.MainPage

 XAML:

 [image:]

 C#:

 [image:]

 We start the tree walk in the Loaded event handler because the tree isn’t valid until the UserControl has been loaded. We know the walk is complete when we hit an element with a null parent—the root of the tree.

 You’ll notice that, when you generate an object tree for an entire application, you’ll have multiple instances of controls,
 each of which contains elements with the same name. Namescope, the next topic, is how Silverlight ensures that the names remain
 uniquely addressable across the breadth of the object tree.

 2.2.2. Namescope

 Earlier in this chapter we saw that you can define an x:Name for elements in XAML. This provides a way to find the control via code and perform operations on it, or handle its events.

 Consider for a moment the idea of having multiple controls on the same page, each of which contains named elements. To handle
 this situation, XAML introduces the concept of a namescope. A namescope simply ensures that the names across instances of controls don’t collide. This is similar in concept to the
 approach taken by ASP.NET to mangle control names to ensure they remain unique. Listing 2.13 shows an example where namescope is required to prevent duplicate control names.

 Listing 2.13. Without namescope, the name MyButton would be duplicated in the tree

 XAML:

 [image:]

 XAML:

 [image:]

 With three instances of the user control in listing 2.13, how does the XAML parser prevent naming collisions between all the MyButtons in the object tree but still allow you to uniquely reference each one? Namescope. As you’d expect, using the same name twice
 within the same XAML namescope will result in a parsing error. This is similar to the compile-time error you’d receive if
 you gave two variables the same name within the same scope level in a C# application.

	

Note

 Silverlight 2 had a namescope bug that manifested itself when you named an element inside a tooltip (or pop up) attached to
 items in an ItemsControl such as a ListBox. The resulting error indicated that there were duplicate names in the object tree. This was fixed in Silverlight 3.

 	

In practice, you typically don’t need to worry about namescopes unless you’re loading and parsing XAML at runtime using the
 createFromXaml JavaScript API or XamlReader.Load managed API. The namescopes are created for you automatically at runtime when you instantiate your controls.

 Now that we understand namescope, let’s go back to one of the other things you’ll run into in XAML: the curly brace syntax
 for markup extensions.

 2.3. XAML extensions and type converters

 Now that we know the structure and rules for XAML files, let’s look at a something that allows us to bend those rules a little:
 extensions.

 XAML allows you to represent almost anything using the object element and property attribute syntaxes. But some things can
 get cumbersome to do that way. For that reason, XAML includes the concept of extensions in the form of markup extensions and
 type converters. Silverlight also includes the concept of a value converter but, because that’s used almost exclusively with
 binding, we’ll cover it in chapter 11.

 You’ll want to internalize both concepts to understand what’s happening when XAML is parsed or what those curly braces mean.
 Though you can’t currently create your own markup extensions, type converters will give you a powerful way to extend XAML
 using your own code. We’ll start with markup extensions and then move into using existing type converters and, later, creating
 our own type converters.

 2.3.1. Markup extensions

 When viewing XAML of any complexity, you’re going to come across things such as Style="{StaticResource MyStyle}" or Text="{Binding LastName}". The curly braces indicate that you’re looking at a markup extension. Markup extensions are code that can provide a value to a dependency property. In the case of the Style example, the markup extension provides a full style object to the Style property.

 You can’t create new markup extensions but you can use the built-in set, which currently consists of StaticResource, Binding, and TemplateBinding. Listing 2.14 illustrates the use of StaticResource and Binding.

 Listing 2.14. The Binding and StaticResource markup extensions in XAML

 [image:]

 In the case of the Text example in listing 2.14, the markup extension is providing a value from the data binding engine. We’ll cover data binding in chapter 11.

 Markup extensions are a great way to get some additional functionality out of XAML, without needing to use a verbose object
 syntax. One downside is that you can’t create them yourself. The two extensions you can create yourself are type converters
 and value converters.

 2.3.2. Type converters

 Type converters are used throughout the .NET framework to handle translation of one CLR type to another. Specifically in the context of XAML,
 type converters are used to convert string representations such as “Black” into their equivalent .NET CLR objects. In the
 case of the example in listing 2.14, a SolidColorBrush with Color set to Black is converted to a string that resolves to the color Red=0, Green=0, Blue=0, Alpha=255. This is shown in listing 2.15.

 Listing 2.15. A type converter in action

 [image:]

 There are enough built-in type converters that you may never have to write a new one yourself. But they’re an extensibility
 point in XAML and, therefore, provide you with flexibility to do some things that XAML may not handle natively.

 Creating Custom Type Converters

 First, since you need to decorate your type with a type converter attribute, you’ll need access to the source. If you don’t
 have access to the type source and can specify the converter just for a single property of your own class, that’ll work too.
 The difference is that a converter specified at the property level will only work for that one property in that one class
 and not in all instances of that type in all properties and in all classes.

 Next, you’ll need to decide on a string format. The options are wide open, with the exception that you can’t use the curly
 braces {} because they initialize the processing of markup extensions (discussed earlier in this chapter). Listing 2.16 shows a sample type converter that converts a string into a Border object. The format for the border is <color> <thickness>, where color is a named color or an eight-digit hex color and thickness is a number greater than or equal to zero.

 Listing 2.16. A custom type converter that converts from a string to a border (C#)

 [image:]

 [image:]

 Note that this example, in order to be production ready, would require additional guard conditions and the ability to delimit
 on commas as well as spaces.

 To create a custom type converter, you must first inherit from the TypeConverter base class. For the type converter to be used in XAML, you only need to support converting from the string type. More general-purpose
 converters will support additional types.

 Note the hack I use to get the color information—it allows us to use any color representation that the XAML parser can parse.
 XamlReader.Load is a nifty function that has lots of uses, not only for its intended purpose of creating branches of the object tree at runtime
 but also for simply invoking the parser as we did here. Some things in Silverlight are simply easier to parse in XAML than
 they are in code—color is one of them.

	

Note

 The Silverlight color enumeration understands only a few of the many named colors, and the Silverlight Color class has no parse method to get the remaining colors or the hex representation. Using the XAML parser via XamlReader.Load() in listing 2.16, you reduce hundreds of lines of parsing code down to a single line. We’ll cover more on the XamlReader class in the next section.

 	

Listing 2.17 illustrates a simple example of our custom type converter. Note that this example also shows how to declare a dependency
 property—something we’ll cover in more detail in chapter 24.

 Listing 2.17. A simple class that uses our custom type converter

 [image:]

 The TypeConverterAttribute that specifies the type converter to use for this specific property in this class is shown in listing 2.17. The attribute is applied to the public property because that’s what’s used by XAML. The converter is declared on the single
 property so it’ll apply only there and not to all instances of the Border type. It’s also important to note that the border isn’t actually used for anything other than illustrating how to use a type
 converter.

 Finally, listing 2.18 shows the type converter implicitly in use in XAML.

 Listing 2.18. XAML showing the custom Border type converter in use

 [image:]

 Because we used the XamlReader.Load method, we could easily use any valid color string such as "LemonCream" or "#C830019F". Bonus points if you caught the Star Wars reference in listing 2.18.

	

 Colors in XAML

 You may have given the color string #C830019F a double-take if you’re used to six-digit HTML hex colors. Colors in Silverlight
 are typically expressed as eight-digit hex numbers, the first pair representing the alpha component and the remaining three
 pairs the red, green, and blue components in that order. In the color #C830019F, the values are Alpha: 0xC8, Red: 0x30, Green:
 0x01, and Blue: 0x9F. The alpha component is optional, so you may use an HTML-style hex color if you wish. For consistency
 across the application, I recommend you specify the alpha value and use all eight digits without any shortcuts.

 	

Type converters are a great way to extend the flexibility of XAML to include types you create yourself or new representations
 of existing types. We’ve used them in projects to provide serialization support for legacy format strings stored in databases
 and to extend the known representations of existing types.

 Now that we understand the basics of XAML and have seen a simple example of dynamically loading XAML to parse a color string,
 let’s take that a bit further and look at runtime loading or more complex content.

 2.4. Loading XAML at runtime

 In listing 2.16, we saw a brief example of loading XAML at runtime using XamlReader.Load. Let’s expand on that to do more than just some basic color conversion. You can use dynamically loaded XAML to create entire sections of the object tree at runtime. This could be useful for rendering
 user-generated content such as shapes drawn on a screen and saved in a database or for creating highly dynamic controls.

 The process of loading XAML at runtime is incredibly easy. You only need to rely on the XamlReader class, which belongs to the System.Windows.Markup namespace. This class empowers you to parse XAML and convert it into an in-memory object. This object can be created by a
 statically visible method called Load. This method takes a string of XAML and converts it to the appropriate object. Then you can insert this object into another
 UIElement. Listing 2.19 shows this entire process in action.

 Listing 2.19. Loading and parsing XAML at runtime

 Result:

 [image:]

 XAML:

 <UserControl x:Class="XamlReaderExample.MainPage"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Width="400" Height="300">
 <Grid x:Name="LayoutRoot">

 </Grid>
</UserControl>

 C#:

 [image:]

 This example dynamically creates a rectangle and adds it to the object tree. The code in CreateRectangle simply builds up a string with XAML similar to what we’d have inside a regular .xaml file. Note that we need to specify the
 namespaces used for any segment of XAML we’ll pass into XamlReader.Load. The code that adds the generated XAML to the object tree can be seen inside the loaded event.

 You can of course do more with the element than just add it to the LayoutRoot. Listing 2.20 illustrates how we can take the XAML and integrate it with the managed code representations of XAML constructs to create
 multiple instances of the rectangle.

 Listing 2.20. Mixing dynamic XAML with code

 Result:

 [image:]

 XAML:

 <UserControl x:Class="XamlReaderExample2.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Width="400" Height="300">
 <Grid x:Name="LayoutRoot">

 </Grid>
</UserControl>

 C#:

 [image:]

 In this example, we loop to create four instances of the rectangle object. We then dynamically create grid row definitions
 (see chapter 6) in code rather than in parsed XAML and assign them via attached properties to our rectangle object.

 This shows a mix of the CLR representations of elements such as the grid row and the XAML representations of elements such
 as the rectangle. In practice, you’ll rarely create visual elements in code except for specific circumstances, but the power
 and flexibility to do so is available to you.

 That covers the core concepts for XAML. Next, we’ll look at some of the tools you can use to make working in XAML more efficient.

 2.5. Tools for working in XAML

 So far we’ve looked at a lot of raw XAML files. When working on Silverlight applications, you’ll find yourself bouncing back
 and forth between raw XAML and some sort of visual editor or design surface. Here are some of the tools available for working
 with Silverlight XAML files:

 	Visual Studio 2010— Visual Studio 2008 provides a great XAML editor but a fairly useless Silverlight design surface, and it is limited to Silverlight
 2 and 3. Visual Studio 2010 includes a fully capable Silverlight design surface that’ll handle most of a developer’s needs
 and includes full support for Silverlight 3 and 4. If you want to do more design-type work, including finer-grained control
 over the UI, animations, states, behaviors, and transitions, you’ll want to use Expression Blend.

 	Expression Blend— Expression Blend’s sole reason for existence is to edit XAML. This is the primary XAML editor for both design professionals
 and creative developers. While someone used to typing markup may bounce back and forth between the XAML editor and the design
 surface, there’s little in Blend that you can’t accomplish with the designer alone.

 	Kaxaml— Sometimes you don’t want an editor as heavy as Visual Studio or Expression Blend. Kaxaml is a lightweight XAML editor created
 by Robby Ingebretsen. You can download Kaxaml for free from www.kaxaml.com.

 	Eclipse— If you want some freedom on other platforms such as the Mac, you can use the Silverlight tools for Eclipse found at www.eclipse4sl.org to edit XAML files.

Hundreds of other tools have support for exporting or importing XAML. Typically these are graphics tools, add-ins to existing
 graphics tools such as Adobe Illustrator, or 3D tools with XAML add-ins. Many of them are primarily targeted at WPF, but work
 at least partially with Silverlight.

 2.6. Summary

 Silverlight development is all about code plus markup. To make the most of the platform, you’ll want to learn how to leverage
 the capabilities that XAML provides, while keeping a balance between what you write in code and what you put in the markup.
 Learning the markup language will allow you to use tooling to quickly create great user interfaces, work on a team including
 designers and developers without friction, and help enforce the separation of the view from the rest of the application architecture.

 A basic understanding of XAML is fundamental to getting the most from the rest of this book and from Silverlight itself. In
 later chapters, we’ll expand on what we did here to encompass topics such as brushes, shapes, controls, animation, and all
 of the other things that make Silverlight such a great presentation platform.

 In the next chapter, we’ll cover the Silverlight plug-in and how to use it to create applications that run inside and outside
 the browser.

Chapter 3. The application model and the plug-in

 This chapter covers

 	The Silverlight application model

 	Creating the Silverlight plug-in control in the browser

Application is an overloaded term that means different things to different people. Some may question what level of footprint, functionality,
 or other metrics you need to meet before something can be called an application. For example, is the weather tracker sidebar
 gadget in Windows an application? What about Notepad? The code for the sidebar gadget is almost certainly more complex than
 Notepad, but most people would see Notepad as an application and the sidebar gadget as, well, a gadget.

 In my participation in the Silverlight community, I’ve been asked on a number of occasions what to call the Silverlight “thing”
 that the plug-in loads in the browser. How I answer that depends on the context of the question and the nature of the Silverlight
 thing. In this chapter we’re going to talk about Silverlight applications. In the context of this chapter, we’ll use the term
 application in the technical sense of the word: a compiled runnable Silverlight project. The application can be as small as a tiny menu widget or a “punch the monkey” ad on a web page or as complex as some of the Microsoft and Adobe tools I’ve
 used to write this book. We’ll leave the other question of when something can be called an application open so we have something
 interesting to debate at code camp.

 Regardless of our own individual definitions of application, a Silverlight application consists of a .xap file with our compiled
 code, entry-point information, potentially some resources, and a host for the Silverlight plug-in.

 As we saw in chapter 1, you can get up and running with Silverlight with little understanding of these concepts, thanks to the great templates provided
 by Microsoft. But as a developer, you have a natural curiosity to dig deeper and learn more about what’s going on when the
 magic happens and the Silverlight content lights up on the web page, both because you’ll need the knowledge once your applications
 reach more than “Hello World!” complexity, and also because it’s neat stuff. The core information upon which we’ll build in
 the rest of this book is the Silverlight application model and the Silverlight plug-in.

 3.1. The Silverlight application model

 Silverlight applications consist of at least one or more compiled .NET dynamic-link libraries (DLLs) and a manifest file,
 all compressed into a file known as XAP (pronounced “zap”). This is all loaded into the plug-in at runtime and then executed at a specific entry point to start your
 application.

 The .xap file is the key deployment mechanism for all Silverlight managed code applications. When we talk about deploying
 a Silverlight application, we’re really talking about two things:

 	Surfacing the .xap to the client via some URI

 	Instantiating the Silverlight plug-in on the web page or within a hosting out-of-browser process

That’s it. There’s no additional installation, no .msi to install, no registry entries, no elevation prompts (unless you request
 elevated rights). It’s all about getting content down to the end user and instantiated in the plug-in with as little friction
 as possible. The subtleties of how that process works are what I find particularly interesting.

 When I first learned ASP.NET—back when a 17-inch display would take up your whole desk, contain more glass than your car,
 and weigh about 200 lb—one of the things I was most curious about was the startup cycle and the order of events when a request
 was made. If you want to understand how to target a particular application platform, you really need to know how it’s going
 to run your application, when things get loaded, when they’re rendered, and how key decisions are made—the application startup
 process.

 3.1.1. Application startup process

 What happens when you enter a web page that contains a Silverlight application? The application startup process is shown in
 figure 3.1. The flowchart includes the details for Silverlight 1 through 4 but doesn’t address dynamic languages. The “XAML or XAP” step is what makes the decision between the old Silverlight 1.0 model and the current Silverlight 2+ model. That decision
 is based on a combination of the source (a .xaml or .xap file) and the specified type property of the plug-in.

 Figure 3.1. The Silverlight startup process. This flowchart describes the loading process from the load of the HTML page through to the
 execution of the events on the root visual of a Silverlight application.

 [image:]

 The dotted line between the JavaScript and the managed code event handlers is there because, though you typically wouldn’t
 do it, you can have both JavaScript and managed handlers active for the load event of the application. The order in which
 they fire in relation to each other isn’t guaranteed.

 Some additional parts of the process aren’t displayed in figure 3.1 but are interesting nonetheless. For example, when the Silverlight plug-in determines it’ll have a managed code .xap file
 to work with, it loads the Silverlight .NET CLR (CoreCLR) into the memory space of the browser.

	

 CoreCLR

 Silverlight 2+ uses a version of the Common Language Runtime (CLR) known as CoreCLR. This is a version of the .NET CLR that has been optimized for size and use for client-side rich Internet applications (RIAs).
 The CoreCLR shares code with the full .NET CLR for core bits such as the type system, the workstation-optimized garbage collector,
 and the just-in-time (JIT) compiler. These size optimizations and intelligent decisions on what is and isn’t necessary for
 a client-side RIA allow the Silverlight plug-in, including the CoreCLR, to come in at around 5 MB total size. For more details
 on CoreCLR, see Andrew Pardoe’s CoreCLR MSDN article at http://msdn.microsoft.com/en-us/magazine/cc721609.aspx.

 	

Apparent in all this is that the most important artifact in the process is the Silverlight application itself: the .xap file.

 3.1.2. XAP

 A managed code Silverlight application is packaged into a .xap when built. A .xap is simply a ZIP file and may be inspected
 by renaming it to .zip and opening it with any zip-compatible archiver. The contents of a typical .xap file are shown in figure 3.2.

 Figure 3.2. Structure of a typical .xap file showing the types of files that are normally included

 [image:]

 This compressed file will always contain a manifest file named AppManifest.xaml. In addition, there will always be a .dll
 file that serves as the entry point into the Silverlight application. This application may require other Silverlight libraries,
 service connection information, or other types of content. Content items and additional libraries may be in the application
 .xap file or downloaded at runtime; either way, they represent the dependencies of the application.

 Because the .xap file is a ZIP-compatible compressed archive, you may alter its contents and rezip it after compilation. Reasons
 for doing this include updating the service references to move from (for example) a test environment to a production environment
 or altering other environment or customer-specific XML configuration files, branding assets, or other content.

 You can also slightly decrease a .xap file’s size by rezipping it with an efficient ZIP tool such as 7-Zip, at the expense
 of a slightly slower decompression and application startup time on older machines. This may be important in situations where
 bandwidth is at an extreme premium.

 The .xap contains a number of different files. One of which is the file that tells Silverlight what other files the .xap contains
 and where to find the application entry point—the application manifest file.

 3.1.3. The application manifest file

 The manifest file is responsible for describing the Silverlight application to the Silverlight runtime. This file is created
 at build time by Visual Studio and is typically not hand edited.

 The Silverlight runtime reads the AppManifest.xaml file beginning with the root-most element, Deployment. This element exposes two attributes that tell the Silverlight runtime how to start the Silverlight application, as shown
 here:

 <Deployment
 xmlns="http://schemas.microsoft.com/client/2007/deployment"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 EntryPointAssembly="MyApp" EntryPointType="MyApp.App"
 RuntimeVersion="4.0.50401.0">
 <Deployment.Parts>
 <AssemblyPart x:Name="MyApp" Source="MyApp.dll" />
 </Deployment.Parts>
</Deployment>

 This example shows a basic manifest file, which uses the EntryPointAssembly and EntryPointType attributes to launch the Silverlight application. The first attribute, EntryPointAssembly, will always reference one of the AssemblyPart elements in the Deployment.Parts section. The second attribute, EntryPointType, explains which class should be used to start the Silverlight application. The third attribute, called RuntimeVersion, broadcasts the version of the Silverlight runtime that the Silverlight application was built with.

	

Note

 AppManifest.xaml is generated during project compilation based on the settings found in the project’s property pages. If you
 change the name and/or namespace of the startup application class (App), then you must adjust the Startup object setting in the Silverlight property page. If you forget to make these changes,
 you’ll get a runtime error mentioning an invalid or missing Silverlight application.

 	

The Deployment section of the manifest contains two sections:

 	Deployment.Parts

 	Deployment.ExternalParts

We’ll cover Deployment.ExternalParts in section 3.1.6 when we discuss assembly caching because it’s only used in caching situations. Deployment.Parts is used regardless of the caching strategy used.

 Deployment.Parts

 The Deployment.Parts section includes a collection of AssemblyPart entries, each of which corresponds to a DLL in our application. In a complete application, at least one of the DLLs will
 be the entry point assembly.

 As we saw here, the application manifest contains a reference to the startup object type and assembly. The startup object
 is always the Silverlight application object.

 3.1.4. The Silverlight application object

 The entry point into the Silverlight application is the App object. This object is defined in the App.xaml and App.xaml.cs files and derives from the System.Windows. Application type. This type allows you to interact with the three events affecting the application’s lifecycle—the start of the application,
 the unhandled errors in the application, and the exit of the application. In addition to these events, you can also read the
 settings of the hosting plug-in.

 Managing the Start of a Silverlight Application

 Once the App object has been created, the Startup event fires. By default, this event loads the default XAML page into view. You can also use this event to perform any other
 type of application initialization task. For instance, you may want to use this event to set application-wide resources or
 properties. Or, you may want to use this event to load the initParams that were passed into the application (see section 3.3.4). Either way, this type of task can be accomplished by using the Startup event:

 private void Application_Startup(object sender, StartupEventArgs e)
{
 foreach (string key in e.InitParams.Keys)
 {
 // Process the initParam from the createObjectEx function
 }
 this.RootVisual = new MainPage();
}

 This particular event handler shows how to parse the initParams that may have been passed into the application. The Startup event creates a StartupEventArgs variable that assists in the initialization tasks. The first iterates through the initialization parameters. You could access
 the individual dictionary entries by a string key. The second task in this listing displays the first page of the application.
 Both of these tasks introduce important facts about the Silverlight application lifecycle.

 The first important fact is that the StartupEventArgs type is created only by the Startup event. No other event in Silverlight will create a StartupEventArgs object. Because of this, it’s logical to deduce that the InitParams used in the preceding code are only available during application startup. If you’re going to use initialization parameters,
 the Startup event is your only chance to use them. If you need to access them throughout the application, you’ll want to store them in the singleton application settings or the data class of your
 own creation. In addition to the initialization parameters, you should consider the RootVisual.

 The RootVisual is the content that Silverlight will load into the root of the object tree. (For more on object trees, see chapter 2.) Typically, this is a master-page style application page. In the default Silverlight templates, it’s MainPage.

 Once set, the RootVisual of the application can’t be changed for the lifetime of the application. This may cause confusion because you may wonder
 how to switch pages in a Silverlight application. Think of the root visual in a complex multipage application more as a container
 for other content pages. We’ll get to that when we discuss navigation in chapter 15. For now, know that when the Startup event has completed, the RootVisual will be loaded and rendered. At this point, a Silverlight application will be visible to your users, so let’s begin discussing
 how to guard against unforeseen errors.

 Handling Unforeseen Errors

 The Application.UnhandledException event enables you to handle uncaught exceptions. Any Exception that hasn’t been caught by a try-catch block in the application will be sent here. This is the last chance to gracefully deal with an unknown problem by displaying
 a message or perhaps logging to a service or isolated storage:

 private void Application_UnhandledException(object sender,
 ApplicationUnhandledExceptionEventArgs e)
{
 LogError(e.ExceptionObject);
 e.Handled = true;
}

 This shows a basic UnhandledException event handler. The event handler uses an argument to assist in properly handling an unhandled exception. This argument is
 of the ApplicationUnhandledExceptionEventArgs type, which gives you access to the Exception that caused the event through the ExceptionObject property. Once this Exception has been dealt with, you need to signal that you’ve found an acceptable solution. You can accomplish this by setting the
 ApplicationUnhandledExceptionEventArgs object’s Handled property.

 The Handled property is a bool value that signals whether an exception has been addressed. By default, this property value is set to false but you have the opportunity to set it to true within your code. By setting this property to true, you signal that your Silverlight application should continue to run. If this property remains false, the Silverlight plug-in will unload the application, causing the plug-in’s onError event to be fired. We’ll discuss this event in section 3.3.3. Note that this unnatural way of ending an application won’t trigger the Application.Exit event.

 Exiting the Silverlight Application

 The Application.Exit event is the last thing that occurs before an application is shut down and provides one last opportunity to wrap things up.
 This event can be useful for logging information or performing last-minute saves. The Application.Exit event is fired when one of the following happens:

 	The user closes the browser window.

 	The user closes the browser tab that the Silverlight application is running in.

 	The user navigates away from the Silverlight application (such as going from www.mySilverlightApplication.com to www.silverlightinaction.com).

 	The HTML element associated with the Silverlight plug-in is removed from the HTML Document Object Model (DOM).

This event doesn’t have any special event handling parameters like the Startup and UnhandledException events, but it can still read settings associated with the plug-in, if needed. Note that, when this event is fired, the browser
 has already been closed (if closing was the cause) and the Silverlight application has already disappeared. Therefore, displaying
 XAML UI or attempting to prevent the browser page from closing isn’t supported. You may display an HTML message box if you
 absolutely must get some UI in front of the user:

 private void Application_Exit(object sender, EventArgs e)
{
 MessageBox.Show("Daisy, daisy...");
}

 But you can still obtain information about the HTML page that’s hosting the application. For example, this displays a message
 box containing the URL of the page hosting the Silverlight application, even though that page is no longer visible:

 private void Application_Exit(object sender, EventArgs e)
{
 HtmlDocument doc = System.Windows.Browser.HtmlPage.Document;
 MessageBox.Show(doc.DocumentUri.ToString());
}

 Keep in mind that other dynamic elements on the HTML page may have their own shutdown handling, so be careful of how much
 you access from this event. A best practice is to do as little as possible in this event, keeping in mind that you no longer
 have the Silverlight UI displayed to the user.

 One thing you can do in this event (and the others) is read plug-in settings.

 Reading Plug-In Settings

 Once the Silverlight application has been loaded, you can retrieve information about the hosting plug-in. This plug-in exposes
 information set during the creation of the plug-in (createObjectEx; see section 3.2.3). This information is useful throughout the entire life of the application and can be accessed through the Host property of the Application:

 Application.Current.Host;

 The Host property on the Application object is a SilverlightHost, which gives you access to information about the plug-in. The information is listed and described in table 3.1.

 Table 3.1. The properties of the SilverlightHost object

 	
 Property

 	
 Description

	Background
 	Retrieves the background Color of the plug-in.

	Content
 	The content subobject of the createObjectEx function call. This includes the height and width of the plug-in.

	IsLoaded
 	Returns whether the hosting plug-in has completed loading.

	Settings
 	The settings subobject of the createObjectEx function call. This subobject relays information about the Silverlight application’s
 instantiation settings. In addition, this subobject provides values associated with the HTML DOM.

	Source
 	The Uri of the currently loaded XAML content.

This table shows the properties available through the SilverlightHost object. These properties give you access to most of the information discussed in this chapter, which enables you to dynamically create a truly integrated experience. This experience will have a beginning, which can be
 managed through the Startup event. In addition, this experience will have an ending, which can be handled through the Exit event. These are the main events affecting the life of an Application. In addition, this Application may have other types of content that it depends upon. This content makes up what are known as the application dependencies.

 3.1.5. Application dependencies

 Application dependencies are items that your application needs to run correctly. These items include assemblies, images, audio or video files, fonts,
 XAML files, configuration files, or any other type of file. Each file that’ll be used by the Silverlight application can be
 included in the .xap file. This approach can ensure a faster access time, but it can also cause a slower initial download
 of your application.

 To help you overcome long load times, Silverlight allows you to divide your application into smaller chunks that can be downloaded
 as they’re needed. This approach can ensure a faster initial application download, but it doesn’t happen automatically. Instead,
 you must rely on a class called WebClient, which is discussed in chapter 14, or use the built-in partitioning functionality from the Managed Extensibility Framework (MEF). For now, just know that you
 have a way of including application dependencies.

 Application dependencies belong to just one set of the items you may find in a .xap file. This file also includes a DLL, which
 contains an Application. This Application is described by the AppManifest.xaml file, which is used by the Silverlight runtime to start the application.

 Other DLLs required on initial load of the application must either be included in the .xap file or found through the assembly
 cache.

 3.1.6. Assembly caching

 Assembly caching was introduced with Silverlight 3 to provide a way to avoid packaging common DLLs into every application .xap. Since the
 DLLs are usually hosted on your own server, you may include both third-party DLLs as well as DLLs common across your own applications. This can reduce initial
 application load time and make subsequent upgrades to your application easy to deploy and superfast to download.

 To use assembly caching, select the Reduce XAP Size by Using Application Library Caching option on the project Silverlight
 property page, as shown in figure 3.3.

 Figure 3.3. Setting the assembly caching option via the project property pages for the Silverlight project

 [image:]

 Note that assembly caching is available only for browser-hosted applications—it doesn’t currently work for out-of-browser
 applications.

 How it Works

 Here’s the Deployment.Parts section of the application manifest for a simple application that uses one Microsoft assembly not included in the core runtime:

 <Deployment.Parts>
 <AssemblyPart x:Name="AssemblyCaching"
 Source="AssemblyCaching.dll" />
 <AssemblyPart x:Name="System.ComponentModel.DataAnnotations"
 Source="System.ComponentModel.DataAnnotations.dll" />
</Deployment.Parts>

 Note that we have our application assembly AssemblyCaching.dll and the Microsoft assembly all packaged in the same .xap file.
 The resulting file size is 29 KB. Hardly large by web standards, but we know it could be even smaller.

 Once we select the option to use cached framework extension assemblies, the manifest changes to include a new section named
 Deployment.ExternalParts:

 <Deployment.Parts>
 <AssemblyPart x:Name="AssemblyCaching" Source="AssemblyCaching.dll" />
</Deployment.Parts>
<Deployment.ExternalParts>
 <ExtensionPart Source="System.ComponentModel.DataAnnotations.zip" />
</Deployment.ExternalParts>

 The ExtensionPart entries in the Deployment.ExternalParts section correspond to the Microsoft DLL that was originally packaged in our application. Now, instead of including them in
 the application package, they’ll be downloaded from your server on first access and then cached locally for future use. Upon
 compiling your application, you’ll see that the ClientBin folder on the website will have one ZIP file added for each ExtensionPart included in the manifest. Each ZIP file contains just the compressed DLL—no additional baggage.

	

Tip

 If you want to reduce per-application load time on a site that uses Silverlight on various pages, you could preload the cache
 by creating a small headless Silverlight application on a landing page and ensuring that it references all of the required
 assemblies and has assembly caching turned on. Your decision depends on the nature of the site and the landing page and whether
 you consider it okay to download several KB of binaries that may not be used.

 	

Assembly caching is available for any assembly you use. The core Microsoft DLLs have a built-in support because they include
 <dllname>.extmap.xml files for each DLL in the software development kit (SDK). If you want to add support for your own (or a third
 party) DLLs, you’ll need to create an .extmap.xml file for each DLL. The .extmap.xml file looks like this:

 <?xml version="1.0"?>
<manifest xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <assembly>
 <name>System.ComponentModel.DataAnnotations</name>
 <version>2.0.5.0</version>
 <publickeytoken>31bf3856ad364e35</publickeytoken>
 <relpath>System.ComponentModel.DataAnnotations.dll</relpath>
 <extension downloadUri="System.ComponentModel.DataAnnotations.zip" />
 </assembly>
</manifest>

 If you provide an absolute URI, the assembly will be served up by that URI. This is useful for third parties or independent
 software vendors (ISVs) who may want to offer hosting of their DLLs or for organizations that want to have a centralized location
 for common application DLLs. Note that the server hosting the DLL will need to adhere to cross-domain restrictions by providing
 a ClientAccessPolicy.xml file to support clients calling it from other servers.

 The files are cached in the default browser cache for the current browser so they can be used by any other Silverlight application
 that has enabled assembly caching. If you use multiple browsers, you’ll need to download and cache for each browser just like
 any other web content. Similarly, the content can be cleared from the cache like any other browser content.

 The end result is a .xap that weighs in at all of 4 KB, much smaller than most on-page icons and an almost instantaneous download
 for your users. Assembly caching can really make a difference in the load time of your applications.

 At this point, we’ve covered all the core bits of a Silverlight application, including the startup process, key events, packaging
 applications, and sharing assemblies between applications. Next we’ll discuss how to surface those applications on a web page
 using the Silverlight plug-in.

 3.2. Creating the Silverlight plug-in

 The Silverlight plug-in is a lightweight cross-platform browser plug-in responsible for rendering Silverlight content. To
 ensure cross-platform and cross-browser support, the Silverlight plug-in must take advantage of each browser’s plug-in technology.
 This requirement forces the plug-in to be packaged differently across platforms. For instance, when Silverlight runs within
 Microsoft’s Internet Explorer browser, the ActiveX model is used. Alternatively, if Safari or Chrome is used, the WebKit model
 is used. When any other browser is used, the plug-in uses the Netscape Server API (NSAPI) plug-in approach. Regardless of
 the combination of browsers a user chooses, Silverlight only needs to be installed one time on a workstation to work across
 all supported browsers.

 The Silverlight installation is extremely compact, weighing in at around 5 to 6 MB on Windows. This installation requires
 that users have administrative privileges on their machines. If they don’t have these privileges, an administrator will need
 to assist them. Once the Silverlight plug-in is installed on their machines, users are free to enjoy rich Silverlight content
 in the browser of their choice without additional installation requirements.

	

 Installation rights

 Silverlight requires administrative rights to install the plug-in on Windows operating systems. This was a conscious decision
 by the Silverlight team to allow Silverlight to be installed once per machine rather than require managing installations per
 user, per machine. In centrally managed environments, where administrative rights aren’t typically given to users, Silverlight
 may be installed via tools such as Windows Server Update Services (WSUS). Once the plug-in is installed, individual applications
 don’t require admin rights because they’re treated as content by the browser.

 	

The goal of creating a Silverlight plug-in is to host a Silverlight application. This plug-in can be created in at least three
 different ways. One approach is to use the HTML object tag directly. Another is to use the deprecated Silverlight server control
 that’s part of the Silverlight 2 SDK, but is no longer included with Silverlight 3+.

 Another approach for creating a Silverlight plug-in enables you to easily deliver Silverlight content through any server technology
 while ensuring maximum flexibility on the client. You can use Silverlight along with a variety of technologies including PHP,
 JSP, ASP, and ASP.NET. To get Silverlight to work with these technologies, you use the two steps covered in this section.
 The first step is to reference the required Silverlight JavaScript utility file. The second step involves writing the JavaScript
 that’ll create an instance of the Silverlight plug-in.

 The pros and cons of the three approaches are covered in table 3.2.

 Table 3.2. Pros and cons of the three plug-in creation approaches

 	
 Approach

 	
 Pros

 	
 Cons

	ASP.NET Silverlight control
 	Simple to use
 Server-side access to plug-in properties, including initialization parameters

 	Deprecated in Silverlight 3+ but still available as part of the Silverlight 2 SDK. No longer recommended for new projects.

	HTML object tag
 	No additional libraries
 No server dependency

 	Basic installation experience
 Older versions of Internet Explorer displayed a warning dialog

	Silverlight.js utility functions
 	Complete control over the installation experience for various client configurations
 No server dependency

 	Additional effort
 Requires keeping the Silverlight.js file up to date

	

 What happened to the ASP.NET Silverlight control?

 The ASP.NET Silverlight control is still available as part of the Silverlight 2 SDK and on the MSDN Code Gallery (http://go.microsoft.com/fwlink/?LinkId=156721), but it is no longer maintained as part of the Silverlight tools. The object tag and Silverlight.js approaches provide more
 flexibility. When porting your Silverlight 2 projects to Silverlight 4, you may continue to use the ASP.NET Silverlight control
 as long as you update the minimum version number and add the required iframe if using navigation. But it’s recommended that
 you port to one of the other two approaches.

 	

Since the ASP.NET approach is no longer supported, we’ll skip that and instead cover the object tag approach. After that,
 we’ll dig right into using the Silverlight.js utility functions.

 3.2.1. Using the object tag

 You may choose to explicitly create the object tag that hosts your Silverlight application. This approach is used in the “Instantiating
 a Silverlight Plug-In” section of the Silverlight SDK. The reason I use the Silverlight.js approach in this book is because
 there are additional methods, such as buildPromptInstall and isInstalled, in the Silverlight.js file. If you want to explicitly create an object tag, you can do so by embedding the code similar
 to the following:

 <div id="mySilverlightHost" style="height:100%;">
 <object
 id="SilverlightPlugInID"
 data="data:application/x-silverlight-2,"
 type="application/x-silverlight-2"
 width="100%" height="100%">
 <param name="source" value="ClientBin/MySilverlightApp.xap" />
 </object>
 </div>

 Note that the data and type are both x-silverlight-2. The -2 in this case doesn’t mean Silverlight 2; it means version 2 of the Silverlight MIME type. If, in the future, Microsoft decides
 to change the object tag signature in some way, they may introduce an x-silverlight-3 for MIME type version 3 even though the related version of Silverlight may be something like Silverlight 8. That’s not expected
 at this time.

 In general, the properties specific to the Silverlight plug-in can be set through the param elements. There are some exceptions to this. If you decide to explicitly create the object tag, we recommend referring to
 the documentation in the Silverlight SDK.

	

 Getting just a blank page?

 There are many reasons why you might get the Silverlight White Screen of Death (WSOD), such as bad XAML, incorrect .xap file
 location, errors in startup code, and so forth. The WSOD appears when the Silverlight plug-in is present and instantiated
 (verified by right-clicking) but devoid of content.

 One of the most common WSOD causes for first-time users is a missing MIME type on the web server. If you’re using Windows
 Server 2003 or older, ensure the MIME type x-silverlight-app is registered. This MIME type is present on Server 2008 R1 and newer. Many other web servers, such as some versions of Apache,
 will serve the content up without any MIME type registration.

 	

3.2.2. Using the Silverlight.js utility file

 The Silverlight.js utility file is part of the free Silverlight SDK and also part of the Visual Studio Silverlight project
 templates. The Silverlight SDK is available through the Silverlight web site at http://silverlight.net/getstarted, and installed as part of the Silverlight tools installation package. Once you’ve downloaded the SDK, you can find the Silverlight.js
 file in the installation’s Tools directory. This file is an integral part of every Silverlight application, so you should
 know where to find it. Then, you can distribute and reference this file within your applications. Once it’s referenced, you
 can use any number of the valuable features exposed by this file.

	

Note

 Microsoft periodically releases new versions of the Silverlight.js file, related files such as Silverlight.supportedUserAgent.js,
 and associated documentation. To facilitate distribution to developers, Microsoft created a Code Gallery project for Silverlight.js.
 You can download the latest version of Silverlight.js from http://code.msdn.microsoft.com/silverlightjs.

 	

Referencing the Silverlight.js File

 The Silverlight.js file is licensed under the Microsoft Public License (Ms-PL), which allows you to modify the file to suit
 your own needs if necessary. Referencing the Silverlight.js file is as easy as referencing any other script file: you set
 the src property of an HTML script tag:

 <html xmlns="http://www.w3.org/1999/xhtml" >
<head>
 <title>My Silverlight Project</title>
 <script type="text/javascript" src="Silverlight.js">
 </script>
 <!-- Other Script and Style References -->
</head>
<body>
 <!-- We will create a Silverlight plug-in here -->
</body>
</html>

 You gain the ability to create a Silverlight plug-in by adding a reference to the Silverlight.js JavaScript file. Let’s look
 at what’s inside.

 The Functions of the Silverlight.js File

 The Silverlight.js file exposes a number of valuable functions. These functions give you the flexibility to tailor a custom
 experience within a web application. Table 3.3 describes the primary utility functions in alphabetical order.

 Table 3.3. The primary utility functions exposed through the Silverlight.js utility file

 	
 Function name

 	
 Function description

	buildPromptHTML
 	Returns the HTML that creates the Silverlight installation prompt. Takes a Silverlight object in order to determine the prompt
 to build.

	createObject
 	Initializes and creates a Silverlight plug-in. The details and a sample of this method are posted in the next section.

	createObjectEx
 	Initializes and creates a Silverlight plug-in. The details and a sample of this method are posted in the next section. In
 addition, the next section will explain the difference between the createObjectEx and createObject functions.

	HtmlAttributeEncode
 	Performs some basic operations to encode a string into an HTML-encoded string. This internal function was primarily designed
 to be used only within the realm of the Silverlight.js file, so use caution. Here’s an example:
 var result =
Silverlight.HtmlAttributeEncode('"Hello"');

	isInstalled
 	Returns whether a specific version of the Silverlight runtime is available. This method takes one parameter, a string that
 represents a version number. Here’s an example:
 var result = Silverlight.isInstalled("3.0");

These methods provide a powerful arsenal of options to help deliver the appropriate experience to your users. But two options
 encapsulate most of the other functions under one roof—the createObject and createObjectEx functions. These two utility functions shoulder the responsibility of creating an instance of the Silverlight plug-in.

 3.2.3. Creating an instance of the Silverlight plug-in

 To initialize and create a Silverlight plug-in, you use one of two utility functions: createObject or createObjectEx. These methods do the same thing; in fact, createObjectEx calls createObject. But the createObjectEx function uses the more verbose JavaScript Object Notation (JSON) approach to pass in the necessary parameters. For this reason,
 we’ll use createObjectEx in this book.

 The createObjectEx function requires an HTML element as a parameter. This element ultimately serves as the host for the Silverlight plug-in.
 Because of this, you must first either identify or create the HTML element to serve as the host. Then within that element,
 you call the createObjectEx method to add a Silverlight control as a child to the hosting HTML element. The creation process is shown in listing 3.1.

 Listing 3.1. Instantiating the Silverlight control (HTML)

 [image:]

 This listing demonstrates the two main steps of creating a Silverlight plug-in. The first step is to reference the Silverlight.js
 utility file. Once this file is referenced, you create an instance of the Silverlight plug-in, in a specific HTML <div> tag, using the createObjectEx function.

 This function accepts a wide range of parameters, which are responsible for specifying which Silverlight application to run
 and how it should be integrated within a web page. Because a Silverlight application will ultimately be integrated within
 a web page, even if only as the installation source for an out-of-browser application, we need to discuss how to integrate
 a Silverlight control with the surrounding page.

 3.3. Integrating the Silverlight plug-in

 Once you’ve decided to create a Silverlight plug-in, you must ensure that it integrates nicely within your web page. This
 integration must not only look right but it must also behave properly. So, let’s study the items you can control. At a high
 level, these items give you the ability to:

 	Relate your Silverlight application to the HTML DOM.

 	Clarify the initial experience.

 	Handle plug-in events.

 	Send initialization parameters.

These general tasks cover a lot of ground, but we’re going to dive into the details that make each task possible.

 3.3.1. Relating the Silverlight application to the HTML DOM

 The first three parameters of createObjectEx function build the relationship between a Silverlight application and the HTML DOM. These parameters are called source, parentElement, and id.

 Source

 The source parameter specifies the URI of the Silverlight content that should be loaded. In a managed code application, this content
 is bundled up as a .xap file, as discussed earlier in this chapter. The source property can reference a .xap file on the hosting server or on a remote server. This gives you the ability to easily share
 your Silverlight applications and improve server performance through load balancing. This isn’t as easy with Silverlight 1.0.

 Silverlight 1.0 didn’t have support for .xap files. Instead, Silverlight 1.0 relied on setting the source of a plug-in through
 one of two approaches. The first approach involves referencing a .xaml file that exists on the hosting server. The other approach
 is to reference XAML content defined in the hosting web page. This type of XAML content is known as inline XAML. Either way, both of these approaches are dependent upon the JavaScript programming model. Silverlight 2+ still supports
 these approaches so that the source property in Silverlight 4 can be used in three different ways, all of which are shown in table 3.4.

 Table 3.4. The three approaches for referencing a Silverlight application

 	
 Approach

 	
 File extension

 	
 Example[a]

	Packaged
 	.xap
 	source: "http://www.myserver.com/myApp.xap"

	Loose
 	.xaml
 	source: "/relativePath/page.xaml"

	Inline
 	[none]
 	source: "#myXamlID"

 a Assuming this is part of a createObjectEx call

 We won’t be discussing the loose and inline approaches in detail because the packaged approach is the most widely used and
 is the only option that supports the managed code Silverlight 2+ APIs. It’s recommended because of its flexible, compact,
 and portable nature. Regardless of the approach you choose, the Silverlight plug-in is always placed inside the parentElement.

 Parentelement

 The parentElement parameter specifies the HTML object that hosts the Silverlight plug-in. It’s important to recognize that this property requires
 an object and not just the ID of the parent. You may need to use the HTML DOM approach of retrieving an object using document.getElementById. Once the object is retrieved, a new HTML element will be appended to it when the Silverlight plug-in is created.

 The specific type of object that is created is based on the user’s browser. If the user is using Internet Explorer or Firefox,
 an HTML OBJECT element is created. Alternatively, if the user is using Safari, an HTML EMBED element is created. Regardless of the type of object, it gets appended to the element you defined as the parentElement.

 This newly created HTML object is given the unique identifier you set in the id parameter.

 ID

 The unique identifier of the Silverlight plug-in is specified by the third parameter of the createObjectEx method, id. The value you must supply to this parameter is the id attribute of the OBJECT or EMBED element mentioned in the previous section. This parameter is the primary hook from the HTML DOM to the Silverlight plug-in.
 You can easily access a Silverlight plug-in using the document.getElementById function. This function is available within the HTML DOM Document object, and you can use it from a scripting environment such as JavaScript. This fact will come into play at the end of this
 chapter. But we should first discuss how to clarify a user’s default experience.

 3.3.2. Clarifying the initial experience

 While a Silverlight plug-in is being initialized, a number of properties clarify how that plug-in will initially render. These
 properties are demonstrated here:

 Silverlight.createObjectEx({
 source: "ClientBin/MySilverlightApp.xap",
 parentElement: document.getElementById("mySilverlightHost"),
 id: "mySilverlightControl",
 properties: {
 height: "100%",
 width: "100%",
 background: "blue",
 isWindowless: "true",
 frameRate: "30",
 inplaceInstallPrompt: true,
 version: "4.0",
 ignoreBrowserVer: "true",
 enableHtmlAccess: "true"
 },
 events: {}
});

 These properties can be used to define an initial experience. (All the properties listed here use pretend values to show the
 syntax.) We’ll explain the details of each of these properties in the order they’re shown. In addition, these properties will
 be logically grouped together when possible, such as height and width.

 Height and Width+

 The height and width properties specify the boundaries of the rectangular region that the Silverlight application will be presented within. By
 default, these property values represent a rectangle with no height and no width. You can change this by providing either a pixel or percentage value, as you can with other HTML elements to provide either
 absolute or relative sizing.

 Relative sizing is a widely used technique within the HTML world, so it’s nice to see that the Silverlight plug-in provides this option to
 simplify integration efforts. To further integrate your Silverlight content within the HTML page, you need to use the background and isWindowless properties.

 Background and Iswindowless

 The background property allows you to specify the color of the rectangular region where the Silverlight plug-in will appear. By default,
 this property is set to null, which is the same as white. There are two techniques for setting this property value. The first is to use a hexadecimal
 color value. The second is to use a color name recognized by the user’s browser, such as Silver. Perhaps the most interesting option, though, enables you to hide the background entirely.

 By setting the background property to transparent, you can make the background of the plug-in region invisible. At the same time, your Silverlight application is still completely
 visible. Before you get too excited, we strongly recommend searching for alternatives before using this option. When the background property is set to transparent, your Silverlight applications will incur a significant performance hit, which may detract from a user’s experience, especially
 when playing media or doing heavy animation. In addition, if you choose to use the transparent option, it’s important to take the isWindowless property into consideration.

 The isWindowless property lets you determine whether the plug-in allows any underlying HTML content to display through any transparent areas.
 By default, this property is set to false, meaning that your Silverlight plug-in will appear on top of any underlying HTML content. The reason why this property defaults
 to false is because, once again, when this value is set to true, your Silverlight application will take a significant performance hit.

 Setting the isWindowless property to true does have an advantage. When this property is true, any underlying HTML content will show through the transparent areas of the Silverlight plug-in. This option is most useful
 when you want seamless integration with an HTML page such as flyovers and overlays. As figure 3.4 shows, the background and isWindowless properties are somewhat reliant upon each other.

 Figure 3.4. The consequences of various background and isWindowless property combinations. The outermost rectangle represents a section of HTML within a web page. The inner rectangle represents
 the region occupied by a Silverlight plug-in. The rounded rectangle is the pure Silverlight content that will be explained
 later.

 [image:]

 It’s critical to your integration efforts to understand how the background and isWindowless properties cooperate. As the third image in figure 3.4 shows, setting the background property to transparent is only half the battle. The fourth image shows that you truly have the ability to seamlessly integrate Silverlight content
 within your web assets by setting both the background and isWindowless properties. The process of integration will become clearer once we begin discussing the actual Silverlight content in the
 next chapter.

 Framerate

 The frameRate property (object tag and ASP.NET property name: MaxFrameRate) enables you to determine the maximum number of frames you want to render per second. This built-in throttling mechanism
 ensures that your Silverlight plug-in doesn’t hog the system resources. By default, this property is set to render 60, which
 is more than most non-media applications need, so feel free to experiment. Ultimately, the frame rate is based on the available
 system resources. For more on frame rate and the rendering process, see section 6.2.

 To view the actual frame rate, set the EnableFrameRateCounter plug-in property (enableFrameRateCounter in JavaScript) to true. This will show the actual and max frame rates in the browser status bar as seen in figure 3.5. Note that this feature only works in Internet Explorer on Windows.

 Figure 3.5. The browser window displaying the current and maximum frame rates in a CPU-intensive application

 [image:]

 Version

 When instantiating a Silverlight plug-in, you need to set the version property in the createObjectEx function. This property represents the minimum runtime version required by your Silverlight application. If users don’t have
 at least this version of the Silverlight runtime installed, they’ll be greeted by a default installation prompt. This installation
 prompt looks like figure 3.6.

 Figure 3.6. The default Silverlight installation badge displayed when the user doesn’t have the required Silverlight version installed.

 [image:]

 You can override this default image and show something that may be branded or more appropriate for your specific application.
 We’ll cover that in chapter 25 when we discuss optimizing the install experience. This figure shows the default visual prompt users will see if they don’t have the necessary version of Silverlight installed.

 Once Silverlight is installed, it’ll automatically install future versions of Silverlight if configured to do so. These updates
 will continue to be installed as long as the users don’t disable this feature in the Silverlight Configuration dialog box.
 Figure 3.7 shows the Silverlight Configuration dialog box, which can be accessed by right-clicking any Silverlight application in the
 browser.

 Figure 3.7. The Silverlight Configuration dialog box (Silverlight 4 adds a Webcam/Mic tab). This dialog box is accessible by right-clicking
 Silverlight content within a web browser. Administrators may configure the Silverlight auto-updater for all users, thereby
 disabling the ability to change options on this screen.

 [image:]

	

Note

 Windows 7 and Windows Vista users with User Account Control (UAC) enabled will not have the option to install updates automatically.
 In those instances, Silverlight will require permission to download and install updates when new updates are found. Windows
 Vista and Windows 7 users are encouraged to choose the second option shown in figure 3.7 to check for updates and be prompted to install new versions when available.

 	

As you can see, this dialog box gives you the option of turning off automatic updates of Silverlight. But, by default, users’
 machines will typically have the latest and greatest version of Silverlight.

 Ignorebrowserver

 The ignoreBrowserVer option empowers you to specify whether you should check to see if Silverlight can run within the browser environment. By
 default, this parameter is set to false, which ensures that only supported browsers will run a Silverlight application. You can set this property value to true to bypass this safety check. This brute-force approach can slightly speed up the plug-in initialization process but can lead
 to undesired effects. If you want to support browsers that mostly work but aren’t officially supported, update the user agent
 file (available on http://code.msdn.microsoft.com/SLsupportedUA) instead, so you still maintain control over the spectrum of browsers that’ll access your application.

 Enablehtmlaccess

 The final Boolean property in the Silverlight plug-in initialization provides an extra layer of security. This property, called
 enableHtmlAccess, specifies whether the managed code running within a plug-in instance can access the HTML DOM. By default, this property
 is set to true for the same domain applications and false for cross-domain applications. This ensures a safe-by-default development experience. You can set this property value to
 true for cross-domain applications, but you should first consider the ramifications.

	

Note

 Cross-domain applications are applications that run on one domain but are sourced from another. For example, if you host a
 web page at http://www.mycoolsite.com and the .xap file used by the Silverlight plug-in on that page is served up from http://PetesHouseOfXap.org, which would be a cross-domain application.

 	

Let’s pretend for a second that a political candidate, we’ll call him Gill Thrives, has created a Silverlight application
 that everybody wants. This application is so amazing that even the competing political candidate, named Loth Slivering, wants
 it. Gill makes this control available for free download via a third-party control site. Gill has deceptively added code that
 will edit the hosting web page’s DOM to say Vote for Gill on a future date before the election. Unfortunately for Loth, Loth
 added this application to his web site, and now his campaign site has been trashed with “Vote for Gill” all over it. What
 an embarrassment!

 Loth could’ve easily avoided this time-bomb embarrassment by explicitly setting the enableHtmlAccess property value to false. When this property value is false, any managed code associated with the plug-in instance that attempts to access the HTML DOM will trigger an error. And, fortunately,
 an error is just a type of event, which Silverlight enables you to elegantly handle (more on that in a moment).

 The enableHtmlAccess property is but one of the many configuration options you have. The others include ignoreBrowserVer, inplaceInstallPrompt, version, isWindowless, background, height, and width. Collectively, these options are all set through the properties nested object within createObjectEx. This nested object syntax may seem awkward at first but it’s just a part of JSON syntax. This syntax gives you a way to
 logically group together items, making it easy to separate the items that define the look of a Silverlight plug-in instance from its behavior. The behavioral items are part of the events nested object.

 3.3.3. Handling plug-in events

 At this point, we’ve covered all of the items required to create an instance of the Silverlight plug-in. Remember that this
 plug-in has events that affect it and, in turn, your application. These events are onLoad and onError. We’ll discuss each in detail in a moment. But, first, let’s look at how to wire these event handlers up with a plug-in instance.
 This can be done in the createObjectEx function in the events subobject, as shown here:

 Silverlight.createObjectEx({
...
 properties: {
...
 },
 events: {
 onLoad:plugin_Load,
 onError:plugin_Error
 }
});

 This shows how to wire up the two events associated with a Silverlight plug-in. In reality, neither of these has to be set.
 But, by setting them, you can create a more tailored experience when loading or handling an unexpected error. Either way,
 you can accomplish what you need to by responding to the onLoad and onError events.

 Onload

 The onLoad event occurs immediately after your Silverlight application has been loaded. By default, nothing special will happen when
 this event occurs. You do have the option of creating an event handler for when this event fires. Regardless of how you intend
 to use it, you can create an event handler by using JavaScript like this:

 function plugin_Load(sender, context, source)
{
 alert("loaded");
}

 This shows an extremely basic onLoad event handler with the three parameters that are passed with the onLoad event. These three parameters are sender, context, and source. The purpose of these parameters is described in table 3.5.

 Table 3.5. The parameters of the onLoad event handler

 	
 Parameter

 	
 Description

	sender
 	A handle to the Silverlight plug-in itself

	context
 	A value specified to distinguish the plug-in instance; this value is provided by a developer

	source
 	The root element of the content loaded into the plug-in

In addition to the parameters of this event, you should know that there are times when this event won’t fire. This event won’t
 be triggered if you attempt to reference a Silverlight application that doesn’t exist. Along the same lines, the onLoad event won’t fire if there’s an error in your createObjectEx function call. You may think that an error will fire the onError event; in reality, the onError event will fire only after the Silverlight application has loaded.

 Onerror

 The onError event is triggered when an exception hasn’t been handled by managed code in your application. But, some errors, such as image
 and media errors, can’t be handled with a managed code unhandled exception handler (they must be handled in specific events
 or the onError handler in JavaScript). Because of this, you may want to create an error handler at the plug-in level. This can be accomplished
 by using an onError event handler such as the following:

 function plugin_Error(sender, errorArgs)
{
 errorType = errorArgs.ErrorType;

 if (errorType == "ImageError" || errorType == "MediaError")
 return;

 alert("An unexpected error has occurred.");
}

 This all-purpose onError event handler can be used to gracefully handle errors that haven’t been caught elsewhere. When called, the value in the sender parameter represents the plug-in where the error occurred. The second parameter, errorArgs, describes the error. This description is accessible through a variety of publicly visible properties. These properties are
 listed and described in table 3.6.

 Table 3.6. The properties associated with the errorArgs parameter

 	
 Property

 	
 Description

	ErrorCode
 	A numeric code associated with the error; this property can’t be set

	ErrorMessage
 	A read-only description of the error

	ErrorType
 	The category of the error

	Name
 	The name of the object that caused the error

You can learn a lot about an error through the errorArgs parameter. This parameter is a valuable part of the onError event handler. As hinted at earlier, this event handler is useful for some situations that can’t be covered by application-level
 error handling. Examples of such an error would be a stack-overflow exception or the media errors shown earlier. Regardless
 of the error, it’s nice to know that there’s a way to handle those errors that can’t be handled elsewhere. It’s also nice
 to know how to pass some initialization information to a Silverlight application when it starts.

 3.3.4. Sending initialization parameters

 A Silverlight application is a lot like any other .NET application. As an example, imagine a basic command-line program. This
 program allows you to pass parameters to it before it starts. Then, when the application does start, it’s responsible for
 parsing the parameters. Once parsed, the application decides what to do with these parameters. This is exactly how Silverlight
 uses initialization parameters as well.

 The initialization parameters in Silverlight are sent through a parameter named initParams. initParams is another parameter in the createObjectEx function. Likewise, there’s a parameter called context. This parameter allows you to uniquely tag a Silverlight plug-in instance. Both parameters are shown here:

 Silverlight.createObjectEx({
...
 properties: {
...
 },
 events: { },
 initParams: "key1=value1, key2=123, keyX=valueY",
 context: "27d3b786-4e0c-4ae2-97a3-cee8921c7d3d"
});

 This code demonstrates the basic usage of the initParams and context parameters. Each of these parameters serves its own special purpose. In reality, you’ll probably only use the initParams parameter because the context parameter doesn’t have as much value in the Silverlight 4 world. The reason is because each Silverlight application runs
 within its own domain and code sharing isn’t necessary like it is in the scripting world of Silverlight 1.0. Regardless, we’ll
 cover them both in detail for the sake of completeness.

 Initparams

 The initParams parameter enables you to send any number of user-defined, key-value pairs to a Silverlight application. The application is
 then responsible for reading and interpreting the key-value pairs when it starts as shown in section 3.1.4. But first, let’s build an understanding of how these key-value pairs are created.

 The key-value pairs are represented in typical dictionary [key]=[value] form, separated by commas. Naturally, the entire string of initParams represents a collection of key-value pairs. This is different from initParams in Silverlight 1.0.

 In Silverlight 1.0, the initParams parameter took a list of comma-delimited values. This is important to recognize if you’re promoting your Silverlight 1.0
 application to Silverlight 4 because this approach isn’t valid in 4. If you are, in fact, doing this kind of migration, you
 may want to consider how the context parameter is used as well.

 Context

 The context parameter gives you a way to uniquely identify a Silverlight plug-in. This plug-in passes the value of the context parameter to the onLoad event associated with the plug-in. The event then uses this string value to distinguish the plug-in from others without having to check the HTML DOM. This empowers you to share scripted code
 across multiple Silverlight plug-ins that exist on the same web page.

 The context and initParams serve as valuable initializers in the plug-in creation process, which involves deciding how to handle the onError and onLoad events impacting the plug-in. The initial look of this plug-in is set up through a variety of property settings declared
 within the properties sub-object.

 Initialization parameters and context are great ways to get simple values to Silverlight applications running in the browser.
 But, keep in mind that those values don’t currently carry over to applications running out of the browser—something we’ll
 cover in chapter 5.

 3.4. Summary

 One of the most important things you can learn about any given platform or technology is how it handles the concept of an
 application, including the packaging of that application and the startup process. Back when I used to write straight C code,
 and everything started at int main(int argc, char **argv) with statically linked libraries into a single .exe or .com file, this was trivial to understand. In more complex technologies
 such as Silverlight, both the packaging and the startup processes are significantly more involved, but the benefits are great.
 Because of that, we get great things like Internet deployment, browser integration, hands-off memory management, an event-driven
 input model, full media, and rich graphics. Who could’ve foreseen that back when code editors only handled a line at a time,
 compiles were initiated from the command prompt, ASCII graphics were popular, and the presence of a working TCP/ IP stack
 wasn’t a given?

 Once the plug-in is installed on the end-user machines and the hosting page set up, deploying the application can be as simple
 as those C programs of yore: just copy the deployment file (the .xap) to a known location and have at it. The various options
 available for creating the plug-in allow us to support just about any server environment and installation experience we’d
 like. In fact, we’ll talk more about custom installation experiences in chapter 25.

 In this chapter we covered HTML page integration primarily from a plug-in-centric view. In the next chapter we’ll talk more
 about how to integrate Silverlight with a web page, including interacting with JavaScript and the DOM.

Chapter 4. Integrating with the browser

 This chapter covers

 	Interacting with the HTML Document Object Model (DOM)

 	Hosting HTML in Silverlight

Silverlight has always been a web technology, integrated into the web page. Even when a Silverlight application took over
 the entire browser client area, it was still contained within several layers of HTML tags. Given the history, it makes sense
 that a Silverlight plug-in would have complete access to the Document Object Model (DOM) on the page in which it resides.
 In fact, the access is so complete that a Silverlight application could take over all of the functionality normally provided
 by JavaScript if you wanted to go that route.

 Despite the out-of-browser capability introduced with Silverlight 3, as a RIA technology, Silverlight is and will remain for
 the foreseeable future most popular as a browser plug-in. There’s just too much synergy between the nature of a HTML application
 and the power of a .NET-based RIA plug-in like Silverlight to completely abandon that approach.

 Silverlight 4 added the ability for Silverlight to host HTML within itself. Though currently restricted to out-of-browser
 applications (the topic of the next chapter), the integration is provided by the default browsing engine in the operating
 system and supports some script integration.

 We’ll start where Silverlight started, in the browser, where it can take advantage of the DOM. From there, we’ll drill deeper
 into the HTML DOM and discuss the embedded Silverlight control. This control, which is also known as the Silverlight plug-in,
 ultimately hosts your Silverlight content. Finally, we’ll move on to hosting HTML within our Silverlight application.

 4.1. Silverlight and the HTML DOM

 As mentioned in chapter 1, Silverlight is a browser-based plug-in. This plug-in was designed to be consistent with the well-established web architecture.
 This design decision ensures that you can integrate Silverlight content within any new or existing web property. The web property
 could be anything from a web page to a blog, intranet portal, or desktop gadget. As shown in figure 4.1, this decision gives you the flexibility to use as little or as much Silverlight as you want.

 Figure 4.1. Two theoretical in-browser uses of Silverlight. The shaded areas represent Silverlight applications on web pages.

 [image:]

 Figure 4.1 shows the amount of flexibility you have when it comes to using Silverlight. In reality, you can place Silverlight anywhere
 you want within a web property. This is accomplished through Silverlight’s harmonious relationship with the well-known HTML
 DOM. The DOM allows you to embed a Silverlight plug-in within it. Once embedded, the overall application tree expands to something
 similar to that shown in figure 4.2.

 Figure 4.2. The darkly shaded area represents the HTML DOM. The lightly shaded area represents the Silverlight control. This control hosts
 the Silverlight Object Model.

 [image:]

 The HTML DOM enables you to easily access and manage content in a web page. As illustrated in figure 4.2, this content is represented as a structured tree of elements. These elements represent children and contain attributes and
 text that give them definition. Each child of the tree can be accessed through the HTML DOM. This gives you the ability to
 add, edit, or remove content as needed. Unfortunately, as the tree has grown, it has become somewhat unwieldy.

 In 1998, the World Wide Web Consortium (W3C) published the first version of the HTML DOM specification. Since then, this specification
 has been implemented, at least in some form, by every web browser. Over time, developers of some web browsers have decided
 to augment the original specification to provide additional functionality, causing a number of inconsistencies that can make
 it difficult to deliver platform-neutral content.

 To ensure that Silverlight could deliver platform-neutral content, the browsers supported by Silverlight had to be identified.
 Each of these browsers uses one of the Silverlight-supported DOM variants. These DOM variants and their descriptions are shown
 in table 4.1.

 Table 4.1. The DOM variants officially supported by Silverlight

 	
 Specification

 	
 Browser(s)

 	
 Description

	DHTML Object Model
 	Internet Explorer
 	The DHTML Object Model gives developers programmatic access to the individual elements within a web property.

	Gecko DOM
 	Firefox
 Mozilla
 Netscape
 Safari
 Chrome

 	The Gecko DOM approach parses and renders HTML content and utilizes the HTML DOM.

Most web browsers implement one of the DOM variants supported by Silverlight. Regardless, these DOM variants enable you to
 programmatically access and manipulate the HTML DOM. Because of this, you can easily add an instance of the Silverlight plug-in
 to a new or existing web page.

 At this point, you should have a basic understanding of what a Silverlight application is. If you don’t, that’s okay because
 it’ll become clearer throughout this book. When a Silverlight application resides on a web page, you can use it to interact
 with the HTML DOM. To do this, you use the System.Windows.Browser namespace.

 The System.Windows.Browser namespace exposes a number of classes that encapsulate the features of the HTML DOM. The entry point into this DOM is accessible
 through the HtmlPage class. This statically visible class gives you the ability to manage a web page from managed code. In addition, you can use
 the HtmlPage class to interact with users through their browser windows. What’s perhaps most interesting, the System.Windows.Browser namespace enables you to completely bridge the scripting and managed code worlds.

 4.2. Managing the web page from managed code

 The HtmlPage object exposes a property called Document. This property is an HtmlDocument object that embodies the currently loaded HTML page and gives you admission to all OF the elements available within the page.
 This may sound familiar because the Document object within the HTML DOM exposes the same kind of functionality. The Silverlight version gives you the ability to do all
 OF this from managed code. This enables you to navigate the contents of a web page, work with individual element properties
 and styles, and retrieve information from the query string.

 4.2.1. Navigating web page contents

 The HtmlDocument gives you two entry points into the currently loaded document. These entry points are represented as properties and are shown
 in table 4.2.

 Table 4.2. The entry points into the HtmlDocument

 	
 Property

 	
 Description

	DocumentElement
 	This property represents the root element of the HTML DOM. It always represents the HTML element of a web page.

	Body
 	This property gives you immediate access to the contents of the BODY element of a web page.

These properties represent great ways to enter into an HtmlDocument. More specifically, these items are geared toward navigating an HtmlDocument using a top-down approach. For situations where you need to dive into the middle of the action and find a nested element,
 you have two other options. These are shown in table 4.3.

 Table 4.3. The navigation methods of an HtmlDocument

 	
 Method

 	
 Description

	GetElementById
 	It empowers you to find any element within an HtmlDocument by referencing its unique identifier. If the element is found,
 an object-oriented version of the element, known as an HtmlElement, is returned. If the element isn’t found, null will be
 returned.

	GetElementsByTagName
 	It finds all of the elements with a specified tag name. The results are returned as a collection of browser elements.

This table introduces the powerful and often-used GetElementById and GetElementsByTagName methods. Note that these method names match their HTML DOM equivalents, so you have a familiar approach for retrieving elements
 from managed code:

 HtmlDocument document = HtmlPage.Document;
HtmlElement element = document.GetElementById("myDiv");

 This example shows how to access an HTML element, in this case myDiv, via managed code. Note that the myDiv element is simply an HTML DIV element within the HTML page hosting the Silverlight plug-in. The example also introduces the important HtmlElement class. This class represents a strongly typed wrapper for any element in the HTML DOM. This wrapper exposes properties, listed
 in table 4.4, that enable you to interact with an HTML element from managed code.

 Table 4.4. The navigation properties of an HtmlElement

 	
 Property

 	
 Description

	Children
 	A collection of items hosted by the current HtmlElement

	CssClass
 	The name of the Cascading Style Sheet (CSS) class in use by the HtmlElement

	Id
 	The unique identifier of the HtmlElement

	Parent
 	The HtmlElement that hosts the calling item; if the calling item is the DocumentElement, this value will be null

	TagName
 	The name of the tag used by the HtmlElement

This table shows the properties that define an HtmlElement. The Children and Parent properties give you the ability to navigate a web page from a specific element. Each element will have a specific tag associated
 with it, which can be viewed through the TagName property. If this tag is an input tag, you can give it the focus by calling a method that’s appropriately named Focus(). Beyond the Focus method and the properties listed in table 4.4, each HTML tag may contain several unique properties. Let’s look at how to work with these element-specific properties.

 4.2.2. Working with element properties

 Each element in the HTML DOM exposes a number of descriptive properties. Some of these properties are shared with all other
 elements in the HTML DOM (such as TagName). At the same time, some properties are only relevant to some HTML elements—for example, the value property of an HTML input tag. Because this property is only relevant to one kind of element, you may be wondering how HtmlElement works in these situations.

 HtmlElement exposes two utility methods designed to interact with the properties of an HTML element. The first method, GetProperty, retrieves the value assigned to a property. The other method, SetProperty, can be used to assign a value to a property. These general methods give you the flexibility to work with any kind of HtmlElement:

 HtmlDocument document = HtmlPage.Document;
HtmlElement myTextField = document.GetElementById("myTextField");
int value = Convert.ToInt32(myTextField.GetProperty("value"));
value = value + 1;
myTextField.SetProperty("value", Convert.ToString(value));

 This code demonstrates how the GetProperty and SetProperty methods can be used. Note that this sample retrieves the value associated with the value attribute of an HTML Input field. This value is incremented by one and assigned back to the field. The GetProperty method takes a string that represents the name of the property value to retrieve. This value is then returned as a string. In a similar fashion, the SetProperty method takes a string that represents the value to set to a property. This property is identified by the first parameter in the SetProperty method. From this, you can see that it’s pretty easy to work with property values programmatically. Thankfully, it’s just
 as easy to work with an element’s CSS information.

 4.2.3. Handling CSS information

 Elements within the HTML DOM are designed to separate content from presentation. The presentation information is stored in
 a variety of styles that describe how the element should be shown, which are set through a number of attributes that belong
 to the CSS recommendation. These attributes have values that can be accessed or assigned from managed code, similar to the
 following:

 HtmlDocument document = HtmlPage.Document;
HtmlElement myDiv = document.GetElementById("myDiv");
myDiv.SetStyleAttribute("backgroundColor", "gray");

 The first step in accessing a style attribute from managed code is to retrieve the HtmlElement whose style needs to be used. Then, the style can be set using the SetStyleAttribute method. Alternatively, you can retrieve the current style of an HtmlElement by using the GetStyleAttribute method. Both of these methods require you to reference a style using the scripting naming approach.

 The scripting naming approach is used to interact with styles from JavaScript. This approach uses CamelCase for style names.
 This is slightly different than the HTML approach, which uses dashes to separate words. This means that the HTML name for
 the backgroundColor property used in the previous example is background-color. If you’re an experienced web developer, you’ve probably run into this discrepancy before. Note that Silverlight requires
 the scripting approach. If you try to reference a style using the HTML approach, an exception won’t be thrown but the style
 value also won’t be set or retrieved. Either way, it’s nice to know there are ways to get and set style attributes. It’s also
 nice to know how to retrieve values from the query string.

 4.2.4. Accessing the query string

 One common approach for managing state in a web application involves using the query string. The query string empowers you
 to store small amounts of data relevant to a user’s session. In addition, the query string can be used as a sort of a bookmark
 to allow a user to come back to a specific location at a later point in time. As an example, let’s pretend we want to send
 you the search results for a query on Silverlight; we could email you the following web address:

 http://search.msn.com/results.aspx?q=Silverlight&mkt=en-us&FORM=LVCP

 This web address enables you to see the search results we’re referring to. This is more convenient than telling someone to
 go to a search engine, enter “Silverlight” into the query box, and wait for the results. This simpler approach is made possible
 through the values that are stored after the ? (question mark)—values that represent the QueryString of the Uri for an HtmlDocument.

 The QueryString is readable through a collection of key/value pairs. This collection is part of a larger entity known as the DocumentUri. The DocumentUri represents the Uri of the current page, allowing you to always gain your current bearings within an application. Figure 4.3 shows how the parts of the DocumentUri are related.

 Figure 4.3. The elements of a web address

 [image:]

 This figure shows the breakdown of a web address. Note that, significantly, the QueryString starts after the ? in a web address. In addition, each key/ value pair is separated by an & (ampersand). The QueryString in figure 4.3 has two key/value pairs, which could be read using this code:

 HtmlWindow window = HtmlPage.Window;
HtmlDocument document = HtmlPage.Document;
foreach (string key in document.QueryString.Keys)
{
 window.Alert("Key: " + key + "; Value: " + document.QueryString[key]);
}

 Note that you can’t set the key/value pairs of this collection from code. Instead, if you need to set the QueryString values, you’ll need to use the navigation techniques shown table 4.6. This will reset the values associated with the QueryString, as well as the contents of the page. Once the contents of the page are loaded, you can use the HtmlDocument to navigate the page.

 4.3. Working with the user’s browser window

 The hosting browser window is represented as an HtmlWindow object. This object can’t be instantiated from code, but you can get the current instance of the hosting browser’s HtmlWindow through the HtmlPage class’s Window property. This can be accomplished by using the following code:

 HtmlWindow window = HtmlPage.Window;

 Once you have a handle to it, you can use the HtmlWindow to display prompts to a user. Alternatively, you can use this object to navigate the browser to a different location using
 the Navigate method. Either way, this browser window stores valuable information that can be discovered and used to enhance the user’s
 experience.

 4.3.1. Prompting the user

 The HtmlWindow class enables you to deliver HTML prompts to your users. It’s important to note that these prompts aren’t Silverlight items.
 Instead, these prompts are constructed entirely by the user’s browser window, so you have a limited ability to customize how
 these prompts are displayed. The good news is that these prompts provide a quick way to show or collect information from your
 users. The three prompt options available through the HtmlWindow class are listed in table 4.5.

 Table 4.5. The prompt options available through the HtmlWindow class

 	
 Method

 	
 Description

	Alert(...)
 	It shows a single message in an HTML alert window.

	Confirm(...)
 	It prompts the user to agree or disagree with a statement or question. This prompt displays two buttons: OK and Cancel. The
 text of these buttons can’t be customized. If a user selects OK, this method will return true; if a user selects Cancel, this
 method will return false.

	Prompt(...)
 	It creates a dialog window that displays a single message. In addition, this dialog displays a single text box that the user
 can enter information into. If the user selects the OK button from this dialog window, the value of that text box will be
 returned as a string. Otherwise, if a user selects Cancel or exits the window, null will be returned.

These prompt options mimic the prompt choices available through the HTML DOM Window object. Using Silverlight, you can launch these prompts from managed code. This example shows one way to display an alert
 to a user using C#:

 HtmlWindow window = HtmlPage.Window;
window.Alert("Welcome!");

 Note how easy it is to deliver an HTML prompt to a user. It’s also important to note that these prompts prevent the execution
 of succeeding code until the user responds to the prompt—they’re blocking operations. Either way, you can use this approach
 to use the other prompt types shown in table 4.5.

 Silverlight 3 introduced another easy way to alert the user. The MessageBox.Show method encapsulates the HtmlWindow.Alert functionality to provide a more discoverable way to display alerts. More importantly, the MessageBox.Show method also works for out-of-browser applications where there’s no valid HtmlPage and has no dependence on the underlying JavaScript capabilities.

 Most .NET Windows developers are used to MessageBox.Show and will find it just as intuitive in Silverlight:

 MessageBox.Show("Welcome!");

 The Show method also takes some additional parameters to allow you to set the window caption and display either the OK button or both
 the OK and the Cancel buttons:

 MessageBox.Show("Format your C drive?",
 "Windows Caption",
 MessageBoxButton.OKCancel);

 Just as in the case with Alert and the other methods, this is a blocking operation and will suspend your application until the user closes the window.

 The MessageBox class and the HtmlWindow methods make it easy to display confirmation messages to the user via the browser. Luckily, it’s just as easy to perform
 navigation tasks through the browser window.

 4.3.2. Navigating the browser window

 Navigation is an important part of any web application. There may be times when you want to redirect a user to another web
 page or perhaps you want to launch another browser window and load a web page into it. Either way, the HtmlWindow class provides two methods you can use to get the job done. These are shown in table 4.6.

 Table 4.6. The navigation options available through the HtmlWindow class

 	
 Method

 	
 Description

	Navigate(...)
 	This method will redirect the browser window to the provided URI. This URI can be loaded in an optional target window. The
 specifications of this target window can be set via an optional third parameter. The name and specification of the target
 window parameters match those used by the HTML DOM window.open function.

	NavigateToBookmark(...)
 	This method is used to navigate to a location within the current HTML page.

It’s important to recognize that these navigation methods can have undesired effects on your Silverlight application. For
 instance, if you redirect the hosting browser window away from the hosting web page, your Silverlight application will be
 unloaded. You should strongly consider loading a different web page into a new browser window, as shown here:

 Uri uri = new Uri("http://10rem.net");
HtmlWindow window = HtmlPage.Window;
window.Navigate(uri, "_blank");

 One of the key items to notice from this code is the fact that you must always use a Uri for a web address. In addition, you can still use a target with an address, just like in HTML, making it easy to fully control
 the experience.

 In addition to the properties of the windows or elements in the DOM, you may also want to obtain information about the browser
 itself.

 4.3.3. Discovering the browser properties

 The statically visible BrowserInformation property exposes detailed information about a user’s browser. This information is stored within a System.Windows. Browser.BrowserInformation object that corresponds nicely to the Navigator object available within the HTML DOM. Table 4.7 shows the properties exposed by the BrowserInformation object and the equivalent Navigator property.

 Table 4.7. Descriptions of the BrowserInformation properties and their corresponding Navigator properties

 	
 BrowserInformation

 	
 Navigator

 	
 Description

	BrowserVersion
 	appVersion
 	Represents the platform and version associated with the browser

	CookiesEnabled
 	cookieEnabled
 	Specifies whether cookies are enabled within the browser

	Name
 	appName
 	The name of the browser

	Platform
 	Platform
 	The operating system

	UserAgent
 	userAgent
 	The value of the user-agent header that will be sent from the browser to a server

Based on these options, you can see that you have access to a lot of information. This information can be useful for creating
 a statistical analysis of your application’s users. To accomplish this, you must first get to the BrowserInformation by using code similar to this:

 BrowserInformation browserInfo = HtmlPage.BrowserInformation;
HtmlWindow window = HtmlPage.Window;
window.Alert(browserInfo.Name);

 This information can be useful if you’re modifying the HTML DOM from managed code because of the rendering differences between
 different browsers. With the BrowserInformation class, you can easily code against these inconsistencies.

 The BrowserInformation class provides a way to learn about the user’s browser window, which is represented by the HtmlWindow class. With this class, you can navigate to locations within a web page or on the Internet. In addition, you can reach out
 to users and communicate with them through HTML prompts, if needed. These prompts are something you’re probably familiar with
 if you’ve developed web applications using JavaScript. If you’ve used JavaScript in the past, you’ll probably be excited to
 know that there are ways to bridge the scripting world with the managed code world.

 4.4. Bridging the scripting and managed code worlds

 Silverlight allows you to create a bridge between the scripting and managed code worlds to allow you to leverage each platform
 for the area in which it excels. For example, you can use Silverlight purely for its rich and powerful .NET features; Silverlight
 can provide value even if you don’t need a rich vivid user interface. To take advantage of these features, you need to learn to call managed code from JavaScript. In addition, you’ll also learn how to use JavaScript
 from managed code.

 4.4.1. Calling managed code from JavaScript

 Calling managed code from JavaScript is a fairly simple process—it consists of three basic steps intended to expose managed
 code elements to the scripting world. Once these tasks have been performed, you’re free to reference the managed elements
 from JavaScript. To demonstrate this, let’s pretend you want to use a method from managed code to call a web service.

 The first step in calling managed code from JavaScript involves using the ScriptableType attribute. This attribute, which is part of the System.Windows.Browser namespace, makes a class accessible to the JavaScript world. This attribute doesn’t expose any special properties, so you
 can apply it to any class using the following approach:

 [ScriptableType]
public partial class MainPage : UserControl

 This C# code shows how to make a type accessible to JavaScript by exposing the default Silverlight page to JavaScript. In
 reality, you can make any class accessible to the scripting world and will typically create a dedicated class or classes just
 for that interface. Once a class has been marked as a ScriptableType, all public properties, methods, and events are available to JavaScript. Alternatively, you can decide to only expose select
 member items. Fortunately, this is also an easy process.

 To expose member items, you use a similar but different attribute—ScriptableMember. The ScriptableMember attribute may be applied to the events, methods, and properties that can be used with script. You add the attribute as shown
 in this C# code:

 [ScriptableMember]
public void ExecuteWebService()
{
 // Make a call to a web service
}

 This attribute gives you the ability to set a scripting alias if you so desire, which you can accomplish by setting the string-typed ScriptAlias property. This may be useful if you want to prevent naming conflicts within script. Everything you’ve seen up to this point
 is pretty basic, but we haven’t created the bridge to JavaScript yet.

 To create the bridge to the scripting world, you must register an instance of the class to be exposed by using the statically
 visible RegisterScriptableObject method. This method, which belongs to the HtmlPage class, empowers you to give a class instance an alias. This alias can then be used from script. You can accomplish this using
 the RegisterScriptableObject method shown in the following C# code:

 public MainPage()
{
 InitializeComponent();
 HtmlPage.RegisterScriptableObject("bridge", this);
}

 This method accepts an instance of a class described as being a ScriptableType. The object is registered with the scripting engine by passing it as the second parameter to the RegisterScriptableObject method, which then uses the first parameter to create an alias for the class instance. This alias is appended to the content property of the hosting Silverlight plug-in.

 The Silverlight plug-in exposes a subobject called content, which exposes the content of a Silverlight plug-in; this is the scripting version of the Content property of the SilverlightHost class previously discussed. You can access your scriptable object by first retrieving the plug-in instance and then referencing
 the ScriptableMember you want, as demonstrated in listing 4.1.

 Listing 4.1. Referencing a managed item from script on the HTML page

 [image:]

 [image:]

 This listing demonstrates how a scriptable object can be accessed from a plug-in instance. This plug-in gives you the ability
 to use managed code from JavaScript. This can be valuable in situations where you don’t need the rich visual features of Silverlight. For instance, you may decide to create something known as a headless Silverlight application.

 A headless Silverlight application is an application that doesn’t have a UI. Instead, it uses objects registered as ScriptableType elements as the brains for a traditional web page. This approach allows you to write nonvisual components using the .NET
 Framework and integrate existing code libraries. This type of application is valuable because you can use it to perform tasks
 that the browser’s JavaScript engine can’t do. For instance, you may choose to use a headless Silverlight application to make
 cross-domain requests or listen to a socket (both items discussed in chapter 14). Regardless, you may still need to rely on the features of a preexisting JavaScript library. For these situations, you can
 use Silverlight to call JavaScript from managed code.

 4.4.2. Using JavaScript from managed code

 Silverlight gives you the flexibility to call JavaScript from managed code and, in turn, the ability to call any method on
 an HTML or JavaScript object. This can be useful if you’re integrating Silverlight with a preexisting web application. There’s
 one spot in particular where this feature is especially valuable: printing.

 Silverlight has basic printing capabilities (see chapter 19), but the Window object in the HTML DOM also exposes a print method. You can use Silverlight’s ability to call a function on a JavaScript object to deliver this functionality. To accomplish
 this, you use a method called Invoke. This method can be used to execute a JavaScript function from managed code, as demonstrated in the following C# code:

 HtmlWindow window = HtmlPage.Window;
window.Invoke("print", new object[]{});

 This code can be used to print the current web page, including your Silverlight application. The Invoke method can be applied to any HtmlDocument, HtmlElement, or HtmlWindow object. The first parameter of this method represents the name of the function to be invoked. The second parameter represents
 the arguments that will be passed to this function when it’s called. As you can see, this parameter is an array of objects,
 so you have the flexibility to pass anything you need to a JavaScript function.

 Silverlight gives you the ability to execute JavaScript code from managed code. In addition, you can go the other way and
 call managed code from JavaScript. These two features show how you can use Silverlight to bridge the scripting and managed
 code worlds. This is important because you need to use this approach if you want to communicate between two different types
 of plug-ins, such as Flash and Silverlight, or between technologies such as AJAX and Silverlight.

 Silverlight gives you the ability to bridge scripting and managed code running inside the browser. In addition, you can use
 Silverlight to learn about the user’s browser window. What’s perhaps even more interesting, you can use managed code to interact
 with the HTML DOM. All this is made possible by the rich HTML DOM API that’s an integral part of Silverlight.

 Running Silverlight in the browser is the primary use case for the technology. But Silverlight 3 introduced a new way of running
 your applications: out of the browser, on the user’s desktop.

 4.5. Hosting HTML in Silverlight

 Silverlight 4 added the ability to host arbitrary HTML content on the Silverlight plug-in surface. This feature was added
 primarily to support advertising scenarios such as Flash and animated GIF banner ads, but can be used to display anything
 the web browser can display, including instances of other Silverlight applications.

	

Note

 Internally, this feature was implemented by hosting an instance of the system browser within Silverlight. On the Mac, this
 is the WebKit-based Safari; on Windows, it’s Internet Explorer. This is an operating system setting independent from what
 browser you set as the default to open web content. Because you’ve now brought back the variability in rendering that’s inherent
 across the spectrum of web browsers, I recommend you use this feature sparingly.

 	

HTML hosting in Silverlight currently works only in out-of-browser applications (covered in chapter 5). When displayed in an in-browser application, you’ll simply get a gray or otherwise boring-looking rectangle on the screen,
 as seen in figure 4.4. If your application supports running both in and out of the browser, you’ll want to dynamically add or enable the control
 based on a runtime check to see which mode you’re running in.

 Figure 4.4. When running in the browser, HTML hosting features are disabled. This example shows the WebBrowser control.

 [image:]

 There are two ways to host HTML content in your Silverlight application: you can host the WebBrowser control or you can use the WebBrowserBrush to paint HTML over other elements.

 4.5.1. Hosting the WebBrowser control

 The WebBrowser control allows you to display a rectangular region on the screen containing a functional and interactive web browser. There
 are three ways you can load content into the control: the Source property and the Navigate and NavigateToString methods.

 Source Property

 The Source property is the XAML-friendly way to host content for the control. Simply set the Source to a valid URI on the same domain that originally served the Silverlight application:

 <Grid x:Name="LayoutRoot" Background="White">
 <WebBrowser Source="http://www.mydomain.com" Margin="15" />
</Grid>

 In the case of a cross-domain error, you’ll simply get a blank control for the display and an XamlParseException (attribute out of range), which may be trapped in the application-level exception handler. If you want to host cross-domain
 content, you’ll need to use the NavigateToString method and host an iframe.

 Because Source isn’t a dependency property and, therefore, doesn’t support binding, its utility in real-world applications is pretty low.
 Instead, you’ll want to use the Navigate method.

 Navigate Method

 The Navigate method is the counterpart to the Source property. Though it doesn’t support binding like the Source property, you have more control over exception handling when the page is cross-domain. Listing 4.2 shows how to load a local page using the Navigate method.

 Listing 4.2. Loading a page using the Navigate method

 HTML (example-page.aspx):

 <html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>Demo Page</title>
</head>
<body>
 <div style="margin:20px;font-family:Arial;font-size:20pt">
 This is HTML from the same domain as this out-of-browser
 application. If this were a cross-domain page, you
 wouldn't be able to see it here.
 </div>

 <div style="margin:20px">

 </div>
</body>
</html>

 XAML:

 [image:]

 C#:

 [image:]

 Note that the URI is relative to the position of the .xap so, in this case, example-page.aspx is sitting in the ClientBin
 folder on the project. When you run this app, you get the result shown in figure 4.5, assuming you happen to have a gigantic photo of me hanging around for just such the occasion.

 Figure 4.5. The WebBrowser control with a page loaded via the Navigate method

 [image:]

 Like the Source property, we still have the cross-domain restrictions that make this method less than useful for the majority of circumstances.
 The most flexible approach for loading content into the WebBrowser control is to use the NavigateToString method.

 Navigatetostring Method

 NavigateToString allows you to build and display arbitrary HTML in the control. This can be useful if, say, you’re building an RSS reader
 or similar application where the source isn’t exactly an HTML page but has HTML content you want to display. To use this method,
 simply provide a string containing the HTML source, as shown in listing 4.3. (Use the same XAML as in listing 4.2.)

 Listing 4.3. Loading an HTML string via NavigateToString

 [image:]

 When run, the resulting application looks like figure 4.6. Note that the styles all came through just as you’d expect it from any other browser page.

 Figure 4.6. Runtime-generated HTML loaded into the Silverlight WebBrowser control via the NavigateToString method

 [image:]

 NavigateToString will allow you to host an iframe to enable loading content from another web domain. In this way, you can get around the same-domain
 limitations imposed by the Navigate method and Source properties. Simply change the HTML-generating code in listing 4.3 to this:

 html.Append("<html><head></head><body>");
html.Append("<iframe width='100%' height='100%'");
html.Append("src='http://windowsclient.net/learn/video.aspx?v=289850'/>");
html.Append("<html><head></head><body>");
html.Append("</body></html>");

 The resulting page will look like figure 4.7. Note that, on this page, we have a Silverlight media player with a loaded video and several animated GIF ads. This provides
 all the flexibility you’d need to be able to create your own Silverlight web browser or to incorporate browsing capabilities
 into your own application.

 Figure 4.7. We’re loading http://windowsclient.net in an iframe using the NavigateToString method. Note the embedded Silverlight player and animated gif ads, all hosted in the control inside our Silverlight out-of-browser
 application.

 [image:]

 You can use normal HTML attributes and techniques to avoid the scrollbars and deal with overflow content just as you would
 on any other web page. Remember, though, the more HTML you put in your string, the more you’ll have to test across the browsers.
 One of the biggest benefits of Silverlight is that it looks and behaves the same across different browsers. Relying too much
 on HTML content largely negates this benefit.

 Though having an interactive web browser control may be enough for most cases, sometimes you may want to run scripts on the
 page or save the content off to a file.

 Invoking Scripts

 Up until now, the web page loaded in the WebBrowser control has been a black box. The user can type into it, but the application can’t do anything other than load the content
 and let it fly. Sometimes you need to invoke behavior on the web page. The WebBrowser control includes two overloads of the InvokeScript method just for that.

 Listing 4.4 shows how to invoke a script both with a parameter and without.

 Listing 4.4. Invoking scripts on a loaded web page

 HTML:

 [image:]

 XAML:

 . . .
<WebBrowser x:Name="b"
 Source="/script-page.htm" />

 C#:

 [image:]

 You must ensure you wait for the LoadCompleted event before you attempt to call any scripts. Otherwise, there’s no guarantee that the script functions are available. The
 resulting application looks like figure 4.8.

 Figure 4.8. InvokeScript used to manipulate the contents of the web page in the WebBrowser control

 [image:]

 Another task you may want to perform with the web page is to render its content to a string for use elsewhere in the application.
 Though this could be done via a separate WebRequest, the information is already here and there’s a handy function to expose the content to your application code.

 Saving the Content

 The WebBrowser control includes the SaveToString method, which takes the currently loaded HTML and, well, saves it to a string. From there you can upload it to a service,
 save it locally, display it to the user or do pretty much anything else you’d like with it:

 string html = BrowserControlInstance.SaveToString();

 But if the content is from a cross-domain location, you’ll receive a SecurityException. This restricts the use of the control to saving the HTML generated by your local server.

 The WebBrowser control forms the core of the embedded HTML in Silverlight applications. Building upon that and providing flexibility that’s
 both useful and fun is the WebBrowserBrush.

 4.5.2. Using the WebBrowserBrush

 If you play with the WebBrowser control, you’ll eventually notice that you can’t overlay other Silverlight content on top of it. On Windows, the WebBrowser control has a separate hWnd or handle to a window in Windows (the equivalent thing happens on the Mac) and, therefore, has what we call airspace issues,
 in that it’ll be on top of anything else you draw. If you want to have the content behave like normal Silverlight content,
 allowing transforms and otherwise respecting z-order, you’ll need to use the WebBrowserBrush but at the cost of interactivity.

 The WebBrowserBrush takes a WebBrowser control as its source and is then used to paint on any arbitrary path or shape. It doesn’t allow the user to interact with
 the web page. During PDC09, Scott Guthrie demonstrated an application that puzzlefied a You-Tube page with a Rick Astley video
 playing in a Flash player. This was accomplished using the Web Browser brush on the individual puzzle shapes.

 Listing 4.5 shows how to use the WebBrowserBrush to show the contents of a web page within an ellipse. The HTML used is the same as that from listing 4.2.

 Listing 4.5. Using the WebBrowserBrush to paint an ellipse with a web page

 XAML:

 [image:]

 C#:

 [image:]

 The resulting application looks like figure 4.9.

 Figure 4.9. WebBrowserBrush used to paint web content onto an Ellipse element

 [image:]

 In listing 4.5, the code is redrawing the control during the CompositionTarget.Rendering event. That event typically fires once for every frame being drawn. For a static web page, this is overkill, and you can
 simply use the LoadCompleted event of the WebBrowser control. But, if you have video content or a web page that otherwise constantly changes its appearance, you’ll need to wire
 up to this event or to a timer to update the display.

 Another point to note is that the WebBrowser control must have a size. What’s rendered by the WebBrowserBrush is the same as what would be rendered by the WebBrowser if it were visible. If the WebBrowser was sized to 10×10, the WebBrowserBrush would show that 10×10 content, scaled up to the size specified by the brush’s stretch setting.

 That’s everything you need to be able to paint HTML all over your out-of-browser application whether running in a window or
 full screen.

 4.6. Summary

 Silverlight has always been, first and foremost, a web technology. As such, it has excellent integration with the hosting
 browser. Anything you can do from JavaScript can be done from within Silverlight.

 When running in the browser, Silverlight provides you with enough control that you could automate the entire page without
 any JavaScript, if you desired, while benefitting from the capabilities and development model offered by managed code languages.
 The other end of the spectrum is a full-page Silverlight application hosted in a thin HTML shell. For many applications, a
 middle ground using the in-browser experience integrated with an existing web property or into a system such as SharePoint
 will be the way to go.

 In the next chapter, we’ll look at how Silverlight reaches beyond the browser both to interact with the local operating system
 while running in the browser and how to run Silverlight applications out of the browser, a capability first introduced in
 Silverlight 3.

Chapter 5. Integrating with the desktop

 This chapter covers

 	Running Silverlight applications out of the browser

 	Using the elevated trust mode

 	Lighting up on Windows with COM automation

 	Displaying the notification toast

 	Controlling the out-of-browser window

 	Running in full screen

 	Storing and retrieving local information using isolated storage

Silverlight started as an in-browser technology, primarily used for media and simple games. It later evolved into a more capable
 business technology and added some useful but basic desktop integration with additions such as isolated storage and the OpenFileDialog. With version 3, Silverlight gained the ability to run outside of the browser as a sandboxed desktop application. Starting
 with Silverlight 4, the sandbox has been expanded and a whole new wave of desktop-integration capabilities included.

 Elevated trust mode is one of the most exciting things to happen to out-of-browser applications. Now we have access to more
 local files and resources, fewer confirmation prompts, and a better integrated experience. On Windows, we also have all the
 power provided by COM automation. We get all this as the result of a single setting and a user confirmation dialog; no messing
 around with browser settings or code access security.

 Elevated trust mode even lets you control the out-of-browser window, from simple sizing and location all the way through to
 creating your own custom window chrome—the borders, title bars, buttons, and other elements that decorate a typical window on a given operating system.

 Sometimes what you want isn’t a separate window but rather to take your in-browser or out-of-browser application and make
 it run in full screen. Silverlight supports that as well, a killer feature for media players and kiosk applications. When
 run in the elevated trust mode, full-screen applications have even more capabilities.

 Even in the default partial-trust mode, Silverlight 4 gains new out-of-browser capabilities including the new notification
 API, or toast, as it’s commonly called.

 Applications both in and out of the browser need to integrate with the local OS at varying levels. In this chapter, we’ll
 look at some of those local desktop integration features and dive deeply into out-of-browser capabilities using both the default
 partial trust mode introduced with Silverlight 3 and the elevated trust mode introduced with Silverlight 4. From there we’ll
 look at the full-screen mode and isolated storage. Before we get into some of the deeper topics, it’s fundamental to understand
 the out-of-browser mode.

 5.1. Silverlight out of the browser

 One of the most exciting new features introduced with Silverlight 3 and enhanced in Silverlight 4 is support for out-of-browser
 (OOB) applications. OOB applications give us the best of Silverlight’s cross-platform support along with a locally installed
 and offline-enabled experience.

 Out-of-browser Silverlight applications aren’t hosted in a real browser instance—at least not in the way we’d typically think
 of a browser—and, therefore, don’t have access to the HTML DOM described in the previous chapter. Instead, the applications
 must be full-page, self-contained applications, without reliance on HTML, JavaScript, or other in-page assets.

 Out-of-browser Silverlight applications are already seeing significant uptake within corporations, behind the firewall, due
 to their simple installation and update models and their presentation and data manipulation capabilities.

 Out-of-browser Silverlight applications look just like their full-page in-browser equivalents but without all of the extra
 browser chrome. A sample OOB Silverlight application may be seen in figure 5.1 and its in-browser version in figure 5.2.

 Figure 5.1. My first out-of-browser Silverlight application—a Commodore 64 emulator using the updated MediaStreamSource API described
 in chapter 20

 [image:]

 Figure 5.2. The same Silverlight application running in the browser

 [image:]

 Between the two screenshots, you can see that the Silverlight portion of the experience remains identical (with the exception
 of the frame rate display I’ve turned on when in the browser). The code and the .xap file are the same in both instances.
 What changes is how much chrome surrounds the application and how much real estate is made available to Silverlight rather than
 to browser functionality.

 Silverlight provides APIs for detecting and responding to changes in network connectivity as well as an API for indentifying
 whether the application is running in or out of the browser and if there are any updates available. All of these, combined
 with the already rich set of capabilities offered by Silverlight, make for a compelling out-of-browser application platform.

 Before deciding on creating an out-of-browser application, it’s important to understand both the capabilities and restrictions.

 5.1.1. Capabilities and restrictions

 Out-of-browser Silverlight applications work just like in-browser Silverlight applications with some minor differences:

 	Isolated storage quota for out-of-browser applications is 25 MB by default as opposed to 1 MB for in-browser applications.
 In both cases, this can be extended by prompting the user.

 	Out-of-browser applications provide access to keys that the browser normally captures, such as function keys.

 	Out-of-browser applications can be pinned to the Start menu or taskbar on Windows systems and display custom icons but otherwise
 can’t integrate with the Windows 7 taskbar without using COM automation in the elevated trust mode.

 	Out-of-browser applications require an explicit check for a new version, whereas in-browser versions automatically update.

 	Out-of-browser applications support the elevated trust mode, discussed in section 5.3.1.

 	Out-of-browser applications can’t receive initialization parameters or take advantage of any of the plug-in parameters while
 running out of the browser.

 	Out-of-browser applications can’t interact with the HTML DOM—there’s no DOM to work with.

If you want those capabilities and can live with those restrictions, then an out-of-browser application may be for you. If
 you need more power and fewer restrictions, consider creating a click-once WPF application.

 The end-user experience for installing Silverlight applications is slightly more complex than just hitting a web page and
 running Silverlight content but not nearly as involved as a regular platform application (.exe) install.

 5.1.2. The end-user experience

 An end-user visiting your site will see a typical Silverlight application. If the application is out-of-browser enabled, he
 or she will be able to right-click on the surface to install it locally, assuming you’ve left that capability intact. In addition,
 you may provide a onscreen button to perform the installation without requiring the right click. The default experience is
 shown in figure 5.3.

 Figure 5.3. The install menu for an out-of-browser-enabled application is accessed by right-clicking on the Silverlight surface.

 [image:]

 The installation process is painless, being simply a copy of files to an obfuscated location on the local machine. There are
 no registry entries required, no additional platform DLLs, and no admin rights—nothing extra. As seen in figure 5.4, there’s only a choice of where to put shortcuts (Start menu and/or desktop) and whether to approve or cancel the install—a
 very low-friction experience compared to a typical platform application install.

 Figure 5.4. The install dialog gives the user the option to place shortcuts on the Start menu and on the desktop. The install icon on
 the left is customizable, as is the application name.

 [image:]

 Once the user takes the application out of the browser, the .xap will be rerequested from the server and stored in a low-trust
 location on the local machine along with the information about the original URI of the .xap and the download timestamp. It’ll
 then appear in the places the user selected (Start menu and/or desktop) via the dialog shown in figure 5.4 and also on the taskbar. The user may, as with any other application, pin the shortcut to the Start menu or (in Windows 7)
 to the taskbar for convenience.

 The application will also immediately launch in the out-of-browser mode, as seen in figure 5.5. At this point, the user may close the browser window if she wishes to do so.

 Figure 5.5. The application is running in the out-of-browser mode. Note that both the application window title and source domain (localhost
 in this case) are displayed in the title bar.

 [image:]

 Figures 5.6 and 5.7 show a Silverlight application (the Commodore 64 emulator) pinned to the Start menu and the task-bar on a Windows 7 machine.
 Note the use of custom icons and information about the name of the application.

 Figure 5.6. An out-of-browser Silverlight application with custom icons pinned to the Start menu in Windows 7. The application below it,
 TweetDeck, is an Adobe AIR application, another competing out-of-browser RIA technology.

 [image:]

 Figure 5.7. The same Silverlight out-of-browser application pinned to the taskbar in Windows 7

 [image:]

 To uninstall the application, the user may right-click the Silverlight application and select the menu option Remove This
 Application or use the control panel’s Add/Remove Programs applet. Again, no special rights are required and the process is
 painless.

 As you can see, out-of-browser Silverlight applications look and act much like any other desktop application while providing
 a simple installation experience for the end user. You get the local experience of a desktop application with the ease of
 deployment of a web application. Next, we’ll look at how to configure and code your applications for out-of-browser support.

 5.2. Creating out-of-browser applications

 An out-of-browser application may be as simple as an existing Silverlight application enabled to be run outside the browser
 chrome or something more complex that uses the Silverlight APIs to check the network state and support offline scenarios.
 Perhaps it even has a very different user interface when running out of the browser, building upon those APIs and those for
 runtime mode detection. Before covering the more advanced scenarios, let’s start with the minimal changes needed common for
 all three cases—the settings file.

 5.2.1. The out-of-browser settings file

 As we saw in chapter 3, the application manifest file tells the Silverlight plug-in all about the components of your Silverlight application. What
 it doesn’t include is information about the out-of-browser configuration. That information is included in the out-of-browser
 configuration file OutOfBrowserSettings.xml (see listing 5.1).

 Listing 5.1. A basic out-of-browser application configuration file

 [image:]

 The short name of the application is what’s displayed in the right-click Silverlight menu, the installation dialog, and the
 created shortcuts. The title, when combined with the domain name, is shown in the title bar of the window hosting your application.

 Typically, you won’t edit the settings file directly. Instead, you’ll use the Out-of-Browser Settings dialog from the project
 properties, as seen in figure 5.8.

 Figure 5.8. The Out-of-Browser Settings dialog

 [image:]

 This dialog is displayed when you click the Out-of-Browser Settings button on the Silverlight tab of the project properties.
 One of the options is Show Install Menu, which allows you to toggle whether the default right-click install experience is
 displayed. If you uncheck that option, you must provide another way for users to install your application out of the browser.

 The default right-click installation experience is adequate, but there may be times when you want to provide a more controlled
 experience both with custom icons and with a more obvious way to take the application out of the browser. We’ll cover that
 next.

 5.2.2. Controlling the experience

 Silverlight provides several useful APIs for both detaching your application from the browser and for checking the current
 state of your application. The first is the Application.Current.InstallState value. The values for InstallState are shown in table 5.1.

 Table 5.1. The various values of InstallState

 	
 State

 	
 Meaning

	Installed
 	The application has been installed by the user. Note that the current instance of the application may still be running in
 the browser. This value only tells you it’s available in the locally installed mode for the current user/machine.

	InstallFailed
 	The application tried to install, but failed.

	Installing
 	The application is currently installing. This is a good place to download the required assets if you intend to allow the application
 to run offline as well as out of the browser.

	NotInstalled
 	This value indicates that the application hasn’t been locally installed.

When the installation state is changed, the Application object will raise an InstallStateChanged event that informs you to look at InstallState for the latest state.

 You can extend this concept to force an out-of-browser-only mode in your application simply by refusing to display the application
 UI unless running outside of the browser. In that case, your in-browser application would simply be an install-me-locally
 splash screen. Listing 5.2 shows how to set up your application so that it provides a meaningful experience only when run out of the browser.

 Listing 5.2. Forcing out-of-browser mode

 [image:]

 [image:]

 XAML:

 ...
<Grid x:Name="IBNotInstalledExperience">
 <Button x:Name="InstallButton"
 Height="100"
 Width="400"
 FontSize="30"
 HorizontalAlignment="Center"
 VerticalAlignment="Center"
 Content="Take Out of Browser" />
</Grid>

<Grid x:Name="IBInstalledExperience">
 <Rectangle Fill="Azure"
 Stroke="LightBlue"
 RadiusX="10"
 RadiusY="10"
 Margin="20" />

 <TextBlock Text="This application is installed locally.
 Please run from the shortcut."
 FontSize="30"
 Margin="30"
 TextWrapping="Wrap"
 HorizontalAlignment="Center"
 VerticalAlignment="Center" />
</Grid>

<Grid x:Name="OobExperience"
 Visibility="Collapsed">

 <Rectangle Fill="Azure"
 Stroke="LightBlue"
 RadiusX="10"
 RadiusY="10"
 Margin="20" />

 <TextBlock Text="Running out of browser"
 FontSize="30"
 Margin="30"
 TextWrapping="Wrap"
 HorizontalAlignment="Center"
 VerticalAlignment="Center" />
</Grid>

 C# code:

 The experiences resulting from the code in listing 5.2 are shown in figures 5.9 and 5.10. Note that the Install method may only be called from a user-generated UI event, such as a button click. This is to prevent applications from self-installing without explicit user intervention.

 Figure 5.9. The experience a user will see if he hasn’t installed this application. Clicking the button calls Application.Current.Install().

 [image:]

 Figure 5.10. The same application after it’s detected that it was installed and is running outside of the browser. Note that the browser-hosted
 version responded to the InstallStateChanged event by changing its own UI.

 [image:]

 So though you can’t exactly force an application to install locally, you can design it to show different interfaces depending upon its installation state and
 current mode of operation. Think carefully before you use this type of code in your own applications; if there’s no compelling
 reason to force an application to run out of the browser only, don’t force the user.

 The next step in customizing the experience is to change the icons displayed in the install dialog, the application window,
 the Start menu, and the taskbar.

 5.2.3. Customizing icons

 The next step in creating a customized out-of-browser experience is changing the icons used in the application. The icons,
 which must be .png files, are typically provided in four sizes from 128×128 to 16×16. The 128×128 size is used in the installation
 dialog. The other sizes are used in the Start menu, the window icon, shortcuts, and in the Apple OS X application list. Though
 you don’t need to provide every size, I highly recommend that you do because they may not scale at runtime in quite the way
 you want them to. The approach is similar to exploding a typical Windows .ico file into four .png files.

 To include icons, the OutOfBrowserSettings.Icons section is added to the OutOfBrowserSettings.xml inside the OutOfBrowserSettings section, as shown:

 <OutOfBrowserSettings ...>
...
 <OutOfBrowserSettings.Icons>
 <Icon Size="16,16">AppIcon016.png</Icon>
 <Icon Size="32,32">AppIcon032.png</Icon>
 <Icon Size="48,48">AppIcon048.png</Icon>
 <Icon Size="128,128">AppIcon128.png</Icon>
 </OutOfBrowserSettings.Icons>
</OutOfBrowserSettings>

 The icons themselves are included in your project as Content and copied into the .xap file at compile time. In the preceding example, they’re in the project root but you certainly may
 include them in a subfolder. The filenames can be anything you want as long as the actual resolution of the file matches up
 with the known resolution assigned to it in the Size property.

 That’s it for customizing the install experience. Next, we’ll look at how to handle two common scenarios for out-of-browser
 applications: changing the network state and updating the application.

 5.2.4. Checking the network state

 You’ll use two mechanisms to check the network state in your Silverlight application: the GetIsNetworkAvailable method and the NetworkAddressChanged event. Both are available in an out of the browser but are more commonly used in out-of-browser scenarios.

 The NetworkInterface and NetworkChange classes included in the System.Net.NetworkInformation namespace provide access to the network state information. Typically, you’ll use them together like this:

 NetworkChange.NetworkAddressChanged += new
 NetworkAddressChangedEventHandler(OnNetworkAddressChanged);
...

void OnNetworkAddressChanged(object sender, EventArgs e)
{
 if (NetworkInterface.GetIsNetworkAvailable())
 {
 // Connected to some network
 }
 else
 {
 // Not connected to any network
 }
}

 The call to GetIsNetworkAvailable will tell us only that there’s some sort of network connection. It doesn’t guarantee that we can access required services
 or even the Internet in general. On machines with network connections between the host and a virtual PC (VPC), which is typical
 in development environments, this may even detect the VPC connection as a valid network connection and return true.

 Rather than rely just on this call, it’s a good practice to first check to see whether any network is available and, if so,
 ping or call a known service on the server you plan to reach before assuming you’re connected. Since the network state can
 change during the application runtime, you may want to call these methods on a timer or in the exception handlers in your
 network service interface layer.

 One thing that can only happen when you’re connected to the network is updating the application.

 Updating

 A real benefit of browser-based applications is the ability to automatically update the application without requiring any
 sort of explicit installation or push to the client machine. Out-of-browser Silverlight applications aren’t very different
 in that regard, except that the developer controls the update process.

 The Silverlight Application object includes a CheckAndDownloadUpdateAsync method that, as its name indicates, will check for any available .xap updates and download, if present. When the method completes,
 it fires the CheckAndDownloadUpdateCompleted event.

 The code is fairly simple and, if you use a little lambda expression sugar to create the delegate, you can even fit it all
 into a single short function:

 private void CheckForUpdates()
{
 Application.Current.CheckAndDownloadUpdateCompleted +=
 (s, e) =>
 {
 if (e.UpdateAvailable)
 {
 MessageBox.Show("A new version was downloaded.");
 }
 };
 Application.Current.CheckAndDownloadUpdateAsync();
}

 When the CheckForUpdates call is made, Silverlight looks at the stored origin URI of the .xap file and makes a normal background HTTP request to that
 location to verify that the latest version is installed. If a new version is available, Silverlight will receive that in the
 background and programmatically indicate that a new version is available by setting the UpdateAvailable property to true in the returned event arguments class. Unless you prompt the user to shut down and relaunch the application, he’ll still
 be running the old version. It’s not until the next run that he’ll execute the newly downloaded version.

 But, when you detect that a new version is available, you can display a dialog to the user and request a restart. If the nature
 of the application allows it, you can also be more draconian and completely block all of the UI functionality until the user
 restarts the application. What you can’t do is force an application to restart programmatically. A best practice is to gently
 inform your user (perhaps soothing music and pastel colors will help) that a new version is available and let him restart
 at his convenience. At the worst, he’ll get the new version during the next session.

 Once you’ve decided to take your application out of the browser, one of the capabilities you’ll enable is the notification
 API, introduced in Silverlight 4.

 5.2.5. Alerting the user with Notification toast

 Windows notifications have been nicknamed toast due to their way of popping up from the bottom right of the desktop, like a piece of toast in an old toaster. Notification
 is used for everything from displaying new email messages in Outlook, to new tweets in the popular Twitter programs, to new
 items in the queue of a business application. Notifications are an essential tool for alerting the user when the application
 is sitting in the background or on another screen.

 Creating a simple notification window is easy. All you need to do is create an instance of NotificationWindow, set the size, and set the content. The result will be less than stellar, though; it’ll be a simple opaque white rectangle
 with your text overlaid:

 if (Application.Current.IsRunningOutOfBrowser)
{
 NotificationWindow notify = new NotificationWindow();
 notify.Height = 75;
 notify.Width = 300;

 TextBlock text = new TextBlock();
 text.Text = "Basic Notification";

 notify.Content = text;

 notify.Show(5000);
}

 The Show method takes a number of milliseconds representing how long to show the window. The value of 5000 milliseconds used in this
 example is 5 seconds.

 To really use NotificationWindow, you’ll need to fill it up with something more meaningful. Typically you’ll create a user control to represent the content
 and assign that rather than a simple TextBlock. Figure 5.11 shows an example of a user control with a red and black border, gray header text, and white body text.

 Figure 5.11. A customized notification window

 [image:]

 On Windows, the notification windows will always display on the bottom-right corner on the screen. On Mac OS X, they display
 at the top-right corner.

 The window may be closed by simply timing out or by calling the NotificationWindow.Close method. In either case, the NotificationWindow.Closed event is fired, allowing you to take action as necessary.

 Notifications are one of many capabilities enabled when you run your application out-of-browser. Before we delve more deeply
 into other capabilities, let’s take a detour into the implementation specifics of out-of-browser applications.

 5.2.6. Implementation specifics

 When developing and debugging out-of-browser applications, it can be essential to understand how Silverlight implements them
 under the covers. This is especially important when you’re developing a true cross-platform application and need to ensure
 consistent behavior.

 On Windows, out-of-browser Silverlight applications run in a process named sllauncher.exe. That process hosts the IE rendering
 surface mshtml.dll hosted in shdocvw. The rendering surface is where your Silverlight application exists, visually. Similarly,
 on Apple OS X, the process hosts the Safari/WebKit rendering surface and related libraries. In both cases, Silverlight doesn’t
 rely on the entire browser stack, just the core functionality required to host Silverlight content inside the native operating
 system window chrome.

 Though the Silverlight team has gone through great pains to ensure performance is similar on all supported operating systems,
 understanding the limitations of Safari/ WebKit and Internet Explorer can really help with diagnosing performance issues.
 For example, current implementations of Safari use a plug-in compositing mode that’s not as efficient as Internet Explorer.
 If your application has lots of animation and internal compositing going on, it’s a good idea to test performance on OS X
 before the release.

 As in the case with process-isolated tabs in the browser, each out-of-browser Silverlight application will have its own process,
 app domain, and instance of the CoreCLR.

 Out-of-browser Silverlight support now enables us to create a new class of applications that combine the best of Silverlight
 web development with the great experience of a desktop application. If you want to enable out-of-browser and offline scenarios, need access to keys normally swallowed
 by the browser, or just want more screen real estate, you take advantage of the new OOB features. Best of all, the partial-trust
 applications are just as safe and secure as their browser-hosted versions and easier to install than typical desktop applications.

 As compelling as that is, sometimes you need a bit more power. Silverlight 4 adds even more desktop-like functionality in
 the form of the new elevated trust mode.

 5.3. Escaping the sandbox—elevated trust

 Silverlight 4 introduces the concept of elevated-trust applications. Elevated-trust applications are out-of-browser applications
 that have access to additional capabilities on the machine on to which they’re installed. For all intents and purposes, elevated-trust
 applications are actually full-trust applications. For example, elevated-trust applications can use the new COM automation
 capabilities discussed in section 5.2.2, as well as make web network requests without first checking for a client access policy. The full list of capabilities enabled
 by elevated trust includes:

 	Using COM for native Windows integration.

 	Calling web services and making network requests without requiring a client access policy check and without any cross-domain
 or cross-scheme restrictions.

 	Relaxed user consent for clipboard, webcam, and microphone access.

 	Relaxed user initiation requirements. For example, you can enter the full-screen mode in an Application.Startup event handler rather than requiring a button click or other user-initiated event.

 	Reading and writing files in user document folders.

 	Using the full-screen mode without keyboard restrictions and without the Press ESC to exit overlay and staying in full-screen
 mode even if the user switches focus to another window or display.

 	Controlling the size, position, and ordering of the host window.

That’s a pretty powerful list; it addresses most of the restrictions developers have been bothered by since the initial release
 of Silverlight 2. In particular, the ability to make network calls without worrying about cross-domain, and the new COM automation
 capability, both open up entirely new areas for Silverlight development.

 We’ll first cover how to create elevated trust applications and the important step of how to sign them and then follow that
 up with sections covering specific elevated trust features you’ll use in your own applications—including enhancements to local
 file access and the COM automation support introduced in Silverlight 4.

 5.3.1. Creating elevated-trust applications

 To mark your application as requiring elevated trust, first you must make the application support the out-of-browser mode.
 Then, it’s as simple as a check box on the Out-of-Browser Settings page, shown in figure 5.8 earlier in this chapter.

 It may seem simple to just mark all out-of-browser applications as requiring elevated trust, but the end-user install prompt
 is slightly scarier when elevated trust is used. Figure 5.12 shows the normal out-of-browser installation prompt. It’s pretty tame, since the application is still running in a pretty
 tight sandbox.

 Figure 5.12. Normal out-of-browser installation prompt

 [image:]

 Once you move into the elevated trust mode, the dialogs rightfully get scarier to encourage the user to install applications
 only from the sources they trust.

 Unsigned Applications

 Figure 5.13 shows the elevated trust install dialog, in the case of an unsigned application. It’s a pretty scary dialog that’ll give
 most users pause. For that reason alone, it’s good to be judicious about which applications really require elevated trust
 or perhaps even offer alternative versions of your application (perhaps the in-browser version) that don’t require additional
 permissions.

 Figure 5.13. Unsigned out-of-browser elevated trust install prompt

 [image:]

 If you want to have a friendly elevated trust installation dialog, you’ll need to sign the application (sign the .xap) using
 a certificate from a trusted certificate authority.

 Signed Applications

 The only way to have an elevated trust application without a scary dialog is to sign the .xap using a certificate from a trusted
 authority such as VeriSign, Thawte, GoDaddy, or Comodo. Once you sign the .xap, you’ll get a much friendlier dialog, as seen in figure 5.14.

 Figure 5.14. Signed out-of-browser elevated trust install prompt

 [image:]

 Users are much more likely to install an application with the friendlier dialog and your publisher information than with the
 yellow-bannered “unverified source” shown in figure 5.13.

 For testing purposes, you can self-sign your .xap using a test certificate. Visual Studio, via the options on the Signing
 tab for the Silverlight project, will generate the test cert for you. You’ll then need to add the certificate to your own
 store in the Trusted Certificate Root. Anyone else who’s going to test the application will also need to install the certificate.
 The fewer people with your test cert, the better, so be sure to get a real certificate early in the process.

 Once you have a certificate, you can use it in Visual Studio 2010 to sign your .xap. This is accomplished via the Signing
 tab in the project properties window for the Silverlight application. Figure 5.15 shows a .xap file signed by my own test certificate.

 Figure 5.15. Signing options in Visual Studio 2010

 [image:]

 Once you have the certificate installed and it’s recognized by your target machines, you’re good to test and deploy. Make
 sure you get the certificate early in the process because it typically is not a simple, quick, or completely online process.
 Nevertheless, this is the same process you’ll go through for certificates for any use, including application signing and secure
 sockets.

	

Tip

 Jeff Wilcox from the Silverlight team at Microsoft put together a great walkthrough of purchasing and installing a certificate
 for personal use. You can find it on his blog here: http://www.jeff.wilcox.name/2010/02/codesigning101/.

 	

Trusted applications have a lot going for them, but users can still reject elevated permissions. If you’re going to build
 elevated trust applications and potentially share any code with a normal trust application, one thing you’ll need to do is
 check to see whether the user has actually granted you elevated permissions.

 5.3.2. Detecting elevated trust mode

 Before enabling certain features in your application, it’s a good practice to check to see if you’re running in elevated trust
 mode. The Application object exposes the HasElevatedPermissions property, which allows you to do just that:

 if (Application.Current.HasElevatedPermissions)
{
 /* Light up the awesomeness */
}

 Checking for elevated permissions allows you to take alternative approaches in cases where the permissions weren’t granted.
 Graceful downgrading of functionality is always a good idea when it comes to web applications. You can provide the users with
 the level of features they’re comfortable with while maximizing the number of people you serve.

 We’ve now turned on the elevated trust mode and considered what it takes to detect it. One of the areas that’s available in
 Silverlight by default but is enhanced by elevated trust mode is local file access.

 5.4. Local file access

 Since version 2, Silverlight has offered the ability to load data from local files but it was restricted to isolated storage
 and to streams loaded via the OpenFileDialog. Starting with Silverlight 4 and the new elevated trust mode, you now have the ability to open any file in the My Documents
 folder (and the equivalent folder on the Mac) without injecting additional user interface in the process.

 5.4.1. Accessing special folders

 The paths to the special folders are accessed using Environment.GetFolderPath and passing it a value in the Environment.SpecialFolder enumeration. An example of enumerating all of the files in the My Music folder would look like this:

 var music = Directory.EnumerateFiles(
 Environment.GetFolderPath(Environment.SpecialFolder.MyMusic));

 The result would be an IEnumerable<string> containing all of the files in the C:\Users\Pete.Brown\Music folder on my machine.

 The full list of special folders currently supported in Silverlight is shown in table 5.2. The enumeration itself has quite a few other values, but those are for compatibility with the full framework. Using them
 in Silverlight will throw an exception.

 Table 5.2. The values of SpecialFolder currently supported in Silverlight

 	
 Enum value

 	
 Description

	MyComputer
 	The My Computer folder
 Note: The MyComputer constant always contains the empty string ("") because no path is defined for the My Computer folder.
 Example: ""

	MyMusic
 	The My Music folder
 Example: C:\Users\Pete.Brown\Music

	MyPictures
 	The My Pictures folder
 Example: C:\Users\Pete.Brown\Pictures

	MyVideos
 	The My Videos folder
 Example: C:\Users\Pete.Brown\Videos

	Personal
 	The directory that serves as a common repository for documents
 This is the same as MyDocuments.

	MyDocuments
 	The My Documents folder
 Example: C:\Users\Pete.Brown\Documents

In addition to enumerating files, you’d expect to be able to read from and write to the files in those directories, and you’d
 be correct.

 5.4.2. Reading from a file

 You may read from a file rooted in one of the allowed directories using the File object and opening a stream:

 if (Application.Current.HasElevatedPermissions)
{
 string path = Environment.GetFolderPath(
 Environment.SpecialFolder.MyDocuments);
 string fileName = System.IO.Path.Combine(path, "sltest.txt");

 if (File.Exists(fileName))
 {
 using (StreamReader reader = File.OpenText(fileName))
 {
 string contents = reader.ReadToEnd();

 // do something with contents

 reader.Close();
 }
 }
}

 If you try to open from an unsupported location, Silverlight will throw an exception and you’ll be unable to open the file.

 In addition to reading files from the supported locations, you’ll probably want to write files.

 5.4.3. Writing to a file

 Writing to a file works just as you’d expect it to, using the File object and a StreamWriter, as long as you root your file in one of the allowed folders. Again, it’s a good idea to check for elevated permissions before
 taking any action:

 if (Application.Current.HasElevatedPermissions)
{
 string path = GetFolderPath(Environment.SpecialFolder.MyDocuments);
 string fileName = System.IO.Path.Combine(path, "sltest.txt");

 using (StreamWriter writer = File.CreateText(fileName))
 {
 writer.WriteLine("Test from Silverlight.");
 writer.Close();
 }
}

 Reading and writing to files in the My Documents folder is great but still falls short of what full-fledged desktop applications
 enable. Should you desire to do so, COM automation will allow you to gain access to any folder the user would normally have
 access to. It also provides a lot of great new capabilities such as calling Windows APIs and automating programs like Excel.

 5.5. COM automation

 One of the more interesting capabilities introduced in Silverlight 4 in the System.Windows.Interop namespace is the ability to use COM automation to integrate with native code and applications on the desktop. The primary
 intent of this feature is to allow automation of other applications, including Microsoft Office. Secondarily, this feature
 may be used to gain access to a subset of the Windows APIs, specifically those that support IDispatch. Although there are hacks to make it work, it was not a goal of this feature to allow access to custom COM DLLs you may write
 or the third parties provide and which you package and install along with your Silverlight application or to allow access
 to the full desktop CLR.

 With that disclaimer out of the way, the COM automation feature of Silverlight is an incredibly powerful way to extend the
 sandbox, both for good and for evil. Once you have access to an IDispatch-compatible API, you can do anything you want with it. It doesn’t respect the sandbox otherwise enforced by Silverlight; the
 only security that comes into play is operating system-level security.

 5.5.1. Detecting COM automation availability

 COM automation may not be available in any particular running instance of your application. Reasons for this may be that it’s
 running in the browser, the user has declined the elevation request, or the application is running on a platform other than Windows. In those cases, you want to
 nicely degrade the functionality in a way that both respects the user and still provides a good experience.

 In addition to checking for elevated permissions as described in section 5.2.1, Silverlight provides some calls you may use to detect the presence of COM automation. The first is the call to check that
 you’re running on Windows. The primary reason to get used to coding this check is that the future versions of Silverlight
 may include automation of scripting capabilities on other platforms and you’d want to branch to them here.

 switch (System.Environment.OSVersion.Platform)
{
 // Mac
 case PlatformID.MacOSX:
 break;

 // Unix/Linux
 case PlatformID.Unix:
 break;

 // Windows
 case PlatformID.Win32NT:
 break;
}

 I recommend using the OS check sparingly. You never know if capabilities available only on one platform may show up in another
 in the future. Rather than drive that based on the OS, drive it based on feature availability. The exception to this is COM
 automation, which is a Windows-only feature. We may have an approach to accomplish the same thing on Mac OS X in the future,
 but the implementation will differ substantially.

 Once you check for the OS, the next logical check is to see that you’re running out of the browser. While this isn’t strictly
 necessary, you may want to do this to provide a different downgrade experience than the in-browser version:

 if (Application.Current.IsRunningOutOfBrowser)
{
 /* Out-of-browser coolness goes here */
}

 The final check is to see if COM automation is available. Technically, this is the only call you’re required to make but,
 if I kept this book just to the required bits, it’d be a rehash of our documentation on msdn.microsoft.com and would seem
 too much like work:

 if (AutomationFactory.IsAvailable)
{
 /* do awesome stuff */
}

 Once you ensure automation is available, you can start using it to interact with other applications or operating system APIs.
 It truly is a powerful level of integration with the native code bits of the system. Let’s look at some cool things you can
 do with it.

	

 IDispatch

 IDispatch is COM’s standard interface that supports late binding using the OLE Automation protocol interface. IDispatch provides
 methods to allow a client to query the component to find out what properties and methods it supports as well as a method to
 invoke any one of those methods.

 Each method supported by the COM component is assigned an ID. When the IDispatch interface’s GetIDsOfNames function is passed a string name of a function, it returns the ID. The calling code then uses the Invoke function to invoke that function.

 Due to the late binding nature of IDispatch, it supports scripting as well as clients using the dynamic functionality in .NET 4, along with older clients such as Visual
 Basic (pre-.NET)

 The method-ID table approach of IDispatch isn’t as performant as the early bound references using custom interfaces. For that
 reason, consider alternative approaches when looking at calling many IDispatch methods in a large loop in an application.

 	

5.5.2. Using COM automation to make Silverlight talk

 As an example of one of the neat OS-level things you can do with the API, let’s look at speech. System.Speech, available as part of the full .NET framework, makes speech easily accessible to any desktop or server application. But System.Speech simply wraps and makes .NET-friendly the Speech API (SAPI) native to Windows. As luck would have it, SAPI supports a script-
 and Silverlight-friendly IDispatch interface. The code here shows a simple “Hello World!” speech application using the C# dynamic keyword and Silverlight 4’s new COM automation feature:

 if (AutomationFactory.IsAvailable)
{
 using (dynamic voice =
 AutomationFactory.CreateObject("Sapi.SpVoice"))
 {
 voice.Speak("I'm better than any in-page midi file!");
 }
}

 In order to use the C# dynamic keyword, you need to have a reference to Microsoft.CSharp.dll. The DLL is delivered with the Silverlight SDK.

 Another interesting use of COM automation is access to the Windows 7 Sensor and Location API.

 5.5.3. Accessing GPS data using COM automation

 I’m writing this part of the chapter on the return trip from speaking at an event in Iceland (in-flight power and limitless
 coffee are a real win, in spite of how hot my US power supply is from the 240V power). Right above my multi-touch tablet screen
 is a small seat-back console that displays the graphical representation of our geographical position on the world map. (For reference, we’re above Canada between the amusingly named Goose Bay and Gander.)

 Watching that reminded me that all the nifty GPS work I’ve done with WPF on Windows 7 is also available in Silverlight because
 the native API supports IDispatch. Location-aware Silverlight applications? Awesome.

 Access to location information was first offered as part of the full .NET 4 framework in the System.Device.Location namespace. Much like System.Speech, System. Device.Location simply (or not so simply if you’re the one who had to write it) wraps and makes .NET-friendly the Windows 7 Location API.
 Though you do lose some convenience such as the INotifyPropertyChanged implementation (see chapter 9) by going directly against the native COM API, it’s still pretty usable.

 The following example shows how to access location information, specifically the latitude and longitude reported by a GPS
 receiver such as the u-blox device included with Microsoft Streets and Trips 2010. Note that this example requires a version
 of Windows 7 that supports the Sensor and Location API (all versions except the Starter edition):

 if (AutomationFactory.IsAvailable)
{
 using (dynamic factory =
 AutomationFactory.CreateObject("LocationDisp.LatLongReportFactory"))
 {
 AutomationEvent newReportEvent =
 AutomationFactory.GetEvent(factory, "NewLatLongReport");

 newReportEvent.EventRaised += (s, ev) =>
 {
 using (dynamic report = factory.LatLongReport)
 {
 LatitudeDisplay.Text = factory.Latitude.ToString();
 LongitudeDisplay.Text = factory.Longitude.ToString();
 }
 };

 factory.ListenForReports(1000);
 }
}

 In addition to working only on a Windows 7 PC (I don’t check for that in this example, but you should), this code will only
 work if you have a GPS attached to your PC and you’re in a spot where you can get a satellite signal. If you don’t have a
 different Location API-compatible receiver, I recommend getting the inexpensive u-blox one and downloading the Location API
 drivers from www.ublox.com/en/usb-drivers/windows-7-driver.html. The device itself is fairly simple, reporting only latitude and longitude (no altitude, speed, or heading) but is otherwise
 quite capable.

 Speech and location are fun and likely to be used by lots of applications, but the one example requested more than any else
 and the one feature many people have requested of Silverlight is the automation of Microsoft Office applications such as Outlook
 and Excel.

 5.5.4. Automating Excel

 Finally, the canonical example of using COM automation in Silverlight is to automate Excel to populate data. Listing 5.3 shows an example of creating a worksheet with data and a chart.

 Listing 5.3. Automating Excel to create data and a chart

 [image:]

 The resulting worksheet with data and chart looks like figure 5.16. Note that the communication need not be one way as shown in this example. You can also wire up Excel data change events
 to update the data back in your own Silverlight application.

 Figure 5.16. An Excel worksheet and chart generated through COM Interop using the Silverlight elevated trust mode

 [image:]

 That’s pretty impressive from what’s otherwise thought of as a web application technology. Though you can’t actually embed
 Office UI (such an Excel worksheet) into your application, the ability to automate Excel and other Office applications really
 helps to make Silverlight ready for business.

 You can do quite a bit with elevated trust mode applications in Silverlight 4 and above. The local file access capability
 makes for an even richer cross-platform experience and enables scenarios previously restricted to platform-specific desktop
 applications.

 Special among the elevated trust features, the COM capabilities are almost endless but should be used with discretion and
 caution. This feature provides yet another option for creating Windows client applications.

 COM automation is exciting, powerful, and a little scary. The sky is the limit with what you can do. Coming back down to Earth
 on the elevated trust capabilities, we’ll next cover the control you have over the window hosting the out-of-browser application.

	

 What about other platforms?

 Silverlight is a cross-platform product so it’s reasonable to ask what the strategy is for the Mac and Linux. Though nothing
 is official at this point, the Silverlight team is looking into providing access to similar or equivalent technologies on
 other supported platforms. One example of that may be AppleScript on the Mac. Though that means we’d have to write different
 code for different platforms, I think the nature of this feature makes that a necessary evil, should you desire deep integration
 with the operating system features.

 	

5.6. Controlling the host window

 To create a truly differentiated out-of-browser experience, you’ll probably want to have complete control over the title bar,
 resize bar, window buttons, and other elements that make up the window chrome. You may want to just change the color or you
 may want to provide a completely different look and feel that blends seamlessly with the application, without any jarring
 window borders.

 Silverlight supports several levels of customization to the out-of-browser window. The simplest is setting the size and position
 of the window. From there, you can also set it to be a topmost window—one that floats above all others. You can also programmatically
 activate it.

 Those are all easy controls, but often you need to go a step further. Silverlight supports customizing the out-of-browser
 window chrome. It even includes functions and properties that make it possible for you to easily replicate the normal window
 behavior, including minimizing, maximizing/restoring, closing, moving, and resizing the window.

 In this section we’ll start with the basic properties, but as they’re simple and pretty self-explanatory, we won’t linger
 there. Instead, we’ll hop right into the meatier topics of changing the window chrome, modifying the window state, and moving
 and resizing the window.

 5.6.1. Basic window properties

 Elevated trust applications can change the properties of the host window at runtime, including size, location, and even the
 chrome. The Window class used is similar to the one used by WPF, so many of the properties and methods may be familiar to you. The list of important
 properties and functions is shown in table 5.3.

 Table 5.3. Runtime-controllable properties of the out-of-browser host window

 	
 Member

 	
 Description

	Top, Left
 	Gets or sets the position of the window

	Height, Width
 	Gets of sets the size of the window

	TopMost
 	Set to true to make the Silverlight application float above all other windows
 Useful for certain types of utility applications, but don’t abuse

	WindowState
 	Get or set the state of the window
 Possible values are Normal, Minimized, and Maximized

	IsActive
 	Read-only
 Returns a Boolean indicating whether the window is currently active

	Activate
 	Attempts to activate the application window by bringing it to the foreground and setting focus to it

The following example uses all of these properties and functions to size and position the window, set its state, ensure it’s
 topmost, and then activate if it’s not already activated. We’ll cover the window state changes after we cover customizing
 the window chrome because that’s where the window state typically comes into play:

 if (Application.Current.HasElevatedPermissions)
{
 Window win = Application.Current.MainWindow;

 win.TopMost = true;
 win.Height = 200;
 win.Width = 200;

 win.Left = 150;
 win.Top = 150;

 if (!win.IsActive)
 win.Activate();
}

 Setting the size and state of the window is important, but that’s not changing the look of the window chrome itself. To do
 that, you’ll need to use a few more features introduced with Silverlight 4.

 5.6.2. Changing window chrome

 Silverlight applications tend to be highly visual and highly branded experiences. When an out-of-browser application with
 a custom look gets wrapped in the standard OS window chrome, it can really ruin the experience. What you really want is edge-to-edge
 control over the look of your application, including the borders, buttons, and title bar.

 Elevated trust out-of-browser applications enable you to control the window chrome. You can choose to have the default OS
 chrome, no border, or borderless rounded corners. At this point, you can’t have irregularly shaped windows or windows with
 transparency, but that may show up in a future version. Figure 5.17 shows the various options inside the out-of-browser configuration dialog in Visual Studio 2010.

 Figure 5.17. Custom chrome settings for elevated trust out-of-browser applications

 [image:]

 The setting here adds an attribute to the Window element in the OutOfBrowserSettings.xml file. The possible values for the style are shown in table 5.4.

 Table 5.4. Window styles for out-of-browser applications

 	
 Value

 	
 Description

	(unspecified element)
 	The default window chrome is based on the operating system in use.

	BorderlessRoundCornersWindow
 	The window is drawn with a 5-pixel corner radius on all four corners.

	None
 	The window is a rectangular shape with no border.

Figure 5.18 shows a close-up of the corner of the window when using the BorderlessRoundCornersWindow as the window style. The result is a rectangle with a 5 px corner radius on all four corners, with no anti-aliasing or operating
 system drop shadow. This is a clipping function in Silverlight; you don’t need to make any changes to your layout to accommodate
 the rounded corner, unless you want to.

 Figure 5.18. A close-up view of the top-left corner of a black window using the round-corners setting. The radius is fixed by Silverlight
 itself.

 [image:]

 When you create custom chrome for your windows, you’re suddenly responsible for the full behavior of the window, including
 creating a title bar (should you want one), adding your own minimize, maximize, and close buttons, and handling moving and
 resizing. Luckily, Silverlight provides several functions and events to help you do this.

 5.6.3. Minimizing, maximizing, restoring, and closing

 Most chrome implementations will have at least three buttons on the upper right of the window: Minimize, Maximize/Restore,
 and Close. When you use the normal OS chrome, those buttons are provided for you. When using custom chrome, you’ll need to
 set the window state or call the Close method on the Application.Current.MainWindow object. Listing 5.4 shows how to handle these functions in an application with custom chrome. The Grid is assumed to be the main layout root in MainPage.xaml.

 Listing 5.4. Handling window state with custom chrome

 XAML:

 <Grid x:Name="LayoutRoot" Background="Orange">
 <StackPanel Orientation="Horizontal" HorizontalAlignment="Right"
 VerticalAlignment="Top" Margin="8">
 <Button x:Name="MinimizeButton" Width="15" Height="15" />
 <Button x:Name="MaximizeButton" Width="15" Height="15" />
 <Button x:Name="CloseButton" Width="15" Height="15" />
 </StackPanel>
</Grid>

 C#:

 [image:]

 In this example, you can see how easy it is to add your own window state management buttons to the elevated trust out-of-browser
 application. That gets you half way there. The other half of the required functionality is the ability to move your window
 by dragging it with the mouse.

 5.6.4. Moving

 There are three approaches to moving your window in Silverlight: making the whole window draggable, making an element (such
 as the title bar) draggable, or not bothering. The last option isn’t going to make you any friends unless you’re writing some
 sort of a docking tool that can only sit on certain positions on the screen, so that leaves the first two.

 Silverlight includes the DragMove method on the MainWindow object we used in the previous examples. DragMove can be called from anything but is typically called from the MouseLeftButtonDown event of a title bar, or of the window itself. Listing 5.5 builds on the previous example by adding a grid to represent the title bar and one event handler.

 Listing 5.5. Code to implement dragging a window

 XAML:

 [image:]

 C#:

 [image:]

 The DragMove method is interesting because it takes over the mouse management until the mouse is released. For that reason, you don’t
 need to wire up any mouse movement events, or worry about the mouse getting outside the bounds of the window, or any of the
 other cruft you may have thought would be required.

 Silverlight provides one more method for window management, this one to allow the user to resize the window when using custom
 chrome.

 5.6.5. Resizing

 While all of the other functions are considered pretty essential to window management, resizing is completely optional. Some
 applications don’t allow resizing by the end user. But, since Silverlight makes it so simple to rescale or resize elements
 when the window is resized, this decision should be made only for aesthetic reasons and not for lack of time to implement.

 To support resizing, DragMove has a sister function named DragResize. The DragResize move works much like DragMove, except it takes in a parameter that allows you to specify exactly where in the window the user is resizing. Listing 5.6 builds on the previous examples and shows how to use DragResize with a typical corner resize. Keep in mind that you can specify any edge by using multiple resize elements and calling DragResize with the appropriate parameter.

 Listing 5.6. Implementing resize using an element in the bottom right corner

 XAML:

 [image:]

 C#:

 [image:]

 Controlling the main window when running in the out-of-browser mode is an essential addition to the Silverlight platform.
 It enables you to write applications that really look and feel like native operating system apps—if you want them to. It also
 enables you to create truly branded experiences that extend all the way to the edges of the window.

 Silverlight provides a number of ways you can control the window, from simply setting its size and position, to floating it
 above other windows, all the way to using custom chrome. Silverlight also provides functions and properties to make window
 manipulation easier when you implement your own chrome.

 Sometimes what you want isn’t actually a host window in an out-of-browser application but rather just the ability to take
 your in- or out-of-browser application to full screen, overlaying even the operating system shell UI elements. Yes, Silverlight
 can do that too.

 5.7. Running in full screen

 Most browsers support the ability to run in the full-screen mode, typically by pressing F11 or selecting the Full Screen option
 from the Tools menu equivalent. Though this mode is nice, the amount of real estate given over to the application isn’t consistent
 between browser versions. For example, the older versions of Internet Explorer kept the status bar and some other elements
 on the screen. Internet Explorer 8+ and Google Chrome both allow the browser to take over the entire screen, without any additional,
 ahem, chrome visible. Firefox (as of this writing) shows a small gray bar at the top used as a hotspot for the toolbar. All
 of these also require the user to navigate a browser-specific menu or press a browser-specific (but currently identical) hotkey.
 The other problem is that there is no way to handle this when running in the out-of-browser mode.

 Silverlight also supports its own full-screen mode, available both in and out of the browser. The experience is the same across
 browsers and the mode may be invoked via a button you provide in the Silverlight application. This allows you to keep the
 user’s focus inside the application (no “Best viewed in full-screen mode, accessed by F11” prompts) and enable the functionality
 in a way that’s consistent with your application’s experience.

 In a sandboxed application in the browser or a non-elevated application out of the browser, Silverlight’s full-screen support
 limits the types of keyboard entry just to those typically used in media players and games (arrow keys, page navigation keys,
 and so on). The reason for this is to prevent taking over the entire screen and spoofing an operating system login experience,
 thereby capturing the user’s password and perhaps sending it off to some scary site to be used to gain access to your private
 information, like your tax returns for the past five years and that passwords.txt file you thought no one would notice.

 There are some significant differences between the capabilities enabled by full screen in the partial-trust mode and full
 screen in the elevated-trust mode. Let’s tackle them separately.

 5.7.1. Normal full-screen mode

 In keeping with the promise of delivering rich interactive experiences, Silverlight goes far beyond the standard web capabilities
 by providing a full-screen mode. This mode enables a user to enjoy immersive visual experiences and interactive media outside
 the bounds of the web browser. This full-screen experience comes with some limitations that you’ll see in a bit. Because of
 these limitations, the full-screen mode is generally used strictly with media. This section will show you the differences
 between the full-screen and the normal screen modes. Then, you’ll learn how to programmatically toggle between the screen
 modes.

 If a Silverlight application is put in the full-screen mode, the user will be greeted with a brief overlay message that looks
 like figure 5.19.

 Figure 5.19. The prompt displayed to users when they enter the full-screen mode

 [image:]

 Note that full-screen mode doesn’t support the OpenFileDialog and SaveFileDialog classes nor does it support multi-touch input (covered in chapter 8). But full-screen mode is supported whether running in-browser or out.

 Figure 5.19 shows the prompt shown to users when they enter the full-screen mode. This message will overlay the Silverlight content for
 approximately 3.5 seconds. After that time, the prompt will gracefully fade out of view. This prompt can’t be customized and,
 in the normal partial trust mode, it can’t be turned off because this prompt is designed to prevent spoofing.

 Spoofing is a security attack used by malicious developers who try to deceptively mask their application as another or as Windows
 itself. The purpose of this malicious attempt is to collect otherwise sensitive information such as bank account numbers and
 passwords.

 Because of the severity of this type of attack, Silverlight imposes two safeguards when running in the partial trust mode.
 The first safeguard limits user input to the arrow, Tab, Enter, Home, page up, page down, and space keys, as well as mouse
 events. Additional information entered through the keyboard won’t be passed to the Silverlight application. The second safeguard
 ensures that the full-screen mode can only be entered through a user-initiated event such as a button click. Once this happens,
 you can switch the Silverlight plug-in into the full-screen mode through the host.

 Toggling Between Screen Modes

 The SilverlightHost class gives you access to the information associated with a plug-in instance. The switch to the full-screen mode is made
 using the Content property, which exposes a bool property of its own called IsFullScreen. As you might expect, this property can be used to toggle between the full-screen and the embedded modes:

 private void GoFullScreen_Click(object sender, RoutedEventArgs e)
{
 Application.Current.Host.Content.IsFullScreen = true;
}

 This example shows how to switch a plug-in into the full-screen mode. As you probably already guessed, you can set the IsFullScreen property to false to go back to the embedded mode. Regardless of which direction you’re going, a change in the screen mode will cause the FullScreenChanged event to be triggered. This event is useful for resizing the content so that it scales to an appropriate size based on the
 screen mode.

 If you want to avoid the onscreen message, keyboard restrictions, and the requirement for user initiation, you’ll need to
 run in the elevated trust mode.

 5.7.2. Elevated trust full-screen mode

 Out-of-browser applications can go full screen whether they’re running in the normal partial trust mode or in the elevated
 trust mode. The mechanisms for going full screen and detecting the mode are the same. But the elevated trust mode provides
 some real benefits to applications that require it.

 First of all, elevated-trust applications allow you to enter the full-screen mode from any branch of code and not just something
 that’s user-initiated. For example, you can go full screen from the Loaded event of the main page:

 private void MainPage_Loaded(object sender, RoutedEventArgs e)
{
 if (Application.Current.HasElevatedPermissions)
 {
 Application.Current.Host.Content.IsFullScreen = true;
 }
}

 Elevated trust also eliminates the “Press ESC to exit full-screen mode” prompt that’s displayed when the full-screen mode
 is first entered. At the same time, it eliminates the use of the Escape key for this purpose altogether. You’ll need to provide
 the user with another way to exit the full-screen mode either by capturing the Escape key and/ or providing a button to drop
 out of full screen.

 The keyboard restrictions on the partial-trust full-screen mode make it suitable for only a small class of applications. The
 full-screen mode in the elevated trust also provides access to all the keys you get in the normal out-of-browser mode. This
 is a huge boon that makes the mode acceptable for kiosks, full-screen games, interactive media players with chat, and many
 other application types.

 The full-screen mode works whether running in or out of the browser, in partial trust or elevated trust. Once in the full-screen
 mode, you can simulate an entire desktop, provide your own window management, and so forth. It effectively gives you a work
 space that’s larger than what we’d traditionally consider a window.

 So far, we’ve covered a number of different ways Silverlight can integrate with the local machine. One final area of local
 machine integration, available both in and out of the browser, is isolated storage.

 5.8. Storing data in isolated storage

 Even in the out-of-browser mode, Silverlight is a browser-based plug-in so, by default, it has the lowest of security privileges
 to ensure a safe browsing experience for your users. This safety restriction introduces a number of development challenges,
 such as working with data across browser sessions. Although working with data across browser sessions may not be a problem
 if the data is stored on a web server, it can be a problem if the data needs to be stored locally.

 Isolated storage is a mechanism that allows you to preserve data across browser sessions on a user’s machine. This storage area is tied to
 an individual user and helps you overcome the 4 KB limitation of a cookie. Unlike a cookie, isolated storage lies outside
 of the browser cache—if a user clears the browser history, the items within isolated storage will remain in place. In order
 to access this storage area, you use the System. IO.IsolatedStorage namespace.

 The System.IO.IsolatedStorage namespace provides the functionality to work with a user’s isolated storage area. This area can be accessed through the IsolatedStorageFile class, which exposes two statically visible methods that retrieve an IsolatedStorageFile. These methods are GetUserStoreForApplication and GetUserStoreForSite. The GetUserStoreForApplication can be used to retrieve a user’s isolated storage for a specific Silverlight application, defined by the full URL to the
 .xap. The GetUserStoreForSite method gets a user’s isolated storage for an entire domain. As you may have guessed, this method gives you the ability to
 share information across multiple Silverlight applications.

	

Note

 The GetUserStoreForSite method doesn’t exist in the full .NET framework. You should consider this fact if you want to promote your Silverlight application
 to WPF down the road.

 	

Either way, an example of retrieving an IsolatedStorageFile is shown here:

 IsolatedStorageFile isoFile =
 IsolatedStorageFile.GetUserStoreForApplication();

 This code gives you access to a user’s isolated storage area. Once you’ve retrieved an IsolatedStorageFile, you can use it to manage a virtual filesystem, which gives you the ability to read and write files and directories. This
 information can be leveraged through the IsolatedStorageFile and IsolatedStorageFileStream classes.

 5.8.1. IsolatedStorageFile: the virtual filesystem

 The IsolatedStorageFile class represents a virtual filesystem that a Silverlight application can manage. Note the word virtual; outside of the elevated security mode, you can’t directly access the user’s local filesystem due to security constraints.
 As the previous example showed, you can still access data related to the requesting Silverlight application but, in reality,
 the term filesystem is a probably a stretch.

 The IsolatedStorageFile object represents a specific partition within the isolated storage area. This partition is tied to both the user and the
 application. It’s easiest to think of this partition as a specific folder or directory. And, like a regular directory, the
 isolated storage area enables you to perform several operations, including the ability to list the contents of a directory.
 This directory can have other files or directories added to or removed from it, so you should probably keep track of the isolated
 storage usage statistics to ensure you don’t run out of space. Fortunately, the IsolatedStorageFile allows you to check these statistics and request more space if you need it.

 Listing the Contents of the Virtual Filesystem

 The IsolatedStorageFile class provides two methods that enable you to retrieve the items within a storage area. The first method, GetDirectoryNames, enables you to retrieve the names of the directories that match a certain pattern; the GetFileNames method allows you to search for files that match a particular filter. To gain a solid understanding of how these filters
 work, look at the sample isolated storage area structure in figure 5.20.

 Figure 5.20. An illustration of a potential isolated storage area

 [image:]

 The isolated storage area depicted in figure 5.20 contains a number of common filesystem items. For instance, there are three text files, one XAML file, and one subdirectory.
 With this hierarchical structure in mind, let’s turn our focus to mastering the filtering string syntax used for searching
 the isolated storage area.

 The first and most verbose approach involves searching for a specifically named item. This approach works with both the GetDirectoryNames and GetFileNames methods. To perform the search, you simply provide the exact path to the file or directory. If the filename or directory
 is found, a string array with one element will be returned. Otherwise, an empty result set will be returned. Both approaches
 are shown here:

 string[] directory1 = isoFile.GetDirectoryNames("Directory1");
string[] noDirFound = isoFile.GetDirectoryNames("Directory2");
string[] testfile1 = isoFile.GetFileNames("testfile1.txt");
string[] noFileFound = isoFile.GetFileNames("testfile2.txt");
string[] nestedFile = isoFile.GetFileNames("Directory1/file1.txt");

 Similarly, wildcard characters may be used to pattern-match file names. Following normal Windows operating system rules, the
 * character matches any number of characters, and the ? character matches any single character:

 string[] results1 = isoFile.GetFileNames("*");
string[] results2 = isoFile.GetFileNames("Directory1/*");
string[] results3 = isoFile.GetFileNames("textfile*");
string[] results4 = isoFile.GetFileNames("*.txt");

 The * and ? wildcard characters are applicable within the GetDirectoryNames method as well. Once you have the file you’re looking for, you can open it and work on it just like you would any other file,
 including deleting it.

 Removing Items from Isolated Storage

 The IsolatedStorageFile class exposes two utility methods that enable you to remove items from the storage area. The first method, DeleteDirectory, is used to remove a directory from the isolated storage area. The second method, DeleteFile, similarly allows you to remove a file. The usage of the DeleteFile method is illustrated here:

 soFile.DeleteFile("testfile1.txt");
isoFile.DeleteFile("Directory1/file1.txt");

 As this example shows, you must explicitly provide the absolute path to the file you want to delete. If you provide an invalid
 path, an IsolatedStorageException will be thrown. In addition, this same exception will be thrown if you attempt to remove a directory that isn’t empty. Other
 than that, the syntax is the same when using the DeleteDirectory method. But, before you can delete a directory, it needs to be created.

 Creating Directories within Isolated Storage

 The IsolatedStorageFile class exposes a method called CreateDirectory that enables you to create a directory within the isolated storage space. There isn’t anything too shocking about the syntax
 associated with this method—to create a directory, you state the name of the folder:

 isoFile.CreateDirectory("Directory1");

 In addition to creating directories at the root of the isolated storage area, the CreateDirectory method enables you to create subdirectories. To do this, you use a URL-style syntax that uses forward slashes as separators:

 isoFile.CreateDirectory("Directory1/SubDirectory1");
isoFile.CreateDirectory("Directory1/Sub2/Leaf");

 The first line of code is pretty simple; it creates a subdirectory under an existing directory. The second line of code shows
 an additional feature. If you provide an absolute path to a subdirectory further down the line, all missing directories along
 the way will automatically be added. Once a directory exists, you can add files to it. We’ll discuss adding files later in
 this section. But first, let’s make sure there’s space for a new file.

 Checking the Available Space

 The IsolatedStorageFile class exposes two read-only properties that inform you of an isolated storage area’s memory situation. The first property,
 Quota, holds the total number of bytes allocated to the storage area. The other property, AvailableFreeSpace, represents the number of bytes remaining in the storage area. You can use these properties together to create a cool little
 memory quota bar (see listing 5.7). Note that this sample will only show the green bar if you pair it with other code that actually uses some space in isolated
 storage; otherwise the bar will be white, showing zero quota usage.

 Listing 5.7. Creating a file quota bar associated with the user’s isolated storage area

 Result:

 [image:]

 XAML:

 <UserControl x:Class="IsolatedStorgageExample.QuotaBar"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Width="400" Height="300">
 <Canvas x:Name="LayoutRoot" Background="White">
 <Rectangle x:Name="maximumRectangle" Width="1" Height="20"
 Fill="#FFFFFFFF" Stroke="#FF000000"
 Canvas.Left="1" Canvas.Top="5" RadiusX="5" RadiusY="5"/>
 <Rectangle x:Name="currentRectangle" Width="1" Height="20"
 Stroke="#FF000000" Canvas.Left="1" Canvas.Top="5"
 RadiusX="5" RadiusY="5" StrokeThickness="0">
 <Rectangle.Fill>
 <LinearGradientBrush EndPoint="0.5,1.35" StartPoint="0.5,-0.3">
 <GradientStop Color="#FF54CDEA" Offset="0"/>
 <GradientStop Color="#FF017328" Offset="0.5"/>
 <GradientStop Color="#FF54CDEA" Offset="1"/>
 </LinearGradientBrush>
 </Rectangle.Fill>
 </Rectangle>
 </Canvas>
</UserControl>

 C#:

 ...
public MainPage()
{
 InitializeComponent();
 // Set the rectangle sizes accordingly
 using (IsolatedStorageFile isoFile =
 IsolatedStorageFile.GetUserStoreForApplication())
 {
 double usedSpace = isoFile.Quota - isoFile.AvailableFreeSpace;
 maximumRectangle.Width = (isoFile.Quota / 10024) * 2;
 currentRectangle.Width = (usedSpace / 10024) * 2;
 }
}
...

 Listing 5.7 shows one way you can put the AvailableFreeSpace and Quota properties to use. These properties are used to set the widths of the Rectangle elements based on the available and used space. In this example, we divided these values by 10024 (a convenient number for
 sizing the control) and then multiplied them by 2 to create a reasonably sized quota bar.

 By default, the Quota property value is set to 1,048,576. The reason why is because, by default, each isolated storage area is given 1 MB of space.
 If you remember that the Quota property represents the number of bytes allocated to an isolated storage area, you can see how 1,048,576 bytes equals 1024
 KB, which equals 1 MB. Significantly though, you have the option to ask the user for more space should your application need
 it.

 Requesting More Space

 The IsolatedStorageFile class enables the application to ask the user for more storage space. This request can be made by calling the IncreaseQuotaTo method, which accepts a long parameter that represents the new quota size you want. This size signals the total number of bytes you want to allocate to
 the isolated storage area; it doesn’t represent the number of bytes by which you want to increase the storage. When the IncreaseQuotaTo method is called, the user will be shown a dialog box, as shown in listing 5.8.

 Listing 5.8. Requesting more isolated storage space

 Result:

 [image:]

 C#:

 IsolatedStorageFile isoFile =
 IsolatedStorageFile.GetUserStoreForApplication();
long newQuotaSize = isoFile.Quota * 2;
bool requestAccepted = isoFile.IncreaseQuotaTo(newQuotaSize);

 This listing shows how to request more space for an application from a user. You also have the option of asking for more storage
 for a domain if you retrieve the IsolatedStorageFile through the GetUserStoreForSite method. Either way, the IncreaseQuotaTo method can only be called from a user-initiated event such as a button click. Once this request is made, the dialog box shown
 in listing 5.8 will be displayed to the user. This dialog box displays the name of the website requesting the new quota. This value is automatically
 set behind the scenes to prevent malicious coding. In addition, this dialog box shows how much space is currently being used
 and the quota size being requested. The user’s accept or deny decision will be returned from the IncreaseQuotaTo method in the form of a bool.

 The IsolatedStorageFile represents a virtual filesystem. This file system gives you the flexibility to create, navigate, and remove items from within
 it. To make sure that you have space to create items, you may need to check the AvailableFreeSpace property, which represents the number of bytes available within the allocated storage Quota. If you need more space, you can request it using the IncreaseQuotaTo method. Requesting more space can come in handy as you read and write files.

 5.8.2. Reading and writing files: the isolated storage way

 Files stored within the isolated storage area can be created and retrieved through a file stream. This file I/O task is like
 any other in the .NET framework but, because you’re working within a special area that provides additional security features,
 you must use a specific type of file stream. This particular type of file stream is appropriately named IsolatedStorageFileStream.

 The IsolatedStorageFileStream object provides in-memory access to a file stored within the isolated storage area. With this object, you can create, update,
 and read a file from the isolated storage area. Because a file must exist before you can read it, it makes sense to first discuss
 how to create and update files within isolated storage.

 Isolated File Creation

 Creating a file within a user’s isolated storage area is a simple process. This process hinges on the System.IO.StreamWriter object. You can use a StreamWriter to write content into a file stored within isolated storage. Listing 5.9 shows the process of writing a text file to the user’s isolated storage area.

 Listing 5.9. Creating a text file within a user’s isolated storage area

 using (IsolatedStorageFile isoFile =
 IsolatedStorageFile.GetUserStoreForApplication())
{
 using (IsolatedStorageFileStream stream =
 new IsolatedStorageFileStream(
 "file1.txt", FileMode.Create, isoFile))
 {
 using (StreamWriter writer = new StreamWriter(stream))
 {
 writer.Write("Hello, from the isolated storage area!");
 }
 stream.Close();
 }
}

 Listing 5.9 shows how easily you can write a text file into the isolated storage area. The first step is to retrieve a user’s isolated
 storage area. Then, you create an IsolatedStorageFileStream that represents a file within isolated storage. The contents of this file are created using a StreamWriter. This StreamWriter gives you the flexibility to write either binary data or plain text. This is important to recognize because the contents
 of an isolated storage area aren’t encrypted automatically. Because of this, you may want to manually encrypt your data when
 writing it to a file.

 You may have noticed the use of the FileMode enumeration. This value determines how the file will be opened. In all, there are six different ways to open a file. All
 six options are explained in table 5.5.

 Table 5.5. The FileMode enumeration

 	
 FileMode

 	
 Description

	Append
 	Opens an existing file and prepares to add content onto the end

	Create
 	A brute-force approach to creating a new file
 If a file of the same name exists, it’ll be overwritten. Either way, a new, empty file with the specified name will be created.

	CreateNew
 	Attempts to create a new file
 If a file of the same name exists, an IsolatedStorageException will be thrown. If there isn’t a preexisting file with the
 same name, a new, empty file will be created.

	Open
 	Attempts to open a file with the given name
 If the file exists, the IsolatedStorageFileStream will have access to the file. If the file doesn’t exist, an IsolatedStorageException
 will be thrown.

	OpenOrCreate
 	Opens a file if it exists. If the file doesn’t exist, a new one will be created with the given name.

	Truncate
 	Open an existing file and removes all its contents. This FileMode doesn’t allow read operations.

The FileMode options shown in this table cover a wide variety of file operations. These values are useful when you’re creating files or
 attempting to read a file from isolated storage.

 Reading an Isolated File

 The process of reading a file from a user’s isolated storage area is similar to writing to a file. Instead of taking advantage
 of a StreamWriter, you use of a StreamReader. The process of using a StreamReader to read a file is shown in listing 5.10.

 Listing 5.10. Reading a file from the user’s isolated storage area

 using (IsolatedStorageFile isoFile =
 IsolatedStorageFile.GetUserStoreForApplication())
{
 using (IsolatedStorageFileStream stream =
 new IsolatedStorageFileStream("file1.txt", FileMode.Open, isoFile))
 {
 using (StreamReader writer = new StreamReader(stream))
 {
 myTextBlock.Text = writer.ReadToEnd();
 }
 stream.Close();
 }
}

 As this example shows, reading a file is almost identical to creating a file. The first step involves retrieving the user’s
 isolated storage area. Then, you create an IsolatedStorageFileStream object—this time using the FileMode.Open option. Once the file is opened, you can read through it using a StreamReader.

 Both the StreamReader and StreamWriter classes provide a lot of features for working with character-based and binary input and output. These I/O features provide
 a lot of flexibility in regard to the client-side storage within the isolated storage area. Once an isolated storage area
 is created, you may need to remove it for testing during development. For this reason, it’s beneficial to know how to administer
 it.

 5.8.3. Administering isolated storage

 Administering an isolated storage area involves interacting with the physical filesystem. The reason you’d want to do this
 is to test a user’s initial interaction with a Silverlight application. During development, it can be easy to get lost in
 the action and forget a user’s initial experience with an application. Because the isolated storage area is separate from
 the browser’s cache, you need an easy way to remove information from the isolated storage area, so you should know where the
 isolated storage area is located on the physical filesystem.

 The isolated storage area is located in different locations based on the user’s operating system. The specific location for
 each operating system is shown in table 5.6.

 Table 5.6. The base location of the isolated storage area on each operating system supported in Silverlight

 	
 Operating system

 	
 Location

	Mac OS X
 	AppData/Local

	Windows XP
 	C:\Documents and Settings\[UserName]\Application Data\Microsoft\Silverlight\is

	Windows Vista and Windows 7
 	C:\Users\[UserName]\AppData\LocalLow\Microsoft\Silverlight\is

This table shows the base location for the isolated storage area. Each unique Silverlight application that uses isolated storage
 will create a new directory under this location. This new directory will be given a name that appears encrypted, but don’t
 let this fool you. The data stored in the isolated storage area isn’t encrypted so you shouldn’t store sensitive information,
 such as passwords, in the isolated storage.

 Isolated storage is a great way to store nonpermanent data on the end user’s local machine. It’s flexible in that it works
 in all modes of Silverlight operation (in-browser, out-of-browser, elevated out-of-browser) and works as a virtual filesystem.
 When combined with the other features described in this chapter, it really helps round out a feature set that makes for extremely
 capable connected and disconnected rich Internet applications.

 5.9. Summary

 For a web technology, Silverlight provides an unprecedented level of desktop integration. With Silverlight 4, we now have
 the ability to run in and out of the browser in the partial trust mode or out of the browser in the elevated trust mode.

 When running out of the browser in partial trust, you gain additional storage capacity without prompting, additional keyboard
 information, and a reduction in host chrome that allows you to take a greater advantage of screen real estate and provide
 a truly custom experience. For many behind-the-firewall business applications, and both custom experiences and self-contained
 Internet-delivered applications, this is a compelling option with no real downside.

 When running in the elevated trust mode, your Silverlight applications gain a level of desktop integration rivaled only by
 the native applications. You can access the local files on all supported operating systems, eliminate many of the user confirmation
 prompts, have a truly usable full-screen mode, have almost complete control over the window chrome, and even automate installed
 applications and call native APIs when running on Windows.

 In either out-of-browser mode, you have access to the notification APIs to provide a richer desktop experience as well as
 access to the virtual file system in the isolated storage.

 With both in-browser and out-of-browser support, you get access to the new network connectivity detection APIs to allow you
 to create an even more robust application that can work online or offline, in the browser or on the desktop. You get the ability
 to run full screen to provide a truly differentiated experience. You also get the simplicity of web-based deployment combined
 with the confidence that the application is secure and sandboxed.

 With both approaches, you get the full Silverlight application model discussed in chapter 3 as well as support for great user experience capabilities, including the layout and transformation capabilities we’ll discuss
 in the next chapter. It’s hard not to get excited about something so compelling.

Chapter 6. Rendering, layout, and transforming

 This chapter covers

 	UI elements and framework elements

 	The layout system

 	The rendering pipeline

 	Using 2D and 3D transformations

Over the past few chapters, we covered some fairly big-picture topics, such as how to have Silverlight work in and out of
 the browser and how to use XAML. Those are all important to understand in order to create Silverlight applications that work
 in or out of the browser. XAML and the property system are also important, and we build upon that knowledge in every subsequent
 chapter, including this one.

 In this chapter, we’re going to dig back down under the covers and look at some fundamentals of the core user interface base
 classes and the rendering and layout systems that make everything fit on the screen and render to the user.

 Silverlight’s rendering process involves a number of steps, and has provisions for several developer-provided optimizations
 to the process. Silverlight also has a far more advanced layout system than simple left/top positioning of elements on the screen. The multipass layout system handles measuring and arranging elements across the entire visual tree.

 Once the rendering, layout, and core object fundamentals are down, we’ll have some fun with performing 2D transformations
 on our objects. If you’ve ever wanted to rotate or scale an object on the screen, you’ll find the section on render transformations
 to your liking.

 Of course, if you have 2D, you always want one more, so we also have 3D transformations. You can do some wild things with
 the power of the PlaneProjection and the Matrix3dProjection classes. The former is great for most use cases, including the ubiquitous CoverFlow scenario. The latter is one of the most
 powerful transformations in Silverlight. If you’ve ever wanted to do something akin to a 3D-rotated, sparsely populated, and
 z-layered deep zoom, you’ll definitely get a kick out of the power of the 3D matrix.

 We’ve covered the fundamentals of XAML already, so let’s start with the base classes that underlie all those angle-bracketed
 elements that make up the user interface: the UIElement and FrameworkElement classes.

 6.1. The UIElement and FrameworkElement

 In previous chapters, we saw examples of TextBlocks, TextBoxes, and other controls and elements. All of the UI elements in XAML are FrameworkElement items, so they’re also inherently UIElement items because FrameworkElement inherits from UIElement.

 A UIElement is an object that represents a visual component. These types of elements have built-in support for layout, event handling,
 and rendering. Although this extremely generic description may seem pointless, it isn’t. In fact, by deriving from this type,
 a large majority of the elements within Silverlight share the same types of features. These features are exposed through a
 number of extremely valuable methods and properties.

 Throughout this section, we’ll cover the methods and properties that you’ll probably use most often. It’s important to recognize
 that some of these belong to the FrameworkElement class, while others belong to the UIElement class. We’ll point this out as we go along but, for now, let’s begin by addressing some of the common properties.

 6.1.1. Properties

 The UIElement and FrameworkElement classes expose a number of properties common to all of the visual elements in your application. Because of the abstract nature
 of the UIElement and FrameworkElement classes, these properties may be set on any control in a variety of scenarios.

 In this section, we’ll start with a look at cursors and then look at how to make your entire element partially or completely
 transparent. Sometimes, transparent isn’t good enough and what you really want is to have the control logically removed from
 the visual tree, so we’ll look at the Visibility property. From there, we’ll look at how to align an element in the horizontal and vertical spaces. Finally, we’ll cover how
 to set margins to give your elements a little breathing room and how to snap the layout to whole pixels so your lines look
 crisp and fully rendered.

 Cursor

 When a user navigates the mouse cursor over a FrameworkElement, the cursor will change to indicate the type of action the user can take. For instance, when you hover around a Canvas, you’ll see a basic arrow. Alternatively, if you move your mouse over a HyperLinkButton, you’ll see a cursor that looks like a hand. But, you can use whatever cursor you want by setting the Cursor property; for example, using the Stylus cursor with a TextBlock:

 <Canvas Cursor="Hand" Background="Green" Height="60" Width="180">
 <TextBox Cursor="Stylus" Height="20" Width="60" />
</Canvas>

 This example uses two nondefault cursor options: Stylus and Hand. These options represent Cursor items, each of which is accessible through the System.Windows. Input.Cursors class. This class exposes nine statically visible Cursor properties:

 	Arrow

 	Eraser

 	Hand

 	IBeam

 	None

 	SizeNS

 	SizeWE

 	Stylus

 	Wait

This shows the values you can use in a FrameworkElement’s Cursor property. These cursor options provide an excellent way to communicate with your users. Most of these options reflect the
 cursor options found in Cascading Style Sheets (CSS). But, short of newer advances in the proposed HTML 5 spec, it’d be a
 challenge to find a W3C CSS equivalent for our next property: Opacity.

	

 Web cursor standards

 The ubiquity of browser applications has altered some of the user interface standards we’ve traditionally followed on the
 desktop. For example, a common standard to apply in your web application is to use the Hand cursor for many things a user can click and not just hyperlinks. This standard is slowly finding its way to traditional desktop
 applications, where it’s helpful to differentiate “dead space” from active areas such as buttons. In the end, anything that
 helps the users explore your application and quickly identify actions they can take is a good thing.

 	

Opacity

 The Opacity property represents an element’s transparency. By default, this double-precision value is set to 1.0, which means the element
 is completely visible. You have the flexibility to set this value as low as 0.0, making it completely transparent. To get
 a feel for how the Opacity property renders content, look at figure 6.1, which shows a TextBlock with varying Opacity values.

 Figure 6.1. An example of the Opacity property

 [image:]

 The Opacity values ensure that a UIElement is visible. If you set the Opacity value to 0.0, the element wouldn’t be visible. But, just because a UIElement can’t be seen, it doesn’t mean it’s not there. Instead, even if a UIElement has an Opacity of 0.0, it’ll still behave as though it can be seen. For instance, a transparent element will still respond to mouse events.
 If you want to completely hide an element, you must change the Visibility property.

 Visibility

 The Visibility property gives you the ability to toggle whether a UIElement can be seen and whether it participates in layout. By default, all UIElement objects have a Visibility of Visible. This ensures that a UIElement can be seen and occupies its allotted layout area. If you set the Visibility of a UIElement to Collapsed, no layout area is reserved for the UIElement. Consider the StackPanel in listing 6.1.

 Listing 6.1. Three visible elements in a StackPanel

 Result:

 [image:]

 <StackPanel x:Name="myStackPanel" Background="Orange" Width="90">
 <TextBox x:Name="tb1" Width="60" Background="LightGray" />
 <TextBox x:Name="tb2" Width="60" Background="DarkGray" />
 <TextBox x:Name="tb3" Width="60" Background="Gray" />
</StackPanel>

 Listing 6.1 shows three TextBox elements. By default, each of these elements has a Visibility of Visible. Watch what happens when the Visibility of the middle TextBox is set to Collapsed, as in listing 6.2.

 Listing 6.2. Two visible elements and one collapsed element in a StackPanel

 [image:]

 <StackPanel x:Name="myStackPanel" Background="Orange" Width="90">
 <TextBox x:Name="tb1" Width="60" Background="LightGray" />
 <TextBox x:Name="tb2" Width="60" Background="DarkGray"
 Visibility="Collapsed" />
 <TextBox x:Name="tb3" Width="60" Background="Gray" />
</StackPanel>

 Listing 6.2 highlights the effects of Collapsed. The TextBox with the name tb2 isn’t shown. You could just set the Opacity to 0.0, but the layout space wouldn’t be freed. In addition, using the Opacity property to hide an element can be wasteful; an element with an Opacity of 0.0 still participates in the layout and rendering. Elements with a Visibility of Collapsed skip the rendering stem and report no size in the layout steps.

 Cursor, Visibility, and Opacity all affect visible portions of the UIElement, but not the layout. The alignment properties typically have a great impact on the layout of an element, depending upon the
 panel in which the element is hosted.

	

 What about Visibility.Hidden?

 In WPF, the Visibility enumeration contains Hidden in addition to the Collapsed and Visible values supported by Silverlight. Hidden hides an element but reserves a space for it during layout. Originally, Silverlight 1.0 supported the Hidden value, but it actually acted like Collapsed, so they decided to change it to Collapsed during the 1.0 beta cycle. To get the same effective behavior as Hidden, set the Opacity to 0.0 and IsHitTestVisibile to False. The end result will be an element that takes up space on the screen but is both invisible to the eye and to the mouse. But
 unlike Visibility.Hidden, the control will still participate in the layout and rendering—a potential performance concern if you use this often or
 in animation-heavy scenarios.

 	

Horizontalalignment and Verticalalignment

 Every FrameworkElement gives you the opportunity to specify how it should be aligned within its parent. This alignment setting will trickle down
 through the object tree and affect the alignment of all child elements—well, at least until another FrameworkElement sets its alignment. You have two ways to align visual elements.

 Visual elements can be aligned both vertically and horizontally by setting the VerticalAlignment and HorizontalAlignment property values to one of the acceptable values. These values belong to two separate enumerators, aptly called VerticalAlignment and HorizontalAlignment.

 Listing 6.3. Horizontal and vertical alignment

 [image:]

 Listing 6.3 shows the effects of all four HorizontalAlignment options and all four VerticalAlignment options. The HorizontalAlignment property accepts the Left, Center, Right, and Stretch values, whereas the VerticalAlignment property accepts the Top, Center, Bottom, and Stretch values. The alignment properties behave differently depending upon the container in which the UIElement resides. For example, they have no effect when put into a Canvas due to the Canvas panel’s lack of layout functionality.

 Both properties default to their Stretch values. Because the Stretch options alter the rendered height or width of an element to take up the maximum amount of space available, you may want to
 consider giving the element some breathing room with the Margin property.

 Margin

 Similar in nature to the Padding property, the Margin property enables you to specify a cushion, but this specific cushion works outside the bounds of a FrameworkElement. This cushion can be set using a single value or a space-delimited or comma-delimited list of four values just like the Padding property, as shown in listing 6.4.

 Listing 6.4. Margin and padding

 [image:]

 Listing 6.4 shows the Margin and Padding properties working together. The Padding property is valid in this code because this property is exposed by the System.Windows.Controls.Control class. This is explained further in the next chapter. For now, it’s important to recognize that the Padding property isn’t accessible to all FrameworkElement items, but the Margin property is.

 Margins and padding can alter the location of contained elements, sometimes pushing them to subpixel locations and making
 them look fuzzy. Luckily, Silverlight has the UseLayoutRounding property to help us avoid that.

 Uselayoutrounding

 Silverlight supports aligning elements on subpixel boundaries. An unfortunate side effect of this is the loss of crisp lines.
 Sometimes, you really want that 1 px line to be just 1 px thick and not antialiased to 2 px in thickness.

 One simple way to avoid this problem is to place your elements on whole pixel locations. But when your element is nested inside
 a panel, which is inside a control, which is in a stack panel located in another grid—all of which can have margins, padding,
 and other properties affecting layout—you can’t easily calculate exactly where your element will appear.

 Silverlight supports a property of the UIElement called UseLayoutRounding. When UseLayoutRounding is set to true, the layout system (see section 6.3) will round the points of your element to the nearest whole pixel. When false, Silverlight will respect the subpixel location of the points
 and won’t attempt to move them. Listing 6.5 shows the impact of layout rounding on two rectangles. The first rectangle has layout rounding turned on; the second has
 it turned off.

 Listing 6.5. Layout rounding in action with two rectangles

 Result:

 [image:]

 Result (enlarged):

 [image:]

 XAML:

 <Grid x:Name="LayoutRoot" Background="White">
 <Rectangle Margin="10.5"
 UseLayoutRounding="True"
 HorizontalAlignment="Left"
 VerticalAlignment="Top"
 Fill="Transparent"
 Stroke="Black" StrokeThickness="1"
 Width="150" Height="30" />

 <Rectangle Margin="20.5"
 UseLayoutRounding="False"
 Fill="Transparent"
 HorizontalAlignment="Left"
 VerticalAlignment="Top"
 Stroke="Black" StrokeThickness="1"
 Width="150" Height="30" />
</Grid>

 In listing 6.5, you can see that the rectangle that isn’t rounded to the nearest pixel has lines that are two pixels thick and light gray.
 When viewed in its native resolution, it looks fuzzy. When layout rounding is turned on, the result is a crisp line with sharp
 corners and no fuzz.

 UseLayoutRounding is respected by almost every element in Silverlight. The Polygon class exposes this property but ignores it. Polygons are expected to be complex shapes where layout rounding wouldn’t really
 make sense, so layout rounding is a no-op.

	

Note

 When sharing code with WPF, it’s important to note that layout rounding is turned on by default in Silverlight. This is in
 contrast to WPF, where it’s turned off by default.

 	

We covered the Margin property as well as the useful HorizontalAlignment and VerticalAlignment properties. In addition, we also highlighted the value of the Visibility, Opacity, and Cursor properties. Finally, we looked at how to scare away the fuzzies with UseLayoutRounding. Collectively, these represent some of the more widely used properties of the FrameworkElement and UIElement classes. But these properties only serve to describe an element. There are times when you need to perform an action on them;
 in these scenarios, you need to rely on their methods.

 6.1.2. Methods

 Two common tasks are often performed during runtime. The first task involves managing attached properties. The second involves
 finding an element within the element tree. We’ll cover each of these in detail.

 Managing Attached Properties

 Every UIElement is a DependencyObject. A DependencyObject gives you the ability to retrieve and change attached property values. Consider the process of altering the position of an
 element within a Canvas. Although you might initially think to set the Canvas.Left and Canvas.Top properties, you’ll quickly run into a wall. Instead, you must take advantage of the SetValue method as shown in listing 6.6.

 Listing 6.6. Moving a TextBlock five pixels with GetValue and SetValue

 XAML:

 <Canvas x:Name="parentCanvas"
 Width="400" Height="400" Background="LightGray">
 <TextBlock x:Name="myTextBlock"
 Text="Click Me"
 Cursor="Hand"
 MouseLeftButtonUp="MyTextBlock_Click"
 FontFamily="Verdana" />
</Canvas>

 C#:

 [image:]

 When a TextBlock is clicked and the click event raised, it’ll move five pixels down and to the right. This is made possible by retrieving
 the current Left and Top positions of the TextBlock within the Canvas through the GetValue methods. Then, the TextBlock is moved within the Canvas using the SetValue methods. But where do the TopProperty and LeftProperty values come from?

 These properties are DependencyProperty elements—a special type of property designed to depend on information from multiple sources, covered in chapter 2. For instance, as shown in listing 6.6, you use two DependencyProperty (specifically attached properties) attributes—Canvas.Left and Canvas.Top—to position the TextBlock. At the same time, there could be an animation affecting the TextBlock, so the position of the TextBlock would be dependent upon both the layout panel (the Canvas) and the animation. (Animations are discussed in chapter 22.)

 Thanks to the DependencyProperty, it’s incredibly easy to manage or retrieve the value associated with an attached property. Dependency properties also provide
 several other advantages discussed in more detail in section 2.1.4. For now, let’s look at how to find elements within the element tree.

 Finding Elements

 As described in chapter 2, the Silverlight Object Model is represented as a hierarchical tree of elements. Considering that each element in this visual
 tree is, at its core, a FrameworkElement, you have the flexibility to navigate this tree. With this element, you have the ability to go either up or down the tree.

 To go down the tree, you must call the FindName method. This method takes the name of an element and retrieves it. It doesn’t matter if the element is a child, grandchild,
 or located even further down the tree. The FindName method will retrieve it as long as it’s a descendent. If it isn’t found, the method will return null.

 Alternatively, if you need to find an element up the tree, you use the Parent property to recursively navigate up the tree and search the sibling nodes, as described in chapter 2.

