
M A N N I N G

Pete Brown

Revised Edition of
Silverlight 2 in Action

IN ACTION

Silverlight 4 in Action

Licensed to Devon Greenway <devon.greenway@gmail.com>

Licensed to Devon Greenway <devon.greenway@gmail.com>

Silverlight 4 in Action
SILVERLIGHT 4, MVVM, AND WCF RIA SERVICES

PETE BROWN

Revised Edition of Silverlight 2 in Action
by Chad Campbell and John Stockton

M A N N I N G
Greenwich

(74° w. long.)
Licensed to Devon Greenway <devon.greenway@gmail.com>

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
180 Broad Street
Suite 1323
Stamford, CT 06901
Email: orders@manning.com

©2010 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books are
printed on paper that is at least 15 percent recycled and processed without the use of elemental
chlorine.

Development editor: Jeff Bleiel
Manning Publications Co. Copyeditor: Benjamin Berg
180 Broad Street, Suite 1323 Cover designer: Marija Tudor
Stamford, CT 06901 Typesetter: Gordan Salinovic

ISBN 9781935182375
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – MAL – 15 14 13 12 11 10
Licensed to Devon Greenway <devon.greenway@gmail.com>

www.manning.com

brief contents
PART 1 INTRODUCING SILVERLIGHT ...1

1 ■ Introducing Silverlight 3

2 ■ Core XAML 20

3 ■ The application model and the plug-in 47

4 ■ Integrating with the browser 73

5 ■ Integrating with the desktop 95

6 ■ Rendering, layout, and transforming 138

7 ■ Panels 171

8 ■ Human input 188

9 ■ Text 203

10 ■ Controls and UserControls 234

PART 2 STRUCTURING YOUR APPLICATION259

11 ■ Binding 261

12 ■ Data controls: DataGrid and DataForm 285

13 ■ Input validation 308

14 ■ Networking and communications 335
v

Licensed to Devon Greenway <devon.greenway@gmail.com>

BRIEF CONTENTSvi
15 ■ Navigation and dialogs 382

16 ■ Structuring and testing with the MVVM/ViewModel
 pattern 416

17 ■ WCF RIA Services 459

PART 3 COMPLETING THE EXPERIENCE ..513

18 ■ Graphics and effects 515

19 ■ Printing 542

20 ■ Displaying and capturing media 572

21 ■ Working with bitmap images 618

22 ■ Animation and behaviors 637

23 ■ Resources, styles, and control templates 670

24 ■ Creating panels and controls 699

25 ■ The install experience and preloaders 720

Licensed to Devon Greenway <devon.greenway@gmail.com>

contents
preface xix
acknowledgments xxi
about this book xxiii
about the cover illustration xxix

PART 1 INTRODUCING SILVERLIGHT1

1 Introducing Silverlight 3
1.1 Silverlight and the web 4
1.2 Silverlight and WPF 5
1.3 Types of Silverlight applications 6
1.4 What’s new since the first edition 6

Features for business and client applications 7 ■ Media and
graphics enhancements 7 ■ User interaction 8 ■ Text 9

1.5 Getting started with Silverlight development 9
Setting up your development environment 9 ■ Helpful sites 10

1.6 Building your first Silverlight web application 10
Project setup 11 ■ User interface 12 ■ Calling Twitter search 13
Parsing the results and binding the ListBox 14 ■ Making the ListBox
contents more meaningful 17

1.7 Summary 19
vii

Licensed to Devon Greenway <devon.greenway@gmail.com>

CONTENTSviii
2 Core XAML 20
2.1 XAML basics 21

Objects 22 ■ Namespaces 23 ■ Properties 26 ■ Dependency
properties 27 ■ Attached properties 29 ■ Events 30
Commands 32 ■ Behaviors 33

2.2 Object trees and namescope 34
Object trees 35 ■ Namescope 37

2.3 XAML extensions and type converters 38
Markup extensions 38 ■ Type converters 39

2.4 Loading XAML at runtime 42
2.5 Tools for working in XAML 45
2.6 Summary 46

3 The application model and the plug-in 47
3.1 The Silverlight application model 48

Application startup process 48 ■ XAP 50 ■ The application
manifest file 51 ■ The Silverlight application object 52
Application dependencies 55 ■ Assembly caching 55

3.2 Creating the Silverlight plug-in 58
Using the object tag 59 ■ Using the Silverlight.js utility
file 60 ■ Creating an instance of the Silverlight plug-in 61

3.3 Integrating the Silverlight plug-in 62
Relating the Silverlight application to the HTML DOM 63
Clarifying the initial experience 64 ■ Handling plug-in
events 69 ■ Sending initialization parameters 71

3.4 Summary 72

4 Integrating with the browser 73
4.1 Silverlight and the HTML DOM 74
4.2 Managing the web page from managed code 76

Navigating web page contents 76 ■ Working with element properties 77
Handling CSS information 78 ■ Accessing the query string 79

4.3 Working with the user’s browser window 79
Prompting the user 80 ■ Navigating the browser window 81
Discovering the browser properties 82

4.4 Bridging the scripting and managed code worlds 82
Calling managed code from JavaScript 83 ■ Using JavaScript from
managed code 85
Licensed to Devon Greenway <devon.greenway@gmail.com>

CONTENTS ix
4.5 Hosting HTML in Silverlight 86
Hosting the WebBrowser control 87 ■ Using the WebBrowserBrush 92

4.6 Summary 94

5 Integrating with the desktop 95
5.1 Silverlight out of the browser 96

Capabilities and restrictions 98 ■ The end-user experience 98

5.2 Creating out-of-browser applications 101
The out-of-browser settings file 101 ■ Controlling the experience 102
Customizing icons 106 ■ Checking the network state 106 ■ Alerting
the user with Notification toast 108 ■ Implementation specifics 109

5.3 Escaping the sandbox—elevated trust 110
Creating elevated-trust applications 110 ■ Detecting elevated trust
mode 113

5.4 Local file access 113
Accessing special folders 113 ■ Reading from a file 114 ■ Writing
to a file 115

5.5 COM automation 115
Detecting COM automation availability 115 ■ Using COM
automation to make Silverlight talk 117 ■ Accessing GPS data
using COM automation 117 ■ Automating Excel 119

5.6 Controlling the host window 120
Basic window properties 121 ■ Changing window chrome 122
Minimizing, maximizing, restoring, and closing 123
Moving 124 ■ Resizing 125

5.7 Running in full screen 126
Normal full-screen mode 126 ■ Elevated trust full-screen mode 128

5.8 Storing data in isolated storage 128
IsolatedStorageFile: the virtual filesystem 129 ■ Reading and writing
files: the isolated storage way 133 ■ Administering isolated storage 136

5.9 Summary 136

6 Rendering, layout, and transforming 138
6.1 The UIElement and FrameworkElement 139

Properties 139 ■ Methods 145

6.2 The rendering process 146
Clock tick 148 ■ Per-frame rendering callback 148
Rasterization 149
Licensed to Devon Greenway <devon.greenway@gmail.com>

CONTENTSx
6.3 The layout system 155
Multipass layout—measuring and arranging 155 ■ The
LayoutInformation class 157 ■ Performance considerations 158

6.4 Render transforms 159
RotateTransform 160 ■ ScaleTransform 160 ■ SkewTransform 161
TranslateTransform 161 ■ TransformGroup 162 ■ Composite-
Transform 163 ■ MatrixTransform 164

6.5 3D projection transforms 166
PlaneProjection 166 ■ Matrix3dProjection 168

6.6 Summary 169

7 Panels 171
7.1 Canvas 172 ■ Arranging content of a Canvas 173
7.2 The StackPanel 176
7.3 The Grid 177

Arranging Grid content 178 ■ Positioning Grid content 180
Spanning cells 180 ■ Sizing it up 181 ■ Working with the grid
programmatically 183 ■ Customizing cell boundaries 184

7.4 Summary 187

8 Human input 188
8.1 Capturing the keyboard 189

Understanding focus 189 ■ Handling keyboard events 190
Dealing with modifier keys 192

8.2 Mouse input 193
Mouse button and movement events 193 ■ Using the mouse wheel 195

8.3 Using multi-touch 197
8.4 Collecting ink drawings 199

Creating the InkPresenter 199 ■ Collecting ink 199 ■ Styling the
ink 201

8.5 Summary 202

9 Text 203
9.1 The text system 204

Subpixel text rendering 205 ■ Text hinting 205

9.2 Displaying text 207
Font properties 207 ■ Flow control 210 ■ Text properties 211
Spacing 214
Licensed to Devon Greenway <devon.greenway@gmail.com>

CONTENTS xi
9.3 Embedding fonts 216
9.4 Entering and editing text 218

Handling basic text input 218 ■ Understanding input method
editors 220 ■ Copying text with the Clipboard API 222
Collecting sensitive data 224

9.5 Entering and displaying rich text 225
Formatting and inline elements 225 ■ Working with selected text 229

9.6 Summary 232

10 Controls and UserControls 234
10.1 Control 235

Appearance 235 ■ Navigation and state 236 ■ Templating 237

10.2 ContentControl 238
The ContentPresenter 239

10.3 Button controls 240
The Button 241 ■ The HyperlinkButton 241 ■ The
RadioButton 242 ■ The CheckBox 244

10.4 ItemsControls 245
The ListBox 246 ■ The ComboBox 248 ■ The TabControl 249

10.5 Creating UserControls 252
Defining the appearance 253 ■ Defining the behavior 254
Calling the control 257

10.6 Summary 258

PART 2 STRUCTURING YOUR APPLICATION.......................259

11 Binding 261
11.1 Binding with your data 262

Mastering the binding syntax 263 ■ Choosing a binding mode 265

11.2 Understanding your binding source 267
Binding to a property 267 ■ Binding to an
object 268 ■ Binding to a UI element 270 ■ Binding to an
indexed element 272 ■ Binding to a keyed (string indexed)
element 273 ■ Binding to an entire collection 274

11.3 Customizing the display 276
Formatting values 276 ■ Converting values during binding 277
Providing default fallback values 280 ■ Handling null values 280
Licensed to Devon Greenway <devon.greenway@gmail.com>

CONTENTSxii
11.4 Creating data templates 280
Using a DataTemplate with a ContentControl 281 ■ Rendering
an ItemsControl with a DataTemplate 282

11.5 Summary 283

12 Data controls: DataGrid and DataForm 285
12.1 The DataGrid 286

Displaying your data 286 ■ Editing grid data 292 ■ Sorting
items 292

12.2 The DataForm 293
Displaying your data 294 ■ Binding to lists of data 296
Customizing display 299 ■ Customizing edit, add, and display
templates 300 ■ Finer control over editing and committing
data 302

12.3 Annotating for display 304
The Display attribute 304 ■ The Editable attribute 306

12.4 Summary 307

13 Input validation 308
13.1 The validation example source and UI 309
13.2 Exception-based property validation 313

Handling exception validation errors 313 ■ Custom validation
code 314 ■ Validation error display 315

13.3 Synchronous validation with IDataErrorInfo 316
The IDataErrorInfo interface 316 ■ Simple validation with
IDataErrorInfo 317 ■ Cross-field validation with IDataErrorInfo 318
Combining exceptions and IDataErrorInfo 320

13.4 Asynchronous validation with INotifyDataErrorInfo 321
The INotifyDataErrorInfo interface 321 ■ Implementing the
interface 322 ■ Binding support 323 ■ Building the WCF web
service 323 ■ Adding the client service code 324 ■ Property
modifications 325

13.5 Annotating for validation 327
Validation attributes 327 ■ Annotating your entity 328
Calling external validation functions 330 ■ Creating custom
validators 331

13.6 Comparison of validation approaches 332
13.7 Summary 333
Licensed to Devon Greenway <devon.greenway@gmail.com>

CONTENTS xiii
14 Networking and communications 335
14.1 Trust, security, and browser limitations 336

Cross-domain network access 336 ■ Making your application
secure 340 ■ Limitations of the browser 341

14.2 Connecting to data sources 342
Using SOAP services 342 ■ RESTful services 351

14.3 The client HTTP stack 355
Manually creating the client stack 355 ■ Automatically using the
client stack 356 ■ Automatically setting the HTTP Referer and
other headers 356 ■ Authentication credentials 357
Managing cookies with the CookieContainer 359

14.4 Making the data usable 360
Reading POX 360 ■ Converting JSON 364

14.5 Using advanced services 366
WCF service enhancements 366 ■ WCF duplex services 367
Connecting to sockets 372 ■ Multicast sockets 374

14.6 Connecting to other Silverlight applications 377
Creating the receiver 377 ■ Creating the sender 378 ■ Putting it
all together 379

14.7 Summary 381

15 Navigation and dialogs 382
15.1 Browser navigation background 383

Browser journals 384 ■ Anchor hashtags 384 ■ Back and forth 385

15.2 The Navigation Application template 386
Creating a navigation application 386 ■ Adding a new page 388
Changing the application theme 390

15.3 Navigating to pages 392
The Page class 392 ■ The NavigationService class 393 ■ Frames
and URIs 396 ■ Caching pages 399 ■ Navigating to pages in
other assemblies 400

15.4 Navigation out of the browser 403
Providing custom navigation controls 403

15.5 Showing dialogs and pop-ups 408
The Popup control 408 ■ Displaying a dialog box with the
ChildWindow control 408 ■ Prompting for a file 412

15.6 Summary 415
Licensed to Devon Greenway <devon.greenway@gmail.com>

CONTENTSxiv
16 Structuring and testing with the MVVM/ViewModel
pattern 416
16.1 Project setup and traditional code-behind approach 417

Project and service setup 418 ■ A typical code-behind solution 422

16.2 Model-View-ViewModel basics 425
Keep it simple: a basic ViewModel implementation 427

16.3 Factoring out reusable code 433
Business rules and logic 434 ■ Data access and service calls 436

16.4 Better separation from the UI 438
Using commands 438 ■ Using the CallMethodAction behavior 442
View-specific entities and ViewModels 443 ■ Interfaces, IoC, and
ViewModel locators 448

16.5 Testing 451
Introduction to the Silverlight Unit Testing Framework 451 ■ Testing
the ViewModel 455 ■ Testing asynchronous operations 456

16.6 Summary 457

17 WCF RIA Services 459
17.1 WCF RIA Services architecture, tooling, and

template 461
RIA Services tooling support 462 ■ Creating a project with the
template 462

17.2 Exposing data with the domain service 465
Creating the domain service 466 ■ Exposing the domain service to
other clients 468 ■ Domain service method types 472 ■ Using a
domain service from Silverlight 476

17.3 Filtering, sorting, grouping, and paging 480
Filtering 481 ■ Sorting 484 ■ Grouping 485 ■ Paging 486

17.4 Updating data 488
Using the DataForm UI 489 ■ The domain context 490 ■ The
Entity class 492 ■ Using validation and display metadata 494

17.5 Loose coupling: using presentation models 496
Creating the employee presentation model 497 ■ Supporting query
operations 498 ■ Supporting update operations 500 ■ Supporting
insert operations 502

17.6 Business logic 503
Business logic in entities 504 ■ Sharing code 505
Licensed to Devon Greenway <devon.greenway@gmail.com>

CONTENTS xv
17.7 Authentication and authorization 506
Authentication 506 ■ Authorization 509

17.8 Summary 510

PART 3 COMPLETING THE EXPERIENCE............................513

18 Graphics and effects 515
18.1 Shapes 516

Lines 517 ■ Rectangle 517 ■ Ellipse 518 ■ Polyline 519
Polygon 519

18.2 Geometry 520
Simple geometries 521 ■ Path geometries 522 ■ Composite
geometries 523

18.3 Brushes 524
SolidColorBrush 525 ■ LinearGradientBrush 526 ■ Radial-
GradientBrush 528 ■ ImageBrush 529 ■ VideoBrush 530

18.4 Effects 531
Using built-in effects 532 ■ Creating custom pixel shaders 535

18.5 Summary 540

19 Printing 542
19.1 How Silverlight printing works 543

The PrintDocument class 544 ■ The PrintPage Event 547
Rasterization 549

19.2 Printing onscreen Information 550
Printing the content as is 550 ■ Rerooting the elements to fit 552
Scaling content to fit 554

19.3 Multipage printing dedicated trees 556
Prerequisites 557 ■ Printing line items 560 ■ Adding multipage
support 566 ■ Adding a header and footer 567

19.4 Summary 570

20 Displaying and capturing media 572
20.1 Audio and video 573

Media source 573 ■ Common properties 579 ■ Audio specific
properties 581 ■ Video specific properties 582 ■ The lifecycle of a
media file 583
Licensed to Devon Greenway <devon.greenway@gmail.com>

CONTENTSxvi
20.2 Playlists 584
Understanding client-side playlists 585 ■ Using server-side
playlists 587

20.3 Interactive playback 588
Controlling the play state 589 ■ Working with the timeline 589

20.4 Using protected content 591
Requesting protected content 591 ■ Retrieving the PlayReady
components 592 ■ Unlocking protected content 592

20.5 Using the Silverlight Media Framework 593
Using the player libraries 593 ■ Creating the player 594

20.6 Working with raw media 596
A custom MediaStreamSource class 596 ■ Creating raw
video 598 ■ Creating raw audio 602

20.7 Using the webcam 607
Gaining access to capture devices 607 ■ Working with video 609
Capturing still images 612 ■ Getting the raw video data 614
A note about audio 616

20.8 Summary 617

21 Working with bitmap images 618
21.1 Basic imaging 619
21.2 Creating images at runtime 620

Creating from existing images 621 ■ Creating from UI elements 623
A Mandelbrot fractal generator 624

21.3 Deep Zoom 627
Showing an image 627 ■ Zooming in and out 628 ■ Managing
the viewport 630 ■ Deploying multiscale images 631

21.4 Dealing with dead space 632
Filling the space 633 ■ Uniform sizing 633 ■ Fill the area 634
UniformToFill 635

21.5 Summary 636

22 Animation and behaviors 637
22.1 Animation: it’s about time 638
22.2 Mastering the timeline 639

What type of property are you animating? 639 ■ Where are you
starting from and where are you going? 642 ■ How long should the
animation run? 644
Licensed to Devon Greenway <devon.greenway@gmail.com>

CONTENTS xvii
22.3 Storyboarding 647
Understanding the storyboard 647 ■ Hitting the target 648
Controlling the Storyboard 650 ■ Being resourceful 652

22.4 Keyframing 654
Interpolation: it’s about acceleration 656

22.5 Easing functions 660
Using easing functions 661 ■ Creating a custom easing
function 663

22.6 Behaviors, triggers, and actions 665
Using existing behaviors 666 ■ Creating your own behavior 667

22.7 Summary 669

23 Resources, styles, and control templates 670
23.1 Being resourceful 671

Declarative resources 671 ■ Accessing loose resources 677
Bundled resources 678

23.2 Giving your elements style 680
Defining the look 681 ■ Explicitly keyed style definitions 683
Implicit style definitions 685

23.3 Creating templates 686
Building a control template 686 ■ Creating reusable
templates 690

23.4 Dealing with visual states 691
Understanding the components 691 ■ Leveraging the
VisualStateManager 693

23.5 Sharing your visual states 697
23.6 Summary 697

24 Creating panels and controls 699
24.1 Creating a custom panel 700

Project setup 701 ■ The OrbitPanel class 701 ■ Properties 702
Custom layout 705 ■ Enhancements 709

24.2 Creating a custom control 710
Choosing the base type 711 ■ Properties 712 ■ The control template
contract 712 ■ The default template 714 ■ Visual states 715
Visual states in template 716

24.3 Summary 718
Licensed to Devon Greenway <devon.greenway@gmail.com>

CONTENTSxviii
25 The install experience and preloaders 720
25.1 Handling the “Silverlight not installed” scenarios 721

Creating your own install experience 722

25.2 Using a custom preloader 724
Creating the appearance 724 ■ Integrating the custom splash
screen 726 ■ Monitoring the load progress 727

25.3 Summary 728

appendix Database, connection, and data model setup 729
index 735

Licensed to Devon Greenway <devon.greenway@gmail.com>

preface
My background is in client application development. I started on the Commodore 64
in seventh grade in the 1980s, later moved to DOS with dBase, QuickBasic, and C++,
and eventually Windows programming using C++, Borland Delphi 1.0, PowerBuilder,
Visual Basic 3-6, and .NET.

 Though I’ve written plenty of pure HTML/JavaScript web applications, I’ve always
preferred client programming over strict web programming because I felt HTML/
JavaScript programming treated the immensely powerful PC as a dumb terminal,
squandering its CPU cycles for applications that were almost entirely network bound
in performance. Only recently is this changing.

 Back when web applications started to become more popular, customers loved the
flexibility of the blank canvas of HTML versus the old battleship gray look, as well as
the ease of deployment of web applications. On the client development side, we had
some things that came close (WPF for appearance, for one) but nothing that com-
bined the ease of deployment with the modern look.

 For a while, it looked like the world was going to move to relatively dumb web
applications, treating the local PC as just a keyboard and display—a disappointing
move to say the least.

 Back in 2006, long before I took my job as a Silverlight and WPF Community PM
with Microsoft, I attend the first Microsoft MIX conference in Las Vegas. On March 21,
day two of the conference, I attended some sessions about WPF/E, the product that
would later be named Silverlight. Even then, Microsoft had a strong vision for Silver-
light, a vision that included desktops, mobile devices, and set-top boxes. It was
xix

Licensed to Devon Greenway <devon.greenway@gmail.com>

PREFACExx
planned to be a lightweight version of WPF optimized for cross-platform scenarios,
which would both take advantage of client-side processing power (when the .NET CLR
was incorporated) as well as provide the ease of deployment of a traditional web appli-
cation. This was exactly what I was looking for!

 I was pretty jazzed about WPF/E at the time. I was also a little concerned about
making the case for adoption. I took a wait-and-see approach. When Silverlight 1.0
CTPs and betas hit the street, I was less than impressed, because they were JavaScript
only. I wasn’t a big fan of JavaScript at the time and felt WPF/E wouldn’t make any
meaningful impact until they delivered on the promise of the CLR inside the browser.
Nevertheless, early in 2007 I took on a project to create a carbon offset calculator in
WPF/E, to be hosted in SharePoint on a public internet site.

 Then, we had MIX07 and the name Silverlight was given to WPF/E. Along with it,
Microsoft introduced Silverlight 1.1 alpha—a version that worked with managed code
and included a cross-platform version of the .NET CLR. Yay! No JavaScript! (Hey, this
was before jQuery proved to me that JavaScript can also be awesome.) Right at that
point, I lobbied the project sponsors to let us work in Silverlight 1.1a. I also spoke with
some contacts at Microsoft and received permission to go live with the Silverlight 1.1a
application, happily foisting alpha code on unsuspecting users.

 Despite, or perhaps because of, having to code many primitives from scratch (we
needed buttons and drop-down lists, none of which existed in Silverlight 1.1a), I was
completely hooked. It felt like the old days of DOS programming when you had to spe-
lunk without much support and make up your own tricks for how to best accomplish
things. It was the Wild West of programming. (And, by that, I mean the Wild West with
giant Steampunk spiders added into the mix.)

 I still had (and have) a place in my heart for Silverlight’s big brother WPF, but it
was easy to see that Silverlight was going to take the world by storm. WPF is still an
incredibly powerful technology, but it tends to appeal more to niche users and ISVs as
opposed to the broad group building web-based applications for a living.

 The two of us on the carbon calculator development team released the first Silver-
light managed code application ever to go live. It included video, Windows Live Maps
integration, web services integration with SharePoint, carbon offset calculations of
course, and a completely data-driven, configurable UI with SharePoint as the back-
end, supporting everything.

 At the time, there was no real ecosystem around Silverlight, and the idea of using real
designers on client applications in the Microsoft stack hadn’t yet caught on. Despite the
primitive UI we designed, I’m still impressed with what we put together. I was thrilled to
be able to use .NET skills in something that was truly unique in the .NET space.

 Later that year, Silverlight 1.1a would be updated to a stronger subset of WPF and
rebranded as Silverlight 2, laying the groundwork required for Silverlight 4, a release
that continues to impress and engage me every day I use it.

 PETE BROWN
Licensed to Devon Greenway <devon.greenway@gmail.com>

acknowledgments
A book like this is a team effort from start to finish. Though my name may be on the
cover, there’s no way I could’ve completed this without the support and hard work of
many others. I’d like to thank:

■ Chad Campbell and John Stockton for creating such an excellent first edition.
Without their hard work covering Silverlight 2, I would never have thought to
create a Silverlight 4 edition.

■ Marshal Agnew, Brendan Clark, and Jordan Parker on the Silverlight product
team for their help in digging into the darkest recesses of the rendering and
layout system. If not for these folks, I wouldn’t have been able to provide the
level of detail chapter 6 includes.

■ David Ferguson and Seema Ramchandani, both on the Silverlight product
team, for help on performance questions around transformations.

■ Tim Heuer on the Silverlight product team for help on the Silverlight installa-
tion experience covered in chapter 25.

■ Jeff Handley on the WCF RIA Services product team for reviewing the RIA Ser-
vices chapter on a really tight schedule.

■ Ashish Shetty on the Silverlight product team for encouraging my Silverlight
blogging very early on, including much of the app model and startup process
content that ended up in this book.

■ Tom McKearney, Tad Van Fleet, Al Pascual, and Ben Hayat for their excellent
tech reviews. They caught a ton of mistakes, including differences between Sil-
verlight 2, 3, and 4, and changes from the early builds through to the release of
Silverlight 4.
xxi

Licensed to Devon Greenway <devon.greenway@gmail.com>

ACKNOWLEDGMENTSxxii
■ René Schulte for keeping my imaging and pixel shader sections honest and up
to date. René is the go-to guy for working with bitmaps and shaders.

■ Mike Street on the forums for his helpful and thorough review of many of the
chapters on the forums. Mike was a great unofficial tech reviewer for this book.

In addition, there were numerous editors, proofreaders, and reviewers at Manning
Publications who deserve thanks for their hard work. I dropped on them a book twice
as large as they were expecting with a third of the production time they normally take.
People like Benjamin Berg, Mary Piergies, Nermina Miller, Gordan Salinovic, and oth-
ers worked tirelessly to get this book published in time. I thank them and the rest of
the folks at Manning for not freaking out when the book missed two deadlines, came
in three months late, and at twice the expected length.

 Unique in this thanks is my editor, Jeff Bleiel. This was the first book I’ve written,
so I wasn’t sure what to expect. A good editor can make the difference between a hor-
rible authoring experience and a good one. Jeff definitely made that difference,
respected our different areas of expertise, and kept the book on track. He was my
interface with Manning and my mentor as an author. Jeff made a positive contribution
to this book and to my writing in general.

 In addition to the individuals who helped me with the book itself, there are those
who have made it possible through their presence or actions.

 Most of all, I’d like to thank my wife Melissa for being a single mom for most
of 2010 and my children Ben and Abby for understanding when mom told them
“Papa’s writing and can’t play right now.” Writing a book this size, for a product that
revs every 10 to 12 months, is an undertaking that involves your whole family.

 I’d like to thank my manager at Microsoft, Scott Hanselman, for making sure I had
time to finish the book. This book took an incredible amount of time to write and, if
not for Scott offering me some flexibility, it simply wouldn’t have been completed.

 Of course, I thank the Silverlight and WPF community, my Twitter followers, the
Silverlight and WPF insiders, the MVPs, and all the people who’ve read and com-
mented on my blog posts since Silverlight was first released. The community support
for and excitement around these technologies kept me motivated to create the best
book possible.

 My gratitude also to my mum for encouraging me in my computer work and for
helping me get that first job writing a database application from scratch in C++. I
wouldn’t be where I am today without her.

 I’d like to thank my dad, who passed away during the writing of this book. He
never quite understood what I was doing with the Commodore in my room, typing in
all that hex code from the back of a magazine, but he supported me from the start
and encouraged me to pursue a career doing what I love.

 Finally, I’d like to thank you, my readers.

Licensed to Devon Greenway <devon.greenway@gmail.com>

about this book
The overall goal of this book is to inform and educate you about the exciting and pow-
erful Silverlight 4 platform. Think of it as a guided tour through the Silverlight 4 plug-
in, runtime libraries, and SDK. After you’ve read this book, you should be able to con-
fidently design, develop, and deliver your first rich interactive applications using Sil-
verlight. To facilitate the learning process, I’ve structured the book to get you
developing as soon as possible, while providing quality, in-depth content.

 Within each chapter, I’ve included a collection of devices to help you build a firm
understanding of Silverlight. The following list explains how each agent helps along
the journey:

■ Figures—Visual depictions that summarize data and help with the connection of
complex concepts.

■ Listings—Small, concise pieces of code primarily used for showing syntactical
formats. These individual segments generally can’t be run on their own.

■ Tables—Easy-to-read summaries.

In addition to these learning devices, my personal site http://10rem.net contains links
to the code samples used in this book. Additionally, http://silverlightinaction. com, the
web site for the first edition, includes assets, images, and services used in this book.

Audience
This book is intended for developers who want to create nontrivial applications using
Microsoft Silverlight 4. Though Silverlight provides numerous avenues for interactions
xxiii

Licensed to Devon Greenway <devon.greenway@gmail.com>

http://10rem.net
http://silverlightinaction. com

ABOUT THIS BOOKxxiv
with designers, this book primarily targets people who live and breathe inside Visual Stu-
dio. Team members in the integration role (those who take designs and implement in
Silverlight) will also find the information valuable and useful.

 This book assumes you have at least a passing familiarity with common web stan-
dards such as HTML, CSS, XML, and JavaScript. In addition, this book assumes you
have a background using the .NET framework and Microsoft Visual Studio. Although
we’ll be using C# as the primary development language, we won’t be reviewing the
C# language or explaining basic programming constructs such as classes, methods,
and variables.

 Experience with previous versions of Silverlight isn’t required for this book.

The bits: what you need
This book provides ample opportunity for hands-on learning. But, it also provides a
great deal of flexibility by allowing you to learn the material without using the hands-
on content or optional tools. If you want to get the greatest value out of this book and
use the hands-on opportunities, the following tools are recommended:

■ Visual Studio 2010 Pro or higher, or Visual Studio Web Developer 2010 (free)
■ Silverlight 4 tools for Visual Studio 2010, including the Silverlight 4 SDK and

WCF RIA Services 1.0
■ The Silverlight toolkit
■ Microsoft Expression Blend 4 (optional)
■ Microsoft Expression Blend 4 SDK for Silverlight 4 (installed with Blend 4) for

creating and using behaviors

You’ll find links to all of these tools at http://silverlight.net/GetStarted.

Roadmap
This book is designed to give you a guided tour of Silverlight 4. This tour will focus on
three main areas: introducing Silverlight, structuring your application, and complet-
ing the experience.

Part 1: Introducing Silverlight

Chapter 1 introduces Silverlight. The introduction shows you the advantages of Silver-
light and explains its place in the desktop and web applications arenas. The chapter
wraps up with a walkthrough of building your first Silverlight application.

 Chapter 2 covers one of the most fundamental parts of Silverlight: XAML. Though
most of the book covers XAML in one form or another, this chapter takes you from the
fundamentals all the way through the visual and logical trees, the dependency prop-
erty system, and XAML extensions.

 Chapter 3 explains how the Silverlight plug-in and application startup process
work. You’ll learn about the application object, the .xap file, and caching assemblies.
We’ll also look at how to instantiate the plug-in and use it on a web page.
Licensed to Devon Greenway <devon.greenway@gmail.com>

http://silverlight.net/GetStarted

ABOUT THIS BOOK xxv
 Chapter 4 builds on the browser integration introduced in chapter 3 and shows
how to manipulate the HTML DOM from Silverlight, work with the browser window,
and bridge the scripting and managed code worlds. This chapter also introduces the
Silverlight WebBrowser control, used to display web content within Silverlight itself
when running out of the browser.

 Chapter 5 takes us out of the Web and onto the desktop. Silverlight supports creat-
ing both sandboxed and elevated trust desktop applications. This chapter covers out-
of-browser applications, local file access, COM automation, custom window chrome,
working full screen, and using isolated storage.

 Chapter 6 covers the layout and rendering system and both 2D and 3D transforma-
tions. If you truly want to understand what’s happening when you put pixels on the
screen, knowledge of the layout and rendering system is a must. This is information that
I personally found deeply interesting; I hope you do as well. This chapter also covers 2D
transformations, such as skew and translate, as well as 3D plane and matrix projection.

 Chapter 7 builds on the layout information from chapter 6 to show how to use the
various types of layout panels in Silverlight including the Grid, StackPanel, and Canvas.

 Chapter 8 brings us the human connection. Though everything so far has been
about presenting, this is about gathering. We’ll learn how to use the keyboard, mouse,
ink, and touch interfaces to perform actions in our applications.

 Chapter 9 covers text input and output. I start off with a discussion of the text stack,
including information on antialiasing strategies and the common text properties of
controls and the TextBlock element. From there, I look at text input controls such as
the TextBox and RichTextBox, with a side journey into IME and international text.

 Chapter 10 introduces several of the nontext controls including the Button,
RadioButton, CheckBox, ComboBox, ListBox, and more. This chapter also covers the
base control types common to the stock and custom controls, such as ContentControl
and ItemsControl.

Part 2: Structuring your application

Chapter 11 covers binding. In Silverlight, if you find yourself assigning values directly
to controls in the code-behind, as the meme goes, “you’re doing it wrong.” Binding is
one of the most powerful features of Silverlight and is something we’ll build upon in
the chapters that follow.

 Chapter 12 builds on what we learned in chapter 11 to make use of the DataGrid
and DataForm controls. In this chapter, I also cover the use of data annotations to con-
trol display attributes for your entities.

 Chapter 13 also builds on chapter 11 and 12 to provide validation capabilities to
our applications. I cover exception-based validation, synchronous and asynchronous
validation using interfaces, validation using attributes, and creating your own custom
validators.

 Chapter 14 helps our Silverlight applications break out of the client and communi-
cate with servers on the Internet and intranet. In this chapter, we learn how to use
Licensed to Devon Greenway <devon.greenway@gmail.com>

ABOUT THIS BOOKxxvi
SOAP and REST web services, the underlying web stack, sockets, and even local con-
nections between Silverlight applications.

 Chapter 15 is a deep dive into using the Navigation Framework, windows, and dia-
logs in your application. We’ll look at how to structure your application as a series of
pages, handle URL addressing and mapping, and parameter passing. We’ll also learn
about the built-in dialogs and the ChildWindow class.

 Chapter 16 covers the MVVM pattern and unit testing. Without picking any one
specific MVVM (or ViewModel) framework, I show you the concepts behind the View-
Model pattern and how to implement them in your own application. This chapter
wraps up with information on testing Silverlight applications using the Silverlight Unit
Testing Framework.

 Chapter 17 covers one of the most exciting developments for business and other
data-oriented applications: WCF RIA Services. We’ll walk through creating a RIA Ser-
vices application using the Business Application template and look at everything from
query and update operations to business rules and validation to security.

Part 3: Completing the experience

Chapter 18 dives into vector graphics and brushes—key concepts for creating applica-
tions that move beyond the usual controls. This chapter also goes into depth on
effects and pixel shaders, wrapping up with information on how to build your own
custom shader in HLSL and C#.

 Chapter 19 covers working with the printer from Silverlight. Silverlight 4 intro-
duced the ability to print short documents or handle print-screen functionality. We go
over the API and wrap up this chapter with an implementation of a custom reporting
solution for short reports.

 Chapter 20 is all about media: video and audio. In this chapter, I go over the vari-
ous ways to present video and audio in your application, including IIS Smooth Stream-
ing and custom managed code codecs using MediaStreamSource. I also dive into the
webcam and microphone API covering basic use as well as creating your own Video-
Sink to manipulate the returned data.

 Chapter 21 is to still images as chapter 20 is to video and audio. In this chapter, we
look at how to use bitmap images in your application, including approaches for gener-
ating images at runtime.

 Chapter 22 covers animation and behaviors. You’ll learn how to use storyboards to
liven up your interface. After that, we take a look at using and creating behaviors to
package up your own reusable functionality, often containing animations.

 Chapter 23 covers styles, templates, and resources. We look at how to package up
style information for controls and how to create completely new templates using the
lookless control model.

 Chapter 24 teaches us how to create layout panels and custom controls. Though
you can do almost anything in Silverlight with a new control template, there are times
when creating your own control or panel is the way to go.
Licensed to Devon Greenway <devon.greenway@gmail.com>

ABOUT THIS BOOK xxvii
 Chapter 25 wraps up the book with information on creating the best possible
install experience for the plug-in, as well as the best possible loading experience for
your own applications.

Code conventions and downloads
All the code used in this book is presented in a monospace font like this. This code
can be in one of a variety of languages; the language used is indicated at the begin-
ning of the code block. For longer lines of code, a wrapping character may be used to
be technically correct while forming to the limitations of a printed page. Annotations
accompany many of the code listings and numbered cueballs are used when longer
explanations are needed.

 The source code for all of the examples in the book is available for download from
the publisher’s website at www.manning.com/Silverlight4inAction and from the
author’s website at http://10rem.net.

Author online
The purchase of Silverlight 4 in Action includes free access to a private forum run by
Manning Publications where you can make comments about the book, ask technical
questions, and receive help from the author and other users. You can access and sub-
scribe to the forum at www.manning.com/Silverlight4inAction. This page provides
information on how to get on the forum once you’re registered, what kind of help is
available, and the rules of conduct in the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It isn’t a commitment to any specific amount of participation on the part of the
author, whose contributions to the book’s forum remains voluntary (and unpaid). We
suggest you try asking the author some challenging questions, lest his interest stray!

 The Author Online forum and the archives of previous discussions will be accessi-
ble from the publisher’s web site as long as the book is in print.

 In addition to the Author Online forum available on Manning’s website, you may
also contact us regarding this book, or anything else, through one of the following
avenues:

■ Pete’s site and blog http://10rem.net
■ Pete’s Twitter account http://twitter.com/pete_brown

About the author
Pete Brown is a Community Program Manager with Microsoft on the developer com-
munity team led by Scott Hanselman, as well as a former Microsoft Silverlight MVP,
INETA speaker, and RIA Architect for Applied Information Sciences, where he worked
for more than 13 years. Pete’s focus at Microsoft is the community around client
application development (WPF, Silverlight, Windows Phone, Surface, Windows
Forms, C++, Native Windows API, and more).
Licensed to Devon Greenway <devon.greenway@gmail.com>

www.manning.com/Silverlight4inAction
http://10rem.net
http://10rem.net
http://twitter.com/pete_brown
www.manning.com/Silverlight4inAction

ABOUT THIS BOOKxxviii
 From his first sprite graphics and custom character sets on the Commodore 64 to 3D
modeling and design through to Silverlight, Surface, XNA, and WPF, Pete has always had
a deep interest in programming, design, and user experience. His involvement in Sil-
verlight goes back to the Silverlight 1.1 alpha application that he co-wrote and put into
production in July 2007. Pete has been programming for fun since 1984 and profes-
sionally since 1992.

 In his spare time, Pete enjoys programming, blogging, designing and building his
own woodworking projects, and raising his two children with his wife in the suburbs of
Maryland.

About the title
By combining introductions, overviews, and how-to examples, the In Action books are
designed to help learning and remembering. According to research in cognitive sci-
ence, the things people remember are things they discover during self-motivated
exploration.

 Although no one at Manning is a cognitive scientist, we are convinced that for learn-
ing to become permanent it must pass through stages of exploration, play, and, inter-
estingly, retelling of what is being learned. People understand and remember new
things, which is to say they master them, only after actively exploring them. Humans
learn in action. An essential part of an In Action book is that it’s example driven. It
encourages the reader to try things out, to play with new code, and explore new ideas.

 There is another, more mundane, reason for the title of this book: our readers are
busy. They use books to do a job or solve a problem. They need books that allow them
to jump in and jump out easily and learn just what they want just when they want it.
They need books that aid them in action. The books in this series are designed for
such readers.

Licensed to Devon Greenway <devon.greenway@gmail.com>

about the cover illustration
The figure on the cover of Silverlight 4 in Action is a “Janissary in Dress of Ceremony.”
Janissaries were the personal troops and bodyguards of the Ottoman sultan. The illus-
tration is taken from a collection of costumes of the Ottoman Empire published on
January 1, 1802, by William Miller of Old Bond Street, London. The title page is miss-
ing from the collection and we have been unable to track it down to date. The book’s
table of contents identifies the figures in both English and French, and each illustra-
tion bears the names of two artists who worked on it, both of whom would no doubt
be surprised to find their art gracing the front cover of a computer programming
book...two hundred years later.

 The collection was purchased by a Manning editor at an antiquarian flea market in
the “Garage” on West 26th Street in Manhattan. The seller was an American based in
Ankara, Turkey, and the transaction took place just as he was packing up his stand for
the day. The Manning editor did not have on his person the substantial amount of
cash that was required for the purchase and a credit card and check were both politely
turned down. With the seller flying back to Ankara that evening the situation was get-
ting hopeless. What was the solution? It turned out to be nothing more than an old-
fashioned verbal agreement sealed with a handshake. The seller simply proposed that
the money be transferred to him by wire and the editor walked out with the bank
information on a piece of paper and the portfolio of images under his arm. Needless
to say, we transferred the funds the next day, and we remain grateful and impressed by
this unknown person’s trust in one of us. It recalls something that might have hap-
pened a long time ago.
xxix

Licensed to Devon Greenway <devon.greenway@gmail.com>

ABOUT THE COVER ILLUSTRATIONxxx
 The pictures from the Ottoman collection, like the other illustrations that appear
on our covers, bring to life the richness and variety of dress customs of two centuries
ago. They recall the sense of isolation and distance of that period—and of every other
historic period except our own hyperkinetic present. Dress codes have changed since
then and the diversity by region, so rich at the time, has faded away. It is now often
hard to tell the inhabitant of one continent from another. Perhaps, trying to view it
optimistically, we have traded a cultural and visual diversity for a more varied personal
life. Or a more varied and interesting intellectual and technical life.

 We at Manning celebrate the inventiveness, the initiative, and, yes, the fun of the
computer business with book covers based on the rich diversity of regional life of two
centuries ago‚ brought back to life by the pictures from this collection.
Licensed to Devon Greenway <devon.greenway@gmail.com>

Part 1

Introducing Silverlight

The first part of this book starts by building your first Silverlight application
and then dives into what makes Silverlight tick. We’ll cover the markup language
used for creating the interface, drill into the application model, and look at inte-
grating with both the browser and the desktop. You’ll then learn about the lay-
out system and panels—two concepts critical for an effective UI design. The part
wraps up with mouse, touch, and keyboard input; display and input of text; and
a discussion of the common types of controls you’ll use in your projects.

Licensed to Devon Greenway <devon.greenway@gmail.com>

Licensed to Devon Greenway <devon.greenway@gmail.com>

Introducing Silverlight
First of all, let me thank you for starting at chapter 1. I’m one of those people who
tend to read magazines backwards and skim technology books, so I appreciate it
when someone reads a book’s chapters in order. Then again, maybe you read this
book backwards as well. In that case, you’ll find the “Hello World!” walkthrough in
this chapter to be a refreshingly simple take on building Silverlight applications
unencumbered with patterns such as Model View ViewModel (MVVM), words such
as DependencyProperty, and technologies such as Windows Communication Foun-
dation (WCF) Rich Internet Application (RIA) Services. For the rest of you, don’t
worry—we’ll cover each of those throughout the rest of the book, steadily building
our Silverlight skills as we go.

This chapter covers
■ Silverlight, the web, and WPF
■ The best applications for Silverlight
■ Getting started with Silverlight
■ Changes in Silverlight since the first edition of this book
■ Building your first Silverlight “Hello World!” application
3

Licensed to Devon Greenway <devon.greenway@gmail.com>

4 CHAPTER 1 Introducing Silverlight
 Since you’ve picked up a Silverlight book, you would probably like to know what
Silverlight is. Luckily, I’m horrible at marketing, so I’ll put it simply: Silverlight is a
cross-platform .NET runtime, cross-browser plug-in, and a set of Windows-based devel-
oper tools for building RIAs. At its heart, Silverlight is an implementation of the con-
cepts and standards from Windows Presentation Foundation (WPF) such as binding,
the property system, and Extensible Application Markup Language (XAML) in a cross-
platform version of the .NET Common Language Runtime (CLR) and libraries.

 There. I think that paragraph managed to get all of the acronyms defined for the
rest of the book. Then again, this is a Microsoft technology, so expect more acronyms
before we’re through.

 Silverlight runs on Windows and Mac as well as on Linux through the Moonlight
project. It runs on Windows Phone 7 and Nokia Symbian S60 phones. We’ve seen
demos of it running on set-top boxes connected to televisions and serving up ads and
content on the Xbox. Put simply, short of ASP.NET, Silverlight is the broadest reaching
technology ever produced by Microsoft.

 Silverlight applications work on the web as well as on the client. You can create vir-
tually any type of application in Silverlight, from web content, to widgets, to media
players to full-blown client applications.

 In this section, we’ll introduce Silverlight, looking at how it fits into the developer
stack both on the web and on the desktop. We’ll then look at some of the different
types of applications Silverlight is well suited for. Then, we’ll check out the features
and capabilities that have been added since the first edition of this book, before we
wrap up with a walkthrough of creating your own first Silverlight application.

 Silverlight got its start as a web page plug-in, so that’s where we’ll start as well.

1.1 Silverlight and the web
Silverlight sits in that interesting place between desktop applications and browser
applications. In many ways, it’s like a little traditional desktop application embedded
in HTML. Of course, the same can be said of many JavaScript Ajax applications,
themselves modeled on the code-on-the-client desktop application paradigm.

 Great frameworks such as jQuery and the impending, somewhat nebulously
defined HTML 5 further muddy the waters. Where’s Silverlight’s place on the web?
Why should you use Silverlight instead of these other technologies?

 I’ll give you a few reasons:

■ Silverlight is here, now.
■ Silverlight works across platforms and browsers, now.
■ Silverlight has top-tier media support, including digital rights management

(DRM), far more advanced than the proposed HTML 5 standards.
■ Silverlight is a no-brainer if you’re already a .NET developer looking to expand

to other platforms.

Don’t get me wrong; I think HTML 5, when fully spec’d and adopted, will be a great
thing for the web—both exciting and capable. Having said that, Silverlight has more
Licensed to Devon Greenway <devon.greenway@gmail.com>

5Silverlight and WPF
advanced authoring tools, faster execution, and more capabilities than HTML 5 is
expected to have. Rather than carrying out a zero-sum game, I believe HTML 5 will
raise the floor, driving the quality and experience up across the spectra of platforms
and developer tools.

 I don’t personally think that the code-on-the-client application development
approach is going to disappear. Though doom has been forecast for many major
development approaches over the years, few have actually declined when another rose
in popularity. Silverlight and HTML 5 will just provide more options for how to imple-
ment the solution you need in the most optimal way, using the tools you’re comfort-
able with and the skills you already have.

 Also remember that HTML/JavaScript and Silverlight aren’t mutually exclusive. Sil-
verlight applications can happily coexist on a page with Ajax applications, each com-
plementing the other with features that play to their strengths.

 Silverlight is far more than a web technology. Though it can live on a web page, it’s
also common to have out-of-browser Silverlight applications, either connected to ser-
vices or simply using resources on the client. In those instances, you may wonder
when to use WPF and when to use Silverlight.

1.2 Silverlight and WPF
Silverlight and WPF were born of the same ideas. WPF came first and broke the ground
required to make XAML a UI-friendly markup language. WPF also introduced us to
dependency properties and binding, storyboard-based animation, and subpixel-
rendered vector UI.

 But WPF is large and complex. It’s also deeply rooted in Windows, with no good
way to substitute alternate stacks for those it relies on. WPF also relies on the rather
outdated and web-unfriendly code access security model for application security. So,
when Microsoft decided to enter the RIA space with a CLR based vector UI technology,
they took the concepts and some of the code from WPF and reimplemented it in a
smaller, tighter, and more platform-independent way.

 Silverlight primarily is a subset of WPF with
some additions. Some of the additions, such as the
Visual State Manager, have been migrated back
from Silverlight into WPF. Others, such as Deep
Zoom, Media Stream Source, and the webcam and
microphone APIs, are currently Silverlight-only fea-
tures. Ignoring alternative solutions to the same
problems, figure 1.1 shows this relationship using
our friend, the Venn diagram.

 I recommend that developers new to both tech-
nologies learn Silverlight before learning WPF. In
general, you’ll find it easier to learn Silverlight first
and then scale up to WPF, should your needs dic-
tate. Silverlight is smaller, typically having a single

WPF Silverlight

Figure 1.1 Silverlight primarily is a
subset of WPF with a few extras
added. Ignoring alternative solutions
to the same problems, the places
where WPF differs most are in the
integration with the Windows OS and
the access to the full .NET framework.
Licensed to Devon Greenway <devon.greenway@gmail.com>

6 CHAPTER 1 Introducing Silverlight
approach to solving a given problem, whereas WPF may have several solutions for the
same task. Though Silverlight doesn’t have everything WPF has, Silverlight is an excel-
lent, capable development platform and can cover many types of applications we
would’ve previously written in Windows Forms, WPF, or even HTML.

1.3 Types of Silverlight applications
You can build just about anything you’d like using Silverlight. Of course, Silverlight is
better suited for some types of applications over others. For example, though possible,
you wouldn’t necessarily want to build an entire website using Silverlight; there are
better tools for the job.

 Silverlight excels at media. When Silverlight 1.0 was first introduced, one of the
few capabilities it had was an excellent media stack. Silverlight through version 4 has
built upon that to include new media capabilities such as smooth streaming, plugga-
ble codecs using the Media Stream Source API, and even the DRM technologies
required for the large content producers to adopt Silverlight.

 Silverlight’s early focus on media was both helpful and hurtful. Video on the web is
a great way to gain product adoption, especially when you have a capable high-def
video technology. Early on, many potential Silverlight developers failed to see past the
media roots and missed the rich business capabilities Silverlight provides.

 Starting with versions 3 and 4, Silverlight gained serious business capabilities. From
simple things such as sync and async validation, to patterns such as MVVM and Prism,
and entire middle-tier frameworks such as WCF RIA Services, Silverlight showed itself
to be a mature platform, able to absorb the best practices from other areas and build
upon them.

 Though business and media applications certainly are great staples, another fun
application type is games. Silverlight has good support for casual games, including the
ability to generate bitmaps on the fly, create sound from bits, loop audio in the back-
ground, and more. The community has successfully ported over physics and gaming
engines to Silverlight, making it even easier to create complex casual games. Future
versions of Silverlight are expected to be even more gaming friendly; we’ve just seen
the tip of the iceberg so far.

 There are many other types of Silverlight applications ranging from ads, to photo
viewers, to social media clients, to analogs for virtually every type of major desktop and
web application. Some of those, such as desktop applications, weren’t possible with
Silverlight 2, the version used in the first edition of this book. Let’s take a high-level
view of what has changed in that time.

1.4 What’s new since the first edition
The first edition of this book was written for Silverlight 2. Silverlight 3 and 4 have
added an amazing number of new capabilities to the platform in all areas, from core
capabilities, to device access, to the introduction of both trusted and sandboxed out-
of-browser client applications. The advancements in Silverlight can be loosely
grouped into four main areas: business and client applications, media and graphics,
user interaction, and text.
Licensed to Devon Greenway <devon.greenway@gmail.com>

7What’s new since the first edition
1.4.1 Features for business and client applications

When the first edition of this book was released, Silverlight 2 was just starting to gain
adoption. It was a brand new technology from Microsoft (the managed code version
was, anyway), one with strong competition. Though Silverlight 2 could have been used
to build rich business applications, it didn’t have the chops to be a strong contender
in that space yet. Many of the features in this section are useful in applications of all
sorts; I hate to classify them under the heading of “business,” but that’s the largest
consumer of these features.

 Validation, covered in chapter 13, was one of the biggest new features for business
applications. Silverlight didn’t add just validation but included support for validation
through attributes, validation through exceptions, and even asynchronous validation,
all of which work with the Silverlight controls. Silverlight even made it possible to
completely customize the style of the validation information provided to the end-user.

 One technology that builds heavily on the validation stack is WCF RIA Services
(chapter 17). A good bit of the validation functionality rolled into the Silverlight run-
time actually came from that project. WCF RIA Services provides a way to share valida-
tion and logic between the client and server as well as a framework for validation, data
access, and security, shareable between Silverlight and other clients.

 WCF RIA Services builds upon the WCF stack, but it’s not the only enhancement there.
The Silverlight networking stack, described in chapter 14, was greatly enhanced to sup-
port in-browser and out-of-browser operation, as well as SOAP 1.2 and a number of new
protocol enhancements. These changes make it easier to use Silverlight behind a fire-
wall where the services often have different requirements than those on the Internet.

 Despite the promises of a paperless office, printing (covered in chapter 19) is still a
staple of business applications everywhere. Printing in Silverlight is optimized for rela-
tively short reports or documents, as well as for the equivalent of print-screen opera-
tions. It’s super simple to use—as easy as working with XAML on the pages.

 Finally, we come to a biggie: out-of-browser sandboxed and trusted applications.
Covered in section 5.1, out-of-browser mode was one of the most significant enhance-
ments made to how Silverlight operates. Silverlight 3 introduced the basic out-of-
browser mode with a sandbox roughly equivalent to the one in browser. Silverlight 4
opened up whole new classes of applications by adding the trusted application mode
with its reduction in prompts, increased file access, and (on Windows) access to IDis-
patch COM Automation servers. All of these features add up to a platform that’s more
than capable of being the client for our complex business applications.

 One of the next major areas of enhancement for Silverlight is media.

1.4.2 Media and graphics enhancements

Silverlight was first and best known for its media capabilities. The Silverlight media
team didn’t rest on that, instead pumping out enormous advances in media in both
Silverlight 3 and 4.

 Silverlight 2 included a Media Stream Source API for pushing media through the
pipeline. But that API required that the bits be preencoded into one of the formats
Licensed to Devon Greenway <devon.greenway@gmail.com>

8 CHAPTER 1 Introducing Silverlight
natively understood at the time. Though useful, this could lead to double-encoding
and made transcoding even more difficult.

 Silverlight 3 added support for pushing raw video and audio out of custom
Media Stream Source implementations, as covered in section 20.6. As a result, you
can write a managed codec for any type of media or even do something crazy like I
did and use it to generate audio and video in real time for an emulator. Another
option for generating video or at least images in real-time is the new bitmap API cov-
ered in section 21.2.

 Speaking of codecs, one of the new codecs added was H.264 for video. H.264 has
emerged as one of the most popular codecs for TV and video for devices. It was a logi-
cal choice for an additional native Silverlight format because now content producers
can use even more of their content without reencoding. To appeal to the same audi-
ence, Silverlight 3 and 4 also continued to improve DRM capabilities, including the
addition of offline DRM.

 A new and exciting feature for Silverlight 4 is built-in support for video and audio
capture devices or, specifically, webcams and microphones. Though not yet quite at
the level that would allow you to create a real-time video chat application, the support
does open up a number of new possibilities for application development. Webcam
and microphone support are both covered in section 20.7.

 Under the covers, Silverlight now has support for all formats of portable network
graphics (PNG), something that was only partially supported in previous versions. Sil-
verlight 4 also has support for pixel shaders and a set of built-in performance-tuned
effects such as drop-shadow and blur, covered in section 18.4.

 With all of these advancements plus a number of performance optimizations and
even additions such as the Silverlight Media Framework, Silverlight continues its lead-
ership in the media space, offering everything you need to build rich media-centric
applications.

 Sometimes, what you want is more than just a media experience; you want an
application that can be truly interactive. Silverlight has your back there, too.

1.4.3 User interaction

Since Silverlight 2, user interaction has received a number of important enhancements.
Two of the most requested features, mouse scroll wheel and right-click mouse support
(both covered in section 8.2), are now baked into the Silverlight core runtime.

 One of the newer and hotter user interaction mechanisms is multi-touch, covered
in section 8.3. The ability to support multipoint interaction with the user interface,
especially in kiosk and handheld/tablet scenarios, is quickly becoming a requirement
for many applications. Silverlight now includes core runtime support for multipoint
touch interaction with Silverlight application.

 Another user interaction piece missing from Silverlight 2 was the easy ability to
show dialogs and pop-up windows (simulated) within your applications. Silverlight
now not only has those (covered in chapter 15) but also notification toast, covered in
chapter 5.
Licensed to Devon Greenway <devon.greenway@gmail.com>

9Getting started with Silverlight development
 Finally, all the interaction in the world has no value if your user can’t read the text
on the screen. Happily, Silverlight includes plenty of improvements in text as well.

1.4.4 Text

By far, the biggest improvement to text since Silverlight 2 is proper ClearType font
rendering. Silverlight 2 performed only grayscale rendering, giving text a fuzzy
appearance unless you carefully picked your color schemes.

 While ClearType may be important for font rendering in general, right-to-left or
bidirectional (BiDi) text is something that’s absolutely essential for the correct ren-
dering of many non-European languages. Silverlight supports not only BiDi text but
also input method editors (IMEs) for complex composite characters for many lan-
guages, especially eastern languages.

 Finally, one great improvement to text rendering and entry is the inclusion of the
new rich text box control. This control allows you to display or edit text that includes
multiple fonts and styles. The control can even embed other elements that can be
interactive when the control is in read-only mode.

 ClearType, BiDi and IME text, and the rich text box are all covered in chapter 9,
along with insight into the text rendering stack in general and how to apply these new
features to text throughout Silverlight.

 Those are the major items. Of course, there are many more improvements sprin-
kled throughout. In addition to capturing the major items in this book, I’ve also
added information based on the experience gained from working with Silverlight
since its inception as well as recent knowledge gained from working closely with the
Silverlight product team. In important areas, such as layout and rendering, I’ve gone
deeper than needed by the average developer to provide some insight into the inner
workings of Silverlight.

 That was a lot to cover. I hope you enjoy reading it as much as I enjoyed writing it.
Before we start covering individual feature areas, we’ll need to get our development
environment set up and build a small “Hello World!” application.

1.5 Getting started with Silverlight development
If you’re a .NET developer, you’re already well on your way to becoming a Silverlight
developer. Silverlight builds on the .NET framework and uses the same tools as other
.NET framework applications. You’ll use Visual Studio and, optionally, Expression
Blend to build your applications. You’ll be able to turn to CodePlex and other open-
source sites for sample code to use. And, of course, you’ll have a huge community of
peers to lean on when trying to figure out those hard problems.

 Before you can do any of that, though, you need to make sure your development
environment is set up.

1.5.1 Setting up your development environment

Silverlight 4 requires Visual Studio 2010 to work with projects and build the solutions.
The multitargeting support of Visual Studio 2010 means that your applications can tar-
get either Silverlight 3 or Silverlight 4, once you have the Silverlight 4 tools installed.
Licensed to Devon Greenway <devon.greenway@gmail.com>

10 CHAPTER 1 Introducing Silverlight
 If you don’t already have a version of Visual Studio 2010, you can get the free
Visual Web Developer 2010 Express from Microsoft at www.microsoft.com/express/
Web/. The free web developer tools will enable you to create Silverlight 4 applications
as well as ASP.NET applications. If you want additional features and tools as well as
the ability to create more than just web applications, upgrade to Visual Studio 2010
Pro or higher.

 Once you have installed Visual Studio 2010, visit http://silverlight.net/getstarted/
and use the Web Platform Installer to install the Silverlight 4 tools and SDK as well as
any optional components.

 The Silverlight tools for Visual Studio 2010 and the SDK contain everything you
need to develop Silverlight 4 applications, including WCF RIA Services 1.0.

 Optionally, you may want to install Microsoft Expression Blend 4. The link for that
is also available on the Get Started page on Silverlight.net. Expression Blend 4 pro-
vides a designer-friendly set of tooling that makes creating complex animations,
behaviors, and layouts a snap.

 Microsoft and the community have created a number of helpful sites that will
make your learning process go smoothly.

1.5.2 Helpful sites

The official Microsoft Silverlight developer site is http://silverlight.net. There you’ll
find videos, sample applications, tutorials, add-ons and the community forums, all
designed to help you be the best and most efficient Silverlight developer you can be.

 In addition to Silverlight.net, http://channel9.msdn.com includes interviews with
community and product team members, as well as tutorials. Silverlight.TV, located on
Channel 9 at http://channel9.msdn.com/shows/SilverlightTV/, is a great resource
for timely insight into the Silverlight products and releases.

 The MSDN documentation for Silverlight 4 may be found at http://bit.ly/SL4MSDN.
 Also, as a completely shameless plug, you may want to subscribe to my own blog at

http://10rem.net. You can also follow me on twitter; my id is @pete_brown.
 Finally, one other place you’ll want to visit is Dave Campbell’s Silverlight Cream:

http://bit.ly/SilverlightCream. Dave has done a spectacular job, daily compiling the
best Silverlight posts on the web. From Dave’s link blog, you’ll get an idea of what
other community member blogs to subscribe to.

 At this point, your developer machine is set up, you’ve subscribed to a few blogs, cre-
ated an account at Silverlight.net, and maybe even poked around a little on the sites.
Before we get into the features in detail in the rest of the book, I thought it would be
good to see just how easy it is to build your first Silverlight “Hello World!” application.

1.6 Building your first Silverlight web application
Expectations have come a long way since the days of C, where just getting “Hello
World!” to compile and output to the screen was considered a great accomplishment.
Rather than rehash that tired example, I think it would be neat if our “Hello World!”
example actually did something interesting-like hit a public service on the web. Twit-
ter is the ubiquitous example, and far be it for me to buck a trend.
Licensed to Devon Greenway <devon.greenway@gmail.com>

http://silverlight.net/getstarted/
www.microsoft.com/express/Web/
www.microsoft.com/express/Web/
http://silverlight.net
http://channel9.msdn.com
http://channel9.msdn.com/shows/SilverlightTV/
http://bit.ly/SL4MSDN
http://10rem.net
http://bit.ly/SilverlightCream

11Building your first Silverlight web application
 Using Twitter—Twitter search in this example—also allows us to explore a number
of the features of Silverlight, including layout, network access, LINQ to XML, and more.

1.6.1 Project setup

Open Visual Studio 2010. Choose File > New Project and create a new Silverlight
Application project. The name isn’t important but I chose FirstSilverlightApplication for
mine. Figure 1.2 shows the dialog with the correct project type selected and named.

Once you click OK, you’ll be presented with another dialog. This dialog provides
options specific to the Silverlight project. Figure 1.3 shows the dialog.

Figure 1.2 Visual Studio 2010 New Project dialog with the correct project type selected and named

Figure 1.3 The New
Silverlight Application
options dialog
Licensed to Devon Greenway <devon.greenway@gmail.com>

12 CHAPTER 1 Introducing Silverlight
Typically, you’ll leave the options at their default values and just click through this dia-
log. But it’s important to understand what’s available to you. Table 1.1 describes each
of the options presented in this dialog.

Once the new solution is created, you’ll see two projects. The first one is the Silver-
light application; the second is the website. The website project contains a folder Cli-
entBin, which will contain the compiled output (.xap file) from your Silverlight
application. It also contains two test pages that may be used to test your Silverlight
application. By default, the .aspx page is set as the startup page but you may use the
HTML page if you later plan to host on a non-.NET server. (Yes, Silverlight applications
may be hosted by any HTTP server and not just Internet Information Services [IIS]
running ASP.NET.)

 With the project open and ready, it’s time to turn to the user interface.

1.6.2 User interface

Open the MainPage.xaml file; it’s usually open by default when you create a new Sil-
verlight project. MainPage.xaml is the start page for your application, set as such by a
single line of code inside App.xaml.cs.

 Inside the opening and closing Grid tags, add the following XAML markup:

<Button Content="Get Tweets"
 Height="23"
 HorizontalAlignment="Left"
 Margin="12,12,0,0"
 x:Name="GetTweets"
 VerticalAlignment="Top"
 Width="75"/>
<ListBox x:Name="TweetList"
 Margin="12,41,12,12"/>

Table 1.1 The New Silverlight Application dialog options

Option Description

Host in a new
website

Silverlight applications, even out-of-browser apps, are served from a website. You
can also serve them from a static HTML page on the file system but this is a limit-
ing option. You’ll typically want to leave this checked, unless you have an existing
website you want to use when building your application.

New Web Project
Name

Provide a project name for the website. The default is usually sufficient.

New Web Project
Type

If you’re an ASP.NET programmer and have a preference as to the ASP.NET project
type, set it here. Otherwise, leave at the default.

Silverlight Version This allows you to select either Silverlight 3 or Silverlight 4. For this book, every
example will assume Silverlight 4.

Enable WCF RIA
Services

Check this if you want to link the web project to the Silverlight project as a WCF RIA
Services endpoint. This enables additional compile-time tooling.
Licensed to Devon Greenway <devon.greenway@gmail.com>

13Building your first Silverlight web application
That markup creates two elements on the page: a Button and a ListBox. You could’ve
dragged those controls from the toolbox onto the design view but that would be hard
to describe in detail in this book. In the design view, you should end up with a form
that looks like figure 1.4.

 Next, double-click the Get Tweets button to create an event handler in the code-
behind. Incidentally, this code, like all code in Silverlight, will run on the client inside
the Silverlight plug-in. The event handler will be used in the next section, where we
make a call to the Twitter search API.

1.6.3 Calling Twitter search

The next step is to call out to the Twitter search API. Fill out the event handler we just
created in the code-behind to include this code:

private void GetTweets_Click(object sender, RoutedEventArgs e)
{
 WebClient client = new WebClient();

 client.DownloadStringCompleted += (s,ea) =>
 {

Figure 1.4 The Visual Studio 2010 IDE showing the markup correctly entered for MainPage.xaml
Licensed to Devon Greenway <devon.greenway@gmail.com>

14 CHAPTER 1 Introducing Silverlight
 System.Diagnostics.Debug.WriteLine(ea.Result);
 };

 client.DownloadStringAsync(
 new Uri("http://search.twitter.com/search.atom?q=silverlight"));
}

The code here does a few interesting things. First, it creates an instance of WebClient,
one of the easiest to use network clients in Silverlight. It then sets up an event handler
using a lambda expression to respond to the results. Finally, it asynchronously calls the
method to download the result string from search.twitter.com. The search is for tweets
mentioning “silverlight”.

TIP The lambda expression approach here simply uses an anonymous dele-
gate (an unnamed function) as the event handler. The beauty of this
approach is that it doesn’t clutter up your code with tons of event handlers
that are really part of discrete processes. You can learn more about lambda
expressions in the C# language on MSDN at http://bit.ly/CSharpLambda.

The network call is asynchronous because all network calls in Silverlight are asynchro-
nous. This can take a little getting used to at first but is easy to deal with once you’ve
done it a few times. Chapter 14 goes into detail on how to use the asynchronous meth-
ods as well as the reasons behind them.

 If you run the application, click the Get Tweets button, and view the output win-
dow, you’ll see that you’ve already built enough to call Twitter and pull back the
results in XML format. Not bad for a few lines of code! Our next step is to parse the
results and display them in the ListBox control.

1.6.4 Parsing the results and binding the ListBox

If you look in the output window from your last run, you’ll see that the result format is
an AtomPub document with an entry node for each of the results. In Silverlight, you
can parse Atom a couple ways: you can use the built-in parsing of the Syndication-
Feed class or you can use LINQ to XML to parse the results.

 LINQ to XML is a great technology and has many uses above and beyond AtomPub
document parsing, so I’m going to go that route. We’ll end up with a little more code
than the alternative approach, but I think it’s worth it.
TWEET CLASS

Before we do the actual parsing, we’ll need to create a simple class to hold the content
we’re interested in. In Visual Studio, right-click the Silverlight project and choose Add
> Class. Name the class Tweet.cs and fill it out so it looks like this:

public class Tweet
{
 public string Message { get; set; }
 public Uri Image { get; set; }
}

Licensed to Devon Greenway <devon.greenway@gmail.com>

http://bit.ly/CSharpLambda

15Building your first Silverlight web application
 Save that class and move back to MainPage.xaml.cs. Somewhere inside the Main-
Page class, add the following collection variable. Above the GetTweets_Click method
would be a perfect location:

private ObservableCollection<Tweet> _tweets =
 new ObservableCollection<Tweet>();

Be sure to right-click the ObservableCollection type name and choose Resolve to
add the appropriate using statement to your code. This collection will be the location
where we place all of the parsed tweets. It’s also what we’ll bind the ListBox to. We’ll
use the ObservableCollection class in chapter 11 when we cover binding.
PARSING WITH LINQ TO XML

LINQ is something you may have used on other .NET projects. If so, you’ll feel right at
home because it’s supported in Silverlight as well. If not, it’s pretty easy to pick up.
Think of it almost like SQL but in code and working on objects and written backwards,
with no database in sight. Okay, it’s not exactly like SQL, but it’s a great query lan-
guage that lets you perform iterations and filters in a single line of code. In any case,
you won’t need to be a LINQ expert for this example.

 Right-click the project and choose Add Reference; add a reference to System.
Xml.Linq. Figure 1.5 shows the dialog with the correct reference selected.

 Once the reference is added, replace the Debug.WriteLine statement and the
event handler declaration in the code-behind with the code from listing 1.1. This
code performs the actual parsing of the XML document returned by Twitter search
and loads the tweets collection with the processed results.

Figure 1.5 The Add Reference dialog with System.Xml.Linq selected for LINQ to XML functionality
Licensed to Devon Greenway <devon.greenway@gmail.com>

16 CHAPTER 1 Introducing Silverlight
client.DownloadStringCompleted += (s, ea) =>
{
 XDocument doc = XDocument.Parse(ea.Result);
 XNamespace ns = "http://www.w3.org/2005/Atom";

 var items = from item in doc.Descendants(ns + "entry")
 select new Tweet()
 {
 Message = item.Element(ns + "title").Value,

 Image = new Uri((
 from XElement xe in item.Descendants(ns + "link")
 where xe.Attribute("type").Value == "image/png"
 select xe.Attribute("href").Value
).First<string>()),
 };

 foreach (Tweet t in items)
 {
 _tweets.Add(t);
 }
};

Be sure to right-click and resolve the XDocument class in order to add the correct
using statement to the top of your code.

 The code does some interesting processing. It first loads the results into an XDoc-
ument B so that it may be processed using LINQ statements. It then goes through
the document selecting each entry element C and creating a new Tweet object
from each D. The Tweet object itself is filled out by first grabbing the title ele-
ment’s value and assigning that to the Message and then doing another LINQ query
to find the link element that has a type of image/png and assigning that to the Image
property E. Finally, the code loops through each of the results and adds them to
the tweets collection F.

 The namespace declaration at the top is necessary because the Atom namespace is
the default xmlns in the document. When parsing XML, you need to have the default
namespace declared or the results will be empty.

 With the parsing out of the way, the next step is to bind the ListBox to the _tweets
collection so that it has a place to pull the data from.
BINDING THE LISTBOX

Silverlight is all about binding data. Chapter 11 goes into detail on how binding works
and how to use it. For now, it’s important to understand that rarely in Silverlight will
you find yourself assigning data directly to controls. Instead, you’ll set up binding rela-
tionships and let the elements pull the data as it becomes available.

 In this case, we want to set the ListBox’s ItemsSource property to our collection,
so that it knows to load its individual items from the collection when the collection is
updated. Since we’re using an ObservableCollection, the ListBox will be alerted
whenever an item is added to or removed from that collection.

Listing 1.1 Processing the Twitter search results using LINQ to XML

B Atom
namespace

C
D

E

F

Licensed to Devon Greenway <devon.greenway@gmail.com>

17Building your first Silverlight web application
Add the following line of code to the MainPage constructor, under the Initialize-
Component call:

TweetList.ItemsSource = _tweets;

That’s all you need to do to set up the binding relationship for the ListBox. Run the
application and retrieve the tweets. You should end up with something that looks like
figure 1.6.

 That’s not really what we want, though. All we see are a bunch of type names. We
want to display images and text. The reason you see the type name is because this is
the default item template behavior. By default, the individual items are presented as
their ToString call. This works fine for a string or numbers or similar, but with com-
plex types? Not so much.

 Our final step in this walkthrough is to pretty up the ListBox results so we can see
something more meaningful.

1.6.5 Making the ListBox contents more meaningful

To make the ListBox present items using a format of our own choosing, we need
to use a DataTemplate. DataTemplates are covered in detail in section 11.4. For now,
understand that they’re a chunk of XAML that’ll be used to format each item in
the list.

Figure 1.6 The
default presentation
for the ListBox
items leaves
something to be
desired. It looks like
WinForms or
something! I demand
more from our first
Silverlight example.
Licensed to Devon Greenway <devon.greenway@gmail.com>

18 CHAPTER 1 Introducing Silverlight
 The DataTemplate for this ListBox will contain two columns for each row. The
first column will contain the picture of the tweeter; the second will contain the body
of the tweet.

 Open MainPage.xaml and replace the entire ListBox declaration with the XAML
from listing 1.2.

<ListBox x:Name="TweetList"
 HorizontalContentAlignment="Stretch"
 ScrollViewer.HorizontalScrollBarVisibility="Disabled"
 Margin="12,41,12,12">
 <ListBox.ItemTemplate>
 <DataTemplate>
 <Grid Margin="10">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition Width="*" />
 </Grid.ColumnDefinitions>

 <Image Source="{Binding Image}"
 Grid.Column="0"
 Margin="3"
 Width="50"
 Height="50"
 Stretch="UniformToFill"/>

 <TextBlock Text="{Binding Message}"
 FontSize="14"
 Margin="3"
 Grid.Column="1"
 TextWrapping="Wrap" />
 </Grid>
 </DataTemplate>
 </ListBox.ItemTemplate>
</ListBox>

In this markup, we first tell the ListBox that we want its content to take up the full
width of the ListBox, without any horizontal scrolling B. The next bit of markup
defines the grid, with an autosized first column and a full-width second column C.
Then, we bind an Image to the Image property D of the Tweet class and a TextBlock
to the Message property E.

 The end result of the work we’ve done, including this fine ListBox DataTemplate,
is shown in figure 1.7.

 I’ve been working with Silverlight and WPF for a number of years now, but it never
fails to impress me just how easy it is to have complete control over what your applica-
tion displays. I remember the days when you had to purchase specialty controls to do
something as simple as display an image inside a ListBox. Now, all you need to do is a
little XAML. And, if you don’t feel like typing in XAML, you can crack open Expression
Blend and use it to design the DataTemplate interactively on the design surface. As a
famous dark lord of the Sith once said, “Impressive…most impressive.”

Listing 1.2 DataTemplate to format the tweets

B

DataTemplate applied
to each Tweet entity

C

D

E

Licensed to Devon Greenway <devon.greenway@gmail.com>

19Summary
1.7 Summary
Silverlight is one of the most promising development platforms to come from Micro-
soft since the original release of .NET a decade ago. Silverlight fills a niche that sits sol-
idly between traditional desktop applications and web applications, while offering
capabilities that both lack. It does all this via a small plug-in that takes only minutes to
install and runs on different browsers and different operating systems.

 The code your write and the skills you gain are portable between the desktop and
the web, devices in your pocket, game consoles in your living room, and the set-top
box on your TV. That’s a pretty good return on your investment.

 Silverlight has come a long way since the Silverlight 2 version covered in the origi-
nal edition of this book. It’s amazing just how much the product teams have been able
to pack into the product in those two years. Before I joined Microsoft, I heard rumors
about people with sleeping bags in their offices and coffee delivered by the gallon. I
suspect I now know which team they work for, and I have to say that I’m “super”
impressed with the results.

 Your environment is all set up, and you’ve whetted your appetite by building a sim-
ple “Hello World!” application in Silverlight 4. In the next chapter, we’ll dive right
into the meat of what makes Silverlight UI work: XAML. From there, we’ll take a tour
of all the features this platform has to offer.

Figure 1.7 The end result
of the Twitter search “Hello
World!” example looks good!
Licensed to Devon Greenway <devon.greenway@gmail.com>

Core XAML
Before the sibling inventions of WPF and Silverlight, individual programming lan-
guages and platforms had a variety of ways of specifying the user interface (UI). Most
of them touted the concept of separating the UI from the implementation code. In
some cases, such as on the web with HTML and CSS, the representation of the UI
was theoretically separated from its underlying implementation but not truly so
until tried and true patterns, such as Model-View-Controller (MVC), were applied.
In others, such as Windows Forms, the separation was due only to hidden autogen-
erated, uneditable files that contained the language-specific code necessary to cre-
ate the UI.

 With WPF, Microsoft introduced XAML to provide a cleaner separation of con-
cerns between the definition of the user interface and the code that makes it work.

This chapter covers
■ The basics of XAML, including how to represent objects,

properties, events, commands, and behaviors
■ The structures Silverlight uses when working with XAML
■ Using and creating XAML extensions
■ Creating XAML at runtime
■ Tooling choices for working with XAML
20

Licensed to Devon Greenway <devon.greenway@gmail.com>

21XAML basics
This not only allows for some sleek design patterns such as the MVVM or ViewModel
pattern (discussed in chapter 16 and here referred to simply as the ViewModel pat-
tern) but also makes it easier to create tooling.

 Consider Windows Forms for a moment. The definition of the interface was so tied
to the compiler and the existing tooling that it was extremely difficult for a third party
to create a tool that designed (or assisted in the design) of the UI. The files were hid-
den, made in multiple implementation languages, and had that “don’t even think of
editing this file” comment at the top of the generated code. It was good at the time
but the world has moved on.

 XAML helps fix those problems—it lets you, not the tools, own your UI. XAML
files are editable individually and in relative isolation from the rest of the project.
You can edit XAML in Expression Blend, Visual Studio, Notepad, Kaxaml, and other
tools listed at the end of this chapter, thereby making it easier to incorporate into
your own specific workflow. Even hand-edited XAML is round-trippable with tooling
because the XAML rules are well-defined and consistent internally and across imple-
mentation languages.

 XAML is so fundamental to Silverlight that this entire chapter is devoted to intro-
ducing you to it. Though XAML appears in just about every chapter in this book, we’ll
cover the core concepts here and ensure sufficient understanding so that, when you
open an XAML file in Visual Studio or Notepad, you can read and understand what it’s
doing, even as you’re still learning Silverlight. For those of you interested in the guts
of XAML processing and use, I’ve included information on using tree structures, creat-
ing your own converters, and working with the property system.

2.1 XAML basics
XAML is a declarative language that enables you to create and initialize .NET objects in
XML. Everything you can do in XAML you can do in code. But to make the most of the
platform and its tooling, you’ll want to embrace the code-plus-markup philosophy
rather than go with a 100 percent code solution.

 The XAML format enables you to easily visualize a hierarchy of elements while sep-
arating presentation from code. This separation is possible because each XAML ele-
ment maps to a .NET type. Each attribute within an element corresponds to a property
within a .NET type. This concept is illustrated in figure 2.1.

 Figure 2.1 shows three code equivalents of an XAML segment. Note that the
TextBlock element in the XAML code corresponds to an initialization statement
within the code segments. This initialization occurs because, each time an element is
created in XAML, the corresponding .NET type’s default constructor is called behind
the scenes.

 To understand the structure of an XAML file, it’s important to understand the rep-
resentation and use of objects, namespaces, properties, and events.
Licensed to Devon Greenway <devon.greenway@gmail.com>

22 CHAPTER 2 Core XAML
2.1.1 Objects

Objects (or instances of types) are represented in XAML using XML elements. The ele-
ments have the same name as the associated class and are considered instantiated
upon declaration in the markup.

NOTE Any type you use in XAML must have a default (parameterless) con-
structor. Silverlight XAML currently has no provision for passing arguments
into a constructor or an initialization function, so you’ll need to make sure
your types can be initialized using defaults and properties alone.

Certain types of objects may contain one or more of other nested objects. For exam-
ple, a button may contain a single content object, which itself may contain one or
more other objects. In listing 2.1, the UserControl contains the Grid, the Grid con-
tains the Button, and the Button contains a StackPanel, which is a panel that by
default lays its children out in a vertical list. The StackPanel itself contains three
TextBlock elements.

Result:

Listing 2.1 XAML showing a hierarchy of nested objects

{tb = wpf.TextBlock()
tb.Text = "Hello, World"
tb.FontFamily = "Verdana"

IronRuby

TextBlock tb = new TextBlock();
tb.Text = "Hello, World";
tb.FontFamily = "Verdana";

C#

Dim tb As New TextBlock
tb.Text = "Hello, World"
tb.FontFamily = "Verdana"

Visual Basic

<TextBlock x:Name="tb"
 Text="Hello, World"
 FontFamily="Verdana"/>

XAML

Figure 2.1 XAML markup represents
.NET objects. Anything you can do in
XAML you can do in code.
Licensed to Devon Greenway <devon.greenway@gmail.com>

23XAML basics
XAML:
<UserControl x:Class="XamlElements.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">
 <Grid x:Name="LayoutRoot">
 <Button Height="100" Width="150">
 <StackPanel>
 <TextBlock Text="First Line" />
 <TextBlock Text="Second Line" />
 <TextBlock Text="Third Line" />
 </StackPanel>
 </Button>
 </Grid>
</UserControl>

The UserControl and Button are both content controls, a concept we’ll discuss in
greater detail in chapter 10. For now, it’s important to understand that a content con-
trol may only have one direct child element, typically a panel that holds other ele-
ments. The x:Name and x:Class properties are part of the namespace specified by the
xmlns:x statement. More on that in a moment… The Grid and StackPanel are both
Panels, which is a type that has a Children collection to allow multiple contained ele-
ments. We’ll discuss panels in chapter 7.

 The ability to flexibly nest objects permits a composition approach to UI design.
Rather than having to purchase or custom-code a button control that allows, say, three
lines of text and an image, you can simply compose those into an appropriate layout
panel and make that panel the content of the button control.

 The nesting of objects is part of what gives us an object tree. We’ll cover that in
more detail shortly.

 Now that we’ve covered the basic structure of an XAML file, let’s talk about how
you differentiate your SuperButton control from my SuperButton control, even
though we used the same control name: namespaces.

2.1.2 Namespaces

A namespace provides a way of organizing related objects within a common grouping.
These groupings, or namespaces, give you a way to define where the compiler should
look for a type. Namespaces in XAML are similar to namespaces in other languages
such as C# and Java. To specify where to look, you reference a namespace within an
element of an XAML file, typically the root or outermost element. Listing 2.2 illus-
trates the use of the two default namespaces.

<UserControl x:Class="Xaml01.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Width="400" Height="300">
 <Grid x:Name="LayoutRoot" Background="White">
 <TextBlock x:Name="myTextBlock" Text="Hello" />
 </Grid>
</UserControl>

Listing 2.2 A basic XAML file referencing the two default namespaces

Outermost UserControl

Nested Grid

Button nested in Grid

StackPanel
inside Button

Three
TextBlocks in
StackPanel
Licensed to Devon Greenway <devon.greenway@gmail.com>

24 CHAPTER 2 Core XAML
NOTE WPF supports the Name property in both the namespace prefixed with
x: and the default namespace, allowing them to be specified as x:Name or
just Name. Silverlight supports only x:Name. For compatibility with Silverlight
markup, the recommended approach for WPF is to use x:Name.

As listing 2.2 illustrates, you’re permitted to reference multiple namespaces within a sin-
gle XAML file. When you reference multiple namespaces, each namespace must be
uniquely prefixed. For instance, the x prefix in this example is used in association with
the http://schemas.microsoft.com/winfx/2006/xaml namespace. At the same time,
the http://schemas.microsoft.com/winfx/2006/xaml/presentation namespace
doesn’t use a prefix.
STANDARD XAML NAMESPACES

The two namespaces we just mentioned will be used in almost every Silverlight appli-
cation you work with or see. These namespaces are generally defined in the following
manner:

■ xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"—
This is the default Silverlight namespace. It provides your applications with core
Silverlight elements. For that reason, this namespace generally omits a prefix,
making it the default namespace within the page. Such approach enables you
to reference elements within this specific namespace without having to include
the prefix.

■ xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"—This is the
common XAML namespace. It provides functionality that’s common across
XAML. It’s important to remember that XAML is used by other technologies
such as WPF, Oslo, and Windows Workflow Foundation (WF), all of which need
access to common features such as Name, Key, and Class properties.

NOTE In addition to the standard namespaces, the Silverlight runtime sup-
ports the Silverlight-specific http://schemas.microsoft.com/client/2007
namespace as a default namespace. But, you should use the previously
mentioned http://schemas.microsoft.com/winfx/2006/xaml/presentation
namespace as the default because Expression Blend, Visual Studio, and other
tools are all configured to recognize that namespace. The use of standard
namespaces also makes it easier to share your markup with WPF applications.

REFERENCING OTHER LIBRARIES

When another assembly is referenced, it gets copied into the configuration-specific
Bin folder of your Silverlight application. In fact, when you compile your Silverlight
application, it gets compiled into an assembly that’s placed in this directory. We’ll dis-
cuss the application model later; for now, in order to reference these assemblies, you
need to define a new XAML namespace, which includes a prefix, CLR namespace, and
assembly. Listing 2.3 illustrates this concept.

Licensed to Devon Greenway <devon.greenway@gmail.com>

25XAML basics
<UserControl x:Class="Xaml02.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:my="clr-namespace:MyNamespace;assembly=MyAssembly"
 Width="400" Height="300">
 <Grid x:Name="LayoutRoot">
 <my:MyControl x:Name="myControl1" />
 </Grid>
</UserControl>

As listing 2.3 illustrates, referencing other elements, including custom elements, only
requires you to provide the namespace and assembly name of the external element.
Of course, you’ll still need to reference the external assembly so that its types are
accessible to code and to the XAML parser/compiler. The name my was used as a con-
venience here; you can use any identifier that makes sense to you.

 If the referenced type is defined in the same assembly as the markup, you’ll still
need to create an XAML namespace reference for it. But the ;assembly= clause of the
namespace definition may optionally be left out, as illustrated in listing 2.4.

<UserControl x:Class="Xaml03.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:controls="clr-namespace:Xaml03.Controls"
 Width="400" Height="300">
 <Grid x:Name="LayoutRoot">
 <controls:MyControl x:Name="myControl1" />
 </Grid>
</UserControl>

Namespaces are typically declared within the outermost element of an XAML file, as in
listing 2.4, but that doesn’t always need to be the case. When using XAML generated
by tools, you’ll sometimes find namespaces defined at lower levels, particularly within
control templates (covered in chapter 23). In those cases, the namespace only applies
to the elements within the enclosing type (and the enclosing element itself) rather
than to the XAML document as a whole.

 Listing 2.5 shows the definition of a namespace at the Grid level rather than at the
UserControl level. The namespace could also have been defined at the MyControl
level, but then we’d need to do it for each instance of MyControl. This approach is
sometimes taken when using control templates and other situations where you want to
minimize possible namespace prefix collisions, while still preserving the ability to ref-
erence external code.

<UserControl x:Class="Xaml04.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

Listing 2.3 Using a control from an external assembly

Listing 2.4 Using a control from a different namespace in the same assembly

Listing 2.5 Namespace declaration at a level lower than the root

External
assembly
reference

Use
assembly

Namespace
reference

Use
namespace
Licensed to Devon Greenway <devon.greenway@gmail.com>

26 CHAPTER 2 Core XAML
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Width="400" Height="300">
 <Grid x:Name="LayoutRoot"
 xmlns:controls="clr-namespace:Xaml03.Controls">
 <controls:MyControl x:Name="myControl1" />
 <controls:MyControl x:Name="myControl2" />
 <controls:MyControl x:Name="myControl3" />
 </Grid>
</UserControl>

The namespace shown in listing 2.5 will only apply to the grid LayoutRoot and its chil-
dren. Controls outside of that hierarchy won’t have access to the controls namespace
or prefix. You’ll typically find this inside complex styles in resource dictionaries. The
same approaches to referencing namespaces and assemblies apply to resource diction-
aries, pages, and other types commonly associated with XAML. Though it’s important
to understand the rules for referencing namespaces, in practice, the tooling will cre-
ate the namespaces for you either by IntelliSense or when you drag and drop items
into the markup editor or onto the design surface.

2.1.3 Properties

There are two ways to reference properties in XAML: in line with the element as
you would any XML attribute and as a nested subelement. Which you should
choose depends on what you need to represent. Simple values are typically repre-
sented with inline properties, whereas complex values are typically represented with
element properties.
INLINE PROPERTIES

The use of an inline property requires a type converter that will convert the string rep-
resentation—for example, the "Black" in Background="Black"—into a correct
underlying .NET type (in this case, a SolidColorBrush). We’ll cover type converters
later in this chapter. The example in listing 2.6 shows a built-in type converter in use
to convert the string "Black" for the inline property Background.

<UserControl x:Class="Xaml05.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Width="400" Height="300">
 <Grid x:Name="LayoutRoot" Background="Black" />
</UserControl>

ELEMENT PROPERTIES

Another way to specify properties is to use the expanded property element syntax.
While this can generally be used for any property, it’s typically required only when you
need to specify something more complex than the inline syntax will easily allow. The
syntax for element properties is <Type.PropertyName>value</Type.PropertyName>, as seen
in listing 2.7.

Listing 2.6 Specifying a property value in line using an XML attribute

Namespace
declaration

Inline
property
Licensed to Devon Greenway <devon.greenway@gmail.com>

27XAML basics
<UserControl x:Class="Xaml06.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Width="400" Height="300">
 <Grid x:Name="LayoutRoot">
 <Grid.Background>
 Black
 </Grid.Background>
 </Grid>
</UserControl>

The use of the string to invoke the type converter is, in its end result, identical to
using <SolidColorBrush Color="Black" /> in place of "Black". Though these exam-
ples are rarely seen in practice, the more complex example of setting the background
to a LinearGradientBrush is common, so we’ll cover that next.

 Rather than have the value represented as a simple string such as "Black", the
value can be an element containing a complex set of elements and properties such as
the <LinearGradientBrush> seen in listing 2.8.

<UserControl x:Class="Xaml07.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Width="400" Height="300">
 <Grid x:Name="LayoutRoot">
 <Grid.Background>
 <LinearGradientBrush>
 <LinearGradientBrush.GradientStops>
 <GradientStop Offset="0.0" Color="Black" />
 <GradientStop Offset="0.5" Color="LightGray" />
 <GradientStop Offset="0.5" Color="DarkGray" />
 <GradientStop Offset="1.0" Color="White" />
 </LinearGradientBrush.GradientStops>
 </LinearGradientBrush>
 </Grid.Background>
 </Grid>
</UserControl>

Now that we know how to specify properties in markup, let’s dive deeper into how
those properties work.

2.1.4 Dependency properties

Dependency properties are part of the property system introduced with WPF and used in
Silverlight. In markup and in consuming code, they’re indistinguishable from stan-
dard .NET CLR properties, except that they can be data bound, serve as the target of
an animation, or set by a style.

TIP A property can’t be the target of an animation or obtain its value
through binding unless it’s a dependency property. We’ll cover binding in
detail in chapter 11.

Listing 2.7 Specifying a property value using property element syntax

Listing 2.8 A more complex example of the property element syntax

Property
element syntax

Background property

Type of brush
More property
elements
Licensed to Devon Greenway <devon.greenway@gmail.com>

28 CHAPTER 2 Core XAML
To have dependency properties in a class, the class must derive from DependencyObject
or one of its subclasses. Typically, you’ll do this only for visuals and other elements that
you’ll use within XAML and not in classes defined outside of the user interface.

 In regular .NET code, when you create a property, you typically back it by a private
field in the containing class. Storing a dependency property differs in that the loca-
tion of its backing value depends upon its current state. The way that location is deter-
mined is called value precedence.
VALUE PRECEDENCE

Dependency properties obtain their value from a variety of inputs. What follows is the
order the Silverlight property system uses when assigning the runtime values of
dependency properties, with the highest precedence listed first:

■ Active or hold animations—Animations will operate on the base value for the
dependency property, determined by evaluating the precedence for other
inputs. In order for an animation to have any effect, it must be highest in prece-
dence. Animations may operate on a single dependency property from multiple
levels of precedence (for example, an animation defined in the control tem-
plate and an animation defined locally). The value typically results from the
composite of all animations, depending on the type being animated.

■ Local value—Local values are specified directly in the markup and are accessed
via the CLR property wrappers for the dependency property. Because local val-
ues are higher in precedence than styles and templates, they’re capable of over-
riding values such as the font style or foreground color defined in the default
style for a control.

■ Templated properties—Used specifically for elements created within a control or
data template, their value is taken from the template itself.

■ Style setters—These are values set in a style in your application via resources
defined in or merged into the UserControl or application resource dictionar-
ies. We’ll explore styles in chapter 23.

■ Default value—This is the value provided or assigned when the dependency
property was first created. If no default value was provided, normal CLR defaults
typically apply.

The strict precedence rules allow you to depend on behaviors within Silverlight, such
as being able to override elements of a style by setting them as local values from within
the element itself. In listing 2.9, the foreground of the button will be red as set in the
local value and not black as set in the style. The local value has a higher precedence
than the applied style.

<UserControl x:Class="Xaml08.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Width="400" Height="300">

Listing 2.9 Dependency property precedence rules in practice
Licensed to Devon Greenway <devon.greenway@gmail.com>

29XAML basics
 <UserControl.Resources>
 <Style x:Key="ButtonStyle" TargetType="Button">
 <Setter Property="Foreground" Value="Black" />
 <Setter Property="FontSize" Value="24" />
 </Style>
 </UserControl.Resources>
 <Grid x:Name="LayoutRoot">
 <Button Content="Local Values at Work"
 Style="{StaticResource ButtonStyle}"
 Foreground="Red" />
 </Grid>
</UserControl>

The Style tag in UserControl.Resources is a reusable asset that sets some key proper-
ties for our button.

 We’ll cover creating dependency properties in chapter 24 when we create our own
controls. For the purposes of this chapter, it’s sufficient to understand that the major-
ity of the properties you’ll refer to in XAML are dependency properties. One type of
dependency property that has a slightly odd appearance is an attached property.

2.1.5 Attached properties

Attached properties are a specialized type of dependency property that is immediately
recognizable in markup due to the TypeName.AttachedPropertyName syntax. For exam-
ple, Canvas.Left is an attached property defined by the Canvas type. What makes
attached properties interesting is that they’re not defined by the type you use them
with; instead, they’re defined by another type in a potentially different class hierarchy.

 Attached properties allow flexibility when defining classes because the classes
don’t need to take into account every possible scenario in which they’ll be used and
define properties for those scenarios. Layout is a great example of this. The flexibility
of the Silverlight layout system allows you to create new panels that may never have
been implemented in other technologies—for example, a panel that lays elements out
by degrees and levels in a circular or radial fashion versus something like the built-in
Canvas that lays elements out by Left and Top positions.

 Rather than have all elements define Left, Top, Level, and Degrees properties (as
well as GridRow and GridColumn properties for grids), we can use attached properties.
The buttons in listing 2.10, for example, are contained in panels that have greatly dif-
fering layout algorithms, requiring different positioning information. In this case,
we’ll show a fictional RadialPanel in use.

<UserControl x:Class="Xaml09.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:panels="clr-namespace:Xaml09.Panels"
 Width="400" Height="600">
 <StackPanel x:Name="LayoutRoot">
 <Canvas Width="400" Height="200">

Listing 2.10 Attached properties in use
Licensed to Devon Greenway <devon.greenway@gmail.com>

30 CHAPTER 2 Core XAML
 <Button Canvas.Left="10"
 Canvas.Top="50"
 Width="200" Height="100"
 Content="Button in Canvas" />
 </Canvas>

 <panels:RadialPanel Width="400" Height="400">
 <Button panels:RadialPanel.Degrees="25"
 panels:RadialPanel.Level="3"
 Width="200" Height="100"
 Content="Button in Radial Panel" />
 </panels:RadialPanel>
 </StackPanel>
</UserControl>

Attached properties aren’t limited to layout. You’ll find them in the animation engine
for things such as Storyboard.TargetProperty as well as in other places of the
framework.
PROPERTY PATHS

Before we wrap up our discussion of properties, there’s one concept left to under-
stand: property paths. Property paths provide a way to reference properties of objects in
XAML both when you have a name for an element and when you need to indirectly
refer to an element by its position in the tree.

 Property paths can take several forms, and may dot-down into properties of an
object. They can also use parentheticals for indirect property targeting as well as for
specifying attached properties. Here are some examples of property paths for the
Storyboard target property:

<DoubleAnimation Storyboard.TargetName="MyButton"
 Storyboard.TargetProperty="(Canvas.Left)" ... />

<DoubleAnimation Storyboard.TargetName="MyButton"
 Storyboard.TargetProperty="Width" ... />
...
<Button x:Name="MyButton"
 Canvas.Top="50" Canvas.Left="100" />

We’ll cover property paths in detail in chapter 11 when we discuss binding.
 Properties are one of the pieces that define an object’s interface. Because XAML

doesn’t allow us to do anything specifically with methods, the only other part of the
interface left is the definition of events.

2.1.6 Events

Events in Silverlight are used much like events in any other .NET technology. The
sender of the event wants to notify zero or more receivers of something that hap-
pened. Silverlight enhances that, though, in that it may want events to work their way
up the object tree, from the event source to the root element.

 Silverlight and WPF introduce the concepts of routed events and event bubbling.
These allow events to be generated at one level of the tree, and then provide an

Attached
properties
Licensed to Devon Greenway <devon.greenway@gmail.com>

31XAML basics
opportunity to be handled by each level above, until reaching the root of the tree—an
effect known as bubbling.

 The main difference between routed events and standard CLR events, to the han-
dler of the event, is that the event sender isn’t necessarily the original source of the
event. In order to get the original source of the event, you need to check the Origi-
nalSource property of the RoutedEventArgs supplied to the handler.

 User-created events, such as the ones you might create in your own code, can’t
bubble. Instead, bubbling is reserved only for built-in core events such as MouseLeft-
ButtonDown. Bubbled events include a Handled property in the event arguments, as
well as the standard RoutedEventArgs information.

EVENTS REFERENCED IN XAML

In XAML, referencing an event handler defined in code-behind is simple. In fact, if
you use Visual Studio when doing so, the event handler in the code-behind can be cre-
ated for you automatically.

 For example, if we have a button in XAML:

<Button Click="MyButton_Click" />

We can wire it up to an appropriate event handler in the code-behind:

private void MyButton_Click(object sender, RoutedEventArgs e)
{
 MessageBox.Show("Click event");
}

The approach is a good shortcut for hooking up events. When working in XAML, the
tooling in Visual Studio will even let you define a new event handler or use an existing
one. One slight advantage of this approach is that you don’t necessarily need to define
a name for your button.
EVENTS REFERENCED IN CODE

To attach an event handler from code, you follow the same approach you would for
any normal CLR event: create a new event handler and add it to the event using the +=
syntax. So, if we have the same button as earlier and give it a name that can be refer-
enced from the code-behind:

<Button x:Name="MyButton" />

WPF routed events
If you’re familiar with the eventing system in WPF, you may wonder what happened to
the Tunneling and Direct types of routed events. Silverlight doesn’t currently im-
plement these. In fact, Silverlight doesn’t include the EventManager available in WPF,
so routed events can’t be created in user code. Some clever folks at control vendors
have implemented their own analogue that allows for user-created routed events but
isn’t built into the core Silverlight runtime.
Licensed to Devon Greenway <devon.greenway@gmail.com>

32 CHAPTER 2 Core XAML
We can then wire up the event handler in the constructor. Do this after the Initial-
izeComponent call so that MyButton is valid:

public MainPage()
{
 InitializeComponent();

 MyButton.Click += new RoutedEventHandler(MyButton_Click);

}
private void MyButton_Click(object sender, RoutedEventArgs e)
{
 MessageBox.Show("Click event");
}

Both approaches are equally valid. The approach you use will depend primarily on
your personal style. My preferred approach when not using commands is to wire up
events in the code-behind, in the constructor as shown.

 Silverlight 4 added the ability to use commands as a way to clean up event handling
and wire-up code. Rather than specify an event handler, you can specify one or more
command properties in XAML.

2.1.7 Commands

One of the more architecturally significant additions to Silverlight 4 was the addition
of WPF-style commands. Commands allow you to remove the event handler middle-
man from your code-behind when you want something other than the code-behind to
handle the action. For example, if you follow the ViewModel pattern, you probably
want the button clicks to be handled by the view model and not the code-behind. Typ-
ical event handler code to forward the event might look like this:

private void Save_Click(object sender, RoutedEventArgs e)
{
 _viewModel.Save();
}

That’s extra goo that you don’t necessarily want in your view. It complicates unit test-
ing and makes the code-behind an essential ingredient. It also requires separate view-
model properties to set the IsEnabled property on the Save button. It’s not terrible,
but it’s not great. The command code that eliminates the code-behind goo might look
like this:

 // no code in code-behind required :)

I love the code I don’t have to write. It’s all handled in the markup and the view
model, so you don’t need any forwarding code at all. The controls in the view bind to
a command that exists somewhere in the binding path. Assuming you have the page’s
data context set to the view model, the markup to bind to the exposed view-model
command looks like this:

<Button x:Name="SaveButton"
 Height="25"
Licensed to Devon Greenway <devon.greenway@gmail.com>

33XAML basics
 Width="75"
 Content="Save"
 Command="{Binding SaveCommand}" />

The related bits of the view model might look something like this, assuming you’ve
implemented an EmployeeSaveCommand that implements ICommand:

private EmployeeSaveCommand _saveCommand;
public ICommand SaveCommand
{
 get { return _saveCommand; }
}

In this way, you avoid having your code-behind stand in the way of separating your
view from your view model. Commands also provide other capabilities such as auto-
matically disabling the associated controls if the command can’t be run at that time
via an implicit binding of the ICommand.CanExecute method with IsEnabled property
of the Button.

 Commands are supported on any control that inherits from ButtonBase as well as
on the Hyperlink control (not to be confused with HyperlinkButton, which inherits
from ButtonBase).

 We’ll create our own commands in chapter 16 when we discuss how to build appli-
cations using the ViewModel pattern. Another interesting bit of attached functionality
you may see in the markup is a behavior.

2.1.8 Behaviors

Behaviors are bits of designer-friendly packaged interactivity introduced in Silverlight 3,
originally tied to Expression Blend to make it easy to drag functionality directly onto
the design surface and associate it with
controls. Behaviors included capabilities
such as physics, sound, automatic shad-
ows, drag and drop, and even nonvisual
behaviors such as one that’s used to wire
up the window-close events to a view
model in WPF. The appeal was much
broader than just Blend users, though, so
the functionality was released for all Sil-
verlight and WPF developers to enjoy.

 The SDK includes a number of
default behaviors as well as a ton of
community-created behaviors for both
Silverlight and WPF on the Expression
community site. Figure 2.2 shows the
Behaviors section of the Assets panel in
Expression Blend, listing the eight
included behaviors.

Figure 2.2 The default behaviors in Expression
Blend include items from utilitarian, to sound
playing, to complex interactions such as mouse
drag and drop. Additional behaviors may be found
on the Microsoft Expression Community Gallery
at http://gallery.expression.microsoft.com.
Licensed to Devon Greenway <devon.greenway@gmail.com>

http://gallery.expression.microsoft.com

34 CHAPTER 2 Core XAML
 Behaviors typically don’t require using any code because they’re wired up using
XAML. For example, listing 2.11 shows the markup required to use the MouseDragEle-
mentBehavior, one of the stock behaviors, with a Border element.

<UserControl
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:i="clr-namespace:System.Windows.Interactivity;

➥ assembly=System.Windows.Interactivity"
 xmlns:il="clr-namespace:Microsoft.Expression.Interactivity.Layout;

➥ assembly=Microsoft.Expression.Interactions"
 x:Class="SilverlightApplicationBehavior.MainPage"
 Width="640" Height="480">

 <Grid x:Name="LayoutRoot" Background="White">

 <Border Width="100" Height="100"
 BorderBrush="Black" Background="Orange"
 BorderThickness="2">

 <i:Interaction.Behaviors>
 <il:MouseDragElementBehavior/>
 </i:Interaction.Behaviors>

 <TextBlock Text="Drag Me"
 HorizontalAlignment="Center"
 VerticalAlignment="Center" />
 </Border>
 </Grid>
</UserControl>

All of the code required to implement the dragging of the border is encapsulated
within the behavior. Behaviors are a great way to package up common UI functionality
that would augment other UI elements.

 We’ll discuss behaviors in more detail in chapter 22, where we’ll also create our
own custom behavior.

 Objects, properties, events, commands, and behaviors make up the majority of
what you’ll see when you look at an XAML file. At this point, you should be able to
read XAML and have a general understanding of what you’re looking at. Another
thing you may see in XAML is object and property names inside curly braces. We’ll
cover that later in this chapter, but first we’ll go through what Silverlight sees when it
looks at XAML source and builds out the in-memory representation of the elements.

2.2 Object trees and namescope
In the previous sections, I mentioned the concept of an object tree. In order to
understand the object tree, you need to understand the layout and contents of
XAML files. Once you do, it’s easier to conceptualize the object tree and its related
concept, namescope.

 A common misconception is that Silverlight creates XAML for any objects you create
in code. In fact, the opposite is what happens: Silverlight creates objects from XAML.

Listing 2.11 A MouseDragElementBehavior attached to a Border element

Required behavior
namespaces

Attached
behavior
Licensed to Devon Greenway <devon.greenway@gmail.com>

35Object trees and namescope
Objects you create in code go right into the trees as their native .NET object form. Ele-
ments in XAML are processed and turned into objects that go into the same tree.

2.2.1 Object trees

Now that we’ve covered the structure of an XAML file, you can look at one and quickly
realize it represents a hierarchical tree of objects starting from the root (typically a
UserControl or Page) and going all the way down to the various shapes, panels, and
other elements that make up the control templates in use. That hierarchical structure
is known as an object tree. Figure 2.3 shows a hypothetical object tree.

 Each element has the concept of a parent (the containing element) and may have
a child or children in panel-type collection properties, content properties, or other
general-purpose properties.

NOTE Unlike WPF, Silverlight doesn’t expose the concept of a logical tree.
Operations that, in WPF, might return logical tree information will, in Silver-
light, return visual tree information. This distinction is really only impor-
tant if you’re coming from the WPF world or porting code from WPF that
happened to use tree traversal functions.

The visual tree is a filtered view of the object tree. While the object tree contains all
types regardless of whether they participate in rendering (collections, for example),
the visual tree contains only those objects with a visual representation. Figure 2.4
shows the visual tree; note the lack of nonvisual objects such as collections.

UserControl

Grid
(LayoutRoot)

ElementCollection
(Children)

TextBlock TextBlockListBox

ItemCollection
(Items)

TextBlock TextBlock TextBlock

Figure 2.3 A hypothetical
object tree showing not only
the visual elements such as
TextBlocks and
ListBoxes, but also the
internal collections used to
Licensed to Devon Greenway <devon.greenway@gmail.com>

36 CHAPTER 2 Core XAML
WALKING THE VISUAL TREE

Silverlight includes the VisualTreeHelper static class to assist in examining the visual
tree. Using the GetChild and GetChildrenCount methods, you can recursively walk the
tree from any element down as deeply as you want. The GetParent method allows you
to trace the tree from a given element up to the visual tree root, as seen in listing 2.12.

Result:
System.Windows.Controls.StackPanel
System.Windows.Controls.Border
System.Windows.Controls.Grid
System.Windows.Controls.Grid
VisualTree.MainPage

XAML:
<UserControl x:Class="VisualTree.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Width="400" Height="300">
 <Grid x:Name="LayoutRoot" Background="White">
 <Grid>
 <Border BorderThickness="1" BorderBrush="Black"
 Margin="10">
 <StackPanel Margin="10">
 <TextBlock x:Name="MyTextBlock"
 Text="Hello!" />
 <TextBlock Text="Lorem ipsum" />
 </StackPanel>
 </Border>
 </Grid>
 </Grid>
</UserControl>

Listing 2.12 Using the VisualTreeHelper to walk the tree from an element to the root

Grid
(LayoutRoot)

TextBlock TextBlockListBox

TextBlock TextBlock TextBlock

UserControl

Figure 2.4 The visual tree
representation of the object
tree from figure 2.3. Note that
only visual elements, not
collections, are represented.

Start
element

Sibling
element
Licensed to Devon Greenway <devon.greenway@gmail.com>

37Object trees and namescope
C#:
public MainPage()
{
 InitializeComponent();

 Loaded += new RoutedEventHandler(MainPage_Loaded);
}

void MainPage_Loaded(object sender, RoutedEventArgs e)
{
 DependencyObject o = MyTextBlock;

 while((o = VisualTreeHelper.GetParent(o)) != null)
 {
 Debug.WriteLine(o.GetType().ToString());
 }
}

We start the tree walk in the Loaded event handler because the tree isn’t valid until the
UserControl has been loaded. We know the walk is complete when we hit an element
with a null parent—the root of the tree.

 You’ll notice that, when you generate an object tree for an entire application,
you’ll have multiple instances of controls, each of which contains elements with the
same name. Namescope, the next topic, is how Silverlight ensures that the names
remain uniquely addressable across the breadth of the object tree.

2.2.2 Namescope

Earlier in this chapter we saw that you can define an x:Name for elements in XAML.
This provides a way to find the control via code and perform operations on it, or han-
dle its events.

 Consider for a moment the idea of having multiple controls on the same page,
each of which contains named elements. To handle this situation, XAML introduces
the concept of a namescope. A namescope simply ensures that the names across
instances of controls don’t collide. This is similar in concept to the approach taken by
ASP.NET to mangle control names to ensure they remain unique. Listing 2.13 shows
an example where namescope is required to prevent duplicate control names.

XAML:
<UserControl x:Class="NamescopeExample.MyNestedControl"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Width="200" Height="150">
 <Grid x:Name="LayoutRoot" Background="White">
 <Button x:Name="MyButton" />
 </Grid>
</UserControl>

XAML:
<UserControl x:Class="NamescopeExample.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

Listing 2.13 Without namescope, the name MyButton would be duplicated in the tree

Start in
loaded event

Stop when
at root

MyButton in
UserControl
Licensed to Devon Greenway <devon.greenway@gmail.com>

38 CHAPTER 2 Core XAML
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="clr-namespace:NamescopeExample"
 Width="400" Height="300">
 <StackPanel x:Name="LayoutRoot" Background="White">
 <local:MyNestedControl x:Name="Control1" />
 <local:MyNestedControl x:Name="Control2" />
 <local:MyNestedControl x:Name="Control3" />
 </StackPanel>
</UserControl>

With three instances of the user control in listing 2.13, how does the XAML parser pre-
vent naming collisions between all the MyButtons in the object tree but still allow you
to uniquely reference each one? Namescope. As you’d expect, using the same name
twice within the same XAML namescope will result in a parsing error. This is similar to
the compile-time error you’d receive if you gave two variables the same name within
the same scope level in a C# application.

NOTE Silverlight 2 had a namescope bug that manifested itself when you
named an element inside a tooltip (or pop up) attached to items in an
ItemsControl such as a ListBox. The resulting error indicated that there
were duplicate names in the object tree. This was fixed in Silverlight 3.

In practice, you typically don’t need to worry about namescopes unless you’re loading
and parsing XAML at runtime using the createFromXaml JavaScript API or Xaml-
Reader.Load managed API. The namescopes are created for you automatically at run-
time when you instantiate your controls.

 Now that we understand namescope, let’s go back to one of the other things you’ll
run into in XAML: the curly brace syntax for markup extensions.

2.3 XAML extensions and type converters
Now that we know the structure and rules for XAML files, let’s look at a something that
allows us to bend those rules a little: extensions.

 XAML allows you to represent almost anything using the object element and prop-
erty attribute syntaxes. But some things can get cumbersome to do that way. For that
reason, XAML includes the concept of extensions in the form of markup extensions
and type converters. Silverlight also includes the concept of a value converter but,
because that’s used almost exclusively with binding, we’ll cover it in chapter 11.

 You’ll want to internalize both concepts to understand what’s happening when
XAML is parsed or what those curly braces mean. Though you can’t currently create
your own markup extensions, type converters will give you a powerful way to extend
XAML using your own code. We’ll start with markup extensions and then move into
using existing type converters and, later, creating our own type converters.

2.3.1 Markup extensions

When viewing XAML of any complexity, you’re going to come across things such as
Style="{StaticResource MyStyle}" or Text="{Binding LastName}". The curly
braces indicate that you’re looking at a markup extension. Markup extensions are

Multiple
Instances
Licensed to Devon Greenway <devon.greenway@gmail.com>

39XAML extensions and type converters
code that can provide a value to a dependency property. In the case of the Style
example, the markup extension provides a full style object to the Style property.

 You can’t create new markup extensions but you can use the built-in set, which cur-
rently consists of StaticResource, Binding, and TemplateBinding. Listing 2.14 illus-
trates the use of StaticResource and Binding.

<UserControl x:Class="MarkupExtensionExample.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Width="400" Height="300">
 <UserControl.Resources>
 <Style x:Key="TextBlockStyle"
 TargetType="TextBlock">
 <Setter Property="FontSize"
 Value="25" />
 <Setter Property="Foreground"
 Value="DarkGray" />
 </Style>
 </UserControl.Resources>

 <StackPanel x:Name="LayoutRoot">
 <TextBlock Text="{Binding LastName}"
 Style="{StaticResource TextBlockStyle}" />
 <TextBlock Text="{Binding FirstName}"
 Style="{StaticResource TextBlockStyle}" />
 <TextBlock Text="{Binding MiddleInitial}"
 Style="{StaticResource TextBlockStyle}" />
 </StackPanel>
</UserControl>

In the case of the Text example in listing 2.14, the markup extension is providing a
value from the data binding engine. We’ll cover data binding in chapter 11.

 Markup extensions are a great way to get some additional functionality out of
XAML, without needing to use a verbose object syntax. One downside is that you can’t
create them yourself. The two extensions you can create yourself are type converters
and value converters.

2.3.2 Type converters

Type converters are used throughout the .NET framework to handle translation of one
CLR type to another. Specifically in the context of XAML, type converters are used to
convert string representations such as “Black” into their equivalent .NET CLR objects.
In the case of the example in listing 2.14, a SolidColorBrush with Color set to Black
is converted to a string that resolves to the color Red=0, Green=0, Blue=0, Alpha=255.
This is shown in listing 2.15.

<UserControl x:Class="TypeConverterExample.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">

Listing 2.14 The Binding and StaticResource markup extensions in XAML

Listing 2.15 A type converter in action

Style
resource

Binding
extension

Reused
style
Licensed to Devon Greenway <devon.greenway@gmail.com>

40 CHAPTER 2 Core XAML
 <Grid x:Name="LayoutRoot"
 Background="Black">
 </Grid>

</UserControl>

There are enough built-in type converters that you may never have to write a new one
yourself. But they’re an extensibility point in XAML and, therefore, provide you with
flexibility to do some things that XAML may not handle natively.
CREATING CUSTOM TYPE CONVERTERS

First, since you need to decorate your type with a type converter attribute, you’ll need
access to the source. If you don’t have access to the type source and can specify the
converter just for a single property of your own class, that’ll work too. The difference
is that a converter specified at the property level will only work for that one property
in that one class and not in all instances of that type in all properties and in all classes.

 Next, you’ll need to decide on a string format. The options are wide open, with the
exception that you can’t use the curly braces {} because they initialize the processing
of markup extensions (discussed earlier in this chapter). Listing 2.16 shows a sample
type converter that converts a string into a Border object. The format for the border is
<color> <thickness>, where color is a named color or an eight-digit hex color and thickness
is a number greater than or equal to zero.

public class BorderTypeConverter : TypeConverter
{
 public override bool CanConvertFrom(
 ITypeDescriptorContext context,
 Type sourceType)
 {
 return sourceType == typeof(string);
 }

 public override object ConvertFrom(
 ITypeDescriptorContext context,
 CultureInfo culture,
 object value)
 {
 string val = value as string;

 if (val == null) return null;

 string[] parts = val.Split(' ');

 if (parts.Length < 2)
 return null;

 SolidColorBrush brush = (SolidColorBrush)XamlReader.Load(
 "<SolidColorBrush " + "xmlns=" +
 "'http://schemas.microsoft.com/winfx/2006/xaml/presentation'"
 + " Color='" + parts[0] + "' />");

 double d;
 double.TryParse(parts[1], out d);

Listing 2.16 A custom type converter that converts from a string to a border (C#)

Brush type
converter

TypeConverter
base class

XAML only
requires strings

Delimit
on space

Guard against
malformed strings

XamlReader.Load
to parse color

Parse thickness
Licensed to Devon Greenway <devon.greenway@gmail.com>

41XAML extensions and type converters
 Thickness thick = new Thickness(d);

 Border border = new Border();
 border.BorderThickness = thick;
 border.BorderBrush = brush;

 return border;
 }
}

Note that this example, in order to be production ready, would require additional
guard conditions and the ability to delimit on commas as well as spaces.

 To create a custom type converter, you must first inherit from the TypeConverter
base class. For the type converter to be used in XAML, you only need to support
converting from the string type. More general-purpose converters will support addi-
tional types.

 Note the hack I use to get the color information—it allows us to use any color rep-
resentation that the XAML parser can parse. XamlReader.Load is a nifty function that
has lots of uses, not only for its intended purpose of creating branches of the object
tree at runtime but also for simply invoking the parser as we did here. Some things in
Silverlight are simply easier to parse in XAML than they are in code—color is one
of them.

NOTE The Silverlight color enumeration understands only a few of the
many named colors, and the Silverlight Color class has no parse method to
get the remaining colors or the hex representation. Using the XAML parser
via XamlReader.Load() in listing 2.16, you reduce hundreds of lines of pars-
ing code down to a single line. We’ll cover more on the XamlReader class in
the next section.

Listing 2.17 illustrates a simple example of our custom type converter. Note that this
example also shows how to declare a dependency property—something we’ll cover in
more detail in chapter 24.

public class TestClass : Control
{

 [TypeConverter(typeof(BorderTypeConverter))]
 public Border Border
 {
 get { return (Border)GetValue(BorderProperty); }
 set { SetValue(BorderProperty, value); }
 }

 public static readonly DependencyProperty BorderProperty =
 DependencyProperty.Register("Border", typeof(Border),
 typeof(TestClass), null);

}

Listing 2.17 A simple class that uses our custom type converter

Create
Border

Resulting
Border object

TypeConverterAttribute
Licensed to Devon Greenway <devon.greenway@gmail.com>

42 CHAPTER 2 Core XAML
The TypeConverterAttribute that specifies the type converter to use for this specific
property in this class is shown in listing 2.17. The attribute is applied to the public
property because that’s what’s used by XAML. The converter is declared on the single
property so it’ll apply only there and not to all instances of the Border type. It’s also
important to note that the border isn’t actually used for anything other than illustrat-
ing how to use a type converter.

 Finally, listing 2.18 shows the type converter implicitly in use in XAML.

<UserControl x:Class="TypeConverterExample.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="clr-namespace:TypeConverterExample">

 <Grid x:Name="LayoutRoot">
 <local:TestClass Border="Red 5" />
 </Grid>
</UserControl>

Because we used the XamlReader.Load method, we could easily use any valid color
string such as "LemonCream" or "#C830019F". Bonus points if you caught the Star Wars
reference in listing 2.18.

Type converters are a great way to extend the flexibility of XAML to include types you
create yourself or new representations of existing types. We’ve used them in projects
to provide serialization support for legacy format strings stored in databases and to
extend the known representations of existing types.

 Now that we understand the basics of XAML and have seen a simple example of
dynamically loading XAML to parse a color string, let’s take that a bit further and look
at runtime loading or more complex content.

2.4 Loading XAML at runtime
In listing 2.16, we saw a brief example of loading XAML at runtime using Xaml-
Reader.Load. Let’s expand on that to do more than just some basic color conversion.

Listing 2.18 XAML showing the custom Border type converter in use

Type converter
in use

Colors in XAML
You may have given the color string #C830019F a double-take if you’re used to six-
digit HTML hex colors. Colors in Silverlight are typically expressed as eight-digit hex
numbers, the first pair representing the alpha component and the remaining three
pairs the red, green, and blue components in that order. In the color #C830019F, the
values are Alpha: 0xC8, Red: 0x30, Green: 0x01, and Blue: 0x9F. The alpha compo-
nent is optional, so you may use an HTML-style hex color if you wish. For consistency
across the application, I recommend you specify the alpha value and use all eight
digits without any shortcuts.
Licensed to Devon Greenway <devon.greenway@gmail.com>

43Loading XAML at runtime
You can use dynamically loaded XAML to create entire sections of the object tree at
runtime. This could be useful for rendering user-generated content such as shapes
drawn on a screen and saved in a database or for creating highly dynamic controls.

 The process of loading XAML at runtime is incredibly easy. You only need to rely
on the XamlReader class, which belongs to the System.Windows.Markup namespace.
This class empowers you to parse XAML and convert it into an in-memory object. This
object can be created by a statically visible method called Load. This method takes a
string of XAML and converts it to the appropriate object. Then you can insert this
object into another UIElement. Listing 2.19 shows this entire process in action.

Result:

XAML:
<UserControl x:Class="XamlReaderExample.MainPage"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Width="400" Height="300">
 <Grid x:Name="LayoutRoot">

 </Grid>
</UserControl>

C#:
public MainPage()
{
 InitializeComponent();
 Loaded += new RoutedEventHandler(MainPage_Loaded);
}

void MainPage_Loaded(object sender, RoutedEventArgs e)
{
 var element = CreateRectangle();
 LayoutRoot.Children.Add(element);
}

private Rectangle CreateRectangle()
{
 StringBuilder xaml = new StringBuilder();

 string ns =
"http://schemas.microsoft.com/winfx/2006/xaml/presentation";

 xaml.Append("<Rectangle ");
 xaml.Append(string.Format("xmlns='{0}'", ns));
 xaml.Append(" Margin='5 10 5 15'");

Listing 2.19 Loading and parsing XAML at runtime

Add to
tree

Namespace
declaration
Licensed to Devon Greenway <devon.greenway@gmail.com>

44 CHAPTER 2 Core XAML
 xaml.Append(" Fill='Orange'");
 xaml.Append(" Stroke='Black' />");

 var rectangle = (Rectangle)
 XamlReader.Load(xaml.ToString());

 return rectangle;
}

This example dynamically creates a rectangle and adds it to the object tree. The code
in CreateRectangle simply builds up a string with XAML similar to what we’d have
inside a regular .xaml file. Note that we need to specify the namespaces used for any
segment of XAML we’ll pass into XamlReader.Load. The code that adds the generated
XAML to the object tree can be seen inside the loaded event.