 Finding elements is a task that you may need to perform in certain circumstances, such as when you dynamically load XAML.
 Once these elements are found, you can readily get or set the attached property values of a UIElement using the GetValue and SetValue methods. These methods aren’t difficult to understand, but the process of using a DependencyProperty to set the value of an attached property may seem strange at first. As you grow more familiar with it, it’s easier to see
 the power of this approach, which can lead to new ways of delivering a rich and interactive user experience.

 The UIElement and FrameworkElement classes form the base of everything that’s rendered in Silverlight. We’ve seen that they offer a number of useful properties
 and methods to control everything from their alignment, to visibility, to how opaque they should appear. Now that we understand
 the capabilities they offer, it’s time to take a step back and look at the rendering process as a whole, in which the UIElement and FrameworkElement play a core role.

 6.2. The rendering process

 User interfaces in Silverlight are complex. They often have multiple layers of semitransparent or overlapping content, animation,
 video, and more. The level of problems the runtime must solve is more akin to that of a gaming platform than, say, something
 like Windows Forms.

 The problem is made even more complex by the restrictions and capabilities of the various browser platforms. Most browsers
 have a simple threading model, varying sandboxed capabilities, and what can only be described as personality.

 It’s important to understand the rendering process, especially as it relates to performance. In this section, we’ll cover
 some of the highlights of the process, including browser threading, drawing, performance optimizations, and how you can plug
 into the process using the callback function.

 The rendering process can be broken down into the steps described in table 6.1.

 Table 6.1. The steps of the render process

 	
 Step

 	
 Description

	Update hosted HTML
 	Get updated visuals for the hosted WebBrowser control, if used—for example, a hosted web page playing a video.

	Clock tick
 	Increment the animation and video clock.

	Event handlers
 	Run the user code in event handlers, except for the per-frame render callback.

	Layout
 	Measure and arrange elements for display. Because this is one of the most important steps in this process, we’ll cover this
 in more detail in section 6.3.

	Per-frame render callback
 	Run the per-frame callback CompositionTarget.Rendering.

	Rasterize
 	Rasterize the vector content, media, images, and more onto their intermediate render surfaces. Then composite to the back
 buffer.

	Show Frame
 	Show the frame in the browser. Blit (direct memory chunk copy; short for bit block transfer) the back buffer to video memory or to the software rendering surface.

More than just that happens, of course. There’s user code, media decoding, network access, and so on, but this table captures
 the essence of the rendering process. Though it can help to conceptualize this as an ongoing loop, the individual steps trigger
 off timers and window messages and not off a single cycle timer, it’d be slightly inaccurate to do so. Nevertheless, just
 as we still refer to the various timer- and event-driven processes in game development as the game loop, it’s a reasonable
 abstraction.

 This process is continually optimized from release to release and even across devices. For example, the Windows Phone 7 process,
 though similar to what I’ve just described, actually runs the animations on a separate thread.

 One of the most significant limitations of the rendering process for any browser plug-in is the UI thread. Each browser offers
 up one UI thread per process, shared across all plug-ins in that process. For some browsers, the scope of a process is a single
 tab; for others, it’s the entire browser.

 Of the preceding steps, a few demand additional explanation. Specifically, the clock tick, the per-frame render callback,
 rasterization, and layout all require more detail. We’ll start with an explanation of rasterization and the various steps
 involved in it and then look at how we can plug into the process via the render callback. Finally, since it’s a much larger topic and arguably is the most important one to understand, we’ll cover layout in section 6.3. Before that, let’s look at a few of the other steps, starting with the clock tick.

 6.2.1. Clock tick

 Animation and video in Silverlight are governed by clock time and not by frame rate. Because of this, Silverlight can skip
 frames on the machines that can’t keep up while still maintaining the correct real time of the media or the animation frames
 shown. In other words, an animation that lasts two seconds will last two seconds on a slow machine and on a fast machine.

 The clock tick on Windows happens at 60 frames per second at the most (it happens to be capped at 30 frames per second on
 the Windows Phone 7). If you set the Silverlight MaxFrameRate to a value lower than that or the system can’t keep up, the tick will happen at a lower rate but will ensure the time remains
 correct. Figure 6.2 shows an example of the dropped frame approach.

 Figure 6.2. If the machine can’t keep up with the workload, Silverlight will drop frames but will ensure that the displayed frames are
 correctly synchronized with the clock tick.

 [image:]

 Figure 6.2 shows a theoretical dropped frame. Both frames 1 and 2 are at their correct times. What would’ve been frame 3 (timed at 3/60
 of a second) was dropped, so the next presented frame, the new frame 3, picks up at the correct time. This prevents the undesired
 effect of slow-running animations or movies.

 After the clock has ticked and all the animations and media elements incremented, the next step is to call an optional per-frame
 rendering callback function.

 6.2.2. Per-frame rendering callback

 There may be times when you want to perform an action during every frame that’s rendered on the screen. That may be a simple
 as keeping a count of frames, swapping a back buffer to simulate an immediate-mode rendering system, or performing game loop-style
 operations.

 Silverlight includes the Rendering event on the CompositionTarget class, which is suitable for these tasks. CompositionTarget.Rendering is an event that fires once per frame, allowing you to synchronize code with the rendering system.

 There’s no guarantee that the callback will happen at the max frame rate. Though it often does work out this way, many factors,
 including the amount of work being done inside the callback and the overall speed of the system, contribute to how often this
 runs. You can generally expect the callback to happen once per frame, assuming your code is well-behaved.

 Listing 6.7 shows how to wire up the Rendering event and show the current timestamp.

 Listing 6.7. Using the per-frame rendering callback

 [image:]

 Note the cast to RenderingEventArgs in listing 6.7. This is pretty unusual and not something you’d intuit without knowing something about the underlying code. The underlying
 code is actually sending an instance of RenderingEventArgs, but the event signature is just regular EventArgs. By casting to RenderingEventArgs, we gain access to the RenderingTime property, which we can use to synchronize our logic to Silverlight’s own rendering process.

	

Note

 CompositionTarget.Rendering may not have a 1:1 correspondence with the actual rendering frame rate. For example, a static scene with no changes may require
 no actual render, but CompositionTarget.Rendering will still fire at the expected frame rate.

 	

The event signature uses EventArgs simply for historical reasons. The additional property was added late during the WPF v1 development cycle, and it was considered
 too late to introduce a new event signature—a breaking change. Silverlight strives to maintain WPF compatibility whenever
 possible, so the same signature was carried over to Silverlight.

 You can modify layout inside this callback, but that’ll cause another layout pass to happen. For that reason, you may want
 to consider other approaches to avoid the double layout tax on each frame. We’ll cover layout in detail in section 6.3. Before we do that, let’s look at another processing-intense operation in this cycle: rasterization.

 6.2.3. Rasterization

 Rasterization is the process of turning the vectors in the vector cache into their bitmap representation. Though not exactly
 rasterization by that definition, we’ll also include video and image blitting in this process.

 In this section, we’ll cover the basics of how rasterization works, including the order of the steps. Then, we’ll look at
 some optimizations in the process and, finally, dive into the use of caching and hardware acceleration to improve performance.

 The most fundamental aspect of rasterization that you’ll need to understand is the order in which elements are rasterized.

 Order of Rendering

 As you recall from chapter 2, elements in Silverlight are organized into the visual tree. This tree has a single root and it branches off into hundreds
 or thousands of nodes depending upon the complexity of what’s on the screen.

 The structure of that tree is key to the rendering process. For any branch of the tree, Silverlight rasterizes elements in
 the visual tree in the following order:

 	Children

 	Cache

 	Opacity mask

 	Opacity

 	Effects (intermediate surface)

 	Clip

 	Projection (intermediate surface)

 	Render transform

 	Layout offset (internal layout transform)

 	Parent node

This is a recursive process; it starts at leaf nodes (the furthest children) and works its way back to the root.

 Note that the clipping happens after the opacity calculations. One performance consideration is that a large shape that has
 opacity other than 1.0 and has only a small portion shown due to clipping (manual or via a panel) can waste a fair number
 of CPU cycles due to the opacity calculation. Similarly, effects are also calculated prior to the clip and have even more
 impact on performance.

 The intermediate surfaces mentioned are all bitmap caches that are later composited together. Note that the Writeable bitmap is a special case because it essentially is an intermediate surface of its own.

 The rendering process involves a recursive traversal of the visual tree, with optimizations to eliminate branches of the tree
 that have been already cached and haven’t changed. Another optimization is the handling of occluded pixels.

 Occlusion

 I used to play around with 3D rendering. One of the most basic performance optimizations you’d make is the culling of occluded
 triangles. When 3D objects are rendered in 2D, the surface is typically broken down into many planar triangles. You’d check
 to see whether the normals (the direction the surface faces) for the triangles are pointing away from you and you are, therefore, looking at the back
 side of a triangle. If so, you’d remove the triangle from the pipeline. You’d also then check to see if there are any triangles
 that are completely covered by other triangles.

 Though a simplification, consider a complex scene where there’s an opaque wall in front of you (the camera) and a bunch of
 complex shapes on the other side of the wall, as shown in figure 6.3. In such a scene, the shapes would be occluded by the wall; it’d be wasteful to include them in the rendering process.

 Figure 6.3. An overhead view of occlusion in a 3D system. The shapes are occluded by the wall; the camera can’t see them. It’d be wasteful
 to include their geometry in the rendering process. Silverlight does occlusion culling at the pixel level rather than the
 shape level.

 [image:]

 Occlusion culling in a 3D system can be expensive to calculate. The least performant but most accurate approach would be to
 shoot an imaginary ray from the camera to each and every point in the geometry making up the shapes, and see if the ray must
 cross through any other geometry before hitting the target. If it does, then that point is occluded.

 Surprisingly, in a 2D system such as Silverlight, where you can have transforms and effects that play into both the size and
 shape of elements and as varying degrees of opacity, occlusion culling is more complicated.

 Silverlight doesn’t handle occlusion culling at the shape level. Instead, it handles it at the brush pixel level. If you consider
 that performing blends between multiple pixels can be an expensive operation, it makes sense that Silverlight would optimize
 that process out of the loop for any pixels that wouldn’t be visible in a frame.

 This optimization does speed up rendering in most cases. But, if you know an element won’t be visible on the screen and you
 either have many elements or that specific element is expensive to render, you’ll want to set its Visibility property to Collapsed so that Silverlight doesn’t spend any time on its rendering or layout. Similarly, you need to take into consideration the
 complexity of any alpha blending you perform, especially when there could be several layers of pixels in play.

 One way to cut down on the number of layers and also avoid several other rendering and layout steps, is to cache segments
 of the visual tree into their own bitmaps.

 Cached Composition

 Cached composition enables branches of the visual tree to be stored in bitmap form after the first rendering. (For the web
 programmers reading this, understand that the cache is a local in-memory cache on the client.) This bitmap is then used on
 subsequent frames until the elements change. For complex subtrees, cached composition can realize huge performance benefits.
 Figure 6.4 helps visualize how cached composition works.

 Figure 6.4. Cached composition in use. On the first render, or any layout change, the cache is updated with the result of the render.
 Subsequent frames use the prerendered contents of the cache.

 [image:]

 On first render, any elements that have been marked to be cached are rendered as usual and then the output of that render
 is stored in the bitmap cache. Listing 6.8 shows how to enable caching for a group of elements in a Grid.

 Listing 6.8. Caching a group of elements in a StackPanel

 Result:

 [image:]

 XAML:

 [image:]

 Listing 6.8 shows some Silverlight artwork (suitable for submission to the Freer and Sackler Galleries, no doubt!) composed of a number
 of shapes and paths. The paths here are relatively simple, but more complex artwork may be made of hundreds or thousands of
 points. The process of rasterizing complex artwork has a real CPU cost but, when cached, that cost is one time rather than
 per frame.

 In section 6.4 we discuss render transforms. Render transforms can affect size and orientation of a group of elements. If you apply a render
 transform to a subtree that has been cached—for example, to increase its size to 200 percent—you may end up losing the benefit
 of the cache because Silverlight has to render at the larger size. Luckily, there’s another form of the CacheMode property that enables you to cache the render at a different size. Listing 6.9 shows how to cache elements at four times their natural size.

 Listing 6.9. Caching at a size larger than the default (XAML)

 [image:]

 Note that the bitmap cache is set to a 4× render whereas I’m only using a 2× transform. That’s a bit wasteful but certainly
 is allowed and useful, and you can always scale down without losing quality. If the RenderAtScale option hadn’t been used, caching wouldn’t have worked for this subtree of elements.

 Caching the elements as bitmaps allows Silverlight to use hardware acceleration by keeping those surfaces as textures cached
 on the video card—assuming sufficient texture memory and assuming hardware acceleration has been enabled at the plug-in level.

 Enabling Hardware Acceleration for the Cache

 Once a tree of visual elements has been cached, you can take advantage of hardware acceleration for composting those elements
 with other layers in the application. In addition, hardware acceleration can benefit transforms, such as stretching and rotation.

 In order to use hardware acceleration, you must set the EnableGPUAcceleration plug-in parameter to true. In chapter 4, we covered how to build up the object tag. Here’s the line for enabling acceleration:

 <param name="EnableGPUAcceleration" value="true" />

 If your application is an out-of-browser application (chapter 5), you can set this via the OutOfBrowserSettings.EnableGPUAccelerationProperty, typically handled through the out-of-browser settings dialog.

 Hardware (GPU) acceleration can help you realize real performance gains. But there can also be times when it’s a net performance
 drain in your application. The main reason for this is the number of surfaces that must be created when hardware caching is
 used.

 For each bitmap of cached content, Silverlight must then create two additional surfaces in video RAM: a surface to hold all
 content above the cached bitmap and one to hold the content below it. In an application with a large height/width on a machine
 with relatively low video memory (especially all those integrated graphics chips), you can quickly run out of memory should
 you try to cache too many separate subtrees.

 When caching, especially when using hardware acceleration, you should endeavor to create as few bitmap caches as possible.
 When using acceleration, you may want to debug how the process is working. For that, you can use the cache visualization debug
 settings.

 Visualizing the Cache and Redraw Regions

 When performance is important, one thing that can really help is visualizing the bitmap caches in use in your application.
 Silverlight provides a setting that draws colored overlays on different regions in your UI, indicating which content is or
 isn’t cached. Cached content shows up normally; uncached content shows up with a colored overlay.

 Cache visualization is another parameter on the plug-in object described in chapter 4. The parameter is named enableCacheVisualization:

 <param name="enableCacheVisualization" value="true"/>

 You can also set this value via code, which is essential for debugging out-of-browser applications. The setting is the EnableCacheVisualization property of the Settings object:

 Application.Current.Host.Settings.EnableCacheVisualization = true;

 In both cases, this is a debug setting, so be sure to turn it off when you move your application to testing or production
 environments. The in-code approach allows you to turn the property on and off via a menu setting or similar approach.

 Similarly, you can visualize redraw regions to see exactly what content Silverlight must redraw for each frame. Like cache
 visualization, this is an object tag setting:

 <param name="enableRedrawRegions" value="true" />

 When you enable this visualization, Silverlight will display redraw regions in a different color for each frame, making it
 obvious what elements are causing which parts of the interface to be redrawn at runtime. Just as with the other setting, this
 isn’t something you want to leave enabled in production. Also with the other settings, this has a runtime-settable version
 especially useful for out-of-browser applications:

 Application.Current.Host.Settings.EnableRedrawRegions = true;

 Between the redraw visualization and the cache visualization, you should have a good start on debugging any rendering performance
 issues in your application.

 Rasterization is an important process to understand in Silverlight, especially if you’re creating an application, such as
 a game or media player, which is performance sensitive. Consider using cached composition and hardware acceleration to help
 you out but understand the limitations and where the point of diminishing returns lies for your application.

 The rendering process as a whole has a number of important steps. Of those, the key steps to understand are the clock tick,
 which increments all the animation and media counters; the per-frame rendering callback, which is useful for game loops and
 similar operations; and the rasterization process.

 One other important step we haven’t yet covered is layout. Layout is important enough to require a more in-depth look than
 some of the other steps. In fact, of all of them, I’d consider layout the most important step for the majority of Silverlight
 developers.

 6.3. The layout system

 Layout systems across different technologies vary greatly in complexity. Take, for example, the Windows Forms layout system.
 Fundamentally, that layout system involves absolute x and y coordinate pairs and an explicit or implicit z-order. Controls
 can overlap each other, get clipped on the edge of the window, or even get obscured completely. The algorithm is pretty simple—sort
 by z order (distance from the viewer) and then blit the bits to the screen.

 For another example, look to HTML and CSS. HTML and CSS support elements that must size to content and page constraints (tables,
 divs), as well as support absolute positioning, overlapping, and so forth. It’s more of a fluid approach, where the size and
 position of one element can affect the size and position of another. Therefore, the layout system for HTML and CSS is significantly
 more complex than that for something like Windows Forms.

 Silverlight and WPF support both types of layout: content that self-sizes based on constraints, and content that’s simply
 positioned by way of an x and y coordinate pair. Depending on the container in use, it can even handle laying elements out
 on curves or radially from a central point. The complexity that makes that possible deserves a deeper look.

 6.3.1. Multipass layout—measuring and arranging

 Layout in Silverlight and WPF involves two primary passes: the measure pass and the arrange pass. In the measure pass, the layout system asks each element to provide its dimensions given a provided available size. In the
 arrange step, the layout system tells each element its final size and requests that it lay itself out and also lay out its
 child elements. A full run of measuring and arranging is called a layout pass.

 In this section, we’ll go through the layout system in more detail, especially these two key steps and their implications
 for performance and design. If you’re curious about layout or you’ve ever been confused by something like Height and Width versus ActualHeight and ActualWidth, read on.

 The Measure Pass

 Whenever elements need to be rendered to screen due to having just been added, made visible, or changed in size, the layout
 system is invoked for an asynchronous layout pass. The first step in layout is to measure the elements. On a FrameworkElement, the measure pass is implemented inside the virtual MeasureOverride function, called recursively on the visual tree:

 protected virtual Size MeasureOverride(Size availableSize)

 The availableSize parameter contains the amount of space available for this object to give to itself and child objects. If the FrameworkElement is to size to whatever content it has, the availableSize will be double.PositiveInfinity.

 The function returns the size the element requires based on any constraints or sizes of child objects.

 Note that MeasureOverride isn’t called directly from the layout system: it’s a protected function. Instead, this function is called from the UIElement’s Measure function, which, in turn, is called by the layout system.

	

 Height and Width versus ActualHeight and ActualWidth

 If you don’t explicitly set the height and width properties of a control, the ActualHeight and ActualWidth properties may be zero or not a number (NaN). Why is that? Due to the asynchronous nature of the layout pass, ActualHeight and ActualWidth might not be set at any specific point in time from run to run or, more importantly, might actually change their values over
 time as the result of layout operations.

 ActualHeight and ActualWidth are set after the rendering pass and may also be affected by layout rounding settings or content.

 In short, check them and, if they’re zero, they haven’t been set. If you want a single place where you can guarantee they’ll
 have a value, subscribe to the LayoutUpdated event on the element and check them there.

 	

The Arrange Pass

 The second pass of layout is to arrange the elements given their final sizes. On a FrameworkElement, the Arrange is implemented inside the virtual ArrangeOverride function, also called recursively:

 protected virtual Size ArrangeOverride(Size finalSize)

 The finalSize parameter contains the size (the area within the parent) this object should use to arrange itself and child objects. The
 returned size must be the size actually used by the element and smaller than the finalSize passed in; larger sizes typically result in clipping by the parent.

 Similar to the relationship between the measure pass and MeasureOverride, ArrangeOverride isn’t called directly by the layout system. Instead, the Arrange method on UIElement is called, which then calls the protected ArrangeOverride function.

 At the end of the arrange pass, Silverlight has everything it needs to properly position and size each element in the tree.
 But it doesn’t have everything it needs to actually display the element because its render position or size could be affected
 by a render transform, as covered in the previous section.

 Layout Completed

 Despite the name, the LayoutCompleted event isn’t technically part of the layout pass. Instead, it’s fired as the last event before an element is ready to accept
 input. LayoutCompleted is the safe location for inspecting the actual size and position of the element or otherwise responding to changes in same.

 Don’t do anything in LayoutCompleted that would cause another layout pass. For example, don’t change the size or position of an element, modify its contents,
 change its layout rounding, or otherwise manipulate properties that could change the size of the element’s bounding box. If you have
 multiple nested layout passes and they take longer than the time allowed for that frame, the Silverlight runtime may skip
 frames or throw a layout exception.

 6.3.2. The LayoutInformation class

 The LayoutInfomation class in System.Windows.Controls.Primitives contains a few methods that are useful to folks implementing their own MeasureOverride and ArrangeOverride code. Specifically, GetLayoutSlot and GetLayoutClip are helpful when hosting child elements in a custom panel.

 Getlayoutslot

 Regardless of its actual shape, each visual element in Silverlight can be represented by a bounding box or layout slot. This is a rectangular shape that takes into account the element’s size and any margins, padding, or constraints in effect.
 Figure 6.5 shows the relationship between a layout slot and the child element hosted in a panel.

 Figure 6.5. The relationship between the layout slot and the child element for an element smaller than the slot

 [image:]

 The layout slot is the maximum size to be used when displaying an element. Portions of the element that fall outside the slot
 will be clipped. To see the layout slot for an element, you can call the static function GetLayoutSlot:

 public static Rect GetlayoutSlot(FrameworkElement element)

 The returned Rect will contain the bounding box or layout slot for that element. This return value can be useful when creating a custom panel
 or when debugging layout issues.

 Getlayoutclip

 Sometimes elements may be larger than their layout slots, even after measuring and arranging have attempted to fit them. When
 that happens, you have a layout clip that represents the intersection of the child element’s size and the layout slot.

 Figure 6.6 shows the relationship between the layout slot, the child element, and the layout clip for that child element in an instance
 where the child element is too large for its slot.

 Figure 6.6. The relationship between the layout clip and the layout slot for a child element too large for its slot

 [image:]

 The function GetLayoutClip returns the intersection that represents the layout clip. In this case, the function returns an actual geometry object, useful
 for setting the clip geometry for an element should you need to:

 public static Geometry GetLayoutClip(FrameworkElement element)

 The returned Geometry contains the intersection or null, if the element wasn’t clipped. It should be noted that, in WPF, the GetLayoutClip method has a counterpart by the same name that actually resides on the UIElement and takes in the slot size and returns clip geometry.

 6.3.3. Performance considerations

 Layout is a recursive process; triggering layout on an element will trigger layout for all the children of that element, and
 their children, and so on. For that reason, you should try to avoid triggering layout for large visual trees as much as possible.
 In addition, when implementing your own MeasureOverride or ArrangeOverride code, make sure it’s as efficient as possible.

 Virtualization

 An example of this has to do with large collections of children in controls such as lists and grids. Drawing the elements
 takes a certain amount of time but that only happens for elements that are onscreen. Creation of the CLR objects representing
 the items also takes a certain amount of time. Most importantly for us, the measure and layout passes happen for all children,
 regardless of their potential position on screen or off. Therefore, if you have a thousand elements in a ListBox, MeasureOverride and ArrangeOverride will be called for each of them. More importantly, if those elements contain children (as often is the case with item templates),
 you’ll have even more calls in the layout passes.

 One solution to this is virtualization. A subset of the built-in controls (such as the DataGrid) support UI virtualization. For those, precreated elements are reused with new data. The end result is a reduction in the
 number of in-memory elements, as well as a reduction of MeasureOverride and ArrangeOverride calls.

 Sizing and Positioning

 Another performance consideration has to do with sizing and positioning elements. For example, if you change the margin of
 an element or modify its width or height, you’ll trigger a layout pass. But, if you instead call a render transform to either
 move or resize that element, you won’t trigger a pass. We’ll cover render transforms in the next section.

 Understanding the layout system helps take some of the mystery out of what happens when you size elements in Silverlight,
 and they don’t quite do what you might’ve expected them to do. It’s also a key concept to understand if you plan to implement
 your own panels/container controls.

 WPF has the concept of a layout transform. This type of transform is parallel to a render transform but triggers a layout
 pass. As we’ve seen here, triggering a layout pass can be an expensive operation, especially if done inside an animation.
 For performance considerations and due to their relatively low adoption, layout transforms were omitted from Silverlight.

 The render transforms provided by Silverlight are almost always adequate to solve problems we used to solve with layout transforms—and
 often superior. Let’s look at them next.

 6.4. Render transforms

 The Transform element gives you the flexibility to alter the appearance of any UIElement within Silverlight. Transforms give you the flexibility to change the size, location, gyration, and angling apart from the
 other related properties that have been defined up to this point. The real value of transforms will become apparent when you
 learn about animations in the next chapter. But first, table 6.2 lists the ways UIElement objects can be altered.

 Table 6.2. A list of the available transformation options

 	
 Transform

 	
 Description

	RotateTransform
 	Rotates an object by a specific Angle.

	ScaleTransform
 	Provides a zoom in or out effect by specified amounts

	SkewTransform
 	Tilts an element by defined amounts

	TranslateTransform
 	Moves an element by specified amounts

	TransformGroup
 	Not a type of transform; rather, a container that groups multiple transforms to be applied

	CompositeTransform
 	Provides an easy way to combine the other four transforms

	MatrixTransform
 	Provides a way to use a low-level matrix to perform multiple simultaneous transforms

As table 6.2 describes, each Transform has its own special purpose. As you’ll see within the next few sections, applying a transformation generally involves altering
 one or two basic properties.

 6.4.1. RotateTransform

 The RotateTransform is responsible for rotating an object clockwise around a specified point by a specified angle. This rotation affects the
 local coordinate system of the rotated object. If you need to rotate an object in place, you need to specify the center point
 as the center of the object being rotated. Listing 6.10 shows a basic square rotated clockwise by 30 degrees. The dashed version represents the original square before the transform
 was applied.

 Listing 6.10. A square that has been rotated by 30 degrees

 Result:

 [image:]

 XAML:

 <Rectangle Width="50" Height="50" Fill="Green" Stroke="Black">
 <Rectangle.RenderTransform>
 <TransformGroup>
 <RotateTransform Angle="30"/>
 </TransformGroup>
 </Rectangle.RenderTransform>
</Rectangle>

 The Angle property specifies to rotate clockwise around the optional CenterX and CenterY properties, which default to 0. Because these values are initially set to 0, an element will rotate around the upper-left
 corner. If you set these values to the center of the object you’re rotating, it’ll give the element the appearance of rotating
 in place.

 When rotating elements, sometimes it becomes necessary to rotate them counterclockwise. As you may have already guessed, you
 perform this task by providing a negative value within the Angle property. Note that an element will complete one full rotation if the Angle is set to 360 or −360.

 6.4.2. ScaleTransform

 The ScaleTransform enables you to expand or contract an object horizontally or vertically, empowering you to create the effect of zooming in
 or out. Listing 6.11 shows how a basic square was zoomed in on via a ScaleTransform.

 Listing 6.11. A square that has been scaled by a magnitude of 2.5

 Result:

 [image:]

 XAML:

 <Rectangle Width="30" Height="30" Fill="Green"
 Stroke="Black" Canvas.Left="35" Canvas.Top="35">
 <Rectangle.RenderTransform>
 <TransformGroup>
 <ScaleTransform ScaleX="2.5" ScaleY="2.5"/>
 </TransformGroup>
 </Rectangle.RenderTransform>
</Rectangle>

 The ScaleX and ScaleY properties determine the magnitude by which to zoom in or out. As you may expect, the ScaleX property stretches or shrinks the element along the x-axis. The ScaleY property stretches or shrinks the element along the y-axis. If you provide the same value in both properties, the object
 will expand or contract proportionally.

 You may have also noticed that the Rectangle expands from the upper-left corner. This is because the CenterX and CenterY properties determine the point from where the scale operation should take place. By default, these values are set to 0.

 6.4.3. SkewTransform

 A SkewTransform warps the coordinate space in a divergent manner. By skewing or shearing an element, you basically slant the element in a direction. Listing 6.12 illustrates a basic square skewed by 18 degrees on both the x and y-axes.

 Listing 6.12. A Rectangle that’s been skewed by 18 degrees

 Result:

 [image:]

 XAML:

 <Rectangle Width="75" Height="75" Fill="Green"
 Stroke="Black" Canvas.Left="12" Canvas.Top="12">
 <Rectangle.RenderTransform>
 <TransformGroup>
 <SkewTransform AngleX="18" AngleY="18"/>
 </TransformGroup>
 </Rectangle.RenderTransform>
</Rectangle>

 The AngleX and AngleY properties specify the amount to shear the rectangle horizontally and vertically. Much like the other transforms we’ve reviewed,
 the SkewTransform also exposes CenterX and CenterY properties to specify the horizontal and vertical origin of the skew rendering.

 6.4.4. TranslateTransform

 The TranslateTransform element allows you to define how to transfer an element from one location to another. Listing 6.13 shows a square translated by 25 pixels vertically and horizontally.

 Listing 6.13. A basic translation in action

 Result:

 [image:]

 XAML:

 <Rectangle Width="50" Height="50" Fill="Green" Stroke="Black">
 <Rectangle.RenderTransform>
 <TransformGroup>
 <TranslateTransform X="25" Y="25"/>
 </TransformGroup>
 </Rectangle.RenderTransform>
</Rectangle>

 As this listing demonstrates, by specifying a double-precision floating-point value within the X and Y properties of a TranslateTransform, you can move a visual element horizontally or vertically. As you can imagine, the TranslateTransform and the other transforms mentioned give you a lot of flexibility with your visual elements. These transforms can be used
 to provide even more radical changes when you group them.

 6.4.5. TransformGroup

 In the previous transform-related examples, you may have noticed the TransformGroup element. This element wasn’t required when there was only one applied transform. However, it’s usually a good idea to include
 it if there’s any chance you’ll be adding additional transformations and you aren’t using the new CompositeTransform described in the next session. The TransformGroup element makes it possible to simultaneously define multiple transformations on a visual element in any arbitrary order.

 Up to this point, we’ve primarily used a Rectangle as the visual element for transformations but you can also apply these interesting renderings to any UIElement. You can apply these transformations to items such as TextBox elements, Buttons, the MediaElement, and so many more that you’ll need to refer to the Silverlight SDK to see. For the sake of illustration, all the primary
 transforms that have been discussed are applied to the TextBox shown in listing 6.14.

 Listing 6.14. Four transforms on a TextBox-note how the TextBox is still active

 Result:

 [image:]

 XAML:

 <TextBox x:Name="myTextBox"
 Text="Ben and Abby"
 Height="25" Width="100">
 <TextBox.RenderTransform>
 <TransformGroup>
 <ScaleTransform ScaleX="2" ScaleY="2" />
 <SkewTransform AngleX="10" AngleY="10" />
 <RotateTransform Angle="15" />
 <TranslateTransform X="10" Y="10" />
 </TransformGroup>
 </TextBox.RenderTransform>
</TextBox>

 Although the use of transforms in this example is a bit over the top, it does accurately display the true flexibility provided
 by the transform elements.

 6.4.6. CompositeTransform

 Introduced in Silverlight 4, the CompositeTransform applies the four built-in render transforms using a single statement. Though a TransformGroup with all four transforms is still supported, you’ll find this approach generally easier to use. The CompositeTransform applies the transforms in the following order:

 	Scale

 	Skew

 	Rotate

 	Translate

That’s the order generally recommended for transformation. If you play with transforms much, you’ll quickly find out that
 the order has a real impact on the final result. The transforms themselves are equivalent to the same individual transforms
 applied using a TransformGroup. Listing 6.15 shows the same example from listing 6.14 but now implemented via a CompositeTransform.

 Listing 6.15. The same four transforms on a TextBox using a CompositeTransform

 Result:

 [image:]

 XAML:

 <TextBox x:Name="myTextBox"
 Text="Ben and Abby"
 Height="25" Width="100">
 <TextBox.RenderTransform>
 <CompositeTransform ScaleX="2" ScaleY="2"
 SkewX="10" SkewY="10"
 TranslateX="10" TranslateY="10"
 Rotation="15" />
 </TextBox.RenderTransform>
</TextBox>

 As you’d expect, the result is the same as the previous listing. But now the code is arguably easier to read, contains four
 fewer elements (three fewer transforms and no transform group), and is slightly more efficient due to the use of a single
 set of transformation matrices multiplied together in a single function.

 Once all the tooling switches over to using this approach, it’ll be much simpler to animate transforms without having to remember
 lengthy and error-prone property paths for the nested transform elements.

 Having said that, we actually had the ability to do all of this in previous versions of Silverlight using the MatrixTransform.

 6.4.7. MatrixTransform

 MatrixTransform is a powerful class that’s rarely used in Silverlight applications. Why? Because the idea of matrix math is, to many, something
 new. But all of the other transforms use matrix math behind the covers; it’s just nicely shielded behind friendly property
 names.

 The Silverlight transformation matrix is a 3×3 affine transformation row-major matrix. The size is three rows by three columns.
 Affine means that the edges all need to stay the same length (proportionally) as they originally were. All points on a single line
 in the original shape will remain in a single line in the resulting transformed shape. You can’t do a true perspective transform
 in an affine matrix or other transform that would violate this. Row major means the vectors are expressed as rows and not columns.

 As a result of the affine nature and row-major approach, the last column of the matrix will always contain the rows “0,0,1.”
 Here’s what the structure looks like, including the default values:

 	
 	
 1

 	
 2

 	
 3

	1
 	M11 (1.0)
 	M12 (0.0)
 	0

	2
 	M21 (0.0)
 	M22 (1.0)
 	0

	3
 	OffsetX (0.0)
 	OffsetY (0.0)
 	1

To perform a translate transform that moves the shape 10 pixels in the positive x-axis and 20 pixels in the positive y-axis,
 you’d supply 10 for OffsetX and 20 for OffsetY.

 To increase the x scale of the target, provide a value larger than 1.0 to the M11 property. Similarly, to increase the y scale,
 provide a value larger than 1.0 to the M22 property. Values smaller than 1.0 will shrink the size.

 You can skew the target in the x direction using M21. A value of 1.0 will skew it 100 percent. Similarly, you can skew the
 target in the y direction using M12.

 To rotate, you’d need to plug in the sine and cosine values into M11, M12, M21, and M22. For example, to rotate by 15 degrees,
 the matrix would look like this:

 	
 	
 1

 	
 2

 	
 3

	1
 	M11 (Cos(15))
 	M12 (Sin(15))
 	0

	2
 	M21 (-Sin(15))
 	M22 (Cos(15))
 	0

	3
 	OffsetX (0.0)
 	OffsetY (0.0)
 	1

Listing 6.16 shows the hard-coded values for a rotation of 15 degrees plus an offset of 100 pixels in the x-axis and 20 pixels on the
 y-axis.

 Listing 6.16. Rotation and translation using a Matrix

 Result:

 [image:]

 XAML:

 [image:]

 One nice thing you can do with MatrixTransform is perform multiple transformations in a single step. Prior to the introduction of CompositeTransform, this was the only way to achieve that operation. If you need to control the order of those transformations, you can multiply
 together two or more matrices.

 Render transforms are a powerful way to manipulate the display of your elements. You’ll find transforms essential in animation,
 both to provide gross-level movement and to provide more subtle effects such as a pop when you click a button. They’re also helpful in that they don’t force a
 layout pass to happen, as would be the case if you animated something like the actual Width and Height of the element.

 One thing none of the transformations can do, though, is a nonaffine transform such as a perspective effect. For that, you
 need to turn to 3D projection.

 6.5. 3D projection transforms

 3D projection transforms, introduced in Silverlight 3, provide a way to do nonaffine (perspective and distortion) transforms
 on an object. The UI elements to which the transforms are applied remain active and available, just as with render transforms.

 Like render transforms, projections don’t affect layout; they’re a render-time transformation that exists outside the layout
 pass.

 We’ll start with the PlaneProjection, the easiest and most popular of the two types of projections, and then look at the somewhat more obscure, but extremely
 powerful, Matrix3dProjection.

 6.5.1. PlaneProjection

 Plane projection (System.Windows.Media.PlaneProjection), introduced in Silverlight 3, was one of the most anticipated features to make it into the product. At the time of Silverlight
 3, the CoverFlow effect from iTunes was all the rage. You could simulate it using skew transforms and stitching of images
 but the result was never quite right.

 PlaneProjection has several key properties, as described in table 6.3. You may wonder why it exposes denormalized properties instead of three 3D point structures. The reason is binding and animation:
 by providing the individual properties as DependencyProperty properties, they can be used in binding and animation.

 Table 6.3. PlaneProjection properties

 	
 Property

 	
 Description

	RotationX, RotationY, RotationZ
 	These represent the overall rotation of the object, in degrees for each axis.

	CenterOfRotationX, CenterOfRotationY, CenterOfRotationZ
 	These represent the object-oriented center of rotation. 0.5, 0.5 is the center of the plane on that axis and is the default
 value.

	GlobalOffsetX, GlobalOffsetY, GlobalOffsetZ
 	These values translate the object along the specified axis, providing for motion in 3D space. The values are relative to the
 screen. So the y-axis will always be vertical and point up, and the x-axis will always be horizontal and point to the right.

	LocalOffsetX, LocalOffsetY, LocalOffsetZ
 	Unlike the GlobalOffset values, these values translate on an object-relative axis. So, if the object was already rotated 20
 degrees to the left, the positive y-axis would point 20 degrees to the left and the positive x-axis would point 70 degrees
 to the right. The values of RotationX, RotationY, and RotationZ directly impact how LocalOffsetX, LocalOffsetY, and LocalOffsetZ,
 respectively, are interpreted.

For each of the properties, the screen axes are defined as shown in figure 6.7. Positive y is vertical top, positive x is horizontal right. Silverlight, at least in the case of the PlaneProjection, follows a right-hand coordinate system, so positive z is closer to you, and negative z is further “into” the screen.

 Figure 6.7. The x, y, and z-axes as recognized by the PlaneProjection element

 [image:]

 Both the PlaneProjection and its related Matrix3dProjection are assigned to an object via its Projection property.

 Listing 6.17 shows a simple PlaneProjection applied to a set of UI elements. In this case, the projection is on the y-axis, giving you that classic CoverFlow look but
 applied to live input controls.

 Listing 6.17. Simple perspective effect on a Grid containing multiple elements

 Result:

 [image:]

 XAML:

 [image:]

 6.5.2. Matrix3dProjection

 As with 2D affine transforms, Silverlight also supports a lower-level Matrix transform for 3D. The class is named System.Windows.Media.Matrix3dProjection.

 Due to the complexity of explaining 4×4 nonaffine matrices, and the relatively small subset of readers who’ll be interested
 in that, we’ll leave the fine details of 3D matrix projections out. But let’s look at a simple code example to get you started.

 Listing 6.18 shows how to do something that isn’t provided just by 3D rotation on an axis. This combines skew effects with rotation to
 come up with something that can only be described as interesting.

 Listing 6.18. Mangling elements using a Matrix3dProjection

 Result:

 [image:]

 XAML:

 [image:]

 Matrix3dProjection is something you may only ever use once but, for that one time, it’ll be exactly what you need to solve a specific problem.
 The sky’s the limit when it comes to 3D transformations (actually 2.5D because Silverlight doesn’t yet have a true 3D engine)
 for your Silverlight applications.

 One thing you may have noticed with the projection transforms is that they add some fuzziness to the elements when they render.
 That’s because the render transforms operate on frame-by-frame bitmap representations of the objects. That makes them extremely
 performant, but also causes them to have a slight degradation in quality, especially when you do something such as an extreme
 z scale, as in the Matrix3dProjection example.

 Silverlight provides two easy-to-use but powerful ways to transform objects in 3D space: PlaneProjection and Matrix3dProjection. PlaneProjection, in particular, will find its way into a lot of your applications. In fact, if you develop for Silverlight for the Windows
 Phone, you’ll find the PlaneProjection indispensible for providing the expected page flip UI transitions.

 In the last two examples, I used a combination of Grids and StackPanels to hold the elements I was transforming. Both of these are types of Panels and will be something you use over and over again in your own applications.

 6.6. Summary

 The basis for all onscreen elements is the FrameworkElement and UIElement pair. The two of them define the majority of the commonly used properties and methods for other elements. In addition, they
 define the abstract methods for measuring and layout, the core of the layout system.

 Framework elements, UI elements, and panels are the fundamental players in the layout system. Layout in Silverlight is so
 flexible because so much of the measurement and layout are delegated to the elements themselves. An understanding of the layout
 system is important for both performance and flexibility reasons and is a must should you wish to create your own panels.

 The layout system is a major part of a much larger rendering system. The rendering system in Silverlight does a good job at
 optimizing the elements onscreen for efficient rendering, but also provides appropriate places where you can tune that process
 to fit your own applications. Silverlight enables you to cache elements, for example, and even to control whether cached elements
 are cached to hardware surfaces on a compatible video card.

 Render transformations allow us to transform the location, rotation, skew, or size of any visible element without incurring
 the performance hit of a layout system pass. For that reason, they’re perfectly suited to animation and more performance-hungry
 uses. What render transformations lack is support for nonaffine or perspective transforms.

 The two types of 3D projections pick up where render transforms leave off, and provide support for nonaffine, perspective,
 and distorting 3D transformations. The PlaneProjection is the easiest to use and suitable for most types of basic projection work. The Matrix3dProjection is a little harder to use but is extremely powerful. If you want to do basic CoverFlow-style work, PlaneProjection is for you. If you want to do a more immersive 3D experience with floating panels zipping past you and appearing off in the
 distance, you’re probably looking at the Matrix3dProjection class and some of its helper libraries on www.codeplex.com.

 With framework and UI elements, the rendering and layout system, transformations, and projections under our belt, we’re ready
 to move on to the fundamentals of working with layout panels. Panels form the root elements for most of our interfaces and
 are the main elements responsible for layout in Silverlight.

Chapter 7. Panels

 This chapter covers

 	Absolute layout with the Canvas

 	Stacking items with the StackPanel

 	Cell-based layout with the Grid

Panels in Silverlight provide a way to host multiple elements and provide unique layout logic. For example, you may want a
 panel that lays out elements so they appear to radiate out of a central point (think of the wheel on Wheel of Fortune). Rather than provide each and every control with the knowledge required to perform that layout, Silverlight leaves it to
 the panel.

 This delegation to panels and the layout system is why you won’t see Left and Top properties on UI elements—those properties are provided by the panels in the form of attached properties (see section 2.1.5 for more information on attached properties).

 In typical use, any control you place in the UI in Silverlight is going to be hosted in a panel at some level. Understanding
 how the different panels work is essential to making the most of Silverlight’s UI capabilities.

 Though there are numerous types of panels available, the three most important and widely used are the Canvas, the StackPanel, and the Grid.

 We’ll start with the simplest panel, the Canvas, and from there move on to panels that provide more layout functionality. The StackPanel forms the basis of most list and menu implementations but is still relatively simple in its layout and functionality. The
 Grid, the final panel in this section, is typically the root of our interfaces and is one of the most powerful, flexible, and
 complex panels available.

 7.1. Canvas

 Envision a painter inspired to recreate a mountainous landscape. As you can imagine, a tremendous amount of artistic freedom
 is required to adequately mimic this majestic view. Painters have the luxury of a conventional canvas, which gives them free
 rein over their illustrations. Unfortunately, traditional web technologies can occasionally be overly rigid, imprisoning you
 and making it difficult to deliver awe-inspiring content over the Internet.

 Thankfully, in addition to being the highest-performing and lightest-weight layout panel, the Canvas element gives you the same type of freedom that painters have long taken for granted. This Panel allows you to say, “I want this element at this exact location,” and accomplish that. Before we discuss the details of Canvas, we should look at the basic syntax of a Canvas, as shown here:

 <Canvas Height="200" Width="300" Background="White">
</Canvas>

 This bit of XAML shows an empty Canvas with a white background. To show something contained within the canvas, you need to add some content, such as a basic block
 of text, as seen here:

 <Canvas>
 <TextBlock Text="Hello, Silverlight" />
</Canvas>

 This shows a basic Canvas with a small amount of content: a single TextBlock. The content of a Canvas consists of elements inside the Canvas. These child elements are added to a collection, called Children, which is accessible from code. Each item in this collection derives from the UIElement type described in section 6.1. We’ll use a UIElement called TextBlock to show you how to arrange content within a Canvas.

	

 Canvas performance

 As described in section 6.3 on the layout system, the process of determining where elements are positioned can be quite involved. As each element is
 added to its container, Silverlight must perform layout calculations. The number of calculations is usually based on the requirements
 placed on an element by its ancestors and by siblings in the same container. In general, as the number of relative elements
 grows, so does the number of necessary calculations.

 Because of its explicit nature and minimal layout requirements, Canvas can minimize the number of necessary calculations, providing a potentially important performance boost for applications with
 many onscreen elements. To realize this performance gain, though, you’d need to have thousands or tens of thousands of visible
 elements on the screen.

 	

7.1.1. Arranging content of a Canvas

 You can arrange the content within a Canvas by using at least one of two approaches. The first approach involves setting the vertical and/or horizontal offsets of an
 element within a Canvas. The other method revolves around setting the stack order of an element within a Canvas. These methods can be used in combination for full control over how each piece of content is shown. Let’s take it one step
 at a time and investigate how to set an element’s offsets.

 Setting the Offsets

 By default, the content within a Canvas is automatically arranged at 0,0. This approach places all of the content in the upper-left corner of a Canvas. To move content out of this corner, you must take advantage of two attached properties—Left and Top—which are shown here:

 <TextBlock x:Name="tb" Text="Hello" Canvas.Left="20" Canvas.Top="30" />

 This TextBlock uses the Left and Top attached properties to set its position within an imaginary Canvas. The Left property specifies the distance, in pixels, from the left edge of the TextBlock element to the left edge of the parent Canvas. Likewise, the Top property sets the number of pixels between the top edge of the parent Canvas and the top edge of the TextBlock. This specific sample places the TextBlock 20 pixels from the left and 30 pixels from the top of a parent Canvas. Alternatively, you may need to set these values at runtime.

 To set the position of an element within a Canvas at runtime, you must do so programmatically. The Canvas element exposes two statically visible methods that enable you to set an element’s position at runtime. There are also two
 other methods—illustrated here using the TextBlock from the previous example—that enable you to retrieve an element’s position at runtime:

 double newLeft = Canvas.GetLeft(tb) + 15.0;
Canvas.SetLeft(tb, newLeft);

double newTop = Canvas.GetTop(tb) + 30.5;
Canvas.SetTop(tb, newTop);

 This example shows how the GetLeft and SetLeft methods are used to move a TextBlock 15 pixels to the right. Alternatively, you could’ve subtracted a value to move the TextBlock to the left. This example also moves a TextBlock down by 30.5 pixels using the GetTop and SetTop methods. In a similar approach, you could’ve subtracted a value to move the TextBlock up. Either way, it’s important to note that you could’ve passed any UIElement to this method in place of the TextBlock.

	

 Wait... 30.5 pixels?

 Silverlight’s rendering and layout system support subpixel layout and rendering. This allows you to specify fractions of pixels
 and allow Silverlight to create the appropriate display. For example, if you have a white canvas with a black vertical line
 located halfway between two pixels—a width of one pixel at position 30.5, for example—Silverlight will show two gray lines
 side by side (the average of white and black) in order to produce the illusion of a line at the fractional offset. The end
 result can be described as fuzzy or blurry and is often something you want to avoid. To have exact pixel snapping and crisp
 lines, set the UseLayoutRounding property of the panel or control you want snapped.

 	

Any time you set the location of an element, you must use a double value. This double-precision value represents a specific number of pixels. If you aren’t careful, you may inadvertently overlap
 the content within a Canvas. Although this overlapping effect can occasionally be desirable, it’s still useful to know how to set the stacking order.

 Setting the Stack Order

 By default, when content is rendered within a layout panel, each element is rendered on its own imaginary layer. This ensures
 that the last element in a layout panel is shown on top of all the others. The other elements are still present; they’re just
 overdrawn by the overlapping content, as shown in listing 7.1.

 Listing 7.1. Natural stacking order

 Result:

 [image:]

 XAML:

 [image:]

 Listing 7.1 shows the natural stacking approach used when rendering overlapping content. The content overlaps in this orderly fashion
 because, by default, its ZIndex (or stacking position) is set to 0.

	

Tip

 Even though Canvas.ZIndex is an attached property on the Canvas type, it works within other panels such as the grid, even if there’s no canvas present anywhere in the visual tree. Note
 that ZIndex is relative only to the panel and not to the application as a whole.

 	

You can change the ZIndex value to a value greater than 0 to move the Canvas farther into the foreground, as shown in listing 7.2. The element will be placed on top of the elements that have a smaller ZIndex within the same panel.

 Listing 7.2. Changing the stacking order using ZIndex

 Result:

 [image:]

 XAML:

 [image:]

 This short example shows how to move an element further into the foreground of a Canvas. You add a value to the integer value represented by the ZIndex. Alternatively, you could’ve moved the element somewhere into the background by subtracting a value. Either way, the Canvas gives you the ability to set the stack order and offsets to your liking. In addition, the Canvas provides some performance features that really pack a punch.

	

Tip

 Playing around with ZIndex can get frustrating and difficult to track once you have several overlapping panels, each with elements with specific ZIndex values. Whenever possible, arrange your elements so they make sense in the natural order. In addition, try not to animate
 ZIndex because the Silverlight runtime rearranges the visual tree to get the required z positioning. This can be a real performance
 drain.

 	

7.2. The StackPanel

 Once in a while, I’ll peel my eyes away from my computer and pick up a newspaper. One thing (other than the funnies) that
 catches my eye in the paper is the crossword puzzle. The layout of a typical puzzle looks like that shown in figure 7.1.

 Figure 7.1. A sample crossword puzzle that could be built using stack panels

 [image:]

 If you look at the overall structure of this crossword puzzle, you can derive that each word consists of either a horizontal
 or vertical stack of letters. Each of these stacks represents a small segment of the overall puzzle. This representation is
 used to position each letter successively to create a recognizable word within a smaller context.

 Much like a word is a grouping of letters in a crossword puzzle, a StackPanel is a grouping of visual elements. Each successive visual element is positioned vertically or horizontally within a single
 row or column, as seen in listing 7.3.

 Listing 7.3. The StackPanel in vertical mode

 Result:

 [image:]

 XAML:

 <StackPanel>
 <Canvas Width="90" Height="30" Background="Red"/>
 <Canvas Width="90" Height="30" Background="Green"/>
 <Canvas Width="90" Height="30" Background="Blue"/>
</StackPanel>

 As shown in the listing, elements within a StackPanel are rendered one after another from top to bottom. The StackPanel exposes an Orientation property, which allows you to specify whether child elements are stacked in a Vertical or a Horizontal manner, as shown in listing 7.4.

 Listing 7.4. The StackPanel in horizontal mode

 Result:

 [image:]

 XAML:

 <StackPanel Orientation="Horizontal">
 <Canvas Width="90" Height="30" Background="Red"/>
 <Canvas Width="90" Height="30" Background="Green"/>
 <Canvas Width="90" Height="30" Background="Blue"/>
</StackPanel>

 As you can see in listing 7.4, shifting the layout from a vertical to horizontal orientation is as simple as including a single property. In addition,
 layout panels of any type can be nested within one another to fully dictate an application’s arrangement.

 Nesting layout panels is incredibly important when you begin to consider the entire scope of an application. Although the
 StackPanel is great for one-dimensional (vertical or horizontal) content, it’s not suited for organizing large amounts of elements.
 Consider the illustration in figure 7.2.

 Figure 7.2. A basic purchase order, using tabular layout. This would be perfect for a Grid.

 [image:]

 Imagine attempting to recreate the purchase order shown in figure 7.2 using a series of StackPanel elements. Up front, you’d have to decide if you want to create vertical or horizontal elements. Then, you’d have to specify
 the Width of each StackPanel because StackPanel elements are arranged and sized independently of each other. There has to be a better way to organize tabular data. Thankfully,
 Silverlight provides the powerful Grid panel to do just that.

 7.3. The Grid

 Of all the layout panels, the Grid is the one you’re likely to use the most. It’s the default root layout element for all the UserControl and Page templates, and is the one control that allows you to easily resize (not rescale) content to take up the space available to
 the plug-in.

 Though the Grid is similar to an HTML table element, it expands on a number of features, such as proportional and absolute row and column sizing, the ability to have
 any row or column be the one that takes up all the available space, gracefully handling of column and row spanning, and an
 easily consumed API for manipulating rows and columns at runtime.

 Throughout the remaining sections, we’ll take a deep look at the Grid, starting with the basics of how to position content in rows and columns. From there, we’ll work on cell spanning and sizing
 of Grid cells. Up until that point, we’ll primarily be working with XAML. For that reason, we’ll look at what’s required to build
 and manipulate the Grid from code. Finally, we’ll cover using the splitter to allow the end user to resize Grid columns and rows.

 The Grid panel gives you the ability to easily lay out content in a tabular format. This tabular format is similar to the table element in HTML, but the table element can occasionally be difficult to work with during development. For instance, it can be challenging to determine how
 many rows or columns exist in a table while coding. To help overcome this challenge, the Grid in Silverlight defines its rows and columns in two distinct collections. Appropriately, these collections are called ColumnDefinitions and RowDefinitions.

 7.3.1. Arranging Grid content

 The RowDefinitions collection stores the definitions of the rows of a Grid. Each row is set through an element called RowDefinition. This element is primarily responsible for defining the dimensions of a single horizontal row. Similarly, the Grid also enables you to create a ColumnDefinition element. This element must be defined within the ColumnDefinitions collection. As you’d expect, this element generally sets the dimensions of a vertical column within a Grid. By default, you don’t have to set these dimensions, as shown in listing 7.5.

 Listing 7.5. Grid with uniformly sized cells

 Result:

 [image:]

 XAML:

 [image:]

 This listing defines a Grid with three columns and three rows. The rows and columns of this Grid are defined within the Grid.RowDefinitions and Grid.ColumnDefinitions elements. These elements represent strongly typed collections that serve as containers for the row and column definitions.
 The individual row and column definitions are shown by the RowDefinition and ColumnDefinition elements. These elements intersect at different points across the Grid, creating a total of nine cells.

 Each cell represents the area allocated to a specific region within a Grid. This region is created by the intersection of a row and a column within a Grid. The easiest way to see the boundaries of each cell is to use the Grid element’s ShowGridLines property. Although this property defaults to a value of False, you can set it to True to see the area reserved for each cell. Because these particular grid lines aren’t customizable, they’re generally only used
 during development. As you’ll see in section 7.3.6, you can add several GridSplitter elements to customize the cell boundaries while giving the user control of cell sizing. Nevertheless, the ShowGridLines property and the GridSplitter element are both useful when sizing a Grid’s rows and columns or arranging its content.

 The content of a Grid consists of the elements that you want to arrange in a tabular fashion. These elements could be controls such as TextBox and TextBlock. TextBlock will be covered at the end of this chapter, but TextBox won’t be covered until the next chapter when we cover collecting user input. For now, we’ll use these basic controls to show
 how to arrange content in a Grid to create an input form, as shown in listing 7.6.

 Listing 7.6. Grid Row, Column, and ColumnSpan properties on a simple form

 Result:

 [image:]

 XAML:

 [image:]

 Listing 7.6 shows a basic input form that uses a Grid to arrange its content. This content is arranged using a number of the Grid’s attached properties. The first attached property is ColumnSpan. This property gives you the ability to span an element across multiple cells. We’ll discuss this feature in greater detail
 in a moment. But first, we’ll cover the Grid.Row and Grid.Column attached properties. These properties are used more often and enable you to position content within a Grid.

 7.3.2. Positioning Grid content

 Positioning content within a Grid is handled mainly by two attached properties—Column and Row—which store integer values. These values specify the row and/or column in which to place the content. To illustrate the syntax
 of these attached properties, we’ll use the TextBlock:

 <TextBlock Text="Rock On!" Grid.Row="3" Grid.Column="2" />

 The properties in this example are assigned explicit integer values. If values aren’t assigned, they default to 0. Alternatively,
 if you provide a value outside the available row or column range, they’re simply capped at the end of that range, and the
 element will be displayed as though you specified the max row or max column for your grid, possibly overlapping other elements.

 Although overlapping can be an unwanted side effect, clipped content is also undesirable. Clipped content can happen when a row or column is too small for its content. One way to overcome this
 problem is to size your row or column using one of the techniques discussed in section 7.3.1. Another option is to let your content span multiple cells.

 7.3.3. Spanning cells

 Occasionally, you run into situations where you need to allow content to span multiple cells. You saw this in section 7.3.1, where we had a heading that demanded this functionality. As you saw then—to accomplish this, you need to use the ColumnSpan attached property.

 The ColumnSpan attached property empowers you to spread content across several cells horizontally. By default, this integer value is set
 to 1, meaning that the content can occupy a single column. If this value is larger than the number of columns available in
 the row, the content extends to the end of the row but not beyond it. In addition to the ability to span horizontally, you
 can span vertically with RowSpan, which works just like ColumnSpan:

 <TextBox Grid.Row="1" Grid.RowSpan="3"
 Grid.Column="1" Grid.ColumnSpan="2" />

 The ColumnSpan and RowSpan properties are easy to add to any piece of content in a Grid. Occasionally, though, allowing content to span multiple cells isn’t desirable, but you may need more space for content.
 Let’s look at the Grid’s sizing options.

 7.3.4. Sizing it up

 The overall dimensions of a Grid can be set to a specific number of pixels using the Height and Width properties. These dimensions are set like almost every other element in Silverlight. Defining the dimensions of a row or
 column within a Grid is an entirely different story because the Height of a RowDefinition and Width of a ColumnDefinition are represented as GridLength values.

 The System.Windows.GridLength type provides three different ways to specify how to allocate space. We’ll discuss each of these options throughout this
 section. It’s important to understand how each approach works because these options can be intertwined within the same Grid. Based on this fact, we’ll naturally cover the typical pixel approach to sizing. In addition, we’ll also cover the more dynamic
 auto-sizing approach. But first, we’ll cover the default option used for sizing rows and columns: star sizing.

 Star Sizing

 Star sizing enables you to equally distribute the available area of a Grid across its rows and columns. This is the default approach used within a Grid. But, if any row or column in a grid uses some other form of sizing, the other approach will take precedence. (It may be
 more appropriate to say that star sizing is used by the remaining available area.) Listing 7.7 illustrates this concept.

 Listing 7.7. Absolute and star sizing

 Result:

 [image:]

 XAML:

 [image:]

 Listing 7.7 shows a Grid using star sizing in addition to absolute sizing. Absolute sizing will be discussed in just a moment; for now, observe the values with the n* in them, for example the Height and Width values for the second and third rows and columns. This asterisk signals that the element will use star sizing with a multiplier.
 Although this example only uses integer values, you can use any positive double-precision value. This value specifies the proportion
 of the remaining space to allocate to the element.

 Star sizing works by determining how much space is available after the other sizing schemes have rendered. These calculations
 will return a remaining amount of available space. This space is divided proportionally across all the items using star sizing.
 As you can see, this approach provides an easy way to provide a proportionate-looking interface. Occasionally, you may want
 the size of the cells to be automatically determined based on their content. For these situations, it’s appropriate to use
 the Auto GridLength option.

 Auto Sizing

 The Auto GridLength option automatically determines how large or small to make an element, as shown in listing 7.8. With this option, the element’s size is based primarily on the content that occupies it, but other factors can also dictate
 the size of an element using the Auto approach.

 Listing 7.8. Auto sizing

 Result:

 [image:]

 XAML:

 [image:]

 Listing 7.8 uses the Auto sizing approach for the Grid’s columns and rows. The result produced from this XAML shows two key aspects of Auto sizing. First, if a row or column uses Auto sizing, the size of the largest element in the row or column determines the size of the others. Second, any remaining space
 is allocated to the last row or column—this is why the cells in the last row look so bloated. If you want to have complete
 control over the size of your cells, you need to use a more exact approach.

 Absolute

 The final approach for allocating the available area to a row or column involves using a double. This double-precision floating-point value represents a number of pixels. These pixels single-handedly dictate the area reserved for a row or column. If this space is larger than the content, there’s
 no problem. If the amount of space is smaller than the content, you may get some undesired results because the overlapping
 content is clipped, as shown in listing 7.9.

 Listing 7.9. Absolute sizing

 Result:

 [image:]

 XAML:

 <Grid x:Name="myGrid" Height="100" Width="300"
 ShowGridLines="True" Background="LightGray">
 <Grid.ColumnDefinitions>
 <ColumnDefinition></ColumnDefinition>
 </Grid.ColumnDefinitions>
 <Grid.RowDefinitions>
 <RowDefinition Height="68.5" />
 <RowDefinition Height="12" />
 <RowDefinition Height="19.5" />
 </Grid.RowDefinitions>
 <TextBlock Text="This row is too tall" />
 <TextBlock Text="This row is too small" Grid.Row="1" />
 <TextBlock Text="This row is just right!" Grid.Row="2" />
</Grid>

 Listing 7.9 shows the absolute sizing approach in action. The rows use a double-precision value to specify their Height. The third row displays the text: “This row is just right!” Although you could use the Auto sizing approach for this row, we chose the absolute approach, primarily for illustration. It’s important to know that the
 absolute approach takes precedence over all other sizing options, giving you some flexibility to get a Grid to look exactly how you want.

 As you’ve seen, the Grid provides three valuable sizing options. These options give you the flexibility to create a great-looking layout at design
 time. Occasionally, you may need to set the sizing options at runtime. Alternatively, you may need to add or remove rows and
 columns at runtime. For both these reasons, it’s important to understand how to work with the Grid programmatically.

 7.3.5. Working with the grid programmatically

 Usually, the rows and columns of a Grid are created at design time using XAML. This approach ensures that you can easily arrange the content of a Grid before an application is up and running. Once the application is running, there may be situations where you need to dynamically
 add or remove rows or columns from a Grid. In times like these, it’s nice to know how to both add and remove these items at runtime.

 Adding Rows and Columns at Runtime

 Adding rows or columns programmatically at runtime is as simple as writing two lines of code. The first line of code is responsible
 for creating either a RowDefinition or ColumnDefinition object. The other line of code is then responsible for adding the newly created object to the appropriate collection. Significantly,
 there are two different ways to add the object to the collection. First, here’s how to programmatically add a row:

 RowDefinition myRow = new RowDefinition();
myGrid.RowDefinitions.Add(myRow);

 The preceding adds a row to the grid created in the previous example. Similarly, this code adds a column to the same grid
 but uses the Insert method to insert the column definition at the far left of the grid:

 ColumnDefinition myColumn = new ColumnDefinition();
myGrid.ColumnDefinitions.Insert(0, myColumn);

 The first approach adds a single row to the bottom of the Grid because the Add method always appends an object to the end of a collection. In situations where you need to have more control over where
 a column or row is added to a Grid, you may consider using the Insert method. Either way, you can see how easy it is to add rows and columns on the fly. And, fortunately, it’s just as easy to
 remove them.

 Removing Rows and Columns at Runtime

 To remove either a row or a column from a Grid, you must use one of two approaches. The first approach uses the Remove method, which attempts to remove the first occurrence of the object provided. If the row or column is successfully removed,
 this method returns true. Otherwise, if something unexpected has occurred, this method returns false:

 RowDefinition myRow = myGrid.RowDefinitions[0];
myGrid.RowDefinitions.Remove(myRow);

 Occasionally, you may want to explicitly state which row or column to remove based on an index. For these situations, you
 should consider using the RemoveAt method:

 int lastColumnIndex = myGrid.ColumnDefinitions.Count - 1;
myGrid.ColumnDefinitions.RemoveAt(lastColumnIndex);

 The RemoveAt method enables you to specify which row or column to remove by using a specific index. This index is based on the zero-based
 indexing scheme used by the RowDefinitions and ColumnDefinitions collections. Once the row or column is removed, the remaining rows or columns will simply move up in the collection. This
 process occurs completely at runtime and demonstrates how powerful the Grid can be. Another feature that shows the power of the Grid is the ability to customize the cell boundaries.

 7.3.6. Customizing cell boundaries

 Silverlight provides a way to customize the cell boundaries of a Grid that’s similar to the border property in CSS. But, Silverlight goes one step further and gives the user the ability to use this boundary to dynamically resize the cells of a Grid. This user-controlled sizing feature enables a user to reallocate space from one cell to another. During this process, as one cell increases in
 size, other cells in the Grid may decrease in size. Significantly, this resizing process doesn’t change the dimensions of the overall Grid. To take advantage of this powerful feature, you use a GridSplitter.

 A GridSplitter is an element in the System.Windows.Controls namespace. But, this item isn’t part of the core Silverlight runtime. Instead, this element is known as an extended control. These types of controls must be accessed slightly differently than a standard element such as a Grid. Over the course of this section, you’ll learn how to access the library of extended controls. Then you’ll learn how to use
 the GridSplitter within a Grid.

 Accessing Extended Controls

 The extended controls, including the GridSplitter, are part of an assembly called System.Windows.Controls, which is included in the Silverlight SDK, itself part of the developer tools download. This assembly includes a number of
 controls designed to complement the core Silverlight controls. You’ll learn about the core Silverlight controls in chapter 10 and the other extended controls throughout this book. For now, it’s important to recognize that this assembly is not part of the core Silverlight runtime; if you want to use any of the extended controls, you must reference the System.Windows.Controls assembly. You can do so by adding a reference to the assembly in Visual Studio and then referencing the namespace through
 a prefix:

 <UserControl x:Class="ExtendedControls.Page"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:ext="clr-namespace:System.Windows.Controls;
 [CA]assembly=System.Windows.Controls"
 Width="400" Height="300">
 <Grid x:Name="LayoutRoot" Background="White" />
</UserControl>

 This code shows how to reference the extended controls assembly to pull in a control not included in the core Silverlight
 runtime.

	

Warning

 Referencing the System.Windows.Controls assembly will cause it to be bundled with your application’s .xap, increasing the size of the .xap file by about 427 KB before
 compression (as of the time of writing). This can cause your application to take slightly longer to download unless you take
 advantage of assembly caching described in chapter 3.

 	

We’ve given this assembly the friendly prefix ext to reference the extended controls. The sdk prefix will also be used in relation to our current discussion involving the GridSplitter.

 Using the Gridsplitter

 The GridSplitter defines a divider within a Grid. This divider can be used to style the boundaries of the cells in the Grid. Alternatively, a GridSplitter can be moved by a user with the mouse or keyboard. To get a feel for how this works and the basic syntax of a GridSplitter, take a look at listing 7.10.

 Listing 7.10. GridSplitter

 Result:

 [image:]

 XAML:

 [image:]

 Listing 7.10 shows a 3×3 Grid that has two GridSplitter elements. The first GridSplitter shows the most basic implementation of a GridSplitter. At the same time, the second GridSplitter goes a step further and shows how to control the appearance. The appearance of a GridSplitter is based on a variety of properties, including Width and Background.

 The Width property is a double-precision value that defines the thickness of a GridSplitter. By default, this property is not set to a value so the GridSplitter takes on a default appearance of a bar with a handle the user can grab. When the Width is set to a value greater than 0, the GridSplitter takes the shape of a basic line. This line will be visible as long as the Background isn’t Transparent.

 The Background property defines how a GridSplitter is painted. We use the term painted because the Background property is defined as a Brush. We’ll cover brushes in chapter 18. For now, just know that the Background defaults to being transparent. Also know that you have the GridSplitter to empower a user to resize the columns of a Grid at runtime.

 In general, the Grid is the most powerful layout panel in Silverlight because it can do almost everything that the other layout panels can do.
 There may be times when you don’t want the additional bulk of the Grid. For these situations, it’s nice to know you have the StackPanel and Canvas layout options. For other situations, you may want to tap into the new layout panels included in the Silverlight SDK or Silverlight
 Toolkit: DockPanel and WrapPanel.

 7.4. Summary

 A rich and interactive user experience is primarily about presenting information. The users’ acceptance and adoption of your
 application can hinge on how that information is presented to them, so it’s important to understand how to show this information
 in a pleasing way. To help accomplish an orderly UI, Silverlight provides the Canvas, StackPanel, and Grid layout options, as well as the other brand new panels such as the DockPanel and WrapPanel.

 The Canvas is the panel to use if you want to have the lightest layout possible and simply position elements using Left and Top properties. Canvas offers no scaling and no other layout.

 When you want to build a list of items, such as you’d see in a ListBox or a Menu, the StackPanel is the panel to use. Like the Canvas, it offers no scaling but it does offer automatic placement of elements in a vertical or horizontal list.

 Finally, if you want to lay out elements using a grid or tabular format and take advantage of automatic scaling, the Grid is the panel for you. By far, the Grid is the most commonly used layout panel in Silverlight.

 With the layout and rending background from the previous chapter and the information about panels from this chapter under
 our belt, we’re ready to move on to the fundamentals of working with human input such as mouse, keyboard, and touch.

Chapter 8. Human input

 This chapter covers

 	Capturing keystrokes

 	Responding to mouse clicks, movement, and the wheel

 	Handling multi-touch input

 	Working with pen ink input

Real-world applications need a way to accept input from users. This process of collecting input is managed by a wide range
 of input devices including the mouse, touch, stylus, and keyboard. Silverlight provides direct support for these devices through
 the System.Windows.Input namespace.

 Whether you’re implementing drag and drop or mouse-wheel zoom or creating your own right-click context menus, you’ll almost
 certainly end up handling mouse input in your applications. Silverlight has great support for mouse states as well as for
 handling both left and right mouse buttons and allowing you to respond to the mouse wheel.

 Multi-touch is now coming of age due to the proliferation of multi-touch devices, PC displays, and notebooks available to
 us. Silverlight can now accept single and multi-touch input to allow you to write next-generation touch-enabled applications.

 If you have a tablet PC, an external drawing pad, or perhaps one of the newer tablet form factors that we’re just dreaming
 about as I write this, then ink input using a stylus is a must. Ink is also a nice way to capture drawings done with the mouse.

 Most keyboard input will be handled by the TextBox and similar controls. But what happens when you want to implement custom accelerators or write a game that responds to keystrokes?
 In those instances, you’ll need to access the lower-level keyboard events like I did in the Commodore 64 emulator shown in
 chapter 5.

 The keyboard has been our input of choice since the dawn of terminal-based computing (no, Silverlight doesn’t have a paper
 tape input API, but you could probably write one) and is used by virtually all applications, so we’ll start there.

 8.1. Capturing the keyboard

 Have you ever considered how an application determines how to handle your keystrokes? Often, we click and clack our way through
 our days and take for granted how our information gets where we intend it to go. But if we’d slow down for a second, we’d
 notice that there’s an intermediary step.

 Before typing any information, you must target an element and give it the focus. This section will provide an explanation
 of the concept of focus. Once an item has focus, it can begin receiving keyboard events—the topic of our second subsection.
 Finally, for the special situations where you want to handle key combinations, you must learn to deal with modifier keys—our
 final keyboard topic.

 8.1.1. Understanding focus

 When an element has focus, it becomes the primary target for any information entered through the keyboard. This target element must be a System.Windows.Controls. Control element because only Control elements can be given focus in Silverlight. You can give these elements focus by selecting them with the mouse, by tabbing
 to them through the keyboard, or via the Focus method. Regardless of your approach, the concept of focus is especially important within the realm of the World Wide Web.

 Web pages pose a unique challenge with focus because Silverlight plug-in instances are part of a larger ecosystem. In chapter 2, this ecosystem was shown to begin with an HTML document. This document may have multiple Silverlight controls or a mix of
 Silverlight controls and other control types such as Flash. In order for a Silverlight control to accept input from the keyboard
 on an HTML page with additional content, the Silverlight control itself must first have the focus. To accomplish this, you
 can use the following JavaScript:

 var silverlightControl = document.getElementById('SilverlightControl');
if (silverlightControl)
 silverlightControl.focus();

 This example uses the HTML DOM to manually give the focus to an instance of the Silverlight plug-in. This approach can be
 useful if you want to give your Silverlight application the focus when a web page is loaded. If you don’t do this, a user
 will either have to click or tab to your Silverlight plug-in instance. Once that’s done, you’ll be able to set focus to individual controls.

 Element Focus

 Individual elements on the Silverlight page receive focus by click or tab. But you can manually set focus to an element by
 calling the Focus method of the UIElement:

 myTextBox.Focus();

 You may want to do that in response to a special accelerator key, or to automatically set focus to a field with a validation
 error, or perhaps to allow for skipping fields based on prefilled data.

 Once the plug-in instance has focus and one of the input controls on your page has focus, you can begin handling keyboard
 events within your Silverlight application.

 8.1.2. Handling keyboard events

 Silverlight provides two events directly related to the keyboard. These events, KeyDown and KeyUp, are available through the UIElement class. The KeyDown event happens when a user presses a key. Once that key is released, the KeyUp event will fire. When either event is triggered, its event handler will receive a KeyEventArgs parameter. This parameter and the KeyDown and KeyUp events are shown in listing 8.1.

 Listing 8.1. A page in Silverlight that responds to the KeyDown and KeyUp events

 XAML:

 [image:]

 C#:

 [image:]

 This listing shows a page in Silverlight that responds to the KeyDown and KeyUp events. The event handlers associated with these events update the TextBlock to show the key that was used. These events are watched through the UserControl element, which is inherently a UIElement. We’ll discuss this element further in section 10.5 but, for now, note how the keyboard events are attached in two different ways. In one, the KeyDown event is attached through the XAML declarative approach. The other approach uses traditional procedural code. Regardless
 of the method, the appropriate keyboard event handler will receive a KeyEventArgs parameter.

	

Note

 If the user holds the key down, and his system is set up to allow key repeating (the default), multiple KeyDown events will be fired and KeyUp will only be fired when the key is released. If you want to process typing, you should process KeyDown (to capture each character) but, if you want to process keystrokes for hotkeys or similar functionality, KeyUp may be a better event to use.

 	

The KeyEventArgs class enables you to fetch data relayed from a user’s keyboard. Once a user begins typing, you can use this object to interpret
 the user’s keystrokes and act accordingly. The KeyEventArgs class provides the properties shown in table 8.1.

 Table 8.1. The properties of the KeyEventArgs class

 	
 Property

 	
 Description

	Handled
 	A bool that signals whether the key event has been handled.

	OriginalSource
 	A reference to the element that originally raised this event. Since the keyboard events are bubbling routed events, you need
 this to identify the source of the event as opposed to the sender of the event.

	Key
 	This value identifies which key has been pressed. Unlike the PlatformKeyCode property, this value is consistent across all
 operating systems.

	PlatformKeyCode
 	An integer value that provides the key code of a pressed key. This value is specifically tied to the operating system the
 user is using.

After reviewing this table, you may be scratching your head and thinking, “Why would I ever use the PlatformKeyCode property when Silverlight is cross-platform?” When I ported the C64 emulator to Silverlight, I had to use the PlatformKeyCode to gain access to a number of keys Silverlight didn’t surface through the Key enumeration—for example, the bracket and pipe keys. The key codes for those keys will be different on each supported platform
 and each type of keyboard, such as Qwerty in the US and Azerty in France.

	

 If it’s not Windows, don’t assume it’s a Mac

 One thing that got me into trouble with my friends on the Moonlight team was my assumption in code that, if the keystroke
 wasn’t from Windows, it was from a Mac. Remember, there are other platforms that support Silverlight without a recompile:
 Linux, Moblin, Nokia Symbian OS, and more.

 	

Another reason is because some keys are irrelevant on other operating systems. For instance, checking for a Windows Logo keystroke
 on OS X makes as much sense as checking for a Command key press on Windows. If handling other OS-specific keystrokes is necessary,
 you can use the PlatformKeyCode. Otherwise, we recommend sticking with the Key property.

 In addition to straight key presses, you may need to capture key combinations such as Ctrl-C.

 8.1.3. Dealing with modifier keys

 Modifier keys are specific keys used in combination with other keys. Modifier keys are necessary because the KeyEventArgs class only exposes information about the currently pressed key. If you press something like the Shift key or Ctrl key and
 then another key, the initially selected key data will be lost. You can overcome this problem with the help of the statically
 visible Keyboard class.

 The Keyboard class, in the System.Windows.Input namespace, exposes information directly related to the selected modifier keys. This information is available through the
 Modifiers property, which is a bit field enumeration that represents the set of ModifierKeys that are pressed. These ModifierKeys represent options of an enumeration.

 Table 8.2 shows the options available in the ModifierKeys enumeration. Notably, the Apple key is equal to the Windows key in value, as they serve conceptually similar roles on the two platforms. The reason for this enumeration is to allow
 for bitwise operations.

 Table 8.2. The ModifierKeys available within Silverlight

 	
 Key

 	
 Description

	None
 	No modifier keys are pressed.

	Alt
 	The Alt key is pressed. This key is available on all supported platforms. On an Apple keyboard, this key is also referred
 to as the Option key.

	Apple
 	The Command key is pressed on an Apple system. These keys used to have open apples on them.

	Control
 	The Ctrl key is pressed. This key is available on all supported platforms, despite usage differences between Windows and Mac.

	Shift
 	The Shift key is pressed. This key is available on all supported platforms.

	Windows
 	The Windows Logo key is pressed on a Windows-enabled keyboard.

The modifiers are important because they allow you to check whether multiple keys are selected at the same time. For instance,
 if you want to change the KeyDown event used in listing 8.1 to listen for Shift-B, you could use this code:

 private void MainPage_KeyDown(object sender, KeyEventArgs e)
{
 if (e.Key == Key.B)
 {
 if (Keyboard.Modifiers.HasFlag(ModifierKeys.Shift))
 myTextBlock.Text = "You pressed SHIFT+B";
 }
}

 This shows how you can go beyond individual key events in Silverlight. By appropriately listening to and responding to these
 events, you can extend the input and navigation of your application beyond just the mouse alone. Though that’s compelling,
 especially for those of us who grew up with 40- or 80-character displays and a fondness for the command prompt, the mouse
 is the primary input device for most web applications today.

 8.2. Mouse input

 The mouse requires very different input processing compared with the keyboard. In addition to responding to button-related
 events, the mouse can also respond to movement. It’s also common for the mouse to be moving with one or more buttons depressed.
 Another input vector on the mouse, one that’s relatively new compared to the mouse itself, is the scroll wheel or mouse wheel.
 Though implementations vary from traditional wheels to capacitive touch pads, it’s rare to find a modern mouse that omits
 this handy feature, so it’s important that Silverlight developers be able to gather meaningful input from it.

 We’ll start with mouse button and movement events. The two are often used together to handle dragging and resizing operations.
 Even when used separately, they’re often thought of together due to their ubiquity from the first days of mouse-based user
 interfaces.

 From there, we’ll look at the mouse wheel support added with Silverlight 3 and refined in Silverlight 4. The mouse wheel isn’t
 necessarily an essential input like the mouse button and mouse movement, but it can make the difference between a mediocre
 user experience and an awesome one.

 8.2.1. Mouse button and movement events

 Silverlight supports a range of movement and click-related events emitted from the mouse. These events can be handled by any
 UIElement. The most familiar of these events are probably the click-handling events because they behave similarly to the keyboard events.
 Table 8.3 shows these click-related actions along with their descriptions.

 Table 8.3. The click-related events associated with the mouse

 	
 Event

 	
 Description

	MouseLeftButtonDown
 	Responds to the user depressing the left mouse button

	MouseLeftButtonUp
 	Reacts to the user releasing the left mouse button

	MouseRightButtonDown
 	Responds to the user depressing the right mouse button

	MouseRightButtonUp
 	Fired when the user releases the right mouse button

This table shows two pairs of events tied to the mouse buttons. When a mouse button is selected, the corresponding event handlers
 will receive a MouseButtonEventArgs object. This object derives from the MouseEventArgs class, which describes the mouse state at the time the event was raised.

 You can receive the location of the mouse cursor in relation to a specific UIElement through the GetPosition method. This method is part of the MouseEventArgs class and will be discussed more in a moment. For now, please look at the properties available in the MouseEventArgs class (shown in table 8.4).

 Table 8.4. The properties exposed by the MouseEventArgs

 	
 Property

 	
 Description

	Handled
 	A bool that flags whether the mouse event has been dealt with Set to true on a RightMouseButtonDown event to avoid showing
 the default Silverlight configuration menu

	OriginalSource
 	A reference to the element that originally raised this event Since the mouse events are bubbling routed events, you need this
 to identify the source of the event as opposed to the sender of the event.

	StylusDevice
 	Includes information associated with a tablet pen

Table 8.4 lists the properties available through the MouseEventArgs class. As this table shows, Silverlight has built-in support for working with a stylus, which we’ll discuss in a bit. One
 method in the MouseEventArgs class demands more immediate attention—GetPosition.

 The GetPosition method gives you immediate access to the current location of the mouse. This location is returned from the GetPosition method as a Point in relation to any UIElement. This UIElement is determined by passing it as the sole parameter to the method. Optionally, you can pass null as the parameter to the GetPosition method to get the location of the mouse in relation to the Silverlight plug-in instance. Regardless of how you use it, this
 method is useful when handling both click and movement events. The UIElement class exposes the mouse-movement events shown in table 8.5.

 Table 8.5. The mouse-movement-related event handlers

 	
 Event

 	
 Description

	MouseEnter
 	Triggers when the user enters the boundary of a UIElement

	MouseMove
 	Reacts to mouse movement within the boundary of a UIElement

	MouseLeave
 	Fires when the move leaves the boundary of a UIElement

The events in table 8.5 are passed a MouseEventArgs parameter so you can be readily informed of a mouse’s position as it moves around a surface. This feature can especially
 be useful if you want to implement drag-and-drop features in Silverlight or track the mouse for drawing.

	

 Implementing a custom click event

 Implementing a custom click event (rather than using a click-enabled base class such as ButtonBase) is more involved than simply handling the MouseLeftButtonUp event. Back in Silverlight 1.1a, when we had to create buttons from scratch, we all learned that a click event requires the
 following steps:

 1. On MouseLeftButtonDown on your control, capture the mouse using UIElement. CaptureMouse.

 2. On MouseEnter, update an internal flag that indicates that the mouse is currently over your control. On MouseLeave, set that flag to false.

 3. On MouseLeftButtonUp, verify that the mouse is still over your control, using the flag you set in step 2. If it is, raise your own custom click
 event. If isn’t, do nothing. In either case, release the mouse capture using UIElement.ReleaseMouseCapture.

 You may never need to implement your own click event but, if you do, ensure that you follow these steps rather than simply
 responding to MouseLeftButtonUp.

 	

Besides buttons and pointer movement, modern mice offer one more form of input: the mouse wheel.

 8.2.2. Using the mouse wheel

 Silverlight 3 added built-in support for the mouse wheel, in the form of the UIElement.MouseWheel event. It was possible to wire up a mouse wheel handler in Silverlight 2, but you had to resort to JavaScript to do it—something
 that won’t work out of browser, always seemed a bit of a hack, and is difficult to support cross-browser and cross-platform.
 Silverlight 4 expanded that by adding in support in the controls themselves.

	

Note

 In the initial Silverlight 4 release, the MouseWheel event only worked in specific situations: windowed controls on IE and Firefox for Windows, as well as windowless controls
 for IE. The approach used with the Netscape Plug-in API (NPAPI) didn’t provide the plug-in with mouse wheel information, so
 Silverlight didn’t support the mouse wheel in Safari or Firefox on the Mac. Support is planned, though, and will be in place
 by the time you read this book. On Windows, when using windowed mode on those browsers, the Silverlight runtime bypasses the
 plug-in API and grabs the underlying window handle (hWND) for the control as a workaround.

 	

Silverlight includes first-class mouse wheel support in the form of the MouseWheel event on the UIElement class. When the user scrolls the mouse wheel, this event is raised with an instance of the MouseWheelEventArgs class. The properties available in the MouseWheelEventArgs class are detailed in table 8.6.

 Table 8.6. The properties exposed by MouseWheelEventArgs

 	
 Property

 	
 Description

	Delta
 	An integer representing the relative change since the last time the event was raised

	
 	A positive value indicates that the mouse wheel was scrolled up or away from the user. A negative value means the mouse wheel
 was scrolled down or toward the user. The higher the absolute value of the number, the faster the mouse wheel was scrolled.

	Handled
 	A bool that flags whether the mouse event has been dealt with

	OriginalSource
 	A reference to the element that originally raised this event

	
 	Since the mouse events are bubbling routed events, you need this to identify the source of the event as opposed to the sender
 of the event.

	StylusDevice
 	Includes information associated with a tablet pen

Listing 8.2 shows the mouse wheel properties in action.

 Listing 8.2. Responding to the mouse wheel

 XAML:

 <UserControl x:Class="SilverlightApplication17.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Width="400" Height="300">
 <Grid x:Name="LayoutRoot" Background="White">
 <TextBlock x:Name="Info" />
 </Grid>
</UserControl>

 C#:

 [image:]

 Listing 8.2 shows how to obtain the Delta value from the MouseWheel event in order to determine both direction and speed. Negative values mean the wheel was scrolled down or toward the user;
 positive values mean the wheel was scrolled up or away from the user.

 The ScrollViewer control automatically handles the MouseWheel event, so the ListBox, ComboBox, TextBox, and other ScrollViewers will automatically scroll using the wheel. If you want to support the mouse wheel on other controls, simply handle the MouseWheel event as shown in listing 8.2. As another example, here’s the mouse wheel integrated with a Slider:

 private void OnMouseWheel(object sender, MouseWheelEventArgs e)
{
 if (e.Delta > 0)
 slider_X.Value += slider_X.LargeChange;
 else
 slider_X.Value -= slider_X.LargeChange;
}

 First-class support for the mouse wheel event isn’t the only advanced input supported by Silverlight. Silverlight also has
 a great feature for Windows 7 systems and beyond: multi-touch support.

 8.3. Using multi-touch

 Microsoft Windows 7 is the first Microsoft OS to have official built-in support for multi-touch-enabled hardware. For a platform
 to be touch enabled, it simply needs to recognize a single finger on the screen. Many tablets and portable devices support
 this, as do touch screens going all the way back to the 80s. Multi-touch is a pretty new ground. A multi-touch-enabled display
 will recognize more than one finger on the screen, allowing you to do things such as resize and rotate images by touching
 both corners or make complex multifinger gestures to perform specific functions, such as sweeping a screen to the side.

 It’s hard to predict how popular multi-touch will be on the desktop, but it’s already finding use in new classes of portable
 hardware as well as in kiosk and kitchen-PC scenarios (as long as you have a cake-batter-and-grease-proof screen).

 The static Touch.FrameReported event is the primary entry point into the touch API in Silverlight. This event fires on a regular interval, the timing and
 triggering of which depends on the touch-enabled hardware and drivers in use. As soon as you wire up the event handler, you’ll
 begin receiving notifications.

 The FrameReported event includes an instance of the TouchFrameEventArgs class with members as described in table 8.7.

 Table 8.7. The properties and methods exposed by the TouchFrameEventArgs class

 	
 Property or method

 	
 Description

	Timestamp
 	An integer representing the time for this specific frame
 You can use this to facilitate time-sensitive gestures.

	SuspendMousePromotionUntilTouchUp
 	Use this method when the primary touch point is down in order to suspend promoting that point to a mouse gesture until all
 the touch points are up.

	GetPrimaryTouchPoint
 	Returns the first touch made since the last time all touches were lifted from the screen
 This is the touch point that’ll be promoted to a mouse event.

	GetTouchPoints
 	Use this method to return a collection of TouchPoint values for the frame.

The GetPrimaryTouchPoint function returns a single instance of the TouchPoint class. The GetTouchPoints collection returns a collection of TouchPoints, including the primary touch point. The TouchPoint class includes the members listed in table 8.8.

 Table 8.8. The properties and methods exposed by the TouchPoint class

 	
 Property

 	
 Description

	Action
 	The user activity associated with this touch
 Possible values are Down, for finger down on the screen, Move for finger moved/dragged on the screen, and Up for finger up
 from the screen.

	Position
 	The x,y coordinates of the touch. This is relative to the application’s RootVisual.

	Size
 	A rectangle describing the size of the touch point. You can use this to differentiate between, say, a light tap and a full
 press.

	TouchDevice
 	Information about the device that provided the touch information.

	TouchDevice.DirectlyOver
 	This property is located on the TouchDevice for WPF compatibility reasons. It’ll return the topmost UIElement over which the
 touch occurred.

Listing 8.3 shows how to listen for the FrameReported event, enumerate the TouchPoint objects, and display their positions to the debug window.

 Listing 8.3. Responding to the FrameReported event and reporting touch points

 public MainPage()
{
 InitializeComponent();
 Touch.FrameReported += new TouchFrameEventHandler(OnTouchFrameReported);
}
void OnTouchFrameReported(object sender, TouchFrameEventArgs e)
{
 foreach (TouchPoint tp in e.GetTouchPoints(this))
 {
 Debug.WriteLine(tp.Position);
 }
}

 One final method of interaction with your application is ink input. Though ink is typically used with tablet-style PCs, it
 can be used with mice as well. With new pen-enabled devices such as multi-touch tablet PCs, there’s renewed interest in ink
 collection in Silverlight applications.

 8.4. Collecting ink drawings

 Silverlight provides an intuitive way to collect hand-written information through an element known as the InkPresenter. This element empowers you to collect and display a kind of content known as ink, a term that refers to a series of points related to the movement of a device. These points can be collected from a mouse,
 stylus, or touch screen and are stored as a Stroke. The process of collecting Stroke elements is handled through the InkPresenter.

 Over the course of this section, you’ll learn how to gather and display ink with the InkPresenter. This process involves three simple but important steps. The first step involves creating a canvas to collect the ink. After
 that, you must wire up the canvas to collect ink-related information. Finally, once the ink has been collected, you can decide
 how to style the content.

 8.4.1. Creating the InkPresenter

 To create a place to capture and display the ink, you must define an InkPresenter object. This object can be thought of as a Canvas because the InkPresenter class derives from that type. And like the Canvas, you can create an InkPresenter in XAML, as shown here:

 <Grid x:Name="LayoutRoot" Background="White">
 <InkPresenter x:Name="myInkPresenter" Background="Silver"/>
</Grid>

 This example creates a basic InkPresenter within a Grid. If you were to create a Silverlight application using this XAML, it’d look like the InkPresenter doesn’t do anything.

 The InkPresenter is designed to dynamically render ink as it’s drawn, so let’s look at how to dynamically collect ink content.

 8.4.2. Collecting ink

 The first step in collecting ink involves listening for the mouse button or stylus to be depressed. When this event occurs,
 the MouseLeftButtonDown will fire and you can signal that the input device is depressed. At that point, you can begin to construct a Stroke object that can be added to an InkPresenter.

 The Stroke object represents a continuous series of points. As a user moves a device around an InkPresenter, you build on that Stroke until the user releases the device. It’s a general practice to define a Stroke object as a member variable of your Silverlight page, so you can interact with the same instance within the MouseLeftButtonDown, MouseMove, and MouseLeftButtonUp events. The MouseLeftButtonDown event is generally responsible for instantiating or resetting the Stroke, as shown in listing 8.4.

 Listing 8.4. Receiving mouse events and creating ink strokes

 [image:]

 This example shows the member variable stroke used on these listings as well as the event handler wire-up required for listings 8.4 through 8.6. Importantly, it also shows the initial mouse capture established when the mouse left button is pressed.

 The member variable _stroke is reset each time the user depresses the input device. This reset process involves retrieving the styles points that have
 been collected. This task is handled by the GetStylusPoints method of the StylusDevice object. Because of the reset, you must also reapply the styling settings, which we’ll discuss shortly. With the styled Stroke in hand, you can add it to the InkPresenter, which will be immediately rendered. You can even do this as the move moves around an InkPresenter, as shown in listing 8.5.

 Listing 8.5. Adding points to the InkPresenter

 [image:]

 This adds to the Stroke initialized in the previous example. You’ll notice that this task is wrapped in a null check statement. The reason for this will become apparent as you complete the final step of drawing ink.

 The final step involves completing the Stroke. The Stroke needs to be completed when the user releases the input device or leaves the InkPresenter. For this reason, you need to handle two events: MouseLeave and MouseLeftButtonUp. These two events perform the tasks of nullifying the Stroke and releasing the input device, as shown in listing 8.6.

 Listing 8.6. Completing the stroke

 [image:]

 This completes the process of drawing a Stroke on an InkPresenter. By setting the Stroke to null, you can determine whether you should build on it when the MouseMove event occurs.

 In the event that you do draw a Stroke, you should know how to stylize it.

 8.4.3. Styling the ink

 The Stroke element provides a property called DrawingAttributes that may be used to alter its appearance. This utility class is defined within the System.Windows.Ink namespace. It provides four properties that allow you to specify a Stroke element’s Color, Height, OutlineColor, and Width. Collectively, you can use these values to deliver truly expressive web content.

 The Color property represents the System.Windows.Media.Color used to paint the interior of a Stroke. By default, this value is set to Colors.Black. This default value is different than the default OutlineColor property, which defaults to Transparent. This property must be set if you wish to specify the Color surrounding a Stroke. If it’s set, a two-pixel boundary of the given Color will be added around the Stroke. The dimensions of the Stroke are just as important as colors.

 The dimensions of a Stroke are defined through the Height and Width properties of the DrawingAttributes. These two double-precision values do exactly what you’d expect them to do. These properties can be used to help create Stroke elements that represent different drawing tools. Here’s some code so you can get a feel for all these DrawingAttributes:

 <InkPresenter x:Name="ip" Background="Silver"
 Height="300" Width="300">
 <InkPresenter.Strokes>
 <Stroke>
 <Stroke.DrawingAttributes>
 <DrawingAttributes Color="Blue" OutlineColor="Black"
 Height="4" Width="6" />
 </Stroke.DrawingAttributes>
 <Stroke.StylusPoints>
 <StylusPoint X="10" Y="10" />
 <StylusPoint X="10" Y="50" />
 </Stroke.StylusPoints>
 </Stroke>
 </InkPresenter.Strokes>
</InkPresenter>

 As this shows, you can define the DrawingAttributes of a Stroke within XAML. It also shows the one property that the InkPresenter exposes that the Canvas doesn’t: the Strokes property. As these two properties remain consistent with the relationship between XAML and code, so too does the StylusPoints collection. This collection defines the continuous line of a Stroke, which is composed of a series of StylusPoint elements.

 A StylusPoint, which is found in the System.Windows.Input namespace, represents an individual point within a Stroke. This point is positioned based on the values of two properties called X and Y. These values are double-precision values that represent a coordinate. This coordinate is relative to the containing InkPresenter.

 Like multi-touch, ink may not be common in many desktop applications. But as devices continue to add support for the stylus,
 supporting ink in your own applications will become increasingly important.

 8.5. Summary

 Without input, an application would just be an automated slide show. Though controls will get you most of the way there, sometimes
 you just need lower-level access to the input devices. Luckily, Silverlight doesn’t disappoint.

 Silverlight provides complete access to the keyboard information as the user presses and releases keys. Constants are provided
 for the most common and cross-platform keys, and you can always get to the low-level keycode information should you need to.

 The most common interaction device for many Silverlight applications is the mouse. Silverlight now provides access to the
 left and right mouse buttons as well as normal mouse movement and the scroll wheel.

 Two other modes of interaction are gaining in popularity. Pen-and-ink input has been around for a while but hasn’t seen serious
 interest until new waves of devices started becoming popular. Multi-touch, on the other hand, is both new and popular, especially
 in the device space.

 Now that you know how input works behind-the scenes, including keyboard input, we’re ready to discuss how to work with text.

Chapter 9. Text

 This chapter covers

 	An overview of the text system

 	Displaying text

 	Working with fonts

 	Understanding input method editors

 	Moving text to and from the clipboard

 	Entering and editing plain and rich text

Most applications you write will display or manipulate text at some point. Even many games have text input requirements for
 signup, registration, or to log a high score. Media players often have rolling commentary by other viewers and the ability
 to add to the social aspects of what you’re watching. In short, working with text is important.

 For as long as computers have been around and attached to video displays or teletypes, the display of text has been an important
 aspect of user interaction. Silverlight includes great support for displaying text, with a number of options that control
 formatting and other aspects of the display.

 Of course, if all that the platform supported were the display of text, we’d be pretty limited in the types of applications
 we build. In addition to its display capabilities, Silverlight includes first-class support for editing text, both plain and
 rich text formats.

 If you can enter and edit text, you may find yourself wanting to copy and paste it between various applications. Silverlight
 also includes facilities to enable programmatic manipulation of the clipboard to share data within the same application and
 across applications.

 What do you do if you want to show text using a font the user doesn’t necessarily have? You embed the font. Silverlight supports
 font embedding to ensure that your users have the exact experience you’d intended. We’ll cover that and the support for international
 text using input method editors before we get into rich text.

 Plain text is useful in many scenarios but, for others, you may want richer text with embedded formatting, images, and even
 UI elements. Silverlight 4 introduced the RichTextBox control, which can be used for both the display and editing of rich text.

 We’ll start this chapter with the coverage of the text stack and then move on to the basics of text, under the task of displaying
 text. Along the way, we’ll look at font embedding, displaying international text, and integrating with the clipboard. The
 information learned when formatting the text for display will be used later when we work on entering and editing plain and
 rich text.

 9.1. The text system

 You’d be forgiven if you looked at the title of this section and thought, “System? Really? It’s just text.” Getting the text
 from the Unicode string and presenting it on displays of varying resolutions using different fonts on different systems is
 actually fairly complex. It’s also a task we only notice when done poorly.

 In reality, a text stack needs to:

 	Read in the source text string.

 	Lay out an overall block of text.

 	Lay out individual lines within that block.

 	Obtain the font information for each character, including combining characters for certain languages.

 	Figure out how to display bold and italics (and other styles/weights). There may be a font for it or it may need to generate
 pseudo-italic and pseudo-bold text.

 	Deal with any text expansion for fonts that support it.

 	Lay out individual characters within that line, including subpixel font rendering.

 	Render it all out to a rendering surface in software or hardware.

Any one of those individual steps is a pretty serious programming effort. Though all interesting, the internals of the text
 stack are pretty well abstracted away from the work we’ll normally need to do. There are some places where the team has provided
 options we can set, though.

 Before we get on to the high-level controls and elements that allow us to put text on the screen, let’s take a look at how
 Silverlight handles character rendering using ClearType.

 9.1.1. Subpixel text rendering

 In chapters 6 and 7 we learned about the layout system and subpixel layout and rendering. Silverlight can handle elements aligned on subpixel
 boundaries, such as having a Left of 15.76 rather than just 16. This makes layout easier for design professionals and is also essential for smooth animation.

 Subpixel layout and rendering applies to text as well. On Windows machines, Silverlight uses the ClearType algorithm, provided
 by DirectWrite, to render text using the best quality for a given resolution. An example of ClearType rendering is shown in
 figure 9.1.

 Figure 9.1. ClearType subpixel font rendering in Silverlight

 [image:]

 Silverlight supports subpixel rendering and layout of anything, so the text itself may already start on a partial pixel boundary
 (for example, a Left of 10.32). For that reason and others, the Silverlight ClearType algorithm will produce results slightly different from the
 base Windows platform. The end result will still be text that’s more readable and more pleasing to the eye than no antialiasing
 or the grayscale used in Silverlight 2.

 The ClearType text rendering algorithm is a relatively expensive subpixel antialiasing algorithm that you wouldn’t necessarily
 want to recalculate 60 times per second. Also, as a side effect of the antialiasing, you may also see text that jumps around
 a bit when you animate it (you’d have to look closely). For those reasons, and to support other optimizations, Silverlight
 includes a TextOptions.TextHintingMode attached property.

 9.1.2. Text hinting

 ClearType is an excellent text rendering algorithm, but it’s not something you want to be calling thousands of times because
 it’s a complex algorithm with performance implications. In addition, there are other visual optimizations applied to text
 that would be unnecessary if the text were animated.

 Silverlight offers the TextOptions.TextHintingMode attached property to control how hard Silverlight tries to make the text look great. When set to Fixed, it uses the quality ClearType rendering and performs the calculations that make static text look great. When set to Animated, it optimizes for text that’s going to change size, rotation, or angle, probably multiple times per second. Listing 9.1 shows the setting in action.

 Listing 9.1. TextOptions.TextHintingMode

 Results:

 [image:]

 XAML:

 [image:]

 It’ll be hard to tell in a printed book (one benefit of the electronic copy), but the Animated text hinting renders the text using grayscale antialiasing, whereas the Fixed text hinting (the default) renders using ClearType rendering. Figure 9.2 shows a close-up of the first word from each line on a white background as well as black.

 Figure 9.2. The first line uses Fixed text hinting and, therefore, ClearType rendering. The second line uses Animated text hinting and is, therefore, grayscale.

 [image:]

 The rendering optimized for animation avoids both the costly ClearType calculations as well as the jumping/jittering effect.
 If you use the animation-optimized text in small font sizes for regular text in your application, you’ll see it’s noticeably
 fuzzier than ClearType. In fact, this was an issue with Silverlight adoption for line-of-business applications in the Silverlight
 2 timeframe, before ClearType was integrated into the stack.

 As of this writing, ClearType isn’t supported on the Mac, so it always uses some form of grayscale rendering. Also, an interesting
 limitation of ClearType is that it’s sensitive to the orientation of the display. Since the modern ClearType implementation is meant only for LCD displays (if
 you have an old tube monitor hanging around, don’t enable ClearType on it or the world will end in an explosion of subpixels),
 it takes into account the position of the actual elements (red, green, blue) and uses them to make the text more readable.
 If you tilt the monitor 90 degrees, those positions are out of whack, and ClearType won’t work correctly.

 Now that we know a little about what’s going on behind the scenes and how to optimize text rendering for different situations,
 let’s look at what’s available to us to actually push characters onto our display and how we can set the higher-level properties
 like what font to use and what size to use when rendering the text.

 9.2. Displaying text

 Displaying text is primarily addressed by an element called TextBlock. This element, which belongs to the System.Windows.Controls namespace, but which itself doesn’t derive from Control, is designed to flexibly display text within a variety of scenarios. The following example shows one such scenario, as well
 as the basic syntax of a TextBlock:

 <TextBlock x:Name="myTextBlock"
 Text="Eating a lot of fruit can help you live to a ripe old age."/>

 This shows a basic way to include text within your Silverlight applications. The TextBlock can be hosted in any of the panels discussed in chapter 7.

 As you’ve probably guessed, the Text property of a TextBlock is used to set the text to display. The text direction (right to left or left to right) is controlled via the FlowDirection property. The TextBlock provides a rich set of other styling options that mimic or exceed those found in CSS. We’ll cover all of these styling options,
 including setting the font properties, controlling the flow of text, setting the text-related properties, and specifying the
 spacing options.

 9.2.1. Font properties

 The TextBlock has five properties related to the styling of a selected font. These properties replace a lot of the familiar friends from
 CSS. Table 9.1 shows a font-related CSS property and its equivalent Silverlight TextBlock property.

 Table 9.1. The font-related properties available in Silverlight and their CSS equivalents

 	
 CSS property name

 	
 TextBlock property name

 	
 Summary

	font-family
 	FontFamily
 	A list of font names for an element

	font-size
 	FontSize
 	The size of the font

	font-weight
 	FontWeight
 	The weight of the font

	font-stretch
 	FontStretch
 	Expands or compresses the font

	font-style
 	FontStyle
 	The style of the font (for example, italics)

These items are related specifically to the font capabilities of Silverlight. We’ll now cover each of these items in detail,
 in the order they appear in the table.

 Fontfamily

 By default, the TextBlock displays text using the Lucida Sans Unicode font on Windows machines. On Apple Macintosh computers, an almost identical font
 known as Lucida Grande is used. Alternatively, you can specify a different font.

 The FontFamily property enables you to specify the font. More specifically, this property represents the name of the top-level font family.
 This is important to recognize because some fonts share a common family name; the differences between them lie in their individual
 features—things such as bold and italic options. Silverlight has built-in support for the font families shown in figure 9.3.

 Figure 9.3. A sampling of the font families supported within Silverlight

 [image:]

 Figure 9.3 shows the nine TrueType fonts supported within Silverlight. In addition to these fonts, Silverlight has support for Eastern
 Asian fonts. Collectively, the nine TrueType and Eastern Asian fonts are guaranteed to look almost identical on all platforms
 supported by Silverlight as long as someone hasn’t uninstalled the core fonts for those platforms. If you need to use a custom
 font, you can do so using font embedding or by referring to a local font on the machine. Previous versions of Silverlight
 restricted you to embedding or a white list of fonts, with no support for local fonts.

 Once the FontFamily has been set, this will be the font used within the TextBlock. If your users don’t have the font on their machines, the TextBlock will fall back to the default font. You can set fallback priority by providing a comma-delimited list of font family names.

 FontFamily is one of the more widely used font options. Another widely used option is the FontSize property.

 Fontsize

 The FontSize property allows you to set the size of a TextBlock using a double-precision value. This value is set by default to 14.66 pixels, which is roughly an 11 pt font. This fact is
 significant because the FontSize property always represents a specific number of device-independent pixels. This can have undesired effects, because fonts
 are generally discussed in terms of points (pt). Thankfully, you can easily convert points to pixels using the formula found
 in figure 9.4.

 Figure 9.4. The formula to convert font points to pixels in Silverlight

 [image:]

 This formula is based on the fact that Silverlight uses 96 pixels per inch and a point is defined as 72 points per inch. If
 you want to use a 24 pt font in a TextBlock, you need to set the FontSize property to 32 (24 * 96 / 72 = 32):

 <TextBlock Text="I'm a Big Boy Now." FontSize="32" />

 This basic line of XAML sets the FontSize to a 24 pt font. In addition to setting the FontSize, there are also times where you may need to work with the weight of a font.

 FontWeight

 The FontWeight property represents the heaviness, or weight, of the displayed text. This weight is often depicted as a bolding effect, but you can also go the other way and make text
 appear lighter or thinner. This is made possible by the fact that the FontWeight property accepts any numeric value between 1 and 999. Alternatively, you can use one of the friendly constants available
 in the FontWeights class:

 	Thin

 	Light

 	Medium

 	Bold

 	Black

 	ExtraLight

 	Normal

 	SemiBold

 	ExtraBold

 	ExtraBlack

These values are shown in the order of increasing weight. Note that not all fonts support varying weights. In fact, most fonts
 support only two font weights: Normal and Bold. If the font specified within the FontFamily property doesn’t support a specific weight, it falls back to the closest weight supported by the font. The fallback support
 for this property is also shared by another property called FontStretch.

 FontStretch

 The FontStretch property gives you the ability to either condense or expand the font associated with a TextBlock. The CSS equivalent of this property is defined within the third version of CSS (CSS3), but few browsers currently implement
 it. For this reason, this property is one text-related feature not usually seen within a traditional web application. But,
 with Silverlight, you can stylize your text with this feature using one of the FontStretches values shown in table 9.2.

 Table 9.2. Acceptable values for the FontStretch property

 	
 Name

 	
 Stretch percentage

	UltraCondensed
 	50.0%

	ExtraCondensed
 	62.5%

	Condensed
 	75.0%

	SemiCondensed
 	87.5%

	Normal
 	100.0%

	Medium
 	100.0%

	SemiExpanded
 	112.5%

	Expanded
 	125.0%

	ExtraExpanded
 	150.0%

	UltraExpanded
 	200.0%

These values represent the acceptable values for the FontStretch property. The percentages represent the proportion by which the normal font size is stretched. Any value less than 100 percent
 will condense a font and any percentage greater than 100 percent will expand a font. Either way, the percentage is only taken
 into consideration if the selected FontFamily has support for font stretching. Even if a font does have support for stretching, it may not have support for all stretch
 values. If the font doesn’t support the stretch value you’ve selected, the FontStretch resorts to using an algorithm that searches the available fonts for one that matches the properties as closely as possible.

 Fontstyle

 The FontStyle property gives you the ability to switch the text of a TextBlock into italic mode. As you’ve probably guessed, this property is set to a value of Normal by default. You can easily change this to Italic to give your text an italic effect:

 <TextBlock x:Name="myText" Text="Going Italic" FontStyle="Italic" />

 The code shows how to set the FontStyle at design time. Setting the FontStyle during runtime involves using a slightly different approach. To set a TextBlock to italic during runtime, you use the FontStyles class:

 myTextBlock.FontStyle = FontStyles.Italic;

 Note how this uses a FontStyles static property called Italic. This static property represents a FontStyle definition. This fact is significant because, even though you can only set a FontStyle to italic in Silverlight, WPF is a different story. WPF, which is Silverlight’s parent technology, provides additional FontStyle options.

 The FontStyle is but one of the five font styling options available within a TextBlock. The other four are the FontStretch, FontWeight, FontSize, and FontFamily. Collectively, these give you a significant amount of control over the font styling of a TextBlock. In addition to basic font styling, Silverlight gives you the ability to control the overall flow of text.

 9.2.2. Flow control

 The TextBlock enables you to control the overall flow of text through two nested elements. These elements, called Run and LineBreak, belong to the System.Windows.Documents namespace. Both elements derive from the Inline class and have built-in support for the font features we discussed in section 9.1.1. Listing 9.2 shows how these elements can be used.

 Listing 9.2. TextBlock Run and LineBreak Inlines

 Result:

 [image:]

 XAML:

 [image:]

 The conversation in this listing shows one way to use the Run and LineBreak Inline elements. These elements get appended in succession to the text defined in the Text property of the hosting TextBlock. In fact, the value inside the Text property itself gets converted to a Run element at runtime. This element and all the other Run and LineBreak items get stored in a collection called Inlines.

 The Inlines collection stores the Inline elements of a TextBlock. By default, all the items in this collection use the styling options set by the parent TextBlock. You can override these settings by specifying new values for them within the Inline item itself. This is the approach used in listing 9.2. But, to fully demonstrate how the LineBreak and Run items can be customized, we should jog through several text properties.

 9.2.3. Text properties

 Silverlight gives you the ability to further customize your text through four useful properties. These properties focus on
 rendering text in combination with the font properties we discussed in 9.2.1. To further control how the text is rendered,
 you can use the Foreground, TextDecorations, TextWrapping, TextTrimming, and TextAlignment properties.

 Foreground

 The Foreground property allows you to set the color of a block of text. More specifically, this property represents a Brush, which allows you to do a lot more than just apply solid colors. The various Brush options aren’t covered until chapter 18. For now, just know that you can use the name of a color, as shown here, in an example that changes a TextBlock from the default black SolidColorBrush to blue:

 <TextBlock Text="I'm feeling blue." Foreground="Blue" />

 Significantly, you can use the Foreground property with the Inline elements we discussed in 9.2.2. These Inline elements also have baked-in support for the TextDecorations property.

 TextDecorations

 The TextDecorations property gives you the ability to underline text. This can be accomplished using the Underline TextDecorations property as shown here:

 <TextBlock Text="I'm Serious" TextDecorations="Underline" />

 Much like the FontStyle property, the TextDecorations property has more options in WPF—the reason why it has such an abstract name.

 The next property is more line or paragraph-oriented: TextWrapping.

 TextWrapping

 The TextWrapping property enables you to specify how text should wrap across multiple lines within a TextBlock. By default, Silverlight doesn’t wrap text within a TextBlock. You can set the TextWrapping attribute to Wrap, and the text will break and resume on the next line if the Width of the TextBlock is exceeded. This wrapping effect is shown in listing 9.3.

 Listing 9.3. Text wrapping

 Result:

 [image:]

 XAML:

 [image:]

 Listing 9.3 shows how to change the TextWrapping property from its default value of NoWrap. The value and its destination value of Wrap belong to the TextWrapping enumeration. This type is only available to TextBlock elements—you can’t use it in Inline elements such as Run. The Run element also lacks the ability to specify its own TextTrimming or TextAlignment, separate from the TextBlock.

 TextTrimming

 There are often cases when you want to show only as much text as will fit into a predefined rectangle on the screen. The remaining
 text should be clipped off. In those cases, it’s common to provide the user with a visual cue that the text’s been trimmed.

 Rather than have you calculate the trimming manually, Silverlight supports the TextTrimming property. As shown in listing 9.4, Silverlight supports the WordEllipsis style of text trimming, where the ellipsis is shown after the last whole word that will fit in the rectangle.

 Listing 9.4. Text trimming with a small font

 Result:

 [image:]

 XAML:

 [image:]

 Listing 9.4 shows the TextTrimming option in place with a regular sized font. If you increase the font size, less text will fit in the space. Listing 9.5 shows what happens when you leave everything else the same, but increase the font size.

 Listing 9.5. Text trimming with a larger font

 Result:

 [image:]

 XAML:

 [image:]

 Note how the text is still broken at the word boundary. That’s one of the nice things about WordEllipsis trimming. Breaking at a character boundary just looks unprofessional in many cases and can lead to unexpected and inappropriate
 final words in the worst cases.

 Another way to control the layout of text is to use the TextAlignment property. Though text trimming is typically used with left-justified text, it can also be used with any of the other alignments
 available to the TextBlock.

 TextAlignment

 The TextAlignment property gives you the ability to align the text within a TextBlock. You can specify whether information should be aligned to the Left, Center, or Right of the rectangular region defined by the Height and Width properties of a TextBlock, as shown in listing 9.6.

 Listing 9.6. Text alignment property values

 Result:

 [image:]

 XAML:

 [image:]

 Listing 9.6 demonstrates the TextAlignment options. These options provide one way to stylize your text. The TextWrapping, TextDecorations, TextTrimming, and Foreground properties enable you to further format this text. In addition, there’s one more important feature that shouldn’t be overlooked:
 the ability to control text spacing.

 9.2.4. Spacing

 Spacing is effective for making text easier to read. This can help individuals with diminished eyesight or just make an application
 look better. To control the spacing of text, the TextBlock exposes two properties: LineHeight and Padding.

 LineHeight

 The LineHeight property determines the height of the bounding box that a single line of your text will be contained within. This height
 is represented as the number of pixels and specified as a double-precision value. Listing 9.7 demonstrates this property as well as its relationship to FontSize.

 Listing 9.7. Line height for vertical spacing

 Result:

 [image:]

 XAML:

 [image:]

 As listing 9.7 illustrates, the LineHeight property often alters the layout of wrapped text. Notably, if the LineHeight is smaller than the FontSize, the LineHeight value is ignored. If the LineHeight is larger than the FontSize, some extra padding is generated around the text. The LineHeight doesn’t affect the FontSize.

 While LineHeight works on individual lines in the TextBlock and only controls vertical spacing, Padding controls the overall spacing within the outside border of a TextBlock.

 Padding

 The Padding property represents the amount of cushion to use within a TextBlock. This space represents the area between the border of the TextBlock and the text of the element. By default, this property doesn’t specify any spacing. Using a double-precision value, you can
 provide a consistent buffer between the text and the virtual borders of a TextBlock, as shown in listing 9.8.

 Listing 9.8. Uniform padding in a TextBlock

 Result:

 [image:]

 XAML:

 [image:]

 Listing 9.8 shows how a Padding of 20.2 pixels creates a nice bubble around some text. You’ll probably notice that the size of this buffer is the same on
 each side of the content. The Padding property also enables you to use a more granular approach when defining the buffer, as shown in listing 9.9.

 Listing 9.9. Per-side padding in a TextBlock

 Result:

 [image:]

 XAML:

 [image:]

 Listing 9.9 shows the Padding property using a space-delimited list of values. The values can also be comma-delimited. This list of values represents the
 amount of spacing to use on each side of the text, within the outer limits of the TextBlock element. The first value in the list represents the thickness of the spacing on the left side of the text. The subsequent
 values represent the top, right, and bottom thicknesses of the buffer. As you can see, these values specify the thicknesses
 in a clockwise order. This granular approach gives the Padding property a significant amount of flexibility.

 The Padding property represents one of the more basic features of the TextBlock, which is one of the more basic elements in Silverlight. This element will be used in most Silverlight applications you write.

 The TextBlock always renders text using the specified font or a default fallback if unspecified or if the font is unavailable. If the font
 you’re using in your TextBlock or other control isn’t a standard font, you may want to consider embedding it with your application.

 9.3. Embedding fonts

 Sometimes you want to use a special font in your application. Maybe it’s the typeface in use in your company logo. Sometimes
 it’s a slick headline font. Or perhaps it’s just a sharp and readable font you want to use in your news reading application.
 I had this issue when I built the trivia application that ran on the screens at Microsoft PDC 2009. I had to use the PDC font
 but couldn’t guarantee it would be on the machines.

 What do you do when you can’t guarantee that end users will have that font on their machines? One way to tackle this problem
 is to embed the font into the application.

	

 I’m not a lawyer

 But that’s not going to stop me from giving pseudo-legal advice. Before you go and embed that font, check its license. Most
 fonts don’t legally allow embedding in applications. In fact, most fonts haven’t even caught up with the idea that fonts can
 be used outside of documents.

 Once the font foundries get out of the ’80s and start allowing more font embedding in applications, user interfaces will really
 start to shine.

 In the mean time, I suggest you consult someone with a real legal background before embedding that font in your application.

 	

Silverlight supports embedded fonts—whole fonts and subsets—in applications. When not using font subsetting, you simply add
 the font to your project and mark it as a resource. You can then refer to it by name using the format FileName#FontName:

 <TextBlock FontFamily="Fonts/MSPDC.TTF#Microsoft PDC Squared" ... />

 The folder name Fonts is the location where the original TTF file is placed in the project. The name MSPDC.TTF is the name of the font file on disk, and Microsoft PDC Squared is the name of the actual font.

 Packaging with font subsetting requires Expression Blend. Even if you use Visual Studio, the required build action is supplied
 by Expression Blend and can be compiled in Visual Studio, but must be created the first time in Blend. This makes sense, as
 font subsetting and font embedding are very designer-oriented tasks; most of us programming grunts just default to Comic Sans
 MS and call it a day.

 To support subsetting—reducing the number of glyphs to only those used in the application—the font is packaged up into a zip file and later referred
 to by its embedded location. For example:

 <TextBlock FontFamily="Fonts/Fonts.zip#Microsoft PDC Squared" ... />

 The folder name Fonts is the location where the original TTF file is placed in the project. The zip name is the name Expression Blend generated
 for the archive, and the name after the hash tag is the name after the font. Note that this can be different from the TTF
 filename itself.

 The issue isn’t really the technical aspect of embedding itself (it’s just a zip file embedded into the DLL as a resource);
 it’s the act of subsetting the font that makes embedding legal for those fonts that support it. Expression Blend actually
 creates a subset font that has only the glyphs (characters) you use in your application.

 In short, though you may find a way to manually embed the fonts, you’re better off trusting Expression Blend to do it for
 you.

 Once you have fonts embedded in your application, they can be used anywhere you’d use a regular typeface. For example, they
 may be used in text boxes for gathering text, which is the subject of the next section.

 9.4. Entering and editing text

 Collecting and displaying text is a vital part of almost every web application. Silverlight provides several controls designed
 to make this important task easy. Silverlight supports standard keyboard text input as well as input from input method editors (IMEs). (If you don’t know what those are, don’t worry; we’ll get to that in a minute.) In this section, we’ll cover the
 core of text input, including the two main controls used for gathering plain text from the user.

 The most basic text input control is the TextBox. For most forms and other simple data, this is the control you’ll use to capture input. TextBox supports all the usual text entry functions, as well as multiline input.

 Similar to the TextBox but optimized for sensitive data, we have the PasswordBox. The PasswordBox is what you should use when collecting passwords or other data you want masked from view.

 Over the course of this section, you’ll learn how to handle basic text entry with the TextBox. In addition, you’ll see how to collect sensitive information, such as passwords, with the PasswordBox. Finally, we’ll look at the ways to collect and format text simultaneously using the RichTextBox.

 9.4.1. Handling basic text input

 The TextBox control enables your users to edit and view text. As basic as this may sound, it’d be difficult to consider a UI technology
 that didn’t include this type of functionality. When a user enters text into a TextBox, it gets stored as a string in the Text property. This property can be programmatically set at runtime, giving you the ability to prepopulate a form. Optionally,
 this property value can be set at design time if you have a more static value.

 XAML:

 <TextBox x:Name="NameField" Text="Pete Brown" />

 C#:

 TextBox nameField = new TextBox();
nameField.Text = "Pete Brown";

 This example shows the XAML and C# definitions for a TextBox with a preset Text value. This value will change if a user decides to change the contents of a TextBox. This change will cause the TextChanged event to fire asynchronously, which gives you the opportunity to respond to characters after they’re entered. You can also
 limit how many characters a user can enter by setting the MaxLength property. Limiting the number of characters can be useful for ensuring that data isn’t truncated when it’s sent back to a
 data source. In addition, some of the values from a data source should only be seen, not edited. In these cases, you can change
 the IsReadOnly property to true to prevent a user from editing a TextBox. These basic members of a TextBox are useful, but the multiline and text selection features are perhaps even more interesting.

 Enabling Multiline Text Support

 The TextBox has built-in support for handling multiline text input. By default, this feature is turned off. You can turn it on by toggling
 two of the properties of a TextBox control. These two properties, AcceptsReturn and TextWrapping, are shown in listing 9.10.

 Listing 9.10. Multiline TextBox

 Result:

 [image:]

 XAML:

 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition />
 </Grid.RowDefinitions>
 <TextBlock Text="Description:" FontFamily="Verdana" FontSize="14" />
 <TextBox x:Name="myTextBox" AcceptsReturn="True" TextWrapping="Wrap"
 FontFamily="Verdana" FontSize="14"
 Grid.Row="1" Height="150" Width="450" />
</Grid>

 The listing shows a multiline TextBox enabled through the AcceptsReturn and TextWrapping properties. The AcceptsReturn property is a bool that tells the TextBox whether to show and permit newline characters. This property is important because it is what enables a user to press the
 Enter key and go to a new line within a TextBox. A true multiline TextBox isn’t complete until the TextWrapping property is set to Wrap. We discussed this property in relation to the TextBlock element in section 9.2.3; those same rules apply with the TextBox. With this property and the AcceptsReturn property, you can easily implement a multiline TextBox.

 Implementing a multiline TextBox in Silverlight is simple. This approach is slightly different than the approach used in HTML, which requires a separate element
 altogether (the TextArea). The Silverlight approach simplifies the overall API and provides exciting text selection features not found in HTML.

 Mastering Text Selection

 The TextBox has built-in support for selecting portions of text within a TextBox. A user can highlight information and you can programmatically retrieve it through three properties, appropriately named
 SelectedText, SelectionStart, and SelectionLength. These properties can also be programmatically set, which is especially useful when implementing incremental search and auto-complete functionality in a TextBox. Each is shown in figure 9.5.

 Figure 9.5. The text selection parts: SelectedText, SelectionStart, and SelectionLength

 [image:]

 This figure shows the three properties associated with text selection. The first property is a string called SelectedText that represents the content currently selected within a TextBox. This content has a specific length, which is available through the SelectionLength property. This int gives you the number of characters currently selected within a TextBox. These characters begin at a specific index, which is accessible through the SelectionStart property. When text isn’t selected, the SelectionStart property will return the index of the carat. The selection properties are read/write and allow you to programmatically change
 their values.

 The HTML text box doesn’t provide a way to select only portions of text. As shown here, the TextBox in Silverlight does enable you to select text at a more granular level. At the same time, Silverlight still has support for
 both single and multiline text boxes.

 Not all applications are written for the en-US market. If you’re writing applications for other markets, especially where
 the languages have different characters, you’ll want to understand input method editors and how they work with Silverlight.

 9.4.2. Understanding input method editors

 IMEs are operating system components or added programs that allow, among other things, multiple keystrokes to be composited
 into a single character. This supports languages where there are more possible characters than keys on the keyboard or where
 the keyboard doesn’t have the required character.

 IME text is important for handling text from most Eastern languages. Figure 9.6 shows an example of a typical Japanese Romaji-based IME in operation.

 Figure 9.6. Operation of a typical Japanese Romaji-based IME (source: Wikimedia Commons)

 [image:]

 In this section, we’ll look at what IMEs are and how to use them in Silverlight. We’ll even take a look at how to change your
 Windows keyboard settings to allow you to test the functions that support IME in Silverlight.

 In Silverlight, the TextBox and other controls handle IME-entered text through events defined at the UIElement-level. In particular, if you want your application to work in IME situations, don’t respond to KeyDown/KeyUp events of the TextBox. Instead, if you do use editing based on keystrokes, use the TextInput TextInputStart and TextInputUpdated events.

 Note that, depending on the IME mode in use and the control you’re interacting with, some of these events may be handled by
 the control and not otherwise bubbled up.

	

Tip

 In Windows 7, to change your keyboard layout to US International (if you’re in the US) to test basic IME, use Start > Control
 Panel > Region and Language. Then select the Keyboards and Languages tab and click Change Keyboards.

 If you already have the United States - International keyboard listed, select it. Otherwise click Add... to add it, and then
 select it from the list.

 From there, you can type diacritic characters. For example, to type the é in Claudé you’d select the US International keyboard
 from your system tray, then type the single quote followed by the letter e.

 	

In addition, if you want finer control over IME in your application, use the InputMethod class and the attached properties it exposes. For space reasons and to stay on topic, we won’t cover those numerous options,
 but we’ll look at an example of the differences between the keyboard and text input events.

 To do that, you may want to set the InputMethod.IsInputMethodEnabled to true on your TextBox. While the underlying value of the IsInputMethodEnabled property is True, its actual value is influenced by the state of available input methods at runtime. Setting it to true isn’t
 essential but helps convey your intent, especially if you’ll be handling IME events in code.

 Listing 9.11 shows the difference between the keyboard events and the text input events. For example, to type the accented e in the first
 word, I must hit Shift-6 and then the letter e.

 Listing 9.11. Wiring up the TextInputStart event

 Result:

 [image:]

 Debug window output:

 Down:A, TextInputStart:a, Up:A
Down:R, TextInputStart:r, Up:R
Down:R, TextInputStart:r, Up:R
Down:Shift, Down:D6, Up:D6, Up:Shift, Down:E, InputStart:ê, Up:E
Down:T, TextInputStart:t, Up:T,
Down:E, TextInputStart:e, Up:E,
Down:Z, TextInputStart:z, Up:Z

 XAML:

 [image:]

 C#:

 [image:]

 If you have an IME installed on your system or have changed your keyboard layout to do so, you’ll be able to type diacritic
 characters using an IME.

 If you live and work in the United States, it can be tempting to create applications that work only with US keyboards. But
 if you want to move your product to an international market or at least understand what’s necessary to support those markets,
 you’ll want to read up on internationalization, including input method editing on Windows and the Mac.

 Input method editing is something not every application needs. However, it’s a staple of Windows development. Another staple
 of modern application development is the clipboard. Think about how isolated our applications would be if we didn’t have a
 way to get data from one to another! Luckily, Silverlight allows you to programmatically access the clipboard to move text
 between applications.

 9.4.3. Copying text with the Clipboard API

 Silverlight 4 added a new API for use with transferring text via the clipboard. Though currently limited to just Unicode strings,
 the clipboard is an excellent way to enable your Silverlight application to integrate with the rest of the applications on
 the hosting system.

 The Clipboard object is your Silverlight application’s interface to the system clipboard. In this section, we’ll take a quick look at the
 clipboard API and its capabilities, starting with the three member functions of the Clipboard class. Table 9.3 shows the static member functions exposed by this object.

 Table 9.3. The Clipboard type’s static member functions

 	
 Member

 	
 Description

	ContainsText
 	Queries the clipboard and returns true if the clipboard contains compatible text

	GetText
 	Returns the Unicode text from the clipboard

	SetText
 	Places Unicode text on the clipboard

Clipboard exposes static members, so you don’t need to instantiate it to use it. For example, to place text on the clipboard, simply
 call Clipboard.SetText:

 Clipboard.SetText("This text will be on the clipboard.");

 Similarly, to retrieve text this or another application placed on the clipboard, call the GetText method:

 string text = Clipboard.GetText();

 Note that, in both cases, you’ll receive a security exception if you’re running in the standard (not elevated) permissions
 mode and either didn’t initiate the action from a user event or the user didn’t allow access to the clipboard when prompted
 to do so. Figure 9.7 shows the prompt the user receives when you initiate a clipboard operation.

 Figure 9.7. The clipboard access prompt. When running in standard permissions (sandboxed) mode, Silverlight displays this when you attempt
 to access the clipboard from the application.

 [image:]

 The prompt helps to protect the user from potentially malicious applications that may try to steal data from the clipboard
 or fill the clipboard with garbage.

 One thing you probably won’t want to allow on the clipboard is a user’s password. For that and for masking reasons, Silverlight
 includes a specialized PasswordBox.

 9.4.4. Collecting sensitive data

 Silverlight provides a special control called PasswordBox. This element is designed to hide information from someone who may be lurking behind a user. This is accomplished by hiding
 the contents of a PasswordBox behind asterisks (*), which serve as familiar reminders to end users that they’re entering a password. But, if you’d like
 to use something other than an asterisk, you’re free to use any character you like by setting the PasswordChar property. This property, as well as the syntax of a PasswordBox, is shown in listing 9.12.

 Listing 9.12. The syntax for the PasswordBox—note the mask used in each field

 Result:

 [image:]

 XAML:

 [image:]

 This example shows a default PasswordBox and a custom PasswordChar to show how Silverlight takes a small step beyond the masking approach used in HTML. Still, once a user enters information
 into these fields, you’ll probably need to retrieve it. This is possible thanks to the Password property.

 The Password property is a string that represents the value in a PasswordBox. This property can be programmatically set and retrieved. Interestingly, this value can’t be copied or cut at runtime by
 a user. This restriction is designed to ensure a user’s password remains protected, short of hacker heroics such as wiring
 a debugger to the code and inspecting values. To provide this feature, along with the general input control features, the
 PasswordBox needs to derive from the Control class instead of the TextBox class.

 The PasswordBox and TextBox are two controls used for capturing user input. However, they are limited in how the text can be formatted. Unlike the TextBox, the RichTextBox allows the user to have a true document experience with multiple fonts and styles.

 9.5. Entering and displaying rich text

 From email composition to document creation, we’ve gotten so used to the simplicity of creating text with multiple fonts,
 colors, and font styles that, when we see a multiline text box with no formatting control, it simply looks strange. Prior
 to the introduction of the RichTextBox in Silverlight 4, Silverlight had no way of allowing the user to enter formatted text.

 The RichTextBox follows many of the same patterns as the regular TextBox but enhances it with the ability to store the formatting information such as fonts and colors. The RichTextBox also takes it one step further by allowing the embedding of images and other UI elements, even controls, into the text.

 In our tour of the RichTextBox control, we’ll look at how to format text using different fonts and colors, how to embed hyperlinks in rich text, and even
 how to embed other controls such as the Button and ComboBox. As you’ll want your users to actually work with your text, we’ll then look into what it takes to work with the text the
 user has selected or text you select from code and then change its attributes.

 As the main reason the RichTextBox exists is to enable the display and editing of text with multiple fonts, colors, and other visual attributes, we’ll start
 there.

 9.5.1. Formatting and inline elements

 The RichTextBox enables you to format text and add elements inline. This includes formatting tags, text spans, other controls, and—perhaps
 the most important and most basic of these elements—the Paragraph.

 Paragraphs

 The Paragraph element enables you to break the text in the RichTextBox into one or more separate paragraphs. Each paragraph can have its own formatting independent of the overall control.

 Listing 9.13 shows three different paragraphs, each with separate formatting independent of the overall control’s formatting.

 Listing 9.13. RichTextBox showing paragraphs with different formatting and alignment

 Result:

 [image:]

 XAML:

 <RichTextBox x:Name="RichText"
 Width="350"
 Height="200">
 <Paragraph>
 This is the first paragraph of the text I'm going to place
 in this RichTextBox. It has two sentences. Actually, it has
 three sentences.
 </Paragraph>
 <Paragraph TextAlignment="Justify"
 FontWeight="Bold">
 This is the second paragraph, and its text is set to
 justify, as you can tell from the pretty screen shot.
 Please note that the last sentence in the paragraph is not
 justified.
 </Paragraph>
 <Paragraph TextAlignment="Right">
 One ring to rule them all, one ring to bind them. One ring
 to bring them all, and in the darkness bind them, in the
 land of Mordor where the Shadows lie.
 </Paragraph>
</RichTextBox>

 Listing 9.13 shows several interesting features. First, the text in a RichTextBox can be easily broken apart into separate paragraphs. The second feature is that each of those paragraphs can have formatting
 separate from the others. In this case, I used different text alignment on each of them and also set the middle paragraph
 to be bold.

 In addition to setting the styles at a paragraph level, you can surround blocks of text with formatting markup, called inline styles.

 Inline Styles and Spans

 If formatting could be applied only at the paragraph level, the RichTextBox wouldn’t be all that useful. Luckily, formatting can be applied at a much finer-grained level using inline formatting elements
 such as Bold, Italic, and the versatile Span. Listing 9.14 shows several formatting approaches in a single paragraph.

 Listing 9.14. Inline styles and spans in the paragraph text

 Result:

 [image:]

 XAML:

 <RichTextBox x:Name="RichText"
 Width="350"
 Height="125">
 <Paragraph TextAlignment="Left">
 One <Bold>ring</Bold> to rule them all,
 one ring to find them. <Italic>One</Italic> ring to bring them all,
 and in the darkness bind them, in the land of
 Mordor where the Shadows lie.
 </Paragraph>
</RichTextBox>

 Listing 9.14 shows the use of the Bold and Italic inline styles, as well as Span. Bold and Italic are handy shortcuts, but Span is the most flexible of the three, supporting myriad formatting options. Span itself inherits from Inline and from that gets a number of useful properties. Section 9.2.1 goes into detail about the commonly used properties shared by the Span, TextBlock, and Run elements.

 In addition to these inline styles, the RichTextBox also supports LineBreaks via the LineBreak element:

 One ring to rule them all,<LineBreak />
one ring to find them.<LineBreak />

 As expected, the LineBreak element causes the text following it to start on a new line. You can think of the paragraph tag like the HTML <p></p> pair, and the LineBreak element much like the HTML
 tag.

 One thing that the other text-display controls can’t include is a hyperlink. The RichTextBox is currently unique in its ability to display active Hyperlink controls.

 Inline Hyperlinks

 The RichTextBox has the ability to host any UIElement, but it has first-class support for hosting Hyperlinks without requiring any special containers or other work on your part, while keeping them active even for editable text. This
 makes it easy to display HTML-like text with embedded links.

 For example, listing 9.15 shows two Hyperlink elements embedded in the RichTextBox control.

 Listing 9.15. Hyperlink support in the RichTextBox

 Result:

 [image:]

 XAML:

 <RichTextBox x:Name="RichText"
 Width="350"
 Height="125">
 <Paragraph TextAlignment="Left">
 One ring to <Hyperlink NavigateUri="http://manning.com">rule
 them all, one ring to find</Hyperlink> them. <Italic>One
 </Italic> ring to bring them all, and in the darkness bind them,
 <Hyperlink NavigateUri="http://10rem.net">in
 the land of Mordor where the Shadows lie.</Hyperlink>
 </Paragraph>
</RichTextBox>

 Listing 9.15 shows the use of two hyperlinks embedded in the paragraph text. Note how the hyperlinks also have support for cleanly nesting
 Spans and other formatting elements.

 The Hyperlink control in the RichTextBox is a fully functional Silverlight Hyperlink control, but it’s not the same as the one you’d place in regular XAML. Instead, it derives from Span. You can still wire up Click events, supply a NavigateUri as I did here, and otherwise do everything you’d expect to be able to do with a Hyperlink. The Hyperlink control itself is covered in more detail later in this chapter.

 In addition to the Hyperlink control, RichTextBox includes support for hosting any other UIElement through the use of InlineUIContainer.

 Inline Images and Elements

 The RichTextBox control allows you to embed any UIElement inline into the text, as long as you contain it in an InlineUIContainer. The catch is that the elements won’t be active; they’ll only show their disabled representation unless the RichTextBox is set to read-only mode via the IsReadOnly property as shown in listing 9.16.

 Listing 9.16. A mad-lib of a RichTextBox showing embedded controls

 Result

 [image:]

 XAML:

 [image:]

 As listing 9.16 shows, you can do some pretty neat things with the inline UIElements, including add items with effects such as drop shadows. The example shown may be a real dog’s breakfast of a UI, but the
 ability to embed controls of any sort into a rich text interface really opens up the options for creating your own UI, especially
 for scripted questionnaires and similar free-flowing interfaces.

 Getting back to basic text manipulation, one thing you may need to do is programmatically select text or work with a selection
 a user has made. The nature of rich text makes this slightly more complex than plain text, as we’ll see in the next section.

 9.5.2. Working with selected text

 Programmatic manipulation of the RichTextBox beyond simply reading or writing the entire contents requires that you work with selections. The selections may be set in
 code or you may be taking an action based upon a selection the user has made. Either way, the methods are consistent.

 Selection

 There may be times when you need to programmatically select content in the RichTextBox. For example, if you’re doing a search and replace, the Find Next function should search the content for the next occurrence of the search term and then automatically select it. The RichTextBox exposes the Selection property, which has a Select function to support programmatic selection.

 The Select method takes two parameters, both of type TextPointer: the anchorPosition and the movingPosition. If you think about how you select text with a mouse, you start with one point that stays fixed in place, and you move the
 mouse cursor, changing the selection relative to that point. Similarly, the anchorPosition remains fixed and the movingPosition is the second or movable point.

 Figure 9.8 shows the three main data points of interest. The first, the Selection.Text property, is a public read/write property that enables us to read or modify the text inside the two points.

 Figure 9.8. RichTextBox selection information, assuming the user selected left to right, starting with the first T in “turtles”

 [image:]

 The anchorPosition is the place where you or the user (or your code) started the selection. The movingPosition is the end of the selection.

 Note that, unlike the case with the TextBox, we’re not dealing with numeric values for the start and end points. Instead, we have pointers to the text. Though this can
 make it slightly more complex to work with, it both supports the addition of nonvisible markup and makes it more flexible
 when adding text between the points and the substitution character count isn’t 1:1 with the original.

 Listing 9.17 shows how to use the anchorPosition and movingPosition TextPointer objects to programmatically select text in the control.

 Listing 9.17. Programmatically selecting text in the RichTextBox

 Results:

 [image:]

 XAML:

 <StackPanel>
 <RichTextBox x:Name="RichText" Margin="10"
 Width="350" Height="150">
 <Paragraph TextAlignment="Left">
 <Bold>We're off to outer space</Bold><LineBreak />
 We're leaving Mother Earth<LineBreak />
 To save the human race<LineBreak />
 <Italic>Our Star Blazers</Italic>
 </Paragraph>
 <Paragraph TextAlignment="Left">
 <Bold>Searching for a distant star</Bold><LineBreak />
 Heading off to Iscandar<LineBreak />
 Leaving all we love behind<LineBreak />
 Who knows what danger we'll find?
 </Paragraph>
 </RichTextBox>

 <Button Content="Select Next 10" Click="SelectNext_Click"
 Width="150" Margin="10" />
</StackPanel>

 C#:

 [image:]

 The code in listing 9.17 takes the Selection.Start, which by default is where the caret is currently positioned, and adds 10 characters to it and ends the selection. The end
 result is the visible text selection.

 Selecting text itself is interesting, but it’s more interesting to actually manipulate the contents of the selection.

 Changing Selection Properties

 Once either the user or code has made a selection, you can alter the properties of that selection via code. For example, you
 can change the font face, the weight, the foreground, and other properties for the selection.

 If you want to set the foreground color of the 10 characters to Red, simply alter the code in listing 9.17 to add the following ApplyPropertyValue call, passing the Foreground dependency property and a brush with the color red:

 RichText.Selection.Select(start, end);
RichText.Selection.ApplyPropertyValue(
 TextElement.ForegroundProperty, new SolidColorBrush(Colors.Red));

RichText.Focus();

 Similarly, you can call GetPropertyValue to get the value of a dependency property for the selected text.

 Replacing Text

 Once you have a valid selection, you can also replace the text with your own plain text. The Selection.Text property is a two-way street: you can read the text that’s in the selection and you can also assign new text to it. Again modifying listing 9.17, this will replace the 10 characters with haha!!:

 RichText.Selection.Select(start, end);
RichText.Selection.Text = "haha!!";

RichText.Focus();

 Replacing text is a good common operation, but what about inserting new text without overwriting something else? For that,
 you’ll want to use the Selection.Insert method.

 Inserting New Text

 In addition to replacing the selected text, you can insert new text anywhere you create a selection start point. In this example,
 we’ll modify listing 9.17 and insert text wherever the caret happens to be positioned:

 private void SelectNext_Click(object sender, RoutedEventArgs e)
{
 Run run = new Run();
 run.Text = "This is some text we're going to insert";
 RichText.Selection.Insert(run);

 RichText.Focus();
}

 While Runs can be implicit in the XAML, the Insert method requires a Run element, or something that derives from Run. You can click the button as many times as you’d like and it’ll happily insert new text wherever the caret is positioned.

 Retrieving Rich Text as XAML

 This being Silverlight, you’d expect there to be some way to get the XAML representation of the selected text—and you’d be
 right. The Selection type exposes a Xaml property that returns the XAML for the selection. Modify listing 9.17 to include the following code to see the XAML representation of the text:

 RichText.Selection.Select(start, end);
Debug.WriteLine(RichText.Selection.Xaml);

RichText.Focus();

 If you wish to get the XAML for the entire control, first call the SelectAll method and then retrieve the XAML.

 The RichTextBox control is a powerful control that allows you to create applications with serious text editing requirements. It builds upon
 the concepts from the TextBlock and TextBox, and combines them with inline formatting, Hyperlinks, and UIElements to create a versatile Silverlight control for both the display and editing of rich text.

 9.6. Summary

 Text handling is one of the most basic and important functions of any presentation layer. Silverlight has a complete text
 stack, including support for subpixel rendering and ClearType and grayscale font smoothing. Silverlight also includes the
 TextBlock element, which may be used to display read-only text.

 Though typically used for things such as field labels and description paragraphs, the TextBlock supports multiple Runs of text, each with their own distinct attributes.

 Any text element in Silverlight can take advantage of embedded fonts. Embedded fonts are useful for situations where you have
 a custom font or one that’s unlikely to be on end-user machines. Rather than compromise and use a different font, you can
 embed the font or a subset of the glyphs in the font directly into your application.

 Silverlight has several ways for entering and displaying text. There’s significant overlap between them, but each has its
 own niche where it performs best. Table 9.4, adapted from information from MSDN, shows how you should think of each control or element when trying to decide between
 them.

 Table 9.4. Recommended uses for the various text display and editing elements

 	
 Scenario

 	
 Recommended element

	Display unformatted text in a single font
 	TextBlock

	Display formatted text including paragraphs, hyperlinks, images, multiple fonts and styles
 	RichTextBox

	Enter or edit plain text, such as would be used for data entry of a single field like a person’s name
 	TextBox

	Enter or edit formatted text including paragraphs, hyperlinks, images, multiple fonts and styles
 	RichTextBox

	Enter sensitive information, such as a password, which must be masked for display
 	PasswordBox

Choosing the correct one for any given situation means balancing the runtime resources required with the features desired.
 In general, the elements from lightest to heaviest in terms of runtime resource requirements are:

 	TextBlock

 	TextBox

 	RichTextBox

So, although replacing all the TextBlock elements in your application with read-only RichTextBox controls in order to allow for selectable formatted text may seem appealing, you need to test it in your specific scenario
 and see if the runtime trade-off is worth the additional functionality. All three controls can display multibyte and right-to-left
 text and support the use of input method editors (IMEs).

 The TextBlock lives in the System.Windows.Controls namespace but, unlike TextBox and RichTextBox, it’s not actually a Control. This keeps it lightweight but means that some properties have to be duplicated between TextBlock and System.Windows.Control.Control. In the next chapter, we’ll look at the various types of controls in the Silverlight runtime and how they all fit together.

Chapter 10. Controls and UserControls

 This chapter covers

 	Understanding the control base types

 	Working with button controls

 	Working with items controls

 	Creating your own UserControls

 	Implementing dependency properties

In the previous chapter, we covered the basics of text, including how to display and edit it. Two of the items discussed—the
 TextBox and RichTextBox—are both actually controls. The TextBlock isn’t.

 If you’re coming from another technology, you may assume that anything you can see or interact with is a control, and you’d
 be partially right. Interaction generally requires a Control but, to see something such as a TextBlock, it requires only that it be a UIElement (covered in chapter 6).

 In this and the following sections, we’ll look at the base control types Control and ContentControl and then dive into the various types of controls, including Button controls and ItemsControls. In your Silverlight travels, you’ll find that understanding these categories of controls will be pretty much all you need to make sense of any new control you run across.

 Toward the end of this chapter, we’ll also take our first trip into creating controls of our own. In this case, we’ll follow
 the simple reuse model: the UserControl. In chapter 24—once we’ve covered binding, resources, styles, and templates—we’ll again revisit creating controls, but with a more robust
 custom control model.

 We’ve already covered the UIElement and FrameworkElement in chapter 6, so let’s continue our walk up the stack and take a look at the base Control type.

 10.1. Control

 Almost every element you’ll deal with that accepts input in some form derives from Control. Even the pages and user controls you create in your application ultimately end up deriving from this type. It’s also the
 lowest-level type you can typically get away with when trying to share styles (see chapter 23) between different elements.

 The System.Windows.Controls.Control abstract class derives from FrameworkElement. In addition to a number of protected methods that the derived controls can override to provide additional functionality,
 Control adds a number of new public properties and methods. We’ll break these up into several logical groups and cover them separately,
 starting with appearance, then navigation and state, and finally the support for control templating.

 10.1.1. Appearance

 Controls are visual by definition. For that reason, several properties can be shared as a baseline implementation for anything
 visual and potentially interactive. The appearance-related properties for control are shown in table 10.1.

 Table 10.1. Visual style properties for the Control abstract type

 	
 Member

 	
 Description

	Background
 	The brush used to paint the background

	BorderBrush
 	The brush used to paint the border

	BorderThickness
 	The thickness of the border line

	Foreground
 	The color used for foreground elements

	Padding
 	The amount of space to reserve between the control’s exterior and interior

	HorizontalContentAlignment
 	Controls how the internal control content is aligned

	VerticalContentAlignment
 	Controls how the internal control content is aligned

The Background property is used to hold the background brush of the control. This can be a simple color or a complex gradient. Similarly,
 the BorderBrush property does the same for the brush used to paint the border. The BorderThickness is a size to be used to control the pen weight or thickness of the border for the control. The Foreground brush should be used when displaying text or other content for which the user hasn’t provided a specific color. The last
 three—Padding, HorizontalContentAlignment, and VerticalContentAlignment—all control how the content will be displayed.

 It’s important to know that no specific user interface is implied by these properties. The control author (or person creating
 the style/template) is required to apply these properties to specific elements in the template. Common sense would say that
 a BorderBrush should control the color of the outline of the control, but nothing enforces that.

 Two other common traits that controls share is the ability to be navigated to via mouse and keyboard and set as either enabled
 or disabled.

 10.1.2. Navigation and state

 Silverlight controls also support Tab-key navigation as well as manual focusing via the mouse or API. The properties and methods
 that support that are shown in table 10.2.

 Table 10.2. Navigation and state members for the Control abstract type

 	
 Member

 	
 Description

	IsEnabled
 	Set to True if this control is in a state where it can accept user interaction

	IsTabStop
 	True if the user can tab into this control

	TabIndex
 	The tabbing position of this control, relative to its peers in the same panel

	TabNavigation
 	Controls how the Tab key navigates in this control. It can either cycle, be local, or be a one-stop navigation. More on this
 shortly.

	Focus method
 	Calling this method attempts to set focus to the control.

IsEnabled controls the enabled state for the control. The expected behavior is that, if IsEnabled is false, the control won’t accept any keyboard, mouse, or other human input and isn’t considered a tab stop. It should also
 display itself using a faded or grayed-out look to convey this state.

 The Focus method may be used to attempt to manually set focus to a control via code. If the control can’t receive focus (for example,
 IsEnabled is False), the method will return false.

 Three properties control tab navigation for the control. The first—IsTabStop—controls whether the Tab key can be used to access the control. The TabIndex controls the order within the container that the Tab key will navigate between controls. Lower-numbered controls come earlier
 in the tabbing sequence. Finally, the TabNavigation property controls how tabbing works for elements hosted inside this control. The possible values and their meanings are listed
 in table 10.3.

 Table 10.3. Possible values for the TabNavigation property

 	
 Member

 	
 Description

	Local
 	Your control is tabbed into. The next tab starts going through the child elements. Once the last child element is focused
 and the user hits Tab, the next element outside of your main control receives focus.

	Cycle
 	Once this control is tabbed into, individual controls inside this control may be navigated to using Tab. When the last child
 control has been reached and the user hits Tab, the first one will receive focus again. Doing this effectively traps the user
 inside your control until he clicks elsewhere.

	Once
 	Individual child elements other than the first one don’t receive focus via the tab control.

If you were to create a composite control, such as the LockableListBox at the end of this chapter, Local tab navigation would be the expected behavior. But, if you created a ListBox-like control, you’d expect the Once behavior because you’d use the arrow keys to navigate between the individual items.

 The next key area of support in the Control type is templating. Templates give Silverlight controls their appearance and user experience.

 10.1.3. Templating

 One key feature that the controls add over the base type is the ability to template the control. As we’ll learn in section 23.3, a template is a definition for the visual representation of the control. By default, controls in Silverlight are defined by their model
 and functionality. The user interface elements can be completely replaced; they’re considered lookless controls. Table 10.4 shows the properties and methods that support templating.

 Table 10.4. Styling and templating properties for the Control abstract type

 	
 Member

 	
 Description

	DefaultStyleKey
 	This is the key of the style to be used when no other style is assigned. Typically, it’s set to the type of the class and,
 therefore, uses an implicit style.

	Template
 	Reference to the template that makes up the control’s visuals

	ApplyTemplate method
 	It attempts to rebuild the visual tree from the template. It returns true if succeeded.

The Template property enables this flexible control templating. The DefaultStyleKey property is used by control authors to wire up the control to a default style and template, something which may be overridden
 by consumers of the control. The ApplyTemplate method is used to rebuild the visual tree for the control, using the supplied template.

 Control also supports the FontFamily, FontSize, FontStretch, FontStyle, and FontWeight properties we covered in the chapter on text. For more detail, please refer back to section 9.2.

 It’s rare that you’ll create new controls that derive directly from UIElement or FrameworkElement. Instead, you’ll usually derive from Control or one of its descendents such as ContentControl. ContentControl provides functionality above and beyond Control by enabling the containment and templating of arbitrary content.

 10.2. ContentControl

 In older technologies, the content of a control was usually very specific: a button could hold a text string in a caption
 property; an ImageButton could hold an image and text split across two properties; and so forth. Silverlight and WPF demanded a more flexible content
 model where a control could indicate that it supports the inclusion of arbitrary content rather than a specific atomic item
 of known type. From this requirement, the ContentControl was born.

 ContentControl is a descendent of Control. As such, it inherits all of the properties, methods, and behaviors Control provides. It also adds the key concept of Content. Table 10.5 shows the two content-related properties that ContentControl adds to the Control type.

 Table 10.5. Properties for the ContentControl abstract type

 	
 Member

 	
 Description

	Content
 	Assign the content (anything that can be rendered) to this property. If the content isn’t a UIElement and there’s no ContentTemplate,
 Silverlight will call the object’s ToString method to display it.

	ContentTemplate
 	This is a data template used to display the content assigned via the Content property. We’ll cover more on data templates
 in chapter 11 when we discuss binding.

The Content for a ContentControl can be any arbitrary object. But, if the type isn’t something that can be natively added to the visual tree (a UIElement), Silverlight will call the object’s ToString method to display it. This allows you to add any other Silverlight visual elements or a string value without having to do
 any additional work. If you’ve wondered why a button can have a simple string or a complex tree of elements as the content
 property, this is why.

 The ContentTemplate is a data template that can be used to format the content. Consider that you may assign a complex object, such as a Person,
 to the content property. The ToString approach will leave you with something like MyLib.MyNamespace.Person as the actual text—probably not what you want. The ContentTemplate uses binding to format the object for display. We’ll cover data templates in detail in chapter 11.

 Table 10.6 shows the flexibility of the content control even without relying on a content template. Note how you can have anything inside
 the button, including a TextBox and a video. You can even type in the TextBox and watch the video because they’re real, live elements.

 Table 10.6. The flexibility of a ContentControl as displayed by three buttons

 	
 Button

 	
 XAML

	

 [image:]
 	
 <Button Width="150" Height="75"
 Content="Hello!" />

	

 [image:]
 	
 <Button Width="150" Height="75">
 <Button.Content>
 <TextBox Height="24" Text="TextBox"
 Width="100" />
 </Button.Content>
</Button>

	

 [image:]
 	
 <Button Width="200" Height="100">
 <StackPanel>
 <TextBlock Text="Playing"
 HorizontalAlignment="Center" />
 <MediaElement Height="75" Width="125"
 Stretch="Uniform"
 Source="PeteAtMIX10ch9.wmv" />
 </StackPanel>
</Button>

This table begins to show the flexibility provided with a ContentControl, in this case a Button. The first example shows a simple string for content. The second shows the explicit setting of the content property. This
 is optional, as we see in example three, where the Content property is omitted but the StackPanel is still assigned to it.

 As you progress through this book, you’ll learn how to make the contents of a ContentControl look exactly how you want. For now, note how the innards of a ContentControl are specified through the Content property.

 Most controls that inherit from ContentControl use a ContentPresenter to do that actual display work in their control template. We’ll cover more about templates in section 23.3 but, for now, a brief introduction to the ContentPresenter is in order.

 10.2.1. The ContentPresenter

 The ContentPresenter is a descendent FrameworkElement that exists primarily to support the display of content in a ContentControl. Rather than require you to put a TextBlock, Image, or other strongly typed content presentation element into your control template, you can use a ContentPresenter to bind to and display the content from the Content property.

 Table 10.7 shows the properties of the ContentPresenter element.

 Table 10.7. Properties for the ContentPresenter element

 	
 Member

 	
 Description

	Content
 	The value assigned from the same property of a ContentControl

	ContentTemplate
 	The template value assigned from the same property of a ContentControl

Without the ContentPresenter, the ContentControl can’t do much of anything exciting. The ContentPresenter holds the logic to try and render the object passed into it. In fact, in a typical control template, the ContentPresenter simply is assigned values from the ContentControl via template binding, as seen here:

 <ContentPresenter
 Content="{TemplateBinding Content}"
 Margin="{TemplateBinding Padding}"
 HorizontalAlignment="{TemplateBinding HorizontalContentAlignment}"
 VerticalAlignment="{TemplateBinding VerticalContentAlignment}" />

 We’ll cover TemplateBinding in chapter 23 when we work with control templates. For now, understand that TemplateBinding is used to bind an element in XAML to a dependency property in the control’s implementation. For example, the Content property of the ContentPresenter in the preceding code is bound to the Content property of the containing ContentControl.

 Together, Controls, ContentControls, and the associated ContentPresenter make up the core of the control tree in Silverlight. One other type of control, the ItemsControl, is equally as important. But before we look at the various types of ItemsControls, let’s look at some concrete implementations of ContentControls—specifically, those based on Button.

 10.3. Button controls

 A button is a type of control that responds to a single-click event. This event can be triggered by either a mouse or a keyboard.
 With a mouse, a user can click a button by pressing and releasing the left mouse button while hovering over it. With the keyboard,
 a button can be clicked by pressing Enter or the spacebar when the button has the focus. Either way, the general implementation
 of a button is spread across two classes, ButtonBase and ContentControl.

 ButtonBase is an abstract base class used by all buttons in Silverlight. This class provides three members that are directly related
 to a user’s interaction with a button: IsPressed, Click, and ClickMode. IsPressed returns whether a button is currently depressed. By default, this bool property is set to false. If a user clicks and holds a button, this property will change to true. But, once a user releases the mouse button, the IsPressed property will change back to false. At that point, the Click event will fire, assuming the default ClickMode is used.

 The ClickMode property specifies when the Click event will fire. Setting this property can be useful if you want to fully customize a user’s experience with your buttons.
 This experience can be set to any of the options available within the ClickMode enumeration. These options are shown and described in table 10.8.

 Table 10.8. The options available within the ClickMode enumeration

 	
 Option

 	
 Description

	Hover
 	Fires the Click event when the user moves the mouse pointer over a button

	Press
 	Causes the Click event to execute when the user depresses a button

	Release
 	Triggers the Click event when the user releases the left mouse button within the bounds of the button
 This is the default ClickMode used for a button.

The ClickMode enumeration can be used to define a small part of the behavior of a button. The rest of the behavior is defined in the ButtonBase class itself.

 As the default property for the content control, you can omit the explicit <Button.Content> reference and simply nest the content as shown in the third example in the table. This property is available on all ContentControl elements, a category that naturally includes all ButtonBase elements such as the Button, HyperlinkButton, RadioButton, and CheckBox elements.

 10.3.1. The Button

 The traditional Button is a simple ContentControl that a user can click to perform an action. This control is defined by the Button class, which derives directly from the ButtonBase class. The Button automatically exposes the Click event. The thing that makes the Button class special is the default appearance it creates around the Content. This appearance and the syntax of a Button are shown in listing 10.1.

 Listing 10.1. The syntax for a button

 Result:

 [image:]

 XAML:

 <Button x:Name="myButton" Content="Save" Height="30" Width="90" />

 As you can see, the buttons in table 10.6 are slightly more complex than the one shown in this example, but it’s intended to show only the basic syntax and look of
 a Button. This appearance includes a small container that makes a Silverlight Button look similar to the buttons seen in other technologies. This container is designed to hold a Button element’s Content. Occasionally, you may want this Content to behave more like a hyperlink. For these situations, you should look to the HyperlinkButton.

 10.3.2. The HyperlinkButton

 The HyperlinkButton control is designed to create a button that looks and behaves like a hyperlink. This behavior is provided through two publicly
 visible properties called NavigateUri and TargetName, which are shown here:

 <HyperlinkButton x:Name="myHyperlinkButton"
 Content="Search in a New Window"
 NavigateUri="http://www.live.com"
 TargetName="_blank" />

 The HyperlinkButton control uses the NavigateUri property to determine which page to load. By default, this Uri will be loaded in the current window, forcing your Silverlight application to unload. As you can imagine, this side effect
 may not be desirable. But, you can take control of this behavior with the TargetName property.

 The TargetName property is a string that represents the name of the frame or window to load the NavigateUri within. By default, the TargetName value will be an empty string. You can use any of the values in table 10.9 to create the intended experience.

 Table 10.9. The acceptable options for the TargetName property

 	
 Target Value

 	
 Description

	_blank,_media, or search
 	Launches the URL specified in the NavigateUri property in a new browser window

	_parent,_self, or top
 	Loads the URL specified in the NavigateUri property in the current browser window

This table describes the values that can be assigned to the TargetName property. If you happen to assign an unrecognized value to the TargetName property, one of two things will happen. If the value has one or more whitespace characters, an InvalidOperationException will be thrown. Alternatively, if the TargetName doesn’t have any whitespace characters, the NavigateUri will load in a new window. It’s important to remember that, despite its behavior as a hyperlink, the HyperlinkButton is still a type of button.

 The HyperlinkButton class derives from the ButtonBase class; it still acts like a button and supports the Click event. In the case of a HyperlinkButton, the Click event will fire before the NavigateUri is evaluated so you can dynamically change the location of the NavigateUri just before it gets loaded. In addition, this event can be useful for performing cleanup operations if you’re redirecting
 the user away from your Silverlight application.

 10.3.3. The RadioButton

 A RadioButton represents a choice within a group of options. For instance, imagine having to choose your favorite pizza topping or flavor
 of ice cream. Each of these situations requires one and only one choice to be selected. To properly deliver this kind of functionality,
 you need to familiarize yourself with the selection and grouping behaviors of the RadioButton.

 Radiobutton Selection

 A RadioButton is a kind of ToggleButton. A ToggleButton represents a button that can change states. For a RadioButton, this state can change between a checked state and the default unchecked state. The state can be set at design time through the Boolean-based IsChecked property, the value of which affects both behavior and appearance, as shown in listing 10.2.

 Listing 10.2. The default appearances of a checked and unchecked RadioButton

 Result:

 [image:]

 XAML:

 <StackPanel>
 <TextBlock Text="What is your favorite flavor of ice cream?" />
 <RadioButton Content="Chocolate"
 IsChecked="true" />
 <RadioButton Content="Vanilla"
 IsEnabled="False"/>
 <RadioButton Content="Chocolate Chocolate" />
 <RadioButton Content="More Chocolate" />
</StackPanel>

 This example shows four answers for a single question, one of which is disabled. You can see that the first option is selected
 by default when the application starts. Note also that it’s chocolate. If it’s not chocolate, it’s not a dessert.

 Once a RadioButton has been selected, it can’t be unselected by clicking it again. A RadioButton can only be unselected by using one of two approaches: set the IsChecked property to false at runtime using code or selecting a different RadioButton within the same group.

 Radiobutton Grouping

 A grouping of RadioButton items represents the choices available for a single situation. In the previous listing, you saw a StackPanel that grouped together a couple of ice cream flavor choices. These choices were grouped because the StackPanel was the immediate parent of both of the RadioButton items. A problem begins to emerge if you add unrelated RadioButton items to the scenario. For these situations, you use the GroupName property.

 The GroupName property allows you to control how RadioButton elements are grouped together. By default, this string-typed property is set as an empty string, indicating there’s no group.
 Because of this, all RadioButton elements with a direct parent will belong to the same group. By explicitly setting this property, you can control the groupings.
 You can even do this for RadioButton elements that share the same parent, as shown in listing 10.3.

 Listing 10.3. Manually controlling RadioButton grouping

 Result:

 [image:]

 XAML:

 <StackPanel>
 <TextBlock Text="What is your favorite flavor of ice cream?" />
 <RadioButton Content="Chocolate" IsChecked="true" />
 <RadioButton Content="Vanilla" />

 <TextBlock Padding="0,15,0,0"
 Text="What is your favorite pizza topping?" />
 <RadioButton Content="Green Peppers" GroupName="pizza" />
 <RadioButton Content="Onions" GroupName="pizza" />
 <RadioButton Content="Pepperoni" IsChecked="true"
 GroupName="pizza" />
</StackPanel>

 The listing shows how the GroupName property can be used to force RadioButtons to work together. A close relative of the radio button, but one that doesn’t handle mutually exclusive choices and, therefore,
 needs no grouping, is the CheckBox.

 10.3.4. The CheckBox

 The CheckBox control enables a user to select whether an option is chosen. Unlike the RadioButton, the CheckBox control allows you to select multiple elements that belong to the same grouping so you could do something like select multiple
 pizza toppings (see listing 10.4).

 Listing 10.4. A basic CheckBox setup

 Result:

 [image:]

 XAML:

 <StackPanel>
 <TextBlock Text="Please select your favorite pizza toppings:" />
 <CheckBox Content="Green Peppers" IsChecked="true" />
 <CheckBox Content="Onions" />
 <CheckBox Content="Pepperoni" IsChecked="true" />
</StackPanel>

 Selecting multiple CheckBox elements at the same time is possible because the CheckBox isn’t bound to a specific group. In fact, the CheckBox does little more than extend the ToggleButton class. Because the CheckBox does extend the ToggleButton class, you can use three-state checkboxes by switching the IsThreeState bool property to true. What happens to the IsChecked property? Well, this property is actually a nullable type so it also supports three states. These states and the look of
 a three-state CheckBox are shown in listing 10.5.

 Listing 10.5. Using three-state mode with the CheckBox control

 Result:

 [image:]

 XAML:

 <StackPanel>
 <CheckBox IsThreeState="True" IsChecked="False" Content="Unchecked" />
 <CheckBox IsThreeState="True" IsChecked="True" Content="Checked" />
 <CheckBox IsThreeState="True" IsChecked="" Content="Indeterminate" />
</StackPanel>

 Listing 10.5 shows the look and syntax of a three-state CheckBox. The fact that the CheckBox can support three different states demonstrates one way in which Silverlight is an improvement over HTML. Another improvement
 is found in the flexibility of the ContentControl class in general. This class was discussed at the beginning of section 10.2 and can be used in the CheckBox, RadioButton, HyperlinkButton, and Button controls. In addition, the flexibility of the ContentControl can be used with Silverlight’s item controls.

 In this section, we discussed the controls derived from the ButtonBase class that represent buttons available within Silverlight. Often, these controls are used to trigger an action. Occasionally,
 you may need to provide to present a list of items rather than a single item. This type of functionality can be delivered
 through an ItemsControl.

 10.4. ItemsControls

 An ItemsControl is a type of control designed to show a collection of items. This control exposes the collection of items through a publicly
 visible property called Items. This property represents an ItemsCollection where each element in the collection is some kind of object. This object can be added at design time through XAML or at runtime through code. Three controls in the Silverlight API are descendents
 of the ItemsControl class: the ListBox, the ComboBox, and the TabControl.

 Though you’ll most often use one of its derived classes, the base ItemsControl can be used whenever you want to present a list of items and don’t need any selected item tracking. You’ll get similar results
 from using a StackPanel but, if you need to bind items, the ItemsControl is the way to go.

 The ItemsControl adds a few properties above and beyond what you would get from a regular Control. These properties are shown in table 10.10.

 Table 10.10. Key ItemsControl members

 	
 Member name

 	
 Description

	Items
 	The collection of items to be displayed in the control

	ItemsPanel
 	The panel to be used to display the items
 By default, this is a StackPanel, but you could change it to a WrapPanel or anything else you’d like.

	ItemsSource
 	Used in binding, this is the source of the items, typically a collection.

	ItemTemplate
 	The data template used to display a single item

We’ll show these properties in use with the ListBox, ComboBox, and TabControl. But they could be just as easily used with a plain old ItemsControl.

 10.4.1. The ListBox

 The ListBox is one of the most commonly used items controls. Though much of its functionality is directly inherited from ItemsControl, it adds the important distinctions of exposing a selected item and including scrolling in its default template. This control
 enables you to show multiple items from a collection of items at the same time. If there are more items than the space allowed
 for the control, the ListBox will display scrollbars to allow scrolling through the content. An example of this scrolling feature as well as the syntax
 of a ListBox is shown in listing 10.6.

 Listing 10.6. A ListBox that displays the days of the week

 Result:

 [image:]

 XAML:

 <ListBox x:Name="myListBox">
 <ListBox.Items>
 <ListBoxItem><TextBlock Text="Sunday, June 1"/></ListBoxItem>
 <ListBoxItem><TextBlock Text="Monday, June 2"/></ListBoxItem>
 <ListBoxItem><TextBlock Text="Tuesday, June 3"/></ListBoxItem>
 <ListBoxItem><TextBlock Text="Wednesday, June 4"/></ListBoxItem>
 <ListBoxItem><TextBlock Text="Thursday, June 5"/></ListBoxItem>
 </ListBox.Items>
</ListBox>

 This ListBox uses the Items property to load options at design time. You also have the option of binding to a data source to make this list of items
 more dynamic. Binding to a data source will be covered in the next chapter. Regardless of whether you’re binding to a data
 source or defining items at design time, each item in the control is a ListBoxItem. A ListBoxItem is a type of ContentControl so you can use any visual tree you want for an item, as shown in listing 10.7.

 Listing 10.7. Using a ListBoxItem as a ContentControl

 [image:]

 [image:]

 Result:

 XAML:

 This listing shows a ListBox control with much richer ListBoxItem elements than those shown in listing 10.6. Ultimately, one of the main reasons for using a ListBox is to enable your users to select an item from it. Luckily, the ListBox exposes some properties for this.

	

 Selector controls

 The ListBox and ComboBox are two controls that inherit from Selector. Selector enhances ItemsControl by adding the SelectedIndex and SelectedItems properties, as well as the underlying infrastructure to manage them. If you want to create your own ListBox-like class, such as a dedicated carousel control or perhaps a simple menu, you should probably inherit from Selector as your starting point.

 The ItemsControl by itself can be useful to show a list of elements on a page as long as you don’t need to support the selection of one of
 those items. Note that, unlike ListBox, it doesn’t include scrolling in its presentation.

 	

The ListBox exposes two properties and an event—SelectedIndex, SelectedItem, and SelectionChanged, respectively—all of which help you handle item selection. The SelectedIndex is a zero-based int that reflects the index of the currently selected item in the ListBox. If no item is selected, this property will return –1. Even more informative is the SelectedItem property, which returns the current selection in object form. This property type is a powerful improvement over the value/text property of items in HTML. Regardless, whenever an
 item is selected, whether by the user or programmatically, the SelectionChanged event will fire. This event, as well as the SelectedItem and SelectedIndex properties, is also available on the ComboBox.

 10.4.2. The ComboBox

 The ComboBox gives users the ability to select a single option from a list of choices. These choices are visible to a user as long as
 the ComboBox is in an open state, which is set when a user interacts with a ComboBox. Alternatively, this state can be set programmatically through the IsDropDownOpen property. This bool property is by default set to false so a ComboBox starts in a compacted, closed state, as shown in listing 10.8.

 Listing 10.8. A ComboBox that has been used to select an item

 Result:

 [image:]

 XAML:

 <ComboBox x:Name="myComboBox" Height="28" Width="180">
 <ComboBox.Items>
 <ComboBoxItem><TextBlock Text="Sunday, June 1"/></ComboBoxItem>
 <ComboBoxItem><TextBlock Text="Monday, June 2"/></ComboBoxItem>
 <ComboBoxItem><TextBlock Text="Tuesday, June 3"/></ComboBoxItem>
 <ComboBoxItem><TextBlock Text="Wednesday, June 4"/></ComboBoxItem>
 <ComboBoxItem><TextBlock Text="Thursday, June 5"/></ComboBoxItem>
 </ComboBox.Items>
</ComboBox>

 Listing 10.8 shows the appearance of a closed ComboBox. As you can see, this control delivers a compact approach for displaying a list of items. In fact, this control resembles
 the DropDownList found in ASP.NET and the select element used in HTML. But, unlike those controls, each item in the ComboBox can have a fully customized appearance; each item is a ComboBoxItem, which happens to be a kind of ContentControl. This fact enables you to recreate the list shown in listing 10.7 in the more compact form of a ComboBox.

 The ComboBox also provides three members that make it unique from the other list controls. The first member is a double property called MaxDropDownHeight that allows you to customize the maximum height of the drop-down list. The second member is an event named DropDownOpened that fires when the drop-down list is shown. The third member is an event that triggers when the drop-down list closes. This
 event is called DropDownClosed. Collectively, these three members make the ComboBox special—they won’t be found on the third and final type of ItemsControl, the TabControl.

 10.4.3. The TabControl

 The TabControl is another ItemsControl available within Silverlight. This ItemsControl is designed to show multiple content items in the same physical space on the screen using a tab metaphor to switch between
 them. Each of these pieces of content is defined within a TabItem, which happens to be a ContentControl. Because of this, you can define the complete visual tree for each TabItem. Before you can do this, you must reference the System.Windows.Controls assembly. The tab-related controls are extended controls like the GridSplitter mentioned in chapter 7, so the sdk prefix will be used once again throughout this section, as shown in listing 10.9.

 Listing 10.9. The basic syntax of a TabControl

 Result:

 [image:]

 XAML:

 <UserControl x:Class="Listing10_9.Page"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:sdk="http://schemas.microsoft.com/winfx/2006/xaml/presentation/sdk"
 Width="400" Height="300">
 <StackPanel x:Name="LayoutRoot" Background="White"
 HorizontalAlignment="Left">
 <TextBlock Text="My Grocery List" />
 <sdk:TabControl x:Name="myTabControl" Height="200" Width="240">
 <sdk:TabItem>
 <ListBox>
 <ListBoxItem Content="Apples" />
 <ListBoxItem Content="Bananas" />
 <ListBoxItem Content="Grapes" />
 </ListBox>
 </sdk:TabItem>
 <sdk:TabItem>
 <StackPanel Orientation="Vertical">
 <ListBox>
 <ListBoxItem Content="Beef" />
 <ListBoxItem Content="Pork" />
 <ListBoxItem Content="Chicken" />
 </ListBox>
 <TextBlock TextWrapping="Wrap" Width="200"
 Text="NOTE: You may want to pick up some barbeque sauce." />
 </StackPanel>
 </sdk:TabItem>
 </sdk:TabControl>
 </StackPanel>
</UserControl>

 This listing shows an entire page, which includes a basic TabControl. Because TabControl is an extended control and is part of the System.Windows.Controls.dll, we’ve shown the entire page’s XAML to demonstrate the use of the ext namespace. Now that you can use a TabControl, it’s important to understand the behavior of the headers.

 Each of the tab headers in listing 10.9 is hardly visible because each header is set by a TabItem property called Header. This property represents the object used when rendering the Header, so you should consider using some UIElement such as a Panel for the Header. Listing 10.10 shows a TextBlock used for one Header and a StackPanel for the other.

 Listing 10.10. Customizing the header of a TabItem

 Result:

 [image:]

 XAML:

 <StackPanel x:Name="LayoutRoot" Background="White"
 HorizontalAlignment="Left">
 <TextBlock Text="My Grocery List" />
 <sdk:TabControl x:Name="myTabControl" Height="200" Width="240">
 <sdk:TabItem Header="Fruits">
 <ListBox>
 <ListBoxItem Content="Apples" />
 <ListBoxItem Content="Bananas" />
 <ListBoxItem Content="Grapes" />
 </ListBox>
 </sdk:TabItem>
 <sdk:TabItem>
 <sdk:TabItem.Header>
 <StackPanel Orientation="Horizontal">
 <Image Source="http://www.silverlightinaction.com/meat.png" />
 <TextBlock Text="Meats" />
 </StackPanel>
 </sdk:TabItem.Header>
 <StackPanel Orientation="Vertical">
 <ListBox>
 <ListBoxItem Content="Beef" />
 <ListBoxItem Content="Pork" />
 <ListBoxItem Content="Chicken" />
 </ListBox>
 <TextBlock TextWrapping="Wrap" Width="200"
 Text="NOTE: You may want to pick up some barbeque sauce." />
 </StackPanel>
 </sdk:TabItem>
 </sdk:TabControl>
</StackPanel>

 This shows a TabControl with two TabItem elements. Each element has a Header. Note that, if a TabItem has its Header property set, the HasHeader property of the TabItem will change to true. This bool property defaults to false and is useful in the event you need to check whether a TabItem has a header at runtime. For situations where you want to change the location of the tabs, there’s another property.

 The TabStripPlacement property determines how the tabs align in relation to the tab content area. This property represents an enumeration that
 can be set to Bottom, Left, Right, or Top. By default, this property value is set to Top on a TabControl.

 The TabControl, ComboBox, and ListBox represent three ItemsControl elements available in Silverlight. ItemsControl elements give you the flexibility to allow a user to select from any kind of content. ItemsControls are the key type of control to use whenever you need to display lists of content: menus, list boxes, tab strips, carousels,
 and more.

 Together with the content controls such as Buttons, the ItemsControls help make up the majority of the user interface elements you’ll use in Silverlight. Chances are, if you create your own
 custom control, it’ll derive from one of those core types.

 Creating your own custom controls is a deep topic, and one that will need to wait for the discussion of styling, templating,
 binding, and the Visual State Manager—all covered in later chapters. But there’s one type of control you can create that doesn’t
 require all this additional complexity. In fact, it was designed for simple reuse and UI composition of existing controls
 such as those we’ve discussed in this chapter. That type of control is the UserControl.

 10.5. Creating UserControls

 There may be times when none of the controls provided within Silverlight contain the functionality you need. For these situations,
 you may want to consider creating a reusable control. A reusable control can be useful when you want something more than UI enhancements. After all, these types of enhancements
 can be provided with the style and template features discussed in chapter 23. A reusable control allows you to reuse functionality not found in a preexisting control. For instance, imagine wanting to
 create a TextBox that can be locked by a user and looks like figure 10.1.

 Figure 10.1. A TextBox that can be locked

 [image:]

 This figure shows a control that provides functionality beyond a basic TextBox. This control adds an image that projects whether the TextBox can be edited. Although the desired functionality is easy to implement, you may not want to recreate it every time; this
 provides an excellent opportunity to create a reusable control. Now, imagine wanting to name this control LockableTextBox to use it in other projects. To do this, you must create an instance of the UserControl class.

 UserControls are intended for simple reuse. You want to be able to compose a control in the designer but not to worry about enabling
 templating or other advanced control functionality. We’ll discuss templating in greater detail in section 23.3 but, for now, understand that the template for a UserControl is the XAML file you create with it.

 The UserControl type itself is similar to ContentControl. Like ContentControl, it can have only a single item of content in the Content property. In the default item template in Visual Studio, that content
 is a grid, as shown in listing 10.11.

 Listing 10.11. The default UserControl template

 [image:]

 If they’re so similar, why doesn’t the UserControl derive directly from ContentControl? The ContentControl type allows you to provide a custom template for the Content. In a UserControl, that would be redundant because the content template is the XAML file created when you created the UserControl.

 The UserControl also provides compile-time code generation for all the named (using x:Name) elements in the XAML file. The InitializeComponent function, called from the constructor, handles associating the elements in the XAML file with the generated properties. There’s
 no magic; the code is simply loading the associated XAML using the equivalent of XamlReader.Load, then calling FindName for each expected element, and assigning the result to the named property.

 You could do this in your own code if you preferred to. If you create the more flexible but marginally more difficult custom
 controls, you’ll perform many of these steps.

 The UserControl class is designed to represent a new control or extend an existing one. This class gives you the ability to organize small
 portions of a UI into more manageable components, which can then be used in your application or shared with other applications.
 The process to provide this kind of functionality involves:

 	Defining the appearance of the control.

 	Defining the behavior of the control.

 	Calling the control.

This three-step process forms the ABCs of user-control development (Appearance, Behavior, and Call). Over the course of this
 section, as you create a LockableTextBox, you’ll see how these three steps relate to one another.

 10.5.1. Defining the appearance

 Defining the appearance of a UserControl involves creating the XAML for the user interface. This process is the same as defining the UI for a page in Silverlight
 because every page in Silverlight is a UserControl. The XAML for the UserControl (LockableTextBox) is shown in listing 10.12.

 Listing 10.12. The user interface for the LockableTextBox UserControl

 <UserControl x:Class="MyClassLibrary.LockableTextBox"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Width="400" Height="300">
 <StackPanel x:Name="LayoutRoot" Orientation="Horizontal">
 <TextBox x:Name="myTextBox" Height="24" Width="120" />
 <Image x:Name="myImage" Height="24" Margin="5,0,0,0"
 Cursor="Hand" MouseLeftButtonUp="myImage_MouseLeftButtonUp"
 Source="http://www.silverlightinaction.com/unlocked.png" />
 </StackPanel>
</UserControl>

 This listing shows the XAML that makes up the default appearance of the LockableTextBox. This UI defines a TextBox and an Image within a StackPanel. The StackPanel is important because, as we discussed, each UserControl can have only one UIElement as a child, so you’ll almost always use one of the Panel elements discussed in chapter 7 as the content of a UserControl.

 Also note that, in order to make the control truly reusable, we’ve put it into a separate Silverlight class library project
 named MyClassLibrary. This project is referenced from our main Silverlight application.

 Setting the Content of a UserControl is an important first step in creating a reusable control. This step defines the static parts of the UI, but the real value
 in creating a reusable control is to provide some kind of new functionality. This functionality is generally delivered when
 you define the behavior of a control.

 10.5.2. Defining the behavior

 The functionality of a reusable control is also known as the control’s behavior. This behavior is defined in the code-behind file of the XAML file, which will contain a class that derives from the UserControl class. It’s your responsibility to make sure this class provides the events, methods, and properties that detail the behavior
 of the control. Look at the code for the LockableTextBox control shown in listing 10.13. This listing uses a DependencyProperty, which was covered in chapter 2.

 Listing 10.13. The LockableTextBox class definition (C#)

 [image:]

 [image:]

 This class includes the call to InitializeComponent inside the constructor. If left out, our control references (to the textbox and the image, for example) would be null at
 runtime.

 The class also includes the creation of a DependencyProperty for IsLocked. We introduced dependency properties in chapter 2, but let’s dive a bit deeper into what’s required to create them in your own class.

 Registering Dependency Properties

 To register a property as a DependencyProperty, you must call the statically visible DependencyProperty.Register method. This method requires the name of the CLR wrapper, the type of the property value, and the type of the object that
 owns the property. Listing 10.14 shows how to register the IsLocked property.

 Listing 10.14. Registering a DependencyProperty with the property system

 C#:

 [image:]

 This listing shows how to register a property as a DependencyProperty. Note the name of the DependencyProperty itself. This name can be anything, but it generally follows a naming template of [CLR Wrapper Name]Property. This DependencyProperty serves as a key in the property dictionary used by the GetValue and SetValue methods of a CLR property wrapper. Also note the fourth parameter, which allows you to define behavioral aspects and automatically
 respond to property value changes.

 While the rest of the runtime uses the dependency properties directly, the CLR property wrapper is required because it’s used
 by direct property assignments in XAML or from your own code. Note that, unlike a normal CLR property, you’ll assign the value
 to and read it from the dependency property system. In addition, you won’t perform any other logic in the setter; you’ll do
 that inside the changed callback instead.

 Responding to Property Value Changes

 Dependency properties have the ability to automatically respond to property value changes in a way that you determine. To
 stay connected with a value change, the PropertyChangedCallback passes along a DependencyPropertyChangedEventArgs instance, which gives you three properties to help you react to a change as necessary. These three properties are described
 in table 10.11.

 Table 10.11. The properties of the DependencyPropertyChangedEventArgs structure

 	
 Property

 	
 Description

	NewValue
 	The value of the property after the change has completed

	OldValue
 	The value of the property before the change has completed

	Property
 	The DependencyProperty that triggered the change

This table shows the properties of the DependencyPropertyChangedEventArgs structure. This structure is associated with the dependency property that was changed. To get the object that this property
 is associated with, you must rely on the first parameter passed from the PropertyChangedCallback. This parameter represents the DependencyObject whose property value was changed, so you’ll most likely need to perform a conversion, as shown here:

 private static void OnIsLockedChanged(DependencyObject o,
 DependencyPropertyChangedEventArgs e)
{
 LockableTextBox textBox = (LockableTextBox)(o);
 textBox.UpdateUI();
 }

 This example shows the event handler for the PropertyChangedCallback delegate specified earlier. As you can see, this is an event handler that updates the user interface of the UserControl. This optional event handler completes the implementation for the IsLocked dependency property.

 At first glance, it seems that a lot of additional coding is associated with creating a dependency property. But, considering
 the fact that only dependency properties can be animated or used in styling, it’s clear that understanding dependency properties
 is an important part of UserControl development. Once the behavior of a UserControl is completed, you can use the control by calling it.

 10.5.3. Calling the control

 To include a UserControl in your application, you must do two things. First, you must add an XML namespace that references the location of the UserControl. Then, you must add an instance of that control within your XAML. These two steps are the same for any UserControl. Listing 10.15 shows how to reference the LockableTextBox control built over the past two sections.

 Listing 10.15. Using the LockableTextBox

 [image:]

 This snippet shows how to add the LockableTextBox to a basic Silverlight page. The my namespace is used to tell Silverlight where to look for the LockableTextBox definition. This definition is used to build the control, which is referenced later. That’s all there is to it.

 Creating a reusable control in Silverlight is as simple as defining a UserControl that consists of an appearance and a behavior. These two items generally represent a small component within a Silverlight
 application. Alternatively, a UserControl can represent a component as large as an entire page. This fact is important because it can affect how you decide to share
 your content.

 UserControls are intended for simple reuse. They’re great for those times when you need to compose a number of existing elements and
 reuse them within your application. But they’re generally not the best approach for creating controls for broader reuse, which
 often require binding support and styling flexibility. In those instances, you need to create a custom control, which we’ll
 cover in chapter 24—once we get binding, styling, and visual state management under our belts.

 10.6. Summary

 The Control, ContentControl, and ItemsControl types form the base for almost everything you’ll interact with on a page in Silverlight.

 The Control is a basic type, providing core interaction logic for controls. The ContentControl expands upon that base to provide a type of control that can hold a single item of content. The Button-based controls derive
 from ContentControl.

 ItemsControls are the place to turn to should you ever need to create or use a control that shows a list of items. Remember, it doesn’t
 need to be a traditional list; it could be something like a tab strip, or a carousel, or even a menu. In all of those cases,
 the ItemsControl base type provides the binding and templating support you need to work with lists of items.

 The intent behind the first part of this chapter was to provide enough background so that you can both understand how existing
 controls function and apply that knowledge to new controls as they appear. New Silverlight controls appear almost daily, but
 they’re almost always variations on one of the control models shown here.

 In the last part of this chapter, we introduced the concept of a UserControl. UserControls are great for your own simple reuse scenarios, but you’ll also find them handy for creating pages and encapsulating data
 templates. Though you may never create your own LockableTextBox control, you certainly will work with Pages and the other Silverlight items based on the humble UserControl.

 Several times in this chapter, I mentioned the concept of binding. Binding is one of the most important concepts in Silverlight,
 especially when you start working with controls and templates; we’ll cover it next.

Part 2. Structuring your application

 Once you move beyond the basics, it’s important to consider how you architect applications. Effective use of binding and patterns
 such as MVVM (or ViewModel) is key for ensuring that your application can be both designed and tested. Along with the binding
 system, features such as annotations and validation help to reduce the code burden while maximizing reuse. Controls such as
 the DataGrid and DataForm build upon binding, annotations, and validation to make UI work a breeze.

 Networking is a key component of a structured Silverlight application. If you want to access data on a server, you’ll need
 to use a service. We’ll discuss how to use the underlying networking stacks, traditional web services, sockets, and advanced
 services.

 A key component of structure is the organization of the pages as seen by the user. The Navigation Framework enables you to
 integrate with browser navigation to properly handle deep linking and browser history. We wrap up this part with an extensive
 look at WCF RIA Services using a business application template that builds on the navigation template. RIA Services pulls
 together the rest of the section including networking, navigation, binding, validation, and many of the other topics.

Chapter 11. Binding

 This chapter covers

 	Mastering binding with a binding source

 	Binding UI elements together

 	Using value converters

 	Creating data templates

If I included a top-three list of the most important features to learn in-depth in Silverlight or WPF, binding would be on
 that list. Binding—specifically, data binding—tends to conjure up images of the old Visual Basic VCR control bound directly
 to tables in an Access database, mishandled lost-focus events, and circular validation problems. In more recent times, binding
 tends to be associated with specialized data controls on web forms. In both cases, binding is associated with traditional
 business or application data on its way to or from a persistent data store.

 Though binding is most commonly thought of in relation to persistent application or business data, it’s used for much more
 than that in Silverlight and WPF.

 In Silverlight and WPF, you can bind properties such as IsEnabled to bool values hanging off any arbitrary object. You can also bind controls to each other so that, for example, a slider controls
 the z-axis rotation of an object in 3D space. Neither of those properties (IsEnabled or z rotation) would normally be thought of as “data” in a data binding sense but, in the strictest sense of the term, they
 are.

 Want to show the number of characters entered in a TextBox? You guessed it: binding will help you do that with no code required.

 What if you want to set up a ListBox so each item displays a photo on the left along with a name and description stacked on the right? Binding and data templates
 are essential for that type of user interface customization.

 In chapter 16, when we cover the ViewModel pattern, you’ll see just how essential binding can be for good application architecture. Throughout
 this chapter, we’ll prepare the foundation by covering the mechanics of binding the input controls we discussed in chapter 10 with in-memory objects, as well as how to bind controls to each other. Then, because data may come in any format, you’ll
 learn how to format and convert it using value converters and binding expressions. Finally, we’ll end the chapter with a discussion
 about data templates.

 11.1. Binding with your data

 Binding is a powerful way to create a connection between your UI and a source of data. This simple technique can be used to
 create a clean separation between your user interface and its underlying data and is essential for good application architecture,
 as we’ll see in chapter 16. Regardless of the reason, you can use data binding in your application by creating an instance of the Binding class.

 The Binding class is used to define a connection between a CLR object and a UI component. This connection is defined by three essential
 elements: the source of the data (the CLR object), the binding mode, and the target for the data (the dependency property;
 see section 2.1.4 for more information). These three items are part of a conceptual model that explains binding, which is shown in figure 11.1.

 Figure 11.1. A conceptual view of data binding. The source owns the data; the target operates on (displays, edits, and so forth) the data.

 [image:]

 This illustration uses the situation of binding the current time of day to a TextBox to give a high-level overview of what data binding looks like. This conceptual binding sets the Text property of a TextBox to the current TimeOfDay. To create a binding like this, you must use one of the two available binding syntaxes. These syntaxes require you to define
 both the source and the target of a binding. Each approach is appropriate at a different time, so we’ll cover each in its
 own right in section 11.1.1. Once you’ve decided which syntax is appropriate for your situation, you must decide how data can pass between the source
 and the target. This is the responsibility of the BindingMode, which will be covered in section 11.1.2.

 11.1.1. Mastering the binding syntax

 Silverlight gives you the ability to create a Binding using two different approaches. The first approach allows you to dynamically create a binding at runtime. The second gives
 you the opportunity to specify a binding at design time. Either way, the scenario from figure 11.1 will be used to show both approaches.

 Binding at Runtime

 Binding to a data source at runtime is a common approach used in event-driven application development. For instance, you may
 decide to display a list of basketball games based on a date selected by a user. Or, you may decide to show the current time
 when an application is loaded. Either way, creating a Binding at runtime follows a common pattern, which is shown here. First, the XAML in the page:

 <TextBox x:Name="myTextBox" />

 Next the code to create the binding source and the binding itself:

 DateTime currentTime = DateTime.Now;
Binding binding = new Binding("TimeOfDay");
binding.Source = currentTime;
binding.Mode = BindingMode.OneWay;
myTextBox.SetBinding(TextBox.TextProperty, binding);

 This shows how to bind the value of a CLR property to a UI element at runtime. The preceding code binds the current time of
 day to the TextBox created in XAML. You first retrieve the DateTime object that represents the current moment in time. This object is then bound to the UI element (the TextBox) in just four lines of code. These four lines of code specify the source, the binding mode, and the target of a binding.

 The source of a binding is made up of two codependent items that specify which property of a CLR object to bind to. The name
 of the property to bind to is set when you create a Binding instance through the constructor. This constructor takes a single string parameter, which represents the name of the property to bind to. This property belongs to a CLR object that must be associated
 with a Binding through the Source property. Once this happens, the source of the binding is officially set. You can then choose a BindingMode, which we’ll cover in section 11.1.2 (in this case, OneWay). Once the source and binding mode have been set, you need to turn your focus to the target.

 The target element of a binding will always derive from the DependencyObject class. Virtually every visual element in Silverlight can be a target because the DependencyObject class exposes a method called SetBinding. This method associates a target property, which must be a dependency property, with a Binding instance. After this method is called, the source will be bound to the target.

 Occasionally, you may want to unbind a data source. Fortunately, data binding can be halted by manually setting the target
 property of a binding. For example:

 myTextBox.Text = "Binding Removed";

 This feature is only available at runtime because that’s the only time it makes sense. Using a Binding at runtime is a powerful option. Equally as powerful and more often used is the ability to create a Binding at design time in XAML.

 Binding at Design Time

 Binding to a data source at design time is a common feature in declarative markup languages such as XAML. You’ve probably
 seen the power of this data-binding approach if you’ve used ASP.NET or WPF. If you haven’t, don’t worry. In essence, this
 approach allows you to keep your code separate from its presentation so that you can take advantage of the developer/designer
 workflow available within Silverlight. It also helps to keep your code clean and maintainable, as seen in this markup:

 <TextBox x:Name="myTextBox" Text="{Binding TimeOfDay, Mode=OneWay}" />

 This shows how to create a binding at design time in XAML. The binding is associated with a target through the use of the
 XAML markup extension syntax, which uses curly braces ({}). These braces, along with the use of the Binding extension name, inform a property that a data source will be bound to it. This data source will be a CLR object that has
 a TimeOfDay property, which may provide or receive a value, depending on the binding mode. The other properties associated with the binding
 are set using a propertyName=propertyValue syntax (Mode=OneWay).

 The curly brace syntax is helpful, but it’s simply shorthand. We’ll use the shorthand syntax throughout XAML in the rest of
 this book, but it can be helpful to understand the fuller version of the syntax. For example, the longer form (using property
 element syntax) of the earlier TextBox binding is this:

 <TextBox x:Name="myTextBox">
 <TextBox.Text>
 <Binding Path="TimeOfDay" Mode="OneWay" />
 </TextBox.Text>
</TextBox>

 The markup in this example does exactly the same thing as the previous but doesn’t invoke the markup extension triggered by
 the curly brace. Obviously, the syntax is much more verbose and would be cumbersome to use for all values. If Silverlight
 ever gets MultiBinding (a concept currently in use in WPF), understanding the full binding syntax will be essential to its use.

	

Note

 All parameters in a binding expression may be set using name=value syntax. The binding expression {Binding TimeOfDay} is just shorthand for {Binding Path=TimeOfDay}. Though you’ll find that certain tools, such as Expression Blend and Visual Studio 2010, prefer one syntax over the other,
 both may be used interchangeably and are equally valid.

 	

When creating a binding in XAML, the source may be set in procedural code. This code is responsible for setting the context
 in which a data source can be used via the appropriately named DataContext property. This property will be explained in further detail in section 11.2.2. For now, know that this is how a CLR object can be bound to a DependencyObject. In this case, the code-behind would have the following code to set the DataContext for the TextBox:

 DateTime currentTime = DateTime.Now;
myTextBox.DataContext = currentTime;

 The DataContext may also be set in markup using a StaticResource, if the type being used supports it. This approach is sometimes used for binding to a view model, which we’ll see in chapter 16.

 Binding at design time is a valuable option when it comes to working with data. It empowers you to separate UI from code.
 This functionality allows a designer to enhance a UI without worrying about where the data is actually coming from. In a similar
 light, binding at runtime enables you to create a more dynamic form of data binding. Regardless of where you define the binding,
 both approaches define a bridge between a source and a target. Data can flow in multiple directions across this bridge. To
 control the direction of that flow, you must learn about the various binding modes.

 11.1.2. Choosing a binding mode

 The Binding class gives you the ability to determine how data can flow between the source and the target. This flow can be controlled
 by setting the Binding instance’s Mode property. This property represents one of the three options available in the BindingMode enumerator—OneTime, OneWay, and TwoWay.

 Onetime

 The OneTime option sets the target property to the source property when a binding is initially made. When this BindingMode is used, any changes to the data source won’t be automatically sent to the target. Instead, the target will be set only when
 the source is initialized, as shown in figure 11.2.

 Figure 11.2. A conceptual view of OneTime binding to a data source. The value is initially read from the source and is never updated again.

 [image:]

 This figure shows the simplistic nature of the OneTime BindingMode. As you can imagine, this BindingMode is appropriate in situations where you only care about the initial value of a property. For instance, you may want to display
 the creation date of a database record. Because this value shouldn’t change, the OneTime BindingMode is a great choice. For property values that will change such as the date/time when a database record was last modified, you
 may want to use the OneWay binding option.

 Oneway

 The OneWay BindingMode is the default when you create a Binding. This option gives you the ability to automatically receive changes from a source property. Whenever the binding source property
 changes, the target property will automatically change, but the source property won’t change if the target is altered. This
 process is shown in figure 11.3.

 Figure 11.3. A conceptual view of OneWay binding to a data source. The value is updated each time the source changes, but changes to the value in the target control
 don’t make it back to the source.

 [image:]

 This figure shows how the OneWay BindingMode works at a high level. Think of the speedometer in your car as a OneWay binding from your gas pedal. When you press or release the gas pedal, the speedometer changes; but, if you somehow changed
 the value of the speedometer itself, your gas pedal wouldn’t change. This inability to send a change from the target back to the source shows how OneWay binding works. For situations where you do want to send changes in the target back to the source, you use the TwoWay option.

 TwoWay

 TwoWay binding enables two properties that are bound to change each other. This may sound recursive, but it’s not. A TwoWay binding changes the target when the source changes. If the target changes, the source is updated. This process can be seen
 in figure 11.4.

 Figure 11.4. A conceptual view of TwoWay binding to a data source. The target control reflects changes to the source, and the source is updated with any changes made
 in the target.

 [image:]

 This figure shows a conceptual view of the TwoWay binding. This binding approach is useful for data entry forms using Silverlight because forms generally allow users to add
 as well as edit data. This process of editing the preexisting data practically begs for TwoWay binding.

 The TwoWay BindingMode is one of the options available to control the flow of your data. The other alternatives are available through the OneWay and OneTime options. Collectively, these options are an important part of setting up a binding.

 After the target and binding mode have been selected, you need to choose an appropriate source.

 11.2. Understanding your binding source

 In section 11.1, we looked at the general concept of binding. We discussed this concept in the limited scope of binding to an individual
 property. This approach can be valuable in certain situations but, to truly harness the power of data binding, we must build
 a better understanding of data sources, which we’ll do over the course of this section.

 We’ll discuss what it takes to bind to a property of a CLR object, but we won’t cover just any property. We’ve already done
 that. Instead, we’ll discuss what it takes to bind to properties in your CLR objects and how to bind to entire CLR objects.
 We’ll cover how to bind UI elements to each other and how to bind a UI element to itself. We’ll close out the section by talking
 about binding to entire collections of objects. Collectively, these items will help you to wield the power of binding.

 11.2.1. Binding to a property

 Silverlight gives you the flexibility to bind to any CLR property you want. You saw this with the examples using the TimeOfDay property in section 11.1. Significantly, if you visited http://www.silverlightinaction.com and ran the application, you saw that, once the time was displayed, it just sat there. It didn’t automatically update with
 each passing second because, by default, CLR properties don’t broadcast their changes—that and because the TimeOfDay property doesn’t automatically continue ticking. To update the target with a change in the CLR property, you must create
 a change-notification handler.

 A change-notification handler notifies a binding target that a change has been made. This enables a target to automatically
 respond to changes. Dependency properties already have this feature built in, but CLR properties don’t. If you want your CLR
 properties to broadcast their changes, you must implement the INotifyPropertyChanged interface, which is demonstrated in listing 11.1.

 Listing 11.1. Implementing the INotifyPropertyChanged interface (C#)

 [image:]

 [image:]

 Listing 11.1 shows how to implement the System.ComponentModel namespace’s INotifyPropertyChanged interface on a class. This class represents an emoticon (such as a smiley face) that uses the INotifyPropertyChanged interface as a guide for broadcasting changes in property values. The interface can be used to ensure that your UI component
 and desired CLR property are in sync during OneWay and TwoWay binding. This synchronization effort will take effect as long as you’ve implemented the PropertyChanged event.

 The PropertyChanged event is what keeps things in sync, so you must make sure this event is triggered whenever a property value has changed.
 You can accomplish this by firing the event in a property’s setter. Alternatively, if you plan on keeping multiple properties
 in sync, you may want to refactor the PropertyChanged event to a common method—as shown in listing 11.1. Either way, the binding system’s PropertyChanged event handler uses reflection to examine the value of a property and pass it on to the binding target. This is why the PropertyChangedEventArgs type takes a string parameter that represents the name of the CLR property that changed.

 Binding to a CLR property is a powerful way to work with your objects. These objects generally represent real-world entities
 that may also need to be bound to. Fortunately, Silverlight also provides an elegant way to bind to a CLR object.

 11.2.2. Binding to an object

 Up to this point, we’ve primarily focused on binding individual properties to UI components. This technique is pretty simple,
 but it can also be somewhat tedious if you need to bind multiple properties of an object to a UI. You can make this task less
 tiresome by using the DataContext property.

 The DataContext property allows you to share a data source throughout a DependencyObject. This data source can be used by all the child elements of a DependencyObject that define a Binding. Binding uses the most immediate ancestor’s DataContext unless another data source is set to it. If another data source is set, that source is used for the Binding. Either way, by relying on the DataContext of an ancestor, you can easily bind several properties of an object to a UI. This approach is shown in listing 11.2.

 Listing 11.2. Binding an Emoticon object to a Grid

 XAML:

 [image:]

 C#:

 [image:]

 Listing 11.2 shows how an object can be bound to elements within a DependencyObject. The TextBox and Image elements in this example show their intent to bind to two different properties of an object. These elements don’t have their
 DataContext property set in the code behind, so the elements look to their immediate parent, myGrid, and try to use its DataContext. This DataContext has been set in the code-behind. The object assigned to the DataContext serves as the data source for the Grid and its children. If the DataContext of the Grid hadn’t been set, the elements would’ve continued up the tree and checked the UserControl element’s DataContext. If that DataContext were set, it would’ve been used. Either way, this example shows how much more succinct and maintainable the DataContext approach can be.

 So far, our examples have fallen squarely in the zone we tend to think of as traditional data binding. But, Silverlight also
 supports the ability to bind controls to each other simply as a way to reduce plumbing code.

	

 Setting the DataContext in XAML

 In the previous section, I mentioned that you can set the data context using a static resource, all from within XAML. Though
 the DateTime example didn’t fit that model, the Emoticon example can.

 Recall from chapter 2 that XAML is, in essence, a way to represent and initialize CLR objects in markup. To support binding this way, we’ll add
 in a resources section (covered in chapter 23), which holds a reference to a single Emoticon object in the local namespace:

 <UserControl x:Class="Chapter011.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="clr-namespace:Chapter11">
 <UserControl.Resources>
 <local:Emoticon x:Key="emoticon"
 Name="SmileyFace"
 Icon="http://www.silverlightinaction.com/smiley.png"/>
 </UserControl.Resources>

 The Emoticon in the resources section is initialized directly on the page when the rest of the elements are constructed. But as written,
 the Emoticon class requires parameters in its constructor, something that isn’t supported in the .NET 4 version of XAML used by Silverlight
 4. This is remedied by adding a default (parameterless) constructor to the class:

 public Emoticon() {}

 Finally, we set up the relationship via the DataContext using the StaticResource markup extension and referring to the x:Key of the resource that corresponds to our emoticon:

 <Grid x:Name="LayoutRoot"
 DataContext="{StaticResource emoticon}" ...

 The end result is a binding relationship set entirely from within XAML in a tool and designer-friendly way. We’ll see more
 examples of this when we look at .WCF RIA Services in chapter 17, and some of the optional XAML data source controls it provides.

 	

11.2.3. Binding to a UI element

 Binding one or more properties of a UI element to the values on an entity, view model, or business object is a compelling
 use of binding. Sometimes, though, you want to use binding for things we wouldn’t traditionally consider “data”—things within
 the user interface. You may want to bind the height of two controls together so that they resize equally or perhaps you want
 to bind three sliders to the x, y, and z-axis rotations of a plane (see section 6.5 for more information on 3D rotation in Silverlight). Rather than binding to gather input or display data to the user, you’re
 binding to avoid writing extra plumbing code.

 Let’s say that you want to display a count of characters entered into a TextBox in real time, something like figure 11.5.

 Figure 11.5. Using element binding to count characters as you type into a TextBox

 [image:]

 You could do that in code, but that would be fairly uninteresting code to write. It would need to refer to XAML elements by
 name or have event handlers wired in XAML, introducing a dependency on the specific page’s code-behind and making it less
 portable and potentially more brittle. In addition, you’d find yourself doing it enough that you’d either wrap the TextBox in your own CountingCharsTextBox control or add a helper buddy class or something.

 Or, if you prefer a XAML approach, which I hope I’ve sold you on by now, you would use element binding introduced in Silverlight 3. Element binding allows you to bind the properties of one FrameworkElement to another FrameworkElement. The usual restrictions apply (the target must be a DependencyProperty; the source must notify of changes), so you can’t use element binding quite everywhere.

 To produce the TextBox shown in figure 11.5 with the automatic count of characters using element binding, the markup is pretty straightforward and entirely self-contained:

 <StackPanel Orientation="Vertical" Margin="50">
 <TextBlock Text="Tweet (max 140 characters)" />
 <TextBox x:Name="tweetText"
 MaxLength="140"
 Text="Right now I'm writing a book" />
 <StackPanel Orientation="Horizontal">
 <TextBlock Text="{Binding Text.Length, ElementName=tweetText}" />
 <TextBlock Text="/" />
 <TextBlock Text="{Binding MaxLength, ElementName=tweetText}" />
 </StackPanel>
</StackPanel>

 This XAML will show a TextBox with a count of characters underneath it. The character count will update in real time to show the number of characters typed
 into the TextBox. Note also that the MaxLength displayed under the text box is actually coming from the TextBox itself (the 140 in the label is not, though). The key item that makes this happen is the ElementName parameter in the binding expression. ElementName is, as it suggests, the name of another element on the XAML page.

 Sometimes, you’ll want to bind two elements together, as we’ve done here. Other times, you may want to bind an element to
 a value on itself using something called relative source binding.

 Using a Relative Source

 WPF supports a number of different types of relative source bindings. In Silverlight, it’s used for one thing: binding an
 element to itself. Let’s assume for a moment that we have a simple property in our user control’s code-behind. It could (and
 should) be a DependencyProperty but, to keep it short, we’re going to declare a good old CLR property and assume it’s set only in the constructor. We could
 then refer to that property in XAML but, without somehow telling the binding system that the source of the data is the control hosting the XAML, we’d be
 stuck.

	

Warning

 Here be dragons. Relative source binding can not only encourage bad application practices, such as binding to things defined
 in code-behind instead of following a pattern such as ViewModel, but also be hard to debug, especially when you get into changes
 to DataContext set by external consumers of your user control. Use RelativeSource Self binding, but understand that your debugging workload will probably go up for the choice. Don’t use RelativeSource Self binding just to avoid creating an appropriate container or abstraction for your data.

 	

This is where RelativeSource Self binding comes in. RelativeSource can be set anyplace you’d normally have a binding statement, including the DataContext. Listing 11.3 shows how to bind a TextBlock in the UI to a simple CLR property in the code-behind.

 Listing 11.3. Binding elements in XAML to properties in the code-behind

 C# code-behind:

 private string _pageTitle = "Page Title";
public string PageTitle
{
 get { return _pageTitle; }
 set { _pageTitle = value; }
}

 XAML:

 [image:]

 RelativeSource Self binding is useful for those occasions when you really do need to bind to a property of the control or need to bind a property
 of a control to itself. Use it sparingly and not as a part of the overall application architecture and you’ll find it helps
 enable those few scenarios where other solutions are just too cumbersome.

 Another quiet addition to Silverlight binding is the ability to bind to a specific element in an array or list.

 11.2.4. Binding to an indexed element

 Silverlight 3 introduced the ability to bind to a numerically-indexed element in a collection. This can be useful in instances
 where you may have an indexed property bag hanging off a class or you really do want to get just a specific element out of
 a larger collection without prefiltering it in code.

 Let’s assume for a moment that we have a class Repository that exposes a collection of Emoticon objects through a property named Emoticons. We could then set up a static resource for pure XAML binding or set the DataContext from the page or within the code-behind, as shown in the previous examples. Once that’s set up, we’d be able to refer to
 individual elements in the collection using the index syntax within the binding statement, as shown in listing 11.4.

 Listing 11.4. Binding to a specific element in a collection, using a numeric index

 C#:

 [image:]

 XAML:

 [image:]

 In listing 11.4, the TextBlock will resolve its text property to be the value in repository.Emoticons[2].Name and display that on the screen. The syntax is consistent with C# indexing conventions.

 Binding to a single element in a collection using a numeric index in a binding expression is useful, but often we want to
 bind using a string key instead.

 11.2.5. Binding to a keyed (string indexed) element

 Property bags and datasets are commonplace in the desktop application world. Silverlight 4 introduced the ability to bind
 to these types of structures by introducing keyed or string-indexed binding expressions.

 Listing 11.5 shows the same example as 11.4 but now the collection is being accessed via a string key.

 Listing 11.5. Binding to a specific element in a collection, using a numeric index

 C#:

 [image:]

 XAML:

 [image:]

 Listing 11.5 works assuming your Emoticons dictionary has an element with the key Smiley. This feature enables a ton of must-have scenarios in Silverlight, specifically around binding to the data of a shape unknown
 at design time.

 Binding to a single element in a collection using a numeric index or string key in a binding expression is useful, but it’s
 more common to bind to an entire collection rather than a single element within that collection. That’s the situation you’ll
 run into when you want to populate a ListBox or other ItemsControl.

 11.2.6. Binding to an entire collection

 Binding to a collection is an important task in a lot of applications. There are numerous times when you need to show a list
 of the items in a collection. You may want to display a collection of emoticons or you may want to show a list of the days
 of the week. Either way, these lists are made up of individual items, so it’s only natural to use a control derived from ItemsControl.

 An ItemsControl is a basic control used to show a collection of items. We discussed this control in chapter 10, but we didn’t talk about the process of binding data to the control. Instead, you saw the manual approach of adding items
 one by one to the Items collection. Although this technique is useful in some situations, the ItemsControl provides a more elegant approach through the ItemsSource property (see listing 11.6).

 Listing 11.6. Binding a collection of Emoticon objects to a ListBox

 Result:

 [image:]

 XAML:

 <ListBox x:Name="myListBox" Height="100" />

 C#:

 List<Emoticon> emoticons = GetEmoticons();
myListBox.ItemsSource = emoticons;

 This listing shows how to bind a collection of objects to an ItemsControl—in this case, a ListBox control (which derives from ItemsControl). Using the ItemsSource property, this ListBox loads a collection of Emoticon objects from our earlier examples using a function we’ll assume exists in our code: GetEmoticons.

 The ItemsSource property is used solely for the sake of data binding. This property can be used to bind to any collection that implements
 IEnumerable. This property is necessary because the Items collection of the ItemsControl class isn’t a DependencyProperty, and only DependencyProperty-typed members have support for data binding.

 The ItemsSource property can only be used if the Items collection of an ItemsControl is empty. If the Items collection isn’t empty, your application will throw an InvalidOperationException when you try to set the ItemsSource property. If you intend to use this property, you should also consider using the DisplayMemberPath property.

 The DisplayMemberPath property determines which CLR property value to use for the text of a list item. By default, each list item will use the
 ToString method of the object it’s bound to for the display text—the reason each of the items in listing 11.5 is shown as MyLibrary.Emoticon. You can override the ToString method to fully customize the text shown for an item. If you want to go a step further, you can customize the entire look
 of an item using the data template information discussed in section 11.3.2. But, for the quickest approach, you can use the DisplayMemberPath as shown in listing 11.7.

 Listing 11.7. Using the DisplayMemberPath to improve the display of a list of items

 Result:

 [image:]

 XAML:

 <ListBox x:Name="myListBox" DisplayMemberPath="Name" Height="100" />

 C#:

 List<Emoticon> emoticons = GetEmoticons();
myListBox.ItemsSource = emoticons;

 This shows the impact of the DisplayMemberPath property on binding items. As you can see, this property makes the items in a list much more meaningful. This approach allows
 you to easily display information from a CLR property, an object, or a collection.

 The approaches we’ve talked about so far work well when you need to bind a single value to a single property without modifying
 the display format of the values in any way. We covered how to bind to simple values, how to get individual values by index or key, and how to set the display member
 when it’s different from the data member.

 In the next two sections, we’ll cover how to build upon what we learned in this section to customize the display of single
 values and aggregate several values up into a single data template to be repeated for each entry in a collection.

 11.3. Customizing the display

 As you saw throughout section 11.2, data binding is a powerful way to show data. Occasionally, this information may be stored in a format not suitable to display
 in a UI. For instance, imagine asking your user, “Does two plus two equal four?” This question clearly demands a yes or no
 response. The problem begins to arise when the response is saved to a more persistent data source.

 A lot of times, a piece of data such as a property will be saved one way but need to be presented in another. In the case
 of a yes-or-no question, the answer may be stored in a bool CLR property. This property may run under the assumption that “yes” is equivalent to true and “no” is the same as false. This assumption can become a problem if you need to bind to that data because, by default, data binding calls a type’s ToString method. Your users could see a statement that looks like “Does two plus two equal four? True.” when, in reality, it’d be
 better to show “Does two plus two equal four? Yes.” This small but common problem demands a better approach.

 If Silverlight couldn’t handle the simple task of formatting values for display, binding wouldn’t be particularly useful.
 Luckily, Silverlight has everything you need to format display values, convert both inbound and outbound values, provide special
 handling for null values and even provide fallbacks for cases when binding fails. Throughout this section, you’ll see how
 to customize the visual representation of your data using these powerful features, several of which are new to Silverlight
 4.

 11.3.1. Formatting values

 When writing code, you can format values using the string.Format function. But until Silverlight 4, there was no good way to do the equivalent during a binding operation. You could write
 a custom value converter, but that gets old quickly, and becomes another testing and maintenance point.

 Silverlight 4 introduced the ability to use string formatting when binding. The syntax is essentially the same as the string.Format function. For example, this will set the value of the TextBlock to be “DOB: May 19, 2007” assuming the DateOfBirth property on your binding source contains the value 5/19/2007:

 <TextBlock Text="{Binding DateOfBirth, StringFormat=DOB:\{0:D\}}" />

 Similarly, this binding expression will set the value of the TextBlock to be $1,024.10 assuming the decimal BilledAmount field contains the value 1024.10m:

 <TextBlock Text="{Binding BilledAmount, StringFormat=\{0:C\}}" />

 Sometimes, simply formatting the value isn’t enough. In those cases, you may need to perform a real data conversion and write
 your own custom value converter.

 11.3.2. Converting values during binding

 Silverlight allows you to dynamically convert values during data binding. You can accomplish this by first creating a custom
 class that implements a value converter. This value converter can then be referenced directly in XAML. This approach is recommended
 over custom setter/getter code because it helps keep the design separate from the code. Let’s begin by discussing how to create
 a value converter.

 Creating a Value Converter

 To create a value converter, you must create a class that implements the IValueConverter interface, which enables you to create some custom logic that transforms a value. This transformation may take place in one
 of two methods depending on the flow of your data. The first method, Convert, is used when the data is moving from the source to the target—for example, from your object to a TextBox. If the data is flowing from the target back to the source, such as when the value entered in a TextBox goes back to your object, a method called ConvertBack is used. Both methods are members of the IValueConverter interface. This interface and its methods are demonstrated in listing 11.8.

 Listing 11.8. A value converter that converts a Boolean to “Yes” or “No” (C#)

 [image:]

 This listing shows a value converter that converts between a bool and Yes or No. This converter uses the Convert method when data is being bound to your UI. It’s this method that converts a bool to Yes or No. When the UI is passing data back to its source (TwoWay binding), the ConvertBack method is used. This method converts Yes to true and No to false. These methods control the conversion process. To assist in this process, both these methods give you the opportunity to
 provide custom information.

 Both the Convert and ConvertBack methods allow you to use two optional pieces of information. The first is an arbitrary object called parameter that can be used by your conversion logic. By default, this object will be null, but you can set it to any value that you find useful. The other piece of information specifies the CultureInfo object to use when converting the values. We’ll discuss both parameters in a moment. But, to set the CultureInfo or pass along a custom parameter, you first must know how to use a value converter from markup.

 Using a Value Converter

 Using a value converter involves setting the Converter property of a Binding object. This property determines which IValueConverter to use when transforming data. By default, this property isn’t set to anything (null), but you can set it to reference an IValueConverter you’ve created. Before you can reference an IValueConverter, you must add it as a resource. Resources will be discussed in chapter 23. For now, just know that you can reference an IValueConverter by first adding it to the Resources collection, as shown here:

 <UserControl x:Class="Chapter11_9.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="clr-namespace:Chapter11_9"
 Width="400" Height="300">

 <UserControl.Resources>
 <local:YesNoValueConverter x:Key="myConverter" />
 </UserControl.Resources>

 <Grid x:Name="LayoutRoot" Background="White" />
</UserControl>

 This shows how to introduce a custom value converter to the XAML world. The local prefix is assumed to be defined as a namespace
 (see chapter 2). The key myConverter is used to reference the YesNoValueConverter in XAML. The following is an example of referencing a value converter:

 <TextBlock x:Name="myTextBlock"
 Text="{Binding IsCorrect, Converter={StaticResource myConverter}}" />

 This example shows a basic Binding that uses a custom converter. This converter alters the displayed text of a bool property called IsCorrect. The example shows that the custom converter is referenced through the Converter property. This property uses the curly-brace markup extension syntax just like the Binding syntax because it’s the syntax used to reference a resource. You can also pass a custom parameter or the culture information
 if you need to.

	

Tip

 A statement such as the binding statement shown in the previous example can seem to be a jumble of curly braces. Think of
 each matched set of braces as a separate statement, substituted in when parsed and evaluated. For example, the {StaticResource myConverter} statement is a complete StaticResource markup extension statement itself, the result of which, after evaluation, is passed in to the Converter parameter of the Binding statement.

 	

The Binding class exposes an object property called ConverterParameter, which can be used to pass an arbitrary value to an IValueConverter. The value converter uses the value of the ConverterParameter in the Convert and ConvertBack methods. By default, this value is null but you can use it to pass along any data you want, such as a format string or an index. If you need to pass along culture-related
 data, we recommend using the ConverterCulture property.

 The ConverterCulture property of the Binding class allows you to set the culture. This culture is passed along as a CultureInfo object that can be used by the Convert and ConvertBack methods. By default, the CultureInfo object reflects the value of the Language attribute of the calling FrameworkElement. The Language attribute is used for localization and globalization. This value uses a string that defaults to en-US, which represents U.S. English.

	

 Value converter tricks

 Value converters are powerful and allow you to extend binding to support scenarios not natively supported in Silverlight or
 let you manipulate object data for objects that may otherwise have schemas you can’t touch.

 For example, a colleague created a value converter that has a field name as a parameter and then implements binding to a dictionary
 of fields, much like a DataSet. At the time, Silverlight had no support for binding to indexed values, so this was a huge timesaver and allowed us to use
 existing business objects (which included a dictionary of additional values) in case we couldn’t alter the implementation
 of the existing objects.

 Since MultiBinding (the ability to bind two fields to a single control) isn’t supported in Silverlight, in another instance we used a purpose-built
 value converter to combine all the address fields in an object into a single string to be displayed in a grid column. In that
 case, the binding source was the entire object and the value converter looked for specific fields in that object. The ConvertBack method was left empty in that case, since it supported only OneWay binding.

 Though you don’t want value converters to be the solution to all your binding woes (in many cases, an alternate design may
 serve you better), they’re powerful enough to provide lots of options in situations where you may be otherwise tempted to
 write a bunch of code in your code-behind.

 	

Creating and using a value converter can be valuable when working with data, as shown with our basic yes/no example. Value
 converters can be useful in even more complex scenarios. For instance, Silverlight doesn’t have support for HTML tags in regular
 text controls, so you may consider using a value converter to scrub the HTML tags from a string before binding it to your
 UI.

 Value converters were often used to format values for binding. We’ve already seen a way to format strings for display. Let’s
 now look at how to handle fallback values and null value display.

 11.3.3. Providing default fallback values

 Things can go wrong during binding. The property path may be unable to be resolved or an exception may be thrown when getting
 the value. Perhaps the index or key doesn’t exist. In those cases, it can be helpful to have a fallback value defined in your
 binding expression. These values are provided using the FallbackValue property.

 In this example, assuming you have an ApprovalCode field in your object, but it throws an exception in the getter (odd, I know) or is otherwise unavailable, the TextBlock will display the value “Unavailable”.

 <TextBlock Text="{Binding ApprovalCode, FallbackValue=Unavailable}" />

 In many cases, I think it’s preferable to have default values and fallbacks defined in your model or view model, especially
 because that’ll make it easier to test. But fallback values in binding can help in a pinch or in cases where you need to handle
 an exception condition happening between your view model and view.

 More common than fallback values is custom null value handling.

 11.3.4. Handling null values

 Similar to fallback values but more useful, in my opinion, is the TargetNullValue property of the binding expression. TargetNullValue allows you to display a custom value when the value you’ve bound to is null.

 In many applications, a value of null truly means something different than the value of empty or zero. In the former, it means that no value has been entered.
 The latter indicates that a value has been entered but it’s blank or zero. To make it easier to work with, many applications
 disregard the null value and simply replace it with the default value for the type. This makes it easier to display in the UI, but at the cost
 of losing the distinction.

 Starting with Silverlight 4, you can preserve the null value and still have a friendly UI. Simply provide a TargetNullValue in your binding expression:

 <TextBlock Text="{Binding ApprovalCode, TargetNullValue=(missing)}" />

 In this example, when the ApprovalCode returns null, the TextBlock will display the text “(missing)”.

 These techniques all handle the formatting and display of a single bound value. Though powerful on their own, often you’ll
 want to display something more complex, perhaps containing multiple bound values in a list. That’s where a data template comes
 into play. Happily, data templates build upon everything we’ve covered so far, so you’ll find their implementation easy to
 understand.

 11.4. Creating data templates

 In section 11.2, we learned how to bind individual properties and entire collections. In section 11.3, we covered how to provide formatting and conversion for singlebound values. What about those cases when you need to have
 even more control over the presentation of your list-based data? What about something like a ListBox item that contains three or four pieces of data in each row? That’s where data templates come in.

 A data template is a way to define how a piece of information will be shown. Imagine looking at a baseball player’s statistics.
 Although these statistics can be easily viewed in tabular format, it’s much more interesting to look at them on a baseball
 card. For an example, see table 11.1.

 Table 11.1. One example of a data template

 	
 Raw data (statistics)

 	
 Presentation via data template

	Player: Scarpacci
 Position: Pitcher (P)
 Team: J-Force
 Picture: [A URL]

 	

 [image:]

This table demonstrates the general idea of a data template: it gives your data a face. The value in this approach is that
 it allows you to quickly change the way your data looks without changing your code—the main raison d’être for XAML. Just as
 baseball card designs change each year, your data may change its look based on its context. Data templates allow you to make
 this change easily, without affecting the underlying model. To take advantage of this feature, you must create a DataTemplate object.

 A DataTemplate object describes the visual representation of a piece of information. This object can be used with two types of controls
 within the Silverlight class library. The first is a ContentControl. More interesting and probably more commonly used is the ItemsControl. Within this section, you’ll see how to create a data template with each of these control types.

 11.4.1. Using a DataTemplate with a ContentControl

 A ContentControl is a type of control defined by a single piece of content, which we discussed in chapter 10. Every ContentControl exposes a property called ContentTemplate, which specifies the DataTemplate to use when displaying the content of a ContentControl. This content can be styled with a DataTemplate using an approach similar to that shown in listing 11.9.

 Listing 11.9. A DataTemplate used with a ContentControl

 Result:

 [image:]

 XAML:

 <Button x:Name="myButton" Height="70" Width="210">
 <Button.ContentTemplate>
 <DataTemplate>
 <StackPanel Orientation="Horizontal">
 <Image Source="{Binding Icon}" Height="40" Margin="10" />
 <TextBlock Text="{Binding Name}" FontSize="20"
 VerticalAlignment="Center" />
 </StackPanel>
 </DataTemplate>
 </Button.ContentTemplate>
</Button>

 C#:

 Emoticon emoticon = new Emoticon("Smiley Face",
 "http://www.silverlightinaction.com/smiley.png");
myButton.Content = emoticon;

 This shows a DataTemplate applied to a Button. This DataTemplate is applied to an assumed Emoticon (from the previous examples in this chapter) assigned to the Button object’s Content property. This property must be set at runtime when using a DataTemplate. If the Content property is set at design time, it’ll be trumped by the DataTemplate, resulting in no data being shown in your UI. In addition, if you set the DataContext property at runtime instead of the Content property, your data won’t be shown. When you’re binding data to a ContentControl, you may want to remember the following:

 	When assigning your data source to the DataContext property, use the binding syntax within the control’s Content.

 	When assigning your data source to the Content property, use a DataTemplate instead.

These two points make it seem like you’re running in circles. You may be wondering why you should use a DataTemplate. Well, a DataTemplate can be defined as a resource (discussed in chapter 23), which makes it usable across multiple ContentControl elements simultaneously. The DataTemplate approach is much more flexible. In reality, you probably won’t use a DataTemplate with a ContentControl often, but you should expect to use data templates frequently with ItemsControl elements.

 11.4.2. Rendering an ItemsControl with a DataTemplate

 The ItemsControl element is designed to display a collection of items, which are bound to a control through the ItemsSource property. By default, each item is displayed by using an object’s ToString method. By setting the DisplayMemberPath property, you can use a specific CLR property for the text of an item, but you can go one step further using the ItemTemplate property.

 The ItemTemplate property of the ItemsControl class allows you to fully control how each item will be displayed. This property uses a DataTemplate to determine how to show each item in an ItemsControl. A basic ItemTemplate for a collection of Emoticon objects is shown in listing 11.10.

 This shows a basic DataTemplate associated with an ItemTemplate. There’s nothing complex about this example—the main thing is to understand that this DataTemplate is used with the items bound through the ItemsSource property. In addition, this begins to show the power of using data templates.

 Listing 11.10. An ItemTemplate used in an ItemsControl

 Result:

 [image:]

 XAML:

 [image:]

 C#:

 List<Emoticon> emoticons = GetEmoticons();
myListBox.ItemsSource = emoticons;

 This example shows the DataTemplate assigned to the ItemTemplate property of the ListBox control. Note that a DataTemplate must have only one child, typically a panel. Within that panel you may have any number of other controls.

 Data templates are a powerful way to use everything you’ve learned about binding to provide a top-notch customized display
 for your list-based data. In technologies before WPF and Silverlight, the idea of having complete control over what’s displayed
 in a ListBox was a dream at best. Now, using binding and templates, it’s an easy reality.

 11.5. Summary

 Throughout this chapter, you’ve seen the power of the Binding object and the vast tree of functionality that grows from it. This object gives you the flexibility to bind to individual
 entities, to collection of entities, to indexed entries in a collection, and even to other UI elements. If you need to massage
 the data either coming or going, Silverlight provides a way for you to create your own value converters to do that. If you
 simply need to format the display, Silverlight provides a way for that too.

 Throughout this chapter, you’ve seen how to fully customize the look of your data with data templates. Data templates are
 an amazingly powerful way to control the presentation of your list-based data.

 Most importantly, you’ve seen binding in action. Binding rises to the near top of the most important topics to understand
 when getting into Silverlight. Once you master binding, you may find that you never again will write another line of control. property = value code.

 Silverlight includes two complex and useful controls that were designed to work well with binding: the DataGrid and the DataForm. We’ll discuss those in the next chapter.

Chapter 12. Data controls: DataGrid and DataForm

 This chapter covers

 	Learning about the DataGrid

 	Turning the grid on its side with the DataForm

 	Controlling binding display through attributes

In chapter 11, we covered binding. I believe binding to be one of the most important topics for Silverlight developers. One reason behind
 that is because the DataGrid and DataForm, as well as data annotations for display, all require binding in order to be useful.

 Silverlight 2 included the DataGrid, and Silverlight 3 added the DataForm to the mix of data-centric controls. The DataGrid provides tabular Excel-like data view and editing. The DataForm is like a DataGrid rotated 90 degrees. Where the DataGrid is all about rows and columns for multiple visible entries, the DataForm is about fields and labels for a single visible entry.

 Once we cover the DataGrid and DataForm, we’ll see how to annotate properties with simple attributes to control display within the DataGrid and DataForm. We’ll cover the related validation attributes in chapter 13.

 When used together, the DataForm, DataGrid, and data annotations can form the heart of the user interface for any forms-over-data or business application and can save
 you a ton of implementation time. Of the three, the DataGrid is the most often used, so we’ll start there.

 12.1. The DataGrid

 The DataGrid is a list-style control that belongs to the System.Windows.Controls namespace. This control provides capabilities for displaying a collection of entities in a tabular format. In addition, it
 enables users to add, edit, delete, select, and sort items from a binding data source. This data source is bound to a DataGrid through the ItemsSource property just like an ItemsControl, so the data binding features you’ve seen so far are applicable within the realm of the DataGrid. Before you can bind data to a DataGrid, you must first reference the correct assembly.

 The DataGrid control is defined in its own assembly called System.Windows.Controls.Data.dll. This assembly can be found within the Silverlight SDK, which is available at www.silverlight.net. Note that the DataGrid control’s assembly isn’t part of the default Silverlight runtime installation; it’s an extended control, so you must reference
 the System.Windows.Controls.Data assembly within your Silverlight application. The process of referencing an assembly like this was discussed in section 2.1.2. Part of this process involves choosing a prefix in order to use the control at design time.

 Throughout this section, we’ll use a prefix called data. Referencing the DataGrid control’s assembly will package it up with your application, ensuring that your users can enjoy the power of the DataGrid.

 Throughout this section, you’ll experience the power of the DataGrid. You’ll first see how easy it is to use the DataGrid to display data. From there, you’ll learn how to leverage the built-in features to enable a user to edit the data within
 a DataGrid. Finally, you’ll see how to empower your users to sort the data in a DataGrid.

 12.1.1. Displaying your data

 The DataGrid was designed to make displaying data easy. The easiest way to display data from an ItemsSource is to use the AutoGenerateColumns property. This Boolean property defaults to true, causing the content within the ItemsSource to be rendered in tabular format. This ability is demonstrated in listing 12.1.

 Listing 12.1. The DataGrid—assume the ItemsSource property is set in code

 Result:

 [image:]

 XAML:

 [image:]

 C#:

 List<Emoticon> emoticons = GetEmoticons();
myDataGrid.ItemsSource = emoticons;

 Voilà! This example relies on the System.Windows.Controls.Data assembly to deliver the DataGrid. This Control instance relies on its default behavior to automatically create columns based on the data that it’s bound to. This approach
 is the fastest way to show the data bound to a DataGrid, and it also has some details that are worth examining.

	

 The DataGrid isn’t an ItemsControl

 The DataGrid takes advantage of a feature known as UI virtualization. UI virtualization means that only the items that are visible to the user are created in memory. This performance enhancement
 ensures that the DataGrid can support millions of rows of data. In Silverlight 2, the ItemsControl elements mentioned in chapter 10 didn’t have support for UI virtualization. But, in Silverlight 3 and beyond, virtualization is built into some controls such
 as the ListBox.

 	

Let’s look at what makes a bound column tick. From there, you’ll learn how to customize the columns, rows, and headers of
 a DataGrid.

 Exploring Bound Columns

 When the AutoGenerateColumns property is set to true, the columns in a DataGrid are automatically ordered and rendered based on the type of the underlying data. Regardless of the type of data, the column
 type will always derive from the abstract base class DataGridBoundColumn, which serves as the base for the two types shown in table 12.1.

 Table 12.1. The types of columns that can be automatically generated within a DataGrid

 	
 Type

 	
 Description

	DataGridTextColumn
 	This type of column is used to display textual data. Most of the data from a binding source will be rendered in a DataGridTextColumn
 through calling the binding property’s ToString method. This column type won’t show the default Silverlight TextBox, but the
 rendered content can be edited as if it were in a visible TextBox.

	DataGridCheckBoxColumn
 	This column type generates a CheckBox within a cell. When the AutoGenerateColumns property is true, any bool will be rendered
 using this column type.

This table shows the kinds of columns that can be automatically generated within a DataGrid. If you want to manually create a column, you can also use these types. But, when you’re manually defining your columns,
 you must set the Binding property, which represents the Binding associated with a column (the property name and the type name are, in fact, the same). Because of this, you can use the Binding syntax explained in chapter 11. This Binding declaration may be necessary because by default, when you use a DataGridBoundColumn, a TwoWay binding is used.

 The DataGridBoundColumn is one of the main types of DataGrid columns. The other main type is a DataGridTemplateColumn, which uses a DataTemplate to determine how to render the binding source. Note that every type of column that can be added to a DataGrid derives from the DataGridColumn class, which is used to represent the column of a DataGrid. Objects of this type can be manually added to a DataGrid at design time and managed at runtime.

 Manually Working with Columns

 The DataGrid can use any column that derives from DataGridColumn. These columns can be added to a DataGrid at design time through the Columns property. This approach is demonstrated in listing 12.2.

 Listing 12.2. Manually adding columns to a DataGrid

 Result:

 [image:]

 XAML:

 [image:]

 This example shows how to add columns manually to a DataGrid at design time. These columns are added to the Columns property. The items of this read-only collection will be displayed in the order they appear in XAML, but you can change this through the DisplayIndex property.

 The DisplayIndex property represents the position of a DataGridColumn in a DataGrid. This zero-based integer can be set at design time to override the default ordering approach. Alternatively, the DisplayIndex property can be set at runtime. This property makes it possible to create a truly dynamic DataGrid, but the dynamic features don’t stop there. They also continue at the row level.

 Customizing the Rows

 A row within a DataGrid will most likely represent a summarized view of an item. In these situations, it’s not unusual to redirect the user to another
 page to get the details associated with the item, but the DataGrid provides the ability to display these details within the row itself. This approach can reduce the strain of waiting for another
 page to load for the user. To make this happen, you define the RowDetailsTemplate.

 The RowDetailsTemplate is a DataTemplate that can be used to show the finer points of a specific row. This information may be shown if the RowDetailsVisibilityMode property is set accordingly. You’ll learn more about that in a moment. For now, just assume that a row will show its details
 when a user selects it. When this occurs, the DataGrid will reveal the details using a smooth sliding animation. The details can take up as much or as little space as needed. To
 demonstrate how this works, imagine adding a string property called Keys to the Emoticon class defined earlier in this chapter. This property represents the keyboard shortcut to use for an emoticon. The DataTemplate for revealing this information is shown in listing 12.3.

 Listing 12.3. Using the RowDetailsTemplate to show the per-item keyboard shortcut

 Result:

 [image:]

 XAML:

 [image:]

 This shows how to use the RowDetailsTemplate property. This property uses a DataTemplate to display additional details about a row in a way dependent upon the value of the RowDetailsVisibilityMode property.

 The RowDetailsVisibilityMode property determines when the details associated with a row are shown. By default, this property is set to Collapsed, but you can change this value to any option available within the DataGridRowDetailsVisibilityMode enumeration. This enumeration provides three options. All are shown in relation to the DataGrid with the emoticons (table 12.2).

 Table 12.2. The options available within the DataGridRowDetailsVisibilityMode enumeration

 	
 Option

 	
 Example

 	
 Description

	Collapsed
 	

 [image:]
 	When this option is used, the content in the RowDetailsTemplate won’t be shown.

	Visible
 	

 [image:]
 	This option forces the content in the RowDetailsTemplate to be shown for every row. The content will be shown regardless of
 user interaction.

	VisibleWhenSelected
 	

 [image:]
 	This option will show the content in the RowDetailsTemplate for each selected row.

This table shows the options available within the DataGridRowDetailsVisibilityMode enumeration. These options, coupled with the RowDetailsTemplate property, give you the ability to customize the experience with item-level details. The DataGrid extends the same type of power to the column headers.

 Customizing the Headers

 The DataGrid gives you the ability to customize every part of it, including the headers. The headers of a DataGrid are split across two separate categories: row and column. By default, your DataGrid will show both, but you can control this by changing the HeadersVisibility property. This property uses one of the options available in the DataGridHeadersVisibility enumeration, which are shown in table 12.3.

 Table 12.3. The options available through the DataGridHeadersVisibility enumeration

 	
 Option

 	
 Example

 	
 Description

	All
 	

 [image:]
 	This option displays both row and column headers. This is the default value.

	Column
 	

 [image:]
 	This option displays only the column headers.

	None
 	

 [image:]
 	This option displays neither the row nor column headers.

	Row
 	

 [image:]
 	This option displays only the row header.

The DataGridHeadersVisibility enumeration is used to set whether a header type is visible. You can also customize what the header looks like and how it
 behaves through the DataGridColumn class’s Header property. This property simply represents the column header content, so it uses the same content-related information you’ve already learned about.

 As you’ve seen, the DataGrid empowers you to fully customize how your data is presented. These customizations can be applied at the header, row, and column
 levels. Note that you don’t have to make any of these adjustments. If you’re looking for a quick way to show your data in
 a tabular format, you can rely on the fact that the AutoGenerateColumns property defaults to true. Either way, once your data is loaded, you can enable your users to edit the data directly within the grid.

 12.1.2. Editing grid data

 In addition to presenting data, the DataGrid has the ability to edit data. Users will be able to edit the contents of a DataGrid as long as the IsReadOnly property is set to false. By default it is, so your users have the flexibility to interact with their data in a familiar interface. As they do so,
 you can watch for the beginning of the editing process through two events. These events are triggered by the DataGrid and are called BeginningEdit and PreparingCellForEdit.

 The BeginningEdit event gives you the opportunity to make last-minute adjustments just before users do their thing. In some situations, you
 may want to prevent a user from editing a cell due to previous inputs. For these occasions, the Beginning-CellEdit event exposes a bool Cancel property within its DataGridBeginningEditEventArgs parameter. By setting this property to true, the event will stop running. If the event does complete in its entirety, the PreparingCellForEdit event will also be fired.

 The PreparingCellForEdit is fired when the content of a DataGridTemplateColumn enters the editing mode. This event exists to give you the opportunity to override any changes that may have been made in
 the BeginningEdit event. Once this event and/or the BeginningEdit event have completed without cancellation, users will be given the reins. After they’re done editing the data in the DataGrid, they may decide they want to re-sort the data.

 12.1.3. Sorting items

 The DataGrid has built-in support for sorting collections that implement the IList interface. This interface is a part of the System.Collections namespace and is heavily used throughout the Silverlight .NET framework so you can readily sort almost any collection of
 objects. If you don’t like the way that the DataGrid sorts your collection, you’re free to customize the sorting by binding to a collection that implements the ICollectionView interface. Either way, the DataGrid can be used to sort these collections via the SortMemberPath property.

 The SortMemberPath property is a string available on the DataGridColumn class, so this property can be used by any of the options shown in table 12.3. Regardless of which option you use, the user will be empowered to sort the column in either ascending or descending order,
 as demonstrated in listing 12.4.

 Listing 12.4. Built-in DataGrid sorting

 Result:

 [image:]

 XAML:

 [image:]

 This snippet shows two DataGridColumn instances enabling the user to sort the underlying ItemsSource. The first DataGridColumn enables the user to sort the Emoticon objects by their Name property. The other DataGridColumn lets the user sort by the Keys property. If the user were to select a column header, it would first be sorted in ascending order. Then, if the column header
 were to be selected again, it would be sorted in descending order. The SortMemberPath property is what makes this feature of the DataGrid possible.

 As you’ve just seen, the DataGrid has an incredibly rich development model. This model is important because it can help you assist your users in their data
 entry tasks, which may include editing data or simply viewing it. Either way, the DataGrid provides the ability to efficiently deliver items from a data source in a tabular format.

 The DataGrid is great for tabular data, but what do you do when you want similar functionality in a form-based layout model? New in Silverlight
 3 and originally considered part of WCF RIA Services (covered in chapter 17), the DataForm is the DataGrid’s form-based counterpart.

 12.2. The DataForm

 Silverlight 3 introduced a control that does for forms what the DataGrid does for lists: the DataForm. The DataForm can be thought of as a single-row DataGrid turned on its side. It shares similar capabilities in that it can be read-only or editable and can infer column names and edit controls based on the types bound to it. Like the DataGrid, it also provides full customization of the representation of each of the bound fields.

 Like the DataGrid, the DataForm can work with multiple rows of data. The presentation differs in that you’ll see only one row at a time, as is typical in
 a details form. In fact, the DataGrid and DataForm are sometimes used together to show a master-detail relationship where the DataGrid contains all the records and the DataForm is used to show an editable form for the DataGrid row.

 The DataForm was originally developed for Silverlight by the same team that brought us WCF RIA Services. In order to support continued
 iteration on the control, it was moved from the SDK, where the now-mature DataGrid resides, and placed in the Silverlight Toolkit in the System.Windows.Controls.Data.DataForm.Toolkit assembly. The Silverlight Toolkit can be thought of as an agile extension of the Silverlight SDK, with the bonus that you
 have access to the source code for the controls and tests it contains.

 Though not all applications will use the DataForm, it’s much richer and more customizable than it initially appears. Virtually any forms-over-data application can use this
 control to show a UI that can be as simple as a list of fields or as complex as a customized layout with specific field styles,
 sizes, and positioning. How it looks is up to you.

 In this section, we’ll take a tour through the capabilities of the DataForm, starting with a simple binding to a single object and then to a collection of objects. Next, we’ll work with the command
 buttons for canceling updates and submitting data. Once we have the functional mechanics down, we’ll customize the display
 of fields using properties and then using richer data templates for the edit, add, and display modes. The section will wrap
 up with a discussion of IEditableObject and how that interface can make working with the DataForm even easier.

 12.2.1. Displaying your data

 The easiest thing to do with the DataForm is to bind it to an object and watch it generate all the fields you need. We’ll step away from the Emoticon class for the remaining examples here to show the breadth of controls the DataForm understands. Let’s create a new simple Person class, as shown in listing 12.5. (The Required attribute, used in this class, will be covered in chapter 13, which focuses on validation.)

 Listing 12.5. The Person class

 public enum MaritalStatus
{
 Unknown,
 Married,
 Single,
 Divorced
}
public class Person
{
 [Required]
 public string LastName { get; set; }
 [Required]
 public string FirstName { get; set; }
 public bool IsRegistered { get; set; }
 public MaritalStatus MaritalStatus { get; set; }
 public DateTime DateOfBirth { get; set; }
 [Required]
 public string EmailAddress { get; set; }
 [Required]
 public int NumberOfChildren { get; set; }
}

 We’ll then bind to it in XAML using a static resource, much as we have in other examples. Instead of individual controls,
 we’ll use the entire object as our data source for the new DataForm control, as shown in listing 12.6.

 Listing 12.6. Binding the DataForm to a single Person object

 [image:]

 The property that’s used to generate the form is the CurrentItem property, in this sample case bound to a single object sitting in the Resources section of this control. The resulting DataForm, as seen in figure 12.1, is impressive in the breadth of controls it has auto-generated for you. Not only did we not have to write any code specific
 to the DataForm, but we also didn’t have to place any edit controls in the markup.

 Figure 12.1. DataForm showing generated edit controls bound to a single object without a backing collection. Note that there’s no toolbar or set
 of navigation buttons. Not all fields are shown, so your form will look slightly different.

 [image:]

 Note that the DataForm displayed a CheckBox for the bool property, a ComboBox for the enum (populated with all the possible values defined in the enumeration, of course), and a DatePicker for the DateTime property. Not bad for a default form, and certainly workable for a simple utility application.

 So far we’ve been binding one discrete object to the DataForm. To harness the true power of the DataForm, you’ll want to bind it to a list of objects much as you would a DataGrid.

 12.2.2. Binding to lists of data

 If you want to support the ability to add new records, you’ll need to provide a place to put them. For this example, we’ll
 create a simple class that holds some dummy data. Of course, you could wire this up to a service to load a collection of Person objects, should you desire.

 Listing 12.7 shows a class named PeopleRepository that will hold our Person objects. Note that this doesn’t follow the formal Repository pattern; it’s closer to a View-Model (covered in chapter 16).

 Listing 12.7. The PeopleRepository class

 [image:]

 Once you have a suitable repository for the data (whether it’s a view-model or something else), one of the easiest things
 to do is to supply an ObservableCollection<T> to the ItemsSource property, as shown in listing 12.8.

 Listing 12.8. Binding the DataForm to the PeopleRepository class

 [image:]

 In the example, I use the PeopleRepository class from listing 12.7 with a collection of Person objects exposed through a property named People. In XAML, I create a resource to hold a reference to that repository and set the DataContext of the DataForm to that StaticResource. (You could, of course, also create the repository and set the DataContext from code.) I then bound the ItemsSource to the collection of Person objects. The resulting DataForm looks like figure 12.2.

 Figure 12.2. A DataForm bound to a collection of objects. Note the presence of the toolbar including the add/remove and navigation buttons, sometimes
 called the VCR control. (Display annotations, covered in 12.3.1, were used in this example.)

 [image:]

 Note the new toolbar at the top of the DataForm. This provides navigation as well as Add (the plus sign) and Delete (the minus sign) capabilities. For each of the operations
 (Add, Delete, Validate, and so on) appropriate events are raised with the capability to cancel operations based on criteria
 you set in your code.

	

 VCR control?

 Ack! Was that the dreaded VCR binding control I just saw in that screenshot?

 Yes—but since this is Silverlight, you have control over what that toolbar looks like, where it’s displayed (if at all), and
 how a user navigates through the records. You also get good event support when you move from record to record, as well as
 the ability to properly validate the data.

 So, yes, it looks like the same old VCR control we grew up with in old VB, but it bears about as much technical resemblance
 to the old VB data binding controls as Blu-ray does to VHS.

 	

The toolbar can be customized both by templating and via the CommandButtonsVisibility property, whose possible values are shown in table 12.4.

 Table 12.4. DataForm CommandButtonsVisibility values

 	
 Template property

 	
 Description

	All
 	Show all buttons.

	Add
 	Show the add new item button.

	Cancel
 	Show the cancel edit button. If the underlying item implements IEditableObject, this calls the CancelEdit function.

	Commit
 	Show the commit edit button. If the underlying item implements IEditableObject, this calls the EndEdit function.

	Delete
 	Show the delete button

	Edit
 	Show the edit button. This button is typically not necessary if AutoEdit is set to true.

	Navigation
 	Show the VCR control navigation buttons.

	None
 	Don’t show any command buttons.

Figure 12.3 shows what the toolbar looks like with all of the command buttons visible. The OK and Cancel buttons at the bottom are the
 commit and cancel buttons. The pencil in the upper right (currently disabled) is the edit button. The other buttons are as described earlier.

 Figure 12.3. The DataForm with all command buttons displayed. The OK and Cancel buttons are the commit and cancel buttons, respectively.

 [image:]

 To alter the appearance of the OK and Cancel buttons without retemplating the DataForm, you can use CommitButtonContent and CancelButtonContent to set the contents of the buttons and CommitButtonStyle and CancelButtonStyle to restyle the buttons.

 As with just about everything else in Silverlight, you can completely style the way the DataForm looks. You may want to change not only the style but also the field label display and the data type controls.

 12.2.3. Customizing display

 The DataForm provides multiple levels of UI customization, ranging from how to display field labels and descriptions all the way to providing
 your own complete DataTemplate for each of the various modes of the control.

 Customizing Field Labels

 In addition to the ability to change the text of the field labels, the DataForm provides the ability to change the position of the labels relative to the edit control. This capability is exposed through
 the LabelPosition property, the values of which are shown in table 12.5.

 Table 12.5. Possible values for LabelPosition and the resulting display

 	
 Value

 	
 Result

	Left
 	

 [image:]

	Top
 	

 [image:]

	Auto
 	When there is a parent DataForm, the label position will be inherited. When there’s no additional parent DataForm, this value
 is treated as Left.

The field label provides the primary way you should indicate the expected contents of a field. Should the user require additional
 information, it may be provided via the field description.

 Customizing Field Descriptions

 Field description elements are the small icons and related tooltips that typically appear to the right of any control bound
 to a property that has an associated display description. Later in this chapter, we’ll discuss how to set the description text for individual fields on the form using
 the DisplayAttribute.

 The DataForm provides the property DescriptionViewerPosition, which enables you to set the relative location of the description viewer icon. The possible values are described in table 12.6.

 Table 12.6. Possible values for DescriptionViewerPosition and the resulting display

 	
 Value

 	
 Result

	BesideContent
 	

 [image:]

	BesideLabel
 	

 [image:]

	BesideLabel (with LabelPosition set to Top)
 	

 [image:]

	Auto
 	When there is a parent DataForm, the position will be inherited. When there’s no additional parent DataForm, this value is
 treated as BesideContent.

With the label and description covered, we can turn our attention to the field controls and edit them using the three available
 template properties.

 12.2.4. Customizing edit, add, and display templates

 The no-code/no-markup out-of-the-box experience is good, but those types of solutions only get us so far before they break
 down. The DataForm gets us further than most controls but, if you couldn’t completely customize the DataForm, we all know it would be a nonstarter for production-ready real-world applications. Luckily, the DataForm supports customization of the associated data templates for the three values of the Mode property: AddNew, Edit, and ReadOnly.

 In chapter 11, we covered how to use data templates. The DataForm control provides three places where we can insert our own data templates: the EditTemplate, NewItemTemplate, and ReadOnlyTemplate, all described in table 12.7.

 Table 12.7. DataForm templates corresponding to the DataForm mode

 	
 Template property

 	
 Description

	EditTemplate
 	Corresponds to the Edit value of the Mode property. This template is used when the user or application code puts the form
 in edit mode or when AutoEdit is true.

	NewItemTemplate
 	Corresponds to the AddNew value of the Mode property. This template is used when the user or application code adds a new item.

	ReadOnlyTemplate
 	Corresponds to the ReadOnly value of the Mode property. This template is used when the current item is read only.

The mechanics of defining the data templates for the three different modes are the same, so we’ll concentrate on just the
 EditTemplate in the following examples.

 Creating the Datatemplate

 Most of us will create our data forms ourselves, with our own aesthetics accounted for. Supplying your own data templates
 enable you to do a few primary things:

 	You have complete control over the layout of the form and can, therefore, make it look as the designer intended.

 	You can customize the individual field edit control types.

 	You can change the binding characteristics to include your own value converters.

What you give up, of course, is the magic. Unlike the case when you started manually adding fields to the DataGrid, the DataForm provides a nice assortment of capabilities when adding fields. You’ll still need to add a field in markup for each field
 you want on the form but, in reality, this is no more work than we would’ve had to do if we created the forms without the
 help of the DataGrid, with some significant savings in application plumbing code.

 In a departure from its DataGrid cousin, the DataForm takes a more flexible approach to specifying the individual fields. Rather than have some built-in field types you must choose
 from or use a template for the remaining, you simply need to wrap edit controls within a DataField content control, as shown in listing 12.9.

 Listing 12.9. Wrapping the controls in an edit template

 [image:]

 The resulting DataForm edit controls look like figure 12.4. Note that I hard-coded the CheckBox content property to IsRegistered and hid the associated DataField label so that I could demonstrate how to use the built-in CheckBox content property.

 Figure 12.4. Customized EditTemplate showing the CheckBox label to the right of the CheckBox

 [image:]

 The DataField content control has a number of properties that mirror those on the DataForm itself. These are used for controlling where or if the description displays, where to put the field label, and so on. Those
 may all be set on a field-by-field basis in order to override the DataForm-level settings.

 Finally, if you don’t want the additional support provided by the DataField control, you can simply omit it and add the TextBlocks and TextBoxes (and other controls) directly to the template and bind them to the appropriate fields, without wrapping in DataField controls.

 That’s how you control the editing experience at a field and form level. Now let’s look at how to control the overall editing
 and commit experience from a workflow standpoint.

 12.2.5. Finer control over editing and committing data

 The DataForm and similar controls provide several other settings and hooks that may be used to customize the overall editing workflow.
 These range from altering the object state based on whether it’s about to go into the edit mode or not, how to commit changes,
 and finally how to manually check if the form includes only valid data.

 IEditableObject

 System.ComponentModel.IEditableObject is an interface that allows controls such as the DataForm to make method calls into an object when it’s about to be edited. Specifically, the interface defines the three methods listed
 in table 12.8.

 Table 12.8. IEditableObject interface

 	
 Template property

 	
 Description

	BeginEdit
 	Called when the object is put into the edit mode
 This is where you may want to cache undo information. If the DataForm’s AutoEdit property is set to true, this is called as
 soon as an edit field receives focus. Otherwise, it’s called as a result of the user clicking the edit button on the toolbar.

	CancelEdit
 	Called when the object was previously in the edit mode but now is to be put back into the read-only mode, reverting any changes
 On the DataForm, this is called when the user clicks the Cancel button.

	EndEdit
 	Called when the edit is complete and the changes should be committed
 If the DataForm’s AutoCommit property is set to true, this will happen when the user navigates off the item and the item is
 both dirty and valid.

Those three functions allow you to control exactly what happens to the object’s data when it’s put in the edit mode, the edit
 mode is cancelled, and the edits are committed. Though the sky’s the limit with what you might do in these functions, common
 approaches include versioning, single or multiple-level undo, storing a history of changes, and lazy-loading data required
 for the edit process.

 The Silverlight DataForm control respects these methods and calls them at the appropriate times if your class implements the IEditableObject interface. Another place where the DataForm allows customization in the object workflow is in checking the item state.

 Checking for Dirty State and Validity

 The DataForm also provides a way to check the object’s changed state, often called its dirty state, from within the DataForm itself. This doesn’t require any dirty tracking infrastructure in place within the entity being edited; the DataForm takes care of all of that. To check whether the current item has been changed, simply refer to the IsItemChanged property as follows:

 if (dataForm.IsItemChanged) {...}

 If the item has changed, you’ll probably be interested in knowing if it’s valid. Luckily, the DataForm provides a property for that as well: the IsItemValid property. This property returns true if the currently edited item, the item visible on the DataForm, has met all associated validation rules (covered in chapter 13). The syntax for the read-only IsItemValid property is as shown here:

 if (dataForm.IsItemValid) {...}

 The DataForm by itself is a nice way to handle data entry in your applications. Without sacrificing the capabilities it offers, you have
 a great deal of control over how the content is rendered and how navigation is handled. The DataForm will help do for forms what the DataGrid did for tabular data.

 The DataGrid and DataForm are two powerful controls for displaying and editing data. If you’re writing a line-of-business application or something
 that’s otherwise very data heavy, I strongly recommend you consider using these controls. Both provide commonly understood
 UI metaphors in an easy-to-use package. You can do pretty much anything you’d need to do with them more efficiently than writing
 analogous controls from scratch, especially when you consider the annotations we’ll cover in the next section.

 Now that we’ve seen how to edit data in the DataGrid and DataForm, we’ll want to impose some parameters around how the data is displayed. We can do this in code, but it’s typically more efficient
 to use data annotations.

 12.3. Annotating for display

 The DataForm and DataGrid both offer the ability to set the properties of columns and labels, including things such as the display caption and tooltips.
 But, if you share the data between many instances of the controls, instances which may vary in their display properties in
 other ways, it can be both tedious and a maintenance burden to have to repeat this configuration in multiple places.

 Autogeneration of columns and labels often leaves us with even uglier results. Sadly, many internal applications go into production
 with programmer-friendly but user-unfriendly display properties because it was too much effort to keep the UI updated and
 in sync with the data model.

 The System.ComponentModel.DataAnnotations assembly and namespace found in the Silverlight SDK provide a number of attributes designed to make data validation and display
 hinting easier for controls such as the DataForm, DataGrid, and some third-party controls. The approach taken by these attributes is to mark up the properties in your entities using
 attributes in code rather than require code within the properties or external to your entities.

 The two main attributes that we’ll cover here are Display and Editable. In chapter 13, we’ll take a look at the validation attributes and how they can further enhance the DataGrid and DataForm.

 12.3.1. The Display attribute

 Both the DataGrid and the DataForm provide the capability to automatically generate display and edit controls, and associated labels or column headers, at runtime.
 Though the controls themselves provide a number of ways to customize the field information, there are times when you’d be
 better served by a centralized definition of that metadata.

 One way to centralize that metadata is to annotate the properties on the entities themselves. The assembly System.ComponentModel.DataAnnotations provides a number of attributes designed specifically for this purpose (see listing 12.10).

 Listing 12.10. The Person class with Display attributes attached

 public class Person
{
...
 [Display(Name = "Registered",
 Description = "Check if this person has registered with us.")]
 public bool IsRegistered { get; set; }
 [Display(Name = "Marital Status",
 Description = "Optional marital status information.")]
 public MaritalStatus MaritalStatus { get; set; }
...
}

 The result of including the Display attribute with the name and description can be seen in figure 12.5. Note that the MaritalStatus field has its correctly formatted display name shown in the label, and the Registered field shows the information icon with the associated tooltip containing the description property.

 Figure 12.5. Portion of a DataForm showing the tooltips with the Description property of the Display attribute and the field captions pulled from the Name property of the same attribute.

 [image:]

 The DisplayAttribute enables us to control a number of different aspects of the onscreen representation of the control, above and beyond just
 the field label and the tooltip. It can control whether the field is automatically generated as a column in the DataGrid or field in the DataForm. It can also control the order the fields are displayed in or information on the string to use when localizing. Table 12.9 has the complete list of the different properties available.

 Table 12.9. DisplayAttribute properties and their uses

 	
 Property

 	
 Description

	AutoGenerateField
 	Set this value to false if you don’t want controls like the DataForm to automatically generate a control for this property.

	AutoGenerateFilter
 	Set to true if you want the filtering UI automatically displayed for this field. It is currently unused by the DataGrid and
 DataForm controls.

	Description
 	A resource name or regular text that will be displayed by the rendering control. In the case of the DataForm, this shows up
 in a tooltip over the information icon.

	GroupName
 	A resource name or regular text to display as the heading for a group of related fields. Currently unused by the DataGrid
 and DataForm controls.

	Name
 	A resource name or regular text to display as the name of this field. This is typically used in field labels.

	Order
 	Relative order for this field in display. By default, fields are displayed in the order they’re defined in the class. This
 property allows you to override that behavior.

	Prompt
 	Specifies a prompt, such as a watermark, to use when displaying this field. Currently unused by the DataGrid and DataForm
 controls.

	ResourceType
 	If you intend to use localized resources, specify the type container for those resources here.

	ShortName
 	A resource name or regular text to display as the name of this field. This is typically used in column headers.

In several instances in table 12.9, I wrote that a property is “typically used as” something or other. The DisplayAttribute simply contains data; it doesn’t provide behavior or any enforcement of proper use. It’s up to the consuming control—typically
 a DataGrid, DataForm or a third-party control—to decide how that data will be used.

 In addition to the DisplayAttribute and its properties, one final important attribute-based setting you have as a developer is the ability to mark individual
 properties as editable or read only.

 12.3.2. The Editable attribute

 On occasion, you may want to designate certain properties as read only from a UI point of view but still allow them to be
 manipulated via code. One way to handle that is to provide an accessor (property get) with no corresponding property set and
 then provide an explicit mutator method. Unfortunately, that makes the programming interface more cumbersome.

 Another approach is to provide a normal property getter and setter but mark the property as read only at the UI level. Like
 the Display attribute discussed in the previous section, you could certainly do this on a form-by-form basis. But you may want to instead
 centralize this information on the entity itself, as shown in listing 12.11.

 Listing 12.11. Controlling editability using the Editable attribute

 [image:]

 In this example, we’ve marked the Marital Status field as read only by applying an EditableAttribute with the editable flag set to false. The result will be an onscreen field that’s disabled, as shown in figure 12.6.

 Figure 12.6. The Marital Status field has been disabled because its underlying property is marked as read only.

 [image:]

 Figure 12.6 shows the Marital Status field disabled. Note also that its information icon isn’t displayed, even though we’ve included
 a display description. The display of the field control itself will depend upon the disabled state for the control in use.
 This is something that may be easily changed by editing the control template as shown in chapter 23.

 There is a number of other attributes in the DataAnnotations namespace, including some specifically geared toward object-relational mapping (ORM). Take a look around in there and you
 may find other attributes that can help with specific challenges you’re facing in your applications.

 Annotations are a powerful way to provide metadata for your entities. When combined with annotation-aware controls like the
 DataForm and DataGrid, you can provide UI information such as field labels and help text, and control whether fields are editable on forms and
 in grids. WCF RIA Services, covered in chapter 17, provides other options for surfacing this metadata.

 12.4. Summary

 For business and forms-over-data applications, the DataGrid and DataForm often form the heart of the UI. Even nontraditional applications sometimes use heavily styled DataGrids due to their rich programming model. Though the controls are complex, they’re equally powerful and worth the time it takes
 to master them.

 The DataGrid is great for tabular data, whether it’s flat grid-style or contains images or richer content. There are lots of options for
 the types of content it contains as well as how you style both the content and the columns and rows that contain it. When
 you need to display and edit data in a tabular form, look first to the DataGrid.

 The DataForm is the 90-degrees-off equivalent of the DataGrid, with columns shown as fields rather than columns. Like the DataGrid, it can work on multiple rows of data but, unlike the DataGrid, it shows only one at a time. Though certainly useful on its own, the DataForm is often combined with the DataGrid for master-detail layouts.

 The DataGrid and DataForm both understand the display annotations such as the Display and Editable attributes. These allow you to mark up your classes or buddy partial classes to control the rendering of the controls in
 the grid and the form.

 Now that we’ve covered binding (chapter 11) and the DataGrid and DataForm, we’ll move on to validation. When you combine the grid, form, binding, and validation, you’ll be well on your way to having
 a set of tools that cover the majority of the data manipulation needs of a business application UI.

Chapter 13. Input validation

 This chapter covers

 	Validating properties in code using exceptions

 	Using IDataErrorInfo and INotifyDataErrorInfo for validation

 	Controlling DataGrid and DataForm validation through attributes

In chapter 11, we covered binding. In chapter 12, I mentioned that I believe binding to be one of the single most important topics for Silverlight developers. Another reason
 for that is because all the validation approaches covered in this chapter build directly on the binding system.

 Validation is something almost every nontrivial application with a TextBox will need to do at some point. Often, we punt and do simple checking in the code-behind. But, if you want to truly leverage
 binding, take advantage of patterns such as the ViewModel pattern, and just have better structure to your code, you’ll want
 to use one of the established validation mechanisms provided by Silverlight.

 Silverlight provides several ways to validate data. The simplest and oldest approach is to use exception-based validation.
 In that approach, property setters simply throw exceptions when the validation doesn’t pass. This is the code equivalent of my toddler’s spitting out the food she doesn’t like and, like that, anything more complex than a couple of peas is going
 to get pretty messy.

 It wasn’t well-known, but Silverlight 2 included basic exception-based validation capabilities. With the releases of Silverlight
 3 and 4, these capabilities became more advanced and the exception-based approach was looked at as more of a stopgap, useful
 in only the simplest of validation scenarios. For those reasons, we’ll concentrate the majority of this chapter on the more
 modern approaches to validation, such as IDataErrorInfo and INotifyDataErrorInfo.

 The IDataErrorInfo and INotifyDataErrorInfo interfaces are the newer approach for validating data in Silverlight 4. They’re a bit more complex to implement. (when working
 with them, start out by creating some helper classes to handle all the goo. You’ll thank me for it; and, if you do want to
 thank me, donations and chocolate are always welcome.)

 One main difference with these interfaces, as opposed to an exception-based approach, is how far you allow invalid data to
 get. With exception-based validation, the accepted approach was to not complete the set operation if the validation fails.
 Using the new interfaces, invalid data will often make it into the class, and will need to be removed or otherwise handled
 during the final validation or save processes.

 Due to the more flexible nature as well as decoupling from the property setters, these interfaces also allow for cross-field
 validation, where changing the value of one field can invalidate the value of another field.

 The final approach to validation is geared to work with the DataGrid and DataForm covered in chapter 12—data annotations. In chapter 12, we saw that data annotations may be used to control various aspects of display and even editability. In this chapter, we’ll
 investigate the use of data annotations specifically for validation.

 To keep the examples consistent, we need to do a little setup work and establish a baseline class to use as our binding source:
 the Employee class. Once we have that set, we’ll briefly look at exception-based validation and the shared validation presentation, then
 tackle synchronous and asynchronous validation with IDataErrorInfo and INotifyDataErrorInfo, and finally end on attribute-based validation as used by the DataForm and DataGrid covered in chapter 12.

 13.1. The validation example source and UI

 Throughout this chapter, we’ll refer back to the Employee class defined here, which will be used as our binding data source. This class represents a fictional employee in a human
 resources management system.

 The Employee class contains the public properties shown in table 13.1.

 Table 13.1. Employee class properties

 	
 Property

 	
 Description

	Last Name
 	The employee’s last (or family) name

	First Name
 	The employee’s first (or given) name

	Level
 	The employee’s salary level This puts the employee into specific salary “buckets.”

	Salary
 	The salary, in USD, for this employee

The class source code is shown in listing 13.1. Note that the Employee class implements the INotifyPropertyChanged interface to support binding change notification, discussed in chapter 11.

 Listing 13.1. Employee class to be used in the validation examples

 [image:]

 [image:]

 You won’t see validation in action unless you wire up some UI, so we’ll build a basic user interface that works against a
 single instance of the Employee class. We’ll keep it simple and use code-behind, but I refer you to chapter 16 for best practices on structuring your application using the ViewModel pattern. The XAML and C# for the UI are shown in listing 13.2.

 Listing 13.2. User interface XAML and code-behind to use for validation examples

 [image:]

 [image:]

 XAML:

 C#:

 public partial class MainPage : UserControl
{
 private Employee _employee = new Employee();

 public MainPage()
 {
 InitializeComponent();
 Loaded += new RoutedEventHandler(MainPage_Loaded);
 }

 void MainPage_Loaded(object sender, RoutedEventArgs e)
 {
 this.DataContext = _employee;
 }
}

 The user interface includes four text boxes, each with a label. There’s also a Submit button, but it’s there just for aesthetic
 purposes; all of our validation will happen on lost focus (blur for you web folks). The resulting form should look like figure 13.1. Note that the Level and Salary both show 0; this shows that binding is working for those fields.

 Figure 13.1. Runtime view of the validation form

 [image:]

 That sets up a basic single-entity data entry form we can use for the validation examples included in this chapter minus the
 ones specific to the DataForm and DataGrid. Throughout this chapter we’ll modify various aspects of the Employee class, as well as the binding statements in the form XAML. As we move through the examples, it may be helpful to refer back
 to these listings.

 The first type of validation we’ll look at is also the simplest and the one with the most history: exception-based validation.

 13.2. Exception-based property validation

 It wasn’t well-known, but Silverlight 2 included basic validation capabilities. With the release of Silverlight 3, these capabilities
 became more advanced, so we now have the ability to validate bound data and display appropriate error messages using the built-in
 controls in a standardized and easy to template way. The binding syntax continues to use the ValidatesOnExceptions parameter to enable the display of validation messages when a property setter raises an exception, but the built-in control
 templates have been updated to provide appropriate display of error state.

 Though no longer widely used, it’s worth covering exception-based validation for those times when it really is the most appropriate
 approach. It’s also necessary to understand so you can respond to the built-in type validation exceptions.

 In this section, we’ll look at the basics of using exception-based validation both for your own errors and built-in system
 errors and then move on to custom validation code and combining multiple validation messages. We’ll wrap up this section with
 a look at the built-in Validation UI in Silverlight, something that applies to all forms of validation.

 13.2.1. Handling exception validation errors

 Even if you don’t plan to have your own exception-based validation errors, it’s worth handling them in order to get the benefits
 of automatic type checking. Binding with exception-based validation enabled, in its simplest form, looks like this:

 <TextBox Grid.Row="0" Grid.Column="1"
 Text="{Binding LastName, Mode=TwoWay,
 ValidatesOnExceptions=True}" />

 The example binds the TextBox to the LastName property of the object that’s the current data context. The ValidatesOnExceptions parameter informs the binding system to report any binding exceptions to the TextBox.

 One nice side effect of this is that you get data type validation for free. For example, if you try to enter letters into
 a decimal property such as the Salary field, you’ll get a type mismatch validation error.

 In addition to simple data type validation, you can perform virtually any type of validation you want by writing a little
 code inside the property setter.

 13.2.2. Custom validation code

 Referring back to the Employee class from listing 13.1, let’s modify the LastName property to perform some basic validation. We’ll make the last name a required field and then make sure it has a length of
 at least two characters:

 public string LastName
{
 get { return _lastName; }
 set
 {
 if (string.IsNullOrEmpty(value))
 throw new Exception("Last Name is a required field.");

 if (value.Trim().Length < 2)
 throw new Exception("Name must be at least 2 letters long.");

 _lastName = value;
 NotifyPropertyChanged("LastName");
 }
}

 For brevity, I used the base Exception class for our validation errors. In practice, you’ll want to be less generic with your exception types, just as you would
 when throwing exceptions for hard errors in code. In order for this code to work, you’ll need to run without debugging (or
 ensure the appropriate IDE debugging break options are set, now a default in Visual Studio 2010); otherwise, you’ll hit a
 break in the property setter.

 Combining Validation Messages

 In our setter, we have two guard conditions that throw exceptions when unmet. Since these are real exceptions, the first one
 hit will pop out of the setter. If you want to have more than one validation rule checked simultaneously, you’ll need to combine
 your checks and throw only a single exception, perhaps like this:

 private string _lastName;
public string LastName
{
 get { return _lastName; }
 set
 {
 string message = string.Empty;
 bool isOk = true;

 if (string.IsNullOrEmpty(value))
 {
 message += "Last Name is a required field. ";
 isOk = false;
 }

 if (value.Trim().Length < 5)
 {
 message += "Last Name must be at least 2 letters long. ";
 isOk = false;
 }

 if (isOk)
 {
 _lastName = value;
 NotifyPropertyChanged("LastName");
 }
 else
 {
 throw new Exception (message.Trim());
 }
 }
}

 Admittedly, that’s a hack, especially once you have more than a couple of rules associated with a single field. If you want
 to stick with exception-based validation, you’re forced to live with the limitations imposed by an exception-based system,
 including both single checks and the debugging hassles.

 13.2.3. Validation error display

 When you bind the TextBox to the instance of the Employee class with the simple (one message) exception-based validation code in-place, change the binding statement to validate on
 exceptions as shown earlier, and try to enter data that violates the rules, you’ll get an experience like that shown in figure 13.2 when you tab off the field.

 Figure 13.2. Default binding validation error display for the Last Name TextBox, illustrating a custom error message

 [image:]

 Like almost everything else in Silverlight, the display of the validation error tooltip and the error state of the TextBox are both completely customizable by editing the control template. We’ll discuss styling and control templates in chapter 23.

 Validation using exception code inside properties can be convenient, but it certainly doesn’t look clean. It makes debugging
 sometimes difficult because there are exceptions on the stack. Another issue is that validation errors can only be raised
 when a setter is called, not in response to another action such as the changing of a value in a related field. And, truthfully,
 many of us just have an aversion to using exceptions for business or validation rules.

 Silverlight 4 introduced the IDataErrorInfo and INotifyDataErrorInfo interfaces. IDataErrorInfo, covered in the next section, was previously available in WPF, but INotifyDataErrorInfo, covered in section 13.4, is a completely new interface. These interfaces help eliminate some of the issues present with exception-based validation
 because they have a completely different exception-free implementation. But the same styling guidelines and error display
 features still apply. In addition, they offer some features, such as asynchronous validation, that would be cumbersome or
 impossible to implement in an exception-based model.

 13.3. Synchronous validation with IDataErrorInfo

 IDataErrorInfo was introduced in order to address some of the concerns raised by exception-based validation. Unlike exception-based validation,
 there are no exceptions on the call stack when validation fails. This approach is also more flexible when it comes to setting
 validation errors for individual fields, regardless of whether their setters are called.

 We’ll start the discussion of IDataErrorInfo by taking a look at the interface members and the binding statement. We’ll then work on handling simple validation errors.
 Once we have the right approach for handling simple validation errors, we can look at something that IDataErrorInfo can do that was difficult with exception-based validation: cross-field validation errors. Finally, since you’ll want to combine
 the built-in type checking with your custom validation errors, we’ll look at what it takes to combine IDataErrorInfo validation with exception-based validation.

 13.3.1. The IDataErrorInfo interface

 Located in the System.ComponentModel namespace, the IDataErrorInfo interface is meant to be implemented by any class you want to use as a binding source and also want to have surface validation
 errors.

 The IDataErrorInfo interface contains two properties: Error and Item. These properties are described in table 13.2.

 Table 13.2. IDataErrorInfo members

 	
 Property

 	
 Description

	Error
 	Set this to have a single error message that applies to the entire object.

	Item
 	A collection of errors, indexed by property name. Set these to have errors specific to individual fields.

You can already see how this is going to provide more options than the exception-based approach. With a simple collection
 of messages, we can add and remove them using code in any place in our class. In addition, the class-scoped error message
 lets us provide errors that are difficult to attach to any single property.

 Binding with Validatesondataerrors

 In return for this flexibility, you’ll need to write a bit more code. Before we do that, though, we need to modify the form
 XAML so that it responds to the IDataErrorInfo errors rather than the exception-based errors. The binding statement for each TextBox should look like this:

 Text="{Binding LastName, Mode=TwoWay, ValidatesOnDataErrors=True}"

 Note the ValidatesOnDataErrors property versus the ValidatesOnExceptions property. As the name suggests, setting ValidatesOnDataErrors to true tells the binding system to watch the IDataErrorInfo interface on your class and respond to any errors reported.

 Now that the binding is set up for each of the TextBox instances on the form, we can get to the actual validation code. We’ll put the validation code inline in the Employee class. Once you have some experience with it, you may want to pull the common validation helper code out into a separate
 class, called from your entities.

 13.3.2. Simple validation with IDataErrorInfo

 The first thing to do is to implement IDataErrorInfo in the class. The modifications to the Employee class to do this look like listing 13.3.

 Listing 13.3. Implementing IDataErrorInfo in the Employee class

 [image:]

 The Dictionary of strings holds the field-level error messages, whereas the single string property holds the class-level error message.
 To try out the interface, we’ll implement the same validation we did in the simple exception-based validation example and
 check the length of the LastName field:

 public string LastName
{
 get { return _lastName; }
 set
 {
 if (string.IsNullOrEmpty(value))
 _dataErrors["LastName"] = "Last Name is required";
 else if (value.Trim().Length < 2)
 _dataErrors["LastName"] =
 "Last Name must be at least 2 letters long.";
 else
 if (_dataErrors.ContainsKey("LastName"))
 _dataErrors.Remove("LastName");

 _lastName = value;
 NotifyPropertyChanged("LastName");
 }
}

 There are two primary differences in the structure of this rule-checking code as opposed to the exception-based code. First,
 we needed to include a branch that clears the error when valid, and second, the rules as written let potentially bad data
 into the class. The second difference is a matter of preference and business rules; you may easily change it so the data is
 only set when valid. The former check is required because the only thing the binding system uses to check for the presence
 of an error is whether employee["FieldName"] returns a string or null.

 Running the application produces the same results as the exception-based version, as it should. We changed only our implementation
 of validation at the business object level, not the user interface elements that display the results.

 13.3.3. Cross-field validation with IDataErrorInfo

 What about cases when you want to validate more than one field? For example, let’s say that we need to ensure that an employee’s
 salary is in range when related to his or her level. The valid salary ranges for each level are listed in table 13.3.

 Table 13.3. Validation rules for salary and level

 	
 Level

 	
 Allowable salary range

	100
 	50,000–64,999

	101
 	65,000–79,999

	102
 	80,000–104,999

You could put this in the setter for one of the fields, but unless you include the check in both, you’re making the mistake
 of assuming the field data will be input in a specific order. In cases like this, it’s better to pull the validation code
 out into a common function and call it from both setters, as shown in listing 13.4.

 Listing 13.4. Cross-field validation code using IDataErrorInfo

 [image:]

 [image:]

 In this example, I decided not to allow invalid values into the class. Validation using this interface makes that a simple
 choice to make. The code that makes that decision is inside the properties themselves.

 The ValidateSalaryAndLevel function is the meat of the validation for these two properties. It takes in both the salary and the level (one of which
 will always be the current value and the other an entered but not set value) and first validates the level, then validates
 that the salary falls within the correct range for the level. If so, it clears any previous errors. If not, it sets new errors.

 One thing you may have noticed is the proliferation of magic strings (the property names). When implementing this in your
 own code, you’ll want to either use constants for the string names, or use reflection to dynamically pull property names from
 the classes. The former is quicker both to develop and at runtime; the latter is more robust but slower.

 When run, the cross-field validation looks like this figure 13.3. If not, you may have forgotten to add the ValidatesOnDataErrors property to your binding statement. IDataErrorInfo is great, but one thing we lost in the process was the automatic errors when validating the data types. To continue to support
 that, we’ll need to return to exception-based validation.

 Figure 13.3. Cross-field validation showing errors for both salary and level

 [image:]

 13.3.4. Combining exceptions and IDataErrorInfo

 When we turned on ValidatesOnDataErrors, we removed the ValidatesOnExceptions parameter. That’s used not just by our own code but also by the built-in type checking. For example, when you try to assign
 a string like "dfdf" to an int, you’ll get an exception. That exception bubbles up and, if not handled by the binding system, it just disappears.

 Luckily, this is easy to fix. Simply modify the binding statement to include both parameters:

 Text="{Binding Level, Mode=TwoWay,
 ValidatesOnDataErrors=True,
 ValidatesOnExceptions=True}"

 When run, the result will look like figure 13.4. Note that, since the exception will be thrown before your property setter code executes, this exception takes precedence
 over your own validation code.

 Figure 13.4. Built-in exception-based checking takes precedence over your code.

 [image:]

 Using both modes gives you the best of both worlds: you don’t need to handle basic type checking, and you get more robust
 validation support for your own custom code.

 IDataErrorInfo is a powerful interface for surfacing your own validation errors. It provides a way to surface errors for the entire class
 or for individual fields. It also makes it possible to perform cross-field validation or multifield validation without invoking
 all involved property setters through the binding system.

 It’s not without its faults, though. String-based property access can get you into trouble when you refactor (or have a typo),
 and the validation code is all synchronous, run on the client. There are tricks for working around the string-based problem
 (constants, reflection), but what do you do when you want to validate through a service or do some other long-running validation
 call? For those instances, we have INotifyDataErrorInfo.

 13.4. Asynchronous validation with INotifyDataErrorInfo

 IDataErrorInfo is a synchronous operation validation approach. Though you can bend it to surface errors in an asynchronous way, it’s not
 really optimized for that. In addition, IDataErrorInfo doesn’t support having multiple errors for a single property.

 INotifyDataErrorInfo solves both of these issues. Though similar in concept to IDataErrorInfo, its design specifically supports asynchronous validation and the method for returning validation errors supports multiple
 errors for a single field.

 We’ll start our coverage of INotifyDataErrorInfo with the interface members and how to implement them in your own class. Then we’ll move on to the modifications required
 in the binding statement. Next, because we’ll need to show asynchronous validation, we’ll implement a simple WCF-based web
 service. Finally, we’ll implement an asynchronous validation function to call the service and call that from our class.

 13.4.1. The INotifyDataErrorInfo interface

 Like the IDataErrorInfo interface, the INotifyDataErrorInfo interface is located in the System.ComponentModel namespace. The interface has only three members, as shown in table 13.4, and is conceptually similar to IDataErrorInfo but optimized for asynchronous operation.

 Table 13.4. INotifyDataErrorInfo members

 	
 Member

 	
 Description

	GetErrors
 	This is a method that returns all of the validation errors for a specific field. If the propertyName parameter is null or
 string.Empty, the method returns errors for the entire object.

	HasErrors
 	This is a property that returns true if the object has errors; false otherwise.

	ErrorsChanged
 	This is an event similar to the PropertyChanged event in binding. Whenever you add, remove, or change errors, you must raise
 this event to notify the binding system.

One difference from IDataErrorInfo you’ll immediately notice is the addition of the event ErrorsChanged. Since INotifyDataErrorInfo is meant to be used in asynchronous validation scenarios, it uses an event-based mechanism for notifying listeners of new
 validation errors.

 GetErrors will require the most setup because you need a backing store with a collection of validation error messages for each field
 you’ll validate.

	

Note

 Silverlight will call GetErrors on each public member of your class, even if you don’t explicitly support listening to INotifyDataErrorInfo in every given binding statement. Be sure to handle this situation in your own code.

 	

13.4.2. Implementing the interface

 As was the case with IDataErrorInfo, the increase in flexibility means an increase in code. The interface itself is simple enough but, behind that, you must
 maintain several collections in order to surface the errors. The code to implement INotifyDataErrorInfo is shown in listing 13.5.

 Listing 13.5. INotifyDataErrorInfo implementation

 [image:]

 [image:]

 That’s what’s needed for the interface. I included the code for it but rarely—if ever—bother with class-level errors, preferring
 instead to light up specific fields. Your mileage may vary.

 13.4.3. Binding support

 In addition to implementing the interface, the binding on the fields will need to be modified to support listening to the
 INotifyDataErrorInfo interface, just as we did with the other validation approaches:

 Text="{Binding LastName, Mode=TwoWay,
 ValidatesOnNotifyDataErrors=True}"

 The next step is to create some code to do the actual validation. Let’s assume for a moment that the salary and level validation
 requires a web service call rather than a simple in-code lookup table. The web service may call out to a rules engine or may
 simply look up values in the database.

 13.4.4. Building the WCF web service

 In the web project associated with this Silverlight project, add a folder called Services and into it add a new Silverlight-Enabled WCF Service called ValidationService. The template is essentially a SOAP web service served up using WCF. You’ll find it easier to use than full-blown WCF and more
 functional than an .asmx service.

 Inside the service code, create a ValidateSalaryAndLevel method that looks like listing 13.6; we’ll cover web services in more detail in chapter 14.

 Listing 13.6. WCF service code for ValidateSalaryAndLevel

 [image:]

 For simplicity, I chose the simple route of returning a Boolean and left it up to the client to assign the appropriate messages
 to the controls. You may decide instead to return a class that has a Boolean indicating whether validation passed and then
 a collection of error messages with field names or a couple of strongly-typed properties with the error messages for each
 field.

 13.4.5. Adding the client service code

 The next step is to add a service reference in your Silverlight project to the WCF web service in the web project. Right-click
 the Silverlight project, select Add Service Reference, click Discover, and name the reference ValidationServices.

 Once the reference is added, add the client code from listing 13.7 into the Employee class.

 Listing 13.7. ValidateSalaryAndLevelAsync in the Employee class

 [image:]

 The ValidateSalaryAndLevelAsync class calls out to the web service and validates the salary and the level. If the web service says the values are valid,
 the underlying fields are updated. If it says the values are invalid, it sets up error messages for the fields. For grins,
 on an invalid return, it also validates the level number itself.

 There are other ways to handle this type of validation, of course. You could have a separate local client method that evaluates
 the level and call that either asynchronously or synchronously from the client. You could also have the web service return
 error messages.

 Also, for simplicity, the web service client code is in the Employee entity class. In a real application, I strongly encourage you to separate this code out into a separate service client layer
 that is, at most, loosely coupled to the Employee entity. See chapter 16 on the ViewModel pattern for guidance on this and other topics.

 13.4.6. Property modifications

 The last step is to add the calls to ValidateSalaryAndLevelAsync. In my code, I handle the property setting and the change notification inside the async method so the setters are significantly
 simplified:

 private int _tempLevel;
private int _level;
public int Level
{
 get { return _level; }
 set
 {
 _tempLevel = value;
 ValidateSalaryAndLevelAsync(value, Salary);
 }
}

private decimal _tempSalary;
private decimal _salary;
public decimal Salary
{
 get { return _salary; }
 set
 {
 _tempSalary = value;
 ValidateSalaryAndLevelAsync(Level, value);
 }
}

 Note the _tempSalary and _tempLevel variables. Due to the asynchronous nature of the validation, I needed some place to store the possibly invalid values; otherwise,
 you could never jump out of the validation error condition (one of the properties would always be the default value during
 validation) and correct the data. These properties are where I choose to store the temporary values. Consider them “draft”
 or “unverified” values.

 Some caveats to the code I presented here. I don’t propose that these are best practices or even stable for production code.
 The code has been simplified to show the core concepts and stay within the reasonable bounds of a chapter. For example, in
 the preceding code, you may run into race conditions for multiple property changes that happen during a slow-running web service
 call. If they happen to get queued out of order, you can end up with skewed validation and entry.

 The INotifyDataErrorInfo class implementation is more complex than the other methods presented here. For that reason, you may prefer to implement
 it only on some fields and use either exception-based or IDataErrorInfo on the remaining fields. The choice is up to you; all of the methods coexist nicely in the same class. The binding system
 will know which ones to use based on the properties of the binding statement.

 INotifyDataErrorInfo fills in the missing gap left by the other methods by enabling you to provide asynchronous validation error reporting and
 supply multiple validation messages for a single field.

 IDataErrorInfo and INotifyDataErrorInfo are the premier ways of handling validation in Silverlight but they require a fair bit of code to implement. What if you
 want to do something more lightweight? Do you need to turn to exceptions? No, if you’re using the DataForm or DataGrid, you can annotate your data using validation attributes.

 13.5. Annotating for validation

 There are innumerable ways to validate data and an equally diverse number of ways in which to store that validation information
 including the rules logic and the messages. In section 13.2, we saw how you can use exceptions in property setters to expose validation information to the user interface. In sections 13.3 and 13.4, we saw how to use specialized interfaces to support additional forms of validation.

 Though you can continue to code validation directly into properties setters or use interfaces, the System.ComponentModel.DataAnnotations assembly and namespace found in the Silverlight SDK provide a number of attributes designed to make data validation and display
 hinting easier for controls such as the DataForm, DataGrid, and some third-party controls. The approach taken by these attributes is to mark up the properties in your entities using
 attributes in code rather than require code within the properties or external to your entities.

 If your scenario supports their use, validation attributes are simple to implement and easy to use. In our discussion of these
 attributes, we’ll first go over the available set of attributes and how to implement a select set of them in your own classes.
 Then, we’ll extend the reach of the attributes to call out to external validation functions in your code. Finally, we’ll create
 our own custom validators to handle situations not easily handled by the built-in set. All of these techniques help us create
 validation code that’s cleaner and easier to read than many of the other methods.

 13.5.1. Validation attributes

 Previously we saw how to provide property-level validation using exceptions and synchronous and asynchronous interfaces. Though
 those work in almost any situation, they’re not a very clean approach and lead to a significant amount of branch/check code
 inside the property setters in your entities. They also require significant code modification to your entities—a luxury we
 don’t always have. One better way to tackle basic validation is to use attributes tied to the properties in the class.

 To support attribute or annotation-based validation, the DataAnnotations namespace includes the validation attributes shown in table 13.5.

 Table 13.5. Validation attributes in System.ComponentModel.DataAnnotations

 	
 Validation attribute class

 	
 Validation capabilities

	EnumDataTypeAttribute
 	It specifies that the value must be parsable as one of the members of a specified enum.

	RangeAttribute
 	It specifies that the value must be between two other values. The type can be any type that implements IComparable.

	RegularExpressionAttribute
 	It enables you to associate a regular expression to validate a value. This is useful for things such as phone numbers and
 email addresses, as well as any other data that must adhere to one or more specific formats.

	RequiredAttribute
 	It specifies that the value for this property must be nonnull and not empty.

	StringLengthAttribute
 	It enables you to check the length of the value—must be between the specified minimum and maximum length.

	CustomValidationAttribute
 	A catch-all validator that allows you to call custom code to perform the validation.

	ValidationAttribute
 	The abstract base class for all other validators. You can create your own validation attributes by deriving from this class.

Note that this namespace also defines the ValidationException type. You’ll recall that in our earlier example we simply used System.Exception. With the introduction of this DLL, you can now use the ValidationException rather than the base System. Exception. But since this DLL provides so many other ways to handle validation, I’d encourage you to try packaging your validation
 code in either a function used from a CustomValidationAttribute, or as a class derived from ValidationAttribute.

 We’ll only cover a handful of these attributes because the pattern is the same across the set. In addition, only the DataGrid and DataForm (and a handful of third-party controls) support these annotations, so these attributes aren’t necessarily a solution for
 all applications.

 13.5.2. Annotating your entity

 If we take the same Person class we used for the DataForm examples in chapter 12, we can now mark that up to include some basic validation capabilities. To show off validation, we’ll also add two new properties:
 EmailAddress and NumberOfChildren. The final class, with appropriate validation attributes in place, looks like listing 13.8.

 Listing 13.8. The Person class with validation attributes in place

 public class Person
{
 [Required]
 [StringLength(25)]
 public string LastName { get; set; }

 [Required]
 [StringLength(25)]
 public string FirstName { get; set; }

 [Required]
 public DateTime DateOfBirth { get; set; }

 public bool IsRegistered { get; set; }

 public MaritalStatus MaritalStatus { get; set; }
 [Required]
 [StringLength(320)]
 [RegularExpression(@"^[a-zA-Z][\w\.&-]*[a-zA-Z0-9]@[a-zA-Z0-9] [\w\.-]*[a-zA-Z0-9]\.[a-zA-Z\.]*[a-zA-Z]$")]
 public string EmailAddress { get; set; }

 [Range(0, 20)]
 public int NumberOfChildren { get; set; }
}

 Note that email address validation is complicated, and I don’t present the regular expression used here as a fully correct
 version of an email validation expression, just as an example.

 If we then load up the DataForm we used in the earlier examples and let it autogenerate the fields based on the updates to the Person class, we get the result shown in figure 13.5.

 Figure 13.5. The DataForm with validation rules in place, showing the Validation Summary and default validation messages

 [image:]

 The validation attributes may be used both with the DataGrid and with the DataForm and with some third-party controls. Without altering the controls themselves, there are workarounds to use some of the attributes
 in your own code, but they’re neither robust nor fully implemented, so I won’t include them here.

 13.5.3. Calling external validation functions

 One of the validation attributes that could be used in your entities is the CustomValidationAttribute. This attribute takes as parameters a .NET type and the string name of a method to call on that type.

 If we wanted to extend our Person class to only allow names that begin with B, we could create a simple validation method and class like listing 13.9.

 Listing 13.9. A simple custom validation function

 public class CustomValidationMethods
{
 public static ValidationResult NameBeginsWithB(string name)
 {
 if (name.StartsWith("B"))
 return ValidationResult.Success;
 else
 return new ValidationResult("Name does not begin with 'B'");
 }
}

 The static method simply needs to take in the appropriate type and return a ValidationResult indicating whether the value passed validation. We then wire it up to our Person class using the CustomValidationAttribute like this:

 [CustomValidation(typeof(CustomValidationMethods),
 "NameBeginsWithB"]
public string LastName { get; set; }

 When validation is performed on the field, your custom function will be called and you’ll get a validation error message that
 contains the text supplied in the ValidationResult or, if provided, the custom error message tied to that instance of the CustomValidationAttribute. An example may be seen in figure 13.6.

 Figure 13.6. The Last Name field failed our custom validation check, as indicated in the error message at the bottom. Note that the field
 name isn’t included in the error message.

 [image:]

 The custom validation function has an alternate signature that’s worth consideration. In addition to taking in the value to
 be validated, it can also take as a parameter a value of type ValidationContext. ValidationContext provides some additional information that the validation function may wish to use either in building the error message or
 in performing the actual validation. Taking the previous example and adding the context property results in the validation
 function shown in listing 13.10.

 Listing 13.10. A custom validation function with ValidationContext

 public static ValidationResult NameBeginsWithB(
 string name, ValidationContext context)
{
 if (name.StartsWith("B"))
 return ValidationResult.Success;
 else
 return new ValidationResult(
 string.Format("{0} does not begin with 'B'",
 context.DisplayName));
}

 Note how we used the DisplayName from the context to make the error message a little more meaningful. The resulting error on the DataForm looks like figure 13.7.

 Figure 13.7. The enhanced error message with field name courtesy of the ValidationContext

 [image:]

 Because ValidationContext also supplies you with the parent object to which the member being validated belongs, you can use custom validation functions
 to effectively extend the validation system to support cross-field validation checks. Of course, you’ll need to be careful
 so that you don’t find yourself in the circular dependency hole that many cross-field checks ultimately end in.

 Custom validation functions are one nice way to extend the validation system. They’re simple to use and simple to create.
 Their main downside is they have external dependencies and, therefore, are not entirely self-contained. In addition, the method
 name is a string, and can be prone to typos or errors resulting from refactoring. To create more robust validation code, you’ll
 want to create a custom validator.

 13.5.4. Creating custom validators

 Similar in concept to custom validation functions, custom validators are classes you write that inherit from ValidationAttribute in the System.ComponentModel.DataAnnotations namespace. The code itself is almost identical to what you’d write in a custom validation method. Listing 13.11 shows our custom validation code packaged into a custom validation attribute.

 Listing 13.11. Custom validation attribute

 [image:]

 The only thing we’re required to do is override the IsValid function and return an appropriate ValidationResult. Once we do that, we can use the validator just like we would any other:

 [NameBeginsWithB()]
public string LastName { get; set; }

 The end result is the same error message display we saw with the custom validation function approach. But our validator is
 both simpler to use and less prone to breaking because it’s self-contained inside a custom validator attribute class.

 That’s attribute-based validation in a nutshell. If you can use the DataGrid and DataForm as your primary controls, attribute-based validation is, by far, the easiest approach to getting validation into your classes.
 Not only does the markup avoid code in your class, but you can also add buddy classes (partial classes) to mark up existing
 entities from your ORM.

 We’ll cover the enhanced cross-tier validation features brought by WCF RIA Services in chapter 17. Until then, keep in mind that binding and validation are core Silverlight features and work without the addition of a framework
 such as WCF RIA Services or a pattern such as ViewModel (see chapter 16).

 13.6. Comparison of validation approaches

 Let’s wrap up our discussion of validation by summarizing what I consider to be the pros and cons of each validation method,
 shown in table 13.6.

 Table 13.6. Validation approach summary

 	
 Method

 	
 Pros

 	
 Cons

	Exceptions
 ValidatesOnExceptions=True

 	Free type validation
 Simple inline code; no interfaces

 	Only invoked when property set; cross-field validation difficult or impossible
 Only one error per field

	IDataErrorInfo
 ValidatesOnDataErrors=True

 	Cross-field validation
 No exceptions on the stack

 	Doesn’t handle type validation
 Only one error per field
 Slightly more complex implementation than exceptions

	INotifyDataErrorInfo
 ValidatesOnNotifyDataErrors=True

 	Cross-field validation
 No exceptions on the stack
 Asynchronous validation
 Multiple errors per field (note: current Silverlight UI templates only support showing the first error)

 	Doesn’t handle type validation
 More complex implementation than exceptions

	Validation attributes
 	No exceptions on the stack
 Multiple validators per field
 Simple
 No code other than attribute

 	Only works with DataForm, DataGrid, and some third-party annotation-aware controls

These three main approaches to validation are universally supported in Silverlight, requiring no special client-side control
 code or styles. Most third-party controls will also respect these forms of validation.

 My recommendation is:

 	Always support exceptions, so you get type checking.

 	Use attributes if you’re doing everything in a DataForm or DataGrid.

 	Use IDataErrorInfo if you’re doing all your validation on the client.

 	Use INotifyDataErrorInfo if you need to call out to services to perform the validation.

Of course, your specific situation may dictate a different solution, but the guidelines here will apply to most applications.

 13.7. Summary

 Input validation is a core requirement of almost every application with a TextBox. Though Silverlight contains a number of different approaches, evolved over the versions, these are at least structured ways
 to handle validation.

 For general Silverlight applications, exception-based validation is one of the easiest approaches to use. It’s also very limited
 but, if your validation requirements aren’t heavy, it can often handle the job.

 For more robust implementations, turn to IDataErrorInfo and INotifyDataErrorInfo. The two can be complex to implement, especially the latter, but you’re provided with pretty much everything you’d need to
 implement your own validation framework on top of the base interfaces.

 When combined with the DataGrid and DataForm, attribute-based validation, along with the UI hinting covered in chapter 12, provides an incredibly simple and powerful way to create capable user interfaces with little plumbing code required.

 Now that we’ve covered binding in chapter 11 and validation in this chapter and introduced the concept of a web service, it’s time we dove right into the communications
 and networking stack that drives most Silverlight applications. Chapter 14 will cover how to use web and REST services as well as how to implement other forms of communication in your applications.

Chapter 14. Networking and communications

 This chapter covers

 	Working with web requests

 	Performing duplex communication

 	Consuming RESTful APIs and SOAP web services

 	Working with JSON data

 	Working with point to point and multicast sockets

Chapter 11 introduced you to the convenient data-binding mechanisms available within Silverlight. Although binding isn’t restricted
 to just what we’d commonly think of as data, the truth of the matter is that’s what it’s usually used for. Working with data
 is essential to most applications, but you have to get the data into your application somehow. This is where networking and
 communications come in.

 Silverlight provides numerous methods to get to data hosted on other systems, from complex web services to a simple XML document.
 The networking and communications features of Silverlight enable you to send and receive data with a variety of technologies
 including SOAP services, XML, JSON, RSS, Atom, and even sockets.

 We’ll start this chapter with the basics of Silverlight networking and the limitations of the browser stack. From there, we’ll
 look at how to connect to SOAP services and RESTful services using the browser networking stack.

 With the basics under your belt, it’s then time to examine the client networking stack, introduced for out-of-browser applications
 but available even to applications running in-browser. This stack works around many of the limitations inherent in straight
 browser-based networking.

 Then, because you’ll need to do something with the data returned from these networking calls, we’ll look at the deserialization
 support in Silverlight for things such as XML and JSON.

 Our next stop will be to look at the WCF service enhancements available to Silverlight; then, we’ll dive into WCF duplex services,
 or polling duplex as it’s often called. Polling duplex enables push communications between the server and client, much like sockets, but without
 as much code.

 Speaking of sockets, regular point-to-point sockets and UDP multicast sockets will be our last IP networking topics for the
 chapter. Multicast sockets are new to Silverlight 4 and enable a number of scenarios previously difficult or impossible in
 Silverlight.

 We’ll wrap up with a local non-IP networking feature that enables communication between two or more Silverlight applications,
 in-browser or out, running on the same machine.

 14.1. Trust, security, and browser limitations

 You must consider several basic concepts when using the communication APIs in Silverlight. These concepts—trust, security,
 and the limitations of the browser—apply to all methods of communication discussed in this chapter, with a partial exception
 granted to the Silverlight cross-application communication we wrap up with.

 Silverlight executes within the confines of the client browser. Even the standard out-of-browser mode discussed in chapter 5 lives in this sandbox. Because of this, you have to retrieve data differently than the way you may be used to with a server-side
 technology such as ASP.NET. For example, you can’t directly connect to a database without using something as a proxy, most
 commonly a web service. Although this method of communicating resembles that used by Ajax, there are significant differences.

 Imagine you’re building a Silverlight application that allows users to add items to a shopping cart. As soon as users add
 an item to their cart, you want to reserve it for them. Because Silverlight executes in the browser, you can’t just call the
 database and mark the item as reserved. You need something acting as a proxy to the database. Throughout this chapter, we’ll
 discuss methods of connecting to remote services to accomplish tasks like this. For now, let’s move to the first basic concept:
 trust.

 14.1.1. Cross-domain network access

 The concept of trust applies to cross-domain access. If your application is hosted at http://10rem.net and you’re attempting
 to access a web service hosted at http://silverlight.net, the request is made cross-domain. In the case of cross-domain access,
 it isn’t a matter of whom your application trusts, but of who trusts your application. In the vein of increased security, Silverlight,
 like Flash before it, has restricted client applications to connecting only to the same domain that hosts the application
 itself. For those familiar with web services, this seems counterproductive, so the Silverlight team also worked in an exemption
 that requires the involvement of the server hosting the web service. Administrators of web servers can create policy files
 to give access to only the resources they want exposed to the requesting domains they trust. A simple XML file is added that
 tells the Silverlight application what it has access to on the foreign server.

	

Note

 Cross-domain policy files aren’t required for elevated trust (trusted) out-of-browser applications, described in chapter 5. Normal trust out-of-browser applications and in-browser applications still require them. Cross-domain policy files typically
 aren’t required for images and media.

 	

The clientaccesspolicy.xml file defines these policies; it needs to be placed at the root of the domain hosting any web service
 that’s allowed to be accessed from a different domain. Even if there’s a valid policy file, if it’s located anywhere other
 than the root of the hosting domain, your application won’t find it, and the request will fail. If the file is in place and
 has the proper attributes, your application is considered trusted, and the call will return as expected. So, what does a properly
 formatted policy file look like? Take a look at this example:

 <?xml version="1.0" encoding="utf-8"?>
<access-policy>
 <cross-domain-access>
 <policy>
 <allow-from http-request-headers="*">
 <domain uri="*"/>
 </allow-from>
 <grant-to>
 <resource path="/" include-subpaths="true"/>
 </grant-to>
 </policy>
 </cross-domain-access>
</access-policy>

 This shows the minimum needed in a clientaccesspolicy.xml file to allow HTTP access to all web services hosted on the current
 domain. If you want to have different rights for different services or to allow for socket access to the server, you can make
 additions to that file. Sockets are described in section 14.5. The example here is as open as possible-requests from any domain can access any resource in the host domain, and host headers
 are allowed. Table 14.1 shows the elements and attributes that make up a clientaccesspolicy.xml file. Attributes are shown after the element they
 apply to.

 Table 14.1. Elements and attributes allowed in clientaccesspolicy.xml

 	
 Element/attribute

 	
 Required

 	
 Description

	access-policy
 	Yes
 	Root element for the policy file.

	cross-domain-policy
 	Yes
 	Container for one or more policy elements.

	policy
 	Yes
 	Defines rules for a single domain or a group of domains.

	allow-from
 	Yes
 	Container for permitted domains. If it contains no domain elements, no cross-domain access is granted.

	
 	http-request-headers
 	No
 	Defines which headers are allowed to be sent to the web services hosted at the current domain. If absent, no headers are allowed.

	domain
 	Yes
 	Defines domains affected by the policy element in which the domain is a child.

	
 	uri
 	Yes
 	Specifies the exact domain allowed for the current policy.

	grant-to
 	Yes
 	Container for one or more resource elements.

	resource
 	Yes
 	Required for WebClient or HttpWebRequest classes. Defines server resources affected by the current policy.

	
 	Path
 	Yes
 	Required for WebClient or HttpWebRequest classes. Identifies individual files or services allowed or denied by the current
 policy. Format is a URI relative to the root of the domain.

	
 	include-subpaths
 	No
 	Optional for WebClient or HttpWebRequest classes. If absent, subfolder access is denied.

	socket-resource
 	Yes
 	Required for socket access. Defines socket resources affected by the current policy.

	
 	Port
 	Yes
 	Required for socket access. Defines a port or range of ports, which must fall between 4502 and 4534, affected by the current
 policy.

	
 	Protocol
 	Yes
 	Required for socket access. Defines what protocols are allowed under the current policy. The only protocol currently allowed
 is TCP.

I know that you’re anxious to see how to connect to data from within your application, but you need to create a solid foundation
 on which to build service access. You can make the policy file as open or as restrictive as you desire. By changing the domain element, you can limit access to a single domain. You can also add multiple policy elements to apply different rules to requests from different domains, as shown in the next example.

 Two separate policies are defined in this example. The first allows any request coming from a Silverlight application hosted
 at sometrusteddomain.com to have unrestricted access to the entire application; the second forces requests from any other
 domain to be restricted to the API folder and to have HTTP headers denied:

 <?xml version="1.0" encoding="utf-8"?>
<access-policy>
 <cross-domain-access>
 <policy>
 <allow-from http-request-headers="*">
 <domain uri="http://sometrusteddomain.com"/>
 </allow-from>
 <grant-to>
 <resource path="/" include-subpaths="true"/>
 </grant-to>
 </policy>
 <policy>
 <allow-from>
 <domain uri="*"/>
 </allow-from>
 <grant-to>
 <resource path="/api"/>
 </grant-to>
 </policy>
 </cross-domain-access>
</access-policy>

 The elements and attributes shown apply for connecting to any HTTP-based resource. Modifications are needed if you’re using
 TCP sockets, which are described in section 14.5.

 Even if this file isn’t in place, you may still be in luck. Silverlight will also use policy files created for use with Adobe
 Flash, known as crossdomain.xml files, for cross-domain access. There are two restrictions when using a crossdomain.xml file:

 	It may only be used for WebClient, HttpWebRequest, or service reference proxy access. Socket access isn’t permitted.

 	The entire domain must be allowed access for Silverlight to use a crossdomain.xml file. Silverlight doesn’t parse the advanced
 properties of crossdomain.xml.

If the domain hosting the web service you’re calling has either a clientaccesspolicy.xml or a crossdomain.xml file with the
 correct attributes in place, it’s considered trusted and will return a result.

 It’s necessary to have an outside source trust your application, but should you trust everyone else? Let’s look at a few ways
 to ensure that your application is as safe and secure as possible.

	

 Why have cross-domain policies at all?

 Any old native client or server application can access any service it wants to, so you may wonder why you have to jump through
 hoops when contacting network services through Silverlight.

 Let’s say for example that some services in your company include sensitive data. Maybe you work at a bank, an insurance company,
 or a government institution. The services are open to anyone authenticated on the LAN.

 You then browse to a site that has a cool Silverlight (or Flash) game you want to try out, and you run that and start enjoying
 a fine game of malware-tris, firewall-poker, or steal-your-data-bobble. While you’re playing, the application sniffs for services
 in your local network (or uses a known lookup table from a disgruntled employee, or perhaps even something standard like UDDI)
 and starts downloading data from one of those services and uploading it to its own server.

 Because you’re executing the application and you’re already authenticated locally, this malware has no problem grabbing data
 from any service you’re authorized to and that it has the technology to access (SOAP, REST, and so forth). That is, unless
 you have a client that respects cross-domain policies. In that case, the Silverlight client can’t connect to your local services
 because those servers presumably don’t have a cross-domain policy file that will open the sensitive data to the world.

 That’s one of the main reasons cross-domain policy files are required by Flash and Silverlight, and why you need to carefully
 consider when and where you place cross-domain policy files on your own properties.

 	

14.1.2. Making your application secure

 Just as you put a valid policy file in place for security reasons, you can take other steps to make your application more
 secure. In this section, we’ll briefly discuss data integrity, using HTTPS, and attaching HTTP headers to your request.

 Data Integrity

 Never trust that your data source will return pure, clean data every time. It’s possible that, either purposefully or as a
 result of an error on the part of the service creator, harmful data may be returned to your application. You should always
 take steps to validate that the data you receive is compatible with the use you intend.

 HTTPS

 Any time you’re passing sensitive data, you should use Hypertext Transfer Protocol over Secure Sockets Layer (HTTPS), which
 encrypts the message to prevent eavesdropping. In order to access cross-scheme services and data (HTTP to HTTPS or HTTPS to
 HTTP), the cross-domain policy file must permit that access.

 Cookies

 Because Silverlight typically uses the browser’s networking stack, cookies for the current domain also get added to requests
 from your Silverlight application. This is good if you’re hosting your Silverlight component in an authenticated application
 that uses tokens stored in a cookie. In this case, the token also authenticates the requests originating from your Silverlight
 application, ensuring that you can access the resources you’re authorized for.

 One potential problem using this method is that when a user has a cookie-based token for a given domain, any Silverlight request
 to that domain contains the auth cookie, even if the request is from a different Silverlight application than the one you
 intend. Another issue is that this method of authentication relies on the client browser having session cookies enabled—which
 isn’t always true.

 Trust and security are important for any application; before we move on to the meat of accessing data, let’s make sure the
 browser itself is capable of doing everything you’re asking of it. This question brings us to the next basic concept: limitations
 of the browser.

 14.1.3. Limitations of the browser

 A few limitations apply to Silverlight due to its use of the networking API of the host browser. These limitations have affected
 browsers for years, and now they carry over into Silverlight as well when using the browser networking stack. We’ve already
 discussed the client-side nature of Silverlight and how that affects data access, so now we’re going to talk about two similar
 limitations: connection limits and asynchronous calls.

 Connection Count Limit

 The number of concurrent connections to a single subdomain (for example, http://10rem.net and http://images.10rem.net are
 two different subdomains) is limited in most browsers to two. This limit has been increased in Internet Explorer 8 to six
 concurrent connections; but because Silverlight runs in multiple browsers, you should still be aware of it. Because Silverlight
 uses the browser’s networking stack for its communications by default, it’s bound by the same limits. You may need a combination
 of resources or other approaches to ensure that this doesn’t create unnecessary delays in your application. Keep in mind that
 the browser may be loading objects outside the scope of the Silverlight application as well, such as stylesheets, images,
 and JavaScript files. All these objects count toward the limit of two concurrent connections. You should keep this fact in
 mind, particularly when performing duplex communication as described in section 14.4.

	

 Increasing effective connections

 A common trick to increase the throughput for your application, especially now that clients often have significant bandwidth
 at their disposal, is to spread the application network requests across separate subdomains. Take these, for example:

 	api.10rem.net hosts the web services and the cross-domain file.

 	images.10rem.net has the image resources.

 	www.10rem.net serves up the web pages.

Each subdomain has at least two simultaneous connections available per browser. In that way, calls to the API won’t cause
 image downloads to stall and vice versa, assuming the client and server both have sufficient bandwidth. Providing for a separate
 subdomain for the API as well provides a better way to segment out the API and therefore be sure that you aren’t running into
 issues with granting cross-domain access to areas that host user interfaces.

 You can play with those as best suits your application or follow completely different approaches that round-robin (from the
 client) to a pool of identical servers. You’ll have more options for redirecting to different servers, as well as increase
 your effective connection limit.

 Of course, this assumes you want people to have six open connections to your network. If you don’t want that, another approach
 is to package requests into chunky calls: reduce chattiness in service calls, and package assets such as images into zip files
 rather than individual image URIs. We’ll discuss more about this approach when we get to the WebClient.

 	

Asynchronous Only

 All communication from within the Silverlight application is done asynchronously because of the Silverlight development team’s
 decision to use the browser’s networking API, and to keep the APIs tight with only one way to accomplish any given task. The
 most common way of making asynchronous calls requires a few simple steps, which we’ll detail in the following section. Typically,
 all you need to do is create an event handler to be executed when the call returns.

 If you want to create a more synchronous experience for your application, you can enable some kind of blocking element, such
 as a download-progress animation, when the call begins and then remove it once the request has returned its data. We’ll discuss
 how to create animations in chapter 22.

 Note that the asynchronous behavior can occur on multiple threads, a fact that can cause trouble when you aren’t aware of
 it. In section 14.2.2, we’ll point out where you need to be careful with which thread you’re on, and show you a technique to avoid trouble. Now
 that we have the basics out of the way, let’s get to the point of this chapter: connecting to data sources.

 14.2. Connecting to data sources

 Nearly every application built today, even using Silverlight, needs data to accomplish its goal. In chapter 11, you saw how to take data and bind it to properties on controls, but where does that data come from? Because Silverlight
 executes on the client, often on the other side of a firewall, it doesn’t have direct access to a database as do server-based
 technologies such as ASP.NET. To get access to the data from within Silverlight, you need to use a proxy of some sort, typically
 a web service. A web service is a resource made available to clients using a defined protocol. Most web services fall into two categories: SOAP and REST.
 We’ll explain these popular formats, and how to use them, in this section.

 14.2.1. Using SOAP services

 When you think of a classic web service, you’re thinking about SOAP. SOAP services follow a strict protocol that defines the
 format in which messages are passed back and forth. Silverlight has great support for SOAP Services, supporting the WS-I Basic Profile 1.0 (SOAP 1.1 over HTTP), SOAP
 1.2, and WS-Addressing 1.0, as well as a small subset of WS-Security. Using SOAP services in Silverlight allows for both the
 simplest implementation and most powerful data-transfer mechanism of any service type through the use of the service reference.
 Over the next few pages, you’ll create a proxy object for the service, call a method on it, and download the results. After
 you’ve created and used a proxy to connect to a SOAP service, you’ll be amazed at how simple yet powerful this capability
 is.

	

Note

 SOAP originally stood for Simple Object Access Protocol, but that definition fell into disuse and was officially dropped with version 1.2 of the W3C SOAP standard.

 	

Service References

 The easiest way to connect to a service is through a service reference proxy. If the web service you’re connecting to supports
 Web Services Description Language (WSDL), Visual Studio can read that information and create a proxy in your application for
 you. Creating a service reference in your Silverlight application takes three simple steps:

 1. In Visual Studio 2010, right-click your Silverlight project and choose Add Service Reference.

 2. This brings up the Add Service Reference dialog box. On this form, you can either type in the URI of the service you wish
 to connect to and click the Go button or, if the services are part of the same solution, click the Discover button. Either
 option tells Visual Studio to poll the chosen location for available services and analyze their signatures. When the services
 have been displayed, you can open them and look at what methods are available on each service. You can then enter in the text
 box a namespace by which you want to refer to the service and click OK to create the proxy.

 3. You can modify more advanced settings either by clicking the Advanced button in the previous dialog or by right-clicking
 the service reference and selecting Configure Service Reference. One particularly useful capability of this form is the ability
 to change the collection types returned by the service. The default collection type can vary depending on the service you’re
 connecting to, but you can also change it to use other collection types, even generics.

 When the service reference is created, Visual Studio also adds references to the System.Runtime.Serialization and System.ServiceModel assemblies. These are used by Silverlight in connecting to web services and in serializing and deserializing the SOAP message.

 When you’ve created your service reference, it’s easy to use for both sending and receiving data. First, let’s talk about
 calling SOAP services using the service reference you just created.

 Receiving Data with the Proxy

 Connecting to and downloading data from a simple SOAP service is easy. You need to add two Using statements to your page, one for System.ServiceModel and another for System.ServiceModel.Channels. Next, you need to create a proxy to the service using the service reference as created in the previous section. Name the
 service reference namespace SilverService for this example. Then, you add an event handler to catch the return of the asynchronous call to the exposed method on the
 service. These steps are demonstrated in listing 14.1.

 Listing 14.1. Calling a SOAP service

 Result:

 [image:]

 XAML:

 <Grid x:Name="LayoutRoot">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="*" />
 <ColumnDefinition Width="Auto" />
 </Grid.ColumnDefinitions>
 <TextBlock x:Name="Results"
 Grid.Column="0" Margin="5"/>
 <StackPanel Grid.Column="1">
 <Button x:Name="GetTime" Click="GetTime_Click"
 Content="Get Time" Height="33" Width="90"/>
 </StackPanel>
</Grid>

 C#-Silverlight:

 [image:]

 C#-SampleAsmx.asmx service in web project:

 [WebService(Namespace = "http://services.10rem.net/")]
[WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)]
[System.ComponentModel.ToolboxItem(false)]
public class SampleAsmx : System.Web.Services.WebService
{
 [WebMethod]
 public DateTime GetTime()
 {
 return DateTime.Now;
 }
}

 This shows the entire process of creating the proxy [image:], adding an event handler [image:], calling an asynchronous method [image:], and handling the results [image:]. In this example, the SOAP service you’re connecting to exposes a method called GetTime, which accepts no input properties and outputs a DateTime of the current time. You first create a Binding of type BasicHttpBinding. This tells the proxy that the service you’re connecting to uses SOAP 1.1. The default constructor for BasicHttpBinding creates a Binding with no security. An optional parameter on the constructor accepts a BasicHttpSecurityMode, which allows you to tell the binding how to secure itself; for example, you can tell the binding to use SSL when transmitting
 the SOAP message. You also create an EndpointAddress that points to the URI of the service you’re about to call. Finally, you create the proxy using the service reference created
 earlier and pass into it the binding BasicHttpBinding and the initialized EndpointAddress objects.

	

Note

 The port number for your development-mode web service may change from time to time, breaking any service references. To force
 the port number to stick, right-click the web project, select Properties, and click the Web tab. Then, select the option to
 always use the specified port number.

 	

Next, you need to add an event handler to be called when your asynchronous method call returns. You can do this by using the
 Visual Studio shortcut of pressing the + key, then the = key, and then pressing Tab twice after selecting the GetTimeCompleted event on your proxy. Using this shortcut automatically finishes the event handler declaration for you and creates a stubbed
 method as the event handler. Finally, you call the GetTimeAsync() method on the proxy to begin the asynchronous call to the service. IntelliSense will show you a [webmethod]Completed event and a [webmethod]Async() method for each method exposed by the SOAP service. When you created the service reference in the previous step, Visual Studio
 queried the service to see what methods were available and made proxy methods for each of them.

 After the service returns, the method declared as the event handler-proxy_GetTimeCompleted-gets called with the results. Because the method is outputting the results as a Datetime object, you can convert it to a string using standard .NET conversion methods, which you can then assign to the Text property of a TextBlock. The only other task to perform in the return method is to close out the connection using the CloseAsync() method on the proxy. Garbage collection will technically come through and close any old connections, but it’s good programming
 practice to close any connection when you’re done using it.

 And that’s all there is to it—you’ve now connected to a SOAP service, called a method on it, and displayed the results. Sending
 data to a SOAP service is just as easy.

 Sending Data Using the Proxy

 If you’re thinking that all you need to do to send data to a SOAP service using a service reference is to include a parameter
 in the method call, you’re right. Let’s look at listing 14.2 for an example.

 Listing 14.2. Sending data to a SOAP service

 Result:

 [image:]

 XAML:

 <Grid x:Name="LayoutRoot">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="*" />
 <ColumnDefinition Width="Auto" />
 </Grid.ColumnDefinitions>

 <TextBlock x:Name="Results"
 Grid.Column="0" Margin="5"/>

 <StackPanel Grid.Column="1">
 <Button x:Name="GetTime" Click="GetTime_Click"
 Content="Get Time" Height="33" Width="90"/>
 <Button x:Name="GetString" Click="GetString_Click"
 Content="Get String" Height="33" Width="90"/>
 </StackPanel>
</Grid>

 C#-Silverlight client:

 [image:]

 C#-web service:

 [WebMethod]
public string GetCoolText(int number)
{
 switch (number)
 {
 case 1: return "one";
 case 2: return "two";
 case 3: return "three";
 ...
 }
}

 Listing 14.2 builds on the code from listing 14.1. This is an example of sending of a single int as a parameter to the GetCoolText method on the web service. This approach is fine for sending a simple data value, but what about complex data types? Still
 no problem.

 Using Complex Data Types

 Sending and receiving complex data types over a SOAP service is also a simple matter. When you created the service reference,
 the signatures for objects used in the SOAP message were automatically analyzed and a client-side proxy made for those as
 well. With this proxy, you can instantiate objects of that type in your application (see listing 14.3).

 Listing 14.3. Using complex data types with a SOAP service

 Service:

 [WebMethod]
public void SetSomething(int count, WsUser myObject)
{
 //Perform database operations here
}
...
public class WsUser
{
 public int Id { get; set; }
 public string Name { get; set; }
 public bool IsValid { get; set; }
}

 C#:

 private void UploadUser()
{
 Binding myBinding = new BasicHttpBinding();
 EndpointAddress myEndpoint =
 new EndpointAddress("http://localhost:55905/SampleAsmx.asmx");
 SilverService.SampleAsmxSoapClient proxy = new
 SilverService.SampleAsmxSoapClient(myBinding, myEndpoint);

 SilverService.WsUser myData = new
 SilverService.WsUser()
 { Id = 3, Name = "John", IsValid = true };

 proxy.SetSomethingCompleted += new
 EventHandler<System.ComponentModel.AsyncCompletedEventArgs>
 (proxy_SetSomethingCompleted);

 proxy.SetSomethingAsync(1, myData);
}
void proxy_SetSomethingCompleted(object sender,
 System.ComponentModel.AsyncCompletedEventArgs e)
{
 (sender as SilverService.SampleAsmxSoapClient).CloseAsync();
}

 This listing shows how you can use complex data types on SOAP services from within your Silverlight application. The service
 itself is left as an exercise for you, and the example is illustrative only. As you can see in the web method declaration,
 the method SetSomething expects two parameters: an int and a WsUser. WsUser is made up of three properties. Note that both the web method and the WsUser class are part of the ASMX web service, not the Silverlight application.

 Now, let’s use WsUser in the example application. Because WsUser is a return type on a method, a copy of its type exists on the proxy for you to use. In this example, you create an instance
 of the WsUser class and fill its properties. Then, you add the instance of the object as a parameter on the asynchronous method call, SetSomethingAsync.

 Using the Configuration File

 So far, we’ve shown the slightly more verbose way of calling a service, where all the endpoint information is handled in code.
 Silverlight provides another option: you can use the information in the ServiceReferences.ClientConfig file.

	

Note

 ServiceReferences.ClientConfig is an XML file created automatically when you add a service reference. It’s packaged into the
 .xap file (see chapter 3 for more on .xap files) and is deployed with your application. You may update this configuration file at any time by unzipping
 the .xap, changing the file, and rezipping it. Some clever developers have even come up with tools to handle this automatically;
 Bing them (www.bing.com) to find out more.

 	

An example configuration file is shown in listing 14.4. The configuration file specifies, among other things, the type of encoding, the maximum receive message and buffer sizes,
 the binding contract, and endpoint information.

 Listing 14.4. The ServiceReferences.ClientConfig file

 [image:]

 Although certainly not a requirement, this example uses the new WCF binary encoding with a WCF SOAP service on the server-a
 new feature enabled by default in Silverlight when using the Silverlight Enabled WCF Service template mentioned in section 14.5.1. This reduces the message size considerably in situations where the server and client aren’t using GZIP compression on the
 content and the server is running .NET 3.5 SP1 or above.

 In addition, the server side is able to handle more requests due to the binary nature of the messages. The downside is that
 the service clients are restricted to those aware of the proprietary format, unless you add a second endpoint.

	

 What about NetTcp?

 Another protocol option, which like binary SOAP is specific to WCF, is the NetTcp protocol. Silverlight 4 added support for
 that protocol using the net.tcp:// scheme. This is a lighter-weight protocol that eliminates the overhead of HTTP in the transaction.

 Although I won’t go into detail here, because it’s not commonly used and requires no real changes to your code, I do want
 to mention that even when using NetTcp, you need to have a policy file on a regular port 80 HTTP server at the same IP address
 as your NetTcp service. The protocol to include in the Client Access Policy is tcp:

 <grant-to>
 <socket-resource port="4502-4534" protocol="tcp" />
</grant-to>

 If you leave the policy file out or don’t have the server mapped correctly, you’ll receive a rather long-winded CommunicationException that tells you the socket connection was forbidden.

 To test, open your browser and browse to

 http://<IpAddressOfYourNetTcpService>:80/clientaccesspolicy.xml

 and verify that the file downloads. If it does, you’re good. If not, then you need to check your IP address and domain names.

 Other than that, you use NetTcp just as you would SOAP or SOAP with binary encoding. From a proxy usage standpoint, there
 are no important differences.

 	

When using the information from the .ClientConfig file and eliminating all the setup code, your client-side code becomes considerably
 simpler, as shown in listing 14.5.

 Listing 14.5. Client-side code using ServiceReferences.ClientConfig file

 XAML:

 <StackPanel Margin="30" Width="100">
 <TextBlock x:Name="Results" />
 <Button x:Name="CallService"
 Click="CallService_Click"
 Content="Call Service" />
</StackPanel>

 C#:

 [image:]

 The code has been simplified considerably because you externalize the settings. This time around, you don’t need to create
 bindings or endpoints and pass them in to the proxy. Whether this is appropriate for your situations comes down to whether
 you want to handle the bindings in code or in configuration files.

 In code, you can get the address of the current server and base your service call on that, if appropriate. But if you want
 to change that algorithm and, say, move from www.mydomain.com/services to api.mydomain.com, you’ll need to change code and recompile/redeploy the client.

 In configuration, you can set the URL to be anything you wish, but you must remember to change it when moving between servers
 (such as from development to test to staging to production). Given that this doesn’t require a recompile and the format is
 XML inside a standard zip, there’s little risk to this approach.

	

 Simplifying async method calls

 If you want an even tighter format for your service-call processing, regardless of whether you’re using SOAP, REST, or something
 else, you can use a lambda expression to build a delegate to handle the service call return. In that case, you get the entire
 service call neatly wrapped up into one visible function:

 private void CallService_Click(
 object sender, RoutedEventArgs e)
{
 var client = new HelloWorldServiceClient();
 client.HelloWorldCompleted += (s, ea) =>
 {
 Results.Text = ea.Result;
 };
 client.HelloWorldAsync();
}

 In this example, the separate event handler is replaced with one defined inline. The handler takes s for the sender and ea for the event arguments. This doesn’t turn the call into a synchronous call-it’s still async. You simply compact the event
 wire-up step.

 When used inside a function like this, there is no downside to this approach, so I use it constantly due to its compactness
 and readability. Don’t use this approach for class-level handlers, because you may end up with multiple handlers without any
 way to remove them.

 	

That’s all it takes to use SOAP services in Silverlight. Silverlight isn’t limited to SOAP services. Next, we’ll discuss consuming
 REST services through Silverlight, a topic that opens up a whole new arena of data providers.

 14.2.2. RESTful services

 Representational State Transfer, or REST, means several things; in this case, it refers to the approach of making services accessible through a set of simple URIs
 and HTTP verbs. Before the days of web services and stateful web applications, everything on the web was RESTful, meaning
 that all traffic over HTTP used one of the HTTP verbs to define its purpose, and all calls were complete without requiring
 server-side state. Over the years, the use of these verbs dwindled down to nearly all traffic using only the GET and POST
 verbs for requesting a page and submitting form data, respectively. Recently there’s been a trend toward moving simple web
 services to a simpler framework.

 Many web service providers incorrectly use the term REST to mean any service that isn’t SOAP. The main thing to realize is
 that the URI, and possibly the HTTP verb, may change depending on the action being performed. Typically, a creator of RESTful
 services will try to follow an intuitive structure where the URI first contains a type followed by an instance. For example,
 a URI with the structure http://www.arestfuldomain.com/Users might return an array of user records, whereas the URI http://www.arestfuldomain.com/Users/JohnSmith might return a single user record for John Smith. This isn’t a rule of REST services; it’s more of a guideline.

 Silverlight currently supports only the GET and POST verbs when using the default networking stack (see the end of this chapter
 for more options). This is another limitation of using the browser’s networking stack. Luckily, because this is a common browser
 limitation, most service creators are aware of it and try to use those two verbs for all actions.

 In the previous section, you saw how to use service references to create proxies to SOAP services. Consuming a REST service
 takes a little more work on the side of the Silverlight developer. Silverlight nicely handles calling RESTful services through
 the HttpWebRequest object that you’re already familiar with. In this section, we’ll show you how to use this class to read data from and send
 data to a RESTful service. The asynchronous nature of these calls can cause problems accessing the UI, so let’s solve that
 first.

	

Note

 You can also use the simpler WebClient class for accessing RESTful services. Because HttpWebRequest is both more complex and more powerful, and therefore requires an example, we’ll cover that here.

 	

Bypassing Threading Problems

 The asynchronous nature of Silverlight web service calls can create threading problems for the developer. When you’re dealing
 with service reference-generated proxies, threading isn’t an issue; when you’re creating the connection yourself, you have
 to deal with this part as well. When you attempt to access UI elements directly within callback methods, you get a threading
 exception. You deal with this by creating a class-level variable of type SynchronizationContext, which gives you a handle back to the correct thread to do UI updates:

 private SynchronizationContext UIThread;
private void btnSingleXml_Click(object sender, RoutedEventArgs e)
{
 UIThread = SynchronizationContext.Current;
 ...
 request.BeginGetResponse(SingleXmlCallBack, request);
}
private void SingleXmlCallBack(IAsyncResult result)
{
 ...
 UIThread.Post(UpdateUiText, responseStream);
}
private void UpdateUiText(object stream)
{
 ...
}

 The first thing you do in this example is create a class variable of type SynchronizationContext. Scoping it at the class level means you’ll have access to it no matter where you are in the process. Next, in the method
 that starts the request (we’ll detail the request in the next section), you assign a reference to the current thread to the
 variable previously created. Then, in the callback method, you call the Post method on the SynchronizationContext variable, which has two parameters. The first parameter accepts a method to do the UI update with, and the second accepts
 an object. In this case, it’s simplest to send the entire response stream as the second parameter. Finally, in the method
 called by the Post method, you can cast the received object into a Stream and perform whatever UI updates you need. You don’t need to pass the entire response stream to the method that updates the
 UI—you can send any object. It’s my personal preference to let the update method also do any deserialization; by using this
 technique, you ensure that your UI updates will succeed.

 As you can see, as long as you know how to get back to the UI thread, there isn’t a problem here. Now, let’s GET to the meat
 of REST services.

 Getting From Rest Services

 In relation to Silverlight, although REST may dictate the method in which a resource is accessed, it doesn’t dictate the format
 of the data received. The most common ways to return data from a RESTful web service are Plain Old XML (POX) and JSON. We’ll
 discuss how to consume both POX and JSON in section 14.3.

 The basics of calling a REST-based web service from Silverlight involve creating an HttpWebRequest object, setting its destination URI, and calling it asynchronously (see listing 14.6).

 Listing 14.6. Getting data from a REST service

 C#:

 private void GetSingleXml_Click(object sender, RoutedEventArgs e)
{
 UIThread = SynchronizationContext.Current;
 string rawPath
 = "http://www.silverlightinaction.com/Authors.svc/SingleXml/{0}";
 Uri path = new Uri(string.Format(rawPath, Input.Text),
 UriKind.Absolute);

 HttpWebRequest request = (HttpWebRequest)WebRequest.Create(path);
 request.BeginGetResponse(SingleXmlCallBack, request);
}
private void SingleXmlCallBack(IAsyncResult result)
{
 HttpWebRequest request = (HttpWebRequest)result.AsyncState;
 HttpWebResponse response
 = (HttpWebResponse)request.EndGetResponse(result);
 Stream responseStream = response.GetResponseStream();
 UIThread.Post(UpdateUiText, responseStream);
}

 In this example, you make a simple request to a RESTful web service. Three steps are necessary when making a GET request,
 all of which are demonstrated here:

 1. Create a Uri object and initialize it with the path and, optionally, the UriKind.

 2. Create an HttpWebRequest object for the Uri.

 3. Call BeginGetResponse on your HttpWebRequest object and pass it the name of a callback method, as well as the HttpWebRequest itself.

 The BeginGetResponse method initiates the call to the service and registers the passed-in method as a callback method. When the response returns,
 that method will be called with the current HttpWebRequest being passed to it as type IAsyncResult.

 In the callback method, the first thing is to cast the AsyncState of the IAsyncResult into an HttpWebRequest object. In the next statement, you call the EndGetResponse method on the request object to both end the connection and return an HttpWebResponse object. Finally, you call the GetResponseStream method of the HttpWebResponse object to get the Stream, the response to your web service call. We’ll cover deserializing the Stream into useful data in section 14.3.

 Posting to Rest Services

 Most RESTful services use GET to retrieve data and POST to send it. Because the default HTTP verb used when using HttpWebRequest is GET, you need to do a few things differently when you want to perform a POST. Listing 14.7 shows the process of sending data to a REST service.

 Listing 14.7. POSTing data to a REST service

 C#:

 private void Test_Click(object sender, RoutedEventArgs e)
{
 UIThread = SynchronizationContext.Current;
 Uri path = new
 Uri("http://www.silverlightinaction.com/Authors.svc/Update/Brown",
 UriKind.Absolute);
 HttpWebRequest request = (HttpWebRequest)WebRequest.Create(path);
 request.Method = "POST";
 request.ContentType = "application/xml";
 request.BeginGetRequestStream(AddPayload, request);
}

private void AddPayload(IAsyncResult result)
{
 HttpWebRequest request = (HttpWebRequest) result.AsyncState;
 StreamWriter dataWriter =
 new StreamWriter(request.EndGetRequestStream(result));
 dataWriter.Write("<?xml version=\"1.0\"?><Author><FirstName>Bob" +
 "</FirstName><LastName>Smith</LastName></Author>");
 dataWriter.Close();
 request.BeginGetResponse(SingleJsonCallBack, request);
}

private void SingleJsonCallBack(IAsyncResult result)
{
 HttpWebRequest request = (HttpWebRequest)result.AsyncState;
 HttpWebResponse response =
 (HttpWebResponse)request.EndGetResponse(result);
 Stream responseStream = response.GetResponseStream();
 UIThread.Post(UpdateUiText, responseStream);
}

 Because REST services don’t have methods, and instead deal with entities, you need to add any data to be sent to the service
 to the message being sent. In listing 14.7, instead of calling BeginGetResponse from the initial call, you call BeginGetRequestStream. This event handler allows you to add information to the stream after it’s created but before it’s sent to the service. After
 that’s been done, you register the BeginGetResponse event handler as is done during GET operations.

 Knowing how to do GETs and POSTs is only half of the battle; you need to be able to use what gets returned as well. REST services
 normally return either XML- or JSON-formatted data. In section 14.4, we’ll talk about ways to take the response stream containing these common data formats and convert it into useful objects.

 The browser stack only allows POST and GET, not DELETE or PUT. Those limitations, and the need for out-of-browser networking
 support, prompted the team to create a second separate networking stack: the client HTTP Stack.

 14.3. The client HTTP stack

 Silverlight 3 introduced a second networking stack, meant primarily for use when running out-of-browser, but accessible in
 in-browser scenarios as well. This stack eliminates some of the restrictions of the browser-based HTTP stack.

 The two stacks included in Silverlight are known as the browser HTTP stack and the client HTTP stack. As their names indicate, the browser HTTP stack goes directly through the browser for all networking calls, whereas the
 client HTTP stack doesn’t. This opens up a plethora of new capabilities, such as additional verbs like PUT and DELETE, as
 well as getting around the limitations on simultaneous connections. There are some caveats, though. We’ll discuss those after
 we go through the mechanics of using the stack.

 In this section, we’ll first look at how to manually create the client stack. Then, because manually creating the stack every
 time can be a real chore, and impossible with generated code, you’ll see how to automatically select the stack at runtime.
 Finally, we’ll look at one important difference from the browser stack: cookie management.

 14.3.1. Manually creating the client stack

 One way to create an instance of the ClientHttp network stack is to use the System. Net.Browser.WebRequestCreator object. That object serves as a kind of a factory and includes two static properties: BrowserHttp and ClientHttp. Call the Create method on the ClientHttp property as shown:

 private void CallNetwork_Click(object sender, RoutedEventArgs e)
{
 HttpWebRequest request =
 (HttpWebRequest)WebRequestCreator.ClientHttp.Create(
 new Uri("http://api.10rem.net/Authors"));

 request.Method = "PUT";

 ...

}

 This approach to creating the stack is usable only when you’re using the low-level HttpWebRequest class. That’s helpful, but what if you want it to automatically be used by any WebRequest-derived classes?

 14.3.2. Automatically using the client stack

 A second way to use the client stack is to have it automatically selected based on specific URLs or schemes. That way, any
 call to the specified URL or scheme will use the stack you specify. The FTP, FILE, HTTP, and HTTPS schemes are already assigned
 to the browser stack, but you can override them or go a more specific route and specify that the client stack should be used
 for any HTTP* calls to a specific web site, or a specific service at a known URL. For example, if you want all calls to 10rem.net,
 both regular and SSL, to use the client stack, you’d put the following early in your code:

 WebRequest.RegisterPrefix(
 "http://10rem.net", WebRequestCreator.ClientHttp);

WebRequest.RegisterPrefix(
 "https://10rem.net", WebRequestCreator.ClientHttp);

 After this is done, any classes that use WebRequest or a class which derives from it will automatically use the client HTTP stack you have specified.

 The client stack brings along a number of enhancements, including the ability to automatically and manually set some HTTP
 header values previously unavailable to you.

 14.3.3. Automatically setting the HTTP Referer and other headers

 When a HTTP request is sent across the wire, it includes a number of headers that we typically don’t see. For example, if
 I open up Yahoo! in my browser, the request contains the following info:

 GET http://www.yahoo.com/ HTTP/1.1
Accept: */*
Accept-Language: en-us
User-Agent: Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 6.1;
 Trident/4.0; SLCC2; .NET CLR 2.0.50727; .NET CLR 3.5.30729;
 .NET CLR 3.0.30729; Media Center PC 6.0; Tablet PC 2.0;
 .NET CLR 3.0.30618; .NET CLR 3.5.21022; InfoPath.2;
 Media Center PC 5.0; MS-RTC LM 8; SLCC1; WWTClient2; Zune 4.0;
 .NET4.0C; .NET4.0E; MS-RTC LM 8)
Accept-Encoding: gzip, deflate
Connection: Keep-Alive
Host: www.yahoo.com
Cookie: [lots of cookie stuff]

 The first line is the verb and the target. In this case, we’re GETting the Yahoo! home page. Most of the stuff after that
 is pretty standard. IE8 is sending some information about the browser in use, what formats it’ll accept, the cookies, and
 so on. Collectively, those are called HTTP headers. New to Silverlight 4, and unique to the client networking stack, is the ability to send the HTTP Referer (sic) header with
 all requests, including out-of-browser network requests.

 Referring Site Header

 The HTTP Referer header is a web standard used to indicate the origin of a request. Often, this is used to figure out what
 other pages are linked to your page, or what other pages are attempting to post to your form.

	

Note

 Don’t use the HTTP Referer header to implement any type of important security check. Some browsers include utilities that
 allow users to eliminate the referer or replace it with one they manually input.

 	

When using the client stack, Silverlight automatically sets the HTTP Referer to the base URL of the .xap file where the out-of-browser
 application originated. This is useful, because an out-of-browser application doesn’t really have a URL and certainly doesn’t
 have a hosting web page.

 For example, if I access my web site from a trusted out-of-browser application (remember, in trusted applications, there’s
 no check for a client access policy), the request headers look like this:

 GET http://10rem.net/ HTTP/1.1
Accept: */*
Accept-Language: en-US
Referer: http://localhost:21597/ClientBin/RefererTest.xap
Accept-Encoding: identity
User-Agent: ...
Host: 10rem.net
Connection: Keep-Alive

 I removed the user-agent for brevity; it’s the same as the previous example. But note the value of the HTTP Referer header.
 I ran this example from Visual Studio, so the host is localhost:21597. The full path of the .xap is included as the Referer
 automatically.

	

Note

 Currently, Firefox doesn’t set the HTTP Referer header for any HTTP GET requests from plug-ins running in-browser. If you
 must have a HTTP Referer set for GET requests, you’ll need to use the client stack as shown here. POST requests are handled
 properly.

 	

You can’t manually set the HTTP Referer header; it’s one of a number of restricted headers. In addition to the Referer, Silverlight
 also sets headers such as the Content-Length, User-Agent, and others. Some of those, such as Content-Length, Content-Type,
 and Authentication, have dedicated request properties that map to the appropriate headers. It’s unusual to change Content-Length
 and Content-Type, but setting authentication credentials is a must for any serious web application.

 14.3.4. Authentication credentials

 Many endpoints on the Web, and even more on internal networks, are protected by some sort of authentication scheme. In order
 to access those endpoints, you must be able to provide authentication information along with the request.

 The client networking stack supports NTLM, basic, and digest authorization, allowing you to pass credentials to the endpoint
 of a request via the Credentials property. Listing 14.8 shows how to use credentials with the client networking stack.

 Listing 14.8. Passing credentials along with a request, using the client stack

 C#:

 [image:]

 Optionally, you can pass a third parameter to the NetworkCredential constructor: the domain name. Passing a domain name is required for some forms of authentication, including NTLM. To modify
 listing 14.8 to work with those forms, change the NetworkCredential constructor call to include the domain, like this:

 ... new NetworkCredential("Pete", "password", "domain");

 Of course, you’d use a real username, password, and domain name in the call. It’s also important to note that you have no
 client-side control over what type of authentication is used. If the server challenges with basic authentication, the credentials
 will be sent across in plain text. Unlike the full desktop API, there’s no CredentialCache class that can be used to hold credentials by challenge type.

 With the additional capabilities offered by this stack, such as security and the avoidance of cross-domain checks for trusted
 applications, it may seem like a no-brainer to use it in place of the browser stack. But there are some important differences
 to keep in mind. For example, the location of the download cache may be different depending on the operating system and whether
 you were using the default OS browser to begin with. It’s not common to concern yourself with that level of detail. But one
 of the biggest and most important differences is the way in which cookies are handled.

 14.3.5. Managing cookies with the CookieContainer

 In the browser stack, the browser handles all cookie management. The browser automatically sends up, with each request, the
 cookies appropriate to that domain and page.

 When using the client stack, you need to manually manage the cookies that are sent up with each request. The HttpWebRequest class contains a CookieContainer property that’s used for managing the cookies for that specific request.

 Listing 14.9 shows how to use the CookieContainer with the HttpWebRequest class, combined with the Register prefix function described in the previous section.

 Listing 14.9. Using the CookieContainer with a request and response

 C#:

 [image:]

 Managing cookies manually is pretty easy, as you saw in this example. But keep in mind that the cookies won’t be shared between
 the two stacks. Take, for example, an application in which the user is authenticated using ASP.NET forms-based authentication.
 The web pages handle the authentication before the Silverlight application is displayed. Many web applications, and even larger
 platforms such as SharePoint, can use this model.

 After the user is authenticated via the browser, the Silverlight application is displayed. If the Silverlight application
 then makes a network request, using the client stack, to the hosting server, the request will fail. Why? Because the ASP.NET
 authentication cookie, which is automatically sent up with all browser stack requests, isn’t set up by the client stack request.

 We’ve looked at two different ways to instantiate the client stack. You have the option of setting the stack preferences globally
 in your application or handling it on a request-by-request basis. We also looked at how to manage cookies for each request.
 When you’re working with the client stack for all but the most basic requests, this is essential.

 The client stack was originally designed for use in out-of-browser situations; but despite its limitations, it’s found use
 in in-browser Silverlight applications as well. The stack definitely has advantages, but only if you understand the limitations.

 When you get the data, regardless of form or networking stack used, you need to process it and do something useful with it.
 In the next section, we’ll cover working with XML and JSON data in Silverlight.

 14.4. Making the data usable

 We’ve now discussed ways to request data from both SOAP and REST services. What we haven’t talked about is how to do anything
 with what you’ve received. In the case of a SOAP service using a service reference, you have strongly typed objects to deal
 with. In the case of a REST service, you typically receive raw XML or JSON. Luckily, Silverlight gives you several ways to
 take the incoming data and make it usable in your application.

 In the following sections, we’ll show you how to deserialize a stream containing either POX or JSON. In addition, we’ll talk
 about a specialized way to work with feeds following either the RSS or the Atom standard.

 Several examples in this section use a publicly available service hosted by www.geonames.org. This service returns geographic and demographic data in various formats including XML and JSON. Connecting to free services
 like this is a great way to test methods for connecting to remote systems.

 14.4.1. Reading POX

 Plain Old XML (POX) has been the data format of choice on the Internet for nearly a decade. The fact that it’s human-readable,
 customizable, and platform-independent virtually guaranteed its acceptance. Due to its long life and universal acceptance,
 the Silverlight team built in several ways to use POX after it’s available in the application.

 In this section, we’ll describe the three major ways to use POX content. The three built-in methods to use XML content are
 LINQ to XML, also known as XLINQ, XmlReader, and XmlSerializer. In the following examples, we’ll demonstrate each of these ways to read the same data using different methods.

 Setting Up

 Each example that follows uses the same Silverlight application and the same web service call. First, we’ll show you what
 you’re getting and then how to deal with it. Listing 14.10 shows how to use a latitude/longitude service to get the name for a location.

 Listing 14.10. Getting the XML from a latitude/longitude geo service

 Result:

 [image:]

 XAML:

 <Grid x:Name="LayoutRoot" Background="#FF959595">
 <Grid.RowDefinitions>
 <RowDefinition Height="25" />
 <RowDefinition Height="25" />
 <RowDefinition Height="25" />
 <RowDefinition Height="*" />
 </Grid.RowDefinitions>
 <StackPanel Grid.Row="0" Orientation="Horizontal" Margin="5,5,0,0">
 <TextBlock Text="Lat:"/>
 <TextBox x:Name="Lat" Height="22" Width="85" Text="40.78343"/>
 <TextBlock Text="Long:"/>
 <TextBox x:Name="Long" Height="22" Width="85" Text="-73.96625"/>
 <Button x:Name="GetXML" Content="Get XML" Click="LoadXML"/>
 </StackPanel>
 <StackPanel Grid.Row="1" Orientation="Horizontal" Margin="5,5,0,0">
 <TextBlock Text="City:"/>
 <TextBlock x:Name="City" FontSize="12" FontFamily="Courier New"
 VerticalAlignment="Center" />
 </StackPanel>
 <StackPanel Grid.Row="2" Orientation="Horizontal" Margin="5,5,0,0">
 <TextBlock Text="Name:" />
 <TextBlock x:Name="Name" FontSize="12" FontFamily="Courier New"
 VerticalAlignment="Center"/>
 </StackPanel>
 <StackPanel Grid.Row="3" Margin="5,5,0,0">
 <TextBlock Text="Raw Results:" />
 <TextBlock x:Name="Results" TextWrapping="Wrap"
 FontFamily="Courier New" FontSize="11"/>
 </StackPanel>
</Grid>

 C#:

 SynchronizationContext UIThread;

private void LoadXML(object sender, RoutedEventArgs e)
{
 UIThread = SynchronizationContext.Current;
 string uriPath =
 "http://ws.geonames.org/neighbourhood?lat={0}&lng={1}&style=ful";
 Uri uri = new Uri(string.Format(uriPath, Lat.Text, Long.Text),
 UriKind.Absolute);
 HttpWebRequest request = (HttpWebRequest)WebRequest.Create(uri);
 request.BeginGetResponse(GetResults, request);
}
public void GetResults(IAsyncResult e)
{
 HttpWebRequest request = (HttpWebRequest)e.AsyncState;
 HttpWebResponse response =
 (HttpWebResponse)request.EndGetResponse(e);
 Stream responseStream = response.GetResponseStream();
 UIThread.Post(UpdateUiText, responseStream);
}

 In listing 14.10, you use the HttpWebRequest object to retrieve the response stream from a web service that returns POX. The following examples show different versions
 of the UpdateUiText method, one for each way of parsing POX.

 XLINQ

 XLINQ is a flavor of LINQ used to navigate and parse XML content. It facilitates both property and query syntax to access
 the nodes and attributes in a chunk of XML. Add a reference to System.Xml.Linq, and then add the following to the code-behind:

 public void UpdateUiText(object stream)
{
 XmlReader responseReader = XmlReader.Create((Stream)stream);
 XElement xmlResponse = XElement.Load(responseReader);
 XElement root = xmlResponse.Element("neighbourhood");
 Results.Text = root.ToString();
 City.Text = (string)root.Element("city");
 Name.Text = (string)root.Element("name");
}

 This example shows the LINQ to XML version of UpdateUiText. It shows how using XLINQ to access the data contained within individual XML elements is incredibly simple. The first step
 is to create an XmlReader from the response stream. You can load that into an XElement, which represents the root element. You can then access any element or attribute by name to get its value.

 This is a simple example of LINQ to XML, but it can be even more powerful when used to parse larger XML structures using the
 query syntax. Next, let’s look at using the XmlReader directly.

 XmlReader

 It’s possible to use the XmlReader itself, without using a higher-level object to parse the XML for you:

 public void UpdateUiText(object stream)
{
 XmlReader responseReader = XmlReader.Create((Stream)stream);
 responseReader.Read();
 responseReader.ReadToFollowing("city");
 string city = responseReader.ReadElementContentAsString();
 responseReader.ReadToFollowing("name");
 string name = responseReader.ReadElementContentAsString();
 responseReader.ReadEndElement();
 responseReader.ReadEndElement();
 City.Text = city;
 Name.Text = name;
}

 This example uses the plain XmlReader to step through the returned XML to find the values you want. The approach is rather clunky but does work. Because the XmlReader is forward-only, you have to be careful to get everything you need from the information the first time through-a potentially
 cumbersome task on complex documents.

 In the next example, you can also see the same results using the XmlSerializer from the System.Xml.Serialization namespace, which is included in the SDK, so you need to add a reference to use it in your application.

 XmlSerializer

 The XmlSerializer provides a way to convert an XmlReader into strongly typed objects. This approach takes a little more setup but is incredibly useful in many business applications.
 Listing 14.11 shows how to use the XmlSerializer to parse an XML document.

 Listing 14.11. Using the XmlSerializer to parse an XML document

 C#:

 [image:]

 You can see in listing 14.11 that using an XmlSerializer allows you to create a strongly typed object from the incoming XML data. To use this approach, you need to define a class
 that matches the format of the incoming XML. This class can be defined in your application, in a referenced class library,
 or in a service reference proxy. The first step is to move your XmlReader to the correct location. You also need to create a new XmlSerializer and initialize it with the target type you want the XML deserialized into. The final step is to use the Deserialize method on the XmlSerializer instance you just created and pass in the XmlReader. The Deserialize method returns an object of the type it’s defined as or, if the deserialization failed, null.

 Now that you’ve seen how to use POX, let’s look at another common data format. In the next section, you’ll learn how to use
 JSON-formatted data. JSON can be returned from a RESTful service just as easily as XML can, so let’s dig into that format
 now.

 14.4.2. Converting JSON

 If you’ve worked with Ajax, it’s likely that you’re already familiar with JSON. JSON provides a relatively simple way to create
 data objects using JavaScript. Because JSON is already prevalent in client-side programming and is used as the return type
 from my public services, Microsoft has made a simple way to convert managed objects into and out of JSON objects.

 The next example shows a sample of what a JSON object looks like. You can accomplish this conversion in a couple ways, such
 as using a DataContractJsonSerializer or even using LINQ syntax against a JsonObject. For the example, let’s use the same method to load the data as was used in listing 14.10, but change the URI to

 ws.geonames.org/neighbourhoodJSON?lat={0}&lng={1}

 The resulting JSON response looks like this:

 {
 "neighbourhood": {
 "adminName2": "New York County",
 "adminCode2": "061",
 "adminCode1": "NY",
 "countryName": "United States",
 "name": "Central Park",
 "countryCode": "US",
 "city": "New York City-Manhattan",
 "adminName1": "New York"
 }
}

 This example shows a simple but typical JSON object. As you can see, the returned JSON represents the same object as the XML
 returned in listing 14.10, but in a more compact form. Luckily, the methods for converting the JSON object into a useful format are similar as well.
 Let’s start by taking a look at using the JsonObject syntax.

 JsonObject

 As with XML, there’s more than one way to use JSON-formatted data returned from a web service. The JSON being deserialized
 in these examples is shown in the previous example. The ways of working with JSON data differ greatly, as the following examples
 will show:

 public void UpdateUiText(Object stream)
{
 JsonObject nh = (JsonObject)JsonObject.Load((Stream)stream);
 City.Text = nh["neighbourhood"]["city"];
 Name.Text = nh["neighbourhood"]["name"];
 Results.Text = nh.ToString();
}

 One way to read JSON data is by using JsonObject.Load to convert the stream into an object based on the structure found within the stream. To get access to the JsonObject, you need to add a reference to the System.Json assembly and add a Using statement for the same namespace to the page. After the JsonObject has been created, it’s a matter of using the name of the property you want as the key. If the property is nested, you add
 more keys, as when accessing the city property inside the Neighbourhood class.

 DataContractJsonserializer

 Another way to access returned JSON involves using the DataContractJsonSerializer to deserialize the stream into objects of predefined types. This new object to serialize and deserialize JSON is included
 in the System.Runtime.Serialization.Json namespace and in the System.ServiceModel.Web assembly. The two methods of the DataContractJsonSerializer are ReadObject and WriteObject, which deserialize and serialize JSON objects respectively.

 The following example again uses the Neighbourhood class defined earlier:

 public class MyResults
{
 public Neighbourhood neighbourhood { get; set; }
}
...
public void UpdateUiText(Object stream)
{
 DataContractJsonSerializer ser =
 new DataContractJsonSerializer(typeof(MyResults));
 MyResults nh = (MyResults)ser.ReadObject((Stream)stream);
 City.Text = nh.neighbourhood.city;
 Name.Text = nh.neighbourhood.name;
}

 This example shows the classes that hold the data after it’s deserialized, as well as the method that does the work. This
 approach is simple. First, you instantiate the DataContractJsonSerializer with the type of object you want filled. All that’s left is to pass the response stream into the ReadObject method of the DataContractJsonSerializer you just created. You access the data as you would with any other strongly typed .NET object. In the case of two well-known
 schemas, RSS and Atom, there’s no need to deserialize the stream yourself. We’ll look at these specialized classes, which
 make consuming published feeds easy and straightforward.

 14.5. Using advanced services

 You’ve seen how to download data and various ways to parse the returned data streams into usable pieces. Let’s now talk about
 a few special networking cases. Some SOAP services can be crafted in such a way as to provide additional functionality beyond
 basic SOAP. Windows Communication Foundation (WCF) is part of the .NET Framework 3.0 and provides a framework for creating
 SOAP web services. Although this technology is fairly new, it’s growing in usage.

 Another special case is that of two-way services, also known as push services. Silverlight supports two kinds of push technology in the form of WCF duplex services and TCP sockets. Although the topics
 in this section are more complex, the abilities to add push communications and advanced error handling on service calls make
 this all good to know.

 14.5.1. WCF service enhancements

 Connecting to a WCF service is accomplished in the same way as connecting to any other SOAP service, as described in section 14.2.1. Creating a service reference allows the use of a client proxy, which exposes all referenced types and methods to the Silverlight
 application. WCF can expose features not allowed in Silverlight; so, when you’re creating a WCF service for Silverlight consumption,
 there are a few restrictions. We’ve already stated that Silverlight supports the 1.1 version of the SOAP protocol with the
 addition of optional binary encoding. Another limitation is that Silverlight doesn’t support the WS-* series of protocols
 made available through WCF.

 Due to Silverlight’s service limitations, Visual Studio has a special template for creating a WCF service to be consumed by
 Silverlight called Silverlight-Enabled WCF Service. Describing how to create a WCF service is beyond the scope of this book,
 but the template should help ensure that the service is consumable by Silverlight. If you create your own WCF service, you
 have the ability to enhance the error-handling capability of calls to it from Silverlight.

 Error Handling

 One of the nice things about WCF is the ability to throw exceptions on a service call. Unfortunately, Silverlight doesn’t
 support this. Any exception thrown by the service gets translated by the browser into a 404 File Not Found error. The creator
 of the WCF service can still add error messages by adding them as an OUT parameter.

 When the signature of the WCF service contains an OUT parameter, you can access it directly through the EventArgs on the event handler for the completed call, as shown in listing 14.12.

 Listing 14.12. Reading an out parameter from a WCF service

 WCF C#:

 [OperationContract]
string GetSomeData(int Id, out MyErrorObject myError);

 Silverlight C#:

 void serviceProxy_GetSomeDataCompleted(object sender,
 GetSomeDataCompletedEventArgs e)
{
 if (e.Error != null)
 {
 Message.Text = e.Error.Message;
 }
 if (e.myError != null)
 {
 Message.Text = e.myError.Message;
 }
 else
 {
 Message.Text = e.Result.ToString();
 }
}

 In this example, you see a standard [ServiceMethod]Completed method like those shown throughout this chapter. This example also demonstrates error trapping and a custom out parameter.

 Now that you’ve seen standard WCF services, let’s dig deeper and look at how WCF duplex services can enable you to push data
 from a server to Silverlight.

 14.5.2. WCF duplex services

 So far, we’ve talked about ways to send and receive data that requires the Silverlight application to initiate each individual
 request. A couple of options allow the server to push data directly to your application. Duplex WCF services and sockets each
 provide a channel that allows properly configured server resources to send data without an explicit client request each time.

 Duplex services give the server the ability to send, or push, data directly to the client as it becomes available. Ajax applications have to send a request for updates to the server
 that execute on a loop with a timer. This approach, known as polling, creates overhead, both in your application and on the network, that can be avoided by using these techniques.

 Duplex communication is possible in Silverlight using properly configured WCF services. This is useful if you’re building
 an application that needs to receive notifications of changed properties on the server, such as when scores change in a sporting
 event, or an open record changes in a database. To enable duplex communication within Silverlight, a pair of new assemblies,
 both named System.ServiceModel.PollingDuplex.dll, need to be referenced-one by the server application hosting the duplex service and the other by your Silverlight application.
 They’re identifiable by their location within the Silverlight SDK, because one is in the Libraries\Server path and the other is in the Libraries\Client
 path.

 Connecting to the Service

 See the source code at Manning.com for everything required to set up a polling duplex service in a web project. When you have a functioning WCF service set
 up to enable duplex communication, let’s attach it to a Silverlight application. In the test application, a Button initiates the duplex communication and a TextBlock displays the results, so the XAML is simple. Here, you’re building a simple application that registers with the service to
 get updates on scores from a game (see listing 14.13).

 Listing 14.13. Sample application to get score updates

 Result:

 [image:]

 XAML:

 <Grid x:Name="LayoutRoot" Background="#FF6F93C3" Width="300">
 <Button Height="41" HorizontalAlignment="Stretch"
 VerticalAlignment="Top" Content="Get Scores!"
 Margin="199,8,0,0" x:Name="GetScores"
 Click="GetScores_Click"/>
 <TextBlock Height="41" Margin="8,8,0,0" VerticalAlignment="Top"
 Text="Get scores for your team!" TextWrapping="Wrap" Width="187"
 HorizontalAlignment="Left" FontFamily="Arial" FontSize="20"/>
 <TextBlock Margin="8,70,8,8" Text="" TextWrapping="Wrap"
 x:Name="Scores" FontFamily="Courier New" FontSize="10"/>
</Grid>

 The only thing of note in the XAML is that the Click attribute of the button points to the GetScores_Click method, which we’ll discuss in listing 14.14. In this example, you grab a link to the current SynchronizationContext before beginning your asynchronous operations. This ensures that you always have a way to update the user interface.

 Listing 14.14. Creating the polling duplex client

 C#:

 [image:]

 In this example, you start the process of binding to a duplex web service. You begin by creating a PollingDuplexHttpBinding object, on which you set the timeout properties. You then use that polling object to create an IChannelFactory of type IDuplexSessionChannel. The next step is to begin the asynchronous call using the BeginOpen method of the factory you just created.

 The PollingDuplexHttpBinding constructor accepts an optional parameter that allows you to specify either single messages per poll or multiple messages
 per poll. If you want to support HTTP message chunking-multiple messages per poll-you can pass the parameter in to the constructor like this:

 var poll = PollingDuplexHttpBinding(
 PollingDuplexMode.MultipleMessagesPerPoll);

 Using the multiple messages option can significantly reduce the round trips for services that typically have more than one
 message waiting in response to a poll, allowing the service to scale better.

 One thing you’ll see throughout these samples is the calling of CompletedSynchronously immediately after the asynchronous call. You do this in case the response is immediate, as can occur for some small asynchronous
 operations. With this in mind, note that all the asynchronous calls are to methods that also check the CompletedSynchronously property and then either return or call the proper next method. Here’s an example of one such method:

 void OnOpenFactoryComplete(IAsyncResult result)
{
 if (result.CompletedSynchronously)
 return;
 else
 OpenTheChannel(result);
}

 For the rest of this sample, we won’t show the On[action]Completed methods, because they all follow the pattern of this example. The next step is to open the channel with the WCF service and
 to begin polling it for queued messages, as in listing 14.15.

 Listing 14.15. Opening the duplex channel and establishing polling

 C#:

 void OpenTheChannel(IAsyncResult result)
{
 IChannelFactory<IDuplexSessionChannel> channelFactory =
 (IChannelFactory<IDuplexSessionChannel>)result.AsyncState;

 channelFactory.EndOpen(result);

 IDuplexSessionChannel channel = channelFactory.CreateChannel(new
 EndpointAddress("http://localhost:51236/ScoreService.svc"));

 IAsyncResult channelOpenResult = channel.BeginOpen(new
 AsyncCallback(OnOpenChannelComplete), channel);

 if (channelOpenResult.CompletedSynchronously)
 {
 StartPolling(channelOpenResult);
 }
}

void StartPolling(IAsyncResult result)
{
 IDuplexSessionChannel channel =
 (IDuplexSessionChannel)result.AsyncState;
 channel.EndOpen(result);

 Message message =
 Message.CreateMessage(channel.GetProperty<MessageVersion>(),
 "Silverlight/IScoreService/Register","Baseball");

 IAsyncResult resultChannel = channel.BeginSend(message,
 new AsyncCallback(OnSendComplete), channel);

 if (resultChannel.CompletedSynchronously)
 {
 CompleteOnSend(resultChannel);
 }
 PollingLoop(channel);
}

 The method OpenTheChannel in this code shows where you define the service you’re attempting to connect to. It’s assigned as an endpoint on the duplex
 channel. The StartPolling method creates the SOAP message for the initial call and sends it to the service.

 Listing 14.16 shows that CompleteOnSend receives the response from the initial call. This is also the first use of the uiThread SynchronizationContext to update text in the XAML.