 You can of course do more with the element than just add it to the LayoutRoot.
Listing 2.20 illustrates how we can take the XAML and integrate it with the managed
code representations of XAML constructs to create multiple instances of the rectangle.

Result:

XAML:
<UserControl x:Class="XamlReaderExample2.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Width="400" Height="300">
 <Grid x:Name="LayoutRoot">

 </Grid>
</UserControl>

C#:
public MainPage()
{
...
}

void MainPage_Loaded(object sender, RoutedEventArgs e)
{
 for (int i = 0; i < 4; i++)
 {
 RowDefinition def = new RowDefinition();
 LayoutRoot.RowDefinitions.Add(def);

 Rectangle rect = CreateRectangle();
 Grid.SetRow(rect, i);

Listing 2.20 Mixing dynamic XAML with code

XamlReader.Load

Loop to create
four instances

Set grid
row
Licensed to Devon Greenway <devon.greenway@gmail.com>

45Tools for working in XAML
 LayoutRoot.Children.Add(rect);
 }
}

private Rectangle CreateRectangle()
{
...
}

In this example, we loop to create four instances of the rectangle object. We then
dynamically create grid row definitions (see chapter 6) in code rather than in parsed
XAML and assign them via attached properties to our rectangle object.

 This shows a mix of the CLR representations of elements such as the grid row and
the XAML representations of elements such as the rectangle. In practice, you’ll rarely
create visual elements in code except for specific circumstances, but the power and
flexibility to do so is available to you.

 That covers the core concepts for XAML. Next, we’ll look at some of the tools you
can use to make working in XAML more efficient.

2.5 Tools for working in XAML
So far we’ve looked at a lot of raw XAML files. When working on Silverlight applica-
tions, you’ll find yourself bouncing back and forth between raw XAML and some sort
of visual editor or design surface. Here are some of the tools available for working
with Silverlight XAML files:

■ Visual Studio 2010—Visual Studio 2008 provides a great XAML editor but a fairly
useless Silverlight design surface, and it is limited to Silverlight 2 and 3. Visual Stu-
dio 2010 includes a fully capable Silverlight design surface that’ll handle most of
a developer’s needs and includes full support for Silverlight 3 and 4. If you want
to do more design-type work, including finer-grained control over the UI, anima-
tions, states, behaviors, and transitions, you’ll want to use Expression Blend.

■ Expression Blend—Expression Blend’s sole reason for existence is to edit XAML.
This is the primary XAML editor for both design professionals and creative
developers. While someone used to typing markup may bounce back and forth
between the XAML editor and the design surface, there’s little in Blend that you
can’t accomplish with the designer alone.

■ Kaxaml—Sometimes you don’t want an editor as heavy as Visual Studio or
Expression Blend. Kaxaml is a lightweight XAML editor created by Robby Inge-
bretsen. You can download Kaxaml for free from www.kaxaml.com.

■ Eclipse—If you want some freedom on other platforms such as the Mac, you can
use the Silverlight tools for Eclipse found at www.eclipse4sl.org to edit XAML files.

Hundreds of other tools have support for exporting or importing XAML. Typically these
are graphics tools, add-ins to existing graphics tools such as Adobe Illustrator, or 3D tools
with XAML add-ins. Many of them are primarily targeted at WPF, but work at least par-
tially with Silverlight.
Licensed to Devon Greenway <devon.greenway@gmail.com>

www.kaxaml.com
www.eclipse4sl.org

46 CHAPTER 2 Core XAML
2.6 Summary
Silverlight development is all about code plus markup. To make the most of the plat-
form, you’ll want to learn how to leverage the capabilities that XAML provides, while
keeping a balance between what you write in code and what you put in the markup.
Learning the markup language will allow you to use tooling to quickly create great user
interfaces, work on a team including designers and developers without friction, and
help enforce the separation of the view from the rest of the application architecture.

 A basic understanding of XAML is fundamental to getting the most from the rest of
this book and from Silverlight itself. In later chapters, we’ll expand on what we did
here to encompass topics such as brushes, shapes, controls, animation, and all of the
other things that make Silverlight such a great presentation platform.

 In the next chapter, we’ll cover the Silverlight plug-in and how to use it to create
applications that run inside and outside the browser.
Licensed to Devon Greenway <devon.greenway@gmail.com>

The application
 model and the plug-in
Application is an overloaded term that means different things to different people.
Some may question what level of footprint, functionality, or other metrics you need
to meet before something can be called an application. For example, is the weather
tracker sidebar gadget in Windows an application? What about Notepad? The code
for the sidebar gadget is almost certainly more complex than Notepad, but most peo-
ple would see Notepad as an application and the sidebar gadget as, well, a gadget.

 In my participation in the Silverlight community, I’ve been asked on a number
of occasions what to call the Silverlight “thing” that the plug-in loads in the browser.
How I answer that depends on the context of the question and the nature of the
Silverlight thing. In this chapter we’re going to talk about Silverlight applications.
In the context of this chapter, we’ll use the term application in the technical sense of
the word: a compiled runnable Silverlight project. The application can be as small

This chapter covers
■ The Silverlight application model
■ Creating the Silverlight plug-in control in

the browser
47

Licensed to Devon Greenway <devon.greenway@gmail.com>

48 CHAPTER 3 The application model and the plug-in
as a tiny menu widget or a “punch the monkey” ad on a web page or as complex as
some of the Microsoft and Adobe tools I’ve used to write this book. We’ll leave the
other question of when something can be called an application open so we have some-
thing interesting to debate at code camp.

 Regardless of our own individual definitions of application, a Silverlight applica-
tion consists of a .xap file with our compiled code, entry-point information, poten-
tially some resources, and a host for the Silverlight plug-in.

 As we saw in chapter 1, you can get up and running with Silverlight with little
understanding of these concepts, thanks to the great templates provided by Microsoft.
But as a developer, you have a natural curiosity to dig deeper and learn more about
what’s going on when the magic happens and the Silverlight content lights up on the
web page, both because you’ll need the knowledge once your applications reach more
than “Hello World!” complexity, and also because it’s neat stuff. The core information
upon which we’ll build in the rest of this book is the Silverlight application model and
the Silverlight plug-in.

3.1 The Silverlight application model
Silverlight applications consist of at least one or more compiled .NET dynamic-link
libraries (DLLs) and a manifest file, all compressed into a file known as XAP (pro-
nounced “zap”). This is all loaded into the plug-in at runtime and then executed at a
specific entry point to start your application.

 The .xap file is the key deployment mechanism for all Silverlight managed code
applications. When we talk about deploying a Silverlight application, we’re really talk-
ing about two things:

■ Surfacing the .xap to the client via some URI
■ Instantiating the Silverlight plug-in on the web page or within a hosting out-of-

browser process

That’s it. There’s no additional installation, no .msi to install, no registry entries, no
elevation prompts (unless you request elevated rights). It’s all about getting content
down to the end user and instantiated in the plug-in with as little friction as possible.
The subtleties of how that process works are what I find particularly interesting.

 When I first learned ASP.NET—back when a 17-inch display would take up your whole
desk, contain more glass than your car, and weigh about 200 lb—one of the things I was
most curious about was the startup cycle and the order of events when a request was
made. If you want to understand how to target a particular application platform, you
really need to know how it’s going to run your application, when things get loaded, when
they’re rendered, and how key decisions are made—the application startup process.

3.1.1 Application startup process

What happens when you enter a web page that contains a Silverlight application? The
application startup process is shown in figure 3.1. The flowchart includes the details
for Silverlight 1 through 4 but doesn’t address dynamic languages. The “XAML or
Licensed to Devon Greenway <devon.greenway@gmail.com>

49The Silverlight application model
Browser loads
HTML and files

Required
version

installed?

XAML
or

XAP?

Display install
experience

Custom
splash

screen?

Load custom
splash XAML

and wire events

Show default
splash screen

Downloiad
XAP

Read app
manifest

Load
assemblies

Instantiate
entry point

class

Call app
startup handler

Load root
visual

Render/Run

Call JavaScript
event handlers

No

Yes

Xaml

Xap

Yes

Figure 3.1 The Silverlight startup process. This
flowchart describes the loading process from the
load of the HTML page through to the execution
of the events on the root visual of a Silverlight
application.
Licensed to Devon Greenway <devon.greenway@gmail.com>

50 CHAPTER 3 The application model and the plug-in
XAP” step is what makes the decision between the old Silverlight 1.0 model and the
current Silverlight 2+ model. That decision is based on a combination of the source (a
.xaml or .xap file) and the specified type property of the plug-in.

 The dotted line between the JavaScript and the managed code event handlers is
there because, though you typically wouldn’t do it, you can have both JavaScript and
managed handlers active for the load event of the application. The order in which
they fire in relation to each other isn’t guaranteed.

 Some additional parts of the process aren’t displayed in figure 3.1 but are interest-
ing nonetheless. For example, when the Silverlight plug-in determines it’ll have a
managed code .xap file to work with, it loads the Silverlight .NET CLR (CoreCLR) into
the memory space of the browser.

Apparent in all this is that the most important artifact in the process is the Silverlight
application itself: the .xap file.

3.1.2 XAP

A managed code Silverlight application is packaged into a .xap when built. A .xap is
simply a ZIP file and may be inspected by renaming it to .zip and opening it with any
zip-compatible archiver. The contents of a
typical .xap file are shown in figure 3.2.

 This compressed file will always contain
a manifest file named AppManifest.xaml. In
addition, there will always be a .dll file that
serves as the entry point into the Silverlight
application. This application may require
other Silverlight libraries, service connec-
tion information, or other types of content.
Content items and additional libraries may
be in the application .xap file or down-
loaded at runtime; either way, they repre-
sent the dependencies of the application.

CoreCLR
Silverlight 2+ uses a version of the Common Language Runtime (CLR) known as
CoreCLR. This is a version of the .NET CLR that has been optimized for size and use
for client-side rich Internet applications (RIAs). The CoreCLR shares code with the
full .NET CLR for core bits such as the type system, the workstation-optimized gar-
bage collector, and the just-in-time (JIT) compiler. These size optimizations and in-
telligent decisions on what is and isn’t necessary for a client-side RIA allow the
Silverlight plug-in, including the CoreCLR, to come in at around 5 MB total size. For
more details on CoreCLR, see Andrew Pardoe’s CoreCLR MSDN article at http://
msdn.microsoft.com/en-us/magazine/cc721609.aspx.

MyApp.xap

AppManifest.xaml MyApp.dll

ServiceReferences.ClientConfig

Additional Libraries (.dll)

Packaged Content (images, media)

Figure 3.2 Structure of a typical .xap file
showing the types of files that are normally
included
Licensed to Devon Greenway <devon.greenway@gmail.com>

http://msdn.microsoft.com/en-us/magazine/cc721609.aspx
http://msdn.microsoft.com/en-us/magazine/cc721609.aspx

51The Silverlight application model
 Because the .xap file is a ZIP-compatible compressed archive, you may alter its con-
tents and rezip it after compilation. Reasons for doing this include updating the ser-
vice references to move from (for example) a test environment to a production
environment or altering other environment or customer-specific XML configuration
files, branding assets, or other content.

 You can also slightly decrease a .xap file’s size by rezipping it with an efficient ZIP
tool such as 7-Zip, at the expense of a slightly slower decompression and application
startup time on older machines. This may be important in situations where bandwidth
is at an extreme premium.

 The .xap contains a number of different files. One of which is the file that tells Sil-
verlight what other files the .xap contains and where to find the application entry
point—the application manifest file.

3.1.3 The application manifest file

The manifest file is responsible for describing the Silverlight application to the Silver-
light runtime. This file is created at build time by Visual Studio and is typically not
hand edited.

 The Silverlight runtime reads the AppManifest.xaml file beginning with the root-
most element, Deployment. This element exposes two attributes that tell the Silver-
light runtime how to start the Silverlight application, as shown here:

<Deployment
 xmlns="http://schemas.microsoft.com/client/2007/deployment"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 EntryPointAssembly="MyApp" EntryPointType="MyApp.App"
 RuntimeVersion="4.0.50401.0">
 <Deployment.Parts>
 <AssemblyPart x:Name="MyApp" Source="MyApp.dll" />
 </Deployment.Parts>
</Deployment>

This example shows a basic manifest file, which uses the EntryPointAssembly and
EntryPointType attributes to launch the Silverlight application. The first attribute,
EntryPointAssembly, will always reference one of the AssemblyPart elements in the
Deployment.Parts section. The second attribute, EntryPointType, explains which
class should be used to start the Silverlight application. The third attribute, called
RuntimeVersion, broadcasts the version of the Silverlight runtime that the Silverlight
application was built with.

NOTE AppManifest.xaml is generated during project compilation based on
the settings found in the project’s property pages. If you change the name
and/or namespace of the startup application class (App), then you must
adjust the Startup object setting in the Silverlight property page. If you for-
get to make these changes, you’ll get a runtime error mentioning an invalid
or missing Silverlight application.

 The Deployment section of the manifest contains two sections:
■ Deployment.Parts
■ Deployment.ExternalParts
Licensed to Devon Greenway <devon.greenway@gmail.com>

52 CHAPTER 3 The application model and the plug-in
We’ll cover Deployment.ExternalParts in section 3.1.6 when we discuss assembly
caching because it’s only used in caching situations. Deployment.Parts is used regard-
less of the caching strategy used.
DEPLOYMENT.PARTS

The Deployment.Parts section includes a collection of AssemblyPart entries, each of
which corresponds to a DLL in our application. In a complete application, at least one
of the DLLs will be the entry point assembly.

 As we saw here, the application manifest contains a reference to the startup object
type and assembly. The startup object is always the Silverlight application object.

3.1.4 The Silverlight application object

The entry point into the Silverlight application is the App object. This object is defined
in the App.xaml and App.xaml.cs files and derives from the System.Windows.
Application type. This type allows you to interact with the three events affecting the
application’s lifecycle—the start of the application, the unhandled errors in the appli-
cation, and the exit of the application. In addition to these events, you can also read
the settings of the hosting plug-in.
MANAGING THE START OF A SILVERLIGHT APPLICATION

Once the App object has been created, the Startup event fires. By default, this event
loads the default XAML page into view. You can also use this event to perform any
other type of application initialization task. For instance, you may want to use this
event to set application-wide resources or properties. Or, you may want to use this
event to load the initParams that were passed into the application (see section 3.3.4).
Either way, this type of task can be accomplished by using the Startup event:

private void Application_Startup(object sender, StartupEventArgs e)
{
 foreach (string key in e.InitParams.Keys)
 {
 // Process the initParam from the createObjectEx function
 }

 this.RootVisual = new MainPage();
}

This particular event handler shows how to parse the initParams that may have been
passed into the application. The Startup event creates a StartupEventArgs variable
that assists in the initialization tasks. The first iterates through the initialization param-
eters. You could access the individual dictionary entries by a string key. The second
task in this listing displays the first page of the application. Both of these tasks intro-
duce important facts about the Silverlight application lifecycle.

 The first important fact is that the StartupEventArgs type is created only by the
Startup event. No other event in Silverlight will create a StartupEventArgs object.
Because of this, it’s logical to deduce that the InitParams used in the preceding code
are only available during application startup. If you’re going to use initialization
parameters, the Startup event is your only chance to use them. If you need to access
Licensed to Devon Greenway <devon.greenway@gmail.com>

53The Silverlight application model
them throughout the application, you’ll want to store them in the singleton applica-
tion settings or the data class of your own creation. In addition to the initialization
parameters, you should consider the RootVisual.

 The RootVisual is the content that Silverlight will load into the root of the object
tree. (For more on object trees, see chapter 2.) Typically, this is a master-page style
application page. In the default Silverlight templates, it’s MainPage.

 Once set, the RootVisual of the application can’t be changed for the lifetime of the
application. This may cause confusion because you may wonder how to switch pages in
a Silverlight application. Think of the root visual in a complex multipage application
more as a container for other content pages. We’ll get to that when we discuss navigation
in chapter 15. For now, know that when the Startup event has completed, the RootVi-
sual will be loaded and rendered. At this point, a Silverlight application will be visible
to your users, so let’s begin discussing how to guard against unforeseen errors.
HANDLING UNFORESEEN ERRORS

The Application.UnhandledException event enables you to handle uncaught excep-
tions. Any Exception that hasn’t been caught by a try-catch block in the application
will be sent here. This is the last chance to gracefully deal with an unknown problem
by displaying a message or perhaps logging to a service or isolated storage:

private void Application_UnhandledException(object sender,
 ApplicationUnhandledExceptionEventArgs e)
{
 LogError(e.ExceptionObject);
 e.Handled = true;
}

This shows a basic UnhandledException event handler. The event handler uses an
argument to assist in properly handling an unhandled exception. This argument is of
the ApplicationUnhandledExceptionEventArgs type, which gives you access to the
Exception that caused the event through the ExceptionObject property. Once this
Exception has been dealt with, you need to signal that you’ve found an acceptable
solution. You can accomplish this by setting the ApplicationUnhandledException-
EventArgs object’s Handled property.

 The Handled property is a bool value that signals whether an exception has been
addressed. By default, this property value is set to false but you have the opportunity
to set it to true within your code. By setting this property to true, you signal that your
Silverlight application should continue to run. If this property remains false, the Sil-
verlight plug-in will unload the application, causing the plug-in’s onError event to be
fired. We’ll discuss this event in section 3.3.3. Note that this unnatural way of ending
an application won’t trigger the Application.Exit event.
EXITING THE SILVERLIGHT APPLICATION

The Application.Exit event is the last thing that occurs before an application is shut
down and provides one last opportunity to wrap things up. This event can be useful
for logging information or performing last-minute saves. The Application.Exit
event is fired when one of the following happens:
Licensed to Devon Greenway <devon.greenway@gmail.com>

54 CHAPTER 3 The application model and the plug-in
■ The user closes the browser window.
■ The user closes the browser tab that the Silverlight application is running in.
■ The user navigates away from the Silverlight application (such as going from

www.mySilverlightApplication.com to www.silverlightinaction.com).
■ The HTML element associated with the Silverlight plug-in is removed from the

HTML Document Object Model (DOM).

This event doesn’t have any special event handling parameters like the Startup and
UnhandledException events, but it can still read settings associated with the plug-in, if
needed. Note that, when this event is fired, the browser has already been closed (if
closing was the cause) and the Silverlight application has already disappeared. There-
fore, displaying XAML UI or attempting to prevent the browser page from closing isn’t
supported. You may display an HTML message box if you absolutely must get some UI
in front of the user:

private void Application_Exit(object sender, EventArgs e)
{
 MessageBox.Show("Daisy, daisy...");
}

But you can still obtain information about the HTML page that’s hosting the applica-
tion. For example, this displays a message box containing the URL of the page hosting
the Silverlight application, even though that page is no longer visible:

private void Application_Exit(object sender, EventArgs e)
{
 HtmlDocument doc = System.Windows.Browser.HtmlPage.Document;
 MessageBox.Show(doc.DocumentUri.ToString());
}

Keep in mind that other dynamic elements on the HTML page may have their own
shutdown handling, so be careful of how much you access from this event. A best prac-
tice is to do as little as possible in this event, keeping in mind that you no longer have
the Silverlight UI displayed to the user.

 One thing you can do in this event (and the others) is read plug-in settings.
READING PLUG-IN SETTINGS

Once the Silverlight application has been loaded, you can retrieve information about
the hosting plug-in. This plug-in exposes information set during the creation of the
plug-in (createObjectEx; see section 3.2.3). This information is useful throughout
the entire life of the application and can be accessed through the Host property of
the Application:

Application.Current.Host;

The Host property on the Application object is a SilverlightHost, which gives you
access to information about the plug-in. The information is listed and described in
table 3.1.

 This table shows the properties available through the SilverlightHost object.
These properties give you access to most of the information discussed in this chapter,
Licensed to Devon Greenway <devon.greenway@gmail.com>

www.silverlightinaction.com

55The Silverlight application model
which enables you to dynamically create a truly integrated experience. This experi-
ence will have a beginning, which can be managed through the Startup event. In
addition, this experience will have an ending, which can be handled through the Exit
event. These are the main events affecting the life of an Application. In addition, this
Application may have other types of content that it depends upon. This content
makes up what are known as the application dependencies.

3.1.5 Application dependencies

Application dependencies are items that your application needs to run correctly. These
items include assemblies, images, audio or video files, fonts, XAML files, configuration
files, or any other type of file. Each file that’ll be used by the Silverlight application
can be included in the .xap file. This approach can ensure a faster access time, but it
can also cause a slower initial download of your application.

 To help you overcome long load times, Silverlight allows you to divide your appli-
cation into smaller chunks that can be downloaded as they’re needed. This
approach can ensure a faster initial application download, but it doesn’t happen
automatically. Instead, you must rely on a class called WebClient, which is discussed
in chapter 14, or use the built-in partitioning functionality from the Managed Exten-
sibility Framework (MEF). For now, just know that you have a way of including appli-
cation dependencies.

 Application dependencies belong to just one set of the items you may find in a
.xap file. This file also includes a DLL, which contains an Application. This Applica-
tion is described by the AppManifest.xaml file, which is used by the Silverlight run-
time to start the application.

 Other DLLs required on initial load of the application must either be included in
the .xap file or found through the assembly cache.

3.1.6 Assembly caching

Assembly caching was introduced with Silverlight 3 to provide a way to avoid packaging
common DLLs into every application .xap. Since the DLLs are usually hosted on your

Table 3.1 The properties of the SilverlightHost object

Property Description

Background Retrieves the background Color of the plug-in.

Content The content subobject of the createObjectEx function call. This includes the
height and width of the plug-in.

IsLoaded Returns whether the hosting plug-in has completed loading.

Settings The settings subobject of the createObjectEx function call. This subobject
relays information about the Silverlight application’s instantiation settings. In addition,
this subobject provides values associated with the HTML DOM.

Source The Uri of the currently loaded XAML content.
Licensed to Devon Greenway <devon.greenway@gmail.com>

56 CHAPTER 3 The application model and the plug-in
own server, you may include both third-
party DLLs as well as DLLs common
across your own applications. This can
reduce initial application load time and
make subsequent upgrades to your appli-
cation easy to deploy and superfast
to download.

 To use assembly caching, select the
Reduce XAP Size by Using Application
Library Caching option on the project
Silverlight property page, as shown in fig-
ure 3.3.

 Note that assembly caching is available only for browser-hosted applications—it
doesn’t currently work for out-of-browser applications.
HOW IT WORKS

Here’s the Deployment.Parts section of the application manifest for a simple applica-
tion that uses one Microsoft assembly not included in the core runtime:

<Deployment.Parts>
 <AssemblyPart x:Name="AssemblyCaching"
 Source="AssemblyCaching.dll" />
 <AssemblyPart x:Name="System.ComponentModel.DataAnnotations"
 Source="System.ComponentModel.DataAnnotations.dll" />
</Deployment.Parts>

Note that we have our application assembly AssemblyCaching.dll and the Microsoft
assembly all packaged in the same .xap file. The resulting file size is 29 KB. Hardly
large by web standards, but we know it could be even smaller.

 Once we select the option to use cached framework extension assemblies, the
manifest changes to include a new section named Deployment.ExternalParts:

<Deployment.Parts>
 <AssemblyPart x:Name="AssemblyCaching" Source="AssemblyCaching.dll" />
</Deployment.Parts>
<Deployment.ExternalParts>
 <ExtensionPart Source="System.ComponentModel.DataAnnotations.zip" />
</Deployment.ExternalParts>

The ExtensionPart entries in the Deployment.ExternalParts section correspond to
the Microsoft DLL that was originally packaged in our application. Now, instead of
including them in the application package, they’ll be downloaded from your server
on first access and then cached locally for future use. Upon compiling your applica-
tion, you’ll see that the ClientBin folder on the website will have one ZIP file added for
each ExtensionPart included in the manifest. Each ZIP file contains just the com-
pressed DLL—no additional baggage.

Figure 3.3 Setting the assembly caching option
via the project property pages for the Silverlight
project
Licensed to Devon Greenway <devon.greenway@gmail.com>

57The Silverlight application model
TIP If you want to reduce per-application load time on a site that uses Sil-
verlight on various pages, you could preload the cache by creating a small
headless Silverlight application on a landing page and ensuring that it refer-
ences all of the required assemblies and has assembly caching turned on.
Your decision depends on the nature of the site and the landing page and
whether you consider it okay to download several KB of binaries that may
not be used.

Assembly caching is available for any assembly you use. The core Microsoft DLLs have
a built-in support because they include <dllname>.extmap.xml files for each DLL in the
software development kit (SDK). If you want to add support for your own (or a third
party) DLLs, you’ll need to create an .extmap.xml file for each DLL. The .extmap.xml
file looks like this:

<?xml version="1.0"?>
<manifest xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <assembly>
 <name>System.ComponentModel.DataAnnotations</name>
 <version>2.0.5.0</version>
 <publickeytoken>31bf3856ad364e35</publickeytoken>
 <relpath>System.ComponentModel.DataAnnotations.dll</relpath>
 <extension downloadUri="System.ComponentModel.DataAnnotations.zip" />
 </assembly>
</manifest>

If you provide an absolute URI, the assembly will be served up by that URI. This is use-
ful for third parties or independent software vendors (ISVs) who may want to offer
hosting of their DLLs or for organizations that want to have a centralized location for
common application DLLs. Note that the server hosting the DLL will need to adhere
to cross-domain restrictions by providing a ClientAccessPolicy.xml file to support cli-
ents calling it from other servers.

 The files are cached in the default browser cache for the current browser so they
can be used by any other Silverlight application that has enabled assembly caching. If
you use multiple browsers, you’ll need to download and cache for each browser just
like any other web content. Similarly, the content can be cleared from the cache like
any other browser content.

 The end result is a .xap that weighs in at all of 4 KB, much smaller than most on-
page icons and an almost instantaneous download for your users. Assembly caching
can really make a difference in the load time of your applications.

 At this point, we’ve covered all the core bits of a Silverlight application, including
the startup process, key events, packaging applications, and sharing assemblies
between applications. Next we’ll discuss how to surface those applications on a web
page using the Silverlight plug-in.
Licensed to Devon Greenway <devon.greenway@gmail.com>

58 CHAPTER 3 The application model and the plug-in
3.2 Creating the Silverlight plug-in
The Silverlight plug-in is a lightweight cross-platform browser plug-in responsible for
rendering Silverlight content. To ensure cross-platform and cross-browser support,
the Silverlight plug-in must take advantage of each browser’s plug-in technology. This
requirement forces the plug-in to be packaged differently across platforms. For
instance, when Silverlight runs within Microsoft’s Internet Explorer browser, the
ActiveX model is used. Alternatively, if Safari or Chrome is used, the WebKit model is
used. When any other browser is used, the plug-in uses the Netscape Server API
(NSAPI) plug-in approach. Regardless of the combination of browsers a user chooses,
Silverlight only needs to be installed one time on a workstation to work across all sup-
ported browsers.

 The Silverlight installation is extremely compact, weighing in at around 5 to 6 MB
on Windows. This installation requires that users have administrative privileges on
their machines. If they don’t have these privileges, an administrator will need to assist
them. Once the Silverlight plug-in is installed on their machines, users are free to
enjoy rich Silverlight content in the browser of their choice without additional instal-
lation requirements.

The goal of creating a Silverlight plug-in is to host a Silverlight application. This plug-
in can be created in at least three different ways. One approach is to use the HTML
object tag directly. Another is to use the deprecated Silverlight server control that’s
part of the Silverlight 2 SDK, but is no longer included with Silverlight 3+.

 Another approach for creating a Silverlight plug-in enables you to easily deliver Sil-
verlight content through any server technology while ensuring maximum flexibility
on the client. You can use Silverlight along with a variety of technologies including
PHP, JSP, ASP, and ASP.NET. To get Silverlight to work with these technologies, you use
the two steps covered in this section. The first step is to reference the required Silver-
light JavaScript utility file. The second step involves writing the JavaScript that’ll create
an instance of the Silverlight plug-in.

 The pros and cons of the three approaches are covered in table 3.2.

Installation rights
Silverlight requires administrative rights to install the plug-in on Windows operating
systems. This was a conscious decision by the Silverlight team to allow Silverlight to
be installed once per machine rather than require managing installations per user,
per machine. In centrally managed environments, where administrative rights aren’t
typically given to users, Silverlight may be installed via tools such as Windows Server
Update Services (WSUS). Once the plug-in is installed, individual applications don’t
require admin rights because they’re treated as content by the browser.
Licensed to Devon Greenway <devon.greenway@gmail.com>

59Creating the Silverlight plug-in

Since the ASP.NET approach is no longer supported, we’ll skip that and instead cover
the object tag approach. After that, we’ll dig right into using the Silverlight.js utility
functions.

3.2.1 Using the object tag

You may choose to explicitly create the object tag that hosts your Silverlight applica-
tion. This approach is used in the “Instantiating a Silverlight Plug-In” section of the
Silverlight SDK. The reason I use the Silverlight.js approach in this book is because
there are additional methods, such as buildPromptInstall and isInstalled, in the
Silverlight.js file. If you want to explicitly create an object tag, you can do so by embed-
ding the code similar to the following:

<div id="mySilverlightHost" style="height:100%;">
 <object
 id="SilverlightPlugInID"
 data="data:application/x-silverlight-2,"
 type="application/x-silverlight-2"
 width="100%" height="100%">
 <param name="source" value="ClientBin/MySilverlightApp.xap" />
 </object>
 </div>

Table 3.2 Pros and cons of the three plug-in creation approaches

Approach Pros Cons

ASP.NET Silver-
light control

Simple to use

Server-side access to plug-in properties,
including initialization parameters

Deprecated in Silverlight 3+ but still avail-
able as part of the Silverlight 2 SDK. No
longer recommended for new projects.

HTML object tag No additional libraries

No server dependency

Basic installation experience

Older versions of Internet Explorer dis-
played a warning dialog

Silverlight.js
utility functions

Complete control over the installation
experience for various client configurations

No server dependency

Additional effort

Requires keeping the Silverlight.js file
up to date

What happened to the ASP.NET Silverlight control?
The ASP.NET Silverlight control is still available as part of the Silverlight 2 SDK and
on the MSDN Code Gallery (http://go.microsoft.com/fwlink/?LinkId=156721), but it
is no longer maintained as part of the Silverlight tools. The object tag and Silverlight.js
approaches provide more flexibility. When porting your Silverlight 2 projects to Silver-
light 4, you may continue to use the ASP.NET Silverlight control as long as you update
the minimum version number and add the required iframe if using navigation. But it’s
recommended that you port to one of the other two approaches.
Licensed to Devon Greenway <devon.greenway@gmail.com>

http://go.microsoft.com/fwlink/?LinkId=156721

60 CHAPTER 3 The application model and the plug-in
Note that the data and type are both x-silverlight-2. The -2 in this case doesn’t
mean Silverlight 2; it means version 2 of the Silverlight MIME type. If, in the future,
Microsoft decides to change the object tag signature in some way, they may introduce
an x-silverlight-3 for MIME type version 3 even though the related version of Sil-
verlight may be something like Silverlight 8. That’s not expected at this time.

 In general, the properties specific to the Silverlight plug-in can be set through the
param elements. There are some exceptions to this. If you decide to explicitly create
the object tag, we recommend referring to the documentation in the Silverlight SDK.

3.2.2 Using the Silverlight.js utility file

The Silverlight.js utility file is part of the free Silverlight SDK and also part of the
Visual Studio Silverlight project templates. The Silverlight SDK is available through
the Silverlight web site at http://silverlight.net/getstarted, and installed as part of the
Silverlight tools installation package. Once you’ve downloaded the SDK, you can find
the Silverlight.js file in the installation’s Tools directory. This file is an integral part of
every Silverlight application, so you should know where to find it. Then, you can dis-
tribute and reference this file within your applications. Once it’s referenced, you can
use any number of the valuable features exposed by this file.

NOTE Microsoft periodically releases new versions of the Silverlight.js file,
related files such as Silverlight.supportedUserAgent.js, and associated docu-
mentation. To facilitate distribution to developers, Microsoft created a Code
Gallery project for Silverlight.js. You can download the latest version of Sil-
verlight.js from http://code.msdn.microsoft.com/silverlightjs.

REFERENCING THE SILVERLIGHT.JS FILE

The Silverlight.js file is licensed under the Microsoft Public License (Ms-PL), which
allows you to modify the file to suit your own needs if necessary. Referencing the Sil-
verlight.js file is as easy as referencing any other script file: you set the src property of
an HTML script tag:

<html xmlns="http://www.w3.org/1999/xhtml" >
<head>
 <title>My Silverlight Project</title>
 <script type="text/javascript" src="Silverlight.js">

Getting just a blank page?
There are many reasons why you might get the Silverlight White Screen of Death
(WSOD), such as bad XAML, incorrect .xap file location, errors in startup code, and
so forth. The WSOD appears when the Silverlight plug-in is present and instantiated
(verified by right-clicking) but devoid of content.

One of the most common WSOD causes for first-time users is a missing MIME type
on the web server. If you’re using Windows Server 2003 or older, ensure the MIME
type x-silverlight-app is registered. This MIME type is present on Server 2008
R1 and newer. Many other web servers, such as some versions of Apache, will serve
the content up without any MIME type registration.
Licensed to Devon Greenway <devon.greenway@gmail.com>

http://silverlight.net/getstarted
http://code.msdn.microsoft.com/silverlightjs

61Creating the Silverlight plug-in
➥ </script>
 <!-- Other Script and Style References -->
</head>
<body>
 <!-- We will create a Silverlight plug-in here -->
</body>
</html>

You gain the ability to create a Silverlight plug-in by adding a reference to the Silver-
light.js JavaScript file. Let’s look at what’s inside.
THE FUNCTIONS OF THE SILVERLIGHT.JS FILE

The Silverlight.js file exposes a number of valuable functions. These functions give
you the flexibility to tailor a custom experience within a web application. Table 3.3
describes the primary utility functions in alphabetical order.

These methods provide a powerful arsenal of options to help deliver the appropriate
experience to your users. But two options encapsulate most of the other functions
under one roof—the createObject and createObjectEx functions. These two utility
functions shoulder the responsibility of creating an instance of the Silverlight plug-in.

3.2.3 Creating an instance of the Silverlight plug-in

To initialize and create a Silverlight plug-in, you use one of two utility functions: cre-
ateObject or createObjectEx. These methods do the same thing; in fact, createOb-
jectEx calls createObject. But the createObjectEx function uses the more verbose
JavaScript Object Notation (JSON) approach to pass in the necessary parameters. For
this reason, we’ll use createObjectEx in this book.

Table 3.3 The primary utility functions exposed through the Silverlight.js utility file

Function name Function description

buildPromptHTML Returns the HTML that creates the Silverlight installation prompt. Takes
a Silverlight object in order to determine the prompt to build.

createObject Initializes and creates a Silverlight plug-in. The details and a sample of
this method are posted in the next section.

createObjectEx Initializes and creates a Silverlight plug-in. The details and a sample of
this method are posted in the next section. In addition, the next section
will explain the difference between the createObjectEx and
createObject functions.

HtmlAttributeEncode Performs some basic operations to encode a string into an HTML-encoded
string. This internal function was primarily designed to be used only within
the realm of the Silverlight.js file, so use caution. Here’s an example:

var result =
Silverlight.HtmlAttributeEncode('"Hello"');

isInstalled Returns whether a specific version of the Silverlight runtime is available.
This method takes one parameter, a string that represents a version
number. Here’s an example:

var result = Silverlight.isInstalled("3.0");
Licensed to Devon Greenway <devon.greenway@gmail.com>

62 CHAPTER 3 The application model and the plug-in
 The createObjectEx function requires an HTML element as a parameter. This ele-
ment ultimately serves as the host for the Silverlight plug-in. Because of this, you must
first either identify or create the HTML element to serve as the host. Then within that
element, you call the createObjectEx method to add a Silverlight control as a child to
the hosting HTML element. The creation process is shown in listing 3.1.

<html xmlns="http://www.w3.org/1999/xhtml" >
<head>
 <title>My Silverlight Project</title>
 <script type="text/javascript" src="Silverlight.js"></script>
</head>
<body style="height:100%">
 <div id="mySilverlightHost" style="height:100%;">
 <script type="text/javascript">

 Silverlight.createObjectEx({ #C
 source: "ClientBin/MySilverlightApp.xap",
 parentElement: document.getElementById("mySilverlightHost"),
 id: "mySilverlightControl",
 properties: {
 width: "100%",
 height: "100%",
 version: "3.0"
 },
 events: {}
 });
 </script>
 </div>
</body>
</html>

This listing demonstrates the two main steps of creating a Silverlight plug-in. The first
step is to reference the Silverlight.js utility file. Once this file is referenced, you create
an instance of the Silverlight plug-in, in a specific HTML <div> tag, using the cre-
ateObjectEx function.

 This function accepts a wide range of parameters, which are responsible for speci-
fying which Silverlight application to run and how it should be integrated within a
web page. Because a Silverlight application will ultimately be integrated within a web
page, even if only as the installation source for an out-of-browser application, we need
to discuss how to integrate a Silverlight control with the surrounding page.

3.3 Integrating the Silverlight plug-in
Once you’ve decided to create a Silverlight plug-in, you must ensure that it integrates
nicely within your web page. This integration must not only look right but it must also
behave properly. So, let’s study the items you can control. At a high level, these items
give you the ability to:

Listing 3.1 Instantiating the Silverlight control (HTML)

Silverlight.js
reference

Hosting
DIV

Create Silverlight
object
Licensed to Devon Greenway <devon.greenway@gmail.com>

63Integrating the Silverlight plug-in
■ Relate your Silverlight application to the HTML DOM.
■ Clarify the initial experience.
■ Handle plug-in events.
■ Send initialization parameters.

These general tasks cover a lot of ground, but we’re going to dive into the details that
make each task possible.

3.3.1 Relating the Silverlight application to the HTML DOM

The first three parameters of createObjectEx function build the relationship
between a Silverlight application and the HTML DOM. These parameters are called
source, parentElement, and id.
SOURCE

The source parameter specifies the URI of the Silverlight content that should be
loaded. In a managed code application, this content is bundled up as a .xap file, as dis-
cussed earlier in this chapter. The source property can reference a .xap file on the
hosting server or on a remote server. This gives you the ability to easily share your Sil-
verlight applications and improve server performance through load balancing. This
isn’t as easy with Silverlight 1.0.

 Silverlight 1.0 didn’t have support for .xap files. Instead, Silverlight 1.0 relied on
setting the source of a plug-in through one of two approaches. The first approach
involves referencing a .xaml file that exists on the hosting server. The other approach
is to reference XAML content defined in the hosting web page. This type of XAML con-
tent is known as inline XAML. Either way, both of these approaches are dependent
upon the JavaScript programming model. Silverlight 2+ still supports these
approaches so that the source property in Silverlight 4 can be used in three different
ways, all of which are shown in table 3.4.

We won’t be discussing the loose and inline approaches in detail because the pack-
aged approach is the most widely used and is the only option that supports the man-
aged code Silverlight 2+ APIs. It’s recommended because of its flexible, compact, and
portable nature. Regardless of the approach you choose, the Silverlight plug-in is
always placed inside the parentElement.

Table 3.4 The three approaches for referencing a Silverlight application

Approach File extension Examplea

a. Assuming this is part of a createObjectEx call

Packaged .xap source: "http://www.myserver.com/myApp.xap"

Loose .xaml source: "/relativePath/page.xaml"

Inline [none] source: "#myXamlID"
Licensed to Devon Greenway <devon.greenway@gmail.com>

64 CHAPTER 3 The application model and the plug-in
PARENTELEMENT

The parentElement parameter specifies the HTML object that hosts the Silverlight
plug-in. It’s important to recognize that this property requires an object and not just
the ID of the parent. You may need to use the HTML DOM approach of retrieving an
object using document.getElementById. Once the object is retrieved, a new HTML
element will be appended to it when the Silverlight plug-in is created.

 The specific type of object that is created is based on the user’s browser. If the user
is using Internet Explorer or Firefox, an HTML OBJECT element is created. Alterna-
tively, if the user is using Safari, an HTML EMBED element is created. Regardless of the
type of object, it gets appended to the element you defined as the parentElement.

 This newly created HTML object is given the unique identifier you set in the id
parameter.
ID

The unique identifier of the Silverlight plug-in is specified by the third parameter of
the createObjectEx method, id. The value you must supply to this parameter is the
id attribute of the OBJECT or EMBED element mentioned in the previous section. This
parameter is the primary hook from the HTML DOM to the Silverlight plug-in. You can
easily access a Silverlight plug-in using the document.getElementById function. This
function is available within the HTML DOM Document object, and you can use it from a
scripting environment such as JavaScript. This fact will come into play at the end of
this chapter. But we should first discuss how to clarify a user’s default experience.

3.3.2 Clarifying the initial experience

While a Silverlight plug-in is being initialized, a number of properties clarify how that
plug-in will initially render. These properties are demonstrated here:

Silverlight.createObjectEx({
 source: "ClientBin/MySilverlightApp.xap",
 parentElement: document.getElementById("mySilverlightHost"),
 id: "mySilverlightControl",
 properties: {
 height: "100%",
 width: "100%",
 background: "blue",
 isWindowless: "true",
 frameRate: "30",
 inplaceInstallPrompt: true,
 version: "4.0",
 ignoreBrowserVer: "true",
 enableHtmlAccess: "true"
 },
 events: {}
});

These properties can be used to define an initial experience. (All the properties listed
here use pretend values to show the syntax.) We’ll explain the details of each of these
properties in the order they’re shown. In addition, these properties will be logically
grouped together when possible, such as height and width.
Licensed to Devon Greenway <devon.greenway@gmail.com>

65Integrating the Silverlight plug-in
HEIGHT AND WIDTH+

The height and width properties specify the boundaries of the rectangular region
that the Silverlight application will be presented within. By default, these property val-
ues represent a rectangle with no height and no width. You can change this by pro-
viding either a pixel or percentage value, as you can with other HTML elements to
provide either absolute or relative sizing.

 Relative sizing is a widely used technique within the HTML world, so it’s nice to see
that the Silverlight plug-in provides this option to simplify integration efforts. To fur-
ther integrate your Silverlight content within the HTML page, you need to use the
background and isWindowless properties.
BACKGROUND AND ISWINDOWLESS

The background property allows you to specify the color of the rectangular region
where the Silverlight plug-in will appear. By default, this property is set to null, which
is the same as white. There are two techniques for setting this property value. The first
is to use a hexadecimal color value. The second is to use a color name recognized by
the user’s browser, such as Silver. Perhaps the most interesting option, though,
enables you to hide the background entirely.

 By setting the background property to transparent, you can make the background
of the plug-in region invisible. At the same time, your Silverlight application is still
completely visible. Before you get too excited, we strongly recommend searching for
alternatives before using this option. When the background property is set to trans-
parent, your Silverlight applications will incur a significant performance hit, which
may detract from a user’s experience, especially when playing media or doing heavy
animation. In addition, if you choose to use the transparent option, it’s important to
take the isWindowless property into consideration.

 The isWindowless property lets you determine whether the plug-in allows any
underlying HTML content to display through any transparent areas. By default, this
property is set to false, meaning that your Silverlight plug-in will appear on top of
any underlying HTML content. The reason why this property defaults to false is
because, once again, when this value is set to true, your Silverlight application will
take a significant performance hit.

 Setting the isWindowless property to true does have an advantage. When this
property is true, any underlying HTML content will show through the transparent
areas of the Silverlight plug-in. This option is most useful when you want seamless
integration with an HTML page such as flyovers and overlays. As figure 3.4 shows, the
background and isWindowless properties are somewhat reliant upon each other.

 It’s critical to your integration efforts to understand how the background and
isWindowless properties cooperate. As the third image in figure 3.4 shows, setting the
background property to transparent is only half the battle. The fourth image shows
that you truly have the ability to seamlessly integrate Silverlight content within your
web assets by setting both the background and isWindowless properties. The process
of integration will become clearer once we begin discussing the actual Silverlight con-
tent in the next chapter.
Licensed to Devon Greenway <devon.greenway@gmail.com>

66 CHAPTER 3 The application model and the plug-in
FRAMERATE

The frameRate property (object tag and ASP.NET property name: MaxFrameRate)
enables you to determine the maximum number of frames you want to render per sec-
ond. This built-in throttling mechanism ensures that your Silverlight plug-in doesn’t
hog the system resources. By default, this property is set to render 60, which is more
than most non-media applications need, so feel free to
experiment. Ultimately, the frame rate is based on the
available system resources. For more on frame rate and
the rendering process, see section 6.2.

 To view the actual frame rate, set the EnableFrameRate-
Counter plug-in property (enableFrameRateCounter in
JavaScript) to true. This will show the actual and max frame
rates in the browser status bar as seen in figure 3.5. Note that
this feature only works in Internet Explorer on Windows.
VERSION

When instantiating a Silverlight plug-in, you
need to set the version property in the cre-
ateObjectEx function. This property repre-
sents the minimum runtime version required
by your Silverlight application. If users don’t
have at least this version of the Silverlight run-
time installed, they’ll be greeted by a default
installation prompt. This installation prompt
looks like figure 3.6.

 You can override this default image and
show something that may be branded or more
appropriate for your specific application. We’ll
cover that in chapter 25 when we discuss opti-
mizing the install experience. This figure shows

Figure 3.4 The consequences of various background and isWindowless
property combinations. The outermost rectangle represents a section of HTML within
a web page. The inner rectangle represents the region occupied by a Silverlight plug-
in. The rounded rectangle is the pure Silverlight content that will be explained later.

Figure 3.5 The browser
window displaying the current
and maximum frame rates in
a CPU-intensive application

Figure 3.6 The default Silverlight
installation badge displayed when
the user doesn’t have the required
Silverlight version installed.
Licensed to Devon Greenway <devon.greenway@gmail.com>

67Integrating the Silverlight plug-in
the default visual prompt users will see if they don’t have the necessary version of Sil-
verlight installed.

 Once Silverlight is installed, it’ll automatically install future versions of Silverlight
if configured to do so. These updates will continue to be installed as long as the users
don’t disable this feature in the Silverlight Configuration dialog box. Figure 3.7 shows
the Silverlight Configuration dialog box, which can be accessed by right-clicking any
Silverlight application in the browser.

NOTE Windows 7 and Windows Vista users with User Account Control
(UAC) enabled will not have the option to install updates automatically. In
those instances, Silverlight will require permission to download and install
updates when new updates are found. Windows Vista and Windows 7 users
are encouraged to choose the second option shown in figure 3.7 to check
for updates and be prompted to install new versions when available.

As you can see, this dialog box gives you the option of turning off automatic updates
of Silverlight. But, by default, users’ machines will typically have the latest and greatest
version of Silverlight.

Figure 3.7 The Silverlight Configuration dialog box (Silverlight 4 adds a Webcam/Mic tab). This dialog
box is accessible by right-clicking Silverlight content within a web browser. Administrators may
configure the Silverlight auto-updater for all users, thereby disabling the ability to change options on
this screen.
Licensed to Devon Greenway <devon.greenway@gmail.com>

68 CHAPTER 3 The application model and the plug-in
IGNOREBROWSERVER

The ignoreBrowserVer option empowers you to specify whether you should check to
see if Silverlight can run within the browser environment. By default, this parameter is
set to false, which ensures that only supported browsers will run a Silverlight applica-
tion. You can set this property value to true to bypass this safety check. This brute-
force approach can slightly speed up the plug-in initialization process but can lead to
undesired effects. If you want to support browsers that mostly work but aren’t officially
supported, update the user agent file (available on http://code.msdn.microsoft.com/
SLsupportedUA) instead, so you still maintain control over the spectrum of browsers
that’ll access your application.
ENABLEHTMLACCESS

The final Boolean property in the Silverlight plug-in initialization provides an extra
layer of security. This property, called enableHtmlAccess, specifies whether the man-
aged code running within a plug-in instance can access the HTML DOM. By default,
this property is set to true for the same domain applications and false for cross-
domain applications. This ensures a safe-by-default development experience. You can
set this property value to true for cross-domain applications, but you should first con-
sider the ramifications.

NOTE Cross-domain applications are applications that run on one domain
but are sourced from another. For example, if you host a web page at http:
//www.mycoolsite.com and the .xap file used by the Silverlight plug-in on
that page is served up from http://PetesHouseOfXap.org, which would be a
cross-domain application.

Let’s pretend for a second that a political candidate, we’ll call him Gill Thrives, has
created a Silverlight application that everybody wants. This application is so amazing
that even the competing political candidate, named Loth Slivering, wants it. Gill
makes this control available for free download via a third-party control site. Gill has
deceptively added code that will edit the hosting web page’s DOM to say Vote for Gill
on a future date before the election. Unfortunately for Loth, Loth added this applica-
tion to his web site, and now his campaign site has been trashed with “Vote for Gill” all
over it. What an embarrassment!

 Loth could’ve easily avoided this time-bomb embarrassment by explicitly setting
the enableHtmlAccess property value to false. When this property value is false,
any managed code associated with the plug-in instance that attempts to access the
HTML DOM will trigger an error. And, fortunately, an error is just a type of event,
which Silverlight enables you to elegantly handle (more on that in a moment).

 The enableHtmlAccess property is but one of the many configuration options you
have. The others include ignoreBrowserVer, inplaceInstallPrompt, version,
isWindowless, background, height, and width. Collectively, these options are all set
through the properties nested object within createObjectEx. This nested object syn-
tax may seem awkward at first but it’s just a part of JSON syntax. This syntax gives you a
way to logically group together items, making it easy to separate the items that define
Licensed to Devon Greenway <devon.greenway@gmail.com>

http://code.msdn.microsoft.com/SLsupportedUA
http://code.msdn.microsoft.com/SLsupportedUA
http://www.mycoolsite.com
http://www.mycoolsite.com
http://PetesHouseOfXap.org

69Integrating the Silverlight plug-in
the look of a Silverlight plug-in instance from its behavior. The behavioral items are
part of the events nested object.

3.3.3 Handling plug-in events

At this point, we’ve covered all of the items required to create an instance of the Silver-
light plug-in. Remember that this plug-in has events that affect it and, in turn, your appli-
cation. These events are onLoad and onError. We’ll discuss each in detail in a moment.
But, first, let’s look at how to wire these event handlers up with a plug-in instance. This
can be done in the createObjectEx function in the events subobject, as shown here:

Silverlight.createObjectEx({
...
 properties: {
...
 },
 events: {
 onLoad:plugin_Load,
 onError:plugin_Error
 }
});

This shows how to wire up the two events associated with a Silverlight plug-in. In real-
ity, neither of these has to be set. But, by setting them, you can create a more tailored
experience when loading or handling an unexpected error. Either way, you can
accomplish what you need to by responding to the onLoad and onError events.
ONLOAD

The onLoad event occurs immediately after your Silverlight application has been
loaded. By default, nothing special will happen when this event occurs. You do have
the option of creating an event handler for when this event fires. Regardless of how
you intend to use it, you can create an event handler by using JavaScript like this:

function plugin_Load(sender, context, source)
{
 alert("loaded");
}

This shows an extremely basic onLoad event handler with the three parameters that
are passed with the onLoad event. These three parameters are sender, context, and
source. The purpose of these parameters is described in table 3.5.

Table 3.5 The parameters of the onLoad event handler

Parameter Description

sender A handle to the Silverlight plug-in itself

context A value specified to distinguish the plug-in instance; this value is provided
by a developer

source The root element of the content loaded into the plug-in
Licensed to Devon Greenway <devon.greenway@gmail.com>

70 CHAPTER 3 The application model and the plug-in
In addition to the parameters of this event, you should know that there are times
when this event won’t fire. This event won’t be triggered if you attempt to reference a
Silverlight application that doesn’t exist. Along the same lines, the onLoad event won’t
fire if there’s an error in your createObjectEx function call. You may think that an
error will fire the onError event; in reality, the onError event will fire only after the
Silverlight application has loaded.
ONERROR

The onError event is triggered when an exception hasn’t been handled by managed
code in your application. But, some errors, such as image and media errors, can’t be
handled with a managed code unhandled exception handler (they must be handled
in specific events or the onError handler in JavaScript). Because of this, you may want
to create an error handler at the plug-in level. This can be accomplished by using an
onError event handler such as the following:

function plugin_Error(sender, errorArgs)
{
 errorType = errorArgs.ErrorType;

 if (errorType == "ImageError" || errorType == "MediaError")
 return;

 alert("An unexpected error has occurred.");
}

This all-purpose onError event handler can be used to gracefully handle errors that
haven’t been caught elsewhere. When called, the value in the sender parameter rep-
resents the plug-in where the error occurred. The second parameter, errorArgs,
describes the error. This description is accessible through a variety of publicly visible
properties. These properties are listed and described in table 3.6.

You can learn a lot about an error through the errorArgs parameter. This parameter
is a valuable part of the onError event handler. As hinted at earlier, this event handler
is useful for some situations that can’t be covered by application-level error handling.
Examples of such an error would be a stack-overflow exception or the media errors
shown earlier. Regardless of the error, it’s nice to know that there’s a way to handle
those errors that can’t be handled elsewhere. It’s also nice to know how to pass some
initialization information to a Silverlight application when it starts.

Table 3.6 The properties associated with the errorArgs parameter

Property Description

ErrorCode A numeric code associated with the error; this property can’t be set

ErrorMessage A read-only description of the error

ErrorType The category of the error

Name The name of the object that caused the error
Licensed to Devon Greenway <devon.greenway@gmail.com>

71Integrating the Silverlight plug-in
3.3.4 Sending initialization parameters

A Silverlight application is a lot like any other .NET application. As an example, imag-
ine a basic command-line program. This program allows you to pass parameters to it
before it starts. Then, when the application does start, it’s responsible for parsing the
parameters. Once parsed, the application decides what to do with these parameters.
This is exactly how Silverlight uses initialization parameters as well.

 The initialization parameters in Silverlight are sent through a parameter named
initParams. initParams is another parameter in the createObjectEx function. Like-
wise, there’s a parameter called context. This parameter allows you to uniquely tag a
Silverlight plug-in instance. Both parameters are shown here:

Silverlight.createObjectEx({
...
 properties: {
...
 },
 events: { },
 initParams: "key1=value1, key2=123, keyX=valueY",
 context: "27d3b786-4e0c-4ae2-97a3-cee8921c7d3d"
});

This code demonstrates the basic usage of the initParams and context parameters.
Each of these parameters serves its own special purpose. In reality, you’ll probably
only use the initParams parameter because the context parameter doesn’t have as
much value in the Silverlight 4 world. The reason is because each Silverlight applica-
tion runs within its own domain and code sharing isn’t necessary like it is in the
scripting world of Silverlight 1.0. Regardless, we’ll cover them both in detail for the
sake of completeness.
INITPARAMS

The initParams parameter enables you to send any number of user-defined, key-
value pairs to a Silverlight application. The application is then responsible for reading
and interpreting the key-value pairs when it starts as shown in section 3.1.4. But first,
let’s build an understanding of how these key-value pairs are created.

 The key-value pairs are represented in typical dictionary [key]=[value] form, sepa-
rated by commas. Naturally, the entire string of initParams represents a collection
of key-value pairs. This is different from initParams in Silverlight 1.0.

 In Silverlight 1.0, the initParams parameter took a list of comma-delimited values.
This is important to recognize if you’re promoting your Silverlight 1.0 application to
Silverlight 4 because this approach isn’t valid in 4. If you are, in fact, doing this kind of
migration, you may want to consider how the context parameter is used as well.
CONTEXT

The context parameter gives you a way to uniquely identify a Silverlight plug-in. This
plug-in passes the value of the context parameter to the onLoad event associated with
the plug-in. The event then uses this string value to distinguish the plug-in from oth-
ers without having to check the HTML DOM. This empowers you to share scripted
code across multiple Silverlight plug-ins that exist on the same web page.
Licensed to Devon Greenway <devon.greenway@gmail.com>

72 CHAPTER 3 The application model and the plug-in
 The context and initParams serve as valuable initializers in the plug-in creation
process, which involves deciding how to handle the onError and onLoad events
impacting the plug-in. The initial look of this plug-in is set up through a variety of
property settings declared within the properties sub-object.

 Initialization parameters and context are great ways to get simple values to Silver-
light applications running in the browser. But, keep in mind that those values don’t
currently carry over to applications running out of the browser—something we’ll
cover in chapter 5.

3.4 Summary
One of the most important things you can learn about any given platform or technol-
ogy is how it handles the concept of an application, including the packaging of that
application and the startup process. Back when I used to write straight C code, and
everything started at int main(int argc, char **argv) with statically linked libraries
into a single .exe or .com file, this was trivial to understand. In more complex technol-
ogies such as Silverlight, both the packaging and the startup processes are significantly
more involved, but the benefits are great. Because of that, we get great things like
Internet deployment, browser integration, hands-off memory management, an event-
driven input model, full media, and rich graphics. Who could’ve foreseen that back
when code editors only handled a line at a time, compiles were initiated from the
command prompt, ASCII graphics were popular, and the presence of a working TCP/
IP stack wasn’t a given?

 Once the plug-in is installed on the end-user machines and the hosting page set
up, deploying the application can be as simple as those C programs of yore: just copy
the deployment file (the .xap) to a known location and have at it. The various options
available for creating the plug-in allow us to support just about any server environ-
ment and installation experience we’d like. In fact, we’ll talk more about custom
installation experiences in chapter 25.

 In this chapter we covered HTML page integration primarily from a plug-in-centric
view. In the next chapter we’ll talk more about how to integrate Silverlight with a web
page, including interacting with JavaScript and the DOM.
Licensed to Devon Greenway <devon.greenway@gmail.com>

Integrating
 with the browser
Silverlight has always been a web technology, integrated into the web page. Even
when a Silverlight application took over the entire browser client area, it was still
contained within several layers of HTML tags. Given the history, it makes sense that
a Silverlight plug-in would have complete access to the Document Object Model
(DOM) on the page in which it resides. In fact, the access is so complete that a Sil-
verlight application could take over all of the functionality normally provided by
JavaScript if you wanted to go that route.

 Despite the out-of-browser capability introduced with Silverlight 3, as a RIA tech-
nology, Silverlight is and will remain for the foreseeable future most popular as a
browser plug-in. There’s just too much synergy between the nature of a HTML
application and the power of a .NET-based RIA plug-in like Silverlight to completely
abandon that approach.

This chapter covers
■ Interacting with the HTML Document Object

Model (DOM)
■ Hosting HTML in Silverlight
73

Licensed to Devon Greenway <devon.greenway@gmail.com>

74 CHAPTER 4 Integrating with the browser
 Silverlight 4 added the ability for Silverlight to host HTML within itself. Though
currently restricted to out-of-browser applications (the topic of the next chapter), the
integration is provided by the default browsing engine in the operating system and
supports some script integration.

 We’ll start where Silverlight started, in the browser, where it can take advantage of
the DOM. From there, we’ll drill deeper into the HTML DOM and discuss the embed-
ded Silverlight control. This control, which is also known as the Silverlight plug-in,
ultimately hosts your Silverlight content. Finally, we’ll move on to hosting HTML
within our Silverlight application.

4.1 Silverlight and the HTML DOM
As mentioned in chapter 1, Silverlight
is a browser-based plug-in. This plug-in
was designed to be consistent with the
well-established web architecture. This
design decision ensures that you can
integrate Silverlight content within any
new or existing web property. The web
property could be anything from a web
page to a blog, intranet portal, or
desktop gadget. As shown in figure 4.1,
this decision gives you the flexibility to
use as little or as much Silverlight as
you want.

 Figure 4.1 shows the amount of flexibility you have when it comes to using Silver-
light. In reality, you can place Silverlight anywhere you want within a web property.
This is accomplished through Silverlight’s harmonious relationship with the well-
known HTML DOM. The DOM allows you to embed a Silverlight plug-in within it.
Once embedded, the overall application tree expands to something similar to that
shown in figure 4.2.

 The HTML DOM enables you to easily access and manage content in a web page. As
illustrated in figure 4.2, this content is represented as a structured tree of elements.
These elements represent children and contain attributes and text that give them def-
inition. Each child of the tree can be accessed through the HTML DOM. This gives you
the ability to add, edit, or remove content as needed. Unfortunately, as the tree has
grown, it has become somewhat unwieldy.

 In 1998, the World Wide Web Consortium (W3C) published the first version of the
HTML DOM specification. Since then, this specification has been implemented, at
least in some form, by every web browser. Over time, developers of some web browsers
have decided to augment the original specification to provide additional functionality,
causing a number of inconsistencies that can make it difficult to deliver platform-
neutral content.

Figure 4.1 Two theoretical in-browser uses of
Silverlight. The shaded areas represent Silverlight
applications on web pages.
Licensed to Devon Greenway <devon.greenway@gmail.com>

75Silverlight and the HTML DOM
To ensure that Silverlight could deliver platform-neutral content, the browsers sup-
ported by Silverlight had to be identified. Each of these browsers uses one of the Sil-
verlight-supported DOM variants. These DOM variants and their descriptions are
shown in table 4.1.

Most web browsers implement one of the DOM variants supported by Silverlight.
Regardless, these DOM variants enable you to programmatically access and manipu-
late the HTML DOM. Because of this, you can easily add an instance of the Silverlight
plug-in to a new or existing web page.

Table 4.1 The DOM variants officially supported by Silverlight

Specification Browser(s) Description

DHTML Object Model Internet Explorer The DHTML Object Model gives developers programmatic
access to the individual elements within a web property.

Gecko DOM Firefox
Mozilla
Netscape
Safari
Chrome

The Gecko DOM approach parses and renders HTML con-
tent and utilizes the HTML DOM.

Figure 4.2 The darkly shaded area represents the HTML DOM. The lightly shaded area represents the
Silverlight control. This control hosts the Silverlight Object Model.
Licensed to Devon Greenway <devon.greenway@gmail.com>

76 CHAPTER 4 Integrating with the browser
 At this point, you should have a basic understanding of what a Silverlight applica-
tion is. If you don’t, that’s okay because it’ll become clearer throughout this book.
When a Silverlight application resides on a web page, you can use it to interact with
the HTML DOM. To do this, you use the System.Windows.Browser namespace.

 The System.Windows.Browser namespace exposes a number of classes that encap-
sulate the features of the HTML DOM. The entry point into this DOM is accessible
through the HtmlPage class. This statically visible class gives you the ability to manage
a web page from managed code. In addition, you can use the HtmlPage class to inter-
act with users through their browser windows. What’s perhaps most interesting, the
System.Windows.Browser namespace enables you to completely bridge the scripting
and managed code worlds.

4.2 Managing the web page from managed code
The HtmlPage object exposes a property called Document. This property is an Html-
Document object that embodies the currently loaded HTML page and gives you admis-
sion to all OF the elements available within the page. This may sound familiar because
the Document object within the HTML DOM exposes the same kind of functionality.
The Silverlight version gives you the ability to do all OF this from managed code. This
enables you to navigate the contents of a web page, work with individual element
properties and styles, and retrieve information from the query string.

4.2.1 Navigating web page contents

The HtmlDocument gives you two entry points into the currently loaded document.
These entry points are represented as properties and are shown in table 4.2.

These properties represent great ways to enter into an HtmlDocument. More specifi-
cally, these items are geared toward navigating an HtmlDocument using a top-down
approach. For situations where you need to dive into the middle of the action and
find a nested element, you have two other options. These are shown in table 4.3.

 This table introduces the powerful and often-used GetElementById and Get-
ElementsByTagName methods. Note that these method names match their HTML
DOM equivalents, so you have a familiar approach for retrieving elements from man-
aged code:

HtmlDocument document = HtmlPage.Document;
HtmlElement element = document.GetElementById("myDiv");

Table 4.2 The entry points into the HtmlDocument

Property Description

DocumentElement This property represents the root element of the HTML DOM.
It always represents the HTML element of a web page.

Body This property gives you immediate access to the contents of
the BODY element of a web page.
Licensed to Devon Greenway <devon.greenway@gmail.com>

77Managing the web page from managed code
This example shows how to access an HTML element, in this case myDiv, via managed
code. Note that the myDiv element is simply an HTML DIV element within the HTML
page hosting the Silverlight plug-in. The example also introduces the important Html-
Element class. This class represents a strongly typed wrapper for any element in the
HTML DOM. This wrapper exposes properties, listed in table 4.4, that enable you to
interact with an HTML element from managed code.

This table shows the properties that define an HtmlElement. The Children and Par-
ent properties give you the ability to navigate a web page from a specific element.
Each element will have a specific tag associated with it, which can be viewed through
the TagName property. If this tag is an input tag, you can give it the focus by calling a
method that’s appropriately named Focus(). Beyond the Focus method and the prop-
erties listed in table 4.4, each HTML tag may contain several unique properties. Let’s
look at how to work with these element-specific properties.

4.2.2 Working with element properties

Each element in the HTML DOM exposes a number of descriptive properties. Some of
these properties are shared with all other elements in the HTML DOM (such as Tag-
Name). At the same time, some properties are only relevant to some HTML elements—
for example, the value property of an HTML input tag. Because this property is only
relevant to one kind of element, you may be wondering how HtmlElement works in
these situations.

Table 4.3 The navigation methods of an HtmlDocument

Method Description

GetElementById It empowers you to find any element within an HtmlDocument by ref-
erencing its unique identifier. If the element is found, an object-oriented
version of the element, known as an HtmlElement, is returned. If the
element isn’t found, null will be returned.

GetElementsByTagName It finds all of the elements with a specified tag name. The results are
returned as a collection of browser elements.

Table 4.4 The navigation properties of an HtmlElement

Property Description

Children A collection of items hosted by the current HtmlElement

CssClass The name of the Cascading Style Sheet (CSS) class in use by the HtmlElement

Id The unique identifier of the HtmlElement

Parent The HtmlElement that hosts the calling item; if the calling item is the
DocumentElement, this value will be null

TagName The name of the tag used by the HtmlElement
Licensed to Devon Greenway <devon.greenway@gmail.com>

78 CHAPTER 4 Integrating with the browser
 HtmlElement exposes two utility methods designed to interact with the properties
of an HTML element. The first method, GetProperty, retrieves the value assigned to a
property. The other method, SetProperty, can be used to assign a value to a property.
These general methods give you the flexibility to work with any kind of HtmlElement:

HtmlDocument document = HtmlPage.Document;
HtmlElement myTextField = document.GetElementById("myTextField");
int value = Convert.ToInt32(myTextField.GetProperty("value"));
value = value + 1;
myTextField.SetProperty("value", Convert.ToString(value));

This code demonstrates how the GetProperty and SetProperty methods can be used.
Note that this sample retrieves the value associated with the value attribute of an
HTML Input field. This value is incremented by one and assigned back to the field.
The GetProperty method takes a string that represents the name of the property
value to retrieve. This value is then returned as a string. In a similar fashion, the Set-
Property method takes a string that represents the value to set to a property. This
property is identified by the first parameter in the SetProperty method. From this,
you can see that it’s pretty easy to work with property values programmatically. Thank-
fully, it’s just as easy to work with an element’s CSS information.

4.2.3 Handling CSS information

Elements within the HTML DOM are designed to separate content from presentation.
The presentation information is stored in a variety of styles that describe how the ele-
ment should be shown, which are set through a number of attributes that belong to
the CSS recommendation. These attributes have values that can be accessed or
assigned from managed code, similar to the following:

HtmlDocument document = HtmlPage.Document;
HtmlElement myDiv = document.GetElementById("myDiv");
myDiv.SetStyleAttribute("backgroundColor", "gray");

The first step in accessing a style attribute from managed code is to retrieve the Htm-
lElement whose style needs to be used. Then, the style can be set using the SetStyle-
Attribute method. Alternatively, you can retrieve the current style of an HtmlElement
by using the GetStyleAttribute method. Both of these methods require you to refer-
ence a style using the scripting naming approach.

 The scripting naming approach is used to interact with styles from JavaScript. This
approach uses CamelCase for style names. This is slightly different than the HTML
approach, which uses dashes to separate words. This means that the HTML name for
the backgroundColor property used in the previous example is background-color. If
you’re an experienced web developer, you’ve probably run into this discrepancy
before. Note that Silverlight requires the scripting approach. If you try to reference a
style using the HTML approach, an exception won’t be thrown but the style value also
won’t be set or retrieved. Either way, it’s nice to know there are ways to get and set style
attributes. It’s also nice to know how to retrieve values from the query string.
Licensed to Devon Greenway <devon.greenway@gmail.com>

79Working with the user’s browser window
4.2.4 Accessing the query string

One common approach for managing state in a web application involves using the
query string. The query string empowers you to store small amounts of data relevant
to a user’s session. In addition, the query string can be used as a sort of a bookmark to
allow a user to come back to a specific location at a later point in time. As an example,
let’s pretend we want to send you the search results for a query on Silverlight; we
could email you the following web address:

http://search.msn.com/results.aspx?q=Silverlight&mkt=en-us&FORM=LVCP

This web address enables you to see the search results we’re referring to. This is more
convenient than telling someone to go to a search engine, enter “Silverlight” into the
query box, and wait for the results. This simpler approach is made possible through
the values that are stored after the ? (question mark)—values that represent the
QueryString of the Uri for an HtmlDocument.

 The QueryString is readable through a collection of key/value pairs. This collec-
tion is part of a larger entity known as the DocumentUri. The DocumentUri represents
the Uri of the current page, allowing you to always gain your current bearings within
an application. Figure 4.3 shows how the parts of the DocumentUri are related.

 This figure shows the breakdown of
a web address. Note that, significantly,
the QueryString starts after the ? in a
web address. In addition, each key/
value pair is separated by an & (amper-
sand). The QueryString in figure 4.3
has two key/value pairs, which could
be read using this code:

HtmlWindow window = HtmlPage.Window;
HtmlDocument document = HtmlPage.Document;
foreach (string key in document.QueryString.Keys)
{
 window.Alert("Key: " + key + "; Value: " + document.QueryString[key]);
}

Note that you can’t set the key/value pairs of this collection from code. Instead, if you
need to set the QueryString values, you’ll need to use the navigation techniques
shown table 4.6. This will reset the values associated with the QueryString, as well as
the contents of the page. Once the contents of the page are loaded, you can use the
HtmlDocument to navigate the page.

4.3 Working with the user’s browser window
The hosting browser window is represented as an HtmlWindow object. This object can’t
be instantiated from code, but you can get the current instance of the hosting
browser’s HtmlWindow through the HtmlPage class’s Window property. This can be
accomplished by using the following code:

HtmlWindow window = HtmlPage.Window;

http://www.silverlightinaction.com?page=1&id=1234

DocumentUri

QueryString

Figure 4.3 The elements of a web address
Licensed to Devon Greenway <devon.greenway@gmail.com>

80 CHAPTER 4 Integrating with the browser
Once you have a handle to it, you can use the HtmlWindow to display prompts to a user.
Alternatively, you can use this object to navigate the browser to a different location
using the Navigate method. Either way, this browser window stores valuable informa-
tion that can be discovered and used to enhance the user’s experience.

4.3.1 Prompting the user

The HtmlWindow class enables you to deliver HTML prompts to your users. It’s impor-
tant to note that these prompts aren’t Silverlight items. Instead, these prompts are
constructed entirely by the user’s browser window, so you have a limited ability to cus-
tomize how these prompts are displayed. The good news is that these prompts provide
a quick way to show or collect information from your users. The three prompt options
available through the HtmlWindow class are listed in table 4.5.

These prompt options mimic the prompt choices available through the HTML DOM
Window object. Using Silverlight, you can launch these prompts from managed code.
This example shows one way to display an alert to a user using C#:

HtmlWindow window = HtmlPage.Window;
window.Alert("Welcome!");

Note how easy it is to deliver an HTML prompt to a user. It’s also important to note
that these prompts prevent the execution of succeeding code until the user responds
to the prompt—they’re blocking operations. Either way, you can use this approach to
use the other prompt types shown in table 4.5.

 Silverlight 3 introduced another easy way to alert the user. The MessageBox.Show
method encapsulates the HtmlWindow.Alert functionality to provide a more discover-
able way to display alerts. More importantly, the MessageBox.Show method also works
for out-of-browser applications where there’s no valid HtmlPage and has no depen-
dence on the underlying JavaScript capabilities.

 Most .NET Windows developers are used to MessageBox.Show and will find it just as
intuitive in Silverlight:

MessageBox.Show("Welcome!");

Table 4.5 The prompt options available through the HtmlWindow class

Method Description

Alert(…) It shows a single message in an HTML alert window.

Confirm(…) It prompts the user to agree or disagree with a statement or question. This prompt
displays two buttons: OK and Cancel. The text of these buttons can’t be customized.
If a user selects OK, this method will return true; if a user selects Cancel, this
method will return false.

Prompt(…) It creates a dialog window that displays a single message. In addition, this dialog dis-
plays a single text box that the user can enter information into. If the user selects the
OK button from this dialog window, the value of that text box will be returned as a
string. Otherwise, if a user selects Cancel or exits the window, null will be returned.
Licensed to Devon Greenway <devon.greenway@gmail.com>

81Working with the user’s browser window
 The Show method also takes some additional parameters to allow you to set the
window caption and display either the OK button or both the OK and the Cancel
buttons:

MessageBox.Show("Format your C drive?",
 "Windows Caption",
 MessageBoxButton.OKCancel);

Just as in the case with Alert and the other methods, this is a blocking operation and
will suspend your application until the user closes the window.

 The MessageBox class and the HtmlWindow methods make it easy to display confir-
mation messages to the user via the browser. Luckily, it’s just as easy to perform naviga-
tion tasks through the browser window.

4.3.2 Navigating the browser window

Navigation is an important part of any web application. There may be times when you
want to redirect a user to another web page or perhaps you want to launch another
browser window and load a web page into it. Either way, the HtmlWindow class provides
two methods you can use to get the job done. These are shown in table 4.6.

It’s important to recognize that these navigation methods can have undesired effects
on your Silverlight application. For instance, if you redirect the hosting browser win-
dow away from the hosting web page, your Silverlight application will be unloaded.
You should strongly consider loading a different web page into a new browser window,
as shown here:

Uri uri = new Uri("http://10rem.net");
HtmlWindow window = HtmlPage.Window;
window.Navigate(uri, "_blank");

One of the key items to notice from this code is the fact that you must always use a Uri
for a web address. In addition, you can still use a target with an address, just like in
HTML, making it easy to fully control the experience.

 In addition to the properties of the windows or elements in the DOM, you may also
want to obtain information about the browser itself.

Table 4.6 The navigation options available through the HtmlWindow class

Method Description

Navigate(…) This method will redirect the browser window to the provided URI. This
URI can be loaded in an optional target window. The specifications of
this target window can be set via an optional third parameter. The
name and specification of the target window parameters match those
used by the HTML DOM window.open function.

NavigateToBookmark(…) This method is used to navigate to a location within the current HTML
page.
Licensed to Devon Greenway <devon.greenway@gmail.com>

82 CHAPTER 4 Integrating with the browser
4.3.3 Discovering the browser properties

The statically visible BrowserInformation property exposes detailed information
about a user’s browser. This information is stored within a System.Windows.
Browser.BrowserInformation object that corresponds nicely to the Navigator object
available within the HTML DOM. Table 4.7 shows the properties exposed by the Brow-
serInformation object and the equivalent Navigator property.

Based on these options, you can see that you have access to a lot of information. This
information can be useful for creating a statistical analysis of your application’s users.
To accomplish this, you must first get to the BrowserInformation by using code simi-
lar to this:

BrowserInformation browserInfo = HtmlPage.BrowserInformation;
HtmlWindow window = HtmlPage.Window;
window.Alert(browserInfo.Name);

This information can be useful if you’re modifying the HTML DOM from managed
code because of the rendering differences between different browsers. With the Brow-
serInformation class, you can easily code against these inconsistencies.

 The BrowserInformation class provides a way to learn about the user’s browser win-
dow, which is represented by the HtmlWindow class. With this class, you can navigate to
locations within a web page or on the Internet. In addition, you can reach out to users
and communicate with them through HTML prompts, if needed. These prompts are
something you’re probably familiar with if you’ve developed web applications using
JavaScript. If you’ve used JavaScript in the past, you’ll probably be excited to know that
there are ways to bridge the scripting world with the managed code world.

4.4 Bridging the scripting and managed code worlds
Silverlight allows you to create a bridge between the scripting and managed code
worlds to allow you to leverage each platform for the area in which it excels. For exam-
ple, you can use Silverlight purely for its rich and powerful .NET features; Silverlight
can provide value even if you don’t need a rich vivid user interface. To take advantage

Table 4.7 Descriptions of the BrowserInformation properties and their corresponding
 Navigator properties

BrowserInformation Navigator Description

BrowserVersion appVersion Represents the platform and version associated with the
browser

CookiesEnabled cookieEnabled Specifies whether cookies are enabled within the browser

Name appName The name of the browser

Platform Platform The operating system

UserAgent userAgent The value of the user-agent header that will be sent from
the browser to a server
Licensed to Devon Greenway <devon.greenway@gmail.com>

83Bridging the scripting and managed code worlds
of these features, you need to learn to call managed code from JavaScript. In addition,
you’ll also learn how to use JavaScript from managed code.

4.4.1 Calling managed code from JavaScript

Calling managed code from JavaScript is a fairly simple process—it consists of three
basic steps intended to expose managed code elements to the scripting world. Once
these tasks have been performed, you’re free to reference the managed elements
from JavaScript. To demonstrate this, let’s pretend you want to use a method from
managed code to call a web service.

 The first step in calling managed code from JavaScript involves using the Script-
ableType attribute. This attribute, which is part of the System.Windows.Browser
namespace, makes a class accessible to the JavaScript world. This attribute doesn’t expose
any special properties, so you can apply it to any class using the following approach:

[ScriptableType]
public partial class MainPage : UserControl

This C# code shows how to make a type accessible to JavaScript by exposing the
default Silverlight page to JavaScript. In reality, you can make any class accessible to
the scripting world and will typically create a dedicated class or classes just for that
interface. Once a class has been marked as a ScriptableType, all public properties,
methods, and events are available to JavaScript. Alternatively, you can decide to only
expose select member items. Fortunately, this is also an easy process.

 To expose member items, you use a similar but different attribute—ScriptableMem-

ber. The ScriptableMember attribute may be applied to the events, methods, and prop-
erties that can be used with script. You add the attribute as shown in this C# code:

[ScriptableMember]
public void ExecuteWebService()
{
 // Make a call to a web service
}

This attribute gives you the ability to set a scripting alias if you so desire, which you can
accomplish by setting the string-typed ScriptAlias property. This may be useful if
you want to prevent naming conflicts within script. Everything you’ve seen up to this
point is pretty basic, but we haven’t created the bridge to JavaScript yet.

 To create the bridge to the scripting world, you must register an instance of the
class to be exposed by using the statically visible RegisterScriptableObject method.
This method, which belongs to the HtmlPage class, empowers you to give a class
instance an alias. This alias can then be used from script. You can accomplish this
using the RegisterScriptableObject method shown in the following C# code:

public MainPage()
{
 InitializeComponent();
 HtmlPage.RegisterScriptableObject("bridge", this);
}

Licensed to Devon Greenway <devon.greenway@gmail.com>

84 CHAPTER 4 Integrating with the browser
This method accepts an instance of a class described as being a ScriptableType. The
object is registered with the scripting engine by passing it as the second parameter to
the RegisterScriptableObject method, which then uses the first parameter to cre-
ate an alias for the class instance. This alias is appended to the content property of
the hosting Silverlight plug-in.

 The Silverlight plug-in exposes a subobject called content, which exposes the con-
tent of a Silverlight plug-in; this is the scripting version of the Content property of the
SilverlightHost class previously discussed. You can access your scriptable object by
first retrieving the plug-in instance and then referencing the ScriptableMember you
want, as demonstrated in listing 4.1.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" >
<head>
 <title>Silverlight Project Test Page </title>
 <script type="text/javascript" src="Silverlight.js"></script>
 <script type="text/javascript">
 function buttonClick()
 {
 var plugin = document.getElementById("mySilverlightControl");
 plugin.content.bridge.ExecuteWebService();
 }
 </script>
</head>
<body style="height:100%;">
 <div id="mySilverlightHost" style="height:100%;">
 <script type="text/javascript">
 var host = document.getElementById("mySilverlightHost");
 Silverlight.createObjectEx({
 source: "ClientBin/MySilverlightApp.xap",
 parentElement: host,
 id: "mySilverlightControl",
 properties: {
 height: "100%",
 width: "100%",
 version: "2.0"
 },
 events: { }
 });
 </script>
 </div>
 <input type="button" onclick="buttonClick();"
 value="Execute Web Service" />
</body>
</html>

This listing demonstrates how a scriptable object can be accessed from a plug-in
instance. This plug-in gives you the ability to use managed code from JavaScript.
This can be valuable in situations where you don’t need the rich visual features of

Listing 4.1 Referencing a managed item from script on the HTML page

Scriptable object
and method
Licensed to Devon Greenway <devon.greenway@gmail.com>

85Bridging the scripting and managed code worlds
Silverlight. For instance, you may decide to create something known as a headless Sil-
verlight application.

 A headless Silverlight application is an application that doesn’t have a UI.
Instead, it uses objects registered as ScriptableType elements as the brains for a tra-
ditional web page. This approach allows you to write nonvisual components using
the .NET Framework and integrate existing code libraries. This type of application is
valuable because you can use it to perform tasks that the browser’s JavaScript engine
can’t do. For instance, you may choose to use a headless Silverlight application
to make cross-domain requests or listen to a socket (both items discussed in chap-
ter 14). Regardless, you may still need to rely on the features of a preexisting
JavaScript library. For these situations, you can use Silverlight to call JavaScript from
managed code.

4.4.2 Using JavaScript from managed code

Silverlight gives you the flexibility to call JavaScript from managed code and, in turn,
the ability to call any method on an HTML or JavaScript object. This can be useful if
you’re integrating Silverlight with a preexisting web application. There’s one spot in
particular where this feature is especially valuable: printing.

 Silverlight has basic printing capabilities (see chapter 19), but the Window object in
the HTML DOM also exposes a print method. You can use Silverlight’s ability to call a
function on a JavaScript object to deliver this functionality. To accomplish this, you
use a method called Invoke. This method can be used to execute a JavaScript function
from managed code, as demonstrated in the following C# code:

HtmlWindow window = HtmlPage.Window;
window.Invoke("print", new object[]{});

This code can be used to print the current web page, including your Silverlight
application. The Invoke method can be applied to any HtmlDocument, HtmlElement,
or HtmlWindow object. The first parameter of this method represents the name of the
function to be invoked. The second parameter represents the arguments that will be
passed to this function when it’s called. As you can see, this parameter is an array of
objects, so you have the flexibility to pass anything you need to a JavaScript function.

 Silverlight gives you the ability to execute JavaScript code from managed code. In
addition, you can go the other way and call managed code from JavaScript. These two
features show how you can use Silverlight to bridge the scripting and managed code
worlds. This is important because you need to use this approach if you want to com-
municate between two different types of plug-ins, such as Flash and Silverlight, or
between technologies such as AJAX and Silverlight.

 Silverlight gives you the ability to bridge scripting and managed code running
inside the browser. In addition, you can use Silverlight to learn about the user’s
browser window. What’s perhaps even more interesting, you can use managed code to
interact with the HTML DOM. All this is made possible by the rich HTML DOM API
that’s an integral part of Silverlight.
Licensed to Devon Greenway <devon.greenway@gmail.com>

86 CHAPTER 4 Integrating with the browser
 Running Silverlight in the browser is the primary use case for the technology. But
Silverlight 3 introduced a new way of running your applications: out of the browser,
on the user’s desktop.

4.5 Hosting HTML in Silverlight
Silverlight 4 added the ability to host arbitrary HTML content on the Silverlight plug-
in surface. This feature was added primarily to support advertising scenarios such as
Flash and animated GIF banner ads, but can be used to display anything the web
browser can display, including instances of other Silverlight applications.

NOTE Internally, this feature was implemented by hosting an instance of the
system browser within Silverlight. On the Mac, this is the WebKit-based Safari;
on Windows, it’s Internet Explorer. This is an operating system setting inde-
pendent from what browser you set as the default to open web content. Because
you’ve now brought back the variability in rendering that’s inherent across the
spectrum of web browsers, I recommend you use this feature sparingly.

HTML hosting in Silverlight currently works only in out-of-browser applications (cov-
ered in chapter 5). When displayed in an in-browser application, you’ll simply get a
gray or otherwise boring-looking rectangle on the screen, as seen in figure 4.4. If your
application supports running both in and out of the browser, you’ll want to dynami-
cally add or enable the control based on a runtime check to see which mode you’re
running in.

Figure 4.4 When running in the browser, HTML hosting features are disabled. This example shows the
WebBrowser control.
Licensed to Devon Greenway <devon.greenway@gmail.com>

87Hosting HTML in Silverlight
There are two ways to host HTML content in your Silverlight application: you can host
the WebBrowser control or you can use the WebBrowserBrush to paint HTML over
other elements.

4.5.1 Hosting the WebBrowser control

The WebBrowser control allows you to display a rectangular region on the screen con-
taining a functional and interactive web browser. There are three ways you can load
content into the control: the Source property and the Navigate and NavigateTo-
String methods.
SOURCE PROPERTY

The Source property is the XAML-friendly way to host content for the control. Simply
set the Source to a valid URI on the same domain that originally served the Silverlight
application:

<Grid x:Name="LayoutRoot" Background="White">
 <WebBrowser Source="http://www.mydomain.com" Margin="15" />
</Grid>

In the case of a cross-domain error, you’ll simply get a blank control for the display
and an XamlParseException (attribute out of range), which may be trapped in the
application-level exception handler. If you want to host cross-domain content, you’ll
need to use the NavigateToString method and host an iframe.

 Because Source isn’t a dependency property and, therefore, doesn’t support bind-
ing, its utility in real-world applications is pretty low. Instead, you’ll want to use the
Navigate method.
NAVIGATE METHOD

The Navigate method is the counterpart to the Source property. Though it doesn’t
support binding like the Source property, you have more control over exception han-
dling when the page is cross-domain. Listing 4.2 shows how to load a local page using
the Navigate method.

HTML (example-page.aspx):
<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>Demo Page</title>
</head>
<body>
 <div style="margin:20px;font-family:Arial;font-size:20pt">
 This is HTML from the same domain as this out-of-browser
 application. If this were a cross-domain page, you
 wouldn't be able to see it here.
 </div>

 <div style="margin:20px">

 </div>
</body>
</html>

Listing 4.2 Loading a page using the Navigate method
Licensed to Devon Greenway <devon.greenway@gmail.com>

88 CHAPTER 4 Integrating with the browser
XAML:
<Grid x:Name="LayoutRoot">
 <Grid.Background>
 <LinearGradientBrush StartPoint="0,0"
 EndPoint="0,1">
 <GradientStop Color="#FF0055DD"
 Offset="0" />
 <GradientStop Color="#FF00DDFF"
 Offset="1" />
 </LinearGradientBrush>
 </Grid.Background>

 <WebBrowser x:Name="b"
 Margin="15" />
</Grid>

C#:
public partial class MainPage : UserControl
{
 public MainPage()
 {
 InitializeComponent();

 Loaded += new RoutedEventHandler(MainPage_Loaded);
 }

 void MainPage_Loaded(object sender, RoutedEventArgs e)
 {
 b.Navigate(new Uri("/example-page.aspx",
 UriKind.Relative));
 }
}

Note that the URI is relative to the position of the .xap so, in this case, example-
page.aspx is sitting in the ClientBin folder on the project. When you run this app, you
get the result shown in figure 4.5, assuming you happen to have a gigantic photo of
me hanging around for just such the occasion.

WebBrowserControl

Navigate Method

Figure 4.5 The
WebBrowser control
with a page loaded via
the Navigate method
Licensed to Devon Greenway <devon.greenway@gmail.com>

89Hosting HTML in Silverlight
Like the Source property, we still have the cross-domain restrictions that make this
method less than useful for the majority of circumstances. The most flexible
approach for loading content into the WebBrowser control is to use the NavigateTo-
String method.
NAVIGATETOSTRING METHOD

NavigateToString allows you to build and display arbitrary HTML in the control. This
can be useful if, say, you’re building an RSS reader or similar application where the
source isn’t exactly an HTML page but has HTML content you want to display. To use this
method, simply provide a string containing the HTML source, as shown in listing 4.3.
(Use the same XAML as in listing 4.2.)

void MainPage_Loaded(object sender, RoutedEventArgs e)
{
 StringBuilder html = new StringBuilder();
 html.Append("<html><head></head>");
 html.Append("<html><head></head>");
 html.Append("<body style='font-family:Arial;font-size:20pt'>");
 html.Append("<div style='color:blue'>");
 html.Append("This is the first div");
 html.Append("</div>");
 html.Append("<div style='color:orange'>");
 html.Append("This is the second div");
 html.Append("</div>");
 html.Append("<html><head></head><body>");
 html.Append("</body></html>");

 b.NavigateToString(html.ToString());
}

When run, the resulting application looks like figure 4.6. Note that the styles all came
through just as you’d expect it from any other browser page.

 NavigateToString will allow you to host an iframe to enable loading content from
another web domain. In this way, you can get around the same-domain limitations

Listing 4.3 Loading an HTML string via NavigateToString

NavigateToString
method

Figure 4.6 Runtime-
generated HTML loaded
into the Silverlight Web-
Browser control via the
NavigateToString
method
Licensed to Devon Greenway <devon.greenway@gmail.com>

90 CHAPTER 4 Integrating with the browser
imposed by the Navigate method and Source properties. Simply change the HTML-
generating code in listing 4.3 to this:

html.Append("<html><head></head><body>");
html.Append("<iframe width='100%' height='100%'");
html.Append("src='http://windowsclient.net/learn/video.aspx?v=289850'/>");
html.Append("<html><head></head><body>");
html.Append("</body></html>");

The resulting page will look like figure 4.7. Note that, on this page, we have a Silver-
light media player with a loaded video and several animated GIF ads. This provides all
the flexibility you’d need to be able to create your own Silverlight web browser or to
incorporate browsing capabilities into your own application.

Figure 4.7 We’re loading http://windowsclient.net in an iframe using the NavigateToString
method. Note the embedded Silverlight player and animated gif ads, all hosted in the control inside
our Silverlight out-of-browser application.
Licensed to Devon Greenway <devon.greenway@gmail.com>

http://windowsclient.net

91Hosting HTML in Silverlight
You can use normal HTML attributes and techniques to avoid the scrollbars and deal
with overflow content just as you would on any other web page. Remember, though, the
more HTML you put in your string, the more you’ll have to test across the browsers. One
of the biggest benefits of Silverlight is that it looks and behaves the same across different
browsers. Relying too much on HTML content largely negates this benefit.

 Though having an interactive web browser control may be enough for most cases,
sometimes you may want to run scripts on the page or save the content off to a file.
INVOKING SCRIPTS

Up until now, the web page loaded in the WebBrowser control has been a black box.
The user can type into it, but the application can’t do anything other than load the
content and let it fly. Sometimes you need to invoke behavior on the web page. The
WebBrowser control includes two overloads of the InvokeScript method just for that.

 Listing 4.4 shows how to invoke a script both with a parameter and without.

HTML:
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
 <title></title>
 <script language="JavaScript">
 function GreetMe(name) {
 div1.innerHTML += "<p>Hello " + name + "</p>";
 }

 function SayHello() {
 div1.innerHTML += "<p>Hello</p>";
 }
 </script>
</head>
<body>
 Hello world!

 <div id="div1">
 </div>
</body>

</html>

XAML:
...
<WebBrowser x:Name="b"
 Source="/script-page.htm" />

C#:
public MainPage()
{
 InitializeComponent();

 b.LoadCompleted +=
 new LoadCompletedEventHandler(b_LoadCompleted);
}

Listing 4.4 Invoking scripts on a loaded web page

JavaScript function
expecting parameters

Basic JavaScript
function

LoadCompleted
wire-up
Licensed to Devon Greenway <devon.greenway@gmail.com>

92 CHAPTER 4 Integrating with the browser
void b_LoadCompleted(object sender, NavigationEventArgs e)
{
 b.InvokeScript("SayHello");
 b.InvokeScript("GreetMe","'Pete'");
}

You must ensure you wait for the LoadCom-
pleted event before you attempt to call any
scripts. Otherwise, there’s no guarantee
that the script functions are available. The
resulting application looks like figure 4.8.

 Another task you may want to perform
with the web page is to render its content to
a string for use elsewhere in the application.
Though this could be done via a separate
WebRequest, the information is already here
and there’s a handy function to expose the
content to your application code.
SAVING THE CONTENT

The WebBrowser control includes the SaveToString method, which takes the cur-
rently loaded HTML and, well, saves it to a string. From there you can upload it to a
service, save it locally, display it to the user or do pretty much anything else you’d like
with it:

string html = BrowserControlInstance.SaveToString();

But if the content is from a cross-domain location, you’ll receive a SecurityExcep-
tion. This restricts the use of the control to saving the HTML generated by your local
server.

 The WebBrowser control forms the core of the embedded HTML in Silverlight
applications. Building upon that and providing flexibility that’s both useful and fun is
the WebBrowserBrush.

4.5.2 Using the WebBrowserBrush

If you play with the WebBrowser control, you’ll eventually notice that you can’t overlay
other Silverlight content on top of it. On Windows, the WebBrowser control has a sep-
arate hWnd or handle to a window in Windows (the equivalent thing happens on the
Mac) and, therefore, has what we call airspace issues, in that it’ll be on top of anything
else you draw. If you want to have the content behave like normal Silverlight content,
allowing transforms and otherwise respecting z-order, you’ll need to use the Web-
BrowserBrush but at the cost of interactivity.

 The WebBrowserBrush takes a WebBrowser control as its source and is then used to
paint on any arbitrary path or shape. It doesn’t allow the user to interact with the web
page. During PDC09, Scott Guthrie demonstrated an application that puzzlefied a You-
Tube page with a Rick Astley video playing in a Flash player. This was accomplished
using the Web Browser brush on the individual puzzle shapes.

Invoking without
parameters

Invoking with parameters

Figure 4.8 InvokeScript used to
manipulate the contents of the web
page in the WebBrowser control
Licensed to Devon Greenway <devon.greenway@gmail.com>

93Hosting HTML in Silverlight
 Listing 4.5 shows how to use the WebBrowserBrush to show the contents of a web
page within an ellipse. The HTML used is the same as that from listing 4.2.

XAML:
<Grid x:Name="LayoutRoot">
 <Grid.Background>
 <LinearGradientBrush StartPoint="0,0"
 EndPoint="0,1">
 <GradientStop Color="#FF0055DD"
 Offset="0" />
 <GradientStop Color="#FF00DDFF"
 Offset="1" />
 </LinearGradientBrush>
 </Grid.Background>

 <WebBrowser x:Name="b"
 Height="1000"
 Width="1000"
 Visibility="Collapsed"
 Source="/example-page.aspx" />

 <Ellipse Margin="25"
 Stroke="Black"
 StrokeThickness="2">
 <Ellipse.Fill>
 <WebBrowserBrush SourceName="b"
 x:Name="EllipseBrush" />
 </Ellipse.Fill>
 </Ellipse>

</Grid>

C#:
void MainPage_Loaded(object sender, RoutedEventArgs e)
{
 CompositionTarget.Rendering += (s, ev) =>
 {
 EllipseBrush.Redraw();
 };
}

The resulting application looks like figure 4.9.
 In listing 4.5, the code is redrawing the control during the CompositionTar-

get.Rendering event. That event typically fires once for every frame being drawn. For
a static web page, this is overkill, and you can simply use the LoadCompleted event of
the WebBrowser control. But, if you have video content or a web page that otherwise
constantly changes its appearance, you’ll need to wire up to this event or to a timer to
update the display.

 Another point to note is that the WebBrowser control must have a size. What’s ren-
dered by the WebBrowserBrush is the same as what would be rendered by the Web-
Browser if it were visible. If the WebBrowser was sized to 10×10, the WebBrowserBrush

Listing 4.5 Using the WebBrowserBrush to paint an ellipse with a web page

Ensure that
browser has size

Source for
brush

Name for
use in code

Wire up event
handler

Redraw
on every frame
Licensed to Devon Greenway <devon.greenway@gmail.com>

94 CHAPTER 4 Integrating with the browser
would show that 10×10 content, scaled up to the size specified by the brush’s
stretch setting.

 That’s everything you need to be able to paint HTML all over your out-of-browser
application whether running in a window or full screen.

4.6 Summary
Silverlight has always been, first and foremost, a web technology. As such, it has excel-
lent integration with the hosting browser. Anything you can do from JavaScript can be
done from within Silverlight.

 When running in the browser, Silverlight provides you with enough control that
you could automate the entire page without any JavaScript, if you desired, while bene-
fitting from the capabilities and development model offered by managed code lan-
guages. The other end of the spectrum is a full-page Silverlight application hosted in a
thin HTML shell. For many applications, a middle ground using the in-browser experi-
ence integrated with an existing web property or into a system such as SharePoint will
be the way to go.

 In the next chapter, we’ll look at how Silverlight reaches beyond the browser both
to interact with the local operating system while running in the browser and how to run
Silverlight applications out of the browser, a capability first introduced in Silverlight 3.

Figure 4.9
WebBrowserBrush
used to paint web
content onto an
Ellipse element
Licensed to Devon Greenway <devon.greenway@gmail.com>

Integrating
 with the desktop
Silverlight started as an in-browser technology, primarily used for media and sim-
ple games. It later evolved into a more capable business technology and added
some useful but basic desktop integration with additions such as isolated storage
and the OpenFileDialog. With version 3, Silverlight gained the ability to run out-
side of the browser as a sandboxed desktop application. Starting with Silverlight 4,
the sandbox has been expanded and a whole new wave of desktop-integration
capabilities included.

This chapter covers
■ Running Silverlight applications out of the browser
■ Using the elevated trust mode
■ Lighting up on Windows with COM automation
■ Displaying the notification toast
■ Controlling the out-of-browser window
■ Running in full screen
■ Storing and retrieving local information using

isolated storage
95

Licensed to Devon Greenway <devon.greenway@gmail.com>

96 CHAPTER 5 Integrating with the desktop
 Elevated trust mode is one of the most exciting things to happen to out-of-browser
applications. Now we have access to more local files and resources, fewer confirmation
prompts, and a better integrated experience. On Windows, we also have all the power
provided by COM automation. We get all this as the result of a single setting and a user
confirmation dialog; no messing around with browser settings or code access security.

 Elevated trust mode even lets you control the out-of-browser window, from simple
sizing and location all the way through to creating your own custom window chrome—
the borders, title bars, buttons, and other elements that decorate a typical window on
a given operating system.

 Sometimes what you want isn’t a separate window but rather to take your in-
browser or out-of-browser application and make it run in full screen. Silverlight sup-
ports that as well, a killer feature for media players and kiosk applications. When run
in the elevated trust mode, full-screen applications have even more capabilities.

 Even in the default partial-trust mode, Silverlight 4 gains new out-of-browser capa-
bilities including the new notification API, or toast, as it’s commonly called.

 Applications both in and out of the browser need to integrate with the local OS at
varying levels. In this chapter, we’ll look at some of those local desktop integration fea-
tures and dive deeply into out-of-browser capabilities using both the default partial
trust mode introduced with Silverlight 3 and the elevated trust mode introduced with
Silverlight 4. From there we’ll look at the full-screen mode and isolated storage.
Before we get into some of the deeper topics, it’s fundamental to understand the out-
of-browser mode.

5.1 Silverlight out of the browser
One of the most exciting new features introduced with Silverlight 3 and enhanced in
Silverlight 4 is support for out-of-browser (OOB) applications. OOB applications give
us the best of Silverlight’s cross-platform support along with a locally installed and
offline-enabled experience.

 Out-of-browser Silverlight applications aren’t hosted in a real browser instance—at
least not in the way we’d typically think of a browser—and, therefore, don’t have
access to the HTML DOM described in the previous chapter. Instead, the applications
must be full-page, self-contained applications, without reliance on HTML, JavaScript,
or other in-page assets.

 Out-of-browser Silverlight applications are already seeing significant uptake within
corporations, behind the firewall, due to their simple installation and update models
and their presentation and data manipulation capabilities.

 Out-of-browser Silverlight applications look just like their full-page in-browser
equivalents but without all of the extra browser chrome. A sample OOB Silverlight
application may be seen in figure 5.1 and its in-browser version in figure 5.2.

 Between the two screenshots, you can see that the Silverlight portion of the experi-
ence remains identical (with the exception of the frame rate display I’ve turned on
when in the browser). The code and the .xap file are the same in both instances. What
Licensed to Devon Greenway <devon.greenway@gmail.com>

97Silverlight out of the browser
Figure 5.1 My first out-of-browser Silverlight application—a Commodore 64 emulator using the updated
MediaStreamSource API described in chapter 20

Figure 5.2 The same Silverlight application running in the browser
Licensed to Devon Greenway <devon.greenway@gmail.com>

98 CHAPTER 5 Integrating with the desktop
changes is how much chrome surrounds the application and how much real estate is
made available to Silverlight rather than to browser functionality.

 Silverlight provides APIs for detecting and responding to changes in network con-
nectivity as well as an API for indentifying whether the application is running in or out
of the browser and if there are any updates available. All of these, combined with the
already rich set of capabilities offered by Silverlight, make for a compelling out-of-
browser application platform.

 Before deciding on creating an out-of-browser application, it’s important to under-
stand both the capabilities and restrictions.

5.1.1 Capabilities and restrictions

Out-of-browser Silverlight applications work just like in-browser Silverlight applica-
tions with some minor differences:

■ Isolated storage quota for out-of-browser applications is 25 MB by default as
opposed to 1 MB for in-browser applications. In both cases, this can be
extended by prompting the user.

■ Out-of-browser applications provide access to keys that the browser normally
captures, such as function keys.

■ Out-of-browser applications can be pinned to the Start menu or taskbar on Win-
dows systems and display custom icons but otherwise can’t integrate with the
Windows 7 taskbar without using COM automation in the elevated trust mode.

■ Out-of-browser applications require an explicit check for a new version,
whereas in-browser versions automatically update.

■ Out-of-browser applications support the elevated trust mode, discussed in sec-
tion 5.3.1.

■ Out-of-browser applications can’t receive initialization parameters or take
advantage of any of the plug-in parameters while running out of the browser.

■ Out-of-browser applications can’t interact with the HTML DOM—there’s no
DOM to work with.

If you want those capabilities and can live with those restrictions, then an out-of-
browser application may be for you. If you need more power and fewer restrictions,
consider creating a click-once WPF application.

 The end-user experience for installing Silverlight applications is slightly more com-
plex than just hitting a web page and running Silverlight content but not nearly as
involved as a regular platform application (.exe) install.

5.1.2 The end-user experience

An end-user visiting your site will see a typical Silverlight application. If the applica-
tion is out-of-browser enabled, he or she will be able to right-click on the surface to
install it locally, assuming you’ve left that capability intact. In addition, you may pro-
vide a onscreen button to perform the installation without requiring the right click.
The default experience is shown in figure 5.3.
Licensed to Devon Greenway <devon.greenway@gmail.com>

99Silverlight out of the browser
The installation process is painless, being simply a copy of files to an obfuscated loca-
tion on the local machine. There are no registry entries required, no additional plat-
form DLLs, and no admin rights—nothing extra. As seen in figure 5.4, there’s only a
choice of where to put shortcuts (Start menu and/or desktop) and whether to
approve or cancel the install—a very low-friction experience compared to a typical
platform application install.

 Once the user takes the application out of the browser, the .xap will be rerequested
from the server and stored in a low-trust location on the local machine along with the
information about the original URI of the .xap and the download timestamp. It’ll then
appear in the places the user selected (Start menu and/or desktop) via the dialog shown
in figure 5.4 and also on the taskbar. The user may, as with any other application, pin
the shortcut to the Start menu or (in Windows 7) to the taskbar for convenience.

Figure 5.3 The install menu for an out-of-browser-enabled application is accessed by right-clicking on
the Silverlight surface.

Figure 5.4 The install dialog
gives the user the option to place
shortcuts on the Start menu and
on the desktop. The install icon
on the left is customizable, as is
the application name.
Licensed to Devon Greenway <devon.greenway@gmail.com>

100 CHAPTER 5 Integrating with the desktop
The application will also immediately launch in the out-of-browser mode, as seen in
figure 5.5. At this point, the user may close the browser window if she wishes to do so.

 Figures 5.6 and 5.7 show a Silverlight application (the Commodore 64 emulator)
pinned to the Start menu and the task-
bar on a Windows 7 machine. Note the
use of custom icons and information
about the name of the application.

 To uninstall the application, the
user may right-click the Silverlight
application and select the menu option
Remove This Application or use the
control panel’s Add/Remove Programs
applet. Again, no special rights are
required and the process is painless.

 As you can see, out-of-browser Silver-
light applications look and act much
like any other desktop application
while providing a simple installation
experience for the end user. You get the
local experience of a desktop applica-
tion with the ease of deployment of a
web application. Next, we’ll look at how
to configure and code your applica-
tions for out-of-browser support.

Figure 5.5 The
application is running
in the out-of-browser
mode. Note that both
the application window
title and source domain
(localhost in this case)
are displayed in the
title bar.

Figure 5.6 An out-of-browser Silverlight application
with custom icons pinned to the Start menu in
Windows 7. The application below it, TweetDeck, is
an Adobe AIR application, another competing out-of-
browser RIA technology.

Figure 5.7 The same Silverlight out-of-browser
application pinned to the taskbar in Windows 7
Licensed to Devon Greenway <devon.greenway@gmail.com>

101Creating out-of-browser applications
5.2 Creating out-of-browser applications
An out-of-browser application may be as simple as an existing Silverlight application
enabled to be run outside the browser chrome or something more complex that uses
the Silverlight APIs to check the network state and support offline scenarios. Perhaps
it even has a very different user interface when running out of the browser, building
upon those APIs and those for runtime mode detection. Before covering the more
advanced scenarios, let’s start with the minimal changes needed common for all three
cases—the settings file.

5.2.1 The out-of-browser settings file

As we saw in chapter 3, the application manifest file tells the Silverlight plug-in all
about the components of your Silverlight application. What it doesn’t include is infor-
mation about the out-of-browser configuration. That information is included in the
out-of-browser configuration file OutOfBrowserSettings.xml (see listing 5.1).

<OutOfBrowserSettings ShortName="Pete's App"
 EnableGPUAcceleration="True"
 ShowInstallMenuItem="True">
 <OutOfBrowserSettings.Blurb>
 Pete's Application on your desktop; at home, at work
 or on the go.
 </OutOfBrowserSettings.Blurb>
 <OutOfBrowserSettings.WindowSettings>
 <WindowSettings Title="Pete's Out-of-Browser Application"
 Top="100" Left="100"
 WindowStartupLocation="Manual"
 Height="450" Width="700" />
 </OutOfBrowserSettings.WindowSettings>
 <OutOfBrowserSettings.Icons>
 <Icon Size="16,16">AppIcon016.png</Icon>
 <Icon Size="32,32">AppIcon032.png</Icon>
 <Icon Size="48,48">AppIcon048.png</Icon>
 <Icon Size="128,128">AppIcon128.png</Icon>
 </OutOfBrowserSettings.Icons>
</OutOfBrowserSettings>

The short name of the application is what’s displayed in the right-click Silverlight
menu, the installation dialog, and the created shortcuts. The title, when combined with
the domain name, is shown in the title bar of the window hosting your application.

 Typically, you won’t edit the settings file directly. Instead, you’ll use the Out-of-
Browser Settings dialog from the project properties, as seen in figure 5.8.

 This dialog is displayed when you click the Out-of-Browser Settings button on the
Silverlight tab of the project properties. One of the options is Show Install Menu,
which allows you to toggle whether the default right-click install experience is dis-
played. If you uncheck that option, you must provide another way for users to install
your application out of the browser.

Listing 5.1 A basic out-of-browser application configuration file

Shown in
Start menu

Shortcut
comment

Window title

Window
startup
positionWindow

startup
dimensions

Custom
icons
Licensed to Devon Greenway <devon.greenway@gmail.com>

102 CHAPTER 5 Integrating with the desktop
The default right-click installation experience is adequate, but there may be times when
you want to provide a more controlled experience both with custom icons and with a
more obvious way to take the application out of the browser. We’ll cover that next.

5.2.2 Controlling the experience

Silverlight provides several useful APIs for both detaching your application from the
browser and for checking the current state of your application. The first is the Appli-
cation.Current.InstallState value. The values for InstallState are shown in
table 5.1.

 When the installation state is changed, the Application object will raise an Install-
StateChanged event that informs you to look at InstallState for the latest state.

 You can extend this concept to force an out-of-browser-only mode in your applica-
tion simply by refusing to display the application UI unless running outside of the
browser. In that case, your in-browser application would simply be an install-me-locally
splash screen. Listing 5.2 shows how to set up your application so that it provides a
meaningful experience only when run out of the browser.

Figure 5.8 The Out-of-
Browser Settings dialog
Licensed to Devon Greenway <devon.greenway@gmail.com>

103Creating out-of-browser applications
XAML:
...
<Grid x:Name="IBNotInstalledExperience">
 <Button x:Name="InstallButton"
 Height="100"
 Width="400"
 FontSize="30"
 HorizontalAlignment="Center"
 VerticalAlignment="Center"
 Content="Take Out of Browser" />
</Grid>

<Grid x:Name="IBInstalledExperience">
 <Rectangle Fill="Azure"
 Stroke="LightBlue"
 RadiusX="10"
 RadiusY="10"
 Margin="20" />

 <TextBlock Text="This application is installed locally.

➥ Please run from the shortcut."
 FontSize="30"
 Margin="30"
 TextWrapping="Wrap"
 HorizontalAlignment="Center"
 VerticalAlignment="Center" />
</Grid>

<Grid x:Name="OobExperience"
 Visibility="Collapsed">

 <Rectangle Fill="Azure"
 Stroke="LightBlue"
 RadiusX="10"
 RadiusY="10"
 Margin="20" />

 <TextBlock Text="Running out of browser"
 FontSize="30"

Table 5.1 The various values of InstallState

State Meaning

Installed The application has been installed by the user. Note that the current instance of
the application may still be running in the browser. This value only tells you it’s
available in the locally installed mode for the current user/machine.

InstallFailed The application tried to install, but failed.

Installing The application is currently installing. This is a good place to download the
required assets if you intend to allow the application to run offline as well as out
of the browser.

NotInstalled This value indicates that the application hasn’t been locally installed.

Listing 5.2 Forcing out-of-browser mode
Licensed to Devon Greenway <devon.greenway@gmail.com>

104 CHAPTER 5 Integrating with the desktop
 Margin="30"
 TextWrapping="Wrap"
 HorizontalAlignment="Center"
 VerticalAlignment="Center" />
</Grid>

C# code:
public MainPage()
{
 InitializeComponent();

 Loaded += new RoutedEventHandler(MainPage_Loaded);
 InstallButton.Click += new RoutedEventHandler(InstClick);
 Application.Current.InstallStateChanged +=
 new EventHandler(OnInstallStateChanged);
}

private void UpdateUserInterface()
{
 if (Application.Current.IsRunningOutOfBrowser)
 {
 OobExperience.Visibility = Visibility.Visible;
 }
 else
 {
 if (Application.Current.InstallState == InstallState.Installed)
 {
 IBInstalledExperience.Visibility = Visibility.Visible;
 IBNotInstalledExperience.Visibility = Visibility.Collapsed;
 OobExperience.Visibility = Visibility.Collapsed;
 }
 else
 {
 IBInstalledExperience.Visibility = Visibility.Collapsed;
 IBNotInstalledExperience.Visibility = Visibility.Visible;
 OobExperience.Visibility = Visibility.Collapsed;
 }
 }
}

void OnInstallStateChanged(object sender, EventArgs e)
{
 UpdateUserInterface();
}

void MainPage_Loaded(object sender, RoutedEventArgs e)
{
 UpdateUserInterface();
}

void InstClick(object sender, RoutedEventArgs e)
{
 Application.Current.Install();
}

Installation and
execution state check

Fired when
Installed or
uninstalled

Install button
click handler
Licensed to Devon Greenway <devon.greenway@gmail.com>

105Creating out-of-browser applications
The experiences resulting from the code in listing 5.2 are shown in figures 5.9
and 5.10. Note that the Install method may only be called from a user-generated

Figure 5.9 The experience a user will see if he hasn’t installed this application. Clicking the button calls
Application.Current.Install().

Figure 5.10 The same application after it’s detected that it was installed and is running outside of
the browser. Note that the browser-hosted version responded to the InstallStateChanged event
by changing its own UI.
Licensed to Devon Greenway <devon.greenway@gmail.com>

106 CHAPTER 5 Integrating with the desktop
UI event, such as a button click. This is to prevent applications from self-installing
without explicit user intervention.

 So though you can’t exactly force an application to install locally, you can design it
to show different interfaces depending upon its installation state and current mode of
operation. Think carefully before you use this type of code in your own applications; if
there’s no compelling reason to force an application to run out of the browser only,
don’t force the user.

 The next step in customizing the experience is to change the icons displayed in
the install dialog, the application window, the Start menu, and the taskbar.

5.2.3 Customizing icons

The next step in creating a customized out-of-browser experience is changing the
icons used in the application. The icons, which must be .png files, are typically pro-
vided in four sizes from 128×128 to 16×16. The 128×128 size is used in the installation
dialog. The other sizes are used in the Start menu, the window icon, shortcuts, and in
the Apple OS X application list. Though you don’t need to provide every size, I highly
recommend that you do because they may not scale at runtime in quite the way you
want them to. The approach is similar to exploding a typical Windows .ico file into
four .png files.

 To include icons, the OutOfBrowserSettings.Icons section is added to the Out-
OfBrowserSettings.xml inside the OutOfBrowserSettings section, as shown:

<OutOfBrowserSettings ...>
...
 <OutOfBrowserSettings.Icons>
 <Icon Size="16,16">AppIcon016.png</Icon>
 <Icon Size="32,32">AppIcon032.png</Icon>
 <Icon Size="48,48">AppIcon048.png</Icon>
 <Icon Size="128,128">AppIcon128.png</Icon>
 </OutOfBrowserSettings.Icons>
</OutOfBrowserSettings>

The icons themselves are included in your project as Content and copied into the .xap
file at compile time. In the preceding example, they’re in the project root but you cer-
tainly may include them in a subfolder. The filenames can be anything you want as
long as the actual resolution of the file matches up with the known resolution
assigned to it in the Size property.

 That’s it for customizing the install experience. Next, we’ll look at how to handle
two common scenarios for out-of-browser applications: changing the network state
and updating the application.

5.2.4 Checking the network state

You’ll use two mechanisms to check the network state in your Silverlight application:
the GetIsNetworkAvailable method and the NetworkAddressChanged event. Both
are available in an out of the browser but are more commonly used in out-of-browser
scenarios.
Licensed to Devon Greenway <devon.greenway@gmail.com>

107Creating out-of-browser applications
 The NetworkInterface and NetworkChange classes included in the Sys-

tem.Net.NetworkInformation namespace provide access to the network state infor-
mation. Typically, you’ll use them together like this:

NetworkChange.NetworkAddressChanged += new
 NetworkAddressChangedEventHandler(OnNetworkAddressChanged);

...

void OnNetworkAddressChanged(object sender, EventArgs e)
{
 if (NetworkInterface.GetIsNetworkAvailable())
 {
 // Connected to some network
 }
 else
 {
 // Not connected to any network
 }
}

The call to GetIsNetworkAvailable will tell us only that there’s some sort of network
connection. It doesn’t guarantee that we can access required services or even the
Internet in general. On machines with network connections between the host and a
virtual PC (VPC), which is typical in development environments, this may even detect
the VPC connection as a valid network connection and return true.

 Rather than rely just on this call, it’s a good practice to first check to see whether
any network is available and, if so, ping or call a known service on the server you plan
to reach before assuming you’re connected. Since the network state can change dur-
ing the application runtime, you may want to call these methods on a timer or in the
exception handlers in your network service interface layer.

 One thing that can only happen when you’re connected to the network is updat-
ing the application.
UPDATING

A real benefit of browser-based applications is the ability to automatically update the
application without requiring any sort of explicit installation or push to the client
machine. Out-of-browser Silverlight applications aren’t very different in that regard,
except that the developer controls the update process.

 The Silverlight Application object includes a CheckAndDownloadUpdateAsync
method that, as its name indicates, will check for any available .xap updates and down-
load, if present. When the method completes, it fires the CheckAndDownloadUpdate-
Completed event.

 The code is fairly simple and, if you use a little lambda expression sugar to create
the delegate, you can even fit it all into a single short function:

private void CheckForUpdates()
{
 Application.Current.CheckAndDownloadUpdateCompleted +=
 (s, e) =>
 {
Licensed to Devon Greenway <devon.greenway@gmail.com>

108 CHAPTER 5 Integrating with the desktop
 if (e.UpdateAvailable)
 {
 MessageBox.Show("A new version was downloaded.");
 }
 };

 Application.Current.CheckAndDownloadUpdateAsync();
}

When the CheckForUpdates call is made, Silverlight looks at the stored origin URI of the
.xap file and makes a normal background HTTP request to that location to verify that
the latest version is installed. If a new version is available, Silverlight will receive that in
the background and programmatically indicate that a new version is available by setting
the UpdateAvailable property to true in the returned event arguments class. Unless you
prompt the user to shut down and relaunch the application, he’ll still be running the
old version. It’s not until the next run that he’ll execute the newly downloaded version.

 But, when you detect that a new version is available, you can display a dialog to the
user and request a restart. If the nature of the application allows it, you can also be
more draconian and completely block all of the UI functionality until the user restarts
the application. What you can’t do is force an application to restart programmatically.
A best practice is to gently inform your user (perhaps soothing music and pastel colors
will help) that a new version is available and let him restart at his convenience. At the
worst, he’ll get the new version during the next session.

 Once you’ve decided to take your application out of the browser, one of the capa-
bilities you’ll enable is the notification API, introduced in Silverlight 4.

5.2.5 Alerting the user with Notification toast

Windows notifications have been nicknamed toast due to their way of popping up
from the bottom right of the desktop, like a piece of toast in an old toaster. Notifica-
tion is used for everything from displaying new email messages in Outlook, to new
tweets in the popular Twitter programs, to new items in the queue of a business appli-
cation. Notifications are an essential tool for alerting the user when the application is
sitting in the background or on another screen.

 Creating a simple notification window is easy. All you need to do is create an instance
of NotificationWindow, set the size, and set the content. The result will be less than stel-
lar, though; it’ll be a simple opaque white rectangle with your text overlaid:

if (Application.Current.IsRunningOutOfBrowser)
{
 NotificationWindow notify = new NotificationWindow();
 notify.Height = 75;
 notify.Width = 300;

 TextBlock text = new TextBlock();
 text.Text = "Basic Notification";

 notify.Content = text;

 notify.Show(5000);
}

Licensed to Devon Greenway <devon.greenway@gmail.com>

109Creating out-of-browser applications
The Show method takes a number of mil-
liseconds representing how long to show
the window. The value of 5000 millisec-
onds used in this example is 5 seconds.

 To really use NotificationWindow,
you’ll need to fill it up with something
more meaningful. Typically you’ll create
a user control to represent the content
and assign that rather than a simple
TextBlock. Figure 5.11 shows an example of a user control with a red and black border,
gray header text, and white body text.

 On Windows, the notification windows will always display on the bottom-right cor-
ner on the screen. On Mac OS X, they display at the top-right corner.

 The window may be closed by simply timing out or by calling the Notification-
Window.Close method. In either case, the NotificationWindow.Closed event is fired,
allowing you to take action as necessary.

 Notifications are one of many capabilities enabled when you run your application
out-of-browser. Before we delve more deeply into other capabilities, let’s take a detour
into the implementation specifics of out-of-browser applications.

5.2.6 Implementation specifics

When developing and debugging out-of-browser applications, it can be essential to
understand how Silverlight implements them under the covers. This is especially
important when you’re developing a true cross-platform application and need to
ensure consistent behavior.

 On Windows, out-of-browser Silverlight applications run in a process named
sllauncher.exe. That process hosts the IE rendering surface mshtml.dll hosted in
shdocvw. The rendering surface is where your Silverlight application exists, visually.
Similarly, on Apple OS X, the process hosts the Safari/WebKit rendering surface and
related libraries. In both cases, Silverlight doesn’t rely on the entire browser stack, just
the core functionality required to host Silverlight content inside the native operating
system window chrome.

 Though the Silverlight team has gone through great pains to ensure performance
is similar on all supported operating systems, understanding the limitations of Safari/
WebKit and Internet Explorer can really help with diagnosing performance issues.
For example, current implementations of Safari use a plug-in compositing mode
that’s not as efficient as Internet Explorer. If your application has lots of animation
and internal compositing going on, it’s a good idea to test performance on OS X
before the release.

 As in the case with process-isolated tabs in the browser, each out-of-browser Silver-
light application will have its own process, app domain, and instance of the CoreCLR.