 Listing 14.16. Looking for messages

 C#:

 void CompleteOnSend(IAsyncResult result)
{
 IDuplexSessionChannel channel =
 (IDuplexSessionChannel)result.AsyncState;
 channel.EndSend(result);
 _uiThread.Post(UpdateScore, "Registered!" + Environment.NewLine);
}
void UpdateScore(object text)

{
 Scores.Text += (string)text;
}

void PollingLoop(IDuplexSessionChannel channel)
{
 IAsyncResult result =
 channel.BeginReceive(new AsyncCallback(OnReceiveComplete),
 channel);
 if (result.CompletedSynchronously)
 CompleteReceive(result);
}

 The PollingLoop method assigns CompleteReceive (see listing 14.17) as the method to handle messages received from the duplex service and then closes the channel when the game is over.

 Listing 14.17. Reading the message

 C#:

 void CompleteReceive(IAsyncResult result)
{
 IDuplexSessionChannel channel =
 (IDuplexSessionChannel)result.AsyncState;
 try
 {
 Message receivedMessage = channel.EndReceive(result);
 if (receivedMessage == null)
 {
 _uiThread.Post(UpdateScore, "Channel Closed");
 }
 else
 {
 string text = receivedMessage.GetBody<string>();
 _uiThread.Post(UpdateScore, "Score Received: " +
 text + Environment.NewLine);

 if (text == "Game Over")
 {
 IAsyncResult resultFactory =
 channel.BeginClose(new AsyncCallback(OnCloseChannelComplete),
 channel);
 if (resultFactory.CompletedSynchronously)
 {
 CompleteCloseChannel(result);
 }
 }
 else
 {
 PollingLoop(channel);
 }
 }
 }
 catch (CommunicationObjectFaultedException)
 {
 _uiThread.Post(UpdateScore, "Channel Timed Out");
 }
}

void CompleteCloseChannel(IAsyncResult result)
{
 IDuplexSessionChannel channel =
 (IDuplexSessionChannel)result.AsyncState;
 channel.EndClose(result);
}

 Creating and consuming a duplex-enabled WCF service take more effort than a standard SOAP service, but there are definitely
 benefits. The ability to open a channel to the server to get requests as they’re available is powerful. Another approach you
 can take to accomplish this uses sockets, which we’ll discuss next.

 14.5.3. Connecting to sockets

 We’ve already discussed using a specially configured WCF service to enable push communications, so now let’s talk about using
 sockets for the same purpose. A socket is a communications endpoint that enables a connection to be established. After it’s established, information can flow in
 either direction along the open channel. The only socket protocol supported by Silverlight is TCP, and the ports are restricted
 to the range of 4502–4534 using IPv4 or IPv6 addresses.

 Serving the Policy File

 Sockets require a clientaccesspolicy.xml file with a few changes. The resource element isn’t used and is replaced with the socket-resource element. Both element types may exist in the file and apply the style to the specific type or request. The following is an
 example of a simple client access policy giving access to sockets using TCP over port 4502:

 <?xml version="1.0" encoding="utf-8"?>
<access-policy>
 <cross-domain-access>
 <policy>
 <allow-from>
 <domain uri="*"/>
 </allow-from>
 <grant-to>
 <socket-resource port="4502" protocol="tcp"/>
 </grant-to>
 </policy>
 </cross-domain-access>
</access-policy>

 Your Silverlight application will typically be served up from port 80, a web server. Sockets, on the other hand, don’t require
 a web server to be present and are on ports other than 80. For those reasons, you must serve up a sockets policy file, because
 every call is considered cross-domain (or at least cross-port).

 You have two options for serving up the policy file. You may either host it on a web server on port 80 on the same IP address
 as the sockets server, or on a sockets server on port 943. Typically, you’ll set up a separate thread or a separate socket
 server that listens for a connection on 943, sends the socket policy file, and closes the connection.

 Before we move on to opening the connection, refer to this book’s page on Manning.com for the source code for a simple sockets server.

 Opening the Connection

 Opening a socket connection with a socket server can be done in a few simple steps that are similar to the other forms of
 communicating you’ve already seen. The first step is to open the socket. Listing 14.18 shows how to open the socket on the client.

 Listing 14.18. Opening the socket connection on the client

 C#:

 public void OpenTheSocket()
{
 DnsEndPoint tcpEndpoint =
 new DnsEndPoint(Application.Current.Host.Source.DnsSafeHost, 4502);
 Socket tcpSocket = new Socket(AddressFamily.InterNetwork,
 SocketType.Stream, ProtocolType.Tcp);
 SocketAsyncEventArgs socketArgs = new SocketAsyncEventArgs();
 socketArgs.UserToken = tcpSocket;
 socketArgs.RemoteEndPoint = tcpEndpoint;
 socketArgs.Completed +=
 new EventHandler<SocketAsyncEventArgs>(socketArgs_Completed);
 tcpSocket.ConnectAsync(socketArgs);
}

 The example creates an endpoint and a socket and then using them to asynchronously request a connection to the remote socket
 server. You use Application.Current.Host.Source.DnsSafeHost to get the IP address of the host of the Silverlight application in a form usable for creating a socket endpoint. Using this
 technique to create the endpoint is only useful when the socket and the Silverlight application are hosted in the same location.

 Handling the Response

 Sockets are bidirectional in nature. After you’ve requested the connection, you need to handle the response. Listing 14.19 shows how to handle the incoming response on the client.

 Listing 14.19. Handling the socket response

 C#:

 public void socketArgs_Completed(object sender,
 SocketAsyncEventArgs receivedArgs)
{
 switch (receivedArgs.LastOperation)
 {
 case SocketAsyncOperation.Connect:
 if (receivedArgs.SocketError == SocketError.Success)
 {
 byte[] response = new byte[1024];
 receivedArgs.SetBuffer(response, 0, response.Length);
 Socket socket = (Socket)receivedArgs.UserToken;
 socket.ReceiveAsync(receivedArgs);
 }
 else
 throw new SocketException((int)receivedArgs.SocketError);
 break;

 case SocketAsyncOperation.Receive:
 ReceiveMessageOverSocket(receivedArgs);
 break;
 }
}

 You can determine the type of response by evaluating the value of the LastOperation property of SocketAsyncEventArgs, as shown in table 14.2.

 Table 14.2. SocketAsyncEventArgs LastOperation values

 	
 Value

 	
 Description

	None
 	Connection not yet established

	Connect
 	Connection established

	Receive
 	Packets received

	Send
 	Packets sent

Now you need to set up the connection to receive data, as shown here:

 public void ReceiveMessageOverSocket(SocketAsyncEventArgs receivedArgs)
{
 string message = Encoding.UTF8.GetString(receivedArgs.Buffer,
 receivedArgs.Offset, receivedArgs.BytesTransferred);
 UIThread.Post(UpdateUIControls, message);
 Socket socket = (Socket)receivedArgs.UserToken;
 socket.ReceiveAsync(receivedArgs);
}

 When the message comes in, it needs to be converted into the correct format (a string, in this case); it can then be deserialized
 using any of the methods described in previous sections, depending on the format of the incoming data.

 In additional to the traditional point-to-point connection offered by the Socket class, Silverlight supports multicast sockets where there may be many broadcasting servers or a single broadcasting server,
 sending to multiple clients.

 14.5.4. Multicast sockets

 The System.Net.Sockets namespace includes another type of socket implementation: UDP multicast sockets. IP multicast is a component of the core
 IP protocols, supporting one-to-many communication over IP, most often using UDP. Multicast is an efficient way for forwarding the IP datagrams to many receivers, enabling the service to scale out to more connected clients.

 IP multicast has a dependency on the routers and other equipment in use between the service and the connected clients. That
 equipment must all support IP multicast in order for the service to function. Luckily, most modern hardware and firmware implementations
 support IP multicast.

 A common scenario for IP multicast is the virtual classroom. In those cases, you may have hundreds or even thousands of clients
 connected, watching a single streaming video and receiving updates from virtual whiteboards, teacher notes, and public discussion
 streams.

 Silverlight supports two types of multicast protocols, described in table 14.3.

 Table 14.3. Multicast support in Silverlight

 	
 Client

 	
 Protocol and description

	UdpAnySourceMulticastClient
 	Internet Standard Multicast (ISM) or Any Source Multicast (ASM).
 This client can receive multicast traffic from any source in a multicast group.

	UdpSingleSourceMulticastClient
 	Source Specific Multicast (SSM).
 This client can receive multicast traffic from a single source.

Any Source Multicast/Internet Standard Multicast

 The Any Source Multicast (ASM) approach enables a single client to receive traffic from any source in a single multicast group.
 An example of this might be a virtual meeting with multiple broadcasters or an event with several cameras and commentary,
 all set up as individual servers in the same group.

 When Silverlight first attempts to join a multicast group, it sends out an announcement message in the form of a UDP packet
 to port 9430. In the any-source model, this goes to the group, and any responder in the group can send the ok back to port
 9430.

 Listing 14.20 shows the basics of connecting to a multicast group in preparation for receiving data.

 Listing 14.20. Opening a connection using ASM

 C#:

 private void OpenMulticastConnection()
{
 IPAddress groupAddress = IPAddress.Parse("224.156.5.5");
 int localPort = 1212;

 var client = new UdpAnySourceMulticastClient(
 groupAddress, localPort);

 client.BeginJoinGroup(OnBeginJoinGroup, client);
}
private void OnBeginJoinGroup(IAsyncResult asyncResult)
{
 UdpAnySourceMulticastClient client =
 (UdpAnySourceMulticastClient)asyncResult.AsyncState;

 client.EndJoinGroup(asyncResult);

 ...
}

 In addition to the any-source approach, you can also designate that you want to listen only to a single server using the Source
 Specific Multicast (SSM) model.

 Source Specific Multicast

 The SSM approach is more common than the any-source model. Of course, at the time of this writing, neither is particularly
 common. The source-specific model has been used for broadcasting video and even software images on large campuses and in some
 organizations. The benefit is the massive savings in bandwidth as compared to more traditional means.

 When Silverlight first attempts to join a multicast group, it sends out an announcement message in the form of a UDP packet
 to port 9430; but unlike the any-source model, this packet goes directly to the single source IP.

 Opening the connection and joining the multicast group is similar to the any-source approach, but the constructor takes in
 the IP address of the single source in addition to the group information.

 Listing 14.21 shows how to connect to a multicast group and target a single source address as the address to be listened to.

 Listing 14.21. Opening a connection to a single source

 C#:

 private void OpenMulticastConnection()
{
 IPAddress sourceAddress = IPAddress.Parse("192.168.1.1");
 IPAddress groupAddress = IPAddress.Parse("224.156.5.5");
 int localPort = 1212;

 var client = new UdpSingleSourceMulticastClient(
 sourceAddress, groupAddress, localPort);

 client.BeginJoinGroup(OnBeginJoinGroup, client);
}

private void OnBeginJoinGroup(IAsyncResult asyncResult)
{
 UdpAnySourceMulticastClient client =
 (UdpAnySourceMulticastClient)asyncResult.AsyncState;

 client.EndJoinGroup(asyncResult);

 ...
}

 The differences between listing 14.20 and 14.21 are minimal, coming down to the inclusion of the additional IP address in the constructor.

	

Note

 MSDN Code Gallery includes examples of both a multicast server and a multicast client. The full examples are impractical to
 place in a book due to their length. You can download the SilverChat examples from http://code.msdn.microsoft.com/silverlightsdk.

 	

Multicast is just starting to take off in the media, education, and large business sectors. If you’re looking at streaming
 media to a large number of clients, streaming stock-ticker quotes, or building your own webcasting software, you’ll definitely
 want to learn more about multicast socket development. Fortunately, Silverlight will be able to support you as a good client
 in those scenarios.

 Sockets in general are a great choice when you want to have complete control over the messaging, such as you might when creating
 a game and you want to have the tightest possible real-time messaging protocol. WCF duplex is a good choice when you’re willing
 to trade wire-level control for the ability to use all the great features, such as automatic serialization, that WCF provides.
 Different problems call for different solutions, sometimes within the same physical application. It’s great to see Silverlight
 offer such a spectrum of capabilities you can use when connecting applications to the outside world.

 Sockets and WCF duplex are great for bidirectional communication between a Silverlight client and a server, or via two machines
 using the server as a proxy. Straight SOAP and REST are useful when consuming public or application-specific APIs. Silverlight
 has another mechanism, similar to sockets, that you can use to connect two Silverlight applications running on the same client
 machine.

 14.6. Connecting to other Silverlight applications

 The new local connection API in System.Windows.Messaging, introduced in Silverlight 3, allows communication between two or more instances of the Silverlight plug-in, whether they’re
 on the same page in the same browser instance, on different pages in different browsers, or even some in browsers and others
 running out-of-browser.

 In this example, you’ll set up a pair of applications, the second of which echoes the text entered into a TextBox on the first. Much like socket programming, you’ll need to designate one application or piece of code as a sender and another
 as a receiver. You’ll start with the receiver.

 14.6.1. Creating the receiver

 Each receiver has a unique name. Think of it as the address of an endpoint. You define the name when creating the LocalMessageReceiver object as shown:

 private LocalMessageReceiver _receiver =
 new LocalMessageReceiver("InAction");

 The overload for the constructor enables you to indicate whether you want to listen only to specific domains or to all domains
 (what’s called the namescope, not to be confused with XAML namescope), and to provide a list of acceptable domains. Additionally, it provides the same ability to supply a
 receiver name.

 In this case, the receiver is named InAction. Remember, this name needs to be unique within the namescope. If it isn’t, you’ll get a ListenFailedException when executing the next step, listening for senders:

 public void Listen()
{
 _receiver.MessageReceived +=
 new EventHandler<MessageReceivedEventArgs>
 (_receiver_MessageReceived);
 _receiver.Listen();
}

void _receiver_MessageReceived(object sender, MessageReceivedEventArgs e)
{
 MessageText.Text = e.Message;
}

 Much like the other communications APIs, you first wire up an event handler, call a method, and then wait for a response within
 the handler. As is often the case, the event args class specific to this process—MessageReceivedEventArgs—includes a number of additional properties, shown in table 14.4.

 Table 14.4. MessageReceivedEventArgs properties

 	
 Property

 	
 Description

	Message
 	The message from the sender.

	NameScope
 	A value of either Domain or Global. Domain indicates the receiver is configured only to listen to applications from the same
 domain. Global indicates the receiver may listen to all Silverlight applications. This property is also available directly
 on the LocalMessageReceiver object. The default is Domain, but it may be set in the constructor.

	ReceiverName
 	The name of the LocalMessageReceiver tied to this event.

	Response
 	A response provided by the receiver. This makes it easy to immediately respond to a message, perhaps with something as simple
 as an ACK (acknowledge).

	SenderDomain
 	The domain of the Silverlight application that sent this message.

After you’ve created the listener, the next step is to create something to send the messages: the sender.

 14.6.2. Creating the sender

 The sender is extremely simple to create. All it needs to do is create a LocalMessageSender object specifying a particular listener and optionally the listener’s domain, and then start sending messages:

 private LocalMessageSender _sender =
 new LocalMessageSender("InAction");
public MainPage()
{
 ...
 MessageText.TextChanged +=
 new TextChangedEventHandler(OnTextChanged);
}
void OnTextChanged(object sender, TextChangedEventArgs e)
{
 _sender.SendAsync(MessageText.Text);
}

 In the example, whenever the text changes in the TextBox, you send the entire TextBox contents across the pipe and to the listener.

 14.6.3. Putting it all together

 The next step is to place both Silverlight control into the same HTML page, using separate object tags. When run, the application
 will look something like figure 14.1.

 Figure 14.1. Two Silverlight control instances on the same page, communicating with each other

 [image:]

 Of course, if you want, you can host the two instances in separate browser windows and still allow them to communicate, as
 shown in figure 14.2. Create a page for the sender and one for the receiver. The two browsers don’t need to be the same brand, as long as they’re
 both supported by Silverlight.

 Figure 14.2. Sender and receiver in separate browser windows, communicating across processes

 [image:]

 You can also have one or both of the applications running out of the browser, as shown in figure 14.3.

 Figure 14.3. Sender in a browser window, and receiver running out-of-browser

 [image:]

 The new local connection API provides a great way to let two or more Silverlight applications communicate. Unlike the old
 methods of using the DOM to send application messages, this doesn’t rely on the applications being in the same DOM tree or
 even in the same browser instance. This new API enables scenarios such as disconnected but coordinating web parts on a SharePoint
 page, composite applications, and many more.

 14.7. Summary

 Most Silverlight applications don’t live in a vacuum, self-contained and apart from the rest of the world. In most cases,
 applications need to either gather data from or send data to services on the Internet or intranet. The various networking
 approaches we discussed here will help you connect your applications to the outside world and even to other Silverlight applications.

 As a web technology, Silverlight as a platform must be able to connect to services and consume various types of data as a
 top-tier feature. Silverlight doesn’t disappoint in this area. From low-level HTTP access through to SOAP, REST, sockets,
 multicast sockets, and duplex communications, Silverlight provides a full spectrum of capabilities for accessing information
 on other machines.

 Of course, if you had to manually parse all that data, it wouldn’t be a great platform feature. Luckily, Silverlight has us
 covered here as well. Silverlight supports multiple ways to access XML data-one of the most popular data formats on the web
 today. In addition, Silverlight supports the lightweight and nimble JSON format introduced with Ajax applications.

 Silverlight also supports a pseudonetworking mechanism for connecting two Silverlight applications running on the same machine,
 even in different browsers or out-of-browser instances.

 Silverlight provides numerous ways to connect to, download, and use a variety of types of data. With support for technologies
 ranging from the decade old POX to WCF Data Services and WCF RIA Services, there’s sure to be something to fit any application
 framework.

 In the next chapter, we’ll combine the information on networking, binding, and other topics and learn how to handle navigation.

Chapter 15. Navigation and dialogs

 This chapter covers

 	Browser navigation

 	The Navigation Application template

 	Using navigation with out-of-browser applications

 	Working with common dialogs

 	Creating custom dialogs and pop-ups

When you first created a Silverlight 2 application, you ended up with a project that contained a single white main page, probably
 sized at 300 × 400, depending on the template you used. There was no guidance for structuring your application or how to move
 from page to page. Unlike HTML pages or WPF/Windows Forms, the navigation structure wasn’t something intuitive, building on
 a decade or more of knowledge and established patterns. Instead, most new Silverlight developers were left staring that that
 blank page, wondering what to do next.

 Silverlight 3 introduced not only a complete navigation framework, but also an application template built on this framework.
 The navigation framework takes a modern browser-oriented approach to navigation, supporting concepts such as journal histories,
 back-and-forward navigation, and uniquely addressable pages. This framework addressed the needs of both application structure
 and end-user navigation.

 Silverlight also supports dialog content. In addition to the standard open and save dialogs provided by the operating system,
 you can create your own simulated dialogs using controls such as Popup and ChildWindow.

 In this chapter, we’ll dive deep into Silverlight navigation, followed up with a look at how to handle pop-ups and dialogs.
 We’ll look to history to inform us about how navigation is handled in the browser and how hashtags or URI fragments work.
 From there, you’ll start building an application using the navigation template. The navigation template will then be used
 to explore navigation to individual pages and customization of navigation.

 After we complete the tour of navigation, we’ll turn our eye to dialogs and child windows, including the operating system–provided
 file dialogs and the Silverlight Popup and ChildWindow classes.

 Before diving into Silverlight navigation, let’s take a look at a well-established navigation paradigm as used by the web
 browser.

 15.1. Browser navigation background

 The introduction of GUI web browsers hailed a new approach to navigation. Prior to Mosaic, the typical modes for navigation
 were either keyboard commands or drop-down menus. Most applications had multiple windows and were wizard-driven or dialog-driven.
 Browsers introduced two key things:

 	Navigation to previously visited pages using Back and Forward buttons, with retained history on both

 	Navigation to new pages using hyperlinks

This may seem pretty unexciting now, but it wasn’t a mainstream approach at the time. Applications didn’t contain a single
 frame that was swapped in and out with different bits of content.

 With the ubiquity of web browsers came new demands for how applications worked. It was expected that your applications, especially
 if hosted in a browser, would use a forward/backward and link paradigm. This worked fine for the period of time when browser
 applications were all server-processed and static client. Think ASP, CGI, and similar application types.

 Outlook Web Access (OWA), released in 2000, had bits of functionality that other application developers realized could make
 the web a better place. OWA was making network calls back to the server to get new content, but did it without any sort of
 post-back or even an iframe. Developers looked to see how this application (and others such as Gmail in 2004) were written, and began to adopt the approach
 themselves. Around 2003 (give or take a year or two), Ajax applications based on JavaScript, asynchronous network calls, and
 client-side HTML DOM manipulation began to rise in popularity. Ajax applications are and were a web approach designed to provide
 interactive client-side desktop application–like functionality to the web pages.

 Unfortunately, as Ajax applications became more and more complex, they made browser back/forward navigation unreliable. Newsgroups
 at the time were full of “How do we disable the Back button?” questions. Clicking the Back button navigated off the page, completely destroying the
 application state. Java applets and, later, Flash applications ran into the same problem.

 Eventually, both browser makers and the application framework developers were able to work together to provide an approach
 for interacting with the browser journal, the structure in the browser that keeps track of your navigation history. The rest
 is, well, history.[1]

 1 You didn’t think I’d get past this section without cracking that joke, did you?

 In this section, we’ll briefly cover how the browser journal works and how it interacts with anchor tags on a typical web
 page. With that grounding, we’ll then be able to look at Silverlight navigation in the subsequent sections.

 15.1.1. Browser journals

 The browser journal keeps track of your navigation history for a session. It’s what allows you to click the Back button to open the previous
 page and then click the Forward button to return to where you were.

 Browsers each implement their history journal and its API in subtly different ways. For example, Internet Explorer 7 required
 the use of an HTML iframe in order to generate an actual history entry when you navigate to a hashtag. Other browsers didn’t update their JavaScript
 API objects, such as location.hash, to reflect changes to the hashtag. Some other browsers were just plain buggy and didn’t consistently keep the correct state.
 There were other smaller differences in addition to gross API differences.

	

Note

 Ever wonder why you need that iframe in the HTML page in a Silverlight project? It’s there for navigation support in older browsers, including IE7. IE7 wouldn’t
 generate a history entry when you navigated to a hashtag unless you also navigated a frame at the same time. Some pretty clever
 scripting avoids a server round-trip in there, all happily wrapped inside the navigation API. IE8 doesn’t require this hack.

 	

Back around 2007-2008, Ajax libraries started to include functionality to wrap all this journal ugliness. Happily, Silverlight,
 with Silverlight 3 in 2009, was able to build on this body of work to provide the same functionality.

 The entire navigation structure for rich, client-side browser applications is built around hash tags.

 15.1.2. Anchor hashtags

 Hashtags, more properly known as fragments when part of a larger URI, were originally designed to enable navigation within the same page without requiring a round trip
 to the server. They were for top-level tables of contents on really long pages. Here’s an example in HTML:

First
Second

<p>
This is the first content paragraph</p>

<p>
This is the second content paragraph. Put me below the fold.</p>

 If you paste this into a file with an .html extension and view it in your browser, you’ll see how clicking the links at the
 top brings the bottom content into view and updates the address at the top of the browser. If the content is already in view,
 you won’t see any on-page changes, but you’ll still see the hashtag change in the URL. Figure 15.1 illustrates this.

 Figure 15.1. I just clicked the First link at the top of the page. The browser scrolled to bring the content into view and updated the
 URL with the hashtag #first.

 [image:]

 You can achieve a similar effect using JavaScript. Rather than having to click a link, you can use this one line of JavaScript
 code:

 window.location.hash = "#first";

 As you learned back in chapter 4, Silverlight can manipulate the browser DOM for any page it’s on. Silverlight uses this and the plug-in model to handle the
 journal manipulation for you, saving you the aggravation of coming up with a cross-platform, cross-browser, custom solution
 or hand-crafting JavaScript.

 The hashtag approach provides a way to uniquely address content. It’s common to see, for example, blog engines using this
 to uniquely address comments on a page. In Ajax applications and in-browser RIAs, you can use it the same way: to uniquely
 identify content that’s on the same browser page, but nested within your application.

 Assuming you’re already on the browser page specified in the URL, all of this is done without a page refresh, which is the
 key to making it work with your applications.

 15.1.3. Back and forth

 Browsers have a long history[2] with their current navigation paradigm. When running an application in the browser, and increasingly when running desktop
 applications, users have come to expect that the approach of Back buttons, Forward buttons, and hyperlinks will be, if not
 the primary navigation mechanism, at least one form that’s available to them. It has even reached a level mainstream enough
 to be incorporated into the Windows shell, as shown in figure 15.2.

 2 I did it again! I kill me.

 Figure 15.2. The Back and Forward buttons have even made it into the Windows shell, in the file explorer windows.

 [image:]

 The Back and Forward buttons have their own settled UI convention (left and right arrows). As expected, Back navigates the
 browser history backward, toward the first page in the navigation chain, and Forward navigates forward as far as you’ve gone in this chain. Of course, Forward
 only works if you’ve used the Back button already. When you click another hyperlink, the forward chain is rebuilt starting
 at the current point.

 With the background in browser navigation, journals, and hashtags, we can now look at the Silverlight implementation and make
 more sense of the design choices made, as well as the knobs provided for tweaking the approach. The easiest and most obvious
 way to explore the navigation framework is to start with the Silverlight Navigation Application template.

 15.2. The Navigation Application template

 When creating a new Silverlight project, you can choose from several stock templates. For most of the projects in this book,
 we’ve used the generic Silverlight Application template. That template is great if you want a blank slate to start with.

 The Silverlight Navigation Application template is another good one. This template provides the fundamental structure and
 plumbing required to allow your application to work using a familiar web page navigation model. In addition, the template
 provides for easy theming of your application.

 The Silverlight Navigation Application template isn’t required when you want to incorporate navigation in your application.
 But you’ll find the template provides a good starting point.

 In this section, you’ll create a new navigation project and use it to explore the Navigation Application template, including
 modifying the navigation to include an additional page and the link to that page. We’ll wrap up with an example showing you
 how to use the free online themes to customize the UI of the navigation application.

 15.2.1. Creating a navigation application

 As the name suggests, the Silverlight Navigation Application template structures the application around the navigation API
 first introduced with Silverlight 3. This API makes it easy to move between pages. The template provides a best-practices
 structure for using the capabilities provided, as well as a good starting point for your own applications.

 The first step is to create the new project using the navigation template. Figure 15.3 shows the correct template selected in the Visual Studio 2010 New Project dialog. I named the application NavigationExample.

 Figure 15.3. Picking the Navigation Application template in Visual Studio 2010

 [image:]

 After the project has been created, you end up with a structure that includes an Assets folder with application styles (see
 chapter 23 for more on styling) and a Views folder that includes two pages and an error window dialog. You’ll also see the usual MainPage.xaml
 and App.xaml files in the project root.

 When you run the unmodified application, using the default application style, you’ll end up with something that looks like
 figure 15.4.

 Figure 15.4. The Navigation Application default project. Note how the URL corresponds to the current page visible in the application, and
 how the navigation menu on the right is synchronized with the two.

 [image:]

 The application template includes all the wiring required to synchronize the menu (the Home button at upper right in the screen
 shot) with the page in view, and synchronizes both with the hashtag in the URL. If you click the About navigation button,
 you’ll see that the URL changes. Even better, you can use the browser’s Back button to get back to the home page of the application.

 Although this is a great structure, an application with only home and about pages would probably not be particularly engaging.
 To grow beyond this, you need to add a new page and modify the navigation menu.

 15.2.2. Adding a new page

 Much like regular web pages, the functionality and content for a navigation application are in the pages. Adding a new page
 to a navigation application involves three steps:

 1. Add the new view to the Views folder.

 2. Add a link to the top menu.

 3. Add functionality to the page.

 The first step is as simple as dropping a new file into a folder. The second step involves some modification to MainPage.xaml;
 and the third step is what you’d normally do in any application, so we’ll skip it here.

 Adding the New View

 Views are instances of the Silverlight Navigation Page class defined in the System. Windows.Controls.Navigation namespace. The Silverlight tools include a template for a blank page deriving from the navigation:Page class, a class which is essentially a UserControl that has been beefed up to support navigation.

 Right-click the Views folder, and select Add New Item. In the Add New Item dialog, select the Silverlight Page template, and
 name the file CustomerDetail.xaml. Figure 15.5 shows the Add New Item dialog with the correct selections.

 Figure 15.5. The Add New Item dialog with the Silverlight Page template selected. This is the template to be used for views in a Silverlight
 navigation application. I may have more templates than you; I’ve installed some add-ins.

 [image:]

 After you’ve added the new page, you need to provide a way for the end user to find it. In a regular desktop application,
 this may be a menu or toolbar. For this navigation application, you’ll use a HyperlinkButton.

 Adding the Link to the Top Menu

 In this template, navigation to individual pages is accomplished by HyperlinkButton instances on MainPage.xaml. The pages themselves are loaded in the navigation: Frame element named ContentFrame.

 On MainPage.xaml is a Border named LinksBorder. This is the navigation menu that appears at upper right. The default XAML for this area is shown in listing 15.1.

 Listing 15.1. LinksBorder showing navigation menu

 Result:

 [image:]

 XAML:

 [image:]

 This Border contains the top menu navigation structure for the application. It’s a simple StackPanel of elements: HyperlinkButton instances separated by vertical lines (narrow rectangles).

 Note that I removed the x:Name from the divider rectangle, because it’s not needed. The names in the HyperlinkButton instances also aren’t needed, but I gave them meaningful names to help with the discussion here, and in case you decide to
 do something with them in code. In your own project, you can remove the names if you’d like.

 To add your own page to the navigation structure, you need to follow this pattern and add a divider rectangle (optional, but
 recommended) and a HyperlinkButton pointing to your page. Place this markup in the XAML in the spot indicated in the previous listing:

 <Rectangle Style="{StaticResource DividerStyle}" />

<HyperlinkButton x:Name="CustomerDetailLink"
 Style="{StaticResource LinkStyle}"
 NavigateUri="/CustomerDetail"
 TargetName="ContentFrame"
 Content="customer" />

 When copying and pasting from the other links, I left the divider alone but changed a couple properties of the HyperlinkButton. The first is the x:Name property, which is optional because it’s not used in any code, binding, or animation in the default template. The second
 is the Content. This is what will be displayed on the menu bar. You could easily use images rather than text if you’d like. You’re also
 free to change the LinkStyle resource to modify the appearance. The final property is the NavigateUri. That needed to be changed to point to the newly added page.

 You may have noticed that the URI for the page is set to /CustomerDetail, when the actual page is stored in /Views/CustomerDetail.xaml.
 This is handled by the URI mapper, which we’ll cover later in this chapter.

 Although it isn’t unique to the navigation API, one other nice feature of the navigation application is its ability to be
 easily styled or themed.

 15.2.3. Changing the application theme

 When the Silverlight team created the navigation template, they enlisted the help of an in-house designer to both ensure that
 the template could be themed and to create themes for use with it. Long after the release, the design team has continued to
 put out new themes, each more impressive than the last.

 You can get the set of templates that’s current as of this writing by visiting http://bit.ly/sltemplates and clicking the big download link at the top. Be sure to grab the VisualStudio2010 zip file, which contains the .vsix (Visual
 Studio Install Package) files for the themes. This will install a number of new project templates, one for each theme you
 install.

 Because you’ve already started your project, you’ll need to steal some theme files from another project. In another instance
 of Visual Studio, create a new Silverlight Navigation Application - Cosmopolitan Theme (or a different theme if you prefer)
 application. Save that. Then, find the folder where you stored that project, open it in Explorer, and drag all the contents
 except the SDKStyles.xaml and ToolkitStyles.xaml files from the Assets folder in the temp project into the Assets folder of your chapter project. Be sure to overwrite (or first
 rename) the old Styles.xaml file so you pick up the new one.

	

Important

 Make sure each of the theme XAML styles is compiled with a build action of Page and a Custom Tool of MSBuild:Compile. You’ll
 find both settings in the property panel for the file. The build action provides compile-time errors. The custom tool tells
 Visual Studio what to do with the file and how to include it in the assembly.

 	

If you include SDKStyles.xaml or ToolkitStyles.xaml, you’ll get compile errors unless you also have the required SDK and Toolkit
 assembles (respectively) referenced in the application.

 Finally, open App.xaml in the project you’ve been working in, and merge in the new resource dictionaries:

 <Application.Resources>
 <ResourceDictionary>
 <ResourceDictionary.MergedDictionaries>
 <ResourceDictionary Source="Assets/Styles.xaml" />
 <ResourceDictionary Source="Assets/CoreStyles.xaml" />
 </ResourceDictionary.MergedDictionaries>
 </ResourceDictionary>
</Application.Resources>

 After you have all the DLLs referenced, rebuild your application and run. I picked the Cosmopolitan theme, so my application
 looks like figure 15.6. I didn’t change a single line of page XAML, just the applied styles. Note how the sizes, colors, fonts used, and locations
 of the elements have all changed-pretty awesome. You’ll learn more about styling and resource dictionaries in chapter 23.

 Figure 15.6. The Silverlight navigation application with a new style. The Cosmopolitan style is similar to the Metro theme used by Zune
 software.

 [image:]

 Most of the rest of what you’ll do inside the pages is straight Silverlight code and design. You’ll write code either in the
 code-behind or using something like the MVVM pattern described in chapter 16.

 As we continue to explore the navigation framework, you’ll use this application in the examples. Now that you’ve seen how
 straightforward it is to create a Silverlight navigation-enabled application using the template, it’s time to dig into the
 classes and methods that make the template possible.

 15.3. Navigating to pages

 In the previous section, you saw what it takes to add a new page into the navigation structure. In a nutshell, all you need
 to do is add the page to the Views folder and then to the navigation links on the top.

 Pages are the most frequently used part of the navigation framework. They’re the primarily location for your content. In addition
 to pages, there are several other important parts. First, the NavigationService class provides the underlying property and event information required to make navigation work. Then you have the Frame element, which loads pages using URIs and supports features such as URI mapping. Both the pages and frames also support forms
 of caching to minimize the reload time for any given information. Also, much like HTML, frames can be nested and have multiple
 levels of navigation, or even navigation to pages in other assemblies.

 All of these classes collectively fall under the Navigation framework, and all of them are involved in navigating to pages
 in your Silverlight application.

 In this section, we’ll dig deeper into what makes navigation possible, looking at the core Page class and its properties. From there, we’ll uncover how the Frame class and URI mapping work to load those pages, and how to pass and receive parameters between page instances. Finally, we’ll
 wrap up with caching pages for reuse and navigating to pages contained in other assemblies.

 15.3.1. The Page class

 The Page class, in the System.Windows.Controls namespace, provides the behavior expected of content to be loaded into a navigation Frame. The Page itself is analogous to an HTML page or to a regular Silverlight UserControl, but with the addition of navigation events, members, and a navigation service. The page also provides caching capabilities
 in concert with the Frame class; we’ll cover that and other features later in this chapter.

 In addition to the standard Title property, which provides a unique friendly title to the page, and some navigation objects that we’ll discuss shortly, the
 Page class includes several virtual functions used to provide information about the current navigation state.

 Navigation Virtual Functions

 The Page class includes four navigation-related virtual functions. Override these when you want to perform an action on a specific
 navigation step. Table 15.1 lists the functions of each.

 Table 15.1. Page navigation members

 	
 Navigation event

 	
 Description

	OnFragmentNavigation
 	Called when a fragment inside the Silverlight application is navigated to.
 For example, /Views/CustomerDetail.xaml#Item1234. This is different from the top-level hash or fragment used to support Silverlight
 navigation.
 Equivalent to the FragmentNavigation event on the NavigationService class.

	OnNavigatedFrom
 	Called when this page is no longer the active page in the frame. Use this for any final cleanup code.
 Equivalent to the Navigated event of the NavigationService class.

	OnNavigatingFrom
 	Called just before this page is swapped out for another page. The event args allow for canceling the navigation. You can use
 this to prompt the user to save data, for example.
 Equivalent to the Navigating event of the NavigationService class.

	OnNavigatedTo
 	Called when the page becomes the active page in the frame. In most cases, you’ll use this where you’d use the Loaded event
 in nonnavigation scenarios.

These four events were implemented as virtual functions to eliminate the requirement of hooking up event handlers, potentially
 keeping pages around longer than intended.

 You’ll use the OnFragmentNavigation when you want to respond to subnavigation within the current page. This is a powerful but seldom-used capability similar
 in intent to hashtag or fragment navigation on HTML pages.

 A good place for page cleanup code, or persisting to a backup cache, is the OnNavigatedFrom method. This is fired when the page is no longer the active page, so it’s too late to use to prompt the user for saving.
 Use the OnNavigatingFrom method when you need to prompt the user.

 The OnNavigatingFrom method provides a facility for informing the user that the page is about to be navigated away from. The method signature
 allows for canceling the navigation, typically in response to a prompt to the user.

 Finally, the OnNavigatedTo method is the one most commonly used in navigation pages. This is typically used for any data loading or data-cache retrieval,
 as well as any page setup. Because pages can themselves be cached, this is the place to check the state of that page cache
 and perform any operations necessary to make the page available to the user.

 The source of the event information is the NavigationService class, which also has several other useful properties and methods.

 15.3.2. The NavigationService class

 The navigation Page class exposes a NavigationService class with a property of the same name. This service is useful as a means to hook into the navigation system for the hosting
 frame from within page code.

 The NavigationService class provides five methods used for navigating away from this page, reloading the current page, and stopping asynchronous
 navigation actions. Table 15.2 provides detail on each function.

 Table 15.2. The NavigationService class functions

 	
 Member

 	
 Description

	GoBack
 	Navigates to the previous entry in the history. Throws an exception if no previous entry exists in the history.

	GoForward
 	Navigates to the next entry in the history. Throws an exception if no next entry exists in the history.

	Navigate
 	Navigates to an arbitrary URI.

	Refresh
 	Reloads the current page. Note that this is useful only when you provide a custom INavigationContentLoader for the Frame’s
 ContentLoader property.

	StopLoading
 	Cancels any asynchronous navigation actions that haven’t yet been processed.

GoBack and GoForward use the currently active journal to move backward and forward through the journal history. These methods are provided both
 here and at the Frame level to allow you to create your own navigation UI, typically for use when running out-of-browser applications where there’s
 no browser UI. You can certainly use these in-browser, though-something which may be useful for full-screen applications in
 particular.

 The Navigate method takes a URI and starts the process of loading the new content and replacing the current content. We’ll cover the Navigate method in more detail when we discuss the Frame class.

 In all cases, when using these navigation functions, the events listed in table 15.3 will be fired at their appropriate times.

 Table 15.3. The NavigationService class properties

 	
 Member

 	
 Description

	CanGoBack
 	Returns true if there’s at least one previous entry in the history.

	CanGoForward
 	Returns true if there’s at least one next entry in the history.

	CurrentSource
 	Returns the URI of the currently displayed page. This value changes when navigation has completed.

	Source
 	Gets or sets the page to be displayed. If set, when navigation completes, Source and CurrentSource will be the same. In the
 interim, they may be different.

In addition to the navigation functions, two other methods are available. The first, Refresh, is similar in functionality to the browser’s Refresh button. Typically this is used only when you have custom content loaders
 and are performing some sort of authentication step that must happen before the content appears. This method reloads the page
 but doesn’t force it to be regenerated: if the page is cached, it’ll be read from the cache. The second, StopLoading, is similar to the browser’s Stop or Cancel button. It stops an asynchronous or long-running page-load process. Given the
 structure of most navigation applications, with local compiled pages, StopLoading is rarely used.

 Highly related to those functions are four properties that provide information on the navigation history as well as the current
 and planned page. Table 15.3 shows these properties.

 These properties are typically used in concert with functions from table 15.1 For example, you’ll check the CanGoBack property before calling the GoBack function. Listing 15.2 shows several of these in use in a hypothetical page.

 Listing 15.2. Using the NavigationService class to navigate forward or backward

 XAML:

 <Grid x:Name="LayoutRoot">
 <StackPanel Orientation="Horizontal" Height="30">
 <Button x:Name="NavigateBack"
 Click="NavigateBack_Click"
 Content="Back"
 Width="100" />
 <Button x:Name="NavigateForward"
 Click="NavigateForward_Click"
 Content="Forward"
 Width="100" />
 </StackPanel>
</Grid>

 C# code-behind:

 [image:]

 These functions and properties are useful for those odd times when you need to perform navigation directly from the page.
 The more typical approach, shown later in section 15.4, is to call them from the UI that hosts the navigation Frame control.

 The final bit of functionality provided by the NavigationService class is surfaced through a set of five events that provide information about the current state of navigation. Table 15.4 shows the events exposed by this class.

 Table 15.4. The NavigationService class events

 	
 Member

 	
 Description

	FragmentNavigation
 	Raised when the system navigates to a hashtag (fragment) on the current page. Equivalent to the Page.OnFragmentNavigation
 method.

	Navigated
 	Raised when the system has navigated away from the page. Equivalent to the Page.OnNavigatedFrom method.

	Navigating
 	Raised when the system is planning to navigate away from the page. This is a cancellable event. Equivalent to the Page.OnNavigatingFrom
 method.

	NavigationFailed
 	Raised when the frame is unable to navigate to the requested page. Provides the exception information.

	NavigationStopped
 	Raised when navigation has been stopped.

Several of the events on the NavigationService class are equivalent to the virtual functions exposed by the page class, discussed earlier. Two of them, the NavigationFailed and NavigationStopped events, have no equivalent and so bear more investigation.

 The NavigationService class provides much of the core functionality of the navigation system in Silverlight. Although accessing it from within
 a page is a fine way to use those capabilities, it’s more common to access the equivalent properties and methods directly
 exposed by the Frame class to navigate using URIs or the history journal.

 15.3.3. Frames and URIs

 In Silverlight, Pages are loaded into Frames and are uniquely addressable via URIs. These two types-the Frame and the URI-are conceptually similar to their HTML counterparts in that the frame is both a container and a bit of a walled
 garden, used to host content.

 The Frame class is a ContentControl, so it can have only one item as its content. In most cases, that’s another XAML page, but that’s controllable using the
 ContentLoader property of the Frame class.

 The Frame class exposes many of the same properties and methods that the NavigationService exposes. One benefit at the Frame level is that most of these are exposed as dependency properties and can therefore be used to control the IsEnabled state of navigation controls via binding.

 You can load content into a frame in a few different ways: using the GoBack and GoForward methods seen in the previous section, or via URI using the Navigate method, which we’ll cover here. Frames also support URI mapping to change ugly URLs into more user-friendly versions. This mapping also helps better support page
 parameters.

 Loading Content with the Navigate Method

 Silverlight navigation applications load content pages into frames. In our walkthrough of the Navigation Application template
 in section 15.2, you saw that the HyperlinkButton in the MainPage.xaml file invokes navigation for you. Although using a HyperlinkButton is an easy way to get content into a frame, it’s not the only way. Take for example

 ContentFrame.Navigate(new Uri("/CustomerDetail", UriKind.Relative));

 If the page /CustomerDetail maps to a valid page via the in-force URI mapping, this example will navigate to that page. You could put this type of code
 in a button or any sort of other handler in the application. The ability to navigate using code means you’re not stuck with
 using HyperlinkControls for your application navigation: you can use traditional menus, ListBoxes, Buttons, or pretty much anything you’d like.

 When working with navigation pages, you typically don’t navigate to pages using a full filename such as CustomerDetail.xaml.
 Instead, you map friendly URIs to these absolute URIs. This is done through a property on the Frame class.

 URI Mapping

 The Frame class exposes a property named UriMapper of type UriMapperBase. This is responsible for translating real application URIs into something more user-friendly. The default implementation
 is a class containing a collection of UriMapping objects. Table 15.5 shows the members of the UriMapper class.

 Table 15.5. The members of the UriMapper class

 	
 Member

 	
 Description

	UriMappings
 	Collection of UriMapping objects representing a single pair of URIs to be mapped.
 Each UriMapping object contains a Uri property and a MappedUri property as well as a MapUri function.

	MapUri
 	Inherited from UriMapperBase and overridden in the default UriMapper class.
 Function accepts a regular URI and returns the URI that it maps to. In the default UriMapper implementation, calls the MapUri
 function of the UriMapping that matches the input URI.

The UriMapper property of the frame class is read/write. Should you desire, you can create your own UriMapper implementation, using your own scheme for mapping URIs. To do so, inherit from UriMapperBase and provide the required functionality in the MapUri function.

 In the example at the beginning of this chapter, you saw how the mapper automatically translated /CustomerDetail into /Views/CustomerDetail.xaml.
 The default UriMapper class exposes the UriMappings collection. Here’s the full XAML for the mapping:

 <navigation:Frame.UriMapper>
 <uriMapper:UriMapper>
 <uriMapper:UriMapping Uri=""
 MappedUri="/Views/Home.xaml"/>
 <uriMapper:UriMapping Uri="/{pageName}"
 MappedUri="/Views/{pageName}.xaml"/>
 </uriMapper:UriMapper>
</navigation:Frame.UriMapper>

 Given this mapping, and assuming an application URI of http://myapp.com/app.aspx, when the user visits http://myapp.com/app.aspx#/CustomerDetail, the second mapping will come into play and map to http://myapp.com/app.aspx#/Views/CustomerDetail.xaml. Also note the hashtag in both cases; the mapping only comes into play with that fragment.

 This mapping XAML fragment sits inside the navigation:Frame element and provides the two mappings required for the URLs you’d normally use: no page and a specific page. Maps are read
 top-down and complete when the first match is hit. If you want to pass parameters to your page, you can get more complex and
 include support for query string values.

 Passing and Receiving Page Parameters

 A common pattern in web applications is to pass parameters to a page using the query string. The query string is the set of delimited name/value pairs after the question mark in a URL. For example:

 http://myapp.com/app.aspx?customer=1234

 In this case, the query string would produce two name/value pairs: customer with a value of 27 and invoice with a value of 2506.

 That works well for passing parameters to an actual HTML page, but how does it fit in with the hashtag approach used with
 Silverlight navigation? How do you pass parameters to internal Silverlight pages? In a Silverlight application, much as we’ve
 gotten used to elsewhere on the Web, you may want something a little friendlier:

 http://myapp.com/app.aspx#/CustomerDetail/1234

 In this case, when you have mapping set up, Silverlight will load the CustomerDetail page and pass in a parameter of 1234. How is that parameter passed in? It’s entirely up to you and how you do the mapping. For example, let’s say you want 1234
 to map to a CustomerID query string variable. You provide a map that looks like this:

 <uriMapper:UriMapping Uri="/CustomerDetail/{CustomerID}"
 MappedUri="/Views/CustomerDetail.xaml?CustomerID={CustomerID}" />

 That map needs to appear near the top, preferably after the Home mapping, in order to be hit. Remember, the maps are evaluated top-down, and the first match is the only one that will be
 executed.

 Retrieving the parameter from within the Page is super simple. The NavigationContext object on the property of the same name in the Page class includes a QueryString property that may be used to retrieve the parameters passed into the page. It’s an IDictionary of strings, so no parsing is required; use the name/value pairs as they’re provided:

 protected override void OnNavigatedTo(NavigationEventArgs e)
{
 if (NavigationContext.QueryString.ContainsKey("CustomerID"))
 {
 string id = NavigationContext.QueryString["CustomerID"];

 if (!string.IsNullOrWhiteSpace(id))
 LoadCustomerDetails(id);
 }
}

 This example shows how easy it is to grab the ID from the query string passed into the page. Although I left them out for
 brevity here, you’ll want to have all your query string key names in constants or an enum.

 This approach enables you to provide meaningful deep links into data-oriented Silverlight applications, pulling up the appropriate
 records or other state. Back when I worked primarily with Windows Forms in the .NET 1 and 1.1 days, this was a feature many
 customers asked for: “How can I email a link to a specific page in the application?” We had all sorts of strange solutions
 involving custom URI schemes and more. I’m glad to see it’s much simpler now.

 When you have a data-oriented application, that typically means individual pages cause some sort of database transaction and
 web service call to run when you load them. The query string parameter may contain a record ID used to load some data. When
 the user is bouncing back and forth between pages in the application, you don’t necessarily want to take a service or database
 hit on each page; that’s where caching comes into play.

 15.3.4. Caching pages

 There are all sorts of ways to cache information in a Silverlight application: you can cache data at the service level on
 a web server or using a server-side caching product. You can cache locally on the client using cookies and isolated storage.
 With elevated trust applications, you can even cache to files in the My Documents folder. Of course, because Silverlight applications
 are stateful, you could cache everything you need in memory on the Silverlight client. The Page cache is a specialized form of this in-memory approach.

 Page Cache Settings

 Normally, when you navigate to a page using the navigation framework, you’ll get a new instance of that page. This includes
 times when you click the Back button to get to that page. In order for Silverlight to cache that page, you need to enable
 caching at the page level using the NavigationCacheMode property. Table 15.6 shows the three possible values for page caching.

 Table 15.6. The values for NavigationCacheMode for a Page

 	
 Value

 	
 Description

	Disabled
 	The default value. The page is never cached.

	Required
 	The page is cached, and the cached version is used for every request. Pages marked as required don’t count against the Frame’s
 cache limit and won’t be discarded.

	Enabled
 	The page is cached but is discarded when the Frame’s cache limit is reached.

The cache mode is specific to the URI in use. When using parameters, each unique URI, including the query string, results
 in a new cached page if caching is turned on. Given the way parameters usually affect the data on the page, this is a desirable
 effect. If you want to avoid this, you can cancel the navigation using code in the Navigating event or by overriding the OnNavigatingFrom function on the Page.

 Typically, you’ll set the page’s cache mode in the constructor. Cached pages will still receive the navigation events, so
 you may do any page-loading work inside the OnNavigatedTo override.

 The page cache is handled at the Frame level, so it makes sense for that to be the location of the cache settings.

 Frame Cache Settings

 The Frame instance is responsible for any caching of pages it loads. It uses a simple in-memory structure keyed by the URI of the page
 to be cached. By default, the size of this cache is set to 10 pages, but you can change that by setting the Frame.CacheSize property in either markup or code. Recall that this limit doesn’t include pages that require cache, only pages that enable
 it.

 Logically, the cache is a queue: new pages are added to one end, and old pages fall off the other. The cache itself is opaque;
 you don’t have direct access to it and can’t manually manipulate the pages contained within. If you need that level of cache
 control, you can consider creating your own custom INavigationContentLoader and bypassing the built-in cache.

 Caching is a powerful way to improve the performance of your application. Using the built-in page cache takes the guesswork
 out of dealing with individual page instances in a navigation application.

 So far, you’ve seen a number of pages being loaded (and cached) using straightforward URIs. Those pages all existed in the
 currently executing assembly. It’s rare for an application of any complexity to have all of its user interface contained within
 the main assembly.

 For the last topic of this section, we’ll cover how to navigate to pages contained in other assemblies.

 15.3.5. Navigating to pages in other assemblies

 Nontrivial applications almost always contain multiple assemblies. In many cases, those assemblies may contain user interface
 pages that must be integrated with the rest of the application. The Silverlight navigation framework supports navigating to
 pages included in other assemblies.

 There are multiple ways to get the assembly down to the local machine. First, it can of course be packaged in the same .xap
 file with the initial application download. This doesn’t help download time, but it does help keep the application modular.
 The assembly can be a shared assembly sitting on the server, resolved by the Silverlight assembly caching resolver. It can
 be an assembly dynamically downloaded using the Managed Extensibility Framework (MEF) or via an HttpWebRequest as seen in chapter 14.

 URI Syntax

 Regardless of the download mechanism, the navigation approach remains the same when you have the assembly available to Silverlight.
 Silverlight uses a specialized form of URI to reference the page. You may have seen this when loading resource files. For
 example, to get to CustomerList.xaml in a Views folder in the assembly CustomerModule, the URI looks like this:

 /CustomerModule;component/Views/CustomerList.xaml

 That says to load the CustomerModule component and look in the Views folder for a file named CustomerList.xaml. You could use this syntax as is, but it’s much
 nicer to integrate it with the URI mapper. First, let’s modify the project to include a new assembly with the CustomerList
 page so you can try this out.

 Adding the Assembly

 To the existing solution, add a new Silverlight Class Library project named CustomerModule. In that project, create a new
 Views folder. In the Views folder, add a new Silverlight page named CustomerList.xaml. Feel free to remove the default Class1.cs
 class that came along for the ride.

 The XAML for the CustomerList file is short:

 <Grid x:Name="LayoutRoot">
 <TextBlock Text="Customer List Page from Assembly" />
</Grid>

 The next step is to reference this assembly from the main Silverlight application. First, build the solution. Then, right-click
 the Silverlight app and choose Add Reference. From the Projects tab, select the newly added CustomerModule assembly.

 At this point, you have everything needed for a page in a separate assembly, included in the main .xap file. The next step
 is to build the URI mapping rule.

 Mapping the URI

 Unless you have a specific pattern to the URIs in your external assemblies, you’ll need to create individual mapping rules
 for them. This alone can be a good reason to group pages by a common name prefix (such as Customer) and partition them into
 assemblies based on those names.

 In this case, you’ll add a specific URI mapping as the first rule in the URI mapper in MainPage.xaml. The rule looks like
 this:

 <uriMapper:UriMapping Uri="/CustomerList"
 MappedUri="/CustomerModule;component/Views/CustomerList.xaml" />

 When the mapping is in place, all you have to do is add some navigation controls on-page.

 Adding the Navigation Menu Item

 Still in MainPage.xaml, locate the LinksBorder where you previously added the Customer menu item. Right under the CustomerDetailLink, add the following XAML:

 <Rectangle Style="{StaticResource DividerStyle}" />

<HyperlinkButton x:Name="CustomerListLink"
 Style="{StaticResource LinkStyle}"
 NavigateUri="/CustomerList"
 TargetName="ContentFrame"
 Content="customer list" />

 When you run the application and click the Customer List menu option, you’ll see something like figure 15.7. With the mapped URI, the fact that the page isn’t in the main assembly is completely transparent to the user. Not only is
 this generally a good practice, but it’ll make any further refactoring easier, as you can keep the URIs the same regardless
 of which assembly the pages live in.

 Figure 15.7. The navigation application with a customer list page loaded from an external assembly

 [image:]

 Navigation in Silverlight is based primarily around Pages, Frames, and URIs. Individual pages have unique URIs and are loaded by those URIs into frames in the application. Frames provide
 a location to host pages, as well as a common interface to the navigation facilities offered by the NavigationService class and services such as the URI mapper. Both frames and pages participate in caching to help improve application performance.
 Finally, pages can be loaded from resources inside the executing assembly, or from external assemblies resolved at compile
 time or runtime.

 So far, everything you’ve done has been for in-browser applications, where you have the browser’s navigation UI and history
 journal to rely on. Out-of-browser applications obviously can’t take advantage of these things. Luckily, the Silverlight navigation
 framework has taken this scenario into consideration and provided everything you need to have proper out-of-browser navigation.

 15.4. Navigation out of the browser

 Out-of-browser applications don’t have the benefit of the browser-based navigation UI. From a user experience standpoint,
 this is excellent, because you’ll want to provide your own in-theme navigation controls anyway. Consider the Microsoft Zune
 software client (see figure 15.8): it uses familiar navigation metaphors but looks different from a web browser.

 Figure 15.8. The Zune software client. Note the small arrow Back button at upper left. Also note the two-level navigation using links such
 as Quickplay, Collection, Marketplace, and Social. (I get my Doctor Who fix using Zune. It’s cheaper than cable.)

 [image:]

 The Zune client uses some of the traditional controls and navigation concepts (primarily links and the Back button) but provides
 a custom look and feel. The Zune client also eschews the use, in this case, of a Forward button.

 A user interface along the lines of the Zune client is well within the capabilities of a Silverlight out-of-browser application
 with custom chrome and navigation. In this section, we’ll look at what it takes to create custom navigation controls, hook
 up to an appropriate journal, and support navigation out of the browser.

 15.4.1. Providing custom navigation controls

 In the previous sections, you’ve seen how the Frame class provides various properties, methods, and events you can use to control and respond navigation. You’ve also created
 a shell of a navigation application that integrated with the browser to provide standard URI and back and forward navigation.

 The next step is to take this application out-of-browser and provide your own custom navigation user interface.

 Creating the Navigation Controls

 The application needs, at a minimum, a Back button and a Forward button. For this, you’ll use the metro theme (Windows Phone
 7 and Zune) icons from http://metro.windowswiki.info/. From that set, drag both the back.png and next.png black icons into the project’s Assets folder. When they’re in place,
 modify MainPage.xaml to add the XAML in listing 15.3 right before the closing Grid tag at the bottom of the file.

 Listing 15.3. The Back and Forward buttons on MainPage.xaml

 [image:]

 The XAML in listing 15.3 adds two buttons: a Back button and a Forward button. The style resource (resources are covered in chapter 23) creates a button that has no real appearance other than its content. When you run the application, the UI displays the two
 new buttons at upper left on the main page, as shown in figure 15.9.

 Figure 15.9. The new navigation buttons appear at upper left in the user interface.

 [image:]

 The new UI looks pretty good. With the buttons in place, you’ll need to wire them up to the content frame to make navigation
 happen.

 Wiring Up the Buttons

 In the button-click event handlers for the two new navigation buttons, you’ll place some code similar to what you wrote in
 listing 15.2 earlier in this chapter. This time, though, you’ll use the Frame class directly rather than the NavigationService class. Listing 15.4 shows the code-behind for the MainPage.xaml page.

 Listing 15.4. Navigation code in MainPage.xaml.cs

 private void BackButton_Click(object sender, RoutedEventArgs e)
{
 if (ContentFrame.CanGoBack)
 ContentFrame.GoBack();
}

private void ForwardButton_Click(object sender, RoutedEventArgs e)
{
 if (ContentFrame.CanGoForward)
 ContentFrame.GoForward();
}

 With this code in place, you can use either the browser buttons or the custom navigation buttons to move backward and forward
 through the journal. There’s currently no visual cue indicating whether either navigation option is available, though. You
 can do this using binding, because the CanGoBack and CanGoForward properties of the Frame class are implemented as dependency properties. As you learned in chapter 11, you can use element binding to get to the properties on ContentFrame, as shown here:

 <Button x:Name="BackButton"
 IsEnabled="{Binding CanGoBack, ElementName=ContentFrame}"
...
</Button>
<Button x:Name="ForwardButton"
 IsEnabled="{Binding CanGoForward, ElementName=ContentFrame}"
...
</Button>

 With that in place, you’ll see the Forward and Back buttons ghost out when the function isn’t available. Note how the buttons
 are in sync with the browser navigation buttons. Now, let’s try it without the browser.

 Out of Browser

 The next step is to turn the application into an out-of-browser application. Chapter 5 covered out-of-browser applications in detail; if you haven’t yet read that, you may wish to take a brief detour over there
 now.

 Right-click the main application project, select Properties, and select the Enable Running Application Out of the Browser
 check box on the Silverlight tab. Next, on the Debug tab, select Out-of-browser Application as the start action. Finally,
 set the NavigationExample project as the startup project by right-clicking the project and selecting Set as Start-up Project.

 With those steps complete, run the application. The result will look something like figure 15.10.

 Figure 15.10. The navigation application running out-of-browser, with custom navigation controls

 [image:]

 One other important option relates to custom navigation: controlling who owns the journal.

 Controlling the Journal

 The Frame class includes a property named JournalOwnership. This property lets you decide who should own the history journal. In a top-level navigation frame in an in-browser application,
 the default is to let the browser own the journal. In an out-of-browser application, the default is to let the frame own the
 journal. Table 15.7 shows the three possible values of the JournalOwnership property.

 Table 15.7. Values for the JournalOwnership property of the Frame class

 	
 Value

 	
 Description

	Automatic
 	If the frame control is a top-level frame and is running in-browser, the browser’s journal is used. Otherwise, the frame maintains
 its own journal.

	OwnsJournal
 	The frame maintains its own journal.

	UsesParentJournal
 	Uses the browser’s journal. This may only be used with a top-level (not nested) frame.

Given the defaults, leaving journal ownership at the default value will be sufficient for most cases, including your out-of-browser
 application. For out-of-browser applications, it wouldn’t hurt to set the journal ownership to OwnsJournal, but other than a short decision tree, you’re not really saving any code.

 There was a time when a series of dialogs could be considered the main user interface for a number of applications. Not any
 more. Pages are the main way you present content to users. But dialogs still have their place for presenting important information
 to the user, such as error messages or details, or for gathering discrete bits of information such as filenames.

 In addition to the page-navigation approach you’ve seen so far, Silverlight has support for two discrete types of dialogs:
 in-application floating windows with simulated modality, and system dialogs.

 15.5. Showing dialogs and pop-ups

 There are certain times when you need to grab the user’s attention and display something that overlays other page content.
 Maybe you need to display details about a critical error. You could do this with the message box, but that can be limiting.
 For more intricate dialogs, you may want to consider the other two alternatives available in Silverlight.

 Throughout this section, you’ll learn about the four types of visual prompts available in Silverlight. We’ll briefly cover
 the Popup control first, followed by the ChildWindow control-a control that provides the capability to display in-Silverlight dialogs. Then, we’ll dive into the two system dialogs
 made available in Silverlight: the OpenFileDialog, which is useful for getting a file from the user’s local file system, and the SaveFileDialog, which helps specify a location for saving a file on the local file system.

 15.5.1. The Popup control

 In Silverlight 2, if you wanted to create a dialog-like experience, you likely used the Popup control from the System.Windows.Controls.Primitives namespace. The Popup control provided a way to guarantee that your content would show up at the top of the z-order, regardless of which control
 created it. But it wasn’t really a dialog substitute.

 The Popup control has no visuals of its own. Typically, you’ll enclose a UserControl or a number of elements within the Popup to give it the behavior you want. Because sizing and positioning can be tricky otherwise, it’s recommended that you apply
 a fixed size to the content in the Popup and then perform any centering or other position calculations.

 Assuming that the XAML namespace xmlns:primitives points to System.Windows. Controls.Primitives, the syntax for the popup is simple:

 <primitives:Popup x:Name="MyPopup"> content </primitives:Popup>

 To display the pop-up in the example, you’d then use the IsOpen property:

 MyPopup.IsOpen = true;

 In Silverlight 3 and 4, the use of the Popup control is more for floating nondialog items to the top of the stack, but not really for simulating dialog boxes, so we won’t
 spend much time on it. The Popup control is used by Silverlight to support other elements such as tooltips, the drop-down in the ComboBox, and, of course, the ChildWindow control introduced with Silverlight 3.

 15.5.2. Displaying a dialog box with the ChildWindow control

 Silverlight 3 introduced a new class, ChildWindow, which provides a window-like experience over the base Popup control. Where the Popup control provided only z-order management, the ChildWindow adds window overlays, dialog results, OK/Cancel buttons, and window title functionality.

 Unlike Popup, ChildWindow is considered a first-class element, like Page and UserControl, and has a template in the project items template list, as shown in figure 15.11.

 Figure 15.11. The Silverlight ChildWindow is a first-class element like UserControl and Page.

 [image:]

 That said, ChildWindow isn’t located in the core Silverlight runtime; it’s located in the System.Windows.Controls assembly in the SDK. The primary reason for keeping it out of the runtime is that it’s not an essential or enabling technology;
 you could live with Popup if you absolutely needed to.

 After you create a new ChildWindow, you’re presented with its default template, as shown in listing 15.5.

 Listing 15.5. The default ChildWindow template

 Result:

 [image:]

 XAML:

 [image:]

 Listing 15.5 shows the default look and feel of the ChildWindow control. Before we get into how to customize that, we’ll cover the mechanics of showing and hiding the window.

 Showing the Childwindow

 A ChildWindow is typically displayed from code rather than included as an inline element in XAML. To facilitate this, the control has several
 members that handle showing, closing, reporting results, and allowing cancellation. Table 15.8 lists those members and their related functions.

 Table 15.8. Properties, methods, and events related to showing and closing the ChildWindow

 	
 Member

 	
 Description

	DialogResult property
 	A nullable boolean that indicates whether the dialog was accepted or cancelled.
 This is typically set to true in the handler for an OK button and false in the handler for a Cancel button.

	Show method
 	Displays the child window and immediately returns. Whereas the behavior of a ChildWindow is logically modal, from a programmatic
 standpoint, Show is a nonblocking and therefore nonmodal method.

	Close method
 	Closes the window. Typically, this is called from a button on the child window itself.

	Closing event
 	Raised when the child window is closing. The handler for this event has the opportunity to cancel the close operation and
 force the window to stay open.

	Closed event
 	Raised after the child window has been closed. Note that due to animations, the window may still be visible on the screen
 for a moment longer, but it’s be in the process of closing for good. Use this event to inspect the DialogResult property.

The typical way to use a ChildWindow is to call the Open method from code and then to take some action based on the dialog result available during the Closed event. Listing 15.6 shows this process in more detail.

 Listing 15.6. Displaying a ChildWindow and capturing the DialogResult

 C#:

 [image:]

 The example shows how to display a ChildWindow and handle the three possible DialogResult values set when the user closes the window. Note that this example also uses a lambda expression to create the event handler.
 This is a shortcut way to create a delegate inline in your code rather than create a separate event handler function. In this
 example, s is the variable that contains the sender, and ea is the variable that contains the event arguments. The code to display the window could also have been written like this:

 ChildWindow dialog = new MyDialog();
dialog.Closed += new EventHandler(dialog_Closed);
dialog.Show();

 Of course, in that instance, you’d need to create a separate function named dialog_Closed that had the event handler logic in it. Either way is valid.

 Note also that you do a true/false/else check on the DialogResult value. This is because the DialogResult is a nullable boolean type, and it’s not usually sufficient to check for true or false. Nullable booleans also don’t allow
 you to write code like this:

 if (dialog.DialogResult) { ... }

 You’ll get a compile-time error unless you cast the value to a regular bool. For that reason, you check explicitly against true, false, and the null (default) value.

 When you ran the code in listing 15.6, you probably noticed that the content behind the window was overlaid with a gray rectangle. The color and opacity of the
 overlay are a couple of the knobs you can tweak to customize the way the ChildWindow looks.

 Customizing the Childwindow

 Like almost everything else in Silverlight, you can do some basic customization of a ChildWindow to change things such as background and overlay colors without messing around with the control template. Some of those properties
 specific to ChildWindow are listed in table 15.9.

 Table 15.9. Properties of the ChildWindow control

 	
 Property

 	
 Description

	HasCloseButton
 	Set this value to determine whether the close button, typically at upper right, is visible or collapsed. If you set this to
 false, make sure you provide another way to close the window.

	OverlayBrush
 	When the ChildWindow is displayed, it includes an overlay that covers all other content in the current Silverlight application.
 This gives the illusion of a modal dialog. Use OverlayBrush to set the brush to be used for that overlay.

	OverlayOpacity
 	Sets the opacity of the overlay. A higher opacity means less background content shines through.

	Title
 	Displays content in the window title bar. Although typically text, this can be any element.

The ChildWindow provides the capability to create any in-application dialog that you need. Two other types of dialogs are more operating
 system–specific in their display and use: the OpenFileDialog and the SaveFileDialog.

 15.5.3. Prompting for a file

 The OpenFileDialog class enables you to ask users for one or more files from their filesystems. From there, you can load the data from the selected
 files into memory, giving you the flexibility to do any number of things. For instance, you can send the contents of a file
 to a server or load the contents into your Silverlight application. The SaveFileDialog performs a similar function but provides a mechanism to save a single file to the filesystem. Either way, before you can
 do any of these items, you must understand how to interact with the OpenFileDialog and SaveFileDialog classes.

 Throughout this section, you’ll learn the three steps involved in interacting with an OpenFileDialog. The first step involves launching and configuring an instance of the OpenFileDialog class. Next, you must wait for and retrieve the results of a user’s interaction with an OpenFileDialog. Finally, you’ll parse the results if a user has selected at least one file.

 Launching the Dialog Box

 To give your users the opportunity to select a file or multiple files, you must instantiate an instance of the OpenFileDialog class from procedural code; you can’t create an OpenFileDialog from XAML. After it’s created, you can use several properties to customize the selection experience. These properties and
 their descriptions are provided in table 15.10.

 Table 15.10. The configuration properties available on the OpenFileDialog and SaveFileDialog

 	
 Property

 	
 Description

	Filter
 	Represents the type of files that are displayed in the dialog.

	FilterIndex
 	Determines which filter is specified by default if the filter specifies multiple file types.

	Multiselect
 	OpenFileDialog-only. Specifies whether users may select multiple files. By default, users may select only one file.

	DefaultExt
 	SaveFileDialog-only. Specifies the default extension to use if the user types in a filename without an extension.

As this table shows, you have flexibility in customizing the selection experience, but you don’t have complete control over
 the dialog box. For instance, you can’t dictate the appearance of the dialogs. Instead, the dialogs use the user’s OS to determine
 the general look of the dialog box. By using the values in table 15.10, you can guide the selection experience, as shown in figure 15.12.

 Figure 15.12. Guiding the selection using filter properties

 [image:]

 The following is the code to achieve this:

 OpenFileDialog openFileDialog = new OpenFileDialog();
openFileDialog.Filter =
 "Text files (*.txt)|*.txt|Xml Files (*.xml)|*.xml";
bool? fileWasSelected = openFileDialog.ShowDialog();

 This example shows an OpenFileDialog box that enables a user to select a text or XML file. You can accomplish this by appropriately setting the Filter property of the OpenFileDialog object. The dialog is then launched by calling the ShowDialog method. The code for a SaveFileDialog is similar. Unlike the ChildWindow-type dialog shown in the previous section, this method is a blocking call that prevents the execution of any additional code until the user exits the dialog. After the user exits the dialog, the ShowDialog method returns a nullable bool that signals the end of a user’s interaction with the dialog. The code then continues executing, giving you the opportunity
 to retrieve and analyze the results.

 Retrieving the Results

 When a user exits the dialog, the ShowDialog method returns a nullable bool value. This value will be false if the user chose to close out of or cancel the dialog. If the user clicked the OK button, a true value will be returned. After the value is returned, you can access the file(s) that the user selected.

 The file(s) selected within an OpenFileDialog are available through the File and Files properties. The SaveFileDialog, because it only supports a single file, has only the File property. These properties will be null if a user left the OpenFileDialog without clicking the OK button, so you should check the value returned from the ShowDialog method before attempting to retrieve the selected file(s). Here’s an example:

 bool? fileWasSelected = openFileDialog.ShowDialog();
if (fileWasSelected == true)
{
 FileInfo fileInfo = openFileDialog.File;
 StreamReader reader = fileInfo.OpenText();
}

 From this example, you can see that after a user opens the dialog box, you can get the selected file through the File property. If the Multiselect property had been set to true, the Files property would have been more applicable. Either way, if a user hadn’t selected a file, both those property values would
 have been null. If a file or multiple files had been selected, you could have retrieved the details of each file through the FileInfo object.

 The SaveFileDialog, because it only supports a single file, has a helper method to use for opening the file. The code for a SaveFileDialog looks like this:

 bool? fileWasSelected = saveFileDialog.ShowDialog();
if (fileWasSelected == true)
{
 Stream stream = saveFileDialog.OpenFile();
}

 If you wish to retrieve the name of the file entered or selected by the user, use the SaveFieldDialog.SafeFileName string property.

 Reading the Results

 The FileInfo class provides a special bridge from the local filesystem to the security sandbox in which Silverlight runs. This class is
 specifically designed for use with the OpenFileDialog and SaveFileDialog. This object provides two methods that allow you to read the contents of a file—OpenRead and OpenText-and one method that may be used in the case of the SaveFileDialog to write to the file-OpenWrite.

 The OpenRead method is designed to handle binary file scenarios. This method returns a read-only System.IO.Stream object, which is well-suited for handling bytes of information. Similarly, the OpenWrite method returns a write-only stream, but only if called on a FileInfo object returned from the SaveFileDialog. Alternatively, the OpenText method is better suited for reading text-related files. This method returns a basic System.IO.StreamReader, as shown here:

 FileInfo fileInfo = openFileDialog.File;
StreamReader reader = fileInfo.OpenText();
myTextBlock.Text = reader.ReadToEnd();

 As this example shows, working with a text file in Silverlight is incredibly trivial. It’s just as easy to work with a binary
 file. The key to either approach is to understand working with streams of data. This topic is a general concept in .NET development
 that’s beyond the scope of this book.

 The OpenFileDialog provides a way to ask a user for a file to open. The SaveFileDialog provides a way to ask for a filename for saving a file. The Popup element and ChildWindow control provide another way to prompt your users. These options help Silverlight deliver a richer experience than you can
 easily get with HTML. In addition, other controls that haven’t been covered also help provide a rich experience.

 15.6. Summary

 In the old days, we had chisels and stone, manual typewriters, and the MDI and dialog application navigation styles. At some
 point in the late 1990s, developers started taking cues from web browsers and decided that their navigation approach-using
 Back and Forward buttons and uniquely addressable pages-made sense for many applications. It certainly made more sense than
 MDI in nondocument applications.

 Silverlight builds on this history and application navigation trends to nicely support the back/forward and URI navigation
 paradigm. Silverlight pages can be uniquely addressed via URIs (including parameters for deep links directly into specific
 bits of data) using hashtags as pioneered by Ajax. The navigation API even includes support for caching and for customizing
 the navigation UI.

 Setting up a project to use the navigation API can be tricky, so the Silverlight tools include a Navigation Application template
 that includes all the plumbing necessary to get you well on your way to building the application. The template even includes
 excellent support for skinning and theming.

 Dialogs, of course, are still useful in discrete scenarios. Silverlight provides support for custom dialogs using the ChildWindow and Popup classes, as well as access to system-level file dialogs for opening and saving files.

 Navigation is but one of many important pieces when structuring an application. In the next chapter, we’ll tackle one of the
 most important architectural patterns for Silverlight developers: the Model-View-ViewModel pattern.

Chapter 16. Structuring and testing with the MVVM/ViewModel pattern

 This chapter covers

 	The ViewModel or MVVM pattern

 	Creating services for use with MVVM

 	Using commands and the CallMethodAction behavior

 	Testing using the Silverlight Unit Testing Framework

When the community stops worrying about how to do basic things in a particular technology and starts working out how to do
 complex things well, you know the technology has reached a point of maturity. The emergence of architectural patterns and
 testing capabilities for a platform are a good indicator that the technology is ready for real-world use in nontrivial applications.

 One of the main patterns to be applied to Silverlight is the Model-View-ViewModel (MVVM) pattern, also known as the ViewModel pattern.

	

Note

 MVVM or ViewModel Pattern? Different groups like to call it different things. I’ll use both interchangeably until the community
 settles on one over the other. There are some influential folks on both sides of this debate.

 	

As part of my job at Microsoft and my life as an MVP before that, I give a fair number of presentations, almost all of which
 include code demos. For timing and retention reasons, I’ll often implement the code directly in the code-behind. At least
 75 percent of audience members don’t know anything about patterns such as MVVM, and the few times I’ve tried to include bits
 of that pattern in my demos, the audience was lost and completely missed the main thing I was teaching. So, I’ve taken to
 explaining MVVM at a high level before the talk and apologizing for not using it in the demo. Basically, I say “I’m doing
 this just to show X. Never write real code this way.”

 It sounds amusing, but in a way, it’s a bit depressing. Many folks aren’t exposed to the pattern, but many more are exposed
 and pass on it because they’re presented the full pattern without any background or helpful ladder rungs to get to the full
 implementation. That’s a real problem. In math class, I was always told to show my work, and I think the same applies here.

 Rather than describe the pattern and take it chunk by chunk in this chapter, we’ll look at the default technique—using the
 code-behind approach in order to get a baseline—and then start with an overview of MVVM and a simple implementation of the
 pattern. Next, you’ll refactor it to take advantage of other best practices typically associated with the pattern such as
 using services, commands, and behaviors. I’ll even throw in a bit of information on using interfaces, view model locators,
 and Inversion of Control. Finally, we’ll follow that up with some testing approaches.

 My point in this chapter isn’t to provide one official implementation of the MVVM pattern or tell you how you need to build
 your applications. Instead, I’m providing you with the groundwork so you can see how the spectrum of implementations of MVVM/ViewModel
 fits into your application development and make informed choices about how to use (or not use) the pattern in your next project.

 In addition, I’m not going to use a particular MVVM toolkit in this chapter. Those toolkits are great, but much like that
 expensive calculator in math class, they do a lot of the work for you, so you don’t learn much.

 In the end, you’ll have a spectrum of implementations to choose from, any of which may be used on your projects as your own
 requirements dictate. You’ll also gain a better understanding of what each additional bit of complexity provides you in return.

 16.1. Project setup and traditional code-behind approach

 You may wonder why I’d start a chapter on MVVM with a bunch of code-behind code. To understand where you can go, you need
 to start with where you are. The code-behind approach is by far the way most applications on the Microsoft stack are built
 these days. Acceptance of patterns such as MVVM and MVC is changing that, but slowly.

 Starting with the code-behind approach will serve two purposes. First, it’ll give us a working application baseline for refactoring.
 Second, it’ll allow us to easily compare the approaches as we move through the chapter.

 In this section, you’ll create a project that’ll serve you for the rest of the chapter. It’ll be a Silverlight navigation
 application, much like the one covered in chapter 15. You’ll then take that project and add in some service calls to get data from a SQL Server database, using WCF as the intermediary.
 Finally, you’ll add a list form and a pop-up details form to round out the project.

 16.1.1. Project and service setup

 This solution will be based on the Silverlight Navigation Application template covered in chapter 15. Create a new solution named MvvmApplication using that template. Figure 16.1 shows the New Project dialog with the appropriate selections. When prompted, be sure to host the application in a new web
 site (the default setting).

 Figure 16.1. For this solution, you’ll use the Navigation Application template introduced in chapter 15.

 [image:]

 After you have the overall solution structure in place, follow the instructions in appendix A to set up the database connection
 and entity data model. When complete, you should have a solution with an untouched Silverlight Navigation Application template–based
 client and a web project with access to the AdventureWorks database via the entity data model.

 The next step is to set up a web service to allow the Silverlight client to access that data.

 Web Services

 Silverlight applications run on the client and can talk to server-side databases only via a service of some sort. You can
 choose multiple types of services. For example, you could go with a REST-based solution (chapter 14) or something using WCF RIA Services (chapter 17). For this, you’ll use a regular Silverlight-enabled WCF service: a SOAP web service built using WCF. Create a folder named
 Services in the web project, and add into it a new Silverlight Enabled WCF Service named EmployeeService.svc. Listing 16.1 shows the code for that service.

 Listing 16.1. WCF service to expose data to the Silverlight application

 [image:]

 The service is a basic Silverlight-enabled web service. It uses the entity data model to return the list of all employees
 in the database. You could also use a LINQ expression to be more selective about the list, narrow down the number of columns
 returned (which would also require a new return type), or sort the data. The function could also return an IQueryable<Employee> to enable better client-side LINQ integration.

 When the service has been created, add a web reference from the Silverlight application to the newly created service. Be sure
 to do a build first, or the service reference will typically fail. Name the service reference namespace Services. Be sure
 to refer to chapter 14 as needed for more information on services and service references.

 Employee List View

 Next, in the Views folder, add a new view (Silverlight Page) named EmployeeList.xaml. For information on adding pages to Silverlight navigation applications, please see chapter 15. The EmployeeList.xaml markup should look like listing 16.2. (Note: Drag the DataGrid onto the design surface from the toolbox in order to get all the references and namespaces automatically set up.)

 Listing 16.2. EmployeeList.xaml markup

 <Grid x:Name="LayoutRoot">
 <sdk:DataGrid AutoGenerateColumns="True"
 Margin="12,55,119,12"
 x:Name="EmployeesGrid" />
 <Button Content="More Vacation!"
 Height="23" Width="101" Margin="0,55,12,0"
 HorizontalAlignment="Right" VerticalAlignment="Top"
 x:Name="AddMoreVacation" />
 <Button Content="Edit"
 Height="23" Width="101" Margin="0,110,12,0"
 HorizontalAlignment="Right" VerticalAlignment="Top"
 x:Name="EditEmployee" />

 <Grid x:Name="LoadingProgress"
 Background="#CCFFFFFF"
 Visibility="Collapsed">
 <ProgressBar Height="25" Width="200"
 IsIndeterminate="True" />
 </Grid>
</Grid>

 Listing 16.2 includes a DataGrid that contains all the employees, as well as two buttons for manipulating the data. Finally, a semitransparent white overlay
 named LoadingProgress is displayed when the data is being fetched.

 Next, add the new employee list page to the navigation menu. The process to do this was covered in chapter 15; but for reference, you’ll need to add a new hyperlink button and divider to the LinksStackPanel in MainPage.xaml:

 <HyperlinkButton x:Name="EmployeeListLink"
 Style="{StaticResource LinkStyle}"
 NavigateUri="/EmployeeList" TargetName="ContentFrame"
 Content="employees" />

<Rectangle Style="{StaticResource DividerStyle}" />

 After the employee list view is set up, you’ll add an employee detail view.

 Employee Detail View

 In the Views folder, add a new ChildWindow named EmployeeDetail.xaml. This will be a pop-up window used to edit a subset of the fields of the Employee object. This window, in the designer, looks like figure 16.2.

 Figure 16.2. Designer view of the ChildWindow used to edit employee details

 [image:]

 After the button definitions in the EmployeeDetail ChildWindow XAML, add the XAML from listing 16.3.

 Listing 16.3. Employee detail ChildWindow controls additional XAML

 [image:]

 [image:]

 You’ll use this project for the remainder of the chapter. You may change a few binding statements later, but for the most
 part, the XAML will stay the same.

 With the UI in place, it’s time to turn our attention to the code. As promised, we’ll first look at a typical code-behind
 approach.

 16.1.2. A typical code-behind solution

 The first stop along the way to structuring your applications with the ViewModel pattern is to look at what, for most applications
 of any complexity, can be considered an antipattern: the heavy code-behind approach. Unfortunately, the tooling and information
 all help you fall into writing code this way. That’s because it’s easy for beginners to grasp, and it’s perfectly acceptable
 for smaller applications.

 So far, you have XAML for two views and a service you can use to populate them. The next step is to put in some code to call
 the service and populate the DataGrid. Listing 16.4 shows the code-behind for the Employee List page.

 Listing 16.4. Employee list code-behind

 [image:]

 Listing 16.4 includes enough code to load the DataGrid. When the page is navigated to, you first check to see whether the DataGrid already has data [image:]. If it doesn’t, you show the LoadingProgress overlay [image:] and then call the service, loading the result into the DataGrid [image:]. This check is done because the pages are cached (per the setting in the constructor), and you’d rather not make extra service
 calls. When you run the application, it should look like figure 16.3.

 Figure 16.3. The Employee List page shown with an item selected in the grid. Note that the scrollbar is scrolled to the right to get past
 the columns you don’t need.

 [image:]

 As you can see by the grid results, you haven’t done anything to reduce the number of columns showing up nor to display the
 values from the nested class. This could be easily accomplished by manually defining columns in the DataGrid or by using a specialized purpose-built class as the return value from the service. Although you’ll fix that when we talk
 about MVVM, it’s not a deficiency with the code-behind pattern itself.

 Next, you need to add the code-behind for the Employee Detail window and then come back to this list page to fill out the
 rest of the code.

 The Employee Detail ChildWindow needs code to take in an Employee object and bind the UI. Listing 16.5 shows this code.

 Listing 16.5. Employee detail code-behind for ChildWindow

 [image:]

 Listing 16.5 shows the additions to the ChildWindow code-behind. Specifically, the additions are the Employee member variable and property, and the setting of the DataContext [image:] when the employee property is set. This last bit, the setting of the DataContext, allows the binding system to use the _employee object as the base for all binding statements in XAML.

 One issue you’ll see in the code-behind is that you don’t clone the Employee or something to allow for undo/cancel. That’s certainly doable in this instance, but I’ve left it out for this example. As
 was the case with the column definitions in the list view, this isn’t a limitation of the code-behind approach itself.

 With the ChildWindow code in place, we’ll turn our attention to the last two bits of code: the functionality of the two buttons on the main Employee
 List view. Listing 16.6 shows this code.

 Listing 16.6. Employee list code-behind for functions

 [image:]

 Note that in listing 16.6, you go back and modify the EmployeeList constructor to add the two event handlers. This could be done in XAML, but we’ll look at alternatives to event handlers when
 we discuss the MVVM version of this code.

 The code in this listing enables the pop-up EmployeeDetail ChildWindow as well as a simple function to add 10 vacation hours to the selected employee. Run the application, select a row in the
 grid, and click the Edit button. You should see a pop-up that looks like figure 16.4.

 Figure 16.4. The employee detail pop-up view, showing the information from the selected employee

 [image:]

 That’s it for the code-behind version of the application. For space reasons, and because it doesn’t change your approach,
 I’ve left out deleting and saving changes. For a solid way to handle those, look at WCF RIA Services in the next chapter.

 The main things I needed to demonstrate here are filling a list from a service call and passing information from one view
 to another. Now that the basic application is set up and covers both of these scenarios, we’ll look at an MVVM version.

 16.2. Model-View-ViewModel basics

 Originally conceived for WPF around 2005, and first presented in a blog posting by John Gossman,[1] the MVVM pattern has become the most popular architectural pattern for Silverlight and WPF applications.

 1 John Gossman, Introduction to the Model/View/ViewModel pattern for building WPF apps, http://blogs.msdn.com/johngossman/archive/2005/10/08/478683.aspx (October 8, 2005).

 The MVVM pattern is a specialization of the PresentationModel pattern by Martin Fowler. Whereas Fowler’s pattern was platform
 independent, Grossman’s specialization was created to take advantage of the capabilities of WPF and Silverlight. Otherwise,
 they’re conceptually identical.

 If you’re familiar with the Model View Controller (MVC) pattern, you’ll find similarities. But the MVVM pattern is optimized
 more for modern UI models whereas the UI markup is completely separated from the logic, using messages and binding to pass
 information back and forth, assuming the UI and ViewModel can both be stateful.

 By default, you build applications with a good bit of your code in the code-behind, just as you saw in the previous section.
 You may use external services or entities and even reusable logic, but at the end of the day, the vast majority of programs
 still end up with critical logic buried in the code-behind.

 A typical code-behind approach looks like figure 16.5.

 Figure 16.5. In the usual code-behind approach, a fair bit of logic is tightly coupled to the UI and to other layers. Services in this
 case mean both web services and logical services (utility functions, reusable business logic, and so on).

 [image:]

 This comes in degrees, of course. Some code-behind applications are better architected than others. You’ll find, though, that
 those that are architected well tend to have less logic in the code-behind. Instead, they have UI support code, or maybe binding
 wire-up. Critical calculations and similar functionality take place outside of the code-behind.

 Why is that important? Why take the extra step to move this code out from the code-behind?

 Testing is certainly one reason. After you decouple the logic from the user interface, you’re then able to test the logic.
 Ease of UI design is another. With a well-architected application with a strong separation of concerns between the logic and
 the UI, a designer can create the user interface and drop it into the project. As a developer, you can even provide the designer
 with mock interfaces or dummy classes to use to design against, as long as those classes adhere to the same interface or contract
 as your own support classes.

 One reason I think the MVVM pattern works well for developers is because it eliminates many of the binding problems you run
 into when coding in code-behind. Often, developers find they have to work some convoluted code to get the XAML to bind to
 a DependencyProperty defined in the code-behind, messing with overriding DataContext at different layers or otherwise making a horrible mess of the code and XAML. It happens to the best of us. It’s a pit that
 you can easily fall into this when you don’t follow a pattern such as MVVM.

 What does a MVVM application look like in contrast to a code-behind application? Figure 16.6 shows the architecture of a basic MVVM implementation.

 Figure 16.6. In the MVVM pattern, the View contains minimal code-behind and uses binding and messages (actions or commands) to communicate
 with the ViewModel. The ViewModel provides a single façade into the rest of the system, optimized for that specific view.
 Keep in mind that services doesn’t always mean web services; they’re anything that provide a service to the application.

 [image:]

 As figure 16.6 shows, when using the MVVM pattern, the application is made up of three main parts: the Model, the View, and the ViewModel.
 Table 16.1 describes their function.

 Table 16.1. The three main parts of the MVVM pattern

 	
 Part

 	
 Description

	Model
 	The model of the business or the model of the data, sometimes also called the model of the application. This can contain entities
 and services (web services, business services, logic services, and so on), data access, and more.

	View
 	The XAML file and its code-behind. Its sole responsibility is interaction with the user. The only code here should be code
 that’s logically part of the View itself (managing interactions between view elements or animations, for example).
 The View typically has enough knowledge of the structure of the ViewModel to bind to it but knows nothing of the rest of the
 system.

	ViewModel
 	The interface between the View and the Model. This is part entity, part façade, and part controller, but it contains minimal
 logic of its own. Use binding to let the View pull/push data, and commands or behaviors (messages) to call methods.
 The ViewModel has no knowledge of the structure of the view.[a]

 a One of the tech reviewers suggested I put this in a blink tag or marquee or something to make sure the point is driven home.
 The ViewModel has no knowledge of the view. Perhaps if you break the rule, you should have to put a big red label on the code:
 “Warning! Lark’s Vomit!” (thank you, Mr Cleese).

 Taken to logical ends, the structure of an MVVM application would include interfaces at all the key points, allowing you to
 easily swap out individual layers or objects for equivalents either manually or via dependency injection. We’ll investigate
 those scenarios later in this chapter.

 In this section, you’ll take your code-behind solution from the first section and refactor it into a basic MVVM application.
 You’ll pull the code-behind apart, put much of the functionality into a ViewModel class, and ready it for additional refactoring
 and application of patterns later in this chapter.

 16.2.1. Keep it simple: a basic ViewModel implementation

 So far, you have a simple and tight code-behind application running. It’s small. In fact, it’s small enough that showing you
 the MVVM version will make you wonder why you’re adding so much code. Like many examples, we have to start small both to get the concepts across and to fit in a publication
 like this. (I’m pretty sure bookshelves everywhere would protest if this book hit 1,000 pages.)

 That said, if you stick with me throughout this section, I think you’ll see how the structure set up by the MVVM pattern makes
 it possible to add functionality to the application without shoehorning it into some dank corner of code.

 In this section, you’ll make basic changes to factor some of the code out of the code-behind and into a ViewModel. Although
 this isn’t a “full” ViewModel/MVVM implementation, it provides many of the benefits and is a good, understandable place to
 start. Most of my early experiments with the pattern looked much like what we’ll cover in this section.

	

 Who owns the ViewModel?

 Sure, let’s jump right into controversy on your very first foray into this pattern!

 I’m writing this book, so I could put my opinion forth as the definitive approach, but I’d rather not have coders with pitchforks
 and burning torches marching down my driveway in a few months. Instead, let’s look at the three main opinions in this space.

 The code owns the ViewModel.

 In this case, the code-behind for the view instantiates the ViewModel in a constructor or loaded event, setting it as the
 DataContext for the view. This is convenient and provides a clean way to create the ViewModel. But it doesn’t allow the View to be reused
 in situations where the ViewModel may be provided externally, as is the case in a Detail edit View.

 The markup owns the ViewModel.

 This is, in a real sense, the same as the first option. From an implementation standpoint, though, it looks very different.
 In this case, the ViewModel is instantiated right in the markup either as a static resource or directly in the <navigation:Page.DataContext> property. From a coupling standpoint, there’s no difference. What you usually gain is the ability to have even less code
 in the code-behind.

 Both of these approaches involve the View owning the ViewModel. They’re simple to implement and are often appropriate for
 early forays into the ViewModel pattern. You may even find that they work well for the majority (or all) of the applications
 you create. But one more approach is worth investigating.

 The ViewModel is provided externally.

 Most MVVM toolkits of merit provide some sort of functionality for locating the appropriate ViewModel for a View. In some
 cases, the ViewModels are created in a separate holding class that provides the ViewModel when requested. This provides significant
 flexibility in terms of sourcing the ViewModel.

 Note also that dependency injection can come into play here. An Inversion of Control (IoC) container can provide the ViewModel
 to the views based on types, convention, or configuration. Some MVVM toolkits use IoCs or IoC-like functionality to supply
 the ViewModel.

 In this case, the ViewModel isn’t owned by the View; it’s used by the View. As you progress further in your understanding
 of MVVM, I encourage you to investigate this approach.

 	

The first step in working with the pattern is to create a short base class from which all ViewModel classes will derive.

 Base ViewModel

 The base ViewModel class provides the common INotifyPropertyChanged implementation. As you may recall from chapter 11 on binding, INotifyPropertyChanged is required whenever other classes may be bound to your class, except when using dependency properties—which don’t really
 belong in a ViewModel.

 In a larger implementation, the base ViewModel class may contain other useful functionality or may be factored into several classes to support specialized types of View-Model
 implementations. Regardless, this is the class you’ll use as the base class for the other ViewModels created in this project,
 starting with the list page ViewModel.

 In the Silverlight project, add a new folder named ViewModels. In the ViewModels folder, add a class named ViewModel. Listing 16.7 shows the code that makes up this class.

 Listing 16.7. The base ViewModel class

 [image:]

 In my own implementations, I often have a base class named Observable that includes the functionality shown in this ViewModel class. I then derive a ViewModel base class from Observable. This enables me to support INotifyPropertyChanged with entities and other non-ViewModel classes and still have a base ViewModel that can be used for other shared functionality.

 List Page ViewModel

 Typically, each view in the ViewModel pattern has its own dedicated ViewModel. This isn’t written in stone, but it’s how most
 applications end up being designed. A 1:1 relationship between View and ViewModel eliminates the need to shoehorn in the inevitable
 compromises, because Views that share the ViewModels diverge in functionality when many Views share the same ViewModel. It’s
 also acceptable, when using smaller ViewModels or nested UserControls, to have a 1:n relationship between the View and the ViewModel. The situation to avoid in most cases is n:1 between View and ViewModel.

	

Tip

 When naming your ViewModel, pick a consistent convention. I typically name mine with the view name plus ViewModel, so the EmployeeList view has an EmployeeListViewModel class. Some MVVM toolkits expect you to follow a convention so their locator services can find the correct View-Model for
 a View.

 	

In the ViewModels folder, create a new class named EmployeeListViewModel. This ViewModel will include the functionality required for the EmployeeList page, including calling the web service and providing the functionality currently located in the button click code.

 Listing 16.8 includes the code for the EmployeeListViewModel implementation.

 Listing 16.8. EmployeeListViewModel implementation

 [image:]

 In this listing, you have the full implementation of a basic ViewModel class. This includes all the functionality required
 to load the list of employees and make it available to the DataGrid on the view.

 The Employees property contains the collection with all the employees returned from the service call. This is used to populate the DataGrid but, because it’s available here, it could also be manipulated in ViewModel code to sort, filter, or perform other operations.

 The SelectedEmployee property is used to keep track of which employee is selected in the grid. Exposing it in your ViewModel keeps the responsibility
 for maintaining this information away from the UI control. This makes it easier to use different types of controls in the
 UI. In addition, you can manipulate this property from within the ViewModel (for example, to highlight something based on
 a search or hotkey), and the UI will automatically respond.

 Updated List View XAML

 The following code includes the updates to the view to bind the DataGrid to the Employees collection and the SelectedEmployee property:

 <sdk:DataGrid AutoGenerateColumns="True"
 ItemsSource="{Binding Employees}"
 SelectedItem="{Binding SelectedEmployee, Mode=TwoWay}"
 Margin="12,55,119,12"
 x:Name="EmployeesGrid" />

 The updates to the DataGrid element involved first setting the ItemsSource to the Employees collection on the ViewModel and then binding the SelectedItem to the SelectedEmployee property of the ViewModel. Note that the binding on SelectedEmployee is TwoWay, so both the DataGrid and code may update this value.

 Updated List View Code-Behind

 With the addition of the ViewModel and the changes to the XAML, you need to make some changes to the code-behind for the EmployeeList page. Listing 16.19 includes the new code-behind with those changes included.

 Listing 16.9. EmployeeList view code-behind

 [image:]

 [image:]

 The OnNavigatedTo function [image:] now includes code to create the ViewModel [image:] if it’s not already present, and to call the LoadEmployees method [image:] on the ViewModel. In addition, the event handler for the Add More Vacation! button now calls directly into the ViewModel
 to execute the code [image:].

 Now you have the same functionality as the code-behind solution, but with quite a bit more code. In fact, you have just as
 much code-behind as you did in the code-behind-only solution! Keep in mind, this is just the first layer of the onion, so
 you haven’t received all the benefits of MVVM yet. What you have gained is subtle:

 	The DataGrid is now divorced from the code-behind, using solely binding to get its items and synchronize the selected item. A designer
 could now change the DataGrid to be a ListBox or some other type of control if desired, and the code wouldn’t need to change.

 	The data access (service call) is now removed from the page, giving you the potential to substitute a different type of service
 call without making any changes to the page code. You’ll find an even better spot for it later in this chapter.

 	The business logic to add the vacation bonus to the selected employee is now pulled out of the page. Like the service call,
 you can do better, and you will later in this chapter.

 	The code-behind is no longer manipulating the Employee type directly. This makes it easier to replace the Employee type later, should you want to do so.

At this point, you have a ViewModel that’s essentially the code-behind for the View. You’ve taken your first steps into the
 MVVM pattern and away from packing all your code in the code-behind. To build on this, it’d be nice if you could refactor
 to take advantage of some best practices associated with the ViewModel pattern and with coding in general. In the next section,
 we’ll dive deeper into the pattern and show how to factor out common code such as service access and business rules.

 16.3. Factoring out reusable code

 The Single Responsibility Principle (SRP) states (surprisingly enough) that every object should have a single responsibility,[2] and that every object should have one and only one reason to change. I don’t try to adhere to this as though it were dogma
 but rather make informed decisions based on this principle representing the perfect state.

 2 Robert C. Martin, Principles of OOD, http://www.butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod (May 11, 2005).

 SRP can sometimes be difficult to apply to something as façade-like as a ViewModel class, but it’s obvious we didn’t even
 try here. The ViewModel class for the list page is responsible for tracking page state, calling the web service to load data,
 and applying a vacation bonus to selected employees. If the vacation bonus changes, this class must also change. If the service
 access changes, this class must change. You need to do something about that.

 In this section, you’ll do a little refactoring to make the ViewModel class a bit lighter and allow reuse of code, starting
 with the business logic to add the vacation bonus.

 16.3.1. Business rules and logic

 The easiest thing to pull out of the EmployeeListViewModel is the code that adds the vacation bonus. You can deal with this several ways—I prefer using a service approach. That is,
 rather than bake the bonus into a special employee class, you have a service you can call that deals with bonuses using a
 simple function call. This is distinct from the idea of a web service.

 Create a new folder named Services in the Silverlight client. In that folder, add a class named EmployeeVacationBonusService. Listing 16.10 shows the code for this class.

 Listing 16.10. The EmployeeVacationBonusService class

 [image:]

 The vacation bonus algorithm has been beefed up. Rather than a blanket 10 hours, you use some of the data to reward those
 with the longest time at the company. You also implement the functionality using static methods here. Some developers prefer
 to use instance methods. Either way is fine as long as you understand why you’re doing it and what flexibility you lose when
 going with static methods (such as the ability to mock), and you have some consistency to your decisions.

 There are also multiple ways you can model this class. For example, it could modify the class directly as shown here or it
 could return a bonus amount based on a set of parameters such as current vacation hours, date of hire, some sort of level information, and so on. Taking in individual parameters
 like that, rather than passing in an Employee object, helps reinforce the SRP and decouple from the rest of the system because the class no longer needs to be changed
 if the Employee class changes.

 Listing 16.11 shows the final version of this service, taking individual parameters rather than the Employee object.

 Listing 16.11. A better version of the EmployeeVacationBonusService class

 public class EmployeeVacationBonusService
{
 public static int GetVacationBonus(DateTime dateOfHire)
 {
 int vacationBonus;

 DateTime today = DateTime.Today;

 int yearsInService = today.Year - dateOfHire.Year;

 if (dateOfHire.AddYears(yearsInService) > today)
 yearsInService--;

 if (yearsInService < 5)
 vacationBonus = 10;
 else if (yearsInService < 10)
 vacationBonus = 20;
 else if (yearsInService < 20)
 vacationBonus = 30;
 else
 vacationBonus = 40;

 return vacationBonus;
 }
}

 In this version, it’s the responsibility of the calling code to add the bonus to whatever employee class it happens to be
 working with. That removes the dependency from this class and makes it reusable in places where you may have different employee
 entities or perhaps just a few key fields.

 With that change made, the EmployeeListViewModel code to add the employee vacation bonus now looks like this:

 public void AddVacationBonusToSelectedEmployee()
{
 if (SelectedEmployee != null)
 {
 SelectedEmployee.VacationHours +=
 (short)EmployeeVacationBonusService.GetVacationBonus(
 SelectedEmployee.HireDate);
 }
}

 The EmployeeListViewModel class is no longer responsible for calculating the vacation bonus. That’s one extra responsibility down. Now, let’s look
 at that web service logic.

 16.3.2. Data access and service calls

 In Silverlight, it’s a given that data will come from a web service. Or will it? Who says the data can’t come from reading
 a local file in elevated trust mode, or from isolated storage? Perhaps with the new Elevated Trust mode, one of the pure-.NET
 SQL databases will be an option. Plus, for all you know, a future version of Silverlight may have local database access built
 in.

 If every ViewModel class in the project is making a web service call to get the data, that means you have to change each and
 every one of them if anything about the service call changes—obviously, not great design. In a small project like this, it’s
 not a huge problem; but when you get into an application with dozens of pages and View-Models, it gets pretty ugly.

 I’ve seen lots of great examples of how to abstract service or data access calls away from the rest of the application. Some
 use singleton classes with names like ApplicationData to host a number of collections and load functions, with built-in caching. Others use individual classes, each responsible
 for a specific type of data. Others use combinations of the two ideas, but with no singleton involved so dependency injection
 works better. I’m not going to weigh in on the merits of the various approaches; I don’t think there’s a one-size-fits-all
 solution. Instead, you’ll create a simple example to solve just the problem at hand. The version I’m showing doesn’t support
 cross-view data caching, because you’d need to keep an instance of the data service alive in a locator class or an IoC container.

 In the Services folder, add a new class named EmployeeDataService. The code for this class is shown in listing 16.12

 Listing 16.12. The EmployeeDataService class used for loading Employee data

 [image:]

 [image:]

 The sole purpose of this class is to provide an interface to the employee data. In this case, that’s performed using a service
 call. In a larger system with more moving parts, you may want to factor this class into two pieces: one that provides connection
 information for the web service and this class, which makes the service call. You may also consider caching this class on
 the client (via a locator or similar collection of classes) so the data can be shared across multiple ViewModels. The AreEmployeesLoaded property has been defined with that in mind.

 Listing 16.13 shows the changes needed in the EmployeeListViewModel class to support the user of the new EmployeeDataService class.

 Listing 16.13. Updates to the EmployeeListViewModel class

 [image:]

 With this example, you now have a ViewModel class that’s responsible only for passing through information and functionality
 specific to the related View. This makes the code more easily reused, as well as more easily testable. You still have a fair
 bit of code in the code-behind, though, including some event handlers that could be handled differently. In the next section,
 you’ll work to remove this extra layer and provide better View-to-ViewModel communication without so much event-handler code.

 16.4. Better separation from the UI

 “Good fences make good neighbors.” As it turns out, good fences (or perhaps, good chasms)—strong separation between otherwise
 independent classes—make for better code. You’ve already seen how pulling code out of the code-behind and into the View-Model,
 and then out of the ViewModel and into services, has made the code less brittle and more reusable. At the end of this chapter,
 you’ll also see that it has made the code more testable.

 One of a few places where you’re still tightly coupled is via the use of events and event handlers to intercept clicks from
 the UI and call functions on the ViewModel. This isn’t horrible; it just limits the things that can listen for and respond
 to the UI actions, and it makes testing a little harder because there’s code in the code-behind that must be duplicated in
 the test.

 In this section, we’ll look at two ways you can have elements in XAML invoke methods in the ViewModel. The first approach,
 ICommand, is the traditional way initially introduced in WPF and supported in most MVVM toolkits. The second, the CallMethodAction behavior, is a new approach introduced with Expression Blend 4.

 Structured method invocation isn’t the only way to separate the UI from the rest of the system. Some slightly more insidious
 couplings have made it through right under our noses; we’ll need to address them. The first is the use of entities coming
 from your database model. You can do this if you really want, but for a number of reasons to be explained, I don’t like to.
 The second coupling is through the use of concrete types referenced from your various classes. In section 16.4.4, we’ll take a conceptual look at what’s involved in reducing this coupling.

 16.4.1. Using commands

 The commanding system in WPF and Silverlight isn’t tied directly to the ViewModel pattern. Instead, it’s a generic approach
 to wiring functionality directly to buttons in XAML UI. In the commanding system, rather than respond to something in a button
 click event, you bind the command to the button and allow the button to execute it directly.

 In WPF, this approach was first used for application-wide commands and to allow menu options, keystrokes, and toolbars to
 all execute the same functionality and keep their UI state in sync.

 When the MVVM pattern was introduced, the commanding system was incorporated into it to wire the XAML UI to the ViewModel
 class. But because the ViewModel held the functionality, different types of commands were created to allow forwarding or relaying the call to the ViewModel.

 The ICommand interface is the core of the commanding system in Silverlight. The button-derived controls (and menus) that support binding
 to commands do so through the ICommand interface. Similarly, the custom commands created for the MVVM pattern also implement this interface. Table 16.2 shows the three members of ICommand.

 Table 16.2. The ICommand interface members

 	
 Member

 	
 Description

	CanExecute
 	Property that returns true if this command is allowed to execute. For example, if the command is an undo command, this returns
 false if the undo stack is empty.

	Execute
 	Method that executes the function the command represents.

	CanExecuteChanged
 	Event raised when the value of CanExecute changes. This is typically used to update UI state to show the action is now available.

A commonly used implementation of ICommand for the MVVM pattern is a command that accepts delegates for both the Execute and CanExecute members. This allows you to reuse the same command implementation rather than create unique commands for every logical command.

 In the Silverlight project, in the ViewModels folder, add a new class named View-ModelCommand. The code for the generic command is shown in listing 16.14.

 Listing 16.14. Silverlight MVVM-friendly implementation of ICommand

 [image:]

 This command implementation takes in delegates [image:] for CanExecute and Execute and exposes a public method OnCanExecuteChanged [image:] to force raising the CanExecuteChanged event. In the ViewModel, any code that affects the CanExecute function should call this method to raise the event.

 There are lots of implementations of this type of command. If you pick an MVVM toolkit to work with, you’re almost guaranteed
 to have a command similar to this one included in the library. It may be called something similar to DelegateCommand or RelayCommand.

 To surface the command to the page, hang it off the ViewModel as a public property. Listing 16.15 shows how to do this for the vacation bonus functionality on the EmployeeListViewModel class.

 Listing 16.15. Surfacing the vacation bonus functionality as an ICommand

 [image:]

 These changes to the ViewModel show both the call to OnCanExecuteChanged [image:] and the exposing of the AddVacationBonusCommand. This command is created as needed [image:] the first time it’s referenced. I’ve also seen implementations where these commands were created as static members in the
 class.

 The command is then wired up to the UI directly in the XAML. Because the View-Model has already been set as the data context,
 a simple binding statement on the button is all you need:

 <Button Height="23" Width="101" Margin="0,55,12,0"
 HorizontalAlignment="Right" VerticalAlignment="Top"
 Content="More Vacation!"
 x:Name="AddMoreVacation"
 Command="{Binding AddVacationBonusCommand}" />

 The last line of XAML is the new line, binding the Command property to the new command you added to the ViewModel. Don’t forget to remove the event handler wireup from the code-behind.
 This button no longer needs that.

 You’ll notice now that the More Vacation! button is disabled by default and enabled only when you select a row in the DataGrid. That’s a function of the CanExecute property and the CanExecuteChanged event working together and being updated from within the SelectedEmployee property setter. The Button class has built-in code to change its enabled state based on the command’s CanExecute property.

	

 Wait, what about the Edit button?

 Most MVVM toolkits include their own good command implementations based on ICommand. Some MVVM toolkits also include a robust messaging structure that may be used in place of events, and in some cases in place
 of commands and behaviors. Many even include specialized messages used to requesting that the View display the dialog UI.
 That messaging system for invoking a dialog is something missing in this implementation. Rather than show you an approach
 that will likely never be used by anyone, I recommend you use the approach recommended by the toolkit you’re using.

 Okay, if you’re really curious, here’s how I would’ve done it. The command would call an EditSelectedEmployee method on the ViewModel. That method would check to see whether SelectedEmployee was null. If not, it would raise an event named ShowEmployeeEditDialog with a custom EventArgs class that included the selected employee as a property. That event would be caught in the code-behind, and the code-behind
 would show the dialog.

 Why not do that all from the ViewModel? The ViewModel shouldn’t be in the business of showing dialogs or message boxes of
 any type. Instead, it should message the UI layer saying it needs some UI to be displayed. In this way, not only is the ViewModel
 potentially agnostic of Silverlight/WPF/other technology, it remains testable because the event handler in the test code could
 directly manipulate the values rather than show the dialog. This also allows the code-behind to keep its affinity with the
 View, being presentation-layer code rather than other logic.

 	

Commands are the traditional and still most common way of performing this functionality. They have deep support in WPF and
 decent support in Silverlight. A new approach to accomplishing this has recently been introduced by the Expression Blend team.
 This approach eschews commands and instead uses designer-friendly behaviors.

 16.4.2. Using the CallMethodAction behavior

 Introduced with Expression Blend 4, the CallMethodAction behavior provides an easy and designer-friendly way to wire any event from any control to a method. In some ways, it’s an
 alternative to using ICommand and may even seem redundant. But many applications will use both approaches due to the usefulness of ICommand with buttons and menus and CallMethodAction’s support for other controls, and events other than Click.

 You can either install Expression Blend 4 or download the Blend 4 SDK. In either case, add a project reference to the Blend
 SDK assembly from your main MvvmApplication project. The main assembly you want is Microsoft.Expression.Interactions.dll.
 You’ll also need System.Windows.Interactivity.dll to support that.

 The behavior approach doesn’t give you everything the command approach does—specifically, it lacks the ability to enable or
 disable the button—but it provides support for controls other than buttons—a key limitation of the command approach.

 Listing 16.16 shows how to use the CallMethodAction behavior to create the link between the More Vacation! button and the ViewModel method that implements that behavior.

 Listing 16.16. Using the CallMethodAction behavior instead of the command

 [image:]

 The EventTrigger [image:] responds to the firing of the click event. The action taken is the CallMethodAction, which is responsible for calling the method on the current object in the data context: in this case, the ViewModel. It’s
 a simple and elegant solution that works with just about any event and any parameterless function.

 In support of this, the following two namespaces were added to the top of the XAML file:

 xmlns:i="http://schemas.microsoft.com/expression/2010/interactivity"
xmlns:ei="http://schemas.microsoft.com/expression/2010/interactions"

 Those namespaces are required for the EventTrigger and CallMethodAction to be visible to XAML. Both are implemented inside the Blend SDK DLL you added as a reference.

 Despite the limitations (a potential performance hit due to use of reflection, and the inability to set the IsEnabled property automatically), the CallMethodAction behavior is a good low-code-overhead approach to wiring up method calls. And remember, unlike ICommand, the CallMethodAction is supported on just about any event on any control.

 Commands and behaviors are a great way to help separate the View from the View-Model, keeping the contract at just a binding
 statement or name of a method. But they’ve done nothing to fix the tight coupling problem you have between the database, the
 ViewModel, and the UI. For that, you’ll turn to creating View-specific entities or ViewModels.

 16.4.3. View-specific entities and ViewModels

 So far, you’ve been passing the data entities straight through to the user interface. Although this is common, it’s often
 not a great idea; you’ve introduced coupling from your UI all the way back to the database. A change to the database entity
 now means changes throughout the application. Take, for example, the columns you see in the grid. There’s a fair bit of information
 that’s not helpful at the UI level but that’s required to maintain data integrity. One way to handle that would be to ignore
 it at the UI layer by defining columns directly in the DataGrid. Another way would be to have the web service return a purpose-built entity with only the columns you want.

 Neither of those solutions is helpful from a reuse standpoint. In many systems, different screens show different aspects of
 what could be the same entity. Others, such as this example, have to compose two data entities into a single displayable result.
 Working with entities shaped like that can be a pain. Returning only a subset of the information back from the web service
 may help, but only if no other information is required for a successful update and no other areas of the system need the remaining
 information.

 One way to deal with situations like this is to create per-View entities. The View-Model surfaces a collection of these View-specific
 entities, doing the shaping behind the scenes. This way, the designer of the View need not be concerned with composing entities,
 combining fields such as first and last name, and more.

 In the MVVM pattern, those entities are frequently promoted up as ViewModels themselves. If you consider that the definition
 of a ViewModel includes both the data and the functionality required for a View, this makes sense. Consider that these View-Models
 can provide the functionality for calling the vacation bonus service and can then be reused in the detail pop-up, and you
 can quickly see how these entity-like ViewModel classes can be helpful.

 For this example, you’ll update the application to use new EmployeeViewModel classes in all the client-side places that once used the Employee data entity. First, listing 16.17 shows the new EmployeeViewModel class. Add it as a new class in your View-Model folder.

 Listing 16.17. EmployeeViewModel class

 [image:]

 Note that this class looks like most entity classes. There’s a calculated field for the FullName, as well as direct exposure of each of the other properties of interest in the employee data class. You use Display annotations from System.ComponentModel.DataAnnotations to make the DataGrid show friendly column names for these properties. Annotating for display was discussed in chapter 12. You could also include validation annotations from chapter 13, but that’s unnecessary for this example.

 Whether you consider this class to be a ViewModel depends on how you’ll use it. If you add functionality to call services,
 for example, it becomes more clear-cut in most people’s eyes that this is a real ViewModel. For me, ViewModel or entity isn’t
 a huge issue, as long as you follow the separation of concerns you’ve been working toward throughout this chapter.

 The EmployeeListViewModel class also needs to change to support the new EmployeeViewModel class. Listing 16.18 shows the changed properties and methods of the EmployeeListViewModel class. Note that the other properties and methods, including the AddVacationBonusToSelectedEmployee method, the OnEmployeesLoaded method, the CanAddVacationBonus property, and the AddVacationBonus command property, all stay the same.

 Listing 16.18. Changes to EmployeeListViewModel class

 [image:]

 The largest change in this class is the LoadEmployees method. You add a bit of data shaping and flatten the two-class Employee/Contact combination into a single EmployeeViewModel class with only a few properties. The majority of this work is done in the ShapeAndLoadEmployees method [image:]. It iterates through the employees in the data service and builds out the ViewModel classes, assigns the collection to the
 Employees property, and then raises the data-loaded event.

 The last place affected by this change is the EmployeeDetail ChildWindow. Listing 16.19 shows the changes to the two TextBox instances and one CheckBox instance in the EmployeeDetail pop-up XAML.

 Listing 16.19. Changes to EmployeeDetail.xaml

 <TextBox Height="23" Width="140" Margin="127,14,0,0"
 HorizontalAlignment="Left" VerticalAlignment="Top"
 x:Name="FirstName"
 Text="{Binding FirstName, Mode=TwoWay}" />
...
<TextBox Height="23" Width="140" Margin="127,43,0,0"
 HorizontalAlignment="Left" VerticalAlignment="Top"
 x:Name="LastName"
 Text="{Binding LastName, Mode=TwoWay}" />
...
<CheckBox x:Name="Salaried" Height="16" Margin="127,101,0,0"
 HorizontalAlignment="Left" VerticalAlignment="Top"
 Content="Salaried"
 IsChecked="{Binding Salaried, Mode=TwoWay}" />

 The only changes required here are the binding statements, due to the different property names and property paths for the
 new simplified class. Contact.FirstName becomes FirstName, Contact.LastName becomes LastName, and SalariedFlag becomes Salaried. The code-behind requires even fewer changes—just the Employee property, in this case:

 private EmployeeViewModel _employee;
public EmployeeViewModel Employee
{
 get { return _employee; }
 set { _employee = value; DataContext = _employee; }
}

 The EmployeeList.xaml and related code-behind require no changes. With all the other changes in place, run the application.
 The first thing you’ll notice is the reduced column count in the DataGrid, as well as the friendly column headers. Figure 16.7 shows the newly refactored application. There’s also the calculated Full Name field, which was unavailable in the entity
 data model.

 Figure 16.7. View of the application using the newly-minted EmployeeViewModel entity ViewModel class. Note the reduced column count as well as the nice column headers. Note also the Full Name calculated
 field.

 [image:]

 16.4.4. Interfaces, IoC, and ViewModel locators

 So far, all the changes you’ve made have improved the separation of concerns in the application and have helped its overall
 structure. But although you may have eliminated onerous coupling, such as that between the UI and the database, each of the
 classes are still tightly coupled to each other. For example, the View is tightly coupled to a ViewModel, using a new statement in the code-behind to create it. Similarly, that EmployeeListViewModel is tightly coupled to the EmployeeDataService and the EmployeeVacationBonusService.

 At first glance, you may think “So?” and I wouldn’t blame you. This is definitely one area where the benefits are highly proportional
 to the size of the system and the amount of code churn. If you have a highly active development project or a really large
 system, you’ll want to pay extra attention.

 Interfaces and IoC

 By implementing ViewModels and services as interfaces, you can allow them to be swapped in and out with alternative implementations.
 This can be useful when you’re developing and don’t yet have the real data store, when you’re designing the UI and don’t want
 the designer to have to have the full development environment, and when you’re testing where you may want to substitute scenario-driven
 classes and data that will return specific results each time.

 Inversion of Control (IoC) enables developers to design the system in such a way that they don’t new up (directly create) any objects of consequence in their code. Instead, they ask an IoC container to resolve for an object of
 a given type. The IoC container can make a number of decisions based on the request—returning a test version or a production version, for example. The IoC container can also serve up a single shared class instance, effectively a singleton
 without the singleton plumbing.

 Some developers use interface-based development and IoC for everything because they’ve mastered its use and have found it
 to speed up their work. I’m not one of those developers, but I can certainly appreciate where mastery of this pattern can
 allow effective use across projects regardless of size or complexity.

 Another interesting concept is that of the ViewModel locator. Often, ViewModel locators are themselves implemented using IoC.

 Viewmodel Locator

 Closely related to IoC is the idea of a ViewModel locator. A ViewModel locator is a service that can supply a ViewModel instance to a View. That instance may be internally cached,
 hard-coded, or delivered via IoC. I’ve even seen some interesting implementations that use the Managed Extensibility Framework
 (MEF).

 An extremely simple ViewModel locator that keys off the view name may look something like listing 16.20. Create the ViewModelLocator class in the ViewModels folder.

 Listing 16.20. A simple ViewModel locator using hard-coded ViewModel instances

 [image:]

 In practice, a real locator would have a much more robust mechanism for discovering and adding ViewModel instances to its
 internal list. In this example, they’re all hard-coded, and you don’t allow for more than one instance of any specific type.
 Additionally, the only usable one is the EmployeeListViewModel, because the EmployeeDetail would need instancing.

 The ViewModel locator is surfaced as a resource to be used in binding. The resource itself would be defined in a resource
 dictionary merged into App.xaml in order to have applicationwide scope. Listing 16.21 shows an updated App.xaml with this resource included and a new Resources.xaml file in the Assets folder.

 Listing 16.21. The ViewModel locator in XAML

 App.xaml:

 [image:]

 Assets/Resources.xaml:

 [image:]

 To use this locator, you eliminate the ViewModel creation from the code-behind and bind to this resource. In the EmployeeList.xaml
 file, this is as easy as adding the following line to the navigation:Page element.

 DataContext="{Binding [EmployeeList], Source={StaticResource ViewModelLocator}}"

 That bit sets the DataContext of the page to the value returned from the calling the ViewModelLocator’s indexer function, passing in the string EmployeeList.

 You then change the EmployeeList code-behind so the OnNavigatedTo event uses the ViewModel provided by the locator rather than one created in the code-behind. Listing 16.22 shows the updated OnNavigatedTo method.

 Listing 16.22. Updated OnNavigatedTo method in EmployeeList code-behind

 private EmployeeListViewModel _viewModel = null;

protected override void OnNavigatedTo(NavigationEventArgs e)
{
 _viewModel = DataContext as EmployeeListViewModel;
 _viewModel.EmployeesLoaded += (s, ea) =>
 {
 LoadingProgress.Visibility = Visibility.Collapsed;
 };

 LoadingProgress.Visibility = Visibility.Visible;

 _viewModel.LoadEmployees();
}

 Note that this is one place where an interface makes good sense: have the locator return a class that implements the interface,
 and have the code in the code-behind aware only of that interface, not of the concrete class itself. After all, if you’re
 going to go through the effort to dynamically resolve the ViewModel, it makes little sense to work with concrete types that
 could be instantiated.

 A larger discussion around these topics, especially interface-based development and IoC, would take more room that I have
 in this chapter, but I did want to make you aware of them because they’re often used with the ViewModel pattern. Many MVVM
 toolkits include support for interface-based design as well as various types of locators. When evaluating those toolkits,
 you’ll now know how they’re used.

 Commands and behaviors help decouple the user interface from the code that supports it. Rather than having concrete compile-time
 hooks into various other classes in the system, the hooks are more dynamic and resolved via binding or even string lookup
 at runtime. One of the more egregious couplings in the system was the entity data-model types permeating all layers, effectively
 tying the entire application to the database schema. Fixing that by introducing the entity-type ViewModel goes a long way
 toward freeing the front end from the back end. Finally, the use of interfaces, ViewModel locators, and patterns such as Inversion
 of Control take the decoupling to a higher level, making the application as a whole more resilient to change and easier to
 maintain. In addition, this loose coupling makes it easier to break these pieces apart, especially for testing.

 In the next section, we’ll cover how to test Silverlight applications, specifically those that have been designed with the
 principles in this chapter taken to heart.

 16.5. Testing

 Testing is a heavily overloaded word. For some people, it’s a way to spec out a system, using tests as the drivers and documentation.
 For others, it means running through a few verification steps as part of a build process. For still others, it’s a project
 manager banging away at a keyboard and “trying to break the system.”

 Each of those definitions has tools that best support it. Many great unit-testing, test-driven development, and keyboard-jockey
 testing tools are available out there, both free and open source as well as commercial.

 For this section, I’ll focus on unit testing of Silverlight functionality, using the free Silverlight Unit Testing Framework.
 You’ll first try a few tests that have nothing to do with your application. Then, because it must be broken apart to support
 testing, you’ll refactor the application into two projects. When the refactoring is complete, you’ll try three simple tests
 to exercise synchronous logic through the ViewModel class. The final test will be an asynchronous data-loading test, used
 to verify that the employees are being correctly downloaded from the server.

 16.5.1. Introduction to the Silverlight Unit Testing Framework

 The Silverlight Unit Testing Framework consists of a test runner and test metadata developed as part of the Silverlight toolkit.
 To use the Silverlight Unit Testing Framework, you’ll need to install the Silverlight Toolkit. If you don’t already have it installed, you can grab the latest version from
 http://silverlight.codeplex.com.

 When you have the bits installed, you’ll get a new template in Visual Studio. Continuing with the same solution you’ve been
 working with for this chapter, add a new Silverlight Unit Test Application project. I named mine MvvmApplication.Tests. Figure 16.8 shows the Add New Project dialog with the correct options selected.

 Figure 16.8. Adding a new Silverlight Unit Test Application to the solution. I named the project MvvmApplication.Tests, but the name isn’t
 important.

 [image:]

 The project template automatically includes a single default test. You’ll replace that with three simple tests that show how
 to use the Assert object and its functions. Listing 16.23 shows the three tests in place in the default Tests class.

 Listing 16.23. Simple tests

 namespace MvvmApplication.Tests
{
 [TestClass]
 public class Tests
 {
 [TestMethod]
 public void TestToMakeSureTrueIsActuallyTrue()
 {
 Assert.IsTrue(true);
 }

 [TestMethod]
 public void TestToMakeSureTheListObjectIsNotNull()
 {
 List<int> l = new List<int>();
 Assert.IsNotNull(l);
 }

 [TestMethod]
 public void ThisTestShouldFail()
 {
 Assert.IsTrue(false);
 }
 }
}

 The tests include two that should pass without any issue and one that should fail 100% of the time. Set the automatically
 added test .aspx file in the web project to the start page, and run (run; don’t start in debug mode unless you want to break
 on the exception). When you do, it’ll look something like figure 16.9.

 Figure 16.9. Silverlight unit test runner with two passed tests and one failed test

 [image:]

 Simple tests are... simple. They help you understand how the test system works, but they’re not doing anything useful for
 you yet. You want to test functionality in the application itself. To do that, you’ll need to put all the testable stuff into
 one or more class libraries. To keep things simple, you’ll move everything but the views into a single core project.

 Create a Silverlight Class Library named MvvmApplication.Core. Then, go into its project properties and set the default namespace
 to be MvvmApplication, as shown in figure 16.10.

 Figure 16.10. Setting the default namespace on a class library project

 [image:]

 Setting the namespace will allow you to keep everything the same as it was in the main Silverlight application.

 Next, create a Services folder and a ViewModels folder in the new class library project. Drag the contents of those folders
 from the old project to the new, and then remove the folders and their contents from the old project.

 The next step is to swap the service reference over to the new project. In the MvvmApplication.Core project, right-click,
 and choose Add Service Reference. Pick the web service in the web project, and set the namespace to Services as you did in
 the original project. Then, delete the service reference from the original Silverlight project.

 Before you do any in-code/markup cleanup, you need to add a project reference from the main application to the core application.
 Right-click the MvvmApplication project, choose Add Reference, and select the MvvmApplication.Core project.

 Do a build, and clean up the errors. You’ll need to add a reference to System.ComponentModel.DataAnnotations in the core project. When that’s done, you’ll need to crack open the Resources.xaml file and change the vm prefix to point to

 xmlns:vm="clr-namespace:MvvmApplication.ViewModels; assembly=MvvmApplication.Core"

 The last step is to delete the old ServiceReferences.ClientConfig from the MvvmApplication Silverlight project and then add
 the one from core as a reference. When you’ve deleted the old file, right-click the MvvmApplication project and choose Add
 > Existing Item. Navigate to the core project, and select the ServiceReferences.ClientConfig file. Click the drop-down arrow
 on the Add button, and select the option to add as a link, as shown in figure 16.11.

 Figure 16.11. Add the ServiceReferences.ClientConfig file from the core project to the main project using the Add As Link option.

 [image:]

 If you do this correctly, you’ll now see the ServiceReferences.ClientConfig file in the main MvvmApplication project. Its
 icon will have the standard shortcut arrow overlay, which indicates it’s a link. The build action should be automatically
 set to Content.

 The last step is to add a project reference from the MvvmApplication.Tests project to the MvvmApplication.Core project. Right-click
 the MvvmApplication.Tests project, select Add Reference, and select the MvvmApplication.Core project.

 When you’ve completed all these steps, set the application test page in the web project as the start page, and run the solution.
 Make sure the Silverlight app is running and working as it did before. If everything is good, you’re ready to move on to doing
 some real testing.

 16.5.2. Testing the ViewModel

 In a well-architected MVVM application, testing the ViewModel covers the majority of the scenarios you’d normally test through
 UI automation. The more value converters or UI magic in use, the less meaningful the ViewModel test becomes. I don’t want
 to scare you away from using awesome things such as value converters or validation annotations, but it’s something you need
 to keep in mind when you’re testing.

 Caveats aside, testing the ViewModel will give you a pretty high level of confidence that the majority of the system is working
 as designed, so let’s start there. In the test project, remove the test class you created earlier. Add a new Silverlight Test
 Class file to the MvvmApplication.Tests project, and name it EmployeeListViewModelTests. Listing 16.24 shows your first two tests.

 Listing 16.24. The first ViewModel tests

 [image:]

 [image:]

 The first test tests the utility of the SelectedEmployee property. It checks to see that when you assign an object to the property, the object can be retrieved. The second test exercises
 the vacation bonus logic. Note that this test doesn’t have 100 percent coverage for the full domain of hire dates and vacation
 hours; to do that, every value from zero through some reasonable upper bound would need to be tested.

 Both of these tests cover synchronous functionality only—you do something and hang around until the result comes back. If
 you want to test anything network-related in Silverlight, you need to use an asynchronous test.

 16.5.3. Testing asynchronous operations

 Testing asynchronous operations takes a little extra work. You’ll need a different test base class and the asynchronous methods
 it exposes. Listing 16.25 shows an asynchronous call test against the EmployeeDataService class.

 Listing 16.25. Asynchronous call test

 [image:]

 This example shows the test class inherited from the SilverlightTest base class. This immediately makes your class fall outside of code compatibility with the full Visual Studio testing framework.
 That’s a concern only if you want to share your tests with full .NET projects, or if you have plans to migrate them to another
 testing platform in the future.

 The SilverlightTest base class supplies the critical EnqueueTestComplete method. That method tells the test framework that the method is complete, and the framework can release it from the holding
 pattern created by the [Asynchronous] attribute.

 Before running the test, there’s one more step. Just as you did when breaking the original Silverlight project in two, you
 need to add the ServiceReferences.ClientConfig file to the MvvmApplication.Tests project, as a link. That file is generated
 by the project that has the service reference, but it must be located by the project that is the main entry point of execution.

 The Silverlight Unit Testing Framework is a capable test framework for Silverlight. When it first came out, there were no
 other supported Silverlight testing frameworks. Now you have several choices.

 The Silverlight Unit Testing Framework has some trade-offs, such as not being integrated with any build processes and requiring
 a run to see the results rather than keeping an open window or a docked pane in the IDE. You’ll need to evaluate those for
 your own projects and stack up the framework against other robust unit-testing frameworks.

 When you structure your application using MVVM principles and good coding and architecture practices, it makes your applications
 much easier to test. It’s important to test. It’s important to unit-test functionality and to keep those tests up to date.
 It’s beneficial to use tests to drive functionality using a TDD-derived approach. If there were no way to test Silverlight
 code, you definitely wouldn’t be in your happy place. I hope the simplicity of the Silverlight Unit Testing Framework will
 help you integrate testing into your own application development cycle.

 16.6. Summary

 When you get into developing applications of complexity beyond basic samples, your code can get pretty ugly quickly if you
 don’t follow a good architectural pattern such as MVVM. In this chapter, we’ve moved from a basic-but-common code-behind solution
 to a decent MVVM implementation. To take it to the next level, you’ll want to incorporate an MVVM toolkit and use the facilities
 built into that.

 MVVM, or the ViewModel pattern, isn’t scary when you peel the onion back layer by layer, refactoring between each and incorporating
 features as you understand them. Silverlight includes support for behaviors and commands to help separate the UI from the
 functions the UI calls. The patterns you follow will help you reuse code between different ViewModels or between different
 parts of the system.

 When you have an application with decent separation of concerns between components and layers, you open up the ability to
 easily test the components. The Silverlight Unit Testing Framework is a nice in-box (well, in-toolkit) solution for unit-testing
 Silverlight applications. It’s not the only game in town, but it’s certainly a decent player.

 While we’re looking at what it takes to build real systems, we’ll turn to WCF RIA Services in the next chapter.

Chapter 17. WCF RIA Services

 This chapter covers

 	Using the Business Application project template

 	Exposing data from a domain service

 	Filtering, sorting, grouping, paging, and updating data

 	Using the presentation model for loose coupling

 	Sharing logic between the client and server

 	Securing the application

Data-oriented Silverlight applications are multitier by nature—they have a client, a server with services, and a data store.
 As you learned in chapter 14, the way Silverlight handles network calls requires setting up asynchronous proxies (or performing raw asynchronous network
 operations). Sometimes, sharing entities between the client and server is a simple task; sometimes it’s not. In general, the
 amount of code that goes into what could be considered plumbing and standard CRUD methods ends up being a significant portion
 of the overall source code for the application.

 In many organizations, the code that makes up those plumbing and standard operations, despite best efforts, ends up being
 duplicated in project after project. Reuse is rarely seen, and when it is, it’s in relatively trivial things such as logging
 services or caching. When reuse is enforced, it can be overly cumbersome to use across the suite of applications and difficult
 to update.

 When developing WCF RIA Services (also called just RIA Services for short), Microsoft realized that most applications built (again, despite best efforts) are actually mini silos from the
 client through to the database interface, and often through to the database tables themselves. I know from personal experience
 at many clients around the country that this is true—it’s our industry’s dirty little secret, despite all the talk about OOP
 reuse, SOA, and more. Applications have a silo of functionality they use and some minor integration points with other systems
 using web services. I bring this up to point out that a nongoal of RIA Services is the creation of robust service-oriented
 architecture (SOA) solutions, in the true sense of SOA, not the “we used a service” sense.

 WCF RIA Services is a framework and set of tools that attempts to make building modern multitier applications as simple as
 building classic two-tier client/server applications. WCF RIA Services doesn’t tie you to the single application model, but
 it’s optimized to support it as the most prevalent application model. We’re talking about building real, scalable, efficient,
 and easily coded multitier applications that work cleanly from front to back using a minimum amount of ceremonial code. This
 is accomplished through a framework and set of tools that provide the following benefits:

 	Automatic creation of common Create Read Update Delete (CRUD) methods for entities

 	Automatic generation and synchronization of service methods and their client-side proxies

 	Validation rules and arbitrary business logic methods that are shared between the client and server without duplication of
 effort

 	High-level client-side data source controls that make data manipulation simple

 	Integration with ASP.NET security

 	Through the project template, an overall application structure you can build on

In addition, when combined with the DataGrid and DataForm covered in chapter 12, you get automatic user-interface generation for entities, as well as simple UI wire-up for CRUD operations and validation.

 This is all done in a way that allows you to maintain the level of control you want. There are enough extension points to
 let you hook into processes as well as manage client operations from code rather than the controls if you desire. Although
 optimized for the full application front-to-back scenario, it’s flexible enough to incorporate other services and even other
 RIA Services servers into the overall solution. You can even expose your RIA Services service calls and data in a number of
 ways to allow interoperating with other systems.

 Although RIA Services does support other clients such as ASP.NET, the functionality is at its strongest when used with Silverlight.
 Throughout its development, RIA Services was almost exclusively a Silverlight technology, giving back to the framework as
 techniques and code were developed. Almost 100 percent of the users of RIA Services, at the time of this writing, are building
 Silverlight applications. The reason is simple. RIA Services helps solve a problem that is strongest in Silverlight: how to
 build multitier data-oriented applications with different but mostly compatible frameworks on the client and server, without native database or ORM access from the client, and perform all requests asynchronously while keeping the
 footprint down.

 Our tour of RIA Services will start with a look at the tooling and templates that make it easy to use in Visual Studio. You’ll
 create a project that’ll be used in the examples through the rest of the chapter. After that, we’ll look at what it takes
 to expose data to external clients and to Silverlight, as well as how to filter, sort, group, and page that data. Of course,
 there’s more to application development than read-only data, so we’ll go through the update process to make sure the data
 can make a full round trip. Then, because I spent the last chapter telling you how important it is to decouple your layers,
 we’ll look at how to support loose coupling in an otherwise tightly coupled system. We’ll wrap up the chapter with a look
 at where to put business logic, followed by securing your applications.

 I’m excited about the efficiency that RIA Services brings to the table, so let’s get building.

 17.1. WCF RIA Services architecture, tooling, and template

 WCF RIA Services applications are similar to traditional Silverlight applications in that there’s both a client application
 and a home server. The server serves up the Silverlight application and also contains the services the application is to use.
 RIA Services works with multiple-server and multiple-client scenarios; but as mentioned in the introduction, the typical scenario
 is one server per application domain. Figure 17.1 captures this typical architecture at a high level.

 Figure 17.1. A high-level view of the architecture of a RIA Services application

 [image:]

 At first glance, the architecture looks like any other Silverlight application, except for that odd shared bit. That’s one
 of the many things that make RIA Services worth the effort to learn.

 RIA Services includes strong support for creating client-side proxies and entities that preserve, with high fidelity, the
 validation rules and logic written on the server. As a developer, you only need to write the code once, and RIA Services will take care of the rest. We’ll cover this in depth
 later in the chapter.

 In this section, we’ll look at the tooling that makes RIA Services work. Then, we’ll dive right in to creating a new project
 using the Silverlight Business Application template, a WCF RIA Services version of the navigation template we covered in chapter 15. You’ll build on this project throughout the rest of the chapter.

 17.1.1. RIA Services tooling support

 Much of what makes WCF RIA Services tick is the magic that happens as part of the build process. When you first create a Silverlight
 application and select the option to Enable WCF RIA Services, you’ve set up a client-to-server project link. That option puts
 a single line in the Silverlight .csproj project file:

 <LinkedServerProject>..\Chapter17.Web\Chapter17.Web.csproj
 </LinkedServerProject>

 That one line of XML makes possible the auto-generation of the client proxies, types, and more. That also means a Silverlight
 application can be directly attached to at most one RIA Services server. To get around this limitation, you can create Silverlight
 class library projects and allow them to link to different servers, and then use the class libraries in your own project.

 If you’re curious, check out the obj/Debug folder in your Silverlight project. In it, you’ll find a number of files generated
 by the RIA Services tooling, to keep track of server references, source files, and more. It’s mostly unicorn and rainbow[1] magic, but it’s fun for the curious and perhaps helpful during an odd debugging session.

 1 If you’re really and truly bored and need a break from reading, check out http://cornify.com/ to add unicorns and rainbows to any web site or photo. Warning: 5th grade girls’ Trapper Keeper graphics overload.

 The main body of code that is generated falls under the Generated_Code folder on the Silverlight application. This includes
 a single .g.cs file with all the context and proxy classes, and one or more subfolders with the additional model classes.
 Because this code is autogenerated, you won’t want to change it. But having the source code available is useful when you’re
 trying to understand exactly what RIA Services is doing in the client application, or when you’re involved in complex debugging.

 Throughout the remainder of the chapter, feel free to inspect the .g.cs file and the rest of the code in the Generated_Code
 folder as you add methods to various server-side classes.

 Now that you understand the relationship between the web project and the client project, you can create the start of an application
 using the Silverlight Business Application template.

 17.1.2. Creating a project with the template

 The Silverlight tools for Visual Studio 2010 include a WCF RIA Services solution template, based on the navigation template
 discussed in chapter 15. This template is called the Silverlight Business Application template. Although you don’t need to use this template to create
 a RIA Services project (you need to select the Enable WCF RIA Services check box when creating a new Silverlight project as
 mentioned in the previous section), it does provide a good project structure to start with.

 Figure 17.2 shows the New Project dialog with this template selected. You’ll use this project, Chapter17, throughout the rest of the
 chapter.

 Figure 17.2. Creating a new WCF RIA Services application using the Silverlight Business Application template

 [image:]

 Note that when you create a new WCF RIA Services project, you’re not prompted with the usual second New Project dialog, asking
 whether to create a web site or enable WCF RIA Services. In a RIA Services project, both are required.

 Despite the fact that they’re based on the same original template, the styling steps described in chapter 15 won’t work exactly with this template. Instead, you’ll need to install the Silverlight Business Application templates (they’re
 just zip files) included in the download and use them as the basis for your new project. At the time of this writing, no .vsix
 installers exist for the templates, so you have to manually install them. In addition, the trick of copying the styles over
 wasn’t working when I wrote this. The team is investigating, so the experience may be better by the time you try it.

 When you run the application, you’ll get something that looks similar to the chapter 15 template, but with a few additions. Figure 17.3 shows the bare application at runtime.

 Figure 17.3. The application when first run. Note the addition of the Login button as compared to the navigation template shown in chapter 15.

 [image:]

 At runtime, the main difference you’ll notice is the addition of the Login button. If you click that, you’ll get a ChildWindow login prompt. We’ll discuss authentication later in this chapter.

 The other changes, compared to the navigation application, require a little more digging.

 Application Resources

 The Silverlight Business Application template has good support for customization and localization of the strings presented
 to the user. If you crack open the Assets\Resources\ ApplicationStrings.resx file, you’ll see that you can change key prompts,
 window titles, and more without altering the XAML.

 Although not strictly required, when adding your own pages or prompts, a best practice is to place the text in one of the
 three resource files (ApplicationStrings, ErrorResources, or SecurityQuestions) rather than directly into XAML or code. Of
 course, you can create your own resource files if the text doesn’t logically fit in one of these three.

 To test the application resources approach, change the ApplicationName property to something different. I chose “Chapter 17 Example”. Run it, and you’ll see the changed name. It doesn’t change in the designer right away; but after a build (or build
 and run), you’ll see the title update in the designer as well. In this way, the resource files don’t block your design-time
 experience.

 How and why does this work? Open MainPage.xaml, and find the TextBlock named ApplicationNameTextBlock. Its definition looks like this:

 <TextBlock x:Name="ApplicationNameTextBlock"
 Style="{StaticResource ApplicationNameStyle}"
 Text="{Binding ApplicationStrings.ApplicationName,
 Source={StaticResource ResourceWrapper}}"/>

 The displayed Text value is bound to a property of the generated resource file class ApplicationStrings. The ResourceWrapper class provides a single location from which you can access all the resource classes. The resource property name is the same
 as that defined in the resource file. I’ve used traditional resource files before, and it was never this easy to get values
 into the UI. The power of binding in Silverlight makes using traditional resource files a no-brainer.

 Other Differences

 The client project file has a number of other differences compared to the straight navigation template. As you explore the
 project structure, you’ll see a number of additional controls (such as the BusyIndicator), helper classes, additional views, and more. You’ll run across many of them as you create your RIA Services application
 in the upcoming sections.

 WCF RIA Services, especially through the use of the application template, makes it easy to structure a full business application,
 following best practices. The tooling in Visual Studio helps automatically synchronize the client and server, avoiding a cumbersome
 manual step.

 The architecture of WCF RIA Services, although geared toward Silverlight applications, is usable by other application types
 as well through the server-side services. We’ll leave the client project alone for a moment while we concentrate on the server
 (web) project in order to learn how to expose data to the application.

 17.2. Exposing data with the domain service

 WCF RIA Services applications are typically used with a database back-end. It’s possible to use something other than a database;
 RIA Services itself doesn’t care what type of backing store you use, as long as a base domain service class exists for it.

 Traditional Silverlight applications use a WCF, SOAP, or REST service server-side to access data. Those services, in the case
 of SOAP and WCF, expose methods for retrieving and updating data. They may expose domain methods to perform other functions
 or calculations as well. REST-based services typically expose a domain model in an entity-centric way.

 In a RIA Services application, the service to use is a domain service. A domain service, which is built on WCF, provides LINQ-based access to domain objects or data, as well as traditional service
 access to additional domain functions. It sits between the database and your client code, combining many of the advantages
 of the other services with the added bonus that the wire-up with the client happens automatically. The domain services are
 the heart of a WCF RIA Services application.

 In this section, you’ll first create a domain service in the web project. We’ll then look at what’s required to expose the
 data and functionality in that service in a number of different ways, including OData, JSON, and SOAP. With the interoperability
 question out of the way, we’ll dive into the primary scenario the service was built for: integration with the Silverlight
 client. We’ll wrap up this section with an in-depth look at the common domain service methods and what it takes to add your
 own methods to the service.

 17.2.1. Creating the domain service

 For this project, you’ll use the Entity Framework and the Adventure Works database. Follow the instructions in appendix A
 and set up the database, connection, and Entity Framework Model in the existing web project.

 Build the project before adding the domain service. This will ensure that the appropriate metadata is available from the Entity
 Framework Model. When that’s done, right-click the Services folder in the web project, and choose Add New Item. The item you
 want to add is the Domain Service Class, included in the top-level Visual C# template list in the New Item dialog. Figure 17.4 shows the correct template in use.

 Figure 17.4. Creating the EmployeeService domain service. You can find the Domain Service Class template in the top-level Visual C# template
 list.

 [image:]

 Name your domain service EmployeeService.cs, and click Add. You’ll then be presented with the RIA Services-specific Add New
 Domain Service Class dialog shown in figure 17.5.

 Figure 17.5. The Domain Service setup dialog. If your dialog entity list is empty, cancel out and build the project.

 [image:]

 This dialog requires careful attention. First, you want to make sure the Enable Client Access option is checked. When checked,
 it allows the domain service to be used by clients such as Silverlight. If unchecked, the service will only be available server-side.

 The next option is Expose OData Endpoint. OData is an XML-based data format. For most projects, this is entirely optional,
 but because we’ll be discussing OData in a bit, it needs to be checked.

 The middle of the dialog includes a list of entities from the Entity Framework Model. If this list is empty, you need to cancel
 the dialog and build the project. Select each entity that will be handled from this domain service; typically this is only
 one entity, or a small number of highly related entities, such as you have in this case. By default, the service handles retrieve
 operations only; if you want to allow create, update, and delete, ensure that the checkbox under Enable Editing is selected.

 Finally, Generate Associated Classes for Metadata is an important option. When selected, this creates a class you can use
 to provide attribute-based validation and metadata for each of the entities. This class is named <domainservice>.metadata.cs.

 If all the correct options are selected, when you click OK, the two classes (service and metadata) will be created in the
 Services folder on the web project. The EmployeeService class automatically includes all the appropriate domain service methods to perform CRUD operations on both the selected Contact and the Employee types.

 Silverlight applications rarely exist in a vacuum. Before we get in depth into using the domain service in the Silverlight
 application, it’s important to discuss how you can use the domain service with other types of clients.

 17.2.2. Exposing the domain service to other clients

 Every client-exposed domain service is also a WCF service. The full address of the WCF service is the web server plus the
 full namespace, with all dots replaced by dashes, plus svc. For example, for EmployeeService, in the Chapter17.Web.Services namespace, the full URL is

 http://localhost:<port>/Chapter17-Web-Services-EmployeeService.svc

 If you start the project and then replace the URL with that, you’ll get the normal WCF service page. Unlike an .asmx SOAP
 service, you can’t run the service from this page (which is good for preventing curious end users from running services directly).

 You can use the Add Service Reference menu option from any WCF-aware project type (WPF, Windows Forms, ASP.NET, or even console)
 and use the service directly. You won’t get the rich metadata and client-side validation provided by a native RIA Services
 client, but you’ll be able to access the data and queries, as well as any defined domain methods in the service.

 In addition to this approach, which should be your first option if supported in your client, several other possible endpoints
 are supported.

 Exposing an OData Endpoint

 RIA Services can expose a read-only OData endpoint for use by any application that can speak the OData/AtomPub protocol. When
 creating the domain service, you were offered the option to expose an OData endpoint. For this example, you did that. That
 did two things:

 	Added a system.serviceModel\domainServices\endpoints name of OData to the web.config file

 	Added IsDefaultQuery to the retrieve methods in the domain service class

Because the name added is OData, the service name has /OData appended to it. In this case, the service name is

 http://localhost:<port>/Chapter17-Web-Services-EmployeeService.svc/OData

 If you want to see metadata about the service (the OData rough equivalent of SOAP WSDL), you can append /$metadata to the endpoint name. For this service, it’s as follows:

 http://.../Chapter17-Web-Services-EmployeeService.svc/OData/$metadata

 To access the root entities sets exposed by the domain service, you append Set to the name of the entity so Employee becomes EmployeeSet. Then, append that to the OData endpoint URL, as shown here:

 http://.../Chapter17-Web-Services-EmployeeService.svc/OData/ContactSet
http://.../Chapter17-Web-Services-EmployeeService.svc/OData/EmployeeSet

 Currently, accessing a single entity by ID isn’t supported in the OData endpoint. With a full OData endpoint, you’d be able
 to do something like this:

 http://.../Chapter17-Web-Services-EmployeeService.svc/OData/EmployeeSet(1)
(NOTE: this is not supported)

 You can easily test the OData endpoint in Microsoft PowerPivot[2] for Excel 2010 by selecting the From Data Feeds option while the application is running, and providing the full EmployeeSet or ContactSet URL. When executed, the EmployeeSet query returns the results directly into PowerPivot, as seen in figure 17.6.

 2 You can download Microsoft PowerPivot for Excel 2010 from http://powerpivot.com.

 Figure 17.6. Data from the WCF RIA Services OData endpoint, loaded into PowerPivot for Excel 2010. PowerPivot is a C# .NET Office add-in
 application, by the way.

 [image:]

 OData endpoints are good for querying data on the web or using tools such as PowerPivot. Although OData could be used for
 Ajax applications, you’ll be better served using the native JSON endpoint.

 Exposing a JSON Endpoint

 Both the JSON and SOAP endpoints require the use of assemblies in the RIA Services Toolkit, which can be installed, like all
 other Silverlight tools, using the Microsoft Web Platform Installer.[3] If you performed a default Silverlight 4 tools installation with RIA Services, you have the toolkit installed. If you don’t
 have a toolkit folder under the Program Files\Microsoft SDKs\RIA Services 1.0\ folder, you can manually install the toolkit
 from http://silverlight.net/getstarted/riaservices/.

 3 You can download the Web Platform Installer from http://bit.ly/WebPI.

 From the web project, you’ll need to add an assembly reference to the Microsoft.ServiceModel.DomainServices.Hosting assembly in the RIA Services toolkit. Figure 17.7 shows the Add Reference dialog with the correct assembly selected.

 Figure 17.7. The Add Reference dialog with the correct assembly selected to allow exposing JSON and SOAP endpoints

 [image:]

 When the project reference is set, you’ll need to modify the web.config file to add the new JSON endpoint. In the domainServices\endpoints
 section, where the OData endpoint also lives, add the following XML:

 <add name="JSON"
 type="Microsoft.ServiceModel.DomainServices.Hosting.JsonEndpointFactory,
 Microsoft.ServiceModel.DomainServices.Hosting, Version=4.0.0.0,
 Culture=neutral, PublicKeyToken=31bf3856ad364e35" />

 That configuration entry sets up a WCF endpoint using the factory included in the RIA Services toolkit DLL. When it’s configured,
 the root URL will be, as it was in the OData case, the service name with /<endpoint>:

 http://localhost:<port>/Chapter17-Web-Services-EmployeeService.svc/JSON

 You can call the endpoint anything you want, as long as you use the same endpoint name in the configuration file and in the
 URL. By convention, you use the return type—JSON. To perform a query, use Get<EntityName>s as the format. For example:

 http://.../Chapter17-Web-Services-EmployeeService.svc/Json/GetEmployees

 Note that if you call that URL using Internet Explorer 8, you’ll get a download error. If you use Google Chrome, or another
 browser or JSON tool, you’ll be able to see the text of the JSON content. If you have nothing handy, create this simple HTML
 file (see listing 17.1) in the web the project and select View in Browser. I called mine Test-JsonEndpoint.html and used a little jQuery to handle
 the Ajax call.

 Listing 17.1. Testing the JSON endpoint from JavaScript using jQuery

 [image:]

 This example HTML page shows how to test the retrieve method of the JSON endpoint for your RIA Services domain service class.
 Using the EmployeeID and Title, it creates a single list item for each employee returned in the query and then displays an alert when the query returns.
 Note the path used to get to the root of the results: it’s the name of the query with Result appended, plus the name .RootResults. This is consistent for any RIA Services JSON get call.

 jQuery[4] makes the service call and processing simple. If you haven’t yet been exposed to jQuery, definitely check it out. jQuery
 has been the one thing that makes JavaScript and DOM manipulation tolerable for me. It’s a great library for handling on-page
 work, and it interacts nicely with Silverlight.

 4 I put this in as jQuery just so Rey Bango will stop picking on me about the ugly cabinets in my home office via the back
 channel chat in every team meeting. You can see them in the background in the webcam shots in chapter 20. If you want to pick on me yourself, I’ll try not to cry, really. :)

 The JSON endpoint also supports updating data. For space and relevance reasons, I won’t create a full update UI here, but
 the code is similar to any other JSON Ajax call using a POST.

 JSON is great for Ajax applications, but the format itself can be limiting. Although not as rich as the WCF native formats,
 another widely understood format is SOAP.

 Exposing a SOAP Endpoint

 Like JSON endpoints, SOAP endpoints are updatable services exposed using a service endpoint definition in the web.config.
 The entry to add for SOAP is

 <add name="Soap"
type="Microsoft.ServiceModel.DomainServices.Hosting.SoapXmlEndpointFactory,
 Microsoft.ServiceModel.DomainServices.Hosting, Version=4.0.0.0,
 Culture=neutral, PublicKeyToken=31bf3856ad364e35" />

 This requires the same assembly reference the JSON example required. Note that the public key token and other assembly information
 are identical as well.

 Unlike the JSON approach, the SOAP endpoint ends up working right at the root service level. For example, to get the Web Services
 Description Language (WSDL) for the SOAP service in your solution, hit this URL with the browser:

 http://.../Services/Chapter17-Web-Services-EmployeeService.svc?wsdl

 You don’t need to add /Soap to the URL.

 To fully utilize the SOAP client, you’ll need to add a service reference from another project and generate the client. As
 was the case in the JSON version, the service is read/write but doesn’t expose the entity metadata to the client. To take
 advantage of WCF RIA Services, you’ll want a full Silverlight application, aware of WCF RIA Services and aware of the metadata
 it uses.

 17.2.3. Domain service method types

 The methods in the domain service have names starting with Get, Insert, Update, and Delete. This naming convention allows for automatic wire-up of the operations with the client. This convention-over-configuration
 approach is common outside the Microsoft developer ecosystem and is just starting to make its way into Microsoft products.

 Conventions don’t always work for everyone or in every situation, though. For instances where you’d rather not go with convention,
 you can use a series of attributes to make your choices explicit. Table 17.1 shows the attributes, conventions, and their descriptions.

 Table 17.1. Naming conventions, equivalent attributes, and their purposes

 	
 Name prefix

 	
 Attribute

 	
 Purpose

	(Any)
 	[Query()]
 	A method that returns data without any side effects. The usual approach is to prefix with Get, but any prefix is fine as long
 as the function returns an instance of an entity T, an IEnumerable<T>, or an IQueryable<T>.

	Insert, Add, Create
 	[Insert()]
 	An operation that inserts a single entity into the data store. The method takes the entity as a parameter.

	Update, Change, Modify
 	[Update()]
 	An operation that updates a single entity in the data store. The method takes the entity as a parameter.

	Delete, Remove
 	[Delete()]
 	An operation that deletes an entity in the data store. The method takes the entity as a parameter.

	(Any)
 	[Invoke()]
 	A business method that must be executed without tracking or deferred execution. It may or may not have side effects. Use only
 when one of the other method types can’t be used.

	(Any)
 	[Update()]
 	A named update with UsingCustomMethod=true set in the attribute. This is a purpose-built function that performs a specific
 type of update. An example may be a product discount or firing an employee.

In the remainder of this section, we’ll go through each of the types of operations on the domain service.

 Query Methods

 Query methods are methods that return a single entity or a set of entities. The default query method generated by the template returns
 all instances of the entity in the data store. This allows you to further compose the query on the client with additional
 criteria to limit the result set.

 Query methods may be indicated by convention or attribute, as shown previously. When using the attribute, you have a few options
 to set. These are shown in table 17.2.

 Table 17.2. QueryAttribute members

 	
 Member

 	
 Description

	HasSideEffects
 	Queries shouldn’t typically have side effects that would alter data. If they do, set this property to true so clients can
 make decisions as to how to use the method. For example, an HTTP client may send a POST instead of a GET.

	IsComposable
 	Set this to true if the query allows composing to add additional criteria.

	IsDefault
 	Set this to true if this query is the default query for the entity type.

	ResultLimit
 	This is the maximum number of results the method should return. Defaults to 0, which indicated unlimited results.

Creating a query method on the service is pretty simple if you follow the naming and method signature conventions. Here’s
 an example of one that returns only salaried employees:

 public IEnumerable<Employee> GetSalariedEmployees()
{
 return from Employee emp in ObjectContext.Employees
 where emp.SalariedFlag == true
 select emp;
}

 When the solution is compiled, the method is turned into a client-side method named GetSalariedEmployeesQuery on the generated EmployeeContext domain context object.

 Types of Query Methods

 Query methods fall into three primary buckets:

 	Methods returning a single concrete instance of an entity

 	Methods returning a collection or enumerable of zero or more entities

 	Methods returning an IQueryable of the entity

The first two are easily understood, falling squarely into patterns you’ve used since functions were first conceptualized
 in computer science. The third option is a little different and provides real flexibility.

 A function with an IQueryable return type returns an expression tree. This is a LINQ concept for a generic query that’s to be executed by a query provider.
 The IQueryable interface inherits from IEnumerable, so it also represents the results of that expression tree. Even when you build the LINQ query on the client, the query itself
 is executed server-side, typically all the way back at the database for a provider such as the Entity Framework.

 In effect, this means you can have this query method on the server

 public IQueryable<Employee> GetEmployeesSorted()
{
 return from Employee emp in ObjectContext.Employees
 orderby emp.Title, emp.HireDate
 select emp;
}

 and use it like this on the client:

 EmployeeContext context = new EmployeeContext();

EntityQuery<Employee> query =
 from emp in context.GetEmployeesSortedQuery()
 where emp.SalariedFlag == true
 select emp;

 Note that the query is composed—the server-side query and the client-side query are combined to return a set of results. That’s
 a powerful way to provide prefiltered or presorted data to the client. For example, the query could’ve taken a parameter to
 use in the filter or used security to decide which records could be returned to the client. The query execution itself is
 deferred; it’s not executed until the client code first accesses the result data.

 We’ll cover more about using the domain service query methods from the client later in this chapter. Another class of methods
 the service provides is for data manipulation: insert, update, and delete operations.

 Insert, Update, and Delete Methods

 The generated code for the insert, update, and delete methods takes in a single entity and uses the backing data store to
 perform the appropriate operation. For example, the update code looks like this:

 public void UpdateEmployee(Employee currentEmployee)
{
 this.ObjectContext.Employees.AttachAsModified(currentEmployee,
 this.ChangeSet.GetOriginal(currentEmployee));
}

 That tells the server-side object context to add this employee and mark it in the modified state, using the passed-in employee
 object as the current state and the original object as the last-known state from the data store. The Attach and AttachAsModified functions are all provided by the Entity Framework. The specific function used for your data provider may vary.

 For a given entity, it’s unusual to create alternate general insert, update, and delete methods. Doing so would confuse RIA
 services, not to mention your fellow programmers. There’s one exception—the named update method.

 Named Update Methods

 Normally, the update methods are handled automatically based on the state of the data. But you may have situations where you
 need to provide a custom update method that you’ll call directly rather than let Silverlight infer the update operation for
 a particular entity during the SubmitChanges call on the domain context.

 To mark an update operation as a named update operation, it needs to have the usual update operation signature and the Update attribute with UsingCustomMethod = true. Here’s an example:

 [Update(UsingCustomMethod = true)]
public void SpecialCascadedUpdate(Employee emp)
{
 ...
}

 This approach exists to allow you to handle special cases related to business logic or database complexities. It’s still called
 as part of the batched SubmitChanges call. If you want to immediately execute a function, another approach is available.

 Invoke Methods

 CRUD methods are called as part of a batch—the entities have the CRUD operations performed on them but aren’t sent to the
 server for the actual action until the call to SubmitChanges is made on the client.

 Invoke methods are normal methods you can use to perform some sort of calculation or return a piece of data. They’re operations
 that need to be executed without change tracking or deferred execution. Invoke methods shouldn’t be used to load data; that’s
 what query methods are intended for. Returning an entity from an Invoke method bypasses the pattern and won’t cause the appropriate change tracking and entity generation to occur on the client.

 Although the Invoke attribute is optional, to be considered an invoke method, a method shouldn’t take entities as a parameter or return an entity,
 IEnumerable, or IQueryable of entities as a result.

 A typical invoke method, if there could be such a thing, might look like this (example shamelessly stolen from chapter 16 on MVVM):

 [Invoke()]
public int CalculateVacationBonus(DateTime hireDate)
{
 int vacationBonus;
 DateTime today = DateTime.Today;

 int yearsInService = today.Year - hireDate.Year;

 if (hireDate.AddYears(yearsInService) > today)
 yearsInService--;

 if (yearsInService < 5)
 vacationBonus = 10;
 else
 vacationBonus = 20;

 return vacationBonus;
}

 It’s a regular business method. Given that it’s on the server, you probably have a reason—it may call another web service,
 or it may hit a database to do a lookup. In this case, it’s on the server to illustrate the invoke type.

 As mentioned, the Invoke attribute is optional. When in doubt, add the attribute to make your intentions clear. For normal CRUD methods where the
 name is sufficiently patterned using the naming conventions, this is usually unnecessary. But I find that Invoke methods can be ambiguous at first glance. Speaking of naming conventions, what happens when you want to avoid having them
 kick in?

 Ignoring Methods Despite the Name

 Some of these operations require the use of attributes, but many are autogenerated via the naming conventions. If you don’t
 want RIA Services to generate a domain method for your service method, apply the Ignore attribute to that method, as shown here:

 [Ignore()]
public void UpdateEmployeeButNotReally(Employee emp)
{
...
}

 With that attribute in place, despite the fact that the method uses the Update naming convention and method signature, it
 won’t be generated as an update call on the client.

 The domain service provides a number of standard method types, many of which are autogenerated from the tooling but may be
 modified or replaced. Domain services provide CRUD operations in the form of insert, update, delete, and query methods. In
 addition, arbitrary functionality may be included in invoke methods.

 When discussing the IQueryable type, I sneaked an EmployeeContext object into the example. What’s that, and what does it provide? That’s the subject of the next section.

 17.2.4. Using a domain service from Silverlight

 Domain services execute on the server, running under the full .NET 4 framework. The client-side equivalent of the domain service
 is the domain context object. Domain context objects provide a proxy for the service methods, as well as change tracking, operation batching, and more.

 For each domain service on the server, RIA Services will generate one domain context object on the client. In the case of
 the EmployeeService domain service, the client domain context is named EmployeeContext.

 The domain service may be wired up to Silverlight via RIA Services controls in the UI that go through the context object,
 or via explicit use of the context object in code. Both have advantages and disadvantages and will impact the overall architecture
 of your application. I’ll cover both here, starting with the most involved approach: creating the connection from code.

 Connecting Via Code

 One way to use the domain service is to reference the client context object from code and execute queries directly against
 it. Because this is the most traditional way when compared to the usual pattern of working with services and WCF service proxies,
 I’ll start with it.

 In the Home.xaml.cs file, replace the OnNavigatedTo method with the following short bit of code:

 protected override void OnNavigatedTo(NavigationEventArgs e)
{
 EmployeeContext context = new EmployeeContext();

 EntityQuery<Employee> query = context.GetEmployeesQuery();

 context.Load<Employee>(query);
 EmployeeGrid.ItemsSource = context.Employees;
}

 When the page is navigated to, this code automatically loads all the employees and assigns that collection to the ItemsSource of a DataGrid. The EmployeeContext object, in this instance, serves as the proxy for the domain service. Note that though you don’t bother to hook up a method
 to the Load method asynchronous return, it’s still executed asynchronously, and the results appear through binding.

 The query system is flexible: you could change the query to add some criteria and a sort if you wanted to. (Be sure to add
 using System.Linq; to the top of the code before you try to compile.)

 EntityQuery<Employee> query =
 from emp in context.GetEmployeesQuery()
 where emp.SalariedFlag == true
 orderby emp.HireDate
 select emp;

 This example selects all the employees that are salaried and sorts them by hire date. The query itself is executed on the
 server, as you learned in the previous section. When using the Entity Framework with SQL Server as you are here, the query
 is executed all the way back at SQL Server, and only the items matching the query are returned.

 You can’t test the connection without having something to bind it to. So, time for a trusty DataGrid. Replace everything else in the LayoutRoot, starting with the ScrollViewer, with this XAML:

 <Grid Margin="10">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="*" />
 <ColumnDefinition Width="350" />
 </Grid.ColumnDefinitions>

 <my:DataGrid x:Name="EmployeeGrid"
 Grid.Column="0" Margin="5" />
</Grid>

 It’ll be easiest if you first drag the DataGrid onto the design surface in order to set up the correct namespaces and project references. Besides, “it’s not a real demo
 unless someone drags a DataGrid.”[5]

 5 Scott Hanselman talking about a 2010 keynote demo for WCF RIA Services.

 When you run the application, you’ll get something that looks like figure 17.8.

 Figure 17.8. The DataGrid populated using the DomainDataSource control in XAML

 [image:]

 Connecting via code allows you to better take advantage of advanced patterns such as MVVM and have complete control over the
 execution path. As you get more into advanced patterns, that can be a significant benefit.

	

Tip

 I set the DataGrid ItemsSource property via code. There’s no reason you couldn’t set up a ViewModel (chapter 16) and bind the ItemsSource to an exposed Employees property. If you go with using the domain context object from code, follow the ViewModel/MVVM pattern when you do it; you’ll
 thank yourself later.

 	

I’ll cover the domain context class in more detail in various parts of this chapter, primarily in section 17.3 when I discuss update functionality.

 There’s another approach that’s easier to use and includes a ton of built-in functionality. Before making up your mind which
 approach you want to use, look at the DomainDataSource control.

 Using the DomainDataSource Control

 The DomainDataSource control provides an all-XAML way to interface with the domain service. I’ve heard this described as a bad thing, akin to
 wiring your UI directly to your database. I strongly disagree with that assessment, but I do agree that despite the utter
 simplicity of using the control, there are some drawbacks when it comes to testing, mocking, and application structure.

 Before making up your mind that the control is a Bad Thing, let’s look at what it can do. After all, some applications may
 benefit from this approach. Despite how it looks, it’s not like you’re binding VB3 UI controls directly to tables in an access
 database;[6] there are a few layers of abstraction in between.

 6 I see the old VB3/4/5/6 VCR data-binding control in my nightmares from time to time. It’s up there with the one about having
 a physics final today but having skipped the class all semester to spend time MUDding.

 To use the DomainDataSource control, you’ll need to add a Silverlight assembly reference to the RIA Services SDK assembly System.Windows.Controls.DomainServices. When that’s done, inside the LayoutRoot Grid of /Views/Home.xaml, add the following markup:

 <riaControls:DomainDataSource x:Name="DataSource"
 AutoLoad="True"
 QueryName="GetEmployees">
 <riaControls:DomainDataSource.DomainContext>
 <domain:EmployeeContext />
 </riaControls:DomainDataSource.DomainContext>
</riaControls:DomainDataSource>

 This markup sets up a new DomainDataSource control, tells it to automatically call the query when loaded, and sets the query name to the one that loads the employee
 information from the domain service. For this to work, you’ll also need to set up the riaControls and domain namespaces in the same XAML file. They are as follows:

 xmlns:riaControls="clr-namespace:System.Windows.Controls;
 assembly=System.Windows.Controls.DomainServices"
xmlns:domain="clr-namespace:Chapter17.Web.Services"

 The first namespace, riaControls, defines the location for the DomainDataSource control. The second defines the location for the generated domain context class: the client-side proxy for the domain service
 on the server.

	

Tip

 If you’re curious about where the client-side proxy is defined and what it looks like, select the Silverlight project and,
 from the Project menu, select Show All Files. Scroll down, and you’ll see a Generated_Code folder. In that folder, you’ll
 find a number of interesting files, but the one that contains the proxies and entity definitions is Chapter17.Web.g.cs.

 	

The DataGrid then needs to be bound to the new data source. Because the data source has an assigned context object, the data itself is
 located in the Data property:

 <my:DataGrid Grid.Column="0" Margin="5"
 ItemsSource="{Binding Data, ElementName=DataSource}" />

 What you’ve changed on the grid is the ItemsSource. The markup here binds the DataGrid to the data property of the DomainDataSource. Because the DataGrid instance is set up by default to autogenerate columns and show all data, you’ll end up with an application that looks like
 the previous example in figure 17.8 when run; the UI hasn’t changed, just the way you get data on the client. Be sure to comment out or remove the code you previously
 added.

 The DomainDataSource is easy to use. Although “Look ma, no code!” isn’t the most important reason to pick one approach over another (and in some
 cases can be a reason not to pick an approach), the domain data source is powerful and flexible enough to make it a real contender
 for how you connect to your domain service.

 One other reason I like the DomainDataSource control is because both the team and the community are working to come up with better approaches that allow using that control
 with a ViewModel directly. Yep, using your ViewModel while still taking advantage of most of the coolness of the DomainDataSource is on everyone’s radar.

 The DomainDataSource and the underlying domain context objects support updating as well as querying, of course. But before we look at that, it’s
 worth exploring one of the more compelling reasons to use the DomainDataSource control: filtering, sorting, grouping, and paging.

 17.3. Filtering, sorting, grouping, and paging

 User interfaces used to be simple to design because user expectations were so low. Character-mode terminals, difficult-to-memorize
 commands, and complex keystrokes that required keyboard function key overlays[7] were the norm at one point, with some approaches persisting even into the GUI era.

 7 During the ’80s and ’90s, there was a robust market for keyboard overlays for WordPerfect, WordStar, Lotus 123, and others.
 Most used the function keys in normal, shift, alt, and control modes, all for different commands.

 As applications gained more chrome functionality, things such as sorting and grouping became expected functionality. In the
 mid-’90s, I remember developing applications in Visual Basic, and the users assuming they could do things like sort grids
 using column headers, drag to rearrange, and so forth. Unfortunately, these assumptions didn’t come out until user-acceptance
 testing.

 These days, anything that helps meet the bar for base application functionality (for business applications, this is typically
 defined by what Microsoft Windows or Microsoft Office does in similar situations) is something I appreciate.

 One reason I appreciate the DomainDataSource control is how well it integrates with other client-side controls to allow for filtering, sorting, grouping, and paging of
 the data. Any of those features, done right and done well, can amount to a fair bit of code and a testing burden.

 Consider that you want to ensure they execute server-side for the best performance. You also have to handle the always-troublesome
 paging algorithms. What happens when users add a new item to a paged set? What happens when they sort? Fortunately, the RIA
 Services team has made intelligent decisions about behavior in each of these scenarios and implemented them into the code
 base.

 You’ll progressively add each of these capabilities—filtering, sorting, grouping, and paging—to the DomainDataSource-based version of your code, starting with filtering.

 17.3.1. Filtering

 Microsoft Excel and Microsoft SharePoint have brought filtering of table- or grid-based data up to the level of basic functionality
 for most applications. Proper filtering that performs efficiently isn’t a huge effort, but it’s a chunk of code that has to
 be maintained and tested. Having filtering support built in, so that all you need to provide is a filtering UI, is a huge
 benefit to most applications.

 The first step is to create a basic single-field filter UI. Modify the controls in the home page XAML so you have these three
 controls where the DataGrid alone used to be:

 <TextBlock Height="23" Width="84" Margin="6,10,0,0"
 HorizontalAlignment="Left" VerticalAlignment="Top"
 Text="Title Contains"
<TextBox x:Name="FilterText" Height="23" Margin="96,6,5,0"
 HorizontalAlignment="Stretch" VerticalAlignment="Top" />
<my:DataGrid x:Name="EmployeeGrid" Grid.Column="0" Margin="0 40 5 5"
 ItemsSource="{Binding Data, ElementName=DataSource}" />

 This markup creates some space (via the margins on the DataGrid) and fills it with a TextBlock and TextBox that you’ll use to gather filter information from the user. Although the DomainDataSource controls are smart enough to be able to filter on any column using a number of different operators, you’ll go with a straight
 contains filter on a single field to keep things simple.

 The next step is to wire the filter TextBox, named FilterText, to the data source and specify what field it’ll operate on. Before you do that, let’s look at how filtering is implemented
 on the DomainDataSource class.

 Filter Descriptors Explained

 Filtering is implemented via two properties on the DomainDataSource. The first is the FilterOperator, which can be And or Or and controls how the filter descriptors are combined. The second is the collection of FilterDescriptor objects named, appropriately, FilterDescriptors.

 Filter descriptors are discrete filter instructions that may be combined to produce an effective filter for a query. Conceptually, they’re applied
 like a where clause in SQL, although the actual implementation is ultimately up to how the provider implements the composed where functionality
 in a LINQ query. Table 17.3 shows the properties of the FilterDescriptor class.

 Table 17.3. Properties of the FilterDescriptor class

 	
 Property

 	
 Description

	IgnoredValue
 	The value to be used for something like (all), where you don’t want any value appended to the filter.

	IsCaseSensitive
 	If true, the filter is case-sensitive for string values. How this works depends on settings in the data store used by the
 domain service.

	Operator
 	A FilterOperator that explains the relationship between PropertyPath and Value. Supported values are shown in table 17.4.

	PropertyPath
 	The path to the data item to be evaluated against the Value property. This is the property of your entity.

	Value
 	The value to use for the filter condition.

Of these properties, the relationship Property Operator Value is the most interesting and the most relevant to filtering. A number of operators are supported, each of which is described
 in table 17.4.

 Table 17.4. Values for the Operator property of the FilterDescriptor

 	
 Value

 	
 Description

	IsLessThan
 	The data value must be smaller than the filter value.

	IsLessThanOrEqualTo
 	The data value must be smaller than or equal to the filter value.

	IsEqualTo
 	The data value must be equal to the filter value.

	IsNotEqualTo
 	The data value must be different from the filter value.

	IsGreaterThanOrEqualTo
 	The data value must be larger than or equal to the filter value.

	IsGreaterThan
 	The data value must be larger than the filter value.

	StartsWidth
 	The data value must start with the filter value (strings only).

	EndsWidth
 	The data value must end with the filter value (strings only).

	Contains
 	The data value must contain the filter value (strings only).

	IsContainedIn
 	The data value must be contained in the filter value (strings only).

It may seem somewhat redundant to list the descriptions for each of these values given their names, but there are three important
 bits of information to get from this table:

 	A pretty comprehensive set of filter operators is available.

 	The order of the statement, read left to right, is Property Operator Value.

 	Some of the operators make sense only on strings, because they perform substring operations.

The reason for the lengthy member names is twofold: you can’t have operators like >= in XAML without ugly and unreadable escaping like >=, and you need an enumeration to set the property in XAML or from code. Primarily, the list is optimized for using from XAML.

 Because it’s optimized for XAML, you’d think the properties would all support binding—and you’d be right. It’s possible to
 build a complete filter expression using filters created using binding, meaning you can provide the user with a drop-down
 list of fields, a drop-down list of operators, and a TextBox for the value. All six properties of the FilterDescriptor class are dependency properties that support binding.

 Using Filter Descriptors with the DomainDataSource

 Despite the binding flexibility, you’ll implement a simple filter where only the filter value itself is bound. You already
 have the TextBox for the value in place, so the next step is to add the associated FilterDescriptor to the DomainDataSource. This markup shows the updated filter including the descriptor and FilterOperator:

 <riaControls:DomainDataSource x:Name="DataSource"
 AutoLoad="True" FilterOperator="And"
 QueryName="GetEmployees">
 <riaControls:DomainDataSource.DomainContext>
 <domain:EmployeeContext />
 </riaControls:DomainDataSource.DomainContext>
 <riaControls:DomainDataSource.FilterDescriptors>
 <riaControls:FilterDescriptor PropertyPath="Title"
 Operator="Contains"
 Value="{Binding Text, ElementName=FilterText}" />
 </riaControls:DomainDataSource.FilterDescriptors>
</riaControls:DomainDataSource>

 This markup augments the DomainDataSource to add a FilterDescriptor. That FilterDescriptor targets the Title property of the Employee entity and checks to see that it contains (using the Contains operator) the current value in the Text property of the FilterText field on the same page.

 When run, you’ll have an experience like that shown in figure 17.9.

 Figure 17.9. Filtering the results to those that contain Manager in the title. This was done entirely with the DomainDataSource and a little in-XAML binding.

 [image:]

 Type in the Title Contains field, and pause for a second or two. The pause will kick in the filter, executing the query on
 the server and displaying the results in the grid.

 By adding just a few lines of XAML, you were able to add property-value filtering (which also works with sorting, grouping,
 and paging, as you’ll see in the next sections) without having to wire up anything at the database level or even the service
 level. This makes sense. Like all the other features in this section, filtering should be a given for an application; there’s
 little point in each of us implementing the same tired old filtering code again and again. The same goes for sorting, the
 next topic.

 17.3.2. Sorting

 You may have already noticed that the DataGrid, when wired to the DomainDataSource (or any other ICollectionView or even IList), provides automatic sorting capabilities when you click column headers. The DomainDataSource also provides a way to perform a default sort on the data using SortDescriptor objects. For instance, to have the data sorted by Title and HireDate by default, you can add the following markup to the inside of the DomainDataSource markup:

 <riaControls:DomainDataSource.SortDescriptors>
 <riaControls:SortDescriptor Direction="Ascending"
 PropertyPath="Title" />
 <riaControls:SortDescriptor Direction="Ascending"
 PropertyPath="HireDate" />
</riaControls:DomainDataSource.SortDescriptors>

 When you run the application, you’ll see that the DataGrid isn’t ignorant of the sort. In most applications, when you sort queries in the database, the client has no idea the data
 was sorted. With the DomainDataSource, the DataGrid is aware. See figure 17.10 for the proof in the column headers.

 Figure 17.10. Data sorted with the DomainDataSource. Note the column headers.

 [image:]

 Of course, you can also sort server-side as part of the query code, as you’ve seen earlier in this chapter. In either case,
 sorting is recommended for grouping and required for paging.

 17.3.3. Grouping

 Supporting grouping is as easy as sorting. Following the trend we’ve shown so far, grouping is also accomplished through a
 collection of descriptors. In this case, the descriptors are GroupDescriptor objects. For example, if you want to group on Title, you add the following XAML to the DomainDataSource markup:

 <riaControls:DomainDataSource.GroupDescriptors>
 <riaControls:GroupDescriptor PropertyPath="Title" />
</riaControls:DomainDataSource.GroupDescriptors>

 This relies on the previous sort for the grouping to make any sense. As expected, this integrates nicely with the DataGrid. Figure 17.11 shows the DataGrid control with the new grouping in place.

 Figure 17.11. The DataGrid with grouping, courtesy of the DomainDataSource control

 [image:]

 With the grouping in place, you can still sort using the column headers, but the sort happens within the defined grouping.

 The final and perhaps most interesting of the features is the support for paging.

 17.3.4. Paging

 There currently exist three main UI paradigms for dealing with a large number of records. You can preload everything and allow
 scrolling, you can implement an infinite scroll that performs lazy fetching of additional data (a good example is the Bing image search), or you can use data paging. When
 the web started to define how we built applications, data paging became the most common way to deal with large volumes of
 data. After all, if it’s good enough for Google, it must be good enough for your application, right?

 I’ve never been a fan of paging, but it certainly has some advantages when it comes to getting a lot of information in front
 of a user while reducing network traffic and database load.

 When you’re building RIA Services applications, paging is accomplished with a combination of two items:

 	The PageSize and LoadSize in the DomainDataSource

 	A DataPager control

The PageSize property of the DomainDataSource controls how many items appear on a single page. The LoadSize controls how many items the DomainDataSource loads into memory at one time. For example, if you have a PageSize of 15 and a LoadSize of 30, every other page will cause a network hit to the server to get the next 30 items. Because RIA Services doesn’t know
 the usage pattern of your application, these two knobs are left entirely up to you.

 For this example, you’ll set the PageSize to 15 and the LoadSize to 30. The DomainDataSource opening tag with these two properties set looks like this:

 <riaControls:DomainDataSource x:Name="DataSource"
 PageSize="15"
 LoadSize="30"
 AutoLoad="True"
 FilterOperator="And"
 QueryName="GetEmployees">

 The next thing to do is to add a DataPager control (easiest if dragged onto the surface or markup) and change the margins on the DataGrid to make room at the bottom. The updated DataGrid and new DataPager markup should read as follows:

 <my:DataGrid x:Name="EmployeeGrid"
 Grid.Column="0"
 Margin="0 40 5 40"
 ItemsSource="{Binding Data, ElementName=DataSource}" />

<my:DataPager Grid.ColumnSpan="2"
 Source="{Binding Data, ElementName=DataSource}"
 HorizontalAlignment="Stretch"
 VerticalAlignment="Bottom" />

 With this markup in place, run the application and navigate through the pages. The application, still with sorting and grouping
 in place, should look like figure 17.12.