 Out-of-browser Silverlight support now enables us to create a new class of applica-
tions that combine the best of Silverlight web development with the great experience

Figure 5.11 A customized notification window
Licensed to Devon Greenway <devon.greenway@gmail.com>

110 CHAPTER 5 Integrating with the desktop
of a desktop application. If you want to enable out-of-browser and offline scenarios,
need access to keys normally swallowed by the browser, or just want more screen real
estate, you take advantage of the new OOB features. Best of all, the partial-trust appli-
cations are just as safe and secure as their browser-hosted versions and easier to install
than typical desktop applications.

 As compelling as that is, sometimes you need a bit more power. Silverlight 4 adds
even more desktop-like functionality in the form of the new elevated trust mode.

5.3 Escaping the sandbox—elevated trust
Silverlight 4 introduces the concept of elevated-trust applications. Elevated-trust appli-
cations are out-of-browser applications that have access to additional capabilities on
the machine on to which they’re installed. For all intents and purposes, elevated-trust
applications are actually full-trust applications. For example, elevated-trust applica-
tions can use the new COM automation capabilities discussed in section 5.2.2, as well
as make web network requests without first checking for a client access policy. The full
list of capabilities enabled by elevated trust includes:

■ Using COM for native Windows integration.
■ Calling web services and making network requests without requiring a client

access policy check and without any cross-domain or cross-scheme restrictions.
■ Relaxed user consent for clipboard, webcam, and microphone access.
■ Relaxed user initiation requirements. For example, you can enter the full-

screen mode in an Application.Startup event handler rather than requiring a
button click or other user-initiated event.

■ Reading and writing files in user document folders.
■ Using the full-screen mode without keyboard restrictions and without the Press

ESC to exit overlay and staying in full-screen mode even if the user switches
focus to another window or display.

■ Controlling the size, position, and ordering of the host window.

That’s a pretty powerful list; it addresses most of the restrictions developers have been
bothered by since the initial release of Silverlight 2. In particular, the ability to make
network calls without worrying about cross-domain, and the new COM automation
capability, both open up entirely new areas for Silverlight development.

 We’ll first cover how to create elevated trust applications and the important step of
how to sign them and then follow that up with sections covering specific elevated trust
features you’ll use in your own applications—including enhancements to local file
access and the COM automation support introduced in Silverlight 4.

5.3.1 Creating elevated-trust applications

To mark your application as requiring elevated trust, first you must make the applica-
tion support the out-of-browser mode. Then, it’s as simple as a check box on the Out-
of-Browser Settings page, shown in figure 5.8 earlier in this chapter.
Licensed to Devon Greenway <devon.greenway@gmail.com>

111Escaping the sandbox—elevated trust
It may seem simple to just mark all out-of-browser applications as requiring elevated
trust, but the end-user install prompt is slightly scarier when elevated trust is used. Fig-
ure 5.12 shows the normal out-of-browser installation prompt. It’s pretty tame, since
the application is still running in a pretty tight sandbox.

 Once you move into the elevated trust mode, the dialogs rightfully get scarier to
encourage the user to install applications only from the sources they trust.
UNSIGNED APPLICATIONS

Figure 5.13 shows the elevated trust install dialog, in the case of an unsigned applica-
tion. It’s a pretty scary dialog that’ll give most users pause. For that reason alone, it’s
good to be judicious about which applications really require elevated trust or perhaps
even offer alternative versions of your application (perhaps the in-browser version)
that don’t require additional permissions.

 If you want to have a friendly elevated trust installation dialog, you’ll need to sign
the application (sign the .xap) using a certificate from a trusted certificate authority.
SIGNED APPLICATIONS

The only way to have an elevated trust application without a scary dialog is to sign the
.xap using a certificate from a trusted authority such as VeriSign, Thawte, GoDaddy,

Figure 5.12 Normal out-of-
browser installation prompt

Figure 5.13 Unsigned
out-of-browser elevated
trust install prompt
Licensed to Devon Greenway <devon.greenway@gmail.com>

112 CHAPTER 5 Integrating with the desktop
or Comodo. Once you sign the .xap, you’ll get a much friendlier dialog, as seen in
figure 5.14.

 Users are much more likely to install an application with the friendlier dialog and
your publisher information than with the yellow-bannered “unverified source” shown
in figure 5.13.

 For testing purposes, you can self-sign your .xap using a test certificate. Visual Stu-
dio, via the options on the Signing tab for the Silverlight project, will generate the test
cert for you. You’ll then need to add the certificate to your own store in the Trusted
Certificate Root. Anyone else who’s going to test the application will also need to
install the certificate. The fewer people with your test cert, the better, so be sure to get
a real certificate early in the process.

 Once you have a certificate, you can use it in Visual Studio 2010 to sign your .xap.
This is accomplished via the Signing tab in the project properties window for the Sil-
verlight application. Figure 5.15 shows a .xap file signed by my own test certificate.

Figure 5.14 Signed out-
of-browser elevated trust
install prompt

Figure 5.15 Signing options in Visual Studio 2010
Licensed to Devon Greenway <devon.greenway@gmail.com>

113Local file access
Once you have the certificate installed and it’s recognized by your target machines,
you’re good to test and deploy. Make sure you get the certificate early in the process
because it typically is not a simple, quick, or completely online process. Nevertheless,
this is the same process you’ll go through for certificates for any use, including appli-
cation signing and secure sockets.

TIP Jeff Wilcox from the Silverlight team at Microsoft put together a great walk-
through of purchasing and installing a certificate for personal use. You can find
it on his blog here: http://www.jeff.wilcox.name/2010/02/codesigning101/.

Trusted applications have a lot going for them, but users can still reject elevated per-
missions. If you’re going to build elevated trust applications and potentially share any
code with a normal trust application, one thing you’ll need to do is check to see
whether the user has actually granted you elevated permissions.

5.3.2 Detecting elevated trust mode

Before enabling certain features in your application, it’s a good practice to check to
see if you’re running in elevated trust mode. The Application object exposes the
HasElevatedPermissions property, which allows you to do just that:

if (Application.Current.HasElevatedPermissions)
{
 /* Light up the awesomeness */
}

Checking for elevated permissions allows you to take alternative approaches in cases
where the permissions weren’t granted. Graceful downgrading of functionality is always
a good idea when it comes to web applications. You can provide the users with the level
of features they’re comfortable with while maximizing the number of people you serve.

 We’ve now turned on the elevated trust mode and considered what it takes to
detect it. One of the areas that’s available in Silverlight by default but is enhanced by
elevated trust mode is local file access.

5.4 Local file access
Since version 2, Silverlight has offered the ability to load data from local files but it was
restricted to isolated storage and to streams loaded via the OpenFileDialog. Starting
with Silverlight 4 and the new elevated trust mode, you now have the ability to open
any file in the My Documents folder (and the equivalent folder on the Mac) without
injecting additional user interface in the process.

5.4.1 Accessing special folders

The paths to the special folders are accessed using Environment.GetFolderPath and
passing it a value in the Environment.SpecialFolder enumeration. An example of
enumerating all of the files in the My Music folder would look like this:

var music = Directory.EnumerateFiles(
 Environment.GetFolderPath(Environment.SpecialFolder.MyMusic));
Licensed to Devon Greenway <devon.greenway@gmail.com>

http://www.jeff.wilcox.name/2010/02/codesigning101/

114 CHAPTER 5 Integrating with the desktop
The result would be an IEnumerable<string> containing all of the files in the
C:\Users\Pete.Brown\Music folder on my machine.

 The full list of special folders currently supported in Silverlight is shown in table 5.2.
The enumeration itself has quite a few other values, but those are for compatibility with
the full framework. Using them in Silverlight will throw an exception.

In addition to enumerating files, you’d expect to be able to read from and write to the
files in those directories, and you’d be correct.

5.4.2 Reading from a file

You may read from a file rooted in one of the allowed directories using the File
object and opening a stream:

if (Application.Current.HasElevatedPermissions)
{
 string path = Environment.GetFolderPath(
 Environment.SpecialFolder.MyDocuments);
 string fileName = System.IO.Path.Combine(path, "sltest.txt");

 if (File.Exists(fileName))
 {
 using (StreamReader reader = File.OpenText(fileName))
 {
 string contents = reader.ReadToEnd();

 // do something with contents

 reader.Close();
 }
 }
}

Table 5.2 The values of SpecialFolder currently supported in Silverlight

Enum value Description

MyComputer The My Computer folder
Note: The MyComputer constant always contains the empty
string ("") because no path is defined for the My Computer folder.
Example: ""

MyMusic The My Music folder
Example: C:\Users\Pete.Brown\Music

MyPictures The My Pictures folder
Example: C:\Users\Pete.Brown\Pictures

MyVideos The My Videos folder
Example: C:\Users\Pete.Brown\Videos

Personal The directory that serves as a common repository for documents
This is the same as MyDocuments.

MyDocuments The My Documents folder
Example: C:\Users\Pete.Brown\Documents
Licensed to Devon Greenway <devon.greenway@gmail.com>

115COM automation
If you try to open from an unsupported location, Silverlight will throw an exception
and you’ll be unable to open the file.

 In addition to reading files from the supported locations, you’ll probably want to
write files.

5.4.3 Writing to a file

Writing to a file works just as you’d expect it to, using the File object and a Stream-
Writer, as long as you root your file in one of the allowed folders. Again, it’s a good
idea to check for elevated permissions before taking any action:

if (Application.Current.HasElevatedPermissions)
{
 string path = GetFolderPath(Environment.SpecialFolder.MyDocuments);
 string fileName = System.IO.Path.Combine(path, "sltest.txt");

 using (StreamWriter writer = File.CreateText(fileName))
 {
 writer.WriteLine("Test from Silverlight.");
 writer.Close();
 }
}

Reading and writing to files in the My Documents folder is great but still falls short of
what full-fledged desktop applications enable. Should you desire to do so, COM auto-
mation will allow you to gain access to any folder the user would normally have access
to. It also provides a lot of great new capabilities such as calling Windows APIs and
automating programs like Excel.

5.5 COM automation
One of the more interesting capabilities introduced in Silverlight 4 in the Sys-
tem.Windows.Interop namespace is the ability to use COM automation to integrate
with native code and applications on the desktop. The primary intent of this feature is
to allow automation of other applications, including Microsoft Office. Secondarily,
this feature may be used to gain access to a subset of the Windows APIs, specifically
those that support IDispatch. Although there are hacks to make it work, it was not a
goal of this feature to allow access to custom COM DLLs you may write or the third par-
ties provide and which you package and install along with your Silverlight application
or to allow access to the full desktop CLR.

 With that disclaimer out of the way, the COM automation feature of Silverlight is an
incredibly powerful way to extend the sandbox, both for good and for evil. Once you
have access to an IDispatch-compatible API, you can do anything you want with it. It
doesn’t respect the sandbox otherwise enforced by Silverlight; the only security that
comes into play is operating system-level security.

5.5.1 Detecting COM automation availability

COM automation may not be available in any particular running instance of your
application. Reasons for this may be that it’s running in the browser, the user has
Licensed to Devon Greenway <devon.greenway@gmail.com>

116 CHAPTER 5 Integrating with the desktop
declined the elevation request, or the application is running on a platform other than
Windows. In those cases, you want to nicely degrade the functionality in a way that
both respects the user and still provides a good experience.

 In addition to checking for elevated permissions as described in section 5.2.1, Sil-
verlight provides some calls you may use to detect the presence of COM automation.
The first is the call to check that you’re running on Windows. The primary reason to
get used to coding this check is that the future versions of Silverlight may include
automation of scripting capabilities on other platforms and you’d want to branch to
them here.

switch (System.Environment.OSVersion.Platform)
{
 // Mac
 case PlatformID.MacOSX:
 break;

 // Unix/Linux
 case PlatformID.Unix:
 break;

 // Windows
 case PlatformID.Win32NT:
 break;
}

I recommend using the OS check sparingly. You never know if capabilities available only
on one platform may show up in another in the future. Rather than drive that based on
the OS, drive it based on feature availability. The exception to this is COM automation,
which is a Windows-only feature. We may have an approach to accomplish the same
thing on Mac OS X in the future, but the implementation will differ substantially.

 Once you check for the OS, the next logical check is to see that you’re running out
of the browser. While this isn’t strictly necessary, you may want to do this to provide a
different downgrade experience than the in-browser version:

if (Application.Current.IsRunningOutOfBrowser)
{
 /* Out-of-browser coolness goes here */
}

The final check is to see if COM automation is available. Technically, this is the only call
you’re required to make but, if I kept this book just to the required bits, it’d be a rehash
of our documentation on msdn.microsoft.com and would seem too much like work:

if (AutomationFactory.IsAvailable)
{
 /* do awesome stuff */
}

Once you ensure automation is available, you can start using it to interact with other
applications or operating system APIs. It truly is a powerful level of integration with
the native code bits of the system. Let’s look at some cool things you can do with it.
Licensed to Devon Greenway <devon.greenway@gmail.com>

117COM automation
5.5.2 Using COM automation to make Silverlight talk

As an example of one of the neat OS-level things you can do with the API, let’s look at
speech. System.Speech, available as part of the full .NET framework, makes speech
easily accessible to any desktop or server application. But System.Speech simply wraps
and makes .NET-friendly the Speech API (SAPI) native to Windows. As luck would have
it, SAPI supports a script- and Silverlight-friendly IDispatch interface. The code here
shows a simple “Hello World!” speech application using the C# dynamic keyword and
Silverlight 4’s new COM automation feature:

if (AutomationFactory.IsAvailable)
{
 using (dynamic voice =

➥ AutomationFactory.CreateObject("Sapi.SpVoice"))
 {
 voice.Speak("I'm better than any in-page midi file!");
 }
}

In order to use the C# dynamic keyword, you need to have a reference to Micro-
soft.CSharp.dll. The DLL is delivered with the Silverlight SDK.

 Another interesting use of COM automation is access to the Windows 7 Sensor and
Location API.

5.5.3 Accessing GPS data using COM automation

I’m writing this part of the chapter on the return trip from speaking at an event in Ice-
land (in-flight power and limitless coffee are a real win, in spite of how hot my US
power supply is from the 240V power). Right above my multi-touch tablet screen is a
small seat-back console that displays the graphical representation of our geographical

IDispatch
IDispatch is COM’s standard interface that supports late binding using the OLE Auto-
mation protocol interface. IDispatch provides methods to allow a client to query the
component to find out what properties and methods it supports as well as a method
to invoke any one of those methods.

Each method supported by the COM component is assigned an ID. When the IDis-
patch interface’s GetIDsOfNames function is passed a string name of a function, it
returns the ID. The calling code then uses the Invoke function to invoke that function.

Due to the late binding nature of IDispatch, it supports scripting as well as clients
using the dynamic functionality in .NET 4, along with older clients such as Visual Ba-
sic (pre-.NET)

The method-ID table approach of IDispatch isn’t as performant as the early bound ref-
erences using custom interfaces. For that reason, consider alternative approaches
when looking at calling many IDispatch methods in a large loop in an application.
Licensed to Devon Greenway <devon.greenway@gmail.com>

118 CHAPTER 5 Integrating with the desktop
position on the world map. (For reference, we’re above Canada between the amus-
ingly named Goose Bay and Gander.)

 Watching that reminded me that all the nifty GPS work I’ve done with WPF on Win-
dows 7 is also available in Silverlight because the native API supports IDispatch. Loca-
tion-aware Silverlight applications? Awesome.

 Access to location information was first offered as part of the full .NET 4 framework
in the System.Device.Location namespace. Much like System.Speech, System.
Device.Location simply (or not so simply if you’re the one who had to write it) wraps
and makes .NET-friendly the Windows 7 Location API. Though you do lose some con-
venience such as the INotifyPropertyChanged implementation (see chapter 9) by
going directly against the native COM API, it’s still pretty usable.

 The following example shows how to access location information, specifically the lat-
itude and longitude reported by a GPS receiver such as the u-blox device included with
Microsoft Streets and Trips 2010. Note that this example requires a version of Windows 7
that supports the Sensor and Location API (all versions except the Starter edition):

if (AutomationFactory.IsAvailable)
{
 using (dynamic factory =
 AutomationFactory.CreateObject("LocationDisp.LatLongReportFactory"))
 {
 AutomationEvent newReportEvent =
 AutomationFactory.GetEvent(factory, "NewLatLongReport");

 newReportEvent.EventRaised += (s, ev) =>
 {
 using (dynamic report = factory.LatLongReport)
 {
 LatitudeDisplay.Text = factory.Latitude.ToString();
 LongitudeDisplay.Text = factory.Longitude.ToString();
 }
 };

 factory.ListenForReports(1000);

 }
}

In addition to working only on a Windows 7 PC (I don’t check for that in this example,
but you should), this code will only work if you have a GPS attached to your PC and you’re
in a spot where you can get a satellite signal. If you don’t have a different Location API-
compatible receiver, I recommend getting the inexpensive u-blox one and downloading
the Location API drivers from www.ublox.com/en/usb-drivers/windows-7-driver.html.
The device itself is fairly simple, reporting only latitude and longitude (no altitude,
speed, or heading) but is otherwise quite capable.

 Speech and location are fun and likely to be used by lots of applications, but the
one example requested more than any else and the one feature many people have
requested of Silverlight is the automation of Microsoft Office applications such as
Outlook and Excel.
Licensed to Devon Greenway <devon.greenway@gmail.com>

www.ublox.com/en/usb-drivers/windows-7-driver.html

119COM automation
5.5.4 Automating Excel

Finally, the canonical example of using COM automation in Silverlight is to automate
Excel to populate data. Listing 5.3 shows an example of creating a worksheet with data
and a chart.

if (AutomationFactory.IsAvailable)
{
 dynamic excel =
 AutomationFactory.CreateObject("Excel.Application");
 excel.Visible = true;

 dynamic workbook = excel.workbooks;
 workbook.Add();

 dynamic sheet = excel.ActiveSheet;

 int i = 1;

 double[] data = new double[] { 1.0, 5.0, 9.5, 2.7, 3.2, 0.6 };

 foreach (double d in data)
 {
 dynamic cell = sheet.Cells[i, 1];
 cell.Value = "Row " + i;
 cell.ColumnWidth = 10;

 cell = sheet.Cells[i, 2];
 cell.Value = d;
 i++;
 }

 dynamic shapes = sheet.Shapes;

 shapes.AddChart(-4100, 120, 2, 300, 200);
}

The resulting worksheet with data and chart looks like figure 5.16. Note that the com-
munication need not be one way as shown in this example. You can also wire up Excel
data change events to update the data back in your own Silverlight application.

 That’s pretty impressive from what’s otherwise thought of as a web application
technology. Though you can’t actually embed Office UI (such an Excel worksheet)
into your application, the ability to automate Excel and other Office applications
really helps to make Silverlight ready for business.

 You can do quite a bit with elevated trust mode applications in Silverlight 4 and above.
The local file access capability makes for an even richer cross-platform experience and
enables scenarios previously restricted to platform-specific desktop applications.

 Special among the elevated trust features, the COM capabilities are almost endless
but should be used with discretion and caution. This feature provides yet another
option for creating Windows client applications.

 COM automation is exciting, powerful, and a little scary. The sky is the limit with what
you can do. Coming back down to Earth on the elevated trust capabilities, we’ll next
cover the control you have over the window hosting the out-of-browser application.

Listing 5.3 Automating Excel to create data and a chart

Create
worksheet

Iterate
dummy data

Label
cell

Value
cell

Add 3d rotated
chart (type –4100)
Licensed to Devon Greenway <devon.greenway@gmail.com>

120 CHAPTER 5 Integrating with the desktop
5.6 Controlling the host window
To create a truly differentiated out-of-browser experience, you’ll probably want to
have complete control over the title bar, resize bar, window buttons, and other ele-
ments that make up the window chrome. You may want to just change the color or you
may want to provide a completely different look and feel that blends seamlessly with
the application, without any jarring window borders.

 Silverlight supports several levels of customization to the out-of-browser window.
The simplest is setting the size and position of the window. From there, you can also
set it to be a topmost window—one that floats above all others. You can also program-
matically activate it.

 Those are all easy controls, but often you need to go a step further. Silverlight sup-
ports customizing the out-of-browser window chrome. It even includes functions and
properties that make it possible for you to easily replicate the normal window behav-
ior, including minimizing, maximizing/restoring, closing, moving, and resizing
the window.

Figure 5.16 An Excel worksheet and chart generated through COM Interop using the Silverlight
elevated trust mode

What about other platforms?
Silverlight is a cross-platform product so it’s reasonable to ask what the strategy is
for the Mac and Linux. Though nothing is official at this point, the Silverlight team is
looking into providing access to similar or equivalent technologies on other supported
platforms. One example of that may be AppleScript on the Mac. Though that means
we’d have to write different code for different platforms, I think the nature of this feature
makes that a necessary evil, should you desire deep integration with the operating
system features.
Licensed to Devon Greenway <devon.greenway@gmail.com>

121Controlling the host window
 In this section we’ll start with the basic properties, but as they’re simple and pretty
self-explanatory, we won’t linger there. Instead, we’ll hop right into the meatier topics
of changing the window chrome, modifying the window state, and moving and resiz-
ing the window.

5.6.1 Basic window properties

Elevated trust applications can change the properties of the host window at runtime,
including size, location, and even the chrome. The Window class used is similar to the
one used by WPF, so many of the properties and methods may be familiar to you. The
list of important properties and functions is shown in table 5.3.

The following example uses all of these properties and functions to size and position
the window, set its state, ensure it’s topmost, and then activate if it’s not already acti-
vated. We’ll cover the window state changes after we cover customizing the window
chrome because that’s where the window state typically comes into play:

if (Application.Current.HasElevatedPermissions)
{
 Window win = Application.Current.MainWindow;

 win.TopMost = true;
 win.Height = 200;
 win.Width = 200;

 win.Left = 150;
 win.Top = 150;

 if (!win.IsActive)
 win.Activate();
}

Setting the size and state of the window is important, but that’s not changing the look
of the window chrome itself. To do that, you’ll need to use a few more features intro-
duced with Silverlight 4.

Table 5.3 Runtime-controllable properties of the out-of-browser host window

Member Description

Top, Left Gets or sets the position of the window

Height, Width Gets of sets the size of the window

TopMost Set to true to make the Silverlight application float above all other windows
Useful for certain types of utility applications, but don’t abuse

WindowState Get or set the state of the window
Possible values are Normal, Minimized, and Maximized

IsActive Read-only
Returns a Boolean indicating whether the window is currently active

Activate Attempts to activate the application window by bringing it to the foreground and
setting focus to it
Licensed to Devon Greenway <devon.greenway@gmail.com>

122 CHAPTER 5 Integrating with the desktop
5.6.2 Changing window chrome

Silverlight applications tend to be highly visual and highly branded experiences.
When an out-of-browser application with a custom look gets wrapped in the standard
OS window chrome, it can really ruin the experience. What you really want is edge-to-
edge control over the look of your application, including the borders, buttons, and
title bar.

 Elevated trust out-of-browser applications enable you to control the window
chrome. You can choose to have the default OS chrome, no border, or borderless
rounded corners. At this point, you can’t have irregularly shaped windows or windows
with transparency, but that may show up
in a future version. Figure 5.17 shows
the various options inside the out-of-
browser configuration dialog in Visual
Studio 2010.

 The setting here adds an attribute to
the Window element in the OutOfBrows-
erSettings.xml file. The possible values
for the style are shown in table 5.4.

Figure 5.18 shows a close-up of the corner of the win-
dow when using the BorderlessRoundCornersWindow
as the window style. The result is a rectangle with a 5 px
corner radius on all four corners, with no anti-aliasing
or operating system drop shadow. This is a clipping
function in Silverlight; you don’t need to make any
changes to your layout to accommodate the rounded
corner, unless you want to.

 When you create custom chrome for your windows, you’re suddenly responsible
for the full behavior of the window, including creating a title bar (should you want
one), adding your own minimize, maximize, and close buttons, and handling moving
and resizing. Luckily, Silverlight provides several functions and events to help you
do this.

Table 5.4 Window styles for out-of-browser applications

Value Description

(unspecified element) The default window chrome is based on the operating sys-
tem in use.

BorderlessRoundCornersWindow The window is drawn with a 5-pixel corner radius on all four
corners.

None The window is a rectangular shape with no border.

Figure 5.17 Custom chrome settings for elevated
trust out-of-browser applications

Figure 5.18 A close-up view of
the top-left corner of a black
window using the round-corners
setting. The radius is fixed by
Silverlight itself.
Licensed to Devon Greenway <devon.greenway@gmail.com>

123Controlling the host window
5.6.3 Minimizing, maximizing, restoring, and closing

Most chrome implementations will have at least three buttons on the upper right of
the window: Minimize, Maximize/Restore, and Close. When you use the normal OS
chrome, those buttons are provided for you. When using custom chrome, you’ll need
to set the window state or call the Close method on the Application.Current.Main-
Window object. Listing 5.4 shows how to handle these functions in an application with
custom chrome. The Grid is assumed to be the main layout root in MainPage.xaml.

XAML:
<Grid x:Name="LayoutRoot" Background="Orange">
 <StackPanel Orientation="Horizontal" HorizontalAlignment="Right"
 VerticalAlignment="Top" Margin="8">
 <Button x:Name="MinimizeButton" Width="15" Height="15" />
 <Button x:Name="MaximizeButton" Width="15" Height="15" />
 <Button x:Name="CloseButton" Width="15" Height="15" />
 </StackPanel>
</Grid>

C#:
public MainPage()
{
 InitializeComponent();

 MaximizeButton.Click +=
 new RoutedEventHandler(MaximizeButton_Click);
 MinimizeButton.Click +=
 new RoutedEventHandler(MinimizeButton_Click);
 CloseButton.Click +=
 new RoutedEventHandler(CloseButton_Click);
}

void CloseButton_Click(object sender, RoutedEventArgs e)
{
 Application.Current.MainWindow.Close();
}

void MinimizeButton_Click(object sender, RoutedEventArgs e)
{
 Application.Current.MainWindow.WindowState =
 WindowState.Minimized;
}

void MaximizeButton_Click(object sender, RoutedEventArgs e)
{
 if (Application.Current.MainWindow.WindowState ==
 WindowState.Maximized)
 {
 Application.Current.MainWindow.WindowState =
 WindowState.Normal;
 }
 else
 {

Listing 5.4 Handling window state with custom chrome

Close

Minimize

Restore
Licensed to Devon Greenway <devon.greenway@gmail.com>

124 CHAPTER 5 Integrating with the desktop
 Application.Current.MainWindow.WindowState =
 WindowState.Maximized;
 }
}

In this example, you can see how easy it is to add your own window state management
buttons to the elevated trust out-of-browser application. That gets you half way there.
The other half of the required functionality is the ability to move your window by
dragging it with the mouse.

5.6.4 Moving

There are three approaches to moving your window in Silverlight: making the whole
window draggable, making an element (such as the title bar) draggable, or not both-
ering. The last option isn’t going to make you any friends unless you’re writing some
sort of a docking tool that can only sit on certain positions on the screen, so that
leaves the first two.

 Silverlight includes the DragMove method on the MainWindow object we used in the
previous examples. DragMove can be called from anything but is typically called from
the MouseLeftButtonDown event of a title bar, or of the window itself. Listing 5.5
builds on the previous example by adding a grid to represent the title bar and one
event handler.

XAML:
<Grid x:Name="LayoutRoot" Background="Orange">
 <Grid x:Name="TitleBar"
 Background="Blue" Height="30"
 VerticalAlignment="Top" />

 <StackPanel Orientation="Horizontal" ...

C#:
public MainPage()
{
 InitializeComponent();

 ...

 TitleBar.MouseLeftButtonDown +=
 new MouseButtonEventHandler(TitleBar_MouseLeftButtonDown);
}

void TitleBar_MouseLeftButtonDown(object sender,
 MouseButtonEventArgs e)
{
 Application.Current.MainWindow.DragMove();
}

The DragMove method is interesting because it takes over the mouse management
until the mouse is released. For that reason, you don’t need to wire up any mouse
movement events, or worry about the mouse getting outside the bounds of the win-
dow, or any of the other cruft you may have thought would be required.

Listing 5.5 Code to implement dragging a window

Maximize

Stand-in
title bar

Dragging
to move
Licensed to Devon Greenway <devon.greenway@gmail.com>

125Controlling the host window
 Silverlight provides one more method for window management, this one to allow
the user to resize the window when using custom chrome.

5.6.5 Resizing

While all of the other functions are considered pretty essential to window manage-
ment, resizing is completely optional. Some applications don’t allow resizing by the
end user. But, since Silverlight makes it so simple to rescale or resize elements when
the window is resized, this decision should be made only for aesthetic reasons and not
for lack of time to implement.

 To support resizing, DragMove has a sister function named DragResize. The Dra-
gResize move works much like DragMove, except it takes in a parameter that allows
you to specify exactly where in the window the user is resizing. Listing 5.6 builds on
the previous examples and shows how to use DragResize with a typical corner resize.
Keep in mind that you can specify any edge by using multiple resize elements and call-
ing DragResize with the appropriate parameter.

XAML:
<Grid x:Name="ResizeArea"
 Background="Blue" Height="30" Width="30"
 VerticalAlignment="Bottom" HorizontalAlignment="Right" />

<StackPanel Orientation="Horizontal" ...

C#:
public MainPage()
{
 InitializeComponent();
 ...

 ResizeArea.MouseLeftButtonDown +=
 new MouseButtonEventHandler(ResizeArea_MouseLeftButtonDown);
}

void ResizeArea_MouseLeftButtonDown(object sender,
 MouseButtonEventArgs e)
{
 Application.Current.MainWindow.DragResize(
 WindowResizeEdge.BottomRight);
}

Controlling the main window when running in the out-of-browser mode is an essential
addition to the Silverlight platform. It enables you to write applications that really look
and feel like native operating system apps—if you want them to. It also enables you to
create truly branded experiences that extend all the way to the edges of the window.

 Silverlight provides a number of ways you can control the window, from simply set-
ting its size and position, to floating it above other windows, all the way to using cus-
tom chrome. Silverlight also provides functions and properties to make window
manipulation easier when you implement your own chrome.

Listing 5.6 Implementing resize using an element in the bottom right corner

Stand-in resize
corner

Dragging to
resize
Licensed to Devon Greenway <devon.greenway@gmail.com>

126 CHAPTER 5 Integrating with the desktop
 Sometimes what you want isn’t actually a host window in an out-of-browser applica-
tion but rather just the ability to take your in- or out-of-browser application to full
screen, overlaying even the operating system shell UI elements. Yes, Silverlight can do
that too.

5.7 Running in full screen
Most browsers support the ability to run in the full-screen mode, typically by pressing
F11 or selecting the Full Screen option from the Tools menu equivalent. Though this
mode is nice, the amount of real estate given over to the application isn’t consistent
between browser versions. For example, the older versions of Internet Explorer kept
the status bar and some other elements on the screen. Internet Explorer 8+ and Google
Chrome both allow the browser to take over the entire screen, without any additional,
ahem, chrome visible. Firefox (as of this writing) shows a small gray bar at the top used
as a hotspot for the toolbar. All of these also require the user to navigate a browser-spe-
cific menu or press a browser-specific (but currently identical) hotkey. The other prob-
lem is that there is no way to handle this when running in the out-of-browser mode.

 Silverlight also supports its own full-screen mode, available both in and out of the
browser. The experience is the same across browsers and the mode may be invoked via
a button you provide in the Silverlight application. This allows you to keep the user’s
focus inside the application (no “Best viewed in full-screen mode, accessed by F11”
prompts) and enable the functionality in a way that’s consistent with your applica-
tion’s experience.

 In a sandboxed application in the browser or a non-elevated application out of the
browser, Silverlight’s full-screen support limits the types of keyboard entry just to those
typically used in media players and games (arrow keys, page navigation keys, and so
on). The reason for this is to prevent taking over the entire screen and spoofing an
operating system login experience, thereby capturing the user’s password and per-
haps sending it off to some scary site to be used to gain access to your private informa-
tion, like your tax returns for the past five years and that passwords.txt file you
thought no one would notice.

 There are some significant differences between the capabilities enabled by full
screen in the partial-trust mode and full screen in the elevated-trust mode. Let’s tackle
them separately.

5.7.1 Normal full-screen mode

In keeping with the promise of delivering rich interactive experiences, Silverlight goes
far beyond the standard web capabilities by providing a full-screen mode. This mode
enables a user to enjoy immersive visual experiences and interactive media outside the
bounds of the web browser. This full-screen experience comes with some limitations
that you’ll see in a bit. Because of these limitations, the full-screen mode is generally
used strictly with media. This section will show you the differences between the full-
screen and the normal screen modes. Then, you’ll learn how to programmatically tog-
gle between the screen modes.
Licensed to Devon Greenway <devon.greenway@gmail.com>

127Running in full screen
 If a Silverlight application is put in
the full-screen mode, the user will be
greeted with a brief overlay message that
looks like figure 5.19.

 Note that full-screen mode doesn’t
support the OpenFileDialog and
SaveFileDialog classes nor does it support multi-touch input (covered in chapter 8).
But full-screen mode is supported whether running in-browser or out.

 Figure 5.19 shows the prompt shown to users when they enter the full-screen
mode. This message will overlay the Silverlight content for approximately 3.5 seconds.
After that time, the prompt will gracefully fade out of view. This prompt can’t be cus-
tomized and, in the normal partial trust mode, it can’t be turned off because this
prompt is designed to prevent spoofing.

 Spoofing is a security attack used by malicious developers who try to deceptively
mask their application as another or as Windows itself. The purpose of this malicious
attempt is to collect otherwise sensitive information such as bank account numbers
and passwords.

 Because of the severity of this type of attack, Silverlight imposes two safeguards
when running in the partial trust mode. The first safeguard limits user input to the
arrow, Tab, Enter, Home, page up, page down, and space keys, as well as mouse events.
Additional information entered through the keyboard won’t be passed to the Silver-
light application. The second safeguard ensures that the full-screen mode can only be
entered through a user-initiated event such as a button click. Once this happens, you
can switch the Silverlight plug-in into the full-screen mode through the host.
TOGGLING BETWEEN SCREEN MODES

The SilverlightHost class gives you access to the information associated with a
plug-in instance. The switch to the full-screen mode is made using the Content prop-
erty, which exposes a bool property of its own called IsFullScreen. As you might
expect, this property can be used to toggle between the full-screen and the embed-
ded modes:

private void GoFullScreen_Click(object sender, RoutedEventArgs e)
{
 Application.Current.Host.Content.IsFullScreen = true;
}

This example shows how to switch a plug-in into the full-screen mode. As you proba-
bly already guessed, you can set the IsFullScreen property to false to go back to
the embedded mode. Regardless of which direction you’re going, a change in the
screen mode will cause the FullScreenChanged event to be triggered. This event is
useful for resizing the content so that it scales to an appropriate size based on the
screen mode.

 If you want to avoid the onscreen message, keyboard restrictions, and the require-
ment for user initiation, you’ll need to run in the elevated trust mode.

Figure 5.19 The prompt displayed to users when
they enter the full-screen mode
Licensed to Devon Greenway <devon.greenway@gmail.com>

128 CHAPTER 5 Integrating with the desktop
5.7.2 Elevated trust full-screen mode

Out-of-browser applications can go full screen whether they’re running in the normal
partial trust mode or in the elevated trust mode. The mechanisms for going full
screen and detecting the mode are the same. But the elevated trust mode provides
some real benefits to applications that require it.

 First of all, elevated-trust applications allow you to enter the full-screen mode from
any branch of code and not just something that’s user-initiated. For example, you can
go full screen from the Loaded event of the main page:

private void MainPage_Loaded(object sender, RoutedEventArgs e)
{
 if (Application.Current.HasElevatedPermissions)
 {
 Application.Current.Host.Content.IsFullScreen = true;
 }
}

Elevated trust also eliminates the “Press ESC to exit full-screen mode” prompt that’s
displayed when the full-screen mode is first entered. At the same time, it eliminates
the use of the Escape key for this purpose altogether. You’ll need to provide the user
with another way to exit the full-screen mode either by capturing the Escape key and/
or providing a button to drop out of full screen.

 The keyboard restrictions on the partial-trust full-screen mode make it suitable for
only a small class of applications. The full-screen mode in the elevated trust also pro-
vides access to all the keys you get in the normal out-of-browser mode. This is a huge
boon that makes the mode acceptable for kiosks, full-screen games, interactive media
players with chat, and many other application types.

 The full-screen mode works whether running in or out of the browser, in partial
trust or elevated trust. Once in the full-screen mode, you can simulate an entire desk-
top, provide your own window management, and so forth. It effectively gives you a
work space that’s larger than what we’d traditionally consider a window.

 So far, we’ve covered a number of different ways Silverlight can integrate with the
local machine. One final area of local machine integration, available both in and out
of the browser, is isolated storage.

5.8 Storing data in isolated storage
Even in the out-of-browser mode, Silverlight is a browser-based plug-in so, by default,
it has the lowest of security privileges to ensure a safe browsing experience for your
users. This safety restriction introduces a number of development challenges, such as
working with data across browser sessions. Although working with data across browser
sessions may not be a problem if the data is stored on a web server, it can be a problem
if the data needs to be stored locally.

 Isolated storage is a mechanism that allows you to preserve data across browser ses-
sions on a user’s machine. This storage area is tied to an individual user and helps you
overcome the 4 KB limitation of a cookie. Unlike a cookie, isolated storage lies outside
Licensed to Devon Greenway <devon.greenway@gmail.com>

129Storing data in isolated storage
of the browser cache—if a user clears the browser history, the items within isolated
storage will remain in place. In order to access this storage area, you use the System.
IO.IsolatedStorage namespace.

 The System.IO.IsolatedStorage namespace provides the functionality to work
with a user’s isolated storage area. This area can be accessed through the Isolated-
StorageFile class, which exposes two statically visible methods that retrieve an Iso-
latedStorageFile. These methods are GetUserStoreForApplication and GetUser-
StoreForSite. The GetUserStoreForApplication can be used to retrieve a user’s iso-
lated storage for a specific Silverlight application, defined by the full URL to the .xap.
The GetUserStoreForSite method gets a user’s isolated storage for an entire domain.
As you may have guessed, this method gives you the ability to share information across
multiple Silverlight applications.

NOTE The GetUserStoreForSite method doesn’t exist in the full .NET
framework. You should consider this fact if you want to promote your Silver-
light application to WPF down the road.

Either way, an example of retrieving an IsolatedStorageFile is shown here:

IsolatedStorageFile isoFile =
 IsolatedStorageFile.GetUserStoreForApplication();

This code gives you access to a user’s isolated storage area. Once you’ve retrieved an
IsolatedStorageFile, you can use it to manage a virtual filesystem, which gives you
the ability to read and write files and directories. This information can be leveraged
through the IsolatedStorageFile and IsolatedStorageFileStream classes.

5.8.1 IsolatedStorageFile: the virtual filesystem

The IsolatedStorageFile class represents a virtual filesystem that a Silverlight appli-
cation can manage. Note the word virtual; outside of the elevated security mode, you
can’t directly access the user’s local filesystem due to security constraints. As the previ-
ous example showed, you can still access data related to the requesting Silverlight
application but, in reality, the term filesystem is a probably a stretch.

 The IsolatedStorageFile object represents a specific partition within the iso-
lated storage area. This partition is tied to both the user and the application. It’s easi-
est to think of this partition as a specific folder or directory. And, like a regular
directory, the isolated storage area enables you to perform several operations, includ-
ing the ability to list the contents of a directory. This directory can have other files or
directories added to or removed from it, so you should probably keep track of the iso-
lated storage usage statistics to ensure you don’t run out of space. Fortunately, the
IsolatedStorageFile allows you to check these statistics and request more space if
you need it.
LISTING THE CONTENTS OF THE VIRTUAL FILESYSTEM

The IsolatedStorageFile class provides two methods that enable you to retrieve the
items within a storage area. The first method, GetDirectoryNames, enables you to
Licensed to Devon Greenway <devon.greenway@gmail.com>

130 CHAPTER 5 Integrating with the desktop
retrieve the names of the directories that match a certain
pattern; the GetFileNames method allows you to search
for files that match a particular filter. To gain a solid
understanding of how these filters work, look at the sam-
ple isolated storage area structure in figure 5.20.

 The isolated storage area depicted in figure 5.20 con-
tains a number of common filesystem items. For instance,
there are three text files, one XAML file, and one subdirec-
tory. With this hierarchical structure in mind, let’s turn our
focus to mastering the filtering string syntax used for searching the isolated storage area.

 The first and most verbose approach involves searching for a specifically named
item. This approach works with both the GetDirectoryNames and GetFileNames meth-
ods. To perform the search, you simply provide the exact path to the file or directory.
If the filename or directory is found, a string array with one element will be returned.
Otherwise, an empty result set will be returned. Both approaches are shown here:

string[] directory1 = isoFile.GetDirectoryNames("Directory1");
string[] noDirFound = isoFile.GetDirectoryNames("Directory2");
string[] testfile1 = isoFile.GetFileNames("testfile1.txt");
string[] noFileFound = isoFile.GetFileNames("testfile2.txt");
string[] nestedFile = isoFile.GetFileNames("Directory1/file1.txt");

Similarly, wildcard characters may be used to pattern-match file names. Following nor-
mal Windows operating system rules, the * character matches any number of charac-
ters, and the ? character matches any single character:

string[] results1 = isoFile.GetFileNames("*");
string[] results2 = isoFile.GetFileNames("Directory1/*");
string[] results3 = isoFile.GetFileNames("textfile*");
string[] results4 = isoFile.GetFileNames("*.txt");

The * and ? wildcard characters are applicable within the GetDirectoryNames
method as well. Once you have the file you’re looking for, you can open it and work
on it just like you would any other file, including deleting it.
REMOVING ITEMS FROM ISOLATED STORAGE

The IsolatedStorageFile class exposes two utility methods that enable you to
remove items from the storage area. The first method, DeleteDirectory, is used to
remove a directory from the isolated storage area. The second method, DeleteFile,
similarly allows you to remove a file. The usage of the DeleteFile method is illus-
trated here:

soFile.DeleteFile("testfile1.txt");
isoFile.DeleteFile("Directory1/file1.txt");

As this example shows, you must explicitly provide the absolute path to the file
you want to delete. If you provide an invalid path, an IsolatedStorageException
will be thrown. In addition, this same exception will be thrown if you attempt to
remove a directory that isn’t empty. Other than that, the syntax is the same when

Figure 5.20 An illustration
of a potential isolated storage
area
Licensed to Devon Greenway <devon.greenway@gmail.com>

131Storing data in isolated storage
using the DeleteDirectory method. But, before you can delete a directory, it needs
to be created.
CREATING DIRECTORIES WITHIN ISOLATED STORAGE

The IsolatedStorageFile class exposes a method called CreateDirectory that
enables you to create a directory within the isolated storage space. There isn’t any-
thing too shocking about the syntax associated with this method—to create a direc-
tory, you state the name of the folder:

isoFile.CreateDirectory("Directory1");

In addition to creating directories at the root of the isolated storage area, the Create-
Directory method enables you to create subdirectories. To do this, you use a URL-
style syntax that uses forward slashes as separators:

isoFile.CreateDirectory("Directory1/SubDirectory1");
isoFile.CreateDirectory("Directory1/Sub2/Leaf");

The first line of code is pretty simple; it creates a subdirectory under an existing
directory. The second line of code shows an additional feature. If you provide an
absolute path to a subdirectory further down the line, all missing directories along
the way will automatically be added. Once a directory exists, you can add files to it.
We’ll discuss adding files later in this section. But first, let’s make sure there’s space
for a new file.
CHECKING THE AVAILABLE SPACE

The IsolatedStorageFile class exposes two read-only properties that inform you of
an isolated storage area’s memory situation. The first property, Quota, holds the total
number of bytes allocated to the storage area. The other property, Available-
FreeSpace, represents the number of bytes remaining in the storage area. You can use
these properties together to create a cool little memory quota bar (see listing 5.7).
Note that this sample will only show the green bar if you pair it with other code that
actually uses some space in isolated storage; otherwise the bar will be white, showing
zero quota usage.

Result:

XAML:
<UserControl x:Class="IsolatedStorgageExample.QuotaBar"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Width="400" Height="300">
 <Canvas x:Name="LayoutRoot" Background="White">
 <Rectangle x:Name="maximumRectangle" Width="1" Height="20"
 Fill="#FFFFFFFF" Stroke="#FF000000"
 Canvas.Left="1" Canvas.Top="5" RadiusX="5" RadiusY="5"/>
 <Rectangle x:Name="currentRectangle" Width="1" Height="20"

Listing 5.7 Creating a file quota bar associated with the user’s isolated storage area
Licensed to Devon Greenway <devon.greenway@gmail.com>

132 CHAPTER 5 Integrating with the desktop
 Stroke="#FF000000" Canvas.Left="1" Canvas.Top="5"
 RadiusX="5" RadiusY="5" StrokeThickness="0">
 <Rectangle.Fill>
 <LinearGradientBrush EndPoint="0.5,1.35" StartPoint="0.5,-0.3">
 <GradientStop Color="#FF54CDEA" Offset="0"/>
 <GradientStop Color="#FF017328" Offset="0.5"/>
 <GradientStop Color="#FF54CDEA" Offset="1"/>
 </LinearGradientBrush>
 </Rectangle.Fill>
 </Rectangle>
 </Canvas>
</UserControl>

C#:
...
public MainPage()
{
 InitializeComponent();
 // Set the rectangle sizes accordingly
 using (IsolatedStorageFile isoFile =
 IsolatedStorageFile.GetUserStoreForApplication())
 {
 double usedSpace = isoFile.Quota - isoFile.AvailableFreeSpace;
 maximumRectangle.Width = (isoFile.Quota / 10024) * 2;
 currentRectangle.Width = (usedSpace / 10024) * 2;
 }
}
...

Listing 5.7 shows one way you can put the AvailableFreeSpace and Quota properties
to use. These properties are used to set the widths of the Rectangle elements based
on the available and used space. In this example, we divided these values by 10024 (a
convenient number for sizing the control) and then multiplied them by 2 to create a
reasonably sized quota bar.

 By default, the Quota property value is set to 1,048,576. The reason why is because,
by default, each isolated storage area is given 1 MB of space. If you remember that the
Quota property represents the number of bytes allocated to an isolated storage area,
you can see how 1,048,576 bytes equals 1024 KB, which equals 1 MB. Significantly
though, you have the option to ask the user for more space should your application
need it.
REQUESTING MORE SPACE

The IsolatedStorageFile class enables the application to ask the user for more stor-
age space. This request can be made by calling the IncreaseQuotaTo method, which
accepts a long parameter that represents the new quota size you want. This size signals
the total number of bytes you want to allocate to the isolated storage area; it doesn’t
represent the number of bytes by which you want to increase the storage. When the
IncreaseQuotaTo method is called, the user will be shown a dialog box, as shown in
listing 5.8.

Licensed to Devon Greenway <devon.greenway@gmail.com>

133Storing data in isolated storage
Result:

C#:
IsolatedStorageFile isoFile =
 IsolatedStorageFile.GetUserStoreForApplication();
long newQuotaSize = isoFile.Quota * 2;
bool requestAccepted = isoFile.IncreaseQuotaTo(newQuotaSize);

This listing shows how to request more space for an application from a user. You also
have the option of asking for more storage for a domain if you retrieve the Isolated-
StorageFile through the GetUserStoreForSite method. Either way, the Increase-
QuotaTo method can only be called from a user-initiated event such as a button click.
Once this request is made, the dialog box shown in listing 5.8 will be displayed to the
user. This dialog box displays the name of the website requesting the new quota. This
value is automatically set behind the scenes to prevent malicious coding. In addition,
this dialog box shows how much space is currently being used and the quota size
being requested. The user’s accept or deny decision will be returned from the
IncreaseQuotaTo method in the form of a bool.

 The IsolatedStorageFile represents a virtual filesystem. This file system gives
you the flexibility to create, navigate, and remove items from within it. To make sure
that you have space to create items, you may need to check the Available-
FreeSpace property, which represents the number of bytes available within the allo-
cated storage Quota. If you need more space, you can request it using the
IncreaseQuotaTo method. Requesting more space can come in handy as you read
and write files.

5.8.2 Reading and writing files: the isolated storage way

Files stored within the isolated storage area can be created and retrieved through a
file stream. This file I/O task is like any other in the .NET framework but, because
you’re working within a special area that provides additional security features, you
must use a specific type of file stream. This particular type of file stream is appropri-
ately named IsolatedStorageFileStream.

 The IsolatedStorageFileStream object provides in-memory access to a file
stored within the isolated storage area. With this object, you can create, update, and

Listing 5.8 Requesting more isolated storage space
Licensed to Devon Greenway <devon.greenway@gmail.com>

134 CHAPTER 5 Integrating with the desktop
read a file from the isolated storage area. Because a file must exist before you can read
it, it makes sense to first discuss how to create and update files within isolated storage.
ISOLATED FILE CREATION

Creating a file within a user’s isolated storage area is a simple process. This process
hinges on the System.IO.StreamWriter object. You can use a StreamWriter to write
content into a file stored within isolated storage. Listing 5.9 shows the process of writ-
ing a text file to the user’s isolated storage area.

using (IsolatedStorageFile isoFile =
 IsolatedStorageFile.GetUserStoreForApplication())
{
 using (IsolatedStorageFileStream stream =
 new IsolatedStorageFileStream(
 "file1.txt", FileMode.Create, isoFile))
 {
 using (StreamWriter writer = new StreamWriter(stream))
 {
 writer.Write("Hello, from the isolated storage area!");
 }
 stream.Close();
 }
}

Listing 5.9 shows how easily you can write a text file into the isolated storage area. The
first step is to retrieve a user’s isolated storage area. Then, you create an Isolated-
StorageFileStream that represents a file within isolated storage. The contents of this
file are created using a StreamWriter. This StreamWriter gives you the flexibility to
write either binary data or plain text. This is important to recognize because the con-
tents of an isolated storage area aren’t encrypted automatically. Because of this, you
may want to manually encrypt your data when writing it to a file.

 You may have noticed the use of the FileMode enumeration. This value determines
how the file will be opened. In all, there are six different ways to open a file. All six
options are explained in table 5.5.

Listing 5.9 Creating a text file within a user’s isolated storage area

Table 5.5 The FileMode enumeration

FileMode Description

Append Opens an existing file and prepares to add content onto the end

Create A brute-force approach to creating a new file
If a file of the same name exists, it’ll be overwritten. Either way, a new, empty file
with the specified name will be created.

CreateNew Attempts to create a new file
If a file of the same name exists, an IsolatedStorageException will be
thrown. If there isn’t a preexisting file with the same name, a new, empty file will be
created.
Licensed to Devon Greenway <devon.greenway@gmail.com>

135Storing data in isolated storage
The FileMode options shown in this table cover a wide variety of file operations. These
values are useful when you’re creating files or attempting to read a file from isolated
storage.
READING AN ISOLATED FILE

The process of reading a file from a user’s isolated storage area is similar to writing to
a file. Instead of taking advantage of a StreamWriter, you use of a StreamReader. The
process of using a StreamReader to read a file is shown in listing 5.10.

using (IsolatedStorageFile isoFile =
 IsolatedStorageFile.GetUserStoreForApplication())
{
 using (IsolatedStorageFileStream stream =
 new IsolatedStorageFileStream("file1.txt", FileMode.Open, isoFile))
 {
 using (StreamReader writer = new StreamReader(stream))
 {
 myTextBlock.Text = writer.ReadToEnd();
 }
 stream.Close();
 }
}

As this example shows, reading a file is almost identical to creating a file. The first step
involves retrieving the user’s isolated storage area. Then, you create an Isolated-
StorageFileStream object—this time using the FileMode.Open option. Once the file
is opened, you can read through it using a StreamReader.

 Both the StreamReader and StreamWriter classes provide a lot of features for
working with character-based and binary input and output. These I/O features pro-
vide a lot of flexibility in regard to the client-side storage within the isolated storage
area. Once an isolated storage area is created, you may need to remove it for testing
during development. For this reason, it’s beneficial to know how to administer it.

Open Attempts to open a file with the given name
If the file exists, the IsolatedStorageFileStream will have access to the
file. If the file doesn’t exist, an IsolatedStorageException will be thrown.

OpenOrCreate Opens a file if it exists. If the file doesn’t exist, a new one will be created with the
given name.

Truncate Open an existing file and removes all its contents. This FileMode doesn’t allow
read operations.

Listing 5.10 Reading a file from the user’s isolated storage area

Table 5.5 The FileMode enumeration (continued)

FileMode Description
Licensed to Devon Greenway <devon.greenway@gmail.com>

136 CHAPTER 5 Integrating with the desktop
5.8.3 Administering isolated storage

Administering an isolated storage area involves interacting with the physical filesys-
tem. The reason you’d want to do this is to test a user’s initial interaction with a Silver-
light application. During development, it can be easy to get lost in the action and
forget a user’s initial experience with an application. Because the isolated storage area
is separate from the browser’s cache, you need an easy way to remove information
from the isolated storage area, so you should know where the isolated storage area is
located on the physical filesystem.

 The isolated storage area is located in different locations based on the user’s oper-
ating system. The specific location for each operating system is shown in table 5.6.

This table shows the base location for the isolated storage area. Each unique Silver-
light application that uses isolated storage will create a new directory under this loca-
tion. This new directory will be given a name that appears encrypted, but don’t let this
fool you. The data stored in the isolated storage area isn’t encrypted so you shouldn’t
store sensitive information, such as passwords, in the isolated storage.

 Isolated storage is a great way to store nonpermanent data on the end user’s local
machine. It’s flexible in that it works in all modes of Silverlight operation (in-
browser, out-of-browser, elevated out-of-browser) and works as a virtual filesystem.
When combined with the other features described in this chapter, it really helps
round out a feature set that makes for extremely capable connected and discon-
nected rich Internet applications.

5.9 Summary
For a web technology, Silverlight provides an unprecedented level of desktop integra-
tion. With Silverlight 4, we now have the ability to run in and out of the browser in the
partial trust mode or out of the browser in the elevated trust mode.

 When running out of the browser in partial trust, you gain additional storage
capacity without prompting, additional keyboard information, and a reduction in host
chrome that allows you to take a greater advantage of screen real estate and provide a
truly custom experience. For many behind-the-firewall business applications, and
both custom experiences and self-contained Internet-delivered applications, this is a
compelling option with no real downside.

Table 5.6 The base location of the isolated storage area on each operating system supported in Silverlight

Operating system Location

Mac OS X AppData/Local

Windows XP C:\Documents and Settings\[UserName]\Application Data\Microsoft\Silverlight\is

Windows Vista
and Windows 7

C:\Users\[UserName]\AppData\LocalLow\Microsoft\Silverlight\is
Licensed to Devon Greenway <devon.greenway@gmail.com>

137Summary
 When running in the elevated trust mode, your Silverlight applications gain a level
of desktop integration rivaled only by the native applications. You can access the local
files on all supported operating systems, eliminate many of the user confirmation
prompts, have a truly usable full-screen mode, have almost complete control over the
window chrome, and even automate installed applications and call native APIs when
running on Windows.

 In either out-of-browser mode, you have access to the notification APIs to provide a
richer desktop experience as well as access to the virtual file system in the isolated
storage.

 With both in-browser and out-of-browser support, you get access to the new net-
work connectivity detection APIs to allow you to create an even more robust applica-
tion that can work online or offline, in the browser or on the desktop. You get the
ability to run full screen to provide a truly differentiated experience. You also get the
simplicity of web-based deployment combined with the confidence that the applica-
tion is secure and sandboxed.

 With both approaches, you get the full Silverlight application model discussed in
chapter 3 as well as support for great user experience capabilities, including the layout
and transformation capabilities we’ll discuss in the next chapter. It’s hard not to get
excited about something so compelling.
Licensed to Devon Greenway <devon.greenway@gmail.com>

Rendering, layout,
 and transforming
Over the past few chapters, we covered some fairly big-picture topics, such as how
to have Silverlight work in and out of the browser and how to use XAML. Those are
all important to understand in order to create Silverlight applications that work in
or out of the browser. XAML and the property system are also important, and we
build upon that knowledge in every subsequent chapter, including this one.

 In this chapter, we’re going to dig back down under the covers and look at some
fundamentals of the core user interface base classes and the rendering and layout
systems that make everything fit on the screen and render to the user.

 Silverlight’s rendering process involves a number of steps, and has provisions
for several developer-provided optimizations to the process. Silverlight also has a
far more advanced layout system than simple left/top positioning of elements on

This chapter covers
■ UI elements and framework elements
■ The layout system
■ The rendering pipeline
■ Using 2D and 3D transformations
138

Licensed to Devon Greenway <devon.greenway@gmail.com>

139The UIElement and FrameworkElement
the screen. The multipass layout system handles measuring and arranging elements
across the entire visual tree.

 Once the rendering, layout, and core object fundamentals are down, we’ll have
some fun with performing 2D transformations on our objects. If you’ve ever wanted to
rotate or scale an object on the screen, you’ll find the section on render transforma-
tions to your liking.

 Of course, if you have 2D, you always want one more, so we also have 3D transforma-
tions. You can do some wild things with the power of the PlaneProjection and the
Matrix3dProjection classes. The former is great for most use cases, including the ubiq-
uitous CoverFlow scenario. The latter is one of the most powerful transformations in Sil-
verlight. If you’ve ever wanted to do something akin to a 3D-rotated, sparsely populated,
and z-layered deep zoom, you’ll definitely get a kick out of the power of the 3D matrix.

 We’ve covered the fundamentals of XAML already, so let’s start with the base classes
that underlie all those angle-bracketed elements that make up the user interface: the
UIElement and FrameworkElement classes.

6.1 The UIElement and FrameworkElement
In previous chapters, we saw examples of TextBlocks, TextBoxes, and other controls
and elements. All of the UI elements in XAML are FrameworkElement items, so they’re
also inherently UIElement items because FrameworkElement inherits from UIElement.

 A UIElement is an object that represents a visual component. These types of ele-
ments have built-in support for layout, event handling, and rendering. Although this
extremely generic description may seem pointless, it isn’t. In fact, by deriving from
this type, a large majority of the elements within Silverlight share the same types of
features. These features are exposed through a number of extremely valuable meth-
ods and properties.

 Throughout this section, we’ll cover the methods and properties that you’ll proba-
bly use most often. It’s important to recognize that some of these belong to the Frame-
workElement class, while others belong to the UIElement class. We’ll point this out as we
go along but, for now, let’s begin by addressing some of the common properties.

6.1.1 Properties

The UIElement and FrameworkElement classes expose a number of properties com-
mon to all of the visual elements in your application. Because of the abstract nature of
the UIElement and FrameworkElement classes, these properties may be set on any con-
trol in a variety of scenarios.

 In this section, we’ll start with a look at cursors and then look at how to make your
entire element partially or completely transparent. Sometimes, transparent isn’t good
enough and what you really want is to have the control logically removed from the
visual tree, so we’ll look at the Visibility property. From there, we’ll look at how to
align an element in the horizontal and vertical spaces. Finally, we’ll cover how to set
margins to give your elements a little breathing room and how to snap the layout to
whole pixels so your lines look crisp and fully rendered.
Licensed to Devon Greenway <devon.greenway@gmail.com>

140 CHAPTER 6 Rendering, layout, and transforming
CURSOR

When a user navigates the mouse cursor over a FrameworkElement, the cursor will
change to indicate the type of action the user can take. For instance, when you hover
around a Canvas, you’ll see a basic arrow. Alternatively, if you move your mouse over a
HyperLinkButton, you’ll see a cursor that looks like a hand. But, you can use whatever
cursor you want by setting the Cursor property; for example, using the Stylus cursor
with a TextBlock:

<Canvas Cursor="Hand" Background="Green" Height="60" Width="180">
 <TextBox Cursor="Stylus" Height="20" Width="60" />
</Canvas>

This example uses two nondefault cursor options: Stylus and Hand. These options
represent Cursor items, each of which is accessible through the System.Windows.
Input.Cursors class. This class exposes nine statically visible Cursor properties:

This shows the values you can use in a FrameworkElement’s Cursor property. These
cursor options provide an excellent way to communicate with your users. Most of
these options reflect the cursor options found in Cascading Style Sheets (CSS). But,
short of newer advances in the proposed HTML 5 spec, it’d be a challenge to find a
W3C CSS equivalent for our next property: Opacity.

OPACITY

The Opacity property represents an element’s transparency. By default, this double-pre-
cision value is set to 1.0, which means the element is completely visible. You have the
flexibility to set this value as low as 0.0, making it completely transparent. To get a feel
for how the Opacity property renders content, look at figure 6.1, which shows a Text-
Block with varying Opacity values.

 The Opacity values ensure that a
UIElement is visible. If you set the Opac-
ity value to 0.0, the element wouldn’t
be visible. But, just because a UIElement

■ Arrow ■ IBeam ■ SizeWE

■ Eraser ■ None ■ Stylus

■ Hand ■ SizeNS ■ Wait

Web cursor standards
The ubiquity of browser applications has altered some of the user interface standards
we’ve traditionally followed on the desktop. For example, a common standard to apply
in your web application is to use the Hand cursor for many things a user can click and
not just hyperlinks. This standard is slowly finding its way to traditional desktop ap-
plications, where it’s helpful to differentiate “dead space” from active areas such as
buttons. In the end, anything that helps the users explore your application and quickly
identify actions they can take is a good thing.

Figure 6.1 An example of the Opacity property
Licensed to Devon Greenway <devon.greenway@gmail.com>

141The UIElement and FrameworkElement
can’t be seen, it doesn’t mean it’s not there. Instead, even if a UIElement has an Opacity
of 0.0, it’ll still behave as though it can be seen. For instance, a transparent element will
still respond to mouse events. If you want to completely hide an element, you must
change the Visibility property.
VISIBILITY

The Visibility property gives you the ability to toggle whether a UIElement can be
seen and whether it participates in layout. By default, all UIElement objects have a
Visibility of Visible. This ensures that a UIElement can be seen and occupies its
allotted layout area. If you set the Visibility of a UIElement to Collapsed, no layout
area is reserved for the UIElement. Consider the StackPanel in listing 6.1.

Result:

<StackPanel x:Name="myStackPanel" Background="Orange" Width="90">
 <TextBox x:Name="tb1" Width="60" Background="LightGray" />
 <TextBox x:Name="tb2" Width="60" Background="DarkGray" />
 <TextBox x:Name="tb3" Width="60" Background="Gray" />
</StackPanel>

Listing 6.1 shows three TextBox elements. By default, each of these elements has a
Visibility of Visible. Watch what happens when the Visibility of the middle
TextBox is set to Collapsed, as in listing 6.2.

<StackPanel x:Name="myStackPanel" Background="Orange" Width="90">
 <TextBox x:Name="tb1" Width="60" Background="LightGray" />
 <TextBox x:Name="tb2" Width="60" Background="DarkGray"
 Visibility="Collapsed" />
 <TextBox x:Name="tb3" Width="60" Background="Gray" />
</StackPanel>

Listing 6.2 highlights the effects of Collapsed. The TextBox with the name tb2 isn’t
shown. You could just set the Opacity to 0.0, but the layout space wouldn’t be freed. In
addition, using the Opacity property to hide an element can be wasteful; an element
with an Opacity of 0.0 still participates in the layout and rendering. Elements with a
Visibility of Collapsed skip the rendering stem and report no size in the layout steps.

 Cursor, Visibility, and Opacity all affect visible portions of the UIElement, but
not the layout. The alignment properties typically have a great impact on the layout of
an element, depending upon the panel in which the element is hosted.

Listing 6.1 Three visible elements in a StackPanel

Listing 6.2 Two visible elements and one collapsed element in a StackPanel
Licensed to Devon Greenway <devon.greenway@gmail.com>

142 CHAPTER 6 Rendering, layout, and transforming
HORIZONTALALIGNMENT AND VERTICALALIGNMENT

Every FrameworkElement gives you the opportunity to specify how it should be aligned
within its parent. This alignment setting will trickle down through the object tree and
affect the alignment of all child elements—well, at least until another FrameworkEle-
ment sets its alignment. You have two ways to align visual elements.

 Visual elements can be aligned both vertically and horizontally by setting the Ver-
ticalAlignment and HorizontalAlignment property values to one of the acceptable
values. These values belong to two separate enumerators, aptly called VerticalAlign-
ment and HorizontalAlignment.

<StackPanel Orientation="Horizontal">
 <StackPanel Width="200" Background="LightGray">
 <TextBox HorizontalAlignment="Left" />
 <TextBox HorizontalAlignment="Center" />
 <TextBox HorizontalAlignment="Right" />
 <TextBox HorizontalAlignment="Stretch" />
 </StackPanel>
 <Canvas Width="20"></Canvas>
 <StackPanel Width="200" Background="LightGray" Orientation="Horizontal">
 <TextBox VerticalAlignment="Top" />
 <TextBox VerticalAlignment="Center" />
 <TextBox VerticalAlignment="Bottom" />
 <TextBox VerticalAlignment="Stretch" />
 </StackPanel>
</StackPanel>

Listing 6.3 shows the effects of all four HorizontalAlignment options and all four
VerticalAlignment options. The HorizontalAlignment property accepts the Left,
Center, Right, and Stretch values, whereas the VerticalAlignment property accepts

Listing 6.3 Horizontal and vertical alignment

What about Visibility.Hidden?
In WPF, the Visibility enumeration contains Hidden in addition to the Collapsed
and Visible values supported by Silverlight. Hidden hides an element but reserves
a space for it during layout. Originally, Silverlight 1.0 supported the Hidden value, but
it actually acted like Collapsed, so they decided to change it to Collapsed during
the 1.0 beta cycle. To get the same effective behavior as Hidden, set the Opacity
to 0.0 and IsHitTestVisibile to False. The end result will be an element that takes
up space on the screen but is both invisible to the eye and to the mouse. But unlike
Visibility.Hidden, the control will still participate in the layout and rendering—a
potential performance concern if you use this often or in animation-heavy scenarios.

Horizontal
alignment

Vertical
alignment
Licensed to Devon Greenway <devon.greenway@gmail.com>

143The UIElement and FrameworkElement
the Top, Center, Bottom, and Stretch values. The alignment properties behave dif-
ferently depending upon the container in which the UIElement resides. For exam-
ple, they have no effect when put into a Canvas due to the Canvas panel’s lack of
layout functionality.

 Both properties default to their Stretch values. Because the Stretch options alter
the rendered height or width of an element to take up the maximum amount of space
available, you may want to consider giving the element some breathing room with the
Margin property.
MARGIN

Similar in nature to the Padding property, the Margin property enables you to specify
a cushion, but this specific cushion works outside the bounds of a FrameworkElement.
This cushion can be set using a single value or a space-delimited or comma-delimited
list of four values just like the Padding property, as shown in listing 6.4.

<StackPanel Background="Gray">
 <TextBox Background="LightGray"
 Margin="10"
 Padding="10"
 Text="Margin is outside, Padding is inside" />
</StackPanel>

Listing 6.4 shows the Margin and Padding properties working together. The Padding
property is valid in this code because this property is exposed by the System.Win-
dows.Controls.Control class. This is explained further in the next chapter. For now,
it’s important to recognize that the Padding property isn’t accessible to all Frame-
workElement items, but the Margin property is.

 Margins and padding can alter the location of contained elements, sometimes
pushing them to subpixel locations and making them look fuzzy. Luckily, Silverlight
has the UseLayoutRounding property to help us avoid that.
USELAYOUTROUNDING

Silverlight supports aligning elements on subpixel boundaries. An unfortunate side
effect of this is the loss of crisp lines. Sometimes, you really want that 1 px line to be
just 1 px thick and not antialiased to 2 px in thickness.

 One simple way to avoid this problem is to place your elements on whole pixel
locations. But when your element is nested inside a panel, which is inside a control,
which is in a stack panel located in another grid—all of which can have margins, pad-
ding, and other properties affecting layout—you can’t easily calculate exactly where
your element will appear.

 Silverlight supports a property of the UIElement called UseLayoutRounding. When
UseLayoutRounding is set to true, the layout system (see section 6.3) will round the

Listing 6.4 Margin and padding

Margin on
outside Padding

on inside
Licensed to Devon Greenway <devon.greenway@gmail.com>

144 CHAPTER 6 Rendering, layout, and transforming
points of your element to the nearest whole pixel. When false, Silverlight will respect
the subpixel location of the points and won’t attempt to move them. Listing 6.5 shows
the impact of layout rounding on two rectangles. The first rectangle has layout round-
ing turned on; the second has it turned off.

Result:

Result (enlarged):

XAML:
<Grid x:Name="LayoutRoot" Background="White">
 <Rectangle Margin="10.5"
 UseLayoutRounding="True"
 HorizontalAlignment="Left"
 VerticalAlignment="Top"
 Fill="Transparent"
 Stroke="Black" StrokeThickness="1"
 Width="150" Height="30" />

 <Rectangle Margin="20.5"
 UseLayoutRounding="False"
 Fill="Transparent"
 HorizontalAlignment="Left"
 VerticalAlignment="Top"
 Stroke="Black" StrokeThickness="1"
 Width="150" Height="30" />
</Grid>

In listing 6.5, you can see that the rectangle that isn’t rounded to the nearest pixel has
lines that are two pixels thick and light gray. When viewed in its native resolution, it
looks fuzzy. When layout rounding is turned on, the result is a crisp line with sharp
corners and no fuzz.

 UseLayoutRounding is respected by almost every element in Silverlight. The Polygon
class exposes this property but ignores it. Polygons are expected to be complex shapes
where layout rounding wouldn’t really make sense, so layout rounding is a no-op.

NOTE When sharing code with WPF, it’s important to note that layout
rounding is turned on by default in Silverlight. This is in contrast to WPF,
where it’s turned off by default.

Listing 6.5 Layout rounding in action with two rectangles
Licensed to Devon Greenway <devon.greenway@gmail.com>

145The UIElement and FrameworkElement
We covered the Margin property as well as the useful HorizontalAlignment and Ver-
ticalAlignment properties. In addition, we also highlighted the value of the Visi-
bility, Opacity, and Cursor properties. Finally, we looked at how to scare away the
fuzzies with UseLayoutRounding. Collectively, these represent some of the more
widely used properties of the FrameworkElement and UIElement classes. But these
properties only serve to describe an element. There are times when you need to per-
form an action on them; in these scenarios, you need to rely on their methods.

6.1.2 Methods

Two common tasks are often performed during runtime. The first task involves man-
aging attached properties. The second involves finding an element within the element
tree. We’ll cover each of these in detail.
MANAGING ATTACHED PROPERTIES

Every UIElement is a DependencyObject. A DependencyObject gives you the ability to
retrieve and change attached property values. Consider the process of altering the
position of an element within a Canvas. Although you might initially think to set the
Canvas.Left and Canvas.Top properties, you’ll quickly run into a wall. Instead, you
must take advantage of the SetValue method as shown in listing 6.6.

XAML:
<Canvas x:Name="parentCanvas"
 Width="400" Height="400" Background="LightGray">
 <TextBlock x:Name="myTextBlock"
 Text="Click Me"
 Cursor="Hand"
 MouseLeftButtonUp="MyTextBlock_Click"
 FontFamily="Verdana" />
</Canvas>

C#:
private void MyTextBlock_Click(object sender, MouseButtonEventArgs e)
{
 double top =
 (double)(myTextBlock.GetValue(Canvas.TopProperty));
 double left =
 (double)(myTextBlock.GetValue(Canvas.LeftProperty));

 myTextBlock.SetValue(Canvas.TopProperty, (top+5));
 myTextBlock.SetValue(Canvas.LeftProperty, (left+5));
}

When a TextBlock is clicked and the click event raised, it’ll move five pixels down and
to the right. This is made possible by retrieving the current Left and Top positions of
the TextBlock within the Canvas through the GetValue methods. Then, the Text-
Block is moved within the Canvas using the SetValue methods. But where do the
TopProperty and LeftProperty values come from?

Listing 6.6 Moving a TextBlock five pixels with GetValue and SetValue

GetValue
method

SetValue
method
Licensed to Devon Greenway <devon.greenway@gmail.com>

146 CHAPTER 6 Rendering, layout, and transforming
 These properties are DependencyProperty elements—a special type of property
designed to depend on information from multiple sources, covered in chapter 2. For
instance, as shown in listing 6.6, you use two DependencyProperty (specifically attached
properties) attributes—Canvas.Left and Canvas.Top—to position the TextBlock. At
the same time, there could be an animation affecting the TextBlock, so the position of
the TextBlock would be dependent upon both the layout panel (the Canvas) and the
animation. (Animations are discussed in chapter 22.)

 Thanks to the DependencyProperty, it’s incredibly easy to manage or retrieve the
value associated with an attached property. Dependency properties also provide sev-
eral other advantages discussed in more detail in section 2.1.4. For now, let’s look at
how to find elements within the element tree.
FINDING ELEMENTS

As described in chapter 2, the Silverlight Object Model is represented as a hierarchi-
cal tree of elements. Considering that each element in this visual tree is, at its core, a
FrameworkElement, you have the flexibility to navigate this tree. With this element,
you have the ability to go either up or down the tree.

 To go down the tree, you must call the FindName method. This method takes the
name of an element and retrieves it. It doesn’t matter if the element is a child, grand-
child, or located even further down the tree. The FindName method will retrieve it as
long as it’s a descendent. If it isn’t found, the method will return null.

 Alternatively, if you need to find an element up the tree, you use the Parent prop-
erty to recursively navigate up the tree and search the sibling nodes, as described in
chapter 2.

 Finding elements is a task that you may need to perform in certain circum-
stances, such as when you dynamically load XAML. Once these elements are found,
you can readily get or set the attached property values of a UIElement using the
GetValue and SetValue methods. These methods aren’t difficult to understand, but
the process of using a DependencyProperty to set the value of an attached property
may seem strange at first. As you grow more familiar with it, it’s easier to see the
power of this approach, which can lead to new ways of delivering a rich and interac-
tive user experience.

 The UIElement and FrameworkElement classes form the base of everything that’s
rendered in Silverlight. We’ve seen that they offer a number of useful properties and
methods to control everything from their alignment, to visibility, to how opaque they
should appear. Now that we understand the capabilities they offer, it’s time to take a
step back and look at the rendering process as a whole, in which the UIElement and
FrameworkElement play a core role.

6.2 The rendering process
User interfaces in Silverlight are complex. They often have multiple layers of semi-
transparent or overlapping content, animation, video, and more. The level of prob-
lems the runtime must solve is more akin to that of a gaming platform than, say,
something like Windows Forms.
Licensed to Devon Greenway <devon.greenway@gmail.com>

147The rendering process
 The problem is made even more complex by the restrictions and capabilities of the
various browser platforms. Most browsers have a simple threading model, varying
sandboxed capabilities, and what can only be described as personality.

 It’s important to understand the rendering process, especially as it relates to per-
formance. In this section, we’ll cover some of the highlights of the process, including
browser threading, drawing, performance optimizations, and how you can plug into
the process using the callback function.

 The rendering process can be broken down into the steps described in table 6.1.

More than just that happens, of course. There’s user code, media decoding, network
access, and so on, but this table captures the essence of the rendering process.
Though it can help to conceptualize this as an ongoing loop, the individual steps trig-
ger off timers and window messages and not off a single cycle timer, it’d be slightly
inaccurate to do so. Nevertheless, just as we still refer to the various timer- and event-
driven processes in game development as the game loop, it’s a reasonable abstraction.

 This process is continually optimized from release to release and even across
devices. For example, the Windows Phone 7 process, though similar to what I’ve just
described, actually runs the animations on a separate thread.

 One of the most significant limitations of the rendering process for any browser
plug-in is the UI thread. Each browser offers up one UI thread per process, shared
across all plug-ins in that process. For some browsers, the scope of a process is a single
tab; for others, it’s the entire browser.

 Of the preceding steps, a few demand additional explanation. Specifically, the
clock tick, the per-frame render callback, rasterization, and layout all require more
detail. We’ll start with an explanation of rasterization and the various steps involved in
it and then look at how we can plug into the process via the render callback. Finally,

Table 6.1 The steps of the render process

Step Description

Update hosted
HTML

Get updated visuals for the hosted WebBrowser control, if used—for example, a
hosted web page playing a video.

Clock tick Increment the animation and video clock.

Event handlers Run the user code in event handlers, except for the per-frame render callback.

Layout Measure and arrange elements for display. Because this is one of the most impor-
tant steps in this process, we’ll cover this in more detail in section 6.3.

Per-frame render
callback

Run the per-frame callback CompositionTarget.Rendering.

Rasterize Rasterize the vector content, media, images, and more onto their intermediate ren-
der surfaces. Then composite to the back buffer.

Show Frame Show the frame in the browser. Blit (direct memory chunk copy; short for bit block
transfer) the back buffer to video memory or to the software rendering surface.
Licensed to Devon Greenway <devon.greenway@gmail.com>

148 CHAPTER 6 Rendering, layout, and transforming
since it’s a much larger topic and arguably is the most important one to understand,
we’ll cover layout in section 6.3. Before that, let’s look at a few of the other steps, start-
ing with the clock tick.

6.2.1 Clock tick

Animation and video in Silverlight are governed by clock time and not by frame rate.
Because of this, Silverlight can skip frames on the machines that can’t keep up while
still maintaining the correct real time of the media or the animation frames shown. In
other words, an animation that lasts two seconds will last two seconds on a slow
machine and on a fast machine.

 The clock tick on Windows happens at 60 frames per second at the most (it hap-
pens to be capped at 30 frames per second on the Windows Phone 7). If you set the
Silverlight MaxFrameRate to a value lower than that or the system can’t keep up, the
tick will happen at a lower rate but will ensure the time remains correct. Figure 6.2
shows an example of the dropped frame approach.

Figure 6.2 shows a theoretical dropped frame. Both frames 1 and 2 are at their correct
times. What would’ve been frame 3 (timed at 3/60 of a second) was dropped, so the
next presented frame, the new frame 3, picks up at the correct time. This prevents the
undesired effect of slow-running animations or movies.

 After the clock has ticked and all the animations and media elements incre-
mented, the next step is to call an optional per-frame rendering callback function.

6.2.2 Per-frame rendering callback

There may be times when you want to perform an action during every frame that’s
rendered on the screen. That may be a simple as keeping a count of frames, swapping
a back buffer to simulate an immediate-mode rendering system, or performing game
loop-style operations.

 Silverlight includes the Rendering event on the CompositionTarget class, which is
suitable for these tasks. CompositionTarget.Rendering is an event that fires once per
frame, allowing you to synchronize code with the rendering system.

Frame 3: 4/60Frame 1: 1/60 Frame 2: 2/60
Dropped Frame at

3/60

Figure 6.2 If the machine can’t keep up with the workload, Silverlight will drop
frames but will ensure that the displayed frames are correctly synchronized with
the clock tick.
Licensed to Devon Greenway <devon.greenway@gmail.com>

149The rendering process
 There’s no guarantee that the callback will happen at the max frame rate. Though
it often does work out this way, many factors, including the amount of work being
done inside the callback and the overall speed of the system, contribute to how often
this runs. You can generally expect the callback to happen once per frame, assuming
your code is well-behaved.

 Listing 6.7 shows how to wire up the Rendering event and show the current
timestamp.

public MainPage()
{
 InitializeComponent();

 CompositionTarget.Rendering += new EventHandler(OnRendering);
}

void OnRendering(object sender, EventArgs e)
{
 RenderingEventArgs args = e as RenderingEventArgs;

 Debug.WriteLine(args.RenderingTime.ToString());
}

Note the cast to RenderingEventArgs in listing 6.7. This is pretty unusual and not
something you’d intuit without knowing something about the underlying code. The
underlying code is actually sending an instance of RenderingEventArgs, but the event
signature is just regular EventArgs. By casting to RenderingEventArgs, we gain access
to the RenderingTime property, which we can use to synchronize our logic to Silver-
light’s own rendering process.

NOTE CompositionTarget.Rendering may not have a 1:1 correspondence
with the actual rendering frame rate. For example, a static scene with no
changes may require no actual render, but CompositionTarget.Rendering
will still fire at the expected frame rate.

The event signature uses EventArgs simply for historical reasons. The additional
property was added late during the WPF v1 development cycle, and it was considered
too late to introduce a new event signature—a breaking change. Silverlight strives to
maintain WPF compatibility whenever possible, so the same signature was carried over
to Silverlight.

 You can modify layout inside this callback, but that’ll cause another layout pass to
happen. For that reason, you may want to consider other approaches to avoid the dou-
ble layout tax on each frame. We’ll cover layout in detail in section 6.3. Before we do
that, let’s look at another processing-intense operation in this cycle: rasterization.

6.2.3 Rasterization

Rasterization is the process of turning the vectors in the vector cache into their bit-
map representation. Though not exactly rasterization by that definition, we’ll also
include video and image blitting in this process.

Listing 6.7 Using the per-frame rendering callback

Cast to
RenderingEventArgs
Licensed to Devon Greenway <devon.greenway@gmail.com>

150 CHAPTER 6 Rendering, layout, and transforming
 In this section, we’ll cover the basics of how rasterization works, including the
order of the steps. Then, we’ll look at some optimizations in the process and, finally,
dive into the use of caching and hardware acceleration to improve performance.

 The most fundamental aspect of rasterization that you’ll need to understand is the
order in which elements are rasterized.
ORDER OF RENDERING

As you recall from chapter 2, elements in Silverlight are organized into the visual tree.
This tree has a single root and it branches off into hundreds or thousands of nodes
depending upon the complexity of what’s on the screen.

 The structure of that tree is key to the rendering process. For any branch of the
tree, Silverlight rasterizes elements in the visual tree in the following order:

This is a recursive process; it starts at leaf nodes (the furthest children) and works its
way back to the root.

 Note that the clipping happens after the opacity calculations. One performance
consideration is that a large shape that has opacity other than 1.0 and has only a small
portion shown due to clipping (manual or via a panel) can waste a fair number of CPU
cycles due to the opacity calculation. Similarly, effects are also calculated prior to the
clip and have even more impact on performance.

 The intermediate surfaces mentioned are all bitmap caches that are later compos-
ited together. Note that the Writeable bitmap is a special case because it essentially is
an intermediate surface of its own.

 The rendering process involves a recursive traversal of the visual tree, with optimi-
zations to eliminate branches of the tree that have been already cached and haven’t
changed. Another optimization is the handling of occluded pixels.
OCCLUSION

I used to play around with 3D rendering. One of the most basic performance optimi-
zations you’d make is the culling of occluded triangles. When 3D objects are rendered
in 2D, the surface is typically broken down into many planar triangles. You’d check to
see whether the normals (the direction the surface faces) for the triangles are pointing
away from you and you are, therefore, looking at the back side of a triangle. If so,
you’d remove the triangle from the pipeline. You’d also then check to see if there are
any triangles that are completely covered by other triangles.

 Though a simplification, consider a complex scene where there’s an opaque wall
in front of you (the camera) and a bunch of complex shapes on the other side of the
wall, as shown in figure 6.3. In such a scene, the shapes would be occluded by the wall;
it’d be wasteful to include them in the rendering process.

1 Children 2 Cache

3 Opacity mask 4 Opacity

5 Effects (intermediate surface) 6 Clip

7 Projection (intermediate surface) 8 Render transform

9 Layout offset (internal layout transform) 10 Parent node
Licensed to Devon Greenway <devon.greenway@gmail.com>

151The rendering process
 Occlusion culling in a 3D system can be
expensive to calculate. The least performant but
most accurate approach would be to shoot an
imaginary ray from the camera to each and every
point in the geometry making up the shapes, and
see if the ray must cross through any other geom-
etry before hitting the target. If it does, then that
point is occluded.

 Surprisingly, in a 2D system such as Silverlight,
where you can have transforms and effects that
play into both the size and shape of elements and
as varying degrees of opacity, occlusion culling is
more complicated.

 Silverlight doesn’t handle occlusion culling at the shape level. Instead, it handles it
at the brush pixel level. If you consider that performing blends between multiple pix-
els can be an expensive operation, it makes sense that Silverlight would optimize that
process out of the loop for any pixels that wouldn’t be visible in a frame.

 This optimization does speed up rendering in most cases. But, if you know an ele-
ment won’t be visible on the screen and you either have many elements or that spe-
cific element is expensive to render, you’ll want to set its Visibility property to
Collapsed so that Silverlight doesn’t spend any time on its rendering or layout. Simi-
larly, you need to take into consideration the complexity of any alpha blending you
perform, especially when there could be several layers of pixels in play.

 One way to cut down on the number of layers and also avoid several other render-
ing and layout steps, is to cache segments of the visual tree into their own bitmaps.
CACHED COMPOSITION

Cached composition enables branches of the visual tree to be stored in bitmap form after
the first rendering. (For the web programmers reading this, understand that the cache
is a local in-memory cache on the client.) This bitmap is then used on subsequent frames
until the elements change. For complex subtrees, cached composition can realize huge
performance benefits. Figure 6.4 helps visualize how cached composition works.

Visual

Frame 1 Frame 2 Frame 3 Frame 4

Bitmap
Cache

Cache on
first render

Figure 6.4 Cached composition in use. On the first
render, or any layout change, the cache is updated
with the result of the render. Subsequent frames use
the prerendered contents of the cache.

Camera

Wall

Shapes

Figure 6.3 An overhead view of occlu-
sion in a 3D system. The shapes are oc-
cluded by the wall; the camera can’t see
them. It’d be wasteful to include their ge-
ometry in the rendering process. Silver-
light does occlusion culling at the pixel
level rather than the shape level.
Licensed to Devon Greenway <devon.greenway@gmail.com>

152 CHAPTER 6 Rendering, layout, and transforming
On first render, any elements that have been marked to be cached are rendered as
usual and then the output of that render is stored in the bitmap cache. Listing 6.8
shows how to enable caching for a group of elements in a Grid.

Result:

XAML:
<Grid x:Name="LayoutRoot" Background="White"
 CacheMode="BitmapCache">
 <Rectangle Height="60" Width="50"
 Fill="Green" />
 <Ellipse Height="30" Width="200" Opacity="0.75"
 Fill="Blue" />
 <Path Stroke="Orange"
 StrokeThickness="10"
 Height="200" Width="200"
 Data="M 10,80 C 150,5 100,0 200,50 H 100" />
 <Path Stroke="Purple"
 Height="100" Width="300"
 StrokeThickness="10"
 Data="M 80,10 C 350,5 100,0 100,55" />
</Grid>

Listing 6.8 shows some Silverlight artwork (suitable for submission to the Freer and
Sackler Galleries, no doubt!) composed of a number of shapes and paths. The paths
here are relatively simple, but more complex artwork may be made of hundreds or
thousands of points. The process of rasterizing complex artwork has a real CPU cost
but, when cached, that cost is one time rather than per frame.

 In section 6.4 we discuss render transforms. Render transforms can affect size and
orientation of a group of elements. If you apply a render transform to a subtree that has
been cached—for example, to increase its size to 200 percent—you may end up losing
the benefit of the cache because Silverlight has to render at the larger size. Luckily,
there’s another form of the CacheMode property that enables you to cache the render
at a different size. Listing 6.9 shows how to cache elements at four times their natural size.

<Grid x:Name="LayoutRoot" Background="White">
 <Path Stroke="Orange" StrokeThickness="10"
 Height="200" Width="200"

Listing 6.8 Caching a group of elements in a StackPanel

Listing 6.9 Caching at a size larger than the default (XAML)

Cachemode
directive
Licensed to Devon Greenway <devon.greenway@gmail.com>

153The rendering process
 Data="M 10,80 C 150,5 100,0 200,50 H 100" />
 <Path Stroke="Purple" Height="100" Width="300"
 StrokeThickness="10"
 Data="M 80,10 C 350,5 100,0 100,55" />
 <Grid.RenderTransform>
 <ScaleTransform ScaleX="2" ScaleY="2" />
 </Grid.RenderTransform>
 <Grid.CacheMode>
 <BitmapCache RenderAtScale="4" />
 </Grid.CacheMode>
</Grid>

Note that the bitmap cache is set to a 4× render whereas I’m only using a 2× trans-
form. That’s a bit wasteful but certainly is allowed and useful, and you can always scale
down without losing quality. If the RenderAtScale option hadn’t been used, caching
wouldn’t have worked for this subtree of elements.

 Caching the elements as bitmaps allows Silverlight to use hardware acceleration
by keeping those surfaces as textures cached on the video card—assuming sufficient
texture memory and assuming hardware acceleration has been enabled at the plug-
in level.
ENABLING HARDWARE ACCELERATION FOR THE CACHE

Once a tree of visual elements has been cached, you can take advantage of hard-
ware acceleration for composting those elements with other layers in the applica-
tion. In addition, hardware acceleration can benefit transforms, such as stretching
and rotation.

 In order to use hardware acceleration, you must set the EnableGPUAcceleration
plug-in parameter to true. In chapter 4, we covered how to build up the object tag.
Here’s the line for enabling acceleration:

<param name="EnableGPUAcceleration" value="true" />

If your application is an out-of-browser application (chapter 5), you can set this via the
OutOfBrowserSettings.EnableGPUAccelerationProperty, typically handled through
the out-of-browser settings dialog.

 Hardware (GPU) acceleration can help you realize real performance gains. But
there can also be times when it’s a net performance drain in your application. The
main reason for this is the number of surfaces that must be created when hardware
caching is used.

 For each bitmap of cached content, Silverlight must then create two additional sur-
faces in video RAM: a surface to hold all content above the cached bitmap and one to
hold the content below it. In an application with a large height/width on a machine
with relatively low video memory (especially all those integrated graphics chips), you
can quickly run out of memory should you try to cache too many separate subtrees.

 When caching, especially when using hardware acceleration, you should endeavor
to create as few bitmap caches as possible. When using acceleration, you may want to
debug how the process is working. For that, you can use the cache visualization debug
settings.

2× Scale
transform

4× Caching
Licensed to Devon Greenway <devon.greenway@gmail.com>

154 CHAPTER 6 Rendering, layout, and transforming
VISUALIZING THE CACHE AND REDRAW REGIONS

When performance is important, one thing that can really help is visualizing the bit-
map caches in use in your application. Silverlight provides a setting that draws col-
ored overlays on different regions in your UI, indicating which content is or isn’t
cached. Cached content shows up normally; uncached content shows up with a col-
ored overlay.

 Cache visualization is another parameter on the plug-in object described in chap-
ter 4. The parameter is named enableCacheVisualization:

<param name="enableCacheVisualization" value="true"/>

You can also set this value via code, which is essential for debugging out-of-browser
applications. The setting is the EnableCacheVisualization property of the Settings
object:

Application.Current.Host.Settings.EnableCacheVisualization = true;

In both cases, this is a debug setting, so be sure to turn it off when you move your
application to testing or production environments. The in-code approach allows you
to turn the property on and off via a menu setting or similar approach.

 Similarly, you can visualize redraw regions to see exactly what content Silverlight
must redraw for each frame. Like cache visualization, this is an object tag setting:

<param name="enableRedrawRegions" value="true" />

When you enable this visualization, Silverlight will display redraw regions in a differ-
ent color for each frame, making it obvious what elements are causing which parts of
the interface to be redrawn at runtime. Just as with the other setting, this isn’t some-
thing you want to leave enabled in production. Also with the other settings, this has a
runtime-settable version especially useful for out-of-browser applications:

Application.Current.Host.Settings.EnableRedrawRegions = true;

Between the redraw visualization and the cache visualization, you should have a good
start on debugging any rendering performance issues in your application.

 Rasterization is an important process to understand in Silverlight, especially if
you’re creating an application, such as a game or media player, which is performance
sensitive. Consider using cached composition and hardware acceleration to help you
out but understand the limitations and where the point of diminishing returns lies for
your application.

 The rendering process as a whole has a number of important steps. Of those, the
key steps to understand are the clock tick, which increments all the animation and
media counters; the per-frame rendering callback, which is useful for game loops and
similar operations; and the rasterization process.

 One other important step we haven’t yet covered is layout. Layout is important
enough to require a more in-depth look than some of the other steps. In fact, of all of
them, I’d consider layout the most important step for the majority of Silverlight
developers.
Licensed to Devon Greenway <devon.greenway@gmail.com>

155The layout system
6.3 The layout system
Layout systems across different technologies vary greatly in complexity. Take, for
example, the Windows Forms layout system. Fundamentally, that layout system
involves absolute x and y coordinate pairs and an explicit or implicit z-order. Controls
can overlap each other, get clipped on the edge of the window, or even get obscured
completely. The algorithm is pretty simple—sort by z order (distance from the viewer)
and then blit the bits to the screen.

 For another example, look to HTML and CSS. HTML and CSS support elements
that must size to content and page constraints (tables, divs), as well as support abso-
lute positioning, overlapping, and so forth. It’s more of a fluid approach, where the
size and position of one element can affect the size and position of another. There-
fore, the layout system for HTML and CSS is significantly more complex than that for
something like Windows Forms.

 Silverlight and WPF support both types of layout: content that self-sizes based on
constraints, and content that’s simply positioned by way of an x and y coordinate pair.
Depending on the container in use, it can even handle laying elements out on curves
or radially from a central point. The complexity that makes that possible deserves a
deeper look.

6.3.1 Multipass layout—measuring and arranging

Layout in Silverlight and WPF involves two primary passes: the measure pass and the
arrange pass. In the measure pass, the layout system asks each element to provide its
dimensions given a provided available size. In the arrange step, the layout system tells
each element its final size and requests that it lay itself out and also lay out its child ele-
ments. A full run of measuring and arranging is called a layout pass.

 In this section, we’ll go through the layout system in more detail, especially these
two key steps and their implications for performance and design. If you’re curious
about layout or you’ve ever been confused by something like Height and Width versus
ActualHeight and ActualWidth, read on.
THE MEASURE PASS

Whenever elements need to be rendered to screen due to having just been added,
made visible, or changed in size, the layout system is invoked for an asynchronous lay-
out pass. The first step in layout is to measure the elements. On a FrameworkElement,
the measure pass is implemented inside the virtual MeasureOverride function, called
recursively on the visual tree:

protected virtual Size MeasureOverride(Size availableSize)

The availableSize parameter contains the amount of space available for this object
to give to itself and child objects. If the FrameworkElement is to size to whatever con-
tent it has, the availableSize will be double.PositiveInfinity.

 The function returns the size the element requires based on any constraints or
sizes of child objects.
Licensed to Devon Greenway <devon.greenway@gmail.com>

156 CHAPTER 6 Rendering, layout, and transforming
 Note that MeasureOverride isn’t called directly from the layout system: it’s a pro-
tected function. Instead, this function is called from the UIElement’s Measure func-
tion, which, in turn, is called by the layout system.

THE ARRANGE PASS

The second pass of layout is to arrange the elements given their final sizes. On a
FrameworkElement, the Arrange is implemented inside the virtual ArrangeOverride
function, also called recursively:

protected virtual Size ArrangeOverride(Size finalSize)

The finalSize parameter contains the size (the area within the parent) this object
should use to arrange itself and child objects. The returned size must be the size actu-
ally used by the element and smaller than the finalSize passed in; larger sizes typi-
cally result in clipping by the parent.

 Similar to the relationship between the measure pass and MeasureOverride,
ArrangeOverride isn’t called directly by the layout system. Instead, the Arrange
method on UIElement is called, which then calls the protected ArrangeOverride
function.

 At the end of the arrange pass, Silverlight has everything it needs to properly posi-
tion and size each element in the tree. But it doesn’t have everything it needs to actu-
ally display the element because its render position or size could be affected by a
render transform, as covered in the previous section.
LAYOUT COMPLETED

Despite the name, the LayoutCompleted event isn’t technically part of the layout pass.
Instead, it’s fired as the last event before an element is ready to accept input. Layout-
Completed is the safe location for inspecting the actual size and position of the ele-
ment or otherwise responding to changes in same.

 Don’t do anything in LayoutCompleted that would cause another layout pass. For
example, don’t change the size or position of an element, modify its contents, change

Height and Width versus ActualHeight and ActualWidth
If you don’t explicitly set the height and width properties of a control, the ActualHeight
and ActualWidth properties may be zero or not a number (NaN). Why is that? Due
to the asynchronous nature of the layout pass, ActualHeight and ActualWidth might
not be set at any specific point in time from run to run or, more importantly, might
actually change their values over time as the result of layout operations.

ActualHeight and ActualWidth are set after the rendering pass and may also be
affected by layout rounding settings or content.

In short, check them and, if they’re zero, they haven’t been set. If you want a single
place where you can guarantee they’ll have a value, subscribe to the LayoutUpdated
event on the element and check them there.
Licensed to Devon Greenway <devon.greenway@gmail.com>

157The layout system
its layout rounding, or otherwise manipulate properties that could change the size of
the element’s bounding box. If you have multiple nested layout passes and they take
longer than the time allowed for that frame, the Silverlight runtime may skip frames
or throw a layout exception.

6.3.2 The LayoutInformation class

The LayoutInfomation class in System.Windows.Controls.Primitives contains a
few methods that are useful to folks implementing their own MeasureOverride and
ArrangeOverride code. Specifically, GetLayoutSlot and GetLayoutClip are helpful
when hosting child elements in a custom panel.
GETLAYOUTSLOT

Regardless of its actual shape, each
visual element in Silverlight can be
represented by a bounding box or lay-
out slot. This is a rectangular shape
that takes into account the element’s
size and any margins, padding, or
constraints in effect. Figure 6.5 shows
the relationship between a layout slot
and the child element hosted in
a panel.

 The layout slot is the maximum
size to be used when displaying an ele-
ment. Portions of the element that fall
outside the slot will be clipped. To see
the layout slot for an element, you can
call the static function GetLayoutSlot:

public static Rect GetlayoutSlot(FrameworkElement element)

The returned Rect will contain the bounding box or layout slot for that element. This
return value can be useful when creating a custom panel or when debugging layout
issues.
GETLAYOUTCLIP

Sometimes elements may be larger than their layout slots, even after measuring and
arranging have attempted to fit them. When that happens, you have a layout clip that
represents the intersection of the child element’s size and the layout slot.

 Figure 6.6 shows the relationship between the layout slot, the child element, and
the layout clip for that child element in an instance where the child element is too
large for its slot.

 The function GetLayoutClip returns the intersection that represents the layout
clip. In this case, the function returns an actual geometry object, useful for setting the
clip geometry for an element should you need to:

public static Geometry GetLayoutClip(FrameworkElement element)

Parent Element (Panel)

Layout Slot (Bounding Box)

Child Element

Figure 6.5 The relationship between the layout slot
and the child element for an element smaller than the
slot
Licensed to Devon Greenway <devon.greenway@gmail.com>

158 CHAPTER 6 Rendering, layout, and transforming
The returned Geometry contains the intersection or null, if the element wasn’t
clipped. It should be noted that, in WPF, the GetLayoutClip method has a counter-
part by the same name that actually resides on the UIElement and takes in the slot size
and returns clip geometry.

6.3.3 Performance considerations

Layout is a recursive process; triggering layout on an element will trigger layout for all
the children of that element, and their children, and so on. For that reason, you
should try to avoid triggering layout for large visual trees as much as possible. In addi-
tion, when implementing your own MeasureOverride or ArrangeOverride code,
make sure it’s as efficient as possible.
VIRTUALIZATION

An example of this has to do with large collections of children in controls such as lists
and grids. Drawing the elements takes a certain amount of time but that only happens
for elements that are onscreen. Creation of the CLR objects representing the items
also takes a certain amount of time. Most importantly for us, the measure and layout
passes happen for all children, regardless of their potential position on screen or off.
Therefore, if you have a thousand elements in a ListBox, MeasureOverride and
ArrangeOverride will be called for each of them. More importantly, if those elements
contain children (as often is the case with item templates), you’ll have even more calls
in the layout passes.

 One solution to this is virtualization. A subset of the built-in controls (such as the
DataGrid) support UI virtualization. For those, precreated elements are reused with
new data. The end result is a reduction in the number of in-memory elements, as well
as a reduction of MeasureOverride and ArrangeOverride calls.
SIZING AND POSITIONING

Another performance consideration has to do with sizing and positioning elements.
For example, if you change the margin of an element or modify its width or height,
you’ll trigger a layout pass. But, if you instead call a render transform to either move

Parent Element (Panel)

Layout Slot (Bounding Box)

Ch
ild

 E
le

m
en

t

Layout Clip

Figure 6.6 The relationship between the
layout clip and the layout slot for a child
element too large for its slot
Licensed to Devon Greenway <devon.greenway@gmail.com>

159Render transforms
or resize that element, you won’t trigger a pass. We’ll cover render transforms in the
next section.

 Understanding the layout system helps take some of the mystery out of what hap-
pens when you size elements in Silverlight, and they don’t quite do what you might’ve
expected them to do. It’s also a key concept to understand if you plan to implement
your own panels/container controls.

 WPF has the concept of a layout transform. This type of transform is parallel to a
render transform but triggers a layout pass. As we’ve seen here, triggering a layout
pass can be an expensive operation, especially if done inside an animation. For per-
formance considerations and due to their relatively low adoption, layout transforms
were omitted from Silverlight.

 The render transforms provided by Silverlight are almost always adequate to solve
problems we used to solve with layout transforms—and often superior. Let’s look at
them next.

6.4 Render transforms
The Transform element gives you the flexibility to alter the appearance of any UIEle-
ment within Silverlight. Transforms give you the flexibility to change the size, location,
gyration, and angling apart from the other related properties that have been defined
up to this point. The real value of transforms will become apparent when you learn
about animations in the next chapter. But first, table 6.2 lists the ways UIElement
objects can be altered.

As table 6.2 describes, each Transform has its own special purpose. As you’ll see within
the next few sections, applying a transformation generally involves altering one or two
basic properties.

Table 6.2 A list of the available transformation options

Transform Description

RotateTransform Rotates an object by a specific Angle.

ScaleTransform Provides a zoom in or out effect by specified amounts

SkewTransform Tilts an element by defined amounts

TranslateTransform Moves an element by specified amounts

TransformGroup Not a type of transform; rather, a container that groups multiple
transforms to be applied

CompositeTransform Provides an easy way to combine the other four transforms

MatrixTransform Provides a way to use a low-level matrix to perform multiple
simultaneous transforms
Licensed to Devon Greenway <devon.greenway@gmail.com>

160 CHAPTER 6 Rendering, layout, and transforming
6.4.1 RotateTransform

The RotateTransform is responsible for rotating an object clockwise around a speci-
fied point by a specified angle. This rotation affects the local coordinate system of the
rotated object. If you need to rotate an object in place, you need to specify the center
point as the center of the object being rotated. Listing 6.10 shows a basic square
rotated clockwise by 30 degrees. The dashed version represents the original square
before the transform was applied.

Result:

XAML:
<Rectangle Width="50" Height="50" Fill="Green" Stroke="Black">
 <Rectangle.RenderTransform>
 <TransformGroup>
 <RotateTransform Angle="30"/>
 </TransformGroup>
 </Rectangle.RenderTransform>
</Rectangle>

The Angle property specifies to rotate clockwise around the optional CenterX and
CenterY properties, which default to 0. Because these values are initially set to 0, an
element will rotate around the upper-left corner. If you set these values to the center
of the object you’re rotating, it’ll give the element the appearance of rotating in place.

 When rotating elements, sometimes it becomes necessary to rotate them counter-
clockwise. As you may have already guessed, you perform this task by providing a neg-
ative value within the Angle property. Note that an element will complete one full
rotation if the Angle is set to 360 or –360.

6.4.2 ScaleTransform

The ScaleTransform enables you to expand or contract an object horizontally or ver-
tically, empowering you to create the effect of zooming in or out. Listing 6.11 shows
how a basic square was zoomed in on via a ScaleTransform.

Result:

Listing 6.10 A square that has been rotated by 30 degrees

Listing 6.11 A square that has been scaled by a magnitude of 2.5
Licensed to Devon Greenway <devon.greenway@gmail.com>

161Render transforms
XAML:
<Rectangle Width="30" Height="30" Fill="Green"
 Stroke="Black" Canvas.Left="35" Canvas.Top="35">
 <Rectangle.RenderTransform>
 <TransformGroup>
 <ScaleTransform ScaleX="2.5" ScaleY="2.5"/>
 </TransformGroup>
 </Rectangle.RenderTransform>
</Rectangle>

The ScaleX and ScaleY properties determine the magnitude by which to zoom in or
out. As you may expect, the ScaleX property stretches or shrinks the element along the
x-axis. The ScaleY property stretches or shrinks the element along the y-axis. If you pro-
vide the same value in both properties, the object will expand or contract proportionally.

 You may have also noticed that the Rectangle expands from the upper-left corner.
This is because the CenterX and CenterY properties determine the point from where
the scale operation should take place. By default, these values are set to 0.

6.4.3 SkewTransform

A SkewTransform warps the coordinate space in a divergent manner. By skewing or
shearing an element, you basically slant the element in a direction. Listing 6.12 illus-
trates a basic square skewed by 18 degrees on both the x and y-axes.

Result:

XAML:
<Rectangle Width="75" Height="75" Fill="Green"
 Stroke="Black" Canvas.Left="12" Canvas.Top="12">
 <Rectangle.RenderTransform>
 <TransformGroup>
 <SkewTransform AngleX="18" AngleY="18"/>
 </TransformGroup>
 </Rectangle.RenderTransform>
</Rectangle>

The AngleX and AngleY properties specify the amount to shear the rectangle horizon-
tally and vertically. Much like the other transforms we’ve reviewed, the SkewTransform
also exposes CenterX and CenterY properties to specify the horizontal and vertical ori-
gin of the skew rendering.

6.4.4 TranslateTransform

The TranslateTransform element allows you to define how to transfer an element
from one location to another. Listing 6.13 shows a square translated by 25 pixels verti-
cally and horizontally.

Listing 6.12 A Rectangle that’s been skewed by 18 degrees
Licensed to Devon Greenway <devon.greenway@gmail.com>

162 CHAPTER 6 Rendering, layout, and transforming
Result:

XAML:
<Rectangle Width="50" Height="50" Fill="Green" Stroke="Black">
 <Rectangle.RenderTransform>
 <TransformGroup>
 <TranslateTransform X="25" Y="25"/>
 </TransformGroup>
 </Rectangle.RenderTransform>
</Rectangle>

As this listing demonstrates, by specifying a double-precision floating-point value within
the X and Y properties of a TranslateTransform, you can move a visual element hori-
zontally or vertically. As you can imagine, the TranslateTransform and the other trans-
forms mentioned give you a lot of flexibility with your visual elements. These transforms
can be used to provide even more radical changes when you group them.

6.4.5 TransformGroup

In the previous transform-related examples, you may have noticed the TransformGroup
element. This element wasn’t required when there was only one applied transform.
However, it’s usually a good idea to include it if there’s any chance you’ll be adding addi-
tional transformations and you aren’t using the new CompositeTransform described in
the next session. The TransformGroup element makes it possible to simultaneously
define multiple transformations on a visual element in any arbitrary order.

 Up to this point, we’ve primarily used a Rectangle as the visual element for trans-
formations but you can also apply these interesting renderings to any UIElement. You
can apply these transformations to items such as TextBox elements, Buttons, the
MediaElement, and so many more that you’ll need to refer to the Silverlight SDK to
see. For the sake of illustration, all the primary transforms that have been discussed
are applied to the TextBox shown in listing 6.14.

Result:

Listing 6.13 A basic translation in action

Listing 6.14 Four transforms on a TextBox-note how the TextBox is still active
Licensed to Devon Greenway <devon.greenway@gmail.com>

163Render transforms
XAML:
<TextBox x:Name="myTextBox"
 Text="Ben and Abby"
 Height="25" Width="100">
 <TextBox.RenderTransform>
 <TransformGroup>
 <ScaleTransform ScaleX="2" ScaleY="2" />
 <SkewTransform AngleX="10" AngleY="10" />
 <RotateTransform Angle="15" />
 <TranslateTransform X="10" Y="10" />
 </TransformGroup>
 </TextBox.RenderTransform>
</TextBox>

Although the use of transforms in this example is a bit over the top, it does accurately
display the true flexibility provided by the transform elements.

6.4.6 CompositeTransform

Introduced in Silverlight 4, the CompositeTransform applies the four built-in render
transforms using a single statement. Though a TransformGroup with all four trans-
forms is still supported, you’ll find this approach generally easier to use. The Compos-
iteTransform applies the transforms in the following order:

1 Scale
2 Skew
3 Rotate
4 Translate

That’s the order generally recommended for transformation. If you play with trans-
forms much, you’ll quickly find out that the order has a real impact on the final result.
The transforms themselves are equivalent to the same individual transforms applied
using a TransformGroup. Listing 6.15 shows the same example from listing 6.14 but
now implemented via a CompositeTransform.

Result:

XAML:
<TextBox x:Name="myTextBox"
 Text="Ben and Abby"
 Height="25" Width="100">
 <TextBox.RenderTransform>
 <CompositeTransform ScaleX="2" ScaleY="2"

Listing 6.15 The same four transforms on a TextBox using a CompositeTransform
Licensed to Devon Greenway <devon.greenway@gmail.com>

164 CHAPTER 6 Rendering, layout, and transforming
 SkewX="10" SkewY="10"
 TranslateX="10" TranslateY="10"
 Rotation="15" />
 </TextBox.RenderTransform>
</TextBox>

As you’d expect, the result is the same as the previous listing. But now the code is
arguably easier to read, contains four fewer elements (three fewer transforms and no
transform group), and is slightly more efficient due to the use of a single set of trans-
formation matrices multiplied together in a single function.

 Once all the tooling switches over to using this approach, it’ll be much simpler to
animate transforms without having to remember lengthy and error-prone property
paths for the nested transform elements.

 Having said that, we actually had the ability to do all of this in previous versions of
Silverlight using the MatrixTransform.

6.4.7 MatrixTransform

MatrixTransform is a powerful class that’s rarely used in Silverlight applications. Why?
Because the idea of matrix math is, to many, something new. But all of the other trans-
forms use matrix math behind the covers; it’s just nicely shielded behind friendly
property names.

 The Silverlight transformation matrix is a 3×3 affine transformation row-major
matrix. The size is three rows by three columns. Affine means that the edges all need
to stay the same length (proportionally) as they originally were. All points on a single
line in the original shape will remain in a single line in the resulting transformed
shape. You can’t do a true perspective transform in an affine matrix or other trans-
form that would violate this. Row major means the vectors are expressed as rows and
not columns.

 As a result of the affine nature and row-major approach, the last column of the
matrix will always contain the rows “0,0,1.” Here’s what the structure looks like,
including the default values:

To perform a translate transform that moves the shape 10 pixels in the positive x-axis
and 20 pixels in the positive y-axis, you’d supply 10 for OffsetX and 20 for OffsetY.

 To increase the x scale of the target, provide a value larger than 1.0 to the M11
property. Similarly, to increase the y scale, provide a value larger than 1.0 to the M22
property. Values smaller than 1.0 will shrink the size.

1 2 3

1 M11 (1.0) M12 (0.0) 0

2 M21 (0.0) M22 (1.0) 0

3 OffsetX (0.0) OffsetY (0.0) 1
Licensed to Devon Greenway <devon.greenway@gmail.com>

165Render transforms
 You can skew the target in the x direction using M21. A value of 1.0 will skew it 100
percent. Similarly, you can skew the target in the y direction using M12.

 To rotate, you’d need to plug in the sine and cosine values into M11, M12, M21,
and M22. For example, to rotate by 15 degrees, the matrix would look like this:

Listing 6.16 shows the hard-coded values for a rotation of 15 degrees plus an offset
of 100 pixels in the x-axis and 20 pixels on the y-axis.

Result:

XAML:
<TextBox x:Name="myTextBox"
 Text="Ben and Abby"
 Height="25" Width="100">
 <TextBox.RenderTransform>
 <MatrixTransform>
 <MatrixTransform.Matrix>
 <Matrix M11="0.96592583"
 M12="0.25881905"
 M21="-0.25881905"
 M22="0.96592583"
 OffsetX="100"
 OffsetY="20" />
 </MatrixTransform.Matrix>
 </MatrixTransform>
 </TextBox.RenderTransform>
</TextBox>

One nice thing you can do with MatrixTransform is perform multiple transforma-
tions in a single step. Prior to the introduction of CompositeTransform, this was the
only way to achieve that operation. If you need to control the order of those transfor-
mations, you can multiply together two or more matrices.

 Render transforms are a powerful way to manipulate the display of your elements.
You’ll find transforms essential in animation, both to provide gross-level movement

1 2 3

1 M11 (Cos(15)) M12 (Sin(15)) 0

2 M21 (-Sin(15)) M22 (Cos(15)) 0

3 OffsetX (0.0) OffsetY (0.0) 1

Listing 6.16 Rotation and translation using a Matrix

Cos(15)
Sin(15)

-Sin(15)

Cos(15)
Licensed to Devon Greenway <devon.greenway@gmail.com>

166 CHAPTER 6 Rendering, layout, and transforming
and to provide more subtle effects such as a pop when you click a button. They’re also
helpful in that they don’t force a layout pass to happen, as would be the case if you
animated something like the actual Width and Height of the element.

 One thing none of the transformations can do, though, is a nonaffine transform
such as a perspective effect. For that, you need to turn to 3D projection.

6.5 3D projection transforms
3D projection transforms, introduced in Silverlight 3, provide a way to do nonaffine
(perspective and distortion) transforms on an object. The UI elements to which the
transforms are applied remain active and available, just as with render transforms.

 Like render transforms, projections don’t affect layout; they’re a render-time trans-
formation that exists outside the layout pass.

 We’ll start with the PlaneProjection, the easiest and most popular of the two types
of projections, and then look at the somewhat more obscure, but extremely powerful,
Matrix3dProjection.

6.5.1 PlaneProjection

Plane projection (System.Windows.Media.PlaneProjection), introduced in Silver-
light 3, was one of the most anticipated features to make it into the product. At the time
of Silverlight 3, the CoverFlow effect from iTunes was all the rage. You could simulate
it using skew transforms and stitching of images but the result was never quite right.

 PlaneProjection has several key properties, as described in table 6.3. You may
wonder why it exposes denormalized properties instead of three 3D point structures.
The reason is binding and animation: by providing the individual properties as
DependencyProperty properties, they can be used in binding and animation.

Table 6.3 PlaneProjection properties

Property Description

RotationX,
RotationY,
RotationZ

These represent the overall rotation of the object, in degrees for each axis.

CenterOfRotationX,
CenterOfRotationY,
CenterOfRotationZ

These represent the object-oriented center of rotation. 0.5, 0.5 is the cen-
ter of the plane on that axis and is the default value.

GlobalOffsetX,
GlobalOffsetY,
GlobalOffsetZ

These values translate the object along the specified axis, providing for
motion in 3D space. The values are relative to the screen. So the y-axis will
always be vertical and point up, and the x-axis will always be horizontal and
point to the right.

LocalOffsetX,
LocalOffsetY,
LocalOffsetZ

Unlike the GlobalOffset values, these values translate on an object-
relative axis. So, if the object was already rotated 20 degrees to the left,
the positive y-axis would point 20 degrees to the left and the positive x-axis
would point 70 degrees to the right. The values of RotationX,
RotationY, and RotationZ directly impact how LocalOffsetX,
LocalOffsetY, and LocalOffsetZ, respectively, are interpreted.
Licensed to Devon Greenway <devon.greenway@gmail.com>

1673D projection transforms
For each of the properties, the screen
axes are defined as shown in figure 6.7.
Positive y is vertical top, positive x is
horizontal right. Silverlight, at least in
the case of the PlaneProjection, fol-
lows a right-hand coordinate system, so
positive z is closer to you, and negative
z is further “into” the screen.

 Both the PlaneProjection and
its related Matrix3dProjection are
assigned to an object via its Projection
property.

 Listing 6.17 shows a simple
PlaneProjection applied to a set of UI elements. In this case, the projection is on the
y-axis, giving you that classic CoverFlow look but applied to live input controls.

Result:

XAML:
<Grid Width="200"
 Height="175">
 <Rectangle Fill="#FFe0e0c0"
 Stroke="#FF000000"
 StrokeThickness="3"
 RadiusY="10"
 RadiusX="10" />
 <StackPanel Margin="10">
 <TextBlock Text="Pete, Melissa, Ben, Abby" Margin="5" />
 <TextBox Text="Silverlight" Margin="5" />
 <TextBox Text="In Action" Margin="5" />
 <Button Content="I’m a Button!" Margin="5" />
 </StackPanel>

 <Grid.Projection>
 <PlaneProjection RotationY="-45" />
 </Grid.Projection>

</Grid>

Listing 6.17 Simple perspective effect on a Grid containing multiple elements

PlaneProjection

X Axis

Y Axis

Z Axis

Figure 6.7 The x, y, and z-axes as recognized by
the PlaneProjection element
Licensed to Devon Greenway <devon.greenway@gmail.com>

168 CHAPTER 6 Rendering, layout, and transforming
6.5.2 Matrix3dProjection

As with 2D affine transforms, Silverlight also supports a lower-level Matrix transform
for 3D. The class is named System.Windows.Media.Matrix3dProjection.

 Due to the complexity of explaining 4×4 nonaffine matrices, and the relatively
small subset of readers who’ll be interested in that, we’ll leave the fine details of 3D
matrix projections out. But let’s look at a simple code example to get you started.

 Listing 6.18 shows how to do something that isn’t provided just by 3D rotation on
an axis. This combines skew effects with rotation to come up with something that can
only be described as interesting.

Result:

XAML:
<Grid Width="200"
 Height="175">
 <Rectangle Fill="#FFe0e0c0"
 Stroke="#FF000000"
 StrokeThickness="3"
 RadiusY="10"
 RadiusX="10" />
 <StackPanel Margin="10">
 <TextBlock Text="Pete, Melissa, Ben, Abby" Margin="5" />
 <TextBox Text="Silverlight" Margin="5" />
 <TextBox Text="In Action" Margin="5" />
 <Button Content="I’m a Button!" Margin="5" />
 </StackPanel>

 <Grid.Projection>
 <Matrix3DProjection>
 <Matrix3DProjection.ProjectionMatrix>
 <Matrix3D M11="0.4269" M12="0.0592" M13="0.0" M14="-0.0012"
 M21="-0.3600" M22="1.0548" M23="0.0" M24="-0.0028"
 M31="0.0" M32="0.0" M33="1.0" M34="0.0"
 OffsetX="9.0" OffsetY="-117.0" OffsetZ="0"
 M44="1.0" />
 </Matrix3DProjection.ProjectionMatrix>
 </Matrix3DProjection>
 </Grid.Projection>

</Grid>

Listing 6.18 Mangling elements using a Matrix3dProjection

Matrix3dProjection
Licensed to Devon Greenway <devon.greenway@gmail.com>

169Summary
Matrix3dProjection is something you may only ever use once but, for that one time,
it’ll be exactly what you need to solve a specific problem. The sky’s the limit when it
comes to 3D transformations (actually 2.5D because Silverlight doesn’t yet have a
true 3D engine) for your Silverlight applications.

 One thing you may have noticed with the projection transforms is that they add
some fuzziness to the elements when they render. That’s because the render trans-
forms operate on frame-by-frame bitmap representations of the objects. That makes
them extremely performant, but also causes them to have a slight degradation in qual-
ity, especially when you do something such as an extreme z scale, as in the
Matrix3dProjection example.

 Silverlight provides two easy-to-use but powerful ways to transform objects in 3D
space: PlaneProjection and Matrix3dProjection. PlaneProjection, in particular,
will find its way into a lot of your applications. In fact, if you develop for Silverlight for
the Windows Phone, you’ll find the PlaneProjection indispensible for providing the
expected page flip UI transitions.

 In the last two examples, I used a combination of Grids and StackPanels to hold
the elements I was transforming. Both of these are types of Panels and will be some-
thing you use over and over again in your own applications.

6.6 Summary
The basis for all onscreen elements is the FrameworkElement and UIElement pair. The
two of them define the majority of the commonly used properties and methods for
other elements. In addition, they define the abstract methods for measuring and lay-
out, the core of the layout system.

 Framework elements, UI elements, and panels are the fundamental players in the
layout system. Layout in Silverlight is so flexible because so much of the measurement
and layout are delegated to the elements themselves. An understanding of the layout
system is important for both performance and flexibility reasons and is a must should
you wish to create your own panels.

 The layout system is a major part of a much larger rendering system. The render-
ing system in Silverlight does a good job at optimizing the elements onscreen for effi-
cient rendering, but also provides appropriate places where you can tune that process
to fit your own applications. Silverlight enables you to cache elements, for example,
and even to control whether cached elements are cached to hardware surfaces on a
compatible video card.

 Render transformations allow us to transform the location, rotation, skew, or size of
any visible element without incurring the performance hit of a layout system pass. For
that reason, they’re perfectly suited to animation and more performance-hungry uses.
What render transformations lack is support for nonaffine or perspective transforms.

 The two types of 3D projections pick up where render transforms leave off, and
provide support for nonaffine, perspective, and distorting 3D transformations. The
PlaneProjection is the easiest to use and suitable for most types of basic projection
Licensed to Devon Greenway <devon.greenway@gmail.com>

170 CHAPTER 6 Rendering, layout, and transforming
work. The Matrix3dProjection is a little harder to use but is extremely powerful. If
you want to do basic CoverFlow-style work, PlaneProjection is for you. If you want to
do a more immersive 3D experience with floating panels zipping past you and appear-
ing off in the distance, you’re probably looking at the Matrix3dProjection class and
some of its helper libraries on www.codeplex.com.

 With framework and UI elements, the rendering and layout system, transforma-
tions, and projections under our belt, we’re ready to move on to the fundamentals of
working with layout panels. Panels form the root elements for most of our interfaces
and are the main elements responsible for layout in Silverlight.
Licensed to Devon Greenway <devon.greenway@gmail.com>

www.codeplex.com

Panels
Panels in Silverlight provide a way to host multiple elements and provide unique
layout logic. For example, you may want a panel that lays out elements so they
appear to radiate out of a central point (think of the wheel on Wheel of Fortune).
Rather than provide each and every control with the knowledge required to per-
form that layout, Silverlight leaves it to the panel.

 This delegation to panels and the layout system is why you won’t see Left and
Top properties on UI elements—those properties are provided by the panels in the
form of attached properties (see section 2.1.5 for more information on attached
properties).

 In typical use, any control you place in the UI in Silverlight is going to be hosted
in a panel at some level. Understanding how the different panels work is essential
to making the most of Silverlight’s UI capabilities.

 Though there are numerous types of panels available, the three most important
and widely used are the Canvas, the StackPanel, and the Grid.

This chapter covers
■ Absolute layout with the Canvas
■ Stacking items with the StackPanel
■ Cell-based layout with the Grid
171

Licensed to Devon Greenway <devon.greenway@gmail.com>

172 CHAPTER 7 Panels
 We’ll start with the simplest panel, the Canvas, and from there move on to panels
that provide more layout functionality. The StackPanel forms the basis of most list
and menu implementations but is still relatively simple in its layout and functionality.
The Grid, the final panel in this section, is typically the root of our interfaces and is
one of the most powerful, flexible, and complex panels available.

7.1 Canvas
Envision a painter inspired to recreate a mountainous landscape. As you can imagine,
a tremendous amount of artistic freedom is required to adequately mimic this majes-
tic view. Painters have the luxury of a conventional canvas, which gives them free rein
over their illustrations. Unfortunately, traditional web technologies can occasionally
be overly rigid, imprisoning you and making it difficult to deliver awe-inspiring con-
tent over the Internet.

 Thankfully, in addition to being the highest-performing and lightest-weight layout
panel, the Canvas element gives you the same type of freedom that painters have long
taken for granted. This Panel allows you to say, “I want this element at this exact loca-
tion,” and accomplish that. Before we discuss the details of Canvas, we should look at
the basic syntax of a Canvas, as shown here:

<Canvas Height="200" Width="300" Background="White">
</Canvas>

This bit of XAML shows an empty Canvas with a white background. To show some-
thing contained within the canvas, you need to add some content, such as a basic
block of text, as seen here:

<Canvas>
 <TextBlock Text="Hello, Silverlight" />
</Canvas>

This shows a basic Canvas with a small amount of content: a single TextBlock. The
content of a Canvas consists of elements inside the Canvas. These child elements are
added to a collection, called Children, which is accessible from code. Each item in
this collection derives from the UIElement type described in section 6.1. We’ll use a
UIElement called TextBlock to show you how to arrange content within a Canvas.

Canvas performance
As described in section 6.3 on the layout system, the process of determining where
elements are positioned can be quite involved. As each element is added to its con-
tainer, Silverlight must perform layout calculations. The number of calculations is
usually based on the requirements placed on an element by its ancestors and by sib-
lings in the same container. In general, as the number of relative elements grows, so
does the number of necessary calculations.
Licensed to Devon Greenway <devon.greenway@gmail.com>

173Canvas
7.1.1 Arranging content of a Canvas

You can arrange the content within a Canvas by using at least one of two approaches.
The first approach involves setting the vertical and/or horizontal offsets of an ele-
ment within a Canvas. The other method revolves around setting the stack order of an
element within a Canvas. These methods can be used in combination for full control
over how each piece of content is shown. Let’s take it one step at a time and investi-
gate how to set an element’s offsets.
SETTING THE OFFSETS

By default, the content within a Canvas is automatically arranged at 0,0. This
approach places all of the content in the upper-left corner of a Canvas. To move con-
tent out of this corner, you must take advantage of two attached properties—Left and
Top—which are shown here:

<TextBlock x:Name="tb" Text="Hello" Canvas.Left="20" Canvas.Top="30" />

This TextBlock uses the Left and Top attached properties to set its position within an
imaginary Canvas. The Left property specifies the distance, in pixels, from the left
edge of the TextBlock element to the left edge of the parent Canvas. Likewise, the
Top property sets the number of pixels between the top edge of the parent Canvas and
the top edge of the TextBlock. This specific sample places the TextBlock 20 pixels
from the left and 30 pixels from the top of a parent Canvas. Alternatively, you may
need to set these values at runtime.

 To set the position of an element within a Canvas at runtime, you must do so pro-
grammatically. The Canvas element exposes two statically visible methods that enable
you to set an element’s position at runtime. There are also two other methods—illus-
trated here using the TextBlock from the previous example—that enable you to
retrieve an element’s position at runtime:

double newLeft = Canvas.GetLeft(tb) + 15.0;
Canvas.SetLeft(tb, newLeft);

double newTop = Canvas.GetTop(tb) + 30.5;
Canvas.SetTop(tb, newTop);

This example shows how the GetLeft and SetLeft methods are used to move a Text-
Block 15 pixels to the right. Alternatively, you could’ve subtracted a value to move the
TextBlock to the left. This example also moves a TextBlock down by 30.5 pixels using

(continued)
Because of its explicit nature and minimal layout requirements, Canvas can minimize
the number of necessary calculations, providing a potentially important performance
boost for applications with many onscreen elements. To realize this performance gain,
though, you’d need to have thousands or tens of thousands of visible elements on
the screen.
Licensed to Devon Greenway <devon.greenway@gmail.com>

174 CHAPTER 7 Panels
the GetTop and SetTop methods. In a similar approach, you could’ve subtracted a
value to move the TextBlock up. Either way, it’s important to note that you could’ve
passed any UIElement to this method in place of the TextBlock.

Any time you set the location of an element, you must use a double value. This double-
precision value represents a specific number of pixels. If you aren’t careful, you may
inadvertently overlap the content within a Canvas. Although this overlapping effect can
occasionally be desirable, it’s still useful to know how to set the stacking order.
SETTING THE STACK ORDER

By default, when content is rendered within a layout panel, each element is rendered
on its own imaginary layer. This ensures that the last element in a layout panel is
shown on top of all the others. The other elements are still present; they’re just over-
drawn by the overlapping content, as shown in listing 7.1.

Result:

XAML:
<Canvas Width="180" Height="180" >
 <Canvas Width="60"
 Height="60"
 Background="LightGray"/>
 <Canvas Width="60"
 Height="60"
 Canvas.Left="20"
 Canvas.Top="20"
 Background="Gray" />
 <Canvas Width="60"
 Height="60"
 Canvas.Left="40"

Listing 7.1 Natural stacking order

Wait... 30.5 pixels?
Silverlight’s rendering and layout system support subpixel layout and rendering. This
allows you to specify fractions of pixels and allow Silverlight to create the appropriate
display. For example, if you have a white canvas with a black vertical line located half-
way between two pixels—a width of one pixel at position 30.5, for example—Silver-
light will show two gray lines side by side (the average of white and black) in order to
produce the illusion of a line at the fractional offset. The end result can be described
as fuzzy or blurry and is often something you want to avoid. To have exact pixel snap-
ping and crisp lines, set the UseLayoutRounding property of the panel or control you
want snapped.

Background
canvas

Middle
canvas

Foreground
canvas
Licensed to Devon Greenway <devon.greenway@gmail.com>

175Canvas
 Canvas.Top="40"
 Background="Black"/>
</Canvas>

Listing 7.1 shows the natural stacking approach used when rendering overlapping
content. The content overlaps in this orderly fashion because, by default, its ZIndex
(or stacking position) is set to 0.

TIP Even though Canvas.ZIndex is an attached property on the Canvas
type, it works within other panels such as the grid, even if there’s no canvas
present anywhere in the visual tree. Note that ZIndex is relative only to the
panel and not to the application as a whole.

You can change the ZIndex value to a value greater than 0 to move the Canvas farther
into the foreground, as shown in listing 7.2. The element will be placed on top of the
elements that have a smaller ZIndex within the same panel.

Result:

XAML:
<Canvas x:Name="myCanvas">
 <Canvas Canvas.ZIndex="2"
 Width="60" Height="60"
 Background="LightGray"/>
 <Canvas Canvas.ZIndex="1"
 Width="60" Height="60"
 Canvas.Left="20" Canvas.Top="20"
 Background="Gray" />
 <Canvas Width="60" Height="60"
 Canvas.Left="40" Canvas.Top="40"
 Background="Black"/>
</Canvas>

This short example shows how to move an element further into the foreground of a Can-
vas. You add a value to the integer value represented by the ZIndex. Alternatively, you
could’ve moved the element somewhere into the background by subtracting a value.
Either way, the Canvas gives you the ability to set the stack order and offsets to your liking.
In addition, the Canvas provides some performance features that really pack a punch.

TIP Playing around with ZIndex can get frustrating and difficult to track
once you have several overlapping panels, each with elements with specific
ZIndex values. Whenever possible, arrange your elements so they make
sense in the natural order. In addition, try not to animate ZIndex because
the Silverlight runtime rearranges the visual tree to get the required z posi-
tioning. This can be a real performance drain.

Listing 7.2 Changing the stacking order using ZIndex

Foreground
canvas

Middle
canvas

Background
canvas
Licensed to Devon Greenway <devon.greenway@gmail.com>

176 CHAPTER 7 Panels
7.2 The StackPanel
Once in a while, I’ll peel my eyes away from my computer
and pick up a newspaper. One thing (other than the fun-
nies) that catches my eye in the paper is the crossword puz-
zle. The layout of a typical puzzle looks like that shown in
figure 7.1.

 If you look at the overall structure of this crossword
puzzle, you can derive that each word consists of either a
horizontal or vertical stack of letters. Each of these stacks
represents a small segment of the overall puzzle. This rep-
resentation is used to position each letter successively to
create a recognizable word within a smaller context.

 Much like a word is a grouping of letters in a crossword
puzzle, a StackPanel is a grouping of visual elements. Each successive visual element is
positioned vertically or horizontally within a single row or column, as seen in listing 7.3.

Result:

XAML:
<StackPanel>
 <Canvas Width="90" Height="30" Background="Red"/>
 <Canvas Width="90" Height="30" Background="Green"/>
 <Canvas Width="90" Height="30" Background="Blue"/>
</StackPanel>

As shown in the listing, elements within a StackPanel are rendered one after another
from top to bottom. The StackPanel exposes an Orientation property, which allows
you to specify whether child elements are stacked in a Vertical or a Horizontal man-
ner, as shown in listing 7.4.

Result:

XAML:
<StackPanel Orientation="Horizontal">
 <Canvas Width="90" Height="30" Background="Red"/>
 <Canvas Width="90" Height="30" Background="Green"/>
 <Canvas Width="90" Height="30" Background="Blue"/>
</StackPanel>

Listing 7.3 The StackPanel in vertical mode

Listing 7.4 The StackPanel in horizontal mode

Figure 7.1 A sample
crossword puzzle that could
be built using stack panels
Licensed to Devon Greenway <devon.greenway@gmail.com>

177The Grid
As you can see in listing 7.4, shifting the layout from a vertical to horizontal orienta-
tion is as simple as including a single property. In addition, layout panels of any type
can be nested within one another to fully dictate an application’s arrangement.

 Nesting layout panels is incredibly important when you begin to consider the
entire scope of an application. Although the StackPanel is great for one-dimensional
(vertical or horizontal) content, it’s not suited for organizing large amounts of ele-
ments. Consider the illustration in figure 7.2.

 Imagine attempting to recreate the purchase order shown in figure 7.2 using a
series of StackPanel elements. Up front, you’d have to decide if you want to create
vertical or horizontal elements. Then, you’d have to specify the Width of each Stack-
Panel because StackPanel elements are arranged and sized independently of each
other. There has to be a better way to organize tabular data. Thankfully, Silverlight
provides the powerful Grid panel to do just that.

7.3 The Grid
Of all the layout panels, the Grid is the one you’re likely to use the most. It’s the
default root layout element for all the UserControl and Page templates, and is the
one control that allows you to easily resize (not rescale) content to take up the space
available to the plug-in.

 Though the Grid is similar to an HTML table element, it expands on a number of
features, such as proportional and absolute row and column sizing, the ability to have
any row or column be the one that takes up all the available space, gracefully handling
of column and row spanning, and an easily consumed API for manipulating rows and
columns at runtime.

Figure 7.2 A basic purchase order, using tabular layout. This would be perfect for a Grid.
Licensed to Devon Greenway <devon.greenway@gmail.com>

178 CHAPTER 7 Panels
 Throughout the remaining sections, we’ll take a deep look at the Grid, starting
with the basics of how to position content in rows and columns. From there, we’ll
work on cell spanning and sizing of Grid cells. Up until that point, we’ll primarily be
working with XAML. For that reason, we’ll look at what’s required to build and manip-
ulate the Grid from code. Finally, we’ll cover using the splitter to allow the end user to
resize Grid columns and rows.

 The Grid panel gives you the ability to easily lay out content in a tabular format.
This tabular format is similar to the table element in HTML, but the table element
can occasionally be difficult to work with during development. For instance, it can be
challenging to determine how many rows or columns exist in a table while coding. To
help overcome this challenge, the Grid in Silverlight defines its rows and columns in
two distinct collections. Appropriately, these collections are called ColumnDefini-
tions and RowDefinitions.

7.3.1 Arranging Grid content

The RowDefinitions collection stores the definitions of the rows of a Grid. Each row
is set through an element called RowDefinition. This element is primarily responsible
for defining the dimensions of a single horizontal row. Similarly, the Grid also enables
you to create a ColumnDefinition element. This element must be defined within the
ColumnDefinitions collection. As you’d expect, this element generally sets the
dimensions of a vertical column within a Grid. By default, you don’t have to set these
dimensions, as shown in listing 7.5.

Result:

XAML:
<Grid x:Name="myGrid" ShowGridLines="True"
 Height="120" Width="120" Background="LightGray">
 <Grid.ColumnDefinitions>
 <ColumnDefinition />
 <ColumnDefinition />
 <ColumnDefinition />
 </Grid.ColumnDefinitions>

 <Grid.RowDefinitions>
 <RowDefinition />
 <RowDefinition />
 <RowDefinition />
 </Grid.RowDefinitions>
</Grid>

Listing 7.5 Grid with uniformly sized cells

Column
definitions

Row
definitions
Licensed to Devon Greenway <devon.greenway@gmail.com>

179The Grid
This listing defines a Grid with three columns and three rows. The rows and columns
of this Grid are defined within the Grid.RowDefinitions and Grid.ColumnDefini-
tions elements. These elements represent strongly typed collections that serve as con-
tainers for the row and column definitions. The individual row and column
definitions are shown by the RowDefinition and ColumnDefinition elements. These
elements intersect at different points across the Grid, creating a total of nine cells.

 Each cell represents the area allocated to a specific region within a Grid. This
region is created by the intersection of a row and a column within a Grid. The easiest
way to see the boundaries of each cell is to use the Grid element’s ShowGridLines
property. Although this property defaults to a value of False, you can set it to True to
see the area reserved for each cell. Because these particular grid lines aren’t customiz-
able, they’re generally only used during development. As you’ll see in section 7.3.6,
you can add several GridSplitter elements to customize the cell boundaries while
giving the user control of cell sizing. Nevertheless, the ShowGridLines property and
the GridSplitter element are both useful when sizing a Grid’s rows and columns or
arranging its content.

 The content of a Grid consists of the elements that you want to arrange in a tabu-
lar fashion. These elements could be controls such as TextBox and TextBlock. Text-
Block will be covered at the end of this chapter, but TextBox won’t be covered until
the next chapter when we cover collecting user input. For now, we’ll use these basic
controls to show how to arrange content in a Grid to create an input form, as shown
in listing 7.6.

Result:

XAML:
<Grid x:Name="myGrid" ShowGridLines="True"
 Background="LightGray" Width="310" Height="75">
 <Grid.ColumnDefinitions>
 <ColumnDefinition />
 <ColumnDefinition />
 </Grid.ColumnDefinitions>
 <Grid.RowDefinitions>
 <RowDefinition />
 <RowDefinition />
 <RowDefinition />
 </Grid.RowDefinitions>

 <TextBlock Text="Please enter your name and email address."
 Grid.ColumnSpan="2" />
 <TextBlock Text="Name: " Grid.Row="1" />
 <TextBlock Text="Email Address: " Grid.Row="2" />

Listing 7.6 Grid Row, Column, and ColumnSpan properties on a simple form

ColumnSpan
property
Licensed to Devon Greenway <devon.greenway@gmail.com>

180 CHAPTER 7 Panels
 <TextBox Width="150" Grid.Column="1" Grid.Row="1" />
 <TextBox Width="150" Grid.Column="1" Grid.Row="2" />
</Grid>

Listing 7.6 shows a basic input form that uses a Grid to arrange its content. This con-
tent is arranged using a number of the Grid’s attached properties. The first attached
property is ColumnSpan. This property gives you the ability to span an element across
multiple cells. We’ll discuss this feature in greater detail in a moment. But first, we’ll
cover the Grid.Row and Grid.Column attached properties. These properties are used
more often and enable you to position content within a Grid.

7.3.2 Positioning Grid content

Positioning content within a Grid is handled mainly by two attached properties—Col-

umn and Row—which store integer values. These values specify the row and/or column
in which to place the content. To illustrate the syntax of these attached properties,
we’ll use the TextBlock:

<TextBlock Text="Rock On!" Grid.Row="3" Grid.Column="2" />

The properties in this example are assigned explicit integer values. If values aren’t
assigned, they default to 0. Alternatively, if you provide a value outside the available
row or column range, they’re simply capped at the end of that range, and the element
will be displayed as though you specified the max row or max column for your grid,
possibly overlapping other elements.

 Although overlapping can be an unwanted side effect, clipped content is also undesir-
able. Clipped content can happen when a row or column is too small for its content. One
way to overcome this problem is to size your row or column using one of the techniques
discussed in section 7.3.1. Another option is to let your content span multiple cells.

7.3.3 Spanning cells

Occasionally, you run into situations where you need to allow content to span multiple
cells. You saw this in section 7.3.1, where we had a heading that demanded this func-
tionality. As you saw then—to accomplish this, you need to use the ColumnSpan
attached property.

 The ColumnSpan attached property empowers you to spread content across several
cells horizontally. By default, this integer value is set to 1, meaning that the content
can occupy a single column. If this value is larger than the number of columns avail-
able in the row, the content extends to the end of the row but not beyond it. In addi-
tion to the ability to span horizontally, you can span vertically with RowSpan, which
works just like ColumnSpan:

<TextBox Grid.Row="1" Grid.RowSpan="3"
 Grid.Column="1" Grid.ColumnSpan="2" />

The ColumnSpan and RowSpan properties are easy to add to any piece of content in a
Grid. Occasionally, though, allowing content to span multiple cells isn’t desirable, but
you may need more space for content. Let’s look at the Grid’s sizing options.

Grid.Row, Grid.Column
properties
Licensed to Devon Greenway <devon.greenway@gmail.com>

181The Grid
7.3.4 Sizing it up

The overall dimensions of a Grid can be set to a specific number of pixels using the
Height and Width properties. These dimensions are set like almost every other ele-
ment in Silverlight. Defining the dimensions of a row or column within a Grid is an
entirely different story because the Height of a RowDefinition and Width of a Col-
umnDefinition are represented as GridLength values.

 The System.Windows.GridLength type provides three different ways to specify how
to allocate space. We’ll discuss each of these options throughout this section. It’s impor-
tant to understand how each approach works because these options can be intertwined
within the same Grid. Based on this fact, we’ll naturally cover the typical pixel approach
to sizing. In addition, we’ll also cover the more dynamic auto-sizing approach. But first,
we’ll cover the default option used for sizing rows and columns: star sizing.
STAR SIZING

Star sizing enables you to equally distribute the available area of a Grid across its rows
and columns. This is the default approach used within a Grid. But, if any row or col-
umn in a grid uses some other form of sizing, the other approach will take prece-
dence. (It may be more appropriate to say that star sizing is used by the remaining
available area.) Listing 7.7 illustrates this concept.

Result:

XAML:
<Grid x:Name="myGrid" ShowGridLines="True"
 Background="LightGray" Width="200" Height="200">
 <Grid.RowDefinitions>
 <RowDefinition Height="50" />
 <RowDefinition Height="2*" />
 <RowDefinition Height="3*" />
 </Grid.RowDefinitions>

 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="50" />
 <ColumnDefinition Width="2*" />
 <ColumnDefinition Width="3*" />
 </Grid.ColumnDefinitions>
</Grid>

Listing 7.7 shows a Grid using star sizing in addition to absolute sizing. Absolute sizing
will be discussed in just a moment; for now, observe the values with the n* in them, for
example the Height and Width values for the second and third rows and columns.
This asterisk signals that the element will use star sizing with a multiplier. Although

Listing 7.7 Absolute and star sizing

Absolute
sizing

Star
sizing
Licensed to Devon Greenway <devon.greenway@gmail.com>

182 CHAPTER 7 Panels
this example only uses integer values, you can use any positive double-precision value.
This value specifies the proportion of the remaining space to allocate to the element.

 Star sizing works by determining how much space is available after the other sizing
schemes have rendered. These calculations will return a remaining amount of avail-
able space. This space is divided proportionally across all the items using star sizing. As
you can see, this approach provides an easy way to provide a proportionate-looking
interface. Occasionally, you may want the size of the cells to be automatically deter-
mined based on their content. For these situations, it’s appropriate to use the Auto
GridLength option.
AUTO SIZING

The Auto GridLength option automatically determines how large or small to make an
element, as shown in listing 7.8. With this option, the element’s size is based primarily
on the content that occupies it, but other factors can also dictate the size of an ele-
ment using the Auto approach.

Result:

XAML:
<Grid x:Name="myGrid" Height="100" Width="300"
 ShowGridLines="True" Background="LightGray">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition Width="Auto" />
 </Grid.ColumnDefinitions>
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>
 <TextBlock Text="Hello there, how are you?" />
 <TextBlock Text="I'm fine thanks!" Grid.Column="1" />
 <TextBlock Text="That's Great" Grid.Row="1" />
</Grid>

Listing 7.8 uses the Auto sizing approach for the Grid’s columns and rows. The result
produced from this XAML shows two key aspects of Auto sizing. First, if a row or col-
umn uses Auto sizing, the size of the largest element in the row or column determines
the size of the others. Second, any remaining space is allocated to the last row or col-
umn—this is why the cells in the last row look so bloated. If you want to have complete
control over the size of your cells, you need to use a more exact approach.
ABSOLUTE

The final approach for allocating the available area to a row or column involves using
a double. This double-precision floating-point value represents a number of pixels.

Listing 7.8 Auto sizing

Auto
sizing
Licensed to Devon Greenway <devon.greenway@gmail.com>

183The Grid
These pixels single-handedly dictate the area reserved for a row or column. If this
space is larger than the content, there’s no problem. If the amount of space is smaller
than the content, you may get some undesired results because the overlapping con-
tent is clipped, as shown in listing 7.9.

Result:

XAML:
<Grid x:Name="myGrid" Height="100" Width="300"
 ShowGridLines="True" Background="LightGray">
 <Grid.ColumnDefinitions>
 <ColumnDefinition></ColumnDefinition>
 </Grid.ColumnDefinitions>
 <Grid.RowDefinitions>
 <RowDefinition Height="68.5" />
 <RowDefinition Height="12" />
 <RowDefinition Height="19.5" />
 </Grid.RowDefinitions>
 <TextBlock Text="This row is too tall" />
 <TextBlock Text="This row is too small" Grid.Row="1" />
 <TextBlock Text="This row is just right!" Grid.Row="2" />
</Grid>

Listing 7.9 shows the absolute sizing approach in action. The rows use a double-
precision value to specify their Height. The third row displays the text: “This row is
just right!” Although you could use the Auto sizing approach for this row, we chose
the absolute approach, primarily for illustration. It’s important to know that the
absolute approach takes precedence over all other sizing options, giving you some
flexibility to get a Grid to look exactly how you want.

 As you’ve seen, the Grid provides three valuable sizing options. These options give
you the flexibility to create a great-looking layout at design time. Occasionally, you
may need to set the sizing options at runtime. Alternatively, you may need to add or
remove rows and columns at runtime. For both these reasons, it’s important to under-
stand how to work with the Grid programmatically.

7.3.5 Working with the grid programmatically

Usually, the rows and columns of a Grid are created at design time using XAML. This
approach ensures that you can easily arrange the content of a Grid before an applica-
tion is up and running. Once the application is running, there may be situations
where you need to dynamically add or remove rows or columns from a Grid. In times
like these, it’s nice to know how to both add and remove these items at runtime.

Listing 7.9 Absolute sizing
Licensed to Devon Greenway <devon.greenway@gmail.com>

184 CHAPTER 7 Panels
ADDING ROWS AND COLUMNS AT RUNTIME

Adding rows or columns programmatically at runtime is as simple as writing two lines
of code. The first line of code is responsible for creating either a RowDefinition or
ColumnDefinition object. The other line of code is then responsible for adding the
newly created object to the appropriate collection. Significantly, there are two different
ways to add the object to the collection. First, here’s how to programmatically add a row:

RowDefinition myRow = new RowDefinition();
myGrid.RowDefinitions.Add(myRow);

The preceding adds a row to the grid created in the previous example. Similarly, this
code adds a column to the same grid but uses the Insert method to insert the column
definition at the far left of the grid:

ColumnDefinition myColumn = new ColumnDefinition();
myGrid.ColumnDefinitions.Insert(0, myColumn);

The first approach adds a single row to the bottom of the Grid because the Add
method always appends an object to the end of a collection. In situations where you
need to have more control over where a column or row is added to a Grid, you may
consider using the Insert method. Either way, you can see how easy it is to add rows
and columns on the fly. And, fortunately, it’s just as easy to remove them.
REMOVING ROWS AND COLUMNS AT RUNTIME

To remove either a row or a column from a Grid, you must use one of two approaches.
The first approach uses the Remove method, which attempts to remove the first occur-
rence of the object provided. If the row or column is successfully removed, this
method returns true. Otherwise, if something unexpected has occurred, this method
returns false:

RowDefinition myRow = myGrid.RowDefinitions[0];
myGrid.RowDefinitions.Remove(myRow);

Occasionally, you may want to explicitly state which row or column to remove based
on an index. For these situations, you should consider using the RemoveAt method:

int lastColumnIndex = myGrid.ColumnDefinitions.Count - 1;
myGrid.ColumnDefinitions.RemoveAt(lastColumnIndex);

The RemoveAt method enables you to specify which row or column to remove by using
a specific index. This index is based on the zero-based indexing scheme used by the Row-
Definitions and ColumnDefinitions collections. Once the row or column is removed,
the remaining rows or columns will simply move up in the collection. This process
occurs completely at runtime and demonstrates how powerful the Grid can be. Another
feature that shows the power of the Grid is the ability to customize the cell boundaries.

7.3.6 Customizing cell boundaries

Silverlight provides a way to customize the cell boundaries of a Grid that’s similar to the
border property in CSS. But, Silverlight goes one step further and gives the user the abil-
ity to use this boundary to dynamically resize the cells of a Grid. This user-controlled
Licensed to Devon Greenway <devon.greenway@gmail.com>

185The Grid
sizing feature enables a user to reallocate space from one cell to another. During this
process, as one cell increases in size, other cells in the Grid may decrease in size. Sig-
nificantly, this resizing process doesn’t change the dimensions of the overall Grid. To
take advantage of this powerful feature, you use a GridSplitter.

 A GridSplitter is an element in the System.Windows.Controls namespace. But,
this item isn’t part of the core Silverlight runtime. Instead, this element is known as an
extended control. These types of controls must be accessed slightly differently than a
standard element such as a Grid. Over the course of this section, you’ll learn how to
access the library of extended controls. Then you’ll learn how to use the GridSplit-
ter within a Grid.
ACCESSING EXTENDED CONTROLS

The extended controls, including the GridSplitter, are part of an assembly called
System.Windows.Controls, which is included in the Silverlight SDK, itself part of the
developer tools download. This assembly includes a number of controls designed to
complement the core Silverlight controls. You’ll learn about the core Silverlight con-
trols in chapter 10 and the other extended controls throughout this book. For now, it’s
important to recognize that this assembly is not part of the core Silverlight runtime; if
you want to use any of the extended controls, you must reference the System.Windows.
Controls assembly. You can do so by adding a reference to the assembly in Visual Studio
and then referencing the namespace through a prefix:

<UserControl x:Class="ExtendedControls.Page"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:ext="clr-namespace:System.Windows.Controls;
 [CA]assembly=System.Windows.Controls"
 Width="400" Height="300">
 <Grid x:Name="LayoutRoot" Background="White" />
</UserControl>

This code shows how to reference the extended controls assembly to pull in a control
not included in the core Silverlight runtime.

WARNING Referencing the System.Windows.Controls assembly will cause it
to be bundled with your application’s .xap, increasing the size of the .xap
file by about 427 KB before compression (as of the time of writing). This can
cause your application to take slightly longer to download unless you take
advantage of assembly caching described in chapter 3.

We’ve given this assembly the friendly prefix ext to reference the extended controls.
The sdk prefix will also be used in relation to our current discussion involving the
GridSplitter.
USING THE GRIDSPLITTER

The GridSplitter defines a divider within a Grid. This divider can be used to style
the boundaries of the cells in the Grid. Alternatively, a GridSplitter can be moved by
a user with the mouse or keyboard. To get a feel for how this works and the basic syn-
tax of a GridSplitter, take a look at listing 7.10.
Licensed to Devon Greenway <devon.greenway@gmail.com>

186 CHAPTER 7 Panels
Result:

XAML:
<Grid x:Name="LayoutRoot" Background="White">
 <Grid.RowDefinitions>
 <RowDefinition />
 <RowDefinition />
 <RowDefinition />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition />
 <ColumnDefinition />
 <ColumnDefinition />
 </Grid.ColumnDefinitions>
 <Canvas Background="Silver" Margin="10" />
 <Canvas Background="Gray"
 Margin="10" Grid.Column="1" />
 <Canvas Background="Silver"
 Margin="10" Grid.Column="2" />
 <sdk:GridSplitter Width="2" />
 <Canvas Background="Gray"
 Margin="10" Grid.Row="1" />
 <Canvas Background="Silver" Margin="10"
 Grid.Column="1" Grid.Row="1" />
 <Canvas Background="Gray" Margin="10"
 Grid.Column="2" Grid.Row="1" />
 <sdk:GridSplitter Background="Black" Width="2"
 Grid.Column="1" Grid.RowSpan="2" />
 <Canvas Background="Silver" Margin="10" Grid.Row="2" />
 <Canvas Background="Gray"
 Margin="10" Grid.Column="1" Grid.Row="2" />
 <Canvas Background="Silver"
 Margin="10" Grid.Column="2" Grid.Row="2" />
</Grid>

Listing 7.10 shows a 3×3 Grid that has two GridSplitter elements. The first Grid-
Splitter shows the most basic implementation of a GridSplitter. At the same time,
the second GridSplitter goes a step further and shows how to control the appear-
ance. The appearance of a GridSplitter is based on a variety of properties, including
Width and Background.

 The Width property is a double-precision value that defines the thickness of a
GridSplitter. By default, this property is not set to a value so the GridSplitter takes
on a default appearance of a bar with a handle the user can grab. When the Width is
set to a value greater than 0, the GridSplitter takes the shape of a basic line. This
line will be visible as long as the Background isn’t Transparent.

Listing 7.10 GridSplitter

Basic GridSplitter
control

GridSplitter with
appearance
Licensed to Devon Greenway <devon.greenway@gmail.com>

187Summary
 The Background property defines how a GridSplitter is painted. We use the term
painted because the Background property is defined as a Brush. We’ll cover brushes in
chapter 18. For now, just know that the Background defaults to being transparent. Also
know that you have the GridSplitter to empower a user to resize the columns of a
Grid at runtime.

 In general, the Grid is the most powerful layout panel in Silverlight because it can
do almost everything that the other layout panels can do. There may be times when
you don’t want the additional bulk of the Grid. For these situations, it’s nice to know
you have the StackPanel and Canvas layout options. For other situations, you may
want to tap into the new layout panels included in the Silverlight SDK or Silverlight
Toolkit: DockPanel and WrapPanel.

7.4 Summary
A rich and interactive user experience is primarily about presenting information. The
users’ acceptance and adoption of your application can hinge on how that informa-
tion is presented to them, so it’s important to understand how to show this informa-
tion in a pleasing way. To help accomplish an orderly UI, Silverlight provides the
Canvas, StackPanel, and Grid layout options, as well as the other brand new panels
such as the DockPanel and WrapPanel.

 The Canvas is the panel to use if you want to have the lightest layout possible and
simply position elements using Left and Top properties. Canvas offers no scaling and
no other layout.

 When you want to build a list of items, such as you’d see in a ListBox or a Menu, the
StackPanel is the panel to use. Like the Canvas, it offers no scaling but it does offer
automatic placement of elements in a vertical or horizontal list.

 Finally, if you want to lay out elements using a grid or tabular format and take
advantage of automatic scaling, the Grid is the panel for you. By far, the Grid is the
most commonly used layout panel in Silverlight.

 With the layout and rending background from the previous chapter and the infor-
mation about panels from this chapter under our belt, we’re ready to move on to the
fundamentals of working with human input such as mouse, keyboard, and touch.
Licensed to Devon Greenway <devon.greenway@gmail.com>

Human input
Real-world applications need a way to accept input from users. This process of col-
lecting input is managed by a wide range of input devices including the mouse,
touch, stylus, and keyboard. Silverlight provides direct support for these devices
through the System.Windows.Input namespace.

 Whether you’re implementing drag and drop or mouse-wheel zoom or creating
your own right-click context menus, you’ll almost certainly end up handling mouse
input in your applications. Silverlight has great support for mouse states as well as
for handling both left and right mouse buttons and allowing you to respond to the
mouse wheel.

 Multi-touch is now coming of age due to the proliferation of multi-touch devices,
PC displays, and notebooks available to us. Silverlight can now accept single and
multi-touch input to allow you to write next-generation touch-enabled applications.

This chapter covers
■ Capturing keystrokes
■ Responding to mouse clicks, movement,

and the wheel
■ Handling multi-touch input
■ Working with pen ink input
188

Licensed to Devon Greenway <devon.greenway@gmail.com>

189Capturing the keyboard
 If you have a tablet PC, an external drawing pad, or perhaps one of the newer tab-
let form factors that we’re just dreaming about as I write this, then ink input using a
stylus is a must. Ink is also a nice way to capture drawings done with the mouse.

 Most keyboard input will be handled by the TextBox and similar controls. But what
happens when you want to implement custom accelerators or write a game that
responds to keystrokes? In those instances, you’ll need to access the lower-level key-
board events like I did in the Commodore 64 emulator shown in chapter 5.

 The keyboard has been our input of choice since the dawn of terminal-based com-
puting (no, Silverlight doesn’t have a paper tape input API, but you could probably
write one) and is used by virtually all applications, so we’ll start there.

8.1 Capturing the keyboard
Have you ever considered how an application determines how to handle your key-
strokes? Often, we click and clack our way through our days and take for granted how
our information gets where we intend it to go. But if we’d slow down for a second,
we’d notice that there’s an intermediary step.

 Before typing any information, you must target an element and give it the focus.
This section will provide an explanation of the concept of focus. Once an item has
focus, it can begin receiving keyboard events—the topic of our second subsection.
Finally, for the special situations where you want to handle key combinations, you
must learn to deal with modifier keys—our final keyboard topic.

8.1.1 Understanding focus

When an element has focus, it becomes the primary target for any information entered
through the keyboard. This target element must be a System.Windows.Controls.
Control element because only Control elements can be given focus in Silverlight. You
can give these elements focus by selecting them with the mouse, by tabbing to them
through the keyboard, or via the Focus method. Regardless of your approach, the
concept of focus is especially important within the realm of the World Wide Web.

 Web pages pose a unique challenge with focus because Silverlight plug-in instances
are part of a larger ecosystem. In chapter 2, this ecosystem was shown to begin with an
HTML document. This document may have multiple Silverlight controls or a mix of
Silverlight controls and other control types such as Flash. In order for a Silverlight
control to accept input from the keyboard on an HTML page with additional content,
the Silverlight control itself must first have the focus. To accomplish this, you can use
the following JavaScript:

var silverlightControl = document.getElementById('SilverlightControl');
if (silverlightControl)
 silverlightControl.focus();

This example uses the HTML DOM to manually give the focus to an instance of the Sil-
verlight plug-in. This approach can be useful if you want to give your Silverlight appli-
cation the focus when a web page is loaded. If you don’t do this, a user will either have
Licensed to Devon Greenway <devon.greenway@gmail.com>

190 CHAPTER 8 Human input
to click or tab to your Silverlight plug-in instance. Once that’s done, you’ll be able to
set focus to individual controls.
ELEMENT FOCUS

Individual elements on the Silverlight page receive focus by click or tab. But you can
manually set focus to an element by calling the Focus method of the UIElement:

myTextBox.Focus();

You may want to do that in response to a special accelerator key, or to automatically set
focus to a field with a validation error, or perhaps to allow for skipping fields based on
prefilled data.

 Once the plug-in instance has focus and one of the input controls on your page
has focus, you can begin handling keyboard events within your Silverlight application.

8.1.2 Handling keyboard events

Silverlight provides two events directly related to the keyboard. These events, KeyDown
and KeyUp, are available through the UIElement class. The KeyDown event happens
when a user presses a key. Once that key is released, the KeyUp event will fire. When
either event is triggered, its event handler will receive a KeyEventArgs parameter.
This parameter and the KeyDown and KeyUp events are shown in listing 8.1.

XAML:
<UserControl x:Class="Keyboard01.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Width="400" Height="300"
 KeyDown="MainPage_KeyDown">
 <Canvas x:Name="LayoutRoot" Background="Black">
 <TextBlock x:Name="myTextBlock" Foreground="White" Text="Waiting..." />
 </Canvas>
</UserControl>

C#:
public partial class MainPage : UserControl
{
 public MainPage()
 {
 InitializeComponent();
 this.KeyUp += new KeyEventHandler(MainPage_KeyUp);
 }
 private void MainPage_KeyUp(object sender, KeyEventArgs e)
 {
 myTextBlock.Text = "Key (" + e.Key + ") was released.";
 }
 private void MainPage_KeyDown(object sender, KeyEventArgs e)
 {
 myTextBlock.Text = "Key (" + e.Key + ") is down.";
 }
}

Listing 8.1 A page in Silverlight that responds to the KeyDown and KeyUp events

Handler wired
up in XAML

Handler wired
up in code
Licensed to Devon Greenway <devon.greenway@gmail.com>

191Capturing the keyboard
This listing shows a page in Silverlight that responds to the KeyDown and KeyUp events.
The event handlers associated with these events update the TextBlock to show the key
that was used. These events are watched through the UserControl element, which is
inherently a UIElement. We’ll discuss this element further in section 10.5 but, for now,
note how the keyboard events are attached in two different ways. In one, the KeyDown
event is attached through the XAML declarative approach. The other approach uses
traditional procedural code. Regardless of the method, the appropriate keyboard
event handler will receive a KeyEventArgs parameter.

NOTE If the user holds the key down, and his system is set up to allow key
repeating (the default), multiple KeyDown events will be fired and KeyUp will
only be fired when the key is released. If you want to process typing, you should
process KeyDown (to capture each character) but, if you want to process key-
strokes for hotkeys or similar functionality, KeyUp may be a better event to use.

The KeyEventArgs class enables you to fetch data relayed from a user’s keyboard. Once
a user begins typing, you can use this object to interpret the user’s keystrokes and act
accordingly. The KeyEventArgs class provides the properties shown in table 8.1.

After reviewing this table, you may be scratching your head and thinking, “Why would
I ever use the PlatformKeyCode property when Silverlight is cross-platform?” When I
ported the C64 emulator to Silverlight, I had to use the PlatformKeyCode to gain
access to a number of keys Silverlight didn’t surface through the Key enumeration—
for example, the bracket and pipe keys. The key codes for those keys will be different
on each supported platform and each type of keyboard, such as Qwerty in the US and
Azerty in France.

Table 8.1 The properties of the KeyEventArgs class

Property Description

Handled A bool that signals whether the key event has been handled.

OriginalSource A reference to the element that originally raised this event. Since the keyboard
events are bubbling routed events, you need this to identify the source of the
event as opposed to the sender of the event.

Key This value identifies which key has been pressed. Unlike the PlatformKey-
Code property, this value is consistent across all operating systems.

PlatformKeyCode An integer value that provides the key code of a pressed key. This value is spe-
cifically tied to the operating system the user is using.

If it’s not Windows, don’t assume it’s a Mac
One thing that got me into trouble with my friends on the Moonlight team was my as-
sumption in code that, if the keystroke wasn’t from Windows, it was from a Mac. Re-
member, there are other platforms that support Silverlight without a recompile: Linux,
Moblin, Nokia Symbian OS, and more.
Licensed to Devon Greenway <devon.greenway@gmail.com>

192 CHAPTER 8 Human input
Another reason is because some keys are irrelevant on other operating systems. For
instance, checking for a Windows Logo keystroke on OS X makes as much sense as
checking for a Command key press on Windows. If handling other OS-specific key-
strokes is necessary, you can use the PlatformKeyCode. Otherwise, we recommend
sticking with the Key property.

 In addition to straight key presses, you may need to capture key combinations such
as Ctrl-C.

8.1.3 Dealing with modifier keys

Modifier keys are specific keys used in combination with other keys. Modifier keys are
necessary because the KeyEventArgs class only exposes information about the currently
pressed key. If you press something like the Shift key or Ctrl key and then another key,
the initially selected key data will be lost. You can overcome this problem with the help
of the statically visible Keyboard class.

 The Keyboard class, in the System.Windows.Input namespace, exposes information
directly related to the selected modifier keys. This information is available through the
Modifiers property, which is a bit field enumeration that represents the set of Modi-
fierKeys that are pressed. These ModifierKeys represent options of an enumeration.

 Table 8.2 shows the options available in the ModifierKeys enumeration. Notably, the
Apple key is equal to the Windows key in value, as they serve conceptually similar roles
on the two platforms. The reason for this enumeration is to allow for bitwise operations.

The modifiers are important because they allow you to check whether multiple keys
are selected at the same time. For instance, if you want to change the KeyDown event
used in listing 8.1 to listen for Shift-B, you could use this code:

private void MainPage_KeyDown(object sender, KeyEventArgs e)
{
 if (e.Key == Key.B)
 {
 if (Keyboard.Modifiers.HasFlag(ModifierKeys.Shift))

Table 8.2 The ModifierKeys available within Silverlight

Key Description

None No modifier keys are pressed.

Alt The Alt key is pressed. This key is available on all supported platforms.
On an Apple keyboard, this key is also referred to as the Option key.

Apple The Command key is pressed on an Apple system. These keys used to
have open apples on them.

Control The Ctrl key is pressed. This key is available on all supported platforms,
despite usage differences between Windows and Mac.

Shift The Shift key is pressed. This key is available on all supported platforms.

Windows The Windows Logo key is pressed on a Windows-enabled keyboard.
Licensed to Devon Greenway <devon.greenway@gmail.com>

193Mouse input
 myTextBlock.Text = "You pressed SHIFT+B";
 }
}

This shows how you can go beyond individual key events in Silverlight. By appropri-
ately listening to and responding to these events, you can extend the input and navi-
gation of your application beyond just the mouse alone. Though that’s compelling,
especially for those of us who grew up with 40- or 80-character displays and a fondness
for the command prompt, the mouse is the primary input device for most web appli-
cations today.

8.2 Mouse input
The mouse requires very different input processing compared with the keyboard. In
addition to responding to button-related events, the mouse can also respond to move-
ment. It’s also common for the mouse to be moving with one or more buttons
depressed. Another input vector on the mouse, one that’s relatively new compared to
the mouse itself, is the scroll wheel or mouse wheel. Though implementations vary
from traditional wheels to capacitive touch pads, it’s rare to find a modern mouse that
omits this handy feature, so it’s important that Silverlight developers be able to gather
meaningful input from it.

 We’ll start with mouse button and movement events. The two are often used
together to handle dragging and resizing operations. Even when used separately,
they’re often thought of together due to their ubiquity from the first days of mouse-
based user interfaces.

 From there, we’ll look at the mouse wheel support added with Silverlight 3 and
refined in Silverlight 4. The mouse wheel isn’t necessarily an essential input like the
mouse button and mouse movement, but it can make the difference between a medi-
ocre user experience and an awesome one.

8.2.1 Mouse button and movement events

Silverlight supports a range of movement and click-related events emitted from the
mouse. These events can be handled by any UIElement. The most familiar of these
events are probably the click-handling events because they behave similarly to the key-
board events. Table 8.3 shows these click-related actions along with their descriptions.

Table 8.3 The click-related events associated with the mouse

Event Description

MouseLeftButtonDown Responds to the user depressing the left mouse button

MouseLeftButtonUp Reacts to the user releasing the left mouse button

MouseRightButtonDown Responds to the user depressing the right mouse button

MouseRightButtonUp Fired when the user releases the right mouse button
Licensed to Devon Greenway <devon.greenway@gmail.com>

194 CHAPTER 8 Human input
This table shows two pairs of events tied to the mouse buttons. When a mouse button
is selected, the corresponding event handlers will receive a MouseButtonEventArgs
object. This object derives from the MouseEventArgs class, which describes the mouse
state at the time the event was raised.

 You can receive the location of the mouse cursor in relation to a specific UIEle-
ment through the GetPosition method. This method is part of the MouseEventArgs
class and will be discussed more in a moment. For now, please look at the properties
available in the MouseEventArgs class (shown in table 8.4).

Table 8.4 lists the properties available through the MouseEventArgs class. As this table
shows, Silverlight has built-in support for working with a stylus, which we’ll discuss in a
bit. One method in the MouseEventArgs class demands more immediate attention—
GetPosition.

 The GetPosition method gives you immediate access to the current location of
the mouse. This location is returned from the GetPosition method as a Point in rela-
tion to any UIElement. This UIElement is determined by passing it as the sole parame-
ter to the method. Optionally, you can pass null as the parameter to the GetPosition
method to get the location of the mouse in relation to the Silverlight plug-in instance.
Regardless of how you use it, this method is useful when handling both click and
movement events. The UIElement class exposes the mouse-movement events shown in
table 8.5.

The events in table 8.5 are passed a MouseEventArgs parameter so you can be readily
informed of a mouse’s position as it moves around a surface. This feature can especially

Table 8.4 The properties exposed by the MouseEventArgs

Property Description

Handled A bool that flags whether the mouse event has been dealt with
Set to true on a RightMouseButtonDown event to avoid showing the
default Silverlight configuration menu

OriginalSource A reference to the element that originally raised this event
Since the mouse events are bubbling routed events, you need this to
identify the source of the event as opposed to the sender of the event.

StylusDevice Includes information associated with a tablet pen

Table 8.5 The mouse-movement-related event handlers

Event Description

MouseEnter Triggers when the user enters the boundary of a UIElement

MouseMove Reacts to mouse movement within the boundary of a UIElement

MouseLeave Fires when the move leaves the boundary of a UIElement
Licensed to Devon Greenway <devon.greenway@gmail.com>

195Mouse input
be useful if you want to implement drag-and-drop features in Silverlight or track the
mouse for drawing.

Besides buttons and pointer movement, modern mice offer one more form of input:
the mouse wheel.

8.2.2 Using the mouse wheel

Silverlight 3 added built-in support for the mouse wheel, in the form of the UIEle-
ment.MouseWheel event. It was possible to wire up a mouse wheel handler in Silver-
light 2, but you had to resort to JavaScript to do it—something that won’t work
out of browser, always seemed a bit of a hack, and is difficult to support cross-
browser and cross-platform. Silverlight 4 expanded that by adding in support in the
controls themselves.

NOTE In the initial Silverlight 4 release, the MouseWheel event only worked in
specific situations: windowed controls on IE and Firefox for Windows, as well
as windowless controls for IE. The approach used with the Netscape Plug-in
API (NPAPI) didn’t provide the plug-in with mouse wheel information, so Sil-
verlight didn’t support the mouse wheel in Safari or Firefox on the Mac. Sup-
port is planned, though, and will be in place by the time you read this book.
On Windows, when using windowed mode on those browsers, the Silverlight
runtime bypasses the plug-in API and grabs the underlying window handle
(hWND) for the control as a workaround.

Silverlight includes first-class mouse wheel support in the form of the MouseWheel
event on the UIElement class. When the user scrolls the mouse wheel, this event is

Implementing a custom click event
Implementing a custom click event (rather than using a click-enabled base class such
as ButtonBase) is more involved than simply handling the MouseLeftButtonUp
event. Back in Silverlight 1.1a, when we had to create buttons from scratch, we all
learned that a click event requires the following steps:

1 On MouseLeftButtonDown on your control, capture the mouse using UIElement.
CaptureMouse.

2 On MouseEnter, update an internal flag that indicates that the mouse is cur-
rently over your control. On MouseLeave, set that flag to false.

3 On MouseLeftButtonUp, verify that the mouse is still over your control, using
the flag you set in step 2. If it is, raise your own custom click event. If isn’t,
do nothing. In either case, release the mouse capture using UIElement.
ReleaseMouseCapture.

You may never need to implement your own click event but, if you do, ensure that you
follow these steps rather than simply responding to MouseLeftButtonUp.
Licensed to Devon Greenway <devon.greenway@gmail.com>

196 CHAPTER 8 Human input
raised with an instance of the MouseWheelEventArgs class. The properties available in
the MouseWheelEventArgs class are detailed in table 8.6.

Listing 8.2 shows the mouse wheel properties in action.

XAML:
<UserControl x:Class="SilverlightApplication17.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Width="400" Height="300">
 <Grid x:Name="LayoutRoot" Background="White">
 <TextBlock x:Name="Info" />
 </Grid>
</UserControl>

C#:
public MainPage()
{
 InitializeComponent();
 MouseWheel += new MouseWheelEventHandler(OnMouseWheel);
}

void OnMouseWheel(object sender, MouseWheelEventArgs e)
{
 if (e.Delta > 0)
 Info.Text = string.Format("Up {0}", e.Delta);
 else
 Info.Text = string.Format("Down {0}", Math.Abs(e.Delta));
}

Listing 8.2 shows how to obtain the Delta value from the MouseWheel event in order
to determine both direction and speed. Negative values mean the wheel was scrolled
down or toward the user; positive values mean the wheel was scrolled up or away from
the user.

Table 8.6 The properties exposed by MouseWheelEventArgs

Property Description

Delta An integer representing the relative change since the last time the event was raised

A positive value indicates that the mouse wheel was scrolled up or away from the
user. A negative value means the mouse wheel was scrolled down or toward the
user. The higher the absolute value of the number, the faster the mouse wheel was
scrolled.

Handled A bool that flags whether the mouse event has been dealt with

OriginalSource A reference to the element that originally raised this event

Since the mouse events are bubbling routed events, you need this to identify the
source of the event as opposed to the sender of the event.

StylusDevice Includes information associated with a tablet pen

Listing 8.2 Responding to the mouse wheel

Wiring up
event

Responding
to scroll
Licensed to Devon Greenway <devon.greenway@gmail.com>

197Using multi-touch
 The ScrollViewer control automatically handles the MouseWheel event, so the
ListBox, ComboBox, TextBox, and other ScrollViewers will automatically scroll using
the wheel. If you want to support the mouse wheel on other controls, simply handle
the MouseWheel event as shown in listing 8.2. As another example, here’s the mouse
wheel integrated with a Slider:

private void OnMouseWheel(object sender, MouseWheelEventArgs e)
{
 if (e.Delta > 0)
 slider_X.Value += slider_X.LargeChange;
 else
 slider_X.Value -= slider_X.LargeChange;
}

First-class support for the mouse wheel event isn’t the only advanced input supported
by Silverlight. Silverlight also has a great feature for Windows 7 systems and beyond:
multi-touch support.

8.3 Using multi-touch
Microsoft Windows 7 is the first Microsoft OS to have official built-in support for multi-
touch-enabled hardware. For a platform to be touch enabled, it simply needs to recog-
nize a single finger on the screen. Many tablets and portable devices support this, as
do touch screens going all the way back to the 80s. Multi-touch is a pretty new ground.
A multi-touch-enabled display will recognize more than one finger on the screen,
allowing you to do things such as resize and rotate images by touching both corners or
make complex multifinger gestures to perform specific functions, such as sweeping a
screen to the side.

 It’s hard to predict how popular multi-touch will be on the desktop, but it’s already
finding use in new classes of portable hardware as well as in kiosk and kitchen-PC sce-
narios (as long as you have a cake-batter-and-grease-proof screen).

 The static Touch.FrameReported event is the primary entry point into the touch
API in Silverlight. This event fires on a regular interval, the timing and triggering of
which depends on the touch-enabled hardware and drivers in use. As soon as you wire
up the event handler, you’ll begin receiving notifications.

 The FrameReported event includes an instance of the TouchFrameEventArgs class
with members as described in table 8.7.

Table 8.7 The properties and methods exposed by the TouchFrameEventArgs class

Property or method Description

Timestamp An integer representing the time for this specific frame

You can use this to facilitate time-sensitive gestures.

SuspendMousePromotionUntilTouchUp Use this method when the primary touch point is
down in order to suspend promoting that point to a
mouse gesture until all the touch points are up.
Licensed to Devon Greenway <devon.greenway@gmail.com>

198 CHAPTER 8 Human input
The GetPrimaryTouchPoint function returns a single instance of the TouchPoint class.
The GetTouchPoints collection returns a collection of TouchPoints, including the pri-
mary touch point. The TouchPoint class includes the members listed in table 8.8.

Listing 8.3 shows how to listen for the FrameReported event, enumerate the Touch-
Point objects, and display their positions to the debug window.

public MainPage()
{
 InitializeComponent();
 Touch.FrameReported += new TouchFrameEventHandler(OnTouchFrameReported);
}

void OnTouchFrameReported(object sender, TouchFrameEventArgs e)
{
 foreach (TouchPoint tp in e.GetTouchPoints(this))
 {
 Debug.WriteLine(tp.Position);
 }
}

GetPrimaryTouchPoint Returns the first touch made since the last time all
touches were lifted from the screen

This is the touch point that’ll be promoted to a
mouse event.

GetTouchPoints Use this method to return a collection of
TouchPoint values for the frame.

Table 8.8 The properties and methods exposed by the TouchPoint class

Property Description

Action The user activity associated with this touch

Possible values are Down, for finger down on the screen, Move
for finger moved/dragged on the screen, and Up for finger up
from the screen.

Position The x,y coordinates of the touch. This is relative to the applica-
tion’s RootVisual.

Size A rectangle describing the size of the touch point. You can use
this to differentiate between, say, a light tap and a full press.

TouchDevice Information about the device that provided the touch information.

TouchDevice.DirectlyOver This property is located on the TouchDevice for WPF compati-
bility reasons. It’ll return the topmost UIElement over which the
touch occurred.

Listing 8.3 Responding to the FrameReported event and reporting touch points

Table 8.7 The properties and methods exposed by the TouchFrameEventArgs class (continued)

Property or method Description
Licensed to Devon Greenway <devon.greenway@gmail.com>

199Collecting ink drawings
One final method of interaction with your application is ink input. Though ink is typ-
ically used with tablet-style PCs, it can be used with mice as well. With new pen-enabled
devices such as multi-touch tablet PCs, there’s renewed interest in ink collection in Sil-
verlight applications.

8.4 Collecting ink drawings
Silverlight provides an intuitive way to collect hand-written information through an
element known as the InkPresenter. This element empowers you to collect and dis-
play a kind of content known as ink, a term that refers to a series of points related to
the movement of a device. These points can be collected from a mouse, stylus, or
touch screen and are stored as a Stroke. The process of collecting Stroke elements is
handled through the InkPresenter.

 Over the course of this section, you’ll learn how to gather and display ink with the
InkPresenter. This process involves three simple but important steps. The first step
involves creating a canvas to collect the ink. After that, you must wire up the canvas to
collect ink-related information. Finally, once the ink has been collected, you can
decide how to style the content.

8.4.1 Creating the InkPresenter

To create a place to capture and display the ink, you must define an InkPresenter
object. This object can be thought of as a Canvas because the InkPresenter class
derives from that type. And like the Canvas, you can create an InkPresenter in XAML,
as shown here:

 <Grid x:Name="LayoutRoot" Background="White">
 <InkPresenter x:Name="myInkPresenter" Background="Silver"/>
 </Grid>

This example creates a basic InkPresenter within a Grid. If you were to create a
Silverlight application using this XAML, it’d look like the InkPresenter doesn’t do
anything.

 The InkPresenter is designed to dynamically render ink as it’s drawn, so let’s look
at how to dynamically collect ink content.

8.4.2 Collecting ink

The first step in collecting ink involves listening for the mouse button or stylus to be
depressed. When this event occurs, the MouseLeftButtonDown will fire and you can
signal that the input device is depressed. At that point, you can begin to construct a
Stroke object that can be added to an InkPresenter.

 The Stroke object represents a continuous series of points. As a user moves a
device around an InkPresenter, you build on that Stroke until the user releases the
device. It’s a general practice to define a Stroke object as a member variable of your
Silverlight page, so you can interact with the same instance within the MouseLeftBut-
tonDown, MouseMove, and MouseLeftButtonUp events. The MouseLeftButtonDown
Licensed to Devon Greenway <devon.greenway@gmail.com>

200 CHAPTER 8 Human input
event is generally responsible for instantiating or resetting the Stroke, as shown in
listing 8.4.

private Stroke _stroke;

public MainPage()
{
 InitializeComponent();

 myInkPresenter.MouseLeftButtonDown +=
 new MouseButtonEventHandler(ipMouseLeftButtonDown);

 myInkPresenter.MouseMove +=
 new MouseEventHandler(ipMouseMove);

 myInkPresenter.MouseLeftButtonUp +=
 new MouseButtonEventHandler(ipMouseLeftButtonUp);

 myInkPresenter.MouseLeave +=
 new MouseEventHandler(ipMouseLeave);
}

public void ipMouseLeftButtonDown(object sender, MouseButtonEventArgs e)
{
 myInkPresenter.CaptureMouse();

 _stroke = new
 Stroke(e.StylusDevice.GetStylusPoints(myInkPresenter));

 _stroke.DrawingAttributes.Color = Colors.Blue;
 _stroke.DrawingAttributes.OutlineColor = Colors.White;

 myInkPresenter.Strokes.Add(_stroke);
}

This example shows the member variable stroke used on these listings as well as the
event handler wire-up required for listings 8.4 through 8.6. Importantly, it also shows
the initial mouse capture established when the mouse left button is pressed.

 The member variable _stroke is reset each time the user depresses the input
device. This reset process involves retrieving the styles points that have been collected.
This task is handled by the GetStylusPoints method of the StylusDevice object.
Because of the reset, you must also reapply the styling settings, which we’ll discuss
shortly. With the styled Stroke in hand, you can add it to the InkPresenter, which will
be immediately rendered. You can even do this as the move moves around an InkPre-
senter, as shown in listing 8.5.

public void ipMouseMove(object sender, MouseEventArgs e)
{
 if (_stroke != null)
 {
 _stroke.StylusPoints.Add(

Listing 8.4 Receiving mouse events and creating ink strokes

Listing 8.5 Adding points to the InkPresenter

Ink stroke

Mouse capture
event handler

Handlers for
upcoming listings

Capture
mouse

Add ink
stroke

Add points
to stroke
Licensed to Devon Greenway <devon.greenway@gmail.com>

201Collecting ink drawings
 e.StylusDevice.GetStylusPoints(myInkPresenter));
 }
}

This adds to the Stroke initialized in the previous example. You’ll notice that this task
is wrapped in a null check statement. The reason for this will become apparent as you
complete the final step of drawing ink.

 The final step involves completing the Stroke. The Stroke needs to be completed
when the user releases the input device or leaves the InkPresenter. For this reason,
you need to handle two events: MouseLeave and MouseLeftButtonUp. These two
events perform the tasks of nullifying the Stroke and releasing the input device, as
shown in listing 8.6.

public void ipMouseLeftButtonUp(object sender, MouseButtonEventArgs e)
{
 myInkPresenter.ReleaseMouseCapture();
 _stroke = null;
}

public void ipMouseLeave(object sender, MouseEventArgs e)
{
 myInkPresenter.ReleaseMouseCapture();
 _stroke = null;
}

This completes the process of drawing a Stroke on an InkPresenter. By setting the
Stroke to null, you can determine whether you should build on it when the Mouse-
Move event occurs.

 In the event that you do draw a Stroke, you should know how to stylize it.

8.4.3 Styling the ink

The Stroke element provides a property called DrawingAttributes that may be used
to alter its appearance. This utility class is defined within the System.Windows.Ink
namespace. It provides four properties that allow you to specify a Stroke element’s
Color, Height, OutlineColor, and Width. Collectively, you can use these values to
deliver truly expressive web content.

 The Color property represents the System.Windows.Media.Color used to paint
the interior of a Stroke. By default, this value is set to Colors.Black. This default
value is different than the default OutlineColor property, which defaults to Trans-
parent. This property must be set if you wish to specify the Color surrounding a
Stroke. If it’s set, a two-pixel boundary of the given Color will be added around the
Stroke. The dimensions of the Stroke are just as important as colors.

 The dimensions of a Stroke are defined through the Height and Width proper-
ties of the DrawingAttributes. These two double-precision values do exactly what
you’d expect them to do. These properties can be used to help create Stroke
elements that represent different drawing tools. Here’s some code so you can get a
feel for all these DrawingAttributes:

Listing 8.6 Completing the stroke

Release on
mouse up

Release on
mouse leave
Licensed to Devon Greenway <devon.greenway@gmail.com>

202 CHAPTER 8 Human input
<InkPresenter x:Name="ip" Background="Silver"
 Height="300" Width="300">
 <InkPresenter.Strokes>
 <Stroke>
 <Stroke.DrawingAttributes>
 <DrawingAttributes Color="Blue" OutlineColor="Black"
 Height="4" Width="6" />
 </Stroke.DrawingAttributes>
 <Stroke.StylusPoints>
 <StylusPoint X="10" Y="10" />
 <StylusPoint X="10" Y="50" />
 </Stroke.StylusPoints>
 </Stroke>
 </InkPresenter.Strokes>
</InkPresenter>

As this shows, you can define the DrawingAttributes of a Stroke within XAML. It
also shows the one property that the InkPresenter exposes that the Canvas doesn’t:
the Strokes property. As these two properties remain consistent with the relationship
between XAML and code, so too does the StylusPoints collection. This collection
defines the continuous line of a Stroke, which is composed of a series of Stylus-
Point elements.

 A StylusPoint, which is found in the System.Windows.Input namespace, repre-
sents an individual point within a Stroke. This point is positioned based on the values
of two properties called X and Y. These values are double-precision values that repre-
sent a coordinate. This coordinate is relative to the containing InkPresenter.

 Like multi-touch, ink may not be common in many desktop applications. But as
devices continue to add support for the stylus, supporting ink in your own applica-
tions will become increasingly important.

8.5 Summary
Without input, an application would just be an automated slide show. Though con-
trols will get you most of the way there, sometimes you just need lower-level access to
the input devices. Luckily, Silverlight doesn’t disappoint.

 Silverlight provides complete access to the keyboard information as the user presses
and releases keys. Constants are provided for the most common and cross-platform keys,
and you can always get to the low-level keycode information should you need to.

 The most common interaction device for many Silverlight applications is the
mouse. Silverlight now provides access to the left and right mouse buttons as well as
normal mouse movement and the scroll wheel.

 Two other modes of interaction are gaining in popularity. Pen-and-ink input has
been around for a while but hasn’t seen serious interest until new waves of devices
started becoming popular. Multi-touch, on the other hand, is both new and popular,
especially in the device space.

 Now that you know how input works behind-the scenes, including keyboard input,
we’re ready to discuss how to work with text.
Licensed to Devon Greenway <devon.greenway@gmail.com>

Text
Most applications you write will display or manipulate text at some point. Even
many games have text input requirements for signup, registration, or to log a high
score. Media players often have rolling commentary by other viewers and the ability
to add to the social aspects of what you’re watching. In short, working with text is
important.

 For as long as computers have been around and attached to video displays or
teletypes, the display of text has been an important aspect of user interaction. Sil-
verlight includes great support for displaying text, with a number of options that
control formatting and other aspects of the display.

This chapter covers
■ An overview of the text system
■ Displaying text
■ Working with fonts
■ Understanding input method editors
■ Moving text to and from the clipboard
■ Entering and editing plain and rich text
203

Licensed to Devon Greenway <devon.greenway@gmail.com>

204 CHAPTER 9 Text
 Of course, if all that the platform supported were the display of text, we’d be pretty
limited in the types of applications we build. In addition to its display capabilities, Sil-
verlight includes first-class support for editing text, both plain and rich text formats.

 If you can enter and edit text, you may find yourself wanting to copy and paste it
between various applications. Silverlight also includes facilities to enable program-
matic manipulation of the clipboard to share data within the same application and
across applications.

 What do you do if you want to show text using a font the user doesn’t necessarily
have? You embed the font. Silverlight supports font embedding to ensure that your
users have the exact experience you’d intended. We’ll cover that and the support for
international text using input method editors before we get into rich text.

 Plain text is useful in many scenarios but, for others, you may want richer text with
embedded formatting, images, and even UI elements. Silverlight 4 introduced the
RichTextBox control, which can be used for both the display and editing of rich text.

 We’ll start this chapter with the coverage of the text stack and then move on to the
basics of text, under the task of displaying text. Along the way, we’ll look at font
embedding, displaying international text, and integrating with the clipboard. The
information learned when formatting the text for display will be used later when we
work on entering and editing plain and rich text.

9.1 The text system
You’d be forgiven if you looked at the title of this section and thought, “System?
Really? It’s just text.” Getting the text from the Unicode string and presenting it on
displays of varying resolutions using different fonts on different systems is actually
fairly complex. It’s also a task we only notice when done poorly.

 In reality, a text stack needs to:

■ Read in the source text string.
■ Lay out an overall block of text.
■ Lay out individual lines within that block.
■ Obtain the font information for each character, including combining charac-

ters for certain languages.
■ Figure out how to display bold and italics (and other styles/weights). There

may be a font for it or it may need to generate pseudo-italic and pseudo-bold
text.

■ Deal with any text expansion for fonts that support it.
■ Lay out individual characters within that line, including subpixel font rendering.
■ Render it all out to a rendering surface in software or hardware.

Any one of those individual steps is a pretty serious programming effort. Though all
interesting, the internals of the text stack are pretty well abstracted away from the
work we’ll normally need to do. There are some places where the team has provided
options we can set, though.
Licensed to Devon Greenway <devon.greenway@gmail.com>

205The text system
 Before we get on to the high-level controls and elements that allow us to put text
on the screen, let’s take a look at how Silverlight handles character rendering using
ClearType.

9.1.1 Subpixel text rendering

In chapters 6 and 7 we learned about the layout system and subpixel layout and ren-
dering. Silverlight can handle elements aligned on subpixel boundaries, such as hav-
ing a Left of 15.76 rather than just 16. This makes layout easier for design
professionals and is also essential for smooth animation.

 Subpixel layout and rendering applies to text as well. On Windows machines, Sil-
verlight uses the ClearType algorithm, provided by DirectWrite, to render text using
the best quality for a given resolution. An example of ClearType rendering is shown in
figure 9.1.

Silverlight supports subpixel rendering and layout of anything, so the text itself may
already start on a partial pixel boundary (for example, a Left of 10.32). For that rea-
son and others, the Silverlight ClearType algorithm will produce results slightly dif-
ferent from the base Windows platform. The end result will still be text that’s more
readable and more pleasing to the eye than no antialiasing or the grayscale used in
Silverlight 2.

 The ClearType text rendering algorithm is a relatively expensive subpixel
antialiasing algorithm that you wouldn’t necessarily want to recalculate 60 times per
second. Also, as a side effect of the antialiasing, you may also see text that jumps
around a bit when you animate it (you’d have to look closely). For those reasons, and
to support other optimizations, Silverlight includes a TextOptions.TextHinting-
Mode attached property.

9.1.2 Text hinting

ClearType is an excellent text rendering algorithm, but it’s not something you want to
be calling thousands of times because it’s a complex algorithm with performance
implications. In addition, there are other visual optimizations applied to text that
would be unnecessary if the text were animated.

 Silverlight offers the TextOptions.TextHintingMode attached property to control
how hard Silverlight tries to make the text look great. When set to Fixed, it uses the
quality ClearType rendering and performs the calculations that make static text look
great. When set to Animated, it optimizes for text that’s going to change size, rotation,
or angle, probably multiple times per second. Listing 9.1 shows the setting in action.

Figure 9.1
ClearType subpixel font
rendering in Silverlight
Licensed to Devon Greenway <devon.greenway@gmail.com>

206 CHAPTER 9 Text
Results:

XAML:
<StackPanel Width="150" Height="100">
 <StackPanel Background="White">
 <TextBlock Text="Lorem ipsum (Fixed)"
 Foreground="Black"
 TextOptions.TextHintingMode="Fixed" />
 <TextBlock Text="Lorem ipsum (Animated)"
 Foreground="Black"
 TextOptions.TextHintingMode="Animated" />
 </StackPanel>
 <StackPanel Background="Black">
 <TextBlock Text="Lorem ipsum (Fixed)"
 Foreground="White"
 TextOptions.TextHintingMode="Fixed" />
 <TextBlock Text="Lorem ipsum (Animated)"
 Foreground="White"
 TextOptions.TextHintingMode="Animated" />
 </StackPanel>
</StackPanel>

It’ll be hard to tell in a printed book (one benefit of the electronic copy), but the Ani-
mated text hinting renders the text using grayscale antialiasing, whereas the Fixed
text hinting (the default) renders using ClearType rendering. Figure 9.2 shows a
close-up of the first word from each line on a white background as well as black.

 The rendering optimized for animation avoids both the costly ClearType calcula-
tions as well as the jumping/jittering effect. If you use the animation-optimized text in
small font sizes for regular text in your application, you’ll see it’s noticeably fuzzier than
ClearType. In fact, this was an issue with Silverlight adoption for line-of-business appli-
cations in the Silverlight 2 timeframe, before ClearType was integrated into the stack.

 As of this writing, ClearType isn’t supported on the Mac, so it always uses some
form of grayscale rendering. Also, an interesting limitation of ClearType is that it’s

Listing 9.1 TextOptions.TextHintingMode

Fixed text
rendering Animated

text
rendering

Figure 9.2 The first line
uses Fixed text hinting
and, therefore, ClearType
rendering. The second line
uses Animated text
hinting and is, therefore,
grayscale.
Licensed to Devon Greenway <devon.greenway@gmail.com>

207Displaying text
sensitive to the orientation of the display. Since the modern ClearType implementa-
tion is meant only for LCD displays (if you have an old tube monitor hanging around,
don’t enable ClearType on it or the world will end in an explosion of subpixels), it
takes into account the position of the actual elements (red, green, blue) and uses
them to make the text more readable. If you tilt the monitor 90 degrees, those posi-
tions are out of whack, and ClearType won’t work correctly.

 Now that we know a little about what’s going on behind the scenes and how to opti-
mize text rendering for different situations, let’s look at what’s available to us to actu-
ally push characters onto our display and how we can set the higher-level properties
like what font to use and what size to use when rendering the text.

9.2 Displaying text
Displaying text is primarily addressed by an element called TextBlock. This element,
which belongs to the System.Windows.Controls namespace, but which itself doesn’t
derive from Control, is designed to flexibly display text within a variety of scenarios. The
following example shows one such scenario, as well as the basic syntax of a TextBlock:

<TextBlock x:Name="myTextBlock"
 Text="Eating a lot of fruit can help you live to a ripe old age."/>

This shows a basic way to include text within your Silverlight applications. The Text-
Block can be hosted in any of the panels discussed in chapter 7.

 As you’ve probably guessed, the Text property of a TextBlock is used to set the
text to display. The text direction (right to left or left to right) is controlled via the
FlowDirection property. The TextBlock provides a rich set of other styling options
that mimic or exceed those found in CSS. We’ll cover all of these styling options,
including setting the font properties, controlling the flow of text, setting the text-
related properties, and specifying the spacing options.

9.2.1 Font properties

The TextBlock has five properties related to the styling of a selected font. These prop-
erties replace a lot of the familiar friends from CSS. Table 9.1 shows a font-related CSS
property and its equivalent Silverlight TextBlock property.

Table 9.1 The font-related properties available in Silverlight and their CSS equivalents

CSS property name TextBlock property name Summary

font-family FontFamily A list of font names for an element

font-size FontSize The size of the font

font-weight FontWeight The weight of the font

font-stretch FontStretch Expands or compresses the font

font-style FontStyle The style of the font (for example, italics)
Licensed to Devon Greenway <devon.greenway@gmail.com>

208 CHAPTER 9 Text
These items are related specifically to the font capabilities of Silverlight. We’ll now
cover each of these items in detail, in the order they appear in the table.
FONTFAMILY

By default, the TextBlock displays text using the Lucida Sans Unicode font on Win-
dows machines. On Apple Macintosh computers, an almost identical font known as
Lucida Grande is used. Alternatively, you can specify a different font.

 The FontFamily property enables
you to specify the font. More specifically,
this property represents the name of the
top-level font family. This is important to
recognize because some fonts share a
common family name; the differences
between them lie in their individual fea-
tures—things such as bold and italic
options. Silverlight has built-in support
for the font families shown in figure 9.3.

 Figure 9.3 shows the nine TrueType fonts supported within Silverlight. In addition
to these fonts, Silverlight has support for Eastern Asian fonts. Collectively, the nine
TrueType and Eastern Asian fonts are guaranteed to look almost identical on all plat-
forms supported by Silverlight as long as someone hasn’t uninstalled the core fonts
for those platforms. If you need to use a custom font, you can do so using font embed-
ding or by referring to a local font on the machine. Previous versions of Silverlight
restricted you to embedding or a white list of fonts, with no support for local fonts.

 Once the FontFamily has been set, this will be the font used within the TextBlock.
If your users don’t have the font on their machines, the TextBlock will fall back to the
default font. You can set fallback priority by providing a comma-delimited list of font
family names.

 FontFamily is one of the more widely used font options. Another widely used
option is the FontSize property.
FONTSIZE

The FontSize property allows you to set the size of a TextBlock using a double-precision
value. This value is set by default to 14.66 pixels, which is roughly an 11 pt font. This fact
is significant because the FontSize property always represents a specific number of
device-independent pixels. This can have undesired effects, because fonts are generally
discussed in terms of points (pt). Thankfully, you can easily convert points to pixels
using the formula found in figure 9.4.

 This formula is based on the fact that Silverlight
uses 96 pixels per inch and a point is defined as 72
points per inch. If you want to use a 24 pt font in a
TextBlock, you need to set the FontSize property
to 32 (24 * 96 / 72 = 32):

<TextBlock Text="I'm a Big Boy Now." FontSize="32" />

Figure 9.3 A sampling of the font families
supported within Silverlight

points

72
pixels=

x 96

Figure 9.4 The formula to convert
font points to pixels in Silverlight
Licensed to Devon Greenway <devon.greenway@gmail.com>

209Displaying text
This basic line of XAML sets the FontSize to a 24 pt font. In addition to setting the
FontSize, there are also times where you may need to work with the weight of a font.
FONTWEIGHT

The FontWeight property represents the heaviness, or weight, of the displayed text.
This weight is often depicted as a bolding effect, but you can also go the other way and
make text appear lighter or thinner. This is made possible by the fact that the Font-
Weight property accepts any numeric value between 1 and 999. Alternatively, you can
use one of the friendly constants available in the FontWeights class:

These values are shown in the order of increasing weight. Note that not all fonts sup-
port varying weights. In fact, most fonts support only two font weights: Normal and
Bold. If the font specified within the FontFamily property doesn’t support a specific
weight, it falls back to the closest weight supported by the font. The fallback support
for this property is also shared by another property called FontStretch.
FONTSTRETCH

The FontStretch property gives you the ability to either condense or expand the font
associated with a TextBlock. The CSS equivalent of this property is defined within the
third version of CSS (CSS3), but few browsers currently implement it. For this reason,
this property is one text-related feature not usually seen within a traditional web appli-
cation. But, with Silverlight, you can stylize your text with this feature using one of the
FontStretches values shown in table 9.2.

■ Thin ■ ExtraLight

■ Light ■ Normal

■ Medium ■ SemiBold

■ Bold ■ ExtraBold

■ Black ■ ExtraBlack

Name Stretch percentage

UltraCondensed 50.0%

ExtraCondensed 62.5%

Condensed 75.0%

SemiCondensed 87.5%

Normal 100.0%

Medium 100.0%

SemiExpanded 112.5%

Expanded 125.0%

ExtraExpanded 150.0%

UltraExpanded 200.0%

Table 9.2
Acceptable values for the
FontStretch property
Licensed to Devon Greenway <devon.greenway@gmail.com>

210 CHAPTER 9 Text
These values represent the acceptable values for the FontStretch property. The per-
centages represent the proportion by which the normal font size is stretched. Any
value less than 100 percent will condense a font and any percentage greater than 100
percent will expand a font. Either way, the percentage is only taken into consideration
if the selected FontFamily has support for font stretching. Even if a font does have
support for stretching, it may not have support for all stretch values. If the font
doesn’t support the stretch value you’ve selected, the FontStretch resorts to using an
algorithm that searches the available fonts for one that matches the properties as
closely as possible.
FONTSTYLE

The FontStyle property gives you the ability to switch the text of a TextBlock into
italic mode. As you’ve probably guessed, this property is set to a value of Normal by
default. You can easily change this to Italic to give your text an italic effect:

<TextBlock x:Name="myText" Text="Going Italic" FontStyle="Italic" />

The code shows how to set the FontStyle at design time. Setting the FontStyle dur-
ing runtime involves using a slightly different approach. To set a TextBlock to italic
during runtime, you use the FontStyles class:

myTextBlock.FontStyle = FontStyles.Italic;

Note how this uses a FontStyles static property called Italic. This static property
represents a FontStyle definition. This fact is significant because, even though you
can only set a FontStyle to italic in Silverlight, WPF is a different story. WPF, which is
Silverlight’s parent technology, provides additional FontStyle options.

 The FontStyle is but one of the five font styling options available within a Text-
Block. The other four are the FontStretch, FontWeight, FontSize, and FontFamily.
Collectively, these give you a significant amount of control over the font styling of a
TextBlock. In addition to basic font styling, Silverlight gives you the ability to control
the overall flow of text.

9.2.2 Flow control

The TextBlock enables you to control the overall flow of text through two nested ele-
ments. These elements, called Run and LineBreak, belong to the System.Win-
dows.Documents namespace. Both elements derive from the Inline class and have
built-in support for the font features we discussed in section 9.1.1. Listing 9.2 shows
how these elements can be used.

Result:

Listing 9.2 TextBlock Run and LineBreak Inlines
Licensed to Devon Greenway <devon.greenway@gmail.com>

211Displaying text
XAML:
<TextBlock Text="Scene 1: The Greeting"
 FontWeight="Bold" FontSize="17">
 <LineBreak />
 <Run FontWeight="Bold" FontSize="14"
 Text="Actor 1:" />
 <Run FontWeight="Normal" FontSize="14"
 Text="Hello, how are you?" />
 <LineBreak />
 <Run FontWeight="Bold" FontSize="14"
 Text="Actor 2:" />
 <Run FontWeight="Normal" FontSize="14"
 Text="I am fine, thank you!" />
</TextBlock>

The conversation in this listing shows one way to use the Run and LineBreak Inline
elements. These elements get appended in succession to the text defined in the Text
property of the hosting TextBlock. In fact, the value inside the Text property itself
gets converted to a Run element at runtime. This element and all the other Run and
LineBreak items get stored in a collection called Inlines.

 The Inlines collection stores the Inline elements of a TextBlock. By default, all
the items in this collection use the styling options set by the parent TextBlock. You can
override these settings by specifying new values for them within the Inline item itself.
This is the approach used in listing 9.2. But, to fully demonstrate how the LineBreak
and Run items can be customized, we should jog through several text properties.

9.2.3 Text properties

Silverlight gives you the ability to further customize your text through four useful
properties. These properties focus on rendering text in combination with the font
properties we discussed in 9.2.1. To further control how the text is rendered, you can
use the Foreground, TextDecorations, TextWrapping, TextTrimming, and Tex-
tAlignment properties.
FOREGROUND

The Foreground property allows you to set the color of a block of text. More specifi-
cally, this property represents a Brush, which allows you to do a lot more than just
apply solid colors. The various Brush options aren’t covered until chapter 18. For now,
just know that you can use the name of a color, as shown here, in an example that
changes a TextBlock from the default black SolidColorBrush to blue:

<TextBlock Text="I'm feeling blue." Foreground="Blue" />

Significantly, you can use the Foreground property with the Inline elements we dis-
cussed in 9.2.2. These Inline elements also have baked-in support for the TextDeco-
rations property.
TEXTDECORATIONS

The TextDecorations property gives you the ability to underline text. This can be
accomplished using the Underline TextDecorations property as shown here:

<TextBlock Text="I'm Serious" TextDecorations="Underline" />

Line
break

Formatted
Run
Licensed to Devon Greenway <devon.greenway@gmail.com>

212 CHAPTER 9 Text
Much like the FontStyle property, the TextDecorations property has more options
in WPF—the reason why it has such an abstract name.

 The next property is more line or paragraph-oriented: TextWrapping.
TEXTWRAPPING

The TextWrapping property enables you to specify how text should wrap across multi-
ple lines within a TextBlock. By default, Silverlight doesn’t wrap text within a Text-
Block. You can set the TextWrapping attribute to Wrap, and the text will break and
resume on the next line if the Width of the TextBlock is exceeded. This wrapping
effect is shown in listing 9.3.

Result:

XAML:
<Canvas Width="200" Height="140">
 <TextBlock Text="Eating a lot of fruit can help you live to a
[CA]ripe old age."
 Width="150"
 TextWrapping="Wrap" />
</Canvas>

Listing 9.3 shows how to change the TextWrapping property from its default value of
NoWrap. The value and its destination value of Wrap belong to the TextWrapping enu-
meration. This type is only available to TextBlock elements—you can’t use it in
Inline elements such as Run. The Run element also lacks the ability to specify its own
TextTrimming or TextAlignment, separate from the TextBlock.
TEXTTRIMMING

There are often cases when you want to show only as much text as will fit into a pre-
defined rectangle on the screen. The remaining text should be clipped off. In those
cases, it’s common to provide the user with a visual cue that the text’s been trimmed.

 Rather than have you calculate the trimming manually, Silverlight supports the
TextTrimming property. As shown in listing 9.4, Silverlight supports the WordEllipsis
style of text trimming, where the ellipsis is shown after the last whole word that will fit
in the rectangle.

Result:

XAML:
<Grid x:Name="LayoutRoot" Background="White">
 <TextBlock Width="150"

Listing 9.3 Text wrapping

Listing 9.4 Text trimming with a small font

TextWrapping
property
Licensed to Devon Greenway <devon.greenway@gmail.com>

213Displaying text
 Height="30"
 FontSize="12"
 TextTrimming="WordEllipsis"
 Text="Well, hello there! I'm Pete" />
</Grid>

Listing 9.4 shows the TextTrimming option in place with a regular sized font. If you
increase the font size, less text will fit in the space. Listing 9.5 shows what happens
when you leave everything else the same, but increase the font size.

Result:

XAML:
<Grid x:Name="LayoutRoot" Background="White">
 <TextBlock Width="150"
 Height="30"
 FontSize="20"
 TextTrimming="WordEllipsis"
 Text="Well, hello there! I'm Pete" />
</Grid>

Note how the text is still broken at the word boundary. That’s one of the nice things
about WordEllipsis trimming. Breaking at a character boundary just looks unprofes-
sional in many cases and can lead to unexpected and inappropriate final words in the
worst cases.

 Another way to control the layout of text is to use the TextAlignment property.
Though text trimming is typically used with left-justified text, it can also be used with
any of the other alignments available to the TextBlock.
TEXTALIGNMENT

The TextAlignment property gives you the ability to align the text within a TextBlock.
You can specify whether information should be aligned to the Left, Center, or Right
of the rectangular region defined by the Height and Width properties of a TextBlock,
as shown in listing 9.6.

Result:

XAML:
<Canvas Width="640" Height="480" Background="White">
 <TextBlock Text="Everybody to the Left side of the Canvas."

Listing 9.5 Text trimming with a larger font

Listing 9.6 Text alignment property values

Font Size Text Trimming
Option

Font Size Text Trimming
Option
Licensed to Devon Greenway <devon.greenway@gmail.com>

214 CHAPTER 9 Text
 TextWrapping="Wrap"
 Width="75"
 Canvas.Left="5" Canvas.Top="5" />
 <TextBlock Text="Everybody to the Center of the Canvas."
 TextAlignment="Center"
 TextWrapping="Wrap"
 Width="75"
 Canvas.Left="100" Canvas.Top="5" />
 <TextBlock Text="Everybody to the Right side of the Canvas."
 TextAlignment="Right"
 TextWrapping="Wrap"
 Width="75"
 Canvas.Left="195" Canvas.Top="5" />
</Canvas>

Listing 9.6 demonstrates the TextAlignment options. These options provide one way to
stylize your text. The TextWrapping, TextDecorations, TextTrimming, and Foreground
properties enable you to further format this text. In addition, there’s one more impor-
tant feature that shouldn’t be overlooked: the ability to control text spacing.

9.2.4 Spacing

Spacing is effective for making text easier to read. This can help individuals with
diminished eyesight or just make an application look better. To control the spacing of
text, the TextBlock exposes two properties: LineHeight and Padding.
LINEHEIGHT

The LineHeight property determines the height of the bounding box that a single
line of your text will be contained within. This height is represented as the number of
pixels and specified as a double-precision value. Listing 9.7 demonstrates this property
as well as its relationship to FontSize.

Result:

XAML:
<Canvas Height="450" Width="485">
 <TextBlock Width="110" LineHeight="1"

Listing 9.7 Line height for vertical spacing

Centered text

Right-aligned
text

Ignored
LineHeight
Licensed to Devon Greenway <devon.greenway@gmail.com>

215Displaying text
 FontSize="14" TextWrapping="Wrap">
 Just testing some line height related
 stuff. This could actually
 be pretty interesting.
 </TextBlock>
 <TextBlock Width="110" LineHeight="24"
 FontSize="14"
 TextWrapping="Wrap" Canvas.Left="125">
 Just testing some line height related
 stuff. This could actually
 be pretty interesting.
 </TextBlock>
 <TextBlock Width="110" LineHeight="44"
 FontSize="14"
 TextWrapping="Wrap" Canvas.Left="250">
 Just testing some line height related
 stuff. This could actually
 be pretty interesting.
 </TextBlock>
</Canvas>

As listing 9.7 illustrates, the LineHeight property often alters the layout of wrapped
text. Notably, if the LineHeight is smaller than the FontSize, the LineHeight value is
ignored. If the LineHeight is larger than the FontSize, some extra padding is gener-
ated around the text. The LineHeight doesn’t affect the FontSize.

 While LineHeight works on individual lines in the TextBlock and only controls
vertical spacing, Padding controls the overall spacing within the outside border of a
TextBlock.
PADDING

The Padding property represents the amount of cushion to use within a TextBlock.
This space represents the area between the border of the TextBlock and the text of
the element. By default, this property doesn’t specify any spacing. Using a double-pre-
cision value, you can provide a consistent buffer between the text and the virtual bor-
ders of a TextBlock, as shown in listing 9.8.

Result:

XAML:
<StackPanel x:Name="myStackPanel" Background="LightGray">
 <TextBlock Text="Give Me Some Space!" />
 <TextBlock Text="I've got your space right here!"
 Padding="20.2" />
</StackPanel>

Listing 9.8 Uniform padding in a TextBlock

Slightly larger
LineHeight

Large
LineHeight

Padding
Licensed to Devon Greenway <devon.greenway@gmail.com>

216 CHAPTER 9 Text
Listing 9.8 shows how a Padding of 20.2 pixels creates a nice bubble around some text.
You’ll probably notice that the size of this buffer is the same on each side of the con-
tent. The Padding property also enables you to use a more granular approach when
defining the buffer, as shown in listing 9.9.

Result:

XAML:
<StackPanel x:Name="LayoutRoot"
 Background="White"
 Margin="10">
 <Border Background="LightGray"
 BorderBrush="Black"
 HorizontalAlignment="Left"
 VerticalAlignment="Top">
 <TextBlock Text="HELLO"
 Padding="3.5 6 9.7 12" />
 </Border>

</StackPanel>

Listing 9.9 shows the Padding property using a space-delimited list of values. The val-
ues can also be comma-delimited. This list of values represents the amount of spacing
to use on each side of the text, within the outer limits of the TextBlock element. The
first value in the list represents the thickness of the spacing on the left side of the text.
The subsequent values represent the top, right, and bottom thicknesses of the buffer.
As you can see, these values specify the thicknesses in a clockwise order. This granular
approach gives the Padding property a significant amount of flexibility.

 The Padding property represents one of the more basic features of the TextBlock,
which is one of the more basic elements in Silverlight. This element will be used in
most Silverlight applications you write.

 The TextBlock always renders text using the specified font or a default fallback if
unspecified or if the font is unavailable. If the font you’re using in your TextBlock or
other control isn’t a standard font, you may want to consider embedding it with your
application.

9.3 Embedding fonts
Sometimes you want to use a special font in your application. Maybe it’s the typeface
in use in your company logo. Sometimes it’s a slick headline font. Or perhaps it’s just
a sharp and readable font you want to use in your news reading application. I had this
issue when I built the trivia application that ran on the screens at Microsoft PDC 2009.
I had to use the PDC font but couldn’t guarantee it would be on the machines.

Listing 9.9 Per-side padding in a TextBlock

Padding
Licensed to Devon Greenway <devon.greenway@gmail.com>

217Embedding fonts
 What do you do when you can’t guarantee that end users will have that font on their
machines? One way to tackle this problem is to embed the font into the application.

Silverlight supports embedded fonts—whole fonts and subsets—in applications.
When not using font subsetting, you simply add the font to your project and mark it as
a resource. You can then refer to it by name using the format FileName#FontName:

<TextBlock FontFamily="Fonts/MSPDC.TTF#Microsoft PDC Squared" … />

The folder name Fonts is the location where the original TTF file is placed in the proj-
ect. The name MSPDC.TTF is the name of the font file on disk, and Microsoft PDC
Squared is the name of the actual font.

 Packaging with font subsetting requires Expression Blend. Even if you use Visual
Studio, the required build action is supplied by Expression Blend and can be com-
piled in Visual Studio, but must be created the first time in Blend. This makes sense,
as font subsetting and font embedding are very designer-oriented tasks; most of us
programming grunts just default to Comic Sans MS and call it a day.

 To support subsetting—reducing the number of glyphs to only those used in the
application—the font is packaged up into a zip file and later referred to by its embed-
ded location. For example:

<TextBlock FontFamily="Fonts/Fonts.zip#Microsoft PDC Squared" … />

The folder name Fonts is the location where the original TTF file is placed in the proj-
ect. The zip name is the name Expression Blend generated for the archive, and the
name after the hash tag is the name after the font. Note that this can be different from
the TTF filename itself.

 The issue isn’t really the technical aspect of embedding itself (it’s just a zip file
embedded into the DLL as a resource); it’s the act of subsetting the font that makes
embedding legal for those fonts that support it. Expression Blend actually creates a
subset font that has only the glyphs (characters) you use in your application.

 In short, though you may find a way to manually embed the fonts, you’re better off
trusting Expression Blend to do it for you.

I’m not a lawyer
But that’s not going to stop me from giving pseudo-legal advice. Before you go and
embed that font, check its license. Most fonts don’t legally allow embedding in appli-
cations. In fact, most fonts haven’t even caught up with the idea that fonts can be
used outside of documents.

Once the font foundries get out of the ’80s and start allowing more font embedding
in applications, user interfaces will really start to shine.

In the mean time, I suggest you consult someone with a real legal background before
embedding that font in your application.
Licensed to Devon Greenway <devon.greenway@gmail.com>

218 CHAPTER 9 Text
 Once you have fonts embedded in your application, they can be used anywhere
you’d use a regular typeface. For example, they may be used in text boxes for gather-
ing text, which is the subject of the next section.

9.4 Entering and editing text
Collecting and displaying text is a vital part of almost every web application. Silverlight
provides several controls designed to make this important task easy. Silverlight sup-
ports standard keyboard text input as well as input from input method editors (IMEs). (If
you don’t know what those are, don’t worry; we’ll get to that in a minute.) In this sec-
tion, we’ll cover the core of text input, including the two main controls used for gath-
ering plain text from the user.

 The most basic text input control is the TextBox. For most forms and other simple
data, this is the control you’ll use to capture input. TextBox supports all the usual text
entry functions, as well as multiline input.

 Similar to the TextBox but optimized for sensitive data, we have the PasswordBox.
The PasswordBox is what you should use when collecting passwords or other data you
want masked from view.

 Over the course of this section, you’ll learn how to handle basic text entry with the
TextBox. In addition, you’ll see how to collect sensitive information, such as pass-
words, with the PasswordBox. Finally, we’ll look at the ways to collect and format text
simultaneously using the RichTextBox.

9.4.1 Handling basic text input

The TextBox control enables your users to edit and view text. As basic as this may
sound, it’d be difficult to consider a UI technology that didn’t include this type of
functionality. When a user enters text into a TextBox, it gets stored as a string in the
Text property. This property can be programmatically set at runtime, giving you the
ability to prepopulate a form. Optionally, this property value can be set at design time
if you have a more static value.

XAML:
<TextBox x:Name="NameField" Text="Pete Brown" />

C#:
TextBox nameField = new TextBox();
nameField.Text = "Pete Brown";

This example shows the XAML and C# definitions for a TextBox with a preset Text
value. This value will change if a user decides to change the contents of a TextBox. This
change will cause the TextChanged event to fire asynchronously, which gives you the
opportunity to respond to characters after they’re entered. You can also limit how many
characters a user can enter by setting the MaxLength property. Limiting the number of
characters can be useful for ensuring that data isn’t truncated when it’s sent back to a
data source. In addition, some of the values from a data source should only be seen, not
edited. In these cases, you can change the IsReadOnly property to true to prevent a
Licensed to Devon Greenway <devon.greenway@gmail.com>

219Entering and editing text
user from editing a TextBox. These basic members of a TextBox are useful, but the mul-
tiline and text selection features are perhaps even more interesting.
ENABLING MULTILINE TEXT SUPPORT

The TextBox has built-in support for handling multiline text input. By default, this fea-
ture is turned off. You can turn it on by toggling two of the properties of a TextBox con-
trol. These two properties, AcceptsReturn and TextWrapping, are shown in listing 9.10.

Result:

XAML:
<Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition />
 </Grid.RowDefinitions>
 <TextBlock Text="Description:" FontFamily="Verdana" FontSize="14" />
 <TextBox x:Name="myTextBox" AcceptsReturn="True" TextWrapping="Wrap"
 FontFamily="Verdana" FontSize="14"
 Grid.Row="1" Height="150" Width="450" />
</Grid>

The listing shows a multiline TextBox enabled through the AcceptsReturn and Text-
Wrapping properties. The AcceptsReturn property is a bool that tells the TextBox
whether to show and permit newline characters. This property is important because it
is what enables a user to press the Enter key and go to a new line within a TextBox. A
true multiline TextBox isn’t complete until the TextWrapping property is set to Wrap.
We discussed this property in relation to the TextBlock element in section 9.2.3; those
same rules apply with the TextBox. With this property and the AcceptsReturn prop-
erty, you can easily implement a multiline TextBox.

 Implementing a multiline TextBox in Silverlight is simple. This approach is slightly
different than the approach used in HTML, which requires a separate element alto-
gether (the TextArea). The Silverlight approach simplifies the overall API and pro-
vides exciting text selection features not found in HTML.
MASTERING TEXT SELECTION

The TextBox has built-in support for selecting portions of text within a TextBox. A
user can highlight information and you can programmatically retrieve it through
three properties, appropriately named SelectedText, SelectionStart, and Selec-
tionLength. These properties can also be programmatically set, which is especially

Listing 9.10 Multiline TextBox
Licensed to Devon Greenway <devon.greenway@gmail.com>

220 CHAPTER 9 Text
useful when implementing incremental search
and auto-complete functionality in a TextBox.
Each is shown in figure 9.5.

 This figure shows the three properties associ-
ated with text selection. The first property is a
string called SelectedText that represents the
content currently selected within a TextBox. This
content has a specific length, which is available
through the SelectionLength property. This int gives you the number of characters
currently selected within a TextBox. These characters begin at a specific index, which
is accessible through the SelectionStart property. When text isn’t selected, the
SelectionStart property will return the index of the carat. The selection properties
are read/write and allow you to programmatically change their values.

 The HTML text box doesn’t provide a way to select only portions of text. As shown
here, the TextBox in Silverlight does enable you to select text at a more granular level.
At the same time, Silverlight still has support for both single and multiline text boxes.

 Not all applications are written for the en-US market. If you’re writing applications
for other markets, especially where the languages have different characters, you’ll
want to understand input method editors and how they work with Silverlight.

9.4.2 Understanding input method editors

IMEs are operating system components or added programs that allow, among other
things, multiple keystrokes to be composited into a single character. This supports lan-
guages where there are more possible charac-
ters than keys on the keyboard or where the
keyboard doesn’t have the required character.

 IME text is important for handling text
from most Eastern languages. Figure 9.6 shows
an example of a typical Japanese Romaji-based
IME in operation.

 In this section, we’ll look at what IMEs are
and how to use them in Silverlight. We’ll even
take a look at how to change your Windows
keyboard settings to allow you to test the func-
tions that support IME in Silverlight.

 In Silverlight, the TextBox and other con-
trols handle IME-entered text through events
defined at the UIElement-level. In particular, if
you want your application to work in IME situa-
tions, don’t respond to KeyDown/KeyUp events
of the TextBox. Instead, if you do use editing
based on keystrokes, use the TextInput Tex-
tInputStart and TextInputUpdated events.

I like turtles

SelectionStart=7 SelectionLength=4

SelectedText=turt

Figure 9.5 The text selection parts:
SelectedText, SelectionStart,
and SelectionLength

Figure 9.6 Operation of a typical
Japanese Romaji-based IME (source:
Wikimedia Commons)
Licensed to Devon Greenway <devon.greenway@gmail.com>

221Entering and editing text
Note that, depending on the IME mode in use and the control you’re interacting with,
some of these events may be handled by the control and not otherwise bubbled up.

TIP In Windows 7, to change your keyboard layout to US International (if
you’re in the US) to test basic IME, use Start > Control Panel > Region and
Language. Then select the Keyboards and Languages tab and click Change
Keyboards.

If you already have the United States - International keyboard listed, select
it. Otherwise click Add… to add it, and then select it from the list.

From there, you can type diacritic characters. For example, to type the é in
Claudé you’d select the US International keyboard from your system tray,
then type the single quote followed by the letter e.

In addition, if you want finer control over IME in your application, use the Input-
Method class and the attached properties it exposes. For space reasons and to stay on
topic, we won’t cover those numerous options, but we’ll look at an example of the dif-
ferences between the keyboard and text input events.

 To do that, you may want to set the InputMethod.IsInputMethodEnabled to true
on your TextBox. While the underlying value of the IsInputMethodEnabled property
is True, its actual value is influenced by the state of available input methods at run-
time. Setting it to true isn’t essential but helps convey your intent, especially if you’ll
be handling IME events in code.

 Listing 9.11 shows the difference between the keyboard events and the text input
events. For example, to type the accented e in the first word, I must hit Shift-6 and
then the letter e.

Result:

Debug window output:
Down:A, TextInputStart:a, Up:A
Down:R, TextInputStart:r, Up:R
Down:R, TextInputStart:r, Up:R
Down:Shift, Down:D6, Up:D6, Up:Shift, Down:E, InputStart:ê, Up:E
Down:T, TextInputStart:t, Up:T,
Down:E, TextInputStart:e, Up:E,
Down:Z, TextInputStart:z, Up:Z

XAML:
<Grid x:Name="LayoutRoot" Background="White">
 <TextBox x:Name="FirstName"
 InputMethod.IsInputMethodEnabled="True"
 Width="150"
 Height="24" />
</Grid>

Listing 9.11 Wiring up the TextInputStart event

Optional IME
enable
Licensed to Devon Greenway <devon.greenway@gmail.com>

222 CHAPTER 9 Text
C#:
public MainPage()
{
 InitializeComponent();

 FirstName.KeyDown += new KeyEventHandler(FirstName_KeyDown);
 FirstName.KeyUp += new KeyEventHandler(FirstName_KeyUp);
 FirstName.TextInputStart +=
 new TextCompositionEventHandler(FirstName_TextInputStart);
}

void FirstName_TextInputStart(
 object sender, TextCompositionEventArgs e)
{
 Debug.WriteLine("InputStart:" + e.Text);
}

void FirstName_KeyUp(object sender, KeyEventArgs e)
{
 Debug.WriteLine("Up:" + e.Key.ToString());
}

void FirstName_KeyDown(object sender, KeyEventArgs e)
{
 Debug.WriteLine("Down:" + e.Key.ToString());
}

If you have an IME installed on your system or have changed your keyboard layout to
do so, you’ll be able to type diacritic characters using an IME.

 If you live and work in the United States, it can be tempting to create applications
that work only with US keyboards. But if you want to move your product to an interna-
tional market or at least understand what’s necessary to support those markets, you’ll
want to read up on internationalization, including input method editing on Windows
and the Mac.

 Input method editing is something not every application needs. However, it’s a sta-
ple of Windows development. Another staple of modern application development is
the clipboard. Think about how isolated our applications would be if we didn’t have a
way to get data from one to another! Luckily, Silverlight allows you to programmati-
cally access the clipboard to move text between applications.

9.4.3 Copying text with the Clipboard API

Silverlight 4 added a new API for use with transferring text via the clipboard. Though
currently limited to just Unicode strings, the clipboard is an excellent way to enable
your Silverlight application to integrate with the rest of the applications on the host-
ing system.

 The Clipboard object is your Silverlight application’s interface to the system clip-
board. In this section, we’ll take a quick look at the clipboard API and its capabilities,
starting with the three member functions of the Clipboard class. Table 9.3 shows the
static member functions exposed by this object.

IME
event

Standard key
events
Licensed to Devon Greenway <devon.greenway@gmail.com>

223Entering and editing text
Clipboard exposes static members, so you don’t need to instantiate it to use it. For
example, to place text on the clipboard, simply call Clipboard.SetText:

Clipboard.SetText("This text will be on the clipboard.");

Similarly, to retrieve text this or another application placed on the clipboard, call the
GetText method:

string text = Clipboard.GetText();

Note that, in both cases, you’ll receive a security exception if you’re running in
the standard (not elevated) permissions mode and either didn’t initiate the action
from a user event or the user didn’t allow access to the clipboard when prompted
to do so. Figure 9.7 shows the prompt the user receives when you initiate a clip-
board operation.

 The prompt helps to protect the user from potentially malicious applications that
may try to steal data from the clipboard or fill the clipboard with garbage.

 One thing you probably won’t want to allow on the clipboard is a user’s password.
For that and for masking reasons, Silverlight includes a specialized PasswordBox.

Table 9.3 The Clipboard type’s static member functions

Member Description

ContainsText Queries the clipboard and returns true if the clipboard contains compatible text

GetText Returns the Unicode text from the clipboard

SetText Places Unicode text on the clipboard

Figure 9.7 The clipboard access prompt. When running in standard permissions (sandboxed)
mode, Silverlight displays this when you attempt to access the clipboard from the application.
Licensed to Devon Greenway <devon.greenway@gmail.com>

224 CHAPTER 9 Text
9.4.4 Collecting sensitive data

Silverlight provides a special control called PasswordBox. This element is designed to
hide information from someone who may be lurking behind a user. This is accom-
plished by hiding the contents of a PasswordBox behind asterisks (*), which serve as
familiar reminders to end users that they’re entering a password. But, if you’d like to
use something other than an asterisk, you’re free to use any character you like by set-
ting the PasswordChar property. This property, as well as the syntax of a PasswordBox,
is shown in listing 9.12.

Result:

XAML:
<Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>

 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition Width="Auto" />
 </Grid.ColumnDefinitions>

 <TextBlock Text="Password: " FontFamily="Verdana" />
 <PasswordBox Width="200" Grid.Column="1" />

 <TextBlock Text="Confirm: " FontFamily="Verdana" Grid.Row="1" />
 <PasswordBox PasswordChar="#" Width="200"
 Grid.Column="1" Grid.Row="1" />
</Grid>

This example shows a default PasswordBox and a custom PasswordChar to show how
Silverlight takes a small step beyond the masking approach used in HTML. Still, once a
user enters information into these fields, you’ll probably need to retrieve it. This is
possible thanks to the Password property.

 The Password property is a string that represents the value in a PasswordBox.
This property can be programmatically set and retrieved. Interestingly, this value can’t
be copied or cut at runtime by a user. This restriction is designed to ensure a user’s
password remains protected, short of hacker heroics such as wiring a debugger to the
code and inspecting values. To provide this feature, along with the general input con-
trol features, the PasswordBox needs to derive from the Control class instead of the
TextBox class.

 The PasswordBox and TextBox are two controls used for capturing user input.
However, they are limited in how the text can be formatted. Unlike the TextBox, the

Listing 9.12 The syntax for the PasswordBox—note the mask used in each field

Default mask
character

Custom mask
character
Licensed to Devon Greenway <devon.greenway@gmail.com>

225Entering and displaying rich text
RichTextBox allows the user to have a true document experience with multiple fonts
and styles.

9.5 Entering and displaying rich text
From email composition to document creation, we’ve gotten so used to the simplicity
of creating text with multiple fonts, colors, and font styles that, when we see a multi-
line text box with no formatting control, it simply looks strange. Prior to the introduc-
tion of the RichTextBox in Silverlight 4, Silverlight had no way of allowing the user to
enter formatted text.

 The RichTextBox follows many of the same patterns as the regular TextBox but
enhances it with the ability to store the formatting information such as fonts and col-
ors. The RichTextBox also takes it one step further by allowing the embedding of
images and other UI elements, even controls, into the text.

 In our tour of the RichTextBox control, we’ll look at how to format text using dif-
ferent fonts and colors, how to embed hyperlinks in rich text, and even how to embed
other controls such as the Button and ComboBox. As you’ll want your users to actually
work with your text, we’ll then look into what it takes to work with the text the user has
selected or text you select from code and then change its attributes.

 As the main reason the RichTextBox exists is to enable the display and editing of
text with multiple fonts, colors, and other visual attributes, we’ll start there.

9.5.1 Formatting and inline elements

The RichTextBox enables you to format text and add elements inline. This includes
formatting tags, text spans, other controls, and—perhaps the most important and
most basic of these elements—the Paragraph.
PARAGRAPHS

The Paragraph element enables you to break the text in the RichTextBox into one or
more separate paragraphs. Each paragraph can have its own formatting independent
of the overall control.

 Listing 9.13 shows three different paragraphs, each with separate formatting inde-
pendent of the overall control’s formatting.

Result:

Listing 9.13 RichTextBox showing paragraphs with different formatting and alignment
Licensed to Devon Greenway <devon.greenway@gmail.com>

226 CHAPTER 9 Text
XAML:
<RichTextBox x:Name="RichText"
 Width="350"
 Height="200">
 <Paragraph>
 This is the first paragraph of the text I'm going to place
 in this RichTextBox. It has two sentences. Actually, it has
 three sentences.
 </Paragraph>
 <Paragraph TextAlignment="Justify"
 FontWeight="Bold">
 This is the second paragraph, and its text is set to
 justify, as you can tell from the pretty screen shot.
 Please note that the last sentence in the paragraph is not
 justified.
 </Paragraph>
 <Paragraph TextAlignment="Right">
 One ring to rule them all, one ring to bind them. One ring
 to bring them all, and in the darkness bind them, in the
 land of Mordor where the Shadows lie.
 </Paragraph>
</RichTextBox>

Listing 9.13 shows several interesting features. First, the text in a RichTextBox can be
easily broken apart into separate paragraphs. The second feature is that each of those
paragraphs can have formatting separate from the others. In this case, I used different
text alignment on each of them and also set the middle paragraph to be bold.

 In addition to setting the styles at a paragraph level, you can surround blocks of
text with formatting markup, called inline styles.
INLINE STYLES AND SPANS

If formatting could be applied only at the paragraph level, the RichTextBox wouldn’t
be all that useful. Luckily, formatting can be applied at a much finer-grained level using
inline formatting elements such as Bold, Italic, and the versatile Span. Listing 9.14
shows several formatting approaches in a single paragraph.

Result:

XAML:
<RichTextBox x:Name="RichText"
 Width="350"
 Height="125">

Listing 9.14 Inline styles and spans in the paragraph text
Licensed to Devon Greenway <devon.greenway@gmail.com>

227Entering and displaying rich text
 <Paragraph TextAlignment="Left">
 One <Bold>ring</Bold> to rule them all,
 one ring to find them. <Italic>One</Italic> ring to bring them all,
 and in the darkness bind them, in the land of
 Mordor where the Shadows lie.
 </Paragraph>
</RichTextBox>

Listing 9.14 shows the use of the Bold and Italic inline styles, as well as Span. Bold
and Italic are handy shortcuts, but Span is the most flexible of the three, supporting
myriad formatting options. Span itself inherits from Inline and from that gets a num-
ber of useful properties. Section 9.2.1 goes into detail about the commonly used prop-
erties shared by the Span, TextBlock, and Run elements.

 In addition to these inline styles, the RichTextBox also supports LineBreaks via
the LineBreak element:

One ring to rule them all,<LineBreak />
one ring to find them.<LineBreak />

As expected, the LineBreak element causes the text following it to start on a new line.
You can think of the paragraph tag like the HTML <p></p> pair, and the LineBreak
element much like the HTML
 tag.

 One thing that the other text-display controls can’t include is a hyperlink. The
RichTextBox is currently unique in its ability to display active Hyperlink controls.
INLINE HYPERLINKS

The RichTextBox has the ability to host any UIElement, but it has first-class support
for hosting Hyperlinks without requiring any special containers or other work on
your part, while keeping them active even for editable text. This makes it easy to dis-
play HTML-like text with embedded links.

 For example, listing 9.15 shows two Hyperlink elements embedded in the Rich-
TextBox control.

Result:

XAML:
<RichTextBox x:Name="RichText"
 Width="350"
 Height="125">
 <Paragraph TextAlignment="Left">

Listing 9.15 Hyperlink support in the RichTextBox
Licensed to Devon Greenway <devon.greenway@gmail.com>

228 CHAPTER 9 Text
 One ring to <Hyperlink NavigateUri="http://manning.com">rule
 them all, one ring to find</Hyperlink> them. <Italic>One
 </Italic> ring to bring them all, and in the darkness bind them,
 <Hyperlink NavigateUri="http://10rem.net">in
 the land of Mordor where the Shadows lie.</Hyperlink>
 </Paragraph>
</RichTextBox>

Listing 9.15 shows the use of two hyperlinks embedded in the paragraph text. Note
how the hyperlinks also have support for cleanly nesting Spans and other formatting
elements.

 The Hyperlink control in the RichTextBox is a fully functional Silverlight Hyper-
link control, but it’s not the same as the one you’d place in regular XAML. Instead, it
derives from Span. You can still wire up Click events, supply a NavigateUri as I did
here, and otherwise do everything you’d expect to be able to do with a Hyperlink.
The Hyperlink control itself is covered in more detail later in this chapter.

 In addition to the Hyperlink control, RichTextBox includes support for hosting
any other UIElement through the use of InlineUIContainer.
INLINE IMAGES AND ELEMENTS

The RichTextBox control allows you to embed any UIElement inline into the text, as
long as you contain it in an InlineUIContainer. The catch is that the elements won’t
be active; they’ll only show their disabled representation unless the RichTextBox is set
to read-only mode via the IsReadOnly property as shown in listing 9.16.

Result

XAML:
<RichTextBox x:Name="RichText" IsReadOnly="True"
 Width="350" Height="150">
 <Paragraph TextAlignment="Left">
 One
 <InlineUIContainer>
 <Button Content="Ring" />
 </InlineUIContainer>
 to rule them all, one ring to find
 <InlineUIContainer> #A
 <ComboBox SelectedIndex="0">
 <ComboBox.Items>
 <ComboBoxItem Content="Mr. Book" />

Listing 9.16 A mad-lib of a RichTextBox showing embedded controls
Licensed to Devon Greenway <devon.greenway@gmail.com>

229Entering and displaying rich text
 <ComboBoxItem Content="Mr. Hand" />
 <ComboBoxItem Content="Deckard" />
 </ComboBox.Items>
 </ComboBox>
 </InlineUIContainer>
 One ring to bring them all, and in the
 <InlineUIContainer> #A
 <ComboBox SelectedIndex="0">
 <ComboBox.Items>
 <ComboBoxItem Content="darkness bind them" />
 <ComboBoxItem Content="darkness find them" />
 <ComboBoxItem Content="snarkiness unwind them" />
 </ComboBox.Items>
 </ComboBox>
 </InlineUIContainer>
 in the land of
 <InlineUIContainer> #A
 <StackPanel>
 <RadioButton Content="Mordor" />
 <RadioButton Content="Dark City" />
 <RadioButton Content="Tatooine" />
 </StackPanel>
 </InlineUIContainer>
 where the
 <InlineUIContainer>
 <TextBlock Text="shadows lie.">
 <TextBlock.Effect>
 <DropShadowEffect BlurRadius="2" />
 </TextBlock.Effect>
 </TextBlock>
 </InlineUIContainer>
 </Paragraph>
</RichTextBox>

As listing 9.16 shows, you can do some pretty neat things with the inline UIElements,
including add items with effects such as drop shadows. The example shown may be a
real dog’s breakfast of a UI, but the ability to embed controls of any sort into a rich
text interface really opens up the options for creating your own UI, especially for
scripted questionnaires and similar free-flowing interfaces.

 Getting back to basic text manipulation, one thing you may need to do is program-
matically select text or work with a selection a user has made. The nature of rich text
makes this slightly more complex than plain text, as we’ll see in the next section.

9.5.2 Working with selected text

Programmatic manipulation of the RichTextBox beyond simply reading or writing the
entire contents requires that you work with selections. The selections may be set in
code or you may be taking an action based upon a selection the user has made. Either
way, the methods are consistent.
SELECTION

There may be times when you need to programmatically select content in the
RichTextBox. For example, if you’re doing a search and replace, the Find Next function

InlineUIContainer
Licensed to Devon Greenway <devon.greenway@gmail.com>

230 CHAPTER 9 Text
should search the content for the next occurrence of the search term and then auto-
matically select it. The RichTextBox exposes the Selection property, which has a
Select function to support programmatic selection.

 The Select method takes two parameters, both of type TextPointer: the anchor-
Position and the movingPosition. If you think about how you select text with a
mouse, you start with one point that stays fixed in place, and you move the mouse cur-
sor, changing the selection relative to that point. Similarly, the anchorPosition
remains fixed and the movingPosition is the second or movable point.

 Figure 9.8 shows the three main data points of
interest. The first, the Selection.Text property, is
a public read/write property that enables us to read
or modify the text inside the two points.

 The anchorPosition is the place where you or
the user (or your code) started the selection. The
movingPosition is the end of the selection.

 Note that, unlike the case with the TextBox,
we’re not dealing with numeric values for the start
and end points. Instead, we have pointers to the text. Though this can make it slightly
more complex to work with, it both supports the addition of nonvisible markup and
makes it more flexible when adding text between the points and the substitution char-
acter count isn’t 1:1 with the original.

 Listing 9.17 shows how to use the anchorPosition and movingPosition Text-
Pointer objects to programmatically select text in the control.

Results:

XAML:
<StackPanel>
 <RichTextBox x:Name="RichText" Margin="10"
 Width="350" Height="150">
 <Paragraph TextAlignment="Left">
 <Bold>We're off to outer space</Bold><LineBreak />
 We're leaving Mother Earth<LineBreak />

Listing 9.17 Programmatically selecting text in the RichTextBox

I like turtles

Selection.Text=turt

movingPositionanchorPosition

Figure 9.8 RichTextBox
selection information, assuming the
user selected left to right, starting
with the first T in “turtles”
Licensed to Devon Greenway <devon.greenway@gmail.com>

231Entering and displaying rich text
 To save the human race<LineBreak />
 <Italic>Our Star Blazers</Italic>
 </Paragraph>
 <Paragraph TextAlignment="Left">
 <Bold>Searching for a distant star</Bold><LineBreak />
 Heading off to Iscandar<LineBreak />
 Leaving all we love behind<LineBreak />
 Who knows what danger we'll find?
 </Paragraph>
 </RichTextBox>

 <Button Content="Select Next 10" Click="SelectNext_Click"
 Width="150" Margin="10" />
</StackPanel>

C#:
private void SelectNext_Click(object sender, RoutedEventArgs e)
{
 TextPointer start = RichText.Selection.Start;
 TextPointer end = start;

 end = start.GetPositionAtOffset(10, LogicalDirection.Forward);

 RichText.Selection.Select(start, end);

 RichText.Focus();
}

The code in listing 9.17 takes the Selection.Start, which by default is where the
caret is currently positioned, and adds 10 characters to it and ends the selection. The
end result is the visible text selection.

 Selecting text itself is interesting, but it’s more interesting to actually manipulate
the contents of the selection.
CHANGING SELECTION PROPERTIES

Once either the user or code has made a selection, you can alter the properties of that
selection via code. For example, you can change the font face, the weight, the fore-
ground, and other properties for the selection.

 If you want to set the foreground color of the 10 characters to Red, simply alter the
code in listing 9.17 to add the following ApplyPropertyValue call, passing the Fore-
ground dependency property and a brush with the color red:

RichText.Selection.Select(start, end);
RichText.Selection.ApplyPropertyValue(
 TextElement.ForegroundProperty, new SolidColorBrush(Colors.Red));

RichText.Focus();

Similarly, you can call GetPropertyValue to get the value of a dependency property
for the selected text.
REPLACING TEXT

Once you have a valid selection, you can also replace the text with your own plain text.
The Selection.Text property is a two-way street: you can read the text that’s in the

Start is
current
position

End adds 10

Perform
selection
Licensed to Devon Greenway <devon.greenway@gmail.com>

232 CHAPTER 9 Text
selection and you can also assign new text to it. Again modifying listing 9.17, this will
replace the 10 characters with haha!!:

RichText.Selection.Select(start, end);
RichText.Selection.Text = "haha!!";

RichText.Focus();

Replacing text is a good common operation, but what about inserting new text with-
out overwriting something else? For that, you’ll want to use the Selection.Insert
method.
INSERTING NEW TEXT

In addition to replacing the selected text, you can insert new text anywhere you create
a selection start point. In this example, we’ll modify listing 9.17 and insert text wher-
ever the caret happens to be positioned:

private void SelectNext_Click(object sender, RoutedEventArgs e)
{
 Run run = new Run();
 run.Text = "This is some text we're going to insert";
 RichText.Selection.Insert(run);

 RichText.Focus();
}

While Runs can be implicit in the XAML, the Insert method requires a Run element,
or something that derives from Run. You can click the button as many times as you’d
like and it’ll happily insert new text wherever the caret is positioned.
RETRIEVING RICH TEXT AS XAML

This being Silverlight, you’d expect there to be some way to get the XAML representa-
tion of the selected text—and you’d be right. The Selection type exposes a Xaml
property that returns the XAML for the selection. Modify listing 9.17 to include the
following code to see the XAML representation of the text:

RichText.Selection.Select(start, end);
Debug.WriteLine(RichText.Selection.Xaml);

RichText.Focus();

If you wish to get the XAML for the entire control, first call the SelectAll method and
then retrieve the XAML.

 The RichTextBox control is a powerful control that allows you to create applica-
tions with serious text editing requirements. It builds upon the concepts from the
TextBlock and TextBox, and combines them with inline formatting, Hyperlinks, and
UIElements to create a versatile Silverlight control for both the display and editing of
rich text.

9.6 Summary
Text handling is one of the most basic and important functions of any presentation
layer. Silverlight has a complete text stack, including support for subpixel rendering
Licensed to Devon Greenway <devon.greenway@gmail.com>

233Summary
and ClearType and grayscale font smoothing. Silverlight also includes the TextBlock
element, which may be used to display read-only text.

 Though typically used for things such as field labels and description paragraphs,
the TextBlock supports multiple Runs of text, each with their own distinct attributes.

 Any text element in Silverlight can take advantage of embedded fonts. Embedded
fonts are useful for situations where you have a custom font or one that’s unlikely to
be on end-user machines. Rather than compromise and use a different font, you can
embed the font or a subset of the glyphs in the font directly into your application.

 Silverlight has several ways for entering and displaying text. There’s significant
overlap between them, but each has its own niche where it performs best. Table 9.4,
adapted from information from MSDN, shows how you should think of each control or
element when trying to decide between them.

Choosing the correct one for any given situation means balancing the runtime
resources required with the features desired. In general, the elements from lightest to
heaviest in terms of runtime resource requirements are:

1 TextBlock
2 TextBox
3 RichTextBox

So, although replacing all the TextBlock elements in your application with read-only
RichTextBox controls in order to allow for selectable formatted text may seem appeal-
ing, you need to test it in your specific scenario and see if the runtime trade-off is
worth the additional functionality. All three controls can display multibyte and right-
to-left text and support the use of input method editors (IMEs).

 The TextBlock lives in the System.Windows.Controls namespace but, unlike
TextBox and RichTextBox, it’s not actually a Control. This keeps it lightweight but
means that some properties have to be duplicated between TextBlock and Sys-
tem.Windows.Control.Control. In the next chapter, we’ll look at the various types of
controls in the Silverlight runtime and how they all fit together.