 Figure 17.12. The DataPager in use with a page size of 15 and a load size of 30

 [image:]

 In order to make the most of the DataPager, its source must be set to an IEnumerable that implements the IPagedCollectionView interface, an example of which is the DomainDataSource control. The data must also be sorted, either via the query on the server or via sorting specified in the DomainDataSource. If the data isn’t presorted, you’ll get an exception at runtime.

 Datapager Properties

 The DataPager is a fully templatable control, supporting the lookless model Silverlight and WPF are famous for. In addition, the DataPager has a number of properties that control its behavior and appearance.

 In addition to helpful utility properties such as CanMoveToFirstPage and CanMoveToNextPage, the DataPager includes a DisplayMode property that is used to control which buttons and boxes are shown in the UI. Table 17.5 shows the different values this property can be set to.

 Table 17.5. DisplayMode property values and their associated UI

 	
 Property

 	
 Runtime appearance

	FirstLastNumeric
 	

 [image:]

	FirstLastPreviousNext
 	

 [image:]

	FirstLastPreviousNextNumeric
 	

 [image:]

	Numeric
 	

 [image:]

	PreviousNext
 	

 [image:]

	PreviousNextNumeric
 	

 [image:]

As you can see, the control provides a number of different paging interfaces, covering the gamut typically seen in applications
 and on the Web. For the ones that show page numbers, you can use the NumericButtonCount property to control how many numbers are displayed. In addition, you can use the AutoEllipsis property to display an ellipsis, rather than a number, to indicate more pages.

 The DomainDataSource control makes it easy to add common data-browsing capabilities—filtering, sorting, grouping, and paging—to your applications.
 Combined, these are high-value, high-effort development tasks in most applications. Having the functionality built in saves
 you from having to reinvent the wheel or tell your customer “no” when the feature is requested (or worse, assumed).

 So far, everything you’ve done has been with read-only data. Real applications typically need to update data as well.

 17.4. Updating data

 Most data-oriented applications have to do more than read data; they need to perform inserts, updates, and deletes as well.
 In the discussion about the domain service methods, I touched on the three data modification methods that begin with the prefixes
 Insert, Update, and Delete.

 WCF RIA Services makes updating data as easy as retrieval. The domain service methods are trim, and autogenerated for the
 usual cases. The client-side domain context methods (which we’ll cover in 17.4.2) that provide access to those services are
 also autogenerated.

 In this section, you’ll start with creating a user interface using the DataForm that allows you to update the data in the domain service. We’ll then look at the client-side counterpart of the domain service:
 the domain context. Finally, we’ll go through how the entity class and its buddy class with validation and display metadata
 work together to make it easier to have a robust and feature-rich data container on the client.

 17.4.1. Using the DataForm UI

 The DataForm, like the DataGrid, is extremely powerful when matched up with WCF RIA Services and the DomainDataSource control. The DataForm, in fact, was originally part of WCF RIA Services before it was pulled out and made part of the Silverlight Toolkit. The
 DataForm is covered in full in chapter 12, so I won’t repeat that content here. But you’ll use it to provide the update UI for the entities in this application.

 The right side of the page has been empty so far. You’ve been leaving room for the DataForm in that space. This bit of XAML, to be placed right after the DataGrid element and before the DataPager element, will get you set up for a detail view of the selected item in the grid:

 <toolkit:DataForm Grid.Column="1"
 Margin="5 40 0 40"
 ItemsSource="{Binding Data, ElementName=DataSource}"
 CurrentItem="{Binding SelectedItem,
 ElementName=EmployeeGrid, Mode=TwoWay}"/>

 This sets up a DataForm that uses the same ItemsSource as the DataGrid, so it’s also bound to the DomainDataSource control. The CurrentItem property is bound to the DataGrid’s selected item, keeping the form in sync with what’s shown in the DataGrid. Note that the binding is two-way, so the DataForm navigation controls can be used. Figure 17.13 shows the application with the new addition.

 Figure 17.13. The application with the details DataForm on the right, populated from the selected grid item. Row navigation works from both the grid and the DataForm.

 [image:]

 Navigate around using the grid and using the navigation buttons at upper right. When you’re sure it’s all working, you’ll
 wire up the save functionality.

 Saving Changes

 To submit the changes to the server, you need to have a button wired up to the SubmitChangesCommand of the DomainDataSource. That command does the equivalent of calling SubmitChanges on the domain context from code. Place this right below the DataForm markup:

 <Button x:Name="SubmitChanges"
 Grid.Column="1" Margin="5"
 HorizontalAlignment="Right" VerticalAlignment="Top"
 Height="25" Width="120"
 Command="{Binding SubmitChangesCommand, ElementName=DataSource}"
 Content="Submit Changes" />

 This adds a Submit Changes button at upper right on the screen. In theory, you have a fully working application at this point;
 you can perform CRUD[8] operations using the UI. Use the + button to add a new record and the - button to delete the current record. When you’re
 finished, click the new Submit Changes button to call the SubmitChanges function behind the scenes. This function, like most everything else in the DomainDataSource control, relies on the generated domain context object. In this case, it’s the EmployeeContext.

 8 Note that due to the relationship with the Contact object and other relationships, deletes and inserts currently fail. Updates work fine. We’ll take care of that later in this
 chapter.

 17.4.2. The domain context

 One of the types of classes that’s generated based on the domain service is a client-side domain context. The domain context
 is 1:1 with the domain service. In your solution, for example, you have an EmployeeService domain service and an EmployeeContext domain context.

 In addition to the previously seen query methods, the domain context has a number of properties and methods. The most commonly
 useful are shown in table 17.6, using Employee as the example.

 Table 17.6. The properties and methods of the generated domain context class

 	
 Member

 	
 Description

	CalculateVacationBonus method
 	The method generated from your server-side Invoke operation

	EntityContainer property
 	Internal, but important for holding the actual entities and tracking insert and delete operations

	HasChanges property
 	True if the domain context is tracking any entities with changes (updates, inserts, deletes)

	IsLoading property
 	True if the domain context is loading data

	IsSubmitting property
 	True if the domain context is submitting changes

	RejectChanges method
 	Rejects all pending changes and reverts objects back to their unedited state

	SubmitChanges method
 	Sends all pending change operations to the domain service for processing

Invoke Operations

 In this example, a client-side invoke operation was created for the CalculateVacationBonus function you added to the domain service. Because all network calls in Silverlight are asynchronous, you can’t call the function
 and get the result. Instead, you need to set up a callback. For example, listing 17.2 includes the client-side code to call the CalculateVacationBonus function and do something useful with the results.

 Listing 17.2. Calling an invoke operation from the client

 [image:]

 This code, from the code-behind for Home.xaml, shows how to call an invoke method. Note the parameters to the CalculateVacationBonus client-side method. On the server, the method took only a single parameter. On the client, it takes that same parameter, plus a callback and a
 data item. In this case, the data item is the Employee you’re working with. You use that because you need access to the Employee inside the callback method.

 The callback method executes when the asynchronous call has completed. The single parameter for the callback is an InvokeOperation object with a number of properties, including the UserState and error information.

 In this method, you check for an error. If there’s no error, you cast the UserState back to an Employee object, check it for null, and then use the function return value (the calculated bonus) and add that to the existing vacation hours. That object is
 then marked as HasChanges = true on the entity. The entity is then eligible for the SubmitChanges call.

 Submitchanges

 Referring back to table 17.6, you’ll notice that no Insert, Update, or Delete methods were generated. Instead, those are called via SubmitChanges.

 SubmitChanges is an asynchronous batching operation. It handles sending all method calls to the server, with the exception of Invoke and Query operations.

 When you insert new items or delete existing items, those operations occur only on the client. When you call SubmitChanges, it loops through the entities on the client and sends to the server those entities that require a persistence operation,
 calling the appropriate operation for each entity.

 To cancel all pending changes for the domain context, call the RejectChanges method. It reverts entities back to their previous state, removes any newly inserted items, and reinstates any deleted items.

 The domain context is the client-side proxy for the domain service, as well as the container within which all instances of
 a given entity reside. It provides an interface for invoke operations and query operations, as well as an implicit interface
 to the insert, update, and delete operations through the SubmitChanges method.

 The entity classes Employee and Contact both inherit from a common client-side base class that provides much of the required change-tracking and other plumbing functionality.
 This class is named, appropriately enough, Entity.

 17.4.3. The Entity class

 Each client-side entity you work with, Employee and Contact in this example, derives from the Entity base class. This class provides a number of important change-tracking properties and methods.

 Table 17.7 shows the most important public members of the Entity base class

 Table 17.7. Important public members of the Entity class

 	
 Member

 	
 Description

	EntityState
 	The data state of this entity: Detached, Unmodified, Modified, New, or Deleted

	HasChanges
 	Indicates that this entity has changed since the last time it was saved

	HasValidationErrors
 	Indicates that this entity has failed validation

	ValidationErrors
 	Returns a collection of validation errors

	GetOriginal
 	Returns an instance of the unchanged entity from cache

Your derivations of the Entity class (the Contact class and the Employee class) also include all the individual properties that correspond to the fields coming from the database. Because this code
 was generated by the tools and not shared with the server, the properties have INotifyPropertyChanged and several other events injected into them. In this way, your otherwise-plain classes on the server can support binding
 and events on the client. To give you an idea of the robustness of the properties set up, listing 17.3 shows the Gender property for the Employee.

 Listing 17.3. The generated client-side Employee Entity property Gender

 [image:]

 The setter for the property includes a number of calls to generated methods. Those methods perform validation and take care
 of INotifyPropertyChanged notification as well as raise information events, such as DataMemberChanging and DataMemberChanged.

 In this example, the OnGenderChanging and OnGenderChanged methods are partial methods that you can implement in a buddy class on the client, should you wish. A buddy class is a partial class you create to augment an existing partial class. In this way, you can modify the behavior of the class
 without introducing an inherited class.

 Note the use of attributes to tell the UI that this is a required field with a maximum length of 1. This information was automatically
 inferred from the entity model on the server at code-generation time. For that reason, changes to the database will require updates to the .edmx model and then
 automatic downstream updates here.

 In addition to the validation and display attributes described in chapters 12 and 13 and shown in this example, a number of other attributes are used in the entity. Although we’ll get to how to use the special
 validation and display metadata attributes in the next section, table 17.8 shows some of the helper attributes you’ll likely run across.

 Table 17.8. Interesting attributes on the Employee Entity

 	
 Attribute

 	
 Description

	DataMember
 	Indicates that this property should be serialized by WCF and is part of the data contract.

	Association
 	Specifies that the property is part of a relationship, such as a foreign key.
 You’ll find this on the nested entities such as Contact.

	XmlIgnore
 	Indicates that this property shouldn’t be serialized. Useful on nested entities.

	RoundtripOriginal
 	Sends the object back to the server with its original value when the object is updated, even though this property hasn’t changed.

	Key
 	Indicates that this field is part of the primary key.

Seeing the attributes in place provides a little insight into how Silverlight keeps track of various properties. For example,
 you now know how the client knows that a certain field is the primary key for the entity.

 Although the Entity class provides extensibility points on the client, it’s rare for an application to use them for validation or anything remotely
 like a business function. Extensions provided on the client can’t be used back at the server and so can become a disconnect
 between the two models. In order to keep the two in sync, the RIA Services team provided a server-side model for extending
 the entity: metadata.

 17.4.4. Using validation and display metadata

 When you first created the domain service on the server, the wizard offered an option to generate the associated metadata
 class. This metadata class is a partial class that exists on the server and relates to a single entity. If you open the EmployeeService.metadata.cs
 file in the server project, you’ll see both the Contact and Employee partial classes.

 These partial classes include nested classes with the same public properties that are also defined in the entity classes.
 Those are just placeholders, providing a location on which you can define metadata to control the display and validation of
 the fields.

 But wait—why am I covering metadata in this section? Because this metadata is useful only if the client understands it. Silverlight
 and parts of ASP.NET are currently the only clients that can make sense of attribute-based annotation metadata for validation
 and display.

 Controlling Display

 The DataForm labels and the DataGrid column headers have that ugly PascalCase text formatting. It’d be nicer to introduce actual spaces to make the fields more
 human-readable. You may even want to provide some tooltip descriptive information for certain fields.

 In the EmployeeService.metadata.cs class on the server, scroll down to the Employee partial class and the nested EmployeeMetadata class within it. Find the BirthDate field, and add this attribute:

 [Display(Name="Birth Date",
 Description="The date this person was born.")]
public DateTime BirthDate { get; set; }

 That says to use the string “Birth Date” for column headers and field labels; and if a tooltip or other description approach
 is available, use this description. Figure 17.14 shows how this looks at runtime.

 Figure 17.14. The Display annotation in use on the DataGrid on the left and the DataForm on the right. At lower right is the Description property in a tooltip.

 [image:]

 As you learned in chapter 13, annotations can be used for more than display. One of the more powerful uses is for validation.

 Adding Validation

 You get data type validation and the inferred validation (string length, required, and so forth) from the database for free.
 But you’ll typically want to add your own validation to make the UI more bulletproof.

 In the EmployeeService.metadata.cs class, scroll down to the Employee partial class and the nested EmployeeMetadata class within it. Find the Gender field, and add this attribute:

 [RegularExpression("[MmFf]",
 ErrorMessage="Specify (M)ale or (F)emale, please")]
public string Gender { get; set; }

 Run the application, and attempt to type something else into the Gender field. The regular expression restricts the valid input choices to M, m, F, and f. The metadata entered on the server was automatically carried over to the client. If you open the Chapter17.Web.g.cs file on the client
 and navigate to the generated Gender property, you’ll see the addition of the new attribute:

 [DataMember()]
[RegularExpression("[MFmf]",
 ErrorMessage="Specify (M)ale or (F)emale, please")]
[Required()]
[StringLength(1)]
public string Gender
...

 The StringLength, Required, and DataMember attributes were previously there as part of the inferred metadata coming from the data model.[9]

 9 For more information on annotating your classes, look at chapters 12 and 13.

 Annotation for display and validation is a nice, easy way to add significant robustness to your classes. Because the information
 goes into metadata buddy classes, you don’t have to worry about the autogeneration process stepping on them.

 What you’ve seen so far is a model where the entity generated by the data access layer, typically based directly on tables
 or views on the database, makes its way from the database through the service to the client and into the UI. That’s okay sometimes,
 especially when you have good mapping at the data access layer, but an additional layer of abstraction could help protect
 the UI from changes in the database. That layer is called a presentation model.

 17.5. Loose coupling: using presentation models

 So far, you’ve created a tight coupling between your database and the UI due to bringing the data structure through from back
 to front. RIA Services enables you to create entities that combine data from multiple entities in the data access layer—for
 example, combining the Contact and Employee classes into a single logical entity.

 When using a presentation model, you can respond to changes in the database or database model by changing only how the presentation
 model aggregates that data. Also, you can simplify the client code by designing a model that aggregates only those fields
 that are relevant to users of the client.

 Although conceptually similar, the presentation model here shouldn’t be confused with the Presentation Model pattern. The
 pattern shares some similar goals and approaches, but the RIA Services approach is more server-centric.

 I consider the presentation model to be one of the most important additions to WCF RIA Services in terms of making it work
 with best practices and patterns such as MVVM. As great as RIA Services is without it, it always bothered me that the data
 model was logically coupling the UI to the services to the data access layer to the database. Change one, and they all have
 to change—not a good situation to be in.

 Ideally, you’d have a good object-persistence mapper that would flatten objects and relationships and handle all this for
 you, along with the knowledge to use it. That alone would eliminate most uses of the presentation model approach, including
 the example I’ll include in this chapter. In many cases, developers don’t have this available to them, or don’t have the knowledge
 required to set up an existing one, or perhaps are further constrained by other business or environmental factors.

 The presentation model approach is also good for combining data from multiple sources. You can create a single entity that’s
 composed of fields from multiple databases.

 In all of these cases, the presentation model approach can be a huge help.

 In this section, you’ll take the employee service and model you’ve been working with and convert (more correctly, rewrite)
 it to introduce a presentation model. I’ll show you how to query data, update data, and insert data using this new model.

 17.5.1. Creating the employee presentation model

 You’ve been unable to perform insert and update operations on the Employee class so far because it’s tied to the Contact class. This relationship is purely a database thing. It makes little or no sense from an end-user perspective; they’re logically
 part of the same entity. This is a common scenario, because we tend to factor out things such as contact information, address
 information, and more in the database, and it always causes no end of annoyances at the UI level.

 You have two goals in creating an employee presentation model:

 	Expose the contact information as first-class fields of a logical employee entity.

 	Limit the other fields that are returned to the client.

The first step in creating a presentation model is to create a class named EmployeePresentationModel on the server project. Create this class in the server-side Models folder. Listing 17.4 shows the code to use.

 Listing 17.4. The EmployeePresentationModel class

 public class EmployeePresentationModel
{
 [Key]
 [Display(AutoGenerateField = false)]
 public int EmployeeID { get; set; }
 [Required]
 public string NationalIDNumber { get; set; }
 [Required]
 public string FirstName { get; set; }
 [Required]
 public string LastName { get; set; }
 [Required]
 public bool NameStyle { get; set; }
 [Display(AutoGenerateField=false)]
 public int ContactID { get; set; }
 [Display(Name="Email Address")]
 public string EmailAddress { get; set; }
 [Required]
 public int EmailPromotion { get; set; }
 public string Phone { get; set; }
 [Required]
 public string Title { get; set; }
 [Display(Name="Birth Date")]
 public DateTime BirthDate { get; set; }
 [Required]
 [Display(Name = "Hire Date")]
 public DateTime HireDate { get; set; }
 [Required]
 public string LoginID { get; set; }
 [Required]
 public string MaritalStatus { get; set; }
 [Required]
 [StringLength(1)]
 [RegularExpression("[MFmf]",
 ErrorMessage = "Specify (M)ale or (F)emale, please")]
 public string Gender { get; set; }
 [Required]
 public bool SalariedFlag { get; set; }
 [Required]
 public int VacationHours { get; set; }
 [Required]
 public int SickLeaveHours { get; set; }
 [Required]
 public bool CurrentFlag { get; set; }
}

 In this listing, you create an aggregate Employee class that includes fields from both the Employee and Contact classes you’ve been using so far. Also, because the metadata is no longer inferred from the database or read using the metadata
 buddy class you previously created, you add a minimum amount of metadata to ensure that required fields are marked as such
 and to make a few of the names easier to read.

 In your own classes, you’ll need to make sure you account for required fields. If you can’t infer them when performing an
 insert or update operation, you’ll need to include them in the class so the user can input their values.

 This new class now abstracts you from the database. If the structure of the database changes, you can change the query and
 update operations—the UI won’t be affected (assuming it’s a structural change, not a change in what defines an employee).

 The next step is getting this information down to the client. To do that, you’ll need to create at least one query operation
 and wire it through all the way to the DomainDataSource you’ve been using.

 17.5.2. Supporting query operations

 The presentation model approach requires a completely new domain service and new query and update operations. The new domain
 service class will no longer be directly based on the LinqToEntitiesDomainService base class, but will instead be based directly on the DomainService base class.

 For lack of a better name, I called the domain service EmployeeContactService, because it aggregates both the Employee and Contact entities. Create a new class file with this name, and place it in the Services folder on the server project. Listing 17.5 contains the code for this service.

 Listing 17.5. The EmployeeContactService

 [EnableClientAccess]
public class EmployeeContactService : DomainService
{
 private AdventureWorksEntities _context = new AdventureWorksEntities();

 public IQueryable<EmployeePresentationModel> GetEmployees()
 {
 return from e in _context.Employees
 orderby e.Title, e.HireDate
 select new EmployeePresentationModel()
 {
 BirthDate = e.BirthDate,
 ContactID = e.ContactID,
 CurrentFlag = e.CurrentFlag,
 EmailAddress = e.Contact.EmailAddress,
 EmailPromotion = e.Contact.EmailPromotion,
 EmployeeID = e.EmployeeID,
 FirstName = e.Contact.FirstName,
 LastName = e.Contact.LastName,
 NameStyle = e.Contact.NameStyle,
 NationalIDNumber = e.NationalIDNumber,
 Phone = e.Contact.Phone,
 SalariedFlag = e.SalariedFlag,
 SickLeaveHours = (int)e.SickLeaveHours,
 Title = e.Title,
 HireDate = e.HireDate,
 Gender = e.Gender,
 VacationHours = (int)e.VacationHours
 };
 }
}

 The main code in this function performs a standard mapping of properties from two entities to one other. Note that even with
 the custom methods, you’re still able to return IQueryable and to allow composition on the client.

 Wiring Up to the UI

 Because you have the same query name as you used in the EmployeeService domain service, to use the new service from the UI, you need to make only one change-change the DomainContext property of the DomainDataSource to point to the EmployeeContactContext:

 <riaControls:DomainDataSource.DomainContext>
 <!--<domain:EmployeeContext />-->
 <domain:EmployeeContactContext />
</riaControls:DomainDataSource.DomainContext>

 Be sure to build before making this change; otherwise, the EmployeeContactContext class won’t exist on the client. Note that you didn’t have to update any service references or add a new service reference—the
 WCF RIA Services tooling took care of that for you. That alone is worth the price of admission.

 When you run the application, you’ll see something like figure 17.15. The new UI has fewer fields and looks a lot better than what you had before.

 Figure 17.15. The UI using the new EmployeePresentationModel class. Note how you have fields from the contact object now available to the UI.

 [image:]

 You have a lot fewer fields in the UI now. Some, like Birth Date, which have had the Display attribute applied, have better labels and column headers. You could set the display name for the remaining ones, and the
 display order, as well using the same attribute. For space reasons, I didn’t include the attributes in the listings here.

 The presentation model approach certainly works in this situation. It’s not meant just for flattening objects, although you
 can use it for that. It also shines in situations where you need to do joins in LINQ and combine the results into a single
 logical object.

 Retrieval is fine for a demo, but the real test comes when you need to use this information in an update operation.

 17.5.3. Supporting update operations

 To perform an update using the presentation model approach, you’ll need to map from the presentation model class to the back
 to the entities used in the backing store. Essentially, you’re doing the reverse of what you did in the query operation.

 Listing 17.6 shows how to map from the presentation model back to the database entities.

 Listing 17.6. The UpdateEmployee method

 [image:]

 [image:]

 You’re definitely in manual-plumbing land at this point. Of course, if you want to have separation between two layers, you’ll
 have some mapping. Here, the mapping is in a reusable function so the Insert method can use it. Note how you check the original employee to see if there were any changes before setting the modified
 date for the Contact object. You’ll want to do the same for the Employee object; I left that out for space considerations.

 The code you write in this function will be pretty dependent on your choice of data access layer. The code here works well
 with the Entity Framework objects.

 The next type of operation you’ll need to support is the insertion of new objects. This one can get tricky due to the creation
 of dependent entities and the generation of keys.

 17.5.4. Supporting insert operations

 Update operations are easy, because you often don’t have to worry much about entity relationships or foreign keys. Insert operations usually have a few extra steps to perform in addition to the mapping.

 Listing 17.7 shows the InsertEmployee function. This function makes use of the MapEmployee function from the previous listing.

 Listing 17.7. The InsertEmployee function

 [Insert]
public void InsertEmployee(EmployeePresentationModel employeePM)
{
 Contact contact = _context.Contacts.CreateObject();
 Employee emp = _context.Employees.CreateObject();
 emp.Contact = contact;

 MapEmployee(emp, employeePM);

 contact.ModifiedDate = DateTime.Now;
 contact.rowguid = Guid.NewGuid();
 contact.PasswordHash = "Adventure";
 contact.PasswordSalt = "xyzzy";

 emp.ModifiedDate = DateTime.Now;
 emp.rowguid = Guid.NewGuid();

 _context.Contacts.AddObject(contact);
 _context.Employees.AddObject(emp);

 _context.SaveChanges();
}

 This function creates the Contact and Employee data entities and sets the contact to be the contact for the Employee. It then calls the MapEmployee function from the previous listing to map the presentation model properties to the data entity properties. The next step
 is to set a few fields; the password-related fields here are dummies, but the modified date fields are correct. The last step
 before saving changes is to add the Contact and Employee to the entity sets. Finally, with a call to SaveChanges, the information all goes in the database.

 I’ve included the query, update, and insert methods. For space reasons, I left out delete. This is a pretty simple function
 to build following the pattern established by the code included here.

 The presentation model approach allows you to continue to benefit from WCF RIA Services while also benefitting from the increased
 decoupling of the layers. Although the database-through-UI coupling won’t be a problem for many applications, for anything
 expected to survive into a maintenance mode, it can be a real pain.

 The presentation model approach isn’t without its issues. First, you have to write more CRUD operation code, including mapping.
 This code has a habit of getting out of sync; it’s also a great place to find typos and copy-paste errors. When using this
 approach, I highly recommend building tests around your mapping functions and keeping them up to date.

 So far, you’ve seen normal CRUD operations and simple validation. I threw in one business function for calculating a vacation
 bonus, but otherwise you haven’t seen any real business logic. The next section covers how to include this critical code in
 a RIA Services application.

 17.6. Business logic

 A business application without business logic is just a forms-over-data maintenance application. Although apps like that are
 easy to build using WCF RIA Services, they’re not the usual case.

 Business logic usually consists of discrete functions that implement discrete rules. Some may come in the form of validation,
 others may look like calculated fields, and still others may be helper methods that return a current piece of data from an
 external system.

 There are several places where you can put logic in your code. I’ve tried to capture some general guidelines in table 17.9.

 Table 17.9. Where to put your business logic

 	
 Type

 	
 Location

	Data validation
 	Attributes on metadata or entities.

	Field validation rule
 	Noncritical: custom validators.
 Critical: code in domain methods on the domain service. Prevent persistence if criteria aren’t met.

	External data access
 	Domain methods on the server calling out to web services.
 Services classes on the client, if the result won’t be required for server-side validation.
 Shared code services proxy or shared binary.

	Calculated field
 	If self-contained within the entity, as an additional property of the entity.
 If requires integration with other data or services, as a method on the domain service or shared code or a binary file.

	General calculation or business logic
 	As a method on the domain service if a server round-trip is okay or required.
 As a method in shared code or a binary file if needed on the client and server with local calculation for speed.

	On insert/update logic
 	In the Insert/Update method in the domain service.

	Reusable logic shared between projects
 	Domain service.
 Shared code or binary file.

	Anything else
 	Shared code or binary file.

You’ve already seen how to write methods on the domain service. In the previous chapter, we also looked at how to write business
 services on the client. In this section, we’ll look at how to place logic in entities as well as how to share logic or code
 between the client and server.

 17.6.1. Business logic in entities

 When a calculated field is part of the business logic for your application, one place you can place it is directly on the
 entity. This makes sense if the data required for the calculation exists on the entity itself. If the data is external, consider
 making the calculation a service that you call to get the results.

 A reasonable type of calculation might be, for example, one to take into account your start date and how many vacation hours
 you have when deciding if you can go in the hole to take a longer vacation than you would’ve been allowed to take if going
 strictly by the book.

 Going back to the original generated classes, add the function in listing 17.8 to the Employee class using a new file named Employee.shared.cs stored in the \Shared folder on the web project.

 Listing 17.8. An example business method on the Entity class

 using System;

namespace Chapter17.Web
{
 public partial class Employee
 {
 public int AllowedOverdraftVacationHours
 {
 get
 {
 DateTime today = DateTime.Today;

 int yearsInService = today.Year - HireDate.Year;

 if (HireDate.AddYears(yearsInService) > today)
 yearsInService--;
 if (yearsInService < 1)
 return 0;
 else if (yearsInService < 5)
 return 20;
 else
 return 40;
 }
 }
 }
}

 The example in listing 17.8 performs a simple calculation. The key thing to note is that it’s using information already available as part of the parent
 class. I don’t recommend this approach if external information is required.

 17.6.2. Sharing code

 So far, you’ve put all the business logic into methods of the domain service or used it as a property of the entity. The domain
 service is a great place to put logic you want accessible to the client or server but executed on the server. For methods
 that match, including them on the entity class is a great idea. Sharing code and controlling where it executes is important.

 Shared Source Files

 In the previous example, you saw how the code went into a file with the .shared.cs extension. That naming is a convention
 understood by RIA Services. Anything with a .shared.cs name is copied to the client on build as part of the code-generation
 process. As long as you keep the namespaces clean, this provides an easy way to share classes between the tiers.

 Linked Source Files

 Visual Studio has long had the capability to link source files from one project to another. As long as the contained source
 code (including namespace-using statements) is compatible across both projects, it’ll work fine.

 This is source-level sharing. I’ve used it with WCF applications and also when dual-targeting Silverlight and WPF. Just consider
 one project the master, and add the file to it. Then, choose Add Existing Item in the other project, navigate to the source,
 and click the Add drop-down button so you can add a link. As my favorite black-helmeted villain would say, “All too easy.”

 Shared Binaries

 Silverlight 4 along with .NET 4 introduced another option for sharing: .NET 4 applications can add references to a Silverlight
 class library, as long as that class library uses only certain namespaces. The allowable references and namespaces are strict
 but are likely to expand over time.

 I’ve never been a big fan of this approach, because it feels a little dirty to me. But for this type of use, it should be
 perfectly acceptable.

 Conceptually, one of the most important pieces of business logic for any given application is often its security model. Business
 applications must be able to secure data and functions in a way that integrates with existing web sites and systems without requiring yet another mechanism for
 maintaining security for the application.

 17.7. Authentication and authorization

 Authentication is the process of identifying a user. Authorization is the process of granting the user access to parts of the system. Business applications almost always require some form
 or authentication and typically lock down critical functions using an authorization scheme. It’s a rare system indeed where
 every user has complete access to every function. But until RIA Services came along to help with this, implementing security
 in Silverlight applications was a difficult process at best.

 WCF RIA Services authentication is built on ASP.NET authentication and membership. I won’t go into great detail on how to
 configure ASP.NET, but any tutorial on ASP.NET membership and authentication configuration will apply here.

 The Silverlight Business Application template includes much of the authentication infrastructure built in. Normally, you’d
 have to add in the authentication domain service and the appropriate entity classes. Fortunately, those are all there, just
 waiting to be activated.

 In this section, we’ll look through the authentication and authorization capabilities of ASP.NET, surfaced through WCF RIA
 Services. We’ll examine the UI and services that the template provides and that build on the RIA Services libraries. Throughout,
 we’ll look at both forms-based authentication and Windows authentication.

 17.7.1. Authentication

 Authenticating users usually involves getting their user name and some sort of secret password (or PIN or biometric data),
 and comparing the pair against data stored in the database. Figure 17.16 shows the built-in Login dialog that comes with the Silverlight Business Application template.

 Figure 17.16. The Login dialog in the Silverlight Business Application template. Note the registration link on the left.

 [image:]

 The dialog is wired up to the AuthenticationService on the web site, which in turn uses ASP. NET membership. It also includes an appropriate validation display for incorrect
 username and password combinations. Figure 17.17 shows this view.

 Figure 17.17. The Login dialog when an incorrect password was entered

 [image:]

 There are two ways of validating this information in a RIA Services application: forms-based authentication and Windows authentication.

 Forms-Based Authentication

 Forms-based authentication (FBA) is cookie-based authentication in ASP.NET. Almost any ASP.NET web site with an on-page login
 form is using a form of forms-based authentication. Rather than relying on system tokens and security credentials provided
 by the operating system, each site or application can store user information in a database. For the vast majority of applications
 running outside the firewall, this is the way security is handled.

 To configure the users and roles for an application using FBA, you’ll use the ASP.NET application configuration site. This
 site writes to the aspnetdb database (or other database if so configured) where the membership data is stored. More often
 than not, this database is located in the App_Data folder on the ASP.NET site.

 To configure this application, select the web project and choose the ASP.NET Configuration option from the Project menu. Figure 17.18 shows the menu you’ll see.

 Figure 17.18. The Project menu showing the ASP.NET Configuration option selected. This is the option used to configure the authentication
 database. If you don’t see it, make sure the right project is selected.

 [image:]

 You can create new users through the administration site. In addition, the Silverlight Business Application template includes
 a self-service registration UI (which you can disable if you desire) for allowing self-registration of users. This form, shown
 in figure 17.19, is wired up through the UserRegistrationService on the server.

 Figure 17.19. The Register dialog in the Silverlight Business Application template. For most business applications, you’ll secure or eliminate
 this dialog.

 [image:]

 Configuring the site and application to use FBA is a two-step process. The first step is to open the web.config file and ensure
 that the authentication mode is set to Forms:

 <authentication mode="Forms">
 <forms name=".Chapter17_ASPXAUTH" />
</authentication>

 The second step is to open App.xaml.cs and check the constructor to ensure the Authentication property of the web context is set to FormsAuthentication:

 webContext.Authentication = new FormsAuthentication();

 With those two options set and a user created, you’re ready to try out the application. Try logging in via the link on the
 main page. You’ll see the UI change to indicate your login name, and the credential information itself will be available throughout
 the application.

 Although FBA is the most common form of authentication, we can’t forget good old Windows authentication.

 Windows Authentication

 Windows authentication relies on the Windows operating system and security infrastructure to provide the appropriate authentication
 scheme and tokens. For behind-the-firewall systems, Windows authentication is usually the better approach because there’s
 no separate login process. Instead, the Silverlight application participates in single sign-on (SSO) along with other applications
 on the client.

 To configure the application to use Windows authentication, first set the authentication mode in web.config:

 <authentication mode="Windows" />

 Then, in the App.xaml.cs file, modify the constructor to set the authentication to Windows:

 webContext.Authentication = new WindowsAuthentication();

 The business application template has startup logic that attempts to automatically resolve the credentials of the signed-in
 user. You’ll find with WindowsAuthentication that a second or two after the application launches, you’re greeted with your credentials in the upper-right corner. No Login
 dialog required!

 Requiring Authentication

 Regardless of which approach you use (forms or Windows), you can require authentication from code or via attributes. On a
 domain service, it’s easy to mark a single method as requiring a valid user account by applying the RequiresAuthentication attribute:

 [Insert]
[RequiresAuthentication]
public void InsertEmployee(EmployeePresentationModel employeePM)

 Technically, this falls under authorization because you’re granting access based on security. But the authorization system
 is even more powerful than this.

 17.7.2. Authorization

 When you authorize users, you’re granting them permission to perform an action. Authorization comes in many forms: client-side
 code can check to see whether users are authenticated, as well as whether they’re members of a specific role; and server-side
 code or attributes can grant access to individual service methods.

 The usual approach when working with authorization in ASP.NET and in RIA Services is to use role-based authorization. This
 is especially useful with forms-based authentication, because the roles can be configured using the same ASP.NET administration
 application.

 Role-Based Authorization

 Although you could enable access to individual features on a user-by-user basis, role-based authorization is by far the most
 common way to grant access. In this model, users belong to roles, such as Manager, Administrator, or HR, and individual permissions
 are granted to the roles.

 To enable roles in the RIA Services application, ensure that the roleManager entry in web.config is set to true:

 <roleManager enabled="true" />

 When that setting is confirmed and you’ve created some users and added them to appropriate roles, you can start to modify
 the application to look for those roles. The easiest and most powerful check you can make is on the service methods on the
 domain service. This is done via the RequiresRole attribute:

 [Insert]
[RequiresRole("Manager")]
public void InsertEmployee(EmployeePresentationModel employeePM)

 The RequiresRole attribute takes in one or more role names as strings. When the client attempts to access the service method, the server consults
 the security tokens provided and checks to see whether the user has the correct role. If the user isn’t a member of that role,
 the service call results in an exception, which you must trap on the client.

 You must handle this exception and gracefully inform the user that access isn’t allowed. When using the DomainDataSource control, you do this in the LoadedData event:

 private void DataSource_LoadedData(object sender, LoadedDataEventArgs e)
{
 if (e.HasError)
 {
 if (e.Error is DomainOperationException &&
 e.Error.Message.Contains("denied"))
 {
 MessageBox.Show("Insufficient permissions for operation. Nyah!");
 e.MarkErrorAsHandled();
 }
 }
}

 In the case of the EmployeeContactService, you require the Manager role for both the Insert and Update methods and RequiresAuthentication for the query method. For methods tagged with RequiresRole, you don’t need to also add RequiresAuthentication; it’s assumed in the role check.

 The second way to check for authorization is to use the client-side WebContext object. This is useful to enable/disable menu options and buttons, as well as to perform client-side checks. Don’t rely on
 this as your only security check, though, because you always want the server to be secured.

 Here’s a simple security check in the code-behind:

 if (WebContext.Current.User.IsInRole("Manager"))
 SubmitChanges.Visibility = Visibility.Visible;
else
 SubmitChanges.Visibility = Visibility.Collapsed;

 I put this in the OnNavigatedTo handler, but that’s not the best place. Instead, you want to reevaluate any UI changes like this whenever the user logs in
 or logs out.

 WCF RIA Services makes it easy to integrate authentication and authorization into your own application. Because it builds
 on ASP.NET membership and security, you know it’s using a well-known and time-tested approach, which is already supported
 by the community.

 17.8. Summary

 I hope I’ve given you a taste of what WCF RIA Services can help you accomplish. Despite the depth of this chapter, we’ve just
 scratched the surface. RIA Services supports transactions and concurrency schemes with conflict resolution; and it supports
 composed entities where master-detail relationships can be saved in one chunk. There are many more attributes that can be
 used, and variations on the domain services.

 RIA Services is big. Although associated with Silverlight, it’s a product in and of itself. In this chapter we’ve looked at
 the business application template and used it as the basis for developing a RIA Services application. We then dove right into
 the WCF-based domain services both to expose the data via OData, JSON, and SOAP, as well as via the native approach with Silverlight.
 The domain service included all the usual CRUD (Create, Read, Update, Delete) operations, plus the ability to support arbitrary
 functions.

 We also looked at the sometimes controversial DomainDataSource control, and its amazing support for filtering, sorting, grouping, and paging. This control saves a ton of time and a large
 amount of code.

 The DomainDataSource and the domain service combined to help us update data. The natural UI counterpart to all this was the DataForm control. In fact, using the DataForm, the DomainDataSource, and the generated domain service, you had a complete CRUD UI with no code at all.

 One unfortunate side effect of all that was a tight coupling of the entities from the database all the way through to the
 UI. Although it requires some extra effort, WCF RIA Services has an answer for this coupling in the presentation model approach.
 In that, you have to create entities and the domain service from scratch, but once done, everything else “just works.”

 What about business logic? You can put your business logic inside invoke methods on a domain service, as methods added to
 the partial class for the entity, and as shared code that can be downloaded to the client as part of the build process. Not
 to mention that you can use the standard Silverlight-supported approaches of shared source or shared binaries.

 Finally, I’ve yet to see a serious business application that didn’t include authentication and authorization of some sort.
 No one wants to leave data-oriented applications open for anyone to mess around with. Silverlight and WCF RIA Services can
 take advantage of the security models in ASP.NET, building on proven technologies and knowledge you may already possess.

 All this combines to be an intense and robust platform for building business applications—and it’s only at version 1!

 These last few chapters have been interesting and hopefully useful, but pretty heads-down on the business side of things.
 In the next chapter, we’ll take a break from virtual number crunching and dive into the vector graphics system and pixel shaders.

Part 3. Completing the experience

 In Silverlight, developers are often exposed to tasks that used to be delegated solely to design staff. Graphics, animation,
 behaviors, styles, and templates are all the domain of the designer and integrator but are crucial for the developer to understand
 in order to work effectively with them. We’ll even take a look at creating your own controls that build upon the templating
 system.

 Additionally, media features are often an additional component of larger applications. In these chapters you’ll learn how
 to integrate the various types of video and audio media as well as work directly with bitmap-based images.

 We’ll wrap up this part, and the book as a whole, with a discussion about an often overlooked part of our projects: the plug-in
 and application installation experiences. You’ll learn how to handle situations where the user doesn’t have Silverlight installed
 as well as how to create application preloaders.

Chapter 18. Graphics and effects

 This chapter covers

 	Creating basic shapes and geometries

 	Painting with brushes

 	Working with effects

 	Creating pixel shader effects

In previous chapters, you’ve seen interesting controls that include text, rectangles, and sometimes even more complex shapes.
 Even the lowly button, for example, has text, a couple of rectangles, and a gradient background. Controls such as the popup
 ChildWindow control have drop shadows to enhance their appearance and help them stand out in the eyes of the user. Those buttons and
 other controls use vector graphics, brushes, and effects.

 Graphics within Silverlight are vector-based; they’re mathematically based objects. They’re ideal for Internet distribution
 because vector-based graphics can be condensed to a smaller file size than their raster counterparts for images larger than
 a thumbnail.

 Vector-based graphics are more than eye candy—they’re an extension to accessibility. In traditional application environments,
 users with diminished eyesight generally have to squint to absorb visual content such as text and icons. Through scalability, these same users can fully enjoy your application with ease. Vector graphics retain full fidelity when scaled
 up, something you can’t say about bitmap images. Vectors actually improve in quality when scaled up.

 Silverlight also includes rich support for effects to help make your elements and graphics stand out. The built-in drop shadow
 and blur effects have endless uses throughout the application. When you want to do something more than a shadow or a blur,
 there’s also the ability to create your own pixel shader effects, just as you can in WPF and DirectX/XNA.

 Throughout this chapter, you’ll see the expanse of graphical capabilities within Silverlight. We’ll start by discussing the
 most primitive shapes such as lines, rectangles, and ellipses. After discussing the concept of geometries, we’ll lead you
 down a new path and show you how to paint shapes and alter the way in which they’re rendered. From there, you’ll add a little
 effect to your elements before venturing into the sometimes arcane world of custom pixel shaders.

 18.1. Shapes

 Shapes are probably the most regularly used elements when creating an illustration because a Shape is the common basis for the Line, Rectangle, and other Shape elements, which you’ll see shortly. Each Shape is painted by two fundamental Brush elements. (Brushes are discussed later.) The first Brush, called Stroke, defines the outline of a Shape. The second Brush, called Fill, describes how everything inside the boundary of the Shape should be painted. It’s possible to create a Shape without specifying the Stroke and Fill properties, but if you don’t specify the Stroke or Fill, you’ll basically paint an invisible shape.

 Throughout this section, we’ll build on the concept of an abstract Shape to create concrete visual elements. A lot of these visual elements will resemble shapes you learned on Sesame Street, and some of these shapes will be a bit more complex. Table 18.1 provides a list of the shapes we’ll discuss.

 Table 18.1. The Shape objects available within Silverlight

 	
 Element

 	
 Description

	Line
 	A thin, continuous mark that connects two points

	Ellipse
 	In layman’s terms, a circle that can be stretched vertically or horizontally

	Path
 	A collection of connected curves and lines

	Polygon
 	A series of connected lines that make a closed shape

	Polyline
 	A series of connected straight lines

	Rectangle
 	A four-sided plane with four corners

The following sections describe each Shape listed in the table in greater detail. The shapes are described in order of relative complexity. The Path element is part of a more general category that’ll be covered later in this chapter. First, you’ll learn about the most rudimentary shape, the
 Line.

 18.1.1. Lines

 A Line is, obviously, a continuous line that connects two end points. Listing 18.1 shows a basic line between two points and the XAML used to define it.

 Listing 18.1. A basic Line in black

 Result:

 [image:]

 XAML:

 <Canvas x:Name="myCanvas" Height="20" Width="50">
 <Line Stroke="Black" X1="10" Y1="10" X2="30" Y2="30" />
</Canvas>

 Four double-precision floating-point properties (X1, Y1, X2, Y2) specify the x and y coordinate pairs that define the beginning and ending points of the Line. Without these properties, your Line will be little more than a figment of your imagination.

 Interestingly, these coordinates don’t represent an absolute position. They specify a relative position within the coordinate space of the containing layout panel. Note that, although Silverlight won’t automatically define the
 endpoints of a Line, the coordinate space of the containing layout panel may be automatically created. Regardless, the values of the coordinates
 represent pixel values, whether absolute or relative positioning is used.

 The Canvas used in listing 18.1 has a specific area. But, as described in chapter 7, some layout panels provide a more dynamic layout environment. For instance, if this Line were the second element defined within a StackPanel, it could end up in a potentially undesirable location because the coordinates within a Line element specify a relative position.

 18.1.2. Rectangle

 A Rectangle does exactly what its name implies—it defines a rectangle. The Rectangle in Silverlight provides one interesting tidbit that we’ll discuss after listing 18.2, which shows the basic syntax of a Rectangle.

 Listing 18.2. A basic Rectangle in black with no fill

 Result:

 [image:]

 XAML:

 <Rectangle Stroke="Black" Width="104" Height="64"
 Canvas.Left="8" Canvas.Top="8"/>

 This example shows an archetypal Rectangle. The key properties involved in the definition of the element are Width and Height. Collectively, these double properties assist in creating the boundary of the Rectangle. You can determine the area of the Shape by multiplying these two property values. (This nostalgic mathematical fact isn’t the interesting tidbit alluded to earlier.)

 The Rectangle element exposes two properties, RadiusX and RadiusY, which empower you to easily round off the corners of any Rectangle. Before you see an example of this, consider how difficult this task would be in traditional HTML. Although there are several
 options, the most straightforward involves importing an image. Examine the XAML in listing 18.3, and note how simple it is to implement this elegant feature.

 Listing 18.3. A Rectangle with rounded corners

 Result:

 [image:]

 XAML:

 <Rectangle Stroke="Black" Width="104" Height="64"
 Canvas.Left="8" Canvas.Top="8" RadiusX="10" RadiusY="10"/>

 The RadiusX and RadiusY double-precision floating-point properties allow you to set the radius of the ellipse used to round off the corners of the
 Rectangle. (You’ll see the Ellipse element in two shakes of a pup’s tail.) By lopsidedly setting the RadiusX and RadiusY properties, you can give a Rectangle a bulging look, as shown in listing 18.4.

 Listing 18.4. A bulging Rectangle

 Result:

 [image:]

 XAML:

 <Rectangle Stroke="Black" Width="104" Height="64"
 Canvas.Left="8" Canvas.Top="8" RadiusX="15" RadiusY="50"/>

 The bulging Rectangle is a fun little option. But occasionally, you may need a fully rounded shape. This is where the Ellipse comes into play.

 18.1.3. Ellipse

 An Ellipse defines a basic circular shape. Listing 18.5 shows a basic Ellipse and the XAML used to define it.

 Listing 18.5. The syntax and look of a basic Ellipse

 Result:

 [image:]

 XAML:

 <Ellipse Stroke="Black" Width="104" Height="64"
 Canvas.Left="8" Canvas.Top="8"/>

 The Ellipse doesn’t provide any properties that distinguish it from the Rectangle. The difference lies in how the two Shape elements are rendered. It’s important to recognize that Silverlight provides this type of Shape for your graphical needs—if for nothing else than to know that you can draw a circle. Now, let’s move on to something a little
 more interesting: the Polyline.

 18.1.4. Polyline

 What if you need to create an application that represents an EKG (or ECG) monitor? How do you go about displaying the electrical
 impulses projected by a heart? Or, perhaps you need to create a line chart that represents sales or financial trends. These
 types of scenarios can entail large amounts of data that may be best illustrated through intricate line-art drawings.

 You could use several Line elements, but this could prove to be cumbersome. The Polyline provides a nice alternative that allows you to create a series of connected line pieces using a single element. Listing 18.6 shows a Polyline in action.

 Listing 18.6. A Polyline

 Result:

 [image:]

 XAML:

 <Polyline Stroke="Black"
 Points="10,50 20,40 23,44 25,49 40,12 46,50 51,42 55,50" />

 The Polyline uses a space-delimited list of coordinate pairs to define the line drawn. Although each coordinate pair in this example contains
 integer values, each value represents a Point. A Point is represented in the form of [X-Coordinate],[Y-Coordinate]. Collectively, all these Point elements are stored in the Points property. In being consistent with the Line, each Point within the list is relative to the containing layout panel.

 18.1.5. Polygon

 The Polygon goes one step beyond the Polyline by ensuring that the Shape is always closed. A Polyline creates an open Shape, whereas a Polygon always draws a closed Shape. Listing 18.7 shows a basic trapezoid created with a Polygon.

 Listing 18.7. A Polygon

 Result:

 [image:]

 XAML:

 <Polygon Stroke="Black" Points="10,40 20,10 60,10 70,40 10,40" />

 Like the sibling Polyline, the Polygon also utilizes the Points property. This property works in a manner similar to the Points property of the Polyline; but regardless of your selected coordinates, the Polygon always draws a closed shape.

 Listing 18.8 shows a Polyline and a Polygon using the same coordinates to illustrate how Silverlight renders them.

 Listing 18.8. An open shape (Polyline) compared to a closed shape (Polygon)

 Result:

 	

 [image:]
 	

 [image:]

	XAML:
 	

	
 <Polyline
 Stroke="Black"
 Fill="White"
 Points="10,40 20,10 60,10 70,40"
/>

 	
 <Polygon
 Stroke="Black"
 Fill="White"
 Points="10,40 20,10 60,10 70,40"
/>

The available shapes provide a lot of flexibility to give your users valuable graphical experiences. Occasionally, your requirements
 may exhaust the abilities of the various shapes. A Geometry is a much more versatile option that can address the inadequacies of a Shape.

 18.2. Geometry

 At first, a Geometry seems similar to a Shape because they both describe 2D shapes. Unlike Shape elements, Geometry objects aren’t UIElement entities. UIElement objects have an intrinsic ability to render themselves and expose graphical properties, such as Opacity, that Geometry objects don’t have. Why, then, would you consider using a Geometry? Well, a Geometry allows you to do the following:

 	Define a geometric shape. For example, imagine creating a user-based rating system. In this scenario, you may want to use
 a set of five-pointed stars to rate an item. Although a star isn’t a predefined shape, you could create this element using
 a Geometry.

 	Define a region for clipping. Clipping is used to limit the visible area of another object.

 	Define a region that can be used for hit-testing.

These compelling reasons make examining the Geometry object a worthwhile endeavor. A Geometry is an abstract concept. In fact, you can’t deliberately create just a Geometry. Instead, you must rely on the geometrical concepts spread across three basic categories: simple, path, and composite geometries.

 18.2.1. Simple geometries

 A simple geometry reflects some of the primitive geometrical shapes that you’ve already seen. Simple geometries—such as LineGeometry, RectangleGeometry, and EllipseGeometry—are provided to help you illustrate lines, rectangles, and circles.

 A LineGeometry illustrates the geometry of a basic line. Listing 18.9 shows how to draw a line using a LineGeometry element. The example also shows what the same markup would look like if you used the basic Line Shape described earlier.

 Listing 18.9. Comparison between Line and LineGeometry

 Result:

 [image:]

 Path XAML:

 <Path Stroke="Black" StrokeThickness="1" >
 <Path.Data>
 <LineGeometry StartPoint="8,8" EndPoint="72,72" />
 </Path.Data>
</Path>

 Line XAML:

 <Line X1="8" Y1="8" X2="72" Y2="72"
 StrokeThickness="1" Stroke="Black" />

 From this example, you can see that using the Line Shape XAML is much more compact. But you can use also Geometry objects for clipping and hit-testing.

 In addition to the LineGeometry, a RectangleGeometry is also provided. The RectangleGeometry defines the geometry of a rectangle. Listing 18.10 shows how to create a rectangle using a RectangleGeometry and also provides the corresponding definition with the Rectangle Shape.

 Listing 18.10. A RectangleGeometry compared to a Rectangle

 Result:

 [image:]

 Path XAML:

 <Path Fill="Navy" Stroke="Black" StrokeThickness="1">
 <Path.Data>
 <RectangleGeometry Rect="8,8,64,64" />
 </Path.Data>
</Path>

 Rectangle XAML:

 <Rectangle Stroke="Black" StrokeThickness="1" Height="64"
 Width="64" Canvas.Top="8" Canvas.Left="8" Fill="Navy">
</Rectangle>

 Like the Rectangle Shape, the RectangleGeometry also supports corner-rounding via the RadiusX and RadiusY properties. Finally, we’ll review the EllipseGeometry for the sake of completeness (see listing 18.11).

 Listing 18.11. An EllipseGeometry compared to an Ellipse

 Result:

 [image:]

 Path XAML:

 <Path Fill="Navy" Stroke="Black" StrokeThickness="1">
 <Path.Data>
 <EllipseGeometry Center="40,40" RadiusX="36" RadiusY="36" />
 </Path.Data>
</Path>

 Elipse XAML:

 <Ellipse Canvas.Left="4" Canvas.Top="4" Height="72" Width="72"
 Fill="Navy" StrokeThickness="1" Stroke="Black" />

 As useful as lines, rectangles, and circles are, occasionally, you need to create a more dynamic shape. To create more complex
 shapes, Silverlight supports the use of the PathGeometry.

 18.2.2. Path geometries

 A PathGeometry enables you to construct complex, detailed illustrations composed of a variety of arcs, curves, and lines. These intricate
 depictions consist of a collection of PathFigure objects, with each PathFigure representing a small section of the overall illustration. In turn, each PathFigure is made up of a series of PathSegment objects. Each PathSegment object describes a small piece of the overall figure. Before we get too far ahead of ourselves, let’s review a basic example
 that shows a variety of meaningless squiggly lines for the sake of illustration (see listing 18.12).

 Listing 18.12. A PathGeometry

 Result:

 [image:]

 XAML:

 <Canvas
 Width="100" Height="100" Background="Gray">
 <Path Stroke="Red" StrokeThickness="2">
 <Path.Data>
 <PathGeometry>
 <PathGeometry.Figures>
 <PathFigure StartPoint="5,5">
 <PathFigure.Segments>
 <ArcSegment Size="10,10" RotationAngle="30"
 Point="20,10" IsLargeArc="False"
 SweepDirection="Clockwise" />
 <BezierSegment Point1="40,0" Point2="60,60" Point3="75,90"/>
 <LineSegment Point="80,15" />
 <PolyLineSegment Points="50,90 3,7" />
 <QuadraticBezierSegment Point1="90,90" Point2="70,60"/>
 </PathFigure.Segments>
 </PathFigure>
 </PathGeometry.Figures>
 </PathGeometry>
 </Path.Data>
 </Path>
</Canvas>

 This example uses five different segment types to create random squiggles. Each individual segment sequentially connects to
 the previous one, much like cars in a freight train. Table 18.2 shows all the available segment types.

 Table 18.2. Available segment types

 	
 Segment type

 	
 Usage

	LineSegment
 	A straight line connecting two points

	PolyLineSegment
 	A series of lines

	ArcSegment
 	An elliptical arch between two points

	BezierSegment
 	A cubic Bézier curve between two points

	PolyBezierSegment
 	A series of cubic Bézier curves

	QuadraticBezierSegment
 	A quadratic Bézier curve

	PolyQuadraticBezierSegment
 	A series of quadratic Bézier curves

From the options presented, it’s clear to see that you have tons of flexibility when it comes to creating a geometrical shape.
 Sometimes you may need to explicitly use other geometry objects. In these scenarios, you can use a composite geometry.

 18.2.3. Composite geometries

 You may need to create a complex shape that consists of disconnected entities. Or, maybe you need to use Geometry entities, and you want to combine their area. The GeometryGroup adequately addresses these scenarios. A GeometryGroup is a collection of Geometry entities. Listing 18.13 illustrates how to orchestrate a composite geometry.

 Listing 18.13. A composite geometry to make a key

 Result:

 [image:]

 XAML:

 <Path Stroke="Navy" StrokeThickness="8" Fill="Navy">
 <Path.Data>
 <GeometryGroup FillRule="Evenodd">
 <EllipseGeometry Center="20,40" RadiusX="15" RadiusY="15" />
 <LineGeometry StartPoint="20,40" EndPoint="70,40" />
 <LineGeometry StartPoint="66,38" EndPoint="66,55" />
 <LineGeometry StartPoint="55,38" EndPoint="55,55" />
 <EllipseGeometry Center="14,40" RadiusX="8" RadiusY="8" />
 </GeometryGroup>
 </Path.Data>
</Path>

 This listing illustrates how to create a key using a complex geometry via the GeometryGroup. It also introduces a property called FillRule, which determines how conflicting areas should be filled. There are two acceptable values: EvenOdd and Nonzero.

 EvenOdd, the default used in the previous example, is pretty simple. It begins at a point and goes outside of the overall shape,
 counting each line that it intersects along the way. If the count is odd, the point is inside the shape. If the count is even,
 the point is outside the shape. This rule determines how to fill the area.

 Alternatively, if the previous example had used the Nonzero option, the hole to place the key on a key ring would’ve been filled because Nonzero counts the number of lines it intersects along the way. But it also considers the direction of the line. Based on the direction,
 the count is either incremented or decremented. At the end of counting, if the total is zero, it’s assumed that the point
 is inside the overall shape.

 To take control of how an element is filled, you can use one of Silverlight’s many brushes.

 18.3. Brushes

 Up to this point, you’ve seen how to define the boundaries of the various Shape elements. It’s equally important to understand how to fill the area within a Shape. To paint the interior of a Shape or a variety of other visual elements, you must choose from myriad Brush options including SolidColorBrush, LinearGradientBrush, RadialGradientBrush, ImageBrush, and VideoBrush.

 18.3.1. SolidColorBrush

 The SolidColorBrush is without a doubt the most rudimentary of the Brush options. A SolidColorBrush uses a single, solid color to paint an area. Listing 18.14 shows a basic circle using a SolidColorBrush.

 Listing 18.14. A basic SolidColorBrush with the color Navy Blue

 Result:

 [image:]

 XAML:

 <Ellipse Stroke="Black" StrokeThickness="3"
 Width="64" Height="64" Canvas.Left="8" Canvas.Top="8">
 <Ellipse.Fill>
 <SolidColorBrush Color="Navy" />
 </Ellipse.Fill>
</Ellipse>

 This SolidColorBrush uses a System.Windows.Media.Color property named Color to specify which color fills the area. Properties of this type can accept values represented in one of the following ways:

 	A predefined named color, such as Navy, that matches one of the names supported in Internet Explorer, .NET Framework, and
 Windows Forms. Importantly, the Color class in Silverlight belongs to the System.Windows.Media namespace. In Windows Forms, it belongs to the System.Drawing namespace.

 	A Red, Green, Blue (RGB) hexadecimal string in the format of #RxGyBz. For instance, in listing 18.14, you could replace Navy with its hexadecimal representation, #000080.

 	An RGB hexadecimal string with an alpha channel in the format of #aRGB. This format gives you a greater range than the typical RGB hexadecimal string because it has built-in support for the opacity
 channel. As an example, you could convert Navy to #AA000080 to give the color a washed-out appearance.

These color options give you a lot of flexibility when you’re defining a SolidColorBrush. If you’re using XAML, it’s much more convenient to explicitly set the Fill property of a Shape, or any property that’s a Brush, and let Silverlight automatically convert the value to a SolidColorBrush for you. Because of this, you could condense the previous markup to this:

 <Ellipse Stroke="Black" StrokeThickness="3" Fill="Navy"
 Width="64" Height="64" Canvas.Left="8" Canvas.Top="8">
</Ellipse>

 Although this explicit approach is convenient, it’s still important to remember the SolidColorBrush, because if you’re trying to use solid colors through managed code, you’ll need to use the System.Windows.Media.SolidColorBrush class.

 Occasionally, you may want something richer and more vibrant than a solid color. Thankfully, Silverlight provides several
 alternatives such as the LinearGradientBrush.

 18.3.2. LinearGradientBrush

 The LinearGradientBrush paints an area with a gradual, soothing shift between colors along a theoretical line. This Brush can shift between one or more colors through the use of a series of predefined locations represented as GradientStop elements. Each GradientStop element specifies where one color should shift to another. Listing 18.15 shows a basic LinearGradientBrush that uses two GradientStop elements to shift from one Color to another.

 Listing 18.15. A LinearGradientBrush rendered on a diagonal

 Result:

 [image:]

 XAML:

 <Ellipse Stroke="Black" StrokeThickness="3"
 Width="64" Height="64" Canvas.Left="8" Canvas.Top="8">
 <Ellipse.Fill>
 <LinearGradientBrush>
 <GradientStop Color="Navy" Offset="0" />
 <GradientStop Color="White" Offset="1" />
 </LinearGradientBrush>
 </Ellipse.Fill>
</Ellipse>

 This Ellipse illustrates how the LinearGradientBrush can be used to shift from Navy in the upper-left corner to White in the lower-right corner. Each GradientStop in the LinearGradientBrush specifies an Offset property that determines where the color, specified in the Color property, should be reached within the Brush coordinate space. But how does the Offset property know that 0 means the upper-left corner and 1 means the lower-right corner?

 The Offset property relies on two other properties, which are defined within the LinearGradientBrush definition itself. These two System.Windows.Point-based properties are StartPoint and EndPoint and ultimately determine the beginning and ending of a gradient. Collectively, these two properties define a rectangular
 boundary in which the Offset property works. This coordinate space can best be visualized as shown in figure 18.1, where each corner displays a Point value.

 Figure 18.1. The Brush coordinate space

 [image:]

 By default, the StartPoint property is set to represent the upper-left corner (0, 0) of this coordinate space. Conversely, the EndPoint defaults to represent the lower-right corner (1, 1) of the coordinate space. You can manipulate both property values to take
 full control of the range in which the gradient occurs, as well as the direction.

 Imagine taking the previous example and making the gradient run horizontally instead of diagonally. This can be accomplished
 by altering the StartPoint and EndPoint property values, as shown in listing 18.16.

 Listing 18.16. A LinearGradientBrush rendered horizontally

 Result:

 [image:]

 XAML:

 <Ellipse Stroke="Black" StrokeThickness="3"
 Width="64" Height="64" Canvas.Left="8" Canvas.Top="8">
 <Ellipse.Fill>
 <LinearGradientBrush StartPoint="0,0" EndPoint="1,0">
 <GradientStop Color="Navy" Offset="0" />
 <GradientStop Color="White" Offset="1" />
 </LinearGradientBrush>
 </Ellipse.Fill>
</Ellipse>

 Although you could’ve rotated the imaginary gradient line by altering the Offset property values of each of the GradientStop elements, the StartPoint and EndPoint properties give you control over the entire range of the gradient. This fact becomes particularly important when you begin
 to consider using multiple color transitions.

 Both the LinearGradientBrush and the RadialGradientBrush, which you’ll see shortly, allow you to define as many GradientStop elements as you want. The more GradientStop elements that are added, the more important it is to understand the relationship between the Offset property and the StartPoint and EndPoint properties. Listing 18.17 shows how to use multiple GradientStop elements by adjusting the Offset property.

 Listing 18.17. A horizontal LinearGradientBrush with multiple transitions

 Result:

 [image:]

 XAML:

 <Rectangle StrokeThickness="0" Width="200"
 Height="64" Canvas.Left="8" Canvas.Top="8">
 <Rectangle.Fill>
 <LinearGradientBrush StartPoint="0,0" EndPoint="1,0">
 <GradientStop Color="Yellow" Offset="0" />
 <GradientStop Color="Orange" Offset=".45" />
 <GradientStop Color="Blue" Offset=".55" />
 <GradientStop Color="Green" Offset="1" />
 </LinearGradientBrush>
 </Rectangle.Fill>
</Rectangle>

 As the previous examples have shown, the LinearGradientBrush provides you with a lot of opportunity to add richness to your applications. Occasionally, you may want to add a sense of
 depth to your graphics. Although Silverlight supports only 2D graphics, you can still deliver the illusion of depth by using
 a RadialGradientBrush.

 18.3.3. RadialGradientBrush

 The RadialGradientBrush is similar to the LinearGradientBrush except that the color transitions begin from an originating Point. As the Brush radiates from the center, it gradually paints elliptical transitions until a GradientStop is encountered. This process continues from one GradientStop to the next until each one has been rendered. Listing 18.18 illuminates a basic RadialGradientBrush.

 Listing 18.18. A RadialGradientBrush

 Result:

 [image:]

 XAML:

 <Ellipse Width="75" Height="75" Stroke="Black">
 <Ellipse.Fill>
 <RadialGradientBrush>
 <GradientStop Color="Black" Offset="0"/>
 <GradientStop Color="Black" Offset="1"/>
 <GradientStop Color="Gray" Offset="0.5"/>
 </RadialGradientBrush>
 </Ellipse.Fill>
</Ellipse>

 As this example shows, the brush begins at the center of the Ellipse by default. This originating Point can be customized in one of two ways. The first approach involves specifying a Point value within the Center property. The Center Point represents the focal point of the outermost ellipse of the gradient. Alternatively, or in conjunction with the Center, you can use the GradientOrigin property to specify the Point that defines where the radial gradient emanates from.

 As a radial gradient is rendered, it grows from the GradientOrigin in a circular fashion. Sometimes it’s necessary to use a more elliptical gradient instead of a pure circular effect. To define
 an elliptical gradient, you need to utilize the RadiusX and RadiusY properties, which are consistent with the properties of the same name from the Ellipse element. Listing 18.19 compares several ellipses using different RadiusX and RadiusY properties, which both default to .5.

 Listing 18.19. Comparing uses of the RadiusX and RadiusY properties

 Result:

 [image:]

 XAML:

 <Canvas Width="245" Height="75" Background="White">
 <Ellipse Width="75" Height="75" Stroke="Black">
 <Ellipse.Fill>
 <RadialGradientBrush>
 <GradientStop Color="Black" Offset="0"/>
 <GradientStop Color="Black" Offset="1"/>
 <GradientStop Color="Gray" Offset="0.5"/>
 </RadialGradientBrush>
 </Ellipse.Fill>
 </Ellipse>
 <Ellipse Width="75" Height="75" Canvas.Left="85"
 Stroke="Black">
 <Ellipse.Fill>
 <RadialGradientBrush RadiusX=".25">
 <GradientStop Color="Black" Offset="0"/>
 <GradientStop Color="Black" Offset="1"/>
 <GradientStop Color="Gray" Offset="0.5"/>
 </RadialGradientBrush>
 </Ellipse.Fill>
 </Ellipse>
 <Ellipse Width="75" Height="75" Canvas.Left="170"
 Stroke="Black">
 <Ellipse.Fill>
 <RadialGradientBrush RadiusY=".25">
 <GradientStop Color="Black" Offset="0"/>
 <GradientStop Color="Black" Offset="1"/>
 <GradientStop Color="Gray" Offset="0.5"/>
 </RadialGradientBrush>
 </Ellipse.Fill>
 </Ellipse>
</Canvas>

 As the previous examples show, you can use a RadialGradientBrush to provide basic linear and radial effects. Although these Brush elements are appropriate in certain situations, occasionally you need to deliver a richer, more textured effect. Textures
 are often delivered via images, which can be painted on visual elements using an ImageBrush.

 18.3.4. ImageBrush

 The ImageBrush allows you to fill an area with an image instead of a solid or shifting color. The ImageBrush utilizes a picture specified within the ImageSource property to paint a raster graphic. This Brush supports both .jpg and .png formats to deliver a textured effect to your visual elements. Listing 18.20 shows a basic ImageBrush using an image named man.png.

 Listing 18.20. An example of an ImageBrush

 Result:

 [image:]

 XAML:

 <Ellipse Width="60" Height="60" Stroke="Black">
 <Ellipse.Fill>
 <ImageBrush ImageSource="http://www.silverlightinaction.com/man.png" />
 </Ellipse.Fill>
</Ellipse>

 As you can imagine, an ImageBrush can easily add a rich, vibrant touch to your painting surface. Sometimes, you may want your painting surface to be more dynamic
 and livelier. With the same type of simplicity as the ImageBrush, you can paint a surface with a video, using the VideoBrush.

 18.3.5. VideoBrush

 Imagine watching a shooting star speed across the night sky through the elliptical eyepiece of a telescope. With the VideoBrush in action, you can deliver this type of scene by drawing an Ellipse and filling it with a MediaElement. Listing 18.21 shows exactly how to use the VideoBrush.

 Listing 18.21. An example of a VideoBrush

 Result:

 [image:]

 XAML:

 <MediaElement x:Name="myMediaElement" Opacity="0"
 Source="http://www.silverlightinaction.com/video2.wmv" />
<Ellipse Width="100" Height="100" Stroke="Black">
 <Ellipse.Fill>
 <VideoBrush SourceName="myMediaElement" />
 </Ellipse.Fill>
</Ellipse>

 As this example shows, the VideoBrush references a MediaElement through the SourceName property. This fact allows you to manipulate the playback functionality of a VideoBrush by altering the playback of the MediaElement as defined in chapter 7. If you want to pause or stop the video displayed within a VideoBrush, you call the Pause() or Stop() method of the MediaElement that the VideoBrush references.

 Up to this point, the Brush elements have been used in relation to a basic Ellipse. An Ellipse was chosen for the sake of illustration; you can use all the Brush elements that we’ve covered in any number of visual elements, including but not limited to a Canvas, a TextBox, or even a TextBlock, as listing 18.22 shows.

 Listing 18.22. An example of a videoBrush within a TextBlock

 Result:

 [image:]

 XAML:

 <MediaElement x:Name="myMediaElement" Opacity="0"
 Source="http://www.silverlightinaction.com/video2.wmv" />
<TextBlock Text="HELLO" FontFamily="Verdana"
 FontSize="80" FontWeight="Bold">
 <TextBlock.Foreground>
 <VideoBrush SourceName="myMediaElement" />
 </TextBlock.Foreground>
</TextBlock>

 This sample only begins to show the potential allotted by the different Brush elements. All the Brush options are usable in any property that has a Brush type. You can have a video paint text, or an image paint shapes or even controls. The sky’s the limit.

 In addition to these rich Brush options, Silverlight supports an interesting set of features that can further alter the appearance of your shapes. Collectively,
 these are called effects.

 18.4. Effects

 Much as is the case with animation, the subtle and appropriate use of effects can make the difference between a UI that just
 sits there and one that really pops, drawing your eye to information that’s important to you.

 Effects in Silverlight come in two primary forms: built-in effects, implemented in the native Silverlight hardware-accelerated runtime code; and pixel shaders, implemented by folks like us using a combination of managed code and High Level Shader Language (HLSL) and run in software.
 The former allows for maximum performance for common effects such as blur and shadows. The latter provides a lot of flexibility
 to allow us to provide our own effects, while not breaking out of the sandbox.

 In this section, we’ll cover both types of effects. We’ll start with how to use the built-in effects and follow that up with
 a primer on creating your own pixel shader effects.

 18.4.1. Using built-in effects

 Silverlight has two built-in effects: blur and drop shadow. The effects may be used on any element or group of elements in
 the visual tree.

 Elements that have effects applied remain as interactive as they did prior to the effect. Although it may be hard to read
 the text in a blurred-out TextBox, the TextBox is still fully functional.

 Blur Effect

 The blur effect in Silverlight, implemented through the BlurEffect class, provides a way to shift an element or group of elements out of focus, as though you were looking at it through frosted
 glass or a bad lens.

 Blur has only one property of interest: Radius. The Radius property controls how large an area is sampled when the blur is run: the larger the radius, the blurrier the result. Note
 that the larger the radius, the more computations required to achieve the blur—a potential performance consideration, especially
 if a large area or animation is involved.

 Listing 18.23 shows how to use the BlurEffect on a group of UI elements in a StackPanel.

 Listing 18.23. A blur with a 4-pixel radius

 Result:

 [image:]

 XAML:

 [image:]

 In listing 18.23, the blur effect is applied to the entire StackPanel containing all the UI elements. The net result is to blur everything inside that container. You can also apply a blur to
 individual elements, of course. The effect is attached to the StackPanel using the Effect property. The Effect property can have only one effect at any point in time. If you want multiple effects on a single element, you need to use
 nested panels or borders and apply the effects one per panel/border.

 The blur effect is useful when combined with things such as a pop-up modal window (see chapter 15). In that case, a slight blur of the page contents helps drive home the fact that the pop-up is modal and demands all of
 your attention.

 The second built-in effect is the drop shadow.

 Drop Shadow Effect

 The drop shadow effect is one of those effects that’s best used in moderation, and used subtly when used at all. Not only is there a performance
 and rendering quality concern, but aesthetically, those of us who aren’t designers tend to use bold shadows more often than
 looks good in an application.

 The DropShadowEffect class has several knobs you can use to fine-tune the effect. Table 18.3 shows the five properties that alter the appearance of the effect.

 Table 18.3. Important DropShadowEffect properties

 	
 Property

 	
 Description

	Color
 	Specifies the color of the shadow. Default is Black.

	ShadowDepth
 	Distance in pixels to displace the shadow relative to the element the effect is applied to. Default is 5 pixels.

	Direction
 	An angle in degrees from 0 to 360 (counterclockwise), indicating where the shadow lies relative to the element the effect
 is applied to. The default is 315, which places the shadow in the lower-right corner.

	BlurRadius
 	Controls the blurriness of the shadow. A double value between 0 and 1, with 1 being the softest. Default is 0.5.

	Opacity
 	Specifies how opaque the shadow is. A double value between 0 and 1, with 1 being fully opaque. Default is 1.

When playing with shadows, I’ve found it more aesthetically pleasing to have the ShadowDepth be 0 or close to 0, the Opacity set to some value around 0.5 or so, and the BlurRadius set to a value that spreads out the effect—10 usually works well. That gives you a light shadow that bleeds around all the
 edges. Listing 18.24 shows these settings in use in the effect.

 Listing 18.24. A subtle drop shadow

 Result:

 [image:]

 XAML:

 <Grid x:Name="LayoutRoot" Background="White">
 <Grid Background="White" Width="180" Margin="25"> [image:]
 <StackPanel x:Name="Elements" Margin="10">
 <TextBlock Text="Hello World"
 Margin="10" />
 <TextBox Text="This is a textbox"
 Margin="10" />
 <Button x:Name="Button" Content="Button"
 Margin="10"/>
 </StackPanel>

 <Grid.Effect>
 <DropShadowEffect BlurRadius="10"
 Opacity="0.5"
 ShadowDepth="1" />
 </Grid.Effect>
 </Grid>
</Grid>

 In listing 18.24, note that the effect is applied to a grid with an opaque background [image:]. If the grid had a transparent background, the effect would be applied individually to each of the items inside the grid.

 As described before the listing, this example uses a large blur radius, 50 percent opacity, and a shadow depth of only 1 pixel.
 This provides a more pleasing and subtle effect than the default shadow appearance. Compare that to figure 18.2, with the properties all left at their default values.

 Figure 18.2. The default appearance of the DropShadowEffect

 [image:]

 Most people would find the default appearance a bit jarring, or at least a little outdated. Fortunately, the Silverlight team
 gave us all the tweaks we need to be able to make the shadow look better.

 In addition to these designer-type recommendations, you should keep a few other things in mind when using effects.

 Tricks and Considerations

 The built-in effects perform well, but they’ll tax your system resources if you apply them to a really large area and/or animate
 any of the values on the effect. For example, one thing I did early on was animate the background blur from 0 to 5 when displaying
 a new dialog. It worked, but it was a processing hog.

 In addition to processing time, another consideration is the quality drop in the result. Any elements with an effect applied
 to them are rendered out to a bitmap. That means you automatically lose ClearType font rendering and fall back to grayscale
 rendering. One way to get around this is to apply the effect to a shape of the same size that sits behind the elements. Listing 18.25 shows how to use a rectangle behind the grid to ensure that the grid contents stay at top rendering quality.

 Listing 18.25. Applying the drop shadow to a background Rectangle

 [image:]

 This example removes the effect from the grid and places it on a background rectangle sitting behind the elements. Because
 the rectangle isn’t a parent of the elements, the effect isn’t applied to them. The only thing that’s rasterized in this example
 is the Rectangle. The text retains ClearType font rendering.

 The Silverlight team may add more effects over time. Requests include true multipass effects such as glow. In the meantime,
 it’s possible to create your own single-pass effects using a little Silverlight code and the shader language.

 18.4.2. Creating custom pixel shaders

 Most people who know about pixel shaders have run across them in game development. Games and various types of shaders have
 gone hand in hand because video cards became powerful enough to offload most or all of the shader calculation and logic. Most
 work done with pixel shaders is performed using the DirectX SDK and optionally XNA.

 WPF also supports pixel shaders. Entire libraries of transitions and effects are available on CodePlex, all built using hardware-accelerated
 shaders.

 Pixel shaders in Silverlight are a simplified form of the full pixel shaders used in games or in WPF. For security reasons,
 the shaders are all run in software and currently support only Pixel Shader level 2. By not running them in hardware, Silverlight
 can sandbox the code and avoid someone running malicious code on your video card. But as technology progresses, the Silverlight
 team will likely consider allowing the shaders to run on hardware in selected scenarios.

 How Pixel Shaders Work

 Pixel shaders perform per-pixel processing on input. That input can be anything you see in the visual tree in Silverlight,
 including images, video, and controls. Pixel shaders in Silverlight are created using two main files. The first is a .NET
 class that’s used to wrap the shader functionality and expose it to the rest of Silverlight. The second is the pixel shader itself, written in HLSL as an .fx file and compiled into a .ps file as a resource in the Silverlight project.

 Pixel shaders are written in HLSL, a C-like language optimized for pixel processing. The language is geared toward running
 on video card hardware, so you have to deal with things such as registers, fixed numbers of variables, and limitations on
 overall complexity. In some of those ways, it’s like working in assembly language. You can find a reference on HLSL syntax
 on MSDN at http://bit.ly/HLSLReference.

 Pixel shaders in Silverlight are software-rendered, but are parallelized. Although they don’t take specific advantage of capabilities
 of video hardware, they’re executed using the CPU’s fast SSE instruction set.

 Silverlight supports the ps_2_0 profile of the Shader Model 2 specification. A shader profile is the target for compiling a shader, whereas a shader model is a specification for capabilities of the shader. You’ll need to understand this when looking at existing shader implementations
 to port to Silverlight or learning about HLSL syntax. In the case of Shader Model 2, the limitation you’re likely to hit is
 the 96-instruction limit. That limit is broken down into 64 arithmetic instructions and 32 texture-sample instructions. The
 64 arithmetic instruction limit will almost certainly be a bounding limit for shaders of any complexity. In addition, if you
 manually compile the shaders using the DirectX SDK, you’ll need to know what profile to use.

 Environment Setup

 The most difficult part of writing a pixel shader is setting up the environment to allow them to compile. There are three
 main options:

 	Download the DirectX SDK, and use the compiler there to build the shader.

 	Repurpose the WPF pixel shader build step.

 	Use a tool such as Shazzam to create and compile the shader.

You can download the DirectX SDK and use its command-line tools to compile the shader. The SDK is roughly 500 MB and may be
 a bit much just to compile a shader.

 Option 2 is to repurpose the WPF pixel shader build step. Tim Heuer put together a great blog post covering the steps required
 to set up your environment for developing pixel shaders. It’d be too much to include in this book, so I refer you to his post
 here: http://bit.ly/SLPixelShaderCompile. I chose option 2, using a build task. It involves some configuration as well as a template for the shader development.

 Another option is to use a tool such as Shazzam (http://shazzam-tool.com) to compile the shader and manually add that into your project. Most Silverlight and WPF developers doing serious work with
 pixel shaders use this tool. It also includes a number of training videos to help you get started with pixel shader development.
 Finally, Shazzam includes a bunch of existing shaders in source form that you can learn from.

 Despite its hackish nature, if you want everything to happen inside Visual Studio, I think you’re better off starting with
 Tim’s approach for the project structure. If you don’t need everything integrated into Visual Studio and can add the files
 manually, you’ll find that Shazzam is the best long-term solution. In either case, you’ll likely have Shazzam open while you
 explore pixel shader development.

 When your environment is set up and you can compile pixel shaders, you’re ready to develop one of your own. Go ahead and set
 up your environment now. I’ll wait.

 Shader Code

 Pixel shaders are typically fairly complex; they do things such as alter the visual location of pixels based on a complex
 algorithm. Learning how to write shaders is like learning any other programming language, but with a heavy focus on performance
 and optimization.

 A good place to learn is the WPF Pixel Shader Effects library on CodePlex: http://wpffx.codeplex.com. Although originally intended for WPF use, Silverlight effects were added once Silverlight supported HLSL-based pixel shaders.

 Listing 18.26 shows the HLSL source code for a pixel shader that takes a color and multiplies every pixel by that color. The result is
 an image that appears to have been photographed through a tinted lens.

 Listing 18.26. A simple pixel shader that applies a color filter

 [image:]

 The shader first maps values into registers [image:] supported by the shader model. Each input and constant must be mapped to a register. A register is a well-known place in hardware (virtual hardware in the Silverlight case) that can be used to store a value. Registers
 are much faster than regular RAM when it comes to accessing values. If you’ve ever done any x86 assembly language programming,
 or even any old DOS interrupt programming, you know well the concept of registers.

 The section comments aren’t required, but you’ll find them in almost every pixel shader implementation. Usually I’d leave
 them out of a code listing in this book, but the shader is completely naked without them.

 The actual code starts under the Pixel Shader section. Like all pixel shaders in Silverlight, this has a main function that
 takes in a UV coordinate (a standard way of referring to an x and y position on a texture or image, but normalized into the range of 0 to 1 rather
 than absolute pixels) and returns a float4 color [image:].

 When you have the HLSL source for your shader, you’ll need to write a .NET class to expose it in your project.

 Wrapper Class

 To use a pixel shader, you need to provide a way for the rest of .NET to interact with it. The wrapper class (often called
 just the pixel shader class) is responsible for loading the compiled shader code and for exposing properties used to tweak the shader. The Pixel Shader
 file template includes a wrapper class. In addition, Shazzam will generate the wrapper class for you. The wrapper class for
 this example is shown in listing 18.27.

 Listing 18.27. A pixel shader wrapper class

 [image:]

 The static constructor [image:] loads the pixel shader resource into a static PixelShader typed property. Note the .ps extension: it’s loading the compiled resource. The PixelShader is static because only one copy of the compiled code is needed within an application.

 Each of the dependency properties maps to a register in the shader. One of the properties, of type Brush, is mapped implicitly [image:]. Any additional properties must be mapped directly to registers. In this source, you can see that the ColorFilterProperty maps to constant register zero [image:] in the pixel shader. The PixelShaderConstantCallback takes the register number as a parameter. In the HLSL source, constant register zero is mapped to the variable colorFilter.

 But how did a Color property become a float4, and what’s a float4 anyway? Those are built-in vector types in the language. Table 18.4 has the mapping.

 Table 18.4. Mapping from .NET types to HLSL types

 	
 Shader type

 	
 Description

 	
 .NET type

	float
 	A single floating-point number
 	double, single

	float2
 	A vector with two floating-point numbers
 	Point, Size, Vector

	float3
 	A vector with three floating-point numbers
 	(Unused in Silverlight)

	float4
 	A vector with four floating-point numbers
 	Color

The member names for the individual floats depend on their usage. For example, a color has the properties r, g, b, and a.

 HLSL is interesting in that it can perform multiplication and other operations on whole structures. In that way, the number
 of instructions is reduced, but it can be hard to understand when you first look at it. For example, the exmple multiplies
 together two float4 values.

 Using the Shader

 With the shader compiled and the wrapper class in place, it’s time to try the shader in your own application. Like any other
 element used in XAML, you must either include an implicit namespace in your application settings or map a namespace in the
 XAML file. In this case, because the shader is in the project with the XAML, you’ll use an explicit map in the XAML.

 Listing 18.28 shows the effect of using the shader with a red tint. It’ll look gray in print, but you can tell there’s a tint over the
 whole image.

 Listing 18.28. Using the pixel shader effect in XAML

 Result:

 [image:]

 Code:

 <UserControl x:Class="SilverlightApplication61.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 xmlns:local="clr-namespace:SilverlightApplication61"
 mc:Ignorable="d"
 d:DesignHeight="300" d:DesignWidth="400">

 <Grid x:Name="LayoutRoot">
 <Grid Background="White" Width="180" Margin="25">
 <StackPanel x:Name="Elements" Margin="10">
 <TextBlock Text="Hello World" Margin="10" />
 <TextBox Text="This is a textbox" Margin="10" />
 <Button x:Name="Button" Content="Button"
 Margin="10" />
 </StackPanel>

 <Grid.Effect>
 <local:ShaderEffect1 ColorFilter="Red" /> [image:]
 </Grid.Effect>
 </Grid>
 </Grid>

</UserControl>

 This is the same example used in previous sections, but instead of a drop-shadow, it uses the pixel shader with a parameter
 of Red for the ColorFilter property [image:]. The end result is an angry red form. As was the case in the other examples, the use of a pixel shader has reverted the text
 back to grayscale font smoothing.

 Pixel shaders are a great way to provide your own custom effects or to use effects developed by others. Learning HLSL can
 be difficult at times, but the payoff is worth it: you can use pixel shaders in Silverlight, in WPF, and, of course, in DirectX
 and XNA. Pixel shaders, even the software-rendered ones in Silverlight, are extremely efficient as well. When considering
 pixel-manipulation strategies in an application, the creation of a pixel shader should be high on your list of options.

 18.5. Summary

 Silverlight’s inherent graphical capabilities go far beyond cartoons and visual fireworks. By shaping these elements into
 illustrations, graphics can provide a bridge to your users to help them connect with difficult concepts. These valuable illustrations
 can be composed of a series of shapes compiled from arcs, curves, and lines. These shapes can then be filled with gradient
 colors or textured visuals such as images and videos.

 Effects augment both graphics and controls. The use of a subtle drop shadow or a blur can help users focus their attention
 on a specific part of the screen. If those effects aren’t sufficient, you also have the option to create your own effects
 in the form of pixel shaders.

 Vector graphics and effects are definitely some of the strong points in Silverlight. Previous technologies had no equivalents;
 you had to write everything from scratch or use primitive drawing options. Silverlight also has rich support for images and
 media, another of its strong points. We’ll discuss that in chapters 20 and 21. Before we get there, let’s put our newfound vector graphics skills to use on that oldest of modern media: paper.

Chapter 19. Printing

 This chapter covers

 	An overview of the printing API

 	How to print onscreen content

 	How to scale content for print

 	Getting data from a service for a report

 	Creating headers, footers, and more

Silverlight 4 is the first release that can be considered truly “ready for business.” The support for binding and validation,
 WCF RIA Services, and out-of-browser trusted applications are all major factors in this. One equally important reason is the
 added support for printing.

 Many business applications need to print paper forms and reports as a standard part of their process. Very large-scale applications
 typically farm that functionality out to a server somewhere with centralized print systems. Most other applications use printers
 directly mapped and available on the client workstation. For those applications, platform support for printing is essential.

 Printing support opens up other nonbusiness scenarios as well. Now you can make that coloring-book creator or recipe application
 you’ve had in your “cool app ideas” folder. I joke about printing, but I used to print directions before I had a GPS, and flight information before it was synchronized to my phone via exchange. There are still many interesting and legitimate
 uses of printing inside and outside of business.

 In our tour of printing, we’ll take a look under the hood to understand how printing works in Silverlight, then handle the
 use case of printing onscreen content. From there, we’ll look at considerations that come into play when building multipage
 documents. Wrapping up, we’ll look at an example of a simple report writer with headers, footers, and items rows.

 19.1. How Silverlight printing works

 When designing the printing system, the Silverlight team wanted something that would work with all current onscreen visuals,
 while not adding a large feature payload to the overall runtime. Team members also wanted something that would work cross-platform
 and be available in all modes of operation: in-browser, out-of-browser trusted applications, and out-of-browser sandboxed
 applications.

 For those reasons, the printing process resembles the overall screen layout process (see chapter 6), with additional printing-specific steps tagged on. Figure 19.1 shows the printing process at a high level.

 Figure 19.1. The printing process at a high level. User code may be run inside the BeginPrint, PrintPage, and EndPrint events.

 [image:]

 The printing process starts by creating a PrintDocument object and calling its Print method. The PrintDocument then raises the BeginPrint event if there are any listeners. Your own startup code can run inside that event handler. Then, for each page to be printed,
 the PrintDocument raises the PrintPage event. Inside the handler for that event, you’ll set the page visual and tell Silverlight if there are any more pages. The
 printing system then lays out the content and rasterizes it into a bitmap to send to the printer driver. Once that page is
 sent to the printer driver, Silverlight raises the PrintPage event if you’ve indicated that there are more pages, or raises the EndPrint event if not. During this process, the primary object you’re interacting with, the object raising the three mentioned events,
 is the PrintDocument class.

 In this section, we’ll start with the PrintDocument class, covering its properties, methods, and events. In detail, we’ll cover the PrintPage event and the actions you take within it. After that, we’ll take a deeper look at the rasterization step and how that affects the process.

 19.1.1. The PrintDocument class

 The heart of printing in Silverlight is the PrintDocument class, located in the System.Windows.Printing namespace. The PrintDocument class includes the single Print method required to kick off the process, a helper property to provide access to the page count, and three important events
 raised at different points in the process. Table 19.1 describes each of these members.

 Table 19.1. PrintDocument members

 	
 Member

 	
 Description

	Print method
 	Displays the Printer dialog and, if accepted, raises the BeginPrint event followed by the PrintPage event to begin the printing
 process.

	PrintedPageCount property
 	A dependency property containing the total number of pages printed.

	BeginPrint and EndPrint events
 	Events fired at the beginning and ending of the print job, respectively.

	PrintPage event
 	The most important event. This is the event that enables you to build and print a single page.

In the remainder of this section, we’ll look at these properties, methods, and events in more detail, starting with the Print method.

 Print Method

 The first step after instantiating the PrintDocument class is to call the Print method. The Print method takes in a parameter specifying the name of your document. This document name is what shows up in the operating system
 print spooler. The name should be descriptive, containing the title of your report or document. If your application plans
 to print many of these, you may want to add an identifier such as the patient’s name in the case of a medical report, or perhaps
 some criteria used to generate the report. Listing 19.1 shows how to use the Print method.

 Listing 19.1. Using the Print method and specifying a document name

 XAML:

 [image:]

 C#:

 [image:]

 This example doesn’t do anything meaningful yet—it doesn’t print anything. We’ll use this as the base for the rest of the
 examples centered around PrintDocument. Specifically, the placeholders for the TextBlock and the event wire-up will be filled out in later examples.

 As written, the code is fairly simple. It sets up the required PrintDocument class instance and calls the Print method. The Print method is asynchronous: it immediately returns once you call it. But it raises all of its events back on the calling thread,
 so the UI thread can still be blocked.

 Note that in untrusted applications, the Print method must be called from a user-initiated event, such as a button click event. Trusted out-of-browser applications (see
 chapter 5) eliminate this restriction. Once you wire up the PrintPage event (coming up shortly), you’ll see that the print spool entry document name will contain the value passed into the Print method. Figure 19.2 shows the Windows 7 print spooler with a Silverlight print document spooled.

 Figure 19.2. The Windows 7 print spooler showing the Silverlight document titled “Admittance form for Brown, Pete,” created in listing 19.1.

 [image:]

 The PrintDocument supports multipage printing. While printing, you’ll find it useful to get the current number of pages that have been printed,
 in order to report the print status to your user. The PrintedPageCount property provides us with this information.

 PrintedPageCount Property

 The PrintedPageCount property contains the number of pages sent to the print driver. This doesn’t necessarily correspond to the number of pages
 physically printed, as printers are typically much slower than the PC they’re attached to. But it’s useful as a general way
 of reporting status to the user.

 PrintedPageCount is a read-only dependency property, so you can bind to that in XAML. Continuing from our example in listing 19.1, we can modify the code and XAML as shown in listing 19.2 to support this. Add the TextBlock in the XAML to the spot reserved with the comment.

 Listing 19.2. Showing the number of pages printed

 XAML:

 [image:]

 C#:

 [image:]

 Now, when you print a multipage document, the status text will display the number of pages that have been printed so far.
 This is similar to what you see when you print a document in Microsoft Word, where a status dialog appears with a number showing
 the progress.

	

Tip

 The PrintedPageCount property is incremented after the PrintPage event returns. Any check you do after setting the PageVisual will need to take into account that the PrintedPageCount hasn’t yet been incremented.

 	

In addition to the PrintedPageCount property, two other events can be used for status reporting, as well as for startup and shutdown code: BeginPrint and EndPrint.

 The Beginprint and EndPrint Events

 The BeginPrint and EndPrint events are raised at the beginning and end of the print job, respectively. Specifically, BeginPrint is raised before the first call to the Print-Page event, but after the printer dialog is shown, and EndPrint is raised after the last call to EndPrint completes or if the user cancels printing in-progress.

 If the user cancels printing from the printer selection dialog, neither BeginPrint nor EndPrint will be raised. Similarly, if Silverlight can’t print due to issues with paper format or memory allocation, BeginPrint may not be called.

 Continuing our example, the following code shows how to wire up the two events. We won’t do anything with BeginPrint in this example, but we’ll show a message box when completed using the EndPrint event handler. The event handlers should be inserted into the listing 19.1 code, in the PrintForm method, where the event wire-up comment is located:

 _document.BeginPrint += (s, e) =>
 {
 };
_document.EndPrint += (s, e) =>
 {
 MessageBox.Show("Print job completed.");
 };

 The BeginPrint and EndPrint methods may be used for status reporting or for doing document build-up and tear-down. Unlike the PrintPage event, their event arguments don’t contain any actionable information. It’s not essential to wire them up, but you’ll find
 that a complete printing solution typically requires one or both of them.

 One event that’s not optional is the PrintPage event.

 19.1.2. The PrintPage Event

 The PrintPage event is the heart of the user-code side of the printing system in Silverlight. This is where you’ll obtain key layout information
 from the system and use it to create or otherwise lay out the visuals you use to represent the page. It’s also the event where
 the assignment of the printer page root visual occurs, and the event where the decision is made as to how many pages the print
 document will contain.

 For each page that will be printed, the PrintDocument class raises the PrintPage event. The PrintPage event passes in an instance of the PrintPageEventArgs class, specific to that page. Table 19.2 shows the properties of the class.

 Table 19.2. PrintPageEventArgs members

 	
 Member

 	
 Description

	PageMargins property
 	Gets the margins of the page as set by the printer driver settings. Represented at 96dpi.

	PrintableArea property
 	The size (width and height) of the printable area inside the margins of the page. This is represented at 96dpi.

	HasMorePages property
 	Set to true if there are additional pages after this one.

	PageVisual property
 	Set this to the root element (typically a panel) that makes up the page content.

We’ll cover each of the properties next, starting with the properties that report the size of the area you can use for content:
 PageMargins and PrintableArea.

 Pagemargins and Printablearea Properties

 The PageMargins property is a standard Thickness property like those used for margins throughout the rest of Silverlight. It reports the size of the margins set in the printer
 configuration dialogs in your system.

 The PrintableArea property is a Size property that indicates the width and height of the area within the margins. This is the area in which you can lay out your
 content.

 It’s important to note that the PageMargins and PrintableArea measurements are all provided at 96 dpi, consistent with screen layout. My printer handles resolutions up to 1200 dpi (normally
 set to 600 dpi). Despite that, the printable page area comes through at 784 × 1024 and the margins come through at 16,16,16,16.
 Add 32 (right and left margin) to 784 and divide by 96, and you get 8 1/2 inches. Do the same for the height and you get 11
 inches. 8 1/2 × 11 inches is, in the US, the size of a standard sheet of letter-sized paper. The print quality itself is better
 than that, but still not as good as what you may be used to.

	

Note

 Silverlight is currently limited to printing documents sized at A3 or smaller. Large-format pages may work in certain situations,
 but aren’t supported. For reasons why, see the section on rasterization.

 	

Similarly, if you print using the Microsoft XPS Document print driver (a great test driver), you’ll see that it has no enforced
 margins, and therefore provides a size of 816 × 1056.

 If the content you have won’t fit on a single page, Silverlight will clip it to the dimensions specified in PrintableArea. In those cases, you may want to handle manually clipping and saving the remaining elements for the next page. To indicate
 additional pages, use the HasMorePages property.

 Hasmorepages Property

 Printed documents may consist of more than one page. But without precalculating all the page content (not a bad idea, but
 not required), you won’t know the number of pages until you’re done printing. Similarly, you don’t necessarily know if a page
 is the last page until you try to fit all the content into the printable area and see what fits.

 For those reasons, the PrintPage event includes the boolean HasMorePages property. Simply assign true to this property to indicate that the current page isn’t the last page to be printed. This will cause Silverlight to raise
 another PrintPage event upon the completion of the current one. When you have no more pages to print, set HasMorePages to false (the default value) to end printing. The following code expands upon listing 19.1 to do a simple check against a hard-coded number of pages. The -1 is because the PrintedPageCount is incremented after the PrintPage event returns:

 int numberOfPages = 5;

_document.PrintPage += (s, e) =>
 {
 Debug.WriteLine("Printing page");
 e.PageVisual = LayoutRoot;
 e.HasMorePages =
 _document.PrintedPageCount < numberOfPages - 1;
 };

 Note also that we’re effectively doing a print-screen in this example, by passing the LayoutRoot in as the PageVisual to be printed. We’ll discuss PageVisual in detail in a moment.

 You can also allow the user to cancel printing by setting HasMorePages to false when he hits a cancel button. Doing so will terminate printing after the current page. To do that, you’ll need to set a flag
 in your class and have your code in the print method check for this flag. Additionally, if you know the user has hit cancel
 before you set the PageVisual, you can both skip setting the PageVisual and set HasMorePages to false to avoid printing the current page and any subsequent pages.

 PageVisual Property

 The PageVisual property is the property you use to assign the root element of your page. Think of your root element like LayoutRoot on a typical Silverlight page. This will usually be a panel of some sort, but any UIElement will work.

 Before assigning the element to the PageVisual property, you need to ensure that it has all of its children in place. When PageVisual is set, it’s then measured and laid out. Since it’s not part of the proper Silverlight visual tree, adding elements to the
 visual doesn’t cause an automatic measure and layout pass (see chapter 6 for more information on measuring and layout). You can either manually force a measure and layout, or simply populate the
 visual completely prior to assigning it to the PageVisual property.

 Figure 19.3 shows the result of adding child elements after assigning the PageVisual.

 Figure 19.3. The result of assigning the page visual prior to adding child elements to a part of the visual. Layout doesn’t happen automatically,
 so all the elements are stacked on top of each other.

 [image:]

 When assigning the PageVisual, keep in mind that any content outside the rectangle defined by the PrintableArea will be clipped. If you need to fit more content on the page, you can apply a scale transform (see chapter 6) to shrink the content down by a ratio that will fit it all on-page.

 We’ll cover more on setting the PageVisual when we look at some specific printing use cases in sections 19.2 and 19.3.

 Once the PageVisual is set and the PrintPage event returns, Silverlight prepares the page for printing by first calling Measure and Arrange (the layout pass described in chapter 6), and rasterizing it to a single bitmap representing the page.

 19.1.3. Rasterization

 In chapter 6, we discussed the rendering process for onscreen elements. One step of that process was the rasterization of vector and text
 elements, and the included blitting of raster (bitmap) elements. Printing follows the same general process, down to the rasterization
 step.

 When you print a tree of elements by assigning it as the page visual, those elements are all rasterized into a page-sized
 bitmap (or larger if you overrun the size of the page), clipped to the page dimensions, and sent to the printer.

 If you’re familiar with how printing normally works when using printer languages such as PCL or PostScript, you may find the
 rasterization approach a little odd. In typical document printing, the print driver sends a list of commands to the printer;
 those commands contain information such as drawing commands, raster images, font and style specifications, and text commands.
 The end result is a smaller payload, and the printer is free to optimize the printing for its own capabilities and resolution.

 The bitmap-based approach in Silverlight is flexible, is functional across platforms, and supports anything Silverlight can
 render onscreen. But it’s fairly time- and memory-intensive. A Microsoft Word document with text and images prints fairly
 quickly on my HP LaserJet 1320, taking just a few seconds between my hitting the Print button and seeing output on the printer.
 A similar document printed through Silverlight takes considerably longer because it’s treated as one (approximately) 8 1/2
 × 11 inches bitmap.

 For those reasons, I don’t consider the printing API in Silverlight to be a good choice for large reporting solutions. You’ll
 be waiting quite a long time for a 50-page report to come off the printer. The actual speed is as much a function of the printer
 hardware as anything, so your own mileage may vary.

 Caveats aside, we’ll now turn to a few common printing use cases and walk through how to implement them using the Silverlight
 printing system, starting with printing content as it appears onscreen.

 19.2. Printing onscreen Information

 If a user wants to print the entire web page, she can do so using the browser’s Print button. This will also print the contents
 of any Silverlight control, but only what’s visible onscreen. If you have content in a ListBox, for example, and want to have it expand to show its entire contents, you won’t be able to do that. If your Silverlight application
 extends below the fold on the browser (if it’s taller than the visible portion of the browser page), you’re also out of luck.

 Additionally, if you want to print only the contents of your Silverlight page and not the surrounding web page, that’s not
 something most browsers will support. For that scenario, you’ll want to use the printing API.

 In this section we’ll explore three ways of printing onscreen content: printing it as is, providing a new root so it can perform
 layout specific to the printer page, and a combination of providing a new root and using a ScaleTransform to ensure the content fits on the printed page.

 19.2.1. Printing the content as is

 The easiest way to print content is to simply hand off the root of your UI and print it as is. This simple approach works
 for things that fit onscreen, or to provide the equivalent of a print-screen function for your application. Figure 19.4 shows an example application with a fixed height and width. We’ll want to perform the equivalent of a print-screen on this
 application.

 Figure 19.4. The example application from listing 19.3. The application has a fixed height and width.

 [image:]

 Figure 19.4 shows the results of listing 19.3. Note that the application doesn’t automatically scale to the size of the page, as it has a hard-coded height and width.
 Not also that not all the content fits onscreen due to the hard-coded size.

 Listing 19.3 shows the markup for a little application that lists several images from my web site. We’ll use this application markup throughout
 the rest of the examples in this section.

 Listing 19.3. UI XAML for the content printing example

 [image:]

 [image:]

 If you use the browser to print that same content, all you’ll see is what’s visible on the browser page. To get the same effect
 from Silverlight, you’ll simply assign the UserControl or LayoutRoot to PageVisual in the printing code. Listing 19.4 shows how to do that in the code-behind, using the XAML from listing 19.3.

 Listing 19.4. Printing the entire UserControl and retaining visual size

 [image:]

 When you hit the Print button, the result is exactly what you see onscreen, but on a printed page. Note that you could also
 assign the LayoutRoot as the element you wanted to print. As the LayoutRoot already belongs to another visual tree, it won’t be resized or anything when assigned to the PageVisual. One way around this is to reroot the root element.

 19.2.2. Rerooting the elements to fit

 One way around the issue with fixed-size content is to take the LayoutRoot (or another element) and reroot (or reparent) it in a printer-specific root element. That new root element is sized to fit the printer page. Listing 19.5 shows how to reroot the element using the BeginPrint and EndPrint events for setup and repair.

 Listing 19.5. Rerooting an element into a printer-specific root

 [image:]

 The process is picky, but relatively straightforward. Before you can move an element to be a child of another element, you
 must first remove it from its current parent [image:]. In BeginPrint, we remove LayoutRoot from the page (its current parent) and add it to the children of the new printer root. In EndPrint, we reverse the process [image:]. When printing, we simply size the new printer root to the dimensions provided by the printing system, then assign to the
 PageVisual the new printer root element as opposed to the user control itself.

 This whole swapping process exists only to allow us to provide layout dimensions that differ from the onscreen dimensions.
 If you could resize the elements onscreen, that would also work, but may be jarring to the user watching the process.

 Depending upon the complexity of what you’re trying to do, this could be tricky. For example, there may be unintended consequences
 associated with additional layout passes for controls you’re using, or you may have binding information or resources that
 are no longer accessible once rerooted. It’s not an approach I recommend without first testing for your specific scenario.
 That being said, it gets around the issue with having fixed-size page content and wanting to print the content in full.

 Another option is to scale the content to fit. Similar to this approach, you’ll need to make a decision whether to do it live
 onscreen or scale using an offscreen visual tree.

 19.2.3. Scaling content to fit

 Scaling the content to fit on a single page is another way to print onscreen elements. As was the case with the previous approaches,
 you can scale the content onscreen, in the live visual tree, or you can reroot and scale the print-specific visual tree.

 In most cases, it’d be pretty jarring to scale the onscreen content, so for this example, we’ll use the print-specific visual
 tree.

 In this example, I duplicated the content inside the ScrollViewer five times, in order to provide sufficient content to illustrate the example. Simply copy and paste the three Image elements in the XAML so they each appear five times.

 Next, modify the code from example 19.5 so it does an automatic scale using a ScaleTransform (see chapter 6 for information on render transforms). Listing 19.6 shows the changed code in the two affected event handlers.

 Listing 19.6. Transforming the content to fit on the printed page

 [image:]

 If you look closely, you can see that in listing 19.6 I did something strange: I assigned the render transform to LayoutRoot [image:] instead of printRoot. Why did I do that?

 It turns out that the print clipping is applied directly to the PageVisual you supply. If you also have a transform attached to that visual, it’ll transform the clipping rectangle as well. The effect
 is having something that’s sized to fit the page, but is clipped in exactly the same spot it would be if it were at 100% scale—not
 what we want.

 There are a couple ways you could solve this. You could put yet another visual between the PageVisual and the LayoutRoot, or if it suits you, attach the transform to the element one level below the PageVisual: the LayoutRoot in this case. Figure 19.5 illustrates how this clipping and transforms interact.

 Figure 19.5. The content on the left had the transform applied directly to the PageVisual. It was clipped prior to transforming. The content on the right had the transform applied one level below the PageVisual, at the LayoutRoot. The LayoutRoot was transformed, and the PageVisual was clipped, providing the result we were looking for.

 [image:]

 The figure shows what happens when you put the transform on the same level as the clip (left image) or one level down, as
 shown on the right-side image.

 If you apply a transform to resize content and you attach it to an onscreen visual, make sure you remove it when complete.
 If the content already has a transform applied to it, you’ll need to either create a transform group, or—my recommendation—inject
 a second visual between your element and the PageVisual.

 Printing the onscreen content is certainly useful, and often a desirable feature in applications. More common is printing
 information specifically created for the printer. Such content often spans more than one page, so we’ll look at printing purpose-built
 trees and supporting multipage documents in the next section.

	

 Whatever happened to the paperless office?

 I often lament the fact that the paperless office promised in the 1990s never really came to fruition. We make baby steps
 every year, but paper printouts are still essential to the world of business. Most important forms are still passed around
 in paper format. Many computer systems are linked only by a manual paper and human data entry process sitting between them.

 Recently, I heard a story on NPR about a school system that’s going to save millions of dollars in printer toner by changing
 the default email font to one that uses less toner—yes, employees print email that much! Oddly enough, no one suggested “please
 don’t print email” as a potential cost-saving measure.

 It’s great to support printing in your application, and essential in many cases, but consider other ways to service the use
 case when possible. For example, do they need to print that appointment information your application is storing, or would
 it be equally or perhaps more useful to provide them with an iCal file that they can import into their own scheduling software
 and synchronize with their phone?

 	

19.3. Multipage printing dedicated trees

 Multipage printing comes in many flavors. You could be printing documents or letters, perhaps with mail-merge fields. You
 may be printing a long tabular report, or you may have to print a complex multipage form. All three have two things in common:
 they may span more than one page and they contain information formatted specifically for the printer.

 Before we continue, let me reiterate: Silverlight printing isn’t currently optimized for large multipage documents. Each page
 is a large bitmap, and takes some time to print—how much depends on the printer and driver. If your application needs to do
 a lot of printing, consider sending it through a server printer or another approach, such as using COM automation to generate
 a report using Microsoft Word or Excel.

 That out of the way, I’ll show you how and let you figure out whether it works in your situation. In the remainder of this
 section, we’re going to build a simple report with a page header and footer, and a number of lines in-between. This isn’t
 a full report writer, although I do have something akin to that on http://silverlightreporting.codeplex.com. We’ll start with building a little infrastructure, then print out pages with just the line items. From there, we’ll add
 simple headers and footers to each page. First, let’s set up our report data.

 19.3.1. Prerequisites

 For this example, we’ll use the same AdventureWorks database and entity model used in other chapters. Please refer to appendix
 A for instructions on setting up the database, connection, and entity model in your web project.

 Once you have the database connection information and model set up, we can turn our attention to creating a WCF service to
 surface the data to the Silverlight client.

 Creating the Service

 Continuing in the web project, it’s time to create the service. The first step is to create a folder named Services and into
 it add a new Silverlight Enabled WCF Service. Figure 19.6 shows the Add New Item dialog with the correct template selected and named.

 Figure 19.6. Adding a Silverlight-enabled WCF Service to the web project

 [image:]

 For this demo, we’re only interested in read-only data, so we’re going to create a basic service method that returns data
 from the Adventure Works entity model. We won’t support create, update, or delete options. If you’re interested in options
 for that functionality, read chapter 17 on WCF RIA Services.

 We’ll implement the service methods soon. Before we can do that, we need to create the EmployeeReportItem class.

 Creating the EmployeeReportItem Class

 The EmployeeReportItem class represents a single row of data for our report. We could simply send down the complete entities from the model, but
 that would be wasteful and perhaps even confusing. Instead, we’ll create a denormalized entity that contains properties from
 both the Employee and the Contact classes.

 In the Services folder of the web project, create a new class named EmployeeReportItem. Listing 19.7 shows the implementation of this class.

 Listing 19.7. The EmployeeReportItem class

 public class EmployeeReportItem
{
 public int EmployeeID { get; set; }
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public string Title { get; set; }
 public string EmailAddress { get; set; }
 public string Phone { get; set; }
 public DateTime HireDate { get; set; }
}

 Note that since we’re using .NET 4 on the server, we don’t need to include DataContract and DataMember attributes in the class. WCF will serialize all public members by default.

 Once the EmployeeReportItem class is in place, we can use it from our service.

 Adding the Service Implementation

 The last step on the server-side of the project is to add the implementation of the GetEmployeeReportData method of the service. This implementation will join the two entities and pull out fields from them to create EmployeeReportItem instances. Those instances will then be returned to the caller, our Silverlight client in this case. Listing 19.8 lists the code required in the service.

 Listing 19.8. The GetEmployees method of the AdventureWorksService class

 [image:]

 The service pulls information from the AdventureWorks database, using LINQ to both limit the number of items returned to a
 reasonable number (100) as well as merge the entities to create a single EmployeeReportItem for each row of data.

 Adding a Reference to the Service

 The final required step before we get into the report itself is to add a reference to the WCF service. First build the solution
 and ensure that there are no errors. Then, right-click the Silverlight project and choose Add Service Reference.

 In the dialog, click Discover to find the services in your solution. If successful, you’ll see something like figure 19.7.

 Figure 19.7. Adding a service reference from our Silverlight project to the WCF Service in the web project

 [image:]

 In the namespace area, enter the name Services. On the Silverlight client, that will be the namespace (under our root namespace) into which the service client proxy and
 the EmployeeReportItem class will be generated.

 Test the Service

 Before we move into printing, let’s add one last step: testing. This is optional, but I recommend doing it to ensure that
 all the other bits are working correctly.

 In the code-behind for the main page of your project, add the code shown in listing 19.9. Be sure to right-click AdventureWorksServiceClient and choose Resolve (or hit Alt-Shift-F10) to automatically add the correct using statement to the code file. public MainPage()

 Listing 19.9. Code to test the service reference from Silverlight

 {
 InitializeComponent();

 Loaded += new RoutedEventHandler(MainPage_Loaded);
}

void MainPage_Loaded(object sender, RoutedEventArgs e)
{
 var client = new AdventureWorksServiceClient();

 client.GetEmployeeReportDataCompleted += (s, ea) =>
 {
 if (ea.Result != null)
 {
 foreach (EmployeeReportItem item in ea.Result)
 {
 Debug.WriteLine(item.LastName + ", " + item.FirstName);
 }
 }
 };
 client.GetEmployeeReportDataAsync();
}

 When you run the project, take a look at your Output window and see if it displays 100 names. If it does, you’re good. If
 not, debug any error you receive and try again. Once it’s working, you’re ready to build the report, starting with the line
 items. Be sure to remove the test code from the project.

 19.3.2. Printing line items

 For the report, we’re going to build a custom print-optimized visual tree using a combination of code and data templates.

	

Note

 This report is optimized for learning the concepts and fitting into a book. It’s not meant to be a reusable report class,
 but rather a starter to provide insight into how you might create your own reports in Silverlight.

 	

In this and the following sections, we’ll first get the data from the WCF service into the report class. Then we’ll print
 a single-page version of the report using just the line items and a data template. The next step is modifying the report to
 support page breaks. From there, we’ll add a header and footer before wrapping up.

 Creating the Employeereport Class and Loading Data

 The first step is to create, in the Silverlight project, a class named EmployeeReport. Into that class, we’ll add code to call the service and load the data. The code to load the data will be similar to the
 test code in listing 19.9. Listing 19.10 shows the class with a LoadData method and the shell of the Print method.

 Listing 19.10. The EmployeeReport class

 [image:]

 I chose to derive from FrameworkElement for two reasons:

 	I need to derive from some DependencyObject-derived class in order to support the dependency properties that will be used for the templates.

 	I want the element to be on-page and accessible in XAML.

For more on FrameworkElement, see chapter 6.

 Listing 19.10 forms the shell of our new report class. Because we’ll use it in XAML, in addition to deriving from FrameworkElement, I needed to include a default constructor. It’s an empty constructor, but its presence means that it can be instantiated
 in XAML. Additionally, as we need to support a user-initiated print process, I raise a DataLoaded event when the data is loaded. The UI can then capture that and allow the user to click a button to perform the printing.

 Now that the class has been created, we’ll add support for the first template: the item template.

 Adding the Itemtemplate

 The next step is to add a dependency property for the item template used to format items on the report. The DependencyProperty will hold a DataTemplate containing visuals and binding statements for the items rows. Listing 19.11 shows the code you’ll need to add to the EmployeeReport class.

 Listing 19.11. The ItemTemplate on the EmployeeReport class

 public DataTemplate ItemTemplate
{
 get { return (DataTemplate)GetValue(ItemTemplateProperty); }
 set { SetValue(ItemTemplateProperty, value); }
}

public static readonly DependencyProperty ItemTemplateProperty =
 DependencyProperty.Register("ItemTemplate",
 typeof(DataTemplate), typeof(EmployeeReport),
 new PropertyMetadata(null));

 We’ll have a few more dependency properties to add before we’re through. Before we do that, let’s crack open the MainPage XAML and add a reference to the EmployeeReport type and flesh out the data template for the item rows.

 Listing 19.12 shows the MainPage XAML file with a reference to the local namespace, and an instance of the report with an appropriate yet simple data template.
 I’ve also added a Print button (with a click handler in the code-behind) to provide a way to print the report.

 Listing 19.12. MainPage markup with an instance of our report and template

 <local:EmployeeReport x:Name="Report">
 <local:EmployeeReport.ItemTemplate>
 <DataTemplate>
 <Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="40" />
 <ColumnDefinition Width="180" />
 <ColumnDefinition Width="180" />
 <ColumnDefinition Width="210" />
 <ColumnDefinition Width="100" />
 <ColumnDefinition Width="70" />
 </Grid.ColumnDefinitions>

 <TextBlock Grid.Column="0"
 Text="{Binding EmployeeID}" />

 <StackPanel Grid.Column="1" Orientation="Horizontal">
 <TextBlock Text="{Binding LastName}" />
 <TextBlock Text=", " />
 <TextBlock Text="{Binding FirstName}" />
 </StackPanel>

 <TextBlock Grid.Column="2"
 Text="{Binding Title}" />

 <TextBlock Grid.Column="3"
 Text="{Binding EmailAddress}" />

 <TextBlock Grid.Column="4"
 Text="{Binding Phone}" />

 <TextBlock Grid.Column="5"
 Text="{Binding HireDate, StringFormat='{}{0:d}'}" />
 </Grid>
 </DataTemplate>
 </local:EmployeeReport.ItemTemplate>
</local:EmployeeReport>

 The local namespace is mapped to the project the code and markup reside within. The ItemTemplate contains a DataTemplate that has a grid column for each column displayed on the report. Each column contains one or more fields bound to the properties
 of the EmployeeReportItem class. The EmployeeReport element itself resides in the LayoutRoot grid, left out of the listing for space considerations. Also in the LayoutRoot grid is the button previously mentioned:

 <Button x:Name="Print" Content="Print" Width="100" Height="30"
 IsEnabled="False"
 Click="Print_Click"/>

 Note that the button isn’t enabled by default. We’ll enable it once the data is loaded from the service. The code to run the
 report can’t be included in the service return event handler, because (in normal trust applications) it must be run from a
 user-initiated event.

 Listing 19.13 shows the code-behind with the code to load the report data and handle the print report button click.

 Listing 19.13. Code-behind for MainPage

 [image:]

 With the item template in place, and our print button wired up, we’ll turn our eyes back to the PrintDocument class and the PrintPage event.

 The Print Method

 The EmployeeReport class currently has a Print method that does nothing. We’ll flesh that out a little more to include the usual trifecta of print event handlers, as shown
 in listing 19.14.

 Listing 19.14. The three printing event handlers, wired and ready to go

 [image:]

 From this point forward, the majority of the code will go into the PrintPage method. For space considerations, I won’t show the other event handlers or the Internal-PrintReport function itself.

 Enumerating Rows

 When I was in college, they made me learn COBOL. Not just any old COBOL, but COBOL on an unforgiving editor on a VAX/VMS computer.
 If you’ve never written in COBOL, give it a try—it’ll make you appreciate how little typing you need to get things done in
 C#. Perhaps my interest in curly-brace languages like C# is actually the result of the trauma I sustained in that class.

 Anyway, I digress. One thing that the COBOL class did teach was how to build reports from code. That’s one skill that I’ve
 been able to use in most technologies since. Up until now, though, I hadn’t been able to use that in Silverlight. Luckily,
 that’s about to change.

 Normally when you process a bunch of rows of data, you’d use a LINQ statement or a for each loop. Neither approach will work particularly well here, as we need to keep a pointer to our position in the data while allowing
 Silverlight to raise separate events for each page. Though we could use a simple for next loop and an index that we keep track of externally, this is the type of scenario just built for IEnumerator<T>.

 In listing 19.16, you can see the enumerator declared inside the Print method. This will be used to keep track of our current position in the report data. In the BeginPrint event handler, I reset the enumerator. Doing so allows Print to be called multiple times on the same data, without running into an enumerator problem.

 The enumerator approach is similar to what you might use in COBOL or in record-set/rowset processing in another language,
 where there’s the concept of a “current” record as opposed to an external loop index.

 In listing 19.15, I first create a StackPanel that will be used to hold the rows of data. I then move through each row of data, instantiate the template, and add the resulting
 element to the panel. Finally, the panel is set as the page visual, ready for Silverlight to print.

 Listing 19.15. Enumerating and printing each row of data

 [image:]

 The code in listing 19.15 includes the majority of the important logic required to print a report. It first creates a StackPanel [image:] used to hold the content. It then loops through the line items, creating a template-based element to be the row’s contents,
 and then setting the data context [image:] of that element to be the row data itself. It then measures [image:] the element, providing it the bounds of the page, and finally adds it to the stack panel. Once all elements have been created,
 the page visual is set to the stack panel and the “more pages” flag is set to false.

 In setting HasMorePages to false and not dealing with page breaks, the code in listing 19.15 blindly prints, ignoring the end of the page. If this were old traditional printing, green-bar fan-fold paper would be flying
 off the printer faster than we could catch it, with printing on the seams and everywhere else. Silverlight will clip this,
 of course, so the result will be only a single page that doesn’t overrun its boundaries. Figure 19.8 shows the top of the report page for reference, as it appears when using the XPS document print driver.

 Figure 19.8. The top portion of the report, shown in the XPS viewer

 [image:]

 A short single page is nice, but losing data off the bottom isn’t. What we really want is to support multiple pages and wrap
 contents on to those subsequent pages.

 19.3.3. Adding multipage support

 In order to support multiple pages, we need to keep track of the size of the report at every row. You could precalculate the
 number of rows that will fit, but then you’d lose the flexibility to have dynamically sized rows that change height based
 upon their content.

 Listing 19.16 shows what I did to keep track of the page size and ensure the content will fit on the page. Note the addition of the !full check in the while loop.

 Listing 19.16. Breaking when the page is full

 [image:]

 The approach I used here to move things to the next page is a little hokey. For one thing, that MoveNext in BeginPrint assumes the report will always have at least one row of data. For another, there’s a wasted measure call when you reach the
 point of moving to a new page.

 To really do multipage support correctly, you need to precalculate your pages. This is the approach I took in the version
 I put up on CodePlex. But for the simple example here, I decided to reserve a bit of buffer space at the bottom of the page,
 equal to the size of one row. Of course, this assumes fixed-height rows. To support dynamically sized rows, you’ll need to
 measure and then move the item to the next page if it doesn’t fit—something much easier to do in a precalculation routine.

 Whatever approach you use, once you have some measuring infrastructure in place, it becomes fairly easy to add a header and
 footer.

 19.3.4. Adding a header and footer

 The approach we’ll use to add a header and footer is similar to the items approach. The header and footer will each have an
 associated DataTemplate property that will be populated in XAML with the appropriate content. Listing 19.17 shows the property declarations in the EmployeeReport class.

 Listing 19.17. Dependency properties for templates

 [image:]

 Note that I added a third dependency property to hold the page number. We’ll use that inside the templates to show the current
 page number via a binding statement. The two other dependency property declarations are pretty straightforward. We’ll have
 one data template for the page header and another for the page footer. The XAML data templates for listing 19.17 are shown in listing 19.18.

 Listing 19.18. Header and footer data templates in MainPage XAML

 [image:]

 To support the page numbering used in listing 19.18, I had to add another reset line to the BeginPrint event. This line resets PageNumber to 0, assuming we may print the report more than once. Here’s the additional line of code, shown in context:

 doc.BeginPrint += (s, e) =>
{
 itemsEnumerator.Reset();
 itemsEnumerator.MoveNext();
 PageNumber = 0;
};

 You could leave out the PageNumber reset, and the worst that would happen would be that your page numbers would continue to increment from report to report
 during the same Silverlight session.

 That brings us to the real core of the multipage support: the PrintPage changes. PrintPage gains a significant number of lines of code because we now need to build a grid to contain the header, footer, and content
 rows. The StackPanel is still there, in the central cell in the grid, but it’s now positioned between two other grid rows. Listing 19.19 shows the method, with the exception of the code right above and inside the while loop, which remains untouched.

 Listing 19.19. Updated PrintPage code for header and footer

 [image:]

 The additions in listing 19.19 are long, but easily understood. I first increment the page number [image:] so we can use that in the bound header and footer. I then create a new root element [image:], this time a grid. Three rows are added to the grid: the header row [image:], the items row [image:], and the footer row [image:]. The header and footer rows are autosized; the middle items row is set to take up the remaining available space. I then create
 the elements from the header and footer templates and add them to the appropriate rows in the grid along with the StackPanel used to hold items [image:]. Their data contexts are set to the report object, so they can pick up the PageNumber property. The final new step before the loop is to modify the way the itemsAreaHeight is calculated, so it takes into account the size of the header and footer [image:]. Finally, rather than assign the items panel to the PageVisual, I assign the entire grid, header, items, footer, and all [image:].

 Figure 19.9 shows the header and footer at the page break between page 1 and page 2.

 Figure 19.9. The footer from page 1 and the header from page 2. Note the page number on the first page.

 [image:]

 It’s relatively easy to get the page number, as you see in the example code. It’s more difficult to get a total page count.
 One common request for reports is the ability to show the page number as “Page x of y” where x is the current page and y is the total count of pages. Should you desire to do this, you’ll need to precalculate the pages prior to printing—the approach
 I took in the version posted to CodePlex.

 Supporting multipage printing with headers and footers is easily done, given the flexibility of data templates and the “no
 assumptions” low-level nature of the Silverlight printing API. Though the performance of the printing system isn’t quite up
 to par for huge multipage reports, the API does nothing to prevent you from creating those types of print jobs should they
 be appropriate to your project.

 Combining the print API with binding and templates offers a good reuse story, and allows you to spend more time in XAML using
 design tools and less time in code. You could even extend the template model to include a report footer for totals, or modify
 it further to support nested groups. The sky’s the limit.

 19.4. Summary

 In order for Silverlight to be taken seriously in the business world, it had to support a flexible printing API. Though you
 can sometimes punt and skip on printing support in consumer applications, the business world is less forgiving.

 With Silverlight 4, the product team delivered a very flexible printing API. It may still be rough around the edges, especially
 in performance and, in some cases, raster quality of the output, but it’s still a 1.0 API, and quite usable at that.

 The printing API in Silverlight can be used for anything from printing simple onscreen content to complex multipage reports
 with headers, footers, grouping, and more. In this chapter we saw how to print content as it appears onscreen, then looked
 at a few ways to handle scaling that content so it better fit the printer. We also looked at content that was purpose-built
 specifically for the printer, whether a simple single-page list or a multipage report including headers and footers.

 The information in this chapter can serve as a foundation upon which you can build your own printing and reporting systems
 in your applications. But, should you want to take the knowledge and simply apply it to someone else’s code, David Poll and
 I have created a simple report writer project on CodePlex at http://silverlightreporting.codeplex.com. We plan to use that as a test bed for new ideas and provide something real that you can build upon to meet your own requirements.
 Take a look at it, if only to see some of the other techniques described in this chapter, such as precalculating pages.

 In the next chapter, we’ll look at the media capabilities of Silverlight, including the exciting webcam and microphone APIs
 introduced in Silverlight 4, and the media APIs introduced in Silverlight 3.

Chapter 20. Displaying and capturing media

 This chapter covers

 	Interactive playback

 	Playlist management

 	Working with raw media

 	Working with the webcam and microphone

If you ask most non-Silverlight developers what Silverlight is, 8 out of 10 will probably say it’s Microsoft’s web media player.
 Part of that reputation comes from Silverlight 1.0, which was only good as a media player. The other part comes from the incredible
 advances the Silverlight team has made in making Silverlight a first class media platform for the web.

 Silverlight excels at delivering high-quality HD media. In fact, it was one of the first web technologies to support true
 720p and 1080p HD media over decent but not abnormal network pipes. Silverlight has been the driving media force behind Netflix,
 as well as many online events such as the Olympics and March Madness. Media is what has helped Silverlight expand onto the
 majority of internet-connected desktops.

 Allowing your users to experience digital media in a meaningful and personal manner can be challenging and exciting. Throughout
 this chapter, you’ll learn how to use items from within the System.Windows.Controls namespace to help accomplish this. You’ll first see the flexible MediaElement control. Then, you’ll learn how to manage the media experience through the use of playlists and interactive playback. From
 there, you’ll learn about accessing protected content, an essential feature for large content publishers such as Netflix.
 We’ll also learn about creating raw video and audio using the MediaStreamSource API. We’ll wrap up this chapter with an examination of the webcam and microphone API introduced with Silverlight 4.

 20.1. Audio and video

 Integrating media into a Silverlight application is incredibly simple. To include a rich media experience, you employ a MediaElement object. This general-purpose object empowers you to deliver rich audio and video content. For a user to enjoy this high-fidelity
 content, though, the media item must first be loaded and configured.

 Throughout the course of this section, you’ll learn how to load and configure audio and video content. This section will begin
 with an in-depth discussion about the MediaElement’s Source property. From there, you’ll see the properties that you can use to configure both audio and video items. Next, you’ll see
 the items directly related to audio content. We’ll then shift toward a focus on video content. This section will conclude
 with an explanation of the lifecycle of a media file within a MediaElement.

 20.1.1. Media source

 The Source property of the MediaElement specifies the location of the audio or video file to play. This file can be referenced by using either a relative or absolute
 URL. If you have a video file called video.wmv in a subdirectory called Media within your web application, you could use it
 by setting the Source property to Media/video.wmv. This example shows a MediaElement that uses a relative media file:

 <Grid x:Name="LayoutRoot" Background="White">
 <MediaElement x:Name="myMediaElement" Source="Media/video.wmv" />
</Grid>

 This shows a video that belongs to the same web application as the Silverlight application. Note the use of the forward slash
 (/) in the Source property. This property allows you to use forward slashes, but not backslashes (\). In addition, the Source property also has support for cross-domain URIs.

 Cross-domain URIs allow you to specify an absolute path to a media file. This feature gives you the flexibility to use a media
 asset stored on another server. If you choose to use this approach, it’s important to gain permission to use the file before
 doing so. You do have our permission to reference the video shown here:

 <Grid x:Name="LayoutRoot">
 <MediaElement x:Name="myMediaElement"
 Source="http://www.silverlightinaction.com/video2.wmv" />
</Grid>

 This example shows a video, which doesn’t include sound, being accessed from a remote server. When accessing content from
 a remote server, you must use one of the three acceptable protocols. Silverlight supports the HTTP, HTTPS, and MMS protocols.
 In addition, the Source property expects certain formats.

 Supported Formats

 Have you ever wanted a snack or soda and accidently put foreign currency in your local vending machine? Or, have you ever
 accidently put a DVD into a CD player? What happened? Most likely, either nothing happened or some type of error was displayed.
 These scenarios show that devices are created with specific formats in mind. Likewise, the MediaElement expects certain formats.

 The MediaElement supports a powerful array of audio and video formats that empower you to deliver high-quality media experiences over the
 internet. The accepted audio formats ensure a truly high-fidelity aural experience. At the same time, the supported video
 formats ensure a viewing experience that can scale from mobile devices all the way up to high-definition displays. Table 20.1 shows the formats supported by the MediaElement.

 Table 20.1. Media containers and codecs supported by Silverlight

 	
 Container

 	
 Codec

	Windows Media
 	Windows Media Audio 7, 8, 9 (WMA Standard)
 Windows Media Audio 9, 10 (WMA Professional)
 WMV1 (Windows Media Video 7)
 WMV2 (Windows Media Video 8)
 WMV3 (Windows Media Video 9)

	MP4
 	H.264 (ITU-T H.264 / ISO MPEG-4 AVC), AAC-LC

	MP3
 	ISO MPEG-1 Layer III (MP3)

By targeting these media formats, the Silverlight runtime can be a self-contained environment for media experiences. Once
 your users install the Silverlight runtime, they can run all the supported media formats without having to download and install
 additional codecs.

 The format for media is important, but the delivery method is equally so. Table 20.2 lists the delivery methods Silverlight recognizes for audio and video.

 Table 20.2. Supported media delivery methods

 	
 Delivery method

 	
 Supported containers

	Progressive download
 	Windows Media, MP4, MP3, ASX

	Windows Media Streaming over HTTP
 	Windows Media Server-Side Play List (SSPL)

	Smooth Streaming
 	fMP4

	ASX
 	Windows Media, MP4, ASX

	PlayReady DRM
 	MP4

	Server-side playlist
 	Windows Media

	MediaStreamSource
 	Any container, as long as you write a parser for it

In addition to the progressive download formats, table 20.2 shows two different streaming methods: Smooth Streaming and Windows Media Streaming over HTTP.

 Smooth Streaming with IIS

 Smooth Streaming is an HTTP-based multiple bit rate (MBR) adaptive media streaming service implemented on Internet Information Server (IIS)
 on Windows servers. Smooth Streaming dynamically detects client bandwidth and CPU usage and adapts to conditions in close
 to real-time. Smooth Streaming provides:

 	Automatic adaptation to CPU constraints

 	Automatic adaptation to bandwidth constraints

 	Simplified caching and support for content delivery networks (CDN)

For example, if you’re watching an HD video on your client and suddenly you start a CPU-intensive process such as a large
 compile, rather than drop frames, Smooth Streaming detects the condition and lowers the quality of the video (lowers the bit
 rate, which typically means a lower resolution) so your viewing sessions continues uninterrupted.

 Similarly, if you’re watching an HD video and someone in your house starts a large download, effectively taking up a large
 portion of your internet bandwidth, Smooth Streaming will adapt to that as well, lowering the bit rate to fit into the available
 bandwidth.

 Finally, Smooth Streaming supports simplified caching of content, as the individual chunks are individual files, easily cached
 using standard HTTP file caching mechanisms. The caches need not know anything about media formats; the bits are just files.
 For the same reasons, proxies work just as well, requiring no special open ports or knowledge of the formats.

 Smooth Streaming delivers small content fragments (about two to four seconds worth of video) to the client, and verifies (with
 the help of Silverlight) that the content all arrived on time and played at the expected quality level. If a fragment doesn’t
 meet these requirements due to bandwidth or processor restrictions, the next fragment will be delivered at a lower quality
 level. If the conditions were favorable, the next fragment will be delivered at the same or higher quality level.

 Similarly, if the video is available in 1080p HD, but the user is watching it on a display at 720p resolution, Smooth Streaming
 will send down only the 720p size chunks, saving bandwidth and processing time.

 On the server, this requires that the videos be encoded to several different formats. IIS Smooth Streaming keeps all the chunks
 for a given format in a single MP4 file, but delivers the chunks as individual logical files. This makes server file management (and file access) easier, while still providing
 for caching of chunks by local proxies and downstream servers. Smooth Streaming files have the extension .ismv for video plus
 audio, and .isma for audio-only. Figure 20.1 shows the structure of the Smooth Streaming file on the server.

 Figure 20.1. The Smooth Streaming server-side file format

 [image:]

 The file includes a file type header to let us know this is the smooth streaming file. Next, it includes Movie Metadata (moov)
 that describes what the file contains. Following that are the individual two-second fragments for the entire movie. Each fragment
 contains header information for the fragment, as well as the fragment bits themselves. The file closes with an “mfra” index
 that allows for easy and accurate seeking within the file.[1]

 1 IIS Smooth Streaming Technical Overview, Alex Zambelli, Microsoft, March 2009. http://bit.ly/Smooth-StreamingTech

 In addition to the media file described here, Smooth Streaming also uses a .ism manifest file for the server, which describes
 the relationships between the different server files, and a .ismc client manifest file, describing the available streams,
 codecs, bit rates, markets, and so on. This .ismc file is what’s first delivered to the client when the video is requested.

 An online example of Smooth Streaming with IIS and Silverlight may be seen on the IIS Smooth Streaming site here: http://www.iis.net/media/experiencesmooth-streaming. Other examples of Smooth Streaming through a CDN may be seen at http://www.smoothhd.com.

 To encode video for use with Smooth Streaming, you use Microsoft Expression Encoder. Once the videos are encoded, you can
 use the Expression Encoder Smooth Streaming template to serve as the start of your video player, or you can use the Silverlight
 Media Framework, covered in section 20.5.

 The Silverlight Media Framework (SMF) is the easiest way to incorporate Smooth Streaming into your application. Before we
 cover that, let’s look at other forms of streaming and downloading available to us.

 Windows Media Streaming

 Though now generally out of favor due to the introduction of Smooth Streaming, Silverlight still supports streaming media
 content over HTTP through server-side play lists and the MMS protocol. The MMS protocol was built for sending many short messages
 to a client, and uses a URI that begins with mms:// instead of http:// or https://. When a media file is streamed through
 this protocol, your Silverlight application maintains an open connection with the hosting server. This has two advantages.
 It enables you to jump to any point in time within a media file, and streaming usually provides a more cost-effective approach
 for delivering audio and video content because only the requested content is downloaded, plus a little extra. This content
 is configurable through the BufferingTime property.

	

Tip

 When evaluating media streaming options for HD content, lean toward IIS Smooth Streaming over Windows Media Streaming. IIS
 Smooth Streaming is better optimized to provide a great user experience with high bit rate content, such as HD video.

 	

The BufferingTime property enables you to view or specify how much of a buffer should be downloaded. By default, this TimeSpan value is set to buffer 5 seconds worth of content. If you’re streaming a 1-minute video, the video won’t begin playing until
 at least 5 seconds of it has been retrieved. While this retrieval is occurring, the CurrentState property of the MediaElement (which we’ll discuss shortly) will be set to Buffering. While the MediaElement is in a Buffering state, it’ll halt playback. You can check to see what percentage of the buffering is completed by checking the BufferingProgress property.

 The BufferingProgress property gives you access to the percentage of the completed buffering. Because this property value is always between 0.0
 and 1.0, you need to multiply it by 100 to get the percentage. When this property changes by a value greater than 5 percent,
 the BufferingProgressChanged event will be fired. This event gives you the flexibility to keep your users informed through a progress bar or some other
 UI construct. As you can imagine, this type of component can be valuable when you’re streaming content.

 Often, streamed content can be quite lengthy. Because of this, it can be advantageous to use MBR) files. MBR files enable
 you to provide the highest quality experience based on the available bandwidth. The really cool part is that the MediaElement will automatically choose which bit rate to use based on the available bandwidth. In addition, the MediaElement will automatically attempt to progressively download the content if it can’t be streamed. That’s thinking progressively.

 Progressive Download

 Progressive downloading involves requesting a media file over the HTTP or HTTPS protocol. When this occurs, the requested content is temporarily
 downloaded to a user’s computer, enabling the user to quickly access any part of the media that has been downloaded. In addition
 to fast access, using a progressive download generally provides a higher-quality media experience. Progressive downloading
 usually requires a longer initial wait time than streaming, so you may want to keep your users informed of how much wait time is left.

 Keeping your users informed is made possible through two key items within the MediaElement. The first item is a property called DownloadProgress. It gives you access to the percentage of the content that has been downloaded. The other item is an event called DownloadProgressChanged. This event gives you the ability to do something such as update a progress bar whenever the DownloadProgress property changes. In listing 20.1, both these items are used to show the percentage of requested content that’s available.

 Listing 20.1. The percentage of content ready for use within a MediaElement

 XAML:

 [image:]

 C#:

 using System;
using System.Windows;
using System.Windows.Controls;
namespace Chapter20
{
 public partial class Page : UserControl
 {
 public Page()
 { InitializeComponent(); }
 void me_DownloadProgressChanged(object sender, RoutedEventArgs e)
 {
 double percentage = me.DownloadProgress * 100.0; [image:]
 string text = String.Format("{0:f}", percentage) + "%";
 tb.Text = text;
 }
 }
}

 This example shows a large video file (~13MB) being progressively downloaded [image:]. As this download progresses, the completion percentage is calculated [image:]. This percentage is then formatted and presented to the user as the video is downloaded.

 Whether you stream content or progressively download it, the MediaElement expects certain formats. These file formats are then retrieved over one of the accepted protocols (HTTP, HTTPS, or MMS).
 The Source property simplifies this retrieval process, and it works with both audio and video files. Once the media source is loaded,
 the MediaElement can be used to configure the playback of a media item or obtain status information. These items are available through a set
 of commonly used properties.

 20.1.2. Common properties

 The MediaElement provides a number of properties that are common to both audio and video files. Interestingly, you’ve already seen several—the
 Source, BufferingTime, BufferingProgress, and DownloadProgress properties. There are five other properties so fundamental to the MediaElement that we should discuss them now. These properties are AutoPlay, CanPause, CurrentState, NaturalDuration, and Position.

 Autoplay

 The AutoPlay property specifies whether the MediaElement will automatically begin playing. By default, a MediaElement will begin playing as soon as the content referenced in the Source property is loaded. You can disable this default behavior by changing the AutoPlay bool property to false. As you can imagine, once a media file has begun playing, there may be times when you want to be able to pause it.

 Canpause

 Sometimes you may want to allow a user to halt the playback of a MediaElement. By default, the MediaElement will allow you to do this. But, by setting the CanPause property of the MediaElement to false, you can prevent your users from pausing the playback. If you allow the pausing function and a user decides to halt the playback,
 it’ll change the value of the CurrentState property.

 Currentstate

 The CurrentState property represents the mode the MediaElement is in. This mode is exposed as a value of the System.Windows.Media.MediaElementState enumeration. This enumeration provides all the possible states a MediaElement can be in. These states are listed and described in table 20.3.

 Table 20.3. The options available within the MediaElementState enumeration

 	
 Option

 	
 Description

	AcquiringLicense
 	Occurs while a protected file is obtaining a license key (see section 20.4.3).

	Buffering
 	This signals that the MediaElement is in the process of loading a media file.

	Closed
 	The media has been unloaded from the MediaElement.

	Individualizing
 	Occurs while Silverlight is obtaining PlayReady components (see section 20.4.2).

	Opening
 	The MediaElement is trying to open the media item referenced through the Source property.

	Paused
 	This represents that the MediaElement has halted playback.

	Playing
 	This signals that the MediaElement is moving forward and the media is being enjoyed.

	Stopped
 	The MediaElement has media loaded. It isn’t currently playing, and the Position is located at the start of the file.

Table 20.3 shows the options available within the MediaElementState enumeration. This enumeration is used by the read-only CurrentState property. Considering that this property is read-only, how does it get set? This property is altered through a variety of
 methods you’ll learn about later in this chapter. Anytime the CurrentState property value is changed, an event called CurrentStateChanged is fired. The state of the media item is a natural part of working with the MediaElement, as is the duration.

 NaturalDuration

 The NaturalDuration property gives you access to the natural duration of a media item. This duration is available once the MediaElement has successfully opened a media stream, so you shouldn’t use the NaturalDuration property until the MediaOpened event has fired. Once the MediaOpened event has fired, you can access the total length of a media item, as shown here:

 void me_MediaOpened(object sender, RoutedEventArgs e)
{
 tb.Text = "Your video is " + me.NaturalDuration + " long.";
}

 This example displays the total length of a media item in an assumed TextBlock. This task takes place when the MediaOpened event of a MediaElement has triggered, so you can assume that the media stream has been successfully accessed. Then, you use the NaturalDuration property to show the length of the media stream. This length is stored as a TimeSpan within the NaturalDuration property.

 The NaturalDuration property is a System.Windows.Duration entity. This type of entity is a core element of the .NET Framework, and it exposes a property called HasTimeSpan that signals whether a TimeSpan is available. In the case of a MediaElement, this property value will always be true, enabling you to access highly detailed information about the length of a media stream through the TimeSpan property. This property is demonstrated in this example:

 void me_MediaOpened(object sender, RoutedEventArgs e)
{
 StringBuilder sb = new StringBuilder();
 sb.Append("Your video is ");
 sb.Append(me.NaturalDuration.TimeSpan.Minutes);
 sb.Append(" minutes, ");
 sb.Append(me.NaturalDuration.TimeSpan.Seconds);
 sb.Append(" seconds, and ");
 sb.Append(me.NaturalDuration.TimeSpan.Milliseconds);
 sb.Append("milliseconds.");
 tb.Text = sb.ToString();
}

 This shows how to access detailed information about the length of a media item. As you probably know, this information, as
 well as the position of the playback, is part of almost any online media player.

 Position

 The Position property represents a point, or location, within a MediaElement. This value can be read regardless of the CurrentState of the MediaElement, and it can be set if the MediaElement object’s CanSeek property is true.

 The CanSeek property determines whether the Position can be programmatically changed. This read-only property is set when a media item is loaded into a MediaElement. If the referenced media item is being streamed, this property will be set to false. If the referenced media item is being downloaded progressively, the CanSeek property will be set to true.

 When the CanSeek property is set to true, you can set the Position property to any TimeSpan value. It’s recommended that you use a TimeSpan within the NaturalDuration of a MediaElement. If you use a TimeSpan beyond the NaturalDuration, the MediaElement will jump to the end of the media item.

 The Position is an important part of any media item—and so are the other common properties shared across audio and video files. These
 properties include NaturalDuration, CurrentState, CanPause, and AutoPlay. Additional properties are specific to the audio part of a media stream.

 20.1.3. Audio specific properties

 The MediaElement exposes several properties directly linked to audio features. These features can be used to give users greater control over
 their listening experiences and to engulf your users in your Silverlight application. These features can be delivered through
 the AudioStreamCount, AudioStreamIndex, Balance, IsMuted, and Volume properties.

 AudioStreamCount/AudioStreamIndex

 Occasionally, audio or video files will contain more than one audio track. As an example, a song may have one track for the
 guitar, one for the drums, and one for the vocals. Usually, you won’t work with these kinds of audio files. Instead, you may
 come across multilingual videos where each language has its own track. In both these situations, you can access the track-related
 information through the AudioStreamCount and AudioStreamIndex properties.

 The AudioStreamCount and AudioStreamIndex properties give you access to the individual audio tracks of a media file. The read-only AudioStreamCount property stores the number of tracks available. The AudioStreamIndex property specifies which of the available tracks to play (or is playing). Neither of these properties means anything until
 the MediaOpened event has fired.

 When the MediaOpened event is fired, the AudioStreamCount and AudioStreamIndex properties get set on the client’s machine. When this occurs, the audio tracks in the media file are read. While these tracks
 are being read, a collection is being created in the background. When this collection is fully created, the AudioStreamCount property is set to match the number of tracks in the collection. Then, the AudioStreamIndex property is set to begin using the first track in the collection. Alternatively, if the AudioStreamIndex property is set at design time, that track will be used. Either way, once an audio track is playing, it’s important to make
 sure that the sound is balanced.

 Balance

 The Balance property enables you to effortlessly simulate sounds such as a wave gently lapping a sandy shoreline or a swirling wind.
 These types of sounds often involve sound shifting from one ear to the other; it would be startling if the sounds spastically
 jumped from one ear to the other. The balance of the volume across your ears makes these sounds much more natural.

 With the Balance property, you can gracefully spread out your sounds by specifying a double-precision value between –1.0 and 1.0. If you set
 the property value to -1, you can project sound entirely from the left-side speakers. If you set the value to 1, the sound
 will leap from the right speakers. If you’re seeking a balance between the left and right speakers, you set the value to 0.

 This property is more than an enumerator between the left, right, and center positions. It gives you the flexibility to do
 things like project 70 percent of a sound from the right speaker by using a value of 0.7. The remaining 30 percent projects
 from the left speaker. As you can imagine, you can easily depict a lifelike audible environment. Sometimes it’s nice to shut
 out the sounds of life—enter IsMuted.

 IsMuted

 Anything with an audio source should expose the ability to temporarily mute the audio. Thankfully, the MediaElement exposes an IsMuted property.

 This property allows you to programmatically determine whether the sound associated with a MediaElement is audible. If a MediaElement is playing and this boolean property is set to true, the MediaElement will continue to play, but it won’t be audible.

 As a bool, the IsMuted property is all or nothing. Usually, you’ll need to find a happy medium between audible and inaudible. Silverlight also gives
 you this type of control through the Volume property.

 Volume

 The Volume property is a double-precision, floating-point value that specifies the audible level of a MediaElement. This property value can range from an inaudible (0.0) all the way up to a room-shaking 1.0. The room-shaking capabilities
 are ultimately restrained by the user’s computer volume. By default, the Volume value is in the middle of this range at 0.5.

 The Volume property is one of the five properties that address audio-related features. The other properties are the IsMuted, Balance, AudioStreamCount, and AudioStreamIndex properties. The MediaElement also exposes a pair of properties that are specific to the visual part of a media file.

 20.1.4. Video specific properties

 The MediaElement exposes four properties directly related to videos. The first two are the DroppedFramesPerSecond and RenderedFramesPerSecond properties, both of which deal with video frame rates. The other two properties, NaturalVideoHeight and NaturalVideoWidth, deal with the dimensions of a video.

 The MediaElement exposes two read-only double-precision values related to the frame rate of a video. RenderedFramesPerSecond gives you the number of frames that are rendered per second. The other property, DroppedFramesPerSecond, lets you know how many frames are being dropped per second. You can use these two properties to monitor the smoothness of
 a video. If a video begins to become jerky, the DroppedFramesPerSecond value will increase. In this scenario, you may want to consider using a video with smaller natural dimensions.

 The natural dimensions of a video are provided through two read-only properties. The NaturalVideoHeight property represents the height of a video, the NaturalVideoWidth property represents the video’s width. These int properties are both read-only because they represent the original dimensions, in pixels, of a requested video. These values
 are useful when a video is the primary focus of your UI. If you’re using an audio file instead of a video file, these two
 properties will stay at their default values of 0. For this reason, these properties are specific to video scenarios. Both
 video and audio files are involved in a standard lifecycle.

 20.1.5. The lifecycle of a media file

 Throughout this section, you’ve seen a wide variety of properties. Some of these property values are likely to change throughout
 the life of a media file, so it’s beneficial to listen for those changes. As you might expect, the MediaElement provides a rich set of events that enables you to watch for those changes (see table 20.4).

 Table 20.4. The events of the MediaElement

 	
 Event

 	
 Description

	BufferingProgressChanged
 	Triggered anytime the BufferingProgress property changes.

	CurrentStateChanged
 	Fired anytime the CurrentState property is altered.

	DownloadProgressChanged
 	Occurs whenever the DownloadProgress property changes.

	MarkerReached
 	Discussed in section 20.3.2.

	MediaEnded
 	Fired when the MediaElement is no longer playing audio and video.

	MediaFailed
 	Triggered if the media item referenced in the Source property can’t be found. Alternatively, this event will trigger if there’s
 a problem with the media file itself.

	MediaOpened
 	Occurs after the information associated with the media has been read and the media stream has been validated and opened.

This table shows the events exposed by the MediaElement. Note that some state changes trigger multiple events. For instance, if a video file runs its route within a MediaElement, the CurrentStateChanged and MediaEnded events will both fire. As a result, you may need to create checks and balances within your code. To better understand the
 typical life of a media file, please review figure 20.2.

 Figure 20.2. The cycle of events as a media item plays progressively within a MediaElement

 [image:]

 This figure shows the lifecycle of a media item that has played progressively through a MediaElement. The Loaded event used in the figure is of the FrameworkElement variety. This event shows when the NaturalDuration is set. As you can see, this property is set when the CurrentState is switched to Playing.

 If you reference a media item that can’t be found, the MediaFailed event will fire, but the CurrentStateChanged event won’t be triggered. In other words, if you reference a media file that doesn’t exist, only the Loaded and MediaFailed events will be triggered.

 The events of the MediaElement reflect the lifecycle of a media item. This item can be impacted by a variety of audio- or video-related properties. Several
 properties are common to both audio and video files. One of these properties represents the Source of the media and can be referenced through a relative or remote Uri. Even more interesting is the fact that you can use the Source property to reference playlists.

 20.2. Playlists

 A playlist is a list of audio or video tracks arranged in a specific order. These lists give you a way to manage media elements
 that are part of a larger scheme such as a CD. Playlists are more than ordered media items, though. Playlists give you a way
 to generate revenue through advertising. Regardless of how you intend to use them, Silverlight has support for two playlist
 types.

 Throughout this section, you’ll learn about the two types of playlists supported in Silverlight. The first kind of playlist,
 a client-side playlist, enables your Silverlight application to fully control interaction with the playlist. The other kind of playlist, a server-side playlist (SSPL), gives
 the hosting server complete control over the media experience.

 20.2.1. Understanding client-side playlists

 A client-side playlist is an XML file that can be interpreted by a MediaElement. This XML file follows a special format known as ASX, which we’ll detail in a moment. Once this file has been parsed by a MediaElement, the MediaElement will decide whether to begin playing. This decision will be based on the AutoPlay property. If this property is set to true, each of the items in the client-side playlist will begin playing one after the other. Amazingly, all this happens naturally
 by pointing the Source property to an ASX file as shown here:

 <MediaElement x:Name="myMediaElement"
 Source="http://www.silverlightinaction.com/myPlaylist.asx" />

 This shows how to request a client-side playlist. Note that this playlist uses the .asx file extension. This file extension
 is the one typically used for client-side playlists, but you can reference an ASX file with an extension of .asx, .isx, .wax,
 .wvx, .wmx, or .wpl. This restriction may seem odd considering that an ASX file is an XML file. Without this distinction,
 the MediaElement would be unable to quickly tell the difference between a client-side playlist and any of the other supported formats.

 A client-side playlist can be an effective way to deliver multiple media tracks. To take advantage of client-side playlists,
 you must understand how to masterfully use ASX files. These files can have rich descriptive information, known as metadata, surrounding each of the tracks.

 Using ASX Files

 Client-side playlists are defined as Advanced Stream Redirector (ASX) files—this is just a fancy name for a specific XML format. Because this format is XML, you can create a client-side playlist
 with your favorite text editor, Windows Media Player, or server-side application. Regardless of your choice, this file will
 always follow a common structure, which is shown in this example:

 <ASX Version="3.0">
 <Title>Silverlight in Action Videos</Title>
 <Entry>
 <Title>Greetings</Title>
 <Author>Chad Campbell</Author>
 <Ref Href="http://www.silverlightinaction.com/video1.wmv" />
 </Entry>
 <Entry>
 <Title>City Scape</Title>
 <Author>Dan Herrenbruck</Author>
 <Ref Href="http://www.silverlightinaction.com/video2.wmv" />
 </Entry>
</ASX>

 This example shows a pretty basic client-side playlist that uses a small portion of the full ASX schema. This segment isn’t
 that far off from the full schema supported within Silverlight. Silverlight only supports a subset of the full ASX schema, but this subset still provides plenty of elements
 that can be used to deliver a rich client-side playlist (see table 20.5).

 Table 20.5. The ASX elements supported within Silverlight

 	
 Element

 	
 Description

	Abstract
 	Provides a description for a client-side playlist or an entry within the playlist. This element exposes an attribute called
 Version. This attribute should use the value 3.0 for Silverlight applications.

	Asx
 	The root element of a client-side playlist.

	Author
 	Specifies the name(s) of the individual(s) that created a client-side playlist or an entry within the playlist. Only one Author
 element can be used per ASX or Entry element.

	Base
 	Represents a URL that will get prepended before playing within the client.

	Copyright
 	States the copyright information for an ASX or Entry element.

	Entry
 	Defines an item in a client-side playlist. This element provides a boolean attribute called ClientSkip. This attribute can
 be used to prevent a user from skipping tracks.

	MoreInfo
 	Enables you to specify a URL that provides more detailed information about the playlist or media item.

	Param
 	Represents a custom parameter associated with a media item.

	Ref
 	This element is the item that specifies which file to refer to for a media clip. The Ref element exposes a single attribute
 called Href that points to the URL of a media clip.

	Title
 	Signifies the moniker of a playlist or media item. For instance, if a playlist represents a CD, the Title element in that
 case would represent the name of the CD. The Title can also be used to specify the name of an individual track.

This table shows the ASX elements supported within Silverlight. As you can see, an ASX file is more than a list of URLs that
 point to media files. The ASX file format gives you the opportunity to provide a lot of valuable metadata with a playlist.
 In fact, the ASX format lets you specify metadata for the media items within the playlist, so it’s important to understand
 how to access that metadata.

 Accessing the Metadata

 The metadata for a media item can be found within a read-only property called Attributes. This member of the MediaElement class exposes the metadata as a Dictionary<string, string>. There are two interesting characteristics about this property that deserve mentioning.

 The first is in regard to what metadata is exposed. Surprisingly, the metadata embedded within a media item isn’t included.
 Unfortunately, there isn’t an elegant way to get this information. The descriptive information stored within the ASX file
 is included, so if you’re using client-side playlists you should provide as much metadata as you can.

 The other interesting item is related to the lifecycle of the Attributes property. This property stores the metadata associated with an individual media item, so the Attributes property is cleared and repopulated each time a different track in an ASX file is started. If you’re changing your UI based
 on the values within the Attributes property, you may consider doing this in the MediaOpened event. Alternatively, you may decide to bypass client-side playlists altogether and use a server-side playlist.

 20.2.2. Using server-side playlists

 Server-side playlists empower content administrators to dynamically determine what content is played, and when. The server
 streaming the content has complete control over how the content is distributed. This approach provides several advantages
 over client-side playlists, including:

 	Lower bandwidth costs—Generally client-side playlists serve content as separate streams for each entry. This causes your Silverlight
 application to reconnect to the server multiple times, wasting precious bandwidth. Because server-side playlists use a continuous
 stream, the Silverlight application only has to connect once.

 	Dynamic playlist creation—Server-side playlists allow you to change a playlist even after a Silverlight application has connected.

To take advantage of these features, you must write a script using the Synchronized Multimedia Integration Language (SMIL).
 This script must be placed inside of a file with the .wsx extension. As you’ve probably guessed, this file extension is used
 for server-side playlists. Once these server-side playlists are created, you can use a MediaElement to reference them.

 Creating WSX Files

 Server-side playlists are defined as .wsx files. These files are XML files that follow a specific XML format, which is demonstrated
 in the following sample .wsx file:

 <?wsx version="1.0"?>
<smil>
 <seq id="sq1">
 <media id="advertisement1" src="advertisement1.wmv" />
 <media id="movie" src="myMovie.wmv" />
 <media id="advertisement2" src="advertisement2.wmv" />
 <seq>
</smil>

 This XML example shows a basic .wsx file. This playlist uses three of the elements supported by the SMIL format in Silverlight—Media, Seq, and Smil. Silverlight supports a total of five elements, which are listed and described table 20.6.

 Table 20.6. The SMIL elements supported within Silverlight

 	
 Element

 	
 Description

	Excl
 	“Exclusive.” A container for media items. These items can be played in any order, but only one will be played at a time.

	Media
 	References an audio or video file through an src attribute.

	Seq
 	“Sequential.” A container for media items. These items will be played in sequential order.

	Smil
 	The root element for a server-side playlist.

	Switch
 	A container for a series of items that can be interchanged if one of the items fails.

The elements listed in the table give a content administrator the flexibility to control how content is distributed. To distribute
 this content, you use a MediaElement to reference the .wsx file.

 Referencing Server-Side Playlists

 After your .wsx file has been created, you can publish it on your server. You must publish a server-side playlist before a
 Silverlight application can use it. Although publishing a server-side playlist is beyond the scope of this book, connecting
 to one isn’t. You can do this from a MediaElement as shown in this example:

 <MediaElement Source="mms://www.silverlightinaction.com:1234/myPlaylist" />

 This line of markup shows how to reference a server-side playlist from a MediaElement. You may have noticed that the playlist doesn’t include the .wsx file extension. This extension usually gets removed during
 the publishing process. A MediaElement must use the MMS protocol to request a server-side playlist. This playlist can be used to stream content but can’t be used
 to serve downloadable content in Silverlight.

 Server-side playlists provide a way for content administrators to control the distribution of their content. Client-side playlists
 turn that control over to the requesting application. Either way, both options give you a way to distribute that web-based
 mix-tape you’ve always wanted to send. Of course, playlists (and media players in general) aren’t very useful without providing
 control over the playback.

 20.3. Interactive playback

 As you’ve seen up to this point, Silverlight makes it easy to deploy media content with the MediaElement. This content could come in the form of an individual media item or playlist. Regardless of where that media comes from,
 users generally want to control their own media experiences, and Silverlight makes it easy to make each experience an interactive
 one.

 The interactive playback features of Silverlight enable you to interact with media in a variety of ways. Over the course of
 this section, you’ll see three key items that can enhance a media experience. For starters, you’ll see how to control the
 play state on-the-fly. Then, you’ll learn about interacting with your users throughout the course of an audio or video file.
 Finally, you’ll see how to take advantage of Silverlight’s full-screen mode to deliver a memorable media experience.

 20.3.1. Controlling the play state

 The MediaElement gives you the ability to programmatically change the play state of a media item. This can be useful for providing things
 such as play, pause, and stop buttons. Note that you can’t change the play state directly through the read-only CurrentState property; you must rely on three basic methods to control the momentum of a media item. These methods are part of the MediaElement class and are described in table 20.7.

 Table 20.7. The methods that control the progress of a MediaElement

 	
 Method

 	
 Description

	Play
 	Begins moving the Position of the MediaElement forward from wherever it’s currently located. If you’re 5 seconds into a video
 and you pause it, this method will start playing the video 5 seconds in. Calling this method will change the CurrentState
 property to Playing.

	Pause
 	Halts the playback of a media item at the current Position. This method will change the CurrentState property to Paused.

	Stop
 	Stops the downloading, buffering, and playback of a media item. In addition, this method resets the Position to the beginning
 of the media item. Calling this method changes the CurrentState property to Stopped.

This table shows the three methods that can be used to control the play state. These methods are fairly straightforward and
 hardly worth mentioning, but this section would be incomplete without them. You probably expected the ability to play and
 stop a media item before seeing this list. In addition, you probably expected the ability to pause an item, but you may not
 have anticipated the fact that pausing a media item isn’t always an option.

 The Pause method will only work if the CanPause property is set to true. This read-only property will be set to true if the user’s machine has the ability to halt playback of a media file. Regardless of the user’s machine, a streaming media
 file will always set the CanPause property to false. In these situations where the CanPause property is false, you can still call the Pause method—it just won’t do anything.

 Providing an interactive experience often involves controlling the play state. This ability enables users to send a message
 to the MediaElement about what they want. Significantly, the MediaElement lets you send something back to the user when you want. That’s only partially true. You’ll see what I mean as you learn about
 interacting with your users in a timely fashion.

 20.3.2. Working with the timeline

 The MediaElement enables you to interact with your users at specific points in time. This can be a great way to provide captions or subtitles
 in your videos. In addition, this feature enables you to deliver advertisements, or other types of information, that are relevant to a portion of a video. Regardless of your need, time-sensitive information can be bundled with your media in the
 form of a timeline marker.

 A timeline marker is metadata that’s relevant to a specific point in time. This information is generally part of a media file
 itself and is bundled during encoding. Significantly, there are two different kinds of timeline markers. The first type is
 known as a basic marker. It’s intended to be used when you need to provide fixed information. The other kind of timeline marker is a script command; it can be used to run a piece of code. Both kinds of markers will be represented as a TimelineMarker whose properties are shown in table 20.8.

 Table 20.8. The properties associated with a TimelineMarker

 	
 Property

 	
 Description

	Text
 	A value associated with marker. This string can be any value you want. You may want to think of this as the value of a parameter.

	Time
 	The position of the marker within the media. This position is represented as a TimeSpan.

	Type
 	This string exposes the kind of marker for a script command. If a basic marker is being used, this value will be NAME.

In general, these properties get populated when a TimelineMarker gets created. TimelineMarker objects are usually created when a MediaElement initially reads a media file. During this process, the metadata within the header of the file is used to create TimelineMarker objects. These objects then are added to a publicly visible collection called Markers.

 The Markers collection is a collection of timeline markers associated with a media file. The items associated with this collection can’t
 be added through XAML, unlike the majority of other collections in Silverlight, because the markers come from the media item
 set as the Source of the owning MediaElement. Whenever one of these timeline-marker element’s Time has come, the MediaElement will fire the MarkerReached event. This event provides an opportunity to recapture the data associated with a marker, which can be useful for any number
 of things, including showing a caption (see listing 20.2).

 Listing 20.2. Using the MarkerReached event to show a caption on a MediaElement

 XAML:

 <Canvas>
 <MediaElement x:Name="me"
 Source="http://www.silverlightinaction.com/video3.wmv"
 MarkerReached="me_MarkerReached" /> [image:]
 <TextBlock x:Name="tb" Canvas.Top="330"
 Foreground="White" FontSize="20" FontWeight="Bold" />
</Canvas>

 C#:

 [image:]

 This listing shows one way you can use the MarkerReached event [image:]. This event provides a TimelineMarkerRoutedEventArgs parameter that gives you access to the Time-lineMarker that tripped the event. Common uses for this event are captioning, displaying ads (the text contains an ID or URL), text
 overlays, or displaying links to videos related to that marker. Many sites such as YouTube use similar functionality to display
 notes you add at specific points in the video.

 Markers add a whole new level of interactivity to your media player. To support basic interaction, the MediaElement provides three simple methods that let you control the play state. Regardless of how you intend to control the media experience,
 it must come from some server. Interestingly this server may serve up the experience as protected content.

 20.4. Using protected content

 The interactive playback features within Silverlight can be used to give your users an engaging media experience. Sometimes
 you may want to control who has access to this experience. To enable you to do this, Silverlight has built-in support for
 a clientaccess technology known as PlayReady for Silverlight.

 PlayReady for Silverlight, or PlayReady, is a content-access technology that enables you to protect your media assets. These assets may be requested from a Silverlight
 application through a MediaElement instance. This control’s Source property can be used to request protected content from a hosting server. Throughout this section, you’ll see an overview
 of how Silverlight uses PlayReady technology. This overview includes requesting protected content, retrieving PlayReadycomponents,
 and unlocking protected content.

 20.4.1. Requesting protected content

 A Silverlight application can request protected content, which may be in the form of a protected stream or media file. This
 item can be requested through the Source property of a MediaElement, so it’s safe to say that there’s no difference on the client side between requesting protected and unprotected content.
 In fact, Silverlight doesn’t know if content is protected until it’s downloaded. This download happens naturally when a request
 is made, as shown in figure 20.3.

 Figure 20.3. A user requests protected content from a server. This content is downloaded, in encrypted format, to the Silverlight application.

 [image:]

 Figure 20.3 shows the general idea of requesting protected content from a fictional domain. After this request is made, the server will send an encrypted version of the protected file back to the Silverlight application. This file will have a special header
 that tells the Silverlight runtime that it’s a protected file. This header will provide the location of the licensing server
 to Silverlight. But before the licensing server can be reached, Silverlight must ensure that the user has the necessary PlayReady
 components installed.

 20.4.2. Retrieving the PlayReady components

 By default, Silverlight has the infrastructure for PlayReady, but the PlayReady components aren’t installed along with the
 Silverlight runtime. Instead, they’re automatically downloaded and installed when a user requests a protected item. During
 this one-time installation process, Silverlight goes to the Microsoft.com site and grabs the necessary components. This transparent
 process is shown in figure 20.4.

 Figure 20.4. The process of installing the content access components. This one-time process happens the first time a user attempts to use
 a protected item. Future attempts to access protected content won’t go through the process of downloading and installing PlayReady.

 [image:]

 Figure 20.4 shows how the content access components are retrieved. These components may be customized for a user’s machine, solely for
 the sake of ensuring a robust licensing experience. The user’s machine is sometimes referred to as an individualized DRM client. This process happens automatically behind the scenes—you don’t have to do a thing. Even after the PlayReady components have
 been installed, the content is still locked. To unlock this content, a request must be made to the licensing server.

 20.4.3. Unlocking protected content

 Once a protected item has been downloaded to your Silverlight application, it’s still encrypted. This encryption can only
 be unlocked by a key sent from a licensing server, so if you try to play an encrypted file, Silverlight will search the encrypted
 file’s header for the location of a licensing server. Silverlight will use this location to automatically request a key from
 the licensing server to decrypt the protected content.

 When a licensing server retrieves a request for a key, it can either accept or deny the request. The licensing server can
 be used to implement some custom logic to make that decision. This custom logic must be implemented using the server-side
 PlayReady SDK. Unfortunately, this SDK is outside the scope of this book, but you can probably imagine how it could be used
 in a key request. A basic key request is shown in figure 20.5.

 Figure 20.5. The media content in this figure is locked until a key is retrieved from the licensing server. This server can implement custom
 logic through the PlayReady SDK.

 [image:]

 This figure shows what the request for a content-access key looks like. If this request is accepted, the licensing server
 will return a key. This key will unlock the protected content and begin playing it within the requesting MediaElement. If the request is denied, a key won’t be returned. Instead, the requesting MediaElement will raise a MediaFailed event.

 Silverlight has built-in support for the PlayReady content-access technology, which works behind the scenes to retrieve and
 unlock protected content—audio and video. One of the easiest ways to use PlayReady DRM and support HD video is to use the
 Silverlight Media Framework.

 20.5. Using the Silverlight Media Framework

 The Silverlight Media Framework (SMF) is Microsoft’s open source scalable and customizable media player for IIS Smooth Streaming.
 Like IIS Smooth Streaming itself, its history dates to the Olympics video player and massive amounts of high-quality, protected
 video that needed to be served up in real-time during the event. It has since evolved into an excellent multipurpose media
 player.

 If you’re building an HD media player, evaluating this framework should be at the top of your task list. Key features of the
 framework include:

 	Support for IIS Smooth Streaming with bit rate monitoring, as well as progressive download and Windows Media Streaming

 	Modular, supporting plug-ins

 	Support for popular ad standards

 	Full styling support

The framework supports much more than that, of course, but those are the top compelling features. It has multiple points of
 extensibility, and if those aren’t enough, full source code is provided.

 In this section, we’ll first look at what it takes to get the appropriate libraries for the Silverlight Media Framework, then
 build a simple player that supports IIS Smooth Streaming.

 20.5.1. Using the player libraries

 You can get the Silverlight Media Framework version 2 at http://smf.codeplex.com. The downloads include both the binaries and the full source code. Also, like other CodePlex projects, you can browse the
 full source code right on the site or download it as part of a release. Be sure to get the latest version, which at the time
 of this writing is version 2. Don’t bother with the older version 1. Significant changes were made after the first version.

 To install the player, first download and install the IIS Smooth Streaming Client player SDK using the Web Platform Installer
 at http://www.iis.net/download/ smoothclient. If the WebPI (Web Platform Installer) doesn’t work for you, there’s a link right below it for downloading the
 MSI directly.

 Next, download the Silverlight Media Framework v2 release (or the latest release available at the time you’re reading this)
 and install that on your machine. At the time of this writing, the installer was a zip file with the DLLs. If that’s the case
 when you use it, place them in a common location (but not a system folder such as Program Files) that you’ll easily find from
 within Visual Studio. If copied from a zip and not an installer, be sure to unblock the files individually per this KB article
 so you can use them: http://go.microsoft.com/fwlink/?LinkId=179545. Figure 20.6 shows the dialog with the Unblock button.

 Figure 20.6. Unblocking an internet-downloaded DLL in order to be able to reference it from within a Visual Studio project

 [image:]

 20.5.2. Creating the player

 Once you have everything installed and unblocked, creating a complete media player experience is as simple as referencing
 the SMF DLLs and creating an instance of the player in XAML. Figure 20.7 shows the default player appearance.

 Figure 20.7. The default SMF media player with Big Buck Bunny, an IIS Smooth Streaming video, loaded

 [image:]

 Listing 20.3 shows how to instantiate the player from XAML. There are a few key namespaces to keep in mind for Smooth Streaming projects.
 Under the Microsoft.SilverlightMediaFramework namespace, there are the .Core, .Plugins, and .Utilities namespaces and their associated assemblies. Be sure to reference them for all types of SMF projects. For regular Smooth Streaming,
 there’s the Microsoft.Web.Media.SmoothStreaming.dll assembly. For progressive download projects, use the Micosoft.SilverlightMediaFramework.Plugins.Progressive. dll assembly instead.

 Listing 20.3. Instantiating the SMF Player from XAML

 [image:]

 The Silverlight Media Framework player requires two namespaces to be included. The first [image:], Core, is for the player itself. The second [image:], Media, is for the playlists and features related to the media supported in the player. Due to the flexibility of the player, loading
 media takes a few more lines than the usual MediaElement. In particular, the player supports a playlist [image:] with one or more playlist items queued in it. Each playlist item includes a single piece of media with a specified delivery
 method [image:]. The valid values for DeliveryMethod are shown in table 20.9.

 Table 20.9. Possible values for DeliveryMethod for the SMF player

 	
 Value

 	
 Description

	NotSpecified
 	The default value. This will attempt to use the first media plug-in loaded.
 As this can be unreliable in players that support more than one type of media delivery method, always specify one of the following
 below.

	AdaptiveStreaming
 	The player will use IIS Smooth Streaming.

	ProgressiveDownload
 	The player will use a progressive download approach for playing the media. This approach requires no server-side support.

	Streaming
 	The player will use Windows Media Streaming to play the media.

It’s important to realize that the delivery methods supported are entirely controlled by what plug-ins you package with your
 Silverlight application. If you leave out the Progressive Download plug-in, for example, your player won’t support that delivery
 method.

 The Silverlight Media Framework is an excellent way to get a fully functional and feature-rich player up and running in a
 minimum amount of time. It’s perfect for traditional video and audio. But what about media that ventures further into the
 nontraditional? How about managed codecs or real-time-generated media? For those, collectively called raw media, we have the Media Stream Source API.

 20.6. Working with raw media

 Silverlight has a strong but finite set of codecs it natively supports for audio and video playback. If you want to use a
 format not natively supported, such as the WAV audio file format or the AVI video format, that wasn’t an option until the
 Media Stream Source (MSS) API was added.

 The MSS API was included in Silverlight 2, but that version required you to transcode into one of the WMV/WMA/MP3 formats
 natively supported by Silverlight. In Silverlight 3, the MSS API was augmented to support raw media formats where you send
 the raw pixels or audio samples directly through the rest of the pipeline. This made its use much easier, as it required knowledge
 only of the format you want to decode. For the same reason, it runs faster, as an extra potentially CPU-intensive encoding
 step is avoided.

 The MediaStreamSource API supports simultaneous video and audio streams. In this section, we’ll look at creating raw video as well as raw audio.
 In both cases, we’ll use algorithmically derived data to drive the raw media pipeline.

 20.6.1. A custom MediaStreamSource class

 To implement your own custom stream source, derive a class from MediaStreamSource. As the name suggests, this class will be used as the source for a MediaElement on the page. Table 20.10 shows that MediaStreamSource has several methods that you must override in your implementation.

 Table 20.10. MediaStreamSource virtual methods

 	
 Method

 	
 Description

	SeekAsync
 	Sets the next position to be used in GetSampleAsync.
 Call ReportSeekCompleted when done.

	GetDiagnosticAsync
 	Used to return diagnostic information. This method can be a no-op as it’s not critical. If used, call ReportGetDiagnosticCompleted
 when done.

	SwitchMediaStreamAsync
 	Used to change between configured media streams. This method can be a no-op as it’s not critical. If used, call ReportSwitchMediaStreamCompleted
 when done.

	GetSampleAsync
 	Required. Get the next sample and return it using
 ReportGetSampleCompleted. If there’s any delay, call
 ReportGetSampleProgress to indicate buffering.

	OpenMediaAsync
 	Required. Set up the metadata for the media and call
 ReportOpenMediaCompleted.

	CloseMedia
 	Any shutdown and cleanup code should go here.

One thing you’ll notice about the functions is that many of them are asynchronous. The pattern followed in those methods is
 to perform the processing and then call a ReportComplete method, the name of which varies by task, when finished.

 The asynchronous nature of the API helps keep performance up and keeps your code from slowing down media playback.

 Listing 20.4 shows the skeleton of a MediaStreamSource implementation, including the methods I just described. We’ll continue to build on this throughout the remaining raw media
 sections.

 Listing 20.4. The basic MediaStreamSource structure

 [image:]

 The most important methods for our scenario are the OpenMediaAsync method [image:] and the two methods [image:] that are used to get the next sample. Those two methods are called from the GetSampleAsync method whenever an audio or video sample is requested.

 Once we have the CustomSource class created, we’ll need to use it as the source for a MediaElement on a Silverlight page. Listing 20.5 shows how to wire this up using XAML for the user interface and C# code for the actual wire-up.

 Listing 20.5. Using a custom MediaStreamSource class

 XAML:

 <Grid x:Name="LayoutRoot" Background="White">
 <MediaElement x:Name="MediaPlayer" [image:]
 AutoPlay="True"
 Stretch="Uniform"
 Margin="10" />
</Grid>

 C#:

 [image:]

 In this listing, I first create a MediaElement [image:] that will span the size of the page, then assign the CustomSource instance to the source property [image:] using the SetSource method of the MediaElement. Once that’s completed, the MediaElement is set to play and will start requesting samples from the CustomSource class.

 Right now, our CustomSource class doesn’t return any samples, so running the application would show nothing. We’ll modify the class to return both video
 and audio, starting with video.

 20.6.2. Creating raw video

 Being able to create video from raw bits is pretty exciting—it opens up all sorts of scenarios from bitmap-based animation
 to custom video codecs. I first played with raw video when I created my Silverlight Commodore 64 emulator (mentioned in chapter 5). I tried a few different video presentation approaches before I settled on generating the video display in real-time as
 a 50fps MediaStreamSource video at 320 × 200.

 For this video example, we’re going to generate white noise, much like you see on an analog TV when the signal is lost. When
 complete, the application will look like figure 20.8. If you lived in the US prior to cable TV, this is what you saw after the national anthem finished playing.

 Figure 20.8. The completed white noise video generator. When I was a boy, I used to imagine I was watching an epic ant battle from high
 overhead. Well, until I saw Poltergeist, which forever changed the nature of white noise on the TV.

 [image:]

 We’ll start with the logic required to set up the video stream, and follow it up quickly with the code that returns the individual
 frame samples.

 Setting Up the Video Stream

 When creating raw video, the first step is to set up the video stream parameters. The parameters include things such as the
 height and width of the frame, the number of frames per second, and the actual video format.

 Silverlight supports a number of different video formats, each identified by a FourCC code. FourCC is a standard four-character code that’s used to uniquely identify video formats. In addition to all of the existing
 formats (for example, H264 for h.264 video), two new formats were added specifically for use raw media and the MediaStreamSource API. Those are listed in table 20.11.

 Table 20.11. Supported raw media FourCC codes in Silverlight

 	
 FourCC code

 	
 Description

	RGBA
 	Raw, uncompressed RGB pixels with an alpha component. Silverlight currently ignores the alpha component during processing.

	YV12
 	YUV 12. This is a common media output format used in many codecs.

In the example in this section, we’ll use the RGBA format to push raw pixels without any special processing or encoding. It’s
 the easiest format to use, requiring no algorithm other than providing a single pixel with a single color. Listing 20.6 shows the video setup code for our simple white noise generator.

 Listing 20.6. Setting up the video stream

 [image:]

 [image:]

 Listing 20.6 shows two functions: OpenMediaAsync and PrepareVideo. They’ve been broken up that way because OpenMediaAsync will also need to support audio later in this section.

 When the class is wired up to a MediaElement, Silverlight will first call the OpenMediaAsync function. In that function, you need to tell Silverlight what streams are available [image:], a single video stream in this case. Then you need to set up attributes for the duration of the video, infinite in our case, and whether you allow seeking. You take that information and pass it into the
 ReportOpenMediaCompleted method [image:] to tell Silverlight you’re ready.

 The PrepareVideo method sets up some variables that will be used when we generate the samples. First, we identify the amount of time per frame.
 This can vary over the course of the video, but it’ll be easier on the developer if you pick a constant frame rate. Then we
 set up a dictionary of attributes that identifies the format of the video [image:] and the dimensions of each frame [image:]. Finally, that’s all packed into a MediaStreamDescription [image:] to be used when we start generating frames.

 Once the video stream is set up, the next thing to do is to start pumping out frames to be displayed.

 Returning the Sample

 The main purpose of a MediaStreamSource implementation is to return samples. In the case of video, a sample is one complete frame, ready to be displayed. Listing 20.7 shows the GetVideoSample function, called by GetSampleAsync.

 Listing 20.7. Returning the video frame sample

 [image:]

 [image:]

 The GetVideoSample function first checks to see whether we’re approaching the end of the allocated video buffer. If so, it rewinds back to the
 beginning of the buffer. This is an important check to make, as you don’t want to allocate a complete stream for every frame,
 but a stream can’t be boundless in size.

 Once that’s done, I loop through the buffer, moving four bytes at a time (the size of a single pixel in the buffer) and generate
 a random pixel value. The pixel will either be almost white or almost black [image:]. When playing with the sample, I found that pure black and white was far too harsh, and these two slightly gray values looked
 more natural. Though not obvious here, when setting the pixel values you need to do so in Blue, Green, Red, Alpha (BGRA) order.

 The next step is to write the buffer to the stream [image:]. In this simple example, I could’ve written the bytes directly to the stream and eliminated the buffer. But in anything more
 complex than this, you’re likely to have at least two buffers (a read-from and a write-to buffer), and even more likely to
 have a queue of frame buffers used for preloading the individual frames.

 Once the stream is populated, I then create the media stream sample [image:], increment our time counters, and call ReportGetSampleCompleted to return the sample to Silverlight.