Table 9.4 Recommended uses for the various text display and editing elements

Scenario Recommended element

Display unformatted text in a single font TextBlock

Display formatted text including paragraphs, hyperlinks, images, multiple
fonts and styles

RichTextBox

Enter or edit plain text, such as would be used for data entry of a single field
like a person’s name

TextBox

Enter or edit formatted text including paragraphs, hyperlinks, images, multi-
ple fonts and styles

RichTextBox

Enter sensitive information, such as a password, which must be masked for
display

PasswordBox
Licensed to Devon Greenway <devon.greenway@gmail.com>

Controls
 and UserControls
In the previous chapter, we covered the basics of text, including how to display and
edit it. Two of the items discussed—the TextBox and RichTextBox—are both actu-
ally controls. The TextBlock isn’t.

 If you’re coming from another technology, you may assume that anything you
can see or interact with is a control, and you’d be partially right. Interaction gener-
ally requires a Control but, to see something such as a TextBlock, it requires only
that it be a UIElement (covered in chapter 6).

 In this and the following sections, we’ll look at the base control types Control
and ContentControl and then dive into the various types of controls, including
Button controls and ItemsControls. In your Silverlight travels, you’ll find that

This chapter covers
■ Understanding the control base types
■ Working with button controls
■ Working with items controls
■ Creating your own UserControls
■ Implementing dependency properties
234

Licensed to Devon Greenway <devon.greenway@gmail.com>

235Control
understanding these categories of controls will be pretty much all you need to make
sense of any new control you run across.

 Toward the end of this chapter, we’ll also take our first trip into creating controls
of our own. In this case, we’ll follow the simple reuse model: the UserControl. In
chapter 24—once we’ve covered binding, resources, styles, and templates—we’ll again
revisit creating controls, but with a more robust custom control model.

 We’ve already covered the UIElement and FrameworkElement in chapter 6, so let’s
continue our walk up the stack and take a look at the base Control type.

10.1 Control
Almost every element you’ll deal with that accepts input in some form derives from
Control. Even the pages and user controls you create in your application ultimately
end up deriving from this type. It’s also the lowest-level type you can typically get away
with when trying to share styles (see chapter 23) between different elements.

 The System.Windows.Controls.Control abstract class derives from Frame-
workElement. In addition to a number of protected methods that the derived controls
can override to provide additional functionality, Control adds a number of new pub-
lic properties and methods. We’ll break these up into several logical groups and cover
them separately, starting with appearance, then navigation and state, and finally the
support for control templating.

10.1.1 Appearance

Controls are visual by definition. For that reason, several properties can be shared as a
baseline implementation for anything visual and potentially interactive. The appear-
ance-related properties for control are shown in table 10.1.

The Background property is used to hold the background brush of the control. This
can be a simple color or a complex gradient. Similarly, the BorderBrush property does
the same for the brush used to paint the border. The BorderThickness is a size to be

Table 10.1 Visual style properties for the Control abstract type

Member Description

Background The brush used to paint the background

BorderBrush The brush used to paint the border

BorderThickness The thickness of the border line

Foreground The color used for foreground elements

Padding The amount of space to reserve between the control’s
exterior and interior

HorizontalContentAlignment Controls how the internal control content is aligned

VerticalContentAlignment Controls how the internal control content is aligned
Licensed to Devon Greenway <devon.greenway@gmail.com>

236 CHAPTER 10 Controls and UserControls
used to control the pen weight or thickness of the border for the control. The Fore-
ground brush should be used when displaying text or other content for which the user
hasn’t provided a specific color. The last three—Padding, HorizontalContentAlign-
ment, and VerticalContentAlignment—all control how the content will be displayed.

 It’s important to know that no specific user interface is implied by these proper-
ties. The control author (or person creating the style/template) is required to apply
these properties to specific elements in the template. Common sense would say that a
BorderBrush should control the color of the outline of the control, but nothing
enforces that.

 Two other common traits that controls share is the ability to be navigated to via
mouse and keyboard and set as either enabled or disabled.

10.1.2 Navigation and state

Silverlight controls also support Tab-key navigation as well as manual focusing via the
mouse or API. The properties and methods that support that are shown in table 10.2.

IsEnabled controls the enabled state for the control. The expected behavior is that, if
IsEnabled is false, the control won’t accept any keyboard, mouse, or other human
input and isn’t considered a tab stop. It should also display itself using a faded or
grayed-out look to convey this state.

 The Focus method may be used to attempt to manually set focus to a control via
code. If the control can’t receive focus (for example, IsEnabled is False), the method
will return false.

 Three properties control tab navigation for the control. The first—IsTabStop—
controls whether the Tab key can be used to access the control. The TabIndex con-
trols the order within the container that the Tab key will navigate between controls.
Lower-numbered controls come earlier in the tabbing sequence. Finally, the TabNavi-
gation property controls how tabbing works for elements hosted inside this control.
The possible values and their meanings are listed in table 10.3.

 If you were to create a composite control, such as the LockableListBox at the end
of this chapter, Local tab navigation would be the expected behavior. But, if you

Table 10.2 Navigation and state members for the Control abstract type

Member Description

IsEnabled Set to True if this control is in a state where it can accept user interaction

IsTabStop True if the user can tab into this control

TabIndex The tabbing position of this control, relative to its peers in the same panel

TabNavigation Controls how the Tab key navigates in this control. It can either cycle, be local,
or be a one-stop navigation. More on this shortly.

Focus method Calling this method attempts to set focus to the control.
Licensed to Devon Greenway <devon.greenway@gmail.com>

237Control
created a ListBox-like control, you’d expect the Once behavior because you’d use the
arrow keys to navigate between the individual items.

 The next key area of support in the Control type is templating. Templates give Sil-
verlight controls their appearance and user experience.

10.1.3 Templating

One key feature that the controls add over the base type is the ability to template the
control. As we’ll learn in section 23.3, a template is a definition for the visual represen-
tation of the control. By default, controls in Silverlight are defined by their model
and functionality. The user interface elements can be completely replaced; they’re
considered lookless controls. Table 10.4 shows the properties and methods that sup-
port templating.

The Template property enables this flexible control templating. The Default-
StyleKey property is used by control authors to wire up the control to a default style
and template, something which may be overridden by consumers of the control. The
ApplyTemplate method is used to rebuild the visual tree for the control, using the
supplied template.

 Control also supports the FontFamily, FontSize, FontStretch, FontStyle, and
FontWeight properties we covered in the chapter on text. For more detail, please
refer back to section 9.2.

Table 10.3 Possible values for the TabNavigation property

Member Description

Local Your control is tabbed into. The next tab starts going through the child elements. Once the
last child element is focused and the user hits Tab, the next element outside of your main
control receives focus.

Cycle Once this control is tabbed into, individual controls inside this control may be navigated to
using Tab. When the last child control has been reached and the user hits Tab, the first one
will receive focus again. Doing this effectively traps the user inside your control until he
clicks elsewhere.

Once Individual child elements other than the first one don’t receive focus via the tab control.

Table 10.4 Styling and templating properties for the Control abstract type

Member Description

DefaultStyleKey This is the key of the style to be used when no other style is assigned. Typi-
cally, it’s set to the type of the class and, therefore, uses an implicit style.

Template Reference to the template that makes up the control’s visuals

ApplyTemplate
method

It attempts to rebuild the visual tree from the template. It returns true if
succeeded.
Licensed to Devon Greenway <devon.greenway@gmail.com>

238 CHAPTER 10 Controls and UserControls
 It’s rare that you’ll create new controls that derive directly from UIElement or
FrameworkElement. Instead, you’ll usually derive from Control or one of its descen-
dents such as ContentControl. ContentControl provides functionality above and
beyond Control by enabling the containment and templating of arbitrary content.

10.2 ContentControl
In older technologies, the content of a control was usually very specific: a button
could hold a text string in a caption property; an ImageButton could hold an image
and text split across two properties; and so forth. Silverlight and WPF demanded a
more flexible content model where a control could indicate that it supports the inclu-
sion of arbitrary content rather than a specific atomic item of known type. From this
requirement, the ContentControl was born.

 ContentControl is a descendent of Control. As such, it inherits all of the proper-
ties, methods, and behaviors Control provides. It also adds the key concept of Con-
tent. Table 10.5 shows the two content-related properties that ContentControl adds
to the Control type.

The Content for a ContentControl can be any arbitrary object. But, if the type isn’t
something that can be natively added to the visual tree (a UIElement), Silverlight will
call the object’s ToString method to display it. This allows you to add any other Silver-
light visual elements or a string value without having to do any additional work. If
you’ve wondered why a button can have a simple string or a complex tree of elements
as the content property, this is why.

 The ContentTemplate is a data template that can be used to format the content. Con-
sider that you may assign a complex object, such as a Person, to the content property.
The ToString approach will leave you with something like MyLib.MyNamespace.Person
as the actual text—probably not what you want. The ContentTemplate uses binding to
format the object for display. We’ll cover data templates in detail in chapter 11.

 Table 10.6 shows the flexibility of the content control even without relying on a
content template. Note how you can have anything inside the button, including a
TextBox and a video. You can even type in the TextBox and watch the video because
they’re real, live elements.

Table 10.5 Properties for the ContentControl abstract type

Member Description

Content Assign the content (anything that can be rendered) to this property. If the con-
tent isn’t a UIElement and there‘s no ContentTemplate, Silverlight will
call the object’s ToString method to display it.

ContentTemplate This is a data template used to display the content assigned via the Con-
tent property. We’ll cover more on data templates in chapter 11 when we
discuss binding.
Licensed to Devon Greenway <devon.greenway@gmail.com>

239ContentControl
This table begins to show the flexibility provided with a ContentControl, in this case a
Button. The first example shows a simple string for content. The second shows the
explicit setting of the content property. This is optional, as we see in example three,
where the Content property is omitted but the StackPanel is still assigned to it.

 As you progress through this book, you’ll learn how to make the contents of a Con-
tentControl look exactly how you want. For now, note how the innards of a Content-
Control are specified through the Content property.

 Most controls that inherit from ContentControl use a ContentPresenter to do
that actual display work in their control template. We’ll cover more about templates in
section 23.3 but, for now, a brief introduction to the ContentPresenter is in order.

10.2.1 The ContentPresenter

The ContentPresenter is a descendent FrameworkElement that exists primarily to
support the display of content in a ContentControl. Rather than require you to put a
TextBlock, Image, or other strongly typed content presentation element into your
control template, you can use a ContentPresenter to bind to and display the content
from the Content property.

 Table 10.7 shows the properties of the ContentPresenter element.
 Without the ContentPresenter, the ContentControl can’t do much of anything

exciting. The ContentPresenter holds the logic to try and render the object passed

Table 10.6 The flexibility of a ContentControl as displayed by three buttons

Button XAML

<Button Width="150" Height="75"
 Content="Hello!" />

<Button Width="150" Height="75">
 <Button.Content>
 <TextBox Height="24" Text="TextBox"
 Width="100" />
 </Button.Content>
</Button>

<Button Width="200" Height="100">
 <StackPanel>
 <TextBlock Text="Playing"
 HorizontalAlignment="Center" />
 <MediaElement Height="75" Width="125"
 Stretch="Uniform"
 Source="PeteAtMIX10ch9.wmv" />
 </StackPanel>
</Button>
Licensed to Devon Greenway <devon.greenway@gmail.com>

240 CHAPTER 10 Controls and UserControls
into it. In fact, in a typical control template, the ContentPresenter simply is assigned
values from the ContentControl via template binding, as seen here:

<ContentPresenter
 Content="{TemplateBinding Content}"
 Margin="{TemplateBinding Padding}"
 HorizontalAlignment="{TemplateBinding HorizontalContentAlignment}"
 VerticalAlignment="{TemplateBinding VerticalContentAlignment}" />

We’ll cover TemplateBinding in chapter 23 when we work with control templates. For
now, understand that TemplateBinding is used to bind an element in XAML to a
dependency property in the control’s implementation. For example, the Content
property of the ContentPresenter in the preceding code is bound to the Content
property of the containing ContentControl.

 Together, Controls, ContentControls, and the associated ContentPresenter
make up the core of the control tree in Silverlight. One other type of control, the
ItemsControl, is equally as important. But before we look at the various types of
ItemsControls, let’s look at some concrete implementations of ContentControls—
specifically, those based on Button.

10.3 Button controls
A button is a type of control that responds to a single-click event. This event can be trig-
gered by either a mouse or a keyboard. With a mouse, a user can click a button by
pressing and releasing the left mouse button while hovering over it. With the key-
board, a button can be clicked by pressing Enter or the spacebar when the button has
the focus. Either way, the general implementation of a button is spread across two
classes, ButtonBase and ContentControl.

 ButtonBase is an abstract base class used by all buttons in Silverlight. This class
provides three members that are directly related to a user’s interaction with a button:
IsPressed, Click, and ClickMode. IsPressed returns whether a button is currently
depressed. By default, this bool property is set to false. If a user clicks and holds a
button, this property will change to true. But, once a user releases the mouse button,
the IsPressed property will change back to false. At that point, the Click event will
fire, assuming the default ClickMode is used.

 The ClickMode property specifies when the Click event will fire. Setting this prop-
erty can be useful if you want to fully customize a user’s experience with your buttons.
This experience can be set to any of the options available within the ClickMode enu-
meration. These options are shown and described in table 10.8.

Table 10.7 Properties for the ContentPresenter element

Member Description

Content The value assigned from the same property of a ContentControl

ContentTemplate The template value assigned from the same property of a ContentControl
Licensed to Devon Greenway <devon.greenway@gmail.com>

241Button controls
The ClickMode enumeration can be used to define a small part of the behavior of a
button. The rest of the behavior is defined in the ButtonBase class itself.

 As the default property for the content control, you can omit the explicit <But-
ton.Content> reference and simply nest the content as shown in the third example in
the table. This property is available on all ContentControl elements, a category that
naturally includes all ButtonBase elements such as the Button, HyperlinkButton,
RadioButton, and CheckBox elements.

10.3.1 The Button

The traditional Button is a simple ContentControl that a user can click to perform an
action. This control is defined by the Button class, which derives directly from the
ButtonBase class. The Button automatically exposes the Click event. The thing that
makes the Button class special is the default appearance it creates around the Con-
tent. This appearance and the syntax of a Button are shown in listing 10.1.

Result:

XAML:
<Button x:Name="myButton" Content="Save" Height="30" Width="90" />

As you can see, the buttons in table 10.6 are slightly more complex than the one
shown in this example, but it’s intended to show only the basic syntax and look of a
Button. This appearance includes a small container that makes a Silverlight Button
look similar to the buttons seen in other technologies. This container is designed to
hold a Button element’s Content. Occasionally, you may want this Content to behave
more like a hyperlink. For these situations, you should look to the HyperlinkButton.

10.3.2 The HyperlinkButton

The HyperlinkButton control is designed to create a button that looks and behaves
like a hyperlink. This behavior is provided through two publicly visible properties
called NavigateUri and TargetName, which are shown here:

Table 10.8 The options available within the ClickMode enumeration

Option Description

Hover Fires the Click event when the user moves the mouse pointer over a button

Press Causes the Click event to execute when the user depresses a button

Release Triggers the Click event when the user releases the left mouse button within
the bounds of the button

This is the default ClickMode used for a button.

Listing 10.1 The syntax for a button
Licensed to Devon Greenway <devon.greenway@gmail.com>

242 CHAPTER 10 Controls and UserControls
<HyperlinkButton x:Name="myHyperlinkButton"
 Content="Search in a New Window"
 NavigateUri="http://www.live.com"
 TargetName="_blank" />

The HyperlinkButton control uses the NavigateUri property to determine which
page to load. By default, this Uri will be loaded in the current window, forcing your
Silverlight application to unload. As you can imagine, this side effect may not be desir-
able. But, you can take control of this behavior with the TargetName property.

 The TargetName property is a string that represents the name of the frame or win-
dow to load the NavigateUri within. By default, the TargetName value will be an empty
string. You can use any of the values in table 10.9 to create the intended experience.

This table describes the values that can be assigned to the TargetName property. If you
happen to assign an unrecognized value to the TargetName property, one of two
things will happen. If the value has one or more whitespace characters, an InvalidOp-
erationException will be thrown. Alternatively, if the TargetName doesn’t have any
whitespace characters, the NavigateUri will load in a new window. It’s important to
remember that, despite its behavior as a hyperlink, the HyperlinkButton is still a type
of button.

 The HyperlinkButton class derives from the ButtonBase class; it still acts like a
button and supports the Click event. In the case of a HyperlinkButton, the Click
event will fire before the NavigateUri is evaluated so you can dynamically change the
location of the NavigateUri just before it gets loaded. In addition, this event can be
useful for performing cleanup operations if you’re redirecting the user away from
your Silverlight application.

10.3.3 The RadioButton

A RadioButton represents a choice within a group of options. For instance, imagine
having to choose your favorite pizza topping or flavor of ice cream. Each of these situ-
ations requires one and only one choice to be selected. To properly deliver this kind
of functionality, you need to familiarize yourself with the selection and grouping
behaviors of the RadioButton.
RADIOBUTTON SELECTION

A RadioButton is a kind of ToggleButton. A ToggleButton represents a button that
can change states. For a RadioButton, this state can change between a checked state

Table 10.9 The acceptable options for the TargetName property

Target Value Description

_blank,_media, or search Launches the URL specified in the NavigateUri property in a new
browser window

_parent,_self, or top Loads the URL specified in the NavigateUri property in the cur-
rent browser window
Licensed to Devon Greenway <devon.greenway@gmail.com>

243Button controls
and the default unchecked state. The state can be set at design time through the Bool-
ean-based IsChecked property, the value of which affects both behavior and appear-
ance, as shown in listing 10.2.

Result:

XAML:
<StackPanel>
 <TextBlock Text="What is your favorite flavor of ice cream?" />
 <RadioButton Content="Chocolate"
 IsChecked="true" />
 <RadioButton Content="Vanilla"
 IsEnabled="False"/>
 <RadioButton Content="Chocolate Chocolate" />
 <RadioButton Content="More Chocolate" />
</StackPanel>

This example shows four answers for a single question, one of which is disabled. You
can see that the first option is selected by default when the application starts. Note
also that it’s chocolate. If it’s not chocolate, it’s not a dessert.

 Once a RadioButton has been selected, it can’t be unselected by clicking it again.
A RadioButton can only be unselected by using one of two approaches: set the IsCh-
ecked property to false at runtime using code or selecting a different RadioButton
within the same group.
RADIOBUTTON GROUPING

A grouping of RadioButton items represents the choices available for a single situa-
tion. In the previous listing, you saw a StackPanel that grouped together a couple of
ice cream flavor choices. These choices were grouped because the StackPanel was the
immediate parent of both of the RadioButton items. A problem begins to emerge if
you add unrelated RadioButton items to the scenario. For these situations, you use
the GroupName property.

 The GroupName property allows you to control how RadioButton elements are
grouped together. By default, this string-typed property is set as an empty string, indi-
cating there’s no group. Because of this, all RadioButton elements with a direct par-
ent will belong to the same group. By explicitly setting this property, you can control
the groupings. You can even do this for RadioButton elements that share the same
parent, as shown in listing 10.3.

Listing 10.2 The default appearances of a checked and unchecked RadioButton
Licensed to Devon Greenway <devon.greenway@gmail.com>

244 CHAPTER 10 Controls and UserControls
Result:

XAML:
<StackPanel>
 <TextBlock Text="What is your favorite flavor of ice cream?" />
 <RadioButton Content="Chocolate" IsChecked="true" />
 <RadioButton Content="Vanilla" />

 <TextBlock Padding="0,15,0,0"
 Text="What is your favorite pizza topping?" />
 <RadioButton Content="Green Peppers" GroupName="pizza" />
 <RadioButton Content="Onions" GroupName="pizza" />
 <RadioButton Content="Pepperoni" IsChecked="true"
 GroupName="pizza" />
</StackPanel>

The listing shows how the GroupName property can be used to force RadioButtons to
work together. A close relative of the radio button, but one that doesn’t handle mutu-
ally exclusive choices and, therefore, needs no grouping, is the CheckBox.

10.3.4 The CheckBox

The CheckBox control enables a user to select whether an option is chosen. Unlike the
RadioButton, the CheckBox control allows you to select multiple elements that belong
to the same grouping so you could do something like select multiple pizza toppings
(see listing 10.4).

Result:

XAML:
<StackPanel>
 <TextBlock Text="Please select your favorite pizza toppings:" />
 <CheckBox Content="Green Peppers" IsChecked="true" />
 <CheckBox Content="Onions" />
 <CheckBox Content="Pepperoni" IsChecked="true" />
</StackPanel>

Listing 10.3 Manually controlling RadioButton grouping

Listing 10.4 A basic CheckBox setup
Licensed to Devon Greenway <devon.greenway@gmail.com>

245ItemsControls
Selecting multiple CheckBox elements at the same time is possible because the Check-
Box isn’t bound to a specific group. In fact, the CheckBox does little more than extend
the ToggleButton class. Because the CheckBox does extend the ToggleButton class,
you can use three-state checkboxes by switching the IsThreeState bool property to
true. What happens to the IsChecked property? Well, this property is actually a nul-
lable type so it also supports three states. These states and the look of a three-state
CheckBox are shown in listing 10.5.

Result:

XAML:
<StackPanel>
 <CheckBox IsThreeState="True" IsChecked="False" Content="Unchecked" />
 <CheckBox IsThreeState="True" IsChecked="True" Content="Checked" />
 <CheckBox IsThreeState="True" IsChecked="" Content="Indeterminate" />
</StackPanel>

Listing 10.5 shows the look and syntax of a three-state CheckBox. The fact that the
CheckBox can support three different states demonstrates one way in which Silver-
light is an improvement over HTML. Another improvement is found in the flexibility
of the ContentControl class in general. This class was discussed at the beginning of
section 10.2 and can be used in the CheckBox, RadioButton, HyperlinkButton, and
Button controls. In addition, the flexibility of the ContentControl can be used with
Silverlight’s item controls.

 In this section, we discussed the controls derived from the ButtonBase class that
represent buttons available within Silverlight. Often, these controls are used to trigger
an action. Occasionally, you may need to provide to present a list of items rather than
a single item. This type of functionality can be delivered through an ItemsControl.

10.4 ItemsControls
An ItemsControl is a type of control designed to show a collection of items. This con-
trol exposes the collection of items through a publicly visible property called Items.
This property represents an ItemsCollection where each element in the collection is
some kind of object. This object can be added at design time through XAML or at
runtime through code. Three controls in the Silverlight API are descendents of the
ItemsControl class: the ListBox, the ComboBox, and the TabControl.

 Though you’ll most often use one of its derived classes, the base ItemsControl can
be used whenever you want to present a list of items and don’t need any selected item
tracking. You’ll get similar results from using a StackPanel but, if you need to bind
items, the ItemsControl is the way to go.

Listing 10.5 Using three-state mode with the CheckBox control
Licensed to Devon Greenway <devon.greenway@gmail.com>

246 CHAPTER 10 Controls and UserControls
 The ItemsControl adds a few properties above and beyond what you would get
from a regular Control. These properties are shown in table 10.10.

We’ll show these properties in use with the ListBox, ComboBox, and TabControl. But
they could be just as easily used with a plain old ItemsControl.

10.4.1 The ListBox

The ListBox is one of the most commonly used items controls. Though much of its
functionality is directly inherited from ItemsControl, it adds the important distinc-
tions of exposing a selected item and including scrolling in its default template. This
control enables you to show multiple items from a collection of items at the same
time. If there are more items than the space allowed for the control, the ListBox will
display scrollbars to allow scrolling through the content. An example of this scrolling
feature as well as the syntax of a ListBox is shown in listing 10.6.

Result:

XAML:
<ListBox x:Name="myListBox">
 <ListBox.Items>
 <ListBoxItem><TextBlock Text="Sunday, June 1"/></ListBoxItem>
 <ListBoxItem><TextBlock Text="Monday, June 2"/></ListBoxItem>
 <ListBoxItem><TextBlock Text="Tuesday, June 3"/></ListBoxItem>
 <ListBoxItem><TextBlock Text="Wednesday, June 4"/></ListBoxItem>
 <ListBoxItem><TextBlock Text="Thursday, June 5"/></ListBoxItem>
 </ListBox.Items>
</ListBox>

Table 10.10 Key ItemsControl members

Member name Description

Items The collection of items to be displayed in the control

ItemsPanel The panel to be used to display the items

By default, this is a StackPanel, but you could change it to a
WrapPanel or anything else you’d like.

ItemsSource Used in binding, this is the source of the items, typically a collection.

ItemTemplate The data template used to display a single item

Listing 10.6 A ListBox that displays the days of the week
Licensed to Devon Greenway <devon.greenway@gmail.com>

247ItemsControls
This ListBox uses the Items property to load options at design time. You also have the
option of binding to a data source to make this list of items more dynamic. Binding to
a data source will be covered in the next chapter. Regardless of whether you’re bind-
ing to a data source or defining items at design time, each item in the control is a
ListBoxItem. A ListBoxItem is a type of ContentControl so you can use any visual
tree you want for an item, as shown in listing 10.7.

Result:

XAML:
<ListBox x:Name="myListBox">
 <ListBox.Items>
 <ListBoxItem> #A
 <StackPanel Height="80" Orientation="Horizontal">
 <Canvas Width="87" Height="77">
 <Image Source="http://www.silverlightinaction.com/month.png" />
 <TextBlock Width="77" TextAlignment="Center" FontFamily="Arial"
 FontWeight="Bold" FontSize="32" Padding="30" Text="1" />
 </Canvas>
 <TextBlock FontFamily="Arial" FontWeight="Bold" FontSize="44"
 Padding="20">Sunday</TextBlock>
 </StackPanel>
 </ListBoxItem>
 <ListBoxItem> #A
 <StackPanel Height="80" Orientation="Horizontal">
 <Canvas Width="87" Height="77">
 <Image Source="http://www.silverlightinaction.com/month.png" />
 <TextBlock Width="77" TextAlignment="Center" FontFamily="Arial"
 FontWeight="Bold" FontSize="32" Padding="30" Text="2" />
 </Canvas>
 <TextBlock FontFamily="Arial" FontWeight="Bold" FontSize="44"
 Padding="20">Monday</TextBlock>
 </StackPanel>
 </ListBoxItem>
 <ListBoxItem> #A
 <StackPanel Height="80" Orientation="Horizontal">
 <Canvas Width="87" Height="77">
 <Image Source="http://www.silverlightinaction.com/month.png" />
 <TextBlock Width="77" TextAlignment="Center" FontFamily="Arial"
 FontWeight="Bold" FontSize="32" Padding="30" Text="3" />
 </Canvas>
 <TextBlock FontFamily="Arial" FontWeight="Bold" FontSize="44"
 Padding="20">Tuesday</TextBlock>
 </StackPanel>
 </ListBoxItem>

Listing 10.7 Using a ListBoxItem as a ContentControl
Licensed to Devon Greenway <devon.greenway@gmail.com>

248 CHAPTER 10 Controls and UserControls
 <ListBoxItem>
 <StackPanel Height="80" Orientation="Horizontal">
 <Canvas Width="87" Height="77">
 <Image Source="http://www.silverlightinaction.com/month.png" />
 <TextBlock Width="77" TextAlignment="Center" FontFamily="Arial"
 FontWeight="Bold" FontSize="32" Padding="30" Text="4" />
 </Canvas>
 <TextBlock FontFamily="Arial" FontWeight="Bold" FontSize="44"
 Padding="20">Wednesday</TextBlock>
 </StackPanel>
 </ListBoxItem>
 </ListBox.Items>
</ListBox>

This listing shows a ListBox control with much richer ListBoxItem elements than
those shown in listing 10.6. Ultimately, one of the main reasons for using a ListBox is
to enable your users to select an item from it. Luckily, the ListBox exposes some prop-
erties for this.

The ListBox exposes two properties and an event—SelectedIndex, SelectedItem,
and SelectionChanged, respectively—all of which help you handle item selection.
The SelectedIndex is a zero-based int that reflects the index of the currently
selected item in the ListBox. If no item is selected, this property will return –1.
Even more informative is the SelectedItem property, which returns the current
selection in object form. This property type is a powerful improvement over the
value/text property of items in HTML. Regardless, whenever an item is selected,
whether by the user or programmatically, the SelectionChanged event will fire. This
event, as well as the SelectedItem and SelectedIndex properties, is also available
on the ComboBox.

10.4.2 The ComboBox

The ComboBox gives users the ability to select a single option from a list of choices. These
choices are visible to a user as long as the ComboBox is in an open state, which is set when
a user interacts with a ComboBox. Alternatively, this state can be set programmatically

ListBoxItem

Selector controls
The ListBox and ComboBox are two controls that inherit from Selector. Selector
enhances ItemsControl by adding the SelectedIndex and SelectedItems proper-
ties, as well as the underlying infrastructure to manage them. If you want to create
your own ListBox-like class, such as a dedicated carousel control or perhaps a sim-
ple menu, you should probably inherit from Selector as your starting point.

The ItemsControl by itself can be useful to show a list of elements on a page as
long as you don’t need to support the selection of one of those items. Note that, un-
like ListBox, it doesn’t include scrolling in its presentation.
Licensed to Devon Greenway <devon.greenway@gmail.com>

249ItemsControls
through the IsDropDownOpen property. This bool property is by default set to false so
a ComboBox starts in a compacted, closed state, as shown in listing 10.8.

Result:

XAML:
<ComboBox x:Name="myComboBox" Height="28" Width="180">
 <ComboBox.Items>
 <ComboBoxItem><TextBlock Text="Sunday, June 1"/></ComboBoxItem>
 <ComboBoxItem><TextBlock Text="Monday, June 2"/></ComboBoxItem>
 <ComboBoxItem><TextBlock Text="Tuesday, June 3"/></ComboBoxItem>
 <ComboBoxItem><TextBlock Text="Wednesday, June 4"/></ComboBoxItem>
 <ComboBoxItem><TextBlock Text="Thursday, June 5"/></ComboBoxItem>
 </ComboBox.Items>
</ComboBox>

Listing 10.8 shows the appearance of a closed ComboBox. As you can see, this control
delivers a compact approach for displaying a list of items. In fact, this control resem-
bles the DropDownList found in ASP.NET and the select element used in HTML. But,
unlike those controls, each item in the ComboBox can have a fully customized appear-
ance; each item is a ComboBoxItem, which happens to be a kind of ContentControl.
This fact enables you to recreate the list shown in listing 10.7 in the more compact
form of a ComboBox.

 The ComboBox also provides three members that make it unique from the other
list controls. The first member is a double property called MaxDropDownHeight that
allows you to customize the maximum height of the drop-down list. The second
member is an event named DropDownOpened that fires when the drop-down list is
shown. The third member is an event that triggers when the drop-down list closes.
This event is called DropDownClosed. Collectively, these three members make the
ComboBox special—they won’t be found on the third and final type of ItemsControl,
the TabControl.

10.4.3 The TabControl

The TabControl is another ItemsControl available within Silverlight. This ItemsCon-
trol is designed to show multiple content items in the same physical space on the
screen using a tab metaphor to switch between them. Each of these pieces of content
is defined within a TabItem, which happens to be a ContentControl. Because of this,
you can define the complete visual tree for each TabItem. Before you can do this, you
must reference the System.Windows.Controls assembly. The tab-related controls are
extended controls like the GridSplitter mentioned in chapter 7, so the sdk prefix
will be used once again throughout this section, as shown in listing 10.9.

Listing 10.8 A ComboBox that has been used to select an item
Licensed to Devon Greenway <devon.greenway@gmail.com>

250 CHAPTER 10 Controls and UserControls
Result:

XAML:
<UserControl x:Class="Listing10_9.Page"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:sdk="http://schemas.microsoft.com/winfx/2006/xaml/presentation/sdk"
 Width="400" Height="300">
 <StackPanel x:Name="LayoutRoot" Background="White"
 HorizontalAlignment="Left">
 <TextBlock Text="My Grocery List" />
 <sdk:TabControl x:Name="myTabControl" Height="200" Width="240">
 <sdk:TabItem>
 <ListBox>
 <ListBoxItem Content="Apples" />
 <ListBoxItem Content="Bananas" />
 <ListBoxItem Content="Grapes" />
 </ListBox>
 </sdk:TabItem>
 <sdk:TabItem>
 <StackPanel Orientation="Vertical">
 <ListBox>
 <ListBoxItem Content="Beef" />
 <ListBoxItem Content="Pork" />
 <ListBoxItem Content="Chicken" />
 </ListBox>
 <TextBlock TextWrapping="Wrap" Width="200"
 Text="NOTE: You may want to pick up some barbeque sauce." />
 </StackPanel>
 </sdk:TabItem>
 </sdk:TabControl>
 </StackPanel>
</UserControl>

This listing shows an entire page, which includes a basic TabControl. Because
TabControl is an extended control and is part of the System.Windows.Controls.dll,
we’ve shown the entire page’s XAML to demonstrate the use of the ext namespace.
Now that you can use a TabControl, it’s important to understand the behavior of
the headers.

 Each of the tab headers in listing 10.9 is hardly visible because each header is set by
a TabItem property called Header. This property represents the object used when
rendering the Header, so you should consider using some UIElement such as a Panel

Listing 10.9 The basic syntax of a TabControl
Licensed to Devon Greenway <devon.greenway@gmail.com>

251ItemsControls
for the Header. Listing 10.10 shows a TextBlock used for one Header and a Stack-
Panel for the other.

Result:

XAML:
<StackPanel x:Name="LayoutRoot" Background="White"
 HorizontalAlignment="Left">
 <TextBlock Text="My Grocery List" />
 <sdk:TabControl x:Name="myTabControl" Height="200" Width="240">
 <sdk:TabItem Header="Fruits">
 <ListBox>
 <ListBoxItem Content="Apples" />
 <ListBoxItem Content="Bananas" />
 <ListBoxItem Content="Grapes" />
 </ListBox>
 </sdk:TabItem>
 <sdk:TabItem>
 <sdk:TabItem.Header>
 <StackPanel Orientation="Horizontal">
 <Image Source="http://www.silverlightinaction.com/meat.png" />
 <TextBlock Text="Meats" />
 </StackPanel>
 </sdk:TabItem.Header>
 <StackPanel Orientation="Vertical">
 <ListBox>
 <ListBoxItem Content="Beef" />
 <ListBoxItem Content="Pork" />
 <ListBoxItem Content="Chicken" />
 </ListBox>
 <TextBlock TextWrapping="Wrap" Width="200"
 Text="NOTE: You may want to pick up some barbeque sauce." />
 </StackPanel>
 </sdk:TabItem>
 </sdk:TabControl>
</StackPanel>

This shows a TabControl with two TabItem elements. Each element has a Header. Note
that, if a TabItem has its Header property set, the HasHeader property of the TabItem
will change to true. This bool property defaults to false and is useful in the event
you need to check whether a TabItem has a header at runtime. For situations where
you want to change the location of the tabs, there’s another property.

Listing 10.10 Customizing the header of a TabItem
Licensed to Devon Greenway <devon.greenway@gmail.com>

252 CHAPTER 10 Controls and UserControls
 The TabStripPlacement property determines how the tabs align in relation to the
tab content area. This property represents an enumeration that can be set to Bottom,
Left, Right, or Top. By default, this property value is set to Top on a TabControl.

 The TabControl, ComboBox, and ListBox represent three ItemsControl elements
available in Silverlight. ItemsControl elements give you the flexibility to allow a user to
select from any kind of content. ItemsControls are the key type of control to use when-
ever you need to display lists of content: menus, list boxes, tab strips, carousels, and more.

 Together with the content controls such as Buttons, the ItemsControls help make
up the majority of the user interface elements you’ll use in Silverlight. Chances are, if
you create your own custom control, it’ll derive from one of those core types.

 Creating your own custom controls is a deep topic, and one that will need to wait
for the discussion of styling, templating, binding, and the Visual State Manager—all
covered in later chapters. But there’s one type of control you can create that doesn’t
require all this additional complexity. In fact, it was designed for simple reuse and UI
composition of existing controls such as those we’ve discussed in this chapter. That
type of control is the UserControl.

10.5 Creating UserControls
There may be times when none of the controls provided within Silverlight contain the
functionality you need. For these situations, you may want to consider creating a reusable
control. A reusable control can be useful when you want something more than UI
enhancements. After all, these types of enhancements can be provided with the style and
template features discussed in chapter 23. A reusable control
allows you to reuse functionality not found in a preexisting
control. For instance, imagine wanting to create a TextBox
that can be locked by a user and looks like figure 10.1.

 This figure shows a control that provides functionality
beyond a basic TextBox. This control adds an image that projects whether the Text-
Box can be edited. Although the desired functionality is easy to implement, you may
not want to recreate it every time; this provides an excellent opportunity to create a
reusable control. Now, imagine wanting to name this control LockableTextBox to use
it in other projects. To do this, you must create an instance of the UserControl class.

 UserControls are intended for simple reuse. You want to be able to compose a con-
trol in the designer but not to worry about enabling templating or other advanced con-
trol functionality. We’ll discuss templating in greater detail in section 23.3 but, for now,
understand that the template for a UserControl is the XAML file you create with it.

 The UserControl type itself is similar to ContentControl. Like ContentControl, it
can have only a single item of content in the Content property. In the default item
template in Visual Studio, that content is a grid, as shown in listing 10.11.

<UserControl x:Class="SilverlightApplication36.LockableTextBox"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

Listing 10.11 The default UserControl template

Figure 10.1 A TextBox
that can be locked
Licensed to Devon Greenway <devon.greenway@gmail.com>

253Creating UserControls
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d"
 d:DesignHeight="300" d:DesignWidth="400">

 <Grid x:Name="LayoutRoot" Background="White">

 </Grid>
</UserControl>

If they’re so similar, why doesn’t the UserControl derive directly from ContentCon-
trol? The ContentControl type allows you to provide a custom template for the Con-
tent. In a UserControl, that would be redundant because the content template is the
XAML file created when you created the UserControl.

 The UserControl also provides compile-time code generation for all the named
(using x:Name) elements in the XAML file. The InitializeComponent function, called
from the constructor, handles associating the elements in the XAML file with the gen-
erated properties. There’s no magic; the code is simply loading the associated XAML
using the equivalent of XamlReader.Load, then calling FindName for each expected
element, and assigning the result to the named property.

 You could do this in your own code if you preferred to. If you create the more flex-
ible but marginally more difficult custom controls, you’ll perform many of these steps.

 The UserControl class is designed to represent a new control or extend an exist-
ing one. This class gives you the ability to organize small portions of a UI into more
manageable components, which can then be used in your application or shared with
other applications. The process to provide this kind of functionality involves:

1 Defining the appearance of the control.
2 Defining the behavior of the control.
3 Calling the control.

This three-step process forms the ABCs of user-control development (Appearance,
Behavior, and Call). Over the course of this section, as you create a LockableTextBox,
you’ll see how these three steps relate to one another.

10.5.1 Defining the appearance

Defining the appearance of a UserControl involves creating the XAML for the user
interface. This process is the same as defining the UI for a page in Silverlight because
every page in Silverlight is a UserControl. The XAML for the UserControl (Lockable-
TextBox) is shown in listing 10.12.

<UserControl x:Class="MyClassLibrary.LockableTextBox"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Width="400" Height="300">
 <StackPanel x:Name="LayoutRoot" Orientation="Horizontal">
 <TextBox x:Name="myTextBox" Height="24" Width="120" />
 <Image x:Name="myImage" Height="24" Margin="5,0,0,0"

Listing 10.12 The user interface for the LockableTextBox UserControl

Content
Licensed to Devon Greenway <devon.greenway@gmail.com>

254 CHAPTER 10 Controls and UserControls
 Cursor="Hand" MouseLeftButtonUp="myImage_MouseLeftButtonUp"
 Source="http://www.silverlightinaction.com/unlocked.png" />
 </StackPanel>
</UserControl>

This listing shows the XAML that makes up the default appearance of the Lockable-
TextBox. This UI defines a TextBox and an Image within a StackPanel. The Stack-
Panel is important because, as we discussed, each UserControl can have only one
UIElement as a child, so you’ll almost always use one of the Panel elements discussed
in chapter 7 as the content of a UserControl.

 Also note that, in order to make the control truly reusable, we’ve put it into a sepa-
rate Silverlight class library project named MyClassLibrary. This project is referenced
from our main Silverlight application.

 Setting the Content of a UserControl is an important first step in creating a reus-
able control. This step defines the static parts of the UI, but the real value in creating a
reusable control is to provide some kind of new functionality. This functionality is gen-
erally delivered when you define the behavior of a control.

10.5.2 Defining the behavior

The functionality of a reusable control is also known as the control’s behavior. This
behavior is defined in the code-behind file of the XAML file, which will contain a class
that derives from the UserControl class. It’s your responsibility to make sure this class
provides the events, methods, and properties that detail the behavior of the control.
Look at the code for the LockableTextBox control shown in listing 10.13. This listing
uses a DependencyProperty, which was covered in chapter 2.

public partial class LockableTextBox : UserControl
{
 public LockableTextBox()
 {
 InitializeComponent();
 }

 private void myImage_MouseLeftButtonUp(object sender,
 MouseButtonEventArgs e)
 {
 IsLocked = !this.IsLocked;
 }

 public void UpdateUI()
 {
 if (IsLocked)
 {
 myImage.Source = new BitmapImage(
 new Uri("http://www.silverlightinaction.com/locked.png",
 UriKind.Absolute));
 }
 else

Listing 10.13 The LockableTextBox class definition (C#)

InitializeComponent

Toggle on
mouse click

Worker
function
Licensed to Devon Greenway <devon.greenway@gmail.com>

255Creating UserControls
 {
 myImage.Source = new BitmapImage(
 new Uri("http://www.silverlightinaction.com/unlocked.png",
 UriKind.Absolute));
 }
 myTextBox.IsReadOnly = IsLocked;
 }
 public bool IsLocked
 {
 get { return (bool)(GetValue(IsLockedProperty)); }
 set { SetValue(IsLockedProperty, value); }
 }

 public static readonly DependencyProperty IsLockedProperty =
 DependencyProperty.Register(
 "IsLocked",
 typeof(bool),
 typeof(LockableTextBox),
 new PropertyMetadata(new PropertyChangedCallback(OnIsLockedChanged))
);

 private static void OnIsLockedChanged(DependencyObject o,
 DependencyPropertyChangedEventArgs e)
 {
 LockableTextBox textBox = (LockableTextBox)(o);
 textBox.UpdateUI();
 }
}

This class includes the call to InitializeComponent inside the constructor. If left out,
our control references (to the textbox and the image, for example) would be null at
runtime.

 The class also includes the creation of a DependencyProperty for IsLocked. We
introduced dependency properties in chapter 2, but let’s dive a bit deeper into what’s
required to create them in your own class.
REGISTERING DEPENDENCY PROPERTIES

To register a property as a DependencyProperty, you must call the statically visible
DependencyProperty.Register method. This method requires the name of the CLR
wrapper, the type of the property value, and the type of the object that owns the prop-
erty. Listing 10.14 shows how to register the IsLocked property.

C#:
public static readonly DependencyProperty IsLockedProperty =
 DependencyProperty.Register(
 "IsLocked",
 typeof(bool),
 typeof(LockableTextBox),
 new PropertyMetadata(
 new PropertyChangedCallback(OnIsLockedChanged))
)

Listing 10.14 Registering a DependencyProperty with the property system

CLR property
wrapper

Dependency
property

Changed
handler

DependencyProperty
Property
name

On change
callback
Licensed to Devon Greenway <devon.greenway@gmail.com>

256 CHAPTER 10 Controls and UserControls
 public bool IsLocked
 {
 get { return (bool)(GetValue(IsLockedProperty)); }
 set { SetValue(IsLockedProperty, value); }
 }

This listing shows how to register a property as a DependencyProperty. Note the name
of the DependencyProperty itself. This name can be anything, but it generally follows
a naming template of [CLR Wrapper Name]Property. This DependencyProperty serves as
a key in the property dictionary used by the GetValue and SetValue methods of a CLR
property wrapper. Also note the fourth parameter, which allows you to define behav-
ioral aspects and automatically respond to property value changes.

 While the rest of the runtime uses the dependency properties directly, the CLR
property wrapper is required because it’s used by direct property assignments in
XAML or from your own code. Note that, unlike a normal CLR property, you’ll assign
the value to and read it from the dependency property system. In addition, you
won’t perform any other logic in the setter; you’ll do that inside the changed call-
back instead.
RESPONDING TO PROPERTY VALUE CHANGES

Dependency properties have the ability to automatically respond to property value
changes in a way that you determine. To stay connected with a value change, the
PropertyChangedCallback passes along a DependencyPropertyChangedEventArgs
instance, which gives you three properties to help you react to a change as necessary.
These three properties are described in table 10.11.

This table shows the properties of the DependencyPropertyChangedEventArgs struc-
ture. This structure is associated with the dependency property that was changed. To
get the object that this property is associated with, you must rely on the first parameter
passed from the PropertyChangedCallback. This parameter represents the Depen-
dencyObject whose property value was changed, so you’ll most likely need to perform
a conversion, as shown here:

private static void OnIsLockedChanged(DependencyObject o,
 DependencyPropertyChangedEventArgs e)
{
 LockableTextBox textBox = (LockableTextBox)(o);
 textBox.UpdateUI();
 }

Table 10.11 The properties of the DependencyPropertyChangedEventArgs structure

Property Description

NewValue The value of the property after the change has completed

OldValue The value of the property before the change has completed

Property The DependencyProperty that triggered the change

CLR property
wrapper
Licensed to Devon Greenway <devon.greenway@gmail.com>

257Creating UserControls
This example shows the event handler for the PropertyChangedCallback delegate
specified earlier. As you can see, this is an event handler that updates the user inter-
face of the UserControl. This optional event handler completes the implementation
for the IsLocked dependency property.

 At first glance, it seems that a lot of additional coding is associated with creating a
dependency property. But, considering the fact that only dependency properties can
be animated or used in styling, it’s clear that understanding dependency properties is
an important part of UserControl development. Once the behavior of a UserControl
is completed, you can use the control by calling it.

10.5.3 Calling the control

To include a UserControl in your application, you must do two things. First, you must
add an XML namespace that references the location of the UserControl. Then, you
must add an instance of that control within your XAML. These two steps are the same
for any UserControl. Listing 10.15 shows how to reference the LockableTextBox con-
trol built over the past two sections.

<UserControl x:Class="MySilverlightApp.Page"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:my="clr-namespace:MyClassLibrary;assembly=MyClassLibrary"
 Width="400" Height="300">
 <StackPanel x:Name="LayoutRoot" Margin="10">
 <my:LockableTextBox x:Name="myLockableTextBox" />
 </StackPanel>
</UserControl>

This snippet shows how to add the LockableTextBox to a basic Silverlight page. The
my namespace is used to tell Silverlight where to look for the LockableTextBox defini-
tion. This definition is used to build the control, which is referenced later. That’s all
there is to it.

 Creating a reusable control in Silverlight is as simple as defining a UserControl
that consists of an appearance and a behavior. These two items generally represent a
small component within a Silverlight application. Alternatively, a UserControl can
represent a component as large as an entire page. This fact is important because it can
affect how you decide to share your content.

 UserControls are intended for simple reuse. They’re great for those times when
you need to compose a number of existing elements and reuse them within your
application. But they’re generally not the best approach for creating controls for
broader reuse, which often require binding support and styling flexibility. In those
instances, you need to create a custom control, which we’ll cover in chapter 24—once
we get binding, styling, and visual state management under our belts.

Listing 10.15 Using the LockableTextBox

Namespace definition

LockableTextBox
Licensed to Devon Greenway <devon.greenway@gmail.com>

258 CHAPTER 10 Controls and UserControls
10.6 Summary
The Control, ContentControl, and ItemsControl types form the base for almost
everything you’ll interact with on a page in Silverlight.

 The Control is a basic type, providing core interaction logic for controls. The Con-
tentControl expands upon that base to provide a type of control that can hold a sin-
gle item of content. The Button-based controls derive from ContentControl.

 ItemsControls are the place to turn to should you ever need to create or use a
control that shows a list of items. Remember, it doesn’t need to be a traditional list; it
could be something like a tab strip, or a carousel, or even a menu. In all of those cases,
the ItemsControl base type provides the binding and templating support you need to
work with lists of items.

 The intent behind the first part of this chapter was to provide enough background
so that you can both understand how existing controls function and apply that knowl-
edge to new controls as they appear. New Silverlight controls appear almost daily, but
they’re almost always variations on one of the control models shown here.

 In the last part of this chapter, we introduced the concept of a UserControl. User-
Controls are great for your own simple reuse scenarios, but you’ll also find them
handy for creating pages and encapsulating data templates. Though you may never
create your own LockableTextBox control, you certainly will work with Pages and the
other Silverlight items based on the humble UserControl.

 Several times in this chapter, I mentioned the concept of binding. Binding is one
of the most important concepts in Silverlight, especially when you start working with
controls and templates; we’ll cover it next.
Licensed to Devon Greenway <devon.greenway@gmail.com>

Part 2

Structuring
 your application

Once you move beyond the basics, it’s important to consider how you
architect applications. Effective use of binding and patterns such as MVVM (or
ViewModel) is key for ensuring that your application can be both designed and
tested. Along with the binding system, features such as annotations and valida-
tion help to reduce the code burden while maximizing reuse. Controls such as
the DataGrid and DataForm build upon binding, annotations, and validation to
make UI work a breeze.

 Networking is a key component of a structured Silverlight application. If you
want to access data on a server, you’ll need to use a service. We’ll discuss how to
use the underlying networking stacks, traditional web services, sockets, and
advanced services.

 A key component of structure is the organization of the pages as seen by the
user. The Navigation Framework enables you to integrate with browser naviga-
tion to properly handle deep linking and browser history. We wrap up this part
with an extensive look at WCF RIA Services using a business application template
that builds on the navigation template. RIA Services pulls together the rest of the
section including networking, navigation, binding, validation, and many of the
other topics.

Licensed to Devon Greenway <devon.greenway@gmail.com>

Licensed to Devon Greenway <devon.greenway@gmail.com>

Binding
If I included a top-three list of the most important features to learn in-depth in Sil-
verlight or WPF, binding would be on that list. Binding—specifically, data binding—
tends to conjure up images of the old Visual Basic VCR control bound directly to
tables in an Access database, mishandled lost-focus events, and circular validation
problems. In more recent times, binding tends to be associated with specialized
data controls on web forms. In both cases, binding is associated with traditional
business or application data on its way to or from a persistent data store.

 Though binding is most commonly thought of in relation to persistent applica-
tion or business data, it’s used for much more than that in Silverlight and WPF.

 In Silverlight and WPF, you can bind properties such as IsEnabled to bool values
hanging off any arbitrary object. You can also bind controls to each other so that, for
example, a slider controls the z-axis rotation of an object in 3D space. Neither of those

This chapter covers
■ Mastering binding with a binding source
■ Binding UI elements together
■ Using value converters
■ Creating data templates
261

Licensed to Devon Greenway <devon.greenway@gmail.com>

262 CHAPTER 11 Binding
properties (IsEnabled or z rotation) would normally be thought of as “data” in a data
binding sense but, in the strictest sense of the term, they are.

 Want to show the number of characters entered in a TextBox? You guessed it: bind-
ing will help you do that with no code required.

 What if you want to set up a ListBox so each item displays a photo on the left
along with a name and description stacked on the right? Binding and data templates
are essential for that type of user interface customization.

 In chapter 16, when we cover the ViewModel pattern, you’ll see just how essential
binding can be for good application architecture. Throughout this chapter, we’ll pre-
pare the foundation by covering the mechanics of binding the input controls we dis-
cussed in chapter 10 with in-memory objects, as well as how to bind controls to each
other. Then, because data may come in any format, you’ll learn how to format and
convert it using value converters and binding expressions. Finally, we’ll end the chap-
ter with a discussion about data templates.

11.1 Binding with your data
Binding is a powerful way to create a connection between your UI and a source of
data. This simple technique can be used to create a clean separation between your
user interface and its underlying data and is essential for good application architec-
ture, as we’ll see in chapter 16. Regardless of the reason, you can use data binding in
your application by creating an instance of the Binding class.

 The Binding class is used to define a connection between a CLR object and a UI
component. This connection is defined by three essential elements: the source of the
data (the CLR object), the binding mode, and the target for the data (the dependency
property; see section 2.1.4 for more information). These three items are part of a con-
ceptual model that explains binding, which is shown in figure 11.1.

 This illustration uses the situation of binding the current time of day to a TextBox
to give a high-level overview of what data binding looks like. This conceptual binding
sets the Text property of a TextBox to the current TimeOfDay. To create a binding like
this, you must use one of the two available binding syntaxes. These syntaxes require
you to define both the source and the target of a binding. Each approach is appropri-
ate at a different time, so we’ll cover each in its own right in section 11.1.1. Once
you’ve decided which syntax is appropriate for your situation, you must decide how
data can pass between the source and the target. This is the responsibility of the Bind-
ingMode, which will be covered in section 11.1.2.

Property (TimeOfDay)

CLR Object (DateTime.Now)

Property (Text)

UI Component (TextBox)Binding Mode

Source Target

Figure 11.1 A conceptual view of data binding. The source owns the data; the
target operates on (displays, edits, and so forth) the data.
Licensed to Devon Greenway <devon.greenway@gmail.com>

263Binding with your data
11.1.1 Mastering the binding syntax

Silverlight gives you the ability to create a Binding using two different approaches.
The first approach allows you to dynamically create a binding at runtime. The second
gives you the opportunity to specify a binding at design time. Either way, the scenario
from figure 11.1 will be used to show both approaches.
BINDING AT RUNTIME

Binding to a data source at runtime is a common approach used in event-driven appli-
cation development. For instance, you may decide to display a list of basketball games
based on a date selected by a user. Or, you may decide to show the current time when
an application is loaded. Either way, creating a Binding at runtime follows a common
pattern, which is shown here. First, the XAML in the page:

<TextBox x:Name=“myTextBox” />

Next the code to create the binding source and the binding itself:

DateTime currentTime = DateTime.Now;
Binding binding = new Binding(“TimeOfDay”);
binding.Source = currentTime;
binding.Mode = BindingMode.OneWay;
myTextBox.SetBinding(TextBox.TextProperty, binding);

This shows how to bind the value of a CLR property to a UI element at runtime. The
preceding code binds the current time of day to the TextBox created in XAML. You
first retrieve the DateTime object that represents the current moment in time. This
object is then bound to the UI element (the TextBox) in just four lines of code. These
four lines of code specify the source, the binding mode, and the target of a binding.

 The source of a binding is made up of two codependent items that specify which
property of a CLR object to bind to. The name of the property to bind to is set when you
create a Binding instance through the constructor. This constructor takes a single
string parameter, which represents the name of the property to bind to. This property
belongs to a CLR object that must be associated with a Binding through the Source
property. Once this happens, the source of the binding is officially set. You can then
choose a BindingMode, which we’ll cover in section 11.1.2 (in this case, OneWay). Once
the source and binding mode have been set, you need to turn your focus to the target.

 The target element of a binding will always derive from the DependencyObject
class. Virtually every visual element in Silverlight can be a target because the Depen-
dencyObject class exposes a method called SetBinding. This method associates a tar-
get property, which must be a dependency property, with a Binding instance. After
this method is called, the source will be bound to the target.

 Occasionally, you may want to unbind a data source. Fortunately, data binding can
be halted by manually setting the target property of a binding. For example:

myTextBox.Text = “Binding Removed”;

This feature is only available at runtime because that’s the only time it makes sense.
Using a Binding at runtime is a powerful option. Equally as powerful and more often
used is the ability to create a Binding at design time in XAML.
Licensed to Devon Greenway <devon.greenway@gmail.com>

264 CHAPTER 11 Binding
BINDING AT DESIGN TIME

Binding to a data source at design time is a common feature in declarative markup
languages such as XAML. You’ve probably seen the power of this data-binding
approach if you’ve used ASP.NET or WPF. If you haven’t, don’t worry. In essence, this
approach allows you to keep your code separate from its presentation so that you can
take advantage of the developer/designer workflow available within Silverlight. It also
helps to keep your code clean and maintainable, as seen in this markup:

<TextBox x:Name=“myTextBox” Text=“{Binding TimeOfDay, Mode=OneWay}” />

This shows how to create a binding at design time in XAML. The binding is associated
with a target through the use of the XAML markup extension syntax, which uses curly
braces ({}). These braces, along with the use of the Binding extension name, inform a
property that a data source will be bound to it. This data source will be a CLR object
that has a TimeOfDay property, which may provide or receive a value, depending on
the binding mode. The other properties associated with the binding are set using a
propertyName=propertyValue syntax (Mode=OneWay).

 The curly brace syntax is helpful, but it’s simply shorthand. We’ll use the short-
hand syntax throughout XAML in the rest of this book, but it can be helpful to under-
stand the fuller version of the syntax. For example, the longer form (using property
element syntax) of the earlier TextBox binding is this:

<TextBox x:Name=“myTextBox”>
 <TextBox.Text>
 <Binding Path=“TimeOfDay” Mode=“OneWay” />
 </TextBox.Text>
</TextBox>

The markup in this example does exactly the same thing as the previous but doesn’t
invoke the markup extension triggered by the curly brace. Obviously, the syntax is
much more verbose and would be cumbersome to use for all values. If Silverlight ever
gets MultiBinding (a concept currently in use in WPF), understanding the full bind-
ing syntax will be essential to its use.

NOTE All parameters in a binding expression may be set using name=value
syntax. The binding expression {Binding TimeOfDay} is just shorthand for
{Binding Path=TimeOfDay}. Though you’ll find that certain tools, such as
Expression Blend and Visual Studio 2010, prefer one syntax over the other,
both may be used interchangeably and are equally valid.

When creating a binding in XAML, the source may be set in procedural code. This
code is responsible for setting the context in which a data source can be used via the
appropriately named DataContext property. This property will be explained in fur-
ther detail in section 11.2.2. For now, know that this is how a CLR object can be bound
to a DependencyObject. In this case, the code-behind would have the following code
to set the DataContext for the TextBox:

DateTime currentTime = DateTime.Now;
myTextBox.DataContext = currentTime;
Licensed to Devon Greenway <devon.greenway@gmail.com>

265Binding with your data
The DataContext may also be set in markup using a StaticResource, if the type being
used supports it. This approach is sometimes used for binding to a view model, which
we’ll see in chapter 16.

 Binding at design time is a valuable option when it comes to working with data. It
empowers you to separate UI from code. This functionality allows a designer to
enhance a UI without worrying about where the data is actually coming from. In a sim-
ilar light, binding at runtime enables you to create a more dynamic form of data bind-
ing. Regardless of where you define the binding, both approaches define a bridge
between a source and a target. Data can flow in multiple directions across this bridge.
To control the direction of that flow, you must learn about the various binding modes.

11.1.2 Choosing a binding mode

The Binding class gives you the ability to determine how data can flow between the
source and the target. This flow can be controlled by setting the Binding instance’s
Mode property. This property represents one of the three options available in the
BindingMode enumerator—OneTime, OneWay, and TwoWay.
ONETIME

The OneTime option sets the target property to the source property when a binding is
initially made. When this BindingMode is used, any changes to the data source won’t
be automatically sent to the target. Instead, the target will be set only when the source
is initialized, as shown in figure 11.2.

 This figure shows the simplistic nature of the OneTime BindingMode. As you can
imagine, this BindingMode is appropriate in situations where you only care about the
initial value of a property. For instance, you may want to display the creation date of a
database record. Because this value shouldn’t change, the OneTime BindingMode is a
great choice. For property values that will change such as the date/time when a data-
base record was last modified, you may want to use the OneWay binding option.
ONEWAY

The OneWay BindingMode is the default when you create a Binding. This option gives
you the ability to automatically receive changes from a source property. Whenever the
binding source property changes, the target property will automatically change, but
the source property won’t change if the target is altered. This process is shown in fig-
ure 11.3.

 This figure shows how the OneWay BindingMode works at a high level. Think of the
speedometer in your car as a OneWay binding from your gas pedal. When you press or
release the gas pedal, the speedometer changes; but, if you somehow changed the
value of the speedometer itself, your gas pedal wouldn’t change. This inability to send

Figure 11.2 A conceptual view of OneTime binding to a data source. The value is
initially read from the source and is never updated again.
Licensed to Devon Greenway <devon.greenway@gmail.com>

266 CHAPTER 11 Binding
a change from the target back to the source shows how OneWay binding works. For sit-
uations where you do want to send changes in the target back to the source, you use
the TwoWay option.
TWOWAY

TwoWay binding enables two properties that are bound to change each other. This may
sound recursive, but it’s not. A TwoWay binding changes the target when the source
changes. If the target changes, the source is updated. This process can be seen in fig-
ure 11.4.

 This figure shows a conceptual view of the TwoWay binding. This binding approach
is useful for data entry forms using Silverlight because forms generally allow users to
add as well as edit data. This process of editing the preexisting data practically begs for
TwoWay binding.

 The TwoWay BindingMode is one of the options available to control the flow of your
data. The other alternatives are available through the OneWay and OneTime options.
Collectively, these options are an important part of setting up a binding.

Figure 11.3 A conceptual view of OneWay binding to a data source. The value is
updated each time the source changes, but changes to the value in the target control
don’t make it back to the source.

Figure 11.4 A conceptual view of TwoWay binding to a data source. The target
control reflects changes to the source, and the source is updated with any changes
made in the target.
Licensed to Devon Greenway <devon.greenway@gmail.com>

267Understanding your binding source
After the target and binding mode have been selected, you need to choose an appro-
priate source.

11.2 Understanding your binding source
In section 11.1, we looked at the general concept of binding. We discussed this concept
in the limited scope of binding to an individual property. This approach can be valuable
in certain situations but, to truly harness the power of data binding, we must build a bet-
ter understanding of data sources, which we’ll do over the course of this section.

 We’ll discuss what it takes to bind to a property of a CLR object, but we won’t cover
just any property. We’ve already done that. Instead, we’ll discuss what it takes to bind
to properties in your CLR objects and how to bind to entire CLR objects. We’ll cover
how to bind UI elements to each other and how to bind a UI element to itself. We’ll
close out the section by talking about binding to entire collections of objects. Collec-
tively, these items will help you to wield the power of binding.

11.2.1 Binding to a property

Silverlight gives you the flexibility to bind to any CLR property you want. You saw this with
the examples using the TimeOfDay property in section 11.1. Significantly, if you visited
http://www.silverlightinaction.com and ran the application, you saw that, once the time
was displayed, it just sat there. It didn’t automatically update with each passing second
because, by default, CLR properties don’t broadcast their changes—that and because
the TimeOfDay property doesn’t automatically continue ticking. To update the target
with a change in the CLR property, you must create a change-notification handler.

 A change-notification handler notifies a binding target that a change has been
made. This enables a target to automatically respond to changes. Dependency proper-
ties already have this feature built in, but CLR properties don’t. If you want your CLR
properties to broadcast their changes, you must implement the INotifyProperty-
Changed interface, which is demonstrated in listing 11.1.

public class Emoticon : INotifyPropertyChanged
{
 public event PropertyChangedEventHandler PropertyChanged;

 private string _name;
 public string Name
 {
 get { return _name; }
 set
 {
 _name = value;
 NotifyPropertyChanged(“Name”);
 }
 }

 private ImageSource _icon = null;
 public ImageSource Icon

Listing 11.1 Implementing the INotifyPropertyChanged interface (C#)

PropertyChanged
event

INotifyPropertyChanged
interface
Licensed to Devon Greenway <devon.greenway@gmail.com>

http://www.silverlightinaction.com

268 CHAPTER 11 Binding
 {
 get { return _icon; }
 set
 {
 _icon = value;
 NotifyPropertyChanged (“Icon”);
 }
 }

 public Emoticon(string name, string imageUrl)
 {
 _name = name;
 _icon = new BitmapImage(new Uri(imageUrl));
 }

 public void NotifyPropertyChanged(string propertyName)
 {
 if (PropertyChanged != null)
 {
 PropertyChanged(this,
 new PropertyChangedEventArgs(propertyName));
 }
 }
}

Listing 11.1 shows how to implement the System.ComponentModel namespace’s INo-
tifyPropertyChanged interface on a class. This class represents an emoticon (such as
a smiley face) that uses the INotifyPropertyChanged interface as a guide for broad-
casting changes in property values. The interface can be used to ensure that your UI
component and desired CLR property are in sync during OneWay and TwoWay binding.
This synchronization effort will take effect as long as you’ve implemented the Proper-
tyChanged event.

 The PropertyChanged event is what keeps things in sync, so you must make sure
this event is triggered whenever a property value has changed. You can accomplish
this by firing the event in a property’s setter. Alternatively, if you plan on keeping mul-
tiple properties in sync, you may want to refactor the PropertyChanged event to a
common method—as shown in listing 11.1. Either way, the binding system’s Proper-
tyChanged event handler uses reflection to examine the value of a property and pass it
on to the binding target. This is why the PropertyChangedEventArgs type takes a
string parameter that represents the name of the CLR property that changed.

 Binding to a CLR property is a powerful way to work with your objects. These
objects generally represent real-world entities that may also need to be bound to. For-
tunately, Silverlight also provides an elegant way to bind to a CLR object.

11.2.2 Binding to an object

Up to this point, we’ve primarily focused on binding individual properties to UI com-
ponents. This technique is pretty simple, but it can also be somewhat tedious if you
need to bind multiple properties of an object to a UI. You can make this task less tire-
some by using the DataContext property.

Notification
Licensed to Devon Greenway <devon.greenway@gmail.com>

269Understanding your binding source
 The DataContext property allows you to share a data source throughout a Depen-
dencyObject. This data source can be used by all the child elements of a Dependency-
Object that define a Binding. Binding uses the most immediate ancestor’s
DataContext unless another data source is set to it. If another data source is set, that
source is used for the Binding. Either way, by relying on the DataContext of an ances-
tor, you can easily bind several properties of an object to a UI. This approach is shown
in listing 11.2.

XAML:
<UserControl x:Class=“Chapter011.MainPage”
 xmlns=“http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=“http://schemas.microsoft.com/winfx/2006/xaml”>

 <Grid x:Name=“LayoutRoot” Background=“White”>
 <Grid.RowDefinitions>
 <RowDefinition Height=“Auto” />
 <RowDefinition Height=“Auto” />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition />
 <ColumnDefinition />
 </Grid.ColumnDefinitions>
 <TextBlock Text=“Name:” />
 <TextBlock Text=“Image:” Grid.Column=“1” />
 <TextBox Text=“{Binding Name, Mode=TwoWay}” Grid.Row=“1” />
 <Image Source=“{Binding Icon}” Grid.Row=“1” Grid.Column=“1” />
 </Grid>
</UserControl>

C#:
Emoticon emoticon =
 new Emoticon(“Smiley Face”,
 “http://www.silverlightinaction.com/smiley.png”);
LayoutRoot.DataContext = emoticon;

Listing 11.2 shows how an object can be bound to elements within a DependencyOb-
ject. The TextBox and Image elements in this example show their intent to bind to
two different properties of an object. These elements don’t have their DataContext
property set in the code behind, so the elements look to their immediate parent,
myGrid, and try to use its DataContext. This DataContext has been set in the code-
behind. The object assigned to the DataContext serves as the data source for the Grid
and its children. If the DataContext of the Grid hadn’t been set, the elements
would’ve continued up the tree and checked the UserControl element’s DataCon-
text. If that DataContext were set, it would’ve been used. Either way, this example
shows how much more succinct and maintainable the DataContext approach can be.

 So far, our examples have fallen squarely in the zone we tend to think of as tradi-
tional data binding. But, Silverlight also supports the ability to bind controls to each
other simply as a way to reduce plumbing code.

Listing 11.2 Binding an Emoticon object to a Grid

LayoutRoot

Binding
statements

LayoutRoot’s
DataContext
Licensed to Devon Greenway <devon.greenway@gmail.com>

270 CHAPTER 11 Binding
11.2.3 Binding to a UI element

Binding one or more properties of a UI element to the values on an entity, view
model, or business object is a compelling use of binding. Sometimes, though, you
want to use binding for things we wouldn’t traditionally consider “data”—things
within the user interface. You may want to bind the height of two controls together so
that they resize equally or perhaps you want to bind three sliders to the x, y, and z-axis
rotations of a plane (see section 6.5 for more information on 3D rotation in Silver-
light). Rather than binding to gather input or display data to the user, you’re binding
to avoid writing extra plumbing code.

Setting the DataContext in XAML
In the previous section, I mentioned that you can set the data context using a static
resource, all from within XAML. Though the DateTime example didn’t fit that model,
the Emoticon example can.

Recall from chapter 2 that XAML is, in essence, a way to represent and initialize CLR
objects in markup. To support binding this way, we’ll add in a resources section (cov-
ered in chapter 23), which holds a reference to a single Emoticon object in the local
namespace:

<UserControl x:Class=“Chapter011.MainPage”
 xmlns=“http://schemas.microsoft.com/winfx/2006/xaml

➥ /presentation”
 xmlns:x=“http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:local=“clr-namespace:Chapter11”>
 <UserControl.Resources>
 <local:Emoticon x:Key=“emoticon”
 Name=“SmileyFace”
 Icon=“http://www.silverlightinaction.com/smiley.png”/>
 </UserControl.Resources>

The Emoticon in the resources section is initialized directly on the page when the
rest of the elements are constructed. But as written, the Emoticon class requires
parameters in its constructor, something that isn’t supported in the .NET 4 version
of XAML used by Silverlight 4. This is remedied by adding a default (parameterless)
constructor to the class:

public Emoticon() {}

Finally, we set up the relationship via the DataContext using the StaticResource
markup extension and referring to the x:Key of the resource that corresponds to our
emoticon:

<Grid x:Name=“LayoutRoot”
 DataContext=“{StaticResource emoticon}” …

The end result is a binding relationship set entirely from within XAML in a tool and
designer-friendly way. We’ll see more examples of this when we look at .WCF RIA Ser-
vices in chapter 17, and some of the optional XAML data source controls it provides.
Licensed to Devon Greenway <devon.greenway@gmail.com>

271Understanding your binding source
 Let’s say that you want to display a count of
characters entered into a TextBox in real time,
something like figure 11.5.

 You could do that in code, but that would be
fairly uninteresting code to write. It would need
to refer to XAML elements by name or have
event handlers wired in XAML, introducing a
dependency on the specific page’s code-behind and making it less portable and
potentially more brittle. In addition, you’d find yourself doing it enough that you’d
either wrap the TextBox in your own CountingCharsTextBox control or add a helper
buddy class or something.

 Or, if you prefer a XAML approach, which I hope I’ve sold you on by now, you
would use element binding introduced in Silverlight 3. Element binding allows you to
bind the properties of one FrameworkElement to another FrameworkElement. The
usual restrictions apply (the target must be a DependencyProperty; the source must
notify of changes), so you can’t use element binding quite everywhere.

 To produce the TextBox shown in figure 11.5 with the automatic count of characters
using element binding, the markup is pretty straightforward and entirely self-contained:

<StackPanel Orientation=“Vertical” Margin=“50”>
 <TextBlock Text=“Tweet (max 140 characters)” />
 <TextBox x:Name=“tweetText”
 MaxLength=“140”
 Text=“Right now I'm writing a book” />
 <StackPanel Orientation=“Horizontal”>
 <TextBlock Text=“{Binding Text.Length, ElementName=tweetText}” />
 <TextBlock Text=“/” />
 <TextBlock Text=“{Binding MaxLength, ElementName=tweetText}” />
 </StackPanel>
</StackPanel>

This XAML will show a TextBox with a count of characters underneath it. The charac-
ter count will update in real time to show the number of characters typed into the
TextBox. Note also that the MaxLength displayed under the text box is actually coming
from the TextBox itself (the 140 in the label is not, though). The key item that makes
this happen is the ElementName parameter in the binding expression. ElementName is,
as it suggests, the name of another element on the XAML page.

 Sometimes, you’ll want to bind two elements together, as we’ve done here. Other
times, you may want to bind an element to a value on itself using something called rel-
ative source binding.
USING A RELATIVE SOURCE

WPF supports a number of different types of relative source bindings. In Silverlight, it’s
used for one thing: binding an element to itself. Let’s assume for a moment that we
have a simple property in our user control’s code-behind. It could (and should) be a
DependencyProperty but, to keep it short, we’re going to declare a good old CLR prop-
erty and assume it’s set only in the constructor. We could then refer to that property in

Figure 11.5 Using element binding
to count characters as you type into
a TextBox
Licensed to Devon Greenway <devon.greenway@gmail.com>

272 CHAPTER 11 Binding
XAML but, without somehow telling the binding system that the source of the data is the
control hosting the XAML, we’d be stuck.

WARNING Here be dragons. Relative source binding can not only encour-
age bad application practices, such as binding to things defined in code-
behind instead of following a pattern such as ViewModel, but also be hard
to debug, especially when you get into changes to DataContext set by exter-
nal consumers of your user control. Use RelativeSource Self binding, but
understand that your debugging workload will probably go up for the
choice. Don’t use RelativeSource Self binding just to avoid creating an
appropriate container or abstraction for your data.

This is where RelativeSource Self binding comes in. RelativeSource can be set any-
place you’d normally have a binding statement, including the DataContext. Listing 11.3
shows how to bind a TextBlock in the UI to a simple CLR property in the code-behind.

C# code-behind:
private string _pageTitle = “Page Title”;
public string PageTitle
{
 get { return _pageTitle; }
 set { _pageTitle = value; }
}

XAML:
<UserControl x:Class=“Chapter011.RelativeSource”
 xmlns=“http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=“http://schemas.microsoft.com/winfx/2006/xaml”
 DataContext=“{Binding RelativeSource={RelativeSource Self}}”>
 <Grid x:Name=“LayoutRoot” Background=“White”>
 <TextBlock Text=“{Binding PageTitle}” />
 </Grid>
</UserControl>

RelativeSource Self binding is useful for those occasions when you really do need
to bind to a property of the control or need to bind a property of a control to itself.
Use it sparingly and not as a part of the overall application architecture and you’ll find
it helps enable those few scenarios where other solutions are just too cumbersome.

 Another quiet addition to Silverlight binding is the ability to bind to a specific ele-
ment in an array or list.

11.2.4 Binding to an indexed element

Silverlight 3 introduced the ability to bind to a numerically-indexed element in a col-
lection. This can be useful in instances where you may have an indexed property bag
hanging off a class or you really do want to get just a specific element out of a larger
collection without prefiltering it in code.

Listing 11.3 Binding elements in XAML to properties in the code-behind

RelativeSource
Self

Binding to
property
Licensed to Devon Greenway <devon.greenway@gmail.com>

273Understanding your binding source
 Let’s assume for a moment that we have a class Repository that exposes a collec-
tion of Emoticon objects through a property named Emoticons. We could then set up
a static resource for pure XAML binding or set the DataContext from the page or
within the code-behind, as shown in the previous examples. Once that’s set up, we’d
be able to refer to individual elements in the collection using the index syntax within
the binding statement, as shown in listing 11.4.

C#:
public class Repository
{
...
 private ObservableCollection<Emoticon> _emoticons;
 public ObservableCollection<Emoticon> Emoticons
 {
 get { return _emoticons; }
 }
}

XAML:
<UserControl.Resources>
 <local:Repository x:Key=“repository” />
</UserControl.Resources>

<Grid x:Name=“LayoutRoot”
 DataContext=“{StaticResource repository}”>

 <TextBlock Text=“{Binding Emoticons[2].Name}” />
</Grid>

In listing 11.4, the TextBlock will resolve its text property to be the value in reposi-
tory.Emoticons[2].Name and display that on the screen. The syntax is consistent with
C# indexing conventions.

 Binding to a single element in a collection using a numeric index in a binding
expression is useful, but often we want to bind using a string key instead.

11.2.5 Binding to a keyed (string indexed) element

Property bags and datasets are commonplace in the desktop application world. Silver-
light 4 introduced the ability to bind to these types of structures by introducing keyed
or string-indexed binding expressions.

 Listing 11.5 shows the same example as 11.4 but now the collection is being
accessed via a string key.

C#:
public class Repository
{
...

Listing 11.4 Binding to a specific element in a collection, using a numeric index

Listing 11.5 Binding to a specific element in a collection, using a numeric index

Collection
to bind to

Indexed
binding
Licensed to Devon Greenway <devon.greenway@gmail.com>

274 CHAPTER 11 Binding
 private Dictionary<string, Emoticon> _emoticons;
 public Dictionary<string, Emoticon> Emoticons
 {
 get { return _emoticons; }
 }
}

XAML:
<UserControl.Resources>
 <local:Repository x:Key=“repository” />
</UserControl.Resources>

<Grid x:Name=“LayoutRoot”
 DataContext=“{StaticResource repository}”>

 <TextBlock Text=“{Binding Emoticons[Smiley].Name}” />
</Grid>

Listing 11.5 works assuming your Emoticons dictionary has an element with the key
Smiley. This feature enables a ton of must-have scenarios in Silverlight, specifically
around binding to the data of a shape unknown at design time.

 Binding to a single element in a collection using a numeric index or string key in a
binding expression is useful, but it’s more common to bind to an entire collection
rather than a single element within that collection. That’s the situation you’ll run into
when you want to populate a ListBox or other ItemsControl.

11.2.6 Binding to an entire collection

Binding to a collection is an important task in a lot of applications. There are numer-
ous times when you need to show a list of the items in a collection. You may want to
display a collection of emoticons or you may want to show a list of the days of the
week. Either way, these lists are made up of individual items, so it’s only natural to use
a control derived from ItemsControl.

 An ItemsControl is a basic control used to show a collection of items. We discussed
this control in chapter 10, but we didn’t talk about the process of binding data to the
control. Instead, you saw the manual approach of adding items one by one to the Items
collection. Although this technique is useful in some situations, the ItemsControl pro-
vides a more elegant approach through the ItemsSource property (see listing 11.6).

Result:

XAML:
<ListBox x:Name=“myListBox” Height=“100” />

Listing 11.6 Binding a collection of Emoticon objects to a ListBox

Collection
to bind to

Keyed/string-
indexed binding
Licensed to Devon Greenway <devon.greenway@gmail.com>

275Understanding your binding source
C#:
List<Emoticon> emoticons = GetEmoticons();
myListBox.ItemsSource = emoticons;

This listing shows how to bind a collection of objects to an ItemsControl—in this
case, a ListBox control (which derives from ItemsControl). Using the ItemsSource
property, this ListBox loads a collection of Emoticon objects from our earlier exam-
ples using a function we’ll assume exists in our code: GetEmoticons.

 The ItemsSource property is used solely for the sake of data binding. This prop-
erty can be used to bind to any collection that implements IEnumerable. This prop-
erty is necessary because the Items collection of the ItemsControl class isn’t a
DependencyProperty, and only DependencyProperty-typed members have support
for data binding.

 The ItemsSource property can only be used if the Items collection of an Items-
Control is empty. If the Items collection isn’t empty, your application will throw an
InvalidOperationException when you try to set the ItemsSource property. If you
intend to use this property, you should also consider using the DisplayMemberPath
property.

 The DisplayMemberPath property determines which CLR property value to use for
the text of a list item. By default, each list item will use the ToString method of the object
it’s bound to for the display text—the reason each of the items in listing 11.5 is shown
as MyLibrary.Emoticon. You can override the ToString method to fully customize the
text shown for an item. If you want to go a step further, you can customize the entire look
of an item using the data template information discussed in section 11.3.2. But, for the
quickest approach, you can use the DisplayMemberPath as shown in listing 11.7.

Result:

XAML:
<ListBox x:Name=“myListBox” DisplayMemberPath=“Name” Height=“100” />

C#:
List<Emoticon> emoticons = GetEmoticons();
myListBox.ItemsSource = emoticons;

This shows the impact of the DisplayMemberPath property on binding items. As you
can see, this property makes the items in a list much more meaningful. This approach
allows you to easily display information from a CLR property, an object, or a collection.

 The approaches we’ve talked about so far work well when you need to bind a single
value to a single property without modifying the display format of the values in any

Listing 11.7 Using the DisplayMemberPath to improve the display of a list of items
Licensed to Devon Greenway <devon.greenway@gmail.com>

276 CHAPTER 11 Binding
way. We covered how to bind to simple values, how to get individual values by index or
key, and how to set the display member when it’s different from the data member.

 In the next two sections, we’ll cover how to build upon what we learned in this sec-
tion to customize the display of single values and aggregate several values up into a
single data template to be repeated for each entry in a collection.

11.3 Customizing the display
As you saw throughout section 11.2, data binding is a powerful way to show data.
Occasionally, this information may be stored in a format not suitable to display in a UI.
For instance, imagine asking your user, “Does two plus two equal four?” This question
clearly demands a yes or no response. The problem begins to arise when the response
is saved to a more persistent data source.

 A lot of times, a piece of data such as a property will be saved one way but need to
be presented in another. In the case of a yes-or-no question, the answer may be stored
in a bool CLR property. This property may run under the assumption that “yes” is
equivalent to true and “no” is the same as false. This assumption can become a prob-
lem if you need to bind to that data because, by default, data binding calls a type’s
ToString method. Your users could see a statement that looks like “Does two plus two
equal four? True.” when, in reality, it’d be better to show “Does two plus two equal
four? Yes.” This small but common problem demands a better approach.

 If Silverlight couldn’t handle the simple task of formatting values for display, bind-
ing wouldn’t be particularly useful. Luckily, Silverlight has everything you need to for-
mat display values, convert both inbound and outbound values, provide special
handling for null values and even provide fallbacks for cases when binding fails.
Throughout this section, you’ll see how to customize the visual representation of your
data using these powerful features, several of which are new to Silverlight 4.

11.3.1 Formatting values

When writing code, you can format values using the string.Format function. But
until Silverlight 4, there was no good way to do the equivalent during a binding opera-
tion. You could write a custom value converter, but that gets old quickly, and becomes
another testing and maintenance point.

 Silverlight 4 introduced the ability to use string formatting when binding. The syn-
tax is essentially the same as the string.Format function. For example, this will set
the value of the TextBlock to be “DOB: May 19, 2007” assuming the DateOfBirth
property on your binding source contains the value 5/19/2007:

<TextBlock Text=“{Binding DateOfBirth, StringFormat=DOB:\{0:D\}}” />

Similarly, this binding expression will set the value of the TextBlock to be $1,024.10
assuming the decimal BilledAmount field contains the value 1024.10m:

<TextBlock Text=“{Binding BilledAmount, StringFormat=\{0:C\}}” />

Sometimes, simply formatting the value isn’t enough. In those cases, you may need to
perform a real data conversion and write your own custom value converter.
Licensed to Devon Greenway <devon.greenway@gmail.com>

277Customizing the display
11.3.2 Converting values during binding

Silverlight allows you to dynamically convert values during data binding. You can
accomplish this by first creating a custom class that implements a value converter. This
value converter can then be referenced directly in XAML. This approach is recom-
mended over custom setter/getter code because it helps keep the design separate
from the code. Let’s begin by discussing how to create a value converter.
CREATING A VALUE CONVERTER

To create a value converter, you must create a class that implements the IValueCon-
verter interface, which enables you to create some custom logic that transforms a value.
This transformation may take place in one of two methods depending on the flow of your
data. The first method, Convert, is used when the data is moving from the source to the
target—for example, from your object to a TextBox. If the data is flowing from the target
back to the source, such as when the value entered in a TextBox goes back to your object,
a method called ConvertBack is used. Both methods are members of the IValueCon-
verter interface. This interface and its methods are demonstrated in listing 11.8.

public class YesNoValueConverter : IValueConverter
{

 public object Convert(object value, Type targetType,
 object parameter, System.Globalization.CultureInfo culture)
 {
 bool isYes = bool.Parse(value.ToString());
 if (isYes)
 return “Yes”;
 else
 return “No”;
 }

public object ConvertBack(object value, Type targetType,
 object parameter, System.Globalization.CultureInfo culture)
 {
 string boolText = value.ToString().ToLower();

 if (boolText == “yes”)
 return true;
 else if (boolText == “no”)
 return false;
 else
 throw new InvalidOperationException(“Please enter 'yes' or 'no'.”);
 }
}

This listing shows a value converter that converts between a bool and Yes or No. This
converter uses the Convert method when data is being bound to your UI. It’s this
method that converts a bool to Yes or No. When the UI is passing data back to its source
(TwoWay binding), the ConvertBack method is used. This method converts Yes to true
and No to false. These methods control the conversion process. To assist in this pro-
cess, both these methods give you the opportunity to provide custom information.

Listing 11.8 A value converter that converts a Boolean to “Yes” or “No” (C#)

Convert
function

ConvertBack
function
Licensed to Devon Greenway <devon.greenway@gmail.com>

278 CHAPTER 11 Binding
 Both the Convert and ConvertBack methods allow you to use two optional pieces
of information. The first is an arbitrary object called parameter that can be used by
your conversion logic. By default, this object will be null, but you can set it to any
value that you find useful. The other piece of information specifies the CultureInfo
object to use when converting the values. We’ll discuss both parameters in a moment.
But, to set the CultureInfo or pass along a custom parameter, you first must know
how to use a value converter from markup.
USING A VALUE CONVERTER

Using a value converter involves setting the Converter property of a Binding object.
This property determines which IValueConverter to use when transforming data. By
default, this property isn’t set to anything (null), but you can set it to reference an
IValueConverter you’ve created. Before you can reference an IValueConverter, you
must add it as a resource. Resources will be discussed in chapter 23. For now, just
know that you can reference an IValueConverter by first adding it to the Resources
collection, as shown here:

<UserControl x:Class=“Chapter11_9.MainPage”
 xmlns=“http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=“http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:local=“clr-namespace:Chapter11_9”
 Width=“400” Height=“300”>

 <UserControl.Resources>
 <local:YesNoValueConverter x:Key=“myConverter” />
 </UserControl.Resources>

 <Grid x:Name=“LayoutRoot” Background=“White” />
</UserControl>

This shows how to introduce a custom value converter to the XAML world. The local
prefix is assumed to be defined as a namespace (see chapter 2). The key myConverter
is used to reference the YesNoValueConverter in XAML. The following is an example
of referencing a value converter:

<TextBlock x:Name=“myTextBlock”
 Text=“{Binding IsCorrect, Converter={StaticResource myConverter}}” />

This example shows a basic Binding that uses a custom converter. This converter
alters the displayed text of a bool property called IsCorrect. The example shows that
the custom converter is referenced through the Converter property. This property
uses the curly-brace markup extension syntax just like the Binding syntax because it’s
the syntax used to reference a resource. You can also pass a custom parameter or the
culture information if you need to.

TIP A statement such as the binding statement shown in the previous exam-
ple can seem to be a jumble of curly braces. Think of each matched set of
braces as a separate statement, substituted in when parsed and evaluated. For
example, the {StaticResource myConverter} statement is a complete Stat-
icResource markup extension statement itself, the result of which, after eval-
uation, is passed in to the Converter parameter of the Binding statement.
Licensed to Devon Greenway <devon.greenway@gmail.com>

279Customizing the display
The Binding class exposes an object property called ConverterParameter, which can
be used to pass an arbitrary value to an IValueConverter. The value converter uses
the value of the ConverterParameter in the Convert and ConvertBack methods. By
default, this value is null but you can use it to pass along any data you want, such as a
format string or an index. If you need to pass along culture-related data, we recom-
mend using the ConverterCulture property.

 The ConverterCulture property of the Binding class allows you to set the culture.
This culture is passed along as a CultureInfo object that can be used by the Convert
and ConvertBack methods. By default, the CultureInfo object reflects the value of
the Language attribute of the calling FrameworkElement. The Language attribute is
used for localization and globalization. This value uses a string that defaults to en-
US, which represents U.S. English.

Creating and using a value converter can be valuable when working with data, as
shown with our basic yes/no example. Value converters can be useful in even more
complex scenarios. For instance, Silverlight doesn’t have support for HTML tags in
regular text controls, so you may consider using a value converter to scrub the HTML
tags from a string before binding it to your UI.

 Value converters were often used to format values for binding. We’ve already seen
a way to format strings for display. Let’s now look at how to handle fallback values and
null value display.

Value converter tricks
Value converters are powerful and allow you to extend binding to support scenarios
not natively supported in Silverlight or let you manipulate object data for objects that
may otherwise have schemas you can’t touch.

For example, a colleague created a value converter that has a field name as a parameter
and then implements binding to a dictionary of fields, much like a DataSet. At the
time, Silverlight had no support for binding to indexed values, so this was a huge time-
saver and allowed us to use existing business objects (which included a dictionary of
additional values) in case we couldn’t alter the implementation of the existing objects.

Since MultiBinding (the ability to bind two fields to a single control) isn’t supported
in Silverlight, in another instance we used a purpose-built value converter to combine
all the address fields in an object into a single string to be displayed in a grid column.
In that case, the binding source was the entire object and the value converter looked
for specific fields in that object. The ConvertBack method was left empty in that
case, since it supported only OneWay binding.

Though you don’t want value converters to be the solution to all your binding woes (in
many cases, an alternate design may serve you better), they’re powerful enough to
provide lots of options in situations where you may be otherwise tempted to write a
bunch of code in your code-behind.
Licensed to Devon Greenway <devon.greenway@gmail.com>

280 CHAPTER 11 Binding
11.3.3 Providing default fallback values

Things can go wrong during binding. The property path may be unable to be resolved
or an exception may be thrown when getting the value. Perhaps the index or key
doesn’t exist. In those cases, it can be helpful to have a fallback value defined in your
binding expression. These values are provided using the FallbackValue property.

 In this example, assuming you have an ApprovalCode field in your object, but it
throws an exception in the getter (odd, I know) or is otherwise unavailable, the Text-
Block will display the value “Unavailable”.

<TextBlock Text=“{Binding ApprovalCode, FallbackValue=Unavailable}” />

In many cases, I think it’s preferable to have default values and fallbacks defined in
your model or view model, especially because that’ll make it easier to test. But fallback
values in binding can help in a pinch or in cases where you need to handle an excep-
tion condition happening between your view model and view.

 More common than fallback values is custom null value handling.

11.3.4 Handling null values

Similar to fallback values but more useful, in my opinion, is the TargetNullValue
property of the binding expression. TargetNullValue allows you to display a custom
value when the value you’ve bound to is null.

 In many applications, a value of null truly means something different than the
value of empty or zero. In the former, it means that no value has been entered. The
latter indicates that a value has been entered but it’s blank or zero. To make it easier
to work with, many applications disregard the null value and simply replace it with
the default value for the type. This makes it easier to display in the UI, but at the cost
of losing the distinction.

 Starting with Silverlight 4, you can preserve the null value and still have a friendly
UI. Simply provide a TargetNullValue in your binding expression:

<TextBlock Text=“{Binding ApprovalCode, TargetNullValue=(missing)}” />

In this example, when the ApprovalCode returns null, the TextBlock will display the
text “(missing)”.

 These techniques all handle the formatting and display of a single bound value.
Though powerful on their own, often you’ll want to display something more complex,
perhaps containing multiple bound values in a list. That’s where a data template
comes into play. Happily, data templates build upon everything we’ve covered so far,
so you’ll find their implementation easy to understand.

11.4 Creating data templates
In section 11.2, we learned how to bind individual properties and entire collections.
In section 11.3, we covered how to provide formatting and conversion for single-
bound values. What about those cases when you need to have even more control over
the presentation of your list-based data? What about something like a ListBox item
Licensed to Devon Greenway <devon.greenway@gmail.com>

281Creating data templates
that contains three or four pieces of data in each row? That’s where data templates
come in.

 A data template is a way to define how a piece of information will be shown. Imag-
ine looking at a baseball player’s statistics. Although these statistics can be easily
viewed in tabular format, it’s much more interesting to look at them on a baseball
card. For an example, see table 11.1.

This table demonstrates the general idea of a data template: it gives your data a face.
The value in this approach is that it allows you to quickly change the way your data
looks without changing your code—the main raison d’être for XAML. Just as base-
ball card designs change each year, your data may change its look based on its con-
text. Data templates allow you to make this change easily, without affecting the
underlying model. To take advantage of this feature, you must create a DataTem-
plate object.

 A DataTemplate object describes the visual representation of a piece of informa-
tion. This object can be used with two types of controls within the Silverlight class
library. The first is a ContentControl. More interesting and probably more commonly
used is the ItemsControl. Within this section, you’ll see how to create a data template
with each of these control types.

11.4.1 Using a DataTemplate with a ContentControl

A ContentControl is a type of control defined by a single piece of content, which we
discussed in chapter 10. Every ContentControl exposes a property called Content-
Template, which specifies the DataTemplate to use when displaying the content of a
ContentControl. This content can be styled with a DataTemplate using an approach
similar to that shown in listing 11.9.

Result:

Raw data (statistics) Presentation via data template

Player: Scarpacci
Position: Pitcher (P)
Team: J-Force
Picture: [A URL]

Listing 11.9 A DataTemplate used with a ContentControl

Table 11.1 One example
of a data template
Licensed to Devon Greenway <devon.greenway@gmail.com>

282 CHAPTER 11 Binding
XAML:
<Button x:Name=“myButton” Height=“70” Width=“210”>
 <Button.ContentTemplate>
 <DataTemplate>
 <StackPanel Orientation=“Horizontal”>
 <Image Source=“{Binding Icon}” Height=“40” Margin=“10” />
 <TextBlock Text=“{Binding Name}” FontSize=“20”
 VerticalAlignment=“Center” />
 </StackPanel>
 </DataTemplate>
 </Button.ContentTemplate>
</Button>

C#:
Emoticon emoticon = new Emoticon(“Smiley Face”,
 “http://www.silverlightinaction.com/smiley.png”);
myButton.Content = emoticon;

This shows a DataTemplate applied to a Button. This DataTemplate is applied to an
assumed Emoticon (from the previous examples in this chapter) assigned to the But-
ton object’s Content property. This property must be set at runtime when using a
DataTemplate. If the Content property is set at design time, it’ll be trumped by the
DataTemplate, resulting in no data being shown in your UI. In addition, if you set the
DataContext property at runtime instead of the Content property, your data won’t be
shown. When you’re binding data to a ContentControl, you may want to remember
the following:

■ When assigning your data source to the DataContext property, use the binding
syntax within the control’s Content.

■ When assigning your data source to the Content property, use a DataTemplate
instead.

These two points make it seem like you’re running in circles. You may be wonder-
ing why you should use a DataTemplate. Well, a DataTemplate can be defined
as a resource (discussed in chapter 23), which makes it usable across multiple
ContentControl elements simultaneously. The DataTemplate approach is much
more flexible. In reality, you probably won’t use a DataTemplate with a ContentCon-
trol often, but you should expect to use data templates frequently with ItemsCon-
trol elements.

11.4.2 Rendering an ItemsControl with a DataTemplate

The ItemsControl element is designed to display a collection of items, which are
bound to a control through the ItemsSource property. By default, each item is dis-
played by using an object’s ToString method. By setting the DisplayMemberPath
property, you can use a specific CLR property for the text of an item, but you can go
one step further using the ItemTemplate property.

 The ItemTemplate property of the ItemsControl class allows you to fully control
how each item will be displayed. This property uses a DataTemplate to determine how
Licensed to Devon Greenway <devon.greenway@gmail.com>

283Summary
to show each item in an ItemsControl. A basic ItemTemplate for a collection of Emot-
icon objects is shown in listing 11.10.

 This shows a basic DataTemplate associated with an ItemTemplate. There’s noth-
ing complex about this example—the main thing is to understand that this DataTem-
plate is used with the items bound through the ItemsSource property. In addition,
this begins to show the power of using data templates.

Result:

XAML:
<ListBox x:Name=“myListBox” Height=“200”>
 <ListBox.ItemTemplate>
 <DataTemplate>
 <StackPanel Orientation=“Horizontal”>
 <Image Source=“{Binding Icon}” Height=“40” Margin=“5” />
 <TextBlock Text=“{Binding Name}” FontSize=“20”
 VerticalAlignment=“Center” />
 </StackPanel>
 </DataTemplate>
 </ListBox.ItemTemplate>
</ListBox>

C#:
List<Emoticon> emoticons = GetEmoticons();
myListBox.ItemsSource = emoticons;

This example shows the DataTemplate assigned to the ItemTemplate property of the
ListBox control. Note that a DataTemplate must have only one child, typically a
panel. Within that panel you may have any number of other controls.

 Data templates are a powerful way to use everything you’ve learned about binding
to provide a top-notch customized display for your list-based data. In technologies
before WPF and Silverlight, the idea of having complete control over what’s displayed
in a ListBox was a dream at best. Now, using binding and templates, it’s an easy reality.

11.5 Summary
Throughout this chapter, you’ve seen the power of the Binding object and the vast
tree of functionality that grows from it. This object gives you the flexibility to bind to
individual entities, to collection of entities, to indexed entries in a collection, and
even to other UI elements. If you need to massage the data either coming or going,

Listing 11.10 An ItemTemplate used in an ItemsControl

DataTemplate
Child
Licensed to Devon Greenway <devon.greenway@gmail.com>

284 CHAPTER 11 Binding
Silverlight provides a way for you to create your own value converters to do that. If you
simply need to format the display, Silverlight provides a way for that too.

 Throughout this chapter, you’ve seen how to fully customize the look of your data
with data templates. Data templates are an amazingly powerful way to control the pre-
sentation of your list-based data.

 Most importantly, you’ve seen binding in action. Binding rises to the near top of
the most important topics to understand when getting into Silverlight. Once you mas-
ter binding, you may find that you never again will write another line of control.
property = value code.

 Silverlight includes two complex and useful controls that were designed to work
well with binding: the DataGrid and the DataForm. We’ll discuss those in the next
chapter.
Licensed to Devon Greenway <devon.greenway@gmail.com>

Data controls:
 DataGrid and DataForm
In chapter 11, we covered binding. I believe binding to be one of the most impor-
tant topics for Silverlight developers. One reason behind that is because the
DataGrid and DataForm, as well as data annotations for display, all require binding
in order to be useful.

 Silverlight 2 included the DataGrid, and Silverlight 3 added the DataForm to the
mix of data-centric controls. The DataGrid provides tabular Excel-like data view
and editing. The DataForm is like a DataGrid rotated 90 degrees. Where the
DataGrid is all about rows and columns for multiple visible entries, the DataForm is
about fields and labels for a single visible entry.

 Once we cover the DataGrid and DataForm, we’ll see how to annotate properties
with simple attributes to control display within the DataGrid and DataForm. We’ll
cover the related validation attributes in chapter 13.

This chapter covers
■ Learning about the DataGrid
■ Turning the grid on its side with the DataForm
■ Controlling binding display through attributes
285

Licensed to Devon Greenway <devon.greenway@gmail.com>

286 CHAPTER 12 Data controls: DataGrid and DataForm
 When used together, the DataForm, DataGrid, and data annotations can form the
heart of the user interface for any forms-over-data or business application and can
save you a ton of implementation time. Of the three, the DataGrid is the most often
used, so we’ll start there.

12.1 The DataGrid
The DataGrid is a list-style control that belongs to the System.Windows.Controls
namespace. This control provides capabilities for displaying a collection of entities in
a tabular format. In addition, it enables users to add, edit, delete, select, and sort
items from a binding data source. This data source is bound to a DataGrid through
the ItemsSource property just like an ItemsControl, so the data binding features
you’ve seen so far are applicable within the realm of the DataGrid. Before you can
bind data to a DataGrid, you must first reference the correct assembly.

 The DataGrid control is defined in its own assembly called System.Windows.Con-
trols.Data.dll. This assembly can be found within the Silverlight SDK, which is avail-
able at www.silverlight.net. Note that the DataGrid control’s assembly isn’t part of the
default Silverlight runtime installation; it’s an extended control, so you must reference
the System.Windows.Controls.Data assembly within your Silverlight application. The
process of referencing an assembly like this was discussed in section 2.1.2. Part of this
process involves choosing a prefix in order to use the control at design time.

 Throughout this section, we’ll use a prefix called data. Referencing the DataGrid
control’s assembly will package it up with your application, ensuring that your users
can enjoy the power of the DataGrid.

 Throughout this section, you’ll experience the power of the DataGrid. You’ll first
see how easy it is to use the DataGrid to display data. From there, you’ll learn how to
leverage the built-in features to enable a user to edit the data within a DataGrid.
Finally, you’ll see how to empower your users to sort the data in a DataGrid.

12.1.1 Displaying your data

The DataGrid was designed to make displaying data easy. The easiest way to display
data from an ItemsSource is to use the AutoGenerateColumns property. This Boolean
property defaults to true, causing the content within the ItemsSource to be rendered
in tabular format. This ability is demonstrated in listing 12.1.

Result:

Listing 12.1 The DataGrid—assume the ItemsSource property is set in code
Licensed to Devon Greenway <devon.greenway@gmail.com>

www.silverlight.net

287The DataGrid
XAML:
<UserControl x:Class="Chapter12.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:data="clr-namespace:System.Windows.Controls;

➥ assembly=System.Windows.Controls.Data">

 <Grid x:Name="LayoutRoot" Background="White">
 <data:DataGrid x:Name="myDataGrid" />
 </Grid>
</UserControl>

C#:
List<Emoticon> emoticons = GetEmoticons();
myDataGrid.ItemsSource = emoticons;

Voilà! This example relies on the System.Windows.Controls.Data assembly to deliver
the DataGrid. This Control instance relies on its default behavior to automatically cre-
ate columns based on the data that it’s bound to. This approach is the fastest way to show
the data bound to a DataGrid, and it also has some details that are worth examining.

Let’s look at what makes a bound column tick. From there, you’ll learn how to cus-
tomize the columns, rows, and headers of a DataGrid.
EXPLORING BOUND COLUMNS

When the AutoGenerateColumns property is set to true, the columns in a DataGrid are
automatically ordered and rendered based on the type of the underlying data. Regard-
less of the type of data, the column type will always derive from the abstract base class
DataGridBoundColumn, which serves as the base for the two types shown in table 12.1.

 This table shows the kinds of columns that can be automatically generated within a
DataGrid. If you want to manually create a column, you can also use these types. But,
when you’re manually defining your columns, you must set the Binding property,
which represents the Binding associated with a column (the property name and the
type name are, in fact, the same). Because of this, you can use the Binding syntax
explained in chapter 11. This Binding declaration may be necessary because by
default, when you use a DataGridBoundColumn, a TwoWay binding is used.

 The DataGridBoundColumn is one of the main types of DataGrid columns. The other
main type is a DataGridTemplateColumn, which uses a DataTemplate to determine how

DataGrid

The DataGrid isn’t an ItemsControl
The DataGrid takes advantage of a feature known as UI virtualization. UI virtualiza-
tion means that only the items that are visible to the user are created in memory.
This performance enhancement ensures that the DataGrid can support millions of
rows of data. In Silverlight 2, the ItemsControl elements mentioned in chapter 10
didn’t have support for UI virtualization. But, in Silverlight 3 and beyond, virtualization
is built into some controls such as the ListBox.
Licensed to Devon Greenway <devon.greenway@gmail.com>

288 CHAPTER 12 Data controls: DataGrid and DataForm
to render the binding source. Note that every type of column that can be added to a
DataGrid derives from the DataGridColumn class, which is used to represent the col-
umn of a DataGrid. Objects of this type can be manually added to a DataGrid at design
time and managed at runtime.
MANUALLY WORKING WITH COLUMNS

The DataGrid can use any column that derives from DataGridColumn. These columns
can be added to a DataGrid at design time through the Columns property. This
approach is demonstrated in listing 12.2.

Result:

XAML:
<data:DataGrid x:Name="myDataGrid" AutoGenerateColumns="False">
 <data:DataGrid.Columns>
 <data:DataGridTextColumn Binding="{Binding Name, Mode=OneWay}" />
 <data:DataGridTemplateColumn>
 <data:DataGridTemplateColumn.CellTemplate>
 <DataTemplate>
 <Image Source="{Binding Icon}" />
 </DataTemplate>
 </data:DataGridTemplateColumn.CellTemplate>
 </data:DataGridTemplateColumn>
 </data:DataGrid.Columns>
</data:DataGrid>

This example shows how to add columns manually to a DataGrid at design time. These
columns are added to the Columns property. The items of this read-only collection will

Table 12.1 The types of columns that can be automatically generated within a DataGrid

Type Description

DataGridTextColumn This type of column is used to display textual data. Most of the data
from a binding source will be rendered in a DataGridTextColumn
through calling the binding property’s ToString method. This col-
umn type won’t show the default Silverlight TextBox, but the ren-
dered content can be edited as if it were in a visible TextBox.

DataGridCheckBoxColumn This column type generates a CheckBox within a cell. When the
AutoGenerateColumns property is true, any bool will be
rendered using this column type.

Listing 12.2 Manually adding columns to a DataGrid

Columns
property
Licensed to Devon Greenway <devon.greenway@gmail.com>

289The DataGrid
be displayed in the order they appear in XAML, but you can change this through the
DisplayIndex property.

 The DisplayIndex property represents the position of a DataGridColumn in a
DataGrid. This zero-based integer can be set at design time to override the default
ordering approach. Alternatively, the DisplayIndex property can be set at runtime.
This property makes it possible to create a truly dynamic DataGrid, but the dynamic
features don’t stop there. They also continue at the row level.
CUSTOMIZING THE ROWS

A row within a DataGrid will most likely represent a summarized view of an item. In
these situations, it’s not unusual to redirect the user to another page to get the details
associated with the item, but the DataGrid provides the ability to display these details
within the row itself. This approach can reduce the strain of waiting for another page
to load for the user. To make this happen, you define the RowDetailsTemplate.

 The RowDetailsTemplate is a DataTemplate that can be used to show the finer
points of a specific row. This information may be shown if the RowDetailsVisibili-
tyMode property is set accordingly. You’ll learn more about that in a moment. For
now, just assume that a row will show its details when a user selects it. When this
occurs, the DataGrid will reveal the details using a smooth sliding animation. The
details can take up as much or as little space as needed. To demonstrate how this
works, imagine adding a string property called Keys to the Emoticon class defined
earlier in this chapter. This property represents the keyboard shortcut to use for an
emoticon. The DataTemplate for revealing this information is shown in listing 12.3.

Result:

XAML:
<data:DataGrid x:Name="myDataGrid" AutoGenerateColumns="False"
 RowDetailsVisibilityMode="VisibleWhenSelected">
 <data:DataGrid.Columns>
 <data:DataGridTextColumn Binding="{Binding Name, Mode=OneWay}" />
 <data:DataGridTemplateColumn>
 <data:DataGridTemplateColumn.CellTemplate>
 <DataTemplate>
 <Image Source="{Binding Icon}" />
 </DataTemplate>
 </data:DataGridTemplateColumn.CellTemplate>
 </data:DataGridTemplateColumn>
 </data:DataGrid.Columns>

Listing 12.3 Using the RowDetailsTemplate to show the per-item keyboard shortcut

RowDetailsVisibilityMode
Licensed to Devon Greenway <devon.greenway@gmail.com>

290 CHAPTER 12 Data controls: DataGrid and DataForm
 <data:DataGrid.RowDetailsTemplate>
 <DataTemplate>
 <StackPanel Orientation="Horizontal">
 <TextBlock Text=" Keyboard Shortcut: " FontSize="11" />
 <TextBlock Text="{Binding Keys}" FontSize="11" />
 </StackPanel>
 </DataTemplate>
 </data:DataGrid.RowDetailsTemplate>
</data:DataGrid>

This shows how to use the RowDetailsTemplate property. This property uses a
DataTemplate to display additional details about a row in a way dependent upon the
value of the RowDetailsVisibilityMode property.

 The RowDetailsVisibilityMode property determines when the details associated
with a row are shown. By default, this property is set to Collapsed, but you can change
this value to any option available within the DataGridRowDetailsVisibilityMode
enumeration. This enumeration provides three options. All are shown in relation to
the DataGrid with the emoticons (table 12.2).

 This table shows the options available within the DataGridRowDetailsVisibili-
tyMode enumeration. These options, coupled with the RowDetailsTemplate property,

Table 12.2 The options available within the DataGridRowDetailsVisibilityMode enumeration

Option Example Description

Collapsed When this option is used, the content
in the RowDetailsTemplate
won’t be shown.

Visible This option forces the content in the
RowDetailsTemplate to be
shown for every row. The content will be
shown regardless of user interaction.

VisibleWhenSelected This option will show the content in
the RowDetailsTemplate for
each selected row.

RowDetailsTemplate
Licensed to Devon Greenway <devon.greenway@gmail.com>

291The DataGrid
give you the ability to customize the experience with item-level details. The DataGrid
extends the same type of power to the column headers.
CUSTOMIZING THE HEADERS

The DataGrid gives you the ability to customize every part of it, including the headers.
The headers of a DataGrid are split across two separate categories: row and column.
By default, your DataGrid will show both, but you can control this by changing the
HeadersVisibility property. This property uses one of the options available in the
DataGridHeadersVisibility enumeration, which are shown in table 12.3.

The DataGridHeadersVisibility enumeration is used to set whether a header type
is visible. You can also customize what the header looks like and how it behaves
through the DataGridColumn class’s Header property. This property simply repre-

Table 12.3 The options available through the DataGridHeadersVisibility enumeration

Option Example Description

All This option displays both row and column headers. This
is the default value.

Column This option displays only the column headers.

None This option displays neither the row nor column headers.

Row This option displays only the row header.
Licensed to Devon Greenway <devon.greenway@gmail.com>

292 CHAPTER 12 Data controls: DataGrid and DataForm
sents the column header content, so it uses the same content-related information
you’ve already learned about.

 As you’ve seen, the DataGrid empowers you to fully customize how your data is
presented. These customizations can be applied at the header, row, and column levels.
Note that you don’t have to make any of these adjustments. If you’re looking for a
quick way to show your data in a tabular format, you can rely on the fact that the
AutoGenerateColumns property defaults to true. Either way, once your data is loaded,
you can enable your users to edit the data directly within the grid.

12.1.2 Editing grid data

In addition to presenting data, the DataGrid has the ability to edit data. Users will be
able to edit the contents of a DataGrid as long as the IsReadOnly property is set to
false. By default it is, so your users have the flexibility to interact with their data in a
familiar interface. As they do so, you can watch for the beginning of the editing pro-
cess through two events. These events are triggered by the DataGrid and are called
BeginningEdit and PreparingCellForEdit.

 The BeginningEdit event gives you the opportunity to make last-minute adjust-
ments just before users do their thing. In some situations, you may want to prevent a
user from editing a cell due to previous inputs. For these occasions, the Beginning-
CellEdit event exposes a bool Cancel property within its DataGridBeginningEdit-
EventArgs parameter. By setting this property to true, the event will stop running.
If the event does complete in its entirety, the PreparingCellForEdit event will also
be fired.

 The PreparingCellForEdit is fired when the content of a DataGridTemplateCol-
umn enters the editing mode. This event exists to give you the opportunity to override
any changes that may have been made in the BeginningEdit event. Once this event
and/or the BeginningEdit event have completed without cancellation, users will be
given the reins. After they’re done editing the data in the DataGrid, they may decide
they want to re-sort the data.

12.1.3 Sorting items

The DataGrid has built-in support for sorting collections that implement the IList
interface. This interface is a part of the System.Collections namespace and is heav-
ily used throughout the Silverlight .NET framework so you can readily sort almost any
collection of objects. If you don’t like the way that the DataGrid sorts your collection,
you’re free to customize the sorting by binding to a collection that implements the
ICollectionView interface. Either way, the DataGrid can be used to sort these collec-
tions via the SortMemberPath property.

 The SortMemberPath property is a string available on the DataGridColumn class, so
this property can be used by any of the options shown in table 12.3. Regardless of
which option you use, the user will be empowered to sort the column in either ascend-
ing or descending order, as demonstrated in listing 12.4.
Licensed to Devon Greenway <devon.greenway@gmail.com>

293The DataForm
Result:

XAML:
<data:DataGrid x:Name="myDataGrid" AutoGenerateColumns="False">
 <data:DataGrid.Columns>
 <data:DataGridTextColumn Binding="{Binding Name}"
 Header="Name" SortMemberPath="Name" />
 <data:DataGridTextColumn Binding="{Binding Keys}"
 Header="Shortcut" SortMemberPath="Keys" />
 <data:DataGridTemplateColumn>
 <data:DataGridTemplateColumn.CellTemplate>
 <DataTemplate>
 <Image Source="{Binding Icon}" />
 </DataTemplate>
 </data:DataGridTemplateColumn.CellTemplate>
 </data:DataGridTemplateColumn>
 </data:DataGrid.Columns>
</data:DataGrid>

This snippet shows two DataGridColumn instances enabling the user to sort the under-
lying ItemsSource. The first DataGridColumn enables the user to sort the Emoticon
objects by their Name property. The other DataGridColumn lets the user sort by the
Keys property. If the user were to select a column header, it would first be sorted in
ascending order. Then, if the column header were to be selected again, it would be
sorted in descending order. The SortMemberPath property is what makes this feature
of the DataGrid possible.

 As you’ve just seen, the DataGrid has an incredibly rich development model. This
model is important because it can help you assist your users in their data entry tasks,
which may include editing data or simply viewing it. Either way, the DataGrid provides
the ability to efficiently deliver items from a data source in a tabular format.

 The DataGrid is great for tabular data, but what do you do when you want similar
functionality in a form-based layout model? New in Silverlight 3 and originally consid-
ered part of WCF RIA Services (covered in chapter 17), the DataForm is the DataGrid’s
form-based counterpart.

12.2 The DataForm
Silverlight 3 introduced a control that does for forms what the DataGrid does for lists:
the DataForm. The DataForm can be thought of as a single-row DataGrid turned on its
side. It shares similar capabilities in that it can be read-only or editable and can infer

Listing 12.4 Built-in DataGrid sorting

SortMemberPath
Licensed to Devon Greenway <devon.greenway@gmail.com>

294 CHAPTER 12 Data controls: DataGrid and DataForm
column names and edit controls based on the types bound to it. Like the DataGrid, it
also provides full customization of the representation of each of the bound fields.

 Like the DataGrid, the DataForm can work with multiple rows of data. The presen-
tation differs in that you’ll see only one row at a time, as is typical in a details form. In
fact, the DataGrid and DataForm are sometimes used together to show a master-detail
relationship where the DataGrid contains all the records and the DataForm is used to
show an editable form for the DataGrid row.

 The DataForm was originally developed for Silverlight by the same team that
brought us WCF RIA Services. In order to support continued iteration on the control,
it was moved from the SDK, where the now-mature DataGrid resides, and placed in
the Silverlight Toolkit in the System.Windows.Controls.Data.DataForm.Toolkit
assembly. The Silverlight Toolkit can be thought of as an agile extension of the Silver-
light SDK, with the bonus that you have access to the source code for the controls and
tests it contains.

 Though not all applications will use the DataForm, it’s much richer and more cus-
tomizable than it initially appears. Virtually any forms-over-data application can use this
control to show a UI that can be as simple as a list of fields or as complex as a customized
layout with specific field styles, sizes, and positioning. How it looks is up to you.

 In this section, we’ll take a tour through the capabilities of the DataForm, starting
with a simple binding to a single object and then to a collection of objects. Next, we’ll
work with the command buttons for canceling updates and submitting data. Once we
have the functional mechanics down, we’ll customize the display of fields using prop-
erties and then using richer data templates for the edit, add, and display modes. The
section will wrap up with a discussion of IEditableObject and how that interface can
make working with the DataForm even easier.

12.2.1 Displaying your data

The easiest thing to do with the DataForm is to bind it to an object and watch it gener-
ate all the fields you need. We’ll step away from the Emoticon class for the remaining
examples here to show the breadth of controls the DataForm understands. Let’s create
a new simple Person class, as shown in listing 12.5. (The Required attribute, used in
this class, will be covered in chapter 13, which focuses on validation.)

public enum MaritalStatus
{
 Unknown,
 Married,
 Single,
 Divorced
}

public class Person
{
 [Required]

Listing 12.5 The Person class
Licensed to Devon Greenway <devon.greenway@gmail.com>

295The DataForm
 public string LastName { get; set; }
 [Required]
 public string FirstName { get; set; }
 public bool IsRegistered { get; set; }
 public MaritalStatus MaritalStatus { get; set; }
 public DateTime DateOfBirth { get; set; }
 [Required]
 public string EmailAddress { get; set; }
 [Required]
 public int NumberOfChildren { get; set; }
}

We’ll then bind to it in XAML using a static resource, much as we have in other exam-
ples. Instead of individual controls, we’ll use the entire object as our data source for
the new DataForm control, as shown in listing 12.6.

<UserControl.Resources>
 <local:Person x:Key="me" />
</UserControl.Resources>

<Grid x:Name="LayoutRoot" Margin="30">
 <toolkit:DataForm CurrentItem="{StaticResource me}" />
</Grid>

The property that’s used to generate the form is the CurrentItem property, in this
sample case bound to a single object sitting in the Resources section of this control.
The resulting DataForm, as seen in figure 12.1, is impressive in the breadth of controls
it has auto-generated for you. Not only did we not have to write any code specific to
the DataForm, but we also didn’t have to place any edit controls in the markup.

 Note that the DataForm displayed a CheckBox for the bool property, a ComboBox for
the enum (populated with all the possible values defined in the enumeration, of
course), and a DatePicker for the DateTime property. Not bad for a default form, and
certainly workable for a simple utility application.

Listing 12.6 Binding the DataForm to a single Person object

Person as
resource

Binding to
person

Figure 12.1 DataForm
showing generated edit controls
bound to a single object without
a backing collection. Note that
there’s no toolbar or set of
navigation buttons. Not all fields
are shown, so your form will look
slightly different.
Licensed to Devon Greenway <devon.greenway@gmail.com>

296 CHAPTER 12 Data controls: DataGrid and DataForm
So far we’ve been binding one discrete object to the DataForm. To harness the true
power of the DataForm, you’ll want to bind it to a list of objects much as you would a
DataGrid.

12.2.2 Binding to lists of data

If you want to support the ability to add new records, you’ll need to provide a place to
put them. For this example, we’ll create a simple class that holds some dummy data.
Of course, you could wire this up to a service to load a collection of Person objects,
should you desire.

 Listing 12.7 shows a class named PeopleRepository that will hold our Person
objects. Note that this doesn’t follow the formal Repository pattern; it’s closer to a
View-Model (covered in chapter 16).

public class PeopleRepository
{
 private ObservableCollection<Person> _people =
 new ObservableCollection<Person>();

 public ObservableCollection<Person> People
 {
 get { return _people; }
 }

 public PeopleRepository()
 {
 _people.Add(new Person()
 {
 FirstName = "Captain", LastName = "Avatar",
 IsRegistered = true,
 MaritalStatus = MaritalStatus.Unknown,
 DateOfBirth = DateTime.Parse("1912-01-01")
 });
 _people.Add(new Person()
 {
 FirstName = "Derek", LastName = "Wildstar",
 IsRegistered = true,
 MaritalStatus = MaritalStatus.Single,
 DateOfBirth = DateTime.Parse("1954-11-15")
 });
 }
}

Once you have a suitable repository for the data (whether it’s a view-model or some-
thing else), one of the easiest things to do is to supply an ObservableCollection<T>
to the ItemsSource property, as shown in listing 12.8.

<UserControl.Resources>
 <local:PeopleRepository x:Key="repository" />
</UserControl.Resources>

Listing 12.7 The PeopleRepository class

Listing 12.8 Binding the DataForm to the PeopleRepository class

Observable collection
of Person

Load dummy
data

Repository as resource
Licensed to Devon Greenway <devon.greenway@gmail.com>

297The DataForm
<Grid x:Name="LayoutRoot" Margin="30">
 <toolkit:DataForm
 DataContext="{StaticResource repository}"
 ItemsSource="{Binding People}"
 CurrentIndex="0">

 </toolkit:DataForm>
</Grid>

In the example, I use the PeopleRepository class from listing 12.7 with a collection of
Person objects exposed through a property named People. In XAML, I create a
resource to hold a reference to that repository and set the DataContext of the Data-
Form to that StaticResource. (You could, of course, also create the repository and set
the DataContext from code.) I then bound the ItemsSource to the collection of Per-
son objects. The resulting DataForm looks like figure 12.2.

Note the new toolbar at the top of the DataForm. This provides navigation as well as
Add (the plus sign) and Delete (the minus sign) capabilities. For each of the opera-
tions (Add, Delete, Validate, and so on) appropriate events are raised with the capabil-
ity to cancel operations based on criteria you set in your code.

Repository
reference

Observable
collection

Figure 12.2 A DataForm
bound to a collection of objects.
Note the presence of the toolbar
including the add/remove and
navigation buttons, sometimes
called the VCR control. (Display
annotations, covered in 12.3.1,
were used in this example.)

VCR control?
Ack! Was that the dreaded VCR binding control I just saw in that screenshot?

Yes—but since this is Silverlight, you have control over what that toolbar looks like,
where it’s displayed (if at all), and how a user navigates through the records. You also
get good event support when you move from record to record, as well as the ability
to properly validate the data.
Licensed to Devon Greenway <devon.greenway@gmail.com>

298 CHAPTER 12 Data controls: DataGrid and DataForm
The toolbar can be customized both by templating and via the CommandButtonsVisi-
bility property, whose possible values are shown in table 12.4.

Figure 12.3 shows what the toolbar looks like with all of the command buttons visible.
The OK and Cancel buttons at the bottom are the commit and cancel buttons. The

Table 12.4 DataForm CommandButtonsVisibility values

Template property Description

All Show all buttons.

Add Show the add new item button.

Cancel Show the cancel edit button. If the underlying item implements
IEditableObject, this calls the CancelEdit function.

Commit Show the commit edit button. If the underlying item implements
IEditableObject, this calls the EndEdit function.

Delete Show the delete button

Edit Show the edit button. This button is typically not necessary if
AutoEdit is set to true.

Navigation Show the VCR control navigation buttons.

None Don’t show any command buttons.

(continued)
So, yes, it looks like the same old VCR control we grew up with in old VB, but it bears
about as much technical resemblance to the old VB data binding controls as Blu-ray
does to VHS.

Figure 12.3 The DataForm
with all command buttons
displayed. The OK and Cancel
buttons are the commit and
cancel buttons, respectively.
Licensed to Devon Greenway <devon.greenway@gmail.com>

299The DataForm
pencil in the upper right (currently disabled) is the edit button. The other buttons
are as described earlier.

 To alter the appearance of the OK and Cancel buttons without retemplating the
DataForm, you can use CommitButtonContent and CancelButtonContent to set the
contents of the buttons and CommitButtonStyle and CancelButtonStyle to restyle
the buttons.

 As with just about everything else in Silverlight, you can completely style the way
the DataForm looks. You may want to change not only the style but also the field label
display and the data type controls.

12.2.3 Customizing display

The DataForm provides multiple levels of UI customization, ranging from how to dis-
play field labels and descriptions all the way to providing your own complete DataTem-
plate for each of the various modes of the control.
CUSTOMIZING FIELD LABELS

In addition to the ability to change the text of the field labels, the DataForm provides
the ability to change the position of the labels relative to the edit control. This capabil-
ity is exposed through the LabelPosition property, the values of which are shown in
table 12.5.

The field label provides the primary way you should indicate the expected contents of
a field. Should the user require additional information, it may be provided via the
field description.
CUSTOMIZING FIELD DESCRIPTIONS

Field description elements are the small icons and related tooltips that typically
appear to the right of any control bound to a property that has an associated display

Table 12.5 Possible values for LabelPosition and the resulting display

Value Result

Left

Top

Auto When there is a parent DataForm, the label position will be inherited. When
there’s no additional parent DataForm, this value is treated as Left.
Licensed to Devon Greenway <devon.greenway@gmail.com>

300 CHAPTER 12 Data controls: DataGrid and DataForm
description. Later in this chapter, we’ll discuss how to set the description text for indi-
vidual fields on the form using the DisplayAttribute.

 The DataForm provides the property DescriptionViewerPosition, which enables
you to set the relative location of the description viewer icon. The possible values are
described in table 12.6.

With the label and description covered, we can turn our attention to the field controls
and edit them using the three available template properties.

12.2.4 Customizing edit, add, and display templates

The no-code/no-markup out-of-the-box experience is good, but those types of solu-
tions only get us so far before they break down. The DataForm gets us further than
most controls but, if you couldn’t completely customize the DataForm, we all know it
would be a nonstarter for production-ready real-world applications. Luckily, the Data-
Form supports customization of the associated data templates for the three values of
the Mode property: AddNew, Edit, and ReadOnly.

 In chapter 11, we covered how to use data templates. The DataForm control pro-
vides three places where we can insert our own data templates: the EditTemplate,
NewItemTemplate, and ReadOnlyTemplate, all described in table 12.7.

Table 12.6 Possible values for DescriptionViewerPosition and the resulting display

Value Result

BesideContent

BesideLabel

BesideLabel (with
LabelPosition set
to Top)

Auto When there is a parent DataForm, the position will be inher-
ited. When there’s no additional parent DataForm, this value
is treated as BesideContent.
Licensed to Devon Greenway <devon.greenway@gmail.com>

301The DataForm
The mechanics of defining the data templates for the three different modes are the
same, so we’ll concentrate on just the EditTemplate in the following examples.
CREATING THE DATATEMPLATE

Most of us will create our data forms ourselves, with our own aesthetics accounted for.
Supplying your own data templates enable you to do a few primary things:

■ You have complete control over the layout of the form and can, therefore, make
it look as the designer intended.

■ You can customize the individual field edit control types.
■ You can change the binding characteristics to include your own value converters.

What you give up, of course, is the magic. Unlike the case when you started manually
adding fields to the DataGrid, the DataForm provides a nice assortment of capabilities
when adding fields. You’ll still need to add a field in markup for each field you want
on the form but, in reality, this is no more work than we would’ve had to do if we cre-
ated the forms without the help of the DataGrid, with some significant savings in
application plumbing code.

 In a departure from its DataGrid cousin, the DataForm takes a more flexible
approach to specifying the individual fields. Rather than have some built-in field types
you must choose from or use a template for the remaining, you simply need to wrap
edit controls within a DataField content control, as shown in listing 12.9.

<toolkit:DataForm.EditTemplate>
 <DataTemplate>
 <StackPanel>

 <toolkit:DataField>
 <TextBox Text="{Binding LastName, Mode=TwoWay}" />
 </toolkit:DataField>

 <toolkit:DataField>
 <TextBox Text="{Binding FirstName, Mode=TwoWay}" />
 </toolkit:DataField>

Table 12.7 DataForm templates corresponding to the DataForm mode

Template property Description

EditTemplate Corresponds to the Edit value of the Mode property. This template is used
when the user or application code puts the form in edit mode or when
AutoEdit is true.

NewItemTemplate Corresponds to the AddNew value of the Mode property. This template is
used when the user or application code adds a new item.

ReadOnlyTemplate Corresponds to the ReadOnly value of the Mode property. This template is
used when the current item is read only.

Listing 12.9 Wrapping the controls in an edit template

EditTemplate
property

DataField
definition
Licensed to Devon Greenway <devon.greenway@gmail.com>

302 CHAPTER 12 Data controls: DataGrid and DataForm
 <toolkit:DataField LabelVisibility="Collapsed">
 <CheckBox IsChecked="{Binding IsRegistered, Mode=TwoWay}"
 Content="Is Registered" />
 </toolkit:DataField>

 </StackPanel>
 </DataTemplate>
</toolkit:DataForm.EditTemplate>

The resulting DataForm edit controls look like figure 12.4. Note that I hard-coded the
CheckBox content property to IsRegistered and hid the associated DataField label
so that I could demonstrate how to use the built-in CheckBox content property.

The DataField content control has a number of properties that mirror those on the
DataForm itself. These are used for controlling where or if the description displays,
where to put the field label, and so on. Those may all be set on a field-by-field basis in
order to override the DataForm-level settings.

 Finally, if you don’t want the additional support provided by the DataField con-
trol, you can simply omit it and add the TextBlocks and TextBoxes (and other con-
trols) directly to the template and bind them to the appropriate fields, without
wrapping in DataField controls.

 That’s how you control the editing experience at a field and form level. Now let’s
look at how to control the overall editing and commit experience from a workflow
standpoint.

12.2.5 Finer control over editing and committing data

The DataForm and similar controls provide several other settings and hooks that may
be used to customize the overall editing workflow. These range from altering the
object state based on whether it’s about to go into the edit mode or not, how to com-
mit changes, and finally how to manually check if the form includes only valid data.
IEDITABLEOBJECT

System.ComponentModel.IEditableObject is an interface that allows controls such as
the DataForm to make method calls into an object when it’s about to be edited. Specif-
ically, the interface defines the three methods listed in table 12.8.

 Those three functions allow you to control exactly what happens to the object’s
data when it’s put in the edit mode, the edit mode is cancelled, and the edits are com-
mitted. Though the sky’s the limit with what you might do in these functions, com-
mon approaches include versioning, single or multiple-level undo, storing a history of
changes, and lazy-loading data required for the edit process.

Figure 12.4 Customized
EditTemplate showing
the CheckBox label to
the right of the CheckBox
Licensed to Devon Greenway <devon.greenway@gmail.com>

303The DataForm
The Silverlight DataForm control respects these methods and calls them at the appro-
priate times if your class implements the IEditableObject interface. Another place
where the DataForm allows customization in the object workflow is in checking the
item state.
CHECKING FOR DIRTY STATE AND VALIDITY

The DataForm also provides a way to check the object’s changed state, often called its
dirty state, from within the DataForm itself. This doesn’t require any dirty tracking
infrastructure in place within the entity being edited; the DataForm takes care of all of
that. To check whether the current item has been changed, simply refer to the
IsItemChanged property as follows:

if (dataForm.IsItemChanged) {…}

If the item has changed, you’ll probably be interested in knowing if it’s valid. Luckily,
the DataForm provides a property for that as well: the IsItemValid property. This
property returns true if the currently edited item, the item visible on the DataForm,
has met all associated validation rules (covered in chapter 13). The syntax for the
read-only IsItemValid property is as shown here:

if (dataForm.IsItemValid) {…}

The DataForm by itself is a nice way to handle data entry in your applications. Without
sacrificing the capabilities it offers, you have a great deal of control over how the con-
tent is rendered and how navigation is handled. The DataForm will help do for forms
what the DataGrid did for tabular data.

 The DataGrid and DataForm are two powerful controls for displaying and editing
data. If you’re writing a line-of-business application or something that’s otherwise very
data heavy, I strongly recommend you consider using these controls. Both provide
commonly understood UI metaphors in an easy-to-use package. You can do pretty
much anything you’d need to do with them more efficiently than writing analogous

Table 12.8 IEditableObject interface

Template property Description

BeginEdit Called when the object is put into the edit mode

This is where you may want to cache undo information. If the DataForm’s
AutoEdit property is set to true, this is called as soon as an edit field receives
focus. Otherwise, it’s called as a result of the user clicking the edit button on the
toolbar.

CancelEdit Called when the object was previously in the edit mode but now is to be put back
into the read-only mode, reverting any changes

On the DataForm, this is called when the user clicks the Cancel button.

EndEdit Called when the edit is complete and the changes should be committed

If the DataForm’s AutoCommit property is set to true, this will happen when
the user navigates off the item and the item is both dirty and valid.
Licensed to Devon Greenway <devon.greenway@gmail.com>

304 CHAPTER 12 Data controls: DataGrid and DataForm
controls from scratch, especially when you consider the annotations we’ll cover in the
next section.

 Now that we’ve seen how to edit data in the DataGrid and DataForm, we’ll want to
impose some parameters around how the data is displayed. We can do this in code,
but it’s typically more efficient to use data annotations.

12.3 Annotating for display
The DataForm and DataGrid both offer the ability to set the properties of columns
and labels, including things such as the display caption and tooltips. But, if you share
the data between many instances of the controls, instances which may vary in their dis-
play properties in other ways, it can be both tedious and a maintenance burden to
have to repeat this configuration in multiple places.

 Autogeneration of columns and labels often leaves us with even uglier results.
Sadly, many internal applications go into production with programmer-friendly but
user-unfriendly display properties because it was too much effort to keep the UI
updated and in sync with the data model.

 The System.ComponentModel.DataAnnotations assembly and namespace found
in the Silverlight SDK provide a number of attributes designed to make data validation
and display hinting easier for controls such as the DataForm, DataGrid, and some
third-party controls. The approach taken by these attributes is to mark up the proper-
ties in your entities using attributes in code rather than require code within the prop-
erties or external to your entities.

 The two main attributes that we’ll cover here are Display and Editable. In chap-
ter 13, we’ll take a look at the validation attributes and how they can further enhance
the DataGrid and DataForm.

12.3.1 The Display attribute

Both the DataGrid and the DataForm provide the capability to automatically generate
display and edit controls, and associated labels or column headers, at runtime.
Though the controls themselves provide a number of ways to customize the field
information, there are times when you’d be better served by a centralized definition
of that metadata.

 One way to centralize that metadata is to annotate the properties on the entities
themselves. The assembly System.ComponentModel.DataAnnotations provides a
number of attributes designed specifically for this purpose (see listing 12.10).

public class Person
{
...
 [Display(Name = "Registered",
 Description = "Check if this person has registered with us.")]
 public bool IsRegistered { get; set; }

Listing 12.10 The Person class with Display attributes attached
Licensed to Devon Greenway <devon.greenway@gmail.com>

305Annotating for display
 [Display(Name = "Marital Status",
 Description = "Optional marital status information.")]
 public MaritalStatus MaritalStatus { get; set; }
...
}

The result of including the Display attribute with the name and description can be
seen in figure 12.5. Note that the MaritalStatus field has its correctly formatted dis-
play name shown in the label, and the Registered field shows the information icon
with the associated tooltip containing the description property.

The DisplayAttribute enables us to control a number of different aspects of the
onscreen representation of the control, above and beyond just the field label and the
tooltip. It can control whether the field is automatically generated as a column in the
DataGrid or field in the DataForm. It can also control the order the fields are dis-
played in or information on the string to use when localizing. Table 12.9 has the com-
plete list of the different properties available.

Table 12.9 DisplayAttribute properties and their uses

Property Description

AutoGenerateField Set this value to false if you don’t want controls like the DataForm to
automatically generate a control for this property.

AutoGenerateFilter Set to true if you want the filtering UI automatically displayed for this
field. It is currently unused by the DataGrid and DataForm controls.

Description A resource name or regular text that will be displayed by the rendering
control. In the case of the DataForm, this shows up in a tooltip over
the information icon.

GroupName A resource name or regular text to display as the heading for a group of
related fields. Currently unused by the DataGrid and DataForm
controls.

Name A resource name or regular text to display as the name of this field. This
is typically used in field labels.

Order Relative order for this field in display. By default, fields are displayed in
the order they’re defined in the class. This property allows you to over-
ride that behavior.

Prompt Specifies a prompt, such as a watermark, to use when displaying this
field. Currently unused by the DataGrid and DataForm controls.

Figure 12.5 Portion of a DataForm showing the tooltips with the Description property of the
Display attribute and the field captions pulled from the Name property of the same attribute.
Licensed to Devon Greenway <devon.greenway@gmail.com>

306 CHAPTER 12 Data controls: DataGrid and DataForm
In several instances in table 12.9, I wrote that a property is “typically used as” some-
thing or other. The DisplayAttribute simply contains data; it doesn’t provide behav-
ior or any enforcement of proper use. It’s up to the consuming control—typically a
DataGrid, DataForm or a third-party control—to decide how that data will be used.

 In addition to the DisplayAttribute and its properties, one final important attri-
bute-based setting you have as a developer is the ability to mark individual properties
as editable or read only.

12.3.2 The Editable attribute

On occasion, you may want to designate certain properties as read only from a UI
point of view but still allow them to be manipulated via code. One way to handle that
is to provide an accessor (property get) with no corresponding property set and then
provide an explicit mutator method. Unfortunately, that makes the programming
interface more cumbersome.

 Another approach is to provide a normal property getter and setter but mark the
property as read only at the UI level. Like the Display attribute discussed in the previ-
ous section, you could certainly do this on a form-by-form basis. But you may want to
instead centralize this information on the entity itself, as shown in listing 12.11.

public class Person
{
...
 [Display(Name = "Marital Status",
 Description = "Optional marital status information.")]
 [Editable(false)]
 public MaritalStatus MaritalStatus { get; set; }
...
}

In this example, we’ve marked the Marital Status field as read only by applying an
EditableAttribute with the editable flag set to false. The result will be an onscreen
field that’s disabled, as shown in figure 12.6.

 Figure 12.6 shows the Marital Status field disabled. Note also that its information
icon isn’t displayed, even though we’ve included a display description. The display of
the field control itself will depend upon the disabled state for the control in use. This

ResourceType If you intend to use localized resources, specify the type container for
those resources here.

ShortName A resource name or regular text to display as the name of this field. This
is typically used in column headers.

Listing 12.11 Controlling editability using the Editable attribute

Table 12.9 DisplayAttribute properties and their uses (continued)

Property Description

Editable
attribute
Licensed to Devon Greenway <devon.greenway@gmail.com>

307Summary
is something that may be easily changed by editing the control template as shown in
chapter 23.

 There is a number of other attributes in the DataAnnotations namespace, includ-
ing some specifically geared toward object-relational mapping (ORM). Take a look
around in there and you may find other attributes that can help with specific chal-
lenges you’re facing in your applications.

 Annotations are a powerful way to provide metadata for your entities. When com-
bined with annotation-aware controls like the DataForm and DataGrid, you can pro-
vide UI information such as field labels and help text, and control whether fields are
editable on forms and in grids. WCF RIA Services, covered in chapter 17, provides
other options for surfacing this metadata.

12.4 Summary
For business and forms-over-data applications, the DataGrid and DataForm often form
the heart of the UI. Even nontraditional applications sometimes use heavily styled
DataGrids due to their rich programming model. Though the controls are complex,
they’re equally powerful and worth the time it takes to master them.

 The DataGrid is great for tabular data, whether it’s flat grid-style or contains
images or richer content. There are lots of options for the types of content it contains
as well as how you style both the content and the columns and rows that contain it.
When you need to display and edit data in a tabular form, look first to the DataGrid.

 The DataForm is the 90-degrees-off equivalent of the DataGrid, with columns shown
as fields rather than columns. Like the DataGrid, it can work on multiple rows of data
but, unlike the DataGrid, it shows only one at a time. Though certainly useful on its
own, the DataForm is often combined with the DataGrid for master-detail layouts.

 The DataGrid and DataForm both understand the display annotations such as the
Display and Editable attributes. These allow you to mark up your classes or buddy
partial classes to control the rendering of the controls in the grid and the form.

 Now that we’ve covered binding (chapter 11) and the DataGrid and DataForm,
we’ll move on to validation. When you combine the grid, form, binding, and valida-
tion, you’ll be well on your way to having a set of tools that cover the majority of the
data manipulation needs of a business application UI.

Figure 12.6 The Marital Status field has been disabled because its underlying property
is marked as read only.
Licensed to Devon Greenway <devon.greenway@gmail.com>

Input validation
In chapter 11, we covered binding. In chapter 12, I mentioned that I believe bind-
ing to be one of the single most important topics for Silverlight developers.
Another reason for that is because all the validation approaches covered in this
chapter build directly on the binding system.

 Validation is something almost every nontrivial application with a TextBox will
need to do at some point. Often, we punt and do simple checking in the code-
behind. But, if you want to truly leverage binding, take advantage of patterns such
as the ViewModel pattern, and just have better structure to your code, you’ll want
to use one of the established validation mechanisms provided by Silverlight.

 Silverlight provides several ways to validate data. The simplest and oldest
approach is to use exception-based validation. In that approach, property setters
simply throw exceptions when the validation doesn’t pass. This is the code equivalent

This chapter covers
■ Validating properties in code using exceptions
■ Using IDataErrorInfo and INotifyDataErrorInfo

for validation
■ Controlling DataGrid and DataForm validation

through attributes
308

Licensed to Devon Greenway <devon.greenway@gmail.com>

309The validation example source and UI
of my toddler’s spitting out the food she doesn’t like and, like that, anything more com-
plex than a couple of peas is going to get pretty messy.

 It wasn’t well-known, but Silverlight 2 included basic exception-based validation
capabilities. With the releases of Silverlight 3 and 4, these capabilities became more
advanced and the exception-based approach was looked at as more of a stopgap, use-
ful in only the simplest of validation scenarios. For those reasons, we’ll concentrate
the majority of this chapter on the more modern approaches to validation, such as
IDataErrorInfo and INotifyDataErrorInfo.

 The IDataErrorInfo and INotifyDataErrorInfo interfaces are the newer
approach for validating data in Silverlight 4. They’re a bit more complex to imple-
ment. (when working with them, start out by creating some helper classes to handle
all the goo. You’ll thank me for it; and, if you do want to thank me, donations and
chocolate are always welcome.)

 One main difference with these interfaces, as opposed to an exception-based
approach, is how far you allow invalid data to get. With exception-based validation,
the accepted approach was to not complete the set operation if the validation fails.
Using the new interfaces, invalid data will often make it into the class, and will need to
be removed or otherwise handled during the final validation or save processes.

 Due to the more flexible nature as well as decoupling from the property setters,
these interfaces also allow for cross-field validation, where changing the value of one
field can invalidate the value of another field.

 The final approach to validation is geared to work with the DataGrid and Data-
Form covered in chapter 12—data annotations. In chapter 12, we saw that data annota-
tions may be used to control various aspects of display and even editability. In this
chapter, we’ll investigate the use of data annotations specifically for validation.

 To keep the examples consistent, we need to do a little setup work and establish a
baseline class to use as our binding source: the Employee class. Once we have that set,
we’ll briefly look at exception-based validation and the shared validation presentation,
then tackle synchronous and asynchronous validation with IDataErrorInfo and INo-
tifyDataErrorInfo, and finally end on attribute-based validation as used by the
DataForm and DataGrid covered in chapter 12.

13.1 The validation example source and UI
Throughout this chapter, we’ll refer back to the Employee class defined here, which
will be used as our binding data source. This class represents a fictional employee in a
human resources management system.

 The Employee class contains the public properties shown in table 13.1.
 The class source code is shown in listing 13.1. Note that the Employee class imple-

ments the INotifyPropertyChanged interface to support binding change notifica-
tion, discussed in chapter 11.

Licensed to Devon Greenway <devon.greenway@gmail.com>

310 CHAPTER 13 Input validation
public class Employee : INotifyPropertyChanged
{
 private string _lastName;
 public string LastName
 {
 get { return _lastName; }
 set
 {
 _lastName = value;
 NotifyPropertyChanged("LastName");
 }
 }

 private string _firstName;
 public string FirstName
 {
 get { return _firstName; }
 set
 {
 _firstName = value;
 NotifyPropertyChanged("FirstName");
 }
 }

 private int _level;
 public int Level
 {
 get { return _level; }
 set
 {
 _level = value;
 NotifyPropertyChanged("Level");
 }
 }

 private decimal _salary;
 public decimal Salary
 {
 get { return _salary; }
 set
 {

Table 13.1 Employee class properties

Property Description

Last Name The employee’s last (or family) name

First Name The employee’s first (or given) name

Level The employee’s salary level
This puts the employee into specific salary “buckets.”

Salary The salary, in USD, for this employee

Listing 13.1 Employee class to be used in the validation examples
Licensed to Devon Greenway <devon.greenway@gmail.com>

311The validation example source and UI
 _salary = value;
 NotifyPropertyChanged("Salary");
 }
 }

 #region INotifyPropertyChanged Members

 public event PropertyChangedEventHandler PropertyChanged;

 protected void NotifyPropertyChanged(string propertyName)
 {
 if (PropertyChanged != null)
 PropertyChanged(this,
 new PropertyChangedEventArgs(propertyName));
 }

 #endregion
}

You won’t see validation in action unless you wire up some UI, so we’ll build a basic
user interface that works against a single instance of the Employee class. We’ll keep it
simple and use code-behind, but I refer you to chapter 16 for best practices on struc-
turing your application using the ViewModel pattern. The XAML and C# for the UI
are shown in listing 13.2.

XAML:
<UserControl x:Class="ValidationExample.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d"
 d:DesignHeight="190"
 d:DesignWidth="350">
 <UserControl.Resources>
 <Style TargetType="TextBlock">
 <Setter Property="VerticalAlignment" Value="Center" />
 <Setter Property="HorizontalAlignment" Value="Right" />
 <Setter Property="Margin" Value="4" />
 </Style>
 <Style TargetType="TextBox">
 <Setter Property="VerticalAlignment" Value="Center" />
 <Setter Property="HorizontalAlignment" Value="Left" />
 <Setter Property="Margin" Value="4" />
 <Setter Property="Height" Value="22" />
 <Setter Property="Width" Value="200" />
 </Style>
 </UserControl.Resources>

 <Grid x:Name="LayoutRoot" Background="White" Margin="20">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="*" />
 <ColumnDefinition Width="2*" />
 </Grid.ColumnDefinitions>

Listing 13.2 User interface XAML and code-behind to use for validation examples

PropertyChanged
event

Property Changed
helper code

Styles—see
chapter 23
Licensed to Devon Greenway <devon.greenway@gmail.com>

312 CHAPTER 13 Input validation
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>

 <TextBlock Grid.Row="0" Grid.Column="0"
 Text="Last Name" />
 <TextBox Grid.Row="0" Grid.Column="1"
 Text="{Binding LastName, Mode=TwoWay}" />

 <TextBlock Grid.Row="1" Grid.Column="0"
 Text="First Name" />
 <TextBox Grid.Row="1" Grid.Column="1"
 Text="{Binding FirstName, Mode=TwoWay}" />

 <TextBlock Grid.Row="2" Grid.Column="0"
 Text="Level" />
 <TextBox Grid.Row="2" Grid.Column="1"
 Text="{Binding Level, Mode=TwoWay}" />

 <TextBlock Grid.Row="3" Grid.Column="0"
 Text="Salary" />
 <TextBox Grid.Row="3" Grid.Column="1"
 Text="{Binding Salary, Mode=TwoWay}" />

 <Button x:Name="SubmitButton" Grid.Row="4" Grid.Column="1"
 Content="Submit"
 Margin="4"
 HorizontalAlignment="Left"
 Width="100"/>

 </Grid>
</UserControl>

C#:
public partial class MainPage : UserControl
{
 private Employee _employee = new Employee();

 public MainPage()
 {
 InitializeComponent();
 Loaded += new RoutedEventHandler(MainPage_Loaded);
 }

 void MainPage_Loaded(object sender, RoutedEventArgs e)
 {
 this.DataContext = _employee;
 }
}

The user interface includes four text boxes, each with a label. There’s also a Submit but-
ton, but it’s there just for aesthetic purposes; all of our validation will happen on lost
focus (blur for you web folks). The resulting form should look like figure 13.1. Note that
the Level and Salary both show 0; this shows that binding is working for those fields.

Binding statements—
see chapter 11
Licensed to Devon Greenway <devon.greenway@gmail.com>

313Exception-based property validation
 That sets up a basic single-entity data
entry form we can use for the validation
examples included in this chapter
minus the ones specific to the DataForm
and DataGrid. Throughout this chap-
ter we’ll modify various aspects of the
Employee class, as well as the binding
statements in the form XAML. As we
move through the examples, it may be
helpful to refer back to these listings.

 The first type of validation we’ll look at is also the simplest and the one with the
most history: exception-based validation.

13.2 Exception-based property validation
It wasn’t well-known, but Silverlight 2 included basic validation capabilities. With the
release of Silverlight 3, these capabilities became more advanced, so we now have the
ability to validate bound data and display appropriate error messages using the built-
in controls in a standardized and easy to template way. The binding syntax continues
to use the ValidatesOnExceptions parameter to enable the display of validation mes-
sages when a property setter raises an exception, but the built-in control templates
have been updated to provide appropriate display of error state.

 Though no longer widely used, it’s worth covering exception-based validation for
those times when it really is the most appropriate approach. It’s also necessary to
understand so you can respond to the built-in type validation exceptions.

 In this section, we’ll look at the basics of using exception-based validation both for
your own errors and built-in system errors and then move on to custom validation code
and combining multiple validation messages. We’ll wrap up this section with a look at
the built-in Validation UI in Silverlight, something that applies to all forms of validation.

13.2.1 Handling exception validation errors

Even if you don’t plan to have your own exception-based validation errors, it’s worth
handling them in order to get the benefits of automatic type checking. Binding with
exception-based validation enabled, in its simplest form, looks like this:

<TextBox Grid.Row="0" Grid.Column="1"
 Text="{Binding LastName, Mode=TwoWay,

➥ ValidatesOnExceptions=True}" />

The example binds the TextBox to the LastName property of the object that’s the cur-
rent data context. The ValidatesOnExceptions parameter informs the binding sys-
tem to report any binding exceptions to the TextBox.

 One nice side effect of this is that you get data type validation for free. For exam-
ple, if you try to enter letters into a decimal property such as the Salary field, you’ll
get a type mismatch validation error.

Figure 13.1 Runtime view of the validation form
Licensed to Devon Greenway <devon.greenway@gmail.com>

314 CHAPTER 13 Input validation
 In addition to simple data type validation, you can perform virtually any type of val-
idation you want by writing a little code inside the property setter.

13.2.2 Custom validation code

Referring back to the Employee class from listing 13.1, let’s modify the LastName prop-
erty to perform some basic validation. We’ll make the last name a required field and
then make sure it has a length of at least two characters:

public string LastName
{
 get { return _lastName; }
 set
 {
 if (string.IsNullOrEmpty(value))
 throw new Exception("Last Name is a required field.");

 if (value.Trim().Length < 2)
 throw new Exception("Name must be at least 2 letters long.");

 _lastName = value;
 NotifyPropertyChanged("LastName");
 }
}

For brevity, I used the base Exception class for our validation errors. In practice, you’ll
want to be less generic with your exception types, just as you would when throwing
exceptions for hard errors in code. In order for this code to work, you’ll need to run
without debugging (or ensure the appropriate IDE debugging break options are set,
now a default in Visual Studio 2010); otherwise, you’ll hit a break in the property setter.
COMBINING VALIDATION MESSAGES

In our setter, we have two guard conditions that throw exceptions when unmet. Since
these are real exceptions, the first one hit will pop out of the setter. If you want to have
more than one validation rule checked simultaneously, you’ll need to combine your
checks and throw only a single exception, perhaps like this:

private string _lastName;
public string LastName
{
 get { return _lastName; }
 set
 {
 string message = string.Empty;
 bool isOk = true;

 if (string.IsNullOrEmpty(value))
 {
 message += "Last Name is a required field. ";
 isOk = false;
 }

 if (value.Trim().Length < 5)
 {
 message += "Last Name must be at least 2 letters long. ";
Licensed to Devon Greenway <devon.greenway@gmail.com>

315Exception-based property validation
 isOk = false;
 }

 if (isOk)
 {
 _lastName = value;
 NotifyPropertyChanged("LastName");
 }
 else
 {
 throw new Exception (message.Trim());
 }
 }
}

Admittedly, that’s a hack, especially once you have more than a couple of rules associ-
ated with a single field. If you want to stick with exception-based validation, you’re
forced to live with the limitations imposed by an exception-based system, including
both single checks and the debugging hassles.

13.2.3 Validation error display

When you bind the TextBox to the instance of the Employee class with the simple (one
message) exception-based validation code in-place, change the binding statement to
validate on exceptions as shown earlier, and try to enter data that violates the rules,
you’ll get an experience like that shown in figure 13.2 when you tab off the field.

 Like almost everything else in Silverlight, the display of the validation error tooltip
and the error state of the TextBox are both completely customizable by editing the
control template. We’ll discuss styling and control templates in chapter 23.

 Validation using exception code inside properties can be convenient, but it cer-
tainly doesn’t look clean. It makes debugging sometimes difficult because there are
exceptions on the stack. Another issue is that validation errors can only be raised
when a setter is called, not in response to another action such as the changing of a
value in a related field. And, truthfully, many of us just have an aversion to using
exceptions for business or validation rules.

 Silverlight 4 introduced the IDataErrorInfo and INotifyDataErrorInfo inter-
faces. IDataErrorInfo, covered in the next section, was previously available in WPF,
but INotifyDataErrorInfo, covered in section 13.4, is a completely new interface.
These interfaces help eliminate some of the issues present with exception-based vali-
dation because they have a completely different exception-free implementation. But
the same styling guidelines and error display features still apply. In addition, they offer
some features, such as asynchronous validation, that would be cumbersome or impos-
sible to implement in an exception-based model.

Figure 13.2 Default binding validation error display for the Last Name TextBox, illustrating a custom
error message
Licensed to Devon Greenway <devon.greenway@gmail.com>

316 CHAPTER 13 Input validation
13.3 Synchronous validation with IDataErrorInfo
IDataErrorInfo was introduced in order to address some of the concerns raised by
exception-based validation. Unlike exception-based validation, there are no excep-
tions on the call stack when validation fails. This approach is also more flexible when
it comes to setting validation errors for individual fields, regardless of whether their
setters are called.

 We’ll start the discussion of IDataErrorInfo by taking a look at the interface mem-
bers and the binding statement. We’ll then work on handling simple validation errors.
Once we have the right approach for handling simple validation errors, we can look at
something that IDataErrorInfo can do that was difficult with exception-based valida-
tion: cross-field validation errors. Finally, since you’ll want to combine the built-in type
checking with your custom validation errors, we’ll look at what it takes to combine
IDataErrorInfo validation with exception-based validation.

13.3.1 The IDataErrorInfo interface

Located in the System.ComponentModel namespace, the IDataErrorInfo interface is
meant to be implemented by any class you want to use as a binding source and also
want to have surface validation errors.

 The IDataErrorInfo interface contains two properties: Error and Item. These
properties are described in table 13.2.

You can already see how this is going to provide more options than the exception-
based approach. With a simple collection of messages, we can add and remove them
using code in any place in our class. In addition, the class-scoped error message lets us
provide errors that are difficult to attach to any single property.
BINDING WITH VALIDATESONDATAERRORS

In return for this flexibility, you’ll need to write a bit more code. Before we do that,
though, we need to modify the form XAML so that it responds to the IDataErrorInfo
errors rather than the exception-based errors. The binding statement for each Text-
Box should look like this:

Text="{Binding LastName, Mode=TwoWay, ValidatesOnDataErrors=True}"

Note the ValidatesOnDataErrors property versus the ValidatesOnExceptions prop-
erty. As the name suggests, setting ValidatesOnDataErrors to true tells the binding
system to watch the IDataErrorInfo interface on your class and respond to any
errors reported.

Table 13.2 IDataErrorInfo members

Property Description

Error Set this to have a single error message that applies to the entire object.

Item A collection of errors, indexed by property name. Set these to have errors
specific to individual fields.
Licensed to Devon Greenway <devon.greenway@gmail.com>

317Synchronous validation with IDataErrorInfo
 Now that the binding is set up for each of the TextBox instances on the form, we
can get to the actual validation code. We’ll put the validation code inline in the
Employee class. Once you have some experience with it, you may want to pull the com-
mon validation helper code out into a separate class, called from your entities.

13.3.2 Simple validation with IDataErrorInfo

The first thing to do is to implement IDataErrorInfo in the class. The modifications
to the Employee class to do this look like listing 13.3.

public class Employee : INotifyPropertyChanged, IDataErrorInfo
{
 ...

 #region IDataErrorInfo Members

 private string _dataError = string.Empty;
 string IDataErrorInfo.Error
 {
 get { return _dataError; }
 }

 private Dictionary<string, string> _dataErrors =
 new Dictionary<string,string>();
 string IDataErrorInfo.this[string columnName]
 {
 get
 {
 if (_dataErrors.ContainsKey(columnName))
 return _dataErrors[columnName];
 else
 return null;
 }
 }
 #endregion
}

The Dictionary of strings holds the field-level error messages, whereas the single
string property holds the class-level error message. To try out the interface, we’ll
implement the same validation we did in the simple exception-based validation exam-
ple and check the length of the LastName field:

public string LastName
{
 get { return _lastName; }
 set
 {
 if (string.IsNullOrEmpty(value))
 _dataErrors["LastName"] = "Last Name is required";
 else if (value.Trim().Length < 2)
 _dataErrors["LastName"] =
 "Last Name must be at least 2 letters long.";

Listing 13.3 Implementing IDataErrorInfo in the Employee class

Class-level
error property

Field-level
error property
Licensed to Devon Greenway <devon.greenway@gmail.com>

318 CHAPTER 13 Input validation
 else
 if (_dataErrors.ContainsKey("LastName"))
 _dataErrors.Remove("LastName");

 _lastName = value;
 NotifyPropertyChanged("LastName");
 }
}

There are two primary differences in the structure of this rule-checking code as
opposed to the exception-based code. First, we needed to include a branch that clears
the error when valid, and second, the rules as written let potentially bad data into the
class. The second difference is a matter of preference and business rules; you may eas-
ily change it so the data is only set when valid. The former check is required because
the only thing the binding system uses to check for the presence of an error is
whether employee["FieldName"] returns a string or null.

 Running the application produces the same results as the exception-based version,
as it should. We changed only our implementation of validation at the business object
level, not the user interface elements that display the results.

13.3.3 Cross-field validation with IDataErrorInfo

What about cases when you want to validate
more than one field? For example, let’s say that
we need to ensure that an employee’s salary is
in range when related to his or her level. The
valid salary ranges for each level are listed in
table 13.3.

 You could put this in the setter for one of
the fields, but unless you include the check in
both, you’re making the mistake of assuming
the field data will be input in a specific order. In cases like this, it’s better to pull the
validation code out into a common function and call it from both setters, as shown in
listing 13.4.

private int _level;
public int Level
{
 get { return _level; }
 set
 {
 if (ValidateSalaryAndLevel(value, Salary))
 {
 _level = value;
 NotifyPropertyChanged("Level");
 }
 }

Listing 13.4 Cross-field validation code using IDataErrorInfo

Call to validation
function

Level Allowable salary range

100 50,000–64,999

101 65,000–79,999

102 80,000–104,999

Table 13.3 Validation rules for salary
and level
Licensed to Devon Greenway <devon.greenway@gmail.com>

319Synchronous validation with IDataErrorInfo
}

private decimal _salary;
public decimal Salary
{
 get { return _salary; }
 set
 {
 if (ValidateSalaryAndLevel(Level, value))
 {
 _salary = value;
 NotifyPropertyChanged("Salary");
 }
 }
}

private bool ValidateSalaryAndLevel(int level, decimal salary)
{
 if (level < 100 || level > 102)
 {
 _dataErrors["Level"] = "Level must be between 100 and 102";
 return false;
 }

 bool isValid = false;

 switch (level)
 {
 case 100:
 isValid = (salary >= 50000 && salary < 65000);
 break;

 case 101:
 isValid = (salary >= 65000 && salary < 80000);
 break;

 case 102:
 isValid = (salary >= 80000 && salary < 105000);
 break;

 }

 if (isValid)
 {
 if (_dataErrors.ContainsKey("Level"))
 _dataErrors.Remove("Level");

 if (_dataErrors.ContainsKey("Salary"))
 _dataErrors.Remove("Salary");
 }
 else
 {
 _dataErrors["Level"] = "Level does not match salary range";
 _dataErrors["Salary"] = "Salary does not match level";
 }

 return isValid;
}

Call to validation
function

Check for
valid salary

Clear existing
errors

Set new errors
Licensed to Devon Greenway <devon.greenway@gmail.com>

320 CHAPTER 13 Input validation
In this example, I decided not to allow invalid values into the class. Validation using
this interface makes that a simple choice to make. The code that makes that decision
is inside the properties themselves.

 The ValidateSalaryAndLevel function is the meat of the validation for these two
properties. It takes in both the salary and the level (one of which will always be the
current value and the other an entered but not set value) and first validates the level,
then validates that the salary falls within the correct range for the level. If so, it clears
any previous errors. If not, it sets new errors.

 One thing you may have noticed is the proliferation of magic strings (the property
names). When implementing this in your own code, you’ll want to either use con-
stants for the string names, or use reflection to dynamically pull property names from
the classes. The former is quicker both to develop and at runtime; the latter is more
robust but slower.

 When run, the cross-field validation looks like this figure 13.3. If not, you may have
forgotten to add the ValidatesOnDataErrors property to your binding statement.
IDataErrorInfo is great, but one thing we lost in the process was the automatic errors
when validating the data types. To continue to support that, we’ll need to return to
exception-based validation.

13.3.4 Combining exceptions and IDataErrorInfo

When we turned on ValidatesOnDataErrors, we removed the ValidatesOnExcep-
tions parameter. That’s used not just by our own code but also by the built-in type
checking. For example, when you try to assign a string like "dfdf" to an int, you’ll
get an exception. That exception bubbles up and, if not handled by the binding sys-
tem, it just disappears.

 Luckily, this is easy to fix. Simply modify the binding statement to include both
parameters:

Text="{Binding Level, Mode=TwoWay,

➥ ValidatesOnDataErrors=True,
➥ ValidatesOnExceptions=True}"

When run, the result will look like figure 13.4. Note that, since the exception will be
thrown before your property setter code executes, this exception takes precedence
over your own validation code.

Figure 13.3 Cross-field validation showing errors for both salary and level

Figure 13.4 Built-in exception-based checking takes precedence over your code.
Licensed to Devon Greenway <devon.greenway@gmail.com>

321Asynchronous validation with INotifyDataErrorInfo
Using both modes gives you the best of both worlds: you don’t need to handle basic
type checking, and you get more robust validation support for your own custom code.

 IDataErrorInfo is a powerful interface for surfacing your own validation errors. It
provides a way to surface errors for the entire class or for individual fields. It also
makes it possible to perform cross-field validation or multifield validation without
invoking all involved property setters through the binding system.

 It’s not without its faults, though. String-based property access can get you into
trouble when you refactor (or have a typo), and the validation code is all synchro-
nous, run on the client. There are tricks for working around the string-based prob-
lem (constants, reflection), but what do you do when you want to validate through a
service or do some other long-running validation call? For those instances, we have
INotifyDataErrorInfo.

13.4 Asynchronous validation with INotifyDataErrorInfo
IDataErrorInfo is a synchronous operation validation approach. Though you can
bend it to surface errors in an asynchronous way, it’s not really optimized for that. In
addition, IDataErrorInfo doesn’t support having multiple errors for a single property.

 INotifyDataErrorInfo solves both of these issues. Though similar in concept to
IDataErrorInfo, its design specifically supports asynchronous validation and the
method for returning validation errors supports multiple errors for a single field.

 We’ll start our coverage of INotifyDataErrorInfo with the interface members
and how to implement them in your own class. Then we’ll move on to the modifica-
tions required in the binding statement. Next, because we’ll need to show asynchro-
nous validation, we’ll implement a simple WCF-based web service. Finally, we’ll
implement an asynchronous validation function to call the service and call that from
our class.

13.4.1 The INotifyDataErrorInfo interface

Like the IDataErrorInfo interface, the INotifyDataErrorInfo interface is located in
the System.ComponentModel namespace. The interface has only three members, as
shown in table 13.4, and is conceptually similar to IDataErrorInfo but optimized for
asynchronous operation.

Table 13.4 INotifyDataErrorInfo members

Member Description

GetErrors This is a method that returns all of the validation errors for a specific field. If the
propertyName parameter is null or string.Empty, the method returns
errors for the entire object.

HasErrors This is a property that returns true if the object has errors; false otherwise.

ErrorsChanged This is an event similar to the PropertyChanged event in binding. Whenever
you add, remove, or change errors, you must raise this event to notify the binding
system.
Licensed to Devon Greenway <devon.greenway@gmail.com>

322 CHAPTER 13 Input validation
One difference from IDataErrorInfo you’ll immediately notice is the addition of the
event ErrorsChanged. Since INotifyDataErrorInfo is meant to be used in asynchro-
nous validation scenarios, it uses an event-based mechanism for notifying listeners of
new validation errors.

 GetErrors will require the most setup because you need a backing store with a col-
lection of validation error messages for each field you’ll validate.

NOTE Silverlight will call GetErrors on each public member of your class, even
if you don’t explicitly support listening to INotifyDataErrorInfo in every
given binding statement. Be sure to handle this situation in your own code.

13.4.2 Implementing the interface

As was the case with IDataErrorInfo, the increase in flexibility means an increase in
code. The interface itself is simple enough but, behind that, you must maintain sev-
eral collections in order to surface the errors. The code to implement INotifyDa-
taErrorInfo is shown in listing 13.5.

public class Employee : INotifyPropertyChanged, INotifyDataErrorInfo
{
...
 #region INotifyDataErrorInfo Members

 private Dictionary<string, ObservableCollection<string>>
 _validationErrors;
 private ObservableCollection<string>
 _classValidationErrors;

 public event EventHandler<DataErrorsChangedEventArgs> ErrorsChanged;

 public Employee()
 {
 _validationErrors =
 new Dictionary<string, ObservableCollection<string>>();

 _classValidationErrors =
 new ObservableCollection<string>();

 CreateErrorsCollection("Level");
 CreateErrorsCollection("Salary");
 }

 private void CreateErrorsCollection(string propertyName)
 {
 if (!_validationErrors.ContainsKey(propertyName))
 {
 _validationErrors.Add(propertyName,
 new ObservableCollection<string>());
 }
 }

 IEnumerable INotifyDataErrorInfo.GetErrors(string propertyName)
 {

Listing 13.5 INotifyDataErrorInfo implementation

Field
errors

Class
errors

Create errors
collections
Licensed to Devon Greenway <devon.greenway@gmail.com>

323Asynchronous validation with INotifyDataErrorInfo
 if (!string.IsNullOrEmpty(propertyName))
 {
 if (_validationErrors.ContainsKey(propertyName))
 return _validationErrors[propertyName];
 else
 return null;
 }
 else
 {
 return _classValidationErrors;
 }
 }

 bool INotifyDataErrorInfo.HasErrors
 {
 get
 {
 if (_classValidationErrors.Count > 0)
 return true;

 foreach (string key in _validationErrors.Keys)
 {
 if (_validationErrors[key].Count > 0)
 return true;
 }

 return false;
 }
 }

 #endregion
}

That’s what’s needed for the interface. I included the code for it but rarely—if ever—
bother with class-level errors, preferring instead to light up specific fields. Your mile-
age may vary.

13.4.3 Binding support

In addition to implementing the interface, the binding on the fields will need to be
modified to support listening to the INotifyDataErrorInfo interface, just as we did
with the other validation approaches:

Text="{Binding LastName, Mode=TwoWay,

➥ ValidatesOnNotifyDataErrors=True}"

The next step is to create some code to do the actual validation. Let’s assume for a
moment that the salary and level validation requires a web service call rather than a
simple in-code lookup table. The web service may call out to a rules engine or may
simply look up values in the database.

13.4.4 Building the WCF web service

In the web project associated with this Silverlight project, add a folder called Services
and into it add a new Silverlight-Enabled WCF Service called ValidationService. The

Return errors
for field

Check for
existing errors
Licensed to Devon Greenway <devon.greenway@gmail.com>

324 CHAPTER 13 Input validation
template is essentially a SOAP web service served up using WCF. You’ll find it easier to
use than full-blown WCF and more functional than an .asmx service.

 Inside the service code, create a ValidateSalaryAndLevel method that looks like
listing 13.6; we’ll cover web services in more detail in chapter 14.

[OperationContract]
public bool ValidateSalaryAndLevel(int level, decimal salary)
{
 bool isValid = false;

 switch (level)
 {
 case 100:
 isValid = (salary >= 50000 && salary < 65000);
 break;

 case 101:
 isValid = (salary >= 65000 && salary < 80000);
 break;

 case 102:
 isValid = (salary >= 80000 && salary < 105000);
 break;
 }
 return isValid;
}

For simplicity, I chose the simple route of returning a Boolean and left it up to the cli-
ent to assign the appropriate messages to the controls. You may decide instead to
return a class that has a Boolean indicating whether validation passed and then a col-
lection of error messages with field names or a couple of strongly-typed properties
with the error messages for each field.

13.4.5 Adding the client service code

The next step is to add a service reference in your Silverlight project to the WCF web
service in the web project. Right-click the Silverlight project, select Add Service Refer-
ence, click Discover, and name the reference ValidationServices.

 Once the reference is added, add the client code from listing 13.7 into the
Employee class.

private void ValidateSalaryAndLevelAsync(int level, decimal salary)
{
 var client = new ValidationServices.ValidationServiceClient();

 client.ValidateSalaryAndLevelCompleted += (o, e) =>
 {

 _validationErrors["Level"].Clear();

Listing 13.6 WCF service code for ValidateSalaryAndLevel

Listing 13.7 ValidateSalaryAndLevelAsync in the Employee class

WCF
 operation contract

Clear existing
errors
Licensed to Devon Greenway <devon.greenway@gmail.com>

325Asynchronous validation with INotifyDataErrorInfo
 _validationErrors["Salary"].Clear();

 if (e.Result)
 {
 _level = level;
 _salary = salary;
 NotifyPropertyChanged("Level");
 NotifyPropertyChanged("Salary");
 }
 else
 {
 if (level < 100 || level > 102)
 {
 _validationErrors["Level"]

➥ .Add("Level must be between 100 and 102.");
 }

 _validationErrors["Level"]

➥ .Add("Level does not match salary range.");
 _validationErrors["Salary"]

➥ .Add("Salary does not match level.");
 }

 if (ErrorsChanged != null)
 {
 ErrorsChanged(this, new DataErrorsChangedEventArgs("Level"));
 ErrorsChanged(this, new DataErrorsChangedEventArgs("Salary"));
 }
 };

 client.ValidateSalaryAndLevelAsync(level, salary);
}

The ValidateSalaryAndLevelAsync class calls out to the web service and validates the
salary and the level. If the web service says the values are valid, the underlying fields
are updated. If it says the values are invalid, it sets up error messages for the fields. For
grins, on an invalid return, it also validates the level number itself.

 There are other ways to handle this type of validation, of course. You could have a
separate local client method that evaluates the level and call that either asynchro-
nously or synchronously from the client. You could also have the web service return
error messages.

 Also, for simplicity, the web service client code is in the Employee entity class. In a
real application, I strongly encourage you to separate this code out into a separate ser-
vice client layer that is, at most, loosely coupled to the Employee entity. See chapter 16
on the ViewModel pattern for guidance on this and other topics.

13.4.6 Property modifications

The last step is to add the calls to ValidateSalaryAndLevelAsync. In my code, I han-
dle the property setting and the change notification inside the async method so the
setters are significantly simplified:

private int _tempLevel;
private int _level;
public int Level

Clear existing
errors

Only set
fields if valid

Set error
messages

Error change
notification

Call service
Licensed to Devon Greenway <devon.greenway@gmail.com>

326 CHAPTER 13 Input validation
{
 get { return _level; }
 set
 {
 _tempLevel = value;
 ValidateSalaryAndLevelAsync(value, Salary);
 }
}

private decimal _tempSalary;
private decimal _salary;
public decimal Salary
{
 get { return _salary; }
 set
 {
 _tempSalary = value;
 ValidateSalaryAndLevelAsync(Level, value);
 }
}

Note the _tempSalary and _tempLevel variables. Due to the asynchronous nature of
the validation, I needed some place to store the possibly invalid values; otherwise, you
could never jump out of the validation error condition (one of the properties would
always be the default value during validation) and correct the data. These properties
are where I choose to store the temporary values. Consider them “draft” or “unveri-
fied” values.

 Some caveats to the code I presented here. I don’t propose that these are best
practices or even stable for production code. The code has been simplified to show
the core concepts and stay within the reasonable bounds of a chapter. For example, in
the preceding code, you may run into race conditions for multiple property changes
that happen during a slow-running web service call. If they happen to get queued out
of order, you can end up with skewed validation and entry.

 The INotifyDataErrorInfo class implementation is more complex than the
other methods presented here. For that reason, you may prefer to implement it only
on some fields and use either exception-based or IDataErrorInfo on the remaining
fields. The choice is up to you; all of the methods coexist nicely in the same class.
The binding system will know which ones to use based on the properties of the bind-
ing statement.

 INotifyDataErrorInfo fills in the missing gap left by the other methods by
enabling you to provide asynchronous validation error reporting and supply multiple
validation messages for a single field.

 IDataErrorInfo and INotifyDataErrorInfo are the premier ways of handling
validation in Silverlight but they require a fair bit of code to implement. What if you
want to do something more lightweight? Do you need to turn to exceptions? No,
if you’re using the DataForm or DataGrid, you can annotate your data using valida-
tion attributes.
Licensed to Devon Greenway <devon.greenway@gmail.com>

327Annotating for validation
13.5 Annotating for validation
There are innumerable ways to validate data and an equally diverse number of ways in
which to store that validation information including the rules logic and the messages.
In section 13.2, we saw how you can use exceptions in property setters to expose vali-
dation information to the user interface. In sections 13.3 and 13.4, we saw how to use
specialized interfaces to support additional forms of validation.

 Though you can continue to code validation directly into properties setters or use
interfaces, the System.ComponentModel.DataAnnotations assembly and namespace
found in the Silverlight SDK provide a number of attributes designed to make data val-
idation and display hinting easier for controls such as the DataForm, DataGrid, and
some third-party controls. The approach taken by these attributes is to mark up the
properties in your entities using attributes in code rather than require code within the
properties or external to your entities.

 If your scenario supports their use, validation attributes are simple to implement
and easy to use. In our discussion of these attributes, we’ll first go over the available set
of attributes and how to implement a select set of them in your own classes. Then,
we’ll extend the reach of the attributes to call out to external validation functions in
your code. Finally, we’ll create our own custom validators to handle situations not eas-
ily handled by the built-in set. All of these techniques help us create validation code
that’s cleaner and easier to read than many of the other methods.

13.5.1 Validation attributes

Previously we saw how to provide property-level validation using exceptions and syn-
chronous and asynchronous interfaces. Though those work in almost any situation,
they’re not a very clean approach and lead to a significant amount of branch/check
code inside the property setters in your entities. They also require significant code
modification to your entities—a luxury we don’t always have. One better way to tackle
basic validation is to use attributes tied to the properties in the class.

 To support attribute or annotation-based validation, the DataAnnotations name-
space includes the validation attributes shown in table 13.5.

Table 13.5 Validation attributes in System.ComponentModel.DataAnnotations

Validation attribute class Validation capabilities

EnumDataTypeAttribute It specifies that the value must be parsable as one of the
members of a specified enum.

RangeAttribute It specifies that the value must be between two other values.
The type can be any type that implements IComparable.

RegularExpressionAttribute It enables you to associate a regular expression to validate a
value. This is useful for things such as phone numbers and
email addresses, as well as any other data that must adhere
to one or more specific formats.
Licensed to Devon Greenway <devon.greenway@gmail.com>

328 CHAPTER 13 Input validation
Note that this namespace also defines the ValidationException type. You’ll recall that
in our earlier example we simply used System.Exception. With the introduction of
this DLL, you can now use the ValidationException rather than the base System.
Exception. But since this DLL provides so many other ways to handle validation, I’d
encourage you to try packaging your validation code in either a function used from a
CustomValidationAttribute, or as a class derived from ValidationAttribute.

 We’ll only cover a handful of these attributes because the pattern is the same
across the set. In addition, only the DataGrid and DataForm (and a handful of third-
party controls) support these annotations, so these attributes aren’t necessarily a solu-
tion for all applications.

13.5.2 Annotating your entity

If we take the same Person class we used for the DataForm examples in chapter 12, we
can now mark that up to include some basic validation capabilities. To show off valida-
tion, we’ll also add two new properties: EmailAddress and NumberOfChildren. The
final class, with appropriate validation attributes in place, looks like listing 13.8.

public class Person
{
 [Required]
 [StringLength(25)]
 public string LastName { get; set; }

 [Required]
 [StringLength(25)]
 public string FirstName { get; set; }

 [Required]
 public DateTime DateOfBirth { get; set; }

 public bool IsRegistered { get; set; }

 public MaritalStatus MaritalStatus { get; set; }

RequiredAttribute It specifies that the value for this property must be nonnull and
not empty.

StringLengthAttribute It enables you to check the length of the value—must be
between the specified minimum and maximum length.

CustomValidationAttribute A catch-all validator that allows you to call custom code to per-
form the validation.

ValidationAttribute The abstract base class for all other validators. You can create
your own validation attributes by deriving from this class.

Listing 13.8 The Person class with validation attributes in place

Table 13.5 Validation attributes in System.ComponentModel.DataAnnotations (continued)

Validation attribute class Validation capabilities
Licensed to Devon Greenway <devon.greenway@gmail.com>

329Annotating for validation
 [Required]
 [StringLength(320)]
 [RegularExpression(@"^[a-zA-Z][\w\.&-]*[a-zA-Z0-9]@[a-zA-Z0-9]

➥ [\w\.-]*[a-zA-Z0-9]\.[a-zA-Z\.]*[a-zA-Z]$")]
 public string EmailAddress { get; set; }

 [Range(0, 20)]
 public int NumberOfChildren { get; set; }
}

Note that email address validation is complicated, and I don’t present the regular
expression used here as a fully correct version of an email validation expression, just
as an example.

 If we then load up the DataForm we used in the earlier examples and let it autogen-
erate the fields based on the updates to the Person class, we get the result shown in
figure 13.5.

 The validation attributes may be used both with the DataGrid and with the Data-
Form and with some third-party controls. Without altering the controls themselves,
there are workarounds to use some of the attributes in your own code, but they’re nei-
ther robust nor fully implemented, so I won’t include them here.

Figure 13.5 The DataForm with validation rules in place, showing the Validation
Summary and default validation messages
Licensed to Devon Greenway <devon.greenway@gmail.com>

330 CHAPTER 13 Input validation
13.5.3 Calling external validation functions

One of the validation attributes that could be used in your entities is the CustomVali-
dationAttribute. This attribute takes as parameters a .NET type and the string name
of a method to call on that type.

 If we wanted to extend our Person class to only allow names that begin with B, we
could create a simple validation method and class like listing 13.9.

public class CustomValidationMethods
{
 public static ValidationResult NameBeginsWithB(string name)
 {
 if (name.StartsWith("B"))
 return ValidationResult.Success;
 else
 return new ValidationResult("Name does not begin with 'B'");
 }
}

The static method simply needs to take in the appropriate type and return a Valida-
tionResult indicating whether the value passed validation. We then wire it up to our
Person class using the CustomValidationAttribute like this:

[CustomValidation(typeof(CustomValidationMethods),
 "NameBeginsWithB"]
public string LastName { get; set; }

When validation is performed on the field, your custom function will be called and
you’ll get a validation error message that contains the text supplied in the Valida-
tionResult or, if provided, the custom error message tied to that instance of the Cus-
tomValidationAttribute. An example may be seen in figure 13.6.

 The custom validation function has an alternate signature that’s worth consider-
ation. In addition to taking in the value to be validated, it can also take as a parameter
a value of type ValidationContext. ValidationContext provides some additional
information that the validation function may wish to use either in building the error
message or in performing the actual validation. Taking the previous example and add-
ing the context property results in the validation function shown in listing 13.10.

public static ValidationResult NameBeginsWithB(
 string name, ValidationContext context)
{
 if (name.StartsWith("B"))
 return ValidationResult.Success;
 else
 return new ValidationResult(
 string.Format("{0} does not begin with 'B'",
 context.DisplayName));
}

Listing 13.9 A simple custom validation function

Listing 13.10 A custom validation function with ValidationContext
Licensed to Devon Greenway <devon.greenway@gmail.com>

331Annotating for validation
Note how we used the DisplayName from the context to make the error message a lit-
tle more meaningful. The resulting error on the DataForm looks like figure 13.7.

 Because ValidationContext also supplies you with the parent object to which the
member being validated belongs, you can use custom validation functions to effec-
tively extend the validation system to support cross-field validation checks. Of course,
you’ll need to be careful so that you don’t find yourself in the circular dependency
hole that many cross-field checks ultimately end in.

 Custom validation functions are one nice way to extend the validation system.
They’re simple to use and simple to create. Their main downside is they have external
dependencies and, therefore, are not entirely self-contained. In addition, the method
name is a string, and can be prone to typos or errors resulting from refactoring. To
create more robust validation code, you’ll want to create a custom validator.

13.5.4 Creating custom validators

Similar in concept to custom validation functions, custom validators are classes you
write that inherit from ValidationAttribute in the System.ComponentModel.
DataAnnotations namespace. The code itself is almost identical to what you’d write in

Figure 13.6
The Last Name field failed
our custom validation
check, as indicated in the
error message at the
bottom. Note that the
field name isn’t included
in the error message.

Figure 13.7 The enhanced error message with field name courtesy of the ValidationContext
Licensed to Devon Greenway <devon.greenway@gmail.com>

332 CHAPTER 13 Input validation
a custom validation method. Listing 13.11 shows our custom validation code packaged
into a custom validation attribute.

public class NameBeginsWithBAttribute : ValidationAttribute
{
 protected override ValidationResult IsValid(
 object value, ValidationContext validationContext)
 {
 if (!(value is string))
 return new ValidationResult(
 "Incorrect data type. Expected string");

 if (string.IsNullOrEmpty((string)value))
 return ValidationResult.Success;

 if (((string)value).StartsWith("B"))
 return ValidationResult.Success;
 else
 return new ValidationResult(
 string.Format("{0} does not begin with 'B'",
 validationContext.DisplayName));
 }
}

The only thing we’re required to do is override the IsValid function and return an
appropriate ValidationResult. Once we do that, we can use the validator just like we
would any other:

[NameBeginsWithB()]
public string LastName { get; set; }

The end result is the same error message display we saw with the custom validation
function approach. But our validator is both simpler to use and less prone to breaking
because it’s self-contained inside a custom validator attribute class.

 That’s attribute-based validation in a nutshell. If you can use the DataGrid and
DataForm as your primary controls, attribute-based validation is, by far, the easiest
approach to getting validation into your classes. Not only does the markup avoid code
in your class, but you can also add buddy classes (partial classes) to mark up existing
entities from your ORM.

 We’ll cover the enhanced cross-tier validation features brought by WCF RIA Ser-
vices in chapter 17. Until then, keep in mind that binding and validation are core Sil-
verlight features and work without the addition of a framework such as WCF RIA
Services or a pattern such as ViewModel (see chapter 16).

13.6 Comparison of validation approaches
Let’s wrap up our discussion of validation by summarizing what I consider to be the
pros and cons of each validation method, shown in table 13.6.

Listing 13.11 Custom validation attribute

Guard condition due
to object typing

Allow
empty/null

Actual
validation code
Licensed to Devon Greenway <devon.greenway@gmail.com>

333Summary
These three main approaches to validation are universally supported in Silverlight,
requiring no special client-side control code or styles. Most third-party controls will
also respect these forms of validation.

 My recommendation is:

■ Always support exceptions, so you get type checking.
■ Use attributes if you’re doing everything in a DataForm or DataGrid.
■ Use IDataErrorInfo if you’re doing all your validation on the client.
■ Use INotifyDataErrorInfo if you need to call out to services to perform the

validation.

Of course, your specific situation may dictate a different solution, but the guidelines
here will apply to most applications.

13.7 Summary
Input validation is a core requirement of almost every application with a TextBox.
Though Silverlight contains a number of different approaches, evolved over the ver-
sions, these are at least structured ways to handle validation.

 For general Silverlight applications, exception-based validation is one of the easiest
approaches to use. It’s also very limited but, if your validation requirements aren’t
heavy, it can often handle the job.

Table 13.6 Validation approach summary

Method Pros Cons

Exceptions

ValidatesOnExceptions=True

Free type validation

Simple inline code; no inter-
faces

Only invoked when property set;
cross-field validation difficult or
impossible

Only one error per field

IDataErrorInfo

ValidatesOnDataErrors=True

Cross-field validation

No exceptions on the stack

Doesn’t handle type validation

Only one error per field

Slightly more complex imple-
mentation than exceptions

INotifyDataErrorInfo

ValidatesOnNotifyDataErrors=True

Cross-field validation

No exceptions on the stack

Asynchronous validation

Multiple errors per field
(note: current Silverlight UI tem-
plates only support showing the
first error)

Doesn’t handle type validation

More complex implementation
than exceptions

Validation attributes No exceptions on the stack

Multiple validators per field

Simple

No code other than attribute

Only works with DataForm,
DataGrid, and some third-
party annotation-aware controls
Licensed to Devon Greenway <devon.greenway@gmail.com>

334 CHAPTER 13 Input validation
 For more robust implementations, turn to IDataErrorInfo and INotifyDataEr-
rorInfo. The two can be complex to implement, especially the latter, but you’re pro-
vided with pretty much everything you’d need to implement your own validation
framework on top of the base interfaces.

 When combined with the DataGrid and DataForm, attribute-based validation,
along with the UI hinting covered in chapter 12, provides an incredibly simple and
powerful way to create capable user interfaces with little plumbing code required.

 Now that we’ve covered binding in chapter 11 and validation in this chapter and
introduced the concept of a web service, it’s time we dove right into the communica-
tions and networking stack that drives most Silverlight applications. Chapter 14 will
cover how to use web and REST services as well as how to implement other forms of
communication in your applications.
Licensed to Devon Greenway <devon.greenway@gmail.com>

Networking
 and communications
Chapter 11 introduced you to the convenient data-binding mechanisms available
within Silverlight. Although binding isn’t restricted to just what we’d commonly
think of as data, the truth of the matter is that’s what it’s usually used for. Working
with data is essential to most applications, but you have to get the data into your
application somehow. This is where networking and communications come in.

 Silverlight provides numerous methods to get to data hosted on other systems,
from complex web services to a simple XML document. The networking and com-
munications features of Silverlight enable you to send and receive data with a variety
of technologies including SOAP services, XML, JSON, RSS, Atom, and even sockets.

This chapter covers
■ Working with web requests
■ Performing duplex communication
■ Consuming RESTful APIs and SOAP web services
■ Working with JSON data
■ Working with point to point and multicast sockets
335

Licensed to Devon Greenway <devon.greenway@gmail.com>

336 CHAPTER 14 Networking and communications
 We’ll start this chapter with the basics of Silverlight networking and the limitations
of the browser stack. From there, we’ll look at how to connect to SOAP services and
RESTful services using the browser networking stack.

 With the basics under your belt, it’s then time to examine the client networking
stack, introduced for out-of-browser applications but available even to applications
running in-browser. This stack works around many of the limitations inherent in
straight browser-based networking.

 Then, because you’ll need to do something with the data returned from these net-
working calls, we’ll look at the deserialization support in Silverlight for things such as
XML and JSON.

 Our next stop will be to look at the WCF service enhancements available to Silver-
light; then, we’ll dive into WCF duplex services, or polling duplex as it’s often called.
Polling duplex enables push communications between the server and client, much
like sockets, but without as much code.

 Speaking of sockets, regular point-to-point sockets and UDP multicast sockets will be
our last IP networking topics for the chapter. Multicast sockets are new to Silverlight 4
and enable a number of scenarios previously difficult or impossible in Silverlight.

 We’ll wrap up with a local non-IP networking feature that enables communication
between two or more Silverlight applications, in-browser or out, running on the same
machine.

14.1 Trust, security, and browser limitations
You must consider several basic concepts when using the communication APIs in Sil-
verlight. These concepts—trust, security, and the limitations of the browser—apply to
all methods of communication discussed in this chapter, with a partial exception
granted to the Silverlight cross-application communication we wrap up with.

 Silverlight executes within the confines of the client browser. Even the standard out-
of-browser mode discussed in chapter 5 lives in this sandbox. Because of this, you have
to retrieve data differently than the way you may be used to with a server-side technol-
ogy such as ASP.NET. For example, you can’t directly connect to a database without
using something as a proxy, most commonly a web service. Although this method of
communicating resembles that used by Ajax, there are significant differences.

 Imagine you’re building a Silverlight application that allows users to add items to a
shopping cart. As soon as users add an item to their cart, you want to reserve it for
them. Because Silverlight executes in the browser, you can’t just call the database and
mark the item as reserved. You need something acting as a proxy to the database.
Throughout this chapter, we’ll discuss methods of connecting to remote services to
accomplish tasks like this. For now, let’s move to the first basic concept: trust.

14.1.1 Cross-domain network access

The concept of trust applies to cross-domain access. If your application is hosted at
http://10rem.net and you’re attempting to access a web service hosted at http://
silverlight.net, the request is made cross-domain. In the case of cross-domain access, it
Licensed to Devon Greenway <devon.greenway@gmail.com>

http://10rem.net
http://silverlight.net
http://silverlight.net

337Trust, security, and browser limitations
isn’t a matter of whom your application trusts, but of who trusts your application. In
the vein of increased security, Silverlight, like Flash before it, has restricted client
applications to connecting only to the same domain that hosts the application itself.
For those familiar with web services, this seems counterproductive, so the Silverlight
team also worked in an exemption that requires the involvement of the server hosting
the web service. Administrators of web servers can create policy files to give access to
only the resources they want exposed to the requesting domains they trust. A simple
XML file is added that tells the Silverlight application what it has access to on the for-
eign server.

NOTE Cross-domain policy files aren’t required for elevated trust (trusted) out-
of-browser applications, described in chapter 5. Normal trust out-of-browser
applications and in-browser applications still require them. Cross-domain policy
files typically aren’t required for images and media.

The clientaccesspolicy.xml file defines these policies; it needs to be placed at the root
of the domain hosting any web service that’s allowed to be accessed from a different
domain. Even if there’s a valid policy file, if it’s located anywhere other than the root
of the hosting domain, your application won’t find it, and the request will fail. If the
file is in place and has the proper attributes, your application is considered trusted,
and the call will return as expected. So, what does a properly formatted policy file
look like? Take a look at this example:

<?xml version="1.0" encoding="utf-8"?>
<access-policy>
 <cross-domain-access>
 <policy>
 <allow-from http-request-headers="*">
 <domain uri="*"/>
 </allow-from>
 <grant-to>
 <resource path="/" include-subpaths="true"/>
 </grant-to>
 </policy>
 </cross-domain-access>
</access-policy>

This shows the minimum needed in a clientaccesspolicy.xml file to allow HTTP access
to all web services hosted on the current domain. If you want to have different rights
for different services or to allow for socket access to the server, you can make additions
to that file. Sockets are described in section 14.5. The example here is as open as pos-
sible-requests from any domain can access any resource in the host domain, and host
headers are allowed. Table 14.1 shows the elements and attributes that make up a cli-
entaccesspolicy.xml file. Attributes are shown after the element they apply to.

 I know that you’re anxious to see how to connect to data from within your applica-
tion, but you need to create a solid foundation on which to build service access. You
can make the policy file as open or as restrictive as you desire. By changing the domain
element, you can limit access to a single domain. You can also add multiple policy
Licensed to Devon Greenway <devon.greenway@gmail.com>

338 CHAPTER 14 Networking and communications
elements to apply different rules to requests from different domains, as shown in the
next example.

 Two separate policies are defined in this example. The first allows any request com-
ing from a Silverlight application hosted at sometrusteddomain.com to have unre-
stricted access to the entire application; the second forces requests from any other
domain to be restricted to the API folder and to have HTTP headers denied:

Table 14.1 Elements and attributes allowed in clientaccesspolicy.xml

Element/attribute Required Description

access-policy Yes Root element for the policy file.

cross-domain-policy Yes Container for one or more policy elements.

policy Yes Defines rules for a single domain or a group of
domains.

allow-from Yes Container for permitted domains. If it contains no
domain elements, no cross-domain access is granted.

http-request-headers No Defines which headers are allowed to be sent to the
web services hosted at the current domain. If
absent, no headers are allowed.

domain Yes Defines domains affected by the policy element in
which the domain is a child.

uri Yes Specifies the exact domain allowed for the current
policy.

grant-to Yes Container for one or more resource elements.

resource Yes Required for WebClient or HttpWebRequest
classes. Defines server resources affected by the
current policy.

Path Yes Required for WebClient or HttpWebRequest
classes. Identifies individual files or services allowed
or denied by the current policy. Format is a URI rela-
tive to the root of the domain.

include-subpaths No Optional for WebClient or HttpWebRequest
classes. If absent, subfolder access is denied.

socket-resource Yes Required for socket access. Defines socket
resources affected by the current policy.

Port Yes Required for socket access. Defines a port or range
of ports, which must fall between 4502 and 4534,
affected by the current policy.

Protocol Yes Required for socket access. Defines what protocols
are allowed under the current policy. The only proto-
col currently allowed is TCP.
Licensed to Devon Greenway <devon.greenway@gmail.com>

339Trust, security, and browser limitations
<?xml version="1.0" encoding="utf-8"?>
<access-policy>
 <cross-domain-access>
 <policy>
 <allow-from http-request-headers="*">
 <domain uri="http://sometrusteddomain.com”/>
 </allow-from>
 <grant-to>
 <resource path="/" include-subpaths="true"/>
 </grant-to>
 </policy>
 <policy>
 <allow-from>
 <domain uri="*”/>
 </allow-from>
 <grant-to>
 <resource path="/api"/>
 </grant-to>
 </policy>
 </cross-domain-access>
</access-policy>

The elements and attributes shown apply for connecting to any HTTP-based
resource. Modifications are needed if you’re using TCP sockets, which are described
in section 14.5.

 Even if this file isn’t in place, you may still be in luck. Silverlight will also use policy
files created for use with Adobe Flash, known as crossdomain.xml files, for cross-
domain access. There are two restrictions when using a crossdomain.xml file:

■ It may only be used for WebClient, HttpWebRequest, or service reference proxy
access. Socket access isn’t permitted.

■ The entire domain must be allowed access for Silverlight to use a crossdomain.xml
file. Silverlight doesn’t parse the advanced properties of crossdomain.xml.

If the domain hosting the web service you’re calling has either a clientaccesspol-
icy.xml or a crossdomain.xml file with the correct attributes in place, it’s considered
trusted and will return a result.

 It’s necessary to have an outside source trust your application, but should you trust
everyone else? Let’s look at a few ways to ensure that your application is as safe and
secure as possible.

Why have cross-domain policies at all?
Any old native client or server application can access any service it wants to, so you
may wonder why you have to jump through hoops when contacting network services
through Silverlight.

Let’s say for example that some services in your company include sensitive data.
Maybe you work at a bank, an insurance company, or a government institution. The
services are open to anyone authenticated on the LAN.
Licensed to Devon Greenway <devon.greenway@gmail.com>

340 CHAPTER 14 Networking and communications
14.1.2 Making your application secure

Just as you put a valid policy file in place for security reasons, you can take other steps
to make your application more secure. In this section, we’ll briefly discuss data integ-
rity, using HTTPS, and attaching HTTP headers to your request.
DATA INTEGRITY

Never trust that your data source will return pure, clean data every time. It’s possible
that, either purposefully or as a result of an error on the part of the service creator,
harmful data may be returned to your application. You should always take steps to val-
idate that the data you receive is compatible with the use you intend.
HTTPS

Any time you’re passing sensitive data, you should use Hypertext Transfer Protocol
over Secure Sockets Layer (HTTPS), which encrypts the message to prevent eavesdrop-
ping. In order to access cross-scheme services and data (HTTP to HTTPS or HTTPS to
HTTP), the cross-domain policy file must permit that access.
COOKIES

Because Silverlight typically uses the browser’s networking stack, cookies for the cur-
rent domain also get added to requests from your Silverlight application. This is good
if you’re hosting your Silverlight component in an authenticated application that uses
tokens stored in a cookie. In this case, the token also authenticates the requests origi-
nating from your Silverlight application, ensuring that you can access the resources
you’re authorized for.

 One potential problem using this method is that when a user has a cookie-based
token for a given domain, any Silverlight request to that domain contains the auth
cookie, even if the request is from a different Silverlight application than the one you

(continued)
You then browse to a site that has a cool Silverlight (or Flash) game you want to try
out, and you run that and start enjoying a fine game of malware-tris, firewall-poker, or
steal-your-data-bobble. While you’re playing, the application sniffs for services in your
local network (or uses a known lookup table from a disgruntled employee, or perhaps
even something standard like UDDI) and starts downloading data from one of those
services and uploading it to its own server.

Because you’re executing the application and you’re already authenticated locally,
this malware has no problem grabbing data from any service you’re authorized to and
that it has the technology to access (SOAP, REST, and so forth). That is, unless you
have a client that respects cross-domain policies. In that case, the Silverlight client
can’t connect to your local services because those servers presumably don’t have a
cross-domain policy file that will open the sensitive data to the world.

That’s one of the main reasons cross-domain policy files are required by Flash and
Silverlight, and why you need to carefully consider when and where you place cross-
domain policy files on your own properties.
Licensed to Devon Greenway <devon.greenway@gmail.com>

341Trust, security, and browser limitations
intend. Another issue is that this method of authentication relies on the client
browser having session cookies enabled—which isn’t always true.

 Trust and security are important for any application; before we move on to the
meat of accessing data, let’s make sure the browser itself is capable of doing every-
thing you’re asking of it. This question brings us to the next basic concept: limitations
of the browser.

14.1.3 Limitations of the browser

A few limitations apply to Silverlight due to its use of the networking API of the host
browser. These limitations have affected browsers for years, and now they carry over
into Silverlight as well when using the browser networking stack. We’ve already
discussed the client-side nature of Silverlight and how that affects data access, so now
we’re going to talk about two similar limitations: connection limits and asynchro-
nous calls.
CONNECTION COUNT LIMIT

The number of concurrent connections to a single subdomain (for example, http:
//10rem.net and http://images.10rem.net are two different subdomains) is limited
in most browsers to two. This limit has been increased in Internet Explorer 8 to six
concurrent connections; but because Silverlight runs in multiple browsers, you
should still be aware of it. Because Silverlight uses the browser’s networking stack for
its communications by default, it’s bound by the same limits. You may need a combi-
nation of resources or other approaches to ensure that this doesn’t create unneces-
sary delays in your application. Keep in mind that the browser may be loading
objects outside the scope of the Silverlight application as well, such as stylesheets,
images, and JavaScript files. All these objects count toward the limit of two concur-
rent connections. You should keep this fact in mind, particularly when performing
duplex communication as described in section 14.4.

Increasing effective connections
A common trick to increase the throughput for your application, especially now that
clients often have significant bandwidth at their disposal, is to spread the application
network requests across separate subdomains. Take these, for example:

■ api.10rem.net hosts the web services and the cross-domain file.
■ images.10rem.net has the image resources.
■ www.10rem.net serves up the web pages.

Each subdomain has at least two simultaneous connections available per browser.
In that way, calls to the API won’t cause image downloads to stall and vice versa,
assuming the client and server both have sufficient bandwidth. Providing for a sepa-
rate subdomain for the API as well provides a better way to segment out the API and
therefore be sure that you aren’t running into issues with granting cross-domain ac-
cess to areas that host user interfaces.
Licensed to Devon Greenway <devon.greenway@gmail.com>

http://10rem.net
http://10rem.net
http://images.10rem.net
www.10rem.net

342 CHAPTER 14 Networking and communications
ASYNCHRONOUS ONLY

All communication from within the Silverlight application is done asynchronously
because of the Silverlight development team’s decision to use the browser’s network-
ing API, and to keep the APIs tight with only one way to accomplish any given task. The
most common way of making asynchronous calls requires a few simple steps, which
we’ll detail in the following section. Typically, all you need to do is create an event
handler to be executed when the call returns.

 If you want to create a more synchronous experience for your application, you can
enable some kind of blocking element, such as a download-progress animation, when
the call begins and then remove it once the request has returned its data. We’ll discuss
how to create animations in chapter 22.

 Note that the asynchronous behavior can occur on multiple threads, a fact that can
cause trouble when you aren’t aware of it. In section 14.2.2, we’ll point out where you
need to be careful with which thread you’re on, and show you a technique to avoid
trouble. Now that we have the basics out of the way, let’s get to the point of this chap-
ter: connecting to data sources.

14.2 Connecting to data sources
Nearly every application built today, even using Silverlight, needs data to accomplish its
goal. In chapter 11, you saw how to take data and bind it to properties on controls, but
where does that data come from? Because Silverlight executes on the client, often on
the other side of a firewall, it doesn’t have direct access to a database as do server-based
technologies such as ASP.NET. To get access to the data from within Silverlight, you need
to use a proxy of some sort, typically a web service. A web service is a resource made avail-
able to clients using a defined protocol. Most web services fall into two categories: SOAP
and REST. We’ll explain these popular formats, and how to use them, in this section.

14.2.1 Using SOAP services

When you think of a classic web service, you’re thinking about SOAP. SOAP services
follow a strict protocol that defines the format in which messages are passed back

(continued)
You can play with those as best suits your application or follow completely different
approaches that round-robin (from the client) to a pool of identical servers. You’ll
have more options for redirecting to different servers, as well as increase your effec-
tive connection limit.

Of course, this assumes you want people to have six open connections to your net-
work. If you don’t want that, another approach is to package requests into chunky
calls: reduce chattiness in service calls, and package assets such as images into zip
files rather than individual image URIs. We’ll discuss more about this approach when
we get to the WebClient.
Licensed to Devon Greenway <devon.greenway@gmail.com>

343Connecting to data sources
and forth. Silverlight has great support for SOAP Services, supporting the WS-I Basic
Profile 1.0 (SOAP 1.1 over HTTP), SOAP 1.2, and WS-Addressing 1.0, as well as a small
subset of WS-Security. Using SOAP services in Silverlight allows for both the simplest
implementation and most powerful data-transfer mechanism of any service type
through the use of the service reference. Over the next few pages, you’ll create a
proxy object for the service, call a method on it, and download the results. After
you’ve created and used a proxy to connect to a SOAP service, you’ll be amazed at
how simple yet powerful this capability is.

NOTE SOAP originally stood for Simple Object Access Protocol, but that defini-
tion fell into disuse and was officially dropped with version 1.2 of the W3C
SOAP standard.

SERVICE REFERENCES

The easiest way to connect to a service is through a service reference proxy. If the
web service you’re connecting to supports Web Services Description Language
(WSDL), Visual Studio can read that information and create a proxy in your applica-
tion for you. Creating a service reference in your Silverlight application takes three
simple steps:

1 In Visual Studio 2010, right-click your Silverlight project and choose Add Ser-
vice Reference.

2 This brings up the Add Service Reference dialog box. On this form, you can
either type in the URI of the service you wish to connect to and click the Go but-
ton or, if the services are part of the same solution, click the Discover button.
Either option tells Visual Studio to poll the chosen location for available ser-
vices and analyze their signatures. When the services have been displayed, you
can open them and look at what methods are available on each service. You can
then enter in the text box a namespace by which you want to refer to the service
and click OK to create the proxy.

3 You can modify more advanced settings either by clicking the Advanced button
in the previous dialog or by right-clicking the service reference and selecting
Configure Service Reference. One particularly useful capability of this form is
the ability to change the collection types returned by the service. The default
collection type can vary depending on the service you’re connecting to, but you
can also change it to use other collection types, even generics.

When the service reference is created, Visual Studio also adds references to the Sys-
tem.Runtime.Serialization and System.ServiceModel assemblies. These are used
by Silverlight in connecting to web services and in serializing and deserializing the
SOAP message.

 When you’ve created your service reference, it’s easy to use for both sending and
receiving data. First, let’s talk about calling SOAP services using the service reference
you just created.
Licensed to Devon Greenway <devon.greenway@gmail.com>

344 CHAPTER 14 Networking and communications
RECEIVING DATA WITH THE PROXY

Connecting to and downloading data from a simple SOAP service is easy. You need to
add two Using statements to your page, one for System.ServiceModel and another
for System.ServiceModel.Channels. Next, you need to create a proxy to the service
using the service reference as created in the previous section. Name the service refer-
ence namespace SilverService for this example. Then, you add an event handler to
catch the return of the asynchronous call to the exposed method on the service.
These steps are demonstrated in listing 14.1.

Result:

XAML:
<Grid x:Name="LayoutRoot">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="*" />
 <ColumnDefinition Width="Auto" />
 </Grid.ColumnDefinitions>
 <TextBlock x:Name="Results"
 Grid.Column="0" Margin="5"/>
 <StackPanel Grid.Column="1">
 <Button x:Name="GetTime" Click="GetTime_Click"
 Content="Get Time" Height="33" Width="90"/>
 </StackPanel>
</Grid>

C#-Silverlight:
private void GetTime_Click(object sender, RoutedEventArgs e)
{
 Binding myBinding = new BasicHttpBinding();
 EndpointAddress myEndpoint = new
 EndpointAddress(
 "http://localhost:55905/SampleAsmx.asmx");

 SilverService.SampleAsmxSoapClient proxy = new
 SilverService.SampleAsmxSoapClient
 (myBinding, myEndpoint);

 proxy.GetTimeCompleted += new
 EventHandler<SilverService.GetTimeCompletedEventArgs>

➥ (proxy_GetTimeCompleted);

 proxy.GetTimeAsync();
}

void proxy_GetTimeCompleted(object sender,
 SilverService.GetTimeCompletedEventArgs e)
{
 Results.Text = e.Result.ToLongTimeString();

Listing 14.1 Calling a SOAP service

Binding

Port number
will be differentB

C

D

E

Licensed to Devon Greenway <devon.greenway@gmail.com>

345Connecting to data sources
 (sender as SilverService.SampleAsmxSoapClient).CloseAsync();
}

C#-SampleAsmx.asmx service in web project:
[WebService(Namespace = "http://services.10rem.net/")]
[WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)]
[System.ComponentModel.ToolboxItem(false)]
public class SampleAsmx : System.Web.Services.WebService
{
 [WebMethod]
 public DateTime GetTime()
 {
 return DateTime.Now;
 }
}

This shows the entire process of creating the proxy B, adding an event handler C,
calling an asynchronous method D, and handling the results E. In this example, the
SOAP service you’re connecting to exposes a method called GetTime, which accepts no
input properties and outputs a DateTime of the current time. You first create a Bind-
ing of type BasicHttpBinding. This tells the proxy that the service you’re connecting
to uses SOAP 1.1. The default constructor for BasicHttpBinding creates a Binding
with no security. An optional parameter on the constructor accepts a BasicHttpSecu-
rityMode, which allows you to tell the binding how to secure itself; for example, you
can tell the binding to use SSL when transmitting the SOAP message. You also create
an EndpointAddress that points to the URI of the service you’re about to call. Finally,
you create the proxy using the service reference created earlier and pass into it the
binding BasicHttpBinding and the initialized EndpointAddress objects.

NOTE The port number for your development-mode web service may change
from time to time, breaking any service references. To force the port number
to stick, right-click the web project, select Properties, and click the Web tab.
Then, select the option to always use the specified port number.

Next, you need to add an event handler to be called when your asynchronous method
call returns. You can do this by using the Visual Studio shortcut of pressing the + key,
then the = key, and then pressing Tab twice after selecting the GetTimeCompleted event
on your proxy. Using this shortcut automatically finishes the event handler declaration
for you and creates a stubbed method as the event handler. Finally, you call the Get-
TimeAsync() method on the proxy to begin the asynchronous call to the service. Intel-
liSense will show you a [webmethod]Completed event and a [webmethod]Async()
method for each method exposed by the SOAP service. When you created the service ref-
erence in the previous step, Visual Studio queried the service to see what methods were
available and made proxy methods for each of them.

 After the service returns, the method declared as the event handler-proxy_
GetTimeCompleted-gets called with the results. Because the method is outputting the
results as a Datetime object, you can convert it to a string using standard .NET conver-
sion methods, which you can then assign to the Text property of a TextBlock. The
Licensed to Devon Greenway <devon.greenway@gmail.com>

346 CHAPTER 14 Networking and communications
only other task to perform in the return method is to close out the connection using
the CloseAsync() method on the proxy. Garbage collection will technically come
through and close any old connections, but it’s good programming practice to close
any connection when you’re done using it.

 And that’s all there is to it—you’ve now connected to a SOAP service, called a
method on it, and displayed the results. Sending data to a SOAP service is just as easy.
SENDING DATA USING THE PROXY

If you’re thinking that all you need to do to send data to a SOAP service using a service
reference is to include a parameter in the method call, you’re right. Let’s look at list-
ing 14.2 for an example.

Result:

XAML:
<Grid x:Name="LayoutRoot">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="*" />
 <ColumnDefinition Width="Auto" />
 </Grid.ColumnDefinitions>

 <TextBlock x:Name="Results"
 Grid.Column="0" Margin="5"/>

 <StackPanel Grid.Column="1">
 <Button x:Name="GetTime" Click="GetTime_Click"
 Content="Get Time" Height="33" Width="90"/>
 <Button x:Name="GetString" Click="GetString_Click"
 Content="Get String" Height="33" Width="90"/>
 </StackPanel>
</Grid>

C#-Silverlight client:
private void GetString_Click(object sender, RoutedEventArgs e)
{
 Binding myBinding = new BasicHttpBinding();
 EndpointAddress myEndpoint = new
 EndpointAddress("http://localhost:55905/SampleAsmx.asmx");
 SilverService.SampleAsmxSoapClient proxy = new
 SilverService.SampleAsmxSoapClient(myBinding, myEndpoint);
 proxy.GetCoolTextCompleted +=
 new EventHandler<SilverService.GetCoolTextCompletedEventArgs>(
 proxy_GetCoolTextCompleted);

 proxy.GetCoolTextAsync(1);

Listing 14.2 Sending data to a SOAP service

Service call with
parameter 1
Licensed to Devon Greenway <devon.greenway@gmail.com>

347Connecting to data sources
}
void proxy_GetCoolTextCompleted(object sender,
 SilverService.GetCoolTextCompletedEventArgs e)
{
 Results.Text = e.Result;
(sender as SilverService.SampleAsmxSoapClient).CloseAsync();
}

C#-web service:
[WebMethod]
public string GetCoolText(int number)
{
 switch (number)
 {
 case 1: return "one";
 case 2: return "two";
 case 3: return "three";
 ...
 }

}

Listing 14.2 builds on the code from listing 14.1. This is an example of sending of a
single int as a parameter to the GetCoolText method on the web service. This
approach is fine for sending a simple data value, but what about complex data types?
Still no problem.
USING COMPLEX DATA TYPES

Sending and receiving complex data types over a SOAP service is also a simple matter.
When you created the service reference, the signatures for objects used in the SOAP mes-
sage were automatically analyzed and a client-side proxy made for those as well. With this
proxy, you can instantiate objects of that type in your application (see listing 14.3).

Service:
[WebMethod]
public void SetSomething(int count, WsUser myObject)
{
 //Perform database operations here
}

...
public class WsUser
{
 public int Id { get; set; }
 public string Name { get; set; }
 public bool IsValid { get; set; }
}

C#:
private void UploadUser()
{
 Binding myBinding = new BasicHttpBinding();

Listing 14.3 Using complex data types with a SOAP service
Licensed to Devon Greenway <devon.greenway@gmail.com>

348 CHAPTER 14 Networking and communications
 EndpointAddress myEndpoint =
 new EndpointAddress("http://localhost:55905/SampleAsmx.asmx");
 SilverService.SampleAsmxSoapClient proxy = new
 SilverService.SampleAsmxSoapClient(myBinding, myEndpoint);

 SilverService.WsUser myData = new
 SilverService.WsUser()
 { Id = 3, Name = "John", IsValid = true };

 proxy.SetSomethingCompleted += new
 EventHandler<System.ComponentModel.AsyncCompletedEventArgs>
 (proxy_SetSomethingCompleted);

 proxy.SetSomethingAsync(1, myData);
}
void proxy_SetSomethingCompleted(object sender,
 System.ComponentModel.AsyncCompletedEventArgs e)
{
 (sender as SilverService.SampleAsmxSoapClient).CloseAsync();
}

This listing shows how you can use complex data types on SOAP services from within
your Silverlight application. The service itself is left as an exercise for you, and the
example is illustrative only. As you can see in the web method declaration, the method
SetSomething expects two parameters: an int and a WsUser. WsUser is made up of
three properties. Note that both the web method and the WsUser class are part of the
ASMX web service, not the Silverlight application.

 Now, let’s use WsUser in the example application. Because WsUser is a return type on
a method, a copy of its type exists on the proxy for you to use. In this example, you create
an instance of the WsUser class and fill its properties. Then, you add the instance of the
object as a parameter on the asynchronous method call, SetSomethingAsync.
USING THE CONFIGURATION FILE

So far, we’ve shown the slightly more verbose way of calling a service, where all the
endpoint information is handled in code. Silverlight provides another option: you can
use the information in the ServiceReferences.ClientConfig file.

NOTE ServiceReferences.ClientConfig is an XML file created automatically
when you add a service reference. It’s packaged into the .xap file (see chapter 3
for more on .xap files) and is deployed with your application. You may update
this configuration file at any time by unzipping the .xap, changing the file, and
rezipping it. Some clever developers have even come up with tools to handle
this automatically; Bing them (www.bing.com) to find out more.

An example configuration file is shown in listing 14.4. The configuration file specifies,
among other things, the type of encoding, the maximum receive message and buffer
sizes, the binding contract, and endpoint information.

<configuration>
 <system.serviceModel>
 <bindings>

Listing 14.4 The ServiceReferences.ClientConfig file
Licensed to Devon Greenway <devon.greenway@gmail.com>

www.bing.com

349Connecting to data sources
 <customBinding>
 <binding name="CustomBinding_HelloWorldService">
 <binaryMessageEncoding />
 <httpTransport maxReceivedMessageSize="2147483647"
 maxBufferSize="2147483647">
 </httpTransport>
 </binding>
 </customBinding>
 </bindings>
 <client>
 <endpoint

➥ address="http://localhost:23867/Services/HelloWorldService.svc"
 binding="customBinding"
 bindingConfiguration="CustomBinding_HelloWorldService"
 contract="Services.HelloWorldService"
 name="CustomBinding_HelloWorldService" />
 </client>
 </system.serviceModel>
</configuration>

Although certainly not a requirement, this example uses the new WCF binary encoding
with a WCF SOAP service on the server-a new feature enabled by default in Silverlight
when using the Silverlight Enabled WCF Service template mentioned in section 14.5.1.
This reduces the message size considerably in situations where the server and client
aren’t using GZIP compression on the content and the server is running .NET 3.5 SP1
or above.

 In addition, the server side is able to handle more requests due to the binary
nature of the messages. The downside is that the service clients are restricted to those
aware of the proprietary format, unless you add a second endpoint.

Binary
encoding

Buffer/message
size limits

Endpoint
definition

What about NetTcp?
Another protocol option, which like binary SOAP is specific to WCF, is the NetTcp pro-
tocol. Silverlight 4 added support for that protocol using the net.tcp:// scheme. This
is a lighter-weight protocol that eliminates the overhead of HTTP in the transaction.

Although I won’t go into detail here, because it’s not commonly used and requires no
real changes to your code, I do want to mention that even when using NetTcp, you
need to have a policy file on a regular port 80 HTTP server at the same IP address as
your NetTcp service. The protocol to include in the Client Access Policy is tcp:

<grant-to>
 <socket-resource port="4502-4534" protocol="tcp" />
</grant-to>

If you leave the policy file out or don’t have the server mapped correctly, you’ll receive
a rather long-winded CommunicationException that tells you the socket connection
was forbidden.

To test, open your browser and browse to

http://<IpAddressOfYourNetTcpService>:80/clientaccesspolicy.xml
Licensed to Devon Greenway <devon.greenway@gmail.com>

350 CHAPTER 14 Networking and communications
When using the information from the .ClientConfig file and eliminating all the setup
code, your client-side code becomes considerably simpler, as shown in listing 14.5.

XAML:
<StackPanel Margin="30" Width="100">
 <TextBlock x:Name="Results" />
 <Button x:Name="CallService"
 Click="CallService_Click"
 Content="Call Service" />
</StackPanel>

C#:
private void CallService_Click(
 object sender, RoutedEventArgs e)
{
 var client = new HelloWorldServiceClient();

 client.HelloWorldCompleted +=
 new EventHandler<HelloWorldCompletedEventArgs>
 (client_HelloWorldCompleted);
 client.HelloWorldAsync();

}

void client_HelloWorldCompleted(
 object sender, HelloWorldCompletedEventArgs e)
{
 Results.Text = e.Result;
}

The code has been simplified considerably because you externalize the settings. This
time around, you don’t need to create bindings or endpoints and pass them in to the
proxy. Whether this is appropriate for your situations comes down to whether you
want to handle the bindings in code or in configuration files.

 In code, you can get the address of the current server and base your service call on
that, if appropriate. But if you want to change that algorithm and, say, move from
www.mydomain.com/services to api.mydomain.com, you’ll need to change code and
recompile/redeploy the client.

 In configuration, you can set the URL to be anything you wish, but you must
remember to change it when moving between servers (such as from development to
test to staging to production). Given that this doesn’t require a recompile and the for-
mat is XML inside a standard zip, there’s little risk to this approach.

Listing 14.5 Client-side code using ServiceReferences.ClientConfig file

(continued)
and verify that the file downloads. If it does, you’re good. If not, then you need to
check your IP address and domain names.

Other than that, you use NetTcp just as you would SOAP or SOAP with binary encod-
ing. From a proxy usage standpoint, there are no important differences.

Proxy

Event handler
wire-up

Event
handler
Licensed to Devon Greenway <devon.greenway@gmail.com>

351Connecting to data sources
That’s all it takes to use SOAP services in Silverlight. Silverlight isn’t limited to SOAP
services. Next, we’ll discuss consuming REST services through Silverlight, a topic that
opens up a whole new arena of data providers.

14.2.2 RESTful services

Representational State Transfer, or REST, means several things; in this case, it refers to the
approach of making services accessible through a set of simple URIs and HTTP verbs.
Before the days of web services and stateful web applications, everything on the web
was RESTful, meaning that all traffic over HTTP used one of the HTTP verbs to define
its purpose, and all calls were complete without requiring server-side state. Over the
years, the use of these verbs dwindled down to nearly all traffic using only the GET and
POST verbs for requesting a page and submitting form data, respectively. Recently
there’s been a trend toward moving simple web services to a simpler framework.

 Many web service providers incorrectly use the term REST to mean any service
that isn’t SOAP. The main thing to realize is that the URI, and possibly the HTTP
verb, may change depending on the action being performed. Typically, a creator of
RESTful services will try to follow an intuitive structure where the URI first contains a
type followed by an instance. For example, a URI with the structure http://
www.arestfuldomain.com/Users might return an array of user records, whereas the

Simplifying async method calls
If you want an even tighter format for your service-call processing, regardless of
whether you’re using SOAP, REST, or something else, you can use a lambda expres-
sion to build a delegate to handle the service call return. In that case, you get the
entire service call neatly wrapped up into one visible function:

private void CallService_Click(
 object sender, RoutedEventArgs e)
{
 var client = new HelloWorldServiceClient();
 client.HelloWorldCompleted += (s, ea) =>
 {
 Results.Text = ea.Result;
 };
 client.HelloWorldAsync();
}

In this example, the separate event handler is replaced with one defined inline. The
handler takes s for the sender and ea for the event arguments. This doesn’t turn the
call into a synchronous call-it’s still async. You simply compact the event wire-up step.

When used inside a function like this, there is no downside to this approach, so I use
it constantly due to its compactness and readability. Don’t use this approach for
class-level handlers, because you may end up with multiple handlers without any way
to remove them.
Licensed to Devon Greenway <devon.greenway@gmail.com>

http://www.arestfuldomain.com/Users
http://www.arestfuldomain.com/Users

352 CHAPTER 14 Networking and communications
URI http://www.arestfuldomain.com/Users/JohnSmith might return a single user
record for John Smith. This isn’t a rule of REST services; it’s more of a guideline.

 Silverlight currently supports only the GET and POST verbs when using the default
networking stack (see the end of this chapter for more options). This is another limi-
tation of using the browser’s networking stack. Luckily, because this is a common
browser limitation, most service creators are aware of it and try to use those two verbs
for all actions.

 In the previous section, you saw how to use service references to create proxies to
SOAP services. Consuming a REST service takes a little more work on the side of the Sil-
verlight developer. Silverlight nicely handles calling RESTful services through the Http-
WebRequest object that you’re already familiar with. In this section, we’ll show you how
to use this class to read data from and send data to a RESTful service. The asynchronous
nature of these calls can cause problems accessing the UI, so let’s solve that first.

NOTE You can also use the simpler WebClient class for accessing RESTful ser-
vices. Because HttpWebRequest is both more complex and more powerful,
and therefore requires an example, we’ll cover that here.

BYPASSING THREADING PROBLEMS

The asynchronous nature of Silverlight web service calls can create threading prob-
lems for the developer. When you’re dealing with service reference-generated proxies,
threading isn’t an issue; when you’re creating the connection yourself, you have to
deal with this part as well. When you attempt to access UI elements directly within call-
back methods, you get a threading exception. You deal with this by creating a class-
level variable of type SynchronizationContext, which gives you a handle back to the
correct thread to do UI updates:

private SynchronizationContext UIThread;
private void btnSingleXml_Click(object sender, RoutedEventArgs e)
{
 UIThread = SynchronizationContext.Current;
 ...
 request.BeginGetResponse(SingleXmlCallBack, request);
}
private void SingleXmlCallBack(IAsyncResult result)
{
 ...
 UIThread.Post(UpdateUiText, responseStream);
}
private void UpdateUiText(object stream)
{
 ...
}

The first thing you do in this example is create a class variable of type Synchroniza-
tionContext. Scoping it at the class level means you’ll have access to it no matter
where you are in the process. Next, in the method that starts the request (we’ll detail
the request in the next section), you assign a reference to the current thread to the
variable previously created. Then, in the callback method, you call the Post method
Licensed to Devon Greenway <devon.greenway@gmail.com>

http://www.arestfuldomain.com/Users/JohnSmith

353Connecting to data sources
on the SynchronizationContext variable, which has two parameters. The first param-
eter accepts a method to do the UI update with, and the second accepts an object. In
this case, it’s simplest to send the entire response stream as the second parameter.
Finally, in the method called by the Post method, you can cast the received object into
a Stream and perform whatever UI updates you need. You don’t need to pass the
entire response stream to the method that updates the UI—you can send any object.
It’s my personal preference to let the update method also do any deserialization; by
using this technique, you ensure that your UI updates will succeed.

 As you can see, as long as you know how to get back to the UI thread, there isn’t a
problem here. Now, let’s GET to the meat of REST services.
GETTING FROM REST SERVICES

In relation to Silverlight, although REST may dictate the method in which a resource
is accessed, it doesn’t dictate the format of the data received. The most common ways
to return data from a RESTful web service are Plain Old XML (POX) and JSON. We’ll
discuss how to consume both POX and JSON in section 14.3.

 The basics of calling a REST-based web service from Silverlight involve creating an
HttpWebRequest object, setting its destination URI, and calling it asynchronously (see
listing 14.6).

C#:
private void GetSingleXml_Click(object sender, RoutedEventArgs e)
{
 UIThread = SynchronizationContext.Current;
 string rawPath
 = "http://www.silverlightinaction.com/Authors.svc/SingleXml/{0}";
 Uri path = new Uri(string.Format(rawPath, Input.Text),
 UriKind.Absolute);

 HttpWebRequest request = (HttpWebRequest)WebRequest.Create(path);
 request.BeginGetResponse(SingleXmlCallBack, request);
}
private void SingleXmlCallBack(IAsyncResult result)
{
 HttpWebRequest request = (HttpWebRequest)result.AsyncState;
 HttpWebResponse response
 = (HttpWebResponse)request.EndGetResponse(result);
 Stream responseStream = response.GetResponseStream();
 UIThread.Post(UpdateUiText, responseStream);
}

In this example, you make a simple request to a RESTful web service. Three steps are
necessary when making a GET request, all of which are demonstrated here:

1 Create a Uri object and initialize it with the path and, optionally, the UriKind.
2 Create an HttpWebRequest object for the Uri.
3 Call BeginGetResponse on your HttpWebRequest object and pass it the name of

a callback method, as well as the HttpWebRequest itself.

Listing 14.6 Getting data from a REST service
Licensed to Devon Greenway <devon.greenway@gmail.com>

354 CHAPTER 14 Networking and communications
The BeginGetResponse method initiates the call to the service and registers the
passed-in method as a callback method. When the response returns, that method will
be called with the current HttpWebRequest being passed to it as type IAsyncResult.

 In the callback method, the first thing is to cast the AsyncState of the IAsyncResult
into an HttpWebRequest object. In the next statement, you call the EndGetResponse
method on the request object to both end the connection and return an HttpWebRe-
sponse object. Finally, you call the GetResponseStream method of the HttpWebResponse
object to get the Stream, the response to your web service call. We’ll cover deserializing
the Stream into useful data in section 14.3.
POSTING TO REST SERVICES

Most RESTful services use GET to retrieve data and POST to send it. Because the
default HTTP verb used when using HttpWebRequest is GET, you need to do a few
things differently when you want to perform a POST. Listing 14.7 shows the process of
sending data to a REST service.

C#:
private void Test_Click(object sender, RoutedEventArgs e)
{
 UIThread = SynchronizationContext.Current;
 Uri path = new
 Uri("http://www.silverlightinaction.com/Authors.svc/Update/Brown",
 UriKind.Absolute);
 HttpWebRequest request = (HttpWebRequest)WebRequest.Create(path);
 request.Method = "POST";
 request.ContentType = "application/xml";
 request.BeginGetRequestStream(AddPayload, request);
}

private void AddPayload(IAsyncResult result)
{
 HttpWebRequest request = (HttpWebRequest) result.AsyncState;
 StreamWriter dataWriter =
 new StreamWriter(request.EndGetRequestStream(result));
 dataWriter.Write("<?xml version=\"1.0\"?><Author><FirstName>Bob" +
 "</FirstName><LastName>Smith</LastName></Author>");
 dataWriter.Close();
 request.BeginGetResponse(SingleJsonCallBack, request);
}

private void SingleJsonCallBack(IAsyncResult result)
{
 HttpWebRequest request = (HttpWebRequest)result.AsyncState;
 HttpWebResponse response =
 (HttpWebResponse)request.EndGetResponse(result);
 Stream responseStream = response.GetResponseStream();
 UIThread.Post(UpdateUiText, responseStream);
}

Because REST services don’t have methods, and instead deal with entities, you need to
add any data to be sent to the service to the message being sent. In listing 14.7, instead

Listing 14.7 POSTing data to a REST service
Licensed to Devon Greenway <devon.greenway@gmail.com>

355The client HTTP stack
of calling BeginGetResponse from the initial call, you call BeginGetRequestStream.
This event handler allows you to add information to the stream after it’s created but
before it’s sent to the service. After that’s been done, you register the BeginGetRe-
sponse event handler as is done during GET operations.

 Knowing how to do GETs and POSTs is only half of the battle; you need to be able
to use what gets returned as well. REST services normally return either XML- or JSON-
formatted data. In section 14.4, we’ll talk about ways to take the response stream con-
taining these common data formats and convert it into useful objects.

 The browser stack only allows POST and GET, not DELETE or PUT. Those limita-
tions, and the need for out-of-browser networking support, prompted the team to cre-
ate a second separate networking stack: the client HTTP Stack.

14.3 The client HTTP stack
Silverlight 3 introduced a second networking stack, meant primarily for use when run-
ning out-of-browser, but accessible in in-browser scenarios as well. This stack elimi-
nates some of the restrictions of the browser-based HTTP stack.

 The two stacks included in Silverlight are known as the browser HTTP stack and the
client HTTP stack. As their names indicate, the browser HTTP stack goes directly
through the browser for all networking calls, whereas the client HTTP stack doesn’t.
This opens up a plethora of new capabilities, such as additional verbs like PUT and
DELETE, as well as getting around the limitations on simultaneous connections. There
are some caveats, though. We’ll discuss those after we go through the mechanics of
using the stack.

 In this section, we’ll first look at how to manually create the client stack.
Then, because manually creating the stack every time can be a real chore, and
impossible with generated code, you’ll see how to automatically select the stack at
runtime. Finally, we’ll look at one important difference from the browser stack:
cookie management.

14.3.1 Manually creating the client stack

One way to create an instance of the ClientHttp network stack is to use the System.
Net.Browser.WebRequestCreator object. That object serves as a kind of a factory and
includes two static properties: BrowserHttp and ClientHttp. Call the Create method
on the ClientHttp property as shown:

private void CallNetwork_Click(object sender, RoutedEventArgs e)
{
 HttpWebRequest request =
 (HttpWebRequest)WebRequestCreator.ClientHttp.Create(
 new Uri("http://api.10rem.net/Authors"));

 request.Method = "PUT";

 ...

}

Licensed to Devon Greenway <devon.greenway@gmail.com>

356 CHAPTER 14 Networking and communications
This approach to creating the stack is usable only when you’re using the low-level
HttpWebRequest class. That’s helpful, but what if you want it to automatically be used
by any WebRequest-derived classes?

14.3.2 Automatically using the client stack

A second way to use the client stack is to have it automatically selected based on spe-
cific URLs or schemes. That way, any call to the specified URL or scheme will use the
stack you specify. The FTP, FILE, HTTP, and HTTPS schemes are already assigned to the
browser stack, but you can override them or go a more specific route and specify that
the client stack should be used for any HTTP* calls to a specific web site, or a specific
service at a known URL. For example, if you want all calls to 10rem.net, both regular
and SSL, to use the client stack, you’d put the following early in your code:

WebRequest.RegisterPrefix(
 "http://10rem.net", WebRequestCreator.ClientHttp);

WebRequest.RegisterPrefix(
 "https://10rem.net", WebRequestCreator.ClientHttp);

After this is done, any classes that use WebRequest or a class which derives from it will
automatically use the client HTTP stack you have specified.

 The client stack brings along a number of enhancements, including the ability to
automatically and manually set some HTTP header values previously unavailable to you.

14.3.3 Automatically setting the HTTP Referer and other headers

When a HTTP request is sent across the wire, it includes a number of headers that we
typically don’t see. For example, if I open up Yahoo! in my browser, the request con-
tains the following info:

GET http://www.yahoo.com/ HTTP/1.1
Accept: */*
Accept-Language: en-us
User-Agent: Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 6.1;

➥ Trident/4.0; SLCC2; .NET CLR 2.0.50727; .NET CLR 3.5.30729;
➥ .NET CLR 3.0.30729; Media Center PC 6.0; Tablet PC 2.0;
➥ .NET CLR 3.0.30618; .NET CLR 3.5.21022; InfoPath.2;
➥ Media Center PC 5.0; MS-RTC LM 8; SLCC1; WWTClient2; Zune 4.0;
➥ .NET4.0C; .NET4.0E; MS-RTC LM 8)
Accept-Encoding: gzip, deflate
Connection: Keep-Alive
Host: www.yahoo.com
Cookie: [lots of cookie stuff]

The first line is the verb and the target. In this case, we’re GETting the Yahoo! home
page. Most of the stuff after that is pretty standard. IE8 is sending some information
about the browser in use, what formats it’ll accept, the cookies, and so on. Collectively,
those are called HTTP headers. New to Silverlight 4, and unique to the client network-
ing stack, is the ability to send the HTTP Referer (sic) header with all requests, includ-
ing out-of-browser network requests.
Licensed to Devon Greenway <devon.greenway@gmail.com>

357The client HTTP stack
REFERRING SITE HEADER

The HTTP Referer header is a web standard used to indicate the origin of a request.
Often, this is used to figure out what other pages are linked to your page, or what
other pages are attempting to post to your form.

NOTE Don’t use the HTTP Referer header to implement any type of impor-
tant security check. Some browsers include utilities that allow users to elimi-
nate the referer or replace it with one they manually input.

When using the client stack, Silverlight automatically sets the HTTP Referer to the
base URL of the .xap file where the out-of-browser application originated. This is use-
ful, because an out-of-browser application doesn’t really have a URL and certainly
doesn’t have a hosting web page.

 For example, if I access my web site from a trusted out-of-browser application
(remember, in trusted applications, there’s no check for a client access policy), the
request headers look like this:

GET http://10rem.net/ HTTP/1.1
Accept: */*
Accept-Language: en-US
Referer: http://localhost:21597/ClientBin/RefererTest.xap
Accept-Encoding: identity
User-Agent: ...
Host: 10rem.net
Connection: Keep-Alive

I removed the user-agent for brevity; it’s the same as the previous example. But note
the value of the HTTP Referer header. I ran this example from Visual Studio, so
the host is localhost:21597. The full path of the .xap is included as the Referer
automatically.

NOTE Currently, Firefox doesn’t set the HTTP Referer header for any HTTP
GET requests from plug-ins running in-browser. If you must have a HTTP Ref-
erer set for GET requests, you’ll need to use the client stack as shown here.
POST requests are handled properly.

You can’t manually set the HTTP Referer header; it’s one of a number of restricted head-
ers. In addition to the Referer, Silverlight also sets headers such as the Content-Length,
User-Agent, and others. Some of those, such as Content-Length, Content-Type, and
Authentication, have dedicated request properties that map to the appropriate headers.
It’s unusual to change Content-Length and Content-Type, but setting authentication
credentials is a must for any serious web application.

14.3.4 Authentication credentials

Many endpoints on the Web, and even more on internal networks, are protected by
some sort of authentication scheme. In order to access those endpoints, you must be
able to provide authentication information along with the request.
Licensed to Devon Greenway <devon.greenway@gmail.com>

358 CHAPTER 14 Networking and communications
 The client networking stack supports NTLM, basic, and digest authorization, allow-
ing you to pass credentials to the endpoint of a request via the Credentials property.
Listing 14.8 shows how to use credentials with the client networking stack.

C#:
private void SendRequest()
{
 HttpWebRequest.RegisterPrefix(
 "http://", WebRequestCreator.ClientHttp);

 HttpWebRequest req = (HttpWebRequest)HttpWebRequest.Create(
 new Uri("http://10rem.net"));

 req.UseDefaultCredentials = false;
 req.Credentials =
 new NetworkCredential("Pete", "password");

 req.BeginGetResponse(OnRequestCompleted, req);
}

private void OnRequestCompleted(IAsyncResult asyncResult)
{
 HttpWebRequest request =
 (HttpWebRequest)asyncResult.AsyncState;

 HttpWebResponse response =
 (HttpWebResponse)request.EndGetResponse(asyncResult);

 ...

}

Optionally, you can pass a third parameter to the NetworkCredential constructor: the
domain name. Passing a domain name is required for some forms of authentication,
including NTLM. To modify listing 14.8 to work with those forms, change the Net-
workCredential constructor call to include the domain, like this:

... new NetworkCredential("Pete", "password", "domain");

Of course, you’d use a real username, password, and domain name in the call. It’s also
important to note that you have no client-side control over what type of authentica-
tion is used. If the server challenges with basic authentication, the credentials will be
sent across in plain text. Unlike the full desktop API, there’s no CredentialCache class
that can be used to hold credentials by challenge type.

 With the additional capabilities offered by this stack, such as security and the avoid-
ance of cross-domain checks for trusted applications, it may seem like a no-brainer to
use it in place of the browser stack. But there are some important differences to keep
in mind. For example, the location of the download cache may be different depend-
ing on the operating system and whether you were using the default OS browser to
begin with. It’s not common to concern yourself with that level of detail. But one of
the biggest and most important differences is the way in which cookies are handled.

Listing 14.8 Passing credentials along with a request, using the client stack

Use client
stack

New
credentials
Licensed to Devon Greenway <devon.greenway@gmail.com>

359The client HTTP stack
14.3.5 Managing cookies with the CookieContainer

In the browser stack, the browser handles all cookie management. The browser auto-
matically sends up, with each request, the cookies appropriate to that domain and
page.

 When using the client stack, you need to manually manage the cookies that are
sent up with each request. The HttpWebRequest class contains a CookieContainer
property that’s used for managing the cookies for that specific request.

 Listing 14.9 shows how to use the CookieContainer with the HttpWebRequest class,
combined with the Register prefix function described in the previous section.

C#:
private void SendRequest()
{
 WebRequest.RegisterPrefix(
 "http://", WebRequestCreator.ClientHttp);
 WebRequest.RegisterPrefix(
 "https://", WebRequestCreator.ClientHttp);

 HttpWebRequest req = (HttpWebRequest)HttpWebRequest.Create(
 new Uri("http://api.10rem.net"));

 CookieCollection cookies = new CookieCollection();
 cookies.Add(new Cookie("firstName", "Pete"));
 cookies.Add(new Cookie("lastName", "Brown"));
 cookies.Add(new Cookie("lastAccess", DateTime.Now.ToString()));

 req.CookieContainer = new CookieContainer();
 req.CookieContainer.Add(
 new Uri("http://api.10rem.net"), cookies);

 req.BeginGetResponse(OnRequestCompleted, req);
}

private void OnRequestCompleted(IAsyncResult asyncResult)
{
 HttpWebRequest req =
 (HttpWebRequest)asyncResult.AsyncState;

 HttpWebResponse response =
 (HttpWebResponse)req.EndGetResponse(asyncResult);

 ...

 foreach (Cookie cookie in response.Cookies)
 {
 Debug.WriteLine(cookie.Name + ":" + cookie.Value);
 }

}

Managing cookies manually is pretty easy, as you saw in this example. But keep in mind
that the cookies won’t be shared between the two stacks. Take, for example, an appli-
cation in which the user is authenticated using ASP.NET forms-based authentication.

Listing 14.9 Using the CookieContainer with a request and response

RegisterPrefix

Cookies in
request

Cookies in
response
Licensed to Devon Greenway <devon.greenway@gmail.com>

360 CHAPTER 14 Networking and communications
The web pages handle the authentication before the Silverlight application is dis-
played. Many web applications, and even larger platforms such as SharePoint, can use
this model.

 After the user is authenticated via the browser, the Silverlight application is dis-
played. If the Silverlight application then makes a network request, using the client
stack, to the hosting server, the request will fail. Why? Because the ASP.NET authentica-
tion cookie, which is automatically sent up with all browser stack requests, isn’t set up
by the client stack request.

 We’ve looked at two different ways to instantiate the client stack. You have the option
of setting the stack preferences globally in your application or handling it on a request-
by-request basis. We also looked at how to manage cookies for each request. When
you’re working with the client stack for all but the most basic requests, this is essential.

 The client stack was originally designed for use in out-of-browser situations; but
despite its limitations, it’s found use in in-browser Silverlight applications as well. The
stack definitely has advantages, but only if you understand the limitations.

 When you get the data, regardless of form or networking stack used, you need to
process it and do something useful with it. In the next section, we’ll cover working
with XML and JSON data in Silverlight.

14.4 Making the data usable
We’ve now discussed ways to request data from both SOAP and REST services. What we
haven’t talked about is how to do anything with what you’ve received. In the case of a
SOAP service using a service reference, you have strongly typed objects to deal with. In
the case of a REST service, you typically receive raw XML or JSON. Luckily, Silverlight
gives you several ways to take the incoming data and make it usable in your application.

 In the following sections, we’ll show you how to deserialize a stream containing
either POX or JSON. In addition, we’ll talk about a specialized way to work with feeds
following either the RSS or the Atom standard.

 Several examples in this section use a publicly available service hosted by
www.geonames.org. This service returns geographic and demographic data in various
formats including XML and JSON. Connecting to free services like this is a great way to
test methods for connecting to remote systems.

14.4.1 Reading POX

Plain Old XML (POX) has been the data format of choice on the Internet for nearly a
decade. The fact that it’s human-readable, customizable, and platform-independent
virtually guaranteed its acceptance. Due to its long life and universal acceptance, the
Silverlight team built in several ways to use POX after it’s available in the application.

 In this section, we’ll describe the three major ways to use POX content. The three
built-in methods to use XML content are LINQ to XML, also known as XLINQ, Xml-
Reader, and XmlSerializer. In the following examples, we’ll demonstrate each of
these ways to read the same data using different methods.
Licensed to Devon Greenway <devon.greenway@gmail.com>

www.geonames.org

361Making the data usable
SETTING UP

Each example that follows uses the same Silverlight application and the same web
service call. First, we’ll show you what you’re getting and then how to deal with
it. Listing 14.10 shows how to use a latitude/longitude service to get the name for
a location.

Result:

XAML:
<Grid x:Name="LayoutRoot" Background="#FF959595">
 <Grid.RowDefinitions>
 <RowDefinition Height="25" />
 <RowDefinition Height="25" />
 <RowDefinition Height="25" />
 <RowDefinition Height="*" />
 </Grid.RowDefinitions>
 <StackPanel Grid.Row="0" Orientation="Horizontal" Margin="5,5,0,0">
 <TextBlock Text="Lat:"/>
 <TextBox x:Name="Lat" Height="22" Width="85" Text="40.78343"/>
 <TextBlock Text="Long:"/>
 <TextBox x:Name="Long" Height="22" Width="85" Text="-73.96625"/>
 <Button x:Name="GetXML" Content="Get XML" Click="LoadXML"/>
 </StackPanel>
 <StackPanel Grid.Row="1" Orientation="Horizontal" Margin="5,5,0,0">
 <TextBlock Text="City:"/>
 <TextBlock x:Name="City" FontSize="12" FontFamily="Courier New"
 VerticalAlignment="Center" />
 </StackPanel>
 <StackPanel Grid.Row="2" Orientation="Horizontal" Margin="5,5,0,0">
 <TextBlock Text="Name:" />
 <TextBlock x:Name="Name" FontSize="12" FontFamily="Courier New"
 VerticalAlignment="Center"/>
 </StackPanel>
 <StackPanel Grid.Row="3" Margin="5,5,0,0">
 <TextBlock Text="Raw Results:" />
 <TextBlock x:Name="Results" TextWrapping="Wrap"
 FontFamily="Courier New" FontSize="11"/>

Listing 14.10 Getting the XML from a latitude/longitude geo service
Licensed to Devon Greenway <devon.greenway@gmail.com>

362 CHAPTER 14 Networking and communications
 </StackPanel>
</Grid>

C#:
SynchronizationContext UIThread;

private void LoadXML(object sender, RoutedEventArgs e)
{
 UIThread = SynchronizationContext.Current;
 string uriPath =
 "http://ws.geonames.org/neighbourhood?lat={0}&lng={1}&style=ful";
 Uri uri = new Uri(string.Format(uriPath, Lat.Text, Long.Text),
 UriKind.Absolute);
 HttpWebRequest request = (HttpWebRequest)WebRequest.Create(uri);
 request.BeginGetResponse(GetResults, request);
}
public void GetResults(IAsyncResult e)
{
 HttpWebRequest request = (HttpWebRequest)e.AsyncState;
 HttpWebResponse response =
 (HttpWebResponse)request.EndGetResponse(e);
 Stream responseStream = response.GetResponseStream();
 UIThread.Post(UpdateUiText, responseStream);
}

In listing 14.10, you use the HttpWebRequest object to retrieve the response stream
from a web service that returns POX. The following examples show different versions
of the UpdateUiText method, one for each way of parsing POX.
XLINQ

XLINQ is a flavor of LINQ used to navigate and parse XML content. It facilitates both
property and query syntax to access the nodes and attributes in a chunk of XML. Add
a reference to System.Xml.Linq, and then add the following to the code-behind:

public void UpdateUiText(object stream)
{
 XmlReader responseReader = XmlReader.Create((Stream)stream);
 XElement xmlResponse = XElement.Load(responseReader);
 XElement root = xmlResponse.Element("neighbourhood");
 Results.Text = root.ToString();
 City.Text = (string)root.Element("city");
 Name.Text = (string)root.Element("name");
}

This example shows the LINQ to XML version of UpdateUiText. It shows how using
XLINQ to access the data contained within individual XML elements is incredibly sim-
ple. The first step is to create an XmlReader from the response stream. You can load
that into an XElement, which represents the root element. You can then access any ele-
ment or attribute by name to get its value.