 One interesting note in this is how sample time is used rather than frame numbers. The use of a time for each frame allows
 Silverlight to drop frames when it starts to lag behind. This was a key reason why I chose MediaStreamSource over other approaches in the Silverlight C64 emulator. When the user’s machine is busy, or in case it’s too slow to run the
 emulator at full frame rate, I continue to chug along and let Silverlight skip frames it doesn’t have time to show. This helps
 keep everything in sync time-wise, which is crucial when you’re also creating audio.

 20.6.3. Creating raw audio

 In the previous section, we created a white noise video generator. Let’s take that all the way and add in white noise audio.
 Surprisingly, audio is somewhat more complex to set up than video. This is due to the number of options available to you:
 audio can have different sample bit sizes, be mono or stereo, have different sample rates, and more.

 All this information is stored in a class known as WaveFormatEx. In order to fit the listing into this book, I’m going to use a greatly simplified, but still functional, version of this
 class. Listing 20.8 shows the class. Create this as a separate class file in your project.

 Listing 20.8. A simplified WaveFormatEx structure

 [image:]

 [image:]

 The WaveFormatEx class is simply a way to specify the format to be used for PCM wave data in Silverlight. It’s a standard structure, forming
 the header of the .WAV file format, which is why you get oddities such as the big-to-little-endian format conversions. The
 class-based version here includes a single helper utility function AudioDurationFromBufferSize, which will be used when we output the PCM samples.

 There are more complete implementations of WaveFormatEx to be found on the web, including one in my Silverlight Synthesizer project at http://10rem.net. Those implementations typically
 include a validation function that makes sure all the chosen options are correct.

 With that class in place, we’ll turn our eye to the actual stream setup.

 Setting Up the Wav Media Source

 The first step in setting up the sound source is to modify the OpenMediaAsync function. That function currently includes a call to PrepareVideo followed by adding the video stream description to the list of available streams. Modify that code so that it also includes
 the audio description information as shown here:

 ...
PrepareVideo();
PrepareAudio();

availableStreams.Add(_videoDesc);
availableStreams.Add(_audioDesc);
...

 Once those changes are in place, we’ll add the PrepareAudio function to the class. The PrepareAudio function is the logical equivalent to the PrepareVideo function; it sets up the format information for Silverlight to use when reading our samples. Listing 20.9 shows the code for that function and its required class member variables and constants.

 Listing 20.9. The PrepareAudio function

 [image:]

 The most important parts of this listing are the constants controlling the sample format [image:]. For this example, we’re generating 16-bit samples, in two channels (stereo sound), at a sample rate of 44,100 samples per
 second: CD-quality audio.

 Once those constants are established, they’re used to figure out almost everything else, including the number of bytes per
 second [image:] and the block alignment [image:]. Once the WaveFormatEx structure is filled out with this information, I set it as the Codec Private Data [image:] using its little-endian hex string format. Finally, I create the audio description from that data, to be used when reporting
 samples back to Silverlight.

 Creating Sound Samples

 The final step is to output the audio samples. This requires generating the individual samples and returning them in chunks
 of predefined size. We’ll use a random number generator to generate the noise, much like we did with video. Listing 20.10 shows how to fill a buffer with audio and return those samples to Silverlight.

 Listing 20.10. Outputting audio samples

 [image:]

 [image:]

 The process for generating the white noise audio sample is similar to generating the frames of video. But instead of having
 a fixed-width x height buffer we must fill, we can generate as long or as short a sample as we want. This is controlled by
 the audio buffer size set in code. In general, you want this number to be as low as possible, as larger numbers typically
 introduce latency as well as skipped video frames—the system is too busy generating audio to show the video frame. But set
 the number too low, and the audio will stutter. If you find the white noise stuttering on your machine, up the buffer to 512
 or so and see how that works for you.

	

Tip

 To help with latency, you can also play with the AudioBufferLength property of the MediaStreamSource class. In most cases, you won’t be able to get that below 30ms or so, but that value is itself very hardware-dependent. That
 property is my own contribution to the class, as I was the only one insane enough to be writing a Silverlight-based audio
 synthesizer at the time. I ran into problem after problem with the triple-buffering (my buffer, plus Silverlight MSS buffer,
 plus underlying DirectX buffer), to the point where all audio was delayed by about 2-3 seconds. The team worked with me to
 identify where the issues were, and then added this knob into the base class to help tweak for latency-sensitive applications
 like mine.

 	

Once the buffer size is established, I perform the same stream overrun check [image:] that we did for video, and for the same reasons. Then, I loop through the buffer, 2 bytes (16 bits) at a time, and generate
 a white noise sample. Once the sample is generated, I get the 2 bytes from it using a little bit-masking [image:], and then write those bytes into the buffer. Once the buffer is filled, it’s copied into the stream and the sample response
 built [image:]. After incrementing the time counters, the last step is to report the sample to Silverlight [image:].

 If you run the application at this point, you should have a short delay while the startup code is executed and the Silverlight
 internal buffers are filled, followed by simultaneous audio and video white noise. On the surface, this may not seem impressive.
 But when you consider that the video and audio is completely computer generated, it’s considerably more impressive.

 Raw audio and video also allow you to display any type of media for which you can write a decoder. Much of the IIS Smooth
 Streaming client for Silverlight, for example, is written using a custom MediaStreamSource implementation. Though writing a typically hardware-implemented 1080p HD codec in managed code may not lead to good performance, there are many other
 popular formats which don’t have native Silverlight support, but which would benefit from a custom MediaStreamSource implementation.

 So far, we’ve seen a number of ways to get video and audio into Silverlight. The easiest, of course, is to use a video format
 Silverlight supports and just point the MediaElement to it. Another way is to use the MediaStreamSource class to implement your own managed codec. One final way to get video and audio into Silverlight is to use the webcam and
 microphone APIs. A segment of the API, especially the VideoSink and AudioSink classes, is conceptually similar to the MediaStreamSource code we’ve completed in this section, but thankfully much simpler.

 20.7. Using the webcam

 Silverlight 4 introduced the ability to capture media from video capture devices and audio capture devices. Though designed
 with other devices (such as TV capture cards) in mind, the current implementation handles only webcams and microphones. These
 devices enable the Silverlight developer to capture raw video and audio data, as well as snapshot stills. Though the first
 release of this isn’t suitable for conferencing scenarios (there’s no built-in compression or encoding), it’s excellent for
 local capture and storage and upload scenarios.

 If you’ve ever tried to use an arbitrary webcam (or microphone) using another technology such as WPF, you’ll appreciate how
 simple the Silverlight team has made this. Not only do you get to avoid DirectShow and similar technologies, but the webcam
 and mic access works cross-platform. As far as device abstraction layers go, this is pretty sweet.

 In this section, we’ll first cover how to gain access to the webcam and microphone in Silverlight. Then we’ll examine how
 to work with the default webcam and microphones for the platform, including how to capture video and still images. Then, because
 most machines have more than one audio capture device, and some even more than one video capture device, we’ll look at what’s
 required to allow the user to select a specific webcam or microphone.

 20.7.1. Gaining access to capture devices

 In sandboxed applications, the application must request access to the webcam from a user-initiated event, such as a button
 click. This is to ensure that a rogue application on a web site doesn’t start photographing you without your consent. The
 request is explicit as shown here:

 if (CaptureDeviceConfiguration.AllowedDeviceAccess ||
 CaptureDeviceConfiguration.RequestDeviceAccess())
{ ... }

 The first check is to see whether the application has already been granted access; this is true if it’s running under elevated
 trust or the user has already allowed access. The second check runs only if the first check is false; it causes the webcam and microphone device access confirmation dialog
 to be displayed, as shown in figure 20.9.

 Figure 20.9. Webcam and microphone access confirmation dialog

 [image:]

 Once the user has confirmed access, you can begin to capture using a specific device or the default devices. Typically, you’ll
 use the default device.

 Changing the Default Capture Device

 Silverlight allows the user to set the default webcam and default microphone. This is done by right-clicking on any Silverlight
 application and selecting the Silverlight menu option. Alternatively, the user can open Microsoft Silverlight from his program
 shortcuts. Once there, select the Webcam/Mic tab and pick from the list of available options. You’ll see a preview of the
 webcam to the left and an audio level meter for the microphone on the right. Figure 20.10 shows the configuration dialog.

 Figure 20.10. Silverlight default webcam and microphone tab in the Silverlight settings dialog. Either that image is horizontally stretched
 in an unflattering way, or I need to lay off the chips.

 [image:]

 The settings start out using default capture devices on your machine. You can change it from there. The changes will globally
 affect all Silverlight applications that use the webcam or microphone.

 With the default device set in Silverlight, it’s time to write a little code to capture information from the default webcam.

 20.7.2. Working with video

 To get the default webcam, you need only call the GetDefaultVideoCaptureDevice method of the CaptureDeviceConfiguration class. If this method returns null, there’s no recognized webcam on the machine.

 Once you have a capture device, capturing video requires wiring up a capture source and using it as the input source for a
 VideoBrush. The VideoBrush is then used to fill a shape, typically a rectangle, on the Silverlight surface.

 Listing 20.11 shows how to create a simple webcam viewer using the default webcam at a default capture resolution.

 Listing 20.11. Capturing video using the default capture device

 Result:

 [image:]

 XAML:

 <Grid x:Name="LayoutRoot" Background="White">
 <Button x:Name="Capture" Content="Capture"
 Width="75" Height="23"
 HorizontalAlignment="Left" VerticalAlignment="Top"
 Margin="232,12,0,0" Click="Capture_Click" /> [image:]
 <Rectangle x:Name="PresentationSurface" [image:]
 Width="376" Height="247"
 HorizontalAlignment="Left"
 VerticalAlignment="Top"
 Margin="12,41,0,0"
 />
</Grid>

 C#:

 [image:]

 In listing 20.11, we first set up the button for the user-initiated video capture [image:] and the rectangle to hold the rendered output [image:], both in XAML. In the code, we perform the check to see whether we have access, or request it if not [image:]. Then we get the default video capture device and assign it as the capture device for the CaptureSource [image:]. The video display isn’t a MediaElement. Instead, we create a VideoBrush, set its source to our CaptureSource [image:], and then paint the rectangle with the output. Finally, we start the capture itself.

 This example used the default capture resolution. That’s okay for an example, but in a real application, you’ll likely want
 to pick a specific video format based on screen resolution or even the frames per second (FPS).

 Setting the Desired Video Format

 Webcams typically support a number of resolutions and video formats. I have a Microsoft LifeCam Cinema on my PC, and it handles
 everything from the smallest of postage stamps to 720p HD video. As the capabilities vary from model to model, you’ll need
 a way to query the webcam to identify its supported video formats.

 The VideoCaptureDevice class contains a number of properties. The one of interest to us in this case is the SupportedFormats collection. SupportedFormats is a collection of VideoFormat objects, the properties of which are displayed in table 20.12.

 Table 20.12. The VideoFormat class

 	
 Member

 	
 Description

	FramesPerSecond
 	A floating-point value indicating the number of frames per second.

	PixelFormat
 	Currently, the only valid pixel format is 32 bits per pixel, ARGB.

	PixelHeight
 	The height of the frames in pixels.

	PixelWidth
 	The width of the frames in pixels.

	Stride
 	The number of bytes in a single horizontal line of the frame. Divide this by PixelWidth to know the bytes per pixel, regardless
 of PixelFormat. A negative stride indicates the image is upside down.

To query the formats for my own camera, I injected this bit of code into the listing at the beginning of this section:

 foreach (VideoFormat format in camera.SupportedFormats)
 Debug.WriteLine(
 format.PixelWidth + "x" +
 format.PixelHeight + " at " +
 format.FramesPerSecond + " fps " +
 format.PixelFormat.ToString());

 The resulting list included (among many others) these entries:

 640x480 at 30.00003 fps Unknown
160x120 at 30.00003 fps Unknown
160x120 at 30.00003 fps Unknown
1280x720 at 15.00002 fps Unknown
1280x720 at 15.00002 fps Unknown
960x544 at 30.00003 fps Unknown
960x544 at 30.00003 fps Unknown
800x448 at 30.00003 fps Unknown
800x448 at 30.00003 fps Unknown
800x600 at 30.00003 fps Unknown
...

 Oddly enough, the pixel format came across as Unknown in all cases. Try it with your own webcam and the results will likely vary. Once you see a video format that works for you,
 you can choose it by assigning it to the DesiredFormat property of the VideoCaptureDevice. This example uses a LINQ expression to grab the first format with the highest resolution:

 var format = (from VideoFormat f in camera.SupportedFormats
 orderby f.PixelWidth * f.PixelHeight descending
 select f).FirstOrDefault<VideoFormat>();
if (format != null)
 camera.DesiredFormat = format;

 That will pick the format with the highest total pixel count. You can modify the statement to pick just the largest width,
 or the largest size that will fit within a given box, and so forth. Figure 20.11 shows the 720p HD version of the webcam shot from the previous listing.

 Figure 20.11. Webcam screen shot at 720p HD, selected using the DesiredFormat property and LINQ. I’m practicing my raised-eyebrow news anchor face. I’ll try harder next time. Dig the C128 in the background!

 [image:]

 One reason you may want to capture at a high resolution is to support the capturing of still images. The Silverlight webcam
 API allows you to use the webcam as a simple still image camera, returning individual images as WriteableBitmap instances.

 20.7.3. Capturing still images

 Now that you have a reasonably high resolution selected, taking still photos makes much more sense. The Silverlight webcam
 API supports taking still photos by using an asynchronous capture method. You click a button and call a function, and a few
 fractions of a second later, the event fires with the image data.

 In this section, we’ll augment our webcam display application to include a ListBox filled with captured still images. Figure 20.12 shows the final application.

 Figure 20.12. Capturing the largest video size, plus a series of still photos bound to a ListBox on the right. Did I get the anchor look any better? Maybe I need a suit.

 [image:]

 Listing 20.12 shows the new XAML required to create the display shown in figure 20.12. Note the use of the DataTemplate for displaying the bound image information.

 Listing 20.12. XAML Capturing still images

 XAML:

 <Grid x:Name="LayoutRoot" Background="White">
 <Button x:Name="Capture" Content="Capture"
 Width="75" Height="23" Margin="0,12,93,0"
 HorizontalAlignment="Right" VerticalAlignment="Top"
 Click="Capture_Click" />
 <Button x:Name="TakeSnapshot" Content="Snapshot" [image:]
 Height="23" Width="75" Margin="0,12,12,0"
 VerticalAlignment="Top" HorizontalAlignment="Right"
 Click="TakeSnapshot_Click" />
 <Rectangle x:Name="PresentationSurface" Margin="12,41,154,12" />
 <ListBox x:Name="Images" Width="136" Margin="0,41,12,12" [image:]
 HorizontalAlignment="Right"
 ScrollViewer.HorizontalScrollBarVisibility="Disabled">
 <ListBox.ItemTemplate>
 <DataTemplate>
 <Image Margin="10" Height="50" Width="100"
 Source="{Binding}" /> [image:]
 </DataTemplate>
 </ListBox.ItemTemplate>
 </ListBox>
</Grid>

 The XAML in listing 20.12 creates a second button, for requesting a snapshot [image:], and adds a ListBox [image:] to hold the images. The DataTemplate for the ListBox is pretty simple; all it includes is a single image with its source set to be the item bound to it [image:].

 Once you have the XAML in place, using the code in listing 20.13 to update the code-behind.

 Listing 20.13. C# code for capturing the still images

 [image:]

 [image:]

 Listing 20.13 builds on our previous code, refactoring some things out to class-level variables, and adding in some new code. In addition
 to refactoring the CaptureSource out to class level, I added a new ObservableCollection of ImageSource [image:] to the class members. This will be used as the items source for the ListBox [image:] to support the binding of images using the DataTemplate.

 The majority of the code inside Capture_Click is the same as what we’ve built so far. I included the LINQ method [image:] for obtaining the highest resolution, as we saw in previous examples. Toward the end of the method, before starting the webcam
 capture, I added an event handler [image:] to add the captured image to the ObservableCollection [image:]. This image is a WriteableBitmap (covered in chapter 21) so we could do additional manipulation with it if we wanted. Finally, the button click handler for the snapshot button calls
 the CaptureImageAsync method [image:] of the capture source.

 With that code in place, our webcam display app can now capture stills alongside displaying the output from the webcam. In
 theory, you could treat those stills like individual frames in a video, but a better way to access the frame data is to use
 a custom VideoSink.

 20.7.4. Getting the raw video data

 Obviously, capturing still images at random frames is no substitute for being able to get at the raw video bits. Currently,
 the only way to access the raw video stream is to create your own VideoSink class. This is a class that will take a video capture source and let the capture source push samples to it. It’s possible
 then to get access to the raw bytes for the frames, but they’ll be uncompressed. I have to stress that without fast compression,
 a video conferencing or chat application would be out of the question. Though possible to perform this compression from code
 inside Silverlight, it’s unlikely to perform well enough to use on a real production application.

 Disclaimers aside, let’s see how to implement this ourselves. The first thing is to create the custom VideoSink class. Listing 20.14 shows how to do this. The class has no real implementation, as it’d completely depend on what you want to do with the bits.
 I’ve seen some examples that write out uncompressed (huge) AVI files, for example.

 Listing 20.14. A sample VideoSink class for capturing raw webcam video

 [image:]

 In this example, CustomVideoSink derives from the VideoSink class. That class provides four overridable members of interest. The OnCaptureStarted [image:] and OnCaptureStopped [image:] methods are used for startup and shutdown code. In those methods, I open and close a fictional VideoFrameQueue class. The implementation of that class would vary significantly based on what you intend to do with the raw bytes, so I’ve
 left it out of this example.

 One other utility method is OnFormatChanged. This is executed when the video format is changed, and will always fire at least once, at the beginning of the capture.
 Once you know the video format, you can start doing something useful with the bytes that make up each frame. The OnSample method provides those bytes to us.

 In the OnSample method, you’ll almost certainly want to write the bytes and other required information to a queue to be processed. I’ve represented
 that with the VideoFrameQueue member. The queue would likely have a worker on a background thread that would write the frame to a larger file format, or
 do some simple encoding/ compression as required. If you try to do that all inside this method, you’ll run into timing issues.

 The last step is to hook your custom video sink in to the processing pipeline. First, in the code-behind of the listing from
 the start of this chapter, add the following private member variable:

 private CustomVideoSink _sink = new CustomVideoSink();

 Then, in the same listing, modify the capture block in the button click event handler to look like listing 20.15.

 Listing 20.15. Using a custom VideoSink to grab frames

 [image:]

 In listing 20.15, we’ve wired our new CustomVideoSink into the existing code. The new line in the event handler assigns the capture source, so the sink is now wired up to the
 webcam. Note that you can have more than one video sink attached to any capture source, but the processor utilization will
 rise proportionally.

 20.7.5. A note about audio

 Video is seldom captured alone. More often than not, you’ll want to capture audio as well. The Silverlight webcam and microphone
 API supports capturing audio independently, or along with video.

 The Silverlight Microphone API is almost identical to the Webcam API, so we’ll leave it out for space reasons. The primary
 difference is that instead of a VideoCaptureDevice, you’ll have an AudioCaptureDevice. There’s no native way to output the raw audio, so you’ll need to create an AudioSink just like we created a VideoSink for grabbing video frames. Of course, just as I noted with the VideoSink, what you do in the AudioSink is going to depend upon what your plans are for encoding. The data format that comes from Silverlight is raw PCM audio.

 The Silverlight Webcam API is a powerful way to integrate video capture devices into your application. Already I’ve seen some
 novel uses including stop-motion animation, image and gesture recognition, Facebook photo uploading, and more. The API is
 simple to use, providing us with the device capabilities and a simple way to request access. It works cross-platform and abstracts
 away all the little details you’d normally need to understand to work with webcam and microphone devices on various machines.

 20.8. Summary

 One of Silverlight’s main strengths is in media delivery. Looking at all the options presented in this chapter, it’s no wonder.
 Silverlight supports multiple formats of SD and HD video and audio right out of the box. There’s an excellent CodePlex project
 called the Silverlight Media Framework that provides support for IIS Smooth Streaming for extremely high quality adaptive
 streaming.

 If Silverlight doesn’t support a media format you want to use, it has a provision for allowing you to create managed codecs,
 decoding your own format and sending the raw unencoded bytes to Silverlight. This API is so complete, I’ve even been able
 to use it to generate video and audio from code, without any original media source files.

 Finally, not all media comes from files or algorithms. Sometimes, media comes from you, in the form of captured video, audio,
 and still images from a webcam and microphone. Silverlight has excellent support for all types of webcams and mics, cross-browser
 and cross-platform.

 In the webcam still image capture demo, we used a couple image classes, including the WriteableBitmap returned in the snapshot callback. Images are often used hand-in-hand with video, both as still captures and as video thumbnails.
 Images are also prevalent throughout most applications as button icons and other design elements. In the next chapter, we’ll
 go through all the ways you can work with images in Silverlight, including loading image files, generating images from scratch,
 and working with enormous images with Deep Zoom.

Chapter 21. Working with bitmap images

 This chapter covers

 	Working with images

 	Creating images on the fly

 	Deep Zoom

 	Stretching content

Images are used on web pages all across the internet. They’re used in the form of application icons, corporate logos, and
 photos of you and your friends. It’s been quite a while since I’ve seen even a regular forms-over-data application that didn’t
 have images in the UI somewhere. Obviously, bitmap-based images have become a mainstay of application design.

 Naturally, Silverlight includes mechanisms for displaying this content through the Image element and the MultiScaleImage control.

 In addition to displaying images, Silverlight includes the powerful ability to create images from scratch or from other elements
 using the WriteableBitmap type. You can even use the WriteableBitmap to provide support for formats not natively supported in Silverlight (such as .GIF).

 In this chapter, we’ll start with the basics of imaging with the Image element. From there, we’ll move on to creating images on the fly using the WriteableBitmap. Once we have a handle on the WriteableBitmap, we’ll turn to Silverlight’s answer to enormous gigapixel-level images or collections of images-Deep Zoom with the MultiScaleImage control. Finally, we’ll wrap up the chapter with a discussion of the different ways of stretching content to fit the space
 allotted.

 21.1. Basic imaging

 The Image element enables you to display images from across the internet. In addition to loading images relative to your project, the
 Image element allows you to retrieve images from another domain. Take a look at how listing 21.1 uses the Source property to get an image from the http://www.silverlightinaction.com web site.

 Listing 21.1. An Image element that uses a picture from another domain

 Result:

 [image:]

 XAML:

 <StackPanel Height="200" Width="100">
 <Image Source="http://www.silverlightinaction.com/man.png" />
</StackPanel>

 The Image in this markup retrieves an image from the silverlightinaction.com domain. This image is referenced through the Source property, which is set with a Uri through XAML. If this property needs to be set programmatically, you must use an ImageSource instead. Because this abstract class can’t be used directly, you use a derivation known as BitmapImage. This class name is a little misleading because only the types listed in table are 21.1 supported.

 Table 21.1. Image formats supported by the BitmapImage class. These formats are inherently supported formats of the Image element.

 	
 Format

 	
 Extension(s)

	Joint Photographic Experts Group
 	.jpg, .jpeg, .jpe, .jfif, .jfi, .jif

	Portable Network Graphics
 	.png

This table shows the image formats supported by the BitmapImage class. Because this is the type used by the Source property, these image formats also represent those supported by the Image element in general.

 What are you to do if you want to load an image type that’s unsupported by Silverlight, such as .gif or .bmp? In the previous
 chapter, we saw how you can use the MediaStreamSource API to provide a hook to use when a video or audio format is unsupported. Luckily, Silverlight includes an equivalent for
 still images, the WriteableBitmap.

 21.2. Creating images at runtime

 The WriteableBitmap (sometimes referred to as The Bitmap API) was introduced in Silverlight 3. It provides the ability to generate new images based on existing images, onscreen UI elements,
 or from scratch using pixel manipulation.

 WriteableBitmap is a class in the System.Windows.Media.Imaging namespace, deriving from the common BitmapSource base class. Deriving from that class allows us to use the WriteableBitmap in almost every place you could normally use any other type of bitmap image class.

 The uses for this feature are numerous, and all over the map. I’ve personally used it to generate Windows 7-style window thumbnails
 in a large Silverlight business application for a customer. I’ve seen others use it in games, for destructive 2D UI (think
 Lemmings where a bomb takes a chunk out of the ground). Still others have built their own paint programs using this feature.

 In this section, we’ll look at the three main ways to use the WriteableBitmap class: creating editable bitmaps from existing images, creating bitmaps from portions of the visual tree, and creating bitmaps
 from scratch.

 Before we do that, we’ll have the usual project setup to do. In this case, create a new Silverlight project and modify the
 MainPage.xaml markup to look like listing 21.2.

 Listing 21.2. MainPage.xaml for the WriteableBitmap examples

 Result (in designer):

 [image:]

 XAML:

 [image:]

 The markup includes a StackPanel [image:] that we’ll use for our visual tree rendering example, including an image of me at three years old that we’ll use to test
 creating from existing images, and a result bitmap [image:] that will display the writeable bitmap we create in the code-behind.

 You likely don’t have a picture of me at three years old hanging around (if you do, we probably need to chat), so pick any
 old jpeg you have on your machine and drag it into the Silverlight project as a resource, using it instead.

 Our first trial of the WriteableBitmap class is going to be to create a new image from an old one.

 21.2.1. Creating from existing images

 If you’re creating a photo-manipulation program, you’ll likely want to create a WriteableBitmap from an existing image. That new bitmap will enable you to access the pixels to allow for drawing, erasing, recoloring, and
 pretty much anything else you can write code for.

 There are some restrictions when creating images from existing images. If you download the image from another server—in other
 words, a cross-domain call like we discussed in chapter 14—you won’t be able to access the individual pixels of the image. In our example, we’ll use an image that already exists in
 our project. The resulting application will look like figure 21.1 once you click the Capture button.

 Figure 21.1. A WriteableBitmap (right) created from another bitmap (left)

 [image:]

 This example shows how to use one bitmap as a source to the writeable bitmap. Once you have the image in a writeable bitmap,
 you can manipulate it all you’d like (within the cross-domain restrictions I mentioned). Double-click the Capture button to
 create an event handler, then place this code in the handler:

 BitmapSource source = SourceImage.Source as BitmapSource;
WriteableBitmap bmp = new WriteableBitmap(source);
ResultBitmap.Source = bmp;

 Of course, you can also load the image from a URL. This code, used in place of the previous example, shows how:

 Uri uri =
 new Uri("BitmapApi;component/Pete3YearsOld.jpg",
 UriKind.Relative);
StreamResourceInfo res = Application.GetResourceStream(uri);

BitmapImage image = new BitmapImage();
image.SetSource(res.Stream);
WriteableBitmap bmp = new WriteableBitmap(image);

ResultBitmap.Source = bmp;

 This example shows how to create a WriteableBitmap from an existing image that hasn’t necessarily been loaded into an Image element onscreen.

 The convoluted loading scheme is required only because this file is a resource in the Silverlight project. If it’s just a
 normal file on the server, you could’ve passed the URI directly to the BitmapImage constructor.

	

Note

 The image is loaded asynchronously; the data isn’t available until the BitmapImage.ImageLoaded event has fired. This is especially important when working with images from external servers.

 	

Another way to use the WriteableBitmap class is to create a rendering of a portion of the visual tree.

 21.2.2. Creating from UI elements

 The WriteableBitmap class can be used to take a snapshot of all or a portion of the visual tree. This allows you to easily create thumbnails
 of large forms for a Windows 7 taskbar-like effect, or capture still frames from videos playing in a MediaElement. Note that cross-domain pixel-access checks are enforced, so if anything in the tree fails the cross-domain check, everything
 will.

 As it turns out, creating a snapshot of a portion of the video tree is extremely simple. You pass the root element of the
 branch of the tree into the constructor of WriteableBitmap, along with an optional render transform. For example, see figure 21.2 for a direct 1:1 representation.

 Figure 21.2. The elements to the left are live elements in the visual tree. On the right, you can see the bitmap representation of those
 elements, captured while the Capture button was clicked.

 [image:]

 To create the bitmap version of the UI as shown in figure 21.2, you only need a couple of lines of code. Place these in the click event handler in place of the other code shown so far:

 WriteableBitmap bmp = new WriteableBitmap(Elements, null);
ResultBitmap.Source = bmp;

 Elements is the name of the StackPanel containing the four elements. The fidelity of the capture is close, but not perfect. For example, you lose ClearType rendering
 for fonts, so most text will look a little different. Of course, if you pass in a render transform (to rotate, skew, resize),
 it’ll definitely look different.

 The final approach is to create an image from scratch. We’ll discuss direct pixel access at the same time; it applies to all
 three approaches.

 Direct Pixel Access

 The third approach to using the WriteableBitmap is to create an image from scratch. This is useful when you want to create an image from code or allow the user to draw on
 an empty canvas using the mouse.

 The direct pixel access techniques shown here also work for any of the previous approaches, once the base image is loaded.
 Keep in mind that cross-domain images don’t allow direct pixel access, and you’ll get an exception if you try to do so.

 To create an image from scratch, you need only provide dimensions, like this:

 WriteableBitmap bmp = new WriteableBitmap(640, 480);

 Then you’re free to start working with the image. The pixels are manipulated using the Pixels property, which returns an array of integers. Each 32-bit integer represents one pixel in pARGB (premultiplied alpha, red,
 green, blue) format. This example iterates through the array, setting completely random values for the pixels:

 Random random = new Random();
for (int i = 0; i < bmp.Pixels.Length; i++)
 bmp.Pixels[i] = random.Next();

ResultBitmap.Source = bmp;

 That’s interesting, but not particularly helpful, as it doesn’t show how to set a specific color. Setting a single pixel to
 a specific color is just as easy:

 Color c = Colors.Orange;
bitmap.Pixels[i] = c.A << 24 | c.R << 16 | c.G << 8 | c.B;

 The shifting combined with the bitwise OR operation packs the four values into their correct position within the integer.
 To get an existing value, the code is a little more verbose, but still amounts to the reverse of putting the pixel:

 int pixel = bitmap.Pixels[i]
Color c = Color.FromArgb((byte)(pixel >> 24),
 (byte)(pixel >> 16),
 (byte)(pixel >> 8),
 (byte)(pixel));

 In this example, the variable c will contain the correct color code for the pixel at position i. The bitshift operators and byte masking take care of getting the correct values from the correct positions in the integer.

 One interesting use of all this is to create new images using an algorithm. One of the most impressive and best-known algorithms
 is the Mandelbrot fractal. We’ll close the section on the WriteableBitmap by creating our own little Mandelbrot fractal generator.

 21.2.3. A Mandelbrot fractal generator

 I love fractals. A number of the desktop wallpapers I created and offer through my personal site were generated using fractal
 explorer programs such as Ktaza (no longer available). In this section, we’ll build a simple visualizer for the Mandelbrot
 set, a common fractal. The Silverlight application will be able to produce results like figure 21.3.

 Figure 21.3. The WriteableBitmap sample application modified to show a Mandelbrot fractal

 [image:]

 For efficiency, we’ll simply modify the same project we’ve been working with throughout this section. Inside the button click
 handler, add the code from listing 21.3. This code generates a Mandelbrot fractal, coloring it using the escape time algorithm.

 Listing 21.3. Mandelbrot fractal in WriteableBitmap

 [image:]

 [image:]

 Listing 21.3 shows how to generate a simple Mandelbrot fractal with coloration based on the escape time algorithm. The code to make this
 work in Silverlight is straightforward. First, I build a color table [image:] to be used by the escape time algorithm. The colors simply fade from white to dark blue. I then create the WriteableBitmap instance.

 The majority of the remaining code is an implementation of the Mandelbrot fractal algorithm. Should you want to modify the
 scale of the content, the zoom variable is a good place to begin.

 The final step is to set the source of the bitmap onscreen to be the WriteableBitmap [image:]. This is consistent with the other examples.

 When I run this on my PC, the 1024 × 768 fractal generates and displays in subsecond time. I remember in the ’80s I had a
 CBM-BASIC program that generated a Mandelbrot set, and it ran all night, just to create a 320 × 200 image. Impressive.

 WriteableBitmap enables a number of important scenarios. First, you can use it to duplicate an existing image to prepare it for editing.
 Second, you can take a snapshot of a portion of the visual tree in order to create a thumbnail, or to snap a frame of a video.
 Third, you can generate images, or modify existing images, entirely from code. The scenarios for WriteableBitmap reach across all types of applications from games, to image manipulation, to forms-over-data business applications. Plus,
 just about anywhere you can use an Image, you can use a WriteableBitmap.

	

Tip

 WriteableBitmap requires a fair bit of effort to use for generating shapes or lines. For those situations, you have to do the math to plot
 pixels efficiently. The WriteableBitmapEx library on CodePlex at http://writeablebitmapex.codeplex.com builds upon the WriteableBitmap to add support for these and other functions.

 	

The Image element will support images up to 4 gigapixels (four billion pixels) in size. As you can imagine, using images this large
 can force your users to endure painful wait times. In addition, with advancements in digital photography and photo-stitching,
 what are you supposed to do with images larger than 4 gigapixels? To address these types of situations, Silverlight exposes
 a slick feature called Deep Zoom.

 21.3. Deep Zoom

 Deep Zoom is a feature of Silverlight that enables users to explore groupings of high-resolution images. Traditionally, viewing high-resolution
 images over the internet is associated with painful wait times because high-resolution images are generally larger in size.
 Silverlight’s Deep Zoom feature removes the usual long wait times. In addition, Deep Zoom natively allows users to drill into
 an image and see its most intricate details. All this is delivered in a smooth viewing experience that runs with unprecedented
 performance. This kind of experience is made possible by the MultiScaleImage control.

 The MultiScaleImage control, similar to the Image control, has the ability to efficiently show incredibly high-resolution images. These images can be zoomed into, giving the
 user a close-up view of the content. Alternatively, the user can zoom away from the image to get a bird’s-eye view of the
 image. Either way, these zooming features are constrained to an area known as the viewport. This viewport can be zoomed into, zoomed out of, and moved around the surface of an image, but this image really isn’t an
 image at all—it’s a collection of images typically created by Deep Zoom Composer, a free tool from Microsoft.

 21.3.1. Showing an image

 Showing an image within a MultiScaleImage control is nearly identical to showing an image within an Image control. As with the Image control, the only property you need to set to display an image is Source . This property is a MultiScaleTileSource that can be used to reference a file, but this file isn’t a typical image file. Instead, this file is an XML file, known
 as the Deep Zoom image (DZI) file, that describes a multiscale image. We’ll share more about this file type in a moment; for now, look at how a MultiScaleImage is created in XAML:

 <MultiScaleImage x:Name="myMultiScaleImage"
 Source="images/dzc_output.xml" />

 This shows the XAML to load a relative multiscale image at design time. In the event that you need to load a multiscale image
 at runtime, you use a DeepZoomImageTileSource instance. This type derives from the abstract base class MultiScaleTileSource, so it can be used at runtime as shown here:

 myMultiScaleImage.Source = new DeepZoomImageTileSource(
 new System.Uri("images/dzc_output.xml", UriKind.Relative));

 This line of code shows how to load a multiscale image at runtime. If the referenced image can’t be found, the MultiScaleImage object’s ImageOpenFailed event will be fired. If the image is found, the ImageOpenSucceeded event will be triggered and the image will be shown. Once this happens, you may consider giving your user the ability to
 zoom in and out of the high-resolution image.

 21.3.2. Zooming in and out

 The MultiScaleImage control has the ability to show an extremely high-resolution image. This control helps remove the traditional limitations
 associated with screen real estate. This is accomplished by enabling your users to zoom in from a view as if they were standing
 on top of a mountain.

 Zooming within a MultiScaleImage is handled by a method called ZoomAboutLogicalPoint. The ZoomAboutLogicalPoint method takes three parameters that describe the zoom attempt. The first parameter determines how much to zoom by. The second
 and third parameters specify from where in the image the zoom originates. These parameters and the ZoomAboutLogicalPoint method are shown in listing 21.4.

 Listing 21.4. Implementing zoom functionality

 C#:

 [image:]

 This listing looks like a lot of code. In short, this code enables the user to zoom in or out of the MultiScaleImage defined earlier. To enable this functionality, you first listen for a keypress [image:]. If the keypress is made from the Shift key, the user is saying to zoom away from the image. If the Shift key hasn’t been
 pressed, the zooming feature will default to zooming in, so you also need to listen for a user releasing a key through the
 KeyUp event. This event resets the zoom mode to the default after the Shift key has been pressed. The real meat of this feature
 is demonstrated when the user clicks the MultiScaleImage [image:]. This action forces a call to the ZoomAboutLogicalPoint method, which zooms according to the three parameters passed to it.

 The first parameter passed to the ZoomAboutLogicalPoint method determines how to zoom on the image. If this double value is less than 1, the method will zoom away from the image. If the value is greater than 1, the method will zoom into
 the image. Either way, you can play around with this value to also adjust the speed in which the zoom is applied. To determine
 where the zoom begins, you must rely on the second and third parameters.

 The second parameter represents the logical x coordinate to zoom from, the third parameter represents the logical y coordinate
 to zoom from. Both parameters are double values that fall between 0 and 1. The fact that these values fall between 0 and 1 is what defines them as part of a logical
 coordinate system, but most items use a standard Cartesian coordinate system. Fortunately, the MultiScaleImage class exposes two methods that enable you to convert Point objects between the two coordinate systems. The methods are:

 	ElementToLogicalPoint

 	LogicalToElementPoint

ElementToLogicalPoint converts a Cartesian Point to a logical Point. This is generally used to convert the position of the mouse cursor before zooming because the ZoomAboutLogicalPoint method expects a logical point. Here’s an example, assuming the user clicked the mouse at 125,200:

 Point cartesianPoint = new Point(125, 200);
Point logicalPoint = myMultiScaleImage.ElementToLogicalPoint(cartesianPoint);
myMultiScaleImage.ZoomAboutLogicalPoint(1.5,
 logicalPoint.X, logicalPoint.Y);

 LogicalToElementPoint converts a logical Point to a Cartesian Point. This allows you to work with a point in a more familiar interface. Here’s an example of how to use this method:

 Point logicalPoint = new Point(0.25, 0.75);
Point cartesianPoint =
myMultiScaleImage.LogicalToElementPoint(logicalPoint);

 Together, these examples show how to convert between the two coordinate systems. The logical coordinate system is necessary
 because it’s used for two important tasks. The first task is zooming in and out of an image—which you just saw. The other
 major task is selecting what part of a multiscale image to zoom in on. You’ll learn how to do this in a moment. Regardless
 of your task, both require some knowledge of how to manage the viewport.

 21.3.3. Managing the viewport

 The viewport is a rectangular region used to view a specific area of an image. This region enables you to zoom in and focus
 on the details of a specific part of an image, so you may want to think of the viewport as a way to interact with an image
 three-dimensionally. By default, this region is the size of the entire MultiScaleImage control, but you can change the size of the viewport through the ViewportWidth property.

 The ViewportWidth property sets the size of a viewport in relation to the logical coordinate space. Anytime you change the ViewportWidth property, it’ll be in relation to the hosting MultiScaleImage. For instance, if you set the ViewportWidth property to 1.0, the viewport will be the same size as the hosting MultiScaleImage control. If you change the ViewportWidth property to a double greater than 1.0, you’ll make the viewport larger than the MultiScaleImage. This approach would give the user a sense of zooming away from the image. Alternatively, you can focus on a smaller portion
 of a multiscale image by providing a value less than 1.0. Figure 21.4 illustrates this zooming-away effect.

 Figure 21.4. A MultiScaleImage with a ViewportWidth of 0.33

 [image:]

 This figure shows the effects of changing the ViewportWidth property to a double less than 1.0. The figure on the left represents the original multiscale image. As you can see, the Silverlight logo in this
 image is only a small portion of the area shown to the user. By setting the ViewportWidth property to 0.33, the Silverlight logo becomes the focus of the entire MultiScaleImage. In reality, the ViewportWidth is only part of the story. The other part involves using the ViewportOrigin property.

 The ViewportOrigin specifies the position of the upper-left corner of the viewport. This position is a logical Point relative to the upper-left corner of the MultiScaleImage. Each of the coordinates within the Point will be between 0.0 and 1.0. Note that you can still define this value at design time. To do this, you have to set the ViewportOrigin property with the syntax shown here:

 <MultiScaleImage x:Name="myMultiScaleImage"
 Source="images/dzc_output.xml"
 ViewportOrigin=".33,.33" />

 This line of markup shows how to set the ViewportOrigin property value at design time. As you might expect, this value can also be set at runtime by creating an instance of the Point class. This explanation hardly details the real value of the ViewportOrigin property—that it enables you to navigate around the surface of an image once you’re zoomed in. By handling a user action
 (see chapter 8), you can change the viewport position as necessary. The following example shows how to change the position of the viewport
 on a mouse click:

 void myMultiScaleImage_MouseLeftButtonUp(object sender,
 MouseButtonEventArgs e)
{
 Point newOrigin = e.GetPosition(myMultiScaleImage);
 myMultiScaleImage.ViewportOrigin =
 myMultiScaleImage.ElementToLogicalPoint(newOrigin);
}

 This example shows how to reposition the ViewportOrigin based on where a user clicked. Once it’s clicked, the viewport will move to the new Point. This process begins with a nice smooth animation called a spring animation. This animation will play anytime the viewport changes size or location—anytime you zoom in or out of an image or pan the
 surface. This animation can be turned off by changing the UseSprings bool property to false, but you won’t usually want to do this.

 In general, it’s recommended that you leave the UseSprings property set to true because the animation creates a rich viewing experience. In addition, it gives the MultiScaleImage control more time to download any necessary data. Once the viewport does change size or location, the MotionFinished event will be triggered, giving you an opportunity to perform any UI updates that you may want to make to the display.

 The viewport is an important concept within the MultiScaleImage control. This item gives you the power to scan the surface of a high-resolution image. In addition, the viewport enables
 you to readily zoom in and out of an image. To enable this zooming functionality, you first load an image into the MultiScaleImage control. This image is loaded through the Source property, and the Source should reference a .xml file, which can be created by a tool. This tool is used when you’re ready to deploy a multiscale
 image.

 21.3.4. Deploying multiscale images

 The MultiScaleImage control has built-in support for handling XML that details a multiscale image. This type of file can be generated programmatically
 or by a tool called Deep Zoom Composer. We won’t cover this tool in detail because of its simplistic nature. Once you download and install the tool from the Microsoft
 Expression website, you can quickly create XML files that can be used by the MultiScaleImage. These files can be generated within the tool by going through a basic wizard. This wizard goes through the following steps:

 1. Import—Enables you to import your own images.

 2. Compose—Lets you lay out how the images should appear.

 3. Export—Determines where the result will be stored.

 These three steps will generate a .xml file and a file/folder structure. These two items must then be added to your web application
 so that the MultiScaleImage control can access them. Once this has been done, you can use Deep Zoom on your own images.

 Deep Zoom is a powerful feature available within Silverlight. Because this technology relies on basic images and an XML file,
 there are no server-side requirements. In addition, the only client-side requirement is Silverlight itself. This is great
 news because, as you play with Deep Zoom, you’ll see the rich experience it provides. This experience truly makes viewing
 high-resolution images over the internet enjoyable.

 One of the misconceptions about Silverlight is that everything must be a vector shape. Silverlight provides a number of ways
 to load and display bitmap images, as well as powerful ways to manipulate them. You can load regular .png and .jpeg files
 from the web or a local resource; you can create images on the fly, or from other visuals; and you can quickly zoom through
 collections with millions or billions of pixels at play. All of this Silverlight does natively and fluidly, proving both a
 simple developer experience and an excellent end-user experience.

 In the examples shown so far in this chapter, you may have noticed some different values for the Stretch property. This property is shared by video and image elements alike, and helps control how the content will fill (or not
 fill) the space provided.

 21.4. Dealing with dead space

 Throughout this chapter you’ve seen a variety of ways to deliver different kinds of media. Often, media is intended to be
 a secondary part of an application instead of the main attraction. For instance, a user’s profile picture is part of an application
 but not as important as the profile information itself. As you can imagine, there’s the possibility that these profile pictures
 may be of different sizes. This can lead to dead space, or areas that don’t include content. Fortunately, there’s a way to
 gracefully deal with these situations. Please look at figure 21.5.

 Figure 21.5. The boundary of an Image element in comparison to the actual size of the photo

 [image:]

 The Image, MediaElement, and Shape (discussed chapter 18) classes expose a property called Stretch. This property determines how the area devoted to an element will be filled. This description will become clearer as you
 see the examples available in this section. This property must be set to one of the four options available in the System.Windows.Media.Stretch enumerator, which exposes the None, Uniform, Fill, and UniformToFill options.

 21.4.1. Filling the space

 Most of the time, photos are represented as raster-based graphics. Raster-based graphics often become pixellated and lose
 their detail when they’re enlarged. You can prevent this from happening by using the option None for the Stretch value. This option commands an element to maintain the original size of the requested content—this option doesn’t make the
 content stretch at all. As you probably expected, you can set this property value at design time, as shown in here:

 <Image x:Name="myImage"
 Source="http://www.silverlightinaction.com/man.png"
 Stretch="None" />

 The XAML in this example loads an Image and prevents it from stretching. The result from this XAML can be seen in figure 21.5, which shows the results of the None option when there’s plenty of space for a piece of content. Consider the scenario where the content is larger than the hosting
 element. Take a look at Walker’s picture (the content) in an Image element (the hosting element) smaller than the picture (see listing 21.5).

 Listing 21.5. Use of the None option on an undersized Image element

 Result:

 [image:]

 XAML:

 <Image x:Name="myImage" Width="75" Height="75"
 Source="http://www.silverlightinaction.com/man.png"
 Stretch="None" />

 Unfortunately for Walker, his legs got cut off! (One of my slightly twisted tech reviewers suggested he should be named “Sitter”
 now. Thanks, Tom.) As the result in this listing shows, the original photo remains the same size, so the bottom and right
 edges of the photo are cropped so that the image fits within the 75px-by-75px dimension of the Image element. This illustration also erases any fears of an exception being thrown in the case of an element being smaller than
 its content.

 At first glance, the None option may seem like the most obvious default option. It may come as a surprise to find out that another option makes even
 more sense as the default. When you begin to consider the fact that the Stretch option is applicable to Image, MediaElement, and Shape elements, it makes much more sense to stretch items by default, uniformly.

 21.4.2. Uniform sizing

 If you set the Stretch property to Uniform, the content of the element will symmetrically expand or contract to occupy most of the available area. While the content
 expands or contracts, the native aspect ratio will be preserved. This means that if you revisit Walker’s picture, it’ll be stretched vertically, making him stand tall and proud (see listing 21.6).

 Listing 21.6. A uniformly stretched Image with a photo smaller than the element

 Result:

 [image:]

 XAML:

 <Image x:Name="myImage" Width="300" Height="200"
 Source="http://www.silverlightinaction.com/man.png"
 Stretch="Uniform" />

 The gray backdrop in this listing represents the area that could be filled by an image. Because the Uniform option stretches content proportionally, it must stop once either a vertical or horizontal boundary is met. But, what happens
 if the content is larger than the bounding element? Listing 21.7 shows how to maintain aspect ratio.

 Listing 21.7. A uniformly stretched Image with a photo larger than the element

 Result:

 [image:]

 XAML:

 <Image x:Name="myImage" Width="75" Height="75"
 Source="http://www.silverlightinaction.com/man.png"
 Stretch="Uniform" />

 As this listing illustrates, the content remains intact. Instead of cropping the image, as was the case in listing 21.5, the content scales to a smaller size. As the content scales down, the aspect ratio stays the same. Although maintaining
 the aspect has its benefits, occasionally you might need to fill the entire area, no matter what. For these situations, you
 have the Fill option.

 21.4.3. Fill the area

 The Fill option allows you to expand or contract the content of an element to fully occupy the space allocated to it. You’ll most
 likely use this option in backdrop scenarios where you want an Image to serve as wallpaper. Listing 21.8 shows what the Fill option does to Walker’s picture.

 Listing 21.8. An Image using the Fill option to stretch an image

 Result:

 [image:]

 XAML:

 <Image x:Name="myImage" Width="300" Height="200"
 Source="http://www.silverlightinaction.com/man.png"
 Stretch="Fill" />

 Walker looks a little bloated (it’s water weight, trust me) in this listing because, although the Fill option will expand to ensure that every pixel allotted to an element is used, the aspect ratio of the content won’t be preserved.
 Because of the oblong dimensions of the photo, the photo is stretched horizontally—in turn, horizontally stretching Walker.

 Sometimes, you may need the flexibility to fill an element while maintaining the aspect ratio. For these circumstances, you
 have the UniformToFill option.

 21.4.4. UniformToFill

 As the name implies, this option is a hybrid between the Uniform and Fill options. The content within an element will maintain its aspect ratio while filling the entire bounding area. If the content
 has a different aspect ratio than the housing element, the overflowing content will be clipped. See listing 21.9 for a small sample using our friend Walker.

 Listing 21.9. An Image using the UniformToFill Stretch option

 Result:

 [image:]

 XAML:

 <Image x:Name="myImage" Width="300" Height="200"
 Source="http://www.silverlightinaction.com/man.png"
 Stretch="UniformToFill" />

 This listing illustrates how a raster-based graphic can become pixellated when inflated. It also shows how the aspect ratio
 is maintained as the picture is enlarged to fill every allocated pixel. As you’ve probably noticed, Walker’s legs are removed
 from this picture. This is because the bottom edge has been removed to ensure that the image fits within the allocated boundaries.

 Stretching can help you address a wide variety of filling situations. Silverlight allows you to easily address any type of
 stretching situation through the Stretch property. This property can be used with the Image and MediaElement items discussed earlier in this chapter. Interestingly, the Stretch property isn’t supported by the MultiScaleImage control. But, with those powerful deep-zooming capabilities, does it really make sense to stretch? I think not.

 21.5. Summary

 Over the course of this chapter, we explored several ways of working with bitmap (also known as raster) images. Silverlight natively supports .jpeg and .png images in the Image element, but provides facilities for you to be able to construct any type of image you’d like using direct pixel access with
 the WriteableBitmap.

 The WriteableBitmap allows you to construct images from existing UI elements, from existing images, or even from individually placed pixels.
 This supports countless scenarios from screen thumbnails, to video stills, to games and paint programs.

 For truly large images, or collections of large images, Silverlight provides the MultiScaleImage control, also known as Deep Zoom. Deep Zoom supports images in the millions to billions of pixels allowing for very fast enlargement of specific areas while
 minimizing the amount of memory, processing power, and bandwidth used.

 All of the image types support various stretch options to allow them to conform to the shape of the container they’re placed
 in. Silverlight smoothly resizes images, preserving aspect ratio if you desire.

 Along with media (see chapter 20) and vector graphics (see chapter 18), bitmap images round out the graphical presentation capabilities of Silverlight, helping to put the “rich” in rich internet application. In the next chapter we’ll learn how to use animation to move from these static shapes to a more dynamic and interactive
 user experience.

Chapter 22. Animation and behaviors

 This chapter covers

 	Providing interactive animations

 	Using keyframes

 	Using and creating easing functions

 	Working with and creating behaviors

Believe it or not, there once was a time when I had to cower in my cube at a client site, trying to make sure no one saw me
 designing icons in a graphics program, or hand-coding subtle timer-based animation for an application UI. Working with those
 things was looked upon as “not real work.” At the same time, the clients expected icons and application UI to magically appear
 as though someone just pressed the “Make it Awesome” button on an IDE.

 Gladly, for most companies, those days are gone. The value of good graphics, good UX, and for the most part, good animation
 have become mainstream in all but the most conservative organizations. The last of those, and probably the least broadly accepted,
 is animation.

 Animation is a relative newcomer to the world of application development. Yes, creative types have been doing it for years,
 but many of us haven’t seen much animation in our own applications, web or otherwise. Flash, WPF, Silverlight, and jQuery,
 not to mention the vastly improved motion graphics on TV and in movies, have all helped to finally make animation mainstream.

 Animation is a double-edged sword. Silverlight will make it simple for you to use animation as much as you want, even if that’s
 overdoing it so much that your entire application UI appears to be suspended from a bed of Slinky springs. I won’t judge,
 honestly. I’ll just show you how to use the awesome capabilities Silverlight gives us.

 We’ll start by covering the basics of animation, of how animation is a change in the value of a property over time. Then we’ll
 work with the timeline and storyboards. Once we know how to group animations in a storyboard, we’ll cover how to create key
 frames to allow Silverlight to interpolate the values between different points in time. Of course, key frames would be pretty
 boring without easing functions, so that comes next. We’ll even see how to create our own easing functions. Finally, we’ll
 wrap up the chapter with some examples of using and creating behaviors.

 22.1. Animation: it’s about time

 An animation within Silverlight boils down to changing a single visual property over a period of time. Without the concept
 of time, an animation would be a static graphic, and there’d be no need for this chapter. By gradually changing a visual property
 over the course of a time period, you can deliver dynamic effects. One such effect is shown in figure 22.1.

 Figure 22.1. An image fading into view over the course of one second

 [image:]

 This figure shows the relationship between the Opacity property of an Image and the duration of an animation. As this animation progresses over the course of a single second, the Opacity value gradually increases. As the Opacity value increases, the Image gradually becomes more and more opaque. You create this dramatic animation by using the code in listing 22.1.

 Listing 22.1. XAML for fading in an Image over the course of one second

 XAML:

 <Image x:Name="myImage"
 Source="http://www.silverlightinaction.com/man.png">
 <Image.Triggers>
 <EventTrigger RoutedEvent="Image.Loaded">
 <BeginStoryboard>
 <Storyboard x:Name="myStoryboard">
 <DoubleAnimation Duration="0:0:2"
 Storyboard.TargetName="myImage"
 Storyboard.TargetProperty="Opacity"
 From="0" To="1" />
 </Storyboard>
 </BeginStoryboard>
 </EventTrigger>
 </Image.Triggers>
</Image>

 This example shows the XAML responsible for fading an image into view. A lot of new elements are presented within this small
 example; to gain an understanding of how these elements relate to one another, here’s an overview of the items seen in listing 22.1:

 1. The EventTrigger element initiates an action when the Image is loaded. This action is represented as the BeginStoryboard element. A trigger is one way to start an animation.

 2. The Storyboard object is responsible for organizing and controlling the animations defined within it. Because of the BeginStoryboard action, this Storyboard is automatically started when the EventTrigger is fired.

 3. The DoubleAnimation element specifies that you’re going to animate a double-precision value. There are other animation types that we’ll cover
 in a moment. But more importantly, the value to animate is referenced with help from the Storyboard.TargetProperty and Storyboard.TargetName properties.

 As this outline demonstrates, each element serves a specific purpose. These elements work together to allow you to create
 lively animations. These animations ultimately revolve around time. Time is probably best represented as a line such as the
 one shown in figure 22.1. This timeline demonstrates how central the concept of time is to an animation.

 22.2. Mastering the timeline

 At its base, every animation represents a Timeline object. This object is defined within the System.Windows.Media.Animation namespace and is used to represent a period of time. During this period of time, you have the opportunity to change the value
 assigned to a visual property. To specify which property value should be changed, you answer the following simple questions:

 	What type of property are you animating?

 	Where are you starting from, and where are you going?

 	How long should the animation run?

Although these questions sound fairly basic, there are a significant number of details surrounding each one. For this reason,
 we’ll cover each question in detail, beginning with the first question.

 22.2.1. What type of property are you animating?

 To create an animation, you first select a single visual attribute of a single element. This item is guaranteed to have a
 data type associated with it. This data type will serve as the guiding light throughout the animation process. Ultimately, it’s what will decide the type of animation that should
 be used. Imagine having a basic Ellipse that you want to animate. The XAML for this sample is shown in listing 22.2.

 Listing 22.2. The XAML for a basic Ellipse

 XAML:

 [image:]

 This example shows an Ellipse named myEllipse. This Ellipse will be used in the remainder of this section to describe animating properties. Silverlight provides three types of animations
 to assist you in creating dramatic visual effects. These types differ in regard to the type of property being animated. Silverlight
 has the ability to animate double, Point, and Color values via the DoubleAnimation, PointAnimation, and ColorAnimation types. We’ll begin by discussing the most useful type, the DoubleAnimation.

 Doubleanimation

 A DoubleAnimation enables you to animate a single property value from one double-precision floating-point value to another. This is probably
 the most widely used type of animation. To illustrate a DoubleAnimation, this example shows how you could fade out the Ellipse defined in listing 22.2 over one second:

 <DoubleAnimation Storyboard.TargetName="myEllipse"
 Storyboard.TargetProperty="Opacity"
 From="1" To="0"
 Duration="0:0:1" />

 As this markup illustrates, delivering a fade effect is incredibly simple. The DoubleAnimation element prepares Silverlight to generate double-precision values between the From and To values. As you can imagine, this opens the doors to tons of animation scenarios, but not every opened door should necessarily
 be entered.

 Attempting to animate the FontSize property of a TextBlock can be a resource-consuming task. Even though this property is implemented as a double-precision value, animating it can
 quickly lead to poorly performing applications because the text will be smoothed on every frame—an expensive process, even
 when the text is using animation-optimized smoothing. For this reason, if you need to animate your text, you may want to consider
 converting your TextBlock into a Path and using a ScaleTransform.

 Regardless, the DoubleAnimation is still applicable in a variety of scenarios: creating fades, moving elements around a Panel, and performing transformations, among other things. However useful the DoubleAnimation is, there still may be situations where you need to animate Point-related values.

 Pointanimation

 The PointAnimation type enables you to animate from one pair of x and y coordinates to another. As the name implies, this type of animation
 enables you to animate any property that represents a System.Windows.Point. And although this type isn’t as widely used throughout the Silverlight APIs as the double type, it still has its place. For instance, you may need to animate the center of an EllipseGeometry object or dynamically change the presentation of a brush. Regardless of the need, it’s nice to know that you can rely on
 the PointAnimation, which is illustrated here:

 <PointAnimation Storyboard.TargetProperty="Center"
 Storyboard.TargetName="EllipseGeometry"
 Duration="0:0:2"
 From="100,100"
 To="100,300" />

 The animation in this example changes the origin of any transforms applied to the Ellipse in listing 22.2. Generally, a PointAnimation will only be used in association with transforms and the Geometry elements mentioned in chapter 18. But, for a more subtle animation, you may consider using a ColorAnimation.

 Coloranimation

 A ColorAnimation enables you to create smooth transitions from one color to another. These transitions can be performed between any two System.Windows.Media.Color property values. For this reason, this type of animation is used primarily with a brush as shown in this example:

 <ColorAnimation Storyboard.TargetName="myEllipse"
 Storyboard.TargetProperty="(Fill).(SolidColorBrush.Color)"
 Duration="00:00:01"
 From="Yellow" To="Red" />

 This XAML shows an assumed Ellipse shifting from Yellow to Red over the course of one second. This animation, along with the others mentioned, shows how easy it is to animate a property.
 Up to this point, we’ve only focused on animation related to a property type. In reality you also need to know how to specify the exact property you’re animating.

 Each of the animation types that we’ve discussed exposes two attached properties that specify the target of an animation.
 Appropriately, these attributes are called Storyboard.TargetProperty and Storyboard.TargetName. These properties work in coordination to determine which property of a specific element will be animated. This is a simplified
 description of these properties; a more detailed definition will be provided in section 22.3.2. For now, let’s turn our focus to the second question in our animation journey.

 22.2.2. Where are you starting from and where are you going?

 As figure 22.1 illustrated, an animation has a beginning and an end, whether inferred or explicit. The end of an animation can be specified
 using one of two properties. We’ll discuss each of these properties in detail later in this section. Before we can discuss
 the end of an animation, we should first discuss the beginning.

 Where is the Animation Coming From?

 There’s a saying that you can’t know where you’re going until you know where you’ve been. In regard to animation, this phrase
 should be changed to you can’t know where you’re going unless you know where you’re from. To identify where an animation is
 coming from, you rely on the aptly named From property.

 The From property is accessible from all the animation types that we’ve discussed. This value determines where an animation will begin.
 The following XAML shows the From property in action to help jump start our discussion:

 <DoubleAnimation Storyboard.TargetName="myImage"
 Storyboard.TargetProperty="Opacity"
 From="0" To="1"
 Duration="0:0:1" />
...
<Image x:Name="myImage"
 Source=" http://www.silverlightinaction.com/man.png"
 Opacity=".25" />

 This example is preparing to animate the Opacity property of an assumed Image. The Opacity property of this Image is initially set to 0 when the animation starts. This is determined by the value provided within the From property. Once the animation begins, the Opacity value gradually increases over the course of one second to the value of 1.

 Note that this value is compatible with the animation type. The 0 may look like an integer, but at runtime, it’s automatically converted into a double-precision value. If you’d attempted
 to set the From property value to Yellow, an exception would’ve been thrown because Yellow isn’t a valid double-precision value. Alternatively, you can skip this potential problem altogether by not defining a From property value; the From property is an optional attribute.

 If a From value isn’t provided, the animation will automatically decide where to start from. To decide where to begin, the animation
 will examine the target specified by the Storyboard.TargetName and Storyboard.TargetProperty attributes. Once these are examined, the From property will be set to the current property value associated with the target, as shown in this example:

 <DoubleAnimation Storyboard.TargetName="myImage"
 Storyboard.TargetProperty="Opacity"
 To="1" Duration="0:0:1" />
...
<Image x:Name="myImage"
 Source=" http://www.silverlightinaction.com/man.png"
 Opacity=".25" />

 When the animation in this markup begins, it automatically determines that the Opacity value within the animation should begin at .25. This is the current value of the Opacity property, which is defined as the target. This approach can help create smoother, more fluid animations. On the other hand,
 explicitly stating the From value can have unexpected effects on your animations.

 Explicitly setting the From value can cause your animations to jump or jerk between iterations because the animation may need to reset the target property
 back to the value set within the From attribute. If you want more fluid animations, you may consider having an animation end at, or just before, the value specified
 within the From value. Alternatively, you may choose to skip setting the From value altogether. Either way, you need to know where the animation is going.

 Where am I Going?

 One way to predetermine where an animation is going is by setting the To property. The To property is exposed within the ColorAnimation, DoubleAnimation, and PointAnimation types. This value represents the destination of a specific animation. Like the From property, the value associated with the To property must be compatible with the type of animation. To get a better feel for this property, examine its use in this example:

 <DoubleAnimation Storyboard.TargetProperty="Opacity"
 Storyboard.TargetName="myEllipse"
 Duration="0:0:1"
 From=".75" To="0" />

 This XAML shows the Opacity of the Ellipse changing from .75 to 0 when the animation begins. Over the course of one second, the Opacity of the Ellipse will change to 0. If you’ve defined a value for the From attribute, you don’t have to set the To property. Instead, you can rely on the use of the By property.

 How am I Going to Get There?

 The By property is a special shortcut that provides an alternate to the To property. Instead of having to know where you want to go initially, you can conveniently specify a value in the By attribute. When the animation is run, Silverlight adds the value defined in the From field to the By value to automatically determine the To value. To get a firmer understanding of how this can be used, take a look at this markup:

 <DoubleAnimation Storyboard.TargetName="myImage"
 Storyboard.TargetProperty="Opacity"
 From=".25" By=".50"
 Duration="0:0:1" />

 This example defines the animation for an assumed Image. When the animation begins, the Opacity property of the Image is set to .25. Over the course of one second, you want this animation to increase the Opacity value by .50. When this animation has started, the To value will essentially be .75. You can also decrease the Opacity value by providing a negative value, as shown in this XAML fragment:

 <DoubleAnimation Storyboard.TargetName="myImage"
 Storyboard.TargetProperty="Opacity"
 From=".25" By="-.10"
 Duration="0:0:1" />

 This markup shows the alternative to increasing a value. Note that the By property itself is an alternative to the To property. If both properties are defined, the To property will take precedence and the By property will be ignored.

 The By and To properties enable you to provide guidance for your animations. These animations begin at the value provided within the From field. To determine how long the animation should take to get to the destination, we have one final question to address.

 22.2.3. How long should the animation run?

 As mentioned earlier, each animation is a Timeline object, so a number of valuable time-related traits are shared among all animations. The most important of these items is
 the Duration property.

 How Long?

 The Duration property specifies how long it’ll take for a Timeline to complete a single episode. This value can be defined using the TimeSpan syntax or it can use a predefined value, defined within the Duration struct and described in table 22.1.

 Table 22.1. Options for the Duration property

 	
 Property

 	
 Description

	Automatic
 	Means that a Timeline will automatically end when all child elements have been completed.

	Forever
 	Signals that an animation can run forever.

Table 22.1 illustrates that you have two options when it comes to controlling the Duration of an animation. To control the playback speed of an animation, call on the SpeedRatio property.

 Throttling the Animation

 The SpeedRatio property represents the throttle for a Timeline. By default, this double-precision value is set to 1.0. This value can be set to any positive double-precision value and
 act as a multiplier to the Duration property value. Figure 22.2 shows the Duration, SpeedRatio, and time values for a completed Timeline.

 Figure 22.2. The effects of the SpeedRatio on a Timeline with a Duration of 10 seconds

 [image:]

 As figure 22.2 illustrates, the SpeedRatio property can have a pretty significant impact on the Duration of a Timeline. These results show that any value less than 1 will slow down an animation. At the same time, any value greater than 1 will
 speed up the animation.

 Besides adjusting the speed of an animation, you may need to repeat its performance. For this reason, there’s a RepeatBehavior property.

 Play it Again

 The RepeatBehavior property is an interesting animal that may act differently than you’re anticipating. This property enables you to specify
 how many times an animation should be played back-to-back. This property also enables you to specify how long the animation
 should run regardless of the Duration value—the animation will play back-to-back until the time specified in the RepeatBehavior property has elapsed. To get a further understanding of how this property works, examine figure 22.3.

 Figure 22.3. The effects of the RepeatBehavior on a Timeline with a Duration of 10 seconds

 [image:]

 Figure 22.3 illustrates the effects of the RepeatBehavior property in relation to an animation’s Duration. The first three bars illustrate how to use the RepeatBehavior to specify the total number of times a Timeline should run. The last three bars show how to use the RepeatBehavior to specify a specific length of time for a Timeline.

 As shown in the first three bars, you can append an x as the suffix to a positive, double-precision value. This suffix informs Silverlight that you want an animation to run a specific number of times. The total number of times is represented as the value before the x. If the RepeatBehavior is set to 2.0x, the animation will run two times; if the value is set to 5.0x, it’ll run five times. These types of values can have a significant impact on your animations.

 If the value before the x is greater than 1.0, you may notice a jerk between the iterations of the animation because, unless your animation ends with
 the same value as it started, it’ll need to jump to the start to be reset. If the value before the x is less than 1.0, you’ll notice that the animation will stop before the animation has completed because the RepeatBehavior takes precedence over the Duration property. This can have significant implications if you specify a time value as shown in the last three bars of figure 22.3.

 By specifying a specific length of time for the RepeatBehavior, you’re informing the Timeline to repeat until the specified time has elapsed. This length of time can be specified using the TimeSpan format. Or, you can specify the Forever value to make the Timeline run until you programmatically force the animation to stop. Either way, at times you may want a more cyclical animation.
 For these situations, you may want to consider the AutoReverse property.

 Turn it Around

 The AutoReverse property enables you to automatically play a Timeline in reverse after it has played once forward. This boolean property is, by default, set to false. Changing this property value to true can enable you to deliver a throbbing effect—among other things. Note that changing this property to true can have residual effects on the overall playback of a Timeline.

 By setting the AutoReverse property to true, the overall playback time of a Timeline may be doubled. When the AutoReverse property is true, a Timeline isn’t deemed finished until it plays once forward and once backward. If you’re specifying a number of iterations within the
 RepeatBehavior property, a single iteration will take twice as long.

 Once an iteration has completed, you should have the ability to decide how it should behave.

 How Will it End?

 When an animation reaches the end of a Timeline, it normally stays (or holds) at the end, but the FillBehavior property gives you the opportunity to determine what to do. When the end is reached, you can tell the playback what to do
 using one of the options provided by the FillBehavior enumerator. These options and their descriptions are shown in table 22.2.

 Table 22.2. Available FillBehavior options

 	
 Value

 	
 Description

	HoldEnd
 	When completed, a Timeline will stay at the end until told otherwise. This is the default value for the FillBehavior property.

	Stop
 	Once the Timeline has completed, the playback position will automatically reset to the beginning.

You have two options: stay at the end or reset to the beginning. But the beginning of a Timeline isn’t necessarily what it may seem. This beginning of a Timeline can be altered by the BeginTime property.

 From the Top

 The BeginTime property represents when to start playing a Timeline. In reality, this property sort of behaves as an offset, which can be set using the familiar TimeSpan format. By default, the BeginTime property’s value is set to null, which translates to 0. This setting is why animations begin playing immediately when told to do so. You can set this value to another TimeSpan value to provide an offset, as shown in this example:

 <DoubleAnimation Storyboard.TargetName="myImage"
 Storyboard.TargetProperty="Opacity"
 From="0" To="1"
 BeginTime="00:00:5" Duration="0:0:1" />

 This shows an Image that fades in over the course of one second. Unlike the previous animations, this one won’t start immediately. Instead, once
 the animation begins to play, it waits until the time specified within the BeginTime property has elapsed. Once this time period has elapsed, the image begins to fade into view. Because of this, you can assume
 the entire animation in this example takes six seconds to complete.

 The BeginTime property may seem somewhat odd. It is sort of odd if you consider it only in regard to a single animation, but this property
 provides a significant amount of value when you have multiple animations working together. To make use of multiple animations,
 you must take advantage of the required Storyboard element.

 22.3. Storyboarding

 Every animation created within Silverlight must be defined within a Storyboard. A Storyboard enables you to organize multiple animated parts that work together simultaneously. Often, these animated parts will span
 different properties across different UI elements. It makes sense to have a way to collectively organize and control these
 animated parts. Thankfully, the Storyboard enables you to do just that.

 22.3.1. Understanding the storyboard

 A Storyboard is an umbrella under which multiple animations can be defined to address a common scenario. From a development perspective,
 a Storyboard can be considered as a collection or grouping of animations. This grouping provides you with a way to easily target and control
 one or more animations. The syntax is shown this example:

 <Storyboard x:Name="myStoryboard">
 <!-- The common animations -->
</Storyboard>

 This XAML shows the basic syntax of a Storyboard. This Storyboard element could have any number of animations placed inside it. You can place other Storyboard elements within it if you so desire because the Children property of a Storyboard represents a collection of Timeline elements. You can add any type of animation or other Storyboard elements because they derive from the Timeline class. Listing 22.3 shows how you can intertwine types within a single Storyboard.

 Listing 22.3. Syntax of Storyboard element with multiple animations

 <Storyboard x:Name="myStoryboard" Storyboard.TargetName="myRectangle">
 <DoubleAnimation x:Name="myDoubleAnimation" Duration="00:00:03"
 Storyboard.TargetProperty="Opacity"
 From="0" To="1" />
 <ColorAnimation x:Name="myColorAnimation"
 Storyboard.TargetProperty="(Shape.Fill).(SolidColorBrush.Color)"
 Duration="00:00:03"
 From="Green" To="Blue" />
</Storyboard>
...
<Rectangle x:Name="myRectangle" Width="180" Height="60" Fill="Green"
 Opacity="0" />

 This listing shows a Storyboard that changes a Rectangle from green to blue as it fades into view. This small sample begins to show the power allotted by the Storyboard. Before we discuss the other powerful features of the Storyboard, let’s look at how to define the target of your animations.

 22.3.2. Hitting the target

 As mentioned earlier, the Storyboard exposes two attached properties that can be used to set the target of an animation. The first is TargetName, and the second is TargetProperty. These two property values are codependent and both are required to create an animation. Without these values, your animations
 won’t know what to animate. If you define these two values within a Storyboard, you can share their values across the child Timeline elements.

 As shown in the previous listing, the Storyboard uses the TargetName attached property to specify the target of the animation. Each of the child animations uses the same target element. If one
 of these animations needs to use a different element, you can trump this value by providing a different TargetName value, using the approach shown in listing 22.4.

 Listing 22.4. Animation overriding target of its parent Storyboard

 <Storyboard x:Name="myStoryboard" Storyboard.TargetName="myRectangle">
 <ColorAnimation x:Name="myColorAnimation" Duration="00:00:03"
 Storyboard.TargetProperty="(Shape.Fill).(SolidColorBrush.Color)"
 From="Green" To="Blue" />

 <DoubleAnimation x:Name="myDoubleAnimation" Duration="00:00:03"
 Storyboard.TargetName="myRectangle2"
 Storyboard.TargetProperty="Opacity"
 From="0" To="1" />

 <DoubleAnimation x:Name="myDoubleAnimation2" Duration="00:00:05"
 Storyboard.TargetProperty="Width"
 To="180" />
</Storyboard>
...

<Rectangle x:Name="myRectangle" Width="180" Height="120" Fill="Green" />
<Rectangle x:Name="myRectangle2" Width="90" Height="30" Fill="Pink" />

 This listing defines the primary target of the Storyboard as myRectangle. This target is used by the myColorAnimation and myDoubleAnimation2 animations. myDoubleAnimation uses myRectangle2 as the target instead of myRectangle. This is accomplished by overriding the TargetName value set in the storyboard itself. Note that each of the animations in this listing targets a separate property.

 To target a property within an animation, you use the TargetProperty attached property. As you’ve probably guessed, this attribute allows you to specify which property of the target element
 should be animated. You can specify the name of this property in a couple of ways.

 The first and most explicit approach involves setting the name of the property you intend to animate. This approach is used
 in myDoubleAnimation and myDoubleAnimation2. Generally, this approach will work for most of the properties throughout the Silverlight APIs, but it won’t always be enough.

 Consider the situation where you want to change the color of a Brush. Generally, the color of a Brush is defined as a property within a property within a property. This is shown in the myColorAnimation animation of the listing. Although at first this may not seem possible within XAML, there is a way.

 XAML supports a flexible property path model that enables you to access nested properties. This model allows you to access
 the individual properties by drilling through the hierarchy using element types. To drill down through the hierarchy, you
 begin at an element type. From there, you access a specific property by using a period as a delimiter. If the property represents
 a collection, you can access the individual items by using an indexing syntax. To gain a firmer understanding of these syntactical
 details, review listing 22.5.

 Listing 22.5. Complex property paths in XAML Storyboards

 [image:]

 This listing shows how to use the property path syntax to access the individual colors used within the LinearGradientBrush. An index of 1 is used within [image:] to reference the second GradientStop in the brush. At the same time, an index of 3 [image:] is used to change the color of the fourth GradientStop. In addition to the indexing syntax, it’s important to recognize the use of the parentheses around each property.

 Parentheses are used in the property path syntax to group a property with an element. As shown in listing 22.5, you can’t begin by drilling into a property; instead, you begin with an element type. From there, you specify the name of
 the property you want to animate and continue by delimiting with a period. This syntax is depicted in figure 22.4.

 Figure 22.4. The property path syntax in action

 [image:]

 This figure shows the general syntax used for referencing properties using this property path syntax. This approach makes
 it easy to access items that haven’t been explicitly named. This syntax enables you to readily take control of the properties
 within an element. Equally important is the way that Silverlight enables you to take control of the Storyboard itself.

 22.3.3. Controlling the Storyboard

 The Storyboard class exposes a number of valuable methods that enable you to programmatically control an animation. These methods, shown
 in table 22.3, reflect many of the features you’ve already seen within the MediaElement.

 Table 22.3. Methods associated with the Storyboard object

 	
 Method

 	
 Description

	Begin(...)
 	Turns the hourglass to start pouring the sands of time. This method starts the animations that are the Children of the Storyboard.

	Pause(...)
 	Halts the playback of the animations associated with a Storyboard and preserves the current position.

	Resume(...)
 	Continues the animations associated with a Storyboard from a previous position.

	Seek(...)
 	Skips to a new position within a Storyboard. The position is represented as a TimeSpan value.

	Stop(...)
 	Halts the playback of the animations associated with a Storyboard and resets the playback position to the beginning of the
 Storyboard.

The methods described in this table enable you to programmatically interact with a Storyboard. In doing so, you can easily deliver a dynamic animation experience. This experience may involve leaping forward to a later
 part in an animation or giving the user control via interactive playback features. Either way, an important part of interacting
 with an animation involves knowing when it’s finished. Thankfully, the Storyboard exposes the Completed event.

 The Completed event is the only event exposed by the Storyboard element. In reality, this event is part of the Timeline. Regardless, the Completed event is triggered when the assigning Storyboard has finished. A Storyboard is deemed finished once all its child Timeline elements have completed. Listing 22.6 shows a MediaElement performing one complete rotation when a user clicks it. Once this animation has completed, it’ll use another animation to
 fade the MediaElement out of view.

 Listing 22.6. Using the Playback methods and Completed event

 XAML:

 <MediaElement x:Name="media"
 Source="http://www.silverlightinaction.com/video2.wmv"
 AutoPlay="True"
 MouseLeftButtonUp="media_MouseLeftButtonUp"
 RenderTransformOrigin="0.5,0.5">
 <MediaElement.Resources>
 <Storyboard x:Name="myStoryboard1"
 Completed="myStoryboard1_Completed">
 <DoubleAnimation Storyboard.TargetName="media"
 Storyboard.TargetProperty="(UIElement.RenderTransform).
 (TransformGroup.Children)[0].(RotateTransform.Angle)"
 From="0" To="360"
 Duration="00:00:02" />
 </Storyboard>
 <Storyboard x:Name="myStoryboard2">
 <DoubleAnimation Storyboard.TargetName="media"
 Storyboard.TargetProperty="Opacity"
 From="1" To="0"
 Duration="00:00:02" />
 </Storyboard>
 </MediaElement.Resources>
 <MediaElement.RenderTransform>
 <TransformGroup>
 <RotateTransform Angle="0"/>
 </TransformGroup>
 </MediaElement.RenderTransform>
</MediaElement>

 C#:

 void media_MouseLeftButtonUp(object sender, MouseButtonEventArgs e)
{
 myStoryboard1.Begin();
}

void myStoryboard1_Completed(object sender, EventArgs e)
{
 myStoryboard2.Begin();
}

 This listing shows how you can programmatically use the Completed event as well as one of the interactive playback methods. When the user clicks the MediaElement, the Storyboard defined as myStoryboard1 will begin playing. Once this Storyboard has finished playing, the Completed event associated with it will be triggered. This event handler will then start the animation defined in myStoryboard2. This example also shows how you can define an animation as a resource. This is one of the two ways that you can use an animation
 on the road to being resourceful.

 22.3.4. Being resourceful

 Storyboard elements enable you to create complex and intricate animations. These animations may be used in response to an event or to
 something that has occurred behind the scenes. Because of this, you need multiple ways to interact with a Storyboard. Thankfully, Silverlight gives you two approaches for organizing Storyboard elements. You can define a Storyboard as either a resource or a trigger.

 Storyboard as a Resource

 The first approach for organizing a Storyboard involves defining it as a resource. A resource is an easy way to set aside a commonly used item for reuse. (We’ll cover resources
 more in chapter 23.) This item—in our case, a Storyboard—can be defined as a resource by creating it within the Resources collection of a UIElement. This can be accomplished by either programmatically adding it through code, or creating it within XAML as shown in listing 22.7.

 Listing 22.7. Defining a Storyboard as a resource

 XAML:

 <Canvas x:Name="myCanvas">
 <Canvas.Resources>
 <Storyboard x:Key="myStoryboard">
 <DoubleAnimation Duration="00:00:01"
 Storyboard.TargetName="myImage"
 Storyboard.TargetProperty="Opacity"
 From="1" To="0" />
 </Storyboard>
 </Canvas.Resources>
 <Image x:Name="myImage"
 Source="http://www.silverlightinaction.com/man.png" />
</Canvas>

 This listing shows how easy it is to define a Storyboard as a resource in XAML. The definition of the Storyboard is placed within the Resources collection of the root Canvas. The root element of a Silverlight page is generally where you’ll place your resources because it makes the resources accessible
 to all the elements within the page. Thankfully, the Resources collection can store as many or as few resources as you need.

 Once a Storyboard is defined as a resource, it’s your responsibility to start it. You must first programmatically retrieve it. This step involves
 retrieving the storyboard by key. The following example shows the Storyboard from listing 22.7 being retrieved from the resources collection, then programmatically started via the Begin method:

 Storyboard myStoryboard = (Storyboard)(myCanvas.Resources["myStoryboard"]);
myStoryboard.Begin();

 This illustrates how simple it is to programmatically start a Storyboard defined as a resource.

 There are times when you know that a specific action should automatically start a Storyboard. For these situations, Silverlight provides an elegant shortcut that enables you to automatically start a Storyboard when a defined event occurs.

 Storyboard as a Trigger

 The second approach for defining a Storyboard involves setting it as an event handler. An EventTrigger is a special element that enables you to declaratively define a response for a specified event. When this event occurs, the
 EventTrigger automatically starts the defined Storyboard. To accomplish this, you follow a few simple steps.

 First you decide which event you want to respond to. Currently, the only event supported within the EventTrigger is the Loaded event. To specify this event as the triggering event, you must identify the type of object responsible for the event. Once
 identified, you can set it, as well as the event, through the RoutedEvent property as shown in this example:

 <EventTrigger RoutedEvent="Canvas.Loaded">
 <!-- Insert Actions here -->
</EventTrigger>

 As this shows, the RoutedEvent property uses a syntax that resembles elementTypeName.eventName. The type name comes from the parent type. Generally, you’ll be able to retrieve this type name from the attached property
 containing the trigger. This attached property is called Triggers, and it’s available from all UIElement objects. If you were to expand on our previous code example, you should have something like this XAML fragment:

 <Canvas.Triggers>
 <EventTrigger RoutedEvent="Canvas.Loaded">
 <!-- Insert Actions here -->
 </EventTrigger>
</Canvas.Triggers>

 This example shows how the EventTrigger has been added to a Canvas. Significantly, this doesn’t mean that the target of the Storyboard will be the Canvas. Instead, as discussed earlier, the target of the Storyboard is set within the Storyboard itself. To set the target of the Storyboard, you first define the Storyboard.

 If you’re defining a Storyboard within an EventTrigger, you must associate it with an action. Currently, Silverlight only provides one action called BeginStoryboard, which starts a Storyboard when called. You must use this action if you’re creating an EventTrigger. To put all the pieces together, defining a Storyboard as a trigger would look like listing 22.8.

 Listing 22.8. Defining a Storyboard as an event trigger

 <Canvas Width="100" Height="100" Background="White">
 <Canvas.Triggers>
 <EventTrigger RoutedEvent="Canvas.Loaded">
 <BeginStoryboard>
 <Storyboard x:Name="myStoryboard">
 <DoubleAnimation Duration="00:00:01"
 Storyboard.TargetName="myImage"
 Storyboard.TargetProperty="Opacity"
 From="0" To="1" />
 </Storyboard>
 </BeginStoryboard>
 </EventTrigger>
 </Canvas.Triggers>
 <Image x:Name="myImage"
 Source="http://www.silverlightinaction.com/man.png" />
</Canvas>

 This example shows a Storyboard defined as a trigger. But the official Silverlight documentation included with the SDK recommends against using a trigger,
 as visual states (covered in chapter 23) and behaviors are often better ways to start the animation. Either way, the Storyboard provides a way to logically organize your animations.

 These animations are all about changing a visual property over time. As you’ve seen, this process works in a linear fashion.
 To create even more dynamic visual effects, it’s important to consider using a technique known as keyframing.

 22.4. Keyframing

 In the realm of traditional animation, animators will often present a high-level overview of a story by drawing out the main
 images. These images generally represent the beginning and ending points of a transition; the endpoints represent the key
 frames within an animation. Once the keyframes are created, the process of creating the animation in between them is fairly
 straightforward. Within software, this process of creating the in-between frames is known as interpolation or tweening.

 To firmly grasp the concept of how keyframe animations can be used, let’s consider the task of animating a bouncing ball.
 If you were to attempt to animate an ellipse, the ball may look like that in figure 22.5 over some period of time.

 Figure 22.5. A bouncing ball over some variable amount of time

 [image:]

 The arrows shown in this figure represent two things within the animation. They represent the direction that the ball is bouncing
 and the parts of the animation created via interpolation. This process of interpolation enables you to ignore having to define
 the To, From, and By property values you were using earlier. Instead, you must create a KeyFrame for each discrete location within an animation. Listing 22.9 shows the XAML to reproduce the animation shown in figure 22.5.

 Listing 22.9. Creating a bouncing ball using keyframes

 <Canvas x:Name="LayoutRoot" Background="White">
 <Canvas.Triggers>
 <EventTrigger RoutedEvent="Canvas.Loaded">
 <BeginStoryboard>
 <Storyboard x:Name="myStoryboard">
 <DoubleAnimationUsingKeyFrames
 Storyboard.TargetName="myEllipse"
 Storyboard.TargetProperty="(Canvas.Left)">
 <LinearDoubleKeyFrame KeyTime="00:00:00" Value="0" />
 <LinearDoubleKeyFrame KeyTime="00:00:01" Value="77" />
 <LinearDoubleKeyFrame KeyTime="00:00:02" Value="148" />
 <LinearDoubleKeyFrame KeyTime="00:00:03" Value="223" />
 <LinearDoubleKeyFrame KeyTime="00:00:04" Value="315" />
 <LinearDoubleKeyFrame KeyTime="00:00:05" Value="397" />
 </DoubleAnimationUsingKeyFrames>
 <DoubleAnimationUsingKeyFrames
 Storyboard.TargetName="myEllipse"
 Storyboard.TargetProperty="(Canvas.Top)">
 <LinearDoubleKeyFrame KeyTime="00:00:00" Value="0" />
 <LinearDoubleKeyFrame KeyTime="00:00:01" Value="132" />
 <LinearDoubleKeyFrame KeyTime="00:00:02" Value="42" />
 <LinearDoubleKeyFrame KeyTime="00:00:03" Value="132" />
 <LinearDoubleKeyFrame KeyTime="00:00:04" Value="81" />
 <LinearDoubleKeyFrame KeyTime="00:00:05" Value="132" />
 </DoubleAnimationUsingKeyFrames>
 </Storyboard>
 </BeginStoryboard>
 </EventTrigger>
 </Canvas.Triggers>

 <Ellipse Width="50" Height="50" x:Name="myEllipse"
 Fill="Maroon" Stroke="Black" />
</Canvas>

 This example illustrates the general syntax of a KeyFrame. This example uses two keyframe animations to move an Ellipse around the Canvas. The new position of the Ellipse is interpolated between the values specified within the Value property of each KeyFrame. The KeyFrame determines how to interpolate these values by referring to the type of KeyFrame.

 The type of KeyFrame always follows a naming template that mimics [interpolationType]propertyTypeKeyFrame. This syntax specifies the type of property that’s the target of the animation. The syntax also specifies what type of interpolation
 should be used to generate the in-between values. To simultaneously address both important items, Silverlight provides the
 keyframe types shown in table 22.4.

 Table 22.4. The keyframe types available within Silverlight

 	
 Discrete keyframe types

 	
 Linear keyframe types

 	
 Spline keyframe types

	DiscreteColorKeyFrame
 	LinearColorKeyFrame
 	SplineColorKeyFrame

	DiscreteDoubleKeyFrame
 	LinearDoubleKeyFrame
 	SplineDoubleKeyFrame

	DiscreteObjectKeyFrame
 	
 	

	DiscretePointKeyFrame
 	LinearPointKeyFrame
 	SplinePointKeyFrame

Each type of keyframe helps to address specific animation scenarios. To understand when a specific type of animation is relevant,
 it’s important to understand the various types of interpolation.

 22.4.1. Interpolation: it’s about acceleration

 An interpolation type gives you control over how an animation will accelerate or decelerate as it progresses. The interpolation type signals how
 an animation should estimate the values in between keyframes. To estimate the values as you see fit, Silverlight provides
 three interpolation types: linear, spline, and discrete.

 Linear Interpolation

 Linear interpolation constructs the most direct transition between two key frames. The linear descriptor is used because the change between two
 keyframes occurs at a constant, linear rate. Figure 22.6 shows an object moving between several points using linear interpolation.

 Figure 22.6. How linear interpolation is determined. Note the straight lines between points.

 [image:]

 The idea of using an animation that occurs at a constant, predictable rate at first seems appealing. But, as this figure shows,
 you can easily end up with a jerky or jagged animation. This jarring can leave users feeling like they’re riding an old, wooden
 roll-ercoaster. This effect occurs because the transition between two linear keyframes occurs in distinct states. These stages
 may be desirable, but if they aren’t, there’s a way to create even smoother transitions thanks to spline interpolation.

 Spline Interpolation

 Splines are generally used to create smooth, seamless transitions. These transitions occur by estimating the values as if they were
 generated along a Bézier curve. This curve represents the values to use within a time segment. To illustrate, figure 22.7 shows a curved interpolation.

 Figure 22.7. An example using spline interpolation for approximation

 [image:]

 If you compare this figure to figure 22.6, you can see how using splines allows you to create a much smoother transition between keyframes. Note that the line in this
 figure doesn’t represent the path that the ball travels along. Instead, the line gives the illusion of varying speeds. These
 varying speeds are controlled through the KeySpline property.

 The KeySpline property enables you to control the progress of an animation through two control points, which determine the curve that the
 values are interpolated along. By default, this curve resembles a straight line. To generate values along something other
 than a line, you must understand how the KeySpline relates values to points in time. This relationship, as well as the KeySpline syntax, is shown in figure 22.8.

 Figure 22.8. The relationship between time and value as used by the KeySpline property.

 [image:]

 This figure shows the default curve defined by the KeySpline property. The two control points used in this figure are specified as 0.0,0.0 1.0,1.0. These control points always follow a syntax that mimics x1,y1 x2,y2. In addition, each coordinate within each point is specified as a positive double-precision value between 0.0 and 1.0. Anything
 outside of this range will create a runtime error.

 The first point defined within the KeySpline property determines how values will be generated along the first half of the curve. The second point defined within the KeySpline property determines how values will be created along the second half of the curve. Either way, if the y value is greater
 than the x value, the animation will run more quickly. Alternatively, if the x value is greater than the y value, the animation
 will run slower. Figure 22.9 shows sample curves along with their respective KeySpline values.

 Figure 22.9. Sample time/value curves used by the KeySpline property

 [image:]

 The curves shown in this figure represent potential curves you can use for interpolating values. In reality, you’ll need to
 play with these values until your keyframe animation feels right. Sometimes, an animation may feel right if the transitions
 are more discrete.

 Discrete Interpolation

 Occasionally, you may have to create an animation that jumps between values. These rifts seem counterintuitive within the
 realm of animation because animations are generally considered to be smooth. But, what if you were creating an animation that
 depicted a Whack-a-Mole game? In a Whack-a-Mole game, small critters appear at random from dark holes. This surprising effect
 can be effectively recreated using discrete interpolation.

 When discrete interpolation is used, Silverlight generates sudden changes between two keyframes. These sudden changes make
 it appear as if the interpolation doesn’t occur at all. That’s because it doesn’t! Figure 22.10 illuminates how the discrete method interpolates.

 Figure 22.10. An example using discrete interpolation for approximation

 [image:]

 This illustration is difficult to make sense of. Everything seemingly occurs at random, just like Whack-a-Mole.

 Although randomness has its place, you often need control over when a keyframe occurs. Luckily, there’s is a property that
 allows you to do just that—KeyTime.

 Keytime

 The KeyTime property of a KeyFrame represents the time at which the value specified within a KeyFrame will be reached. In a sense, the KeyTime sort of represents a bookmark within an animation. But, the position of this bookmark is completely dependent on the TimeSpan value you use.

 By providing a TimeSpan value, you can specify the exact point in time when a KeyFrame should be reached. This point in time is relative to the beginning of the animation that the KeyFrame is defined within, so the order of the keyframe elements is irrelevant. But, this value still has to be assigned to the KeyTime property, as shown in listing 22.10. In addition, the example shows an illustration of how the animation would be rendered.

 Listing 22.10. Using a TimeSpan value to specify the KeyTime

 Result:

 [image:]

 XAML:

 <UserControl x:Class="CarAnimation.Page"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Width="400" Height="400">
 <Canvas x:Name="LayoutRoot" Background="White">
 <Canvas.Triggers>
 <EventTrigger RoutedEvent="Canvas.Loaded">
 <BeginStoryboard>
 <Storyboard x:Name="myStoryboard"
 Storyboard.TargetName="myImage"
 Storyboard.TargetProperty="(Canvas.Left)">
 <DoubleAnimationUsingKeyFrames Duration="00:00:08">
 <LinearDoubleKeyFrame Value="50" KeyTime="00:00:01" />
 <LinearDoubleKeyFrame Value="250" KeyTime="00:00:03.5" />
 <LinearDoubleKeyFrame Value="325" KeyTime="00:00:06" />
 <LinearDoubleKeyFrame Value="500" KeyTime="00:00:08" />
 </DoubleAnimationUsingKeyFrames>
 </Storyboard>
 </BeginStoryboard>
 </EventTrigger>
 </Canvas.Triggers>
 <Image x:Name="myImage"
 Source="http://www.silverlightinaction.com/car.png" />
 </Canvas>
</UserControl>

 This listing shows the typical approach for defining KeyFrame elements within an animation. The KeyTime value in each KeyFrame is set to a TimeSpan value. This approach provides a convenient and verbose way to perform an animation. This example shows how important the
 KeyTime property is in keyframe animations, which are the types of animations created by Expression Blend.

 These animations have been interesting, but they’ve all lacked a certain amount of “pop” we’ve come to expect from modern
 applications. That’s because they’re not using any sort of easing functions with the keyframes. Let’s fix that next.

 22.5. Easing functions

 Easing functions provide a way to liven up what would otherwise be pretty flat and boring animation. They provide acceleration/deceleration,
 and even bounce or spring to the approach into (or departure from) a keyframe in an animation.

 If you’ve found animation to be a little too computer-generated so far, you’ll appreciate the more organic effect that easing
 functions provide. Easing functions perform a function f over time t. Time is provided by the animation system; the easing function returns a value, normally between zero and one (it can over
 and undershoot) that indicates progress toward the final value specified in the animation. We’ll cover more of the inner workings
 in the second half of this section when we create our own easing function.

 Easing functions have three modes of use: EaseIn, EaseOut, and EaseInOut. The modes affect how the easing function is applied to the animation over time. These modes are easier seen than read. Figure 22.11 illustrates what the built-in ElasticEase easing function looks like in all three of its modes.

 Figure 22.11. The three modes: EaseIn, EaseOut, and EaseInOut for the ElasticEase easing function

 [image:]

 From the illustration, you can see that EaseIn and EaseOut are opposites; EaseOut is the EaseIn function in reverse. EaseInOut is a little trickier. In that mode, the overall time remains the same, but the function used is a combination of EaseIn and EaseOut.

 In this section, we’ll first look at how to use the great library of built-in easing functions. Then, because customization
 is especially important when it comes to something as design-sensitive as how an animation functions over time, we’ll look
 at how to build your own easing functions.

 22.5.1. Using easing functions

 Easing functions are used with special keyframes that start with the word Easing. These key frames provide a property named EasingFunction, which accepts an easing function to be used on that specific keyframe. Silverlight includes 11 built-in easing functions,
 which are listed in table 22.5.

 Table 22.5. Built-in easing functions

 	
 Easing function

 	
 Description

	BackEase
 	Retracts the motion of an animation slightly before it begins to animate in the path indicated.

	BounceEase
 	Creates a bouncing effect, like a rubber ball.

	CircleEase
 	Accelerates or decelerates using a circular function.

	CubicEase
 	Accelerates or decelerates using a cube function (time cubed).

	ElasticEase
 	An animation that resembles the oscillation of a spring. The lower the supplied Springiness parameter, the more elastic the
 bounce. You can go crazy with this and create some really fun animation.

	ExponentialEase
 	Accelerates or decelerates using a formula based around the supplied exponent.

	PowerEase
 	Accelerates or decelerates using a formula based on the supplied power.

	QuadraticEase
 	Accelerates or decelerates using a squaring function.

	QuarticEase
 	Accelerates or decelerates using a power of 4 function.

	QuinticEase
 	Accelerates or decelerates using a power of 5 function.

	SineEase
 	Accelerates or decelerates using the sine function.

MSDN has great documentation on the easing functions, including graphics showing each of the modes and the actual functions
 in use. You can find the additional information in the MSDN online library here: http://bit.ly/MSDNEasing.

 To use an easing function, you need to set up an animation using storyboards and keyframes. Listing 22.11 shows an easing function attached to two animations.

 Listing 22.11. Using the ElasticEase for some crazy animation

 [image:]

 [image:]

 This example shows markup that contains a single rectangle to be animated. The things we’ll be animating are the ScaleX and ScaleY properties of the ScaleTransform [image:] attached to the rectangle. The result of this is a spring-type animation, which looks like you’re sitting directly below
 a block suspended from a rubber band.

 To start the animation, I used a button with the event handler wired up in markup. The code-behind code in the event handler
 is a single line:

 private void StartAnimation_Click(object sender, RoutedEventArgs e)
{
 ((Storyboard)Resources["AnimateTarget"]).Begin();
}

 The line of code in the event handler finds the resource named AnimateTarget and, assuming it’s a Storyboard, calls the function to start animating. With this code in place, run the application and click the button. You’ll see the
 rectangle bounce in and out until it comes to a quick rest. Try changing the Oscillations or Springiness parameters in the easing function for very different effects: Oscillations controls the number of bounces; Springiness controls the depth of the bounces.

 The built-in easing functions will serve the vast majority of our needs; you can create just about any typical effect using
 them. What about atypical effects? What if you want to include physics, or a function the team didn’t think of? For those
 situations, the Silverlight team had the foresight to open up the API to enable us to create our own easing functions.

 22.5.2. Creating a custom easing function

 The WPF and Silverlight teams put together a pretty comprehensive set of standard easing functions. Most folks will never
 need or want to write one of their own.

 That said, you may come up with a specialized function and want to package that in a way that enables others to use it from
 XAML or code in their own animation.

 To create your own easing function, you derive from EasingFunctionBase and override the EaseInCore function.

 Easingfunctionbase

 EasingFunctionBase provides the structure of an easing function. It includes the EasingMode and its dependency property, as well as the Ease function, which is called by the animation system. The Ease function, in turn, calls EaseInCore, the function you provide.

 Easeincore

 This is where your easing code goes. You provide the implementation for EaseIn via the EaseInCore code, and the runtime will automatically infer EaseOut and EaseInOut from that. EaseOut will be the reverse of EaseIn, and EaseInOut will be the two together.

 EaseInCore takes a double representing normalized time, and expects you to return the progress for that point in time. If you think of time as the
 x axis on a graph and progress as the y axis, you’re taking in x as a parameter and returning y as the result.

 A standard linear ease would return the value passed in. f(x) = x. Instantaneous movement would be f(x) = 1. No movement (ever)
 would be f(x) = 0. The interesting stuff happens when the result is between those numbers.

 Listing 22.12 shows a randomizing ease. This uses the built-in Random object to provide a random value that approaches the final value. The end result is a stuttering animation that eventually
 gets to the right place.

 Listing 22.12. A custom randomizing ease

 C#:

 public class RandomEase : EasingFunctionBase
{
 private Random _random = new Random();

 protected override double EaseInCore(double normalizedTime)
 {
 return normalizedTime / 2.0 +
 _random.Next(0, 100) / 100.0 * (normalizedTime / 2.0);
 }
}

 XAML:

 <EasingDoubleKeyFrame.EasingFunction>
 <local:RandomEase EasingMode="EaseIn"/>
</EasingDoubleKeyFrame.EasingFunction>

 To use this function, take the XAML from the ElasticEase demonstration and replace the two easing functions with the XAML fragment here. Be sure to map an XML namespace to the local
 application.

 Easing functions really help liven up animation, providing a sometimes more organic but always more interesting way to move
 a value between two bounds. The built-in easing functions cover almost every need you’ll have when animating in Silverlight.
 For those cases when the built-in functions aren’t quite what you want, you can create your own easing functions as long as
 you an express the equation in code.

 Easing functions were originally designed with Blend in mind. Designers love to be able to specify an easing function to use
 on a keyframe; they can do it right from the Blend UI. Another technology that came about due to Blend, this time from the
 Blend team itself, is the behavior. Behaviors are fascinating ways to add animation, code, or other reusable logic to your
 elements in XAML.

 22.6. Behaviors, triggers, and actions

 Behaviors, triggers, and actions are odd things. They can be virtually anything, do virtually anything. Between stock behaviors
 and community-created ones, I’ve seen everything from TextBox edit masks, to drag and drop, to physics, to effects, automatic animations, and even ICommand substitutes for calling methods on events. Because behaviors and animation are so closely tied to Expression Blend, I figured
 I’d pop them in here. They’re reusable designer-friendly components. They interact with the UI, but aren’t controls.

 While lumped together, behaviors, triggers, and actions are conceptually different. Behaviors are self-contained units of
 functionality that act as a bit of a sidecar to an existing object. They go along for the ride and respond to the environment
 in which the object exists. Triggers are much like the built-in triggers we’ve seen in this chapter, but more flexible in
 their applications. Actions are simpler in concept; they’re attached to an object and provide a way to invoke some functionality.
 The common way to refer to all three is by calling them behaviors, so that’s what we’ll do in this chapter.

 One example of an action we’ve already seen was the CallMethodAction in chapter 16. That action allows an arbitrary event to invoke an arbitrary method on an arbitrary object. Even outside the scope of the
 ViewModel pattern, that’s a pretty powerful component to make available to the designer.

 The scope and power of behaviors are best understood by example. In order to try them out, we need to first perform a bit
 of project setup to pull in the right core bits.

 In order to work with behaviors, you’ll need to reference two Expression Blend SDK libraries. If you have Expression Blend
 already installed, the SDK will be under Program Files\Microsoft SDKs. If you don’t have Blend installed, you can still download
 the SDK from http://bit.ly/Blend4SDK; it’s free and doesn’t require Expression Blend on the machine.

 Once you have the SDK installed, reference the two Blend libraries as shown in figure 22.12.

 Figure 22.12. Adding the Blend SDK assemblies as references. On my machine, the Microsoft. Expression.Interactions library and the System.Windows.Interactivity library were both located in C:\Program Files\Microsoft SDKs\Expression\Blend\Silverlight\v4.0\Libraries\.

 [image:]

 The final step is to add the appropriate namespaces into your XAML files. We’ll be working with MainPage.xaml for the remaining
 examples, so place the following two namespace declarations in the top element of that file:

 xmlns:i="http://schemas.microsoft.com/expression/2010/interactivity"
xmlns:ei="http://schemas.microsoft.com/expression/2010/interactions"

 With all the pieces in place, we’re ready to start playing around with behaviors. We’ll first take a look at existing out-of-box
 functionality and how to use it in your own applications. Then, because behaviors facilitate reuse and sharing, we’ll build
 our own simple behavior for Silverlight.

 22.6.1. Using existing behaviors

 In chapter 16, we saw how to use the CallMethodAction behavior. This is a simple but flexible action that allows you to wire up any function to any event. Another interesting
 behavior is the DataTrigger. This performs actions when the bound data meets a specified condition. One of my favorite behaviors is the FluidMoveBehavior. Not only does that behavior have a great visual effect at runtime, but it also builds on much of what we’ve learned about
 animation in this chapter.

 Using the Fluidmovebehavior

 The FluidMoveBehavior helps get past abrupt layout changes. It listens to the layout system, and when it finds a layout change, it smoothly animates
 from the old value to the new value. This is extremely useful in panels such as wrap panels where resizing may move several
 elements around at once.

 Listing 22.13 shows how to use the FluidMoveBehavior on a single element in the UI. We’ll use the purple square example from the last section.

 Listing 22.13. Using the FluidMoveBehavior with an Element

 XAML:

 [image:]

 C#:

 [image:]

 This example shows how to smoothly move an element from one location to another. What would normally have been an abrupt change
 in location is now a four-second animation with an elastic easing function applied. These are the same easing functions we
 discussed earlier in the chapter.

 Behind the scenes, this behavior builds an animation whenever layout-affecting properties (margins, top, left, size, and so
 forth) are changed, and uses that animation to move between the original layout value and the one specified.

 Other behaviors attach to objects in similar ways. The parameters may change, but the approach is generally the same. In fact,
 we’ll see that when we create our own behavior next.

 22.6.2. Creating your own behavior

 The System.Windows.Interactivity library includes the base classes you’ll typically want to inherit from when creating your own behavior. There are additional
 special-case base classes in the Blend library, including some that make it easier to work with animation from within a behavior.

 For our example, we’re going to use the core Interactivity DLL and inherit from Behavior<T> to provide a behavior that’ll allow itself to be attached to certain types of elements.

 Behavior<T> has two main methods you must override in your implementation. The first is OnAttached. OnAttached is called when the behavior is attached to an element of type T. That element is referenced by the AssociatedObject property. The second method is OnDetaching. This method allows you to perform any cleanup, such as removing event handlers.

 Listing 22.14 shows our behavior attached to a button. This behavior will display a MessageBox whenever the button is clicked. We’ll use the same FluidMoveBehavior XAML as the previous section and attach this behavior to the Start button.

 Listing 22.14. A behavior that displays a MessageBox when a Button is clicked

 C#:

 [image:]

 XAML:

 <Button x:Name="StartMove" Content="Start"
 HorizontalAlignment="Center" VerticalAlignment="Bottom"
 Width="100" Height="25" Margin="5"
 Click="StartMove_Click">
 <i:Interaction.Behaviors>
 <local:CustomBehavior />
 </i:Interaction.Behaviors>
</Button>

 When you run the application and click the button, you’ll first see the MessageBox from the behavior and then, because it’s a blocking call, once you close the box you’ll see the FluidMoveBehavior in action.

 Once you’ve created a behavior or action that you like, be sure to share it on the Expression Gallery at http://gallery.expression.microsoft.com. There are a ton of interesting behaviors there; you may learn from some, and you may contribute others. It’s a great community.

 Behaviors, triggers, and actions—collectively “behaviors”—provide an excellent way to package up reusable bits of functionality
 without the overhead of a custom control. The Blend SDK comes with a number of important behaviors, providing a broad spectrum
 of capabilities. The Expression gallery includes a number of other behaviors that you can download and use in your own applications.
 Already, a large number of individuals and companies have developed and shared their own useful behaviors with the community.
 And, if the existing behaviors are insufficient for your needs, you can build your own behaviors using the same building blocks
 the expression team and community use.

 22.7. Summary

 Throughout this chapter, you saw the details associated with animating elements within Silverlight. When it comes down to
 it, it’s really about manipulating a single property over a time interval. This time interval can be specified within either
 an animation, or higher up the tree, a Storyboard. The Storyboard enables you to organize and control multiple animations simultaneously, so you can create incredibly dramatic and engaging
 effects. With the help of keyframes, these effects can be developed extremely quickly and efficiently. When you add easing
 functions into the mix, the results are visually stunning and can provide that “pop” your application needs.

 Behaviors provide reusable packages of functionality that can span a broad spectrum of capabilities. Some interact with animation
 and easing functions; others interact with code; still others enable you to play sounds or provide special movement to elements
 on a page. The community at the Expression Gallery has created a large number of reusable behaviors that you can incorporate
 into your own applications. If you want to create your own from scratch or contribute to that community, you already have
 all the tools you need with Visual Studio 2010 and the Blend SDK.

 Providing an engaging user experience can be a valuable addition to any application. Providing a consistent user experience
 is perhaps equally, if not more, valuable. Silverlight has a variety of style and template features to help provide a consistent
 user experience. These features are discussed in detail in chapter 23.

Chapter 23. Resources, styles, and control templates

 This chapter covers

 	Using application resources

 	Control styling

 	Building control templates

 	The Visual State Manager

Chapter 22 described the powerful animation features available in Silverlight. These features are useful for creating entertaining illustrations
 and for adding a degree of richness to your application. This richness can also be applied to controls, as you’ll see in this
 chapter.

 Throughout this chapter, you’ll see how to apply rich styles to your application. These styles are similar to the CSS features
 you may have seen in the HTML world. In general, a Style declaration will be part of a resource, so we’ll cover resources first. From there, you’ll learn how to manage resources
 in dictionaries before moving on to creating rich visual Styles themselves. We’ll cover both explicit and implicit styles. Then you’ll see how to expand on the definition of a Style to define a ControlTemplate, enabling you to redefine the visual structure of a Control. Once we’ve covered that subject, you’ll learn how to use the VisualStateManager to deliver engaging visual states and transition animations within your Control elements.

 23.1. Being resourceful

 In general, it’s a good idea to create reusable items whenever possible. This practice makes your application more maintainable.
 In fact, creating reusable components is a common idea within object-oriented languages such as C#. But, sometimes, you may
 have items that represent nonexecutable pieces of data—for instance, an image, a media file, or some XAML. These types of
 content generally fall into one of three categories: declarative resources, loose resources, and bundled resources. We’ll
 cover all three of these categories in this section, beginning with declarative resources, which are fairly different compared
 to the other two.

 23.1.1. Declarative resources

 Declarative resources are items intended to be shared across multiple elements in your project. They can be any object you want to share. For instance, a resource can be used to define a DataTemplate or Storyboard, as hinted at earlier in this book. Resources are also a vital part of the styling and templating features discussed later
 in this chapter. Before you see those features, let’s examine the basic syntax and usage of a declarative resource (see listing 23.1).

 Listing 23.1. The basic syntax and usage of a resource

 Result:

 [image:]

 XAML:

 [image:]

 This listing shows a basic declarative resource scoped to a StackPanel in the form of a LinearGradientBrush [image:]. This GradientBrush is used by both TextBlock elements defined in this listing [image:]. This shared approach is possible because the resource is within the same scope as the two TextBlock elements. Within this section, you’ll learn about resource scoping in further detail. In addition, you’ll see how to use
 declarative resources at design time. This task will demonstrate to the meaning behind the x:Key attribute and StaticResource items shown in listing 23.1. Finally, this section will end with a discussion of using declarative resources at runtime.

 Defining Declarative Resources

 Resources must be defined within an appropriately named collection called Resources. This collection is a ResourceDictionary, a specialized dictionary containing resources identified by implicit or explicit keys. These resources and their associated
 keys can be defined at both design time and runtime. Both approaches are shown in listing 23.2.

 Listing 23.2. SolidColorBrush defined as a resource at design time and runtime

 XAML:

 <StackPanel x:Name="myStackPanel">
 <StackPanel.Resources>
 <SolidColorBrush x:Key="theSolidColorBrush" Color="Green" />
 </StackPanel.Resources>
</StackPanel>

 C#:

 SolidColorBrush brush = new SolidColorBrush();
brush.Color = Colors.Green;
myStackPanel.Resources.Add("theSolidColorBrush", brush);

 This example shows how to define a resource at design time and runtime. Both approaches require you to specify two items.
 The first item is the key, which in this case is theSolidColorBrush. The other is the resource itself, which in this case is a SolidColorBrush.

 The key of a resource is a string that uniquely identifies it. At runtime, this identifier is set when you add a resource to a ResourceDictionary. Because the Resource-Dictionary class implements the IDictionary interface, you can add a resource using the Add method. The first parameter of this method represents a key. The ResourceDictionary implements the IDictionary interface, so you should use the x:Key attribute to identify a resource at design time. Keys are only necessary when you want to explicitly use a resource, as shown
 in the examples so far. When we get into styles, you’ll see how an implicit key can be useful as well. Once you’ve selected
 a key, you may move on to the details of the resource.

 The resource itself is the reason for this section. This item can be virtually any object that Silverlight allows to be shared. For example, controls and visuals can’t be shared. In general, you’ll most likely use
 Storyboard, Style, and Template items as resources with the occasional low-level int or double type and maybe even instances of your own classes for data. Regardless of the type of resource, the item can only be used
 within its respective scope.

 All About Scope

 So far, we’ve seen resources placed into various on-page elements. That’s great for nonstyle resources such as references
 to data objects and whatnot. When used with styles, though, it’s similar to placing CSS styles directly into your HTML page—it
 works, but it’s not really a best practice. In most cases, your resources are going to be placed in a central location, such
 as in App.xaml.

 Resources defined in App.xaml are available to the entire application. The syntax is the same as defining resources locally.
 After a resource has been defined, either locally or through App.xaml, it can be referenced at design time through the StaticResource markup extension:

 <TextBlock x:Name="myTextBlock" Text="Hello, World"
 Foreground="{StaticResource theSolidColorBrush}" />

 The StaticResource extension expects a single value that must match a key from an in-scope ResourceDictionary. The resource must also be defined syntactically before it’s referenced. Because of this requirement, listing 23.3 won’t work.

 Listing 23.3. How not to be seen

 XAML:

 <StackPanel x:Name="myStackPanel">
 <TextBlock x:Name="myTextBlock" Text="Hello, World"
 Foreground="{StaticResource theSolidColorBrush}" />
 <StackPanel.Resources>
 <SolidColorBrush x:Key="theSolidColorBrush" Color="Green" />
 </StackPanel.Resources>
</StackPanel>

 This listing shows an invalid use of a resource; the resource is used before it’s defined. If you attempt to run this example,
 it’ll throw an XamlParseException. The order in which entries appear is especially important once you start working with independent resource dictionaries
 and have to merge them in the correct order.

 Merging Resource Dictionaries

 Though App.xaml may ultimately be the aggregation point for your resources, a common strategy is to place resources into individual
 resource dictionary files. The files are typically groups of related resources or entire application themes. Those resource
 dictionary files are then compiled into the application (build action of Page, Custom Tool set to MSBuild:Compile) and merged in from App.xaml or into the dictionaries of individual pages.

 For example, listings 23.4 through 23.7 show how to merge two different resource files into your application using App.xaml as the aggregation point but also referencing
 from within the dictionaries. Listing 23.4 shows the first resource file, StandardColors.xaml.

 Listing 23.4. Merging resource dictionaries—colors dictionary

 StandardColors.xaml:

 <ResourceDictionary
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">

 <SolidColorBrush x:Key="TextColor" Color="#FF303030" />

 <SolidColorBrush x:Key="HeadlineTextColor" Color="Black" />

 <LinearGradientBrush x:Key="PageBackgroundColor"
 StartPoint="0,0"
 EndPoint="0,1">
 <GradientStop Offset="0" Color="#FFFFFFFF" />
 <GradientStop Offset="1" Color="#FFD0D0D0" />
 </LinearGradientBrush>
</ResourceDictionary>

 The StandardColors.xaml resource dictionary is our base dictionary. It has no dependencies on others, but is used in several
 other places. This dictionary defines three Brush resources, two of which are simple SolidColorBrush instances; the third is a LinearGradientBrush.

 The StandardColors.xaml resource dictionary is used by the ControlStyles.xaml resource dictionary shown in listing 23.5.

 Listing 23.5. Merging resource dictionaries—control styles dictionary

 ControlStyles.xaml:

 [image:]

 The standard colors dictionary is merged into the control styles dictionary [image:]. This is required because the control styles dictionary uses resources defined in the color dictionary. As you’ll see in
 the next listing, dependencies can’t be chained; they don’t ripple “upward” and must be explicitly defined in each XAML file.
 Listing 23.6 shows App.xaml where the dictionaries are made available to the whole application.

 Listing 23.6. Merging resource dictionaries—App.xaml

 App.xaml:

 [image:]

 Listing 23.6 shows App.xaml. Both StandardColors.xaml [image:] and ControlStyles.xaml [image:] are merged into App.xaml to make their included resources available to the rest of the application. As I mentioned earlier,
 you can’t merge resources and expect the dependencies to flow through. For example, StandardColors.xaml is merged into ControlStyles.xaml.
 That’s not sufficient to make the resources in StandardColors.xaml available outside on the control styles; they’re in a private
 dictionary. To expose them to the rest of the application, they’re all merged into the applicationwide dictionary in the Application object (see listing 23.7).

 Listing 23.7. Merging resource dictionaries—main page

 MainPage.xaml:

 <UserControl x:Class="MergeExample.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d"
 d:DesignHeight="300" d:DesignWidth="400">

 <Grid x:Name="LayoutRoot"
 Background="{StaticResource PageBackgroundColor}"> [image:]
 <StackPanel>
 <TextBlock Text="This is a Headline"
 Style="{StaticResource HeadlineTextStyle}" /> [image:]
 <TextBlock Text="This is normal text. It is implicitly styled.
 We'll get to implicit styling in just a bit." /> [image:]
 </StackPanel>
 </Grid>
</UserControl>

 Finally, we get to our main page. MainPage.xaml is using a resource [image:] defined in StandardColors.xaml. It’s also using a control style [image:] defined in ControlStyles.xaml. Finally, the TextBlock [image:] is using an implicit style defined in ControlStyles.xaml.

 If you’re coming from a CSS background, the way the resources are nested may seem odd to you because each goes into a discrete
 dictionary instead of a global sheet. In the next section, we’ll cover how to access those discrete dictionaries, whether
 they’re at an element level or application level.

 Using Declarative Resources at Runtime

 Referencing resources at design time is useful for setting up the initial state of an application. As an application runs,
 you may need to work with those resources dynamically. To help you accomplish this feat, Silverlight enables you to search
 for, insert, edit, and remove resources at runtime.

 Searching for a resource at runtime involves referencing the Resources property, which is a ResourceDictionary available on every FrameworkElement and Application. Because of this, you can readily search for a declarative resource by using its key. If the resource isn’t found, null will be returned; if the resource is found, its object representation will be returned. Because the return value may be an object, you may need to cast the value to another type, as shown in this example:

 var brush =
 myStackPanel.Resources["theSolidColorBrush"] as SolidColorBrush;
if (brush != null)
 brush.Color = Colors.Blue;

 This code retrieves the SolidColorBrush defined as a resource in listing 23.2. Once it’s retrieved, this Brush is changed from Green to Blue. This small but interesting change occurs at runtime. When this code is executed, the TextBlock in listing 23.2 changes to Blue without any additional code because the Silverlight system automatically listens for those changes. But, it doesn’t necessarily
 listen for when resources are removed.

 Accessing resources in elements uses the same syntax for any given element. To access resources defined in the application,
 it’s slightly different:

 var brush =
 Application.Current.Resources["theSolidColorBrush"] as SolidColorBrush;
if (brush != null)
 brush.Color = Colors.Blue;

 Rather than specifying an element, you need to specify Application.Current. Once you move beyond that, the syntax is the same. This will also pick up any merged-in resources, so there’s no special
 step required to navigate down into any other dictionaries. (Note that in XAML, the difference is abstracted away by the StaticResource extension.)

 Resources may be removed at runtime through the Remove method. This method takes a string that represents the key of the resource to delete. Once it’s deleted, this resource can’t be used. If the resource was applied
 to any items in your Silverlight application, the Resources attributes will still be in use; if you remove a resource, you may want to manually update any elements using the declarative
 resource.

 Declarative resources are those defined within your Silverlight application. These resources can be created at either design
 time or runtime. In addition, declarative resources can be added, edited, and removed at runtime through the readily available
 Resources property. In addition to declarative resources, Silverlight has another type of resource known as loose resources.

 23.1.2. Accessing loose resources

 In addition to using resources defined within your XAML, Silverlight enables you to access loose resources. A loose resource is an external entity, which may represent something such as an image hosted on some server on the Internet
 or some publicly visible JSON data. Regardless of the type of content, Silverlight provides the ability to access loose resources.
 To demonstrate accessing a loose resource, imagine an ASP.NET web application with the structure shown in figure 23.1.

 Figure 23.1. A sample web site project structure. Note the four .png files.

 [image:]

 Figure 23.1 shows the structure of a basic ASP.NET web application. This web application has one web page named Default.aspx. Assume
 that this web page hosts the Silverlight application defined within the MySilverlightApplication.xap file, which is nestled
 within the ClientBin directory. This will become important in a moment. Also note the four image files that are part of this
 web application structure: image01.png, image02.png, image03.png, and image04.png. These images represent the loose resources
 that we’ll use throughout this section.

 You’ll learn two different ways to access loose resources. The first approach involves referencing loose resources whose location
 is relative to the Silverlight application. The second approach involves using an absolute Uri.

 Referencing Relative Loose Resources

 Silverlight allows you to access loose resources relative to the site of origin—the location where the requesting Silverlight application resides. In many cases, your Silverlight application will be stored
 within a subdirectory. For instance, in figure 23.1, the Silverlight application (MySilverlightApplication.xap) is stored within the ClientBin directory, so this directory can
 be considered the site of origin. If you want to access image01.png in figure 23.1, you could use the Source shown here:

 <Image x:Name="myImage" Source="image01.png" />

 This accesses a resource in the same directory as MySilverlightApplication.xap. This directory represents the site of origin.
 If you change the Source property to reference /image01.png, you’d get the same result because the site of origin represents the root directory when a relative URI is used. This syntax will still allow you to reference loose resources in subdirectories. For instance, you could reference image02.png in figure 23.1 using the Source in this example:

 <Image x:Name="myImage" Source="directory/image02.png" />

 This markup shows how to reference a loose resource in a subdirectory, demonstrating that you can use subdirectories with
 relative references. If you reference a .xap file on a remote server, all your references will be relative to that remote
 reference. This is important because you can’t use a relative URI to access loose resources in directories that are ancestors
 to the site of origin. This restriction is a security measure to help ensure that preexisting loose resources can’t be used
 unless you explicitly allow it. To allow this use, you must expose them through the cross-domain policy file mentioned in
 chapter 14 and use an absolute Uri.

 Retrieving Loose Resources with an Absolute Uri

 Silverlight gives you the flexibility to access loose resources via an absolute Uri. This gives you the flexibility to access resources from anywhere across the Internet as long as the target server allows
 it in its cross-domain policy file. This requirement is also necessary if you want to access a resource located up the directory
 tree from your .xap file. For instance, if the Silverlight web site structure in figure 23.1 is hosted at http://www.silverlightinaction.com, you could access image03.png by using the Source shown here:

 <Image x:Name=
 "myImage" Source="http://www.silverlightinaction.com/image03.png" />

 This example shows how to access a loose resource via an absolute Uri. This Uri points at the location of the resource, and this location will be loaded as a loose resource. There’s also a way to bundle
 resources along with your Silverlight application.

 23.1.3. Bundled resources

 The third kind of resource used in Silverlight is referred to as a bundled resource. A bundled resource is an item included in the .xap file of a Silverlight application. The term “bundled resource” is a made-up
 expression used solely for the sake of communication. Bundled resources give you a way to include resources specific to a
 Silverlight application.

 Throughout this section, you’ll learn about the two types of bundled resources that can be used in Silverlight. The first
 is known as a content file—a file that’s added to the .xap file and deployed alongside a Silverlight application. The other type of resource is known
 as an embedded file, which represents an item that gets embedded into a Silverlight assembly. This kind of resource can be useful for helping
 to hide your valuable resources.

 Using Content Files

 A content file is one that’s added to a .xap file and deployed alongside a Silverlight application within the .xap. If you
 define an image as a content file, that image will be included within the resulting .xap file when the Silverlight application
 is built. In fact, any file with a build action of Content will be bundled into the resulting .xap file. Figure 23.2 shows a .png and .xml file being bundled into a .xap file as content files.

 Figure 23.2. Defining a file as a content file. When it’s compiled, the content file is added to a .xap file.

 [image:]

 Figure 23.2 shows two files that have been added and marked as content files. The first, xmlData.xml, is a basic XML file. Once the project
 is built, this file ends up in the root of the .xap file structure. The second, image.png, belongs to a nested directory called
 images. When the project is built, this relative directory structure is carried over to the final .xap file, which can be
 accessed using a relative path reference. All content files can be referenced by providing a path relative to the application
 assembly. This approach can be used at design time, as shown in this markup:

 <Image x:Name="myImage" Source="/images/image.png" />

 This example shows the syntax used to reference a content file at design time. The leading forward slash (/) informs Silverlight
 to begin looking at the same level as the application assembly. This approach is the recommended way to include content with
 a Silverlight application because it makes things more easily accessible. Sometimes, you may come across somebody who does
 things the old-school way—the content files will be embedded within the Silverlight assembly. You’ll now see how to access
 these embedded files.

 Using Embedded Files

 An embedded file is a file embedded within a Silverlight assembly, which may be either an application or a library. Either
 way, an embedded file becomes a part of an assembly by changing the build action to Resource. This file can be retrieved at design time or runtime by providing a special URL structure.

 Embedded resources are accessible through a URL that has three parts. The first part names the assembly to which the resource
 belongs. The second piece is a special keyword called Component that declares a resource as being retrieved. The final part is a relative URL that maps to the location of the resource within
 the assembly. These three items come together to form a URL template that looks like the following:

 [AssemblyName];component/[RelativePath]

 This template can be used at design time or runtime. The design-time implementation relies on the element type to convert
 the resource. At runtime, you must manually convert the resource. First, you retrieve the embedded resource from the assembly
 through the Application class, as shown in this line of code:

 StreamResourceInfo resource = Application.GetResourceStream(
 new Uri("SilverlightApp1;component/embedded.png", UriKind.Relative));

 This example shows how to retrieve the resource from the assembly. This resource is represented as a StreamResourceInfo, which is part of the System.Windows. Resources namespace. This class instance must be converted to the type appropriate for your situation. As we mentioned earlier, you
 shouldn’t come across this scenario very often. When it comes to content files, you’ll probably come across a loose resource.
 In XAML, you’ll most likely use declarative resources. This approach is especially true if you’re giving your elements Style.

 23.2. Giving your elements style

 As you saw in section 23.1, resources are the nonexecutable parts of your application. These parts are useful for creating items that can be reused
 multiple times. In addition to being reused, resources can also be shared by multiple elements. These two characteristics
 make resources a natural fit for styling.

 Styling is a way to consistently share the same property values across multiple elements. To see why this is a good idea, imagine
 needing to create a typical forms-based application. This application must use TextBox elements that have a bold 9 pt Verdana font for input. In addition, you want to give the TextBox elements a subtle gradient background to make them more appealing. Without styles, you may decide to implement these visual
 enhancements as shown in listing 23.8.

 Listing 23.8. Brute-force approach to applying common properties

 Result:

 [image:]

 XAML:

 <Grid x:Name="myGrid">
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto"/>
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto"/>
 <ColumnDefinition Width="Auto"/>
 </Grid.ColumnDefinitions>

 <TextBlock Text="First Name: " />

 <TextBox Height="24" Width="180" Grid.Column="1"
 FontFamily="Verdana" FontSize="12" FontWeight="Bold">
 <TextBox.Background>
 <LinearGradientBrush EndPoint="0.5,1" StartPoint="0.5,0">
 <GradientStop Color="#FFFFFFFF" Offset="1"/>
 <GradientStop Color="#FFD0D0D0" Offset="0"/>
 </LinearGradientBrush>
 </TextBox.Background>
 </TextBox>

 <TextBlock Text="LastName: " Grid.Row="1" />

 <TextBox Height="24" Width="180" Grid.Row="1" Grid.Column="1"
 FontFamily="Verdana" FontSize="12" FontWeight="Bold">
 <TextBox.Background>
 <LinearGradientBrush EndPoint="0.5,1" StartPoint="0.5,0">
 <GradientStop Color="#FFFFFFFF" Offset="1"/>
 <GradientStop Color="#FFD0D0D0" Offset="0"/>
 </LinearGradientBrush>
 </TextBox.Background>
 </TextBox>
</Grid>

 Listing 23.8 shows the brute-force approach to defining the visual properties of multiple elements. It defines two TextBox elements with the same values for the Height, Width, FontFamily, FontSize, and FontWeight properties. In addition, the same complex LinearGradientBrush definition is used for the Background of both TextBox elements. Unfortunately, this approach isn’t scalable. For instance, if you need to change the font of the TextBox items, you’d have to make the change to each item, but you can overcome this minor inconvenience using a Style.

 A Style is a way to share the same property values across multiple elements. Throughout this section, you’ll learn how to create
 and use a Style. This approach will help you avoid the maintenance nightmare shown in that last listing. You’ll first see how to define the
 visual properties of a control through a Style. From there, you’ll learn how to share a Style definition across multiple elements.

 23.2.1. Defining the look

 To define the look of an element using a Style, you simply set the Style property. This instruction may sound redundant, but the property name is the same as the type name. The Style property is available on every FrameworkElement, so virtually every control in the Silverlight framework can be styled. You can do this by taking advantage of the Style class’s Setters collection.

 The Setters collection stores the entire definition of a Style. This definition is made up of individual property/value pairs similar to those seen in CSS within the HTML world. In Silverlight,
 each combination is defined within a Setter element, which lets you assign a value to a single visual property. Interestingly, this approach can be used to set both
 simple and complex property values.

 Setting Simple Property Values

 A simple property is a property that can be set at design time with a primitively typed value. A primitively typed value is something like
 an int or string value. These kinds of values can be used at design time to set the values for properties such as FontSize and FontFamily. Listing 23.9 shows how to use five simple properties as part of a Style.

 Listing 23.9. A basic style definition

 Result:

 [image:]

 XAML:

 [image:]

 This example shows how to define a Style [image:] that uses five simple properties, each of which is defined within a Setter element. These elements are automatically added to the Style object’s Setters collection. More importantly, each of the items in this collection is defined by two publicly visible attributes.

 The two attributes that define a Setter are called Property and Value. The Property attribute determines which property the Value will be used with. The Property must be a DependencyProperty, but the Value property can be set to any object. Because of this fact, the Setter element is flexible, making it a natural fit for simple properties. In addition, it’s also a natural fit for complex properties.

 Setting Complex Property Values

 A complex property is a property whose value is a general-purpose object. In general, these kinds of properties have nested properties that must be set. For example, a LinearGradientBrush could be considered a complex property value because it has the additional stops broken out using property element syntax.
 Now, imagine trying to use this LinearGradientBrush as part of a Style. You must use an approach similar to that shown in listing 23.10.

 Listing 23.10. A complex property in a style definition

 Result:

 [image:]

 XAML:

 [image:]

 Listing 23.10 shows how to define a more complex property as part of a Style [image:]. There aren’t any new elements shown here, but it does show you how to break out the Setter.Value into a nested property itself. This approach gives you the flexibility to use something as complex as a LinearGradientBrush.

 The approaches shown in both of these examples haven’t solved the problem of scalability; they’ve just shown the syntax of
 a Style used inside of an element instead of explicit properties. To solve to problem of scalability, you must understand how to
 target your Style definitions so they may be reused.

 23.2.2. Explicitly keyed style definitions

 In CSS, one way to define styles is to include two parts. One part represents the name of the style; the other part is the
 name of the HTML tag the style is applicable to. An explicit Style in Silverlight also uses these two parts.

 The first part of a Style uniquely identifies a Style definition. As shown in the previous two examples, this part is optional. It becomes a requirement only if you create a Style as a resource and want to refer to it explicitly. If you choose this approach, you must specify the x:Key attribute to uniquely identify the Style, and you must specify the other part—the TargetType.

 The TargetType property signals which System.Type a Style is applicable to. This property doesn’t need to be set if you define a Style within an element, as shown in the previous examples. If you define a Style as a resource, you must set this property as shown in listing 23.11.

 Listing 23.11. Defining the TargetType of a Style

 XAML:

 [image:]

 Listing 23.11 shows a Style defined as a resource. The Style in this case is configured to be used with TextBox elements as set through the TargetType property [image:]. If you were to attempt to use this Style with an element of another type, an error would occur. It can be used with any types that might derive from TextBox.

 CSS supports implicit styles, where you simply specify the type (a DIV, for example) and CSS applies it to all DIV elements within a certain scope. Silverlight supports a similar type of implicit styling.

 23.2.3. Implicit style definitions

 In the previous example, we saw how a style may be reused by applying it to each control. In a large application with many
 controls, this procedure can be both tedious and error prone. Silverlight 4 introduced implicit styles.

 Implicit styles look exactly like their explicit cousins, except they omit the key. That’s it. If you define a style with
 a TargetType and omit the key, the TargetType becomes the key and the style becomes implicit.

 Listing 23.12 shows the previous example but converted to an implicit style.

 Listing 23.12. Defining the TargetType of a Style

 XAML:

 [image:]

 Just as we saw in the previous example, this listing defines a style [image:] that targets the TextBox type. But we’ve omitted the x:Key, so this is an implicit style. Note the TextBox controls at the bottom of the listing: they now pick up the style without requiring any StaticResource setting. This is a huge timesaver for applications of any real complexity.

 Styling, both explicit and implicit, is a powerful way to define the user interface standards for your application. Design
 professionals (or integrators, depending on how your team is set up) spend a good bit of their time defining styles, just as they would with HTML/CSS. They can work with
 them directly in XAML as we have here or use Expression Blend to make the process easier.

 Once you’ve mastered styling, you’re ready to take a step beyond setting simple properties and into working with the control
 templates themselves.

 23.3. Creating templates

 The styling features shown in section 23.2 are a welcome addition to the Silverlight world. These items allow you to quickly create a consistent look throughout an
 application. This look can be shared across the application by defining the styles as resources. But, occasionally, the styling
 options can be somewhat limiting. To overcome these limitations, you can use a template.

 A template empowers you to redefine the entire visual representation of an element, giving you the flexibility to make any
 Control look the way you want it to look. When doing this, you don’t sacrifice the behavior of the Control. You could create a Button that looks and feels like an octagon and still reacts to the Click event. Over the course of this section, you’ll experience the full power of a template by building a control template. You’ll
 also see how to elegantly create a reusable template.

 23.3.1. Building a control template

 When you build a control template, it’ll ultimately be used with a Control. Every Control in Silverlight exposes a property called Template. This property is a ControlTemplate that lets you take complete control over what a Control looks like. In a sense, when you set this property, you’re resetting the control’s appearance, giving you a clean slate to
 work with. From there, you can make a Control look like whatever you want it to look like. For instance, listing 23.13 changes the look of a Button to make it look more like a sphere.

 Listing 23.13. Changing the look of a Button through a Template

 Result:

 [image:]

 XAML:

 [image:]

 This example shows a basic ControlTemplate [image:]. This ControlTemplate is associated with a Button through its Template property. Notably, if you were to define a ControlTemplate as a resource, you’d associate the template with a specific type through the TargetType property. This property behaves the same way as it did with the Style class. Interestingly, when a template is used with a ContentControl, the Content property doesn’t behave the same way.

 Over the course of this section, you’ll learn how to display content within a ControlTemplate. This content will generally be placed inside a Panel or Border because a ControlTemplate can have only one root element. This root element can then be used to house the contents of a ContentControl or an ItemsControl. You’ll also see how to customize the way in which the Items of an ItemsControl are arranged. But first, you’ll see how to use properties that are part of the target control in your templates.

 Considering Control Properties

 Ultimately, the purpose of a ControlTemplate is to define the appearance of a Control. This Control may have properties set that should be used within your template. For instance, you may want to use the Background or FontFamily property values of a Control in your ControlTemplate. In these types of situations, you should use a TemplateBinding.

 A TemplateBinding is a special type of data binding used within a ControlTemplate. This data binding uses the Control to which the ControlTemplate is applied as its data source. The data source is identified as a specific property within that Control. This property is referenced by name when you create a TemplateBinding. An example of such a reference is shown in listing 23.14.

 Listing 23.14. Using a TemplateBinding for the target element’s properties

 Result:

 [image:]

 XAML:

 [image:]

 This example shows the basic syntax of a TemplateBinding [image:]. This syntax mimics the data-binding syntax explained in chapter 11. In this case, the binding causes the Height and Width property values of the Button to be used by the Ellipse in the ControlTemplate. These property values are simple in comparison to what the value of the Content property could be, though. If you’re going to display the Content of a ContentControl in a ControlTemplate, you may want to consider using another approach.

 Displaying the Content

 You may have noticed that the Content of the Button elements in the past two listings hasn’t been shown because, when you define a ControlTemplate, you must tell Silverlight where to place that Content. To help you do this task, Silverlight provides two FrameworkElement instances: ContentPresenter and ItemsPresenter.

 The ContentPresenter class empowers you to specify where the Content of a ContentControl should be shown. It may be easiest to think of this element as a placeholder for some piece of Content. Beyond that, the syntax of a ContentPresenter is the element itself, as shown in listing 23.15.

 Listing 23.15. Using a ContentPresenter to display content

 Result:

 [image:]

 XAML:

 <Button x:Name="myButton" Content="Hello" Height="20" Width="60">
 <Button.Template>
 <ControlTemplate>
 <Border Width="{TemplateBinding Width}" CornerRadius="8"
 BorderThickness="1" BorderBrush="Black" Background="Blue">
 <ContentPresenter HorizontalAlignment="Center" />
 </Border>
 </ControlTemplate>
 </Button.Template>
</Button>

 This example shows the general usage of a ContentPresenter. As you can see, this object is a placeholder designed to be used inside a ControlTemplate. This element is generally limited to ContentControl scenarios and isn’t usually used in ItemsControl situations. For these scenarios, you may want to consider an ItemsPresenter such as the one shown in listing 23.16.

 Listing 23.16. Using an ItemsPresenter to display the Items of an ItemsControl

 Result:

 [image:]

 XAML:

 [image:]

 This example shows a ListBox with a ControlTemplate applied to it. The Items of that ListBox are positioned according to the ItemsPresenter [image:]. This element is important because it determines where the Items will be positioned in a ControlTemplate, but the ItemsPresenter doesn’t determine how the Items will be arranged. That’s the role of the ItemsPanel.

 Controlling Item Arrangement

 The Items of an ItemsControl control are arranged according to the ItemsPanel property. This property is a special kind of template that defines the Panel that will be used to lay out the Items. By default, this property is set to use a StackPanel with a Vertical Orientation. In reality, you’re free to use any of the Panel elements discussed in chapter 3. You could use a Horizontal StackPanel, as shown in listing 23.17.

 Listing 23.17. Declaring the ItemsPanel to arrange the Items of an ItemsControl

 Result:

 [image:]

 XAML:

 [image:]

 This example uses a Horizontal StackPanel as the ItemsPanel [image:] to arrange the Items in the ListBox horizontally. It’s highly likely that you’ll only use a StackPanel as an ItemsPanel. Although you can technically use another Panel element, the other options require actual code. This code will be based entirely on your particular situation, so we won’t
 cover that topic in this section.

 The ControlTemplate class enables you to redefine the way a Control looks. This new definition can use the target Control property values through a TemplateBinding. When it comes to displaying the Content of a ContentControl, you should use a ContentPresenter within a ControlTemplate. If this ControlTemplate is associated with an ItemsControl, you may need to use an ItemsPresenter to show the Items. These Items can be rendered in new ways thanks to the ItemsPanel property.

 Once you’ve settled on a ControlTemplate, you may want to use it across multiple controls. Thankfully, Silverlight makes it easy to create reusable templates.

 23.3.2. Creating reusable templates

 Creating individual templates can be useful when you want to give individualized attention to your controls; templates can
 also be useful for creating a truly unique yet consistent user experience. To help make it easier to deliver a consistent
 user experience, Silverlight allows you to define a ControlTemplate as part of a Style (see listing 23.18).

 Listing 23.18. Using a ControlTemplate within a Style

 Result:

 [image:]

 XAML:

 [image:]

 This example shows a ControlTemplate defined within a Style [image:]. Though this is a simple template, you can also define a ControlTemplate as complex as you need it to be. You can even go as far as defining a ControlTemplate that considers visual states.

 23.4. Dealing with visual states

 Templates give you the flexibility to completely dictate what a Control looks like, but the template explanation given in section 23.3 is only useful for defining the default look of a Control. This default look represents the Control’s normal state. In reality, most controls have multiple states. For instance, a Button can be in a pressed or disabled state. To enable you to manage what a Control looks like in such a state, Silverlight provides something known as the VisualStateManager.

 The VisualStateManager is an element that manages the states and the transitioning between states. This element belongs to the System.Windows namespace. Because the VisualStateManager is in this namespace, it’s ready to be utilized in your Control definitions. Before you can fully utilize the VisualStateManager, you must gain an understanding of components involved in state and transition management. Once you understand these components,
 you can leverage the power of the VisualStateManager itself. As you’ll see in the conclusion of this section, this power can be wielded across multiple elements with the help
 of a Style.

 23.4.1. Understanding the components

 The VisualStateManager relies on a variety of components to do its job. These components make up something referred to as the parts and states model. This model is designed to separate a Control element’s appearance from its behavior, ensuring that you can customize the visual pieces of a Control without having to change its underlying logic. To enable this feat, the parts and states model relies on three components:
 states, transitions, and parts.

 States

 A state is used to reflect a particular aspect of a control. For instance, the Button has one state that defines what it looks like by default. If a user moves the mouse over this Button, it’ll enter another state. If the Button is pressed, it’ll change to yet another state. These three states are shown in table 23.1.

 Table 23.1. Several states of a Button. Each state has a slightly different visual appearance.

 	
 Normal

 	
 MouseOver

 	
 Pressed

	

 [image:]
 	

 [image:]
 	

 [image:]

This figure shows three of the states exposed by the Button class. In reality, the Button class has many more states. These states are exposed to the VisualStateManager with the help of the TemplateVisualStateAttribute. This attribute can be used by a Control to identify the states a Control can be in. In addition, because a Control can simultaneously be in multiple states, the TemplateVisualStateAttribute exposes the group that a state belongs to. The states and groups available on the Button class are listed in table 23.2.

 Table 23.2. The states and groups of the Button class

 	
 State

 	
 GroupName

	Disabled
 	CommonStates

	MouseOver
 	CommonStates

	Normal
 	CommonStates

	Pressed
 	CommonStates

	Focused
 	FocusStates

	Unfocused
 	FocusStates

Each state is identified by a Name property, which is part of the TemplateVisualStateAttribute. This property is complemented by another called GroupName, which determines the grouping for the state. The reason for this property is to logically group together visual states.
 This is necessary because a Control can be in multiple states at the same time. For instance, a Button can simultaneously be in a Focused state as well as a Pressed state because the Pressed state is in a different group than the Focused state. Perhaps a better example is a CheckBox being in a Checked state while also being in a Disabled state. Either way, the main thing to understand is that groups are exclusive—a Control can be in multiple states as long as those states belong to different groups. States that are part of the same group have
 the ability to transition between one another.

 Transitions

 A transition defines the way a Control looks as it changes from one state to another. This change is represented as a Storyboard, so you’re free to implement a smooth shift between two states. You can even do this at a fine granular level because of
 the inclusion of parts.

 Parts

 A part represents a specific element within a ControlTemplate. A part is generally used when some underlying logic may need to change an area of a ControlTemplate. For instance, the thumb on a Slider will change any time a user clicks the track. This event will cause some underlying logic to move the position of the thumb.
 Both the thumb and track are defined as parts, as shown in figure 23.3.

 Figure 23.3. The required parts of a Slider are the thumb and the track. The actual appearance of the slider isn’t important as long as it has the parts that form the
 UI contract.

 [image:]

 This figure shows the two main parts of a Slider, which has more parts. These parts are defined by the TemplatePartAttribute, which enables you to specify the name and type of a UIElement that represents a part within a Control. This attribute is used to transmit data about the element that represents the part within the parts and states model. Now
 that this model has been explained, let’s look at how to leverage it with the VisualStateManager.

 23.4.2. Leveraging the VisualStateManager

 The VisualStateManager is used by a ControlTemplate to manage the change between states. This change can be used to generate two different kinds of effects. The first is known
 as a state-based effect, which can be useful for doing something such as creating an enlarged Button if a user moves the mouse over it. The other type is known as a transitioning effect, which is useful for creating a fluid interface for controls that may change between states of the same group. Both kinds
 of effects will be covered in this section.

 Creating State-Based Effects

 A state-based effect is a transition that occurs at the moment a Control enters a VisualState. When a Control enters this state, the Storyboard associated with the VisualState begins. This Storyboard is defined as part of a ControlTemplate. The Storyboard can be useful for creating a glowing effect or a ballooning effect (see listing 23.19).

 Listing 23.19. Creating a Button that enlarges when a user hovers over it

 XAML:

 [image:]

 This listing defines an effect that occurs when a user triggers the MouseOver Visual-State for the Button [image:]. All of the items in this example have been described in the previous chapters. You should note three main things. First,
 the VisualStateGroups element tells the ControlTemplate that some custom Storyboard is going to be used for a state. Second, this state belongs to a predefined group, which is described by the VisualStateGroup element. Third, the VisualState items associated with this group are detailed inside the element. This approach is useful for creating effects when a Control enters a state. But the effect created in listing 23.19 would be better defined as a VisualStateTransition.

 Define Transitioning Effects

 In addition to state-based transitions, the VisualStateManager enables you to define a transition between states. You can trigger this transition in code by calling the GoToState method or by using a DataStateBehavior or GoToStateAction behavior. We’ll use GoToState here because it’s the most useful to control authors.

 To define a transition in XAML, you must use an element called VisualStateTransition, which allows you to associate a Storyboard with a change between two states. The beginning state is identified by a string property named From. The state being transitioned to is specified by a string property called To. Listing 23.20 defines a transition that changes the Button in the previous listing back to a Normal state.

 Listing 23.20. Creating a Button that transitions when a user hovers or leaves it

 XAML:

 <Button x:Name="myButton" Width="75" Height="75" Content="Push Me">
 <Button.Template>
 <ControlTemplate TargetType="Button">
 <Grid RenderTransformOrigin=".5,.5">
 <Grid.RenderTransform>
 <ScaleTransform x:Name="myTransform"/>
 </Grid.RenderTransform>
 <Ellipse x:Name="myEllipse" RenderTransformOrigin=".5,.5"
 Height="{TemplateBinding Height}"
 Width="{TemplateBinding Width}">
 <Ellipse.Fill>
 <RadialGradientBrush GradientOrigin="0.3,0.2">
 <RadialGradientBrush.RelativeTransform>
 <TransformGroup>
 <ScaleTransform CenterX="0.5" CenterY="0.5"
 ScaleX="1.075" ScaleY="1.141"/>
 <SkewTransform CenterX="0.5" CenterY="0.5"/>
 <RotateTransform CenterX="0.5" CenterY="0.5"/>
 <TranslateTransform X="-0.04" Y="0.07"/>
 </TransformGroup>
 </RadialGradientBrush.RelativeTransform>
 <GradientStop Color="#FFD9D9D9" Offset="0.004" />
 <GradientStop Color="#FF2103BA" Offset="1" />
 </RadialGradientBrush>
 </Ellipse.Fill>
 </Ellipse>
 <ContentPresenter HorizontalAlignment="Center"
 VerticalAlignment="Center" />
 <VisualStateManager.VisualStateGroups> [image:]
 <VisualStateGroup x:Name="CommonStates">
 <VisualState x:Name="Normal"> [image:]
 <Storyboard>
 <DoubleAnimation To="1.0"
 Storyboard.TargetName="myTransform"
 Storyboard.TargetProperty="ScaleX" />
 <DoubleAnimation To="1.0"
 Storyboard.TargetName="myTransform"
 Storyboard.TargetProperty="ScaleY" />
 </Storyboard>
 </VisualState>
 <VisualState x:Name="MouseOver"> [image:]
 <Storyboard>
 <DoubleAnimation To="1.25"
 Storyboard.TargetName="myTransform"
 Storyboard.TargetProperty="ScaleX" />
 <DoubleAnimation To="1.25"
 Storyboard.TargetName="myTransform"
 Storyboard.TargetProperty="ScaleY" />
 </Storyboard>
 </VisualState>
 <VisualStateGroup.Transitions>
 <VisualTransition From="Normal" To="MouseOver"> [image:]
 <Storyboard Duration="00:00:01">
 <DoubleAnimation From="1.0" To="1.25"
 Storyboard.TargetName="myTransform"
 Storyboard.TargetProperty="ScaleX" />
 <DoubleAnimation From="1.0" To="1.25"
 Storyboard.TargetName="myTransform"
 Storyboard.TargetProperty="ScaleY" />
 </Storyboard>
 </VisualTransition>
 <VisualTransition From="MouseOver" To="Normal"> [image:]
 <DoubleAnimation From="1.25" To="1.0"
 Storyboard.TargetName="myTransform"
 Storyboard.TargetProperty="ScaleX" />
 <DoubleAnimation From="1.25" To="1.0"
 Storyboard.TargetName="myTransform"
 Storyboard.TargetProperty="ScaleY" />
 </Storyboard>
 </VisualTransition>
 </VisualStateGroup.Transitions>
 </VisualStateGroup>
 </VisualStateManager.VisualStateGroups>
 </Grid>
 </ControlTemplate>
 </Button.Template>
</Button>

 This listing shows the definitions of two VisualTransition elements. The first VisualTransition scales the Button up as it changes from the Normal VisualState to the MouseOver VisualState [image:]. The second VisualTransition scales the Button down as it goes from the MouseOver VisualState back to the Normal VisualState [image:]. These two transitions are necessary because, otherwise, the Button would be stuck looking like it did in a MouseOver state. There are two other interesting tidbits in this example.

 First, you’ll also notice the addition of the two VisualState definitions [image:]. These are necessary to keep the transition animations in place. Without these definitions, the transition animations would
 be lost. The other interesting piece in this example is the use of the VisualStateGroup element [image:]. You can only create transitions between states that belong to the same group because, as we stated earlier, a Control can be in multiple states as long as those states belong to different groups. Creating transitions between states empowers you to create deeper and richer controls, so it’s only natural to want to share these effects with
 multiple Control instances.

 23.5. Sharing your visual states

 Because the visual states you create with the VisualTransition and VisualState elements are part of a ControlTemplate, you can define them as part of a Style. For the sake of completeness, listing 23.21 shows the transitions from the previous example defined as part of a Style.

 Listing 23.21. Creating a button that enlarges when hovered over

 XAML:

 [image:]

 This listing shows how the previously defined Button ControlTemplate can be included in a Style. This ControlTemplate uses the VisualState and VisualTransition elements from listing 23.20. This example puts everything from this chapter together. The main thing to note is that you can leverage the VisualStateManager within a Style declaration. This is an exciting news because there can be a lot of XAML involved in creating effects for the various states
 and transitions of a Control. These states and transitions are part of something known as the parts and states model, which is supported by Microsoft
 Expression Blend. Because of this convenience, you’re empowered to create some of the richest controls available on the Internet.

 23.6. Summary

 Resources in Silverlight come in many flavors. The ones most associated with the word resource are those we put in XAML, inside resource dictionaries. Those dictionaries can be parts of controls in app.xaml or in separate
 files merged into existing resource dictionaries. Resources defined this way can be just about anything from data source or
 view model classes, to styles, to brush and color definitions.

 The most common uses of XAML resources are styles and control templates. Styles provide a way to factor out the common property
 settings for controls and store them in a location where they can be shared among many instances. Building upon styles are
 control templates. Control templates go a step beyond what you can do with the public properties affected with styles; they
 let you completely change the visual representation of a control including its visual states and transitions.

 Another common type of resource is a file resource, accessed as a loose file, embedded into the compiled DLL or copied into
 the zipped-up .xap. You’ll use these whenever you want a file to be delivered with the application itself.

 Understanding resources, styles, templates, and visual states are all prerequisites to building your own controls. We’ve covered
 user controls previously. In chapter 24 we’ll take on building truly lookless controls using everything we’ve learned so far.

Chapter 24. Creating panels and controls

 This chapter covers

 	Creating a custom panel

 	Exploring measure and arrange layout steps

 	Creating a custom control

 	Supporting templating

 	Implementing visual states

The power of templating in Silverlight means we rarely have to create custom panels and controls. More often than not, an
 existing element provides the behavior we need and a custom template will provide the appearance. But there are times when
 you really need something that behaves differently than any of the stock panels or controls. For those cases, Silverlight
 provides a way for you to create your own fully featured panels and controls, supporting all the same things that the built-in
 ones support.

 Custom panels enable you to create your own specialized layout algorithms. For example, you may want a panel that lays out
 its children using concentric circles rather than a box model. Implementing custom panels also has a nice educational benefit: they help you visualize and understand the layout process. Once you’ve created a few panels of your own, you’ll find
 you better understand how the built-in ones work, and can better debug issues.

 Due to the power of templating and the use of UserControls, custom controls are more rare than custom panels. But there will be times when a custom control is exactly what you need
 to differentiate your application or support a critical bit of functionality. Silverlight supports the creation of custom
 controls, including full templating and visual state management, making it a cinch to create your own.

 In this chapter, we’ll start by creating a custom panel. As you may have guessed, it’ll be a panel that lays out its children
 in concentric circles or orbits. We’ll use that panel to learn how to manage measuring and arranging, and how to bend the
 layout cycle to our will. With the custom panel completed, we’ll turn our attention to creating a custom control. This will
 be an expander control, with support for a header and content, all of which can be fully styled and templated.

 24.1. Creating a custom panel

 In chapter 6, I covered the layout system. In that system, the primary responsibility for positioning and sizing controls falls to the
 panel the controls reside in. Some panels, such as the Canvas, position using simple Left and Top coordinates. Others, such as the StackPanel, lay out children based on a series of measurements and a placement algorithm.

 In this section, we’re going to build a panel that doesn’t currently exist in Silverlight: the OrbitPanel. This Panel will lay out elements in a circle rather than the horizontal and vertical options available with the stock StackPanel or the box layout of a Grid. The new panel in action can be seen in figure 24.1.

 Figure 24.1. The OrbitPanel in action. The inner (first) orbit has nine buttons. The outer (second) orbit has five buttons.

 [image:]

 The OrbitPanel control supports an arbitrary number (greater than zero) of orbits. Each orbit is a concentric circle starting at the center
 point. The amount of space allocated to an orbit is a function of the number of orbits and the size of the panel itself. If
 there are many orbits, the space will be narrower.

 The layout is done starting at angle 0 and equally dividing the remaining degrees by the number of items in the specific orbit.
 Items added to the panel may specify an orbit via the use of an attached property.

 In this section, we’ll build this panel, starting with project creation, including the addition of a library project specifically
 made for this panel and for the custom control we’ll build later in the chapter. We’ll create a dependency property as well
 as an attached property, both because they’re useful and because creating them is a necessary skill for panel and control
 builders. From there, we’ll spend most of the time looking at how to perform the measure and arrange steps described in chapter 6 to layout the control. We’ll wrap up this section with a guide for some potential enhancements should you desire to take
 the panel further on your own.

 24.1.1. Project setup

 For this example, create a new Silverlight project. I called mine Chapter24Controls. Once the solution is up with the Silverlight
 application and test website, add another project; this second project will be a Silverlight class library named ControlsLib.
 Though I could’ve put the custom panel into the same project as the Silverlight application, that’s almost never done in real-world
 scenarios.

 From the Silverlight application, add a project reference to the ControlsLib project. Do this by right-clicking the Silverlight
 application, selecting Add Reference, navigating to the Projects tab, and selecting the project. While you’re in the project,
 remove the default class1.cs file that came with the template.

 With the project structure in place, let’s work on the OrbitPanel class.

 24.1.2. The OrbitPanel class

 The implementation of our panel will be in a single class named OrbitPanel. Inside the ControlsLib project, add a new class named OrbitPanel. This class will contain all the code for the custom panel.
 Derive the class from the Panel base type as shown here:

 namespace ControlsLib
{
 public class OrbitPanel : Panel
 {
 }
}

 Panel is the base type for all layout panels in Silverlight, including the Canvas, Grid, and StackPanel. The class itself derives directly from FrameworkElement, so it’s a pretty low-level class, lacking the extras you’d find in something like Control. What it does include is important to Panels: the Children property.

 The Children property is a UIElementCollection—it’s a specialized collection of child elements placed inside this panel. This is the key property that makes a Panel a Panel.

 In addition to the Children property, the Panel class provides a Background brush property and a boolean IsItemsHost, which is used in concert with the ItemsControl class. Deriving from Panel allows you to substitute your panel for the StackPanel in a ListBox, for example.

 The OrbitPanel class will have two dependency properties used to control how it functions.

 24.1.3. Properties

 The OrbitPanel class will need to have two properties. The first, Orbits, will control the number of concentric circles, or orbits, available for placing items. The second is an attached property,
 Orbit, to be used on items placed into the panel; it controls which circle the item is to be placed in.

 Orbits Dependency Property

 In general, controls and panels should expose properties as dependency properties. If there’s any possibility that they’ll
 be used in binding or animation, a dependency property is the way to go. In fact, when the Silverlight team exposes properties
 as straight CLR properties, more often than not, they get feedback that it should’ve been a dependency property because a
 customer or someone in the community tried to use it in binding or animation.

 Dependency properties are specified at the class level using a static property and DependencyProperty.Register call. For use in code and XAML, they’re also wrapped with a standard CLR property wrapper that internally uses the dependency
 property as the backing store. Optionally, the dependency property may specify a callback function to be used when the property
 changes.

 Listing 24.1 shows the complete definition for the Orbits property, with all three of these items in place.

 Listing 24.1. The Orbits property

 [image:]

 The first thing you’ll notice in this code is the Orbits CLR property. This is a standard CLR wrapper, used for simple property access in code and required for property access in
 XAML. The property code uses the GetValue and SetValue methods, provided by DependencyObject, to access the backing dependency property. Though not required at a compiler or framework level (unless you want to use
 the property in XAML), providing the CLR wrapper is a standard practice when defining dependency properties.

	

Tip

 Visual Studio 2010 includes a snippet for declaring dependency properties for WPF. With a slight change to rename UIPropertyMetadata to PropertyMetadata in the last parameter, this works well for Silverlight applications and saves you from remembering the exact syntax.

 	

The next chunk of code in this listing defines and registers the dependency property. The single line both defines the property
 and registers it with the property system. The first parameter is the string name of the property. By convention, the name
 of the dependency property variable is this string plus the word Property. The second parameter is the type of the property itself—in this case, an int. The third parameter is the type you’re registering the property on. The fourth and final parameter is a PropertyMetadata object.

 The PropertyMetadata object can be used to specify a default value, a property changed callback, or as seen here, both. When providing the default
 property value, be very specific with the type. For example, a property value of 1 won’t work with a double type; you must specify 1.0 or face the wrath of an obscure runtime error.

 The property changed callback function enables you to hook into the process to perform actions when the dependency property
 changes. Note that you’d never want to do this inside the CLR wrapper, as that would only catch a few of the scenarios under
 which the property could change. The callback function takes in an instance of the object that owns the property, as well
 as an EventArgs-derived class that has both the new and old values available for inspection.

 All three pieces—the CLR wrapper, the dependency property definition and registration, and the callback function—make up the
 implementation of a single dependency property in Silverlight. Though verbose, the benefits provided by dependency properties
 are great, as seen throughout this book. When creating your own properties for panels and controls, err on the side of implementing
 them as dependency properties.

 A specialized type of DependencyProperty, the attached property is used when you want to provide a way to enhance the properties of another object. That’s exactly
 what we need to do with the Orbit property.

 Orbit Attached Property

 Each item added to the OrbitPanel needs to be assigned to a specific circle or orbit. This is similar in concept to how a Grid needs items to specify rows and columns, or how the Canvas needs Left and Top for each element. The way those properties are specified is to use the type name (Grid or Canvas) and the property name together in the element, like this:

 <TextBox Grid.Row="0" Grid.Column="1" />
<TextBox Canvas.Left="100" Canvas.Top="150" />

 In these examples, the TextBox doesn’t contain a Row, Column, Left, or Top property; instead it relies on another type (the Grid or Canvas) to attach them. We’ll do the same with the Orbit property of the OrbitPanel. Listing 24.2 shows the implementation of the Orbit attached property in the OrbitPanel class.

 Listing 24.2. The Orbit attached property in the OrbitPanel class

 public static int GetOrbit(DependencyObject obj)
{
 return (int)obj.GetValue(OrbitProperty);
}

public static void SetOrbit(DependencyObject obj, int value)
{
 obj.SetValue(OrbitProperty, value);
}

public static readonly DependencyProperty OrbitProperty =
 DependencyProperty.RegisterAttached("Orbit",
 typeof(int),
 typeof(OrbitPanel),
 new PropertyMetadata(0));

 Note that attached properties don’t use a CLR wrapper. Instead, you provide Get and Set methods to allow the properties to be used in code and XAML.

 The RegisterAttached method is similar to the Register method seen in listing 24.1, with the parameters being identical. In this case, I didn’t use a callback method, but instead provided a default value
 of zero.

 With this property in place, we’ll now be able to write markup like this:

 <TextBox x:Name="FirstNameField" clib:OrbitPanel.Orbit="1" />

 (The namespace declaration clib is assumed to be valid in the XAML file in which this bit of markup lives.) To inspect the value of the attached property
 from code, use the Get function defined in listing 24.2:

 if (OrbitPanel.GetOrbit(FirstNameField) > 0) ...

 In this way, we can now set and retrieve properties associated with objects, without those objects having any provision for
 the properties in the first place. This is a powerful way to augment types to track additional data.

 Dependency properties—and the special type of dependency property, the attached property—are essential and often use parts
 of the property system in Silverlight. When creating your own panels and controls, you’ll almost certainly rely on them as
 the primary means of providing “knobs” your users can use to control the behavior of your custom classes.

 In the case of the OrbitPanel, both of these properties will come into play when performing our custom layout.

 24.1.4. Custom layout

 The primary responsibility of a panel is the layout of its child controls. In truth, this is what makes a panel a panel; a
 panel that performed no custom layout wouldn’t be particularly useful.

 As we learned in chapter 6, the layout pass involves two primary steps: measure and arrange. The measure step measures all the children of the panel,
 as well as the overall panel itself. The arrange step performs final placement of the children and sizing of the panel. As
 the authors of a custom panel, it’s our responsibility to provide this critical functionality. Listing 24.3 shows the measure step, implemented in the MeasureOverride method of the OrbitPanel class.

 Listing 24.3. The measure step

 [image:]

 The measure pass starts by getting a list of all items, grouped by their orbit. The code for this function, SortElements, is included in listing 24.5. I loop through each orbit, then through each item in the orbit, and measure that item. I get the largest dimension (either
 width or height) from that element and compare it to the current max. This is admittedly a bit of a hack, as the size allotted
 to each item is, in theory, a pie slice, not a rectangle. In addition, due to the simplified nature of the orbit sizing, I
 didn’t need to group the children by orbit. Nevertheless, it’ll work for this example.

 Once I’ve looped through every child item, I then calculate the desired size for this panel. That is calculated by taking
 the number of orbits, multiplying by two to account for the circular nature, then multiplying by the maximum item size. If
 the original size passed in was unlimited, I return the desired size; otherwise, I return the sized provided to the control.

 The most important step in this function is the step that measures each child. That’s what sets the desired size for each
 child in preparation for the arrange step shown in listing 24.4.

 Listing 24.4. The arrange step

 [image:]

 [image:]

 The arrange step is where the real layout happens. It’s in this function that the individual children are placed in their
 final locations. This is the function that requires digging way back to 10th or 11th grade to remember that trigonometry.

 This function, like the previous one, starts by sorting the children into their respective orbits. This is done via the SortElements function, the body of which is shown in listing 24.5. I then run through each orbit, calculating the size of the circle and the angular offset of each item. The angle chosen
 is based on the number of items in that orbit; it’s 360 degrees evenly divided by the item count.

 Then, I calculate the left and top position given the angle. This left and top will actually be used for the center point
 of the element being placed. With that calculated, I call Arrange on the element to move it to its final location.

 Listings 24.3 and 24.4 relied on common functions. The code for both, CalculateOrbitSpacing and SortElements, is included in listing 24.5, wrapping up the code for the OrbitPanel class.

 Listing 24.5. Supporting functions

 private double CalculateOrbitSpacing(Size availableSize)
{
 double constrainingSize = Math.Min(
 availableSize.Width, availableSize.Height);

 double space = constrainingSize / 2;

 return space / Orbits;
}

private List<UIElement>[] SortElements()
{
 var list = new List<UIElement>[Orbits];

 for (int i = 0; i < Orbits; i++)
 {
 if (i == Orbits - 1)
 list[i] = (from UIElement child in Children
 where GetOrbit(child) >= i
 select child).ToList<UIElement>();
 else
 list[i] = (from UIElement child in Children
 where GetOrbit(child) == i
 select child).ToList<UIElement>();
 }

 return list;
}

 CalculateOrbitSpacing uses the size of the panel to figure out the spacing of the individual concentric circles. This is done by evenly dividing
 up the total space. The SortElements function takes each of the children and puts it into a list by orbit.

 Note that the SortElements function has special logic to group any elements in an invalid orbit into the highest orbit. It doesn’t handle any cases
 where a negative (invalid) orbit number was specified, but that’s easy enough to add.

 These three listings make up the full implementation of the OrbitPanel class. With the code in place, the last thing to do is to test the panel on a page.

 Test Markup

 To test the new panel, we’ll use a simple bit of markup that creates a number of button controls and places them into two
 different orbits. A third orbit is defined but not used. Listing 24.6 shows the markup to be placed in MainPage.xaml. Before adding this code, build the project to get the ControlsLib namespace to resolve and the OrbitPanel IntelliSense to show.

 Listing 24.6. Using the OrbitPanel from XAML

 [image:]

 This listing produces the image from the opening of this section (figure 24.1), with two orbits of buttons. In order for this listing to work, you must define the following namespace:

 xmlns:clib="clr-namespace:ControlsLib;assembly=ControlsLib"

 Panels are all about measuring and arranging their children. Measuring is used to ask each child what size it wants to be,
 and to provide the overall size for the panel. Arranging is used to calculate the final location of each of the child elements.

 This panel has been a pretty simple implementation both for space reasons and to keep to the essentials of what we need to
 learn. If you want to take it further, there are some enhancements I’d recommend.

 24.1.5. Enhancements

 The panel we created in this section is a good starting point for your own panel design. There are a number of places you
 could take this panel. Three enhancements I’d recommend are using start and stop angles, defining orbits using a grid-like
 approach, and item clipping.

 Start and Stop Angles

 Currently the panel starts calculating layout at zero degrees and completes at 360 degrees. A simple change would be to provide
 dependency properties for StartAngle and StopAngle, and use those in the layout calculation. This would allow arcs of controls rather than full orbits.

 Defining Orbits

 Another potential change would be to make the orbit definitions more flexible. Rather than only providing a number of orbits,
 you could use orbit definitions in the same way the Grid panel uses RowDefinitions. An example of the markup might look like this:

 <clib:OrbitPanel>
 <clib:OrbitPanel.OrbitDefinitions>
 <clib:OrbitDefinition StartAngle="25" StopAngle="40" Width="100" />
 <clib:OrbitDefinition StartAngle="340" StopAngle="270" Width="Auto" />
 <clib:OrbitDefinition StartAngle="90" StopAngle="180" Width="*" />
 </clib:OrbitPanel.OrbitDefinitions>
 ...
</clib:OrbitPanel>

 This would enable you to support different arcs for each orbit, as well as set widths (optionally using grid units) for each
 orbit.

 You would accomplish this by creating a custom collection type to hold the orbit definitions, then creating an OrbitDefinition class. The collection would be exposed by the panel. The measure and layout calculations would change to use the provided sizes rather than calculating sizes.

 Item Clipping

 The third enhancement is item clipping. I didn’t implement this in the OrbitPanel because, frankly, it doesn’t make a lot of sense to do so. But clipping the individual child elements is often essential
 to the functioning of a panel.

 When an item is clipped, the portion of the element that would normally lie outside the allotted space isn’t shown. This is
 accomplished by setting the size of the rectangle in the arrange step to be smaller than the size of the element. For example,
 to modify listing 24.4 to clip all elements to 30 × 30 pixel rectangles, change the final-Rect to be calculated like this:

 double maxWidth = 30;
double maxHeight = 30;
Rect finalRect = new Rect(centerPoint.X + left - maxWidth / 2,
 centerPoint.Y + top - maxHeight / 2,
 maxWidth, maxHeight);

 In a real panel, you’d calculate the maxWidth and maxHeight based upon available space in the layout slot. In addition to this calculation change, be sure to apply the same measurement
 to the call to the measure step, so the child has the ability to resize itself if possible.

 Creating a custom panel in Silverlight is a straightforward process once you decide on a layout algorithm. The majority of
 the work is performed inside the measure and arrange steps. The measure step is where the panel calculates the size of each
 element and the size of the panel itself. The arrange step is where the panel performs the actual positioning (and optional
 clipping) of the child elements.

 Creating a custom control is similar to creating a panel; many of the same steps apply. In the next section, we’ll create
 a control that supports styling and visual states.

 24.2. Creating a custom control

 In the previous section, we built a custom panel. Panels differ from controls in that they typically participate in the opposite
 side of layout: panels are responsible for laying out controls; controls are responsible for measuring themselves.

 When creating controls in Silverlight, you have two main choices: you can write a UserControl or create a custom control. User controls, covered in chapter 10, are more about composing other controls, whereas custom controls are about defining new behavior to make available to developers.

 Custom controls differ from user controls in that they’re lookless by default—they’re expected to work with a completely different
 control template as long as certain contracts are adhered to. User controls bring their templates along with them in the form
 of the .xaml file; they support limited templating and styling capabilities.

 In this section, we’re going to build a custom control that can show grouped content with a header which, when clicked, shows
 or hides the content. There are already controls that can do this, but building it will show you how to inherit from a base class and support templating and visual
 states.

 24.2.1. Choosing the base type

 In chapter 10 we learned about the different types of controls available in Silverlight. Many of the controls had common base types. When
 creating your own control, the choice of base type will greatly impact how the control can be used and how other developers
 will expect it to work. Table 24.1 shows the common base types you can derive from.

 Table 24.1. Common control base types

 	
 Type

 	
 Description

	Control
 	This is a generic base control. If none of the specialized variants have what you need, derive from this class.

	ContentControl
 	A control that contains a single child item for display. The Button and Label controls are examples of ContentControl.

	ItemsControl
 	A control that contains multiple child items for display. The control supports adding individual items or binding to a list
 to obtain items. The items are displayed using a supplied panel.

	Selector
 	An ItemsControl that supports selecting an item. An example of this is a ListBox.

	RangeBase
 	A control that supports minimum, maximum, and current values. One example is the Slider control; another is the ScrollBar.

	ButtonBase
 	A control that can be clicked to fire an event. Button and HyperlinkButton are two examples.

	ToggleButton
 	A button-type control that supports keeping its state when clicked. Examples include the ToggleButton when used as is, the
 RadioButton, and the CheckBox.

When choosing a control, try to pick the richest one possible. If you’re building something that naturally fits the Selector model, that’s a better choice than picking ItemsControl or Control. The more you use built-in functionality, the more your control will behave like others in Silverlight without extra effort
 on your part.

 For the control we’re building, we’ll start with ContentControl and build from there. In the ControlsLib project, add a new class named Expander:

 namespace ControlsLib
{
 public class Expander : ContentControl
 {
 }
}

 The ContentControl base class provides the ability to use properties such as Content and ContentTemplate. We’ll definitely make use of those, but we also need to augment with our own properties for the header.

 24.2.2. Properties

 When supporting arbitrary content, the pattern is to have a content property of type object and a template property of type DataTemplate. That way, the developer can customize the presentation of the content without having to retemplate the entire control.

 The ContentControl base type supplies the Content and ContentTemplate properties that perform this function for the primary content. We’ll add Header and HeaderTemplate to support the same for the top header. Both properties will be defined as dependency properties, as shown in listing 24.7.

 Listing 24.7. The Header and HeaderTemplate properties

 public object Header
{
 get { return (object)GetValue(HeaderProperty); }
 set { SetValue(HeaderProperty, value); }
}

public static readonly DependencyProperty HeaderProperty =
 DependencyProperty.Register("Header",
 typeof(object),
 typeof(Expander),
 new PropertyMetadata(null));

public DataTemplate HeaderTemplate
{
 get { return (DataTemplate)GetValue(HeaderTemplateProperty); }
 set { SetValue(HeaderTemplateProperty, value); }
}

public static readonly DependencyProperty HeaderTemplateProperty =
 DependencyProperty.Register("HeaderTemplate",
 typeof(DataTemplate),
 typeof(Expander),
 new PropertyMetadata(null));

 Using object as the type for the header enables us to use anything from a string to a Grid full of controls as the header. If a template is supplied, Silverlight will render using that. If no template is supplied,
 Silverlight will render it natively if it’s a UIElement, or using ToString if it’s any other type (such as an integer, string, or your custom class).

 In addition to the simplicity of class inheritance, one of the main differentiators for a custom control over a user control
 is the control template.

 24.2.3. The control template contract

 When creating a custom control, it’s important to define the contract with the control template. The contract consists of
 the things that must be in the control template in order for your control to work.

 In general, you want this contract to be as small as possible. Think long and hard about what things you must have in the
 contract, as opposed to what could be accomplished with binding.

 In our control, the contract can be kept small: just a single toggle button. We need the toggle button, in this case, because
 we’re going to use it to expand and collapse the bottom section of the expander control. Listing 24.8 shows the class with the contract in place.

 Listing 24.8. Contract with the control template

 [image:]

 The contract is defined both explicitly and implicitly. The explicit contract definition is the TemplatePart attribute on the class. Though not enforced in code, this is used by Expression Blend to enforce the contract in the tool.
 The attribute specifies both the name of the required element as well as its type. A best practice is to use a constant for
 the name, as it’ll also be used elsewhere in the code.

 The implicit contract is enforced by the OnApplyTemplate function. In this function, you’re going to look for the various template parts and attempt to resolve them into variables you can use elsewhere in the class. OnApplyTemplate is called when the control template is loaded for this instance of the control.

 In OnApplyTemplate, you’ll typically find the control instances by name using GetTemplateChild (which does a FindName equivalent on the template) and wire up any events or other hooks.

 Note also the constructor. The constructor specifies the default style key to be used. This looks a little odd because it’s
 setting the key to the type of this class. As we’ll see next, that’s exactly what we want.

 24.2.4. The default template

 Custom controls are designed to support templating by the designers and developers using them. But every control should provide
 a default template to be used when no other template has been applied.

 The default template is kept in a resource dictionary file named generic.xaml in the themes folder of the assembly containing
 the control. In our project, that’s the ControlsLib assembly. Add the themes folder and the generic.xaml file. Listing 24.9 shows the style to be included inside the ResourceDictionary tags.

 Listing 24.9. The control template

 [image:]

 [image:]

 Note that this style doesn’t have a key. The key is the type it targets; that’s why the constructor in listing 24.8 specifies the class type as the default style key.

 This listing shows the default style and template for the Expander control. The template is defined just like the control templates we saw in chapter 23. In this case, I use a grid to hold both the header and the content. The header and content are both implemented using ContentPresenter elements. The ContentPresenter, when bound to appropriate content and content template properties, takes care of all the dirty work associated with presenting
 arbitrary content. Without it, there’d need to be some way to use a TextBlock when it’s text, and other specialized types otherwise.

 For this listing to work, the ResourceDictionary tag will need the following namespace added:

 xmlns:clib="clr-namespace:ControlsLib"

 In listing 24.9, I left room for the spot where the visual states will go. The final piece of a custom control is the support and definition
 of VisualStateManager controlled state management.

 24.2.5. Visual states

 Visual states describe the UI modes or states a control can be in. One visual state may be when the mouse is over the control;
 another when the mouse button is clicked. A third visual state may be when something is considered selected.

 In our control, the visual states will be Expanded and Collapsed. Using visual states rather than hard-coding expand and collapse logic allows the designer or developer to completely customize
 what it means for the control to be expanded or collapsed. Remember, controls are lookless—they define behavior, not appearance.

 Listing 24.10 shows the parts of the Expander class required for supporting visual states.

 Listing 24.10. Supporting visual states

 [image:]

 Just as was the case with template parts, template visual states have both an explicit and implicit contract. The explicit
 contract is handled by the TemplateVisualState attribute. This allows Blend and other design tools to know what visual states are supported by this control.

 The implicit contract is handled by calls to VisualStateManager.GoToState. This call works under the assumption that a particular visual state exists. If it exists, the control is put into that state.
 In this example, when the expander button (a template part) is checked, we enter the Expanded state. When it’s unchecked, we enter the Collapsed state.

 Using states like this allows you to define the appearance of each state completely in XAML. Of course, we’ll need to provide
 a default implementation in the control template in generic.xaml.

 24.2.6. Visual states in template

 Visual states are designed for XAML. They’re based around storyboards and references within the same XAML file. For more in-depth
 information on creating states, check out chapter 23.

 Listing 24.11 shows the visual states definition for the Expander control. Place this markup into the spot called out in listing 24.9.

 Listing 24.11. Visual states in the control template

 [image:]

 Listing 24.11 provides the markup for two different visual states: Expanded and Collapsed. Both refer by name to elements defined in listing 24.9. Using visual states like this allows us to have a control that has no real dependency on elements inside XAML. Instead,
 the control’s behavior specifies which state to enter, and the markup (which can be changed by a developer or designer without
 access to the control’s source) can completely define what it means to be in that state.

 Testing

 The final step is to test the control. I used it to wrap the OrbitPanel we wrote in the first section, but you could use it with any type of content. Here’s the MainPage.xaml markup with the new
 control in place:

 <Grid x:Name="LayoutRoot" Background="White">
 ...
 <clib:Expander Header="This is an Expander Control"
 Margin="20" BorderBrush="Black">
 <clib:OrbitPanel Orbits="3">
 ...
 </clib:OrbitPanel>
 </clib:Expander>
</Grid>

 The result of the combination of both controls is shown in figure 24.2. The expander encloses the OrbitPanel and its contents.

 Figure 24.2. The expander control with the custom layout panel included as content

 [image:]

 Writing custom controls in Silverlight can be a rewarding experience. The templating approach means you don’t have to consider
 every possible way someone may want to present your control; instead, you can focus on the required behavior.

 Controls in Silverlight are lookless. The code you write shouldn’t make assumptions, other than what’s in the explicit contract,
 about what the UI contains or how it’ll behave. The use of template binding, template parts, and template visual states helps
 keep this separation clean and understandable.

 In general, before you create a custom control, consider whether templating an existing control will provide what you’re looking
 for. I’ve seen menu systems created entirely from ListBox controls, for example (I’m even responsible for one of them). Once you’re sure that the behavior of existing controls doesn’t
 provide what you’re looking for, you can embark upon creating your own control.

 24.3. Summary

 Silverlight has a highly extensible layout system. Imagine if other technologies allowed you to easily create your own elements
 with completely custom layout algorithms. HTML, for one, would be much more creative if you could encapsulate all that div manipulation into something that works as a first-class citizen on any page.

 Custom panels and custom controls provide the ability to augment Silverlight with your own requirements and your own ideas
 of how things should work. They provide a way to extend the system, building upon the same foundations used in all of the
 other built-in elements. They let you do things the designers and developers of Silverlight may not have considered when building
 the platform.

 Creating a custom panel is easy once you learn to express the layout algorithm as a pair of measure and arrange steps. Silverlight
 handles calling these steps when needed, so all you need to concern yourself with is the functionality directly related to
 your own custom layout algorithm. The sky’s the limit!

 Custom controls are equally powerful. If you’ve searched through the built-in controls, the SDK, and the toolkit, and haven’t
 found a control with the behavior you want, you can build your own from scratch. Silverlight provides strong building blocks
 in the form of specialized base classes and the templating and state management patterns you leverage in the creation of your
 controls. You don’t even need to worry about how it looks, as once you define the behavior and the contracts, a designer can
 make the control look any way she wants. That’s the power of the lookless control model.

 In the next chapter, we’ll wrap up the book with a discussion around customizing the install experience for all the awesome
 applications you’ll soon be creating.

Chapter 25. The install experience and preloaders

 This chapter covers

 	Handling “Silverlight not installed” scenarios

 	Creating a custom preloader or splash screen

An often-overlooked aspect of putting a plug-in-based application on the Internet is the experience of a brand-new user. Truthfully,
 plug-in apps aren’t unique in this. I’ve seen many Windows client applications that depended on registry entries or other
 files created during normal use but not present at first install. It’s easy to be sloppy about testing that scenario because
 it’s so far removed from our day-today lives.

 Nevertheless, not everyone in the world has Silverlight installed on their machines, and not everyone has your application
 in their download cache. Anything that gets between your user and using your application is a barrier that will cause attrition.
 You need to continue to entice users to install the plug-in and wait for your application to download (if it’s large) in order
 not to lose them.