 This is a simple example of LINQ to XML, but it can be even more powerful when
used to parse larger XML structures using the query syntax. Next, let’s look at using
the XmlReader directly.
Licensed to Devon Greenway <devon.greenway@gmail.com>

363Making the data usable
XMLREADER

It’s possible to use the XmlReader itself, without using a higher-level object to parse the
XML for you:

public void UpdateUiText(object stream)
{
 XmlReader responseReader = XmlReader.Create((Stream)stream);
 responseReader.Read();
 responseReader.ReadToFollowing("city");
 string city = responseReader.ReadElementContentAsString();
 responseReader.ReadToFollowing("name");
 string name = responseReader.ReadElementContentAsString();
 responseReader.ReadEndElement();
 responseReader.ReadEndElement();
 City.Text = city;
 Name.Text = name;
}

This example uses the plain XmlReader to step through the returned XML to find the
values you want. The approach is rather clunky but does work. Because the XmlReader
is forward-only, you have to be careful to get everything you need from the informa-
tion the first time through-a potentially cumbersome task on complex documents.

 In the next example, you can also see the same results using the XmlSerializer
from the System.Xml.Serialization namespace, which is included in the SDK, so
you need to add a reference to use it in your application.
XMLSERIALIZER

The XmlSerializer provides a way to convert an XmlReader into strongly typed
objects. This approach takes a little more setup but is incredibly useful in many busi-
ness applications. Listing 14.11 shows how to use the XmlSerializer to parse an XML
document.

C#:
public void UpdateUiText(Object stream)
{
 XmlReader responseReader = XmlReader.Create((Stream)stream);
 responseReader.ReadToFollowing("neighbourhood");

 XmlSerializer serializer =
 new XmlSerializer(typeof(neighbourhood));
 neighbourhood nh =
 (neighbourhood)serializer.Deserialize(responseReader);

 City.Text = nh.city;
 Name.Text = nh.name;
}
...
public class neighbourhood
{
 public string countryCode { get; set; }
 public string countryName { get; set; }

Listing 14.11 Using the XmlSerializer to parse an XML document

Navigate to
correct position

Target
type

Deserialize
Licensed to Devon Greenway <devon.greenway@gmail.com>

364 CHAPTER 14 Networking and communications
 public string adminCode1 { get; set; }
 public string adminName1 { get; set; }
 public string adminCode2 { get; set; }
 public string adminName2 { get; set; }
 public string city { get; set; }
 public string name { get; set; }
}

You can see in listing 14.11 that using an XmlSerializer allows you to create a
strongly typed object from the incoming XML data. To use this approach, you need to
define a class that matches the format of the incoming XML. This class can be defined
in your application, in a referenced class library, or in a service reference proxy. The
first step is to move your XmlReader to the correct location. You also need to create a
new XmlSerializer and initialize it with the target type you want the XML deserial-
ized into. The final step is to use the Deserialize method on the XmlSerializer
instance you just created and pass in the XmlReader. The Deserialize method
returns an object of the type it’s defined as or, if the deserialization failed, null.

 Now that you’ve seen how to use POX, let’s look at another common data for-
mat. In the next section, you’ll learn how to use JSON-formatted data. JSON can be
returned from a RESTful service just as easily as XML can, so let’s dig into that for-
mat now.

14.4.2 Converting JSON

If you’ve worked with Ajax, it’s likely that you’re already familiar with JSON. JSON pro-
vides a relatively simple way to create data objects using JavaScript. Because JSON is
already prevalent in client-side programming and is used as the return type from my
public services, Microsoft has made a simple way to convert managed objects into and
out of JSON objects.

 The next example shows a sample of what a JSON object looks like. You can accom-
plish this conversion in a couple ways, such as using a DataContractJsonSerializer
or even using LINQ syntax against a JsonObject. For the example, let’s use the same
method to load the data as was used in listing 14.10, but change the URI to

ws.geonames.org/neighbourhoodJSON?lat={0}&lng={1}

The resulting JSON response looks like this:

{
 "neighbourhood": {
 "adminName2": "New York County",
 "adminCode2": "061",
 "adminCode1": "NY",
 "countryName": "United States",
 "name": "Central Park",
 "countryCode": "US",
 "city": "New York City-Manhattan",
 "adminName1": "New York"
 }
}

Licensed to Devon Greenway <devon.greenway@gmail.com>

365Making the data usable
This example shows a simple but typical JSON object. As you can see, the returned
JSON represents the same object as the XML returned in listing 14.10, but in a more
compact form. Luckily, the methods for converting the JSON object into a useful for-
mat are similar as well. Let’s start by taking a look at using the JsonObject syntax.
JSONOBJECT

As with XML, there’s more than one way to use JSON-formatted data returned from a
web service. The JSON being deserialized in these examples is shown in the previous
example. The ways of working with JSON data differ greatly, as the following examples
will show:

public void UpdateUiText(Object stream)
{
 JsonObject nh = (JsonObject)JsonObject.Load((Stream)stream);
 City.Text = nh["neighbourhood"]["city"];
 Name.Text = nh["neighbourhood"]["name"];
 Results.Text = nh.ToString();
}

One way to read JSON data is by using JsonObject.Load to convert the stream into an
object based on the structure found within the stream. To get access to the JsonObject,
you need to add a reference to the System.Json assembly and add a Using statement
for the same namespace to the page. After the JsonObject has been created, it’s a matter
of using the name of the property you want as the key. If the property is nested, you add
more keys, as when accessing the city property inside the Neighbourhood class.
DATACONTRACTJSONSERIALIZER

Another way to access returned JSON involves using the DataContractJsonSerial-
izer to deserialize the stream into objects of predefined types. This new object to seri-
alize and deserialize JSON is included in the System.Runtime.Serialization.Json
namespace and in the System.ServiceModel.Web assembly. The two methods of the
DataContractJsonSerializer are ReadObject and WriteObject, which deserialize
and serialize JSON objects respectively.

 The following example again uses the Neighbourhood class defined earlier:

public class MyResults
{
 public Neighbourhood neighbourhood { get; set; }
}
...
public void UpdateUiText(Object stream)
{
 DataContractJsonSerializer ser =
 new DataContractJsonSerializer(typeof(MyResults));
 MyResults nh = (MyResults)ser.ReadObject((Stream)stream);
 City.Text = nh.neighbourhood.city;
 Name.Text = nh.neighbourhood.name;
}

This example shows the classes that hold the data after it’s deserialized, as well as the
method that does the work. This approach is simple. First, you instantiate the
Licensed to Devon Greenway <devon.greenway@gmail.com>

366 CHAPTER 14 Networking and communications
DataContractJsonSerializer with the type of object you want filled. All that’s left is
to pass the response stream into the ReadObject method of the DataContractJsonSe-
rializer you just created. You access the data as you would with any other strongly
typed .NET object. In the case of two well-known schemas, RSS and Atom, there’s no
need to deserialize the stream yourself. We’ll look at these specialized classes, which
make consuming published feeds easy and straightforward.

14.5 Using advanced services
You’ve seen how to download data and various ways to parse the returned data streams
into usable pieces. Let’s now talk about a few special networking cases. Some SOAP ser-
vices can be crafted in such a way as to provide additional functionality beyond basic
SOAP. Windows Communication Foundation (WCF) is part of the .NET Framework 3.0
and provides a framework for creating SOAP web services. Although this technology is
fairly new, it’s growing in usage.

 Another special case is that of two-way services, also known as push services. Silverlight
supports two kinds of push technology in the form of WCF duplex services and TCP sock-
ets. Although the topics in this section are more complex, the abilities to add push com-
munications and advanced error handling on service calls make this all good to know.

14.5.1 WCF service enhancements

Connecting to a WCF service is accomplished in the same way as connecting to any
other SOAP service, as described in section 14.2.1. Creating a service reference allows
the use of a client proxy, which exposes all referenced types and methods to the Silver-
light application. WCF can expose features not allowed in Silverlight; so, when you’re
creating a WCF service for Silverlight consumption, there are a few restrictions. We’ve
already stated that Silverlight supports the 1.1 version of the SOAP protocol with the
addition of optional binary encoding. Another limitation is that Silverlight doesn’t
support the WS-* series of protocols made available through WCF.

 Due to Silverlight’s service limitations, Visual Studio has a special template for cre-
ating a WCF service to be consumed by Silverlight called Silverlight-Enabled WCF Ser-
vice. Describing how to create a WCF service is beyond the scope of this book, but the
template should help ensure that the service is consumable by Silverlight. If you cre-
ate your own WCF service, you have the ability to enhance the error-handling capabil-
ity of calls to it from Silverlight.
ERROR HANDLING

One of the nice things about WCF is the ability to throw exceptions on a service call.
Unfortunately, Silverlight doesn’t support this. Any exception thrown by the service
gets translated by the browser into a 404 File Not Found error. The creator of the WCF
service can still add error messages by adding them as an OUT parameter.

 When the signature of the WCF service contains an OUT parameter, you can access it
directly through the EventArgs on the event handler for the completed call, as shown
in listing 14.12.
Licensed to Devon Greenway <devon.greenway@gmail.com>

367Using advanced services
WCF C#:
[OperationContract]
string GetSomeData(int Id, out MyErrorObject myError);

Silverlight C#:
void serviceProxy_GetSomeDataCompleted(object sender,
 GetSomeDataCompletedEventArgs e)
{
 if (e.Error != null)
 {
 Message.Text = e.Error.Message;
 }
 if (e.myError != null)
 {
 Message.Text = e.myError.Message;
 }
 else
 {
 Message.Text = e.Result.ToString();
 }
}

In this example, you see a standard [ServiceMethod]Completed method like those
shown throughout this chapter. This example also demonstrates error trapping and a
custom out parameter.

 Now that you’ve seen standard WCF services, let’s dig deeper and look at how WCF
duplex services can enable you to push data from a server to Silverlight.

14.5.2 WCF duplex services

So far, we’ve talked about ways to send and receive data that requires the Silverlight
application to initiate each individual request. A couple of options allow the server to
push data directly to your application. Duplex WCF services and sockets each provide
a channel that allows properly configured server resources to send data without an
explicit client request each time.

 Duplex services give the server the ability to send, or push, data directly to the cli-
ent as it becomes available. Ajax applications have to send a request for updates to the
server that execute on a loop with a timer. This approach, known as polling, creates
overhead, both in your application and on the network, that can be avoided by using
these techniques.

 Duplex communication is possible in Silverlight using properly configured WCF
services. This is useful if you’re building an application that needs to receive notifica-
tions of changed properties on the server, such as when scores change in a sporting
event, or an open record changes in a database. To enable duplex communication
within Silverlight, a pair of new assemblies, both named System.ServiceModel.Poll-
ingDuplex.dll, need to be referenced-one by the server application hosting the
duplex service and the other by your Silverlight application. They’re identifiable by

Listing 14.12 Reading an out parameter from a WCF service
Licensed to Devon Greenway <devon.greenway@gmail.com>

368 CHAPTER 14 Networking and communications
their location within the Silverlight SDK, because one is in the Libraries\Server path
and the other is in the Libraries\Client path.
CONNECTING TO THE SERVICE

See the source code at Manning.com for everything required to set up a polling
duplex service in a web project. When you have a functioning WCF service set up to
enable duplex communication, let’s attach it to a Silverlight application. In the test
application, a Button initiates the duplex communication and a TextBlock displays
the results, so the XAML is simple. Here, you’re building a simple application that reg-
isters with the service to get updates on scores from a game (see listing 14.13).

Result:

XAML:
 <Grid x:Name="LayoutRoot" Background="#FF6F93C3" Width="300">
 <Button Height="41" HorizontalAlignment="Stretch"
 VerticalAlignment="Top" Content="Get Scores!"
 Margin="199,8,0,0" x:Name="GetScores"
 Click="GetScores_Click"/>
 <TextBlock Height="41" Margin="8,8,0,0" VerticalAlignment="Top"
 Text="Get scores for your team!" TextWrapping="Wrap" Width="187"
 HorizontalAlignment="Left" FontFamily="Arial" FontSize="20"/>
 <TextBlock Margin="8,70,8,8" Text="" TextWrapping="Wrap"
 x:Name="Scores" FontFamily="Courier New" FontSize="10"/>
 </Grid>

The only thing of note in the XAML is that the Click attribute of the button points to
the GetScores_Click method, which we’ll discuss in listing 14.14. In this example, you
grab a link to the current SynchronizationContext before beginning your asynchro-
nous operations. This ensures that you always have a way to update the user interface.

C#:
SynchronizationContext _uiThread;

private void GetScores_Click(object sender, RoutedEventArgs e)
{
 _uiThread = SynchronizationContext.Current;

 var poll = new PollingDuplexHttpBinding();

 poll.InactivityTimeout = TimeSpan.FromMinutes(1);

 IChannelFactory<IDuplexSessionChannel> channelFactory =

Listing 14.13 Sample application to get score updates

Listing 14.14 Creating the polling duplex client

SynchronizationContext

Polling
client
Licensed to Devon Greenway <devon.greenway@gmail.com>

369Using advanced services
 poll.BuildChannelFactory<IDuplexSessionChannel>(new
 BindingParameterCollection());

 IAsyncResult factoryOpenResult =
 channelFactory.BeginOpen(new
 AsyncCallback(OnOpenFactoryComplete), channelFactory);

 if (factoryOpenResult.CompletedSynchronously)
 {
 OpenTheChannel(factoryOpenResult);
 }
}

In this example, you start the process of binding to a duplex web service. You begin by
creating a PollingDuplexHttpBinding object, on which you set the timeout proper-
ties. You then use that polling object to create an IChannelFactory of type IDuplex-
SessionChannel. The next step is to begin the asynchronous call using the BeginOpen
method of the factory you just created.

 The PollingDuplexHttpBinding constructor accepts an optional parameter that
allows you to specify either single messages per poll or multiple messages per poll. If
you want to support HTTP message chunking-multiple messages per poll-you can pass
the parameter in to the constructor like this:

var poll = PollingDuplexHttpBinding(
 PollingDuplexMode.MultipleMessagesPerPoll);

Using the multiple messages option can significantly reduce the round trips for ser-
vices that typically have more than one message waiting in response to a poll, allowing
the service to scale better.

 One thing you’ll see throughout these samples is the calling of CompletedSyn-
chronously immediately after the asynchronous call. You do this in case the response
is immediate, as can occur for some small asynchronous operations. With this in
mind, note that all the asynchronous calls are to methods that also check the Com-
pletedSynchronously property and then either return or call the proper next
method. Here’s an example of one such method:

void OnOpenFactoryComplete(IAsyncResult result)
{
 if (result.CompletedSynchronously)
 return;
 else
 OpenTheChannel(result);
}

For the rest of this sample, we won’t show the On[action]Completed methods, because
they all follow the pattern of this example. The next step is to open the channel with the
WCF service and to begin polling it for queued messages, as in listing 14.15.

C#:
void OpenTheChannel(IAsyncResult result)
{

Listing 14.15 Opening the duplex channel and establishing polling
Licensed to Devon Greenway <devon.greenway@gmail.com>

370 CHAPTER 14 Networking and communications
 IChannelFactory<IDuplexSessionChannel> channelFactory =
 (IChannelFactory<IDuplexSessionChannel>)result.AsyncState;

 channelFactory.EndOpen(result);

 IDuplexSessionChannel channel = channelFactory.CreateChannel(new
 EndpointAddress("http://localhost:51236/ScoreService.svc"));

 IAsyncResult channelOpenResult = channel.BeginOpen(new
 AsyncCallback(OnOpenChannelComplete), channel);

 if (channelOpenResult.CompletedSynchronously)
 {
 StartPolling(channelOpenResult);
 }
}

void StartPolling(IAsyncResult result)
{
 IDuplexSessionChannel channel =
 (IDuplexSessionChannel)result.AsyncState;
 channel.EndOpen(result);

 Message message =
 Message.CreateMessage(channel.GetProperty<MessageVersion>(),
 "Silverlight/IScoreService/Register","Baseball");

 IAsyncResult resultChannel = channel.BeginSend(message,
 new AsyncCallback(OnSendComplete), channel);

 if (resultChannel.CompletedSynchronously)
 {
 CompleteOnSend(resultChannel);
 }
 PollingLoop(channel);
}

The method OpenTheChannel in this code shows where you define the service you’re
attempting to connect to. It’s assigned as an endpoint on the duplex channel. The
StartPolling method creates the SOAP message for the initial call and sends it to
the service.

 Listing 14.16 shows that CompleteOnSend receives the response from the initial
call. This is also the first use of the uiThread SynchronizationContext to update text
in the XAML.

C#:
void CompleteOnSend(IAsyncResult result)
{
 IDuplexSessionChannel channel =
 (IDuplexSessionChannel)result.AsyncState;
 channel.EndSend(result);
 _uiThread.Post(UpdateScore, "Registered!" + Environment.NewLine);
}

void UpdateScore(object text)

Listing 14.16 Looking for messages
Licensed to Devon Greenway <devon.greenway@gmail.com>

371Using advanced services
{
 Scores.Text += (string)text;
}

void PollingLoop(IDuplexSessionChannel channel)
{
 IAsyncResult result =
 channel.BeginReceive(new AsyncCallback(OnReceiveComplete),
 channel);
 if (result.CompletedSynchronously)
 CompleteReceive(result);
}

The PollingLoop method assigns CompleteReceive (see listing 14.17) as the method
to handle messages received from the duplex service and then closes the channel
when the game is over.

C#:
void CompleteReceive(IAsyncResult result)
{
 IDuplexSessionChannel channel =
 (IDuplexSessionChannel)result.AsyncState;
 try
 {
 Message receivedMessage = channel.EndReceive(result);
 if (receivedMessage == null)
 {
 _uiThread.Post(UpdateScore, "Channel Closed");
 }
 else
 {
 string text = receivedMessage.GetBody<string>();
 _uiThread.Post(UpdateScore, "Score Received: " +
 text + Environment.NewLine);

 if (text == "Game Over")
 {
 IAsyncResult resultFactory =
 channel.BeginClose(new AsyncCallback(OnCloseChannelComplete),
 channel);
 if (resultFactory.CompletedSynchronously)
 {
 CompleteCloseChannel(result);
 }
 }
 else
 {
 PollingLoop(channel);
 }
 }
 }
 catch (CommunicationObjectFaultedException)
 {

Listing 14.17 Reading the message
Licensed to Devon Greenway <devon.greenway@gmail.com>

372 CHAPTER 14 Networking and communications
 _uiThread.Post(UpdateScore, "Channel Timed Out");
 }

}

void CompleteCloseChannel(IAsyncResult result)
{
 IDuplexSessionChannel channel =
 (IDuplexSessionChannel)result.AsyncState;
 channel.EndClose(result);
}

Creating and consuming a duplex-enabled WCF service take more effort than a stan-
dard SOAP service, but there are definitely benefits. The ability to open a channel to
the server to get requests as they’re available is powerful. Another approach you can
take to accomplish this uses sockets, which we’ll discuss next.

14.5.3 Connecting to sockets

We’ve already discussed using a specially configured WCF service to enable push com-
munications, so now let’s talk about using sockets for the same purpose. A socket is a
communications endpoint that enables a connection to be established. After it’s estab-
lished, information can flow in either direction along the open channel. The only
socket protocol supported by Silverlight is TCP, and the ports are restricted to the
range of 4502–4534 using IPv4 or IPv6 addresses.
SERVING THE POLICY FILE

Sockets require a clientaccesspolicy.xml file with a few changes. The resource ele-
ment isn’t used and is replaced with the socket-resource element. Both element
types may exist in the file and apply the style to the specific type or request. The fol-
lowing is an example of a simple client access policy giving access to sockets using TCP
over port 4502:

<?xml version="1.0" encoding="utf-8"?>
<access-policy>
 <cross-domain-access>
 <policy>
 <allow-from>
 <domain uri="*"/>
 </allow-from>
 <grant-to>
 <socket-resource port="4502" protocol="tcp"/>
 </grant-to>
 </policy>
 </cross-domain-access>
</access-policy>

Your Silverlight application will typically be served up from port 80, a web server. Sock-
ets, on the other hand, don’t require a web server to be present and are on ports
other than 80. For those reasons, you must serve up a sockets policy file, because every
call is considered cross-domain (or at least cross-port).
Licensed to Devon Greenway <devon.greenway@gmail.com>

373Using advanced services
 You have two options for serving up the policy file. You may either host it on a web
server on port 80 on the same IP address as the sockets server, or on a sockets server
on port 943. Typically, you’ll set up a separate thread or a separate socket server that
listens for a connection on 943, sends the socket policy file, and closes the connection.

 Before we move on to opening the connection, refer to this book’s page on Man-
ning.com for the source code for a simple sockets server.
OPENING THE CONNECTION

Opening a socket connection with a socket server can be done in a few simple steps
that are similar to the other forms of communicating you’ve already seen. The first
step is to open the socket. Listing 14.18 shows how to open the socket on the client.

C#:
public void OpenTheSocket()
{
 DnsEndPoint tcpEndpoint =
 new DnsEndPoint(Application.Current.Host.Source.DnsSafeHost, 4502);
 Socket tcpSocket = new Socket(AddressFamily.InterNetwork,
 SocketType.Stream, ProtocolType.Tcp);
 SocketAsyncEventArgs socketArgs = new SocketAsyncEventArgs();
 socketArgs.UserToken = tcpSocket;
 socketArgs.RemoteEndPoint = tcpEndpoint;
 socketArgs.Completed +=
 new EventHandler<SocketAsyncEventArgs>(socketArgs_Completed);
 tcpSocket.ConnectAsync(socketArgs);
}

The example creates an endpoint and a socket and then using them to asynchro-
nously request a connection to the remote socket server. You use Application.Cur-
rent.Host.Source.DnsSafeHost to get the IP address of the host of the Silverlight
application in a form usable for creating a socket endpoint. Using this technique to
create the endpoint is only useful when the socket and the Silverlight application are
hosted in the same location.
HANDLING THE RESPONSE

Sockets are bidirectional in nature. After you’ve requested the connection, you need
to handle the response. Listing 14.19 shows how to handle the incoming response on
the client.

C#:
public void socketArgs_Completed(object sender,
 SocketAsyncEventArgs receivedArgs)
{
 switch (receivedArgs.LastOperation)
 {
 case SocketAsyncOperation.Connect:
 if (receivedArgs.SocketError == SocketError.Success)

Listing 14.18 Opening the socket connection on the client

Listing 14.19 Handling the socket response
Licensed to Devon Greenway <devon.greenway@gmail.com>

374 CHAPTER 14 Networking and communications
 {
 byte[] response = new byte[1024];
 receivedArgs.SetBuffer(response, 0, response.Length);
 Socket socket = (Socket)receivedArgs.UserToken;
 socket.ReceiveAsync(receivedArgs);
 }
 else
 throw new SocketException((int)receivedArgs.SocketError);
 break;

 case SocketAsyncOperation.Receive:
 ReceiveMessageOverSocket(receivedArgs);
 break;
 }
}

You can determine the type of response by evaluating the value of the LastOperation
property of SocketAsyncEventArgs, as shown in table 14.2.

Now you need to set up the connection to receive data, as shown here:

public void ReceiveMessageOverSocket(SocketAsyncEventArgs receivedArgs)
{
 string message = Encoding.UTF8.GetString(receivedArgs.Buffer,
 receivedArgs.Offset, receivedArgs.BytesTransferred);
 UIThread.Post(UpdateUIControls, message);
 Socket socket = (Socket)receivedArgs.UserToken;
 socket.ReceiveAsync(receivedArgs);
}

When the message comes in, it needs to be converted into the correct format (a
string, in this case); it can then be deserialized using any of the methods described in
previous sections, depending on the format of the incoming data.

 In additional to the traditional point-to-point connection offered by the Socket
class, Silverlight supports multicast sockets where there may be many broadcasting
servers or a single broadcasting server, sending to multiple clients.

14.5.4 Multicast sockets

The System.Net.Sockets namespace includes another type of socket implementa-
tion: UDP multicast sockets. IP multicast is a component of the core IP protocols, sup-
porting one-to-many communication over IP, most often using UDP. Multicast is an

Value Description

None Connection not yet established

Connect Connection established

Receive Packets received

Send Packets sent Table 14.2 SocketAsyncEventArgs
LastOperation values
Licensed to Devon Greenway <devon.greenway@gmail.com>

375Using advanced services
efficient way for forwarding the IP datagrams to many receivers, enabling the service
to scale out to more connected clients.

 IP multicast has a dependency on the routers and other equipment in use between
the service and the connected clients. That equipment must all support IP multicast in
order for the service to function. Luckily, most modern hardware and firmware imple-
mentations support IP multicast.

 A common scenario for IP multicast is the virtual classroom. In those cases, you
may have hundreds or even thousands of clients connected, watching a single stream-
ing video and receiving updates from virtual whiteboards, teacher notes, and public
discussion streams.

 Silverlight supports two types of multicast protocols, described in table 14.3.

ANY SOURCE MULTICAST/INTERNET STANDARD MULTICAST

The Any Source Multicast (ASM) approach enables a single client to receive traffic
from any source in a single multicast group. An example of this might be a virtual
meeting with multiple broadcasters or an event with several cameras and commentary,
all set up as individual servers in the same group.

 When Silverlight first attempts to join a multicast group, it sends out an announce-
ment message in the form of a UDP packet to port 9430. In the any-source model, this
goes to the group, and any responder in the group can send the ok back to port 9430.

 Listing 14.20 shows the basics of connecting to a multicast group in preparation
for receiving data.

C#:
private void OpenMulticastConnection()
{
 IPAddress groupAddress = IPAddress.Parse("224.156.5.5");
 int localPort = 1212;

 var client = new UdpAnySourceMulticastClient(
 groupAddress, localPort);

 client.BeginJoinGroup(OnBeginJoinGroup, client);

Table 14.3 Multicast support in Silverlight

Client Protocol and description

UdpAnySourceMulticastClient Internet Standard Multicast (ISM) or Any Source Multi-
cast (ASM).

This client can receive multicast traffic from any source
in a multicast group.

UdpSingleSourceMulticastClient Source Specific Multicast (SSM).

This client can receive multicast traffic from a single
source.

Listing 14.20 Opening a connection using ASM
Licensed to Devon Greenway <devon.greenway@gmail.com>

376 CHAPTER 14 Networking and communications
}

private void OnBeginJoinGroup(IAsyncResult asyncResult)
{
 UdpAnySourceMulticastClient client =
 (UdpAnySourceMulticastClient)asyncResult.AsyncState;

 client.EndJoinGroup(asyncResult);

 ...
}

In addition to the any-source approach, you can also designate that you want to listen
only to a single server using the Source Specific Multicast (SSM) model.
SOURCE SPECIFIC MULTICAST

The SSM approach is more common than the any-source model. Of course, at the
time of this writing, neither is particularly common. The source-specific model has
been used for broadcasting video and even software images on large campuses and in
some organizations. The benefit is the massive savings in bandwidth as compared to
more traditional means.

 When Silverlight first attempts to join a multicast group, it sends out an announce-
ment message in the form of a UDP packet to port 9430; but unlike the any-source
model, this packet goes directly to the single source IP.

 Opening the connection and joining the multicast group is similar to the any-
source approach, but the constructor takes in the IP address of the single source in
addition to the group information.

 Listing 14.21 shows how to connect to a multicast group and target a single source
address as the address to be listened to.

C#:
private void OpenMulticastConnection()
{
 IPAddress sourceAddress = IPAddress.Parse("192.168.1.1");
 IPAddress groupAddress = IPAddress.Parse("224.156.5.5");
 int localPort = 1212;

 var client = new UdpSingleSourceMulticastClient(
 sourceAddress, groupAddress, localPort);

 client.BeginJoinGroup(OnBeginJoinGroup, client);
}

private void OnBeginJoinGroup(IAsyncResult asyncResult)
{
 UdpAnySourceMulticastClient client =
 (UdpAnySourceMulticastClient)asyncResult.AsyncState;

 client.EndJoinGroup(asyncResult);

 ...
}

Listing 14.21 Opening a connection to a single source
Licensed to Devon Greenway <devon.greenway@gmail.com>

377Connecting to other Silverlight applications
The differences between listing 14.20 and 14.21 are minimal, coming down to the
inclusion of the additional IP address in the constructor.

NOTE MSDN Code Gallery includes examples of both a multicast server and
a multicast client. The full examples are impractical to place in a book due
to their length. You can download the SilverChat examples from http://
code.msdn.microsoft.com/silverlightsdk.

Multicast is just starting to take off in the media, education, and large business sectors.
If you’re looking at streaming media to a large number of clients, streaming stock-
ticker quotes, or building your own webcasting software, you’ll definitely want to learn
more about multicast socket development. Fortunately, Silverlight will be able to sup-
port you as a good client in those scenarios.

 Sockets in general are a great choice when you want to have complete control over
the messaging, such as you might when creating a game and you want to have the
tightest possible real-time messaging protocol. WCF duplex is a good choice when
you’re willing to trade wire-level control for the ability to use all the great features,
such as automatic serialization, that WCF provides. Different problems call for differ-
ent solutions, sometimes within the same physical application. It’s great to see Silver-
light offer such a spectrum of capabilities you can use when connecting applications
to the outside world.

 Sockets and WCF duplex are great for bidirectional communication between a Sil-
verlight client and a server, or via two machines using the server as a proxy. Straight
SOAP and REST are useful when consuming public or application-specific APIs. Silver-
light has another mechanism, similar to sockets, that you can use to connect two Sil-
verlight applications running on the same client machine.

14.6 Connecting to other Silverlight applications
The new local connection API in System.Windows.Messaging, introduced in Silver-
light 3, allows communication between two or more instances of the Silverlight plug-
in, whether they’re on the same page in the same browser instance, on different pages
in different browsers, or even some in browsers and others running out-of-browser.

 In this example, you’ll set up a pair of applications, the second of which echoes the
text entered into a TextBox on the first. Much like socket programming, you’ll need
to designate one application or piece of code as a sender and another as a receiver.
You’ll start with the receiver.

14.6.1 Creating the receiver

Each receiver has a unique name. Think of it as the address of an endpoint. You
define the name when creating the LocalMessageReceiver object as shown:

private LocalMessageReceiver _receiver =
 new LocalMessageReceiver("InAction");

The overload for the constructor enables you to indicate whether you want to listen only
to specific domains or to all domains (what’s called the namescope, not to be confused
Licensed to Devon Greenway <devon.greenway@gmail.com>

http://code.msdn.microsoft.com/silverlightsdk
http://code.msdn.microsoft.com/silverlightsdk

378 CHAPTER 14 Networking and communications
with XAML namescope), and to provide a list of acceptable domains. Additionally, it pro-
vides the same ability to supply a receiver name.

 In this case, the receiver is named InAction. Remember, this name needs to be
unique within the namescope. If it isn’t, you’ll get a ListenFailedException when
executing the next step, listening for senders:

public void Listen()
{
 _receiver.MessageReceived +=

➥ new EventHandler<MessageReceivedEventArgs>
➥ (_receiver_MessageReceived);

 _receiver.Listen();
}

void _receiver_MessageReceived(object sender, MessageReceivedEventArgs e)
{
 MessageText.Text = e.Message;
}

Much like the other communications APIs, you first wire up an event handler, call a
method, and then wait for a response within the handler. As is often the case, the
event args class specific to this process—MessageReceivedEventArgs—includes a
number of additional properties, shown in table 14.4.

After you’ve created the listener, the next step is to create something to send the mes-
sages: the sender.

14.6.2 Creating the sender

The sender is extremely simple to create. All it needs to do is create a LocalMessag-
eSender object specifying a particular listener and optionally the listener’s domain,
and then start sending messages:

Table 14.4 MessageReceivedEventArgs properties

Property Description

Message The message from the sender.

NameScope A value of either Domain or Global. Domain indicates the receiver is configured
only to listen to applications from the same domain. Global indicates the receiver
may listen to all Silverlight applications. This property is also available directly on
the LocalMessageReceiver object. The default is Domain, but it may be set
in the constructor.

ReceiverName The name of the LocalMessageReceiver tied to this event.

Response A response provided by the receiver. This makes it easy to immediately respond to a
message, perhaps with something as simple as an ACK (acknowledge).

SenderDomain The domain of the Silverlight application that sent this message.
Licensed to Devon Greenway <devon.greenway@gmail.com>

379Connecting to other Silverlight applications
private LocalMessageSender _sender =
 new LocalMessageSender("InAction");

public MainPage()
{
 ...
 MessageText.TextChanged +=
 new TextChangedEventHandler(OnTextChanged);
}

void OnTextChanged(object sender, TextChangedEventArgs e)
{
 _sender.SendAsync(MessageText.Text);
}

In the example, whenever the text changes in the TextBox, you send the entire Text-
Box contents across the pipe and to the listener.

14.6.3 Putting it all together

The next step is to place both Silverlight control into the same HTML page, using sep-
arate object tags. When run, the application will look something like figure 14.1.

 Of course, if you want, you can host the two instances in separate browser windows
and still allow them to communicate, as shown in figure 14.2. Create a page for the
sender and one for the receiver. The two browsers don’t need to be the same brand, as
long as they’re both supported by Silverlight.

Figure 14.1 Two
Silverlight control
instances on the same
page, communicating
with each other
Licensed to Devon Greenway <devon.greenway@gmail.com>

380 CHAPTER 14 Networking and communications
You can also have one or both of the applications running out of the browser, as
shown in figure 14.3.

 The new local connection API provides a great way to let two or more Silverlight
applications communicate. Unlike the old methods of using the DOM to send applica-
tion messages, this doesn’t rely on the applications being in the same DOM tree or
even in the same browser instance. This new API enables scenarios such as discon-
nected but coordinating web parts on a SharePoint page, composite applications, and
many more.

Figure 14.2 Sender and receiver in separate browser windows, communicating across processes

Figure 14.3 Sender in a browser window, and receiver running out-of-browser
Licensed to Devon Greenway <devon.greenway@gmail.com>

381Summary
14.7 Summary
Most Silverlight applications don’t live in a vacuum, self-contained and apart from the
rest of the world. In most cases, applications need to either gather data from or send
data to services on the Internet or intranet. The various networking approaches we
discussed here will help you connect your applications to the outside world and even
to other Silverlight applications.

 As a web technology, Silverlight as a platform must be able to connect to services
and consume various types of data as a top-tier feature. Silverlight doesn’t disappoint
in this area. From low-level HTTP access through to SOAP, REST, sockets, multicast
sockets, and duplex communications, Silverlight provides a full spectrum of capabili-
ties for accessing information on other machines.

 Of course, if you had to manually parse all that data, it wouldn’t be a great plat-
form feature. Luckily, Silverlight has us covered here as well. Silverlight supports mul-
tiple ways to access XML data-one of the most popular data formats on the web today.
In addition, Silverlight supports the lightweight and nimble JSON format introduced
with Ajax applications.

 Silverlight also supports a pseudonetworking mechanism for connecting two Sil-
verlight applications running on the same machine, even in different browsers or out-
of-browser instances.

 Silverlight provides numerous ways to connect to, download, and use a variety of
types of data. With support for technologies ranging from the decade old POX to WCF
Data Services and WCF RIA Services, there’s sure to be something to fit any application
framework.

 In the next chapter, we’ll combine the information on networking, binding, and
other topics and learn how to handle navigation.

Licensed to Devon Greenway <devon.greenway@gmail.com>

Navigation and dialogs
When you first created a Silverlight 2 application, you ended up with a project that
contained a single white main page, probably sized at 300 x 400, depending on the
template you used. There was no guidance for structuring your application or how
to move from page to page. Unlike HTML pages or WPF/Windows Forms, the navi-
gation structure wasn’t something intuitive, building on a decade or more of knowl-
edge and established patterns. Instead, most new Silverlight developers were left
staring that that blank page, wondering what to do next.

 Silverlight 3 introduced not only a complete navigation framework, but also an
application template built on this framework. The navigation framework takes a mod-
ern browser-oriented approach to navigation, supporting concepts such as journal
histories, back-and-forward navigation, and uniquely addressable pages. This frame-
work addressed the needs of both application structure and end-user navigation.

This chapter covers
■ Browser navigation
■ The Navigation Application template
■ Using navigation with out-of-browser applications
■ Working with common dialogs
■ Creating custom dialogs and pop-ups
382

Licensed to Devon Greenway <devon.greenway@gmail.com>

383Browser navigation background
 Silverlight also supports dialog content. In addition to the standard open and save
dialogs provided by the operating system, you can create your own simulated dialogs
using controls such as Popup and ChildWindow.

 In this chapter, we’ll dive deep into Silverlight navigation, followed up with a look
at how to handle pop-ups and dialogs. We’ll look to history to inform us about how
navigation is handled in the browser and how hashtags or URI fragments work. From
there, you’ll start building an application using the navigation template. The naviga-
tion template will then be used to explore navigation to individual pages and customi-
zation of navigation.

 After we complete the tour of navigation, we’ll turn our eye to dialogs and child
windows, including the operating system–provided file dialogs and the Silverlight
Popup and ChildWindow classes.

 Before diving into Silverlight navigation, let’s take a look at a well-established navi-
gation paradigm as used by the web browser.

15.1 Browser navigation background
The introduction of GUI web browsers hailed a new approach to navigation. Prior to
Mosaic, the typical modes for navigation were either keyboard commands or drop-down
menus. Most applications had multiple windows and were wizard-driven or dialog-
driven. Browsers introduced two key things:

■ Navigation to previously visited pages using Back and Forward buttons, with
retained history on both

■ Navigation to new pages using hyperlinks

This may seem pretty unexciting now, but it wasn’t a mainstream approach at the
time. Applications didn’t contain a single frame that was swapped in and out with dif-
ferent bits of content.

 With the ubiquity of web browsers came new demands for how applications
worked. It was expected that your applications, especially if hosted in a browser, would
use a forward/backward and link paradigm. This worked fine for the period of time
when browser applications were all server-processed and static client. Think ASP, CGI,
and similar application types.

 Outlook Web Access (OWA), released in 2000, had bits of functionality that other
application developers realized could make the web a better place. OWA was making
network calls back to the server to get new content, but did it without any sort of post-
back or even an iframe. Developers looked to see how this application (and others
such as Gmail in 2004) were written, and began to adopt the approach themselves.
Around 2003 (give or take a year or two), Ajax applications based on JavaScript, asyn-
chronous network calls, and client-side HTML DOM manipulation began to rise in
popularity. Ajax applications are and were a web approach designed to provide inter-
active client-side desktop application–like functionality to the web pages.

 Unfortunately, as Ajax applications became more and more complex, they made
browser back/forward navigation unreliable. Newsgroups at the time were full of
Licensed to Devon Greenway <devon.greenway@gmail.com>

384 CHAPTER 15 Navigation and dialogs
“How do we disable the Back button?” questions. Clicking the Back button navigated
off the page, completely destroying the application state. Java applets and, later, Flash
applications ran into the same problem.

 Eventually, both browser makers and the application framework developers were
able to work together to provide an approach for interacting with the browser journal,
the structure in the browser that keeps track of your navigation history. The rest is,
well, history.1

 In this section, we’ll briefly cover how the browser journal works and how it inter-
acts with anchor tags on a typical web page. With that grounding, we’ll then be able to
look at Silverlight navigation in the subsequent sections.

15.1.1 Browser journals

The browser journal keeps track of your navigation history for a session. It’s what allows
you to click the Back button to open the previous page and then click the Forward
button to return to where you were.

 Browsers each implement their history journal and its API in subtly different ways.
For example, Internet Explorer 7 required the use of an HTML iframe in order to
generate an actual history entry when you navigate to a hashtag. Other browsers
didn’t update their JavaScript API objects, such as location.hash, to reflect changes
to the hashtag. Some other browsers were just plain buggy and didn’t consistently
keep the correct state. There were other smaller differences in addition to gross
API differences.

NOTE Ever wonder why you need that iframe in the HTML page in a Silver-
light project? It’s there for navigation support in older browsers, including
IE7. IE7 wouldn’t generate a history entry when you navigated to a hashtag
unless you also navigated a frame at the same time. Some pretty clever
scripting avoids a server round-trip in there, all happily wrapped inside the
navigation API. IE8 doesn’t require this hack.

Back around 2007-2008, Ajax libraries started to include functionality to wrap all this
journal ugliness. Happily, Silverlight, with Silverlight 3 in 2009, was able to build on
this body of work to provide the same functionality.

 The entire navigation structure for rich, client-side browser applications is built
around hash tags.

15.1.2 Anchor hashtags

Hashtags, more properly known as fragments when part of a larger URI, were originally
designed to enable navigation within the same page without requiring a round trip to
the server. They were for top-level tables of contents on really long pages. Here’s an
example in HTML:

1 You didn’t think I’d get past this section without cracking that joke, did you?
Licensed to Devon Greenway <devon.greenway@gmail.com>

385Browser navigation background

First
Second

<p>
This is the first content paragraph</p>

<p>
This is the second content paragraph. Put me below the fold.</p>

If you paste this into a file with an .html extension and view it in your browser, you’ll see
how clicking the links at the top brings the bottom content into view and updates the
address at the top of the browser. If the
content is already in view, you won’t
see any on-page changes, but you’ll
still see the hashtag change in the
URL. Figure 15.1 illustrates this.

 You can achieve a similar effect
using JavaScript. Rather than having
to click a link, you can use this one
line of JavaScript code:

window.location.hash = "#first";

As you learned back in chapter 4, Silverlight can manipulate the browser DOM for any
page it’s on. Silverlight uses this and the plug-in model to handle the journal manipu-
lation for you, saving you the aggravation of coming up with a cross-platform, cross-
browser, custom solution or hand-crafting JavaScript.

 The hashtag approach provides a way to uniquely address content. It’s common to
see, for example, blog engines using this to uniquely address comments on a page. In
Ajax applications and in-browser RIAs, you can use it the same way: to uniquely iden-
tify content that’s on the same browser page, but nested within your application.

 Assuming you’re already on the browser page specified in the URL, all of this is
done without a page refresh, which is the key to making it work with your applications.

15.1.3 Back and forth

Browsers have a long history2 with their current navigation paradigm. When running
an application in the browser, and increasingly when running desktop applications,
users have come to expect that the approach of Back buttons, Forward buttons, and
hyperlinks will be, if not the primary navigation mechanism, at least one form that’s
available to them. It has even reached a level mainstream enough to be incorporated
into the Windows shell, as shown in figure 15.2.

 The Back and Forward buttons have their own settled UI convention (left and
right arrows). As expected, Back navigates the browser history backward, toward the

2 I did it again! I kill me.

Figure 15.1 I just clicked the First link at the top of
the page. The browser scrolled to bring the content into
view and updated the URL with the hashtag #first.
Licensed to Devon Greenway <devon.greenway@gmail.com>

386 CHAPTER 15 Navigation and dialogs
first page in the navigation chain, and Forward navigates forward as far as you’ve
gone in this chain. Of course, Forward only works if you’ve used the Back button
already. When you click another hyperlink, the forward chain is rebuilt starting at the
current point.

 With the background in browser navigation, journals, and hashtags, we can now
look at the Silverlight implementation and make more sense of the design choices
made, as well as the knobs provided for tweaking the approach. The easiest and most
obvious way to explore the navigation framework is to start with the Silverlight Naviga-
tion Application template.

15.2 The Navigation Application template
When creating a new Silverlight project, you can choose from several stock templates.
For most of the projects in this book, we’ve used the generic Silverlight Application
template. That template is great if you want a blank slate to start with.

 The Silverlight Navigation Application template is another good one. This tem-
plate provides the fundamental structure and plumbing required to allow your appli-
cation to work using a familiar web page navigation model. In addition, the template
provides for easy theming of your application.

 The Silverlight Navigation Application template isn’t required when you want to
incorporate navigation in your application. But you’ll find the template provides a
good starting point.

 In this section, you’ll create a new navigation project and use it to explore the Nav-
igation Application template, including modifying the navigation to include an addi-
tional page and the link to that page. We’ll wrap up with an example showing you how
to use the free online themes to customize the UI of the navigation application.

15.2.1 Creating a navigation application

As the name suggests, the Silverlight Navigation Application template structures the
application around the navigation API first introduced with Silverlight 3. This API makes
it easy to move between pages. The template provides a best-practices structure for using
the capabilities provided, as well as a good starting point for your own applications.

 The first step is to create the new project using the navigation template. Figure 15.3
shows the correct template selected in the Visual Studio 2010 New Project dialog. I
named the application NavigationExample.

Figure 15.2
The Back and Forward
buttons have even made it
into the Windows shell, in
the file explorer windows.
Licensed to Devon Greenway <devon.greenway@gmail.com>

387The Navigation Application template
After the project has been created, you end up with a structure that includes an Assets
folder with application styles (see chapter 23 for more on styling) and a Views folder
that includes two pages and an error window dialog. You’ll also see the usual Main-
Page.xaml and App.xaml files in the project root.

 When you run the unmodified application, using the default application style,
you’ll end up with something that looks like figure 15.4.

Figure 15.3 Picking the Navigation Application template in Visual Studio 2010

Figure 15.4 The Navigation Application default project. Note how the URL corresponds to the current
page visible in the application, and how the navigation menu on the right is synchronized with the two.
Licensed to Devon Greenway <devon.greenway@gmail.com>

388 CHAPTER 15 Navigation and dialogs
The application template includes all the wiring required to synchronize the menu
(the Home button at upper right in the screen shot) with the page in view, and syn-
chronizes both with the hashtag in the URL. If you click the About navigation button,
you’ll see that the URL changes. Even better, you can use the browser’s Back button to
get back to the home page of the application.

 Although this is a great structure, an application with only home and about pages
would probably not be particularly engaging. To grow beyond this, you need to add a
new page and modify the navigation menu.

15.2.2 Adding a new page

Much like regular web pages, the functionality and content for a navigation application
are in the pages. Adding a new page to a navigation application involves three steps:

1 Add the new view to the Views folder.
2 Add a link to the top menu.
3 Add functionality to the page.

The first step is as simple as dropping a new file into a folder. The second step involves
some modification to MainPage.xaml; and the third step is what you’d normally do in
any application, so we’ll skip it here.
ADDING THE NEW VIEW

Views are instances of the Silverlight Navigation Page class defined in the System.
Windows.Controls.Navigation namespace. The Silverlight tools include a template
for a blank page deriving from the navigation:Page class, a class which is essentially a
UserControl that has been beefed up to support navigation.

 Right-click the Views folder, and select Add New Item. In the Add New Item dialog,
select the Silverlight Page template, and name the file CustomerDetail.xaml. Figure 15.5
shows the Add New Item dialog with the correct selections.

Figure 15.5 The Add New Item dialog with the Silverlight Page template selected. This is the template
to be used for views in a Silverlight navigation application. I may have more templates than you; I’ve
installed some add-ins.
Licensed to Devon Greenway <devon.greenway@gmail.com>

389The Navigation Application template
After you’ve added the new page, you need to provide a way for the end user to find it.
In a regular desktop application, this may be a menu or toolbar. For this navigation
application, you’ll use a HyperlinkButton.
ADDING THE LINK TO THE TOP MENU

In this template, navigation to individual pages is accomplished by HyperlinkButton
instances on MainPage.xaml. The pages themselves are loaded in the navigation:
Frame element named ContentFrame.

 On MainPage.xaml is a Border named LinksBorder. This is the navigation menu
that appears at upper right. The default XAML for this area is shown in listing 15.1.

Result:

XAML:
<Border x:Name="LinksBorder"
 Style="{StaticResource LinksBorderStyle}">
 <StackPanel x:Name="LinksStackPanel"
 Style="{StaticResource LinksStackPanelStyle}">
 <HyperlinkButton x:Name="HomeLink"
 Style="{StaticResource LinkStyle}"
 NavigateUri="/Home"
 TargetName="ContentFrame"
 Content="home"/>

 <Rectangle Style="{StaticResource DividerStyle}"/>

 <HyperlinkButton x:Name="AboutLink"
 Style="{StaticResource LinkStyle}"
 NavigateUri="/About"
 TargetName="ContentFrame"
 Content="about"/>
 </StackPanel>
</Border>

This Border contains the top menu navigation structure for the application. It’s a sim-
ple StackPanel of elements: HyperlinkButton instances separated by vertical lines
(narrow rectangles).

 Note that I removed the x:Name from the divider rectangle, because it’s not needed.
The names in the HyperlinkButton instances also aren’t needed, but I gave them mean-
ingful names to help with the discussion here, and in case you decide to do something
with them in code. In your own project, you can remove the names if you’d like.

 To add your own page to the navigation structure, you need to follow this pattern
and add a divider rectangle (optional, but recommended) and a HyperlinkButton
pointing to your page. Place this markup in the XAML in the spot indicated in the pre-
vious listing:

Listing 15.1 LinksBorder showing navigation menu

Page
link

Your link
goes here
Licensed to Devon Greenway <devon.greenway@gmail.com>

390 CHAPTER 15 Navigation and dialogs
<Rectangle Style="{StaticResource DividerStyle}" />

<HyperlinkButton x:Name="CustomerDetailLink"
 Style="{StaticResource LinkStyle}"
 NavigateUri="/CustomerDetail"
 TargetName="ContentFrame"
 Content="customer" />

When copying and pasting from the other links, I left the divider alone but changed a
couple properties of the HyperlinkButton. The first is the x:Name property, which is
optional because it’s not used in any code, binding, or animation in the default tem-
plate. The second is the Content. This is what will be displayed on the menu bar. You
could easily use images rather than text if you’d like. You’re also free to change the
LinkStyle resource to modify the appearance. The final property is the NavigateUri.
That needed to be changed to point to the newly added page.

 You may have noticed that the URI for the page is set to /CustomerDetail, when
the actual page is stored in /Views/CustomerDetail.xaml. This is handled by the URI
mapper, which we’ll cover later in this chapter.

 Although it isn’t unique to the navigation API, one other nice feature of the naviga-
tion application is its ability to be easily styled or themed.

15.2.3 Changing the application theme

When the Silverlight team created the navigation template, they enlisted the help of
an in-house designer to both ensure that the template could be themed and to create
themes for use with it. Long after the release, the design team has continued to put
out new themes, each more impressive than the last.

 You can get the set of templates that’s current as of this writing by visiting http://
bit.ly/sltemplates and clicking the big download link at the top. Be sure to grab the
VisualStudio2010 zip file, which contains the .vsix (Visual Studio Install Package) files
for the themes. This will install a number of new project templates, one for each
theme you install.

 Because you’ve already started your project, you’ll need to steal some theme files
from another project. In another instance of Visual Studio, create a new Silverlight
Navigation Application - Cosmopolitan Theme (or a different theme if you prefer)
application. Save that. Then, find the folder where you stored that project, open it in
Explorer, and drag all the contents except the SDKStyles.xaml and ToolkitStyles.xaml files
from the Assets folder in the temp project into the Assets folder of your chapter proj-
ect. Be sure to overwrite (or first rename) the old Styles.xaml file so you pick up the
new one.

IMPORTANT Make sure each of the theme XAML styles is compiled with a
build action of Page and a Custom Tool of MSBuild:Compile. You’ll find
both settings in the property panel for the file. The build action provides
compile-time errors. The custom tool tells Visual Studio what to do with the
file and how to include it in the assembly.
Licensed to Devon Greenway <devon.greenway@gmail.com>

http://bit.ly/sltemplates
http://bit.ly/sltemplates

391The Navigation Application template
If you include SDKStyles.xaml or ToolkitStyles.xaml, you’ll get compile errors unless
you also have the required SDK and Toolkit assembles (respectively) referenced in the
application.

 Finally, open App.xaml in the project you’ve been working in, and merge in the
new resource dictionaries:

<Application.Resources>
 <ResourceDictionary>
 <ResourceDictionary.MergedDictionaries>
 <ResourceDictionary Source="Assets/Styles.xaml" />
 <ResourceDictionary Source="Assets/CoreStyles.xaml" />
 </ResourceDictionary.MergedDictionaries>
 </ResourceDictionary>
</Application.Resources>

After you have all the DLLs referenced, rebuild your application and run. I picked the
Cosmopolitan theme, so my application looks like figure 15.6. I didn’t change a single
line of page XAML, just the applied styles. Note how the sizes, colors, fonts used, and
locations of the elements have all changed-pretty awesome. You’ll learn more about
styling and resource dictionaries in chapter 23.

 Most of the rest of what you’ll do inside the pages is straight Silverlight code and
design. You’ll write code either in the code-behind or using something like the MVVM
pattern described in chapter 16.

Figure 15.6 The Silverlight navigation application with a new style. The Cosmopolitan style is similar to
the Metro theme used by Zune software.
Licensed to Devon Greenway <devon.greenway@gmail.com>

392 CHAPTER 15 Navigation and dialogs
As we continue to explore the navigation framework, you’ll use this application in the
examples. Now that you’ve seen how straightforward it is to create a Silverlight naviga-
tion-enabled application using the template, it’s time to dig into the classes and meth-
ods that make the template possible.

15.3 Navigating to pages
In the previous section, you saw what it takes to add a new page into the navigation
structure. In a nutshell, all you need to do is add the page to the Views folder and
then to the navigation links on the top.

 Pages are the most frequently used part of the navigation framework. They’re the
primarily location for your content. In addition to pages, there are several other
important parts. First, the NavigationService class provides the underlying property
and event information required to make navigation work. Then you have the Frame
element, which loads pages using URIs and supports features such as URI mapping.
Both the pages and frames also support forms of caching to minimize the reload time
for any given information. Also, much like HTML, frames can be nested and have mul-
tiple levels of navigation, or even navigation to pages in other assemblies.

 All of these classes collectively fall under the Navigation framework, and all of
them are involved in navigating to pages in your Silverlight application.

 In this section, we’ll dig deeper into what makes navigation possible, looking at the
core Page class and its properties. From there, we’ll uncover how the Frame class and
URI mapping work to load those pages, and how to pass and receive parameters
between page instances. Finally, we’ll wrap up with caching pages for reuse and navi-
gating to pages contained in other assemblies.

15.3.1 The Page class

The Page class, in the System.Windows.Controls namespace, provides the behavior
expected of content to be loaded into a navigation Frame. The Page itself is analogous
to an HTML page or to a regular Silverlight UserControl, but with the addition of nav-
igation events, members, and a navigation service. The page also provides caching
capabilities in concert with the Frame class; we’ll cover that and other features later in
this chapter.

 In addition to the standard Title property, which provides a unique friendly title
to the page, and some navigation objects that we’ll discuss shortly, the Page class
includes several virtual functions used to provide information about the current navi-
gation state.
NAVIGATION VIRTUAL FUNCTIONS

The Page class includes four navigation-related virtual functions. Override these when
you want to perform an action on a specific navigation step. Table 15.1 lists the func-
tions of each.

 These four events were implemented as virtual functions to eliminate the require-
ment of hooking up event handlers, potentially keeping pages around longer than
intended.
Licensed to Devon Greenway <devon.greenway@gmail.com>

393Navigating to pages
You’ll use the OnFragmentNavigation when you want to respond to subnavigation
within the current page. This is a powerful but seldom-used capability similar in intent
to hashtag or fragment navigation on HTML pages.

 A good place for page cleanup code, or persisting to a backup cache, is the OnNav-
igatedFrom method. This is fired when the page is no longer the active page, so it’s
too late to use to prompt the user for saving. Use the OnNavigatingFrom method
when you need to prompt the user.

 The OnNavigatingFrom method provides a facility for informing the user that the
page is about to be navigated away from. The method signature allows for canceling
the navigation, typically in response to a prompt to the user.

 Finally, the OnNavigatedTo method is the one most commonly used in navigation
pages. This is typically used for any data loading or data-cache retrieval, as well as any
page setup. Because pages can themselves be cached, this is the place to check the
state of that page cache and perform any operations necessary to make the page avail-
able to the user.

 The source of the event information is the NavigationService class, which also
has several other useful properties and methods.

15.3.2 The NavigationService class

The navigation Page class exposes a NavigationService class with a property of the
same name. This service is useful as a means to hook into the navigation system for
the hosting frame from within page code.

Table 15.1 Page navigation members

Navigation event Description

OnFragmentNavigation Called when a fragment inside the Silverlight application is navigated to.
For example, /Views/CustomerDetail.xaml#Item1234. This is different
from the top-level hash or fragment used to support Silverlight navigation.

Equivalent to the FragmentNavigation event on the
NavigationService class.

OnNavigatedFrom Called when this page is no longer the active page in the frame. Use this
for any final cleanup code.

Equivalent to the Navigated event of the NavigationService
class.

OnNavigatingFrom Called just before this page is swapped out for another page. The event
args allow for canceling the navigation. You can use this to prompt the
user to save data, for example.

Equivalent to the Navigating event of the NavigationService
class.

OnNavigatedTo Called when the page becomes the active page in the frame. In most
cases, you’ll use this where you’d use the Loaded event in nonnaviga-
tion scenarios.
Licensed to Devon Greenway <devon.greenway@gmail.com>

394 CHAPTER 15 Navigation and dialogs
 The NavigationService class provides five methods used for navigating away from
this page, reloading the current page, and stopping asynchronous navigation actions.
Table 15.2 provides detail on each function.

GoBack and GoForward use the currently active journal to move backward and for-
ward through the journal history. These methods are provided both here and at the
Frame level to allow you to create your own navigation UI, typically for use when run-
ning out-of-browser applications where there’s no browser UI. You can certainly use
these in-browser, though-something which may be useful for full-screen applications
in particular.

 The Navigate method takes a URI and starts the process of loading the new con-
tent and replacing the current content. We’ll cover the Navigate method in more
detail when we discuss the Frame class.

 In all cases, when using these navigation functions, the events listed in table 15.3
will be fired at their appropriate times.

 In addition to the navigation functions, two other methods are available. The first,
Refresh, is similar in functionality to the browser’s Refresh button. Typically this is used
only when you have custom content loaders and are performing some sort of authen-
tication step that must happen before the content appears. This method reloads the
page but doesn’t force it to be regenerated: if the page is cached, it’ll be read from the
cache. The second, StopLoading, is similar to the browser’s Stop or Cancel button. It
stops an asynchronous or long-running page-load process. Given the structure of most
navigation applications, with local compiled pages, StopLoading is rarely used.

 Highly related to those functions are four properties that provide information on
the navigation history as well as the current and planned page. Table 15.3 shows these
properties.

 These properties are typically used in concert with functions from table 15.1 For
example, you’ll check the CanGoBack property before calling the GoBack function.
Listing 15.2 shows several of these in use in a hypothetical page.

Table 15.2 The NavigationService class functions

Member Description

GoBack Navigates to the previous entry in the history. Throws an exception if no previous
entry exists in the history.

GoForward Navigates to the next entry in the history. Throws an exception if no next entry exists
in the history.

Navigate Navigates to an arbitrary URI.

Refresh Reloads the current page. Note that this is useful only when you provide a custom
INavigationContentLoader for the Frame’s ContentLoader property.

StopLoading Cancels any asynchronous navigation actions that haven’t yet been processed.
Licensed to Devon Greenway <devon.greenway@gmail.com>

395Navigating to pages
XAML:
<Grid x:Name="LayoutRoot">
 <StackPanel Orientation="Horizontal" Height="30">
 <Button x:Name="NavigateBack"
 Click="NavigateBack_Click"
 Content="Back"
 Width="100" />
 <Button x:Name="NavigateForward"
 Click="NavigateForward_Click"
 Content="Forward"
 Width="100" />
 </StackPanel>
</Grid>

C# code-behind:
private void NavigateBack_Click(object sender, RoutedEventArgs e)
{
 if (NavigationService.CanGoBack)
 NavigationService.GoBack();
}

private void NavigateForward_Click(object sender, RoutedEventArgs e)
{
 if (NavigationService.CanGoForward) #1
 NavigationService.GoForward();
}

These functions and properties are useful for those odd times when you need to per-
form navigation directly from the page. The more typical approach, shown later in
section 15.4, is to call them from the UI that hosts the navigation Frame control.

 The final bit of functionality provided by the NavigationService class is surfaced
through a set of five events that provide information about the current state of naviga-
tion. Table 15.4 shows the events exposed by this class.

 Several of the events on the NavigationService class are equivalent to the vir-
tual functions exposed by the page class, discussed earlier. Two of them, the Naviga-
tionFailed and NavigationStopped events, have no equivalent and so bear more
investigation.

Table 15.3 The NavigationService class properties

Member Description

CanGoBack Returns true if there’s at least one previous entry in the history.

CanGoForward Returns true if there’s at least one next entry in the history.

CurrentSource Returns the URI of the currently displayed page. This value changes when naviga-
tion has completed.

Source Gets or sets the page to be displayed. If set, when navigation completes, Source
and CurrentSource will be the same. In the interim, they may be different.

Listing 15.2 Using the NavigationService class to navigate forward or backward

Always check or
risk exception
Licensed to Devon Greenway <devon.greenway@gmail.com>

396 CHAPTER 15 Navigation and dialogs
The NavigationService class provides much of the core functionality of the naviga-
tion system in Silverlight. Although accessing it from within a page is a fine way to use
those capabilities, it’s more common to access the equivalent properties and methods
directly exposed by the Frame class to navigate using URIs or the history journal.

15.3.3 Frames and URIs

In Silverlight, Pages are loaded into Frames and are uniquely addressable via URIs.
These two types-the Frame and the URI-are conceptually similar to their HTML coun-
terparts in that the frame is both a container and a bit of a walled garden, used to host
content.

 The Frame class is a ContentControl, so it can have only one item as its content. In
most cases, that’s another XAML page, but that’s controllable using the Content-
Loader property of the Frame class.

 The Frame class exposes many of the same properties and methods that the Navi-
gationService exposes. One benefit at the Frame level is that most of these are
exposed as dependency properties and can therefore be used to control the IsEn-
abled state of navigation controls via binding.

 You can load content into a frame in a few different ways: using the GoBack and
GoForward methods seen in the previous section, or via URI using the Navigate method,
which we’ll cover here. Frames also support URI mapping to change ugly URLs into more
user-friendly versions. This mapping also helps better support page parameters.
LOADING CONTENT WITH THE NAVIGATE METHOD

Silverlight navigation applications load content pages into frames. In our walkthrough
of the Navigation Application template in section 15.2, you saw that the HyperlinkBut-
ton in the MainPage.xaml file invokes navigation for you. Although using a Hyperlink-
Button is an easy way to get content into a frame, it’s not the only way. Take for example

ContentFrame.Navigate(new Uri("/CustomerDetail", UriKind.Relative));

Table 15.4 The NavigationService class events

Member Description

FragmentNavigation Raised when the system navigates to a hashtag (fragment) on the current
page. Equivalent to the Page.OnFragmentNavigation method.

Navigated Raised when the system has navigated away from the page. Equivalent to
the Page.OnNavigatedFrom method.

Navigating Raised when the system is planning to navigate away from the page. This
is a cancellable event. Equivalent to the Page.OnNavigatingFrom
method.

NavigationFailed Raised when the frame is unable to navigate to the requested page. Pro-
vides the exception information.

NavigationStopped Raised when navigation has been stopped.
Licensed to Devon Greenway <devon.greenway@gmail.com>

397Navigating to pages
If the page /CustomerDetail maps to a valid page via the in-force URI mapping, this
example will navigate to that page. You could put this type of code in a button or any
sort of other handler in the application. The ability to navigate using code means
you’re not stuck with using HyperlinkControls for your application navigation: you
can use traditional menus, ListBoxes, Buttons, or pretty much anything you’d like.

 When working with navigation pages, you typically don’t navigate to pages using a
full filename such as CustomerDetail.xaml. Instead, you map friendly URIs to these
absolute URIs. This is done through a property on the Frame class.
URI MAPPING

The Frame class exposes a property named UriMapper of type UriMapperBase. This is
responsible for translating real application URIs into something more user-friendly.
The default implementation is a class containing a collection of UriMapping objects.
Table 15.5 shows the members of the UriMapper class.

The UriMapper property of the frame class is read/write. Should you desire, you can
create your own UriMapper implementation, using your own scheme for mapping
URIs. To do so, inherit from UriMapperBase and provide the required functionality in
the MapUri function.

 In the example at the beginning of this chapter, you saw how the mapper automat-
ically translated /CustomerDetail into /Views/CustomerDetail.xaml. The default Uri-
Mapper class exposes the UriMappings collection. Here’s the full XAML for the mapping:

<navigation:Frame.UriMapper>
 <uriMapper:UriMapper>
 <uriMapper:UriMapping Uri=""
 MappedUri="/Views/Home.xaml"/>
 <uriMapper:UriMapping Uri="/{pageName}"
 MappedUri="/Views/{pageName}.xaml"/>
 </uriMapper:UriMapper>
</navigation:Frame.UriMapper>

Given this mapping, and assuming an application URI of http://myapp.com/
app.aspx, when the user visits http://myapp.com/app.aspx#/CustomerDetail, the sec-
ond mapping will come into play and map to http://myapp.com/app.aspx#/Views/
CustomerDetail.xaml. Also note the hashtag in both cases; the mapping only comes
into play with that fragment.

Table 15.5 The members of the UriMapper class

Member Description

UriMappings Collection of UriMapping objects representing a single pair of URIs to be mapped.
Each UriMapping object contains a Uri property and a MappedUri property as
well as a MapUri function.

MapUri Inherited from UriMapperBase and overridden in the default UriMapper class.
Function accepts a regular URI and returns the URI that it maps to. In the default
UriMapper implementation, calls the MapUri function of the UriMapping that
matches the input URI.
Licensed to Devon Greenway <devon.greenway@gmail.com>

http://myapp.com/app.aspx
http://myapp.com/app.aspx
http://myapp.com/app.aspx#/CustomerDetail
http://myapp.com/app.aspx#/Views/CustomerDetail.xaml
http://myapp.com/app.aspx#/Views/CustomerDetail.xaml

398 CHAPTER 15 Navigation and dialogs
 This mapping XAML fragment sits inside the navigation:Frame element and pro-
vides the two mappings required for the URLs you’d normally use: no page and a spe-
cific page. Maps are read top-down and complete when the first match is hit. If you
want to pass parameters to your page, you can get more complex and include support
for query string values.
PASSING AND RECEIVING PAGE PARAMETERS

A common pattern in web applications is to pass parameters to a page using the query
string. The query string is the set of delimited name/value pairs after the question
mark in a URL. For example:

http://myapp.com/app.aspx?customer=1234

In this case, the query string would produce two name/value pairs: customer with a
value of 27 and invoice with a value of 2506.

 That works well for passing parameters to an actual HTML page, but how does it fit
in with the hashtag approach used with Silverlight navigation? How do you pass
parameters to internal Silverlight pages? In a Silverlight application, much as we’ve
gotten used to elsewhere on the Web, you may want something a little friendlier:

http://myapp.com/app.aspx#/CustomerDetail/1234

In this case, when you have mapping set up, Silverlight will load the CustomerDetail
page and pass in a parameter of 1234. How is that parameter passed in? It’s entirely up
to you and how you do the mapping. For example, let’s say you want 1234 to map to a
CustomerID query string variable. You provide a map that looks like this:

<uriMapper:UriMapping Uri="/CustomerDetail/{CustomerID}"
 MappedUri="/Views/CustomerDetail.xaml?CustomerID={CustomerID}" />

That map needs to appear near the top, preferably after the Home mapping, in order
to be hit. Remember, the maps are evaluated top-down, and the first match is the only
one that will be executed.

 Retrieving the parameter from within the Page is super simple. The Navigation-
Context object on the property of the same name in the Page class includes a Que-
ryString property that may be used to retrieve the parameters passed into the page.
It’s an IDictionary of strings, so no parsing is required; use the name/value pairs as
they’re provided:

protected override void OnNavigatedTo(NavigationEventArgs e)
{
 if (NavigationContext.QueryString.ContainsKey("CustomerID"))
 {
 string id = NavigationContext.QueryString["CustomerID"];

 if (!string.IsNullOrWhiteSpace(id))
 LoadCustomerDetails(id);
 }
}

Licensed to Devon Greenway <devon.greenway@gmail.com>

399Navigating to pages
This example shows how easy it is to grab the ID from the query string passed into the
page. Although I left them out for brevity here, you’ll want to have all your query
string key names in constants or an enum.

 This approach enables you to provide meaningful deep links into data-oriented
Silverlight applications, pulling up the appropriate records or other state. Back when
I worked primarily with Windows Forms in the .NET 1 and 1.1 days, this was a feature
many customers asked for: “How can I email a link to a specific page in the applica-
tion?” We had all sorts of strange solutions involving custom URI schemes and more.
I’m glad to see it’s much simpler now.

 When you have a data-oriented application, that typically means individual pages
cause some sort of database transaction and web service call to run when you load
them. The query string parameter may contain a record ID used to load some data.
When the user is bouncing back and forth between pages in the application, you don’t
necessarily want to take a service or database hit on each page; that’s where caching
comes into play.

15.3.4 Caching pages

There are all sorts of ways to cache information in a Silverlight application: you can
cache data at the service level on a web server or using a server-side caching product.
You can cache locally on the client using cookies and isolated storage. With elevated
trust applications, you can even cache to files in the My Documents folder. Of course,
because Silverlight applications are stateful, you could cache everything you need in
memory on the Silverlight client. The Page cache is a specialized form of this in-
memory approach.
PAGE CACHE SETTINGS

Normally, when you navigate to a page using the navigation framework, you’ll get a
new instance of that page. This includes times when you click the Back button to get
to that page. In order for Silverlight to cache that page, you need to enable caching at
the page level using the NavigationCacheMode property. Table 15.6 shows the three
possible values for page caching.

The cache mode is specific to the URI in use. When using parameters, each unique
URI, including the query string, results in a new cached page if caching is turned on.
Given the way parameters usually affect the data on the page, this is a desirable effect.

Table 15.6 The values for NavigationCacheMode for a Page

Value Description

Disabled The default value. The page is never cached.

Required The page is cached, and the cached version is used for every request. Pages marked as
required don’t count against the Frame’s cache limit and won’t be discarded.

Enabled The page is cached but is discarded when the Frame’s cache limit is reached.
Licensed to Devon Greenway <devon.greenway@gmail.com>

400 CHAPTER 15 Navigation and dialogs
If you want to avoid this, you can cancel the navigation using code in the Navigating
event or by overriding the OnNavigatingFrom function on the Page.

 Typically, you’ll set the page’s cache mode in the constructor. Cached pages will
still receive the navigation events, so you may do any page-loading work inside the
OnNavigatedTo override.

 The page cache is handled at the Frame level, so it makes sense for that to be the
location of the cache settings.
FRAME CACHE SETTINGS

The Frame instance is responsible for any caching of pages it loads. It uses a simple in-
memory structure keyed by the URI of the page to be cached. By default, the size of
this cache is set to 10 pages, but you can change that by setting the Frame.CacheSize
property in either markup or code. Recall that this limit doesn’t include pages that
require cache, only pages that enable it.

 Logically, the cache is a queue: new pages are added to one end, and old pages fall
off the other. The cache itself is opaque; you don’t have direct access to it and can’t
manually manipulate the pages contained within. If you need that level of cache con-
trol, you can consider creating your own custom INavigationContentLoader and
bypassing the built-in cache.

 Caching is a powerful way to improve the performance of your application. Using
the built-in page cache takes the guesswork out of dealing with individual page
instances in a navigation application.

 So far, you’ve seen a number of pages being loaded (and cached) using straightfor-
ward URIs. Those pages all existed in the currently executing assembly. It’s rare for an
application of any complexity to have all of its user interface contained within the
main assembly.

 For the last topic of this section, we’ll cover how to navigate to pages contained in
other assemblies.

15.3.5 Navigating to pages in other assemblies

Nontrivial applications almost always contain multiple assemblies. In many cases,
those assemblies may contain user interface pages that must be integrated with the
rest of the application. The Silverlight navigation framework supports navigating to
pages included in other assemblies.

 There are multiple ways to get the assembly down to the local machine. First, it
can of course be packaged in the same .xap file with the initial application down-
load. This doesn’t help download time, but it does help keep the application modu-
lar. The assembly can be a shared assembly sitting on the server, resolved by the
Silverlight assembly caching resolver. It can be an assembly dynamically downloaded
using the Managed Extensibility Framework (MEF) or via an HttpWebRequest as seen
in chapter 14.
Licensed to Devon Greenway <devon.greenway@gmail.com>

401Navigating to pages
URI SYNTAX

Regardless of the download mechanism, the navigation approach remains the same
when you have the assembly available to Silverlight. Silverlight uses a specialized form
of URI to reference the page. You may have seen this when loading resource files. For
example, to get to CustomerList.xaml in a Views folder in the assembly CustomerMod-
ule, the URI looks like this:

/CustomerModule;component/Views/CustomerList.xaml

That says to load the CustomerModule component and look in the Views folder for a
file named CustomerList.xaml. You could use this syntax as is, but it’s much nicer to
integrate it with the URI mapper. First, let’s modify the project to include a new assem-
bly with the CustomerList page so you can try this out.
ADDING THE ASSEMBLY

To the existing solution, add a new Silverlight Class Library project named Customer-
Module. In that project, create a new Views folder. In the Views folder, add a new Sil-
verlight page named CustomerList.xaml. Feel free to remove the default Class1.cs
class that came along for the ride.

 The XAML for the CustomerList file is short:

<Grid x:Name="LayoutRoot">
 <TextBlock Text="Customer List Page from Assembly" />
</Grid>

The next step is to reference this assembly from the main Silverlight application. First,
build the solution. Then, right-click the Silverlight app and choose Add Reference.
From the Projects tab, select the newly added CustomerModule assembly.

 At this point, you have everything needed for a page in a separate assembly,
included in the main .xap file. The next step is to build the URI mapping rule.
MAPPING THE URI

Unless you have a specific pattern to the URIs in your external assemblies, you’ll need
to create individual mapping rules for them. This alone can be a good reason to
group pages by a common name prefix (such as Customer) and partition them into
assemblies based on those names.

 In this case, you’ll add a specific URI mapping as the first rule in the URI mapper in
MainPage.xaml. The rule looks like this:

<uriMapper:UriMapping Uri="/CustomerList"
 MappedUri="/CustomerModule;component/Views/CustomerList.xaml" />

When the mapping is in place, all you have to do is add some navigation controls on-page.
ADDING THE NAVIGATION MENU ITEM

Still in MainPage.xaml, locate the LinksBorder where you previously added the Cus-
tomer menu item. Right under the CustomerDetailLink, add the following XAML:

<Rectangle Style="{StaticResource DividerStyle}" />

<HyperlinkButton x:Name="CustomerListLink"
 Style="{StaticResource LinkStyle}"
Licensed to Devon Greenway <devon.greenway@gmail.com>

402 CHAPTER 15 Navigation and dialogs
 NavigateUri="/CustomerList"
 TargetName="ContentFrame"
 Content="customer list" />

When you run the application and click the Customer List menu option, you’ll see
something like figure 15.7. With the mapped URI, the fact that the page isn’t in the
main assembly is completely transparent to the user. Not only is this generally a good
practice, but it’ll make any further refactoring easier, as you can keep the URIs the
same regardless of which assembly the pages live in.

 Navigation in Silverlight is based primarily around Pages, Frames, and URIs. Indi-
vidual pages have unique URIs and are loaded by those URIs into frames in the appli-
cation. Frames provide a location to host pages, as well as a common interface to the
navigation facilities offered by the NavigationService class and services such as the
URI mapper. Both frames and pages participate in caching to help improve applica-
tion performance. Finally, pages can be loaded from resources inside the executing
assembly, or from external assemblies resolved at compile time or runtime.

 So far, everything you’ve done has been for in-browser applications, where you
have the browser’s navigation UI and history journal to rely on. Out-of-browser appli-
cations obviously can’t take advantage of these things. Luckily, the Silverlight naviga-
tion framework has taken this scenario into consideration and provided everything
you need to have proper out-of-browser navigation.

Figure 15.7 The navigation application with a customer list page loaded from an external assembly
Licensed to Devon Greenway <devon.greenway@gmail.com>

403Navigation out of the browser
15.4 Navigation out of the browser
Out-of-browser applications don’t have the benefit of the browser-based navigation UI.
From a user experience standpoint, this is excellent, because you’ll want to provide
your own in-theme navigation controls anyway. Consider the Microsoft Zune software
client (see figure 15.8): it uses familiar navigation metaphors but looks different from
a web browser.

 The Zune client uses some of the traditional controls and navigation concepts (pri-
marily links and the Back button) but provides a custom look and feel. The Zune cli-
ent also eschews the use, in this case, of a Forward button.

 A user interface along the lines of the Zune client is well within the capabilities of
a Silverlight out-of-browser application with custom chrome and navigation. In this
section, we’ll look at what it takes to create custom navigation controls, hook up to an
appropriate journal, and support navigation out of the browser.

15.4.1 Providing custom navigation controls

In the previous sections, you’ve seen how the Frame class provides various properties,
methods, and events you can use to control and respond navigation. You’ve also created

Figure 15.8 The Zune software client. Note the small arrow Back button at upper left. Also note the
two-level navigation using links such as Quickplay, Collection, Marketplace, and Social. (I get my Doctor
Who fix using Zune. It’s cheaper than cable.)
Licensed to Devon Greenway <devon.greenway@gmail.com>

404 CHAPTER 15 Navigation and dialogs
a shell of a navigation application that integrated with the browser to provide standard
URI and back and forward navigation.

 The next step is to take this application out-of-browser and provide your own cus-
tom navigation user interface.
CREATING THE NAVIGATION CONTROLS

The application needs, at a minimum, a Back button and a Forward button. For this,
you’ll use the metro theme (Windows Phone 7 and Zune) icons from http://
metro.windowswiki.info/. From that set, drag both the back.png and next.png black
icons into the project’s Assets folder. When they’re in place, modify MainPage.xaml to
add the XAML in listing 15.3 right before the closing Grid tag at the bottom of the file.

<Grid x:Name="OutOfBrowserNavigationControls"
 VerticalAlignment="Top" HorizontalAlignment="Left"
 Margin="15">
 <Grid.Resources>
 <Style TargetType="Button">
 <Setter Property="Cursor" Value="Hand" />
 <Setter Property="Margin" Value="2" />
 <Setter Property="Opacity" Value="0.5" />
 <Setter Property="VerticalAlignment" Value="Top" />
 <Setter Property="Template">
 <Setter.Value>
 <ControlTemplate>
 <Grid>
 <VisualStateManager.VisualStateGroups>
 <VisualStateGroup x:Name="CommonStates">
 <VisualState x:Name="Normal" />
 <VisualState x:Name="Disabled">
 <Storyboard>
 <DoubleAnimation Duration="0"
 Storyboard.TargetName="Content"
 Storyboard.TargetProperty="Opacity"
 To=".2" />
 </Storyboard>
 </VisualState>
 </VisualStateGroup>
 </VisualStateManager.VisualStateGroups>
 <ContentPresenter x:Name="Content" />
 </Grid>
 </ControlTemplate>
 </Setter.Value>
 </Setter>
 </Style>
 </Grid.Resources>
 <StackPanel Orientation="Horizontal">
 <Button x:Name="BackButton"
 Click="BackButton_Click"
 Width="40" Height="40">
 <Image Source="Assets/back.png" />
 </Button>

Listing 15.3 The Back and Forward buttons on MainPage.xaml

Button
template

Navigation
button
Licensed to Devon Greenway <devon.greenway@gmail.com>

http://metro.windowswiki.info/
http://metro.windowswiki.info/

405Navigation out of the browser
 <Button x:Name="ForwardButton"
 Click="ForwardButton_Click"
 Width="25"
 Height="30">
 <Image Source="Assets/next.png" />
 </Button>
 </StackPanel>
</Grid>

The XAML in listing 15.3 adds two buttons: a Back button and a Forward button. The
style resource (resources are covered in chapter 23) creates a button that has no real
appearance other than its content. When you run the application, the UI displays the
two new buttons at upper left on the main page, as shown in figure 15.9.

The new UI looks pretty good. With the buttons in place, you’ll need to wire them up
to the content frame to make navigation happen.
WIRING UP THE BUTTONS

In the button-click event handlers for the two new navigation buttons, you’ll place
some code similar to what you wrote in listing 15.2 earlier in this chapter. This time,
though, you’ll use the Frame class directly rather than the NavigationService class.
Listing 15.4 shows the code-behind for the MainPage.xaml page.

private void BackButton_Click(object sender, RoutedEventArgs e)
{
 if (ContentFrame.CanGoBack)

Listing 15.4 Navigation code in MainPage.xaml.cs

Navigation
button

Figure 15.9 The new navigation buttons appear at upper left in the user interface.
Licensed to Devon Greenway <devon.greenway@gmail.com>

406 CHAPTER 15 Navigation and dialogs
 ContentFrame.GoBack();
}

private void ForwardButton_Click(object sender, RoutedEventArgs e)
{
 if (ContentFrame.CanGoForward)
 ContentFrame.GoForward();
}

With this code in place, you can use either the browser buttons or the custom naviga-
tion buttons to move backward and forward through the journal. There’s currently
no visual cue indicating whether either navigation option is available, though. You
can do this using binding, because the CanGoBack and CanGoForward properties of
the Frame class are implemented as dependency properties. As you learned in chap-
ter 11, you can use element binding to get to the properties on ContentFrame, as
shown here:

<Button x:Name="BackButton"
 IsEnabled="{Binding CanGoBack, ElementName=ContentFrame}"
...
</Button>
<Button x:Name="ForwardButton"
 IsEnabled="{Binding CanGoForward, ElementName=ContentFrame}"
...
</Button>

With that in place, you’ll see the Forward and Back buttons ghost out when the func-
tion isn’t available. Note how the buttons are in sync with the browser navigation but-
tons. Now, let’s try it without the browser.
OUT OF BROWSER

The next step is to turn the application into an out-of-browser application. Chapter 5
covered out-of-browser applications in detail; if you haven’t yet read that, you may
wish to take a brief detour over there now.

 Right-click the main application project, select Properties, and select the Enable
Running Application Out of the Browser check box on the Silverlight tab. Next, on the
Debug tab, select Out-of-browser Application as the start action. Finally, set the Naviga-
tionExample project as the startup project by right-clicking the project and selecting
Set as Start-up Project.

 With those steps complete, run the application. The result will look something like
figure 15.10.

 One other important option relates to custom navigation: controlling who owns
the journal.
CONTROLLING THE JOURNAL

The Frame class includes a property named JournalOwnership. This property lets you
decide who should own the history journal. In a top-level navigation frame in an in-
browser application, the default is to let the browser own the journal. In an out-of-
browser application, the default is to let the frame own the journal. Table 15.7 shows
the three possible values of the JournalOwnership property.
Licensed to Devon Greenway <devon.greenway@gmail.com>

407Navigation out of the browser
Given the defaults, leaving journal ownership at the default value will be sufficient for
most cases, including your out-of-browser application. For out-of-browser applications,
it wouldn’t hurt to set the journal ownership to OwnsJournal, but other than a short
decision tree, you’re not really saving any code.

 There was a time when a series of dialogs could be considered the main user inter-
face for a number of applications. Not any more. Pages are the main way you present
content to users. But dialogs still have their place for presenting important informa-
tion to the user, such as error messages or details, or for gathering discrete bits of
information such as filenames.

Table 15.7 Values for the JournalOwnership property of the Frame class

Value Description

Automatic If the frame control is a top-level frame and is running in-browser, the
browser’s journal is used. Otherwise, the frame maintains its own journal.

OwnsJournal The frame maintains its own journal.

UsesParentJournal Uses the browser’s journal. This may only be used with a top-level (not
nested) frame.

Figure 15.10 The navigation application running out-of-browser, with custom navigation controls
Licensed to Devon Greenway <devon.greenway@gmail.com>

408 CHAPTER 15 Navigation and dialogs
In addition to the page-navigation approach you’ve seen so far, Silverlight has support
for two discrete types of dialogs: in-application floating windows with simulated
modality, and system dialogs.

15.5 Showing dialogs and pop-ups
There are certain times when you need to grab the user’s attention and display some-
thing that overlays other page content. Maybe you need to display details about a critical
error. You could do this with the message box, but that can be limiting. For more intri-
cate dialogs, you may want to consider the other two alternatives available in Silverlight.

 Throughout this section, you’ll learn about the four types of visual prompts available
in Silverlight. We’ll briefly cover the Popup control first, followed by the ChildWindow
control-a control that provides the capability to display in-Silverlight dialogs. Then,
we’ll dive into the two system dialogs made available in Silverlight: the OpenFileDialog,
which is useful for getting a file from the user’s local file system, and the SaveFileDi-
alog, which helps specify a location for saving a file on the local file system.

15.5.1 The Popup control

In Silverlight 2, if you wanted to create a dialog-like experience, you likely used the
Popup control from the System.Windows.Controls.Primitives namespace. The Popup
control provided a way to guarantee that your content would show up at the top of the
z-order, regardless of which control created it. But it wasn’t really a dialog substitute.

 The Popup control has no visuals of its own. Typically, you’ll enclose a UserControl
or a number of elements within the Popup to give it the behavior you want. Because
sizing and positioning can be tricky otherwise, it’s recommended that you apply a
fixed size to the content in the Popup and then perform any centering or other posi-
tion calculations.

 Assuming that the XAML namespace xmlns:primitives points to System.Windows.
Controls.Primitives, the syntax for the popup is simple:

<primitives:Popup x:Name="MyPopup"> content </primitives:Popup>

To display the pop-up in the example, you’d then use the IsOpen property:

MyPopup.IsOpen = true;

In Silverlight 3 and 4, the use of the Popup control is more for floating nondialog
items to the top of the stack, but not really for simulating dialog boxes, so we won’t
spend much time on it. The Popup control is used by Silverlight to support other ele-
ments such as tooltips, the drop-down in the ComboBox, and, of course, the ChildWin-
dow control introduced with Silverlight 3.

15.5.2 Displaying a dialog box with the ChildWindow control

Silverlight 3 introduced a new class, ChildWindow, which provides a window-like expe-
rience over the base Popup control. Where the Popup control provided only z-order
management, the ChildWindow adds window overlays, dialog results, OK/Cancel but-
tons, and window title functionality.
Licensed to Devon Greenway <devon.greenway@gmail.com>

409Showing dialogs and pop-ups
Unlike Popup, ChildWindow is considered a first-class element, like Page and UserCon-
trol, and has a template in the project items template list, as shown in figure 15.11.

 That said, ChildWindow isn’t located in the core Silverlight runtime; it’s located in
the System.Windows.Controls assembly in the SDK. The primary reason for keeping
it out of the runtime is that it’s not an essential or enabling technology; you could live
with Popup if you absolutely needed to.

 After you create a new ChildWindow, you’re presented with its default template, as
shown in listing 15.5.

Result:

XAML:
<controls:ChildWindow x:Class="SilverlightApplication20.ChildWindow1"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:controls="clr-namespace:System.Windows.Controls;

Listing 15.5 The default ChildWindow template

Figure 15.11 The Silverlight ChildWindow is a first-class element like UserControl and Page.
Licensed to Devon Greenway <devon.greenway@gmail.com>

410 CHAPTER 15 Navigation and dialogs
➥ assembly=System.Windows.Controls"
 Width="400"
 Height="300"
 Title="ChildWindow1">
 <Grid x:Name="LayoutRoot" Margin="2">
 <Grid.RowDefinitions>
 <RowDefinition />
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>

 <Button x:Name="CancelButton" Content="Cancel"
 Click="CancelButton_Click"
 Width="75" Height="23" HorizontalAlignment="Right"
 Margin="0,12,0,0" Grid.Row="1" />

 <Button x:Name="OKButton" Content="OK"
 Click="OKButton_Click"
 Width="75" Height="23" HorizontalAlignment="Right"
 Margin="0,12,79,0" Grid.Row="1" />
 </Grid>
</controls:ChildWindow>

Listing 15.5 shows the default look and feel of the ChildWindow control. Before we
get into how to customize that, we’ll cover the mechanics of showing and hiding the
window.
SHOWING THE CHILDWINDOW

A ChildWindow is typically displayed from code rather than included as an inline ele-
ment in XAML. To facilitate this, the control has several members that handle show-
ing, closing, reporting results, and allowing cancellation. Table 15.8 lists those
members and their related functions.

Table 15.8 Properties, methods, and events related to showing and closing the ChildWindow

Member Description

DialogResult
property

A nullable boolean that indicates whether the dialog was accepted or cancelled.
This is typically set to true in the handler for an OK button and false in the han-
dler for a Cancel button.

Show method Displays the child window and immediately returns. Whereas the behavior of a
ChildWindow is logically modal, from a programmatic standpoint, Show is a
nonblocking and therefore nonmodal method.

Close method Closes the window. Typically, this is called from a button on the child window itself.

Closing event Raised when the child window is closing. The handler for this event has the oppor-
tunity to cancel the close operation and force the window to stay open.

Closed event Raised after the child window has been closed. Note that due to animations, the
window may still be visible on the screen for a moment longer, but it’s be in the pro-
cess of closing for good. Use this event to inspect the DialogResult property.

Window
content goes
Licensed to Devon Greenway <devon.greenway@gmail.com>

411Showing dialogs and pop-ups
The typical way to use a ChildWindow is to call the Open method from code and then
to take some action based on the dialog result available during the Closed event. List-
ing 15.6 shows this process in more detail.

C#:
void MainPage_Loaded(object sender, RoutedEventArgs e)
{
 ChildWindow dialog = new MyDialog();

 dialog.Closed += (s, ea) =>
 {
 if (dialog.DialogResult == true)
 { ... }
 else if (dialog.DialogResult == false)
 { ... }
 else
 { ... }
 };

 dialog.Show();
}

The example shows how to display a ChildWindow and handle the three possible Dia-
logResult values set when the user closes the window. Note that this example also
uses a lambda expression to create the event handler. This is a shortcut way to create a
delegate inline in your code rather than create a separate event handler function. In
this example, s is the variable that contains the sender, and ea is the variable that con-
tains the event arguments. The code to display the window could also have been writ-
ten like this:

ChildWindow dialog = new MyDialog();
dialog.Closed += new EventHandler(dialog_Closed);
dialog.Show();

Of course, in that instance, you’d need to create a separate function named
dialog_Closed that had the event handler logic in it. Either way is valid.

 Note also that you do a true/false/else check on the DialogResult value. This
is because the DialogResult is a nullable boolean type, and it’s not usually suffi-
cient to check for true or false. Nullable booleans also don’t allow you to write code
like this:

if (dialog.DialogResult) { ... }

You’ll get a compile-time error unless you cast the value to a regular bool. For that
reason, you check explicitly against true, false, and the null (default) value.

 When you ran the code in listing 15.6, you probably noticed that the content
behind the window was overlaid with a gray rectangle. The color and opacity of the
overlay are a couple of the knobs you can tweak to customize the way the ChildWin-
dow looks.

Listing 15.6 Displaying a ChildWindow and capturing the DialogResult

User
clicked OK

User clicked
Cancel
Licensed to Devon Greenway <devon.greenway@gmail.com>

412 CHAPTER 15 Navigation and dialogs
CUSTOMIZING THE CHILDWINDOW

Like almost everything else in Silverlight, you can do some basic customization of a
ChildWindow to change things such as background and overlay colors without messing
around with the control template. Some of those properties specific to ChildWindow
are listed in table 15.9.

The ChildWindow provides the capability to create any in-application dialog that you
need. Two other types of dialogs are more operating system–specific in their display
and use: the OpenFileDialog and the SaveFileDialog.

15.5.3 Prompting for a file

The OpenFileDialog class enables you to ask users for one or more files from their
filesystems. From there, you can load the data from the selected files into memory, giv-
ing you the flexibility to do any number of things. For instance, you can send the con-
tents of a file to a server or load the contents into your Silverlight application. The
SaveFileDialog performs a similar function but provides a mechanism to save a sin-
gle file to the filesystem. Either way, before you can do any of these items, you must
understand how to interact with the OpenFileDialog and SaveFileDialog classes.

 Throughout this section, you’ll learn the three steps involved in interacting with
an OpenFileDialog. The first step involves launching and configuring an instance of
the OpenFileDialog class. Next, you must wait for and retrieve the results of a user’s
interaction with an OpenFileDialog. Finally, you’ll parse the results if a user has
selected at least one file.
LAUNCHING THE DIALOG BOX

To give your users the opportunity to select a file or multiple files, you must instantiate
an instance of the OpenFileDialog class from procedural code; you can’t create an
OpenFileDialog from XAML. After it’s created, you can use several properties to cus-
tomize the selection experience. These properties and their descriptions are provided
in table 15.10.

Table 15.9 Properties of the ChildWindow control

Property Description

HasCloseButton Set this value to determine whether the close button, typically at upper right, is
visible or collapsed. If you set this to false, make sure you provide another
way to close the window.

OverlayBrush When the ChildWindow is displayed, it includes an overlay that covers all
other content in the current Silverlight application. This gives the illusion of a
modal dialog. Use OverlayBrush to set the brush to be used for that overlay.

OverlayOpacity Sets the opacity of the overlay. A higher opacity means less background content
shines through.

Title Displays content in the window title bar. Although typically text, this can be any
element.
Licensed to Devon Greenway <devon.greenway@gmail.com>

413Showing dialogs and pop-ups
As this table shows, you have flexibility in customizing the selection experience, but
you don’t have complete control over the dialog box. For instance, you can’t dictate
the appearance of the dialogs. Instead, the dialogs use the user’s OS to determine the
general look of the dialog box. By using the values in table 15.10, you can guide the
selection experience, as shown in figure 15.12.

 The following is the code to achieve this:

OpenFileDialog openFileDialog = new OpenFileDialog();
openFileDialog.Filter =
 "Text files (*.txt)|*.txt|Xml Files (*.xml)|*.xml";
bool? fileWasSelected = openFileDialog.ShowDialog();

This example shows an OpenFileDialog box that enables a user to select a text or XML
file. You can accomplish this by appropriately setting the Filter property of the Open-
FileDialog object. The dialog is then launched by calling the ShowDialog method.
The code for a SaveFileDialog is similar. Unlike the ChildWindow-type dialog shown
in the previous section, this method is a blocking call that prevents the execution of any

Table 15.10 The configuration properties available on the OpenFileDialog and SaveFileDialog

Property Description

Filter Represents the type of files that are displayed in the dialog.

FilterIndex Determines which filter is specified by default if the filter specifies multiple file types.

Multiselect OpenFileDialog-only. Specifies whether users may select multiple files. By
default, users may select only one file.

DefaultExt SaveFileDialog-only. Specifies the default extension to use if the user types in
a filename without an extension.

Figure 15.12 Guiding
the selection using filter
properties
Licensed to Devon Greenway <devon.greenway@gmail.com>

414 CHAPTER 15 Navigation and dialogs
additional code until the user exits the dialog. After the user exits the dialog, the Show-
Dialog method returns a nullable bool that signals the end of a user’s interaction with
the dialog. The code then continues executing, giving you the opportunity to retrieve
and analyze the results.
RETRIEVING THE RESULTS

When a user exits the dialog, the ShowDialog method returns a nullable bool value.
This value will be false if the user chose to close out of or cancel the dialog. If the
user clicked the OK button, a true value will be returned. After the value is returned,
you can access the file(s) that the user selected.

 The file(s) selected within an OpenFileDialog are available through the File and
Files properties. The SaveFileDialog, because it only supports a single file, has only
the File property. These properties will be null if a user left the OpenFileDialog with-
out clicking the OK button, so you should check the value returned from the ShowDialog
method before attempting to retrieve the selected file(s). Here’s an example:

bool? fileWasSelected = openFileDialog.ShowDialog();
if (fileWasSelected == true)
{
 FileInfo fileInfo = openFileDialog.File;
 StreamReader reader = fileInfo.OpenText();
}

From this example, you can see that after a user opens the dialog box, you can get the
selected file through the File property. If the Multiselect property had been set to
true, the Files property would have been more applicable. Either way, if a user
hadn’t selected a file, both those property values would have been null. If a file or
multiple files had been selected, you could have retrieved the details of each file
through the FileInfo object.

 The SaveFileDialog, because it only supports a single file, has a helper method to
use for opening the file. The code for a SaveFileDialog looks like this:

bool? fileWasSelected = saveFileDialog.ShowDialog();
if (fileWasSelected == true)
{
 Stream stream = saveFileDialog.OpenFile();
}

If you wish to retrieve the name of the file entered or selected by the user, use the
SaveFieldDialog.SafeFileName string property.
READING THE RESULTS

The FileInfo class provides a special bridge from the local filesystem to the security
sandbox in which Silverlight runs. This class is specifically designed for use with the
OpenFileDialog and SaveFileDialog. This object provides two methods that allow
you to read the contents of a file—OpenRead and OpenText-and one method that may
be used in the case of the SaveFileDialog to write to the file-OpenWrite.

 The OpenRead method is designed to handle binary file scenarios. This method
returns a read-only System.IO.Stream object, which is well-suited for handling bytes
Licensed to Devon Greenway <devon.greenway@gmail.com>

415Summary
of information. Similarly, the OpenWrite method returns a write-only stream, but only
if called on a FileInfo object returned from the SaveFileDialog. Alternatively, the
OpenText method is better suited for reading text-related files. This method returns a
basic System.IO.StreamReader, as shown here:

FileInfo fileInfo = openFileDialog.File;
StreamReader reader = fileInfo.OpenText();
myTextBlock.Text = reader.ReadToEnd();

As this example shows, working with a text file in Silverlight is incredibly trivial. It’s
just as easy to work with a binary file. The key to either approach is to understand
working with streams of data. This topic is a general concept in .NET development
that’s beyond the scope of this book.

 The OpenFileDialog provides a way to ask a user for a file to open. The SaveFile-
Dialog provides a way to ask for a filename for saving a file. The Popup element and
ChildWindow control provide another way to prompt your users. These options help
Silverlight deliver a richer experience than you can easily get with HTML. In addition,
other controls that haven’t been covered also help provide a rich experience.

15.6 Summary
In the old days, we had chisels and stone, manual typewriters, and the MDI and dialog
application navigation styles. At some point in the late 1990s, developers started tak-
ing cues from web browsers and decided that their navigation approach-using Back
and Forward buttons and uniquely addressable pages-made sense for many applica-
tions. It certainly made more sense than MDI in nondocument applications.

 Silverlight builds on this history and application navigation trends to nicely sup-
port the back/forward and URI navigation paradigm. Silverlight pages can be
uniquely addressed via URIs (including parameters for deep links directly into specific
bits of data) using hashtags as pioneered by Ajax. The navigation API even includes
support for caching and for customizing the navigation UI.

 Setting up a project to use the navigation API can be tricky, so the Silverlight tools
include a Navigation Application template that includes all the plumbing necessary to
get you well on your way to building the application. The template even includes
excellent support for skinning and theming.

 Dialogs, of course, are still useful in discrete scenarios. Silverlight provides support
for custom dialogs using the ChildWindow and Popup classes, as well as access to sys-
tem-level file dialogs for opening and saving files.

 Navigation is but one of many important pieces when structuring an application.
In the next chapter, we’ll tackle one of the most important architectural patterns for
Silverlight developers: the Model-View-ViewModel pattern.
Licensed to Devon Greenway <devon.greenway@gmail.com>

Structuring
 and testing with the

MVVM/ViewModel pattern
When the community stops worrying about how to do basic things in a particular
technology and starts working out how to do complex things well, you know the
technology has reached a point of maturity. The emergence of architectural pat-
terns and testing capabilities for a platform are a good indicator that the technol-
ogy is ready for real-world use in nontrivial applications.

 One of the main patterns to be applied to Silverlight is the Model-View-ViewModel
(MVVM) pattern, also known as the ViewModel pattern.

This chapter covers
■ The ViewModel or MVVM pattern
■ Creating services for use with MVVM
■ Using commands and the CallMethodAction

behavior
■ Testing using the Silverlight Unit Testing

Framework
416

Licensed to Devon Greenway <devon.greenway@gmail.com>

417Project setup and traditional code-behind approach
NOTE MVVM or ViewModel Pattern? Different groups like to call it differ-
ent things. I’ll use both interchangeably until the community settles on one
over the other. There are some influential folks on both sides of this debate.

As part of my job at Microsoft and my life as an MVP before that, I give a fair number
of presentations, almost all of which include code demos. For timing and retention
reasons, I’ll often implement the code directly in the code-behind. At least 75 percent
of audience members don’t know anything about patterns such as MVVM, and the few
times I’ve tried to include bits of that pattern in my demos, the audience was lost and
completely missed the main thing I was teaching. So, I’ve taken to explaining MVVM at
a high level before the talk and apologizing for not using it in the demo. Basically, I
say “I’m doing this just to show X. Never write real code this way.”

 It sounds amusing, but in a way, it’s a bit depressing. Many folks aren’t exposed to
the pattern, but many more are exposed and pass on it because they’re presented the
full pattern without any background or helpful ladder rungs to get to the full imple-
mentation. That’s a real problem. In math class, I was always told to show my work,
and I think the same applies here.

 Rather than describe the pattern and take it chunk by chunk in this chapter, we’ll
look at the default technique—using the code-behind approach in order to get a base-
line—and then start with an overview of MVVM and a simple implementation of the
pattern. Next, you’ll refactor it to take advantage of other best practices typically asso-
ciated with the pattern such as using services, commands, and behaviors. I’ll even
throw in a bit of information on using interfaces, view model locators, and Inversion
of Control. Finally, we’ll follow that up with some testing approaches.

 My point in this chapter isn’t to provide one official implementation of the MVVM
pattern or tell you how you need to build your applications. Instead, I’m providing
you with the groundwork so you can see how the spectrum of implementations of
MVVM/ViewModel fits into your application development and make informed choices
about how to use (or not use) the pattern in your next project.

 In addition, I’m not going to use a particular MVVM toolkit in this chapter. Those
toolkits are great, but much like that expensive calculator in math class, they do a lot
of the work for you, so you don’t learn much.

 In the end, you’ll have a spectrum of implementations to choose from, any of
which may be used on your projects as your own requirements dictate. You’ll also gain
a better understanding of what each additional bit of complexity provides you in
return.

16.1 Project setup and traditional code-behind approach
You may wonder why I’d start a chapter on MVVM with a bunch of code-behind
code. To understand where you can go, you need to start with where you are. The
code-behind approach is by far the way most applications on the Microsoft stack
are built these days. Acceptance of patterns such as MVVM and MVC is changing that,
but slowly.
Licensed to Devon Greenway <devon.greenway@gmail.com>

418 CHAPTER 16 Structuring and testing with the MVVM/ViewModel pattern
 Starting with the code-behind approach will serve two purposes. First, it’ll give us a
working application baseline for refactoring. Second, it’ll allow us to easily compare
the approaches as we move through the chapter.

 In this section, you’ll create a project that’ll serve you for the rest of the chapter.
It’ll be a Silverlight navigation application, much like the one covered in chapter 15.
You’ll then take that project and add in some service calls to get data from a SQL
Server database, using WCF as the intermediary. Finally, you’ll add a list form and a
pop-up details form to round out the project.

16.1.1 Project and service setup

This solution will be based on the Silverlight Navigation Application template covered
in chapter 15. Create a new solution named MvvmApplication using that template.
Figure 16.1 shows the New Project dialog with the appropriate selections. When
prompted, be sure to host the application in a new web site (the default setting).

 After you have the overall solution structure in place, follow the instructions in
appendix A to set up the database connection and entity data model. When complete,
you should have a solution with an untouched Silverlight Navigation Application tem-
plate–based client and a web project with access to the AdventureWorks database via
the entity data model.

 The next step is to set up a web service to allow the Silverlight client to access that data.

Figure 16.1 For this solution, you’ll use the Navigation Application template introduced in chapter 15.
Licensed to Devon Greenway <devon.greenway@gmail.com>

419Project setup and traditional code-behind approach
WEB SERVICES

Silverlight applications run on the client and can talk to server-side databases only via
a service of some sort. You can choose multiple types of services. For example, you
could go with a REST-based solution (chapter 14) or something using WCF RIA Ser-
vices (chapter 17). For this, you’ll use a regular Silverlight-enabled WCF service: a
SOAP web service built using WCF. Create a folder named Services in the web project,
and add into it a new Silverlight Enabled WCF Service named EmployeeService.svc.
Listing 16.1 shows the code for that service.

using MvvmApplication.Web;

[ServiceContract(Namespace = "services.web.mvvmapplication")]
[AspNetCompatibilityRequirements(RequirementsMode =
 AspNetCompatibilityRequirementsMode.Allowed)]
public class EmployeeService
{
 [OperationContract]
 public IList<Employee> GetEmployees()
 {
 var context = new AdventureWorksEntities();

 return context.Employees.ToList();
 }
}

The service is a basic Silverlight-enabled web service. It uses the entity data model to
return the list of all employees in the database. You could also use a LINQ expression
to be more selective about the list, narrow down the number of columns returned
(which would also require a new return type), or sort the data. The function could
also return an IQueryable<Employee> to enable better client-side LINQ integration.

 When the service has been created, add a web reference from the Silverlight appli-
cation to the newly created service. Be sure to do a build first, or the service reference
will typically fail. Name the service reference namespace Services. Be sure to refer to
chapter 14 as needed for more information on services and service references.
EMPLOYEE LIST VIEW

Next, in the Views folder, add a new view (Silverlight Page) named Employ-
eeList.xaml. For information on adding pages to Silverlight navigation applications,
please see chapter 15. The EmployeeList.xaml markup should look like listing 16.2.
(Note: Drag the DataGrid onto the design surface from the toolbox in order to get all
the references and namespaces automatically set up.)

<Grid x:Name="LayoutRoot">
 <sdk:DataGrid AutoGenerateColumns="True"
 Margin="12,55,119,12"
 x:Name="EmployeesGrid" />

Listing 16.1 WCF service to expose data to the Silverlight application

Listing 16.2 EmployeeList.xaml markup

Return all employees,
unsorted
Licensed to Devon Greenway <devon.greenway@gmail.com>

420 CHAPTER 16 Structuring and testing with the MVVM/ViewModel pattern
 <Button Content="More Vacation!"
 Height="23" Width="101" Margin="0,55,12,0"
 HorizontalAlignment="Right" VerticalAlignment="Top"
 x:Name="AddMoreVacation" />
 <Button Content="Edit"
 Height="23" Width="101" Margin="0,110,12,0"
 HorizontalAlignment="Right" VerticalAlignment="Top"
 x:Name="EditEmployee" />

 <Grid x:Name="LoadingProgress"
 Background="#CCFFFFFF"
 Visibility="Collapsed">
 <ProgressBar Height="25" Width="200"
 IsIndeterminate="True" />
 </Grid>
</Grid>

Listing 16.2 includes a DataGrid that contains all the employees, as well as two buttons
for manipulating the data. Finally, a semitransparent white overlay named Loading-
Progress is displayed when the data is being fetched.

 Next, add the new employee list page to the navigation menu. The process to do
this was covered in chapter 15; but for reference, you’ll need to add a new hyperlink
button and divider to the LinksStackPanel in MainPage.xaml:

<HyperlinkButton x:Name="EmployeeListLink"
 Style="{StaticResource LinkStyle}"
 NavigateUri="/EmployeeList" TargetName="ContentFrame"
 Content="employees" />

<Rectangle Style="{StaticResource DividerStyle}" />

After the employee list view is set up, you’ll add an employee detail view.
EMPLOYEE DETAIL VIEW

In the Views folder, add a new ChildWindow named EmployeeDetail.xaml. This will be
a pop-up window used to edit a subset of the fields of the Employee object. This win-
dow, in the designer, looks like figure 16.2.

Figure 16.2 Designer view of
the ChildWindow used to edit
employee details
Licensed to Devon Greenway <devon.greenway@gmail.com>

421Project setup and traditional code-behind approach
After the button definitions in the EmployeeDetail ChildWindow XAML, add the
XAML from listing 16.3.

<TextBlock Height="23" Margin="12,18,0,0"
 HorizontalAlignment="Left" VerticalAlignment="Top"
 Text="First Name"/>
<TextBox Height="23" Width="140" Margin="127,14,0,0"
 HorizontalAlignment="Left" VerticalAlignment="Top"
 x:Name="FirstName"
 Text="{Binding Contact.FirstName, Mode=TwoWay}" />

<TextBlock Height="23" Margin="12,47,0,0"
 HorizontalAlignment="Left" VerticalAlignment="Top"
 Text="Last Name" />
<TextBox Height="23" Width="140" Margin="127,43,0,0"
 HorizontalAlignment="Left" VerticalAlignment="Top"
 x:Name="LastName"
 Text="{Binding Contact.LastName, Mode=TwoWay}" />

<TextBlock Height="23" Margin="12,76,0,0"
 HorizontalAlignment="Left" VerticalAlignment="Top"
 Text="Title"/>
<TextBox Height="23" Width="239" Margin="127,72,0,0"
 HorizontalAlignment="Left" VerticalAlignment="Top"
 x:Name="TitleField"
 Text="{Binding Title, Mode=TwoWay}" />

<CheckBox x:Name="Salaried" Height="16" Margin="127,101,0,0"
 HorizontalAlignment="Left" VerticalAlignment="Top"
 Content="Salaried"
 IsChecked="{Binding SalariedFlag, Mode=TwoWay}" />

<TextBlock Height="23" Margin="12,127,0,0"
 HorizontalAlignment="Left" VerticalAlignment="Top"
 Text="Hire Date"/>

<TextBox Height="23" Width="87" Margin="127,123,0,0"
 HorizontalAlignment="Left" VerticalAlignment="Top"
 x:Name="HireDate"
 Text="{Binding HireDate, Mode=TwoWay}" />

<TextBlock Height="23" Margin="12,156,0,0"
 HorizontalAlignment="Left" VerticalAlignment="Top"
 Text="Vacation Hours"/>
<TextBox Height="23" Width="33" Margin="127,152,0,0"
 HorizontalAlignment="Left" VerticalAlignment="Top"
 x:Name="VacationHours"
 Text="{Binding VacationHours, Mode=TwoWay}"/>

<TextBlock Height="23" Margin="12,185,0,0"
 HorizontalAlignment="Left" VerticalAlignment="Top"
 Text="Sick Leave Hours"/>
<TextBox Height="23" Width="33" Margin="127,181,0,0"
 HorizontalAlignment="Left" VerticalAlignment="Top"
 x:Name="SickLeaveHours"
 Text="{Binding SickLeaveHours, Mode=TwoWay}"/>

Listing 16.3 Employee detail ChildWindow controls additional XAML

TwoWay
binding for
all fields
Licensed to Devon Greenway <devon.greenway@gmail.com>

422 CHAPTER 16 Structuring and testing with the MVVM/ViewModel pattern
You’ll use this project for the remainder of the chapter. You may change a few binding
statements later, but for the most part, the XAML will stay the same.

 With the UI in place, it’s time to turn our attention to the code. As promised, we’ll
first look at a typical code-behind approach.

16.1.2 A typical code-behind solution

The first stop along the way to structuring your applications with the ViewModel pat-
tern is to look at what, for most applications of any complexity, can be considered an
antipattern: the heavy code-behind approach. Unfortunately, the tooling and infor-
mation all help you fall into writing code this way. That’s because it’s easy for begin-
ners to grasp, and it’s perfectly acceptable for smaller applications.

 So far, you have XAML for two views and a service you can use to populate them.
The next step is to put in some code to call the service and populate the DataGrid.
Listing 16.4 shows the code-behind for the Employee List page.

public partial class EmployeeList : Page
{
 public EmployeeList()
 {
 InitializeComponent();

 NavigationCacheMode = NavigationCacheMode.Enabled;
 }

 protected override void OnNavigatedTo(NavigationEventArgs e)
 {
 if (EmployeesGrid.ItemsSource == null)
 {
 LoadingProgress.Visibility = Visibility.Visible;

 var client = new EmployeeServiceClient();

 client.GetEmployeesCompleted += (s, ea) =>
 {
 LoadingProgress.Visibility = Visibility.Collapsed;

 EmployeesGrid.ItemsSource = ea.Result;
 };

 client.GetEmployeesAsync();
 }
 }
}

Listing 16.4 includes enough code to load the DataGrid. When the page is navigated
to, you first check to see whether the DataGrid already has data B. If it doesn’t, you
show the LoadingProgress overlay C and then call the service, loading the result into
the DataGrid D. This check is done because the pages are cached (per the setting in
the constructor), and you’d rather not make extra service calls. When you run the
application, it should look like figure 16.3.

Listing 16.4 Employee list code-behind

Cache
this Page

B

C

D

Licensed to Devon Greenway <devon.greenway@gmail.com>

423Project setup and traditional code-behind approach
As you can see by the grid results, you haven’t done anything to reduce the number of
columns showing up nor to display the values from the nested class. This could be easily
accomplished by manually defining columns in the DataGrid or by using a specialized
purpose-built class as the return value from the service. Although you’ll fix that when
we talk about MVVM, it’s not a deficiency with the code-behind pattern itself.

 Next, you need to add the code-behind for the Employee Detail window and then
come back to this list page to fill out the rest of the code.

 The Employee Detail ChildWindow needs code to take in an Employee object and
bind the UI. Listing 16.5 shows this code.

public partial class EmployeeDetail : ChildWindow
{
 public EmployeeDetail()
 {
 InitializeComponent();
 }

 private Employee _employee;
 public Employee Employee
 {
 get { return _employee; }
 set { _employee = value; DataContext = _employee; }
 }

 private void OKButton_Click(object sender, RoutedEventArgs e)

Listing 16.5 Employee detail code-behind for ChildWindow

Figure 16.3 The Employee List page shown with an item selected in the grid. Note that the scrollbar
is scrolled to the right to get past the columns you don’t need.

Employee
property

B

Licensed to Devon Greenway <devon.greenway@gmail.com>

424 CHAPTER 16 Structuring and testing with the MVVM/ViewModel pattern
 {
 this.DialogResult = true;
 }

 private void CancelButton_Click(object sender, RoutedEventArgs e)
 {
 this.DialogResult = false;
 }
}

Listing 16.5 shows the additions to the ChildWindow code-behind. Specifically, the
additions are the Employee member variable and property, and the setting of the
DataContext B when the employee property is set. This last bit, the setting of the
DataContext, allows the binding system to use the _employee object as the base for all
binding statements in XAML.

 One issue you’ll see in the code-behind is that you don’t clone the Employee or
something to allow for undo/cancel. That’s certainly doable in this instance, but I’ve
left it out for this example. As was the case with the column definitions in the list view,
this isn’t a limitation of the code-behind approach itself.

 With the ChildWindow code in place, we’ll turn our attention to the last two bits of
code: the functionality of the two buttons on the main Employee List view. Listing 16.6
shows this code.

public EmployeeList()
{
 InitializeComponent();

 NavigationCacheMode = NavigationCacheMode.Enabled;

 AddMoreVacation.Click += new RoutedEventHandler(AddMoreVacation_Click);
 EditEmployee.Click += new RoutedEventHandler(EditEmployee_Click);
}
...
private EmployeeDetail _employeeDetail = new EmployeeDetail();
void EditEmployee_Click(object sender, RoutedEventArgs e)
{
 _employeeDetail.Employee = EmployeesGrid.SelectedItem as Employee;
 _employeeDetail.Show();
}

void AddMoreVacation_Click(object sender, RoutedEventArgs e)
{
 var selectedEmployee = EmployeesGrid.SelectedItem as Employee;

 if (selectedEmployee != null)
 {
 selectedEmployee.VacationHours += 10;
 }
}

Note that in listing 16.6, you go back and modify the EmployeeList constructor to add
the two event handlers. This could be done in XAML, but we’ll look at alternatives to
event handlers when we discuss the MVVM version of this code.

Listing 16.6 Employee list code-behind for functions

Display
child
window
Licensed to Devon Greenway <devon.greenway@gmail.com>

425Model-View-ViewModel basics
The code in this listing enables the pop-up EmployeeDetail ChildWindow as well as a
simple function to add 10 vacation hours to the selected employee. Run the applica-
tion, select a row in the grid, and click the Edit button. You should see a pop-up that
looks like figure 16.4.

 That’s it for the code-behind version of the application. For space reasons, and
because it doesn’t change your approach, I’ve left out deleting and saving changes.
For a solid way to handle those, look at WCF RIA Services in the next chapter.

 The main things I needed to demonstrate here are filling a list from a service call
and passing information from one view to another. Now that the basic application is
set up and covers both of these scenarios, we’ll look at an MVVM version.

16.2 Model-View-ViewModel basics
Originally conceived for WPF around 2005, and first presented in a blog posting by
John Gossman,1 the MVVM pattern has become the most popular architectural pattern
for Silverlight and WPF applications.

 The MVVM pattern is a specialization of the PresentationModel pattern by Martin
Fowler. Whereas Fowler’s pattern was platform independent, Grossman’s specializa-
tion was created to take advantage of the capabilities of WPF and Silverlight. Other-
wise, they’re conceptually identical.

1 John Gossman, Introduction to the Model/View/ViewModel pattern for building WPF apps, http://blogs.msdn.com/
johngossman/archive/2005/10/08/478683.aspx (October 8, 2005).

Figure 16.4 The employee detail pop-up view, showing the information from the selected employee
Licensed to Devon Greenway <devon.greenway@gmail.com>

http://blogs.msdn.com/johngossman/archive/2005/10/08/478683.aspx
http://blogs.msdn.com/johngossman/archive/2005/10/08/478683.aspx

426 CHAPTER 16 Structuring and testing with the MVVM/ViewModel pattern
 If you’re familiar with the Model View Controller (MVC) pattern, you’ll find simi-
larities. But the MVVM pattern is optimized more for modern UI models whereas the
UI markup is completely separated from the logic, using messages and binding to pass
information back and forth, assuming the UI and ViewModel can both be stateful.

 By default, you build applications with a good bit of your code in the code-behind,
just as you saw in the previous section. You may use external services or entities and
even reusable logic, but at the end of the day, the vast majority of programs still end
up with critical logic buried in the code-behind.

 A typical code-behind
approach looks like figure 16.5.

 This comes in degrees, of
course. Some code-behind appli-
cations are better architected
than others. You’ll find, though,
that those that are architected
well tend to have less logic in the
code-behind. Instead, they have
UI support code, or maybe bind-
ing wire-up. Critical calculations
and similar functionality take
place outside of the code-behind.

 Why is that important? Why
take the extra step to move this code out from the code-behind?

 Testing is certainly one reason. After you decouple the logic from the user inter-
face, you’re then able to test the logic. Ease of UI design is another. With a well-archi-
tected application with a strong separation of concerns between the logic and the UI,
a designer can create the user interface and drop it into the project. As a developer,
you can even provide the designer with mock interfaces or dummy classes to use to
design against, as long as those classes adhere to the same interface or contract as
your own support classes.

 One reason I think the MVVM pattern works well for developers is because it elimi-
nates many of the binding problems you run into when coding in code-behind. Often,
developers find they have to work some convoluted code to get the XAML to bind to a
DependencyProperty defined in the code-behind, messing with overriding DataCon-
text at different layers or otherwise making a horrible mess of the code and XAML. It
happens to the best of us. It’s a pit that you can easily fall into this when you don’t fol-
low a pattern such as MVVM.

 What does a MVVM application look like in contrast to a code-behind application?
Figure 16.6 shows the architecture of a basic MVVM implementation.

 As figure 16.6 shows, when using the MVVM pattern, the application is made up of
three main parts: the Model, the View, and the ViewModel. Table 16.1 describes their
function.

XAML

Code-Behind Data

Services

Services

UI Services / Logic Data

Figure 16.5 In the usual code-behind approach, a fair bit of
logic is tightly coupled to the UI and to other layers. Services
in this case mean both web services and logical services
(utility functions, reusable business logic, and so on).
Licensed to Devon Greenway <devon.greenway@gmail.com>

427Model-View-ViewModel basics
Taken to logical ends, the structure of an MVVM application would include interfaces
at all the key points, allowing you to easily swap out individual layers or objects for
equivalents either manually or via dependency injection. We’ll investigate those sce-
narios later in this chapter.

 In this section, you’ll take your code-behind solution from the first section and
refactor it into a basic MVVM application. You’ll pull the code-behind apart, put much
of the functionality into a ViewModel class, and ready it for additional refactoring and
application of patterns later in this chapter.

16.2.1 Keep it simple: a basic ViewModel implementation

So far, you have a simple and tight code-behind application running. It’s small. In fact,
it’s small enough that showing you the MVVM version will make you wonder why

Table 16.1 The three main parts of the MVVM pattern

Part Description

Model The model of the business or the model of the data, sometimes also called the model of
the application. This can contain entities and services (web services, business services,
logic services, and so on), data access, and more.

View The XAML file and its code-behind. Its sole responsibility is interaction with the user. The
only code here should be code that’s logically part of the View itself (managing interactions
between view elements or animations, for example).

The View typically has enough knowledge of the structure of the ViewModel to bind to it
but knows nothing of the rest of the system.

ViewModel The interface between the View and the Model. This is part entity, part façade, and part
controller, but it contains minimal logic of its own. Use binding to let the View pull/push
data, and commands or behaviors (messages) to call methods.

The ViewModel has no knowledge of the structure of the view.a

a. One of the tech reviewers suggested I put this in a blink tag or marquee or something to make
sure the point is driven home. The ViewModel has no knowledge of the view. Perhaps if you break
the rule, you should have to put a big red label on the code: “Warning! Lark’s Vomit!” (thank you,
Mr Cleese).

XAML

Code-Behind

Data

Services

Services

View Services / Logic Data

ViewModel

Binding /
Messages

ViewModel

Model

Figure 16.6 In the MVVM pattern, the View contains minimal code-behind and uses binding and
messages (actions or commands) to communicate with the ViewModel. The ViewModel provides a single
façade into the rest of the system, optimized for that specific view. Keep in mind that services doesn’t
always mean web services; they’re anything that provide a service to the application.
Licensed to Devon Greenway <devon.greenway@gmail.com>

428 CHAPTER 16 Structuring and testing with the MVVM/ViewModel pattern
you’re adding so much code. Like many examples, we have to start small both to get
the concepts across and to fit in a publication like this. (I’m pretty sure bookshelves
everywhere would protest if this book hit 1,000 pages.)

 That said, if you stick with me throughout this section, I think you’ll see how the
structure set up by the MVVM pattern makes it possible to add functionality to the
application without shoehorning it into some dank corner of code.