 In this chapter, we’ll first look at how to customize the initial plug-in install and upgrade experience. Then, because some
 applications can be really large and have lots of assets, we’ll look at approaches for building a custom preloader using XAML and JavaScript.

 25.1. Handling the “Silverlight not installed” scenarios

 Although Silverlight has achieved excellent market penetration since it was first introduced (it’s around 60 percent at the
 time I’m writing this), you’re still going to run into instances where the plug-in isn’t installed on the user’s machine.
 In those cases, the user will get the default Please Install Silverlight image, as shown in figure 25.1.

 Figure 25.1. The default image shown when users don’t have Silverlight installed on their machines

 [image:]

 The default install badge is okay, but it almost certainly doesn’t fit with the design of your application. More important,
 it offers no information about what your application will provide after Silverlight is installed.

 Research has shown that in order to get users to install the plug-in, they need to see what immediate benefit they’ll get
 by doing so. The usual way to handle this is to show information about your application—perhaps an explanation, almost certainly
 screenshots—as part of the appearance. You then provide your own Click Now to Install button over those graphics. One of the
 best examples of this is the Netflix player, shown in figure 25.2.

 Figure 25.2. The Netflix player. This is an excellent example of a Silverlight install prompt. It includes a ghosted image of the player,
 information about the movie you’ve selected, and a clear call to action.

 [image:]

(Image courtesy of Tim Heuer.)

 This example has everything a good install prompt needs:

 	It’s on-brand and consistent with the site. Using the default prompt would’ve been jarring. By using a screenshot of the existing player, you maximize consistency while
 also showing the purpose of the plug-in.

 	It’s about the content, not the plug-in. The install prompt doesn’t extol the virtues of Silverlight; it focuses on what you’ll get (the movie Lean on Me) after you install it. Make the decision about the content and benefits, not the technology.

 	The call to action is simple. The only real action to take on this page is the install. If you look hard, there’s a link with pop-up instructions, but there’s
 no other prompting, account creation, or other cruft in the way.

In this section, you’ll create a simple replacement plug-in install prompt, covering the changes to the object tag and the
 HTML within it. It won’t be as pretty as the Netflix prompt, but it’ll show how you can get there. We’ll wrap up with a bit
 of information on how to further customize the experience.

 25.1.1. Creating your own install experience

 The experience you create to prompt for the plug-in must exist without any plug-in installed. That means it’s all HTML and
 JavaScript. Typically, it’s some static images and perhaps some text. Truly complex versions could have an application walkthrough
 complete with a jQuery slideshow of screen shots of the application. The point is that you want something nice that entices
 the user to install the plug-in.

 Whatever HTML you decide to provide, you can easily place it inside the object tag. Any HTML you include inside the object
 tag will be displayed when the plug-in isn’t installed. For example, you could go with the silly text-only install prompt
 shown in figure 25.3.

 Figure 25.3. The new custom prompt to install Silverlight. I don’t know about you, but I’m totally ready to install Silverlight now!

 [image:]

 In reality, you probably want to try a little harder than that, but you get the idea. The URL I used came right from the default
 install experience includd with the template. Whatever design you or your web designers come up with is fair game here. Listing 25.1 shows how to insert the HTML into the object tag.

 Listing 25.1. A replacement Silverlight plug-in install prompt

 <object data="data:application/x-silverlight-2,"
 type="application/x-silverlight-2"
 width="100%" height="100%">
 <param name="source" value="ClientBin/Chapter25.xap"/>
 <param name="onError" value="onSilverlightError" />
 <param name="background" value="white" />
 <param name="minRuntimeVersion" value="4.0.50401.0" />
 <param name="autoUpgrade" value="true" />
...
 <p style="font-size:30px;margin:30px"> If you

 install Silverlight you will see the most amazing
 application in the world. In the WORLD! Unicorns,
 rainbows, dogs and cats living together ... mass
 hysteria!</p>
</object>

 Everything not a param but otherwise inside the object tag will be invisible when Silverlight is installed and displayed when it’s not. The sky
 is pretty much the limit for what you can do here.

 Always Grabbing the Latest Plug-In

 By default, the tooling provides a link to the version you built against. But a better approach is to remove the version number
 completely, because you should always provide the latest plug-in to your users. To do that, remove everything after the link
 ID:

 That will automatically grab the latest version of the plug-in when the user clicks the link. Note that the parameter LinkID is case-sensitive.

 Handling the Version-Upgrade Scenario

 In the object tag, you saw the autoUpgrade and minRuntimeVersion properties. Those two properties work together to handle scenarios where the user has Silverlight installed, but it’s an
 old version. If the user’s version isn’t the latest version, but it’s equal to or higher than the minRuntimeVersion, the user won’t be prompted to upgrade. But if your application requires a newer version and you have autoUpgrade set to true, the user will receive a standard Silverlight version dialog prompting them to upgrade.

 If you prefer to handle the upgrade process yourself, you can set autoUpgrade to false and handle the 8001 - Upgrade required and 8002 - Browser restart required errors in the OnError function. Although those errors will fire regardless of the value of autoUpgrade, typically you’ll only do something meaningful with them when you’re handling the process manually.

 Silverlight.js, discussed in chapter 3, includes a number of helper functions and properties such as getSilverlight, isInstalled, isBrowserRestartInstalled, and WaitForInstallCompletion that make the new install and upgrade experiences highly scriptable from JavaScript.

 After you’ve tackled the “no plug-in installed” scenario or the upgrade scenario, and the user has the plug-in installed,
 you should then turn to the application-loading scenario and build a custom preloader or splash screen.

 25.2. Using a custom preloader

 Silverlight applications come in all shapes and sizes. Many of the more complex applications take a few seconds or more to
 load, because they have many images, large binaries, media, or more. This is one place where the Flash developers had a real
 leg up due to all the prior art. Every Flash application I’ve ever used has had a custom preloader that displays appropriate
 branding and, often, real creativity. Blogs and even entire sites have been created with no purpose other than to show some
 of the awesome preloaders that exist out there. Take a peek for yourself: www.bing.com/search?q=best+flash+preloaders.

 Preloaders can be image-based or XAML-based and can include application-specific branding. A preloader is a chance to provide
 something interesting and creative to increase anticipation and excitement for the application. Some preloaders even include
 mini-games; but unless your application takes 20 minutes to load, that may be overkill.

 Think of the preloader like the start of a movie. Although you typically want the opening cuts to finish in short order so
 you can watch the movie, the best ones add to the overall story, increase awareness of what’s to come, and help generate some
 excitement.

 When it comes down to it, you can have the best-looking Silverlight application out there, but if it shows several seconds
 of the default Silverlight loading animation, no one will consider it a complete experience. Figure 25.4 shows the default “spinning blue ball” loading experience.

 Figure 25.4. The default Silverlight “spinning blue ball” loading experience.

 [image:]

 The default experience is there to ensure that your users know the application is doing something while the application or
 the application and required assets are downloaded.

 In general, you want to avoid both the default loader and the double-download situation whenever possible. It’s easy to create
 your own custom download experience, including downloading media assets and more.

 Throughout this section, you’ll learn how to create a custom preloader. The first step in this three-step process is creating
 the appearance of the preloader using XAML. After it’s created, you can integrate the preloader with your solution to ensure
 it’s used while a Silverlight application is being downloaded. While this download is proceeding, you can choose to monitor
 its progress and update the visuals. All these steps will be shown as a basic preloader is implemented.

 25.2.1. Creating the appearance

 Preloaders, or splash screens, are shown when the loading time of your application exceeds a certain threshold, roughly half
 a second. The first step in creating a custom splash screen is defining its appearance. You must take three important facts into consideration:

 	The preloader is used while a .xap file is being downloaded, so it doesn’t make sense to create the splash screen’s XAML inside
 of your Silverlight application. Instead, you must create the XAML within the web site that hosts your Silverlight application.

 	The preloader can’t use managed code, so you must use a scripting language such as JavaScript for any runtime features of
 a custom splash screen.

 	You’re not limited to the Silverlight 1.0 API. Enhancements were made to the JavaScript API post-Silverlight 1.0, such as
 additional panels and types of animation.

With these constraints in mind, you can move forward with creating your own preloader. Although a good preloader is a highly
 branded experience that seamlessly blends into the design for your application, you’ll create a simple animation here for
 space and complexity considerations. Such an animation might be defined in an XML file on the web site called SilverlightLoader.xaml
 and look like the code in listing 25.2.

 Listing 25.2. The XAML for a custom splash screen: SilverlightLoader.xaml

 [image:]

 [image:]

 Result:

 XAML:

 This listing defines a basic set of shapes and animation within a Grid element. This animation rotates an Ellipse around a TextBlock, which shows the progress of the download. The progress of the download will be updated as the download progresses.

	

Tip

 If you want to try this yourself on an empty project, create a new Silverlight application with a web site as usual. Then,
 on the Silverlight app, embed some enormous file, such as a video or big zip file, into the .xap, so it’s large. As long as
 the download takes more than 0.5 seconds or so, you’ll see your preloader screen. The more latency you have, the more you’ll
 see of your preloader. You can even constrain your download bandwidth (time to dig out the old 9600 bps Hayes compatible)
 to really help it show off.

 	

The root element of a preloader must be one of the Panel elements mentioned in chapter 7, so you can’t use a UserControl element as you would if you were defining a page. This has to do with the fact that managed code can’t be used with a splash
 screen. After you’ve chosen a Panel and created the appearance of the splash screen, you can integrate it with your web application.

 25.2.2. Integrating the custom splash screen

 The second step of using a custom splash screen is integrating it with a web application. You reference the XAML of the splash
 screen when you create an instance of the Silverlight plug-in. You can reference this XAML by using the splashScreenSource property of the object tag, as shown in listing 25.3.

 Listing 25.3. Associating the preloader with the Silverlight application

 [image:]

 This listing uses the splashScreenSource property to reference the splash screen created in listing 25.2. This property isn’t required by the createObjectEx function. By using this property, you can point to where a custom splash screen’s XAML is stored. For security reasons, the
 XAML must be located on the same web site as the page with the object tag and the Silverlight .xap file. When the splash screen’s
 XAML is loaded, you have the option of using the onSourceDownloadProgressChanged and onSourceDownloadComplete event handlers to monitor the load progress.

 25.2.3. Monitoring the load progress

 The third, but optional, step in creating a preloader is monitoring the load progress. To accomplish this, you wire up JavaScript
 event handlers to the onSourceDownloadProgressChanged and onSourceDownloadComplete events defined by the plug-in. These event handlers are shown in listing 25.4.

 Listing 25.4. The event handlers used for monitoring the download progress

 JavaScript:

 <script type="text/javascript">
function appDownloadProgressChanged(sender, args)
{
 var progressTextBlock = sender.findName("progressTextBlock");

 progressTextBlock.Text = (Math.round(args.progress * 100)) + "%";
}

function appDownloadComplete(sender, args)
{}
</script>

 I typically include these event handlers in the same JavaScript script block that holds the default Silverlight error handler.
 This listing shows the onSourceDownloadProgressChanged and onSourceDownloadComplete event handlers referenced in listing 25.3. The onSourceDownloadProgressChanged event will fire any time the progress of a download has changed by 0.5 percent or more. If this event is triggered, you may
 access the total progress through the second parameter of the onSourceDownloadProgressChanged event. This parameter exposes a floating-point property called progress. The value of this property is between 0.0 and 1.0, so you must multiply the value by 100 in order to convert the value to
 a percentage. When the progress has reached 1.0, the onSourceDownloadComplete event will fire.

 The onSourceDownloadComplete event will fire when the requested Silverlight application has been completely downloaded. Because the Silverlight application
 will automatically start when it’s completely downloaded, you probably won’t use this event. Instead, you’ll probably use
 the in-application Application.Startup event mentioned earlier in this book, because at this point, you can begin using managed code instead of relying on scripted
 code.

 Sometimes you need to provide more than just a preloader. Sometimes you need a way to download whole portions of the application
 on demand, or at least in a lazy way. For these scenarios, the Managed Extensibility Framework is the way to go.

 25.3. Summary

 A custom, branded install experience for the plug-in and a custom preloader are both extremely simple to create—far less work
 than the overall application. If you have a designer on-team, it can often be as simple as a few graphics and some basic XAML.

 But those little touches are what differentiate a great application from a good application. They’re also the types of changes
 that keep users engaged and reduce the drop-off of new users. The return is great compared to the effort involved.

 The first customization is for the plug-in install. When a new user without the Silverlight plug-in comes to your application,
 you have the opportunity to engage them and get them to install Silverlight. It’s through solid efforts in this space that
 Silverlight gains market penetration and becomes easier to use in your applications.

 The second customization is for the application preloader or splash screen. This is what you want to show the user while your
 application is loading. Most applications with a significant number of images or other media, packaged into the .xap to avoid
 a multitude of lazy loads later, are really big and benefit from some download progress information. Sure, you could use the
 generic Silverlight spinning balls animation; but to look professional, you want to use something that fits the design of
 your application and seamlessly sits in your site.

 Combine both customizations, and you have a winning combination that will help increase eyeballs and keep visitors interested
 and engaged.

 I hope you’ve enjoyed this book; I welcome your comments! If you liked it, I encourage you to write an online review on your
 blog or on a retailer’s web site (such as Amazon.com). The official forum for this book can be found on the publisher’s web site at www.manning.com/pbrown, where you can ask questions, post comments, and report any errata. You can also reach me on twitter at @Pete_Brown and on
 my web site at http://10rem.net. I encourage you to join me in both places to get updates and expansions to the content in this book and more. Thank you!

Appendix A. Database, connection, and data model setup

 This chapter covers

 	Setting up a data connection

 	Creating an entity data model

In several examples in this book, including those in reporting (see chapter 19), MVVM (see chapter 16), and WCF RIA Services (see chapter 17), we need to work against database data and an entity data model. For this you’ll need SQL Server with the AdventureWorks
 database loaded.

 In this appendix, we’ll install the database, and create the database connection and the entity data model. The entity data
 model will be added to the ASP.NET web project in your Silverlight solution.

 A.1. Install the AdventureWorks database

 If your database installation doesn’t already contain the AdventureWorks database, visit http://msftdbprodsamples.codeplex.com/ to download the latest version for your database version.

 The CodePlex database sample site includes a number of database releases for the various editions of SQL Server, currently
 up to SQL Server 2008 R2. My own dedicated database server is running SQL Server 2008, and I have a local SQL Server Express
 2008 database instance that came with Visual Studio 2010. The sample databases will install on either one.

 A.1.1. Installing on a dedicated SQL Server instance

 In this setup and in all of my examples, I’m using SQL Server 2008 on a dedicated server. You can install locally or use a
 separate server or virtual machine (VM). Though I haven’t tested with older versions, this should also work on SQL Server
 2005. A default installation of Visual Studio 2010 up-level versions (such as Pro and Ultimate) includes SQL Server Express
 2008. If you have an MSDN subscription, you can also download the developer editions of SQL Server through your subscription
 program.

 If you have a full SQL Server 2008 installation, you can download the full MSI and install the suite of databases. Once the
 database is installed, you can set up the database connection and create the entity data model.

 The CodePlex site includes a walkthrough (kept current with the releases) showing how to install the sample databases. Depending
 on the engine you’re using and the options selected when you installed your database server, some databases may not be available
 to you. The only database we use in this book is AdventureWorks, also called AdventureWorks OLTP. You can ignore the warehousing
 and reporting databases if you wish, as I don’t use them in the examples in this book.

 If you’re not using a full dedicated installation of SQL Server, you’ll want to install using SQL Server Express.

 A.1.2. Installing on SQL Server Express

 SQL Server Express comes with most editions of Visual Studio and installs by default. It’s the default database server used
 for ASP.NET membership, role, and session information on a development machine. But since it doesn’t install any client tools,
 many folks don’t realize it’s there.

 As with the dedicated SQL Server instance install, you can download the full MSI and install the suite of databases. You can
 safely ignore the warehousing and reporting databases. Once the database is installed, you can set up the database connection
 and create the entity data model.

 If you’re not running a full instance of SQL Server, the databases will install locally with SQL Server Express. When using
 SQL Server Express, you have two options:

 1. Install the databases locally, then use them like any other SQL Server installation (doesn’t work in all install scenarios)

 2. Install the databases locally, then drag the AdventureWorks.mdb file into your App_Data folder on the asp.net project

 I prefer the second option, as it simplifies the creation of the database connection, and is supported in almost every installation
 scenario. But either option will typically work.

 Regardless of whether you used a local SQL Server instance or a remote one, once you have the AdventureWorks database installed,
 you’ll need to create the database connection and the entities.

 A.2. Database connection and entities

 First create a new Silverlight project for the example you’re following. Make sure you create the associated web project (the
 default action), as that’s where the connection information and any services will live. The new project dialog for the default
 Silverlight project type will look like figure A.1. The dialog for the Silverlight Business Application template will be different, and will have the options already set.

 Figure A.1. When creating the Silverlight application, be sure to host the application in a new Web Application.

 [image:]

 Once you have the project created, the next step is to add the database connection and create entities.

 Right-click the web project in the solution explorer and choose Add New Item. In the Data section of the installed templates,
 select ADO.NET Entity Data Model. Name that entity data model AdventureWorksEntities.edmx. Figure A.2 shows the dialog with the correct template selected and named.

 Figure A.2. Creating the AdventureWorksEntities entity data model

 [image:]

 Once you click Add, Visual Studio will walk you through a wizard that makes the process of generating the model pretty easy.
 In the first page of the wizard, choose Generate from database and hit Next. The other option, Empty model, would require
 you to build the entities from scratch. Figure A.3 shows the wizard dialog with the correct option selected.

 Figure A.3. The first step of the Entity Data Model Wizard. Be sure to choose Generate from Database.

 [image:]

 You’ll then be presented with the Choose Your Data Connection step, as shown in figure A.4. If the AdventureWorks database isn’t located in the connection list, click the New Connection button and create a new Microsoft SQL Server (SqlClient) connection to your database.

 Figure A.4. The Choose Your Data Connection dialog box. If you don’t already have an AdventureWorks connection created, click the New
 Connection button. This screenshot shows the data connection dialog with a valid data connection already selected by default.

 [image:]

 If you already have a connection for AdventureWorks set up, select that. The authentication method chosen will differ depending
 upon your SQL Server setup. Figure A.5 shows how my dialog looks, with all the interesting bits redacted.

 Figure A.5. Creating a new connection to the AdventureWorks database. Be sure to test the connection.

 [image:]

 Once the connection is created, allow the dialog to save the entity connection string as AdventureWorksEntities. Also, if you’re using SQL Server authentication, check the option to include the sensitive data (password) in the connection
 string, as shown in the two radio buttons in the middle of figure A.4.

 If saving the connection information makes you uncomfortable, you can either try with Windows Authentication (depends on machine/network
 setup) or create a dedicated SQL Server account with limited rights just for the sample. Of the choices, I recommend the dedicated
 SQL Server account.

 Once the connection is picked or newly set up, you’ll be prompted to select the entities to be added to the model.

 A.2.1. Choosing the entities to create

 On the Choose Your Database Objects page, select the Employee (Human Resources) table and the Contact (Person) table. Leave
 the other options as is, including setting the namespace to AdventureWorksModel. Figure A.6 shows the correct selected tables and the correct model name.

 Figure A.6. Select the Contact and Employee tables from the AdventureWorks database. Leave the model namespace set to AdventureWorksModel.

 [image:]

 You can of course name the model anything you’d like. But to follow the examples in the book and use the code listings, you’ll
 want to use the names indicated in the screenshots here.

 At this point, you’re able to finish the wizard. The wizard will process for a few seconds, then add the connection information
 to your configuration file, and the model .edmx and .edmx.cs files to your web project. The created .edmx file should look
 something like figure A.7 when opened in the designer.

 Once you have the data model in place, build the solution to get all the types loaded, and continue with the rest of the sample
 in the chapter.

 Figure A.7. The AdventureWorks model viewed in the model designer. Double-click the .edmx file in the web project to view it on the design
 surface.

 [image:]

Index

 [A][B][C][D][E][F][G][H][I][J][K][L][M][N][O][P][Q][R][S][T][U][V][W][X][Y]

 A

 absolute
 file path
 path
 sizing
 URIs

Abstract ASX element

AcceptsReturn property

access-policy element

accessing
 cross-domain
 local files
 special folders

AcquiringLicense state

Action property

actions.
 See behaviors.

Activate property

ActualHeight property

ActualWidth property

add methods

Add Service Reference dialog box

adding
 assemblies
 links to top menu
 menu items
 new page
 views

AddPropertyValue method

Adobe AIR

Adobe Flash
 cross-domain policy

Advanced Stream Redirector.
 See ASX.

AdventureWorks database, 2nd
 choosing entities
 connecting
 installing
 installing on dedicated SQL Server
 installing on SQL Server Express

Ajax

alert

Alert method

alignment
 center
 left
 right

allow-from element

Alt modifier key

anchorPostion parameter

Angle property

AngleX property

AngleY property

animations
 application performance
 beginning and end
 bouncing ball
 changing a visual property
 controlling duration
 controlling playback speed
 defining a storyboard resource
 delayed start
 easing functions
 episodic
 fade
 fluid
 From property
 Geometry
 grouping into storyboards
 jagged
 jerky, 2nd
 keyframe timing
 keyframing
 looping
 motion
 playing in reverse
 property types
 Rectangle
 reset to begining
 spring
 storyboarding
 text hinting
 time-related properties
 timeline
 triggering in response
 value precedence
 x and y coordinates

annotations
 and validation

Any Source Multicast

APIs
 bitmap API
 Media Stream Source API

App.xaml file

Append file mode value

Apple
 Command key
 modifier key
 OS X

Apple Macintosh

Application
 ResourceDictionary

application
 dependencies
 initialization

Application class
 loading embedded resources

Application object, 2nd

Application_Startup

Application_UnhandledException

Application.Current.InstallState property

ApplicationName property

applications
 Ajax
 business logic
 connecting to others
 creating elevated trust
 creating out-of-browser
 dependencies
 manifest files
 navigation application
 security
 signed
 startup process
 themes
 unsigned

ApplicationStrings class

ApplicationUnhandledExceptionEventArgs

ApplyTemplate method

AppManifest.xaml, 2nd

AppManifest.xml
 out-of-browser

architecture
 WCF RIA Services

ArcSegment class

Arial font

arrange
 pass
 step

Arrange method

ArrangeOverride function

arranging content, 2nd

Arrow cursor

ASMX web service

ASP.NET, 2nd, 3rd
 authentication and authorization
 forms-based authentication
 Silverlight control

assemblies
 adding
 DataAnnotations
 Microsoft.Expression.Interactions.dll
 Microsoft.SilverlightMediaFramework.Plugins.Progressive.dll
 navigating to others
 System.ComponentModel.DataAnnotations
 System.ServiceModel.PollingDuplex
 System.ServiceModel.Web
 System.Windows.Controls.Data
 System.Windows.Controls.DomainServices
 System.Windows.Interactivity.dll

assembly caching

AssemblyPart

Association attribute

ASX elements
 Abstract
 Asx
 Author
 Base
 Copyright
 Entry
 MoreInfo
 Param
 Ref
 Title

ASX files

asynchronous communication
 service call
 testing
 web service calls

asynchronous validation

AsyncState property

Atom
 standard

Attach method

AttachAsModified method

attached properties, 2nd, 3rd, 4th
 Column
 ColumnSpan
 layout
 OrbitPanel example
 Row
 TargetName, 2nd
 TargetProperty, 2nd
 Triggers

attributes
 Association
 DataMember, 2nd
 Display
 Editable
 for validation
 http-request-headers
 include-subpaths
 Invoke
 Key
 Path
 Port
 Property
 Protocol
 QueryAttribute
 Required
 RequiresRole
 Resources
 RoundtripOriginal
 ScriptableMember
 ScriptableType
 StringLength
 TemplatePart
 TemplateVisualState
 uri
 Value
 x:Key, 2nd
 XmlIgnore

Attributes property

audio
 balance
 capturing with video
 content properties
 multitrack
 raw audio
 stereo
 track count
 volume

AudioStreamCount property

AudioStreamIndex property

authentication
 definition
 forms-based
 requiring
 Windows

authentication credentials

Authentication property

AuthenticationService class

Author ASX element

authorization
 definition
 role-based

AutoEllipsis property

AutoGenerateColumns property

AutoGenerateField property

AutoGenerateFilter property

Automatic duration value

automatic sizing

automation.
 See COM.

AutoPlay property, 2nd

AutoReverse property
 impact on duration

autoUpgrade option

AvailableFreeSpace property, 2nd

AvailableSpace parameter

 B

 Back button

BackEase class

background, 2nd

Background property, 2nd, 3rd

backslash restrictions

Balance property

Base ASX element

base types

basic marker

BasicHttpBinding class

BasicHttpSecurityMode enumeration

Begin method

BeginGetRequestStream method

BeginGetResponse
 event handler
 method

BeginningEdit event

BeginOpen method

BeginPrint event, 2nd

BeginStoryboard class, 2nd

BeginTime property

behaviors, 2nd
 CallMethodAction
 creating
 DataTrigger
 FluidMoveBehavior
 included with Expression Blend

Bézier curve

BezierSegment class

BiDi.
 See bidirectional text.

bidirectional text

binaries
 sharing

Binding, 2nd, 3rd, 4th

binding
 binding source and target
 to collections
 data
 DataForm class
 to indexed elements
 to objects
 RelativeSource Self
 source
 support in INotifyDataErrorInfo interface
 syntax, 2nd, 3rd, 4th
 to properties
 to UI elements
 ValidatesOnDataErrors property

binding modes
 OneTime
 OneWay, 2nd
 TwoWay, 2nd, 3rd, 4th

BindingMode enumerator

bitmap API

bitmap images
 creating at runtime
 creating from UI elements
 Deep Zoom
 direct pixel access
 stretching
 supported formats

BitmapImage class, 2nd

BitmapSource class

Black font weight constant

BlurEffect class

BlurRadius property

Body property

Bold element

Bold font weight constant

BorderBrush property

BorderlessRoundCornersWindow

BorderThickness property

Bottom enumeration value

BounceEase class

bouncing ball animation

browser
 cache, 2nd
 connection count limit
 Internet Explorer 8
 journals
 limitations
 name
 navigating
 navigation
 networking API
 plug-in
 properties
 redirecting
 security

browser journals
 controlling

BrowserHttp property

BrowserInformation property

BrowserVersion property

Brush, 2nd
 Background property
 color changing animation
 coordinate space
 Foreground property

brushes
 on Canvas
 color animation
 Fill
 ImageBrush
 LinearGradientBrush
 RadialGradientBrush
 SolidColorBrush
 Stroke
 on TextBlock
 on TextBox
 VideoBrush

bubbling

buddy class

buffering progress

Buffering state

BufferingProgress property, 2nd

BufferingProgressChanged event, 2nd

BufferingTime property

build actions
 Resource

buildPromptHTML

built-in effects
 blur
 drop shadow

bundled resources

business logic
 factoring
 in entities
 where to put

Button class, 2nd, 3rd
 visual states

ButtonBase class, 2nd

buttons

By property

 C

 cache visualization

cached composition

caching
 assemblies
 frame cache settings
 page cache settings
 pages
 Smooth Streaming

CalculateVacationBonus method

CallMethodAction behavior

Cancel property

CanExecute property

CanExecuteChanged event

CanGoBack property

CanGoForward property

CanMoveToFirstPage property

CanMoveToNextPage property

CanPause property, 2nd

CanSeek property

Canvas

Canvas element
 arranging content
 position offsets
 setting offset position programmatically
 stack order

capture devices
 accessing
 changing the default
 video

CaptureDeviceConfiguration class

capturing
 audio with video
 from webcams and microphones
 still images
 video

Cascading Style Sheets.
 See CSS.

CDN

cells
 spanning

Center
 enumeration value
 property

center text alignment

CenterX property

CenterY property

certificates

change methods

change-notification handler

CheckAndDownloadUpdateAsync

CheckAndDownloadUpdateCompleted event

CheckBox class
 three-state checkbox
 visual state management

Checked visual state

child elements

Children property, 2nd, 3rd

ChildWindow class

ChildWindow element
 customizing
 members
 properties
 showing

Chrome

chrome
 custom window chrome

CircleEase class

classes
 ApplicationStrings
 ArcSegment
 AuthenticationService
 BackEase
 BasicHttpBinding
 BeginStoryboard, 2nd
 BezierSegment
 BitmapImage, 2nd
 BitmapSource
 BlurEffect
 BounceEase
 Brush, 2nd
 buddy class
 Button, 2nd
 ButtonBase, 2nd
 CaptureDeviceConfiguration
 CheckBox
 ChildWindow
 CircleEase
 Clipboard
 ColorAnimation
 ComboBox
 CompositionTarget
 ContentControl, 2nd, 3rd
 ContentPresenter, 2nd, 3rd
 Control, 2nd, 3rd, 4th
 ControlTemplate
 CubicEase
 CustomValidationAttribute
 DataContractJsonSerializer
 DataForm
 DataGrid
 DataGridBoundColumn
 DataGridCheckBoxColumn
 DataGridTemplateColumn
 DataGridTextColumn
 DataTemplate, 2nd, 3rd
 DeepZoomImageTileSource
 DependencyObject
 DependencyProperty
 DependencyPropertyChangedEventArgs
 DiscreteColorKeyFrame
 DiscreteDoubleKeyFrame
 DiscreteObjectKeyFrame
 DiscretePointKeyFrame
 DomainDataSource
 DomainService
 DoubleAnimation
 DropShadowEffect
 ElasticEase
 Ellipse, 2nd
 EllipseGeometry
 EndpointAddress
 Entity
 business logic
 EnumDataTypeAttribute
 EventArgs
 EventTrigger, 2nd, 3rd
 Expander
 ExponentialEase
 FileInfo
 FilterDescriptor
 Frame
 FrameworkElement
 Geometry
 GeometryGroup
 GradientStop, 2nd
 HtmlDocument, 2nd
 HtmlElement, 2nd
 HtmlPage, 2nd, 3rd
 HtmlWindow, 2nd
 HttpWebRequest, 2nd
 HyperlinkButton
 Image
 ImageBrush
 InvokeOperation
 IsolatedStorageFile
 ItemsControl, 2nd, 3rd
 ItemsPanel
 ItemsPresenter
 JsonObject
 Keyboard
 KeyEventArgs
 LayoutInformation
 Line
 LinearColorKeyFrame
 LinearDoubleKeyFrame
 LinearGradientBrush, 2nd
 LinearPointKeyFrame
 LineGeometry
 LineSegment
 ListBox
 ListBoxItem
 MediaElement
 MediaStreamSource
 MessageReceivedEventArgs
 metadata class
 MouseEventArgs
 MultiScaleImage
 MultiScaleTileSource
 NavigationService
 NotificationWindow
 OpenFileDialog
 Page, 2nd
 Panel
 Path
 PathFigure
 PathGeometry
 PathSegment
 PixelShader
 Point, 2nd, 3rd
 PointAnimation
 PollingDuplexHttpBinging
 PolyBezierSegment
 Polygon, 2nd, 3rd
 Polyline, 2nd
 PolyLineSegment
 PolyQuadraticBezierSegment
 Popup
 PowerEase
 PrintDocument
 PrintPageEventArgs
 PropertyChangedCallback
 PropertyMetadata, 2nd
 QuadraticBezierSegment
 QuadraticEase
 QuarticEase
 QuinticEase
 RadialGradientBrush
 RadioButton
 RangeAttribute
 RangeBase
 Rectangle
 RectangleGeometry
 RegularExpressionAttribute
 RenderingEventArgs
 RequiredAttribute
 ResourceDictionary
 ResourceWrapper
 SaveFileDialog
 ScaleTransform
 Selector, 2nd
 Setter
 Shape, 2nd
 SilverlightHost, 2nd
 SocketAsyncEvents
 SolidColorBrush
 SplineColorKeyFrame
 SplineDoubleKeyFrame
 SplinePointKeyFrame
 StackPanel
 Storyboard
 Stream
 StreamReader
 StreamResourceInfo
 StringLengthAttribute
 Style
 SynchronizationContext, 2nd
 SyndicationFeed
 TabControl
 TabItem
 TemplatePartAttribute
 TemplateVisualStateAttribute
 TextBlock
 Timeline, 2nd
 TimelineMarker
 TimelineMarkerRoutedEventArgs
 TimeSpan, 2nd
 ToggleButton, 2nd, 3rd
 TouchFrameEventArgs
 TouchPoints
 TypeConverter
 UdpAnySourceMulticastClient
 UdpSingleSourceMulticast
 UriMapper
 UserControl
 UserRegistrationService
 ValidationAttribute
 ValidationContext
 VideoBrush, 2nd
 VideoCaptureDevice
 VideoSink
 ViewModel
 VisualState, 2nd
 VisualStateGroup, 2nd
 VisualStateManager, 2nd
 VisualStateTransition
 VisualTransition
 VisualTreeHelper
 WebRequestCreator
 Window
 WriteableBitmap, 2nd
 XamlReader
 XDocument
 XElement
 XmlReader
 XmlSerializer

ClearType, 2nd
 orientation

Click event, 2nd

ClickMode
 enumeration
 property

client HTTP stack
 creating
 using automatically

client-side playlists

clientaccesspolicy.xml, 2nd

ClientBin
 directory

ClientHttp property

clipboard

Clipboard class

clipping, 2nd

clock tick

Close method

CloseAsync method

Closed
 event
 state

closed
 DropDownClosed

CloseMedia method

Closing event

CLR, 2nd, 3rd
 types
 converters
 wrappers

code
 factoring
 sharing

code-behind, 2nd
 compared to Model-View-ViewModel pattern
 compared to ViewModel
 factoring out into ViewModel
 MvvmApplication sample application
 and web services

codecs
 H.264

CodePlex
 WPF Pixel Shader Effects library

Collapsed
 enumeration value
 visual state, 2nd

collecting
 ink
 sensitive data

collections
 data binding
 SupportedFormats

Color
 property, 2nd, 3rd
 animation

ColorAnimation class

colors
 hexadecimal
 multiple transitions

Column property

ColumnDefinitions property

Columns property

ColumnSpan attached property

ColumnSpan property

COM, 2nd
 automating Microsoft Excel
 detecting availability
 Location API
 using for speech

ComboBox class

Comic Sans font

CommandButtonsVisibility property

commands
 surfacing to page
 in XAML

Commodore 64

Common Language Runtime.
 See CLR.

CommonStates visual state group

communication
 asynchronous

communication APIs

Completed event

CompletedSynchronously property

complex data types

complex property

composing dzi files

composite geometries

CompositeTransform

CompositionTarget class

Condensed font stretch constant

configuration file

Confirm method

connected line segments

connecting
 to AdventureWorks database
 connection count limit
 to data sources
 to other applications
 service references
 to sockets
 to WCF services

connection count limit

constructors
 NetworkCredential
 XAML rules

consuming
 REST services

content
 build actions
 files
 overlapping
 protected
 rendering

content distribution networks.
 See CDN.

Content property, 2nd, 3rd, 4th, 5th

content-access key

ContentControl, 2nd, 3rd
 buttons
 data templates
 flexibility

ContentPresenter class, 2nd, 3rd

ContentTemplate property, 2nd, 3rd, 4th

context

contracts
 control template contract

control
 properties
 templates
 contract
 visual states

Control class, 2nd, 3rd, 4th
 buttons
 lookless controls

Control element
 modifier key

controlling
 browser journals

controls
 customizing
 DataPager
 DomainDataSource
 ListBox
 reusable
 RichTextBox
 WebBrowser
 WebBrowserBrush

ControlStyles.xaml file

ControlTemplate class
 parts
 using as part of a Style

Convert method

ConvertBack method

Converter property

ConverterCulture property

ConverterParameter property

converting
 JSON

CookieContainer property

cookies, 2nd
 managing
 with Silverlight

CookiesEnabled property

coordinate space

Copyright
 ASX element

CoreCLR, 2nd

cost-effective media delivery

coupling
 loose

Courier font

Create file mode value

create methods

Create Read Update Delete.
 See CRUD.

CreateDirectory method

CreateNew file mode value

createObject

createObjectEx, 2nd

createObjectEx function
 id parameter
 parameters
 parentElement parameter
 source parameter

createObjectEx method

creating
 AdventureWorks entities
 bitmap images
 client HTTP stack
 custom controls
 custom panels
 domain services
 images from UI elements
 Mandelbrot fractals
 navigation application
 presentation models
 raw audio
 raw video
 reusable templates
 sound samples
 templates

Credentials property

cross-domain
 applications
 policy element
 policy file
 TCP sockets
 URI

cross-field validation

crossdomain.xml

CRUD

CSS, 2nd, 3rd, 4th

CssClass property

CubicEase class

CultureInfo

curly braces, 2nd
 syntax

CurrentSource property

CurrentState property, 2nd, 3rd

CurrentStateChanged event

Cursor property

cursors
 Arrow
 Eraser
 Hand
 IBeam
 SizeNS
 SizeWE
 Stylus
 Wait
 web standards

custom controls
 base types
 control template contract
 default template
 properties
 testing
 visual states

custom pixel shader effects
 setting up environment

custom preloaders
 creating
 integrating
 monitoring load progress

customizing
 controls
 field descriptions
 field labels
 layout
 out-of-browser navigation
 panels
 Silverlight install experience

CustomValidationAttribute class

 D

 data
 annotating
 cookies
 displaying, 2nd, 3rd
 domain services
 downloading
 exposing
 filtering
 formatting
 grouping
 integrity
 loading from a file
 OData format
 paging
 receiving
 sending
 sorting
 updating
 usable

data access
 factoring

data annotations
 for validation

data binding
 binding modes
 binding syntax
 to collections
 converting values
 customizing display
 dependency properties, 2nd
 design time binding
 fallback values
 formatting values
 to indexed elements
 to keyed (string indexed) elements
 null values
 to objects
 to properties
 relative source binding
 runtime
 source
 string format
 to UI elements
 value converters

data integrity

data source, unbind

data sources
 connecting to

data templates, 2nd
 creating
 with ContentControl
 with ItemsControl

data types
 complex
 float
 float2
 float4

DataAnnotations assembly

databases
 connecting

DataContext
 property, 2nd

DataContractJsonSerializer class

DataForm class
 binding
 customizing
 displaying data
 and DomainDataService control
 templates
 and WCF RIA Services

DataGrid class
 automatically generating columns
 customizing data rows
 customizing row and column headers
 displaying data
 editing data
 manually generating columns
 sorting
 versus ItemControl

DataGridBeginningEditEventArgs parameter

DataGridBoundColumn class

DataGridCheckBoxColumn class

DataGridHeaders enumeration

DataGridRowDetailsVisibilityMode enumeration

DataGridTemplateColumn class

DataGridTextColumn class

DataMember attribute, 2nd

DataMemberChanged event

DataMemberChanging event

DataPager control

DataTemplate, 2nd, 3rd, 4th, 5th, 6th

DataTrigger behavior

DateTime

declarative resources, 2nd
 defining
 referencing at runtime

declaring
 dependency properties
 namespaces

Deep Zoom
 Composer
 showing images
 viewport
 zooming

DeepZoomImageTileSource class

default value
 value precedence

DefaultExt property

DefaultStateKey property

deferred
 download

delete methods

DeleteDirectory method

DeleteFile method

DeliveryMethod property

Delta property

dependencies

dependency properties, 2nd
 attached properties
 data binding, 2nd
 declaring
 LeftProperty
 OrbitPanel example
 PrintPageCount
 TopProperty
 value precedence

DependencyObject, 2nd

DependencyProperty, 2nd, 3rd.
 See also dependency properties.

DependencyProperty class, 2nd
 naming guidelines

DependencyPropertyChangedEventArgs class

deploying media from a web application

Deployment element

Deployment.ExternalParts

Deployment.Parts, 2nd

Description property

DescriptionViewerPosition property

deserialization

Deserialize method

design patterns
 Inversion of Control pattern, 2nd
 Model-View-Controller, 2nd
 Model-View-ViewModel, 2nd
 PresentationModel pattern

design time binding

development
 Expression Blend
 setting up environment
 user interfaces

dialog boxes, 2nd
 displaying with ChildWindow control
 launching
 retrieving results

DialogResult property

Dictionary structure

digital rights management.
 See DRM; PlayReady.

Direction property

DirectlyOver property

DirectX SDK

dirty state

Disabled visual state

discrete
 interpolation
 keyframe types

DiscreteColorKeyFrame class

DiscreteDoubleKeyFrame class

DiscreteObjectKeyFrame class

DiscretePointKeyFrame class

display
 customizing

Display attribute

DisplayIndex property

displaying
 bitmap images
 data, 2nd, 3rd
 media
 order
 rich text
 text, 2nd
 validation errors.
 See media.

displaying media.
 See media.

DisplayMemberBinding property

DisplayMemberPath property, 2nd

DisplayMode property

DnsEndPoint

DnsSafeHost property

Document Object Model.
 See DOM.

Document property

DocumentElement property

DocumentUri property

DOM, 2nd
 accessing the browser window
 calling from managed code
 enabling access to
 HTML DOM
 variants supported by Silverlight
 W3C specification

domain context
 properties and methods

domain element

domain services
 connecting with code
 creating
 domain context
 exposing to clients
 method types
 using from Silverlight

DomainDataService control
 and DataForm control

DomainDataSource class
 and filter descriptors

DomainDataSource control

domains
 cross-domain access

DomainService class

dots per inch.
 See dpi.

DoubleAnimation class

downloading data

DownloadProgress property, 2nd

DownloadProgressChanged event, 2nd

downloads
 buffer
 completion percentage

96dpi

dpi

DragMove method

DragResize method

drawing
 line art

DrawingAttributes property

DRM.
 See also PlayReady.

DropDownClosed event

DropDownOpened event

DroppedFramesPerSecond property

DropShadowEffect class
 properties

duplex
 communication
 services

Duration
 property
 structure

dynamic
 playlist creation
 resizing

dzi file

 E

 EaseIn easing mode

EaseInOut easing mode

EaseOut easing mode

easing functions
 BackEase
 BounceEase
 CircleEase
 CubicEase
 custom
 EaseIn mode
 EaseInOut mode
 EaseOut mode
 ElasticEase
 ExponentialEase
 PowerEase
 QuadraticEase
 QuarticEase
 QuinticEase

Eastern Asian fonts

Eclipse

Editable attribute

editing text

EditTemplate property

Effect property

effects
 blur
 built-in
 custom pixel shaders
 drop shadow
 state-based effects
 transitioning effects
 tricks and considerations

ElasticEase class

element
 properties
 tree

ElementName

elements
 access-policy
 allow-from
 Bold
 Canvas
 children
 ColumnDefinition
 cross-domain-policy
 DataTemplate
 domain
 finding
 FrameworkElement
 grant-to
 Grid
 GridSplitter, 2nd
 Hyperlink
 InkPresenter
 InlineUIContainer
 Italic
 moving programmatically
 Paragraph
 PasswordBox
 policy
 properties
 resource
 RichTextBox
 RowDefinition
 socket-resource
 Span
 StackPanel
 TextBlock, 2nd, 3rd
 TextBox
 Transform
 UIElement, 2nd

elevated trust
 capabilities of
 creating applications
 detecting
 full-screen mode
 signed applications
 unsigned applications

Ellipse class, 2nd
 animation
 comparison with EllipseGeometry
 control templates
 keyframe animation
 properties

EllipseGeometry class
 comparison with Ellipse

EMBED tag

embedded
 mode

embedded files, 2nd
 URL for

embedding fonts

Emoticon
 keyboard shortcut
 sort by Keys property
 sort by Name property

EnableCacheVisualization property

EnableFrameRateCounter

EnableGPUAcceleration parameter

EnableGPUAccelerationProperty

enableHtmlAccess

encryption

EndGetResponse method

EndPoint property

EndpointAddress

endpoints
 JSON
 OData
 SOAP

EndPrint event, 2nd

entering
 rich text
 text

Entity class
 business logic

Entity Framework Model

EntityContainer property

EntityState property

Entry ASX element

entry point, 2nd

EntryPointAssembly

EntryPointType

EnumDataTypeAttribute class

enumeration values.
 See values.

enumerations
 BasicHttpSecurityMode
 ClickMode
 DataGridHeaders
 DataGridRowDetailsVisibility Mode
 ModifierKeys
 System.Windows.Media.Media ElementState
 UriKind

Environment.GetFolderPath method

Eraser cursor

error handling

Error property

errorArgs

ErrorsChanged event

event bubbling

event handlers
 BeginGetResponse
 referencing from code

EventArgs class

events
 BeginningEdit
 BeginPrint, 2nd
 bubbling
 BufferingProgressChanged, 2nd
 CanExecuteChanged
 CheckAndDownloadUpdateCompleted
 Click, 2nd
 Closed
 Closing
 Completed
 CurrentStateChanged
 DataMemberChanged
 DataMemberChanging
 DownloadProgressChanged, 2nd
 DropDownOpened
 EndPrint, 2nd
 ErrorsChanged
 FragmentNavigation
 FrameReported
 FullScreenChanged
 ImageLoaded
 in XAML
 KeyDown, 2nd
 KeyUp, 2nd
 LayoutCompleted
 Loaded, 2nd
 LoadedData
 MarkerReached, 2nd
 MediaEnded
 MediaFailed, 2nd
 MediaOpened, 2nd, 3rd
 MotionFinished
 MouseEnter
 MouseLeave
 MouseLeftButtonDown, 2nd, 3rd
 MouseLeftButtonUp, 2nd
 MouseMove, 2nd
 MouseRightButtonDown
 MouseRightButtonUp
 Navigated
 Navigating, 2nd
 NavigationFailed
 NavigationStopped
 NetworkAddressChanged
 NotificationWindowClosed
 onError
 OnFragmentNavigation
 onLoad
 OnNavigatedFrom
 OnNavigatedTo
 OnNavigatingFrom
 onSourceDownloadComplete
 onSourceDownloadProgressChanged
 PreparingCellForEdit
 PrintPage, 2nd
 referencing from code
 referencing in XAML
 Rendering, 2nd
 routed events
 Startup
 startup events
 TextChanged
 TextInput
 TextInputStart
 TextInputUpdated

EventTrigger class, 2nd, 3rd
 defining an action
 supported events

Excel
 automating with COM

Exception

ExceptionObject

exceptions
 combining
 combining with IDataErrorInfo interface
 IsolatedStorageException
 System.Exception
 validation
 ValidationException
 XmlParseException

Excl SMIL element

Execute method

Exit event

Expanded
 font stretch constant
 visual state, 2nd

Expander class

explicit styling

ExponentialEase class

exposing
 data
 domain services
 JSON endpoints
 OData endpoints
 SOAP endpoints

Expression Blend, 2nd, 3rd, 4th, 5th
 Assets panel

Expression Blend 4 SDK

ext namespace

extended controls
 System.Windows.Controls assembly
 TabControl

Extensible Application Markup Language.
 See XAML.

ExtensionPart

ExtraBlack font weight constant

ExtraBold font weight constant

ExtraCondensed font stretch constant

ExtraExpanded font stretch constant

ExtraLight font weight constant

F

 factoring
 business rules and logic
 code
 data access
 service calls

fade animation

fallback values

FallbackValue

FBA.
 See forms-based authentication.

fields
 cross-field validation
 customizing descriptions
 customizing labels

File
 object
 property

file formats
 PNG

FileInfo class

FileMode

files
 .g.cs file
 .xap
 .xap format
 App.xaml
 ASX format
 clientaccesspolicy.xml, 2nd
 configuration file
 content
 content files
 ControlStyles.xaml
 crossdomain.xml
 embedded
 embedded files
 ISX format
 manifest files
 media file lifecycle
 playlists
 prompting for
 resource files
 SDKStyles.xaml
 ServiceReferences.ClientConfig
 Silverlight.js, 2nd
 Smooth Streaming files
 source files
 linked
 shared
 StandardColors.xaml
 supported bitmap
 formats
 ToolkitStyles.xaml
 utility files
 WAX format
 ways to open
 WMX format
 WPL format
 WSX format
 WVX format

filesystem
 access restrictions
 available free space
 default quota
 deleting files and directories
 isolated storage
 listing files and directories
 reading files
 writing files

Fill
 property
 stretch option

FillBehavior property

FillRule property
 EvenOdd
 Nonzero

filter descriptors
 and DomainDataSource class

Filter property

FilterDescriptor class
 and DomainDataSource class

FilterDescriptors property

FilterIndex property

filtering
 filter descriptors

FilterOperator property

FinalSize parameter

finding elements

FindName method, 2nd

Firefox, 2nd

float type

float2 type

float3 type

float4 type

flow control

flow control elements
 Inline
 LineBreak
 Run

FluidMoveBehavior behavior

focus
 setting via JavaScript

Focus method, 2nd

Focused visual state

FocusStates visual state group

font stretch constants
 Condensed
 Expanded
 ExtraCondensed
 ExtraExpanded
 Medium
 Normal
 SemiCondensed
 SemiExpanded
 UltraCondensed
 UltraExpanded

font weight constants
 Black
 Bold
 ExtraBlack
 ExtraBold
 ExtraLight
 Light
 Medium
 Normal
 SemiBold
 Thin

FontFamily property, 2nd

fonts
 Arial
 Comic Sans
 Courier
 Eastern Asian
 embedding
 Georgia
 Italic style
 Lucida
 Normal style
 subsetting
 Times New Roman
 Trebuchet
 TrueType
 Verdana

FontSize property, 2nd
 animation
 pixels versus points

FontStretch property, 2nd

FontWeight property, 2nd, 3rd

footers

Foreground property, 2nd

Forever duration value

formats
 MP3
 MP4
 Windows Media

formatting
 selected text

forms-based authentication

Forward button

FourCC codes

fractals.
 See Mandelbrot fractals.

FragmentNavigation event

fragments.
 See hashtags.

Frame class

Frame.CacheSize property

frameRate

FrameReported event

frames
 cache settings

FramesPerSecond property

FrameworkElement
 common properties
 data binding
 ResourceDictionary

FrameworkElement class
 styles

From property, 2nd
 default behavior

full-screen mode
 normal
 trusted applications

FullScreenChanged event

functions
 ArrangeOverride
 createObjectEx function
 external validation functions
 GetIDsOfNames
 GetPrimaryTouchPoint
 MeasureOverride
 of Silverlight.js utility file
 Select

 G

 .g.cs file

Gecko

geometries
 composite
 path
 simple

Geometry class
 animation

GeometryGroup class

Georgia font

GET

GetDefaultVideoCaptureDevice method

GetDiagnosticAsync method

GetDirectoryNames method

getElementById

GetElementById method

GetElementsByTagName method

GetErrors method

GetFileNames method

GetIDsOfNames function

GetIsNetworkAvailable method

GetLayoutClip method

GetLayoutSlot method

GetLeft method

GetOriginal method

GetPosition method

GetPrimaryTouchPoint function

GetProperty method

GetPropertyValue method

GetResourceStream method

GetResponseStream method

GetSampleAsync method, 2nd

GetStyleAttribute method

GetStylusPoints method

GetTemplateChild method

GetTop method

GetUserStoreForApplication method

GetUserStoreForSite method, 2nd

GetValue method, 2nd

GoBack method

GoForward method

Google Chrome

GoToState method

GPS

GPUs
 hardware acceleration

gradient
 beginning and ending
 elliptical
 radial

GradientBrush class
 declared as a resource

GradientOrigin property

GradientStop
 property

GradientStop class, 2nd

grant-to element

graphics
 effects
 raster
 raster-based, 2nd
 vector-based

Grid
 ColumnDefinitions property
 dimensions of a row or column
 RowDefinitions property
 spanning content across multiple cells

Grid element
 absolute sizing
 adding rows or columns programmatically
 arranging content
 automatic sizing
 dynamic resizing
 removing rows or columns programmatically
 star sizing

grid lines

GridLength value

GridSplitter element, 2nd

GroupDescriptor object

grouping

grouping animations

GroupName property, 2nd, 3rd

 H

 H.264 codec

Hand cursor

Handled property, 2nd, 3rd

handling text

handwriting

hardware acceleration

HasChanges property, 2nd

HasCloseButton property

HasElevatedPermissions

HasErrors property

HasHeader property

hashtags

HasMorePages property

HasSideEffects property

HasTimeSpan property

HasValidationErrors property

Header property, 2nd

headers, 2nd
 HTTP Referer

HeadersVisibility property

headless application

height

Height property, 2nd, 3rd, 4th

Heuer, Tim

hexadecimal colors

High Level Shader Language

HLSL.
 See High Level Shader Language.

HoldEnd enumeration value

horizontal offset

HorizontalAlignment property

HorizontalContentAlignment property

host

Host property

host window
 basic properties
 changing chrome
 controlling
 minimizing and maximizing
 moving
 resizing
 restoring and closing

hosting HTML

Hover click mode

HTML
 EMBED tag
 hosting
 ID
 OBJECT tag
 table element
 tags, no support

HTML DOM.
 See DOM.

HtmlAttributeEncode

HtmlDocument class, 2nd

HtmlDocument object
 Body property
 DocumentElement property
 GetElementById method
 GetElementsByTagName method

HtmlElement class, 2nd

HtmlPage
 Document property

HtmlPage class, 2nd, 3rd

HtmlWindow class, 2nd

HTTP
 client stack
 message chunking

HTTP Referer header

HTTP verbs

http-request-headers attribute

HTTPS

HttpWebRequest

HttpWebRequest class, 2nd

Hyperlink element inline

HyperlinkButton class

 I

 I/O.
 See filesystem.

IAsyncResult

IAsyncResult interface

IBeam cursor

IChannelFactory

IChannelFactory interface

ICollectionView interface

ICommand interface
 members

icons
 out-of-browser

Id property

IDataErrorInfo interface
 combining with exceptions
 comparison with INotifyDataErrorInfo
 cross-field validation
 simple validation

IDispatch

IDuplexSessionChannel interface

IEditableObject interface

IEnumerable

IEnumerable interface

IEnumerator interface

ignoreBrowserVer

IgnoredValue property

ignoring methods

IIS Smooth Streaming.
 See Smooth Streaming.

IList interface

Image
 data binding

Image class
 animating the Opacity property
 animation
 pixellation
 preserving aspect ratios
 referencing loose resources
 stretching
 supported image formats

ImageBrush class

ImageLoaded event

images
 bitmaps
 creating at runtime
 creating from UI elements
 Deep Zoom
 direct pixel access
 Mandelbrot fractals
 manipulating
 pixellation
 preserving aspect ratio
 screenshots
 showing with Deep Zoom
 stretching
 zooming

ImageSource property, 2nd

IME.
 See input method editors.

implicit styling

in-browser
 comparison with out-of-browser

include-subpaths attribute

IncreaseQuotaTo method

indexed elements
 data binding

individualized DRM client

Individualizing state

infinite scroll

initialization parameters, 2nd

InitializeComponent

initParams, 2nd

ink
 collecting
 styling

InkPresenter

InkPresenter element

Inline flow control element

inline properties

inline styles

inline XAML

Inlines property

InlineUIContainer element

INotifyDataErrorInfo interface
 binding support
 comparison with IDataErrorInfo
 implementing

INotifyPropertyChanged

INotifyPropertyChanged interface, 2nd

input
 validating

input devices
 keyboard

input method editors

insert methods, 2nd, 3rd

Install method

installation, 2nd

installing
 AdventureWorks database
 Silverlight plug-in

InstallState

interactive media playback

interfaces
 IAsyncResult
 IChannelFactory
 ICollectionView
 ICommand
 IDataErrorInfo
 IDuplexSessionChannel
 IEditableObject
 IEnumerable
 IEnumerator
 IList
 INotifyDataErrorInfo
 INotifyPropertyChanged, 2nd
 IPagedCollectionView
 IQueryable
 ViewModels as

Internet Explorer
 colors
 DHTML Object Model
 in full screen
 Silverlight and ActiveX model
 understanding limits

Internet Explorer 8

Internet Standard Multicast

interpolation
 curves
 discrete
 linear
 spline
 types

InvalidOperationException

Inversion of Control pattern, 2nd

Invoke attribute

Invoke method

invoke methods, 2nd, 3rd

InvokeOperation class

InvokeScript method

IoC.
 See Inversion of Control pattern.

IPagedCollectionView interface

IQueryable interface

IsActive property

IsCaseSensitive property

IsChecked property

IsComposable property

IsDefault property

IsDropDownOpen property

IsEnabled property

IsFullScreen property

IsItemsHost property

IsLoaded

IsLoading property

IsMuted property

isolated storage
 administering
 available free space
 clearing all data
 creating directories
 default quota
 deleting files and directories
 increasing quota
 listing files and directories
 per domain quota
 physical locations
 quota
 reading files
 sensitive data, 2nd
 writing files

IsolatedStorageException

IsolatedStorageFile class

IsolatedStorageFileStream

IsolatedStorageFileStream object

IsPressed property

IsReadOnly property, 2nd, 3rd

IsSubmitting property

IsTabStop property

IsThreeState property

IsValid property

isWindowless

ISX files

Italic element

Italic font style

Items property, 2nd, 3rd, 4th

ItemsCollection

ItemsControl
 data binding
 data templates

ItemsControl class, 2nd, 3rd

ItemSource property

ItemsPanel class

ItemsPanel property

ItemsPresenter class

ItemsSource property, 2nd, 3rd

ItemsTemplate property

ItemTemplate property

IValueConverter

 J

 JavaScript
 calling managed code
 creating a Silverlight control
 custom splash screens
 invoking
 jQuery
 script tag

JavaScript Object Notation.
 See JSON.

jerky animation

JournalOwnership property

journals
 controlling

JPG image format

jQuery

JSON, 2nd, 3rd, 4th
 converting
 endpoints
 serialization

JsonObject class

JSP

 K

 Kaxaml

Key attribute

Key property

keyboard
 input limitations
 modifier keys
 responding to events

Keyboard class

KeyDown event, 2nd

keyed elements
 data binding

KeyEventArgs class

KeyEventArgs parameter

keyframe animation

keyframes
 timing
 types

KeySpline property
 control points
 curves for interpolation

keystrokes
 modifier keys

KeyTime property

KeyUp event, 2nd

 L

 LabelPosition property

lambda expressions, 2nd

LastOperation property

layout
 arrange pass
 arrange step
 with attached properties
 calculation
 customizing
 layout slots
 layout system
 measure pass
 measure step
 multipass
 orbital
 performance
 radial
 sizing and positioning
 subpixel rendering
 virtualization

layout panels
 Canvas
 Grid
 StackPanel

layout slots

layout system

LayoutCompleted event

LayoutInformation class

LayoutRoot control
 rerooting

Left
 enumeration value

Left property

left text alignment

LeftProperty dependency property

libraries
 referencing
 System.Windows.Interactivity

licensing server

Line class
 comparison with LineGeometry
 x and y coordinate pairs

linear interpolation

linear keyframe types

LinearColorKeyFrame class

LinearDoubleKeyFrame

LinearGradientBrush class, 2nd
 animation
 declared as a resource

LinearPointKeyFrame

LineBreak flow control element

LineGeometry class
 comparison with Line

LineHeight property

LineSegment class

links
 adding to top menu

LINQ
 and web services
 XLINQ
 to XML

LINQ to XML, 2nd
 parsing with

ListBox
 data binding

ListBox class
 control templates
 defining items at design time
 defining look and feel
 selecting items

ListBox control
 binding

ListBoxItem class

Load method, 2nd

load progress
 monitoring

Loaded event, 2nd

LoadedData event

LoadSize property

local file access
 reading from files
 writing to files

local values
 value precedence

LocalMessageReceiver object

LocalMessageSender object

Location API

logical trees XE

lookless controls

looping animation

loose coupling

loose resources
 referencing relatively
 retrieving with absolute URI

loose XAML

Lucida font

M

 MainWindow object

managed code
 calling DOM
 calling from JavaScript
 and scripting

managing
 cookies

Mandelbrot fractals

manifest files.
 See AppManifest.xaml.

manipulating images

MapUri method

Margin property

MarkerReached event, 2nd

Markers property

markup extensions
 StaticResource
 TemplateBinding

Matrix3dProjection

MatrixTransform

MaxDropDownHeight property

MaxLength property

MBR
 streaming

measure
 pass
 step

MeasureOverride function

media
 AcquiringLicense state
 animation
 audio
 audio volume
 available states
 bitmap images
 buffering progress
 Buffering state
 capturing audio with video
 capturing still images
 capturing video
 Closed state
 common properties
 controlling play state
 cost-effective delivery
 creating a media player with SMF
 delivery methods
 duration
 formats
 getting raw video data
 Individualizing state
 interactive playback
 length
 lifecycle
 metadata
 Opening state
 Paused state
 pausing not an option
 Playing state
 playlists
 progress bar
 progressive download
 progressive downloading
 protected content
 raw audio
 raw media
 raw video
 raw video stream
 setting the source
 SMF
 Smooth Streaming
 spring animations
 stereo balance
 Stopped state
 streaming audio
 timeline markers
 use permissions
 video
 Windows Media Streaming

Media SMIL element

Media Stream Source API

MediaElement
 sound volume
 VideoBrush

MediaElement class
 animation
 audio-specific properties
 automatic bit rate selection
 automatic play
 common media properties
 duration
 lifecycle
 media lifecycle
 media metadata
 playback state
 playlist support
 PlayReady
 programmatic positioning
 programmatically controlling playback
 progressive downloading
 Source property
 streaming media
 supported media formats
 timeline markers

MediaEnded event

MediaFailed event, 2nd

MediaOpened event, 2nd, 3rd

MediaStreamSource class

Medium font stretch constant

Medium font weight constant

menus
 adding items

merging
 resource dictionaries

message chunking

Message property

MessageReceivedEventArgs class

metadata, 2nd
 for display
 for validation

methods
 add methods
 AddPropertyValue
 Alert
 ApplyTemplate
 Arrange
 Attach
 AttachAsModified
 Begin
 BeginGetRequestStream
 BeginGetResponse
 BeginOpen
 CalculateVacationBonus
 CheckAndDownloadUpdateAsync
 Close
 CloseAsync
 CloseMedia
 Confirm
 create methods
 CreateDirectory
 createObjectEx
 delete methods
 DeleteDirectory
 DeleteFile
 Deserialize
 domain services
 DragMove
 DragResize
 EndGetResponse
 Environment.GetFolderPath
 Execute
 FindName, 2nd
 Focus, 2nd
 GetDefaultVideoCaptureDevice
 GetDiagnosticAsync
 GetDirectoryNames
 GetElementById
 GetElementsByTagName
 GetErrors
 GetFileNames
 GetIsNetworkAvailable
 GetLayoutClip
 GetLayoutSlot
 GetLeft
 GetOriginal
 GetPosition
 GetPropertyValue
 GetResourceStream
 GetResponseStream
 GetSampleAsync, 2nd
 GetStyleAttribute
 GetStylusPoints
 GetTemplateChild
 GetTop
 GetUserStoreForApplication
 GetUserStoreForSite
 GetValue, 2nd
 GoBack
 GoForward
 GoToState
 ignoring
 IncreaseQuotaTo
 insert methods, 2nd, 3rd
 Install
 Invoke
 invoke methods, 2nd, 3rd
 InvokeScript
 Load, 2nd
 MapUri
 media delivery methods
 modify methods
 named update methods
 Navigate, 2nd, 3rd, 4th
 NavigateToBootkmark
 NavigateToString
 NotificationWindowClose
 OnApplyTemplate
 Open
 OpenMediaAsync
 OpenRead
 OpenText
 OpenWrite
 Pause, 2nd, 3rd
 Play
 Post
 Print
 Prompt
 query methods, 2nd
 ReadObject
 Refresh
 Register, 2nd
 RegisterAttached
 RegisterScriptableObject
 RejectChanges
 Remove
 remove methods
 RemoveAt
 Resume
 SaveToString
 Seek
 SeekAsync
 SetLeft
 SetStyleAttribute
 SetTop
 SetValue, 2nd
 Show, 2nd
 ShowDialog
 Stop, 2nd, 3rd
 StopLoading
 SubmitChanges, 2nd
 SwitchMediaStreamAsync
 update methods, 2nd
 WriteObject
 ZoomAboutLogicalPoint

microphones, 2nd

Microsoft Excel
 Microsoft PowerPivot

Microsoft Expression

Microsoft PowerPivot

Microsoft Public License.
 See Ms-PL.

Microsoft.Expression.Interactions.dll assembly

Microsoft.SilverlightMediaFramework namespace

Microsoft.SilverlightMediaFramework.Plugins.Progressive.dll assembly

Microsoft.Web.Media.SmoothStreaming.dll assembly

mixtapes

MMS protocol

Mode property, 2nd

mode, Visible

Model
 definition

Model-View-Controller design pattern

Model-View-ViewModel design pattern
 sample application.
 See MvvmApplication sample application.

Model-View-ViewModel pattern
 basics
 commands
 compared to code-behind
 history
 Model
 separation from UI
 View
 ViewModel.
 See Model.
 See View.
 See ViewModel.

modifier keys

ModifierKeys enumeration

modify methods

MoreInfo ASX element

motion animation

MotionFinished event

mouse

mouse events
 collecting ink
 custom click event
 location
 mouse button events
 mouse wheel
 movement events

mouse scrolling

mouse wheel

MouseButtonEventArgs

MouseEnter event

MouseEventArgs class

MouseLeave event

MouseLeftButtonDown event, 2nd, 3rd

MouseLeftButtonUp event, 2nd

MouseMove event, 2nd

MouseOver visual state, 2nd, 3rd

MouseRightButtonDown event

MouseRightButtonUp event

moving elements programmatically

movingPosition parameter

Mozilla Firefox

MP3 format

MP4 format
 and Smooth Streaming

Ms-PL

multi-touch, 2nd

multicast
 Any Source Multicast
 Internet Standard Multicast
 Source Specific Multicast

multicast sockets

multiline text support

multilingual video files

multipage printing
 prerequisites

multipass layout

multiple bit rate.
 See MBR.

MultiScaleImage class
 composing dzi files
 viewport
 zooming programmatically

MultiScaleTileSource class

Multiselect property

multitrack audio

MVC design pattern.
 See Model-View-Controller design pattern.

MVC pattern.
 See Model View Controller pattern.

MVVM pattern.
 See Model-View-ViewModel pattern.

MvvmApplication sample application
 AddVacationBonusCommand command
 base ViewModel class
 busines logic
 button functionality
 CallMethodAction behavior
 code-behind solution
 DataGrid code
 Edit button
 employee detail view
 employee detail window, 2nd
 employee list view, 2nd
 EmployeeDataService class
 EmployeeListViewModel clalss
 EmployeeListViewModel class, 2nd, 3rd
 Employees property
 EmployeeVacationBonusService class
 EmployeeViewModel class
 list page ViewModel
 LoadEmployees method, 2nd
 LoadingProgress overlay
 OnNavigatedTo method, 2nd
 pop-ups
 SelectedEmployee property
 SilverlightTest class
 testing
 updated list view
 View-specific entities
 ViewModel locator
 ViewModelCommand class
 and web services

 N

 Name property, 2nd, 3rd

named update methods

namescope, 2nd
 bug in Silverlight 2

NameScope property

namespaces
 CLR namespaces
 declaring
 ext
 Microsoft.SilverlightMediaFramework
 multiple
 NetworkInformation
 riaControls
 System.Collections
 System.ComponentModel, 2nd
 System.ComponentModel. DataAnnotations, 2nd
 System.Device.Location
 System.Drawing
 System.IO.IsolatedStorage
 System.Json
 System.Runtime.Serialization
 System.Runtime.Serialization.Json
 System.ServiceModel
 System.ServiceModel. Channels
 System.Speech
 System.Windows
 System.Windows.Browser, 2nd
 System.Windows.Controls, 2nd, 3rd
 System.Windows.Controls. Navigation
 System.Windows.Documents
 System.Windows.Ink
 System.Windows.Input, 2nd, 3rd, 4th
 System.Windows.Interop
 System.Windows.Markup
 System.Windows.Media
 System.Windows.Media. Imaging
 System.Windows.Resources
 in XAML, 2nd
 xaml
 xaml/presentation

NaturalDuration property

NaturalVideoHeight property

NaturalVideoWidth property

Navigate method, 2nd, 3rd, 4th

Navigated event

NavigateToBookmark method

NavigateToString method

NavigateUri property

navigating
 to other assemblies

Navigating event, 2nd

navigation
 back and forward
 browser journals
 browsers
 cancelling
 custom controls
 fragments
 hashtags
 history
 navigation application
 Navigation Application template
 out-of-browser
 to pages.
 See hashtags.

Navigation Application template

NavigationCacheMode property

NavigationContext property

NavigationFailed event

NavigationService class
 events
 functions
 properties

NavigationStopped event

nesting layout panels

nesting objects

.NET Framework, 2nd
 colors

.NET Framework 3.0
 WCF

Netflix
 install page

Netscape

NetTcp protocol

NetworkAddressChanged event

NetworkCredential constructor

NetworkInformation namespace

networking
 client HTTP stack
 stack

networks
 cross-domain access

NewItemTemplate property

NewValue property

None stretch option

Normal font stretch constant

Normal font style

Normal font weight constant

Normal visual state, 2nd

normals

notification toast

NotificationWindow class

NotificationWindowClose method

NSAPI

null values

NumericButtonCount property

 O

 object
 GroupDescriptor
 SortDescriptor

OBJECT tag

object tag

object trees, 2nd
 visual trees

objects
 Application
 application object
 data binding
 DependencyObject
 File
 IsolatedFileStreamObject
 LocalMessageReceiver
 LocalMessageSender
 MainWindow
 nesting
 rotating
 Settings
 StreamWriter
 strongly typed
 WebContext
 in XAML

occlusion

OData
 endpoints

Offset property

offsets

OldValue property

OLE Automation

OnApplyTemplate method

onError, 2nd

OneTime binding mode

OneWay binding mode

OnFragmentNavigation event

onLoad

OnNavigatedFrom event

OnNavigatedTo event

OnNavigatingFrom event

onSourceDownloadComplete event

onSourceDownloadProgressChanged event

Opacity property, 2nd
 animation, 2nd

Open file mode value

Open method

OpenFileDialog class
 instantiating
 properties

Opening state

OpenMediaAsync method

OpenOrCreate file mode value

OpenRead method

OpenText method

OpenWrite method

operating system
 detecting

Operator property

operators
 PropertyPath

options
 RenderAtScale
 select from a list
 selecting from list

OrbitPanel
 Orbits property

OrbitPanel example, 2nd
 CalculateOrbitSpacing method
 Children property
 ControlsLib namespace
 dependency properties
 markup
 MeasureOverride method
 Orbit property
 OrbitPanel class
 possible enhancements
 project setup
 properties
 SortElements method

Order property

Orientation
 property

orientation
 ClearType
 horizontal
 vertical

OriginalSource property, 2nd

OS X
 isolated storage locations

Oscillations property

out-of-browser
 application settings
 capabilities
 checking network state
 comparison with inbrowser
 controlling user experience
 creating applications
 custom window chrome
 customizing icons
 elevated trust
 end-user experience
 forcing out-of-browser mode
 host window
 icons
 implementing
 installation procss
 minimizing and maximizing windows
 moving windows
 navigating
 notification toast
 resizing windows
 restoring and closing windows
 restrictions
 updating
 Windows 7 integration

out-of-browser mode

OutlineColor property

Outlook Web Access

OutOfBrowserSettings.xml
 Icons section
 Window element

overlapping content

OverlayBrush property

OverlayOpacity property

OWA.
 See Outlook Web Access.

 P

 packaged XAML

Padding property, 2nd, 3rd

Page class, 2nd
 navigation-related functions

PageMargins property

pages
 cache settings
 caching
 navigating to
 new
 numbers
 page parameters
 parameters
 requesting
 surfacing commands

PageSize property

PageVisual property, 2nd

paging

Panel class, 2nd
 animation
 Children property
 clipping
 custom panels
 OrbitPanel example
 possible enhancements.
 See OrbitPanel example.

Paragraph element

Param ASX element

parameters
 anchorPostion
 AvailableSpace
 context
 DataGridBeginningEditEvent Args
 EnableGPUAcceleration
 FinalSize
 id parameter
 initialization
 initParams
 KeyEventArgs
 movingPosition
 parentElement parameter
 source parameter
 ValidatesOnExceptions

Parent property, 2nd

parentElement

parts
 and states model, 2nd

Password property

PasswordBox element

PasswordChar property

passwords, 2nd

path
 geometries

Path attribute

Path class

PathFigure class

PathGeometry class

paths
 absolute
 relative

PathSegment class

Pause method, 2nd, 3rd

Paused state

per-frame rendering callback

performance

PHP

pixel shaders
 custom effects
 model
 pixel shader class
 profile
 setting up environment
 using
 WPF Pixel Shader Effects library

PixelFormat property

PixelHeight property

pixels

PixelShader class

PixelWidth property

Plain Old XML.
 See POX.

PlaneProjection

Platform property

PlatformKeyCode property

Play method

playback control

Playing state

playlists
 client-side
 dynamic
 server-side
 support

PlayReady
 installation
 server SDK

plug-in.
 See browser plug-in.

PNG
 image format

Point class, 2nd, 3rd

PointAnimation class

points

Points property

policy element

policy file
 serving

polling

PollingDuplexHttpBinding class

PolyBezierSegment class

Polygon class, 2nd, 3rd
 Points property

Polyline class, 2nd
 coordinate pairs

PolyLineSegment class

PolyQuadraticBezierSegment class

pop-up windows

pop-ups
 MvvmApplication sample application

Popup class

Port atribute

position
 absolute
 relative

position offsets

Position property, 2nd

POST, 2nd

Post method

PowerEase class

POX, 2nd
 reading

preloaders
 default
 defining the appearance of
 JavaScript
 monitoring load progress

PreparingCellForEdit event

presentation models
 creating

Press click mode

Pressed visual state

Print method

PrintableArea property

PrintDocument class

PrintedPageCount property, 2nd

printing, 2nd
 clipping, 2nd
 at different size
 dpi
 header and footer
 how it works
 large documents
 line items
 multipage
 onscreen information
 page breaks
 page numbers
 page size
 rasterization
 resolution
 scaling to fit
 tracking page size
 and transforms
 and trust
 visual tree.
 See dpi.

printing onscreen information
 as is
 rerooting
 scaling to fit

PrintPage event, 2nd
 report writer example

PrintPageEventArgs class

progress
 bar
 property

progressive downloading

projection transforms

Prompt method

Prompt property

properties
 AcceptsReturn
 Action
 Activate
 ActualHeight
 ActualWidth
 Angle
 AngleX
 AngleY
 animation
 Application.Current.InstallState
 ApplicationName
 AsyncState
 attached, 2nd
 attached properties
 Attributes
 audio-specific
 AudioStreamCount
 AudioStreamIndex
 Authentication
 AutoEllipsis
 AutoGenerateColumns
 AutoGenerateField
 AutoGenerateFilter
 AutoPlay, 2nd
 AutoReverse
 AvailableFreeSpace, 2nd
 Background, 2nd, 3rd
 background
 Balanced
 BeginTime
 BlurRadius
 Body
 BorderBrush
 BorderThickness
 BrowserHttp
 BrowserInformation
 BrowserVersion
 BufferingProgress, 2nd
 BufferingTime
 By
 Cancel
 CanExecute
 CanGoBack
 CanGoForward
 CanMoveToFirstPage
 CanMoveToNextPage
 CanPause, 2nd
 CanSeek
 Center
 CenterX
 CenterY
 Children, 2nd, 3rd
 ClickMode
 ClientHttp
 Color, 2nd, 3rd
 Column
 ColumnDefinitions
 Columns
 ColumnSpan
 CommandButtonsVisibility
 common media properties
 CompletedSynchronously
 complex
 Content, 2nd, 3rd, 4th
 ContentTemplate, 2nd, 3rd
 control properties
 CookieContainer
 CookiesEnabled
 Credentials
 CssClass
 CurrentSource
 CurrentState, 2nd, 3rd
 Cursor
 data binding
 DefaultExt
 DefaultStateKey
 DeliveryMethod
 Delta
 dependency, 2nd, 3rd
 Description
 DescriptionViewerPosition
 DialogResult
 Direction
 DirectlyOver
 DisplayIndex
 DisplayMemberBinding
 DisplayMode
 DnsSafeHost
 DocumentElement
 DocumentUri
 DownloadProgress, 2nd
 DrawingAttributes
 DroppedFramesPerSecond
 Duration
 EditTemplate
 Effect
 EnableCacheVisualization
 EnableGPUAccelerationProperty
 enableHtmlAccess
 EndPoint
 EntityContainer
 EntityState
 Error
 File
 Files
 Fill
 FillBehavior
 FillRule
 Filter
 FilterDescriptors
 FilterIndex
 FilterOperator
 FontFamily, 2nd
 FontSize, 2nd
 FontStretch, 2nd
 FontWeight, 2nd, 3rd
 Foreground, 2nd
 Frame.CacheSize
 frameRate
 FramesPerSecond
 FrameworkElement properties
 From, 2nd
 GradientOrigin
 GradientStop
 GroupName, 2nd, 3rd
 Handled, 2nd
 HasChanges, 2nd
 HasCloseButton
 HasElevatedPermissions
 HasErrors
 HasHeader
 HasMorePages
 HasSideEffects
 HasTimeSpan
 HasValidationErrors
 Header, 2nd
 HeadersVisibility
 Height, 2nd, 3rd, 4th
 height
 Height versus ActualHeight
 HorizontalAlignment
 HorizontalContentAlignment
 Id
 ignoreBrowserVer
 IgnoredValue
 ImageSource, 2nd
 in XAML
 inline
 Inlines
 IsActive
 IsCaseSensitive
 IsChecked
 IsComposable
 IsDefault
 IsDropDownOpen
 IsEnabled
 IsFullScreen
 IsItemsHost
 IsLoading
 IsMuted
 IsPressed
 IsReadOnly, 2nd, 3rd
 IsSubmitting
 IsTabStop
 IsThreeState
 IsValid
 isWindowless
 Item
 Items, 2nd
 ItemSource
 ItemsPanel
 ItemsSource
 ItemsTemplate
 JournalOwnership
 Key
 KeySpline
 KeyTime
 LabelPosition
 LastOperation
 Left
 LeftProperty
 LineHeight
 LoadSize
 looping
 Margin
 Markers
 MaxDropDownHeight
 MaxLength
 Message
 Multiselect
 Name, 2nd, 3rd
 NameScope
 NaturalDuration
 NaturalVideoHeight
 NaturalVideoWidth
 NavigateUri
 NavigationCacheMode
 NavigationContext
 NewItemTemplate
 NewValue
 NumericButtonCount
 Offset
 OldValue
 Opacity, 2nd
 Operator
 Order
 Orientation
 OriginalSource, 2nd
 Oscillations
 OutlineColor
 OverlayBrush
 OverlayOpacity
 Padding, 2nd, 3rd
 PageMargins
 PageSize
 PageVisual, 2nd
 Parent, 2nd
 Password
 PasswordChar
 PixelFormat
 PixelHeight
 PixelWidth
 Platform
 PlatformKeyCode
 Points
 Position, 2nd
 PrintableArea
 PrintedPageCount, 2nd
 progress
 Prompt
 Property
 property paths
 PropertyChangedCallback
 QueryString
 Quota
 Radius
 RadiusX, 2nd
 RadiusY, 2nd
 ReadOnlyTemplate
 ReceiverName
 RenderedFramesPerSecond
 RenderingTime
 RepeatBehavior
 Resources, 2nd
 ResourceType
 Response
 ResultLimit
 RoutedEvent
 Row
 RowDefinitions
 RowDetailsTemplate
 RowDetailsVisibilityMode
 SafeFileName
 ScaleX
 ScaleY
 ScriptAlias
 SelectedIndex
 SelectedItems
 SelectedText
 Selection
 SelectionChanged
 SelectionLength
 SelectionStart
 SenderDomain
 Setters
 ShadowDepth
 ShortName
 ShowGridLines
 simple
 Size
 SortMemberPath
 Source, 2nd, 3rd, 4th
 hosting content for control
 MediaElement property
 NavigationService class property
 referencing an image
 SourceName
 SpeedRatio
 SplashScreenSource
 Springiness
 StartPoint
 Stretch
 Stride
 Style
 StylusDevice, 2nd
 TabIndex
 TabNavigation
 TabStripPlacement
 TagName
 TargetName, 2nd, 3rd, 4th
 TargetProperty, 2nd, 3rd
 TargetType
 Template, 2nd
 Text
 TextAlignment
 TextDecorations
 TextHintingMode
 TextTrimming
 TextWrapping, 2nd
 Time
 Title
 To, 2nd, 3rd
 TopMost
 TopProperty
 TouchDevice
 Triggers
 Type
 UIElement properties
 Underline
 UriMappings
 UseLayoutRounding
 UserAgent
 UseSprings
 ValidatesOnDataErrors, 2nd
 ValidatesOnExceptions, 2nd
 ValidationErrors
 Value, 2nd
 version
 VerticalAlignment
 VerticalContentAlignment
 video-specific
 ViewportOrigin
 ViewportWidth
 Visibility
 volume
 Width, 2nd, 3rd, 4th, 5th
 width
 Width versus ActualWidth
 Window
 WindowState
 X
 Y
 ZIndex

properties, attached

property

Property attribute

property path syntax

property paths

Property property

PropertyChanged event

PropertyChangedCallback class

PropertyChangedCallback property

PropertyChangedEventArgs

PropertyMetadata class, 2nd

PropertyPath operator

protected content
 unlocking

protected media

Protocol attribute

protocols
 HTTP
 HTTPS
 MMS, 2nd, 3rd
 NetTcp
 Silverlight

push services

Q

 QuadraticBezierSegment class

QuadraticEase class

query methods, 2nd
 types of

query string, 2nd

QueryAttribute attribute

QueryString property

QuinticEase class

Quota property

 R

 RadialGradientBrush class

RadioButton class
 grouping

Radius property

RadiusX property, 2nd

RadiusY property, 2nd

RangeAttribute class

RangeBase class

raster, 2nd, 3rd

rasterization, 2nd

raw audio
 setting up source
 sound samples

raw media
 getting raw video data
 raw audio
 raw video

raw video
 getting the data
 setting up stream

reading
 POX
 results
 text files
 XML

ReadObject method

ReadOnlyTemplate property

ReceiverName property

receivers
 creating
 name

receiving data

Rectangle class
 animation
 bulging
 comparison with RectangleGeometry
 rounded

RectangleGeometry class
 comparison with Rectangle

redirecting the browser

redraw regions

Ref ASX element

referencing
 events
 inline properties
 libraries
 Silverlight.js utility file

Refresh method

regions
 for hit testing

Register method, 2nd

RegisterAttached method

registers

RegisterScriptableObject method

RegularExpressionAttribute class

RejectChanges method

relative
 path
 sizing
 source binding
 URIs, 2nd

Release click mode

Remove method

remove methods

RemoveAt method

render transforms

RenderAtScale option

RenderedFramesPerSecond property

rendering
 cached composition
 content
 occlusion
 order
 subpixel rendering
 user Silverlight control

Rendering event, 2nd

rendering process
 cached composition
 clock tick
 occlusion
 order
 per-frame rendering callback
 rasterization
 steps

RenderingEventArgs class

RenderingTime property

RepeatBehavior property

replacing
 selected text

report writer example
 creating the service
 DataLoaded event
 DataTemplate property
 EmployeeReport class, 2nd
 EmployeeReportItem class, 2nd
 enumerating rows
 GetEmployeeReportData method
 GetEmployees method
 header and footer
 IEnumerator
 ItemTemplate
 LoadData method
 markup
 multipage support
 page numbering
 Print method, 2nd
 printing line items
 PrintPage event
 service implementation
 testing

Representational State Transfer.
 See REST.

requesting
 a page
 protected content

Required attribute

RequiredAttribute class

RequiresRole attribute

rerooting

resource
 element
 keys

Resource build action

resource dictionaries

resource files

resource scoping

ResourceDictionary class

resources
 animation
 bundled
 declarative
 loose
 referencing at design time
 referencing at runtime
 referencing relatively
 resource dictionaries
 retrieving with absolute URI
 scope
 scoping

Resources attribute

Resources property, 2nd, 3rd

ResourceType property

ResourceWrapper class

Response property

REST
 consuming services
 GETting from
 POSTing to

RESTful services

ResultLimit property

results
 reading

Resume method

reusable
 components
 controls
 templates

RGB
 aRGB format
 RxGyBz format

RIA Services.
 See WCF RIA Services.

riaControls namespace

rich text
 retrieving as XAML

RichTextBox control

RichTextBox element

Right enumeration value

right text alignment

right-clicking

role-based authorization

RootVisual

RotateTransform

rotating objects
 counterclockwise
 in place

RoundtripOriginal attribute

routed events

RoutedEvent property

Row property

RowDefinition element

RowDefinitions property

RowDetailsTemplate property

RowDetailsVisibilityMode property

RowSpan attached property

RSS
 standard

Run flow control element

runtime
 binding
 loading XAML
 parsing XAML

RuntimeVersion attribute

 S

 Safari, 2nd, 3rd

SafeFileName property

safeguards
 full-screen mode restriction
 limits to user input

sandbox

SaveFileDialog class
 properties

SaveToString method

ScaleTransform

ScaleTransform class
 instead of animation

ScaleX property

ScaleY property

screen mode
 normal full-screen mode
 resizing content
 toggling

screenshots

script marker

ScriptableMember attribute

ScriptableType attribute

ScriptAlias property

scripting
 and managed code

SDK.
 See also Silverlight.
 DirectX
 Expression Blend 4

SDKStyles.xaml file

security, 2nd
 attack
 authentication
 authorization
 safe browsing
 sandbox

Seek method

SeekAsync method

segments
 Arc
 Bezier
 Line
 PolyBezier
 PolyLine
 PolyQuadraticBezier
 QuadraticBezier

Select function

selected text
 formatting
 replacing

SelectedIndex property

SelectedItems property

SelectedText property

selecting text

Selection property

SelectionChanged event

SelectionChanged property

SelectionLength property

SelectionStart property

Selector class, 2nd

SemiBold font weight constant

SemiCondensed font stretch constant

SemiExpanded font stretch constant

sender
 creating

SenderDomain property

sending data

Seq SMIL element

server
 pushing data

server-side playlists

service
 proxy

service calls
 factoring

service references

ServiceReferences.ClientConfig file

services
 asynchronous
 push
 REST
 two-way

SetBinding method

SetLeft method

SetProperty method

SetStyleAttribute method

Setter class

Setters property

Settings object

SetTop method

SetValue method, 2nd

Shader Model 2 specification

ShadowDepth property

Shape class, 2nd

shapes
 circular
 closed
 five-pointed star
 geometric
 open

.shared.cs extension

sharing
 binaries
 code
 source files
 visual states

Shazzam

shearing transform

ShortName property

Show method, 2nd

ShowDialog method

ShowGridLines property

showing
 dialog boxes
 pop-ups

signing applications

SilverChat

Silverlight 1.0
 migrating to Silverlight 2.0
 source URI

 , 2nd
Silverlight
 accessing the browser window
 and Ajax
 animation
 application
 application model
 ASX elements
 asynchronous communication restriction
 backslash restrictions
 bidirectional text
 bitmap API
 browser limitations
 business features
 ClearType fonts
 code-behind
 collect handwritten information
 commands
 communication APIs
 configuration dialog
 connecting to Twitter
 connecting to web services
 creating a new application
 customizing install experience
 data binding
 database access
 deploying media
 development
 dialog boxes
 differences from WPF
 DRM
 entry point
 every page a UserControl
 font support
 fonts
 and H.264
 hosting
 hosting server
 improvement over HTML, 2nd, 3rd
 initializing
 installation
 integrating media
 integration with a web page
 and JavaScript
 latest plug-in version
 media delivery methods
 media enhancements
 Media Stream Source API
 microphones
 and mouse scrolling
 multi-touch support
 networking APIs
 networking stack
 new features
 out-of-browser mode
 performance
 PlayReady
 plug-in not installed
 PNG support
 pop-up windows
 and printing
 printing from
 printing limitations
 protocols
 RichTextBox control
 right-click support
 running out-of-browser
 SDK, 2nd, 3rd, 4th
 security
 security safeguards
 SMF
 SMIL elements supported
 and SOAP
 SOAP 1.1 protocol support
 startup events
 streaming media
 supported DOM variants
 testing
 text
 the HTML DOM
 and the web
 types of applications
 upgrading
 use of cookies
 user interaction
 user interfaces
 using domain services from
 validation
 versus HTML 5
 versus jQuery
 visual prompts
 WCF RIA Services
 webcams
 workflow
 WPF

Silverlight 3
 new features

Silverlight 4
 new features

Silverlight application
 bundled resources
 content files
 declarative resources
 embedded files
 location of isolated storage
 loose resources
 site of origin
 storing data on the local filesystem

Silverlight Business Application template
 authentication
 differences from navigation template
 Login dialog
 self-service registration UI

Silverlight control, 2nd
 ASP.NET
 creating from JavaScript
 height
 integrating with a web property
 keyboard input
 width

Silverlight Media Framework.
 See SMF.

Silverlight plug-in
 creating from JavaScript
 default install badge
 input focus
 installing
 integrating with a web property
 latest version
 Netflix install page
 not installed
 security
 setting focus via JavaScript
 upgrading.
 See also browser plug-in.

Silverlight SDK

Silverlight Unit Testing Framework
 installing

Silverlight-Enabled WCF Service

Silverlight.js file

Silverlight.js utility file
 functions
 referencing

Silverlight.net
 website

SilverlightHost

SilverlightHost class, 2nd

simple geometries

simple properties

Single Responsibility Principle

single sign-on (SSO)

site of origin

Size property

SizeNS cursor

SizeWE cursor

sizing precedence order

SkewTransform, 2nd

sllauncher.exe

SMF, 2nd
 creating a media player
 player libraries

SMIL
 elements
 Excl
 Media
 Seq
 Smil
 Switch

Smooth Streaming, 2nd
 adapting to bandwidth constraints
 adapting to CPU constraints
 caching
 encoding video with
 file extensions
 file formats

SOAP
 endpoints
 services

Socket

socket-resource element

SocketAsyncEventArgs class

sockets
 connection, opening
 multicast
 response, handling
 TCP

SocketType

Software Development Kit.
 See SDK.

SolidColorBrush

SolidColorBrush class
 declared as a resource

SortDescriptor object

sorting

SortMemberPath property

sound, volume

Source property, 2nd, 3rd, 4th, 5th, 6th, 7th, 8th, 9th
 playlists

Source Specific Multicast

source URI, 2nd

SourceName property

Span element

spanning cells

special folders

SpecialFolder enumeration

speech

Speech API

SpeedRatio property
 impact on duration

splash screens
 defining the appearance of
 integrating
 monitoring load progress

splashScreenSource property

spline interpolation

spline keyframe types

SplineColorKeyFrame class

SplineDoubleKeyFrame

SplinePointKeyFrame class

splines

spoofing

spring animation

Springiness property

SQL Server
 installing AdventureWorks on

SQL Server Express
 installing AdventureWorks on

SSL

stack order

StackPanel
 layout of invisible elements

StackPanel class

StackPanel element

StandardColors.xaml file

star sizing

StartPoint property

startup
 events
 process

Startup event, 2nd

StartupEventArgs

state-based effects

states
 AcquiringLicense
 Buffering
 change between
 Closed
 Individualizing
 manage change between
 management
 Opening
 Paused
 Playing
 Stopped
 transition
 visual.
 See also visual states.

StaticResource markup extension

Stop
 enumeration value
 method, 2nd, 3rd

StopLoading method

Stopped state

Storyboard class, 2nd, 3rd, 4th
 controlling
 defined
 defining as a resource
 programmatic control
 triggering in response

storyboard control

storyboarding

Stream

Stream class

streaming
 MBR

streaming media
 available states
 buffering progress
 playlists
 progress bar
 raw video stream
 Smooth Streaming
 Windows Media Streaming

StreamReader

StreamReader class

StreamResourceInfo class

StreamWriter

StreamWriter object

Stretch enumeration value

Stretch property
 Fill option
 None option
 Uniform option
 UniformToFill option

stretching
 Fill option
 None option
 Uniform option
 UniformToFill option

Stride property

string-indexed elements
 data binding

StringLength attribute

StringLengthAttribute class

Stroke

strongly typed objects

structures
 Dictionary
 Duration
 TimeSpan, 2nd, 3rd

Style class

Style property

style setters
 value precedence

styling
 explicit
 implicit
 ink
 reusable templates
 state-based effects
 states
 templates
 transitioning effects
 visual states

stylus

Stylus cursor

StylusDevice object

StylusDevice property, 2nd

StylusPoint

SubmitChanges method, 2nd

submitting form data

subnavigation, responding to

subpixel rendering

subsetting

SupportedFormats collection

Switch SMIL element

SwitchMediaStreamAsync method

SynchronizationContext class, 2nd

Synchronized Multimedia Integration Language.
 See SMIL.

synchronous validation

SyndicationFeed class

syntax
 URIs

System.Collections namespace

System.ComponentModel namespace, 2nd, 3rd

System.ComponentModel.DataAnnotations
 assembly
 namespace, 2nd

System.Device.Location namespace

System.Drawing namespace

System.Exception exception

System.IO.IsolatedStorage namespace

System.Json namespace

System.Net.Sockets

System.Runtime.Serialization namespace

System.Runtime.Serialization. Json namespace

System.ServiceModel namespace

System.ServiceModel.Channels namespace

System.ServiceModel.PollingDuplex assembly

System.ServiceModel.Web assembly

System.Speech namespace

System.Windows namespace

System.Windows.Browser namespace, 2nd

System.Windows.Controls namespace, 2nd, 3rd, 4th

System.Windows.Controls.Data assembly

System.Windows.Controls.dll

System.Windows.Controls.DomainServices assembly

System.Windows.Controls.Navigation namespace

System.Windows.Documents namespace

System.Windows.Ink namespace

System.Windows.Input namespace, 2nd, 3rd, 4th

System.Windows.Interactivity library

System.Windows.Interactivity.dll assembly

System.Windows.Interop namespace

System.Windows.Markup namespace

System.Windows.Media namespace

System.Windows.Media.Imaging namespace

System.Windows.Media.enumeration

System.Windows.Messaging

System.Windows.Resources namespace

System.Xml.Serialization namespace

T

 TabControl class
 defining look and feel

TabIndex property

TabItem
 visual tree

TabNavigation property

TabStripPlacement property

tabular format

TagName property

tags
 object tag

TargetName

TargetName property, 2nd, 3rd

TargetNullValue

TargetProperty property, 2nd, 3rd

TargetType property

TCP sockets
 allowed ports
 cross-domain access

Template property, 2nd

TemplateBinding markup extension

templated properties
 value precedence

TemplatePart attribute

TemplatePartAttribute class

templates
 control
 custom control default template
 Navigation Application template
 reusable
 Silverlight Business Application template
 styling
 visual states
 WCF RIA Services

TemplateVisualState attribute

TemplateVisualStateAttribute class

testing
 asynchronous operations
 custom controls
 definitions
 report writer example
 Silverlight Unit Testing Framework
 ViewModel

text
 ClearType
 collecting
 copying to clipboard
 displaying, 2nd
 editing
 entering
 flow control
 font properties
 handling
 hinting
 inline styles
 input method editors
 inserting
 Italic font style
 multiline support
 Normal font style
 pixel size
 point size
 rich text
 selected
 selecting
 spacing
 subpixel rendering
 text properties
 viewing

text hinting
 animation

Text property, 2nd

TextAlignment property

TextArea element

TextBlock
 aligning text
 flow control
 text wrapping

TextBlock class
 animation
 using resource brushes

TextBlock element, 2nd
 font properties
 line spacing

TextBox
 data binding, 2nd

TextBox class
 styles
 using in a UserControl

TextBox element
 multiline support
 wrapping text

TextChanged event

TextDecorations property

TextHintingMode property

TextInput event

TextInputStart event

TextInputUpdated event

TextTrimming property

TextWrapping property, 2nd

themes

threading
 problems

three-state checkbox

Time property

Timeline

Timeline class, 2nd

timeline markers
 basic marker
 script marker

TimelineMarker

TimelineMarker class

TimelineMarkerRoutedEventArgs class

TimeOfDay property

Times New Roman font

TimeSpan

TimeSpan class, 2nd

TimeSpan structure, 2nd, 3rd

Title
 ASX element

Title property

To property, 2nd, 3rd

toast

ToggleButton class, 2nd, 3rd

ToolkitStyles.xaml file

tools
 WCF RIA Services
 XAML

Top
 enumeration value

Top property

TopMost property

TopProperty dependency property

ToString method, 2nd

TouchDevice property

TouchFrameEventArgs class

TouchPoints class

Transform

Transform element

transformations multiple

TransformGroup

transforms
 CompositeTransform
 groups
 Matrix3dProjection
 MatrixTransform
 PlaneProjection
 projection
 RotateTransform
 ScaleTransform
 shearing
 SkewTransform, 2nd
 TranslateTransform, 2nd
 UIElement

transitioning effects

transitions
 elliptical
 multiple color

TranslateTransform, 2nd

transparency

transparent

trapezoid

Trebuchet font

trees
 visual

triggering event

Triggers property

triggers.
 See behaviors.

TrueType fonts

Truncate file mode value

trust
 elevated
 and printing

Twitter
 API
 Search

two-way services

TwoWay binding mode

type converters
 custom

Type property

TypeConverter class

types
 base types
 type converters

 U

 UDP multicast sockets

UdpAnySourceMulticastClient class

UdpSingleSourceMulticast class

UI
 composition
 separation from
 updates
 virtualization

UI elements
 data binding

UIElement, 2nd
 class
 common properties
 keyboard events
 mouse events
 transforms

UltraCondensed font stretch constant

UltraExpanded font stretch constant

Underline property

Unfocused visual state

UnhandledException event

uniform resource identifiers.
 See URIs.

Uniform stretch option

UniformToFill stretch option

unlocking protected content

update methods, 2nd

updating
 data

uploading
 to server

uri attribute

UriKind enumeration

UriMapper class

UriMappings property

URIs, 2nd, 3rd
 absolute
 cross-domain
 destination
 mapping, 2nd
 relative
 syntax

URL
 for embedded files

usable data

UseLayoutRounding property

user control
 calling the control
 defining appearance
 defining behavior
 development

user data

user experience
 controlling out-of-browser experience
 out-of-browser

user interaction

user interfaces, 2nd
 and DataForm control
 filtering
 grouping
 paging
 sorting

user Silverlight plug-in rendering

user-controlled sizing

UserAgent property

UserControl
 data binding
 keyboard events

UserControl class
 customizing

UserRegistrationService class

UseSprings property

using
 metadata

UV coordinates

 V

 ValidatesOnDataErrors property, 2nd

ValidatesOnExceptions parameter

ValidatesOnExceptions property, 2nd

validation, 2nd
 and annotations
 asynchronous
 calling external functions
 client service code
 combining messages
 in common function
 comparison of approaches
 cross-field
 custom code
 custom validators
 data annotations
 displaying errors
 employee example, 2nd, 3rd
 exception-based
 handling errors
 IDataErrorInfo interface
 metadata
 in Silverlight 2
 synchronous
 via attributes
 WCF web service
 with exceptions and IDataErrorInfo interface

ValidationAttribute class

ValidationContext class

ValidationErrors property

ValidationException exception

Value
 attribute

value
 converters
 precedence

Value property, 2nd

values
 Application.Current.InstallState
 Bottom
 Center
 Collapsed
 Hidden
 Left
 Right
 Stretch
 Top

VCR control

vector graphics

verbs
 GET, 2nd
 POST, 2nd

Verdana font

version

vertical
 offset

VerticalAlignment property

VerticalContentAlignment property

video
 capturing
 dimensions
 frame rates
 multilingual files
 raw video

VideoBrush class, 2nd

VideoCaptureDevice class

VideoSink class

View
 definition
 View-specific entities
 View-to-ViewModel ratio

View-Model-ViewModel pattern

View-specific entities

View-specific entities and ViewModel

ViewModel
 base class
 compared to code-behind
 data access
 definition
 implementation
 as interface
 list page
 locators
 ownership
 service calls
 testing
 and View-specific entities
 View-to-ViewModel ratio

ViewModel locators

ViewModel pattern.
 See Model-View-ViewModel pattern.

viewport, 2nd
 defined
 managing
 setting the size

ViewportOrigin property

ViewportWidth property

views
 adding

virtual filesystem.
 See filesystem.

virtual PC

virtualization

visibility modes
 All
 Collapsed
 Column
 Row

VisibleWhenSelected

Visibility property

visual
 parts
 tree

visual state groups
 CommonStates
 FocusStates

visual states, 2nd
 change between
 Checked
 Collapsed, 2nd
 Disabled
 Expanded, 2nd
 Focused
 in control template
 MouseOver, 2nd, 3rd
 Normal, 2nd
 Pressed
 sharing
 transition
 Unfocused

Visual Studio
 build actions
 creating service references
 Silverlight-Enabled WCF Service

Visual Studio 2010, 2nd

visual trees, 2nd
 TabItem
 traversing with VisualTreeHelper

VisualState class, 2nd

VisualStateGroup class, 2nd

VisualStateManager class, 2nd
 state-based effects
 transitioning effects

VisualStateTransition class

VisualTransition class

VisualTreeHelper class

Volume property

 W

 W3C

Wait cursor

WAX files

WCF
 connecting to
 duplex services
 error handling
 web service for validation

WCF RIA Services
 architecture
 authentication and authorization
 business logic
 and DataForm control
 domain service
 presentation models
 resource files
 template
 tooling support
 updating data
 user interfaces

web properties
 integrating the Silverlight control

web servers
 maintaining an open media connection

web services
 ASMX
 and code-behind
 and LINQ
 MvvmApplication sample
 application
 REST

Web Services Description Language.
 See WSDL.

WebBrowser control

WebBrowserBrush control

webcams, 2nd

WebClient

WebContext object

WebKit, 2nd

WebRequestCreator class

websites
 10rem.net
 Channel 9
 MSDN documention
 Silverlight Cream
 Silverlight TV

Whack-a-Mole

White Screen of Death

width

Width property, 2nd, 3rd, 4th, 5th

Window class

Window property

Windows authentication

Windows Communication Foundation.
 See WCF.

Windows Forms
 colors
 compared to XAML

Windows Logo key

Windows Media format

Windows Media Player

Windows Media Streaming

Windows modifier key

Windows Presentation Foundation.
 See WPF.

Windows Vista
 isolated storage locations

Windows XP
 isolated storage locations

WindowState property

WMX files

World Wide Web
 helpful sites

World Wide Web Consortium.
 See W3C.

WPF, 2nd, 3rd, 4th, 5th
 commands
 differences from Silverlight

WPF Pixel Shader Effects library

WPL files

WriteableBitmap class, 2nd
 creating Mandelbrot fractals
 direct pixel access

WriteObject method

WS-* protocols

WSDL

WSX files

WVX files

 X

 X property

x:Key attribute, 2nd

XAML
 alternate default namespace
 basics
 behaviors
 CLR namespaces
 colors
 commands
 compared to Windows Forms
 constructor rules
 data binding
 declaring value converters
 defining a Line
 defining an Ellipse
 event handlers
 events
 extensions
 from rich text
 loading at runtime
 loose
 Name vs. x:Name
 namespaces
 objects
 parsing at runtime
 properties
 runtime parsing
 standard namespaces
 tools

XAML extensions
 markup extensions

XamlParseException

XamlReader

XamlReader class

XAP, 2nd
 signing

XAP file, 2nd

.xap file, 2nd
 displaying a splash screen during download

XDocument class

XElement class

XML
 OData format

XmlIgnore attribute

XmlReader class

XmlSerializer class

 Y

 Y property

List of Figures

 Chapter 1. Introducing Silverlight

 Figure 1.1. Silverlight primarily is a subset of WPF with a few extras added. Ignoring alternative solutions to the same problems,
 the places where WPF differs most are in the integration with the Windows OS and the access to the full .NET framework.

 Figure 1.2. Visual Studio 2010 New Project dialog with the correct project type selected and named

 Figure 1.3. The New Silverlight Application options dialog

 Figure 1.4. The Visual Studio 2010 IDE showing the markup correctly entered for MainPage.xaml

 Figure 1.5. The Add Reference dialog with System.Xml.Linq selected for LINQ to XML functionality

 Figure 1.6. The default presentation for the ListBox items leaves something to be desired. It looks like WinForms or something!
 I demand more from our first Silverlight example.

 Figure 1.7. The end result of the Twitter search “Hello World!” example looks good!

 Chapter 2. Core XAML

 Figure 2.1. XAML markup represents .NET objects. Anything you can do in XAML you can do in code.

 Figure 2.2. The default behaviors in Expression Blend include items from utilitarian, to sound playing, to complex interactions
 such as mouse drag and drop. Additional behaviors may be found on the Microsoft Expression Community Gallery at http://gallery.expression.microsoft.com.

 Figure 2.3. A hypothetical object tree showing not only the visual elements such as TextBlocks and ListBoxes, but also the
 internal collections used to

 Figure 2.4. The visual tree representation of the object tree from figure 2.3. Note that only visual elements, not collections,
 are represented.

 Chapter 3. The application model and the plug-in

 Figure 3.1. The Silverlight startup process. This flowchart describes the loading process from the load of the HTML page through
 to the execution of the events on the root visual of a Silverlight application.

 Figure 3.2. Structure of a typical .xap file showing the types of files that are normally included

 Figure 3.3. Setting the assembly caching option via the project property pages for the Silverlight project

 Figure 3.4. The consequences of various background and isWindowless property combinations. The outermost rectangle represents
 a section of HTML within a web page. The inner rectangle represents the region occupied by a Silverlight plug-in. The rounded
 rectangle is the pure Silverlight content that will be explained later.

 Figure 3.5. The browser window displaying the current and maximum frame rates in a CPU-intensive application

 Figure 3.6. The default Silverlight installation badge displayed when the user doesn’t have the required Silverlight version
 installed.

 Figure 3.7. The Silverlight Configuration dialog box (Silverlight 4 adds a Webcam/Mic tab). This dialog box is accessible
 by right-clicking Silverlight content within a web browser. Administrators may configure the Silverlight auto-updater for
 all users, thereby disabling the ability to change options on this screen.

 Chapter 4. Integrating with the browser

 Figure 4.1. Two theoretical in-browser uses of Silverlight. The shaded areas represent Silverlight applications on web pages.

 Figure 4.2. The darkly shaded area represents the HTML DOM. The lightly shaded area represents the Silverlight control. This
 control hosts the Silverlight Object Model.

 Figure 4.3. The elements of a web address

 Figure 4.4. When running in the browser, HTML hosting features are disabled. This example shows the WebBrowser control.

 Figure 4.5. The WebBrowser control with a page loaded via the Navigate method

 Figure 4.6. Runtime-generated HTML loaded into the Silverlight WebBrowser control via the NavigateToString method

 Figure 4.7. We’re loading http://windowsclient.net in an iframe using the NavigateToString method. Note the embedded Silverlight
 player and animated gif ads, all hosted in the control inside our Silverlight out-of-browser application.

 Figure 4.8. InvokeScript used to manipulate the contents of the web page in the WebBrowser control

 Figure 4.9. WebBrowserBrush used to paint web content onto an Ellipse element

 Chapter 5. Integrating with the desktop

 Figure 5.1. My first out-of-browser Silverlight application—a Commodore 64 emulator using the updated MediaStreamSource API
 described in chapter 20

 Figure 5.2. The same Silverlight application running in the browser

 Figure 5.3. The install menu for an out-of-browser-enabled application is accessed by right-clicking on the Silverlight surface.

 Figure 5.4. The install dialog gives the user the option to place shortcuts on the Start menu and on the desktop. The install
 icon on the left is customizable, as is the application name.

 Figure 5.5. The application is running in the out-of-browser mode. Note that both the application window title and source
 domain (localhost in this case) are displayed in the title bar.

 Figure 5.6. An out-of-browser Silverlight application with custom icons pinned to the Start menu in Windows 7. The application
 below it, TweetDeck, is an Adobe AIR application, another competing out-of-browser RIA technology.

 Figure 5.7. The same Silverlight out-of-browser application pinned to the taskbar in Windows 7

 Figure 5.8. The Out-of-Browser Settings dialog

 Figure 5.9. The experience a user will see if he hasn’t installed this application. Clicking the button calls Application.Current.Install().

 Figure 5.10. The same application after it’s detected that it was installed and is running outside of the browser. Note that
 the browser-hosted version responded to the InstallStateChanged event by changing its own UI.

 Figure 5.11. A customized notification window

 Figure 5.12. Normal out-of-browser installation prompt

 Figure 5.13. Unsigned out-of-browser elevated trust install prompt

 Figure 5.14. Signed out-of-browser elevated trust install prompt

 Figure 5.15. Signing options in Visual Studio 2010

 Figure 5.16. An Excel worksheet and chart generated through COM Interop using the Silverlight elevated trust mode

 Figure 5.17. Custom chrome settings for elevated trust out-of-browser applications

 Figure 5.18. A close-up view of the top-left corner of a black window using the round-corners setting. The radius is fixed
 by Silverlight itself.

 Figure 5.19. The prompt displayed to users when they enter the full-screen mode

 Figure 5.20. An illustration of a potential isolated storage area

 Chapter 6. Rendering, layout, and transforming

 Figure 6.1. An example of the Opacity property

 Figure 6.2. If the machine can’t keep up with the workload, Silverlight will drop frames but will ensure that the displayed
 frames are correctly synchronized with the clock tick.

 Figure 6.3. An overhead view of occlusion in a 3D system. The shapes are occluded by the wall; the camera can’t see them.
 It’d be wasteful to include their geometry in the rendering process. Silverlight does occlusion culling at the pixel level
 rather than the shape level.

 Figure 6.4. Cached composition in use. On the first render, or any layout change, the cache is updated with the result of
 the render. Subsequent frames use the prerendered contents of the cache.

 Figure 6.5. The relationship between the layout slot and the child element for an element smaller than the slot

 Figure 6.6. The relationship between the layout clip and the layout slot for a child element too large for its slot

 Figure 6.7. The x, y, and z-axes as recognized by the PlaneProjection element

 Chapter 7. Panels

 Figure 7.1. A sample crossword puzzle that could be built using stack panels

 Figure 7.2. A basic purchase order, using tabular layout. This would be perfect for a Grid.

 Chapter 9. Text

 Figure 9.1. ClearType subpixel font rendering in Silverlight

 Figure 9.2. The first line uses Fixed text hinting and, therefore, ClearType rendering. The second line uses Animated text
 hinting and is, therefore, grayscale.

 Figure 9.3. A sampling of the font families supported within Silverlight

 Figure 9.4. The formula to convert font points to pixels in Silverlight

 Figure 9.5. The text selection parts: SelectedText, SelectionStart, and SelectionLength

 Figure 9.6. Operation of a typical Japanese Romaji-based IME (source: Wikimedia Commons)

 Figure 9.7. The clipboard access prompt. When running in standard permissions (sandboxed) mode, Silverlight displays this
 when you attempt to access the clipboard from the application.

 Figure 9.8. RichTextBox selection information, assuming the user selected left to right, starting with the first T in “turtles”

 Chapter 10. Controls and UserControls

 Figure 10.1. A TextBox that can be locked

 Chapter 11. Binding

 Figure 11.1. A conceptual view of data binding. The source owns the data; the target operates on (displays, edits, and so
 forth) the data.

 Figure 11.2. A conceptual view of OneTime binding to a data source. The value is initially read from the source and is never
 updated again.

 Figure 11.3. A conceptual view of OneWay binding to a data source. The value is updated each time the source changes, but
 changes to the value in the target control don’t make it back to the source.

 Figure 11.4. A conceptual view of TwoWay binding to a data source. The target control reflects changes to the source, and
 the source is updated with any changes made in the target.

 Figure 11.5. Using element binding to count characters as you type into a TextBox

 Chapter 12. Data controls: DataGrid and DataForm

 Figure 12.1. DataForm showing generated edit controls bound to a single object without a backing collection. Note that there’s
 no toolbar or set of navigation buttons. Not all fields are shown, so your form will look slightly different.

 Figure 12.2. A DataForm bound to a collection of objects. Note the presence of the toolbar including the add/remove and navigation
 buttons, sometimes called the VCR control. (Display annotations, covered in 12.3.1, were used in this example.)

 Figure 12.3. The DataForm with all command buttons displayed. The OK and Cancel buttons are the commit and cancel buttons,
 respectively.

 Figure 12.4. Customized EditTemplate showing the CheckBox label to the right of the CheckBox

 Figure 12.5. Portion of a DataForm showing the tooltips with the Description property of the Display attribute and the field
 captions pulled from the Name property of the same attribute.

 Figure 12.6. The Marital Status field has been disabled because its underlying property is marked as read only.

 Chapter 13. Input validation

 Figure 13.1. Runtime view of the validation form

 Figure 13.2. Default binding validation error display for the Last Name TextBox, illustrating a custom error message

 Figure 13.3. Cross-field validation showing errors for both salary and level

 Figure 13.4. Built-in exception-based checking takes precedence over your code.

 Figure 13.5. The DataForm with validation rules in place, showing the Validation Summary and default validation messages

 Figure 13.6. The Last Name field failed our custom validation check, as indicated in the error message at the bottom. Note
 that the field name isn’t included in the error message.

 Figure 13.7. The enhanced error message with field name courtesy of the ValidationContext

 Chapter 14. Networking and communications

 Figure 14.1. Two Silverlight control instances on the same page, communicating with each other

 Figure 14.2. Sender and receiver in separate browser windows, communicating across processes

 Figure 14.3. Sender in a browser window, and receiver running out-of-browser

 Chapter 15. Navigation and dialogs

 Figure 15.1. I just clicked the First link at the top of the page. The browser scrolled to bring the content into view and
 updated the URL with the hashtag #first.

 Figure 15.2. The Back and Forward buttons have even made it into the Windows shell, in the file explorer windows.

 Figure 15.3. Picking the Navigation Application template in Visual Studio 2010

 Figure 15.4. The Navigation Application default project. Note how the URL corresponds to the current page visible in the application,
 and how the navigation menu on the right is synchronized with the two.

 Figure 15.5. The Add New Item dialog with the Silverlight Page template selected. This is the template to be used for views
 in a Silverlight navigation application. I may have more templates than you; I’ve installed some add-ins.

 Figure 15.6. The Silverlight navigation application with a new style. The Cosmopolitan style is similar to the Metro theme
 used by Zune software.

 Figure 15.7. The navigation application with a customer list page loaded from an external assembly

 Figure 15.8. The Zune software client. Note the small arrow Back button at upper left. Also note the two-level navigation
 using links such as Quickplay, Collection, Marketplace, and Social. (I get my Doctor Who fix using Zune. It’s cheaper than
 cable.)

 Figure 15.9. The new navigation buttons appear at upper left in the user interface.

 Figure 15.10. The navigation application running out-of-browser, with custom navigation controls

 Figure 15.11. The Silverlight ChildWindow is a first-class element like UserControl and Page.

 Figure 15.12. Guiding the selection using filter properties

 Chapter 16. Structuring and testing with the MVVM/ViewModel pattern

 Figure 16.1. For this solution, you’ll use the Navigation Application template introduced in chapter 15.

 Figure 16.2. Designer view of the ChildWindow used to edit employee details

 Figure 16.3. The Employee List page shown with an item selected in the grid. Note that the scrollbar is scrolled to the right
 to get past the columns you don’t need.

 Figure 16.4. The employee detail pop-up view, showing the information from the selected employee

 Figure 16.5. In the usual code-behind approach, a fair bit of logic is tightly coupled to the UI and to other layers. Services
 in this case mean both web services and logical services (utility functions, reusable business logic, and so on).

 Figure 16.6. In the MVVM pattern, the View contains minimal code-behind and uses binding and messages (actions or commands)
 to communicate with the ViewModel. The ViewModel provides a single façade into the rest of the system, optimized for that
 specific view. Keep in mind that services doesn’t always mean web services; they’re anything that provide a service to the
 application.

 Figure 16.7. View of the application using the newly-minted EmployeeViewModel entity ViewModel class. Note the reduced column
 count as well as the nice column headers. Note also the Full Name calculated field.

 Figure 16.8. Adding a new Silverlight Unit Test Application to the solution. I named the project MvvmApplication.Tests, but
 the name isn’t important.

 Figure 16.9. Silverlight unit test runner with two passed tests and one failed test

 Figure 16.10. Setting the default namespace on a class library project

 Figure 16.11. Add the ServiceReferences.ClientConfig file from the core project to the main project using the Add As Link
 option.

 Chapter 17. WCF RIA Services

 Figure 17.1. A high-level view of the architecture of a RIA Services application

 Figure 17.2. Creating a new WCF RIA Services application using the Silverlight Business Application template

 Figure 17.3. The application when first run. Note the addition of the Login button as compared to the navigation template
 shown in chapter 15.

 Figure 17.4. Creating the EmployeeService domain service. You can find the Domain Service Class template in the top-level
 Visual C# template list.

 Figure 17.5. The Domain Service setup dialog. If your dialog entity list is empty, cancel out and build the project.

 Figure 17.6. Data from the WCF RIA Services OData endpoint, loaded into PowerPivot for Excel 2010. PowerPivot is a C# .NET
 Office add-in application, by the way.

 Figure 17.7. The Add Reference dialog with the correct assembly selected to allow exposing JSON and SOAP endpoints

 Figure 17.8. The DataGrid populated using the DomainDataSource control in XAML

 Figure 17.9. Filtering the results to those that contain Manager in the title. This was done entirely with the DomainDataSource
 and a little in-XAML binding.

 Figure 17.10. Data sorted with the DomainDataSource. Note the column headers.

 Figure 17.11. The DataGrid with grouping, courtesy of the DomainDataSource control

 Figure 17.12. The DataPager in use with a page size of 15 and a load size of 30

 Figure 17.13. The application with the details DataForm on the right, populated from the selected grid item. Row navigation
 works from both the grid and the DataForm.

 Figure 17.14. The Display annotation in use on the DataGrid on the left and the DataForm on the right. At lower right is the
 Description property in a tooltip.

 Figure 17.15. The UI using the new EmployeePresentationModel class. Note how you have fields from the contact object now available
 to the UI.

 Figure 17.16. The Login dialog in the Silverlight Business Application template. Note the registration link on the left.

 Figure 17.17. The Login dialog when an incorrect password was entered

 Figure 17.18. The Project menu showing the ASP.NET Configuration option selected. This is the option used to configure the
 authentication database. If you don’t see it, make sure the right project is selected.

 Figure 17.19. The Register dialog in the Silverlight Business Application template. For most business applications, you’ll
 secure or eliminate this dialog.

 Chapter 18. Graphics and effects

 Figure 18.1. The Brush coordinate space

 Figure 18.2. The default appearance of the DropShadowEffect

 Chapter 19. Printing

 Figure 19.1. The printing process at a high level. User code may be run inside the BeginPrint, PrintPage, and EndPrint events.

 Figure 19.2. The Windows 7 print spooler showing the Silverlight document titled “Admittance form for Brown, Pete,” created
 in listing 19.1.

 Figure 19.3. The result of assigning the page visual prior to adding child elements to a part of the visual. Layout doesn’t
 happen automatically, so all the elements are stacked on top of each other.

 Figure 19.4. The example application from listing 19.3. The application has a fixed height and width.

 Figure 19.5. The content on the left had the transform applied directly to the PageVisual. It was clipped prior to transforming.
 The content on the right had the transform applied one level below the PageVisual, at the LayoutRoot. The LayoutRoot was transformed,
 and the PageVisual was clipped, providing the result we were looking for.

 Figure 19.6. Adding a Silverlight-enabled WCF Service to the web project

 Figure 19.7. Adding a service reference from our Silverlight project to the WCF Service in the web project

 Figure 19.8. The top portion of the report, shown in the XPS viewer

 Figure 19.9. The footer from page 1 and the header from page 2. Note the page number on the first page.

 Chapter 20. Displaying and capturing media

 Figure 20.1. The Smooth Streaming server-side file format

 Figure 20.2. The cycle of events as a media item plays progressively within a MediaElement

 Figure 20.3. A user requests protected content from a server. This content is downloaded, in encrypted format, to the Silverlight
 application.

 Figure 20.4. The process of installing the content access components. This one-time process happens the first time a user
 attempts to use a protected item. Future attempts to access protected content won’t go through the process of downloading
 and installing PlayReady.

 Figure 20.5. The media content in this figure is locked until a key is retrieved from the licensing server. This server can
 implement custom logic through the PlayReady SDK.

 Figure 20.6. Unblocking an internet-downloaded DLL in order to be able to reference it from within a Visual Studio project

 Figure 20.7. The default SMF media player with Big Buck Bunny, an IIS Smooth Streaming video, loaded

 Figure 20.8. The completed white noise video generator. When I was a boy, I used to imagine I was watching an epic ant battle
 from high overhead. Well, until I saw Poltergeist, which forever changed the nature of white noise on the TV.

 Figure 20.9. Webcam and microphone access confirmation dialog

 Figure 20.10. Silverlight default webcam and microphone tab in the Silverlight settings dialog. Either that image is horizontally
 stretched in an unflattering way, or I need to lay off the chips.

 Figure 20.11. Webcam screen shot at 720p HD, selected using the DesiredFormat property and LINQ. I’m practicing my raised-eyebrow
 news anchor face. I’ll try harder next time. Dig the C128 in the background!

 Figure 20.12. Capturing the largest video size, plus a series of still photos bound to a ListBox on the right. Did I get the
 anchor look any better? Maybe I need a suit.

 Chapter 21. Working with bitmap images

 Figure 21.1. A WriteableBitmap (right) created from another bitmap (left)

 Figure 21.2. The elements to the left are live elements in the visual tree. On the right, you can see the bitmap representation
 of those elements, captured while the Capture button was clicked.

 Figure 21.3. The WriteableBitmap sample application modified to show a Mandelbrot fractal

 Figure 21.4. A MultiScaleImage with a ViewportWidth of 0.33

 Figure 21.5. The boundary of an Image element in comparison to the actual size of the photo

 Chapter 22. Animation and behaviors

 Figure 22.1. An image fading into view over the course of one second

 Figure 22.2. The effects of the SpeedRatio on a Timeline with a Duration of 10 seconds

 Figure 22.3. The effects of the RepeatBehavior on a Timeline with a Duration of 10 seconds

 Figure 22.4. The property path syntax in action

 Figure 22.5. A bouncing ball over some variable amount of time

 Figure 22.6. How linear interpolation is determined. Note the straight lines between points.

 Figure 22.7. An example using spline interpolation for approximation

 Figure 22.8. The relationship between time and value as used by the KeySpline property.

 Figure 22.9. Sample time/value curves used by the KeySpline property

 Figure 22.10. An example using discrete interpolation for approximation

 Figure 22.11. The three modes: EaseIn, EaseOut, and EaseInOut for the ElasticEase easing function

 Figure 22.12. Adding the Blend SDK assemblies as references. On my machine, the Microsoft. Expression.Interactions library
 and the System.Windows.Interactivity library were both located in C:\Program Files\Microsoft SDKs\Expression\Blend\Silverlight\v4.0\Libraries\.

 Chapter 23. Resources, styles, and control templates

 Figure 23.1. A sample web site project structure. Note the four .png files.

 Figure 23.2. Defining a file as a content file. When it’s compiled, the content file is added to a .xap file.

 Figure 23.3. The required parts of a Slider are the thumb and the track. The actual appearance of the slider isn’t important
 as long as it has the parts that form the UI contract.

 Chapter 24. Creating panels and controls

 Figure 24.1. The OrbitPanel in action. The inner (first) orbit has nine buttons. The outer (second) orbit has five buttons.

 Figure 24.2. The expander control with the custom layout panel included as content

 Chapter 25. The install experience and preloaders

 Figure 25.1. The default image shown when users don’t have Silverlight installed on their machines

 Figure 25.2. The Netflix player. This is an excellent example of a Silverlight install prompt. It includes a ghosted image
 of the player, information about the movie you’ve selected, and a clear call to action.

 Figure 25.3. The new custom prompt to install Silverlight. I don’t know about you, but I’m totally ready to install Silverlight
 now!

 Figure 25.4. The default Silverlight “spinning blue ball” loading experience.

 Appendix A. Database, connection, and data model setup

 Figure A.1. When creating the Silverlight application, be sure to host the application in a new Web Application.

 Figure A.2. Creating the AdventureWorksEntities entity data model

 Figure A.3. The first step of the Entity Data Model Wizard. Be sure to choose Generate from Database.

 Figure A.4. The Choose Your Data Connection dialog box. If you don’t already have an AdventureWorks connection created, click
 the New Connection button. This screenshot shows the data connection dialog with a valid data connection already selected
 by default.

 Figure A.5. Creating a new connection to the AdventureWorks database. Be sure to test the connection.

 Figure A.6. Select the Contact and Employee tables from the AdventureWorks database. Leave the model namespace set to AdventureWorksModel.

 Figure A.7. The AdventureWorks model viewed in the model designer. Double-click the .edmx file in the web project to view
 it on the design surface.

List of Tables

 Chapter 1. Introducing Silverlight

 Table 1.1. The New Silverlight Application dialog options

 Chapter 3. The application model and the plug-in

 Table 3.1. The properties of the SilverlightHost object

 Table 3.2. Pros and cons of the three plug-in creation approaches

 Table 3.3. The primary utility functions exposed through the Silverlight.js utility file

 Table 3.4. The three approaches for referencing a Silverlight application

 Table 3.5. The parameters of the onLoad event handler

 Table 3.6. The properties associated with the errorArgs parameter

 Chapter 4. Integrating with the browser

 Table 4.1. The DOM variants officially supported by Silverlight

 Table 4.2. The entry points into the HtmlDocument

 Table 4.3. The navigation methods of an HtmlDocument

 Table 4.4. The navigation properties of an HtmlElement

 Table 4.5. The prompt options available through the HtmlWindow class

 Table 4.6. The navigation options available through the HtmlWindow class

 Table 4.7. Descriptions of the BrowserInformation properties and their corresponding Navigator properties

 Chapter 5. Integrating with the desktop

 Table 5.1. The various values of InstallState

 Table 5.2. The values of SpecialFolder currently supported in Silverlight

 Table 5.3. Runtime-controllable properties of the out-of-browser host window

 Table 5.4. Window styles for out-of-browser applications

 Table 5.5. The FileMode enumeration

 Table 5.6. The base location of the isolated storage area on each operating system supported in Silverlight

 Chapter 6. Rendering, layout, and transforming

 Table 6.1. The steps of the render process

 Table 6.2. A list of the available transformation options

 Table 6.3. PlaneProjection properties

 Chapter 8. Human input

 Table 8.1. The properties of the KeyEventArgs class

 Table 8.2. The ModifierKeys available within Silverlight

 Table 8.3. The click-related events associated with the mouse

 Table 8.4. The properties exposed by the MouseEventArgs

 Table 8.5. The mouse-movement-related event handlers

 Table 8.6. The properties exposed by MouseWheelEventArgs

 Table 8.7. The properties and methods exposed by the TouchFrameEventArgs class

 Table 8.8. The properties and methods exposed by the TouchPoint class

 Chapter 9. Text

 Table 9.1. The font-related properties available in Silverlight and their CSS equivalents

 Table 9.2. Acceptable values for the FontStretch property

 Table 9.3. The Clipboard type’s static member functions

 Table 9.4. Recommended uses for the various text display and editing elements

 Chapter 10. Controls and UserControls

 Table 10.1. Visual style properties for the Control abstract type

 Table 10.2. Navigation and state members for the Control abstract type

 Table 10.3. Possible values for the TabNavigation property

 Table 10.4. Styling and templating properties for the Control abstract type

 Table 10.5. Properties for the ContentControl abstract type

 Table 10.6. The flexibility of a ContentControl as displayed by three buttons

 Table 10.7. Properties for the ContentPresenter element

 Table 10.8. The options available within the ClickMode enumeration

 Table 10.9. The acceptable options for the TargetName property

 Table 10.10. Key ItemsControl members

 Table 10.11. The properties of the DependencyPropertyChangedEventArgs structure

 Chapter 11. Binding

 Table 11.1. One example of a data template

 Chapter 12. Data controls: DataGrid and DataForm

 Table 12.1. The types of columns that can be automatically generated within a DataGrid

 Table 12.2. The options available within the DataGridRowDetailsVisibilityMode enumeration

 Table 12.3. The options available through the DataGridHeadersVisibility enumeration

 Table 12.4. DataForm CommandButtonsVisibility values

 Table 12.5. Possible values for LabelPosition and the resulting display

 Table 12.6. Possible values for DescriptionViewerPosition and the resulting display

 Table 12.7. DataForm templates corresponding to the DataForm mode

 Table 12.8. IEditableObject interface

 Table 12.9. DisplayAttribute properties and their uses

 Chapter 13. Input validation

 Table 13.1. Employee class properties

 Table 13.2. IDataErrorInfo members

 Table 13.3. Validation rules for salary and level

 Table 13.4. INotifyDataErrorInfo members

 Table 13.5. Validation attributes in System.ComponentModel.DataAnnotations

 Table 13.6. Validation approach summary

 Chapter 14. Networking and communications

 Table 14.1. Elements and attributes allowed in clientaccesspolicy.xml

 Table 14.2. SocketAsyncEventArgs LastOperation values

 Table 14.3. Multicast support in Silverlight

 Table 14.4. MessageReceivedEventArgs properties

 Chapter 15. Navigation and dialogs

 Table 15.1. Page navigation members

 Table 15.2. The NavigationService class functions

 Table 15.3. The NavigationService class properties

 Table 15.4. The NavigationService class events

 Table 15.5. The members of the UriMapper class

 Table 15.6. The values for NavigationCacheMode for a Page

 Table 15.7. Values for the JournalOwnership property of the Frame class

 Table 15.8. Properties, methods, and events related to showing and closing the ChildWindow

 Table 15.9. Properties of the ChildWindow control

 Table 15.10. The configuration properties available on the OpenFileDialog and SaveFileDialog

 Chapter 16. Structuring and testing with the MVVM/ViewModel pattern

 Table 16.1. The three main parts of the MVVM pattern

 Table 16.2. The ICommand interface members

 Chapter 17. WCF RIA Services

 Table 17.1. Naming conventions, equivalent attributes, and their purposes

 Table 17.2. QueryAttribute members

 Table 17.3. Properties of the FilterDescriptor class

 Table 17.4. Values for the Operator property of the FilterDescriptor

 Table 17.5. DisplayMode property values and their associated UI

 Table 17.6. The properties and methods of the generated domain context class

 Table 17.7. Important public members of the Entity class

 Table 17.8. Interesting attributes on the Employee Entity

 Table 17.9. Where to put your business logic

 Chapter 18. Graphics and effects

 Table 18.1. The Shape objects available within Silverlight

 Table 18.2. Available segment types

 Table 18.3. Important DropShadowEffect properties

 Table 18.4. Mapping from .NET types to HLSL types

 Chapter 19. Printing

 Table 19.1. PrintDocument members

 Table 19.2. PrintPageEventArgs members

 Chapter 20. Displaying and capturing media

 Table 20.1. Media containers and codecs supported by Silverlight

 Table 20.2. Supported media delivery methods

 Table 20.3. The options available within the MediaElementState enumeration

 Table 20.4. The events of the MediaElement

 Table 20.5. The ASX elements supported within Silverlight

 Table 20.6. The SMIL elements supported within Silverlight

 Table 20.7. The methods that control the progress of a MediaElement

 Table 20.8. The properties associated with a TimelineMarker

 Table 20.9. Possible values for DeliveryMethod for the SMF player

 Table 20.10. MediaStreamSource virtual methods

 Table 20.11. Supported raw media FourCC codes in Silverlight

 Table 20.12. The VideoFormat class

 Chapter 21. Working with bitmap images

 Table 21.1. Image formats supported by the BitmapImage class. These formats are inherently supported formats of the Image
 element.

 Chapter 22. Animation and behaviors

 Table 22.1. Options for the Duration property

 Table 22.2. Available FillBehavior options

 Table 22.3. Methods associated with the Storyboard object

 Table 22.4. The keyframe types available within Silverlight

 Table 22.5. Built-in easing functions

 Chapter 23. Resources, styles, and control templates

 Table 23.1. Several states of a Button. Each state has a slightly different visual appearance.

 Table 23.2. The states and groups of the Button class

 Chapter 24. Creating panels and controls

 Table 24.1. Common control base types

List of Listings

 Chapter 1. Introducing Silverlight

 Listing 1.1. Processing the Twitter search results using LINQ to XML

 Listing 1.2. DataTemplate to format the tweets

 Chapter 2. Core XAML

 Listing 2.1. XAML showing a hierarchy of nested objects

 Listing 2.2. A basic XAML file referencing the two default namespaces

 Listing 2.3. Using a control from an external assembly

 Listing 2.4. Using a control from a different namespace in the same assembly

 Listing 2.5. Namespace declaration at a level lower than the root

 Listing 2.6. Specifying a property value in line using an XML attribute

 Listing 2.7. Specifying a property value using property element syntax

 Listing 2.8. A more complex example of the property element syntax

 Listing 2.9. Dependency property precedence rules in practice

 Listing 2.10. Attached properties in use

 Listing 2.11. A MouseDragElementBehavior attached to a Border element

 Listing 2.12. Using the VisualTreeHelper to walk the tree from an element to the root

 Listing 2.13. Without namescope, the name MyButton would be duplicated in the tree

 Listing 2.14. The Binding and StaticResource markup extensions in XAML

 Listing 2.15. A type converter in action

 Listing 2.16. A custom type converter that converts from a string to a border (C#)

 Listing 2.17. A simple class that uses our custom type converter

 Listing 2.18. XAML showing the custom Border type converter in use

 Listing 2.19. Loading and parsing XAML at runtime

 Listing 2.20. Mixing dynamic XAML with code

 Chapter 3. The application model and the plug-in

 Listing 3.1. Instantiating the Silverlight control (HTML)

 Chapter 4. Integrating with the browser

 Listing 4.1. Referencing a managed item from script on the HTML page

 Listing 4.2. Loading a page using the Navigate method

 Listing 4.3. Loading an HTML string via NavigateToString

 Listing 4.4. Invoking scripts on a loaded web page

 Listing 4.5. Using the WebBrowserBrush to paint an ellipse with a web page

 Chapter 5. Integrating with the desktop

 Listing 5.1. A basic out-of-browser application configuration file

 Listing 5.2. Forcing out-of-browser mode

 Listing 5.3. Automating Excel to create data and a chart

 Listing 5.4. Handling window state with custom chrome

 Listing 5.5. Code to implement dragging a window

 Listing 5.6. Implementing resize using an element in the bottom right corner

 Listing 5.7. Creating a file quota bar associated with the user’s isolated storage area

 Listing 5.8. Requesting more isolated storage space

 Listing 5.9. Creating a text file within a user’s isolated storage area

 Listing 5.10. Reading a file from the user’s isolated storage area

 Chapter 6. Rendering, layout, and transforming

 Listing 6.1. Three visible elements in a StackPanel

 Listing 6.2. Two visible elements and one collapsed element in a StackPanel

 Listing 6.3. Horizontal and vertical alignment

 Listing 6.4. Margin and padding

 Listing 6.5. Layout rounding in action with two rectangles

 Listing 6.6. Moving a TextBlock five pixels with GetValue and SetValue

 Listing 6.7. Using the per-frame rendering callback

 Listing 6.8. Caching a group of elements in a StackPanel

 Listing 6.9. Caching at a size larger than the default (XAML)

 Listing 6.10. A square that has been rotated by 30 degrees

 Listing 6.11. A square that has been scaled by a magnitude of 2.5

 Listing 6.12. A Rectangle that’s been skewed by 18 degrees

 Listing 6.13. A basic translation in action

 Listing 6.14. Four transforms on a TextBox-note how the TextBox is still active

 Listing 6.15. The same four transforms on a TextBox using a CompositeTransform

 Listing 6.16. Rotation and translation using a Matrix

 Listing 6.17. Simple perspective effect on a Grid containing multiple elements

 Listing 6.18. Mangling elements using a Matrix3dProjection

 Chapter 7. Panels

 Listing 7.1. Natural stacking order

 Listing 7.2. Changing the stacking order using ZIndex

 Listing 7.3. The StackPanel in vertical mode

 Listing 7.4. The StackPanel in horizontal mode

 Listing 7.5. Grid with uniformly sized cells

 Listing 7.6. Grid Row, Column, and ColumnSpan properties on a simple form

 Listing 7.7. Absolute and star sizing

 Listing 7.8. Auto sizing

 Listing 7.9. Absolute sizing

 Listing 7.10. GridSplitter

 Chapter 8. Human input

 Listing 8.1. A page in Silverlight that responds to the KeyDown and KeyUp events

 Listing 8.2. Responding to the mouse wheel

 Listing 8.3. Responding to the FrameReported event and reporting touch points

 Listing 8.4. Receiving mouse events and creating ink strokes

 Listing 8.5. Adding points to the InkPresenter

 Listing 8.6. Completing the stroke

 Chapter 9. Text

 Listing 9.1. TextOptions.TextHintingMode

 Listing 9.2. TextBlock Run and LineBreak Inlines

 Listing 9.3. Text wrapping

 Listing 9.4. Text trimming with a small font

 Listing 9.5. Text trimming with a larger font

 Listing 9.6. Text alignment property values

 Listing 9.7. Line height for vertical spacing

 Listing 9.8. Uniform padding in a TextBlock

 Listing 9.9. Per-side padding in a TextBlock

 Listing 9.10. Multiline TextBox

 Listing 9.11. Wiring up the TextInputStart event

 Listing 9.12. The syntax for the PasswordBox—note the mask used in each field

 Listing 9.13. RichTextBox showing paragraphs with different formatting and alignment

 Listing 9.14. Inline styles and spans in the paragraph text

 Listing 9.15. Hyperlink support in the RichTextBox

 Listing 9.16. A mad-lib of a RichTextBox showing embedded controls

 Listing 9.17. Programmatically selecting text in the RichTextBox

 Chapter 10. Controls and UserControls

 Listing 10.1. The syntax for a button

 Listing 10.2. The default appearances of a checked and unchecked RadioButton

 Listing 10.3. Manually controlling RadioButton grouping

 Listing 10.4. A basic CheckBox setup

 Listing 10.5. Using three-state mode with the CheckBox control

 Listing 10.6. A ListBox that displays the days of the week

 Listing 10.7. Using a ListBoxItem as a ContentControl

 Listing 10.8. A ComboBox that has been used to select an item

 Listing 10.9. The basic syntax of a TabControl

 Listing 10.10. Customizing the header of a TabItem

 Listing 10.11. The default UserControl template

 Listing 10.12. The user interface for the LockableTextBox UserControl

 Listing 10.13. The LockableTextBox class definition (C#)

 Listing 10.14. Registering a DependencyProperty with the property system

 Listing 10.15. Using the LockableTextBox

 Chapter 11. Binding

 Listing 11.1. Implementing the INotifyPropertyChanged interface (C#)

 Listing 11.2. Binding an Emoticon object to a Grid

 Listing 11.3. Binding elements in XAML to properties in the code-behind

 Listing 11.4. Binding to a specific element in a collection, using a numeric index

 Listing 11.5. Binding to a specific element in a collection, using a numeric index

 Listing 11.6. Binding a collection of Emoticon objects to a ListBox

 Listing 11.7. Using the DisplayMemberPath to improve the display of a list of items

 Listing 11.8. A value converter that converts a Boolean to “Yes” or “No” (C#)

 Listing 11.9. A DataTemplate used with a ContentControl

 Listing 11.10. An ItemTemplate used in an ItemsControl

 Chapter 12. Data controls: DataGrid and DataForm

 Listing 12.1. The DataGrid—assume the ItemsSource property is set in code

 Listing 12.2. Manually adding columns to a DataGrid

 Listing 12.3. Using the RowDetailsTemplate to show the per-item keyboard shortcut

 Listing 12.4. Built-in DataGrid sorting

 Listing 12.5. The Person class

 Listing 12.6. Binding the DataForm to a single Person object

 Listing 12.7. The PeopleRepository class

 Listing 12.8. Binding the DataForm to the PeopleRepository class

 Listing 12.9. Wrapping the controls in an edit template

 Listing 12.10. The Person class with Display attributes attached

 Listing 12.11. Controlling editability using the Editable attribute

 Chapter 13. Input validation

 Listing 13.1. Employee class to be used in the validation examples

 Listing 13.2. User interface XAML and code-behind to use for validation examples

 Listing 13.3. Implementing IDataErrorInfo in the Employee class

 Listing 13.4. Cross-field validation code using IDataErrorInfo

 Listing 13.5. INotifyDataErrorInfo implementation

 Listing 13.6. WCF service code for ValidateSalaryAndLevel

 Listing 13.7. ValidateSalaryAndLevelAsync in the Employee class

 Listing 13.8. The Person class with validation attributes in place

 Listing 13.9. A simple custom validation function

 Listing 13.10. A custom validation function with ValidationContext

 Listing 13.11. Custom validation attribute

 Chapter 14. Networking and communications

 Listing 14.1. Calling a SOAP service

 Listing 14.2. Sending data to a SOAP service

 Listing 14.3. Using complex data types with a SOAP service

 Listing 14.4. The ServiceReferences.ClientConfig file

 Listing 14.5. Client-side code using ServiceReferences.ClientConfig file

 Listing 14.6. Getting data from a REST service

 Listing 14.7. POSTing data to a REST service

 Listing 14.8. Passing credentials along with a request, using the client stack

 Listing 14.9. Using the CookieContainer with a request and response

 Listing 14.10. Getting the XML from a latitude/longitude geo service

 Listing 14.11. Using the XmlSerializer to parse an XML document

 Listing 14.12. Reading an out parameter from a WCF service

 Listing 14.13. Sample application to get score updates

 Listing 14.14. Creating the polling duplex client

 Listing 14.15. Opening the duplex channel and establishing polling

 Listing 14.16. Looking for messages

 Listing 14.17. Reading the message

 Listing 14.18. Opening the socket connection on the client

 Listing 14.19. Handling the socket response

 Listing 14.20. Opening a connection using ASM

 Listing 14.21. Opening a connection to a single source

 Chapter 15. Navigation and dialogs

 Listing 15.1. LinksBorder showing navigation menu

 Listing 15.2. Using the NavigationService class to navigate forward or backward

 Listing 15.3. The Back and Forward buttons on MainPage.xaml

 Listing 15.4. Navigation code in MainPage.xaml.cs

 Listing 15.5. The default ChildWindow template

 Listing 15.6. Displaying a ChildWindow and capturing the DialogResult

 Chapter 16. Structuring and testing with the MVVM/ViewModel pattern

 Listing 16.1. WCF service to expose data to the Silverlight application

 Listing 16.2. EmployeeList.xaml markup

 Listing 16.3. Employee detail ChildWindow controls additional XAML

 Listing 16.4. Employee list code-behind

 Listing 16.5. Employee detail code-behind for ChildWindow

 Listing 16.6. Employee list code-behind for functions

 Listing 16.7. The base ViewModel class

 Listing 16.8. EmployeeListViewModel implementation

 Listing 16.9. EmployeeList view code-behind

 Listing 16.10. The EmployeeVacationBonusService class

 Listing 16.11. A better version of the EmployeeVacationBonusService class

 Listing 16.12. The EmployeeDataService class used for loading Employee data

 Listing 16.13. Updates to the EmployeeListViewModel class

 Listing 16.14. Silverlight MVVM-friendly implementation of ICommand

 Listing 16.15. Surfacing the vacation bonus functionality as an ICommand

 Listing 16.16. Using the CallMethodAction behavior instead of the command

 Listing 16.17. EmployeeViewModel class

 Listing 16.18. Changes to EmployeeListViewModel class

 Listing 16.19. Changes to EmployeeDetail.xaml

 Listing 16.20. A simple ViewModel locator using hard-coded ViewModel instances

 Listing 16.21. The ViewModel locator in XAML

 Listing 16.22. Updated OnNavigatedTo method in EmployeeList code-behind

 Listing 16.23. Simple tests

 Listing 16.24. The first ViewModel tests

 Listing 16.25. Asynchronous call test

 Chapter 17. WCF RIA Services

 Listing 17.1. Testing the JSON endpoint from JavaScript using jQuery

 Listing 17.2. Calling an invoke operation from the client

 Listing 17.3. The generated client-side Employee Entity property Gender

 Listing 17.4. The EmployeePresentationModel class

 Listing 17.5. The EmployeeContactService

 Listing 17.6. The UpdateEmployee method

 Listing 17.7. The InsertEmployee function

 Listing 17.8. An example business method on the Entity class

 Chapter 18. Graphics and effects

 Listing 18.1. A basic Line in black

 Listing 18.2. A basic Rectangle in black with no fill

 Listing 18.3. A Rectangle with rounded corners

 Listing 18.4. A bulging Rectangle

 Listing 18.5. The syntax and look of a basic Ellipse

 Listing 18.6. A Polyline

 Listing 18.7. A Polygon

 Listing 18.8. An open shape (Polyline) compared to a closed shape (Polygon)

 Listing 18.9. Comparison between Line and LineGeometry

 Listing 18.10. A RectangleGeometry compared to a Rectangle

 Listing 18.11. An EllipseGeometry compared to an Ellipse

 Listing 18.12. A PathGeometry

 Listing 18.13. A composite geometry to make a key

 Listing 18.14. A basic SolidColorBrush with the color Navy Blue

 Listing 18.15. A LinearGradientBrush rendered on a diagonal

 Listing 18.16. A LinearGradientBrush rendered horizontally

 Listing 18.17. A horizontal LinearGradientBrush with multiple transitions

 Listing 18.18. A RadialGradientBrush

 Listing 18.19. Comparing uses of the RadiusX and RadiusY properties

 Listing 18.20. An example of an ImageBrush

 Listing 18.21. An example of a VideoBrush

 Listing 18.22. An example of a videoBrush within a TextBlock

 Listing 18.23. A blur with a 4-pixel radius

 Listing 18.24. A subtle drop shadow

 Listing 18.25. Applying the drop shadow to a background Rectangle

 Listing 18.26. A simple pixel shader that applies a color filter

 Listing 18.27. A pixel shader wrapper class

 Listing 18.28. Using the pixel shader effect in XAML

 Chapter 19. Printing

 Listing 19.1. Using the Print method and specifying a document name

 Listing 19.2. Showing the number of pages printed

 Listing 19.3. UI XAML for the content printing example

 Listing 19.4. Printing the entire UserControl and retaining visual size

 Listing 19.5. Rerooting an element into a printer-specific root

 Listing 19.6. Transforming the content to fit on the printed page

 Listing 19.7. The EmployeeReportItem class

 Listing 19.8. The GetEmployees method of the AdventureWorksService class

 Listing 19.9. Code to test the service reference from Silverlight

 Listing 19.10. The EmployeeReport class

 Listing 19.11. The ItemTemplate on the EmployeeReport class

 Listing 19.12. MainPage markup with an instance of our report and template

 Listing 19.13. Code-behind for MainPage

 Listing 19.14. The three printing event handlers, wired and ready to go

 Listing 19.15. Enumerating and printing each row of data

 Listing 19.16. Breaking when the page is full

 Listing 19.17. Dependency properties for templates

 Listing 19.18. Header and footer data templates in MainPage XAML

 Listing 19.19. Updated PrintPage code for header and footer

 Chapter 20. Displaying and capturing media

 Listing 20.1. The percentage of content ready for use within a MediaElement

 Listing 20.2. Using the MarkerReached event to show a caption on a MediaElement

 Listing 20.3. Instantiating the SMF Player from XAML

 Listing 20.4. The basic MediaStreamSource structure

 Listing 20.5. Using a custom MediaStreamSource class

 Listing 20.6. Setting up the video stream

 Listing 20.7. Returning the video frame sample

 Listing 20.8. A simplified WaveFormatEx structure

 Listing 20.9. The PrepareAudio function

 Listing 20.10. Outputting audio samples

 Listing 20.11. Capturing video using the default capture device

 Listing 20.12. XAML Capturing still images

 Listing 20.13. C# code for capturing the still images

 Listing 20.14. A sample VideoSink class for capturing raw webcam video

 Listing 20.15. Using a custom VideoSink to grab frames

 Chapter 21. Working with bitmap images

 Listing 21.1. An Image element that uses a picture from another domain

 Listing 21.2. MainPage.xaml for the WriteableBitmap examples

 Listing 21.3. Mandelbrot fractal in WriteableBitmap

 Listing 21.4. Implementing zoom functionality

 Listing 21.5. Use of the None option on an undersized Image element

 Listing 21.6. A uniformly stretched Image with a photo smaller than the element

 Listing 21.7. A uniformly stretched Image with a photo larger than the element

 Listing 21.8. An Image using the Fill option to stretch an image

 Listing 21.9. An Image using the UniformToFill Stretch option

 Chapter 22. Animation and behaviors

 Listing 22.1. XAML for fading in an Image over the course of one second

 Listing 22.2. The XAML for a basic Ellipse

 Listing 22.3. Syntax of Storyboard element with multiple animations

 Listing 22.4. Animation overriding target of its parent Storyboard

 Listing 22.5. Complex property paths in XAML Storyboards

 Listing 22.6. Using the Playback methods and Completed event

 Listing 22.7. Defining a Storyboard as a resource

 Listing 22.8. Defining a Storyboard as an event trigger

 Listing 22.9. Creating a bouncing ball using keyframes

 Listing 22.10. Using a TimeSpan value to specify the KeyTime

 Listing 22.11. Using the ElasticEase for some crazy animation

 Listing 22.12. A custom randomizing ease

 Listing 22.13. Using the FluidMoveBehavior with an Element

 Listing 22.14. A behavior that displays a MessageBox when a Button is clicked

 Chapter 23. Resources, styles, and control templates

 Listing 23.1. The basic syntax and usage of a resource

 Listing 23.2. SolidColorBrush defined as a resource at design time and runtime

 Listing 23.3. How not to be seen

 Listing 23.4. Merging resource dictionaries—colors dictionary

 Listing 23.5. Merging resource dictionaries—control styles dictionary

 Listing 23.6. Merging resource dictionaries—App.xaml

 Listing 23.7. Merging resource dictionaries—main page

 Listing 23.8. Brute-force approach to applying common properties

 Listing 23.9. A basic style definition

 Listing 23.10. A complex property in a style definition

 Listing 23.11. Defining the TargetType of a Style

 Listing 23.12. Defining the TargetType of a Style

 Listing 23.13. Changing the look of a Button through a Template

 Listing 23.14. Using a TemplateBinding for the target element’s properties

 Listing 23.15. Using a ContentPresenter to display content

 Listing 23.16. Using an ItemsPresenter to display the Items of an ItemsControl

 Listing 23.17. Declaring the ItemsPanel to arrange the Items of an ItemsControl

 Listing 23.18. Using a ControlTemplate within a Style

 Listing 23.19. Creating a Button that enlarges when a user hovers over it

 Listing 23.20. Creating a Button that transitions when a user hovers or leaves it

 Listing 23.21. Creating a button that enlarges when hovered over

 Chapter 24. Creating panels and controls

 Listing 24.1. The Orbits property

 Listing 24.2. The Orbit attached property in the OrbitPanel class

 Listing 24.3. The measure step

 Listing 24.4. The arrange step

 Listing 24.5. Supporting functions

 Listing 24.6. Using the OrbitPanel from XAML

 Listing 24.7. The Header and HeaderTemplate properties

 Listing 24.8. Contract with the control template

 Listing 24.9. The control template

 Listing 24.10. Supporting visual states

 Listing 24.11. Visual states in the control template

 Chapter 25. The install experience and preloaders

 Listing 25.1. A replacement Silverlight plug-in install prompt

 Listing 25.2. The XAML for a custom splash screen: SilverlightLoader.xaml

 Listing 25.3. Associating the preloader with the Silverlight application

 Listing 25.4. The event handlers used for monitoring the download progress

 01fig04_alt.jpg
(i oot
T e Ty Ty
(G -G @b 819 - - e e

e ipeight a0 6:Oesigridthe 400

01fig05_alt.jpg
‘o0 Add Reference =)
M7 [projects | Browse | Recent N
Fiteed s Siveright 4
Compenent Name. Veson Runtime Pan =
System Windows ContesDuts 2050 V2050 CiProgm FlesMirosoft SOKASH
System Windows ControlsData Input 050 V2057 ChProgam FleMicrosoR DK
System Windows Contras 050 V205027 ClProgam FleaMirosof SOKASI
System Windows ontroenput 2050 05 ClProgm FlenMirosek SKASI
System Windows Conrols Novigation 2050 V20S CProgam e Microsoh SOKASH
System WindowsOots 2050 CAProgram Fle\Microsof SDKASH
L T —————————) — L O\bagrary hcioct i
Sytem tmiserolzton 050 V0507 ClProgm FleaMirosot SOKASH
Sysem XLl 050 2050 ChProgam FilesMicrosoft DK
System ki XPath 2050 VOSI CAProgram Fies Micesoh SOKSSi - |

01fig02_alt.jpg
e
T et

= | B e P

= = [P

o [P
by
o e

P -

s et o ot S

ErTr— |
Ty Ve
bk ot i ch et
[rron)

Soktons [Cenenensison

Frishoighppicen

01fig03_alt.jpg
New Silverlight Application

Click the checkbox below to host this Silverlight application in 3 Web site. Othenwise, 3
test page wil be generated during buld.

7] Host the Silveriight application in a new Web site
New Web project name:

FirstSilverlightApplication. Web
New Web project type:

[ASP.NET Web Application Project

Options
Siverlight Version:

[sitvertight 4

] Enable WCF RIA Services

manning.jpg

01fig01.jpg
WPF | Siverigh

infin.jpg

03fig05.jpg

03fig07_alt.jpg
& Microsoft Silverlight Configuration

About | Updates paybac | iebcam /i [Permissions [Apphcation storage]

Choose how Siverlght instals updates

Siverlght can periodcaly check for, donioad and nstal updates
automaticaly usig these settngs.

Install updates automatically (recommended)
(@ Check for pdates, butlet me choose whether to donload and nstall
them

) Never check for updates
Your computer may become vinerabl to securty theats, Use this settng

only if youreceive Siverioht updates from Mcrosoft Update or another
source.

Vit are some settings unavaiable?
Sivericht Privacy Statement

03fig06.jpg
Microsoft:

To view this content,
W §Wér|ight‘

Click now to install

QUICK DOWNLOAD / 30 SECOND INSTALL

016fig01_alt.jpg
QLISOE - TEATLORATEL "RDEDIOTAD. Fa 1B, W)

(Atc
Xpocunent. doc = Xpocument Parse (ca.Result) i @ om
XNamespace ns = "http://www.w3.org/2005/Atom"; namespace
var itews = fron item in doc.Descendants(ns + *entry") o

select new Tueet ()

{

Message = item.Element(ns + "title") .Value,

Inage = new ri ((o
£rom XElement xe in item.Descendants(ns + "link")
unere xe. Attribute ("type’) .Value —= "inage/png"
Select xe.Attribute (vnref”] Value
) .Firstestring. (),

b

foreach (Tweet © in itens) @
(
_tweste.Add(c) 5
. }

04fig02_alt.jpg
credtaziayers|

HTML
Document

Object
Model

Silverlight
control host

Silverlight
control

Silverlight
Object
Model

04fig01.jpg
My Page Title

Thank youfor

visiting my c
home page.

Take a look at

how easily two

different Silverlight
controls were added to
this page. These controls
caninteract with each
‘other via the HTML DOM.

Integrating Silverlight Using Silverlight to fil
within a web page the entire web page

circle01.jpg

03fig01_alt.jpg

044fig01a_alt.jpg
e Bk ey o

t
b

v01d MainPage_Loaded (object sender, RoutedEventArgs el
(o ’ < Loop to create
for (int i = 0; 1 < 4; ive) four instances
{
RowDefinition def = new RowDefinition();
LayoutRoot .RowDef initions .Add (def) ;

Rectangle rect - CreateRectangle() ; Set grid
Grid.SetRow(rect, i); row

LayoutRoot .Children.Add (rect) ;
¥
}

private Rectangle CreateRectangle()

{
}

03fig03.jpg
Silverlight build options
Target Silverlight Version:
[siveright
Xap file name:

MyAppaap

9] Reduce XAP size by

[7] Enable running application out of the browser

03fig02.jpg
MyApp.xap
AppManifest xam! MyApp.dil

‘Additional Libraries (.l

Packaged Content (images, media)

ServiceReferences ClientConfig

03fig04.jpg
E|S|=|=

packgr ckground backgrous
null, silver”,

isWindowless Win
“false® “true”

062fig01_alt.jpg
SHELL =RLode”SLERN e, e . CRgy 133 ANt 3

head> Silverlight js
<titlesMy Silverlight Project</titles reference
<script types'text/javascript® src="Silverlight.js"s</scripts <

</head> N

body style="height :100%7> Hosing

<div id-mySilverlighthost® style="height:100%;7>
script type=text/javascript! e
Silverlight .createdbjectux({ #C object
source: "ClientBin/Mysilverlightapp.xap”,
parentlement: document .getElementById ("mySilverlightiost”)
id: "mysilverlightcontzolr,
properties: {
widen: "100%,
height: "100%%,
version: 3.0"
)
events: (}
N
</script>
</div>
- /boay>
</html>

04fig05_alt.jpg
This is HTML from the same domain as this out-of-browser
application. f this were a cross-domain page, you wouldn't be
able to see it here

faPath 2 Medin Centr PC §.0; MS-RTC LM 5, SLCC, WWTChen2: Zuoe 40, MS-RTC LM)

087fig01a_alt.jpg
public partial claps MalnPage : Usercomtrol

t

public MainPage ()

{

InitializeComponent () ;

Loaded +- new RoutedSventHandler (MainPage_Loaded) ;

}

void MainPage_Loaded (object sender, RoutedEventArgs e)
{
b.Navigate (new Uri (*/example-page . aspx’, <— Navigate Method
Urikind.Relative)) ;

04fig06_alt.jpg
5! SilverlightWebBrowserApp Ap.. - ocalhost

This is the first div
This is the second div

089fig01.jpg
VAl IR SORROO TInDL RINGRE Y SNSRI .
{

StringBuilder heml = new StringBuilder();

heml.Append (*<html »cheads</head>") ;

heml . Append (*<html »cheads</head>") ;

heml . Append ("<body styles'font-£amily:Arial; font-size:20pt ") ;

heml Append ("<div style='color:blue’s") ;

heml Append (*This is the first div');

heml Append (*</diva") ;

heml Append ("<div style='color:orange’s") ;

html Append ("This is the second div');

heml . Append (*</diva") ;

heml . Append (*<heml »cheads</heads<body=") ;

heml . Append ("</body></heml>" | ; NavigateToString

‘method

b.NavigateToString (html.ToString());

091fig01_alt.jpg
SRERL A= OCEP /L. W2, XYL IR XML T2

“heaas
“tities</ticies
Secrint Languagentasvaseripers lovaSerpt ancion
function Greetite (nane) (expecting parameters
Q011 anerkTL +- "<potiello ¥ + nave + "</p>";
}
function Sayliello() (Basic Javascript
vl AmmerHTNL o= "epoRello</orti | fonciim
}
</acripts
</heads
cbody

Hello worldl

<div id-vaivits
</div>
</body>

</html>

04fig07_alt.jpg
WindowsClient.NET

P —

60 FREE Ul controls =]

Windows 7 Sensor and Location 4PIPart 1 - Freescale Bourd Setup.

ch04ex01-0.jpg
CIDDCTING ol PORLIC SSETON SOAR NI bil TEREEALAGERLI I
Rtep: / /w3 .org/TR/xhtmlL/DTD/xhtnl1-transitional .dedr>
html xmlnsvRCED: //ww.u3.org/1999/xhtnl" >
head>

<titlesSilverlight Project Test Page </titles

<script type-'text/javascript® src-"Silverlight.js®></seripts

<script type-'text/javascript”s

function buttonclick()

{
var plugin = document.getElementById("mySilverlightControl®);
i plugin.content.bridge. ExecuteWebService () ; Scriptable object
7 . and method
«</script>
</head>

body style='height:100%;">
<div ide"mySilverlightHost® style="height:100%;">
<script types"text/javascript's

04fig03.jpg
K R

1
\ \

nitp://www silverlightinaction com?page=18id=1234

_'_1

PO S P

04fig04_alt.jpg
& Thep - Windows Intermet Explore 7 1 = j=Er—=—)
[e.o) T —eexem 57
i ot B B0 e rases Sdaye Tosne

S Locl tanet Proeced Mo O G- R - |

ch04ex01-1.jpg
Silverlight.createdbjectix({
"Clientin/MySilverlightApp. xap"

parentElement: host,
id: "mysilverlightControl",

properties: {
height: *100%",
wideh: "100%",
version: "2.0"
i
events: { }
b
</script>
</div>
<input type="button® onclick="buttonClick(};"

value="Execute Web Service' />
< /body>
Mg

087fig01.jpg
A T B R M R
<Grid.Background>
<LinearGradientBrush StartPoint="0,0"
Endpoint-"0,1">
<GradientStop Color="#FF00550D"
Offset=r0r />
<GradientStop Color="4FFO0DDFF"
Offset=r1r />
</LinearGradientsrush>
</Grid.Background>

<WebBrowser x:Name="b" <— WebBrowserContro
Margin='1s" />

< /Grids>

04fig09_alt.jpg
& SiberightWebErowseripp Ap..-locahost

£ 'same domain as this out-of-browss

05fig02_alt.jpg

05fig01_alt.jpg

05fig04.jpg
You are instaling Pete’s App from http:/ /localhost

w Please confirm the locations for the shortauts.

[@start menu
[CIpesktop

o) [Ceme)

05fig03_alt.jpg
T —————r—
OO - [Eraromsisgomtomiarmmn ~Te[a]x]Mese
ik Favortes | 8 SiverightOuOfBrowser

=

< s Sy Teser @

Shengne
s e g et s computr.

This is an out-of-browser-enabled application

& Lot e iode O

05fig06.jpg
Pictures

Siic

05fig05_alt.jpg
s Pete's Out of Browser Appii.. - localhost

This is an out-of-browser-enabled

application

04fig08.jpg
5 SitverlightWebBrowserApp Ap... oca.. -2 = RS

Hello world!

Hello

091fig01a_alt.jpg
P LLC MainERneLs
({

Tnitializecomponent () ;

b.LoadCompleted += LoadCompleted
Rew LoadComplecedsventHandler (b_LoadCompleted) wire-up
}
v0id b_LoadConpleted (object sender, NavigationBventhrgs e) i
(e oot ? “ = Invoking without
b THORSSGEIpE (8AVRE110M parameters

b, Invokeseript (“Greetde®, " Pete'®); <— Invoking with parameters

1}

093fig01a_alt.jpg
VAl IR SORROO TInDL RINGRE Y SNSRI .
(R S ! Wire up event

CompositionTarget .Rendering handier

{

EllipseBrush. Redraw() ;

i

Redraw
on every frame

093fig01.jpg
REZ ALl A =T LAY EMERSCE
<Grid.Background>
<LinearGradientBrush StartPoint="o, 0"
Endpoint="0,1">
<GradientStop Color="#FF00550D"

offset=ron />
<GradientStop Color="#FFOODDFE"
offset=rin />
</LinearGradientBrush>

</Grid. Background>

<WebBrowser x:Name="b"
Height="1000" Ensure that
Width="1000" browser has size
Visibility="Collapsed"

Source-"/example-page .aspx” />

<Ellipse Margin=25"
Stroke-"Black"
StrokeThickness="2">
<Ellipse.Fill>
<WebBrowserBrush SourceName-'b"
x:Name-"E11ipseBrush’ />

</Ellipse.Fills>
</Ellipse>

</Grid>

Source for
brush

Name for
use in code

ch05ex02-1.jpg
else
{
IBInstalledExperience.Visibility = Visibility.Collapsed;
IBNotInstalledExperience. Visibility = Visibility.Visible;
OcbExperience.Visibility = Visibility.Collapsed;
¥
) Fired when
i Installed or
uninstalled

void OnInstallStateChanged(cbject sender, EventArgs e)

t

UpdateugerInterface) ;

b
void MainPage_Loaded(object sender, RoutedEventArgs e)

t

UpdateUserInterface () ;

J Install button
v01d TnstClick(object sender, RoutedEventArgs e) <J oick haadier:

l

Application.Current.Install();

}

ch05ex02-0.jpg
PARLIR e age L)

t

Initializecomponent () ;

Loaded += new RoutedEventHandler (MainPage_Loaded) ;
InstallButton.Click += new RoutedEventHandler (InstClick) ;
Application.Current.InstallStateChanged +=

new EventHandler (OnInstallStateChanged) ;

i Installation and
private void UpdateUserInterface () keciition stats check
t

if (application.Current.lsRunningOutOfSrouser)

{

OobExperience. Visibility - Visibility.visible;

}

else

{

if (Application.Current.InstallState =- InstallState.Installed)

{

IBInstalledExperience.Visibility = Visibility.Visible;
IBNotInstalledExperience.Visibility = Visibility.Collapses
OobExperience.Visibility = Visibility.Collapsed;

05fig10_alt.jpg
CrrrrT————

Running out of browser

This application is installed locally. Please run
from the shortcut.

05fig09_alt.jpg
e —r — =t —=)
OO [E o ocshomszs sneigronotiemeTesgernm +] 8] 4] X Hi'l Googic »

=
Take Out of Browser

& Localintanet Prtected Mode: O

05fig12_alt.jpg
Install application ===

You are instaling Super Happy Fun Time from
http://locathost

Please confirm the locations for the shortauts.

[start menu
[CIpesktop

Cx] Cea)

05fig11.jpg
Header Text

Notification text goes here: This is the message

to be displayed to the user for a brief period.

228 AM

o T ® %3« 2/3/2010

05fig14.jpg
ity Wi
@) Do you want to install this application?

= Name: Super Happy Fun Time!

Publisher: IV\Peter.Brown

© More options [t

This application can potentialy access your personal data and harm your
computer. Only install applications from stes you trust.

More Information

05fig13.jpg
Neme: Super Happy Fun Time!

Site: http://localhost
Publisher: Unverified

() Mere options |

‘This appication does not have a vald digial signature that verfies the
publsher. You should only run software from publshers you trust.
More Information

101fig01_alt.jpg
SOUEQLSeardettlugs MInTtiaes TELE 'S App®- Shown in

EnableGPUACCelerat ion="True" Start menid
ShowInstallMenultem="True">

<outOfBrowsersettings.Blurb> <— Shortat

Pete’s Application on your desktop; at home, at work brbdedia

or on the go.
</outofBrowserSett ings . Blurb>
<OuroBrowserSett ings . Windowsettings>
<WindowsSectings Titles"Pete’s Out-of -Browser Application” <— Window titl
Topa"100" Lefea"100"
WindowStartuplocations"Manual® d—‘ Window
Height-"450" Widch="700° /> <
</OutofBrousexSett ings . WindowSettings> Widow
<OutotBrowserSettings. icons> -
<Icon Size="16,16">AppIcon0l6.png</Tcon>
<Icon Size="32,32">AppIcon03z.png</Icon>
<Icon Size="48,48">AppIcon0ds .png</Icon>
<Icon Size="126,128">AppIcon128.pnge/Icon>
</outofsrowsersett ings . Tcons>
DR SaaariA L At

Custom
icons

05fig07.jpg

05fig08_alt.jpg
Width

] Set window location manually

o
Shortcut name.
sierghtcea
Application description

Commodore 64 Emuator by Pete Brown

1616 Tcon

Applcon016.png
32x32Icon

‘Applcon032.0ng
48x48 lcon
‘Applcon064.png
128128 Teon
Applcon12s.png
Use GPU Acceleration
Show install menu

Require elevated trust when running outside the browser

logo.jpg
/I MANNING PUBLICATIONS

circle02.jpg

09fig08.jpg
Selection.Text=t
pey

| like {if@es

anchorPosition movingPosition

228fig01a.jpg
<RichTextBox x:Name="RichText" IsReadOnly="True"
Width="350" Height="150">
<Paragraph TextAlignment="Left’>
one
<InlineUIContainer>
<Button Contenc='Ring" />
</InlinevIContainer>
to rule them all, one ring to find
<InlineUIContainers #A
<ComboBox SelectedIndex="0">
<ComboBox. Items>
<ConboBoxTten Conten

-
/>
“Deckazd" />

<ComboBoxItem Content
<ComboBoxItem Content
</ComboBox. Ttems>
</ComboBox>
</InlinevrContainer>
One ring to bring them all, and in the
<InlineUIContainer> #A
<ComboBox SelectedIndex:
<ComboBox. Items>
<ComboBoxTtem Conten
<ComboBoxItem Conten
<ComboBoxItem Content
</ComboBox. Ttems>
</ConboBox>
</Inlineicontainers
in the land of
<InlineUIContainers #A
<StackPanel>
<RadicButton Content="Mordor />
<RadioButton Content="Dark City® />
<RadioButton Content=*Tatooine" />
</stackpanel>
</Inlinevicontainers
where the
<InlineVIContainer> <— InlineUIContainer
<TextBlock Text-'shadows lie."s
<TextBlock.Effect>
<DropshadowEf fect BlurRadius:
</TextBlock Bffect>
</TextBlock>
</InlinevIContainers
</Paragraph>
&t A

20 />

228fig01.jpg
0ne 78]t e therm al, one ing to find (M- B0k~ |
e ring totring them al and inthe

© Mordor
Dark City

(Garkcess bind them] 1, the tand of O Totoaine. wnara
the SRR ife.

227fig01.jpg
One ring to rule them al, one ring to find them. One ring to
bring them al, and in the darkness bind them, Nl the

of M r wh e 5
lie.

239fig02.jpg
=

239fig01.jpg

025fig02_alt.jpg
<UserControl x:Class="Xaml03.MainPage"
xmlns="http://schenas .microsoft .com/winfx/2006 /xanl /presentation”
xmlns:x="htep: //schemas .mi Crosoft . com/winfx/2006 /xaml "
xnlns:controlss"clr-nanespace :Xanl03.Controls”

Namespace
Width-7400" Height="300"> veforece
<Grid x:Name="LayoutRoot">

<controls:MyControl x:Name-'myContrall® /> Use
</Grid> namespace

AR T RS

230fig01a_alt.jpg
private void SelectNext_Click(object sender, RoutedEventArgs e) peruddi

i | e
TextPointer start = RichText.Selection.Start; - Lo
TextPointer end = start; End adds 10

end = start.GetPositionAtOffset (10, LogicalDirection.Forward);

RichText.Selection.Select (start, end); <— Perform

RichText.Focus () ; selection

025fig01_alt.jpg
shearcanboal EICLafde ML RA Na tula
"http: //schemas . microsoft . con/winfx/2006 /xanl /presentation”
http: //schemas . microsoft . com/winfx/2006 /xaml®

“clr-namespace :MyNamespace ; assenbly=MyAssenbly” External
400" Height="300"> assembly
<Grid x:Name="LayoutRoot"s reference
<my :MyControl x:Names'myControll® /> < yge
</Grid> assembly

</UserContzrols>

230fig01.jpg
We're off to outer space.
We're leaving Mother Earth

To save the human race

Our Star Blazers

‘Searching for a distant star
Heading off to Iscandar

Leaving all we love behind

Who knows what danger we'l find?

Select Next 10

circle04.jpg

circle03.jpg
£

01fig06_alt.jpg
6 Fessiverightappication - Windows Intemet xplorer

QO - [& msimamosiint ~[8]4] x| [6 80 5
i Favortes | @ FirtSiverightpplication B~ B - O @ - Pager Sey~ Took~ @ "
Get Tweets

J»

FirstSilverlightApplication.Tweet
FirstSilverlightApplication. Tweet
FirstSilverlightApplication.Tweet
FirstSilverlightApplication. Tweet
FirstSilverlightApplication. Tweet
FirstSilverlightApplication.Tweet
FirstSilverlightApplication.Tweet =
FirstSilverlightApplication. Tweet

FirstSilverlightApplication.Tweet

FirstSilverlightApplication. Tweet

oone @ Localintanet Protected Mode: O

241fig01.jpg
Save

239fig03.jpg
Playing

circle05.jpg

01fig07_alt.jpg
e r——

O - (@ meramoniwmresss oo 18] x|[© 5 5]
e o] easietgsopicson B8 -0 m e e st T 97
Get Tweets

M.E.F. + Silverlight tutorial: http://
digs.by/azqYHM

(Portland Job) Computer: Silverlight/ j
~ Prism Developers - Beaverton,

Oregon: Silverlight/Prism ... http://

tinyurl.com/3a5u3a7 #Portland #Jobs

—ATSilverlight4m 11— K& < (brunch)

—X4>)(—oSilverlight 3DEHHZE DA
Btrunkn 57—) - HAEROB < —

BCRES/52. I-ILLTELNER...

018fig01_alt.jpg
gt op i Moo Lo gt e |
HorizontalContentAlignment="stretchr /0
ScrollViewer. orizontalscrollBarvisibility="Disabled”
Margine12,41,12,12%>
<ListBox. ItenTenplate>
<DataTemplates DataTemplate applied
<Grid Margin-r10%> to each Tweet entity
<Grid.Columbetinitionss
<ColumnDefinition Width="Auto" />
<ColumnDefinition Width="+" />)
</Grid.ColumnDefinitions>

<Image Source="(Binding Image}" ;)
Grid. Column-r0"
Margin-"31
Widen-r500
Height="50"
"Uni formTopillt />

(Binding nessage)' @
Pontsizear1er

Margina"3®

Grid.Columnary®
Texthrapping-"Hrap® />

</Grid>
</DataTemplate>
</ListBox. ItemTemplate>
Y

022fig01.jpg

02fig01_alt.jpg
XAML

022fig01a_alt.jpg
‘Outermost UserControl

UserControl x:Classs"XanlElenents.MainPage:

mlnae"hip: //schenas micToRott com/winte/ 2006 xanl /presentation®
nLng rx-"htp: //achemas micToBoEt . com/winEx/ 2006 /xani s ;
<Grid xName-"LayoutRook"> o] Nestedrid
“Button Height."100" Width-"150'> < Button nestedin Grid
“Stackranels
TentBlock TesteEirst Linet /> | Three StackPanel
CrextBloo TextovGecond tanet /- | TexBlocksin inside Buton
entBlodk ToxtVThied Liner /- | Stacane
</stackpans1»
</muttons
</orian

IS aLS

02fig04.jpg

036fig01a_alt.jpg
BULELE TaaRRue 1y

t

Tnitializeconponent () ;

Loaded +- new RoutedSventiandler (MainPage_Loaded)

b

Startin
v0id MainPage_Loaded(object sender, RoutedEventhrgs e) < l0aded event
{

DependencyCbject o - MyTextElock;
while((o = VisualTreetielper.Getfarent(o)) t= mull) <~ §uopyhen
¢ at root

Debug.WriteLine (o.GetType () .Tostring () ;
)

036fig01.jpg
SEEELCORTEDS, MLl uR=V A BNALIEES Maasiage
xmlns="http: //schemas.microsoft . con/winfx/2006/xanl /presentation”
mlns:x="http: //schemas . microsoft .con/winfx/2006 /xanl®
Width="400" Height="300">

<Grid x:Name="LayoutRoot" Background="White">
<Gria>
<Border BorderThickness="1" BorderErush="Black"
Margin="10">
<StackPanel Margin="10"> Slun
<TextBlock x:Name="MyTextBlock" <—] element
Text="Hellot” />
<TextBlock Text="Lorem ipsun" /> < siblh
</Stackranel» Sibling
element
</Borders
</Grid>
</Grids

< e RO AR .

026fig01_alt.jpg
<UserControl x:Class="Xaml05.MainPage"
smlns="htep://schenas.microsoft .con/winfx/2006 /xanl /presentation”

smlng:x="http: //schemas .microsoft . com/winfx/2006 /xaml” .
Width="400" Height="300"> Inline
<Grid x:Name="LayoutRoot" Background="Black" /> property

</UserContzol>

025fig03_alt.jpg
SHEELLDILES 0 L RAR="AANLL R Na MR ERTS .
xmlns="http: //schenas .microsoft . com/winfx/2006/xanl /presentation”

smins :x="hEtp: //schemas. microsoft . con/wintx/2006 /xaml"
Wideher400" Height="300">
Namespace

<Grid x:Name='LayoutRoot" Normeons
smlns: controls="clr-namespace : Xaml03 .Controls"> Fehraion

<controls:MyControl x:Name="myControll" />
<controls:MyControl x:Name="myControl2" />
<controls :MyControl x:Names="myControl3" />
</Grid>
T —

027fig02_alt.jpg
<UserControl x:Class="Xaml07.MainPage'
xmlns="http: //schemas. microsoft .con/wintx/2006/xanl /presentation”
nlns :x="http: //schenas . microsoft .com/winfx/2006/xaml "

LGrid xmanonricyouthoon. | Background propery
<LinearGradientBrush> < Type of brush

<GradientStop Offset="0.5" Colos
<GradientStop Offset="0.5" Colo:
<GradientStop Offset="1.0" Colo:
</LinearGradientBrush.Gradientstops>
</Lineargradientsrush>
</Grid.Background>
</oria>
W Ermeni

LightGray" />
‘DarkGray" />
Whiter />

027fig01.jpg
<UserControl x:Class="Xaml06.MainPage'
Xmlns="http: //schemas.miCrosoft .con/wintx/2006 /xanl /presentation”
nlns x="http: //schenas . microsoft .com/winfx/2006/xaml "
Widthe"400" Height="300">
<Grid x:Name="LayoutRoot'>
<Grid.Background>

Black Property
</Grid. Background> element syntax
</Grid>

P Y

02fig02.jpg
2 % Hperinkadion
% MouseDragElementBehavior

8

% PlaySoundAction

2 RemoveElementAction
This categary shows the behaviors
that are available for use in your
project. Additional behaviors can
be found in the Expression
Gallery.

029fig01_alt.jpg
shasnronest, Lpoian

AL A HALNE Al "

xmlns="http: //schemas.microsoft .con/wintx/2006 /xanl /presentation”

mlns -
xmlns:panels—"clr-namespace:Xaml0s . Panels"
Width="400" Height="600">
<StackPanel x:Name="LayoutRoot">
<Canvas #idth-"400" Height="200">
<Button Canvas.Left="10"
Canvas.Top="50"
Width="200" Height="100"
Content-'Button in Canvas® />
</canvas>

<panels:RadialPanel Width="400" Height="400">
<Button panels:RadialPanel.Degreas-"25"
panels:Radialpanel Level="3"
Width="200" Helght-"100"
Content='Button in Radial Panel' />
</panels:Radialpanel>
</stackpanel>
R R e

htep://schemas .microsoft .com/wintx/2006/xaml®

Attached
propertie

02fig03.jpg
ElementCollecton
(Chidren)

ItemCollection
(ems)

034fig01_alt.jpg
<UserControl
xmlns="http: //schenas.microsoft . con/winfx/2006 /xaml /presentation”
xmlng:x="http: //schemas . microsoft .com/winfx/2006/xanl "
xmlng:i="clr-namespace:Systen.Windows. Interactivity;
assembly-System.#indows . Interactivity" o—‘

smlng :il-"clr-namespace :Microsoft . Expression. Interactivity. Layout
assembly=Microsoft . Expression. Interactions"
:Class="5ilverlightApplicationBehavior MainPage"

Width="640" Height="480"> Required behavior
namespaces
<Grid x:Name="LayoutRoot" Backgrounds"hite">
<Border Width="100" Height="100"
BorderBrush="Black" Background="Orange"
BorderThickness="2">
Attached
<i:Interaction.Behaviorss
behavior

<i1:MouseDragElementBehavior/>
</i:Interaction. Behaviorss>

<TextBlock Text="Drag Me'
HorizontalAlignment="Center"
verticalalignment="center />
</Borders
</crid>

</UserControls

043fig01.jpg

042fig01_alt.jpg
<UserControl x:Class="TypeConverterExample.MainPage"
mlng=rhttp: //schemas . microsoft .con/winfx/2006 /xanl /presentation”
smlng:x="http: //schemas . microsoft . com/winfx/2006 /xaml”
smlng:local-"clr-namespace: TypeConverterExanple”s

Type converter

<GTid x:Name="LayoutRoot"> .
inuse

<local:TestClass Borde
</erids
T e

Red 57 />

044fig01.jpg

043fig01a_alt.jpg
P LLC MainERneLs
({
Tnitializecomponent () ;
Loaded += new RoutedSventHandler (MainPage_Loaded) ;

}

void MainPage_Loaded(object sender, RoutedEventhrgs e)

{

var element = CreateRectangle();
LayoutRoot .Children.Add (element) ;

}

private Rectangle CreateRectangle ()
{

Stringbuilder xaml = new StringBuilder();

Add to
tree

string ns
"http://schemas.microsoft .con/winfx/2006 /xanl /presentation” ;

xanl.Append ("<Rectangle " ; Namespace
xaml.Append (string. Format ("xmlne="(0} ", ns)); | declaration
xaml Append (" Margin='s 10 5 15'");

xaml.Append (* Fill-'Orange'");

xaml.Append (" Stroke='Black’ />");

var rectangle = (Rectangle)
XamlReader . Load (xaml.ToString()) ; < XamIReader.Load

return rectangle;

037fig01a.jpg
<UsexControl x:Class="NamescopeRxample.NainPage®
xnlnsshttp://schenas.microsoft .con/wintx/2006 /xanl /presentation’
xmlng:x="http: //schenas .microsoft .con/wintx/2006/xan1®
xnlng:local-"clr-nanespace:NanescopeExanple"
Width="400" Height="300">
<Stackpanel x:Name="LayoutRoot" Background="White's
<local:myNestedControl x:Name="Controll® />
<local:MiyNestedControl x:Names"Control2" />
<localiMyNestedControl x:Name="Control3® />
</stackpanel>
OB ECAAEEl S

037fig01.jpg
SN § S A PO L N SRR
xalag="http: //schenas.nicrosoft. con/winfx/2006 /xanl/presentation”
xmlng:xa"http: //schenas . microsoft .con/winfx/2006/xanl"

Widthe"200" Height="150">
<Grid x:Name-"LayoutRoot" Background="Hhite">

<Button x:Name="MyButton® /> MyButtonin
</acids UserControl

T TR P

039fig02_alt.jpg
sHaRECARLEG L RS e LV REvCnT er Lereanp L Mad ndage =

http: //schemas .microsoft . con/winfx/2006 /xanl /presentation”

http://schemas.microsoft .con/winfx/2006 /xanl">

<Grid x:Name="LayoutRoot"
Background="Black">

</Grid>

Brush type
converter

SRR R TS

039fig01_alt.jpg
<UserControl x:Class="MarkupExtensionExample.MainPage"
xnlns="htp://schemas .microsoft . com/winfx/2006 /xal /presentation®
xmlns:x="http: //schemas . miCrosoft .con/winfx/2006/xaml "
WidEn-"400" Height-"300">
<Usercontrol.Resourcess
<Style x:Key-"TextBlockStyle"
TargetType="TextBlock” >
<Setter Property-"FontSize"
Value="25" />
<Setter Property="Foreground"
Value-"DarkGray" />

<7 style
resource

</styles
</Usercontrol .Resources>

<StackPanel x:Name="LayoutRoot "> Binding
<TextBlock Text="(Binding LastName}" extession
Style-* {StaticResource TextBlockstyle}" /> P
<TextBlock Text-"(Binding FirstName)"
Style="{StaticResource TextBlockstyle}" /> <« ::y"‘i“’
<TextBlock Text="(Binding MiddleInitial}®
Style=" (StaticResource TextBlockstyle}® /> P
</Stackpanel>
A

ch02ex16-1.jpg
XamiReader.Load

if (parts.length < 2)
2 to parse color

return null;

7 Guard against
‘malformed strings
SolidColorsrush brush = (SolidColorBrush)XamlReader.Load(
"<SolidColorBrush * + "xmln
"'http: //schenas . microsoft .con/winfx/2006/xanl /presentation’ "

+ " Color='" + parts(o] + "' />"); <
double d;
double . TryParse (parts(1], out d); —— Parse thickness

Thickness thick = new Thickness(d);

Border border = new Border():
border.BorderThickness = thick;
border.BorderBrush = brush;

return border; Border abject

ch02ex16-0.jpg
IDLLCT CLANS: Sorunriypelonvecter. 1 Typeumverter TypeConverter
(base class

public override bool CanConvertFrom(
ITypeDescriptorContext context,
Type sourceType)
{
return sourceType == typeof (string); AL
1 requires strings
public override object ConvertProm(
ITypeDescriptorcontext context,
CultureInfo culture,
object value)

string val = value as string;

if (val == null) return null; Delimit
<) onspace

string(] parts = val.Split("

041fig01_alt.jpg
public class TestClass : Control

{

(TypeConverter (typeot (BorderTypeConverter))| <— TypeConverterhttribute
public Border Border

{

get { return (Border)GetValue (BorderProperty) ; }
set { SetValue(BorderProperty, value):)

i

public static readonly DependencyProperty BorderProperty
DependencyProperty Register ("Border", typeof (Border),
typeof (TestClass) , null);

22fig04.jpg
(ElementTypeName.PropertyName).(ElementTypeName.PropertyName).(...)
—

Type name of

649fig01_alt.jpg
SEROLyDArd WiNale - IYSLOryNonEG” SHOrFRoRrt tRIgh ciais = IyRe oL anine s
<Coloranimation
Storyboard.TargetProperty-" (Shape.Fill)

(GradientBrush.GradientStops) (1] . (Gradisntstop. Color) °
Tou"AFFBB0000" /-
<colorhntnation
Storyboard. Targetproperty=" (shape.Fill)
(GradientBrush.GradientStops) (3] . (Gradientstop. Color) o
TourKEFEBO000" /-
</Storyboard>

<Rectangle x:Nam 60n >
<Rectangle.Fill>

<LinearGradientBrush Bndfoint="1,0.5" StartPoint="0,0.5'>

myRectangle® Width="120" Heigh

<Gradientstop HPFDAO0DD" Offset="04/>
<Gradientstop HEFASOOBB" Offser=10.25" <— Index!
<Gradientstop #FF000000" OFfset="0.5"/>

<Gradientstop HPFASO0BB" Offset="0.75"/> < Index3

<Gradientstop
</LinearGradientsrush>
</Rectangle.Fill>
</Rectangles

#PFDA000" Offset="17/>

22fig03.jpg
‘Actual Time (in seconds)

is

sx x S 000005 000015 000030

RepeatBehavior

= Actual Time

22fig08.jpg
1.0,1.0

Value

0.0,0.0 Time

<splineDoubleKeyFrame x:Name="myKeyFrame" Value="100"
KeySpline="0.0,0.0 1.0,1.0" KeyTime="00:00:02"/>

22fig07.jpg
Point (x, y coordinates)

e

22fig06.jpg
Point (x, y coordinates)

Tiera

22fig05.jpg
Point (x, y coordinates)

Time

660fig01.jpg
6% o

4o 4o

22fig10.jpg
Point (x, y coordinates)

Tira

22fig09.jpg
AN

000251010 000501010 0007510,10 00101010

/L

000002500 000005000 ‘000007500 00001000
TP T ET) skbiidas ‘*ribbeETh

25fig02_alt.jpg
You're almost ready to watch
Lean on Me

Insta ha Microso Serkoht phain now — oy takes a mite

o chmmg st o s
Tat g o e

About Watching nstanty
+ Arcady ek i yourmemeesno
2 Ao o your VD3 oy mat
Pr—

o mamn ey

244fig01.jpg
What is your favorite flavor of ice cream?
© Chocolate
O Vanila

What is your favorite pizza topping?
() Green Peppers.

© onions

() Pepperoni

419fig01.jpg
TNLEND MEWNTRADENL LB EION: Wy

[Servicecontract (Namespace = "services.web.mvmapplication®)]
[AspetCompat ibi1ityRequirements (Requirementshode

AsplietCompatibilityRequirementshode. Alloved) |
public class BmployeeService

(
(Operationcontract]
public TList<Employees GetBmployees()
(
var context - new AdventureWorksEntities(); Return all employees,
return context.Employees.ToList(); sniorted

}

568fig01.jpg
R L RO LR TR < Header
<Datatemplates
<Grid Wargi;

111 10m

<Rectangle Strokes"Black”/>

<TextBlock Text-"Adventure Works Employee Report!
FontSize="25" Margin="10"
HorizontalAlignment="Lefc"
Verticalalignment="Center” />

</Grids
</DataTenplates

/local :EnployeeReport . PageHeaderTenplate>

‘local:EmployeeReport . PageFooterTenplates <— Footer
<DataTemplates

1101 105
Black” />

<Grid Marai:
<Rectangle Strok:
<TextBlock
Text="{Binding PageNunber, StringFormat
Margina*10" HorizontalAlignnent="Right"
Verticalalignnent="Center” />
</Grid>
</DataTenplate>
&/ Taonl TR AR L. B EOOER R Lk

Page {0}'}"

ch25ex02-1.jpg
<Ellipse x:Name="myEllipse"
Stroke="#EF000000" RenderTransfornrigin
<Ellipse.RenderTranstorm>
<RotateTransform x:Nans
</Ellipse.RenderTranstorn>
<Ellipse.Fill>
<RadialGradientBrush GradientOrigin="0.06,0.8">
<RadialGradientBrush. RelativeTransform>
<TranslateTransform X=*-0.007" ¥="0.008" />
</RadialGradientBrush RelativeTransforms
<GradientStop Color="HFFCAFFBA” Offset="0" />
<GradientStop Color="#FFIsAF07" Offset
<GradientStop Color="HFFTBCEOS” Offset="1' />
</RadialGradientBrush>
</Bllipse.Fill>

"0.5,0.

EllipseRotateTransforn” />

</Ellipse>
<Ellipse Height="S5" Widthe"55" Pill="KFFFFFFFE" Strokes'§FF000000"
<TextBlock x:Names"ProgressTextBlock” Widtha"ss Height="20

FontPamily-'Verdana” FontSize='14" Text="0t"
TextAlignnent="Center" />

</Grid>
</Grids>

/5

cover.jpg

16fig01_alt.jpg
New Progct)
=t T :

e
- e - i
b i r—
prony
= Rt Vot
R
T

e s
Sedinne migpien

At b ot
e e

[P i

243fig01.jpg
What is your favorite flavor of ice cream?
(©) Chocolate
Vanilla
O Chocolate Chocolate
() More Chocolate

567fig01.jpg
PUDA S A T AN FOONIS L T <+ Page header
(

get { return (DataTemplate)GetValue (PageHeaderTemplaterroperty) ; |
set { Setvalue (PageHeaderTemplateproperty, value);)

b

public static readonly DependencyProperty PageieaderTemplateProperty
DependencyProperty Register ("PagelieaderTenplate”,
typeot (DataTemplate) , typeof (EmployeeReport) ,
new PropertyMetadata (mill));

public DataTenplate PageFooterTemplate <— Page footer

{
get { return (DataTemplate)Getvalue (PageFooterTenplateproperty) ;)
set { SetValue (PageFooterTemplateProperty, value);)

b

public static readonly DependencyProperty PageFooterTemplateProperty
DependencyProperty Register ("PageFooterTemplate®,
typeo (DataTemplate) , typeof (EmployeeReport) ,

new Propertylietadata (mul)) ; Read-only
public int PageNumber page number
(

get { return (int)GetValue(PageNumberProperty); }

private set (SetValue (FageNurberproperty, value); |
)

public static readonly DependencyProperty PageNunberProperty =
Dependency®roperty Register ("PageNumber",
Eypeot (int), typeof (BmployeeReport) ,
i PrOCaT oMot BIRER 1001

ch25ex02-0.jpg
<6rid xmlns="http: //schemas microsoft .con/wintx/2006/xanl /presentation”
nlns :x="http: //schemas. nicrosoft . com/winfx/2006/xanl®>
<Grid.Background>
<LinearGradientBrush>
<Gradientstop Color.
<Gradientstop Color:
</LinearGradientBrush>
</Grid.Background> Uses trigger to
start animation

4PEEEEEFEY Offset
HEFFEAFOOY Of fset

0.25% />
s /s

<Grid.Triggerss
<BventTrigger RoutedSvent='Grid.loaded">
<Beginstoryboards
<Storyboard Storyboard.TargetName='EllipseRotateTransforn”
Storyboard. Target Property="Angle’>
<DoubleAnination From=*0" To="360"
BeginTime="00:00:00" Duration.
Repeatsehavior="Forever” />

0:00:0.

</storyboard>
</Beginstoryboard>

</BventTriggers
</Grid Triggers>

<Grid Horizontalalignment

Center"

"Center Verticalalignmen

15fig12_alt.jpg
o T T T
©/®)

Favorite Links Type Size Tags.
1B Documents
El Recent Places
= U Chapter02
e Ui Chapter03
18 Computer e
B picwres B Chapterts
B Music B Chaptecos
© RecentyChanged | Ui Chapter0?
B searches i Chapter0s.
U public i Chapter09

Ui Chapterto

Ui Chapterny

U Chapternz
Folders ~

Flerane: E
| Yo Fies

25fig04.jpg

566fig01.jpg
liag s i

{

W

itemsBnunerator . Reset ()
itemsBnumerator . MoveNext () ;

Vi

doc.Printage += (s, &) =>

Stackpanel itemsPanel = new StackPanel();

double itemshreaHeight

= e.PrintableArea.Height;
double itemsHeight = 0.0;

bool full = false;
bool moreltems = true;

while (moreTtems &t !full)

{
Praneworkelenent row -

ItenTemplate . LoadContent () as FrameworkElement;
vow.DataContext - itensEmumerstor. Carrents
rou_Heasure (e Printablearea) ;

Stemseioht 4= row.Desivedsize.Height;
if (itemsHeight > itenshreatieight)
(< < Row

a1l - true; < doesnlt it
}
else
i Raw fits.

Stemspane] . Children.Add (row) ; < Addit

noreItens - itemsEmumerator. HoveNext () ;

}
}
e Pagevisual - itemspanel; Moreitems means
e Rastorepages - moreItens; more pages

bi

doc.print ("Employee Report");

}

19fig08_alt.jpg
Soesssaim0

ey

iaoions
o
e
e
S
ey
e

25fig03_alt.jpg
6 e Wodews e
OO - [Ermrrteniine
T e
Lol B0 5 he e Tk 90

EExBes

If you install Silverlight you will see the most amazing application in
the world. In the WORLD! Unicorns, rainbows, dogs and cats living
together ... mass hysteria!

© e e O Ao wws -

422fig01_alt.jpg
public partial class EmployeeList : Page
i
public EmployeeList ()
{
Initializecomponent () ; Cache
NavigationCachetode = NavigationCacheMode.Enabled; <—] thia Page
}

protected override void OnNavigatedTo(NavigationEventargs e)

(
nul1) °

it (mployecssrid. Teenssource
Hoadingerogress. vistbilicy - Vistilicy.visibles °

{

var client = new EmployeeServiceClient ();

client.GetEnploysesCompleted += (3, ea)

{

LoadingProgress.Visibility = Visibility.Collapsed;

Bmployeesorid. Ttenssource = ea.Result; o

i

client.GetEuployeesasync() ;

app-fig03_alt.jpg
Generates the modelfrom a dtabase. Classes re generated from the mode when the project s compiled.
This wizad also et you speciy the database conection and database objects to include inthe model.

ch10ex07-0.jpg
<L SLHOR i Mamae"uyT. EHOXS »
<ListBox. Items>
<ListBoxItem> #A
<Stackpanel Height="80" Orientation
<Canvas Width-g7" Height-"77">
<Image Source="http: //ww.silverlightinaction.con/month.png" />
<TextElock Width-"77" Texthlignment=" FontPamily="Arial
Fontieight-"B01d" FontSize-'32" Padding="30" Text="1" />
</Canvas>
<TextBlock FontFamily="Arial® FontWeight="Bold" FontSizes"4s*
Padding="20">8undays/TextBlock>
</Stackpanel>
</ListBoxIten>
<ListoxItem> #A
<Stackpanel Height="80" Orientation="Horizontal">
<Canvas Width="87" Height="77">
<Image Source="http://ww.silverlightinaction.con/month.png" />
<TextBlock Width-"77" Texthlignment="Canter® FontPamily-"Arial
FontWeight="Bold" FontSize="32" Padding="30" Text="2" />
</Canvas>
<TextBlock PontFamily="Arial’ FontWeight
Padding-"20">Mondays /TextBlock>
</Stackpanel>
</ListBoxItem>

orizontal®s

Bold" FontSize="44"

circle08.jpg

246fig01.jpg
Sunday, June 1

Tussday, June 3
Wednesday, June &

Thursday, June S

app-fig02_alt.jpg
i New e SherghPrntTes e

[motestemties oy amecins <]
=2 rR—
3 owsmenares
33 Dataset
Seoen KL ungto sot cises
P
Sesnaters | 1 susemousn
o Gune s 18] wane

ESET) oo
A

tome. dvemoreiiotottes i

m

Vi
Vi
Vi
Vi 8
Vi G
VG
Vi

Vi

Type: Viice

A preecitmfor cesing n ADONET
Erty D odes

ch16ex03-1.jpg
IsChecked=" {Binding SalariedFlag, ModesTwoWay}” />

TextBlock Height="23" Margin="12,127,0,0"
HorizontalAlignment="Left! Verticalilignment="Top"
Text-"Hize Date'/>

TextBox Height="23" Width="87" Margin="127,123,0,0%
HorizontalAlignment="Left" VerticalAlignments
s:Name~"HizeDate"

Text="(Binding HireDate, Mode=TwoWay]" />

Top"

‘TextBlock Height="23" Margin="12,155,0,0"
HorizontalAlignment="Left" VerticalAlignment="Top"

Text="Vacation Hours"/>

TextBox Height="23" Width="33" Margin=4127,152,0,0%
Horizontalalignment—"Left" Verticalaligmment—'Top"
x:Name="Vacat ionfours"

Tex:

{Binding Vacationtiours, Mode=TwoWlay}*/>

(TextBlock Height='23" Margin-"12,185,0,0%
HorizontalAlignnent="Left" VerticalAlignment="Top"
Text="Sick Leave Hours®/>

(TextBox Height="23" Width-733" Margin-"127,181,0,00

Horizontalalignnent="Left" VerticalAlignnen:
x:Name="SickLeaveHoura®
Texta® {Binding Sickleavaliours, Mode=TwoMay}'/>

-

circle07.jpg

245fig01.jpg
__J Unchecked
/| Checked
B Indeberiniiate

app-fig01.jpg
New Sieright Appicaton

ik the checkbox el o hos s Sverigh spplcton ina Web s, therwise »
testpage il b genarsed duing b

(7] Hestthe Siveight pplictionin 3 ne e ste .

New Web project name:

SherightAppicationSZ Web

New Wb preject e &

[ASPANET Vi Applcton Prject =
Options
Shsight Verion:

Siveights

7 Ensbie WCF A Senices

ch16ex03-0.jpg
ETHRDIAAR BRIRIE RS, SRE e SN A (R~
Horizontalalignment-"Left! Vesticalilignment="Top"
Text="First Name'/>

TextBox Height="23" Width="140" Margi;

"127,14,0,0

HorizontalAlignment="Left® VerticalAlignment='Top"
st:Name~"FizstNane®
Text="{Binding Contact.FirstName, Mode=TwoWay}" />

TextBlock Height=123" Margin="12,47,0,0"

HorizontalAlignment="Left’ Verticalilignment="Top"
Text="Last Name' />
TextBox Height="23" Width="140" Margin="127,43,0,0"
HorizontalAlignment="Left® VerticalAlignment='Top"

x:Name="LastName"
Text-"(Binding Contact.LastNane, Nod

oy} * />

TextBlock Height=123" Margin="12,76,0,0"
HorizontalAlignment="Left! VerticalAlignment="Top"
TextarTitler/s

TextBox Height="23" Width="239" Margin:

HorizontalAlignmen
x:Name="Tit1ePield"
Text="{sinding Title, Hode

"127,72,0,0"

woitay} " />

<CheckBox x:Name="Salaried" Height="16" Margin="127,101,0,0"

HorizontalAlignment-"Left" Verticalilignment-"Top"

allfields

circle06.jpg

16fig02.jpg
Employee Detail

First Name
Last Name.

Tite

Hire Date
Vacation Hours.

Sick Leave Hours.

=

E—
L]
[1

(] salaried

O
O

ok J[Concel |

244fig02.jpg
Please select your favorite pizza toppings:
] Green Peppers.

] onions.

/] Pepperoni

569fig01.jpg
ST - (9 Al

{

PageNunber++; o
Grid rootGrid - new Grid();)
Rowbefinition headerRow = new RowDefinition() ;)

HeaderRow.Height = Gridiength Auto;
Rowbetinttion itensRow = naw Rowbetinition(); o
itensRow.Heiaht. = new GridLength(1, GridunitType.star);
Roubefinition fosterkow = new Rowdefinicion();

footerRo. Height = GridLengeh. hutos

rootGrid. RowDefinitions . Add (headerRou)
rootGrid. RowDefinitions . Add (itemsRow) ;
FootGrid. Rowbefinitions . Add (footerRow) ;

Create

FraneworkElement header - hoade
PageieaderTemplate.LoadContent) as FrameworkElement;

header.DataContext = this;

header.Measure (e .Printablearea) ;

Grid. SetRow (header, 0);

Stackpanel itemsPanel = new StackPanel();
Grid.Setow (itemsPanel, 1

Create

FraneworkElement footer = o footer
FageFooterTenplate. LoadContent () s PrameworkElenent:

foorer Datacontest = thiss

footer Meamurs (. PrintableArea)

Grid. Sechow(footer, 2);

rootGrid. Children.Add (itensPanel) ;

rootGrid.Children. Add (header) ;
rootGrid. Children.Add (footer) ;

double itemsarestieight = o.PrintableAres.Height -)
header DesizedSize eisht - footer.Desiredsize.Height;

. itemsHeight, full, moreItems, while loop .

<. Pagevisual = rootGrid; o
= HasMorepages = moreltens;

727fig01.jpg
tearaappliostion/x-mileRrLignt g,
application/x-silverlight-2*
width="100%" height="100%">
<paran nane ClientBin/Chapter2s.xap" />
<param name="onError" value='onSilverlightError’ />
<paran nane="splashscreensource”
values"Silverlightloader.xanl® /> <— XAMLURL
<paran name-'onsSourceDownloadProgressChanged”
values"appDownloadProgressChanged” />
‘onsourceDounloadConplate®
valuesrappDownloadComplete” />

sourcer valu

<paran

S

251fig01.jpg
My Grocery List

Fruits L.Mem
|

250fig01.jpg
My Grocery List

Appies
Bananas

Grapes.

424fig01_alt.jpg
PRELLO Smplayaeliatll
{

Initializecomponent () ;
NavigationCacheMode = NavigationCacheMode.Enabled;

AddMorevacation.Click
EditEmployee.Click

new RoutedEventHandler (AddNoreVacation_Click) ;
new RoutedEventHandler (EditEmployee_Click);

private Employeebetail _employesbetail = new Employeebetail();
v0id Editsuployee_Click(object sender, RoutedEventArgs e)
{
_enployesDetail Enployee = EmployeesGrid.SelectedItem as Employee;
employesDetail. showl() ; <

}

7014 AddMoreVacation_Click (object sender, RoutedEventArgs e)

&

var selectedsmployee = BnployeesGrid.Selectediten as Employee;

if (selectedEmployee != null)

{

selectedEnployee. VacationHours += 10;

}

20fig01_alt.jpg
Frogment1 || Fragment2z | [Frogmentn | [Movie ragment
Random Access
wedvoa o || [weamowataoy || |[[es vt (i)
‘ Movie Header
mine) ergrent |||[veveragrer || || viosermgmen || |[TockFrasment
o oo rony || | Ranom
Track (trak) | I | Access (tfra)
m::m(”ﬁmr szl z tsll g szl z
Ell g 2l g gl e
S S
Sl EEYIM S5l £ E3) EE Fragment
e ENSEfINzEfss sENSEM A Somcom
Mo uds st M 1 g2l & Access Offset
) |
oo ot I |)
|

249fig01.jpg

423fig01_alt.jpg
PRI FACLIAL LRSS Napioreenatet) 1 GoLlamindem

{

public BmployesDetail ()

{

InitializeConponent () ;

i

private Bmployes _employee;
public Employee Employee

¢ Em
ployee
get { retum _employee; }
set | _employes - value; DataContext - _smployee; | o) PP

1

private void OKButton Click (object sender, Routedventhrgs e)

{

this.DialogResult = true;
}

private void Cancelutton Click (cbject sender, RoutedEventArgs e)

{

this DialogResult = false;

}
}

16fig03_alt.jpg
T e e
i

19fig09_alt.jpg
Knaratisti, Tengiz ‘Control Specaist tengiz0Baventure-works.com

st 9105550116 11771999
55 Feg, oo Froducton Tachodan - W20 hoyiobeademure o com 3195550139 11719
S e Producton Tachdan - WCAD KeonlGodremuremaacon | TA4SE5.01%8 118119
5 sam A Pradcion Tochodan - WCRO anmkOGdmueoteco 995550125 118159
oot

Adventure Works Employee Report

E—— Prodcton Techian WCS0_ saoo0Batenure e con | 9TL5S5.0161 11811999
55 poe oo ot Rl Speclt. deoorROBONENIL ok cam $0255.0194 1191999
@ sorcein om PrascsonTedsn WEAD JrOOsve Lo | 55013 12019
51 oand, Caroe: frmadranmoiorsoflsinertiruaiinviceig i U ora i o g

app-fig04_alt.jpg
Eniity Data Model Wizard

 TpE—

Which data connection should your application use to connect to the database?

(oisdaars o 2 (Cimcomeion

“This connection sring appears to contain sensitive data (for example, a password) that i required
connect to the database. Storing sensiive data in the connection string can be a securiy isk. Do you!
toinclude thi sensitive data in the connection string?

No, exclude sensiive data from the connection strng. I will et it in my application code.

Ves, include the sensitive data in the connection string.
Entity connection string:

metadatoes/ " AdvntureWorksEntes s/ AdvntureWortsEnttessdl
el bWttt prowdae Syt Do Sk grder craicton siogs Dot
Source-JRMInitia Catelog=AdventureWorks Persist Security Info= True:User
]

9] Save entity connection settings

Web Config as:
AdventureWorksEntities

nt

ch10ex07-1.jpg
AL prnoxTEem:. J
<StackPanel Height="80" Orientation="Horizontal"s
<Canvas Width="87" Height="77">
<Image Sources"http://wiw.silverlightinaction.con/uonth.png" />
<TextElock Width-"77" Texthlignment-'Center’ PontFamily-'Arial"
Fontieight="Bold" FontSize="32" Padding="30" Text="3" />
</Canvas>
<TextBlock FontFaily="Arial’ FontWeight="Bold" FontSize="44"
Padding="20">Tuesday< /TextBlock>
</Stackpanel>
</ListBoxItens
<ListBoxItem> <— ListBoxltem
<Stackpanel Height="80" Orientation="Horizontal"s
<Canvas Width="57" Height="77">
<Image Source="http://wws.silverlightinaction.con/month.png" />
<TextBlock Width=*77" TextAlignment=*Center® FontFamily-'Arial
Fontileight—"501d" FontSize-'32" Padding-"30" Text-"4" />
</Canvas>
<TextBlock FontFamilys"Arial® FontWeights
Padding-"20">Wednesday</ TextELock>
</Stackpanel>
</ListBoxItens
</ListBox.Ttems>
Y o P

Bold" FontSize="44®

15fig07_alt.jpg
(8 o o e e

OO [ottt

P e
|8 it

“[afalx 6

=

BB e e s e 0

Application Name

customer st about

[—

e it

e

R

19fig05.jpg
Images from Pete's Sie Images from Pete’s Site

713fig01.jpg
AT NS A SIS R CINRE B L

b 5 Template
Type = typeot (Togglesutton))] part

public class Expander : ContentControl

{

private const string ExpandersuttonName = "ExpanderButton”;
private ToggleButton _expandesButton;

public Expander()

{
Defaultstylekey = typeof (Expander)

1

public overside void OmapplyTemplate () <— OnApplyTemplate

£

base.OnApplyTemplate () ;

_expandersutton =
GetTemplatechi1d (ExpanderButtonNane) as ToggleButton;

if (_expanderButton l= null)

{
_expanderButton. Checked +=
new RoutedEventHandler (OnBxpanderButtonChecked) ;
_expanderButton. Unchecked +=
new RoutedEventHandler (OnExpanderButtonUachecked) ;
}

}

void OnExpanderButtonUnchecked (object sender, RoutedEventArgs e)

{1}

void OnExpanderButtonChecked (object sender, RoutedEventArgs e)

[

395fig01.jpg
BARELR IS FEIIWCABRGN. s R INGE NEOethy FOUESALVORERINE. @3
t

if (Navigationservice.CanGoBack)
NavigationService.GoBack () ;

b

private void NavigateForward Click (object sender, RoutedBventhrgs)
t
if (NavigationService.CanGoForward) #1
NavigationService.GoForward () ;

554fig01.jpg
SOSURE BOGEEINL = M Bakes
1 Clear out render

LayoutRoot .RenderTransform = null; ransform
BriniRoot .chi 4 en. Ranove (LayoutRaot)
This.Content. + Layouthooss
WessageBor. show (+print 3ob conplete.)
b
document. printpage o= (s, an) =
’(! Measure for max
printRoot .Measure { desired size
o Sva (double Positiverntinicy,
dounla.FosisiveIntinity))
PrAnCRoGE MAdEh « printRoot Desixedsize width;
PrincRoot Heioht = printhoor. besizedsize. eight;
scatersanstorn transtorn = new scaleTranstora()
16 (prineRoot Height > printRoot. Hidth) e
[o
transform.ScaleX = transform.ScaleY = scaling factor
e printablencea Hoight / princRoct Heisht;
}
e1se
{
transtorm.Scalex « transtorm.ScaleY = — cuatae
eaprincablence Wideh / printRoot. nidth | | comaiactor
}

LayoutRoot .RenderTrans forn

transtorn; @

ea.Pagevisual - printRoot;
ca.HaslorePages = false;

708fig01.jpg
SSELEL R o
<Grid.Resources>

SRR ™ S N

o

<Style TargetTypes"Button>

<setter Property-

ik

Value="100" />

<Setter Property="Height! Value='30" />

</styles
</Grid Resources>
<clib:OrbitPanel Orbits="3
<Button Content="Button
clib:Orbitpanel.
Content-"Button
Clib:OrbitPanel .

<Button

<Button Content="Button
clib:Orbitpanel

<Button

<Button Content="Button

clib:Orbitpanel

<Button Content="Button

<Button
clib:OrbitPanel .
Content="Button
clib:Orbitpanel

<Button

<Button Content="Button
clib:OrbitPanel .
<Button Content="Button

clib:OrbitPanel .
Content="Button
clib:Orbitpanel.
Content-"Button
Clib:OrbitPanel .
Content="Button

<Button

<Button

<Button

c1ib:Orbitpanel

Content-"Button

clib:0rbitPanel
</clib:Orbitpanel>

< /Grid>

<Button

Panel with

o Jorbits

1" Background="Orange"

orbitaror />
27 Background="orange”
orbic=10r />
3" Background="Orange”
orbit=ror />
4" Backgrounds"Orange"
.Orbic=0" />
5¢ Background="0range

orbit="or />
6" Background="Orange"
orbit=tor />
7 Background:
orbic=10r />
8" Background="Orangs"
orbitaror />

57 Background="Orange”
orbit=ror />

rorange”

10" Backgroun
orbic=11r />
11 Backgroun
orbit="1t />
127 Background
Orbic="1t />
13" Backgroun
orbitarir />
147 Background=
Orbit=r1t />

Bluer

553fig01_alt.jpg
ublic partial class MainPage : UserControl
& s

{

public Mainpage()

{
}

private Printbocunent _document

TnitializeConponent () ;

new PrintDocunent ();

private void prine_Click(obect sender. ROUCSAEVEICAISE ©) | oy i
specfic root

Grid printRoot = new Grid(

_document . BeginPrint += (s, ea) =>

{
i, G - 51 °
printRoot. ohiLdzen. Add (ayoutRoot)

_docunent .EndPrint += (s, ea)

{

printRoot.Children. Remove (LayoutRoot) ;
this.Content - LayoutRoot; [}

MessageBox . Show("Print job complete.*);

_document . PrintPage += (s, ea) =>
{
printRoot.Height = ea.Printablehrea.Heioht; | Size print root
printRoot.Width - ea.PrintableArea.Width; to printer page
ea.Pagevisual = printRoot; < Printit

ea.Hastorepages = false;

_docunent . Print (*Silverlight screen print’);

}
}

ch24ex04-1.jpg
{

double angle = Math.PI / 180 * (currentAngle - 90);

Place
double left = orbitSpacing * (i + 1) + Math.Cos (angle) ; child
double top = orbitSpacing * (i + 1) * Math.Sin(angle); in final

locatior

Rect finalRect = new Rect (
centerPoint.X + left - element.DesiredSize.Width / 2,
centerPoint.¥ + top - element.DesiredSize.Height / 2,
element.DesiredSize.Width,
element.Desiredsize.Eeight) ;

element . Arrange (finalRect) ;
currentangle

}
}

anglemnerenent ;

}

return base.Arrangeoverride (finalSize) ;

}

ch24ex04-0.jpg
EILRIAN DTRITOON. Nell MaSanoraaEsHe (S0 i)
i

var sortedItens - SortElements();
double orbitSpacing = CalculateOrbitSpacing(finalSize)

foreach (List<UTElements orbitItems in sortedItems)

{

int count = orbitItems.Count;

i€ (count > 0)
{
double circunference = 2 * Math.PI + orbitSpacing * (i + 1);
double slotSize = Math.Min(orbitSpacing, circunference / count);
double maxSize = Math.Min (orbitSpacing, slotSize):
double angleIncrement = 360 / count;
double currentangle

Point centerpoint =
new Point (finalSize.Width / 2, finalSize.Height / 2);

15fig10_alt.jpg
Application Name

home customer customer list about

Customer st Page from Assembly

560fig01.jpg
e et B o b oot R N e

{
public EmployeeReport () { }

public event Eventsandler DataLoaded;

private IEnumerable<EnployeeReportItems _items;

public void Loadpata ()
{

var client = new AdventureWorksServiceClient();

client.GetEmployesReportpataConpleted += (s, &) =>

{

_itens = e.Result;

if (Dataloaded I= null)
Dataloaded(this, Eventargs.Empty):
b

client.GetEnployeeReportbatarsync () ;

k Handles actual
private void InternalPrintReport () < report printing.
{
¥

716fig01.jpg
SV FAUALS P AUREEL T ANE LR ECR alpe »
<VisualStateGroup x:Name="BxpanderStates’>
<VisualState x:Name=*Expanded’s
<storyboards
<ObjectAninationUsingKeyFrames
Storyboard. TargetName="ContentGrid®
Storyboard.TargetProperty="visibility">
<DiscreteobjectKeyFrane KeyTime="00:00:00">
<DiscreteObjectKeyFrane. Value>
<Visibility>Visibles/Visibility>
</DiscretecbjectkeyFrame. Values
</DiscreteobjectKeyFrane>
</ObjecthninationUsingKeyFrames>

Expanded
state

</Storyboard>

</visualStates Collapsed

<VisualState x:Name="Collapsed"> o) state
<Storyboard>

<ObjectAnimationUsingkeyFranes
Storyboard. TargetName="ContentGrid"
Storyboard. TargetProperty="Visibility">
<Discrete0bjectKeyPrame KeyTine="00:00:0!
<DiscretedbjectKeyFrame.Values
<Visibility>Collapsede/Visibilitys
</DiscreteObiectKeyFrame. Value>,
</DiscreteObjectKeyFrame>
</ObjectaninationUsingKeyFranes>
</Storyboard>
</Visualstates
</VisualstateGroups
< /VisualStateManager. VisualStateGroupss

15fig09_alt.jpg
Q@O » [E o ecomomrs ovguentampicrepgesnporions

e Favortes | g5 2] Get More Add-ons = &= Home 2 Add to Amazon Wish st £ bitly Sidebar

©@°
Application Name

I home customer customer list about

Home

| B

19fig07_alt.jpg
To see a st of avaiable services on aspecific server, entera service URL and cick Go. To browse for available

senvices, lick Discover.
Address:

Wb 5 S A < |

Services:

Operations:

© @ Senvices/AdventureWorksService
) AdventureWorksSenvice
5° AdventureWorksService

Rl —p—

YGetEmployecReprtDats

1 senice(s) found st address htp/localhost25536/Senvices/AdventureWorksSenvice.svc'.

Namespace:

Senvices

e

715fig01_alt.jpg
AT NS A SIS R CINRE B L
Type = typeof (Togglesutton))]

[TemplatevisualState (Name - Expander.ExpandedStateName, 7 Visual state
GroupName = "Bxpanderstates’)] bt

{TemplatevisualState (Name = Expander.CollapsedStateName, o)
GroupNane = "Expanderstates”)]

public class Expander : ContentControl

{

private const string ExpandersuttonName = "Expandersutton”;
private const string ExpandedStateName = "Expanded
private const string CollapsedStateName = "Collapsed";

void OnExpanderButtontnchecked (cbject sender, RoutedEventArgs e)

{
}

void OnExpanderButtonChecked(cbject sender, RoutedEventArgs e)

{
1

VisualStateNanager.GoTostate (this, CollapsedStateName, true);

VisualStatemanager.GoTostate (this, BxpandedStateName, true);

404fig01.jpg
<@rid X:Namg="CuCOfBrcwserisvigationtontro.e™
Verticalalignment="Top* HorizontalAlignment
Margine"157>
<Grid.Resources>
<Style TargetType
<Setter Property="Cursor’ Values'Hand® />
<setter argin® Value='2* />
<Setter Property="Opacity" Value='0.5" />
<Setter Property='VerticalAligmment" Value='Top" />
<Setter Property='Template's
<Setter.values
<ControlTemplates
<Grids
<Visualstatetanager.VisualStateGroups>
<VisualStateGroup x:Name="Commonstates’s
<Visualstate x:Name='Normal" />
<visualstate x:Name='Disabled"s
<storyboard>
<DoubleAnimation Duration="0"
Storyboard. TargetName="Content "
Storyboard.TargetProperty="Opacity”
To=n.20 />
</Storyboard>
</visualstates
</VisualstateGroups
</VisualStateManager .VisualStateGroups>
<ContentPresenter x:Name="Content" />
</orids
</ControlTemplates
</setter.Values
</setters
</styles
</Grid.Resources>
<StackPanel Orientations"Horizontal®s
<Button x:Name"BackButton"
Click="BackButton_Click"
Width="40" Height="40">
<Image Sources"Assets/back.png" />

"Leftr

Button"s

Button
o template

button

</muttons
<Button Foruarasutton” < Navigation
"PorvardButton Click® Bitton
25

Height="30">
<Image Source-"Assets/next.png’ />
</Buttons
</stackpanel>
</Grid>

558fig01.jpg
[OperationContract]
public List<EnployeeReportItens GetEmployesReportData ()

{

using (AdventureWorksEntities context
new AdventureWorksEntities()) {

var items =
Shape into
(£rom emp in context.Eaployees
select new EmployeeReportItem() EmployeeReportitem

{
EmployeeTd = emp.EmployeeTn,
FirstName = emp.Contact.FirstNane,
LastNane = emp.Contact. LastName,
Title = emp.Title,
Enailrddress = emp.Contact.Emailaddress,
Phone = emp.Contact . Phone,

HireDate = emp.HireDate Limit return
}) .Take (100) count
“ToList ();

return items;

ch24ex09-1.jpg
Margin="st />

<ToggleButton x:Name="ExpanderButton"

Horizontalalignnent="Right"
verticalalignment="Center"
Content="#" TsChecked="True"
wideh="30" />
</orids
<Grid x:Name="ContentGrid® Grid.Row="1">
<ContentPresenter
Contenta" {TemplateBinding Content}"
ContentTemplate=" {TemplateBinding ContentTemplate}"
</Grids
</Grid>
</Grid>
</ControlTenplates
</secter.Values
</setrers

</Styles

>

15fig08_alt.jpg
\ideos.

19fig06_alt.jpg
T New e ShengnormTescies

et oty tamecring <
< Vaice —

Cote B snetsmernscitrge

ou

= =
w

Vidorsfoms A Jr—
-

Tt

S

i T

=

o)

tame Advrtuehonssevdne

(]

Ve
Ve

Vo

2]

Type: Vi

Astniceforpoiding dutato s Sheight
ciem

ch24ex09-0.jpg
SERRLe TaricEIyne = ot :ERponaest Note target type
<Setter Property="Template®s and no key
<Setter.Value>
<ControlTemplate TargetType="clib:Expander”s

<Grids
Visual states
<Rectangle Stroke-"{TemplateBinding BorderBrush}" wil go here
StrokeThickness="1" />
<Gria>
<Grid.RowDefinitionss
<RowDefinition Height="Auto" />
<RowDefinition Height="Ruto" />

</Grid.Rowbefinitions>

<Grid x:Name="HeaderGrid" Grid.Fo
<Rectangle Fills'DeepSkyBlue" />
<ContentPresenter
Content="(TemplateBinding Header)"
ContentTemplate="{TemplateBinding HeaderTemplate}"

~gus

411fig01.jpg
SHoR IR nRNI SO ORI PR AURERIRTERLAEIN B

{

Childwindow dialog = new Mybialog();

dialog.Closed += (s, ea) =>

{ User

i (atalog.Dialogresult == true) P P N
(.
else if (dialog.DialogResult == false) < yger dicket
(, } Cancel

{0}
b

dialog.show();

}

409fig01a.jpg
'Silverlightapplication20.ChildWindowl"

<controls:ChildWindow x:Class
mlns="http: //schenas. microsoft . con/wintx/2006/xanl /presentation”

Xmlns :x="htep: //schenas. microsoft . con/winfx/2006/xaml "
mlns :controle="clr-nanespace: System. Windows. Controls:

assenbly=Systen.Windows . Controls®
Wideh-1a00"
Height=1300"
Title-"Childwindow1®>
<Grid x:Name-"LayoutRoot" Margin="2">
<Grid. Rowbefinitions>
<Rowbefinition />
<Rowbefinition Height="Auto" />
</Grid RowDefinitions> Window
content goes

Content-rcancel"

<Button x:Name-"CancelButton®

Click-"CancelButton_Click"
Widthe"75" Heighta"23" HorizontalAlignments"Right®

0,12,0,0% Grid.Row="1" />
Content-"0K"

vazgi:

<Button x:Name-'OKButton"

Click-"OKButton_Click"
Width-"75" Height="23" HorizontalAlignment="Right"

0,12,79,0% Grid.Row="1" />

Maxgi:
</Grias
o o v L e LN oS

565fig01.jpg
Aoc. Primluge e (8, Bl W
t

StackPanel icenspanel = now Stackranel (i @

while (itemsEnumerator.MoveNext())
{ Create from

PranevorkElement rou template

TtemTemplate.LoadContent () as FrameworkElement

row.DataContext = itemsEnunerator.Current; o
zow.Measure (e. Printablenrea) ;

itenspanel .Children.Add (xow ; Mdto
} panel
e Pagevisual - itemspanel;

= HasMorepages = false;

}i

25fig01.jpg
To view this content,

w Silverlight:

Click now to install

QUICK DOWNLOAD / 30 SECOND INSTALL

409fig01.jpg

563fig02.jpg
il o M

{

PrintDocument doc = new PrintDocument ();
Enumerator

IBnunerator<Brployeskeportitens itensEmnerator =
_items GetEnumerator(); ‘explained shortly
doc. Beginprint += (5, o)
; Enumerator
Stemssnunerator Reset () ; €5 {oad hortly,
+i
doc. Bndretnt +e (5, o =
{
WessageBor. show(*Report. conplete.)
i pinpage event

e se handler

doc_princrage
(
Y

doc_print ("Bmployes Report®);

15fig11_alt.jpg
rr——

|ttt o o i)] =

gz ’ -
o e e
e L s [
o P r— soicn; [T
e - g— s
Tl s
B - S en—— e

oo e

24fig02_alt.jpg

563fig01.jpg
public MainPage ()

{

Initializecomponent () ;

Loaded
b

v01d MainPage_Loaded(cbject sender, RoutedEventhrgs e)

{

Report.Dataloaded += (s,ea) Eadiis Eutton
(

Print.TeEnabled = true; when loaded

new RoutedEventHandler (HainPage_Loaded) ;

i

Report .Loadbata () ; <— Load data

b

private void Print_Click (object sender, RoutedBventhrgs e)

t

Report . Print ()

b

20fig08.jpg

437fig01.jpg
privace EmployeeDatagservice _dataService = new EmployeeDataservice(};
public event EventHandler ErployeesLoaded;
public void Loademployees ()

if (_dataservice.aremployeesioaded)

{

Employees - _dataservice Employees,
onmployeestoaded () ;
}
c1se
t
_aataservice . Enployessloaded +- (s, ©) .
i Employees in
Erployees - _dataservice Enployees; s percn
ongingoyeesLoaded) ;
b
_astaservice Loadknployees () ;
}

598fig01_alt.jpg
Rub LA parkinl Tians Naiakage- v EnerConbing

{

public Mainage()

{

InitializeComponent () ;

Loaded +- new RoutedsventHandler (MainPage_Loaded) ;

} Custom
Custonsource _mediasource = new CustonSource () ; MediaStreamSource

void MainPage_Loaded(object sender, RoutedEventArgs e)
{
MediaPlayer.SetSource (_mediaSource) ; (2]
}
)}

06fig01.jpg
Opacity=.25

269fig01a.jpg
ROt IR SHOLL ORI =
new Emoticon (*Smiley Pace”,
“http: //wee. silverlight inaction.con/smiley.png”) :
LayoutRoot . DataContext = emoticon; a

LayoutRoot’
DataContext

444fig01.jpg
RELNG SySLOn.
using System. Conponentodel DataAnnotations;
namespace MvvmApplication.Viewdodels
{
public class Employeeviewdodel : Viewttodel
{
private string _firstane;
[Display (Nane~"First Name®)]
public string PirstName
{
get { return _girstane;)
set.
(
_firatame - value;
Rotifypropertychanged (*Firstiane") ;
Noti fyPropertyChanged (*FullName*) ;
)
}

private string _lastiane;
(Display(ane = "Last Name')]
public string Lastiane
(
get { return lasthame; |
set
(
_lastiiame - valu
FotieypropertyChanged (*LastNane®) ;
ot fypropertychanged (*FullNane®) ;
)

}

(Display (tame - "Full Name) |
blic atring Pullnane

w A Calculated
get { return Lastvame + *, * + Fizatiame;) fied

)

private string _title;
public string Title

(
get { retum _titte;)
set (_title = value; NotifyPropertyChanged(*Title); }
)
private batensoe bizepace; fitd
[Display (Name = "Hire Date"}] Lo
Public DateTine Hiredate
{
get (return _hirevate;)
set (_hireDate = value; NotifyPropertyChanged (*HireDate"); }
)

private short _vacationtiours;
[Display (Nane = "Vacation Hours®)]
public short VacationHours
(
get (return _vacationtour
set
[
_vacationiours - value;
Hot tyPropertyChanged (*vacat iontours®) ;
)
)

private short _sickLeaveHours;
(Display (Nane = *Sick Leave Rours®)]
public short SickLeaveHours
(
set (return _sickLeavenours; |
set

{

_sickLeaveHours = value;
RotitypropertyChanged (*SickLeavetiours®) ;
)
)

private bool _salaried;
public bool salaried
{

get { return _salaried;)

set { _salaried = value; NotifyPropertyChanged ('Salaried);)

)

ch20ex07-1.jpg
4
else

{
_frameBuffer(i] = _rameBuffer(i + 1] =
_eraneButter(i + 2] = 0xDD;
) Aipha value
_erameuster(i + 3] = oxm OoFE=. Opaie

}
_franestrean.Write (_frameBuffer, 0, _frameBufferSize);

Mediastreansanple msSanp = new MediastreanSample (
_videobDesc, _frameStrean, _frameStreamOffset,
_franesuffersize, _currentTime, _emptySampleDict);

_currentTine += _frameTine;
_frameStreanOffset += _frameBuffersize;

ReportGetsampleconpleted (neSanp) ;

133fig01.jpg
Do you want to ncrease avaiable storage?

The floning iebste i requestng mare appcatonstcage space on
Your compute.

e ste: it e

Cunentusage:
Requstedaze:

269fig01_alt.jpg
<UserCentrol x:Clas;
senlng
xming

EhaprerdllNalnrage™
“http: //schemas. microsoft . com/winfx/2006 /xanl /presentation”
“http://schenas . microsoft .com/winfx/2006 /xanl” >

<Grid x:Name-*LayoutRoot” Eackground-"White®> <— LayoutRoot
<Grid Rowpefinitions>
<Rowpefinition Height="Auto" />
<Rowpefinition Height="Auto" />
</Grid Rowbef initions>
<Grid. ColumnDef initions>
<Columbetinition />
<Columbetinition />
</Grid. ColumnDef initions>

Name:* />
Tnage:” Grid.Colum="1" />
*(Binding Name, Mode=Twolay}” Grid.Row="17 />
{Binding Tcon}* Grid.Row="1" Grid.Column=*1" /> }\
</Grid>
</usercontzol> Binding

statements

442fig01_alt.jpg
CHULLON FRightetaiT Miorhetagl = gl
Content="Hore Vacation!®
HorizontalAligmment - Right* Verticalaligumen

ane-Ad@orevacation®

<irTnteraction. Teigyeres

“i:EvencTrigger Bvenciames"CLick"» °
“ei:caliNethodhction < Behavior
HethodNane=AddVacat LonBonusToseLectedsaployee
Targetobject— (Binding) "/
<3 sEventTrigser
</i:Interaction.Triggers>

0,95, 32:0%

Top*

s MR

ch20ex07-0.jpg
PRARELR SHk A PNNahs SanChanuy w1

private Dictionary<MediaSampleAttributeKeys, strings _emptySampleDict =
new Dictionary<MediasampleattributeKeys, strings():

private Random _random = new Random () ;

private bytel) _frameBuffer = new byte(frameBufferSizel;

private void GetvideoSample ()

{

if (_framestreamOffset + _frameBufferSize > _frameStreansize)

{

_frameStrean. Seck (0, SeekOrigin.Begin); Rewind
franestreanotiset = 0; when at end

)

for (int i = 0; i < _frameBufferSize; i+= _framePixelSize)

{

if (_random.Next(0, 2) > 0)

{
_frameBuffer(i] = _frameButfer(i + 1) =
_frameBuffer(i + 2] = 0x55; <

131fig01.jpg

440fig01.jpg
PERYRGS FNELOTON SO OERNOLITIN).
public Bmployee SelectedEmployee
(
get { return _selectedimployee;)
set
¢
_selectedgmployee = value;
TotifyPropertyChanged ("SelectedEmployee®) ;
Adauacat ionBonusConnand. OnCanBxecuteChanged () ;@

}

public bool CanAddVacationBonus

(

get { return SelectedEmployee != mull; }
}
private ViewdodelCommand _addVacationBonusCommand = null;
public VieubodelCommand AddVacationBonusCommand <— ICommand
(
get.
{
if (_adavacationBonusCommand == null) L]
{
_adavacationBonusCommand = new ViewodelCommand
[
 => AddVacationBonusToSelectedBmployee () ,
P => CanAddVacationBonus
i
i
return _addvacationBonusCommand;
i

ch11ex01-1.jpg
®
icon = value;

otifyPropertyChanged (*Icon");
1
}

public Emoticon(string name, string imageUrl)

{

new BitmapInage (new Usi (imageUrl));

}

public void NotifyPropertyChanged(string propertyName)

{

if (PropertyChanged !
{

null)

PropertyChanged (this,
new PropertyChangedEventArgs (propertyNane)) ;

Notification

ch20ex06-1.jpg
MediaStreanType.Video, streamAttributes);

)

protected override void Openttediadsync()

{
Dictionary<MediasourceAttributeskeys, strings sourceAtcributes =
new Dictionary<MediaSourceAttributeskeys, strings();

ListlediastreanDescriptions availableStreams =
new ListoMediaStreanDescriptions (1;

Prepareviden() ;

availablestreans Add (_videoDesc) ;

TineSpan. FronSeconds (0) .Ticks . ToString (
Culturelnfo. InvariantCulture] ;

sourceattributes [MediaSourceAttributeskeys.Duration] = <_‘ O isinfiite
e

sourceattributes [MediaSourceAttributeskeys. Canseek]
false.ToString ()

Reportopentiediaconpieted
sourcenttributes, availablestreans); @

439fig01_alt.jpg
PEDTLCL SRR TLANNOON | CANIIER. - £ TVoNmIN

{
public ViewodelConnand (Actioncobjects execucerction, @
Predicate<cbjects canExecuce)

{

if (executection == null)
throw new ArgumentNullException*executeAction) ;

_executeAction = executeAction;
ZcanBxecute = canBxecute;

}

private readonly Predicatecobjects _canExecute;

public bool CanExecute(object parameter) <— ICommand.CanExecute
{

i (_Lcansxecute == null) return true;

retum _canExecute (parameter) ;

|
public event Eventfandler CanSxecuteChanged; _ < ICommand.CanExecuteChanged
public void OnCanExecuteChanged ()

{

if (CanExecuteChanged 1= null)
CanExecuteChanged (this, EventArgs.Empty);

1

private readonly Actioncobject> _executeAction;
public void Execute (object paramster) <— ICommand.Execute
{
_executeaction (parameter) ;
}
)

ch11ex01-0.jpg
HODAIS - FLADg “RIObaoon 3 oL ASYErapes ytRangen) =

{

public event PropertyChangedSventHandler PropertyChanged;
private string _name; PropertyChanged
public string Name event
{
get { return _name; } p
= INotifyPropertyChanged
1 interface

name = value;
NotifyPropertychanged (“Name”) ;

}
1

private InageSource _icon = null;
public InageSource Icon

(
get { retum _icon; }
set

ch20ex06-0.jpg
BPeXnEn.
private
private
private

private

private
private

private

{

_frameTime = (int)TimeSpan.Fromseconds ((double)1/30) .Ticks;

St LRpNeldneT= B
const int _framewidth = 320,
const int _framePixelSize = 4

frameHeight = 200;

const int _framepuffersize
eranetieight * _franewidth + _framepixelSize;
const int _framestreansiza - _franeBuffersize » 100;
MenoryStrean _frameStream = new MemoryStream(_fxameStreamSize];
VediaStreanbescription _videobesc;
void Preparevideo()
v 30 frames
per second

Dictionary<MediastreanAteributeKeys, strings streamAttributes =

new Dictionary<MediaStreamAttributeKeys, strings();

streanattributes (MediaStreanittributeeys. VideoFourcc])

"RGBA";

streamAttributes [Mediastreanhttributekeys Height) = o

streamAttributes [MediaStreamAteributeKeys.

_franeHeight.Tostring () ;
idch]
_framewidch. ToString () ;

e o

143fig01.jpg
Margin is outside, Padding is inside|

<StackPanel Background="Gray"s
<TextBox Background-"LightGray"
Margina"1o"
100
"Margin is outside, Padding is inside' />
</StackPanels

Padding
side

273fig01a.jpg
<UperControl.Rescurces>
<local:Repository x:Key=
</UserControl .Resources>

repository” />

«Grid x:Name="LayoutRoot
DataContext—"(StaticResource repository}”s

<TextBlock Text="(Binding Emoticons (2] .Name}"
/Grid>

Indexed
binding

450fig01_alt.jpg
<Application x:Class="MvvmApplication.App"
xmlns="http: //schemas. microsoft . con/winfx/2006/xanl /presentation”
snlns :x="http: //schemas . microsoft . com/winfx/2006 /xaml">

<Application. Resources>
<Resourcenictionary>
<ResourceDictionary.Mergedbictionaries
<ResourceDictionary Sources'Assets/Styles.xanl® />
<Resourcebictionary Sources"Assets/Resources.xanl’ /> Merged
</Resourcepictionary.Mergedpictionaries> ctionary
</ResourceDictionary>
</Application.Resources>
N Ry

ch20ex10-0.jpg
DEGYNGY o, DUETEENNLE TR =
private const int _audioBufferSize = 255; ioerral
private const int _audioStreanSize = _audioBufferSize * 1007 buffer size
private byte() _audioBuffer = new byte(_audioBufferSizel;

private MemoryStrean _audioStream = new MemoryStream(_audioStreamSize);

private int _audioStraamoffset

private double _volume = 0.5;

private void GetAudioSample ()

{

it
{

3

for (int i

{

(_audioStreanottset + _sudioButfersize » _audioStreansize) [

_audioStrean.Seek (0, Seekorigin.Begin);
audioStreamoftset = 0;

i< _audiomuffersize;
i += _audioBitspersanple / 8)

142fig01_alt.jpg
I:E i
<Stackpanel Orientation-'Horizontal">
<StackPanel Width-r200" Background-"LightGray">
<Texchox Horizontalalignment-"Left’ />
<Textiox Horizontalalignment—"Centex" />
“Textox Horizontalalignment-"Right" />
<Texthox Horizontalalignment.'Stretch’ />

</Stackpanel>
<Canvas Wid)

Horizontal
alignment

207>« /Canvas>
<StackPanel Width="200" Background="LightGray" Orientation-"Horizontal"s
<TextBox VerticalAlignments'Top" />
<TextBox VerticalAlignments"Center® />
<TextBox VerticalAlignments"Bottom" />
<TextBox VerticalAlignments"Stretch® />
</Stackpanel>
</StackPanel

Vertical
alignment

273fig01.jpg
Fubiil CiRnE REpusiLoTy®

{

private ObservableCollection<Emoticon» _emoticons; Collection
bublic Ghearvablecollection Enoticons Fnot icons to'bind t
{

get (revum _emoticons;)

}
}

449fig01.jpg
using System.Collectlons.Generic;

namespace MvvmApplication.Viewtodels

(
public class Viewodsliocator
{
private Dictionary<string, Viewiodel» viewiodels -
few Dictionary<atring, Viemodels (s
sublic Viewodelocator ()
{
_viewiodels dd ("Enployeeniat®, new nployeeniatviewsodel ()
vieriodels Add("BmployecDetail®, new EnployseViewodel 1) :
)
public Viewrodel this (string viewane] Ideser for
(bindi
get { return _viewodels(viewame] ; } 28
!
)

b

604fig01_alt.jpg
RIS ViLe FAVASORIMCRL . NAYRTOINAL. = LAW FERUSFOTIRERLLE <— WaveFormatkx
private MediaStreamDescription _audioDesc;
private const int _audioBitsPerSample = 16; V’

private const int _audioChannels =
private const int _audioSampleRate = 44100;

private void Preparehudiol)

{

int ByteRate = _audioSanpleRate * _audioChannels *
(_audioBitspersample / 8); (2]

_aveFommat = new WaveFormatBx();
avaformat Avesyeestesec < lint)Bytenate;
haveromat Channels « audioChannels;
“omiaroraat HlokAlisn

o) aodiochamels + (_audiosicorersampie / 81 @
raveromat ok et
e e,

WaveFornatEx. FormatPey,
Must be

_waveFornat . SamplesperSec = _audioSampleRate;
zero

waverornat .size = 0;

Dictionary<HiediaStreaniteributekeys, string> streamictribuces
hew Dictionary-MediaStreanattributeeys, strings();
streanattributes [MediaStreanattributeKeys. CodechrivateDatal
_vaveFomat . ToRexString ()5)
_audichesc - new HedisStreambescription(
NediastreanType.Audio, streamattributes);

141fig02.jpg

16fig07_alt.jpg

272fig01_alt.jpg
RelativeSource
Self

<UserContxol x:Class="Chapterll.RelativeSource”
xmlnss"hrtp: //schemas.microsoft .con/winfx/2006/xanl /presentation”
snlns :x="http: //schemas . microsoft . com/winfx/2006 /xanl”

{Binding RelativeSources={RelativeSource Self}}"
LayoutRoot” Background=“White”>

<Textalock Text-"(Binding PageTitle}” />

</Grids

e

Binding to
property

ch20ex08-1.jpg
{

i€ (bigEndianstring == null) { return ""; }

char(] be = bigEndianstring.ToCharhrray();

if (be.length % 2

0) { return "*; }

int i, ai, bi, ci, di;
char a, b, c,
for (i = 0; i < be.Length / 2; i += 2)

al =iy bi=i+1;

be.length - 2 - i;
di = be.length - 1 - i;

a = belail; b = belbil; ¢ = belcil; d = beldil;
belcil = a; beldi] = b; belail = c; belbil = 4,

)

retum new string(be);

}

public Intéd AudioburationFromBufferSize(
UIne32 cbaudiobataize)
{

i€ (AvgBytesPersec == 0) return

vty
functions.

return (Inté4) (cbAudioDataSize * 10000000 / AvgBytesPerSec) ;

¥
1

11fig05.jpg
WO (VAR LW STERSRCLONE]

Right now I'm writing 3 book

28/140

141fig01.jpg

446fig01.jpg
DELVSLS ENp oyRelCENOoe SSalaahediip laee
public EmployeeViewdodel SelectedEmployee
()

private ObservableCollection<EmployeeVicuModels _employees;
public ObservableCollection<EmployeeVieutiodel> Enployees

i }

public void LoadEmployees ()
(
if (_dataservice.AreEmployeesLoaded)

i
1

else

¥

ShapeAndLoadEnployees (_dataService . Enployees) ;

_dataservice.Enployessioaded += (s,)

(
ShapeAndLoadEmployees (_dataservice.Enployees) ;
b

_dataservice.Loadsnployees () ;

}
]

private void ShapeAndLoaGEployess (IList<Enployess enployees) @
{

var shapedEmployees = new ObservableCollection<EmployeeVieutiodels () ;

foreach (Employee emp in employees)

{
Enployeevieutiodel vm - new Employeeviewiodel
1
Firstame - emp.Contact.Firstiame, Flatten
LastName = emp.Contact . Lastiame, structure

Title = emp.Title,
salaried = enp.Salariedrlag,
SickLeavetours = emp.SickLeaveHours,
vacationHours = emp.vacatiomours,
HireDate - eup.HireDate

b
shapedEmployees . Add (vm) ;

}
Employees = shapedEmployees;
onEmployeesLoaded () ;

ch20ex08-0.jpg
POPASN - BLEE N TRENE MRS
(
public short FormatTag (get; set:)
public short Channels { get; set;)
public int SampleserSec { get; set; }
public int Avgbytespersec | get; set; |
public short Blockalign { get; set;)
public short BitsPersample (oec; set; |
public short Size { get; set;)
public const uint SizeOf = 1

public bytell ext { get; set;)

public const Tntls Formatec Main output

public string ToHexstring() function

{
string & - v
s 4= TolittleBndianString(string.Format (*{0:X4)", FornatTag);
& 4= ToLittlendianString(string.Format (*{0:X4)", Channels));
& 4= ToLittleEndianString(string.Fornat (*{0:X8)", SamplesPersec));
& 4= ToLittleEndianString(string.Pormat (*{0:X8)", AvgBytearessec));
& 4= ToLittlendianString(string.Formac (*(0:x4]", Blockalign));
& 4= ToLittleRndianString (string.Format (*{0:X4]", Bitspersample));
s 4= TolittleBndianString (string.Pormat (*(0:X4)", Size));
retum o

)

145fig01_alt.jpg
PELTEEN RLE. NYTRACDLONE SLIgk onleos R

{

double top -
(double) (myTextBlock. GetValue (Canvas.TopProperty)) ;

double left
(double) (myTextBlock. GetValue (Canvas.LeftProperty) | ;

myTexcBlock. Setvalue (Canvas. TopProperty, (top+5));
myTexcBlock. SetValue (Canvas. LeftProperty, (left+5)):

!

PoasiottonNvRnpATIn e

GetValue
method

Set¥alue
method

144fig01a.jpg

274fig01a_alt.jpg
A bl ol A s
<local:Repository x:Key:
< /Usercontrol Resources>

- repository” />

<Grid x:Name="LayoutRoot "
DataContext=*(Statickesource repository}”>

<TextBlock Text="(Binding Emoticons (Sniley]
</Grid>

Name}” />

indexed binding

144fig01.jpg

274fig01.jpg
PUblLe BoUes FApOs: tory

{

private Dictionary<string, Emoticon» _emoticons;
public Dictionary<string, Enoticons Zhoticons o
(tobind t
get (retwrm _emovicons; |
: +

450fig01a_alt.jpg
SREABUXCEHIStLANaTY
xmlns="http: //schenas.microsoft .con/winfx/2006/xaml /presentation”
nlns:vm-*clr-nanespace:Myvnapplication. Viewdodals®
inlns:x-"http: //schemas . miczosoft .con/winEx/2006 /xanl ">

<vm:ViewttodelLocator x:Key="ViewtodelLocator® /> <— ViewModelLocator

< /ResourceDictionarys

578fig01_alt.jpg
AL A = ST - s P
xmlns="http: //schemas. micTosoft . con/winfx/2006/xanl /presentation”
smlns:x="http: //schemas .microsoft . con/winfx/2006 /xanl®
Widthe400" Height="300">

<Canvas x:Nane-"LayoutRoot * Background-"hiters
“TextBlock xoName-"th Canvas.Top-"0" />
“edizElenent. 200 o MediaElement
Source="http://www.silverlightinaction.com/video3.wmv*
DownloadprogressChanged-"ne_DownloadprogressChanged” /> o
</Canvas>

P e o

app-fig06_alt.jpg
10 AderssType Person)
(13 AWBuidvesion (db0)
13 i0fMeteriats Producion)
@ Contact Pessor) =
1 ContactCreditCerd (see)
1 ConactType Ferson)
120 CountyRegion (Person)
3 CountyRegionCurency(sls)
13 CrediCard(ssles)
120 Colture (Production)
F1 Cunency sle)
13 CurencyRate (Soles)
[Customer (sses)
1 Customerhderess (Soes)

120 Databuetog (@0c)
I3 Department m......m.m/
(1] Decument (Production)
(V1] Employee (HumanResot

)

) Plrsizeorsinguisrize genersted abjectnames
9] Includeforign key calumas inthe model
Model Namespace:

Adventureiorkbodel ‘,\

app-fig05.jpg
Connection Propertes (2 ot

Enter information to connect to the selected data source or lick “Change” to
choose a different data source and/or provider.

Data source:
Microsoft QU Sever (SqClient) Change..
Servername:
I |
Log on o the server

Use Windows Authentication
© Use SQL Server Authentication

]
Password: [

] Save my password

Connectto a database

© Select or enter a database name:
AdventurelWorks

Attach a database file:

e [e

20fig04.jpg
Sy

429fig01_alt.jpg
using System.Componsntiodel; Raise PropertyChanged

namespace MvvmApplication.ViewModels Lo
(

public abstract class Viewdodel : INotifyPropertyChanged

{

public event PropertyChangedEventHandler PropertyChanged;

protected void NotifyPropertyChanged (string propertyName)

{

if (PropertyChanged != null)

PropertyChanged(this, new PropertyChangedEventArgs (propertyName)) ;

ch10ex13-0.jpg
UL BRESIR L CLeeN LICRADVATREGIGE | WNrInreel

{

public LockableTextBox ()

[

Tnitializecomponent () ;

}

private void myImage MouseLeftButtonlp(cbject sender,
NouseButtonEventArgs e}

(Toggle on
Islocked = !this.IsLocked; s,

'

alizeCompanent

public void UpdateUT ()

= Worker

{ function
if (Istocked)

{
myImage.Source = new BitmapInage (
new Uri (*http: //wee.silverlightinaction.con/locked.png",
Urikind.absolute)) ;
1
else
(
myInage.Source - new BitmapInage (
Bow Tl (SBELDs 7 fwww- 81 Iveclight inastion . confinlocked. sog*,

16fig06.jpg
Model

View ViewModel Sevices | Logic Data

Binding |

Messages.

XAML Services

Vieuhccel | —) oaa

Code-Behind Services

20fig03.jpg
::::::::

252fig01_alt.jpg
SHNEGERLSTS E=RLANReTELLVER G UL RN ML ; BOOREM LS TRNLDOR ™
/schemas . microsoft .con/winkx/2006 /xanl /presentation”

Bttp://schenas.microsoft . con/winfx/2008 /xanl"

"http://schenas . microsoft .con/expression/blend/2008"

xnlns :mc="http: //schemas. openxnl formats . org/markup-conpat ibility/2006"
me: Tgnorable="ar
d:Designiieight

300" d:Designiidth="400">

<Grid x:Name='LayoutRoot” Background="White's < Content

</Grid>
< /UserControls

10fig01.jpg

16fig05.jpg
‘Services / Logic Data

Code-Behind Services Data

590fig01a.jpg
AR e MR RO RORO NN SR S R SO RO LR B e &)

{

th.Texe

1

e.Marker.Text;

<— Displaying marker text

16fig04_alt.jpg
o
e i e e

20fig02_alt.jpg
Loaded
Currentstate: Closed
NaturalDuration: 00:00:00

MediaOpened
Currentstate: Playing
NaturalDuration: [Media Length]

DownloadProgressChanged*
Currentstate: Closed
NaturalDuration: [Media Length]

I be fired multiple times unti the
DownloadProgress property reaches 1.0.

When the Position reaches the NaturalDuration,
the Currentstate will change to Paused. Then
the MedisEnded svent will trigoer.

app-fig07.jpg
%7 comact ®

= Properties.
¥4 Contactip
A Namestyle
e
F FirstName
5 MiddleName.
F LastName
2 suffix
F emailAddress
2 EmailPromotion
= Phone
F PasswordHash
S PasswordSalt
& AdditionalConta.
F rowguid
F Modifieddate

= Navigation Properties
4 Employees

4 Employee.

= Properties
¥ Employeeld
5 NationallDNum...
= Contactid
= Logind
= ManagerlD
2 Title
2 BirthDate
F Maritalstatus
5 Gender
= HireDate
= SalariedFlag
= VacationHours
F SickLeaveHours
= CurrentFlag
= rowguid
F ModifiedDate
= Navigation Properties
% contact
% Employeel.
%] Employee2

11fig01.jpg
o d farget

CLR Object (DateTme.Now) | ginging mode | Ul Component (TextBox)

Property (TimeOfDay) I }.—{ Property (Text) I

434fig01_alt.jpg
public class EmployeeVacationBonusService

q Dependency
public static void AddVacationSonus (Employee employee) QJ on Employee

{

int vacationBonus;
DateTime dateOfHire = employee.iireDate;

DateTine today = DateTime.Today:
int yearsingervice = today.Year - dateOfire.Year;

if (dateOfHire.Add¥ears (yearsInService) > today)
yearsIngervice-

if (yearsingervice < 5)
vacationBonus = 107

else if (yearsInService < 10)
vacationonus = 20;

else if (yearsInservice < 20)
vacationBonus = 307

else
vacationsonus = 40;

employee.Vacationfours += vacationBonus;

595fig01_alt.jpg
RRASECORESN: ZECMRENMTAL. FRELISOVRLADRE NN | NN THERIN
xnlns="http: //schenas.microsoft. con/winfx/2006/xanl /presentation”
xmlng:x="http: //schemas .microsoft .com/winfx/2006 /xanl"

*clr-namespace :Microsoft . SilverlightiediaFranework. Core;

Microsoft.SilverlightediaFranewor . Core
xmlng:Media="clr-namespace:

= Microsoft.SilverlighthediaFranework. Core.Media;

= assemblysHicrosoft Silverlighthediafranevork.Core®s o
<Grid xsName=LayoutRoot® Background="White’ Wargin<'ists
“Core:aNPPlayers
<Core:SuFPLayer . Playlists || SMF player o
edia:Playlistiten DeliveryMethods'adaptivestreaning’ @
WediaSoure
- *http://video3.smoothhd.com. edgesuite.net /ondemand/
- Biai20muck 203yt 20AdaDt Lve - m/Mar Fest /-

</Core:SWFPlayer. Playlist>
</Core: SuPPlayers
</Grid>
o RS B

20fig07_alt.jpg

257fig01_alt.jpg
SNSRI X AN VL LR ER e
htcp: //schenas . microsoft . con/winfx/2006/xanl /presentation”
"http: //schenas.microsoft .com/winfx/2006 /xanl”

clr-namespace:MyClassLibrary;assenbly=MyClassLibrary" @
Width-1400" Height="300"> Namespace definition
<StackPanel x:Name="LayoutRoot* Margin="10">

<my:LockableTextBox x:Name=*myLockableTextBox' /> < LockableTextBox

</stackpanel>
£ e e S Sl

ch16ex09-1.jpg
LoadingProgress.Visibility = Visibility.Collapsed;

1

DataContext - _viewdodel;

LoadingProgress. Visibility

Visibility.Visible;
_vieutiodel . LoadEnployees (] ; [:]

)
1

private EmployeeDetail _employeeDetail = new EmployeeDetail();
void BditBmployee Click (object sender, RoutedBventArgs e)
{
_employeeDetail Enployee = _viewdodel.Selectedsaployee;
ZemployeeDetail.Show() ;

}

void AddMorevacation Click (object sender, Routedsventargs e)

{
i

_viewModel .AddVacat ionBonusToSelect edEnployee () ; o

20fig06.jpg
Elfesdory Eltiddn

& SivefghthledaFramework Plgns TimedTes &

Aopication etenson ()
Ui sotcakon

(C:\Program Fles\Wicrosch SDKs\Siverght eda F
137KB (140,300 byes)
140K (143360 ytes)

Foday, e 11,2010, 94020 AM

Today. ke 13, 2010, Smiuses ag0
Foday, dne 11,2010, 94020 AM

T
e s bobeckedio
e rae s ot

E/]L

255fig01_alt.jpg
PUDLLO0 ETALAO TASON.Y NOReRconoyEEOposty. Feaokecrropey-
Dependencyproperty. Register
E:I L kydn meren DependencyProperty
stockedr —
typeot (hool) ey
Eypeot (LocksbleTexthox)
new Propertyvetadata FE—
new PropertyChangedcallback (onTslockedChanged)) | calbask
)
public bool Tetocked QAR property
{ wragper

get { return (bool) (Getvalue (IslockedProperty)); }
set { SetValue (IsLockedProperty, value); }

v

ch16ex09-0.jpg
RUbLLE parkinl “Singe ENployecLidl ;. Fage

{
public Eployeetist (
{
InitializeComponent () ; Cache
NavigationCacheMode = NavigationCacheMode.Enabled; this Page
Addtorevacation. Click +=
new Routedbventiandler (AddoreVacation_Click)
Baitemployee. Click +e
e RoutedBventHandler (Rdi tBnployee_Click)
}
private Bnployeelistviewiodsl _viewiodel = null;
protected override void OnNavigatedTo (Navigationsventaras o) @
{

if (viewdodel == null)

(

_viewtiodel = new EnployeeListviemiodel(); @
viewiodel Bnployestloaded += (o, sa) =

{

20fig05.jpg

430fig01.jpg
e o ol s
using System Componenthodel ;
using Mrmapplication. Services;

namespace MrvmApplication. Viewtiodels
P wp:

(
public class EmployesListVieutodel : Viewtodel
{
private Buployes _selecteamployee;
public Employee SelectedEmployee
(
get { return _selectedEmployee;)
set
(
_selectedrmployee = value;
NotifyropertyChanged ("selectedbmployee”) ;
1

1

private ObservableCollection<Employees _employees;
public ObservableCollection<Employees Enployees

{
get (return _employees;)
private set

{
_enployees « value;
Not i £yPropertychanged (*Employees®) ;

}

Selected
employee

}

public event EventHandler EmployeesLoaded;
public void LoadEmployees ()

{
var client = new BuployseServiceClient();
Client GetEmployeesCompleted += (s, ea) =>
(
Employees - ea.Result;
onEployeestoaded) ;
b
client GetBuploysesisyne () ;
}

public void AddVacationBonusToSelectedEmployes ()

{
if (Selectedmmployee 1= null)
SelectedEmployee. VacationHours += 1

}

protected void OnEmployeesLoaded ()

{

if (Bwployeesioaded != null)
Employeesioaded (this, EBventhras.Bapty):

Full set of
employees

ch10ex13-1.jpg
UriKind.Absolute)) ;
)

myTextBox. IsReadonly - IsLocked;

) CLR property
public bool Istocked Mrapper
{

get { retumn (bool) (GetValue (IstockedProperty));)

set { Setvalue (IslockedProperty, value); } Dependency
) property

public static readonly DependencyProperty IsLockedProperty
DependencyProperty.Register (
Tstockear,
typeot (bool) ,
typeof (LockableTextBox) ,
new PropertyMetadata (new PropertyChangedcallback (onIstockedChanged))
)i

private static void OnlsiockedChanged (Dependencyobject o, Changed
DependencyPropertyChangedBventargs) handier
{
LockableTextBox textBox = (LockableTextBox) (o) ;
textBox. UpdateUt (
1
}

11fig04_alt.jpg
source property || set target fwait for property
tialized property value value to change

Set source

Yves
property value

11fig03_alt.jpg
Saurce property Set target wait for property
initialized property value value to change,

ch16ex12-1.jpg
var client = new BmployeeServiceClient();
AveEmployessloaded = fals

client.GetEmployeesCompleted += (s, ea)

{

Enployees = ea.Result;
AreEmployeesLoadsd = true;
OnBuployeesLoaded (

i

client . GetBuployseshsync

) Employees
public statie event EventHandler EmployeesLoaded; o1 loaded event
protected static void OnEmployessLoaded ()

{

it (EmployeesLoaded 1= mull)
EuployeesLoaded (null, EventArgs.Bupty;

11fig02_alt.jpg
Source property Set target Await for property, Do nothing
ed property value value to change

597fig01_alt.jpg
PSR SRS CRNLGINIIIUR & NN

{

private long _currentTime = 0;

protected override void SeekAsync(long seekToTime)

{

_currentTine = seekToTime;
ReportSeekconpleted (seekToTime) ;

1

protected override void Getbiagnostichsync(
Mediast reanSourceDiagnosticKind diagnosticKind)
{

throw new NotInplementedException () ; —
1

protected overside void Switchiediastreamdsync(
MediaStreanDescription mediaStreanDescription)
{

throw new NotImplementedException () ; e

}

protected override void GetSamplehsync (<— GetSampleAsync
NediaStreanType mediaStreamType]

No-op
methods

{
if (mediastreantype
Getaudiosample () ;
elge if (mediaStreanType
GetVideoSample) ;
}

Mediastreantype.Audio)

Mediastreantype video)

protected override void OpenMediahsync() (

protected override void CloseMledia() ¢

)
}
private void Gechudiosample() {) |
private void GetvideoSanple() (]

ch16ex12-0.jpg
using System;
using System.Collections.ObjectModel;

namespace MvvmApplication.Services —
{

public class BuployeeDataservice sollesion
{

private statie ObservableCollection<Employess _employses;

public static Observablecollection<Employees Buployees \

{

get { return _employees; }
private set {_employees = value; }

}

private static bool _areEmploysssloadad;
public statie bool AreEmploysesLoaded
(
get { return _areEmployeesLoaded;
private set (_areEmploysesLoadsd

vatue; |

}

public etatic void LoadEmployees ()

675fig01.jpg
i o A

rlns-"http: //schens microsoft. con/winfx/2006 xanl /presentation®
xmlns :x=hitp://schenas. miCrosoft . con/wintx/2006/xanl"
x:Class-"MergeExample.app">

<application. Resourcess J Merged
<ResourceDictionarys dictionaries
<Resourceict ionary Mergedbictionaries> <

<Resourcebictionary SourcesStandardColors .xaml® /> 0
“ResourceDictionary Source-"Controlstyles xanl' /- @

</ResourceDictionary MergedDict ionaries>
</Resourcepictionary>
</Application. Resources>
Sraoel i Sat Do

18fig01.jpg
(0.0) 1.0

(0,1) 1,1

682fig01.jpg
My Brain Hurts!|

526fig01.jpg

680fig01.jpg

23fig02_alt.jpg
1. Edit the properties of a file.

2. Change the Build Action to Content.
Properter |

miData s Fie ropeie 2

s
5 Ao
CECEETN Corert =
Copyto Ot ety Oa ok copy
CoomToot
oo TootNamepce
o v
Fietume miDasam

Budd Action.
Howthe e e othe b snd dicyment

pecee
p Compile

3. Thefiles with the Build Action of Content are included in the .xap.

525fig01.jpg

23fig01.jpg
(P C\-.\Resources01Web
L3 App_Data
[Bin
- & ClientBin
- (& directory
[image02.png
[imagedl.png
% ResourcesOLxap
- (& resources
- [images
imagedd.png
@ (2] Default.aspx
imaged3.png
web.config

524fig01.jpg

529fig01.jpg

684fig01.jpg
SSELL SNl EELL PALRULOUHN TR e
<Grid.Resources>
<Style x:Key="textStyle" TargetTyp
<Setter Property='FontWeight" Value="Bold" />
<setter Property="FontFamily" Value
<setter Property="FontSize' Valu
<setter Property.

/>

12 />
"Height" Value="24" />
<Setter Property="Width' Value=*180" />

<satter Property.
<Setter.values

ackground®>

<LinearGradientBrush EndPoint="0.5,1" 5,00
<Gradientstop Colors"HPFFFFEPF" Offseta"1'/>
<Gradientstop Color-"#FFDODODO" Offset="0"/>

</LinearGradientBrush>
</Setter.Values
</Setter>
</styles

</Grid. Resources>

<Grid. RowDefinitions>

<RowDefinition Height />
<Rowpefinition Height="Auto" />
</Grid Rowbefinitions>

<Grid. ColumnDefinitions>

<Colunnbefinition Width-Auto" />
<ColumDefinition Width="huto® />

</Grid. ColunnDefinitions>

<TextBlock Texts'First Name: * />

<TextBox Grid.Column="1
Style=" (StaticResource textStyle)® />

<TextBlock Text-*LastName: " Grid.Row="1' /> Style

<TextBox Grid Row="1' Grid.Column-'1v inuse

Style-r(Statickesource textStyle)t /> @
—

528fig01.jpg

683fig01a.jpg
SEOMEENCIE 21—y PRI RO
<TextEox.Styles < Style property
<Style TargetType-"TextBox">
<Setter FontFamily" Values'Verdana®/>
<setter "EontSizen Value=n127/>
<setter Fontheight * Value="Bold"/>
<Setter Property="Height" Value=124v/>
<Setter Propertys"Width" Values"180"/>
<Setter Property="Background"s
<Setter.Value>
<LinearGradientBrush EndPoint="0.5,1" StartPoin
<GradientStop Color-"FFFFFFFEY Offset="17/>
<Gradientstop Colors"4FFDODODO" Offset="0"/>
</LinearCradientBrush>
</Setter.Values
</setters
</styles
</TextBox. Styles
e It

0.5,0>

527fig02.jpg

683fig01.jpg
Hullo! I'm D.P. Gumby!

527fig01.jpg

682fig01a.jpg
<TextBox x:Name="myTextBox">
<TextBox.Styles < Style property

<Style TargetType

<setter
<setter
<setter
<setter
<setter

</styles

TextBox">
Property="FontFanily" Value='Verdana" />
Property="FontSize" Value="12" />
Propertys"Fonthieight" Value='sold® />
Property="Height" Value="24" />
Property="Width" Value=*180" />

</Textzox.styles

e Mt

530fig02.jpg

530fig01.jpg

685fig01.jpg
M o bl o 2 A
<Grid. Resources>
<Style TargetTypes"TextBox'>
<satter ontieight " Values"
<setter "FontFanily" Value:
<setter Propertys'Fontsize® Value="12"
<Setter Property="Height" Value. I8
<Setter Property="Width' Value=r180" />
<Setter Property="Background">
<Setter.Values
<LinearGradientBrush EndPoint="0.5,1" StartPoint=+0.5,0%>
<GradientStop Color="#FFFFFFFF" Offset="1"/>
<Gradientstop Color="#FFDODODO" Offset="0"/>
</LinearGradientBrush>
</setter.values
</setters
</styles
</Grid.Resources>
<Grid.Rowefinitions>
<Rowbefinition Height="Auto" />
<Rowefinition Height="Auto" />
</Grid Rowbefinitions>
<Grid.ColunnDefinitions>
<ColumnDetinition Widt
<ColumnDefinition Widt]
</Grid.ColunnDefinitions>
<TextBlock Texts'Pirst Name: * />
<TextBox Grid.Column="1" /> o
<TextBlock Text-"LastName:
<TextBox Grid.Row='
< /Grid>

>
>

Style

22fig12_alt.jpg
omemestes T
eI et

s et

eI Fetase

e Fietod

eI Hatad

e el

s rictor

m0sEI et

eI s

e et

SIBOIHM Sppcencten. K
SRS Appeneten 12K
Sas0SIM _ppiriencten 1018
S0 Appcan et

sz

septesim ot

ch22ex11-1.jpg
</BasingDoubleKeyFrane. EasingFunction>
</EasingboubleKeyFrane>
</DoubleaninationUsingKeyFranes>
</Storyboard>
< /Usercontrol . Resources>

(Gria x:Name="LayoutRoot” Background="ihite">
“Rectangle Height-"20" Width'20" Fill-"Blusviolect
RenderTrans £ormOigin="0.5,0.5%
<Rectangle.RenderTranstorns
<ScaleTranstom x:Nane-"Transform® /- °
</Rectangle.RenderTransform>
</Rectangles

<Button x:Name-"StartAnimation® Content="Start!
HorizontalAlignnent—"Center” VerticalAlignment-"Bottom"

25" Margin="s"

"StartAnimation_Click"/> <— Event handler

< /arids

ch22ex11-0.jpg
<UperControl.Resourcess
<Storyboard x:Key="AnimateTarget"s
<DoubleAninationUsingkeyFranes Storyboard.TargetNames"Transform”
Storyboard TargetProperty="Scalex”s
<BasingDoubleKeyFrane KeyTime="0:0:0" Value="0.0" />
<BasingDoubleKeyFrane KeyTime="0:0:3" Valus="5.0">
<BasingboubleKeyPrae .EasingFunction>
<Elasticrase EasingMode="Easeout"
Oscillations="3" Springiness="2" />
</BasingboubleKeyFrane . EasingFunction>
</EasingDoubleKeyFranes
</DoubleAninationUsingKeyFranes>
<DoubleAnimationUsingKeyFranes Storyboard.TargetNames"Transtorn®
Storyboard TargetProperty="scaler”>
<BasingDoubleKeyFrane KeyTime="0:0:0" Value="0.0" />
<BasingDoubleKeyFrane KeyTime="0:0:3" Value="5.0"> Easing function
<EasingDoubleKeyFrane. EasingFunct ion> parameters
<Elasticrase EasingMode="Easeout"
B R e e . <

22fig11_alt.jpg
SR — PRI I

Time Time

671fig01.jpg
DECLARATIVE
RESOURCES

668fig01.jpg
WUSESS HLaER LUSLOMBRRaTIor-) BRI orcHIbhans:

{

protected override void onAttached()

{
base.Onattached() ;
Associatedobject.Click +- new RoutedEventHandler (OnButtonClick);

)

protected override void onDetaching ()

{
base.Onbetaching () ; Event handler
hssociatedobject .Click -= OnButtonClick; cleanup

}

void OnButtonClick (cbject sender, RoutedEventhrgs e)

{
MessageBox. Show ("Button was Clicked!");

}

}

667fig01a.jpg
prIvaEe toly Drariovn L ioRIORIRGE JENOET) ROVehErEnrAIEE

{
Thickness margin
margin.Left += 100;
margin.Top += 100; Move

square

Purplesquare.Margin;

PurpleSquare.Margin = margin;

667fig01_alt.jpg
"purplesquare”

20" Widther20"
HorizontalAlignnenta"Left® Verticaldlignment="Top"
Margin-"20" Fill-"Elueviolet">

<d:Interaction.sehaviors>

<ei:Pluidiovebehavior Durations"0:0:4%>
<o :FluidHovebehavior. BaseX~
<Elasticzase Zasingiode-"Easeout”

Oscillations="3" Springineas='a® /> .
</ei :Pluidvovesehavior. EaseX> Eele
Zei+Pluiduovesenavior Basers

<Elasticgase Basinghiode-"Easeout”

Oscillations="3" Springineas='a® />
</es:Pluidovenehavior. Baser>

</ei FluiduoveBehavior>
</i:Interaction.behaviors>

</Rectangle>
<Button x:Name="StartMove"
Content="Start"
HorizontalAlignment="Center® Verticalilignment="Bottom"
Widthe"100" Height="25" Margin="s"

Click="Starthove_Click® />
< /Grid>

674fig01_alt.jpg
EAAULCAL Lo TERETY
xmlns="http: //schemas. microsoft . con/winfx/2006/xanl /presentation”
snlns :x="http: //schemas . microsoft . com/winfx/2006 /xaml">

<ResourceDict ionary Mexgeadictionaries>
“Resourcebictionazy Source-'Standsrdcolors.xanl® /» °
</Resourcebictionary Mergedbictionariess

<Style TargetType='TextBlock">
<Setter Property="FontFamily"
Values"Segos UI" />
<Setter Propertys"Foreground"
Values" (Staticresource TextColor}r /> -
</styles

<style x:Key="HeadlineTextstyle" Defined
TargetType='TextBlock"> in colors
<Setter Property="FontFamily" dictionary
Values"Segoe UI" />
<Setter Property=Foreground"
Values" (StaticResource HeadlineTextColor)" /> <
<Setter Propertys'FontSize"
Value=r20% />
<Setter Property=THargin®
Value="0 0 0 10" />

</styles
 nah e A AR

671fig01a.jpg
<StackPanel> romtalied
<Stackpanel .Resources> dictionary
<LinearGradientBrush x:Key="myGradientBrush®
StartPoint="0,0" EndPoinc="1,1">
<Gradientstop Color="4FF575757"/>
<GradientStop Color="HFFCDCDCD" Offset="17/>
</LinearGradientBrush>
</Stackpanel Resources>

<TextBlock Text-"DECLARATIVE" Fontileight="Eold"
FontFamily="Verdana” FontSize="40"
Foreground=" (StaticResource myGradientBrush)" />
<TextBlock Text="RESOURCES" FontWeight="Bold"
FontFamily="Verdana” FontSize="40"
Foreground=" (StaticResource myGradientBrush]" />

«/StackPanels

14fig02_alt.jpg
OO+ [oo]x| B,
Sender N S YT T T
astiog Smsrowsers]
Receiver
testing two browsers

e S

544fig01a_alt.jpg
PEERAR N AL DOCNIL . SO

public MainPage ()

{

InitializeComponent () ;

Loaded

b

v0id MainPage_Loaded(cbject sender, RoutedEventhrgs e)
(= Create

_document. PrintDocument
b

private void Print_Click(object sender, RoutedBventArgs e)
{

Printeorm("Brown, Pete

b

rivate void PrintForn(string patiencNane! .
f (sewing o ! Event wire-up

< will go here
doc. Print ("Adnittance form for ' + patientName) ;

}

new RoutedEventHandler (ainPage_Loaded) ;

new PrintDocunent () ;

692fig02.jpg

544fig01.jpg
<@rid X:;Nama="LayoutROOL® Backgrounc="Wnite®>

Princt Content

Princt

TextBlock
will go here

/Grids

692fig01.jpg
l Push Me ‘

690fig01a_alt.jpg
SAERcKIEREL Wilama tayon ERoct ™ Segkproiele R NS Nac e =10 = AT
<Stackpanel .Resources>
<Style x:Key-'buttonstyle" TargetType='Button's o
<Setter Property=*Template’s
<Setter.value> ControlTemplate
<Cont rolTemplates <

<Ellipse Fill="#FF2103BA" Stroke="Black" StrokeThickness="2"

Height="{TenplateBinding Height}"
Widther (Tenplatesinding Width)® />
</ControlTemplate>
</Setter.Value>
</setters
</style>

</Stackpanel Resources>

<Button x:Name="myButtonl® Height=130" 300
styles"{staticresource buttonstyle}"
<Button x:Name="myButton2" Height=170" 70

Style="{StaticResource buttonStyle}"
</StackPanel>

15fig03_alt.jpg
Hew ot

[e vemptrs

ot

Honny

smuont

Sk
S

3 st i
B s s
o= e —— -—
i P— ==
e R — s

P —
A

19fig03.jpg
Pete's Awesome Silverlight Report

——_

697fig01.jpg
SGILLN % el =T Ry ol B0e * POSGUE VIR TR R TS
<Grid.Resources>
<Style x:Key='buttonStyle" TargetType
<Setter Property-"Template's
<Setter.Values

utton!

<ControlTemplate TargetType="Button'> Visual state
< info goes here
</ControlTemplates
</Secter. Values
</Seteers
</styles

</Grid Resources>
<Button x:Names"myButton® Widthe"75" Height="75" Conten
Style-r(staticResource buttonstyle]" />
« Tl

Push e

15fig02_alt.jpg
G’u.ﬂ « MyPublications » Manning Silveright in Action - SL4 » Manuscript »

Orgenize » Includeinlibrary v Sharewith v Newfolder

e Favorites 5 Nome
5 Recently Changed B tmages
B Desktop. Ui Ready
i) My Publications. 5| 3 Source Code

546fig01a.jpg
FOLU Haintagn lostec Lot aok Seder, NuraIEveEEArGR Bl
(TextBlock

_document = new Printbocument () ;
PrintStatus.DataContext = _document; DataContext

693fig01.jpg
<Button x:Name="myButton" Width="75" Height="75" Content="Push
<Button, Template> <
<ControlTenplate TargetType="Button'> Template
<Grid RenderTransfornorigin-".s,.5">
<Grid.RenderTransforns

uyTranstorn® />

<ScaleTransform x:Name=
</Grid RenderTransforn>
<Ellipse x:Name="myEllipse’ RenderTransfornOrigin=".s,.5"
{TemplateBinding Height}®
(TemplateBinding Width)'>

<Ellipse.Fills
<RadialGradi encBrush Gradientorigin="0.3,0.2%
“RadialGradientBrush. RelativeTranstorns
<Transtornsroup>
<scaleTranstorm center)
Scalexr1.075" Scalet-"1.141%/»
<Skewrransforn Centerkero. 5t Centery
“RotateTransforn CenterX=r0.5" Center!
CrranslateTransfor %-0-0.04 1-10.07"/~
</TransformGroup>
</Ragialradientarush.RelativeTranstorms
ZoradientStop Color-"AFFDIDIDI" Offse
CGragientStop Color-*4FF21038A" Offaet-
</RadialGradientBrush>
</Rlipse.Fills
</Bllipaen
Zcontentpresenter Horizontalrlignments®Center®
Verticalalignment="Center" />
<visualstatemanager. VisualStaceGroups:
Visusl StateGroup x:Nane-"Commonstates’»
<Visualstate x:Nane-MouseOver®> °
SStorybosra-
<DoubleAnination Pron=1.0v To-1.25"
Storyboard. TargetNane- nyTranstom®
Storyboard.TargetProperty="ScaleX" />
<Dovblennimation Prom-t1.0" To-t1.25"
Storyboard. Targetiame- myTranstom
Storyboard.TargetProperty="ScaleY" />
</Storyboards
<Visnalstaces
< Visualstatesroups
</visualstatenanages. Visualstatesroups>
By

0.5" Center

0.004" />
1 /s

Visual
o states

15fig01.jpg
8 C\UsersPeterBrown Deskiop HashTagPage himi - Windows Inernet Exlorer

) (& e/ cespermbatapatsgape s

o Fovortes | 5 2, GetMore Add-ons » - Home 2 Addto Amazon W
& HoTagpage il
This s the frst content

23fig03.jpg
‘Thumb

546fig01.jpg
COMITNIOE NS -
HorizontalAlignnent="Center®

Binding
Verticalalignment="Sotton"

n statement

Text-"(sinding PrintedpageCount]”

aagasi TiouTe

14fig03_alt.jpg
B oo Wk

og«mﬁw

 B-oB-omctee

Sender

testing browser to out-of-browser

Receiver

testing browser to out-of-browser |

19fig02_alt.jpg

692fig03.jpg
Push Me

389fig01a_alt.jpg
<HyperlinkButton x:Name="HomeLink"

(Staticresource LinksBorderstyle)'s

LinksStackPanel"”
StaticResource LinksStackPanelstyle

Tink

Style=" (StaticResource Linkstyle]"
NavigaceUri=" /Home"

TargetNane="ContentFrane"

Content-"hone" /> Your link

goes here

<Rectangle Style-" {StaticResource DividerStyle}"/>

<HyperlinkButton

</stackpanel>
i tadela

x:Name="About Link"
Styles"{staticResource Linkstyle}"
Navigateuri=" /About"
TargetNane="ContentFrane”
Contentarabout” />

552fig01.jpg
public partial class MainPage : UserControl

{

public MainPage()

{
}

private Printbocunent _docunent

Thitializecomponent () ;

new PrintDocunent () ;

private void Print_Click(object sender, RoutedSventargs e)

{

_document . PrintPage

(

(s, ea) =>

Debug. WriteLine ("Printing page") Print entire
user control

ea.Pagevisual = this;
ea.HasMorePages = false;
b

_document . Print ("Silverlight screen print’);

}
4

389fig01.jpg

705fig01.jpg
Pl B SUAETIOR LTS R e TN L L TR LI LR

{

var sorteditems = SortElements();

double max = 0.0;

foreach (List<UIElement> orbitItems in sortedItems)

{
i€ (orbitTtens.Count > 0)
{
foreach (UIElement element in orbitItems)
{ Measure
elenent .Measure (availablesize) ; s

if (element.DesiredSize.Width > max)

max - element.DesizedSize.idth;
it

}
}

(element .DesiredSize . Height > max)
max = element.DesiredSize.Height;

3

Size desiredsize = new Size(max * Orbits * 2, max * Orbits v 2);

if (double.IsInfinity(availableSize.Height) ||

double.IsInfinity (availableSize.Width))

T desiredsize; Return panel
return availableSize; o measurements

ch19ex03-1.jpg
pete-brown-silverlight-in-action.png"
Stretch="None" />
<Tnage

Sources"http: //10ren.net /media/33418 /wpfdisciples.png”
Stretch-"None® />

<Inage
Sources"http: //10rem. net/media/17094 /conmodorelogo_100x100.png”
Stretchs"None" />
</stackPanel>
</Serollviewers

<Button x:Name—"Print" Content="Print"
Grid.Row="2"
Width="100% Height="30"
Clicka"print_Click"/>

</Grid>
N

15fig05_alt.jpg
L, s consomtorn

A —

[E—

[E—
] swesgpie

3 St hsa oo,

3 s

St Tt Cor
St ROy

o

vauice

o

o

o

Viice

702fig01_alt.jpg
RUb LA ARE DEOR TN | CLR wrapper

{ property

get { return (int)GetvValue (orbitsProperty);)
set { Setvalue (OrbitsProperty, value); |}

}

public static readonly DependencyProperty OrbitsProperty =
DependencyProperty. Register ("Orbits",
typeof (int) ,
typeof (orbitpanel),
new PropertyMetadata(l, OnOrbitsChanged)):

private static void OnOrbitsChanged (Dependencyobject d,
DependencyPropertyChangedsventArgs e

{
if ((int)e.New/alue < 1)
{
throw new ArgunentException (
“Orbits must be greater than or equal to 1.%);
}

ch19ex03-0.jpg
WEEELANLECA ‘K R Aam

PRENEEAMINE RS IIETC AL MR b e
xmlns="http: //schenas.microsoft. con/winfx/2006/xanl /presentation”
xn1ns :x="http: //schemas .microsoft .con/winfx/2006 /xanl"
Height="400" Width="500">

"] Hard-coded
<Grid x:Name="LayoutRoot" Background="White" Margin="s"> application
<Grid.Rowbefinitions> e
<RowDefinition Height="Auto" /> i
<RowDefinition Height="+" /> Sootisasl
<RowDefinition Height="Auto" />
</Grid.Rowbefinitions>
<TextBlock Text="Images from Pete's Site"
Fontsizes="30
Textalignment="Center" /> ScrollViewer
<ScrollViewer Grid.Row="1"> ges.
<Stackpanel>
<Image

S SN T A

15fig04_alt.jpg
" ome - Windoms et e
o Dr—

e i e

Home 4———

19fig04.jpg
Images from Pete's Site

»

24fig01_alt.jpg
[swonzz_|

15fig06_alt.jpg
B oo Wodow o
QO [ttt eegeemmi EEDEICE 5

e | o Gt o+ e Ao S
B oo 8o B e e e e @

Application Name

I oo st age o Ay

customer list about

531fig01.jpg

686fig01a_alt.jpg
<Button x:Name="myButton" Content='Hello®> | JemPae
<Button.Template> <— Property
<contiolTenplates °
CELlipee Height="30" Wide
<Ellipse.Fills
<RadialGradientBrush GradientOriginer0.3,0.2¢»
“RadialGradientBrush. RelativeTransforns
“Franstomsroups
“ScaleTransforn Center="0.5" Centert="0.5*
Sealexcri.o7s® Sealevari iair/s

90 Stroke="Black" StrokeThicknes:

<SkewTransforn CanterX="0.5* Centery:
<RotateTransform CenterX-"0.5" Center!
<TranslateTransforn X="-0.04" ¥="0.07"/>
</TranstornGroup>
</RadialGradientBrush. RelativeTransfor>
<GradientStop Color="4FFDSDIDS" Offse
<GradientStop Color="4FF2103BA" Offse
</RadialGradientBrush>
</Ellipse.Fill>
</Ellipses
</ContxolTenplate>
</Button. Templates
< /Buttons

0.57/>
0.57/>

0.0047/>
1e/s

686fig01.jpg

18fig02.jpg
Hello World

This is a textbox
Button

689fig01.jpg
Item 1
Item 2
Item 3

533fig01.jpg
Hello World

=

688fig01.jpg

532fig01a_alt.jpg
e e M el b o Ml e o B
<TextBlock Texts"Hello World* Margin=*10* />
<TextBox Text="This is a textbox' Margin="10" />
<Button x:Name="Button® Content="Button’ Margin='10"/> Effect on
StackPanel

<Stackpanel .Effect>
<BlurBffect Radius="4" />
</Stackpanel Bffect>

< /Stackpanels

687fig01a_alt.jpg
45"

<Button x:Name="myButton" Content: 45>

<Button. Template>

“"Hello® Height.

<ContzolTemplates
<Bllipse Pill-"#FF21038A" Strokes"Black" StrokeThickness="2"
Height="{TenplateBinding Height}"
Widchet (TemplateBinding Hidch) /> Wil
</ContxrolTenplates N

</Button. Templates
< /Button>

532fig01.jpg
Thes i @ textbon

687fig01.jpg

539fig01.jpg
Hello World

[Butn |

690fig01.jpg

538fig01.jpg
RUbLIE HounE BROUSIRREECLL BPROREIRLIeEL
{

private static ixelshader _pixelshader = new PixelShader ():
static ShaderBtfectl () o

§
_pixelshader.UriSource = new

Uri ("/Silverlightapplications1; conponent /Shaderstfectl.ps”
UriKind Relative) ;

i

public Shadersffectl() < Public instance
{ constructor
this.Pixelshader - _pixelshader;
UpdateShaderValue (InputProperty) ;
UpdateshaderValue (ColorPilterproperty) ;

}
)

public Brush Input
(
get { retum (Brush)Getvalue (InputProperty);)
set { setvalue (Imputproperty, value); }

)

public static readonly DependencyProperty InputProperty =
ShaderEffect .RegisterixelshaderSanplerProperty ("Input®,
typeot (ShaderEtfectl], 0);

public Color Colorrilter

{
get { return (Color)Getvalue(ColorFilterProperty);)
set { SetValue (ColorFilterProperty, value); |

)

public static readonly DependencyProperty ColorFilterProperty =
DependencyProperty. Register ("ColorFilter”, typeof (Color),
typeof (ShaderBffectl), new PropertyMetadata(Colors.Yellow,
PixelshaderconstantCallback (0))) ;

689fig02a.jpg
ST CHOR. 2 yRamge= an) u L RO ¥
<ListBox.Templates
<ControlTenplates
<Border CornerRadius="20,7,20,7% BorderThickness="4,2,4,2
BorderBrush-"LineGreen’ Padding-"10">
<TtemsPresenter />

</order>
</ControlTemplate>
</Listox. Tenplates
“listox. Itemszancl - [
Horizontal
“rensrancltemplares
pe StackPanel

<stackpanel Orientation-'Horizontall />
</TtemspanelTemplates
</ListBox. Itemspanel>
<ListBox. Items>
<ListBoxTtens
<TextBlock Padding
</ListBoxIten>
<ListmoxIten>
<TextBlock Paddins
</ListBoxItens
<ListmoxIten>
<TextBlock Padding=
</ListBoxItens
</ListBox.Ttems>
e g

5sItem 1c/TextBlocks

5nsTtem 2</TextBlocks

SnsTtem 3c/TextBlocks

537fig01_alt.jpg
LE
/v
// Silverlight ShaderBffect HLSL -- ShaderEffectl

// constant register mappings (float,double, Point,Color, Point3D. .)
/-

floats colorFilter : register(CO);

/-
// Sampler Tnputs (Brushes, including InplicitInput) [
j1-

sampler2p implicitTnputSampler : register(S0); =
/-
// Pixel Shader
/-
floats main(float2 uv : TEXCOORD) : COLOR — Standard main

(function
£loats color = texzp (implicitInputsanpler, uv);
retum color + colorFilter; o

}

689fig02.jpg

535fig01.jpg
NMEYDALIGS RS R R T
160 Margin="25%>
<Rectangle Fill="White">
<Rectangle.Bffect> ::m:nﬂ
<DropshadowEffect BlurRadius="10"
Opacity="0.5*
ShadouDepth.

S
</Rectangle. Effects
</Rectangle>

10ms
100 />
This is a textbox Margin=*10* />
Button® Content="Button
Margin="10"/>

<StackPanel x:Name-"Elements® Margin
<TextBlock Text="Hello World" Margi
<TextBox Tex
<Button x:Nam

</Stackpanel>
</Grid>
</Grids

689fig01a.jpg
<ListBox x:Name="myListBox">
<ListBox.Templates Control
<ControlTemplate> Template
<Border CornerRadius="20,7,20,7" BorderThicknes:
BorderBrush-"LimeGreen’ Padding="10">
<ItemsPresenter />
</Borders
</ContzolTenplates
</ListBox. Templates
<ListBox. Items>
<ListBoxItem><TextBlocksItem l</TextBlocks</ListBoxItens
<ListBoxItem><TextBlocksItem 2</TextBlocks</ListBoxItens
<ListBoxItems<TextBlocksItem 3</TextBlocks</ListBoxItens
</ListBox.Ttems>
</ListBox>

4,2,4,2

19fig01_alt.jpg
| BeginPint FiniPsge .. No | EndPrint
(el S el Event

4 b

Set More.
/ PageVisual Pages?
1 1
Send to
Layout Printer Driver

Visual Tree

pY

Rasterize

09fig02.jpg
Lorem [Kelg=lyyl
Lorem Mgy

324fig01.jpg
IOperacionContrantl oo
public bool ValidatesalaryAndievel (int level, decimal salary)

{

bool isvalid = false;

ek
operation contract
switen (level)

{

case 100:
isValid = (salary >= 50000 && salary < 65000);
break;

case 101:
isvalid = (salary >= 65000 && salary < 80000);
break;

case 102:
isValid = (salary >= 80000 && salary < 105000);
break;

1

return isvalid;

}

ch13ex05-1.jpg
if (Istring.IsNullorEmpty (propertyName))
(
if (_validationErrors.ContainsKey (propertyName))
return _validationErrors [propertyNamel ;
else
return null;
}

alse
(

return _classValidationErrors;

)
¥
bool ThotifyDataErrorTnfo. HasErrors
T ! Check for
. o existing errors
{
if (classValidationErrors.Count > 0)
retumn true;
foreach (string key in _validationErrors.Keys)
{
if (_validationErrors [key] .Count » 0)
return true;
}
return false;
)
1

#endregion

P

Return errors
for feld

13fig07.jpg
Last Name does not begin with ‘8"
The Email Address field is required.

210fig01a.jpg
RIERLEIOLS TPARLETOOENE 1A AN SERChRags: Line
705

Fontieight="Eold" Fontsize break
<Linesreak />
<Run FontWeight="Bold" FontSize="14" Formatted
Texta"Actor 1:* /> Run
<Run FontWeight="Normal" FontSize.

Text
<Linebreak />
<Run FontWeight="Bold" FontSize='1a"
Text=1Actor 2:" />
<Run PontWeight="Normal® Fontsiz:
Text='I an fine, thank you!
N a—

Hello, how are you?" />

e
/>

13fig06.jpg
Dn =

B T—
B E—
Date of Birth |5/19/2008 @ o
Registered] ®
L —
B

NumberofChildren [0 |

Name does not begin with '8’
The Email Address field is required.

210fig01.jpg
Scene 1: The Greeting
Actor 1 Hello, how are you?
ACIE 2= § 0 Bng, ank voul

09fig04.jpg
PONIS 38 _ pixels

13fig05.jpg
IR

Last Name | AReallyReallyReallyReallyLongLastName 6
First Name |Pete o)
Date of Birth |5/19/2008 B o
Registered [] o}

Marital Status [Married =) ®

Email Address
Number of Children |97

‘The field Last Name must be a string with a maximum length of 25.
The Email Address field is required.
‘The field Number of Children must be between 0 and 20.

09fig03.jpg
Avrial

Lucida Grande / Lucida Sans Unicode

Arial Black Times New Roman
Comic SansMS | TrebuchetMS
Courier New | Verdana

Georgia

324fig02.jpg
private void ValidateSalaryAndLevelAsync(int level, decimal salary)
{

var client - new ValidationServices.ValidationServiceClient(

client.validatesalaryhndLevelCompleted += (o, € =>

[Clear existing
_validationErrors ["Level®] .Clear (}; <] errors
_validationrrors (*Salary"] .Clear() Glear eistng
if (e Result) Onlyset errors
(felds if valid

_level = level:
eatary = salary;
NotityPropertyChanged (*Level") ;
Noti £yPropertyChanged (*Salary"}
)
clse
{
if (level « 100 || level > 102)
{
_validationErrora["Level’]
Ada("Level mist be between 100 and 102.)
} Set error
_validationErrora["Level] messages
Add("Level does not match salary range.');
_validationErrors (*Salary']
dd("Salary does not match level.®);
) Eror change
natification

if (BrrorsChanged

(
ErrorsChanged(this, new DataErrorsChangedEventArgs (“Level')) ;
ErroraChanged (this, new DataBrroraChangedEventhrgs ("Salary'));

}

nu11)

i

Client ValidatesalaryAndlevelisync(level, salary); <— Call service

}

212fig02a.jpg
<Textalock Width:

1500

Text Trimming
| Option

Text='Well, hello there! I'm Pete" />
</Grid>

346fig01.jpg
ohe! Get Time

=3

212fig02.jpg
Well, hello there! I'm.

344fig01a_alt.jpg
private void GetTime Click(cbject sender, RoutedEventArgs e)

{

Binding mybinding = new BasicittpBinding(); «
Endpointhdiress myEndpoint = new
Endpointaddress
"hetp://localhost ;55905 Sanplersux. asmer) ; Port number
Silverservice. SamplehsmxSoapClient proxy = new @ will be different

Silverservice.SanplesnxSoapClient
(nyBinding, myEndpoint);

prowy . GetTinecongleted on new o
Eventiandler<silverService. GetTineConplet edsventargs>
(prony. GetTineConploted)

proxy.GetTineasync () ;]

)

7014 proxy_GetTimeCompleted (object sender,
Silverservice .GetTineConpletedBventhrgs =)
{

Results.Text - o.Result.TolongTinestring(): @

(sender as Silverservice.SampleAsmxSoapClient) .CloseAsync ();

}

212fig01a.jpg
B o ARG ol S i Lokt g
<TextBlock Text="Bating a lot of fruit can help you live to a
CRlripe old age."

Wideh="150" TextWrapping

TextWrapping="Wrap" /> property

B =iy

344fig01.jpg
3:44:12AM | Get Time

212fig01.jpg
Eating & kot of Tkt
can help you live to
a ripe old a0e.

332fig01_alt.jpg
public class NameBeginsWithBAttribute : ValidatiomAttribute

{

protected override ValidationResult Isvalid(
object value, ValidationContext validationContext)

(Guard condition due
to object typing

if (1(value is scring))
return new ValidationResult(
"Incorrect data type. Expected string');

Allow

if (string.TsNullorEmpty!(string)valuel) <J empty/null
zeturn ValidationResult.Success; Actual

if (((string)value) .StartaWith ("B*)) salidation code
return ValidationResult.Success;

else

return new ValidationResult (
string. Fornat (*{0) does not begin with 'B'",
validationContext.DisplayNane)) ;

213fig01.jpg
Well, hello...

519fig01.jpg

ch13ex02-0.jpg
SUBETCONLEDL 2GARN
xnlns.
xnlng:

SRR AR RO
‘htep: //schemas.microsoft. con/winfx/2006/xanl /presentation"
http://schemas .microsoft . com/winfx/2006 /xanl"

"hetp: //achenas .microsoft . con/expression/blend/2008"

xmlng imc="http: //schemas . openxml formats . ora/markup-compatibility/2006"
me: Tgnorable=rar

a:Designiieight

150"

d:Designiidths"350"> Styles_see,
<UserControl.Resources> chagar.23
<Style TargetType="Textzloc
<setter Propertys'VerticalAlignment" Values'Center’ />
<gatter Property='HorizontalAlignment" Value="Right' />
<Setter Property="Margin' Value='4' />
</Styles

<Style TargetTypes"TextBox'>
<Setter Property='verticalalignment" Values"Center” />
<Setter Property-'HorizontalAlignment' Value-'Left’ />
<Setter Property="Margin' Value='4' />

<Satter Property="Height' Value='22" />
<setter 2007 />
</Styles

</UsexControl . Resources>

<Grid x:Name-'LayoutRoot" Background-"White" Margi:
<Grid.ColunnDefinitions>
<Columnbefinition Width="+" />
<Columbefinition Widthe"2+" />
</Grid.ColunnDefinitions>

.

<Grid.Rowefinitions>
<RowDefinition Height="Auto" />
R 2 g

o Eeade SR

518fig02.jpg

196fig01_alt.jpg
public MainPage{)

{

InitializeComponent () ; Wagop,
Mousefiheel += new MouseWheelEventHandler (OnMouseifheel) ; event
}
void OnMousewheel (cbject sender, MouseWheelZventArgs e)
(
if (e.Delta > 0)
Info.Text = string.Format(Up {0}", e.Delta); Responding
else toseroll

Info.Text = string.Format("Down {0}", Math.Abs (e.Delta));

317fig01_alt.jpg
PRI SIENN MpIYS. | INOLLIYVIRPRELINIRTNG. EtARTEOr IRt

{

#region TDataErrorTnfo Members

Class-level
private string _dataBrror = string.Bmpty;
string IpataBrrorinfo.Error <1 ervor property
{

get | retum _dataError; |
}

private Dictionary<string, string> _dataBrrors

Fild-level
new Dictionary<string, string> () ;
string IbataErrorinfo.thislstring columnNamel error property
{
get
{
if (_dataErrors.ContainsKey(colunnName))
return _dataErrors(columniNane] ;
else
return null;
}
¥

#endregion

520fig02a.jpg

13fig02_alt.jpg

190fig01a_alt.jpg
: public MainPage ()
{ InitializeComponent () ;
§ myTextBlock.Text = "Key (" + e.Key + ") was released.”
! myTextBlock. Text
; 1

Handler wire¢
upin code

Key (* + e.Key + ") is down.”

520fig02.jpg

13fig01.jpg
Last Name

First Name

Level [0

salary [0

‘Submit

190fig01_alt.jpg
SN AU L =T Vo A S IS
" /schenas. microsott. con/wintx/2006 /xani /presentat ion"
s ="t //schenas microsoft. con/wintx/ 2006 /xaml i
Widthra00" Height-'300" Handirwired
KeyDowms"Hainage_Keybowm* upin
<Canvas x:Nane-+LayoutRoot" Backgrounds"Black’>
CTextBlock x:Names"myTextElock" Foregzoun
</Canvas>

e

White' Text-"Raiting..." />

520fig01.jpg

186fig01a_alt.jpg
e 2 S i s oo o
<Grid.RowDefinitions>
<RowDefinition />
<Rowbefinition />
<RowDefinition />
</Grid . Rowbefinitions>
<Grid.ColunnDefinitions>
<ColummDefinition />
<ColumnDefinition />
<Columnpetinition />
</Grid.Colunnbetinitions>
<Canvas Background="Silver" Margin="10" />
<Canvas Background=*Gray"
Margin"10" Grid.column.
<Canvas Background="Silver"

/>

Basic GridSplitter

Wargin="10" Grid.Column="2" />
<sdk:Gridsplitter Widtha'2® /> <] control
<Canvas Background-"Gray"
Wargin="10" Grid Row="1' />
<Canvas Backgrounde"Silver® Margine*10"
Grid.Column="1* Grid.Row="1" />
<Canvas Background-"Gray" Margin-"10"
Grid_Column="2" Grid Row="1" />
<sdk:Griasplitter Background="Black® Width: Gridsplitter with
Grid.Column-"1" Grid.RouSpan-'2" /> appearance
<Canvas Background="Silver" Margin="10" Grid Row=12" />

<Canvas Backgrounds=*Gray"
Margine"10" Grid.columns

<Canvas Background="Silve:
Margin="10" Grid.Column="2" Grid.Roy

Grid.Rows"2" />

=r2n /s
</Grids>

519fig02.jpg

ch13ex02-1.jpg
"Auco® />
Autor />
Autor />

<RowDefinition Heigh
<Rowbefinition Heigh
<RowDefinition Heigh
</Grid.Rowbefinitions>

<TextBlock Grid.Row="0" Grid.Column
Text="Last Name" />
<TextBox Grid.Row=*0" Grid.Column="1"
Texta"(Binding LastName, Modes'

wotay) " />

<TextBlock Grid.Ror
Text="First Name® />
<TextBox Grid.Row="1" Grid.Column.

Text" (Binding FirstNane, Mode=Twoilay}" />
<TextBlock Grid.Rows"2" Grid.Column="0" Binding statements—
TextarLevel® /> see chapter Il

<TextBox Grid.Row="2" Grid.Column-'1"
Text=" (Binding Level, Mode=

woray) /> <

<TextBox Grid.Row=*3" Grid.Column="1"
Texta"(Binding Salary, ModesTwoMay}" />

<Button x:Name="SubmitButton" Grid Row="4" Grid.Column:
Content="Submit*

Marginera

HorizontalAlignnent="Left"

Width="100"/>

</Grid>
e N

09fig01.jpg
Lorem (K= g=u]

13fig04.jpg
Level |dfdf Input is not in a correct format.

522fig02.jpg

13fig03.jpg
Level [101 Level does not match salary range
salary [105000 Salary does not match level

201fig01_alt.jpg
puRlic Feid Apeaieate tEIULCp o) ect @endez, oussinceooRventargs. o)

{
myInkpresenter.ReleaseMouseCapture () ;

<7 Release on
_stroke = null;

mouse up

b

ublic void ipMouseLeave (cbject sender, MouseEventhrgs

A H sl 9520 Release on
mouse leave

myInkpresenter.ReleaseMouseCapture () ;
_stroke - null

1

522fig01.jpg

200fig02.jpg
HEOALE: FORS JMGBHOVE IORIECE BEIMER: NouBSEVERLALOE B)

(

i€ Lstrore 1=) Add points

to stroke

_stroke.Styluspoints. add(

e.Stylusbevice. GetstylusPoints (nyInkPresenter)) ;

521fig02.jpg

ch13ex04-1.jpg
}
bool isvalid = false; Check for

switch (level) valid salary
t
case 100:
isvalid - (salary »- 50000 && salary < 65000
braak;
case 101:
isvalid - (salary »- 65000 && salary < 80000);
break;
case 102
isvalid - (salary »- 80000 && salary < 105000);
break;
}
i tisvalia)
(
it (_dataBrrors.Containskey ("Level))
datagrrors. Renove (“Level®); Clar eising
if (_dataErrors.ContainsKey("Salary")) I
dacaBrrors. Renove (*Salary*) ;
}
else o Set new errors
i
_dataBrrors [*level®] = *Level does not match salary range®;
datazrrors ["Salary'] - "Salary does not match level
}

retum isvalid;

200fig01_alt.jpg
private Stroke _stroke;
Ink stroke
public MainPage ()

{

TnitializeComponent () ;

myInkPresenter. MouseleftButtonboun += Mn“:nﬁpdﬁm
new MouseButtonEventHandler (iptouseLeftBut tonDown) ; Exanthandes:

myInkpresenter . MouseNove

new MouseEventHandler (ipHouseNove) ; .
myInkPresenter. MouseLeftButtonlp
new MouseButtonBventHandler (iphouseleftBuctontp); < Handlersfor
upcoming lstings

myInkpresenter.MouseLeave +.
new MouseEventHandler (ipliouseLeave) ;

)
public void ipMouseLeftButtonDown (object sender, MouseButtonEventArgs e)
{

myInkeresenter . CaptureHouse () ; Capture

stxoke - new mouse

Stroke (. StylusDevice. GetStylusPoints (myInkPresenter)) ;

_stroke.DrauingAttributes.Color = Colors.Blue;
etroke Drawingattributes.OutlineColor - Colors.White Add ink

myInkeresenter. Strokes .Add(_stroke) ; .

)

521fig01.jpg

ch13ex04-0.jpg
Pravabe dnk _levesy
public int Level
(
get { return _level; }
set

{

if (validatesalaryandievel (value, Salary))

{

_level = value;
NotifypropertyChanged ("Level) ;

b

private decimal _salary:
public decimal Salary

(
get { retum _salary;)
se
(
i€ (validatesalaryAndievel (Level, value))
{
_salary = value;
ForityPropertychanged (*Salary®) ;
}
}
}

Call to validation
function

private bool ValidatesalaryandLevel (int level, decimal salary)

{

i€ (level < 100 || level » 102)

{

_dataErrors ["Level"] = "Level must be between 100 and 102°;

ks Bl

206fig01a_alt.jpg
SECAnEEAREL WA

ol b

i

<Stackpanel Background="hite"s

<TextBlock Text="Lorem
Foreground:
Textoptions
<TextBlock Text="Lorem

ipsun (Fixed)®
Black®

Textiint ingtods
ipsun (Animated) "

Fixedr />

Foreground="Black"

TextOptions.

</Stackpanel>
<stackpanel Backgroun

Textiint ingMods

“Black®>

<TextBlock Text="Lorem ipsun (Fixed)"
Foreground="ihite"

Textoptions
<TextBlock Text="Lorem
Foregrounds
Textoptions
</Stackpanel>
< IO A PRRR L

TextHintingMode="Fixed" />
ipsun (Animated) "

Whiter
TextHintingMode="Animated® />

"aninated” />

Fixed text
rendering

Animated
text
rendering

206fig01.jpg
Lorem ipsum (Fi
Lorem ipsum (Animated)

xed)

ch13ex05-0.jpg
I RANAE Moy | oL SVITORNE UL, TRORS VRGN,

{

#region INotifyDataBrrorinfo Members

Field

rivate Dictionaryestring, ObservableCollectionestrings>
) £t & errors

_validationErrors;
private ObservableCollectionestrings
_classvalidationErrors;

Class
errors

public event EventHandler<DataErrorsChangedEventArgss ErrorsChanged;

public Employee() Create errors

{ collections
_validationkrrors =

new bictionaryestring, ObservableCollectionsstring>>();

_classvalidationErrors =
new ObservableCollection<strings () ;

CreateErrorsCollection("Level) ;
CreateErrorsCollection ("Salary”) ;

}

private void CreatemrrorsCollection (string propertyName)

{

if (1_validationErrors.ContainsKey (propertyName))

{

_validationErrors.Add (propertylNane,
new ObservableCollection<strings ()) ;

}
1

IBnunerable INotifyDataBrrorinfo.GetBrrors (string propertyNane)

221fig01.jpg

09fig06.jpg
il
&l

LAY 7>, Zip DB
SBVFRIDT LU s TR
b ROALA DR
BHSERVALAOT

3 mOT
+ w0
5 INE__

HiHERATAOT
TR 6
3R
3 Wt 0

5 BRG
o arct
7 b
L=

HH RS AT A D]

09fig05.jpg
SelectedText=turt
—_—

| like {¥ff¥es

SelectionStart=7 gqjectionLengt

224fig01.jpg
Password:
Confirm:

09fig07_alt.jpg
Microsoft Silverlight

Do you want to alow this applcation to access your

cipboard?
@ 1f you allow this, the applcation can copy data to and from the Cipboard
aslong as the appication s unming.
§|'|'\7erlight Website: hittp:/ /localhost:39074.
[FIRemember my answer

tacshnten () (o]

221fig01b_alt.jpg
PREGLE WAAMEREE 19
i

Tnitializecomponent () ;

FirstNane.KeyDown += new KeyBventHandler (FirstName_KeyDown);
FirstNane.KeyUp += new KeyBventHandler (FirstName_KeyUp) ;
FirstName. TextInputStart +=

new TextCompositionBventHandler (FirstiNane_TextInputstart);

)

v01d FirstName_TextInputStart IME
object sender, TextCompositionBventhrgs e) event
(
Debug.WriteLine ("InputStart:" + e.Text);
)
void FirstName_KeyUp(object sender, KeyBventArgs e) PR
{
Debug.Writeline ("Up:” + e.Key.ToString()); Standard key
) events
v0id FirstName_KeyDown (object sender, KeyEventArgs e) <—I
{

Debug.WriteLine ("Down:" + e.Key.ToString());

}

221fig01a_alt.jpg
<@rid x:Name="LayoutRoot" Hackgrounc=“wWhite® >
<TextBox x:Name="FirstName"
Inputhethod. IsTnputMethodEnableds *True"
#iideh="150

Height=r24v />

Optional IME
enable

< /Grid>

226fig01.jpg
One ring to rule them all , one ring to find them. One ring to
bring them all, and in the darkness bind them, i the:
land of Mordor where the Shadows
lie.

225fig01.jpg
[his is the first paragraph of the text I'm going to place in

this RichTexcBox. 1t has two sentances. Acual, € has three

sentences.

his s the second paragraph, and its taxt is set to

justify, as you can tell from the pretty screen shot.

Please nota that the last sentence in the paragraph is

ot jusifed.

e ring o ule ther i, ane ingto bind them. Ona ringto

ring them i, and inthe darkness bind them, i the and of
Wordor wherethe Shadows e

224fig01a_alt.jpg
SSEAGS:
<Grid.RowDefinitions>

<Rowbefinition Height='Auto®

<RowDefinition Height-"Auta®
</Grid RowDefinitions>

/>
/>

<Grid.ColunnDefinitions>
<Columnpefinition Width-"Auto” />
<ColumnDefinition Width="Auto” />
</Grid. Colunnbetinitions>

<TextBlock Text-"Password: " FontFamily-"Verdana®
<PasswordBox Width="200" Grid.Column="1' />
<TextBlock Text="Confirm: * FontPamily='Verdana®
<Passwordsox PasswordChar="4" Width="200"
Grid.Colunn="1" Grid.Row="1% />

</Grid>

Defauit mask
character
e Custom mask
- character
Grid.Rows"1t />

-

214fig01.jpg
Sy Saweoly Evsniely

theleft tothe to the
sideof Centerof Right side
the the of the

PR PN .

350fig01.jpg
ERINALE WOle RESREERVIOE, BEATEY
object sender, Routedsventaras e)

{
var client = new HelloWorldServiceClient (); a— Proxy
client.HelloWorldCompleted += <1 Event handler
new EventHandler<HelloworldConpletedEventazgs> Wiewiip
(client_HelloWorldCompleted) ;
client.HelloWorldasync () ;
b Event
void client_HelloWorldCompleted(| handler

cbject sender, HelloWorldCompletedEventaras e)

{
y

Results.Text = e.Result;

213fig01a.jpg
SO SR RN "R S RO ™ O S [
<Textlock Width="150"

Height="30" Font Size "
Foniizecrao o] Tt Fimring
TextTrimming="Wordgllipsis® ption

Text="Well, hello there! I'm Pete" />
; MEiAL

348fig01_alt.jpg
<Gouf Jgaralicns
<systen.serviceNodel>

“oindingss
<custoninding "
<binding nane="CustonBinding HelloWorldservice"> iy
“binaryMessagesncoding /> o) encoding
“nttpTransport maxReceivedessageSize="2147483647" <
DaxButcerSizes"2147483647% >
</tprransports Buffer/message
</binding» size limits
</custonsinding>
binatages X
it Endpoint
<endpoint. defl n
address="http://localhost:23867/Services/HelloWorldService. svc'
binding="custonBinding"
bindingCont i guratione"CustonBinding_Hel loorldservice”

contractsServices. HellotiorldService!
name="CustonBinding_HelloWorldService" />
</clients
</systen. servicetodel>
< o ELiratdon

346fig01a.jpg
private void GetString Click(object sender, RoutedEventArgs e)
{
Binding myBinding = new BasictpBinding();
Endpointhddress myEndpoint = new
BndpointAddress ("http: //localhost : 55905 /SanpleAsnx. asmx") ;
Silverservice.SampleAsmxSoapClient proxy = new
Silverservice.SamplesnxSoapClient (myBinding, mySndpoint
proxy.GetCoolTextCompleted +=
new EventHandler<SilverService. GetCoolTextConpletedEventArgss (
proxy_GetCoolTextConpleted) ; Service call with

| parameter |

proxy. GetCoolTextAsync (1) 1
b

v01d proxy_GetCoolTextCompleted (object sender,
SilverService.GetCoolText ConpletedEventaras o)

{

Results.Text = e.Resul
(sender as SilverService.SampleAsmxSoapClient).CloseRsync ()

b

215fig01.jpg
Give Me Some Space!

I've got your space right here!

363fig01_alt.jpg
FARALE: FOke Upeal e TEXt ORI ok BLEGRmy.
Pt

{

}

Rebtasder responacreste « talissdes Cresto((Stzomm stzesm), | Naguero
oo eRssans Resamom e v o) Cor oo
[V ——— o

e mlcerialsaer (cpe0f (relansonehecd))
PR

(neighbourhood) serializer.Deserialize (responseReader) ; — Deserialize

public class neighbourhood

{

public string countrycods (get; sets |
punlic string countrypiame (get; set |
public string sdminCodel (get; sec;)
public string adninvanel | get; set; |
public string adninCodez | get; set; |
public string adninvanez { get; set;)
public string city { get; set; |

public string name { get; set; }

214fig02a.jpg
gnored

<Canvas Height="450" Widths"485">

oo Sighy e
<TextBlock Width="110" LineHeight="24" 4 oened
oo e

Textirapping="Krap" Canvas.Left="250">
Just testing some line height related
stuff. This could actually
be pretty interesting.
</TextBlock>
<TEakaiy.

361fig01.jpg
Lat:| 4078343 |Long:|-73.96625 IGet XML
City:New York City-Manhattan
Name:central Park

Raw Results:

<neighbourhood>
<countryCode>US</countryCode>
<countryName>United States</countryName>
<adminCode1>NY</adminCodel>
<adminlame1>New York</adminlamel>
<adminCode2>061</adminCode2>
<adminllame2>Manhattan</adminliame2>
<city>lNew York City-Manhattan</city>
<name>Central Park</name>
</neighbourhood>

214fig02.jpg
Just testing
some line
height related
stuff, This
could acwally
be pretty
interesting.

Just testing
some line:
height related
Swit. This,
could actually
be preny
Interesting.

Just testing
some line
height related
stff. This
could actually
be prety

Interesting.

359fig01.jpg
DIIVALS. Yeid SRneaens Ll

{

WebRequest . RegisterPrefix(

ttp://", WebRequestCreator.ClientHttp);
WebRequest . Registerprefix(RegisterPrefix

"https://", WebRequestCreator.ClientHtcp);

HetpiebRequest reg = (HttpWebRequest)HttpWebRequest.Create(
new Uri("http://api.10ren.net")) ;

CookieCollection cookies = new CookieCollection();
cookies.Add (new Cookie ("firstName", *Pete"));

cookies . Add (new Cookie ("lastName”, "Brown"));

cookies.Add (new Cookie("lastAccess", DateTime.Now.ToString())):

veq.CookieContainer - new Cookiecontainer(); o
req. CookieContainer Add(Sookiesta
new Uri ("http://api.l0rem.net"), cookies); L

req.BeginGetResponse (OnRequestCompleted, req) ;

b

private void OnRequestCompleted (IAsyncResult asyncResult)
{
HetpiebRequest req =
(HttpiebRequest) asyncResult . Asyncstate;

HetpiebResponse response =
(HttpWebResponse) req. EndGetResponse (asyncResult) ;

Cookies in

foreach (Cookie cookie in response.Cookies) o THIpOnE.

{

Debug.WriteLine (cookie.Name +

1

+ cookie.Value) ;

214fig01a.jpg
RATIFEE WidLa=tato " Hedghtatagih BaorgrouhesILet s
<TextBlock Text="Everybody to the Left side of the Canvas.'
Texturapping="Wrap"
width="75"
Canvas.Left="5" Canvas.To
<TextBlock Text="Everybody to the Center of the Canvas.®

TextAlignnent="Center" —
TextWrapping="Wrap" Centered text
Width="75"

Carvas e O A TSRS
SremtRdsa TesiziRvasyRody tor tHl RIGHE S8 OE Hhb GRVER.
extAT gnment - RIGHE"
Textzapping-nWrap" ﬂ ight algned
Width="75" text

Canvas.Left="195" Canvas.Top="5" />
IRy

358fig01.jpg
private woid Ssndisquest()
{ .
HttpWebRequest . Registerprefix (:‘;:""“
"htep://", WebRequestCreator.ClientHetp); +—

HetpWebRequest req = (HecpWebRequest)HetpWebRequest . Create
new Uri (*htep: //10rem.net”)) ;

xeq.UseDetal Craentials = false;
req.credentials - B
new NetworkCredential (tPete!, “passvord®); 4

req.BeginGetResponse (OnRequestConpleted, req);

)

brivate void OnRequestCompleted(IAsyncResult asynckesult)
{
HetpWebRequest request =
(HtpiebRequest) asyncResult . Asyncstate;
HetpuebResponse response =
(Bt tpiebResponse) request . EndGetResponse (asyncResult) ;

219fig01.jpg
Description:

Here Is an example of some basic text wrapping
automatically.

You wilalso notice T can press the "Enter” key in this area. In
a sense, when AcceptsReturn and TextWrapping are enabled,
the TexiBox wil behave like the TextArea control In HTML.

14fig01_alt.jpg
P ——r—
QO [e miroacm ~[B]4]x][0 o 5
ot | Stociomenion &~

Sender

ithis is a test of communication between two Silverlight apps|

Receiver
(this is a test of communication between two Silverlight apps |

one G Locanaret | Protected Mo Off- G- maw -

216fig01a.jpg
SERRERENOSL i NRNIS= Lo BOOT
Backgrounds="hite"
Margine"107>
<Border Background="LightGray"
BorderBrush="Black"
HorizontalAlignnent="Left®
verticalalignment="Top">
<TextBlock Text="HELLO"
Padding="3.5 6 9.7 12" />

</Borders

& B RO TGRS

< Padding

216fig01.jpg
HELLO

368fig02_alt.jpg
JyNEnIgn sakouenpeis” ML TOTEAE N e e

brivate void GetScores_Click(object sender, RoutedBventArgs e)
{
_uiThread = SynchronizationContext.Current; Polling
var poll = new PollingDuplexHttpBinding() it
Ppoll.InactivityTineout = TimeSpan.Frominuces (1);

IChannelFactory<TDuplexSessionChannels channelFactory =

poll.BuildChannelFactory<IbuplexSessionchannel > (new
BindingParanetercollection(}) ;

InsyncResult factoryOpenResult =
channel Factory. BeginOpen (new
AsyncCallback (OnOpenPactoryConplete) , channelFactory) ;

if (factoryOpenkesult.ConpletedSynchronously)
{
OpenThechannel (factoryOpenResult) ;
1
}

215fig01a.jpg
SORACTORML SIS LACKT RIS FATRarol
<TextBlock Text="Give Me Some Spacel!® />
<TextBlock Text="I've got your space right here!"

Padding="20.2" /> -
s inrnckpunet s Padding

b ot > S

368fig01.jpg
Get scores for your @
team!

Regiszeredt
Score Recaivas:
Score Racasved
2core Recesved
Score Received:

05fig16_alt.jpg
c | D Elussf 6 | M |
10
B
mseriest
°
Seriest

05fig18.jpg

05fig17.jpg
Show install menu
Require elevated trust when running outside the browser
Window Style

oK

124fig01.jpg
<Grid x:Name="LayoutRoot" Background="Orange’> Stand-m
<Grid x:Name-"TitleBar"

Background="Blue" Height="30"
Verticalhlignment="Top" />

A Y ikt R s e o s

123fig01.jpg
public HainPage()

({

InitializeComponent () ;

MaximizeButton.Click +=
new RoutedEventHandler (MaximizeButton Click) ;
MinimizeButton.Click +=
new RoutedEventHandler (MinimizeButton Click) ;
CloseButton.Click +=
new RoutedEventHandler (CloseButton_Click) ;
}

void CloseButton_Click(object sender, RoutedEventArgs e)

{

Application.Current Mainiindow.Close (

}

void MinimizeBurton Click(object sender, RoutedEventhArgs e)

{

Application.Current .MainWindow.WindowState =
WindowState.Minimized; <— Minimize
}

void MaximizeButton Click(object sender, RoutedEventArgs e)

({

if (Application.Current.MainWindow.WindowState ==
Windowstate . Maxinized)
{

Application.Current MainWindow. WindowState
Windowstate.Normal; <— Restore
}

else
{
Application.Current MainWindow.Windowstate =
Windowstate Maximized; <— Maximize

y <— Close

125fig01_alt.jpg
<Orid x:Name="ResizeArea™ Stand-in resize
Background="Blue" Height="30" Widthe"30" come

VerticalAlignment="Botton" HorizontalAlignment

Right" />

o e g i

161fig01.jpg

17fig06_alt.jpg
B D0 O v Femite b

[
F i ———
Syoumsan

K o

i s
s s
i s
s s
oz 5
s s
i s
o s
aisaom
i s

e s
opspes
srpon s
s s

sy 5
s s
o s

zzzzzzzzzzzzzzzzaf

289fig01.jpg
Smiley Face
Keybourd shorcut +)

Straight Face

angry Face

620fig01a_alt.jpg
<UserControl x:Class="BitmapApi.MainPage"

http: //schenas . microsoft .con/winfx/2006/xanl /presentation”
senlns:x="http: //schemas. nicrosoft . com/win€x/2006 /xanl"

"http: //schemas.microsoft com/expression/blend/2008"

"http: //schenas. openxnl formats .org/markup-compatibility/2006"
me: Ignorable="d" d:Designiieight="300" d:Designiidth="500">

<Grid x:Name="LayoutRoot" Background="hite"s
<arid. ColumnDet ini tions>
<ColumnDefinition Width="150" />
“Colunnefinition Widthatsr />
</Gria. Colummbefinitions>
<stackeanel x:Nane-"slenents® °

Grid.Column="0"
107
"Hello World" Margin="3" />

TextBox Textarhis io a toxtboxs Marginer® />
Burton x:NaneurCapturer
ComtanttCapture® Margine'3t />
<Image Source="PetelYearsOld.jpg' <— Meat3
Stretch="Uniform" />
</stackeaneis
<inage x:Nanes"Resultsitnap® o
Stratenroni foran
Harginariot

</Grid>
N By

124fig01a_alt.jpg
RIS AE MRsAfatek]

t

InitializeComponent () ;

TitleBar MouseLeftButtonDown +=
new MouseButtonEventHandler (TitleBar_MouseLeftButtonbown) ;
i

v0id TitleBar MouseLeftButtonDown (object sender,
MouseButtonEventargs e

[o Dragging

Application.Current .MainWindow.Draghove () ; S0 move

}

17fig05.jpg
Add New Domain Senvice Class

Domain service class name:

[Employeeservice

Enable client access
Expose OData endpoint
Available DataContext/ObjectContext classes:

(AdventureWorksEntites (Entity Framework)

Entities
[Contact
[ZEmployee

Enable editing

Generate associated classes for metadata

(o]

288fig01a_alt.jpg
<data:DataGrid x:Name="myDataGrid" AutoGenerateColumns="False"> Solinms
<data:DataGrid.Columns> broperty
<data:DataCridTextColumn Binding="{Binding Name, Mode=OneWay)" />
<data:pataGridTenplatecolumn>
<data:DataGridTemplateColumn. CellTemplate>
<DataTenplates
<Image Sources"{Binding Icon}" />
</DataTemplate>
</data:DataGridTenplateColumn. CellTemplate>
</data:DataGridTemplateColumn>
</data:DataGrid. Columns>
CTARE S BREAEELAs

620fig01.jpg

05fig19.jpg
Press ESC t0 ext full-screen mode.
hup: localhost

17fig04_alt.jpg
Py
| lstaled Tempiates T —]
< Ve ——
vy CoptaReport Vil o i o
PUS————
o Soaions
Gene [2¥ omse Vowice
wer
Vindowsforms. E Oebugger Viunizer Visuni Co
wr
eporing T oemnsececins Vinice
St .
gt Vindows P — m——
s jpe—— e
Wson >
ket B ckrmne -
) Gobadpencs Valce
AT st e

619fig01.jpg

125fig01a_alt.jpg
PRLSY NaRPage L)

{

InitializeComponent () ;

ResizeArea.MouseLeftButtonDown +
new MouseButtonEventHandler (Resizehrea MouseLeftButtonDown) ;
}

void ResizeArea MouseLeftButtonDown (object sender,

MouseButtonEventargs e)
(Dragging to

Application. Current .MainWindow. DragResize (Sl

WindowResizeEdge . BottonRight) ;

616fig01.jpg
CaptureDeviceContiguration.GetDefaultvideoCaptureDevice () ;

if (camera 1= mull)
(

var source - new CaptureSource ();
source.VideoCaptureDevice = camera;

VideoBrush videoBrush - new VideoBrush();

videoBrush. Stretch = Stretch.Uniforn; i
videoBrush. Setsource (source) ; hiche
_sink.CapturesSource = source; o] VideaSink
Presentationsurface. Fill = videoBrush;

source. start ();

119fig01_alt.jpg
& SRR CRTRE ROEY) SRR SRR
{
dynamic excel =
AutomationFactory.Createdbject ("Excel.Application”) ;
excel.Visible = true;

Create
dynamic workbook = excel.workbooks;
workbook . Add () ; o worksheet

dynamic sheet = excel Activesheet;

ine -1

double(] data = new doublel] { 1.0, 5.0, 9.5, 2.7, 3.2, 0.6 };

foreach (double d in data)

terate
{ dummy data
aynamic cell = sheet.Cells(i, 11;
cell Value = "Row " + i; — Label
cell.Columnwideh = 10; cell
cell = sheet.Cells(i, 21;
cell.value — e
e cell
}
dynamic shapes = sheet.Shapes; Add 3d rotated

shapes.AddChart (-4100, 120, 2, 300, 200); chart (ype ~4100)

163fig01.jpg
NUDY "Byl

17fig09_alt.jpg
[t o) st o £ bt o e
e

290fig03.jpg
e @)

Keyboard Shortcut: :)

Straight Face

Angry Face

ch21ex03-0.jpg
AR Wadba = 10843 20t NeLgur =Tt
int[] colorTable = new int [2561;

for (int i = 0; 4 < 256; ivn) o

{

Color ¢ = Color.Fromhrab(
OxFE, (byte) (255 - i), (byte) (255 - 1), (byte) (255));

colorTableli] = c.h << 24 | ©.R << 16 | .G << & | c.

b
WriteableBitmap bmp - new WriteableBitmap (widch, height);

for (int x = 0; X < width; x++)

{

for (int y = 0; y < height; ye+)
{

double zoom - 300;
double x0 = 0; double y0 = 0;

double cx = (x - width / 2) / zo0m;
double cy = (y - height / 2) / zoom;

int iteration = 0;
St A N s

05fig15_alt.jpg
Confiquisione (N/A <] Flatom: [5

Debug. .

i Ey——

Build Events. Catfioater o

el [e st
gy | oot s

Creste Test Certicate..

Code Ansiyic ’

162fig02.jpg

17fig08_alt.jpg

21fig03_alt.jpg

290fig02.jpg
Smiley Face
Keyboard Shortcut: :)
Straight Face

Keyboard Shortcut: :

Anary Pace:

162fig01.jpg

21fig02_alt.jpg
6 SieighthppicaiontO - Windows temet ploer

G Localntranet | Protected Mode: Off G- Row -

290fig01.jpg

471fig01_alt.jpg
A
<head>
<title>Awesome JSON Endpoint Test</titles

<script sro="http://ajax.microsoft.com/ajax/jQuery/iquery-1.4.2.min. ja"
type="text/javascript”s
</script>

</heads
<body>
<button types"button® onclicke"query()">Query</buttons

caiv id="results”s
</aiv>

<script type-"text/javascript's
function query() (
s.ajax({

type: "eET",

url: "Chapteri7-Web-Services-EmployeeService.sve/JSON/GetEnployees”,

success: function (data) (
§("#results") .append ("") ;
var employees = data.GetEmployeesResult RootResults; ot

$.each (employees, function (i, entity) (path
S ("8results") .append (<Lis" + entity.EnployeeID »
VL entitymitle + ne/lin s

b

§("#results*) .append ("") ;
alert("pata received");
}
b
}

</seripts

< /body>
Ry i

161fig02.jpg

17fig07_alt.jpg
T ————r—

Fosctopn (Corpt i s o)

21fig01_alt.jpg
6 SiverigntApplcatontd - Windows ntrme Explorer

3)

- [& o oabontiosiwignizpics <] B] X |[@ 8o

x|

o] @swngmsgpicn

BB - fager Soeye Toohe

Hello Word

‘. Lol ntanet | Protected Mode Off

289fig01a_alt.jpg
"myDataGrid" AutoGenerateColumns="False"
Ro»mecaxls\/xsibxhtwcde-"Vssxhleﬂhenselecudu < RowDetailsVi
<data;DataGrid. Columns>

<data:DatacridTextColum Binding="(Binding Name, Mode=Oneway)" />
<data:DatacridTemplateColum>
<data:DataGridTemplateColumn. CellTenplate>
<DataTemplate>
<Image Sources"(sinding Icon)" />
</DataTenplate>
</data:DataGridTemplateColumn.CellTemplate>
</data:DataGridTemplateColumn>
«</data:DataGrid.Columns>
<data:DataGrid. RowbetailsTenplate>
<DataTemplate>
<Stackpanel Orientation-"Horizontal>
<TextBlock Texta' Keyboard Shortcut: " FontSizes*11® />
<TextBlock Text="{Binding Keys)" FontSize="11" />
</Stackpanel>
</pataTemplates RowDetailsTemplate
</data:DataGrid.RowDetailsTemplate>
</data:DataGrid>

tyMode

167fig01.jpg
.

291fig04.jpg
» Smiley Face

Straight Face

Angry Face

Sad Face

06fig07.jpg
X Ais

17fig12_alt.jpg
Y T T r————

= 5 e e e

291fig03.jpg
Straight Face

Angry Face

Sad Face

165fig01a.jpg
EIERURGE & Mme i TOEERORS
Text="Ben and Abby"
Height="25" Width="100">

<TextBox.RenderTransform>
<MatrixTransforms
<MatrixTransforn.Matrix>

<Matrix M11-"0.36592583"
M12-70.25881905"
M21=7-0.25881905"
M22270. 965925837
100"
207 />
</MatrixTransform.Matrix>

</MatrixTransforn>
</TextBox. RenderTranstorms
< /TextBoxs

Cos{(5)
P :—1 sinls)

< -Sin(15)

T costts)

17fig11_alt.jpg
OO [t e

[ot o ot o bt 6007
B

i

291fig02.jpg

628fig01.jpg
BURLLE Fage)

{

Taitializecomponent () ;
this.KeyDown += new KeyEventHandler (Page_KeyDown) ;
this.KeyUp +- new KeyBventHandler (Page_KeyUp) ; Input event
myMultiScaleImage . MouseLeftButtonDown + e

new MouseButtonBventHandler (myMultiScaleTnage_HouseLeftButtonDoun) ;
]

private bool shouldZoom = true;

void Page_KeyDown(object sender, KeyEventArgs e]
{
if (e.Key == Key.Shift)
shouldzoom - false;
]

v0id Page_KeyUp(object sender, KeyBventargs e]

{

shouldzoom - true;

!

void myultiscaleInage _NoussLeftButtonbown (object sender,
HouseButtonEventrgs o) o
(
Point point = e.GetPosition (yMultiscalelnage)
Point - mymultiScaleInage. BlementToLogicalPoint (point) ;

if (shouldzoom == true)
myMulciscalelnage ZoomAboutLogicalPoint (1.5, point X, point.¥);
else
myMult iScaleInage . ZoomAboutLogicalboint (0.5, point.X, point.¥);

165fig01.jpg

17fig10_alt.jpg
SitnOate.
[Becountant pre

p— l arses
scceunes wansger

war1973 12:00:00 3

Contactio.
121
1297
1265

291fig01.jpg
|+ smiley Face

Straight Face

Angry Face

ch21ex03-1.jpg
]

while (x0 * x0 4 Y0 * y0

{

4 & iteration < maxTterations)

double xtemp = X0 * X0 - YO * Y0 + ox;

Yo =2 % %0+ y0 4 cy:
X0 = xtemp;
iterationss;

}

it (iteration

i

maxIterations)

bup.Pixels((y * width) + x]
colorTable [colorTable. GetUpperBound (0)] ;

}

aés [——
bmp.Pixels[(y * width) + x] coloration

}

ResultBitmap.Source = bmp; ()

167fig01a.jpg
Senht e

Height="175">
<Rectangle Fills"4FFe0e0co”
Stroke="#FF000000"
StrokeThickness="3"
Radiusy="10"
Radiusx="10" />
<Stackpanel Margin=r10"s
<TextBlock Tex:
<Textsox Text.
<TextBox Text.
<Button Content
</stackpanel>

"silverlight” Wargin="s® />
"In Action’ Margin="s" />

<Grid.Projections

Pete, Melissa, Ben, Abby" Margil

T'm a Button!" Margin="s" />

<PlaneProjection Rotation¥="-45" /> < PlaneProjection

</Grid.Projections

/Grids

16fig09_alt.jpg
T ———

U0 [0 Clmpecsomprasanscontmiggicontt ~]] x |6 &

St ovrts | 8) GetMoreAdbom = Home 8] Ad91oAmizon Wiuh it) by St
|| 8 ampicasontens B 00 & - e ey e @<

oty o chcked rests

4 (5 MmassicatonTess

Silverlight Unit Test Framework

Copyrn © 2010 Hirosch Carporaton, A1 Rghts Reseec,
[TesToskeSureTheL OB SR SLLL o T, bt codeex com)

] TeaTeakesureTustactaly e

Frameworksuds 40.404123011

@ e s n

20fig10_alt.jpg
& Microsoft Siverlight Configuration =]

[About [Updates [Playback | Webcam /Mic | permissions | Appication Storage |

Choose Siveright's defauk capture devices

Video Source Audo source
Defaut: Defaut:

[5amson Marophone (Samson Co1

274fig02.jpg
Myubrary.moticon
Myuibrary Emoticon
Mytibrary Emoticon
Myuibrary Emoticon

16fig08_alt.jpg
Shetgsopiasn Vice

St s by Vaics

St sopcaion Vics

St Tt i Voice

=]

M B

= = T s
]
<]
v

o= et ess
i it o P Sshmdppn [some |

20fig09_alt.jpg
Microsoft Siverlight

Do you want to alow camera and microphone access?
v The folowing website vould ke to utkze your media devices such a5 the

e camera and microphone. Woud you ke to alow th webste o ubize.
these devies?

Eerlight e s localostacars
Remeriber my ansner

|

ch20ex10-1.jpg
e o

short sample

(short) (_random.Next ((int) short .Minvalue, Sondomiier
(int) short .MaxValue) *+ _volume);
_audicsuffer(i] = (byte) (sample & OXFFO0);
TaudioButfer(i + 1] = (byte) (sanple & OXOOFF);
3
_audioStrean.Write(_audioBuffer, 0, _audioBuffersize);
MediaStreanSample msSamp = new MediaStreamSample ((3]

_audiobesc, _audioStream, _audioStreamOffset, _audioBufferSize,
currentAudioTimeStamp, _emptySamplebict) ;

_currentaudioTineStanp +=
_waveFornat . AudioburationFronBuf fersize ((uint) audioBuffersize) ;

_audioStrean = new MemoryStream(_audioStreanSize);

ReportGetSampleConpleted (nsSanp) ; o

06fig04.jpg
Cache on
first render

20fig12_alt.jpg
i

EEEELE

281fig02.jpg

ch16ex24-1.jpg
employee.VacationHours = 0;
employee HireDate - DateTime.Today.AddYears(-4);
vm.AddVacationBonusToSelectedBnployes () ;
Assert.AreEqual (employee.Vacationfiours, 10);

enployes. VacationHours = 0;
employee.HireDate - DateTime.Today.AddYears(-8);
vm. AddVacationBonusToSelectedBnployee () ;

Assert. AreEqual (employee . VacationHours, 20);

employee.Vacat ionfiours = 0;
employee.HireDate = DateTime.Today.AddYears(-15);
vm.AddVacat ionBonusToselectedEnployea) ;
Assert.AreEqual (employee.Vacationfiours, 30);

employee.Vacat ionfiours = 0;
employee.HireDate = DateTime.Today.AddYears (-25);
vm.AddVacationBonusTosalectedEnployea) ;
Assert.AreEqual (employee.Vacationkours, 40);

05fig20.jpg
= D Isolated Storage.
[textfilez.xml
) textilet txt
2] testfilet bxt
(pirectory1

file1.bxt

06fig03.jpg
Camera

20fig11_alt.jpg

281fig01.jpg

ch16ex24-0.jpg
sEeRLCIABRL
public class EnployeslistViewtodelTests

(
[Testiethod]
public void SelectedinployesCanbesetindRetrieved () < SelectedEmployee

{

Eaployeeviewiodel employee = new EnployeeViewtiodel () ;
EmployeeListViewtodel vm = new EmployeeListviewdodel();
vm.SelectedEnployee = employee;

Assert.ReferenceEquals (employee, vn.Selectedsmployes) ;

}
(Testiethoal Bocs
public void EmployeeVacationBonusIsProperlyapplied()

{

Employesviewtodel employee = new Employeeviewodel() ;
EmployeeListVieuodel vm - new EmployeeListviewdodel();

vn.Selectedznployee = employee;

149fig01_alt.jpg
pubslic Mainbaged)

({

InitializeComponent () ;

CompositionTarget . Rendering

}

void OnRendering(object sender, EventArgs e) o
¢ RenderingEventArgs

new EventHandler (OnRendering) ;

RenderingEventArgs args = e as RenderingEventArgs; <

Debug. WriteLine (args.RenderingTime . Tostring()) ;

}

16fig11_alt.jpg
[y

st pisse
o et
s aBicnsR.

277fig01_alt.jpg
public class YesNoValueConverter : IValueConverter

(Convert

public object Convert(cbject value, Type targetType, fnction

object parameter, System.Globalization.CultureInfo culture)
{
bool istes = bool.Parse (value.Tostring()) ;
if (isves)
return "Yes";
else
return "Nor;
} ConvertBack

public object ConvertSack (object value, Type targetType, <— function

object parameter, System.Globalization.Culturelnfo culture)
{

string boolText - value.ToString() .ToLower();

if (boolText
return true;
else if (boolText
return false;
else
throw new TnvalidOperationBxception(*Please enter 'yes' or 'mo'.”);

“yes”)

609fig01a_alt.jpg
privsns wid Caprnre Sk lolisat. ssier, Soatadvicciras e

{

it (CaptureDevicecontiguration.AllowedDevicehceess || o
CapturebeviceCont igurat ion. RequestDevicehocess 0

{

var camera - Default
CaptureDeviceContiguration.GetDefaultvideoCaptureDevice () ; video
apture

if (camera

{

var source = new CaptureSource() ;

nu11) device

source VideoCaptureDevice
VideoBrush videorush - new VideoBrush();
videoBrush.Stretch = Stretch.Uniforn;
videoBrush. SetSource (souxce) ; (-]
Presentationsurface.Fill = videoBrush;

source.start () Start
) capturing

06fig02_alt.jpg
Dropped Frame at
Frame 1: 1/60 Frame 2: 2160 260 Frame 3: 4/60

—

16fig10_alt.jpg
Conigunstion: (WA

o [-

Appication
po—— el B
et

Mamappicatio]

275fig01.jpg

609fig01.jpg

06fig05.jpg
Child Element

17fig03_alt.jpg
8 Vo -Windons v s
OO = [0 v roomensirs et |8 [x 1[0 3

| e Foortes | s) Get More Addons = - Home) Addto Amszon Weh Lt) bty Sceba
Brome 5 B - - P Sty Tesse @

Home
Home page content

@ Localintane Proected Mode OF-

286fig01a_alt.jpg
<UserControl x:Clas:

"Chapter12.MainPage"
xulns="http: //schemas .microsoft .com/winfx/2006/xanl /presentat ion”
mlng:x="http://schemas.microsoft .com/winfx/2006/xanl"

xmlns :data="clr-namespace : Systen. Windows .Controls;

assembly=System.Windows . Controls.Data">
<Grid x:Name="LayoutRoot" Background="White"s

<data:DataGrid x:Name="myDataGrid" /> <— DataGrid
</Grid>

</UserControls

152fig02.jpg
REFLQ o Ame - HRID L ROOE ™ SRCRIGING <" HIVbe =2
<Path Stroke='Orange" StrokeThickness="10"
Height="200" Width="200"
Data="M 10,80 € 150,5 100,0 200,50 H 100" />
<Path Stroke="Purple" Height='100" Widch="300"
StrokeThickness="10"
Data="M 80,10 C 350,5 100,0 100,55" />
<Grid.RenderTransform»
<ScaleTransform ScaleX="2" Scale
</Grid. RenderTransform>
<Grid.CacheMode>
<BitmapCache RenderAtScal
</Grid. Cacheliode>
</Grid>

2x Scale
transform

2 /n

4r /> a— 4x Caching

17fig02_alt.jpg
[

Wmu*ﬁj [m] e e gl 2
P fr J— ics
G i [P e— Vot

froy

e o [P Vs

et | (3] wssscintnos —

= [Vs

e f [

frovalig T sheto ot e T Voice

Texprocs

B rT—

T3 sesmicion Vatcs

o [—— Vnaice

=] G
o o Gecment o oy S o gt < | e
S Ootet? < ot e esin

Attt

286fig01.jpg
Name. Icon
Smiley Face | System.Windows.Media.Imaging.BitmapImage
Straight Face System.Windows.Media.Imaging Bitmapimage
Angry Face System.Windows.Media.Imaging.BitmapImage
SadFace System.Windows.Media.Imaging.Bitmapimage
sick ‘System.Windows.Media.Imaging.Sitmaplmage

614fig01.jpg
NSO SAUNE PUSLONTL DTSR 8 Yo

{

private long _currentFrame = 0;

protected override void OnCapturestarted() (1]
{

VideoPranequeue. Open () ;

1

protected override void OnCaptureStopped() o
{
Videorranequens .Close ()1

1

protected override void OnFormatChange (VideoFormat videoFormat|
{

VideoFraneQueus. VideoFornat = videoFormat; Capture
1 format
protected overside void Onsample (
long sampleTimeInHundredNanoseconds
long frameDurationInHundredNanoseconds,
bytel] samplepata)
{
_currentPramess; Append frame

VideoPraneQueue . Append to queue

_currenterane,
SampleTimeInfiundrediancseconds,
£rameDurationTnHundredNanoseconds,
samplepata) ;

System.Diagnostics.Debug.WriteLine (_currentFrane) ;

1
b

152fig01a.jpg
(Cachemode
<Grid x:Names"LayoutRoot" Backgrounds"White" sk
2 = directive

CacheMode-"BitmapCache">
<Rectangle Height="60" Width:
FillatGreen" />
<Bllipse Height="30" Width="200" Opacity="0.75"
Fill="Blue" />

<Path Stroke='Orange”

StrokeThickness="10"

Height="200" Width="200"

Data="M 10,80 C 150,5 100,0 200,50 H 100" />
Burple"
100" Width="300"
StrokeThickness="10"
Data="M 80,10 C 350,5 100,0 100,55 />

< /Grids>

e

17fig01.jpg
Client Server

Data Access

View Services e Database
Application Appiication _ Server-Side
Logic Logc Rules

‘Shared Application Logic,
Entites, Validation Rules

J

3

External Services and
Resources.

283fig01a_alt.jpg
SELAE o Sifines oy CARcion" B LgHEaCand s
<Listmox.ItenTemplates
<DataTenplates <— DataTemplate
<Stackpanel Orientations"Horizontal”s
<Image Source="(Binding Icon}” Height="40" Margin="s" />
<TextBlock Text="(Binding Name)” FontSize="20"
verticalAlignment="Center” />
</Stackpanel>
</pataremplates
</ListBox. ItenTenplate>
</ListBox>

<— Child

ch20ex13-1.jpg
if (format 1= mull)
canera.Desizedrornat = format; o

_source.VideoCaptureDevice = camera;

VideoBrush videorush - new VideoBrush();
videoBrush.Stretch = Stretch.Uniforn; Video display
videoBrush. SetSource (_source) ; remains same
PresentationSurface.Fill = videoBrush;

_source. CaptureTnageConpleted
{
_images.Add (ea.Result) ;

b

_source.Start ();

i

(s, ea)

}
)

private void TakeSnapshot_Click(object sender, RoutedEventArgs e)

{
}

_source.CaptureInagehsync () ; e

152fig01.jpg

283fig01.jpg

456fig01.jpg
sl
public class EmployeeDataServiceTests : SilverlightTest
{

[restiethoa)

[Rsynchronous]

public void TestEmployeeServiceCallReturnsbata ()

{

var service = new EmployeeDataService () ;

service Employeesloaded += (s,) =>

{
Assert . TsNotull (service.Employees) ;
Assert . IsTrue (service.Employees. Count > 0); Markas
complete
EnqueueTestConplete () ; =
)
service. LoadEnployees () ;

¥
}

ch20ex13-0.jpg
public MainPage(}

(

InitializeConponent () ;

Inages . TtemsSource = _images;]
' CaptureSource
private CaptureSource _source; < refactored to dlass-eve
private Cbservablecollaction<InageSouzces _inages

new ObservableCollection<ImageSources () ; (1]

private void Capture_Click(cbject sender, RoutedBventArgs e)
5
if (CaptureDeviceConfiguration.AllowedDeviceAccess | |
CaptureDeviceCont iguration. RequestDeviceAceess ())
{
CapturebeviceConfiguration. GetDefaul tVideoCapturebevice () ;

i€ (camera

{

null)

new Capturesource () ;

var format = (from VideoFormat £ in camera.SupportedFormats
orderby f.Pixeldidth * £.PixelHeight descending

160fig01.jpg

06fig06.jpg
| Parent Element
|

Layout Clip

288fig01.jpg
sty roce

Stright Face

angry Face

17fig15_alt.jpg

179fig01.jpg
Please enter your name and email address.
Name:”
Email Address:

17fig17.jpg
User name [pete.brown

Password

Keep me signed in [

Not registered yet?
Register now

301fig01.jpg
SEELELL s PR ORI B EECIRA LR
<patatemplate>
<Stackpanel>

EditTemplate
property

<toolkit:DataFields
<TextBox Text="{Binding LastName, Mode
</toolkit:Datarields

<toolkit:DataPields
<TextBox Text=" (Binding FirstNane, Mode=Tuoiay}" />
</toolkit :patarields
<toolkit:Dataield Labelvisibility="Collapsed'>
<CheckBox TsChecked-" {Binding IsRegistered, Mode-TwoRay}"
Content="Ts Registered” />
</toolkit:DataField>

</stackpanel>
</DataTemplates
</toolkit :DataPForm.BditTemplates

178fig01a.jpg
SeELD eiames Myai LT BROWEELGLANER =" TR
Height="120" Width=r120" Background="LightGray">
<Grid.ColumnDefinitionss

<Columnpefinition />

<ColumnDefinition />

<ColumnDefinition />
</Grid.ColumnDefinitions>

<Grid.RowDefinitions>
<Rowbefinition /> ‘

Row
definitions

<Rowbefinition />
<Rowbefinition />
</Grid.Rowbefinitions>
. /Grid>

17fig16.jpg
User name |
B

Keep me signed in []

Not registered yet?

Register now ok [cencel

300fig03.jpg
[Married

Email Address)

Number of Children i)
|0

178fig01.jpg

300fig02.jpg
Marital Status) [Married -
Email Address)
Number of Children 1) [0

ch17ex06-1.jpg
{

ikt i S i e e e e e e s e b ks

Bmployes emp = _context.Bmployees.
Where (e —> e.EmployeeID
Firstorpefault();

employeePy. EnployeeID)

MapEnployee (enp, employeeEM) ;

EmployeePresentationtodel original
this.ChangeSet
_GetOriginal<EnployeePresentationtodel> (enployeePH) ;

if (original.CurrentFlag != employeePN.CurrentFlag ||
original.Bmailhddress |= employeePM.EnailAddress ||
original Emailpromotion != employeePM. Emailpromotion ||
original FirstName != employeePM.FirscName ||
original.Lasthane != employeePM.LastName ||
original Namestyle != employesPM.Namestyle ||
original Phone != employeePM.Phone)

{
enp. Contact . Modifiedbate = DateTime.Now;
) Save to

_context . Savechanges () database

300fig01.jpg
Marital Status | Married ®

Email Address

Number of Children

o

ch17ex06-0.jpg
RE S N I L L T O T AT
- employeers)

{

emp.BirchDate = employeeh. Birthbates

emp.Current?lag = employeePh. CurrentFlag;

emp.Contact .EmailAddress = employeePM.Emailiddress;

emp. Contact . Bnai1Promotion = employee?M.EnailPromotion:

emp. Contact .FirstNane = employeePH. Firstiane;

emp. Contact _LastNane = employeePM. LastName;

emp.Contact NameStyle = employeePl.Namestyle;

emp. Contact . Phone = employeePM. Phone;

emp.NationalIDNumber = employeePM.NationallDNumber;

emp.SalariedFlag = employeeP.Salaricdrlag:

emp. SickLeaveours = (short)employeePH. SickLeaveHours;

emp.Title = employeeP.Title;

emp.HireDate = employeePH.HireDate;

emp.Gender = employeePH. Gender

emp. Vacat ionttours = (short) employeePH. Vacat iontiours;

emp.Maritalstatus = employeePM.MaritalStatus;

emp. LoginID = employeePM.LoginID; Get current
} persisted entity.

(Update]

12fig06.jpg
Registered [| ®

Marital Status | Unknown -

Email Address |

182fig01.jpg

517fig02.jpg

181fig01a.jpg
apcrids ahowirdgrdrige®Triet
LightGray* Width="200" Height='200">
<Grid.Rowbefinitions> Absolucs
<RowDefinition Height="50" /> sizing
<Rowbefinition Height="2" /> < Star
<Rowbefinition Height="3:" /> siring

</Grid.Rowbefinitions>

<Grid.ColumnDefinitions>
<ColumnDefinition Widtl
<ColumnDefinition Widthe
<ColumnDetinition Widt]
</Grid.Colunnbetinitions>
larids

50" />
20n />
3 /s

306fig01_alt.jpg
S SANNE KRrwon

{
[Editable (false)] attribu

public MaritalStatus MaritalStatus (get; set; }

517fig01.jpg
AN

12fig05_alt.jpg
Registered [| O | Check if this person has registered with
us.
Maria! Status [Unknown <)

17fig19.jpg
Register
Plesse complete all required fields to create your sccount
username|
Frendyrome | |
Email

Password| |0
Confirm password
Security question)
Securityanswer [

Already registered?

Back to Login oK Cancel

181fig01.jpg

12fig04.jpg
Last Name |Brown] @

st wame [rom]

(] 1s Registered

179fig01a_alt.jpg
AEEUE X BamesTafe a Ehomdes dL e
Background="LightGray” Width="310"
<Grid.ColunnDefinitions>

<Columnbetinition />
<ColumnDefinition />
</Grid.ColunnDetinitions>
<Grid. Rowbef initions>
<Rowbefinition />
<Rowbefinition />

755

Tonpetinition /1 Columnspan
/i Ronbetiniions-
cRextlock TextarFlease entex your name and enail address.”
Grid. Cotmspantae /2
CtextBlock Text-hame: © Grid Row-t1t />
RetBlock Text-rEnatl Addres: - Grid Rov-r2t />
“TextBox RiGth-1S0® Grid.Column-"1* GRi.Eon="1" /> | GidRowGr

<TextBox Width-"150" Grid.Columa-'1" Grid.Row="2" />

roperties
e Pproper

17fig18.jpg
| Project | Buld Debug Team Deta Tools Architecture

| %5 Add Class... Shifte AlteC

Add Newtem... Ctlsshift-A
‘Add Bisting ltem.. RN

42 Refresh Project Toolbox tems.
] Chaptenl?Web Properties...

(5 Open Folder in Windows Explorer

186fig01.jpg

183fig01.jpg
This row is too tall

This row is Just right!

ch13ex01-1.jpg
i

_level = value;
NotifyPropertyChanged “Level®) ;
}
}

private decimal _salary;
public decimal Salary

{
get { retum _salary; |
set
{
_salary = value;
TotifyPropertyChanged (*Salary")
)
) PropertyChanged
#region INotifyPropertyChanged Members event
public event PropertyChangedEventHandler PropertyChanged:
protected void NotifyPropextyChanged (String propereyane) po e
it n
if (PropertyChanged t= mull) helper code
PropertyChanged (this,

new PropertyChangedEventArgs (propertyNane)) ;
1

#endregion

182fig01a.jpg
<Grid x:Name="myGrid" Height="100" Width="300"
ShowGridLines="True" Background="LightGray">
<Grid. ColunnDefinitions>
<ColumnDefinition Widt
<Columnpefinition #idt
</Grid.ColunnDetinitions>
<Grid.RowDefinitions>
<RowDefinition Height="Auro" />
<RowDefinition Height="Auto" />
</Grid RowDefinitions>
<TextBlock Texts"Hello there, how are you?" />
<TextBlock Text="I'm fine thanks!® Grid.Column="
<TextBlock Text="That's Great” Grid.Row="1" />
et

“Autor />
*autor />

Auto
sizing

/>

518fig01.jpg

ch13ex01-0.jpg
HUEL RANAE Moy | o VTR (UL

{
private string _lastName;
public string LastName

{
get { return _lastName;)
set
{
_lasthame - value;
NotifyPropertyChanged (“LastName®) ;
i
i

private string _firstName;
public string FirstName

{
get { return _irstName; |
set
{
_firstane = value;
NotifyPropertyChanged (“FirstName") ;
i
}

private int _level;
public int Level
{
get { return _level; }
i

21fig04.jpg
(0.0 4.0

(3

1 »”

168fig01a_alt.jpg
<Grid Width="200"
Height="175">
<Rectangle Fill-"HFFe0e0co”
Stroke="#FF000000"
StrokeThickness="3"
Radiusy="10"
Radiusx="10"
<Stackpanel Margin="10"s
<TextBlock Text="Pete, Melissa, Ben, Abby"
<TextBox Text='Silverlight" Margin='s' />
<TextBox Text="In Action” Margin="s" />
<Button Content="I'm a Button!" Margi:
</Stackpanel>

7

s

<Grid.Projection>
<Matrixaperojections
<Matrix3DProjection.ProjectionMatrixs

<— Matrix3dProjecti

Margin=tst />

75

<MatrixiD M11-"0.4269" M12-70.0592" M13="0.0" ML&="-0.0012"
M21="-0.3600" M22="1.0548" M23="0.0" M24="-0.0028"
M31=70.0" M32270.0% M33="1.0% M3d="0.0"
OffsetX="9.0" Offsety="-117.0" OffsetZ="0"
Mdd="1.0% />

</Matrix3DProjection. Projectiontatrix>
</Matrix3DProjection>
</Grid.Projection>

</Grids

295fig01_alt.jpg
<UsarControl.Rescurces>
e />

“local:peraon x: ey —
< serContxol . Resources> i
Binding
Grid x:Name="LayoutRoot" Margin="30"> per:n ke
<toolkitiDatarorn CurrentIten-'|StaticResource me)’ /@

< /Grid>

488fig04.jpg
@23 45

634fig02.jpg

168fig01.jpg

293fig01a_alt.jpg
ECRLE chu G = (iamd s TRyRALERONT SUEaSSRSrRtocol el s
<data;DataGrid. Colums>
<data:DataGridTextColumn Binding-"(Binding Name]"

Header="Nane" SortienberPath="Name® /> <
<data;DataGridTextColunn Binding="{Binding Keys}" SortMemberPath
Header-"Shortcut® SortMenberPath="Keys® /> —

<data:DataGridTenplateColumns

<data:DataGridTenplateColumn.CellTenplate>
<patatemplate>

<Inage Sourc
</DataTemplates

</data:DataGridrenplateColumn. CellTenplate>

</data:patacridTenplatecolunn>
</data:DataGrid. Columns>
</data:DataGrids

"{Binding Tcon}" />

488fig03.jpg
CERAES

634fig01.jpg

293fig01.jpg
Name » Shortcut

488fig02.jpg
(1 Jof20|» M

633fig01.jpg

21fig05.jpg
145px

‘Element Width: 300px

Element Height:
200px

488fig01.jpg

12fig02.jpg
e ¥
Email Address w
Number of Children |0 ®

175fig01a.jpg
<Canvas x:
<Canvas

<Canvas

<Canvas

W ——

Name="myCanvas"> biin et
Canvas. ZIndex="2" <+ s
Width="60" Height="60" "
Background="LightGray" /> e
Canvas. ZIndex="1" <
Width="60" Heigh

Canvas. Lef

Background: :a“"‘:‘fs"’“"ﬂ
Width="60" Height="50"

Canvas.Left="40" Canvas.Top="40"
Background="Black” />

491fig01_alt.jpg
EXEYEte Yald EdiuiRcTROONaLT

{

var context = Datasource.DataContext as EmployeeContext;
var emp = EnployeeGrid.SelectedItem as Employee;

it (emp = null)
{

DateTime hireDate

new DateTime (2002, 05, 16); Execute invoke

var invokeOp = context.CalculateVacationBonus(operation
hireDate, OnInvokeCompleted, emp);

1
b

private void OnTnvokeCompleted (InvokeOperation<ints invokeop)

{
if (invokeOp.HasError)
{
MessageBox. Show (invokeOp. Error.Message) ;
invokeOp MarkBrrorhsHandled () ;

}

else
£

Employee emp = invokeOp.UserState as Employee;

iE (emp
{

emp.VacationHours

}

null)

(short) invokeop. Value;

¥
}

640fig01_alt.jpg
it Sl b ol i e e e L
hrtp: //schenas . microsoft .com/winfx/2006/xanl /presentation”
Bttp://schenas.microsoft . con/winfx/2008 /xanl"
40075
<Canvas x:Name="LayoutRoot" Backgroun
<Canvas . Triggere>
<BventTrigger RoutedEvent="Canvas.loaded’>

Whiters

<BeginStoryboard> l[limﬂinns
<Storyboard x:Nanes"myStoryboard’» will go here
</storyboard>
</Beginstoryboards
</Bventtriggers

</Canvas.Triggers>

<Path x:Name='myEllipse” Fill="Yellow" Strokes"Black"
StrokeThickness="2" Height="400"Nidth="400">
<path.Data>
<EllipseGeometry x:Name=!
Centes

EllipseGeometry”
25,25" RadiusX="25" Radius’

</path.pata>
</path>

< /Canvas>
N

175fig01.jpg

17fig13_alt.jpg
[e
P T e —r———
e

rrnnnnnniregna

oy El

22fig01.jpg
50% 75% 100%

250 500 750

.
. ATy

296fig02_alt.jpg
e A
<local:Pecplerepository x:Ke
< /UserControl . Resources>
<6rid x:Name="layoutRoot" Margi
<toolkit:Datarorm
DataContext="{StaticResource repository]"
ItemsSource=" {Binding People}"
Current Index="0">

repository® />

</toolkit :DataForms
ST,

<— Repository as resource

Repository

o reference

“] Observable
collection

174fig01a.jpg
<Canvas Width:

<canvas

<canvas

<canvas

T

"180" Height="180" > SERE—
canvas

Width-"60"
Height="60" i
Background="LightGray" /> e
Width="60" S
Height="60"

Canvas.Left="20"
Canvas.Top="20"

Height="60"
Canvas.Left="40"
Canvas .Top="40"
Background="Black" />

296fig01_alt.jpg
PIRLLG GLanE FRob SRaTnLLony.
{
private ObservableCollection<Person> _people
new ObservableCollectionepersons ();

public ObservablecollectioncPersons People
{
get { retumn _people; }

}
public PeopleRepository ()

{

_people.Add (new Person()

{
PirstName = "Captain’, LastName = "Avatar’,
IsRegistered = true,
MaritalStatus = MaritalStatus.Unknown,
DateofBirth = DateTime.Parse (*1912-01-01")

b

_people.Add (new Person()

{
PirstName = "Derek”, LastName = "Nildstar",
IsRegistersd = true,
MaritalStatus = MaritalStatus.Single,
DateofBirth = DateTime.Parse ("1954-11-15%)

b

Observable collection
of Person

Load dummy
data

488fig06.jpg
@23 45s|»

635fig02.jpg

12fig01.jpg

174fig01.jpg

488fig05.jpg
4|Page[0]| »

635fig01.jpg

177tab01.jpg
Purchase Order

Item# | Description Price | Quantity Total
1 Lollipops 5025 s $1.25
2 Gum $1.00 4 $4.00
3 Jelly Beans, bagged, assorted 5295 2 $5.90
4 Toothbrushes $3.50 5| sso
s Pliers $10.00 1| s1000
6 Topical anesthetic $7.95 1 $7.95
7 Gauze $1.75 3 $5.25

Total | $5185

176fig02.jpg

299fig02.jpg
Number of Children
lo

176fig01.jpg

17fig14.jpg
weowe s |3
e O S—

HireDate |4/9/1599. @)
Birth Date The date this person was bon.

299fig01.jpg
Marital Status | Married

Email Address | J

Number of Children |0 |

07fig01.jpg

12fig03.jpg
Last Name |Brown| @

FrstName [pere |

oveotmn somon @0
)

Marital Status | Married *) ®

Number of Children |0 ®

Cancel

22fig02.jpg
w

8 8 § R &8 2 °
(spuo9s ur) Wiy [enPY

05

02

‘SpeedRatio

493fig01.jpg
TORGENGEDERE L1,

(Required()] Validation
(scringlength (1)) attributes
public string Gender
{
get
{
return this._gender;
}
set
(
i€ ((this._gender != value))
{
this.OnGenderChanging (value) ;
this.RaiseDataNenberchanging (*Gender" ;
this.ValidateProperty ("Gender”, value;
this._gender = value;
this.RaiseDataNenberChanged (*Gender®) ;
this.OnGendesChanged ()
1
}