 In this section, you’ll make basic changes to factor some of the code out of the
code-behind and into a ViewModel. Although this isn’t a “full” ViewModel/MVVM
implementation, it provides many of the benefits and is a good, understandable place
to start. Most of my early experiments with the pattern looked much like what we’ll
cover in this section.

Who owns the ViewModel?
Sure, let’s jump right into controversy on your very first foray into this pattern!

I’m writing this book, so I could put my opinion forth as the definitive approach, but
I’d rather not have coders with pitchforks and burning torches marching down my
driveway in a few months. Instead, let’s look at the three main opinions in this space.

The code owns the ViewModel.

In this case, the code-behind for the view instantiates the ViewModel in a constructor
or loaded event, setting it as the DataContext for the view. This is convenient and
provides a clean way to create the ViewModel. But it doesn’t allow the View to be
reused in situations where the ViewModel may be provided externally, as is the case
in a Detail edit View.

The markup owns the ViewModel.

This is, in a real sense, the same as the first option. From an implementation stand-
point, though, it looks very different. In this case, the ViewModel is instantiated right
in the markup either as a static resource or directly in the <navigation:Page.Data-
Context> property. From a coupling standpoint, there’s no difference. What you usu-
ally gain is the ability to have even less code in the code-behind.

Both of these approaches involve the View owning the ViewModel. They’re simple to
implement and are often appropriate for early forays into the ViewModel pattern. You
may even find that they work well for the majority (or all) of the applications you cre-
ate. But one more approach is worth investigating.

The ViewModel is provided externally.

Most MVVM toolkits of merit provide some sort of functionality for locating the appro-
priate ViewModel for a View. In some cases, the ViewModels are created in a sepa-
rate holding class that provides the ViewModel when requested. This provides
significant flexibility in terms of sourcing the ViewModel.
Licensed to Devon Greenway <devon.greenway@gmail.com>

429Model-View-ViewModel basics
The first step in working with the pattern is to create a short base class from which all
ViewModel classes will derive.
BASE VIEWMODEL

The base ViewModel class provides the common INotifyPropertyChanged implemen-
tation. As you may recall from chapter 11 on binding, INotifyPropertyChanged is
required whenever other classes may be bound to your class, except when using
dependency properties—which don’t really belong in a ViewModel.

 In a larger implementation, the base ViewModel class may contain other useful func-
tionality or may be factored into several classes to support specialized types of View-
Model implementations. Regardless, this is the class you’ll use as the base class for the
other ViewModels created in this project, starting with the list page ViewModel.

 In the Silverlight project, add a new folder named ViewModels. In the ViewModels
folder, add a class named ViewModel. Listing 16.7 shows the code that makes up this class.

using System.ComponentModel;

namespace MvvmApplication.ViewModels
{
 public abstract class ViewModel : INotifyPropertyChanged
 {
 public event PropertyChangedEventHandler PropertyChanged;

 protected void NotifyPropertyChanged(string propertyName)
 {
 if (PropertyChanged != null)
 PropertyChanged(this, new PropertyChangedEventArgs(propertyName));
 }
 }
}

In my own implementations, I often have a base class named Observable that includes
the functionality shown in this ViewModel class. I then derive a ViewModel base class
from Observable. This enables me to support INotifyPropertyChanged with entities
and other non-ViewModel classes and still have a base ViewModel that can be used for
other shared functionality.

Listing 16.7 The base ViewModel class

(continued)
Note also that dependency injection can come into play here. An Inversion of Con-
trol (IoC) container can provide the ViewModel to the views based on types, conven-
tion, or configuration. Some MVVM toolkits use IoCs or IoC-like functionality to
supply the ViewModel.

In this case, the ViewModel isn’t owned by the View; it’s used by the View. As you
progress further in your understanding of MVVM, I encourage you to investigate this
approach.

Raise PropertyChanged
event
Licensed to Devon Greenway <devon.greenway@gmail.com>

430 CHAPTER 16 Structuring and testing with the MVVM/ViewModel pattern
LIST PAGE VIEWMODEL

Typically, each view in the ViewModel pattern has its own dedicated ViewModel. This
isn’t written in stone, but it’s how most applications end up being designed. A 1:1 rela-
tionship between View and ViewModel eliminates the need to shoehorn in the inevita-
ble compromises, because Views that share the ViewModels diverge in functionality
when many Views share the same ViewModel. It’s also acceptable, when using smaller
ViewModels or nested UserControls, to have a 1:n relationship between the View and
the ViewModel. The situation to avoid in most cases is n:1 between View and ViewModel.

TIP When naming your ViewModel, pick a consistent convention. I typi-
cally name mine with the view name plus ViewModel, so the EmployeeList
view has an EmployeeListViewModel class. Some MVVM toolkits expect you
to follow a convention so their locator services can find the correct View-
Model for a View.

In the ViewModels folder, create a new class named EmployeeListViewModel. This
ViewModel will include the functionality required for the EmployeeList page, includ-
ing calling the web service and providing the functionality currently located in the
button click code.

 Listing 16.8 includes the code for the EmployeeListViewModel implementation.

using System.Collections.ObjectModel;
using System.ComponentModel;
using MvvmApplication.Services;

namespace MvvmApplication.ViewModels
{
 public class EmployeeListViewModel : ViewModel
 {
 private Employee _selectedEmployee;
 public Employee SelectedEmployee
 {
 get { return _selectedEmployee; }
 set
 {
 _selectedEmployee = value;
 NotifyPropertyChanged("SelectedEmployee");
 }
 }

 private ObservableCollection<Employee> _employees;
 public ObservableCollection<Employee> Employees
 {
 get { return _employees; }
 private set
 {
 _employees = value;
 NotifyPropertyChanged("Employees");
 }

Listing 16.8 EmployeeListViewModel implementation

Selected
employee

Full set of
employees
Licensed to Devon Greenway <devon.greenway@gmail.com>

431Model-View-ViewModel basics
 }

 public event EventHandler EmployeesLoaded;
 public void LoadEmployees()
 {
 var client = new EmployeeServiceClient();

 client.GetEmployeesCompleted += (s, ea) =>
 {
 Employees = ea.Result;
 OnEmployeesLoaded();
 };

 client.GetEmployeesAsync();
 }

 public void AddVacationBonusToSelectedEmployee()
 {
 if (SelectedEmployee != null)
 SelectedEmployee.VacationHours += 10;
 }

 protected void OnEmployeesLoaded()
 {
 if (EmployeesLoaded != null)
 EmployeesLoaded(this, EventArgs.Empty);
 }
 }
}

In this listing, you have the full implementation of a basic ViewModel class. This
includes all the functionality required to load the list of employees and make it avail-
able to the DataGrid on the view.

 The Employees property contains the collection with all the employees returned
from the service call. This is used to populate the DataGrid but, because it’s available
here, it could also be manipulated in ViewModel code to sort, filter, or perform
other operations.

 The SelectedEmployee property is used to keep track of which employee is
selected in the grid. Exposing it in your ViewModel keeps the responsibility for main-
taining this information away from the UI control. This makes it easier to use different
types of controls in the UI. In addition, you can manipulate this property from within
the ViewModel (for example, to highlight something based on a search or hotkey),
and the UI will automatically respond.
UPDATED LIST VIEW XAML

The following code includes the updates to the view to bind the DataGrid to the
Employees collection and the SelectedEmployee property:

<sdk:DataGrid AutoGenerateColumns="True"
 ItemsSource="{Binding Employees}"
 SelectedItem="{Binding SelectedEmployee, Mode=TwoWay}"
 Margin="12,55,119,12"
 x:Name="EmployeesGrid" />
Licensed to Devon Greenway <devon.greenway@gmail.com>

432 CHAPTER 16 Structuring and testing with the MVVM/ViewModel pattern
The updates to the DataGrid element involved first setting the ItemsSource to the
Employees collection on the ViewModel and then binding the SelectedItem to the
SelectedEmployee property of the ViewModel. Note that the binding on SelectedEm-
ployee is TwoWay, so both the DataGrid and code may update this value.
UPDATED LIST VIEW CODE-BEHIND

With the addition of the ViewModel and the changes to the XAML, you need to make
some changes to the code-behind for the EmployeeList page. Listing 16.19 includes
the new code-behind with those changes included.

public partial class EmployeeList : Page
{
 public EmployeeList()
 {
 InitializeComponent();

 NavigationCacheMode = NavigationCacheMode.Enabled;

 AddMoreVacation.Click +=
 new RoutedEventHandler(AddMoreVacation_Click);
 EditEmployee.Click +=
 new RoutedEventHandler(EditEmployee_Click);
 }

 private EmployeeListViewModel _viewModel = null;

 protected override void OnNavigatedTo(NavigationEventArgs e)
 {
 if (_viewModel == null)
 {
 _viewModel = new EmployeeListViewModel();
 _viewModel.EmployeesLoaded += (s, ea) =>
 {
 LoadingProgress.Visibility = Visibility.Collapsed;
 };

 DataContext = _viewModel;

 LoadingProgress.Visibility = Visibility.Visible;

 _viewModel.LoadEmployees();
 }
 }

 private EmployeeDetail _employeeDetail = new EmployeeDetail();
 void EditEmployee_Click(object sender, RoutedEventArgs e)
 {
 _employeeDetail.Employee = _viewModel.SelectedEmployee;
 _employeeDetail.Show();
 }

 void AddMoreVacation_Click(object sender, RoutedEventArgs e)
 {
 _viewModel.AddVacationBonusToSelectedEmployee();
 }
}

Listing 16.9 EmployeeList view code-behind

Cache
this Page

B

C

D

E

Licensed to Devon Greenway <devon.greenway@gmail.com>

433Factoring out reusable code
The OnNavigatedTo function B now includes code to create the ViewModel C if it’s
not already present, and to call the LoadEmployees method D on the ViewModel. In
addition, the event handler for the Add More Vacation! button now calls directly into
the ViewModel to execute the code E.

 Now you have the same functionality as the code-behind solution, but with quite a
bit more code. In fact, you have just as much code-behind as you did in the code-
behind-only solution! Keep in mind, this is just the first layer of the onion, so you
haven’t received all the benefits of MVVM yet. What you have gained is subtle:

■ The DataGrid is now divorced from the code-behind, using solely binding to
get its items and synchronize the selected item. A designer could now change
the DataGrid to be a ListBox or some other type of control if desired, and the
code wouldn’t need to change.

■ The data access (service call) is now removed from the page, giving you the
potential to substitute a different type of service call without making any
changes to the page code. You’ll find an even better spot for it later in this
chapter.

■ The business logic to add the vacation bonus to the selected employee is now
pulled out of the page. Like the service call, you can do better, and you will later
in this chapter.

■ The code-behind is no longer manipulating the Employee type directly. This
makes it easier to replace the Employee type later, should you want to do so.

At this point, you have a ViewModel that’s essentially the code-behind for the View.
You’ve taken your first steps into the MVVM pattern and away from packing all your
code in the code-behind. To build on this, it’d be nice if you could refactor to take
advantage of some best practices associated with the ViewModel pattern and with cod-
ing in general. In the next section, we’ll dive deeper into the pattern and show how to
factor out common code such as service access and business rules.

16.3 Factoring out reusable code
The Single Responsibility Principle (SRP) states (surprisingly enough) that every object
should have a single responsibility,2 and that every object should have one and only
one reason to change. I don’t try to adhere to this as though it were dogma but rather
make informed decisions based on this principle representing the perfect state.

 SRP can sometimes be difficult to apply to something as façade-like as a ViewModel
class, but it’s obvious we didn’t even try here. The ViewModel class for the list page is
responsible for tracking page state, calling the web service to load data, and applying a
vacation bonus to selected employees. If the vacation bonus changes, this class must
also change. If the service access changes, this class must change. You need to do
something about that.

2 Robert C. Martin, Principles of OOD, http://www.butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod
(May 11, 2005).
Licensed to Devon Greenway <devon.greenway@gmail.com>

http://www.butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod

434 CHAPTER 16 Structuring and testing with the MVVM/ViewModel pattern
 In this section, you’ll do a little refactoring to make the ViewModel class a bit
lighter and allow reuse of code, starting with the business logic to add the vacation
bonus.

16.3.1 Business rules and logic

The easiest thing to pull out of the EmployeeListViewModel is the code that adds the
vacation bonus. You can deal with this several ways—I prefer using a service approach.
That is, rather than bake the bonus into a special employee class, you have a service
you can call that deals with bonuses using a simple function call. This is distinct from
the idea of a web service.

 Create a new folder named Services in the Silverlight client. In that folder, add a
class named EmployeeVacationBonusService. Listing 16.10 shows the code for this
class.

public class EmployeeVacationBonusService
{
 public static void AddVacationBonus(Employee employee)
 {
 int vacationBonus;
 DateTime dateOfHire = employee.HireDate;

 DateTime today = DateTime.Today;

 int yearsInService = today.Year - dateOfHire.Year;

 if (dateOfHire.AddYears(yearsInService) > today)
 yearsInService--;

 if (yearsInService < 5)
 vacationBonus = 10;
 else if (yearsInService < 10)
 vacationBonus = 20;
 else if (yearsInService < 20)
 vacationBonus = 30;
 else
 vacationBonus = 40;

 employee.VacationHours += vacationBonus;
 }
}

The vacation bonus algorithm has been beefed up. Rather than a blanket 10 hours,
you use some of the data to reward those with the longest time at the company. You
also implement the functionality using static methods here. Some developers prefer
to use instance methods. Either way is fine as long as you understand why you’re
doing it and what flexibility you lose when going with static methods (such as the abil-
ity to mock), and you have some consistency to your decisions.

 There are also multiple ways you can model this class. For example, it could modify
the class directly as shown here or it could return a bonus amount based on a set of

Listing 16.10 The EmployeeVacationBonusService class

Dependency
on Employee
Licensed to Devon Greenway <devon.greenway@gmail.com>

435Factoring out reusable code
parameters such as current vacation hours, date of hire, some sort of level informa-
tion, and so on. Taking in individual parameters like that, rather than passing in an
Employee object, helps reinforce the SRP and decouple from the rest of the system
because the class no longer needs to be changed if the Employee class changes.

 Listing 16.11 shows the final version of this service, taking individual parameters
rather than the Employee object.

public class EmployeeVacationBonusService
{
 public static int GetVacationBonus(DateTime dateOfHire)
 {
 int vacationBonus;

 DateTime today = DateTime.Today;

 int yearsInService = today.Year - dateOfHire.Year;

 if (dateOfHire.AddYears(yearsInService) > today)
 yearsInService--;

 if (yearsInService < 5)
 vacationBonus = 10;
 else if (yearsInService < 10)
 vacationBonus = 20;
 else if (yearsInService < 20)
 vacationBonus = 30;
 else
 vacationBonus = 40;

 return vacationBonus;
 }
}

In this version, it’s the responsibility of the calling code to add the bonus to whatever
employee class it happens to be working with. That removes the dependency from this
class and makes it reusable in places where you may have different employee entities
or perhaps just a few key fields.

 With that change made, the EmployeeListViewModel code to add the employee
vacation bonus now looks like this:

public void AddVacationBonusToSelectedEmployee()
{
 if (SelectedEmployee != null)
 {
 SelectedEmployee.VacationHours +=
 (short)EmployeeVacationBonusService.GetVacationBonus(
 SelectedEmployee.HireDate);
 }
}

The EmployeeListViewModel class is no longer responsible for calculating the vacation
bonus. That’s one extra responsibility down. Now, let’s look at that web service logic.

Listing 16.11 A better version of the EmployeeVacationBonusService class
Licensed to Devon Greenway <devon.greenway@gmail.com>

436 CHAPTER 16 Structuring and testing with the MVVM/ViewModel pattern
16.3.2 Data access and service calls

In Silverlight, it’s a given that data will come from a web service. Or will it? Who says
the data can’t come from reading a local file in elevated trust mode, or from isolated
storage? Perhaps with the new Elevated Trust mode, one of the pure-.NET SQL data-
bases will be an option. Plus, for all you know, a future version of Silverlight may have
local database access built in.

 If every ViewModel class in the project is making a web service call to get the data,
that means you have to change each and every one of them if anything about the ser-
vice call changes—obviously, not great design. In a small project like this, it’s not a
huge problem; but when you get into an application with dozens of pages and View-
Models, it gets pretty ugly.

 I’ve seen lots of great examples of how to abstract service or data access calls away
from the rest of the application. Some use singleton classes with names like Applica-
tionData to host a number of collections and load functions, with built-in caching.
Others use individual classes, each responsible for a specific type of data. Others use
combinations of the two ideas, but with no singleton involved so dependency injec-
tion works better. I’m not going to weigh in on the merits of the various approaches; I
don’t think there’s a one-size-fits-all solution. Instead, you’ll create a simple example
to solve just the problem at hand. The version I’m showing doesn’t support cross-view
data caching, because you’d need to keep an instance of the data service alive in a
locator class or an IoC container.

 In the Services folder, add a new class named EmployeeDataService. The code for
this class is shown in listing 16.12

using System;
using System.Collections.ObjectModel;

namespace MvvmApplication.Services
{
 public class EmployeeDataService
 {
 private static ObservableCollection<Employee> _employees;
 public static ObservableCollection<Employee> Employees
 {
 get { return _employees; }
 private set {_employees = value; }
 }

 private static bool _areEmployeesLoaded;
 public static bool AreEmployeesLoaded
 {
 get { return _areEmployeesLoaded; }
 private set { _areEmployeesLoaded = value; }
 }

 public static void LoadEmployees()
 {

Listing 16.12 The EmployeeDataService class used for loading Employee data

Employees
collection
Licensed to Devon Greenway <devon.greenway@gmail.com>

437Factoring out reusable code
 var client = new EmployeeServiceClient();
 AreEmployeesLoaded = false;

 client.GetEmployeesCompleted += (s, ea) =>
 {
 Employees = ea.Result;
 AreEmployeesLoaded = true;
 OnEmployeesLoaded();
 };

 client.GetEmployeesAsync();
 }

 public static event EventHandler EmployeesLoaded;
 protected static void OnEmployeesLoaded()
 {
 if (EmployeesLoaded != null)
 EmployeesLoaded(null, EventArgs.Empty);
 }
 }
}

The sole purpose of this class is to provide an interface to the employee data. In this
case, that’s performed using a service call. In a larger system with more moving parts,
you may want to factor this class into two pieces: one that provides connection infor-
mation for the web service and this class, which makes the service call. You may also
consider caching this class on the client (via a locator or similar collection of classes)
so the data can be shared across multiple ViewModels. The AreEmployeesLoaded
property has been defined with that in mind.

 Listing 16.13 shows the changes needed in the EmployeeListViewModel class to
support the user of the new EmployeeDataService class.

private EmployeeDataService _dataService = new EmployeeDataService();
public event EventHandler EmployeesLoaded;
public void LoadEmployees()
{
 if (_dataService.AreEmployeesLoaded)
 {
 Employees = _dataService.Employees;
 OnEmployeesLoaded();
 }
 else
 {
 _dataService.EmployeesLoaded += (s, e) =>
 {
 Employees = _dataService.Employees;
 OnEmployeesLoaded();
 };

 _dataService.LoadEmployees();
 }
}

Listing 16.13 Updates to the EmployeeListViewModel class

Employees
loaded event

Employees in
data service
Licensed to Devon Greenway <devon.greenway@gmail.com>

438 CHAPTER 16 Structuring and testing with the MVVM/ViewModel pattern
With this example, you now have a ViewModel class that’s responsible only for passing
through information and functionality specific to the related View. This makes the
code more easily reused, as well as more easily testable. You still have a fair bit of code
in the code-behind, though, including some event handlers that could be handled dif-
ferently. In the next section, you’ll work to remove this extra layer and provide better
View-to-ViewModel communication without so much event-handler code.

16.4 Better separation from the UI
“Good fences make good neighbors.” As it turns out, good fences (or perhaps, good
chasms)—strong separation between otherwise independent classes—make for better
code. You’ve already seen how pulling code out of the code-behind and into the View-
Model, and then out of the ViewModel and into services, has made the code less brit-
tle and more reusable. At the end of this chapter, you’ll also see that it has made the
code more testable.

 One of a few places where you’re still tightly coupled is via the use of events and
event handlers to intercept clicks from the UI and call functions on the ViewModel.
This isn’t horrible; it just limits the things that can listen for and respond to the UI
actions, and it makes testing a little harder because there’s code in the code-behind
that must be duplicated in the test.

 In this section, we’ll look at two ways you can have elements in XAML invoke meth-
ods in the ViewModel. The first approach, ICommand, is the traditional way initially
introduced in WPF and supported in most MVVM toolkits. The second, the CallMeth-
odAction behavior, is a new approach introduced with Expression Blend 4.

 Structured method invocation isn’t the only way to separate the UI from the rest of
the system. Some slightly more insidious couplings have made it through right under
our noses; we’ll need to address them. The first is the use of entities coming from your
database model. You can do this if you really want, but for a number of reasons to be
explained, I don’t like to. The second coupling is through the use of concrete types
referenced from your various classes. In section 16.4.4, we’ll take a conceptual look at
what’s involved in reducing this coupling.

16.4.1 Using commands

The commanding system in WPF and Silverlight isn’t tied directly to the ViewModel
pattern. Instead, it’s a generic approach to wiring functionality directly to buttons in
XAML UI. In the commanding system, rather than respond to something in a button
click event, you bind the command to the button and allow the button to execute
it directly.

 In WPF, this approach was first used for application-wide commands and to allow
menu options, keystrokes, and toolbars to all execute the same functionality and keep
their UI state in sync.

 When the MVVM pattern was introduced, the commanding system was incorpo-
rated into it to wire the XAML UI to the ViewModel class. But because the ViewModel
Licensed to Devon Greenway <devon.greenway@gmail.com>

439Better separation from the UI
held the functionality, different types of commands were created to allow forwarding
or relaying the call to the ViewModel.

 The ICommand interface is the core of the commanding system in Silverlight. The
button-derived controls (and menus) that support binding to commands do so
through the ICommand interface. Similarly, the custom commands created for the
MVVM pattern also implement this interface. Table 16.2 shows the three members
of ICommand.

A commonly used implementation of ICommand for the MVVM pattern is a command
that accepts delegates for both the Execute and CanExecute members. This allows you
to reuse the same command implementation rather than create unique commands
for every logical command.

 In the Silverlight project, in the ViewModels folder, add a new class named View-
ModelCommand. The code for the generic command is shown in listing 16.14.

public class ViewModelCommand : ICommand
{
 public ViewModelCommand(Action<object> executeAction,
 Predicate<object> canExecute)
 {
 if (executeAction == null)
 throw new ArgumentNullException("executeAction");

 _executeAction = executeAction;
 _canExecute = canExecute;
 }

 private readonly Predicate<object> _canExecute;
 public bool CanExecute(object parameter)
 {
 if (_canExecute == null) return true;

 return _canExecute(parameter);
 }

 public event EventHandler CanExecuteChanged;
 public void OnCanExecuteChanged()

Table 16.2 The ICommand interface members

Member Description

CanExecute Property that returns true if this command is allowed to execute. For exam-
ple, if the command is an undo command, this returns false if the undo
stack is empty.

Execute Method that executes the function the command represents.

CanExecuteChanged Event raised when the value of CanExecute changes. This is typically
used to update UI state to show the action is now available.

Listing 16.14 Silverlight MVVM-friendly implementation of ICommand

B

ICommand.CanExecute

ICommand.CanExecuteChanged
C

Licensed to Devon Greenway <devon.greenway@gmail.com>

440 CHAPTER 16 Structuring and testing with the MVVM/ViewModel pattern
 {
 if (CanExecuteChanged != null)
 CanExecuteChanged(this, EventArgs.Empty);
 }

 private readonly Action<object> _executeAction;
 public void Execute(object parameter)
 {
 _executeAction(parameter);
 }
}

This command implementation takes in delegates B for CanExecute and Execute
and exposes a public method OnCanExecuteChanged C to force raising the CanExe-
cuteChanged event. In the ViewModel, any code that affects the CanExecute function
should call this method to raise the event.

 There are lots of implementations of this type of command. If you pick an MVVM
toolkit to work with, you’re almost guaranteed to have a command similar to this one
included in the library. It may be called something similar to DelegateCommand or
RelayCommand.

 To surface the command to the page, hang it off the ViewModel as a public prop-
erty. Listing 16.15 shows how to do this for the vacation bonus functionality on the
EmployeeListViewModel class.

private Employee _selectedEmployee;
public Employee SelectedEmployee
{
 get { return _selectedEmployee; }
 set
 {
 _selectedEmployee = value;
 NotifyPropertyChanged("SelectedEmployee");
 AddVacationBonusCommand.OnCanExecuteChanged();
 }
}

...
public bool CanAddVacationBonus
{
 get { return SelectedEmployee != null; }
}

private ViewModelCommand _addVacationBonusCommand = null;
public ViewModelCommand AddVacationBonusCommand
{
 get
 {
 if (_addVacationBonusCommand == null)
 {
 _addVacationBonusCommand = new ViewModelCommand
 (

Listing 16.15 Surfacing the vacation bonus functionality as an ICommand

ICommand.Execute

B

ICommand

C

Licensed to Devon Greenway <devon.greenway@gmail.com>

441Better separation from the UI
 p => AddVacationBonusToSelectedEmployee(),
 p => CanAddVacationBonus
);
 }

 return _addVacationBonusCommand;
 }
}
...

These changes to the ViewModel show both the call to OnCanExecuteChanged B and the
exposing of the AddVacationBonusCommand. This command is created as needed C the
first time it’s referenced. I’ve also seen implementations where these commands were
created as static members in the class.

 The command is then wired up to the UI directly in the XAML. Because the View-
Model has already been set as the data context, a simple binding statement on the but-
ton is all you need:

<Button Height="23" Width="101" Margin="0,55,12,0"
 HorizontalAlignment="Right" VerticalAlignment="Top"
 Content="More Vacation!"
 x:Name="AddMoreVacation"
 Command="{Binding AddVacationBonusCommand}" />

The last line of XAML is the new line, binding the Command property to the new com-
mand you added to the ViewModel. Don’t forget to remove the event handler wireup
from the code-behind. This button no longer needs that.

 You’ll notice now that the More Vacation! button is disabled by default and enabled
only when you select a row in the DataGrid. That’s a function of the CanExecute prop-
erty and the CanExecuteChanged event working together and being updated from
within the SelectedEmployee property setter. The Button class has built-in code to
change its enabled state based on the command’s CanExecute property.

Wait, what about the Edit button?
Most MVVM toolkits include their own good command implementations based on ICom-
mand. Some MVVM toolkits also include a robust messaging structure that may be
used in place of events, and in some cases in place of commands and behaviors.
Many even include specialized messages used to requesting that the View display
the dialog UI. That messaging system for invoking a dialog is something missing in
this implementation. Rather than show you an approach that will likely never be used
by anyone, I recommend you use the approach recommended by the toolkit you’re using.

Okay, if you’re really curious, here’s how I would’ve done it. The command would call
an EditSelectedEmployee method on the ViewModel. That method would check to
see whether SelectedEmployee was null. If not, it would raise an event named
ShowEmployeeEditDialog with a custom EventArgs class that included the select-
ed employee as a property. That event would be caught in the code-behind, and the
code-behind would show the dialog.
Licensed to Devon Greenway <devon.greenway@gmail.com>

442 CHAPTER 16 Structuring and testing with the MVVM/ViewModel pattern
Commands are the traditional and still most common way of performing this func-
tionality. They have deep support in WPF and decent support in Silverlight. A new
approach to accomplishing this has recently been introduced by the Expression Blend
team. This approach eschews commands and instead uses designer-friendly behaviors.

16.4.2 Using the CallMethodAction behavior

Introduced with Expression Blend 4, the CallMethodAction behavior provides an easy
and designer-friendly way to wire any event from any control to a method. In some ways,
it’s an alternative to using ICommand and may even seem redundant. But many applica-
tions will use both approaches due to the usefulness of ICommand with buttons and menus
and CallMethodAction’s support for other controls, and events other than Click.

 You can either install Expression Blend 4 or download the Blend 4 SDK. In either
case, add a project reference to the Blend SDK assembly from your main MvvmAppli-
cation project. The main assembly you want is Microsoft.Expression.Interactions.dll.
You’ll also need System.Windows.Interactivity.dll to support that.

 The behavior approach doesn’t give you everything the command approach
does—specifically, it lacks the ability to enable or disable the button—but it provides
support for controls other than buttons—a key limitation of the command approach.

 Listing 16.16 shows how to use the CallMethodAction behavior to create the link
between the More Vacation! button and the ViewModel method that implements that
behavior.

<Button Height="23" Width="101" Margin="0,55,12,0"
 Content="More Vacation!"
 HorizontalAlignment="Right" VerticalAlignment="Top"
 x:Name="AddMoreVacation">
 <i:Interaction.Triggers>
 <i:EventTrigger EventName="Click">
 <ei:CallMethodAction
 MethodName="AddVacationBonusToSelectedEmployee"
 TargetObject="{Binding}" />
 </i:EventTrigger>
 </i:Interaction.Triggers>

</Button>

Listing 16.16 Using the CallMethodAction behavior instead of the command

(continued)
Why not do that all from the ViewModel? The ViewModel shouldn’t be in the business
of showing dialogs or message boxes of any type. Instead, it should message the UI
layer saying it needs some UI to be displayed. In this way, not only is the ViewModel
potentially agnostic of Silverlight/WPF/other technology, it remains testable because
the event handler in the test code could directly manipulate the values rather than
show the dialog. This also allows the code-behind to keep its affinity with the View,
being presentation-layer code rather than other logic.

B
Behavior
Licensed to Devon Greenway <devon.greenway@gmail.com>

443Better separation from the UI
The EventTrigger B responds to the firing of the click event. The action taken is the
CallMethodAction, which is responsible for calling the method on the current object
in the data context: in this case, the ViewModel. It’s a simple and elegant solution that
works with just about any event and any parameterless function.

 In support of this, the following two namespaces were added to the top of the
XAML file:

xmlns:i="http://schemas.microsoft.com/expression/2010/interactivity"
xmlns:ei="http://schemas.microsoft.com/expression/2010/interactions"

Those namespaces are required for the EventTrigger and CallMethodAction to be
visible to XAML. Both are implemented inside the Blend SDK DLL you added as a
reference.

 Despite the limitations (a potential performance hit due to use of reflection, and
the inability to set the IsEnabled property automatically), the CallMethodAction
behavior is a good low-code-overhead approach to wiring up method calls. And
remember, unlike ICommand, the CallMethodAction is supported on just about any
event on any control.

 Commands and behaviors are a great way to help separate the View from the View-
Model, keeping the contract at just a binding statement or name of a method. But
they’ve done nothing to fix the tight coupling problem you have between the data-
base, the ViewModel, and the UI. For that, you’ll turn to creating View-specific entities
or ViewModels.

16.4.3 View-specific entities and ViewModels

So far, you’ve been passing the data entities straight through to the user interface.
Although this is common, it’s often not a great idea; you’ve introduced coupling from
your UI all the way back to the database. A change to the database entity now means
changes throughout the application. Take, for example, the columns you see in the
grid. There’s a fair bit of information that’s not helpful at the UI level but that’s
required to maintain data integrity. One way to handle that would be to ignore it at
the UI layer by defining columns directly in the DataGrid. Another way would be to
have the web service return a purpose-built entity with only the columns you want.

 Neither of those solutions is helpful from a reuse standpoint. In many systems,
different screens show different aspects of what could be the same entity. Others,
such as this example, have to compose two data entities into a single displayable
result. Working with entities shaped like that can be a pain. Returning only a subset
of the information back from the web service may help, but only if no other infor-
mation is required for a successful update and no other areas of the system need the
remaining information.

 One way to deal with situations like this is to create per-View entities. The View-
Model surfaces a collection of these View-specific entities, doing the shaping behind
the scenes. This way, the designer of the View need not be concerned with composing
entities, combining fields such as first and last name, and more.
Licensed to Devon Greenway <devon.greenway@gmail.com>

444 CHAPTER 16 Structuring and testing with the MVVM/ViewModel pattern
 In the MVVM pattern, those entities are frequently promoted up as ViewModels
themselves. If you consider that the definition of a ViewModel includes both the data
and the functionality required for a View, this makes sense. Consider that these View-
Models can provide the functionality for calling the vacation bonus service and can
then be reused in the detail pop-up, and you can quickly see how these entity-like
ViewModel classes can be helpful.

 For this example, you’ll update the application to use new EmployeeViewModel
classes in all the client-side places that once used the Employee data entity. First, list-
ing 16.17 shows the new EmployeeViewModel class. Add it as a new class in your View-
Model folder.

using System;
using System.ComponentModel.DataAnnotations;
namespace MvvmApplication.ViewModels
{
 public class EmployeeViewModel : ViewModel
 {
 private string _firstName;
 [Display(Name="First Name")]
 public string FirstName
 {
 get { return _firstName; }
 set
 {
 _firstName = value;
 NotifyPropertyChanged("FirstName");
 NotifyPropertyChanged("FullName");
 }
 }

 private string _lastName;
 [Display(Name = "Last Name")]
 public string LastName
 {
 get { return _lastName; }
 set
 {
 _lastName = value;
 NotifyPropertyChanged("LastName");
 NotifyPropertyChanged("FullName");
 }
 }

 [Display(Name = "Full Name")]
 public string FullName
 {
 get { return LastName + ", " + FirstName; }
 }

 private string _title;
 public string Title

Listing 16.17 EmployeeViewModel class

Calculated
field
Licensed to Devon Greenway <devon.greenway@gmail.com>

445Better separation from the UI
 {
 get { return _title; }
 set { _title = value; NotifyPropertyChanged("Title"); }
 }

 private DateTime _hireDate;
 [Display(Name = "Hire Date")]
 public DateTime HireDate
 {
 get { return _hireDate; }
 set { _hireDate = value; NotifyPropertyChanged("HireDate"); }
 }

 private short _vacationHours;
 [Display(Name = "Vacation Hours")]
 public short VacationHours
 {
 get { return _vacationHours; }
 set
 {
 _vacationHours = value;
 NotifyPropertyChanged("VacationHours");
 }
 }

 private short _sickLeaveHours;
 [Display(Name = "Sick Leave Hours")]
 public short SickLeaveHours
 {
 get { return _sickLeaveHours; }
 set
 {
 _sickLeaveHours = value;
 NotifyPropertyChanged("SickLeaveHours");
 }
 }

 private bool _salaried;
 public bool Salaried
 {
 get { return _salaried; }
 set { _salaried = value; NotifyPropertyChanged("Salaried"); }
 }
 }
}

Note that this class looks like most entity classes. There’s a calculated field for the
FullName, as well as direct exposure of each of the other properties of interest in the
employee data class. You use Display annotations from System.Component-

Model.DataAnnotations to make the DataGrid show friendly column names for these
properties. Annotating for display was discussed in chapter 12. You could also include
validation annotations from chapter 13, but that’s unnecessary for this example.

 Whether you consider this class to be a ViewModel depends on how you’ll use it. If
you add functionality to call services, for example, it becomes more clear-cut in most
people’s eyes that this is a real ViewModel. For me, ViewModel or entity isn’t a huge

Friendly
field name
Licensed to Devon Greenway <devon.greenway@gmail.com>

446 CHAPTER 16 Structuring and testing with the MVVM/ViewModel pattern
issue, as long as you follow the separation of concerns you’ve been working toward
throughout this chapter.

 The EmployeeListViewModel class also needs to change to support the new
EmployeeViewModel class. Listing 16.18 shows the changed properties and methods of
the EmployeeListViewModel class. Note that the other properties and methods,
including the AddVacationBonusToSelectedEmployee method, the OnEmployee-
sLoaded method, the CanAddVacationBonus property, and the AddVacationBonus
command property, all stay the same.

private EmployeeViewModel _selectedEmployee;
public EmployeeViewModel SelectedEmployee
{ ... }

private ObservableCollection<EmployeeViewModel> _employees;
public ObservableCollection<EmployeeViewModel> Employees
{ ... }

...

public void LoadEmployees()
{
 if (_dataService.AreEmployeesLoaded)
 {
 ShapeAndLoadEmployees(_dataService.Employees);
 }
 else
 {
 _dataService.EmployeesLoaded += (s, e) =>
 {
 ShapeAndLoadEmployees(_dataService.Employees);
 };

 _dataService.LoadEmployees();
 }
}

private void ShapeAndLoadEmployees(IList<Employee> employees)
{
 var shapedEmployees = new ObservableCollection<EmployeeViewModel>();

 foreach (Employee emp in employees)
 {
 EmployeeViewModel vm = new EmployeeViewModel
 {
 FirstName = emp.Contact.FirstName,
 LastName = emp.Contact.LastName,
 Title = emp.Title,
 Salaried = emp.SalariedFlag,
 SickLeaveHours = emp.SickLeaveHours,
 VacationHours = emp.VacationHours,
 HireDate = emp.HireDate
 };

Listing 16.18 Changes to EmployeeListViewModel class

B

Flatten
structure
Licensed to Devon Greenway <devon.greenway@gmail.com>

447Better separation from the UI
 shapedEmployees.Add(vm);
 }

 Employees = shapedEmployees;
 OnEmployeesLoaded();
}

The largest change in this class is the LoadEmployees method. You add a bit of data
shaping and flatten the two-class Employee/Contact combination into a single
EmployeeViewModel class with only a few properties. The majority of this work is done
in the ShapeAndLoadEmployees method B. It iterates through the employees in the
data service and builds out the ViewModel classes, assigns the collection to the
Employees property, and then raises the data-loaded event.

 The last place affected by this change is the EmployeeDetail ChildWindow. List-
ing 16.19 shows the changes to the two TextBox instances and one CheckBox
instance in the EmployeeDetail pop-up XAML.

<TextBox Height="23" Width="140" Margin="127,14,0,0"
 HorizontalAlignment="Left" VerticalAlignment="Top"
 x:Name="FirstName"
 Text="{Binding FirstName, Mode=TwoWay}" />
...
<TextBox Height="23" Width="140" Margin="127,43,0,0"
 HorizontalAlignment="Left" VerticalAlignment="Top"
 x:Name="LastName"
 Text="{Binding LastName, Mode=TwoWay}" />

...
<CheckBox x:Name="Salaried" Height="16" Margin="127,101,0,0"
 HorizontalAlignment="Left" VerticalAlignment="Top"
 Content="Salaried"
 IsChecked="{Binding Salaried, Mode=TwoWay}" />

The only changes required here are the binding statements, due to the different
property names and property paths for the new simplified class. Contact.FirstName
becomes FirstName, Contact.LastName becomes LastName, and SalariedFlag

becomes Salaried. The code-behind requires even fewer changes—just the Employee
property, in this case:

private EmployeeViewModel _employee;
public EmployeeViewModel Employee
{
 get { return _employee; }
 set { _employee = value; DataContext = _employee; }
}

The EmployeeList.xaml and related code-behind require no changes. With all the
other changes in place, run the application. The first thing you’ll notice is the reduced
column count in the DataGrid, as well as the friendly column headers. Figure 16.7
shows the newly refactored application. There’s also the calculated Full Name field,
which was unavailable in the entity data model.

Listing 16.19 Changes to EmployeeDetail.xaml
Licensed to Devon Greenway <devon.greenway@gmail.com>

448 CHAPTER 16 Structuring and testing with the MVVM/ViewModel pattern
16.4.4 Interfaces, IoC, and ViewModel locators

So far, all the changes you’ve made have improved the separation of concerns in the
application and have helped its overall structure. But although you may have elimi-
nated onerous coupling, such as that between the UI and the database, each of the
classes are still tightly coupled to each other. For example, the View is tightly coupled
to a ViewModel, using a new statement in the code-behind to create it. Similarly, that
EmployeeListViewModel is tightly coupled to the EmployeeDataService and the
EmployeeVacationBonusService.

 At first glance, you may think “So?” and I wouldn’t blame you. This is definitely
one area where the benefits are highly proportional to the size of the system and the
amount of code churn. If you have a highly active development project or a really
large system, you’ll want to pay extra attention.
INTERFACES AND IOC

By implementing ViewModels and services as interfaces, you can allow them to be
swapped in and out with alternative implementations. This can be useful when you’re
developing and don’t yet have the real data store, when you’re designing the UI and
don’t want the designer to have to have the full development environment, and when
you’re testing where you may want to substitute scenario-driven classes and data that
will return specific results each time.

 Inversion of Control (IoC) enables developers to design the system in such a way
that they don’t new up (directly create) any objects of consequence in their code.
Instead, they ask an IoC container to resolve for an object of a given type. The IoC con-
tainer can make a number of decisions based on the request—returning a test version

Figure 16.7 View of the application using the newly-minted EmployeeViewModel entity ViewModel
class. Note the reduced column count as well as the nice column headers. Note also the Full Name
calculated field.
Licensed to Devon Greenway <devon.greenway@gmail.com>

449Better separation from the UI
or a production version, for example. The IoC container can also serve up a single
shared class instance, effectively a singleton without the singleton plumbing.

 Some developers use interface-based development and IoC for everything because
they’ve mastered its use and have found it to speed up their work. I’m not one of
those developers, but I can certainly appreciate where mastery of this pattern can
allow effective use across projects regardless of size or complexity.

 Another interesting concept is that of the ViewModel locator. Often, ViewModel
locators are themselves implemented using IoC.
VIEWMODEL LOCATOR

Closely related to IoC is the idea of a ViewModel locator. A ViewModel locator is a ser-
vice that can supply a ViewModel instance to a View. That instance may be internally
cached, hard-coded, or delivered via IoC. I’ve even seen some interesting implementa-
tions that use the Managed Extensibility Framework (MEF).

 An extremely simple ViewModel locator that keys off the view name may look some-
thing like listing 16.20. Create the ViewModelLocator class in the ViewModels folder.

using System.Collections.Generic;

namespace MvvmApplication.ViewModels
{
 public class ViewModelLocator
 {
 private Dictionary<string, ViewModel> _viewModels =
 new Dictionary<string, ViewModel>();

 public ViewModelLocator()
 {
 _viewModels.Add("EmployeeList", new EmployeeListViewModel());
 _viewModels.Add("EmployeeDetail", new EmployeeViewModel());
 }

 public ViewModel this[string viewName]
 {
 get { return _viewModels[viewName]; }
 }
 }
}

In practice, a real locator would have a much more robust mechanism for discovering
and adding ViewModel instances to its internal list. In this example, they’re all hard-
coded, and you don’t allow for more than one instance of any specific type. Addition-
ally, the only usable one is the EmployeeListViewModel, because the EmployeeDetail
would need instancing.

 The ViewModel locator is surfaced as a resource to be used in binding. The
resource itself would be defined in a resource dictionary merged into App.xaml in
order to have applicationwide scope. Listing 16.21 shows an updated App.xaml with
this resource included and a new Resources.xaml file in the Assets folder.

Listing 16.20 A simple ViewModel locator using hard-coded ViewModel instances

Indexer for
binding
Licensed to Devon Greenway <devon.greenway@gmail.com>

450 CHAPTER 16 Structuring and testing with the MVVM/ViewModel pattern
App.xaml:
<Application x:Class="MvvmApplication.App"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">

 <Application.Resources>
 <ResourceDictionary>
 <ResourceDictionary.MergedDictionaries>
 <ResourceDictionary Source="Assets/Styles.xaml" />
 <ResourceDictionary Source="Assets/Resources.xaml" />
 </ResourceDictionary.MergedDictionaries>
 </ResourceDictionary>
 </Application.Resources>
</Application>

Assets/Resources.xaml:
<ResourceDictionary
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:vm="clr-namespace:MvvmApplication.ViewModels"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">

 <vm:ViewModelLocator x:Key="ViewModelLocator" />

</ResourceDictionary>

To use this locator, you eliminate the ViewModel creation from the code-behind and
bind to this resource. In the EmployeeList.xaml file, this is as easy as adding the fol-
lowing line to the navigation:Page element.

DataContext="{Binding [EmployeeList],

➥ Source={StaticResource ViewModelLocator}}"

That bit sets the DataContext of the page to the value returned from the calling the
ViewModelLocator’s indexer function, passing in the string EmployeeList.

 You then change the EmployeeList code-behind so the OnNavigatedTo event uses
the ViewModel provided by the locator rather than one created in the code-behind.
Listing 16.22 shows the updated OnNavigatedTo method.

private EmployeeListViewModel _viewModel = null;

protected override void OnNavigatedTo(NavigationEventArgs e)
{
 _viewModel = DataContext as EmployeeListViewModel;
 _viewModel.EmployeesLoaded += (s, ea) =>
 {
 LoadingProgress.Visibility = Visibility.Collapsed;
 };

 LoadingProgress.Visibility = Visibility.Visible;

 _viewModel.LoadEmployees();
}

Listing 16.21 The ViewModel locator in XAML

Listing 16.22 Updated OnNavigatedTo method in EmployeeList code-behind

Merged
dictionary

ViewModelLocator
Licensed to Devon Greenway <devon.greenway@gmail.com>

451Testing
Note that this is one place where an interface makes good sense: have the locator
return a class that implements the interface, and have the code in the code-behind
aware only of that interface, not of the concrete class itself. After all, if you’re going to
go through the effort to dynamically resolve the ViewModel, it makes little sense to
work with concrete types that could be instantiated.

 A larger discussion around these topics, especially interface-based development
and IoC, would take more room that I have in this chapter, but I did want to make you
aware of them because they’re often used with the ViewModel pattern. Many MVVM
toolkits include support for interface-based design as well as various types of locators.
When evaluating those toolkits, you’ll now know how they’re used.

 Commands and behaviors help decouple the user interface from the code that
supports it. Rather than having concrete compile-time hooks into various other classes
in the system, the hooks are more dynamic and resolved via binding or even string
lookup at runtime. One of the more egregious couplings in the system was the entity
data-model types permeating all layers, effectively tying the entire application to the
database schema. Fixing that by introducing the entity-type ViewModel goes a long
way toward freeing the front end from the back end. Finally, the use of interfaces,
ViewModel locators, and patterns such as Inversion of Control take the decoupling to
a higher level, making the application as a whole more resilient to change and easier
to maintain. In addition, this loose coupling makes it easier to break these pieces
apart, especially for testing.

 In the next section, we’ll cover how to test Silverlight applications, specifically
those that have been designed with the principles in this chapter taken to heart.

16.5 Testing
Testing is a heavily overloaded word. For some people, it’s a way to spec out a system,
using tests as the drivers and documentation. For others, it means running through a
few verification steps as part of a build process. For still others, it’s a project manager
banging away at a keyboard and “trying to break the system.”

 Each of those definitions has tools that best support it. Many great unit-testing,
test-driven development, and keyboard-jockey testing tools are available out there,
both free and open source as well as commercial.

 For this section, I’ll focus on unit testing of Silverlight functionality, using the free
Silverlight Unit Testing Framework. You’ll first try a few tests that have nothing to do
with your application. Then, because it must be broken apart to support testing, you’ll
refactor the application into two projects. When the refactoring is complete, you’ll try
three simple tests to exercise synchronous logic through the ViewModel class. The
final test will be an asynchronous data-loading test, used to verify that the employees
are being correctly downloaded from the server.

16.5.1 Introduction to the Silverlight Unit Testing Framework

The Silverlight Unit Testing Framework consists of a test runner and test metadata devel-
oped as part of the Silverlight toolkit. To use the Silverlight Unit Testing Framework,
Licensed to Devon Greenway <devon.greenway@gmail.com>

452 CHAPTER 16 Structuring and testing with the MVVM/ViewModel pattern
you’ll need to install the Silverlight Toolkit. If you don’t already have it installed, you can
grab the latest version from http://silverlight.codeplex.com.

 When you have the bits installed, you’ll get a new template in Visual Studio. Con-
tinuing with the same solution you’ve been working with for this chapter, add a new
Silverlight Unit Test Application project. I named mine MvvmApplication.Tests. Fig-
ure 16.8 shows the Add New Project dialog with the correct options selected.

 The project template automatically includes a single default test. You’ll replace
that with three simple tests that show how to use the Assert object and its functions.
Listing 16.23 shows the three tests in place in the default Tests class.

namespace MvvmApplication.Tests
{
 [TestClass]
 public class Tests
 {
 [TestMethod]
 public void TestToMakeSureTrueIsActuallyTrue()
 {
 Assert.IsTrue(true);
 }

 [TestMethod]

Listing 16.23 Simple tests

Figure 16.8 Adding a new Silverlight Unit Test Application to the solution. I named the project
MvvmApplication.Tests, but the name isn’t important.
Licensed to Devon Greenway <devon.greenway@gmail.com>

http://silverlight.codeplex.com

453Testing
 public void TestToMakeSureTheListObjectIsNotNull()
 {
 List<int> l = new List<int>();
 Assert.IsNotNull(l);
 }

 [TestMethod]
 public void ThisTestShouldFail()
 {
 Assert.IsTrue(false);
 }
 }
}

The tests include two that should pass without any issue and one that should fail 100%
of the time. Set the automatically added test .aspx file in the web project to the start
page, and run (run; don’t start in debug mode unless you want to break on the excep-
tion). When you do, it’ll look something like figure 16.9.

 Simple tests are… simple. They help you understand how the test system works,
but they’re not doing anything useful for you yet. You want to test functionality in the
application itself. To do that, you’ll need to put all the testable stuff into one or more
class libraries. To keep things simple, you’ll move everything but the views into a sin-
gle core project.

Figure 16.9 Silverlight unit test runner with two passed tests and one failed test
Licensed to Devon Greenway <devon.greenway@gmail.com>

454 CHAPTER 16 Structuring and testing with the MVVM/ViewModel pattern
Create a Silverlight Class Library named MvvmApplication.Core. Then, go into its
project properties and set the default namespace to be MvvmApplication, as shown in
figure 16.10.

 Setting the namespace will allow you to keep everything the same as it was in the
main Silverlight application.

 Next, create a Services folder and a ViewModels folder in the new class library proj-
ect. Drag the contents of those folders from the old project to the new, and then
remove the folders and their contents from the old project.

 The next step is to swap the service reference over to the new project. In the MvvmAp-
plication.Core project, right-click, and choose Add Service Reference. Pick the web ser-
vice in the web project, and set the namespace to Services as you did in the original
project. Then, delete the service reference from the original Silverlight project.

 Before you do any in-code/markup cleanup, you need to add a project reference
from the main application to the core application. Right-click the MvvmApplication
project, choose Add Reference, and select the MvvmApplication.Core project.

 Do a build, and clean up the errors. You’ll need to add a reference to System.Com-
ponentModel.DataAnnotations in the core project. When that’s done, you’ll need to
crack open the Resources.xaml file and change the vm prefix to point to

xmlns:vm="clr-namespace:MvvmApplication.ViewModels;

➥ assembly=MvvmApplication.Core"

The last step is to delete the old ServiceReferences.ClientConfig from the MvvmAppli-
cation Silverlight project and then add the one from core as a reference. When you’ve
deleted the old file, right-click the MvvmApplication project and choose Add > Exist-
ing Item. Navigate to the core project, and select the ServiceReferences.ClientConfig
file. Click the drop-down arrow on the Add button, and select the option to add as a
link, as shown in figure 16.11.

 If you do this correctly, you’ll now see the ServiceReferences.ClientConfig file
in the main MvvmApplication project. Its icon will have the standard shortcut arrow
overlay, which indicates it’s a link. The build action should be automatically set
to Content.

 The last step is to add a project reference from the MvvmApplication.Tests project
to the MvvmApplication.Core project. Right-click the MvvmApplication.Tests project,
select Add Reference, and select the MvvmApplication.Core project.

Figure 16.10 Setting the default namespace on a class library project
Licensed to Devon Greenway <devon.greenway@gmail.com>

455Testing
When you’ve completed all these steps, set the application test page in the web project
as the start page, and run the solution. Make sure the Silverlight app is running and
working as it did before. If everything is good, you’re ready to move on to doing some
real testing.

16.5.2 Testing the ViewModel

In a well-architected MVVM application, testing the ViewModel covers the majority of
the scenarios you’d normally test through UI automation. The more value converters
or UI magic in use, the less meaningful the ViewModel test becomes. I don’t want to
scare you away from using awesome things such as value converters or validation
annotations, but it’s something you need to keep in mind when you’re testing.

 Caveats aside, testing the ViewModel will give you a pretty high level of confidence
that the majority of the system is working as designed, so let’s start there. In the test
project, remove the test class you created earlier. Add a new Silverlight Test Class file
to the MvvmApplication.Tests project, and name it EmployeeListViewModelTests.
Listing 16.24 shows your first two tests.

[TestClass]
public class EmployeeListViewModelTests
{
 [TestMethod]
 public void SelectedEmployeeCanBeSetAndRetrieved()
 {
 EmployeeViewModel employee = new EmployeeViewModel();

Listing 16.24 The first ViewModel tests

Figure 16.11 Add the ServiceReferences.ClientConfig file from the core project to the main project
using the Add As Link option.

SelectedEmployee
Licensed to Devon Greenway <devon.greenway@gmail.com>

456 CHAPTER 16 Structuring and testing with the MVVM/ViewModel pattern
 EmployeeListViewModel vm = new EmployeeListViewModel();

 vm.SelectedEmployee = employee;

 Assert.ReferenceEquals(employee, vm.SelectedEmployee);
 }

 [TestMethod]
 public void EmployeeVacationBonusIsProperlyApplied()
 {
 EmployeeViewModel employee = new EmployeeViewModel();
 EmployeeListViewModel vm = new EmployeeListViewModel();

 vm.SelectedEmployee = employee;

 employee.VacationHours = 0;
 employee.HireDate = DateTime.Today.AddYears(-4);
 vm.AddVacationBonusToSelectedEmployee();
 Assert.AreEqual(employee.VacationHours, 10);

 employee.VacationHours = 0;
 employee.HireDate = DateTime.Today.AddYears(-8);
 vm.AddVacationBonusToSelectedEmployee();
 Assert.AreEqual(employee.VacationHours, 20);

 employee.VacationHours = 0;
 employee.HireDate = DateTime.Today.AddYears(-15);
 vm.AddVacationBonusToSelectedEmployee();
 Assert.AreEqual(employee.VacationHours, 30);

 employee.VacationHours = 0;
 employee.HireDate = DateTime.Today.AddYears(-25);
 vm.AddVacationBonusToSelectedEmployee();
 Assert.AreEqual(employee.VacationHours, 40);
 }
}

The first test tests the utility of the SelectedEmployee property. It checks to see that
when you assign an object to the property, the object can be retrieved. The second test
exercises the vacation bonus logic. Note that this test doesn’t have 100 percent cover-
age for the full domain of hire dates and vacation hours; to do that, every value from
zero through some reasonable upper bound would need to be tested.

 Both of these tests cover synchronous functionality only—you do something and
hang around until the result comes back. If you want to test anything network-related
in Silverlight, you need to use an asynchronous test.

16.5.3 Testing asynchronous operations

Testing asynchronous operations takes a little extra work. You’ll need a different test
base class and the asynchronous methods it exposes. Listing 16.25 shows an asynchro-
nous call test against the EmployeeDataService class.

[TestClass]
public class EmployeeDataServiceTests : SilverlightTest
{

Listing 16.25 Asynchronous call test

Bonus
test
Licensed to Devon Greenway <devon.greenway@gmail.com>

457Summary
 [TestMethod]
 [Asynchronous]
 public void TestEmployeeServiceCallReturnsData()
 {
 var service = new EmployeeDataService();

 service.EmployeesLoaded += (s, e) =>
 {
 Assert.IsNotNull(service.Employees);
 Assert.IsTrue(service.Employees.Count > 0);

 EnqueueTestComplete();
 };

 service.LoadEmployees();
 }
}

This example shows the test class inherited from the SilverlightTest base class. This
immediately makes your class fall outside of code compatibility with the full Visual Stu-
dio testing framework. That’s a concern only if you want to share your tests with full .NET
projects, or if you have plans to migrate them to another testing platform in the future.

 The SilverlightTest base class supplies the critical EnqueueTestComplete method.
That method tells the test framework that the method is complete, and the framework
can release it from the holding pattern created by the [Asynchronous] attribute.

 Before running the test, there’s one more step. Just as you did when breaking the
original Silverlight project in two, you need to add the ServiceReferences.ClientCon-
fig file to the MvvmApplication.Tests project, as a link. That file is generated by the
project that has the service reference, but it must be located by the project that is the
main entry point of execution.

 The Silverlight Unit Testing Framework is a capable test framework for Silverlight.
When it first came out, there were no other supported Silverlight testing frameworks.
Now you have several choices.

 The Silverlight Unit Testing Framework has some trade-offs, such as not being inte-
grated with any build processes and requiring a run to see the results rather than keep-
ing an open window or a docked pane in the IDE. You’ll need to evaluate those for your
own projects and stack up the framework against other robust unit-testing frameworks.

 When you structure your application using MVVM principles and good coding and
architecture practices, it makes your applications much easier to test. It’s important to
test. It’s important to unit-test functionality and to keep those tests up to date. It’s ben-
eficial to use tests to drive functionality using a TDD-derived approach. If there were
no way to test Silverlight code, you definitely wouldn’t be in your happy place. I hope
the simplicity of the Silverlight Unit Testing Framework will help you integrate testing
into your own application development cycle.

16.6 Summary
When you get into developing applications of complexity beyond basic samples, your
code can get pretty ugly quickly if you don’t follow a good architectural pattern such

Mark as
complete
Licensed to Devon Greenway <devon.greenway@gmail.com>

458 CHAPTER 16 Structuring and testing with the MVVM/ViewModel pattern
as MVVM. In this chapter, we’ve moved from a basic-but-common code-behind solu-
tion to a decent MVVM implementation. To take it to the next level, you’ll want to
incorporate an MVVM toolkit and use the facilities built into that.

 MVVM, or the ViewModel pattern, isn’t scary when you peel the onion back layer
by layer, refactoring between each and incorporating features as you understand
them. Silverlight includes support for behaviors and commands to help separate the
UI from the functions the UI calls. The patterns you follow will help you reuse code
between different ViewModels or between different parts of the system.

 When you have an application with decent separation of concerns between compo-
nents and layers, you open up the ability to easily test the components. The Silverlight
Unit Testing Framework is a nice in-box (well, in-toolkit) solution for unit-testing Sil-
verlight applications. It’s not the only game in town, but it’s certainly a decent player.

 While we’re looking at what it takes to build real systems, we’ll turn to WCF RIA Ser-
vices in the next chapter.
Licensed to Devon Greenway <devon.greenway@gmail.com>

WCF RIA Services
Data-oriented Silverlight applications are multitier by nature—they have a client, a
server with services, and a data store. As you learned in chapter 14, the way Silver-
light handles network calls requires setting up asynchronous proxies (or perform-
ing raw asynchronous network operations). Sometimes, sharing entities between the
client and server is a simple task; sometimes it’s not. In general, the amount of code
that goes into what could be considered plumbing and standard CRUD methods
ends up being a significant portion of the overall source code for the application.

 In many organizations, the code that makes up those plumbing and standard
operations, despite best efforts, ends up being duplicated in project after project.
Reuse is rarely seen, and when it is, it’s in relatively trivial things such as logging ser-
vices or caching. When reuse is enforced, it can be overly cumbersome to use
across the suite of applications and difficult to update.

This chapter covers
■ Using the Business Application project template
■ Exposing data from a domain service
■ Filtering, sorting, grouping, paging, and updating data
■ Using the presentation model for loose coupling
■ Sharing logic between the client and server
■ Securing the application
459

Licensed to Devon Greenway <devon.greenway@gmail.com>

460 CHAPTER 17 WCF RIA Services
 When developing WCF RIA Services (also called just RIA Services for short), Micro-
soft realized that most applications built (again, despite best efforts) are actually mini
silos from the client through to the database interface, and often through to the data-
base tables themselves. I know from personal experience at many clients around the
country that this is true—it’s our industry’s dirty little secret, despite all the talk about
OOP reuse, SOA, and more. Applications have a silo of functionality they use and some
minor integration points with other systems using web services. I bring this up to point
out that a nongoal of RIA Services is the creation of robust service-oriented architec-
ture (SOA) solutions, in the true sense of SOA, not the “we used a service” sense.

 WCF RIA Services is a framework and set of tools that attempts to make building
modern multitier applications as simple as building classic two-tier client/server appli-
cations. WCF RIA Services doesn’t tie you to the single application model, but it’s opti-
mized to support it as the most prevalent application model. We’re talking about
building real, scalable, efficient, and easily coded multitier applications that work
cleanly from front to back using a minimum amount of ceremonial code. This is
accomplished through a framework and set of tools that provide the following benefits:

■ Automatic creation of common Create Read Update Delete (CRUD) methods
for entities

■ Automatic generation and synchronization of service methods and their client-
side proxies

■ Validation rules and arbitrary business logic methods that are shared between
the client and server without duplication of effort

■ High-level client-side data source controls that make data manipulation simple
■ Integration with ASP.NET security
■ Through the project template, an overall application structure you can build on

In addition, when combined with the DataGrid and DataForm covered in chapter 12,
you get automatic user-interface generation for entities, as well as simple UI wire-up
for CRUD operations and validation.

 This is all done in a way that allows you to maintain the level of control you want.
There are enough extension points to let you hook into processes as well as manage
client operations from code rather than the controls if you desire. Although opti-
mized for the full application front-to-back scenario, it’s flexible enough to incorpo-
rate other services and even other RIA Services servers into the overall solution. You
can even expose your RIA Services service calls and data in a number of ways to allow
interoperating with other systems.

 Although RIA Services does support other clients such as ASP.NET, the functionality
is at its strongest when used with Silverlight. Throughout its development, RIA Services
was almost exclusively a Silverlight technology, giving back to the framework as tech-
niques and code were developed. Almost 100 percent of the users of RIA Services, at the
time of this writing, are building Silverlight applications. The reason is simple. RIA Ser-
vices helps solve a problem that is strongest in Silverlight: how to build multitier data-
oriented applications with different but mostly compatible frameworks on the client
Licensed to Devon Greenway <devon.greenway@gmail.com>

461WCF RIA Services architecture, tooling, and template
and server, without native database or ORM access from the client, and perform all
requests asynchronously while keeping the footprint down.

 Our tour of RIA Services will start with a look at the tooling and templates that
make it easy to use in Visual Studio. You’ll create a project that’ll be used in the exam-
ples through the rest of the chapter. After that, we’ll look at what it takes to expose
data to external clients and to Silverlight, as well as how to filter, sort, group, and page
that data. Of course, there’s more to application development than read-only data, so
we’ll go through the update process to make sure the data can make a full round trip.
Then, because I spent the last chapter telling you how important it is to decouple your
layers, we’ll look at how to support loose coupling in an otherwise tightly coupled sys-
tem. We’ll wrap up the chapter with a look at where to put business logic, followed by
securing your applications.

 I’m excited about the efficiency that RIA Services brings to the table, so let’s get
building.

17.1 WCF RIA Services architecture, tooling, and template
WCF RIA Services applications are similar to traditional Silverlight applications in that
there’s both a client application and a home server. The server serves up the Silver-
light application and also contains the services the application is to use. RIA Services
works with multiple-server and multiple-client scenarios; but as mentioned in the
introduction, the typical scenario is one server per application domain. Figure 17.1
captures this typical architecture at a high level.

 At first glance, the architecture looks like any other Silverlight application, except
for that odd shared bit. That’s one of the many things that make RIA Services worth
the effort to learn.

 RIA Services includes strong support for creating client-side proxies and entities
that preserve, with high fidelity, the validation rules and logic written on the server. As

View DatabaseServices

Client Server

Application
Logic

Application
Logic

Data Access
Layer

Shared Application Logic,
Entities, Validation Rules

External Services and
Resources

Server-Side
Rules

Figure 17.1 A high-level view of the
architecture of a RIA Services application
Licensed to Devon Greenway <devon.greenway@gmail.com>

462 CHAPTER 17 WCF RIA Services
a developer, you only need to write the code once, and RIA Services will take care of
the rest. We’ll cover this in depth later in the chapter.

 In this section, we’ll look at the tooling that makes RIA Services work. Then, we’ll
dive right in to creating a new project using the Silverlight Business Application tem-
plate, a WCF RIA Services version of the navigation template we covered in chapter 15.
You’ll build on this project throughout the rest of the chapter.

17.1.1 RIA Services tooling support

Much of what makes WCF RIA Services tick is the magic that happens as part of the
build process. When you first create a Silverlight application and select the option to
Enable WCF RIA Services, you’ve set up a client-to-server project link. That option puts
a single line in the Silverlight .csproj project file:

<LinkedServerProject>..\Chapter17.Web\Chapter17.Web.csproj

➥ </LinkedServerProject>

That one line of XML makes possible the auto-generation of the client proxies, types,
and more. That also means a Silverlight application can be directly attached to at most
one RIA Services server. To get around this limitation, you can create Silverlight class
library projects and allow them to link to different servers, and then use the class
libraries in your own project.

 If you’re curious, check out the obj/Debug folder in your Silverlight project. In it,
you’ll find a number of files generated by the RIA Services tooling, to keep track of
server references, source files, and more. It’s mostly unicorn and rainbow1 magic, but
it’s fun for the curious and perhaps helpful during an odd debugging session.

 The main body of code that is generated falls under the Generated_Code folder
on the Silverlight application. This includes a single .g.cs file with all the context and
proxy classes, and one or more subfolders with the additional model classes. Because
this code is autogenerated, you won’t want to change it. But having the source code
available is useful when you’re trying to understand exactly what RIA Services is doing
in the client application, or when you’re involved in complex debugging.

 Throughout the remainder of the chapter, feel free to inspect the .g.cs file and the
rest of the code in the Generated_Code folder as you add methods to various server-
side classes.

 Now that you understand the relationship between the web project and the client
project, you can create the start of an application using the Silverlight Business Appli-
cation template.

17.1.2 Creating a project with the template

The Silverlight tools for Visual Studio 2010 include a WCF RIA Services solution tem-
plate, based on the navigation template discussed in chapter 15. This template is

1 If you’re really and truly bored and need a break from reading, check out http://cornify.com/ to add uni-
corns and rainbows to any web site or photo. Warning: 5th grade girls’ Trapper Keeper graphics overload.
Licensed to Devon Greenway <devon.greenway@gmail.com>

http://cornify.com/

463WCF RIA Services architecture, tooling, and template
called the Silverlight Business Application template. Although you don’t need to use
this template to create a RIA Services project (you need to select the Enable WCF RIA
Services check box when creating a new Silverlight project as mentioned in the previ-
ous section), it does provide a good project structure to start with.

 Figure 17.2 shows the New Project dialog with this template selected. You’ll use this
project, Chapter17, throughout the rest of the chapter.

 Note that when you create a new WCF RIA Services project, you’re not prompted
with the usual second New Project dialog, asking whether to create a web site or
enable WCF RIA Services. In a RIA Services project, both are required.

 Despite the fact that they’re based on the same original template, the styling steps
described in chapter 15 won’t work exactly with this template. Instead, you’ll need to
install the Silverlight Business Application templates (they’re just zip files) included in
the download and use them as the basis for your new project. At the time of this writ-
ing, no .vsix installers exist for the templates, so you have to manually install them. In
addition, the trick of copying the styles over wasn’t working when I wrote this. The
team is investigating, so the experience may be better by the time you try it.

 When you run the application, you’ll get something that looks similar to the chap-
ter 15 template, but with a few additions. Figure 17.3 shows the bare application at
runtime.

Figure 17.2 Creating a new WCF RIA Services application using the Silverlight Business Application
template
Licensed to Devon Greenway <devon.greenway@gmail.com>

464 CHAPTER 17 WCF RIA Services
At runtime, the main difference you’ll notice is the addition of the Login button. If
you click that, you’ll get a ChildWindow login prompt. We’ll discuss authentication
later in this chapter.

 The other changes, compared to the navigation application, require a little more
digging.
APPLICATION RESOURCES

The Silverlight Business Application template has good support for customization and
localization of the strings presented to the user. If you crack open the Assets\Resources\
ApplicationStrings.resx file, you’ll see that you can change key prompts, window titles,
and more without altering the XAML.

 Although not strictly required, when adding your own pages or prompts, a best
practice is to place the text in one of the three resource files (ApplicationStrings,
ErrorResources, or SecurityQuestions) rather than directly into XAML or code. Of
course, you can create your own resource files if the text doesn’t logically fit in one of
these three.

 To test the application resources approach, change the ApplicationName property
to something different. I chose “Chapter 17 Example”. Run it, and you’ll see the
changed name. It doesn’t change in the designer right away; but after a build (or
build and run), you’ll see the title update in the designer as well. In this way, the
resource files don’t block your design-time experience.

Figure 17.3 The application when first run. Note the addition of the Login button as compared to the
navigation template shown in chapter 15.
Licensed to Devon Greenway <devon.greenway@gmail.com>

465Exposing data with the domain service
 How and why does this work? Open MainPage.xaml, and find the TextBlock
named ApplicationNameTextBlock. Its definition looks like this:

<TextBlock x:Name="ApplicationNameTextBlock"
 Style="{StaticResource ApplicationNameStyle}"
 Text="{Binding ApplicationStrings.ApplicationName,

➥ Source={StaticResource ResourceWrapper}}"/>

The displayed Text value is bound to a property of the generated resource file class
ApplicationStrings. The ResourceWrapper class provides a single location from
which you can access all the resource classes. The resource property name is the same
as that defined in the resource file. I’ve used traditional resource files before, and it
was never this easy to get values into the UI. The power of binding in Silverlight makes
using traditional resource files a no-brainer.
OTHER DIFFERENCES

The client project file has a number of other differences compared to the straight nav-
igation template. As you explore the project structure, you’ll see a number of addi-
tional controls (such as the BusyIndicator), helper classes, additional views, and
more. You’ll run across many of them as you create your RIA Services application in
the upcoming sections.

 WCF RIA Services, especially through the use of the application template, makes it
easy to structure a full business application, following best practices. The tooling in
Visual Studio helps automatically synchronize the client and server, avoiding a cum-
bersome manual step.

 The architecture of WCF RIA Services, although geared toward Silverlight applica-
tions, is usable by other application types as well through the server-side services. We’ll
leave the client project alone for a moment while we concentrate on the server (web)
project in order to learn how to expose data to the application.

17.2 Exposing data with the domain service
WCF RIA Services applications are typically used with a database back-end. It’s possible
to use something other than a database; RIA Services itself doesn’t care what type of
backing store you use, as long as a base domain service class exists for it.

 Traditional Silverlight applications use a WCF, SOAP, or REST service server-side to
access data. Those services, in the case of SOAP and WCF, expose methods for retriev-
ing and updating data. They may expose domain methods to perform other functions
or calculations as well. REST-based services typically expose a domain model in an
entity-centric way.

 In a RIA Services application, the service to use is a domain service. A domain ser-
vice, which is built on WCF, provides LINQ-based access to domain objects or data, as
well as traditional service access to additional domain functions. It sits between the
database and your client code, combining many of the advantages of the other ser-
vices with the added bonus that the wire-up with the client happens automatically. The
domain services are the heart of a WCF RIA Services application.
Licensed to Devon Greenway <devon.greenway@gmail.com>

466 CHAPTER 17 WCF RIA Services
 In this section, you’ll first create a domain service in the web project. We’ll then
look at what’s required to expose the data and functionality in that service in a num-
ber of different ways, including OData, JSON, and SOAP. With the interoperability
question out of the way, we’ll dive into the primary scenario the service was built for:
integration with the Silverlight client. We’ll wrap up this section with an in-depth look
at the common domain service methods and what it takes to add your own methods to
the service.

17.2.1 Creating the domain service

For this project, you’ll use the Entity Framework and the Adventure Works database.
Follow the instructions in appendix A and set up the database, connection, and Entity
Framework Model in the existing web project.

 Build the project before adding the domain service. This will ensure that the
appropriate metadata is available from the Entity Framework Model. When that’s
done, right-click the Services folder in the web project, and choose Add New Item.
The item you want to add is the Domain Service Class, included in the top-level Visual
C# template list in the New Item dialog. Figure 17.4 shows the correct template in use.

 Name your domain service EmployeeService.cs, and click Add. You’ll then be pre-
sented with the RIA Services-specific Add New Domain Service Class dialog shown in
figure 17.5.

 This dialog requires careful attention. First, you want to make sure the Enable Client
Access option is checked. When checked, it allows the domain service to be used by cli-
ents such as Silverlight. If unchecked, the service will only be available server-side.

Figure 17.4 Creating the EmployeeService domain service. You can find the Domain Service Class
template in the top-level Visual C# template list.
Licensed to Devon Greenway <devon.greenway@gmail.com>

467Exposing data with the domain service
The next option is Expose OData Endpoint. OData is an XML-based data format. For
most projects, this is entirely optional, but because we’ll be discussing OData in a bit, it
needs to be checked.

 The middle of the dialog includes a list of entities from the Entity Framework
Model. If this list is empty, you need to cancel the dialog and build the project. Select
each entity that will be handled from this domain service; typically this is only one
entity, or a small number of highly related entities, such as you have in this case. By
default, the service handles retrieve operations only; if you want to allow create,
update, and delete, ensure that the checkbox under Enable Editing is selected.

 Finally, Generate Associated Classes for Metadata is an important option. When
selected, this creates a class you can use to provide attribute-based validation and meta-
data for each of the entities. This class is named <domainservice>.metadata.cs.

 If all the correct options are selected, when you click OK, the two classes (service
and metadata) will be created in the Services folder on the web project. The Employ-
eeService class automatically includes all the appropriate domain service methods to
perform CRUD operations on both the selected Contact and the Employee types.

 Silverlight applications rarely exist in a vacuum. Before we get in depth into using
the domain service in the Silverlight application, it’s important to discuss how you can
use the domain service with other types of clients.

Figure 17.5 The Domain
Service setup dialog. If your
dialog entity list is empty,
cancel out and build the project.
Licensed to Devon Greenway <devon.greenway@gmail.com>

468 CHAPTER 17 WCF RIA Services
17.2.2 Exposing the domain service to other clients

Every client-exposed domain service is also a WCF service. The full address of the WCF
service is the web server plus the full namespace, with all dots replaced by dashes, plus
svc. For example, for EmployeeService, in the Chapter17.Web.Services namespace,
the full URL is

http://localhost:<port>/Chapter17-Web-Services-EmployeeService.svc

If you start the project and then replace the URL with that, you’ll get the normal WCF
service page. Unlike an .asmx SOAP service, you can’t run the service from this page
(which is good for preventing curious end users from running services directly).

 You can use the Add Service Reference menu option from any WCF-aware project
type (WPF, Windows Forms, ASP.NET, or even console) and use the service directly. You
won’t get the rich metadata and client-side validation provided by a native RIA Services
client, but you’ll be able to access the data and queries, as well as any defined domain
methods in the service.

 In addition to this approach, which should be your first option if supported in
your client, several other possible endpoints are supported.
EXPOSING AN ODATA ENDPOINT

RIA Services can expose a read-only OData endpoint for use by any application that
can speak the OData/AtomPub protocol. When creating the domain service, you were
offered the option to expose an OData endpoint. For this example, you did that. That
did two things:

■ Added a system.serviceModel\domainServices\endpoints name of OData to the
web.config file

■ Added IsDefaultQuery to the retrieve methods in the domain service class

Because the name added is OData, the service name has /OData appended to it. In this
case, the service name is

http://localhost:<port>/Chapter17-Web-Services-EmployeeService.svc/OData

If you want to see metadata about the service (the OData rough equivalent of SOAP
WSDL), you can append /$metadata to the endpoint name. For this service, it’s as
follows:

http://.../Chapter17-Web-Services-EmployeeService.svc/OData/$metadata

To access the root entities sets exposed by the domain service, you append Set to the
name of the entity so Employee becomes EmployeeSet. Then, append that to the
OData endpoint URL, as shown here:

http://.../Chapter17-Web-Services-EmployeeService.svc/OData/ContactSet
http://.../Chapter17-Web-Services-EmployeeService.svc/OData/EmployeeSet

Currently, accessing a single entity by ID isn’t supported in the OData endpoint. With a
full OData endpoint, you’d be able to do something like this:

http://.../Chapter17-Web-Services-EmployeeService.svc/OData/EmployeeSet(1)
(NOTE: this is not supported)
Licensed to Devon Greenway <devon.greenway@gmail.com>

469Exposing data with the domain service
You can easily test the OData endpoint in Microsoft PowerPivot2 for Excel 2010 by
selecting the From Data Feeds option while the application is running, and providing
the full EmployeeSet or ContactSet URL. When executed, the EmployeeSet query
returns the results directly into PowerPivot, as seen in figure 17.6.

 OData endpoints are good for querying data on the web or using tools such as Pow-
erPivot. Although OData could be used for Ajax applications, you’ll be better served
using the native JSON endpoint.
EXPOSING A JSON ENDPOINT

Both the JSON and SOAP endpoints require the use of assemblies in the RIA Services
Toolkit, which can be installed, like all other Silverlight tools, using the Microsoft Web
Platform Installer.3 If you performed a default Silverlight 4 tools installation with RIA
Services, you have the toolkit installed. If you don’t have a toolkit folder under the
Program Files\Microsoft SDKs\RIA Services 1.0\ folder, you can manually install the
toolkit from http://silverlight.net/getstarted/riaservices/.

 From the web project, you’ll need to add an assembly reference to the Micro-
soft.ServiceModel.DomainServices.Hosting assembly in the RIA Services toolkit.
Figure 17.7 shows the Add Reference dialog with the correct assembly selected.

2 You can download Microsoft PowerPivot for Excel 2010 from http://powerpivot.com.
3 You can download the Web Platform Installer from http://bit.ly/WebPI.

Figure 17.6 Data from the WCF RIA Services OData endpoint, loaded into PowerPivot for Excel 2010.
PowerPivot is a C# .NET Office add-in application, by the way.
Licensed to Devon Greenway <devon.greenway@gmail.com>

http://silverlight.net/getstarted/riaservices/
http://powerpivot.com
http://bit.ly/WebPI

470 CHAPTER 17 WCF RIA Services
When the project reference is set, you’ll need to modify the web.config file to add the
new JSON endpoint. In the domainServices\endpoints section, where the OData end-
point also lives, add the following XML:

<add name="JSON"
 type="Microsoft.ServiceModel.DomainServices.Hosting.JsonEndpointFactory,

➥ Microsoft.ServiceModel.DomainServices.Hosting, Version=4.0.0.0,
➥ Culture=neutral, PublicKeyToken=31bf3856ad364e35" />

That configuration entry sets up a WCF endpoint using the factory included in the RIA
Services toolkit DLL. When it’s configured, the root URL will be, as it was in the OData
case, the service name with /<endpoint>:

http://localhost:<port>/Chapter17-Web-Services-EmployeeService.svc/JSON

You can call the endpoint anything you want, as long as you use the same endpoint name
in the configuration file and in the URL. By convention, you use the return type—JSON.
To perform a query, use Get<EntityName>s as the format. For example:

http://.../Chapter17-Web-Services-EmployeeService.svc/Json/GetEmployees

Note that if you call that URL using Internet Explorer 8, you’ll get a download error. If
you use Google Chrome, or another browser or JSON tool, you’ll be able to see the
text of the JSON content. If you have nothing handy, create this simple HTML file (see
listing 17.1) in the web the project and select View in Browser. I called mine Test-
JsonEndpoint.html and used a little jQuery to handle the Ajax call.

Figure 17.7 The Add Reference dialog with the correct assembly selected to allow exposing JSON and
SOAP endpoints
Licensed to Devon Greenway <devon.greenway@gmail.com>

471Exposing data with the domain service
<html>
<head>
<title>Awesome JSON Endpoint Test</title>

<script src="http://ajax.microsoft.com/ajax/jQuery/jquery-1.4.2.min.js"
 type="text/javascript">
</script>

</head>
<body>
<button type="button" onclick="query()">Query</button>

<div id="results">
</div>

<script type="text/javascript">
 function query() {
 $.ajax({
 type: "GET",
 url: "Chapter17-Web-Services-EmployeeService.svc/JSON/GetEmployees",
 success: function (data) {
 $("#results").append("");
 var employees = data.GetEmployeesResult.RootResults;

 $.each(employees, function (i, entity) {
 $("#results").append("" + entity.EmployeeID +

➥ " " + entity.Title + "");
 });

 $("#results").append("");
 alert("Data received");
 }
 });
 }
</script>

</body>
</html>

This example HTML page shows how to test the retrieve method of the JSON endpoint
for your RIA Services domain service class. Using the EmployeeID and Title, it creates
a single list item for each employee returned in the query and then displays an alert
when the query returns. Note the path used to get to the root of the results: it’s the
name of the query with Result appended, plus the name .RootResults. This is con-
sistent for any RIA Services JSON get call.

 jQuery4 makes the service call and processing simple. If you haven’t yet been
exposed to jQuery, definitely check it out. jQuery has been the one thing that makes
JavaScript and DOM manipulation tolerable for me. It’s a great library for handling
on-page work, and it interacts nicely with Silverlight.

Listing 17.1 Testing the JSON endpoint from JavaScript using jQuery

4 I put this in as jQuery just so Rey Bango will stop picking on me about the ugly cabinets in my home office via
the back channel chat in every team meeting. You can see them in the background in the webcam shots in
chapter 20. If you want to pick on me yourself, I’ll try not to cry, really. :)

Note
path
Licensed to Devon Greenway <devon.greenway@gmail.com>

472 CHAPTER 17 WCF RIA Services
 The JSON endpoint also supports updating data. For space and relevance reasons,
I won’t create a full update UI here, but the code is similar to any other JSON Ajax call
using a POST.

 JSON is great for Ajax applications, but the format itself can be limiting. Although
not as rich as the WCF native formats, another widely understood format is SOAP.
EXPOSING A SOAP ENDPOINT

Like JSON endpoints, SOAP endpoints are updatable services exposed using a service
endpoint definition in the web.config. The entry to add for SOAP is

<add name="Soap"
type="Microsoft.ServiceModel.DomainServices.Hosting.SoapXmlEndpointFactory,

➥ Microsoft.ServiceModel.DomainServices.Hosting, Version=4.0.0.0,
➥ Culture=neutral, PublicKeyToken=31bf3856ad364e35" />

This requires the same assembly reference the JSON example required. Note that the
public key token and other assembly information are identical as well.

 Unlike the JSON approach, the SOAP endpoint ends up working right at the root
service level. For example, to get the Web Services Description Language (WSDL) for
the SOAP service in your solution, hit this URL with the browser:

http://.../Services/Chapter17-Web-Services-EmployeeService.svc?wsdl

You don’t need to add /Soap to the URL.
 To fully utilize the SOAP client, you’ll need to add a service reference from another

project and generate the client. As was the case in the JSON version, the service is
read/write but doesn’t expose the entity metadata to the client. To take advantage of
WCF RIA Services, you’ll want a full Silverlight application, aware of WCF RIA Services
and aware of the metadata it uses.

17.2.3 Domain service method types

The methods in the domain service have names starting with Get, Insert, Update, and
Delete. This naming convention allows for automatic wire-up of the operations with
the client. This convention-over-configuration approach is common outside the Micro-
soft developer ecosystem and is just starting to make its way into Microsoft products.

 Conventions don’t always work for everyone or in every situation, though. For
instances where you’d rather not go with convention, you can use a series of attri-
butes to make your choices explicit. Table 17.1 shows the attributes, conventions, and
their descriptions.

Table 17.1 Naming conventions, equivalent attributes, and their purposes

Name prefix Attribute Purpose

(Any) [Query()] A method that returns data without any side effects. The usual
approach is to prefix with Get, but any prefix is fine as long as
the function returns an instance of an entity T, an
IEnumerable<T>, or an IQueryable<T>.

Insert, Add,
Create

[Insert()] An operation that inserts a single entity into the data store. The
method takes the entity as a parameter.
Licensed to Devon Greenway <devon.greenway@gmail.com>

473Exposing data with the domain service
In the remainder of this section, we’ll go through each of the types of operations on
the domain service.
QUERY METHODS

Query methods are methods that return a single entity or a set of entities. The default
query method generated by the template returns all instances of the entity in the data
store. This allows you to further compose the query on the client with additional crite-
ria to limit the result set.

 Query methods may be indicated by convention or attribute, as shown previously.
When using the attribute, you have a few options to set. These are shown in table 17.2.

Creating a query method on the service is pretty simple if you follow the naming and
method signature conventions. Here’s an example of one that returns only salaried
employees:

public IEnumerable<Employee> GetSalariedEmployees()
{
 return from Employee emp in ObjectContext.Employees
 where emp.SalariedFlag == true
 select emp;
}

Update, Change,
Modify

[Update()] An operation that updates a single entity in the data store. The
method takes the entity as a parameter.

Delete, Remove [Delete()] An operation that deletes an entity in the data store. The
method takes the entity as a parameter.

(Any) [Invoke()] A business method that must be executed without tracking or
deferred execution. It may or may not have side effects. Use
only when one of the other method types can’t be used.

(Any) [Update()] A named update with UsingCustomMethod=true set in
the attribute. This is a purpose-built function that performs a
specific type of update. An example may be a product discount
or firing an employee.

Table 17.2 QueryAttribute members

Member Description

HasSideEffects Queries shouldn’t typically have side effects that would alter data. If they do, set
this property to true so clients can make decisions as to how to use the
method. For example, an HTTP client may send a POST instead of a GET.

IsComposable Set this to true if the query allows composing to add additional criteria.

IsDefault Set this to true if this query is the default query for the entity type.

ResultLimit This is the maximum number of results the method should return. Defaults to 0,
which indicated unlimited results.

Table 17.1 Naming conventions, equivalent attributes, and their purposes (continued)

Name prefix Attribute Purpose
Licensed to Devon Greenway <devon.greenway@gmail.com>

474 CHAPTER 17 WCF RIA Services
When the solution is compiled, the method is turned into a client-side method named
GetSalariedEmployeesQuery on the generated EmployeeContext domain context
object.
TYPES OF QUERY METHODS

Query methods fall into three primary buckets:

■ Methods returning a single concrete instance of an entity
■ Methods returning a collection or enumerable of zero or more entities
■ Methods returning an IQueryable of the entity

The first two are easily understood, falling squarely into patterns you’ve used since
functions were first conceptualized in computer science. The third option is a little
different and provides real flexibility.

 A function with an IQueryable return type returns an expression tree. This is a
LINQ concept for a generic query that’s to be executed by a query provider. The IQue-
ryable interface inherits from IEnumerable, so it also represents the results of that
expression tree. Even when you build the LINQ query on the client, the query itself is
executed server-side, typically all the way back at the database for a provider such as
the Entity Framework.

 In effect, this means you can have this query method on the server

public IQueryable<Employee> GetEmployeesSorted()
{
 return from Employee emp in ObjectContext.Employees
 orderby emp.Title, emp.HireDate
 select emp;
}

and use it like this on the client:

EmployeeContext context = new EmployeeContext();

EntityQuery<Employee> query =
 from emp in context.GetEmployeesSortedQuery()
 where emp.SalariedFlag == true
 select emp;

Note that the query is composed—the server-side query and the client-side query are
combined to return a set of results. That’s a powerful way to provide prefiltered or
presorted data to the client. For example, the query could’ve taken a parameter to use
in the filter or used security to decide which records could be returned to the client.
The query execution itself is deferred; it’s not executed until the client code first
accesses the result data.

 We’ll cover more about using the domain service query methods from the client
later in this chapter. Another class of methods the service provides is for data manipu-
lation: insert, update, and delete operations.
INSERT, UPDATE, AND DELETE METHODS

The generated code for the insert, update, and delete methods takes in a single entity
and uses the backing data store to perform the appropriate operation. For example,
the update code looks like this:
Licensed to Devon Greenway <devon.greenway@gmail.com>

475Exposing data with the domain service
public void UpdateEmployee(Employee currentEmployee)
{
 this.ObjectContext.Employees.AttachAsModified(currentEmployee,
 this.ChangeSet.GetOriginal(currentEmployee));
}

That tells the server-side object context to add this employee and mark it in the modi-
fied state, using the passed-in employee object as the current state and the original
object as the last-known state from the data store. The Attach and AttachAsModified
functions are all provided by the Entity Framework. The specific function used for
your data provider may vary.

 For a given entity, it’s unusual to create alternate general insert, update, and delete
methods. Doing so would confuse RIA services, not to mention your fellow program-
mers. There’s one exception—the named update method.
NAMED UPDATE METHODS

Normally, the update methods are handled automatically based on the state of the
data. But you may have situations where you need to provide a custom update method
that you’ll call directly rather than let Silverlight infer the update operation for a par-
ticular entity during the SubmitChanges call on the domain context.

 To mark an update operation as a named update operation, it needs to have the
usual update operation signature and the Update attribute with UsingCustomMethod =
true. Here’s an example:

[Update(UsingCustomMethod = true)]
public void SpecialCascadedUpdate(Employee emp)
{
 ...
}

This approach exists to allow you to handle special cases related to business logic or
database complexities. It’s still called as part of the batched SubmitChanges call. If you
want to immediately execute a function, another approach is available.
INVOKE METHODS

CRUD methods are called as part of a batch—the entities have the CRUD operations
performed on them but aren’t sent to the server for the actual action until the call to
SubmitChanges is made on the client.

 Invoke methods are normal methods you can use to perform some sort of calcula-
tion or return a piece of data. They’re operations that need to be executed without
change tracking or deferred execution. Invoke methods shouldn’t be used to load
data; that’s what query methods are intended for. Returning an entity from an Invoke
method bypasses the pattern and won’t cause the appropriate change tracking and
entity generation to occur on the client.

 Although the Invoke attribute is optional, to be considered an invoke method, a
method shouldn’t take entities as a parameter or return an entity, IEnumerable, or
IQueryable of entities as a result.

 A typical invoke method, if there could be such a thing, might look like this (exam-
ple shamelessly stolen from chapter 16 on MVVM):
Licensed to Devon Greenway <devon.greenway@gmail.com>

476 CHAPTER 17 WCF RIA Services
[Invoke()]
public int CalculateVacationBonus(DateTime hireDate)
{
 int vacationBonus;
 DateTime today = DateTime.Today;

 int yearsInService = today.Year - hireDate.Year;

 if (hireDate.AddYears(yearsInService) > today)
 yearsInService--;

 if (yearsInService < 5)
 vacationBonus = 10;
 else
 vacationBonus = 20;

 return vacationBonus;
}

It’s a regular business method. Given that it’s on the server, you probably have a rea-
son—it may call another web service, or it may hit a database to do a lookup. In this
case, it’s on the server to illustrate the invoke type.

 As mentioned, the Invoke attribute is optional. When in doubt, add the attribute
to make your intentions clear. For normal CRUD methods where the name is suffi-
ciently patterned using the naming conventions, this is usually unnecessary. But I find
that Invoke methods can be ambiguous at first glance. Speaking of naming conven-
tions, what happens when you want to avoid having them kick in?
IGNORING METHODS DESPITE THE NAME

Some of these operations require the use of attributes, but many are autogenerated via
the naming conventions. If you don’t want RIA Services to generate a domain method
for your service method, apply the Ignore attribute to that method, as shown here:

[Ignore()]
public void UpdateEmployeeButNotReally(Employee emp)
{
...
}

With that attribute in place, despite the fact that the method uses the Update naming
convention and method signature, it won’t be generated as an update call on the client.

 The domain service provides a number of standard method types, many of which
are autogenerated from the tooling but may be modified or replaced. Domain ser-
vices provide CRUD operations in the form of insert, update, delete, and query meth-
ods. In addition, arbitrary functionality may be included in invoke methods.

 When discussing the IQueryable type, I sneaked an EmployeeContext object into the
example. What’s that, and what does it provide? That’s the subject of the next section.

17.2.4 Using a domain service from Silverlight

Domain services execute on the server, running under the full .NET 4 framework. The
client-side equivalent of the domain service is the domain context object. Domain
Licensed to Devon Greenway <devon.greenway@gmail.com>

477Exposing data with the domain service
context objects provide a proxy for the service methods, as well as change tracking,
operation batching, and more.

 For each domain service on the server, RIA Services will generate one domain con-
text object on the client. In the case of the EmployeeService domain service, the cli-
ent domain context is named EmployeeContext.

 The domain service may be wired up to Silverlight via RIA Services controls in the
UI that go through the context object, or via explicit use of the context object in code.
Both have advantages and disadvantages and will impact the overall architecture of
your application. I’ll cover both here, starting with the most involved approach: creat-
ing the connection from code.
CONNECTING VIA CODE

One way to use the domain service is to reference the client context object from code
and execute queries directly against it. Because this is the most traditional way when
compared to the usual pattern of working with services and WCF service proxies, I’ll
start with it.

 In the Home.xaml.cs file, replace the OnNavigatedTo method with the following
short bit of code:

protected override void OnNavigatedTo(NavigationEventArgs e)
{
 EmployeeContext context = new EmployeeContext();

 EntityQuery<Employee> query = context.GetEmployeesQuery();

 context.Load<Employee>(query);
 EmployeeGrid.ItemsSource = context.Employees;
}

When the page is navigated to, this code automatically loads all the employees and
assigns that collection to the ItemsSource of a DataGrid. The EmployeeContext
object, in this instance, serves as the proxy for the domain service. Note that though
you don’t bother to hook up a method to the Load method asynchronous return, it’s
still executed asynchronously, and the results appear through binding.

 The query system is flexible: you could change the query to add some criteria and
a sort if you wanted to. (Be sure to add using System.Linq; to the top of the code
before you try to compile.)

EntityQuery<Employee> query =
 from emp in context.GetEmployeesQuery()
 where emp.SalariedFlag == true
 orderby emp.HireDate
 select emp;

This example selects all the employees that are salaried and sorts them by hire date.
The query itself is executed on the server, as you learned in the previous section.
When using the Entity Framework with SQL Server as you are here, the query is
executed all the way back at SQL Server, and only the items matching the query
are returned.
Licensed to Devon Greenway <devon.greenway@gmail.com>

478 CHAPTER 17 WCF RIA Services
 You can’t test the connection without having something to bind it to. So, time for a
trusty DataGrid. Replace everything else in the LayoutRoot, starting with the Scroll-
Viewer, with this XAML:

<Grid Margin="10">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="*" />
 <ColumnDefinition Width="350" />
 </Grid.ColumnDefinitions>

 <my:DataGrid x:Name="EmployeeGrid"
 Grid.Column="0" Margin="5" />
</Grid>

It’ll be easiest if you first drag the DataGrid onto the design surface in order to set up
the correct namespaces and project references. Besides, “it’s not a real demo unless
someone drags a DataGrid.”5

 When you run the application, you’ll get something that looks like figure 17.8.
 Connecting via code allows you to better take advantage of advanced patterns such

as MVVM and have complete control over the execution path. As you get more into
advanced patterns, that can be a significant benefit.

5 Scott Hanselman talking about a 2010 keynote demo for WCF RIA Services.

Figure 17.8 The DataGrid populated using the DomainDataSource control in XAML
Licensed to Devon Greenway <devon.greenway@gmail.com>

479Exposing data with the domain service
TIP I set the DataGrid ItemsSource property via code. There’s no reason
you couldn’t set up a ViewModel (chapter 16) and bind the ItemsSource to
an exposed Employees property. If you go with using the domain context
object from code, follow the ViewModel/MVVM pattern when you do it;
you’ll thank yourself later.

I’ll cover the domain context class in more detail in various parts of this chapter, pri-
marily in section 17.3 when I discuss update functionality.

 There’s another approach that’s easier to use and includes a ton of built-in func-
tionality. Before making up your mind which approach you want to use, look at the
DomainDataSource control.
USING THE DOMAINDATASOURCE CONTROL

The DomainDataSource control provides an all-XAML way to interface with the
domain service. I’ve heard this described as a bad thing, akin to wiring your UI directly
to your database. I strongly disagree with that assessment, but I do agree that despite
the utter simplicity of using the control, there are some drawbacks when it comes to
testing, mocking, and application structure.

 Before making up your mind that the control is a Bad Thing, let’s look at what it
can do. After all, some applications may benefit from this approach. Despite how it
looks, it’s not like you’re binding VB3 UI controls directly to tables in an access data-
base;6 there are a few layers of abstraction in between.

 To use the DomainDataSource control, you’ll need to add a Silverlight assembly ref-
erence to the RIA Services SDK assembly System.Windows.Controls.DomainServices.
When that’s done, inside the LayoutRoot Grid of /Views/Home.xaml, add the follow-
ing markup:

<riaControls:DomainDataSource x:Name="DataSource"
 AutoLoad="True"
 QueryName="GetEmployees">
 <riaControls:DomainDataSource.DomainContext>
 <domain:EmployeeContext />
 </riaControls:DomainDataSource.DomainContext>
</riaControls:DomainDataSource>

This markup sets up a new DomainDataSource control, tells it to automatically call the
query when loaded, and sets the query name to the one that loads the employee infor-
mation from the domain service. For this to work, you’ll also need to set up the ria-
Controls and domain namespaces in the same XAML file. They are as follows:

xmlns:riaControls="clr-namespace:System.Windows.Controls;

➥ assembly=System.Windows.Controls.DomainServices"
xmlns:domain="clr-namespace:Chapter17.Web.Services"

The first namespace, riaControls, defines the location for the DomainDataSource
control. The second defines the location for the generated domain context class: the
client-side proxy for the domain service on the server.

6 I see the old VB3/4/5/6 VCR data-binding control in my nightmares from time to time. It’s up there with the
one about having a physics final today but having skipped the class all semester to spend time MUDding.
Licensed to Devon Greenway <devon.greenway@gmail.com>

480 CHAPTER 17 WCF RIA Services
TIP If you’re curious about where the client-side proxy is defined and what
it looks like, select the Silverlight project and, from the Project menu, select
Show All Files. Scroll down, and you’ll see a Generated_Code folder. In that
folder, you’ll find a number of interesting files, but the one that contains
the proxies and entity definitions is Chapter17.Web.g.cs.

The DataGrid then needs to be bound to the new data source. Because the data
source has an assigned context object, the data itself is located in the Data property:

<my:DataGrid Grid.Column="0" Margin="5"
 ItemsSource="{Binding Data, ElementName=DataSource}" />

What you’ve changed on the grid is the ItemsSource. The markup here binds the
DataGrid to the data property of the DomainDataSource. Because the DataGrid
instance is set up by default to autogenerate columns and show all data, you’ll end up
with an application that looks like the previous example in figure 17.8 when run; the
UI hasn’t changed, just the way you get data on the client. Be sure to comment out or
remove the code you previously added.

 The DomainDataSource is easy to use. Although “Look ma, no code!” isn’t the most
important reason to pick one approach over another (and in some cases can be a rea-
son not to pick an approach), the domain data source is powerful and flexible enough
to make it a real contender for how you connect to your domain service.

 One other reason I like the DomainDataSource control is because both the team
and the community are working to come up with better approaches that allow using
that control with a ViewModel directly. Yep, using your ViewModel while still taking
advantage of most of the coolness of the DomainDataSource is on everyone’s radar.

 The DomainDataSource and the underlying domain context objects support updat-
ing as well as querying, of course. But before we look at that, it’s worth exploring one
of the more compelling reasons to use the DomainDataSource control: filtering, sort-
ing, grouping, and paging.

17.3 Filtering, sorting, grouping, and paging
User interfaces used to be simple to design because user expectations were so low.
Character-mode terminals, difficult-to-memorize commands, and complex keystrokes
that required keyboard function key overlays7 were the norm at one point, with some
approaches persisting even into the GUI era.

 As applications gained more chrome functionality, things such as sorting and
grouping became expected functionality. In the mid-’90s, I remember developing
applications in Visual Basic, and the users assuming they could do things like sort
grids using column headers, drag to rearrange, and so forth. Unfortunately, these
assumptions didn’t come out until user-acceptance testing.

7 During the ’80s and ’90s, there was a robust market for keyboard overlays for WordPerfect, WordStar,
Lotus 123, and others. Most used the function keys in normal, shift, alt, and control modes, all for different
commands.
Licensed to Devon Greenway <devon.greenway@gmail.com>

481Filtering, sorting, grouping, and paging
 These days, anything that helps meet the bar for base application functionality (for
business applications, this is typically defined by what Microsoft Windows or Microsoft
Office does in similar situations) is something I appreciate.

 One reason I appreciate the DomainDataSource control is how well it integrates
with other client-side controls to allow for filtering, sorting, grouping, and paging of
the data. Any of those features, done right and done well, can amount to a fair bit of
code and a testing burden.

 Consider that you want to ensure they execute server-side for the best perfor-
mance. You also have to handle the always-troublesome paging algorithms. What hap-
pens when users add a new item to a paged set? What happens when they sort?
Fortunately, the RIA Services team has made intelligent decisions about behavior in
each of these scenarios and implemented them into the code base.

 You’ll progressively add each of these capabilities—filtering, sorting, grouping, and
paging—to the DomainDataSource-based version of your code, starting with filtering.

17.3.1 Filtering

Microsoft Excel and Microsoft SharePoint have brought filtering of table- or grid-
based data up to the level of basic functionality for most applications. Proper filtering
that performs efficiently isn’t a huge effort, but it’s a chunk of code that has to be
maintained and tested. Having filtering support built in, so that all you need to pro-
vide is a filtering UI, is a huge benefit to most applications.

 The first step is to create a basic single-field filter UI. Modify the controls in the home
page XAML so you have these three controls where the DataGrid alone used to be:

<TextBlock Height="23" Width="84" Margin="6,10,0,0"
 HorizontalAlignment="Left" VerticalAlignment="Top"
 Text="Title Contains"
<TextBox x:Name="FilterText" Height="23" Margin="96,6,5,0"
 HorizontalAlignment="Stretch" VerticalAlignment="Top" />
<my:DataGrid x:Name="EmployeeGrid" Grid.Column="0" Margin="0 40 5 5"
 ItemsSource="{Binding Data, ElementName=DataSource}" />

This markup creates some space (via the margins on the DataGrid) and fills it with a
TextBlock and TextBox that you’ll use to gather filter information from the user.
Although the DomainDataSource controls are smart enough to be able to filter on any
column using a number of different operators, you’ll go with a straight contains filter
on a single field to keep things simple.

 The next step is to wire the filter TextBox, named FilterText, to the data source
and specify what field it’ll operate on. Before you do that, let’s look at how filtering is
implemented on the DomainDataSource class.
FILTER DESCRIPTORS EXPLAINED

Filtering is implemented via two properties on the DomainDataSource. The first is the
FilterOperator, which can be And or Or and controls how the filter descriptors are
combined. The second is the collection of FilterDescriptor objects named, appro-
priately, FilterDescriptors.
Licensed to Devon Greenway <devon.greenway@gmail.com>

482 CHAPTER 17 WCF RIA Services
 Filter descriptors are discrete filter instructions that may be combined to produce an
effective filter for a query. Conceptually, they’re applied like a where clause in SQL,
although the actual implementation is ultimately up to how the provider implements
the composed where functionality in a LINQ query. Table 17.3 shows the properties of
the FilterDescriptor class.

Of these properties, the relationship Property Operator Value is the most inter-
esting and the most relevant to filtering. A number of operators are supported, each
of which is described in table 17.4.

It may seem somewhat redundant to list the descriptions for each of these values given
their names, but there are three important bits of information to get from this table:

Table 17.3 Properties of the FilterDescriptor class

Property Description

IgnoredValue The value to be used for something like (all), where you don’t want any
value appended to the filter.

IsCaseSensitive If true, the filter is case-sensitive for string values. How this works depends on
settings in the data store used by the domain service.

Operator A FilterOperator that explains the relationship between
PropertyPath and Value. Supported values are shown in table 17.4.

PropertyPath The path to the data item to be evaluated against the Value property. This is
the property of your entity.

Value The value to use for the filter condition.

Table 17.4 Values for the Operator property of the FilterDescriptor

Value Description

IsLessThan The data value must be smaller than the filter value.

IsLessThanOrEqualTo The data value must be smaller than or equal to the filter value.

IsEqualTo The data value must be equal to the filter value.

IsNotEqualTo The data value must be different from the filter value.

IsGreaterThanOrEqualTo The data value must be larger than or equal to the filter value.

IsGreaterThan The data value must be larger than the filter value.

StartsWidth The data value must start with the filter value (strings only).

EndsWidth The data value must end with the filter value (strings only).

Contains The data value must contain the filter value (strings only).

IsContainedIn The data value must be contained in the filter value (strings only).
Licensed to Devon Greenway <devon.greenway@gmail.com>

483Filtering, sorting, grouping, and paging
■ A pretty comprehensive set of filter operators is available.
■ The order of the statement, read left to right, is Property Operator Value.
■ Some of the operators make sense only on strings, because they perform sub-

string operations.

The reason for the lengthy member names is twofold: you can’t have operators like >=
in XAML without ugly and unreadable escaping like >=, and you need an enumera-
tion to set the property in XAML or from code. Primarily, the list is optimized for using
from XAML.

 Because it’s optimized for XAML, you’d think the properties would all support
binding—and you’d be right. It’s possible to build a complete filter expression using
filters created using binding, meaning you can provide the user with a drop-down list
of fields, a drop-down list of operators, and a TextBox for the value. All six properties
of the FilterDescriptor class are dependency properties that support binding.
USING FILTER DESCRIPTORS WITH THE DOMAINDATASOURCE

Despite the binding flexibility, you’ll implement a simple filter where only the filter
value itself is bound. You already have the TextBox for the value in place, so the next
step is to add the associated FilterDescriptor to the DomainDataSource. This
markup shows the updated filter including the descriptor and FilterOperator:

<riaControls:DomainDataSource x:Name="DataSource"
 AutoLoad="True" FilterOperator="And"
 QueryName="GetEmployees">
 <riaControls:DomainDataSource.DomainContext>
 <domain:EmployeeContext />
 </riaControls:DomainDataSource.DomainContext>
 <riaControls:DomainDataSource.FilterDescriptors>
 <riaControls:FilterDescriptor PropertyPath="Title"
 Operator="Contains"
 Value="{Binding Text, ElementName=FilterText}" />
 </riaControls:DomainDataSource.FilterDescriptors>
</riaControls:DomainDataSource>

This markup augments the DomainDataSource to add a FilterDescriptor. That Fil-
terDescriptor targets the Title property of the Employee entity and checks to see
that it contains (using the Contains operator) the current value in the Text property
of the FilterText field on the same page.

 When run, you’ll have an experience like that shown in figure 17.9.
 Type in the Title Contains field, and pause for a second or two. The pause will kick

in the filter, executing the query on the server and displaying the results in the grid.
 By adding just a few lines of XAML, you were able to add property-value filtering

(which also works with sorting, grouping, and paging, as you’ll see in the next sec-
tions) without having to wire up anything at the database level or even the service
level. This makes sense. Like all the other features in this section, filtering should be a
given for an application; there’s little point in each of us implementing the same tired
old filtering code again and again. The same goes for sorting, the next topic.
Licensed to Devon Greenway <devon.greenway@gmail.com>

484 CHAPTER 17 WCF RIA Services
17.3.2 Sorting

You may have already noticed that the DataGrid, when wired to the DomainData-
Source (or any other ICollectionView or even IList), provides automatic sorting
capabilities when you click column headers. The DomainDataSource also provides a
way to perform a default sort on the data using SortDescriptor objects. For instance,
to have the data sorted by Title and HireDate by default, you can add the following
markup to the inside of the DomainDataSource markup:

<riaControls:DomainDataSource.SortDescriptors>
 <riaControls:SortDescriptor Direction="Ascending"
 PropertyPath="Title" />
 <riaControls:SortDescriptor Direction="Ascending"
 PropertyPath="HireDate" />
</riaControls:DomainDataSource.SortDescriptors>

When you run the application, you’ll see that the DataGrid isn’t ignorant of the sort.
In most applications, when you sort queries in the database, the client has no idea the
data was sorted. With the DomainDataSource, the DataGrid is aware. See figure 17.10
for the proof in the column headers.

 Of course, you can also sort server-side as part of the query code, as you’ve seen
earlier in this chapter. In either case, sorting is recommended for grouping and
required for paging.

Figure 17.9 Filtering the results to those that contain Manager in the title. This was done entirely
with the DomainDataSource and a little in-XAML binding.
Licensed to Devon Greenway <devon.greenway@gmail.com>

485Filtering, sorting, grouping, and paging
17.3.3 Grouping

Supporting grouping is as easy as sorting. Following the trend we’ve shown so far,
grouping is also accomplished through a collection of descriptors. In this case, the
descriptors are GroupDescriptor objects. For example, if you want to group on Title,
you add the following XAML to the DomainDataSource markup:

<riaControls:DomainDataSource.GroupDescriptors>
 <riaControls:GroupDescriptor PropertyPath="Title" />
</riaControls:DomainDataSource.GroupDescriptors>

This relies on the previous sort for the grouping to make any sense. As expected, this
integrates nicely with the DataGrid. Figure 17.11 shows the DataGrid control with the
new grouping in place.

 With the grouping in place, you can still sort using the column headers, but the
sort happens within the defined grouping.

 The final and perhaps most interesting of the features is the support for paging.

Figure 17.10 Data sorted with the DomainDataSource. Note the column headers.

Figure 17.11 The DataGrid with grouping, courtesy of the DomainDataSource control
Licensed to Devon Greenway <devon.greenway@gmail.com>

486 CHAPTER 17 WCF RIA Services
17.3.4 Paging

There currently exist three main UI paradigms for dealing with a large number of
records. You can preload everything and allow scrolling, you can implement an infinite
scroll that performs lazy fetching of additional data (a good example is the Bing image
search), or you can use data paging. When the web started to define how we built
applications, data paging became the most common way to deal with large volumes of
data. After all, if it’s good enough for Google, it must be good enough for your appli-
cation, right?

 I’ve never been a fan of paging, but it certainly has some advantages when it comes
to getting a lot of information in front of a user while reducing network traffic and
database load.

 When you’re building RIA Services applications, paging is accomplished with a
combination of two items:

■ The PageSize and LoadSize in the DomainDataSource
■ A DataPager control

The PageSize property of the DomainDataSource controls how many items appear on
a single page. The LoadSize controls how many items the DomainDataSource loads
into memory at one time. For example, if you have a PageSize of 15 and a LoadSize
of 30, every other page will cause a network hit to the server to get the next 30 items.
Because RIA Services doesn’t know the usage pattern of your application, these two
knobs are left entirely up to you.

 For this example, you’ll set the PageSize to 15 and the LoadSize to 30. The
DomainDataSource opening tag with these two properties set looks like this:

<riaControls:DomainDataSource x:Name="DataSource"
 PageSize="15"
 LoadSize="30"
 AutoLoad="True"
 FilterOperator="And"
 QueryName="GetEmployees">

The next thing to do is to add a DataPager control (easiest if dragged onto the sur-
face or markup) and change the margins on the DataGrid to make room at the bot-
tom. The updated DataGrid and new DataPager markup should read as follows:

<my:DataGrid x:Name="EmployeeGrid"
 Grid.Column="0"
 Margin="0 40 5 40"
 ItemsSource="{Binding Data, ElementName=DataSource}" />

<my:DataPager Grid.ColumnSpan="2"
 Source="{Binding Data, ElementName=DataSource}"
 HorizontalAlignment="Stretch"
 VerticalAlignment="Bottom" />

With this markup in place, run the application and navigate through the pages. The
application, still with sorting and grouping in place, should look like figure 17.12.
Licensed to Devon Greenway <devon.greenway@gmail.com>

487Filtering, sorting, grouping, and paging
In order to make the most of the DataPager, its source must be set to an IEnumerable
that implements the IPagedCollectionView interface, an example of which is the
DomainDataSource control. The data must also be sorted, either via the query on the
server or via sorting specified in the DomainDataSource. If the data isn’t presorted,
you’ll get an exception at runtime.
DATAPAGER PROPERTIES

The DataPager is a fully templatable control, supporting the lookless model Silver-
light and WPF are famous for. In addition, the DataPager has a number of properties
that control its behavior and appearance.

 In addition to helpful utility properties such as CanMoveToFirstPage and Can-
MoveToNextPage, the DataPager includes a DisplayMode property that is used to con-
trol which buttons and boxes are shown in the UI. Table 17.5 shows the different
values this property can be set to.

 As you can see, the control provides a number of different paging interfaces, cov-
ering the gamut typically seen in applications and on the Web. For the ones that show
page numbers, you can use the NumericButtonCount property to control how many
numbers are displayed. In addition, you can use the AutoEllipsis property to display
an ellipsis, rather than a number, to indicate more pages.

Figure 17.12 The DataPager in use with a page size of 15 and a load size of 30
Licensed to Devon Greenway <devon.greenway@gmail.com>

488 CHAPTER 17 WCF RIA Services
The DomainDataSource control makes it easy to add common data-browsing capabili-
ties—filtering, sorting, grouping, and paging—to your applications. Combined, these
are high-value, high-effort development tasks in most applications. Having the func-
tionality built in saves you from having to reinvent the wheel or tell your customer
“no” when the feature is requested (or worse, assumed).

 So far, everything you’ve done has been with read-only data. Real applications typi-
cally need to update data as well.

17.4 Updating data
Most data-oriented applications have to do more than read data; they need to per-
form inserts, updates, and deletes as well. In the discussion about the domain service
methods, I touched on the three data modification methods that begin with the pre-
fixes Insert, Update, and Delete.

 WCF RIA Services makes updating data as easy as retrieval. The domain service
methods are trim, and autogenerated for the usual cases. The client-side domain con-
text methods (which we’ll cover in 17.4.2) that provide access to those services are
also autogenerated.

 In this section, you’ll start with creating a user interface using the DataForm that
allows you to update the data in the domain service. We’ll then look at the client-side
counterpart of the domain service: the domain context. Finally, we’ll go through how
the entity class and its buddy class with validation and display metadata work together
to make it easier to have a robust and feature-rich data container on the client.

Table 17.5 DisplayMode property values and their associated UI

Property Runtime appearance

FirstLastNumeric

FirstLastPreviousNext

FirstLastPreviousNextNumeric

Numeric

PreviousNext

PreviousNextNumeric
Licensed to Devon Greenway <devon.greenway@gmail.com>

489Updating data
17.4.1 Using the DataForm UI

The DataForm, like the DataGrid, is extremely powerful when matched up with WCF
RIA Services and the DomainDataSource control. The DataForm, in fact, was originally
part of WCF RIA Services before it was pulled out and made part of the Silverlight
Toolkit. The DataForm is covered in full in chapter 12, so I won’t repeat that content
here. But you’ll use it to provide the update UI for the entities in this application.

 The right side of the page has been empty so far. You’ve been leaving room for the
DataForm in that space. This bit of XAML, to be placed right after the DataGrid ele-
ment and before the DataPager element, will get you set up for a detail view of the
selected item in the grid:

<toolkit:DataForm Grid.Column="1"
 Margin="5 40 0 40"
 ItemsSource="{Binding Data, ElementName=DataSource}"
 CurrentItem="{Binding SelectedItem,

➥ ElementName=EmployeeGrid, Mode=TwoWay}"/>

This sets up a DataForm that uses the same ItemsSource as the DataGrid, so it’s also
bound to the DomainDataSource control. The CurrentItem property is bound to the
DataGrid’s selected item, keeping the form in sync with what’s shown in the DataGrid.
Note that the binding is two-way, so the DataForm navigation controls can be used. Fig-
ure 17.13 shows the application with the new addition.

Figure 17.13 The application with the details DataForm on the right, populated from
the selected grid item. Row navigation works from both the grid and the DataForm.
Licensed to Devon Greenway <devon.greenway@gmail.com>

490 CHAPTER 17 WCF RIA Services
Navigate around using the grid and using the navigation buttons at upper right.
When you’re sure it’s all working, you’ll wire up the save functionality.
SAVING CHANGES

To submit the changes to the server, you need to have a button wired up to the Sub-
mitChangesCommand of the DomainDataSource. That command does the equivalent of
calling SubmitChanges on the domain context from code. Place this right below the
DataForm markup:

<Button x:Name="SubmitChanges"
 Grid.Column="1" Margin="5"
 HorizontalAlignment="Right" VerticalAlignment="Top"
 Height="25" Width="120"
 Command="{Binding SubmitChangesCommand, ElementName=DataSource}"
 Content="Submit Changes" />

This adds a Submit Changes button at upper right on the screen. In theory, you have a
fully working application at this point; you can perform CRUD8 operations using the
UI. Use the + button to add a new record and the - button to delete the current
record. When you’re finished, click the new Submit Changes button to call the Sub-
mitChanges function behind the scenes. This function, like most everything else in
the DomainDataSource control, relies on the generated domain context object. In this
case, it’s the EmployeeContext.

17.4.2 The domain context

One of the types of classes that’s generated based on the domain service is a client-side
domain context. The domain context is 1:1 with the domain service. In your solution,
for example, you have an EmployeeService domain service and an EmployeeContext
domain context.

 In addition to the previously seen query methods, the domain context has a num-
ber of properties and methods. The most commonly useful are shown in table 17.6,
using Employee as the example.

8 Note that due to the relationship with the Contact object and other relationships, deletes and inserts cur-
rently fail. Updates work fine. We’ll take care of that later in this chapter.

Table 17.6 The properties and methods of the generated domain context class

Member Description

CalculateVacationBonus
method

The method generated from your server-side Invoke operation

EntityContainer property Internal, but important for holding the actual entities and tracking
insert and delete operations

HasChanges property True if the domain context is tracking any entities with changes
(updates, inserts, deletes)

IsLoading property True if the domain context is loading data
Licensed to Devon Greenway <devon.greenway@gmail.com>

491Updating data
INVOKE OPERATIONS

In this example, a client-side invoke operation was created for the CalculateVaca-
tionBonus function you added to the domain service. Because all network calls in Sil-
verlight are asynchronous, you can’t call the function and get the result. Instead, you
need to set up a callback. For example, listing 17.2 includes the client-side code to call
the CalculateVacationBonus function and do something useful with the results.

private void CalculateBonus()
{
 var context = DataSource.DataContext as EmployeeContext;

 var emp = EmployeeGrid.SelectedItem as Employee;

 if (emp != null)
 {
 DateTime hireDate = new DateTime(2002, 05, 16);

 var invokeOp = context.CalculateVacationBonus(
 hireDate, OnInvokeCompleted, emp);
 }
}

private void OnInvokeCompleted(InvokeOperation<int> invokeOp)
{
 if (invokeOp.HasError)
 {
 MessageBox.Show(invokeOp.Error.Message);
 invokeOp.MarkErrorAsHandled();
 }
 else
 {
 Employee emp = invokeOp.UserState as Employee;

 if (emp != null)
 {
 emp.VacationHours += (short)invokeOp.Value;
 }
 }
}

This code, from the code-behind for Home.xaml, shows how to call an invoke
method. Note the parameters to the CalculateVacationBonus client-side method.

IsSubmitting property True if the domain context is submitting changes

RejectChanges method Rejects all pending changes and reverts objects back to their
unedited state

SubmitChanges method Sends all pending change operations to the domain service for
processing

Listing 17.2 Calling an invoke operation from the client

Table 17.6 The properties and methods of the generated domain context class (continued)

Member Description

Execute invoke
operation
Licensed to Devon Greenway <devon.greenway@gmail.com>

492 CHAPTER 17 WCF RIA Services
On the server, the method took only a single parameter. On the client, it takes that
same parameter, plus a callback and a data item. In this case, the data item is the
Employee you’re working with. You use that because you need access to the Employee
inside the callback method.

 The callback method executes when the asynchronous call has completed. The
single parameter for the callback is an InvokeOperation object with a number of
properties, including the UserState and error information.

 In this method, you check for an error. If there’s no error, you cast the UserState
back to an Employee object, check it for null, and then use the function return value
(the calculated bonus) and add that to the existing vacation hours. That object is then
marked as HasChanges = true on the entity. The entity is then eligible for the Submit-
Changes call.
SUBMITCHANGES

Referring back to table 17.6, you’ll notice that no Insert, Update, or Delete methods
were generated. Instead, those are called via SubmitChanges.

 SubmitChanges is an asynchronous batching operation. It handles sending all
method calls to the server, with the exception of Invoke and Query operations.

 When you insert new items or delete existing items, those operations occur only on
the client. When you call SubmitChanges, it loops through the entities on the client
and sends to the server those entities that require a persistence operation, calling the
appropriate operation for each entity.

 To cancel all pending changes for the domain context, call the RejectChanges
method. It reverts entities back to their previous state, removes any newly inserted
items, and reinstates any deleted items.

 The domain context is the client-side proxy for the domain service, as well as the
container within which all instances of a given entity reside. It provides an interface
for invoke operations and query operations, as well as an implicit interface to the
insert, update, and delete operations through the SubmitChanges method.

 The entity classes Employee and Contact both inherit from a common client-side
base class that provides much of the required change-tracking and other plumbing
functionality. This class is named, appropriately enough, Entity.

17.4.3 The Entity class

Each client-side entity you work with, Employee and Contact in this example, derives
from the Entity base class. This class provides a number of important change-track-
ing properties and methods.

 Table 17.7 shows the most important public members of the Entity base class
 Your derivations of the Entity class (the Contact class and the Employee class) also

include all the individual properties that correspond to the fields coming from the
database. Because this code was generated by the tools and not shared with the server,
the properties have INotifyPropertyChanged and several other events injected into
them. In this way, your otherwise-plain classes on the server can support binding and
Licensed to Devon Greenway <devon.greenway@gmail.com>

493Updating data
events on the client. To give you an idea of the robustness of the properties set up, list-
ing 17.3 shows the Gender property for the Employee.

[DataMember()]
[Required()]
[StringLength(1)]
public string Gender
{
 get
 {
 return this._gender;
 }
 set
 {
 if ((this._gender != value))
 {
 this.OnGenderChanging(value);
 this.RaiseDataMemberChanging("Gender");
 this.ValidateProperty("Gender", value);
 this._gender = value;
 this.RaiseDataMemberChanged("Gender");
 this.OnGenderChanged();
 }
 }
}

The setter for the property includes a number of calls to generated methods. Those
methods perform validation and take care of INotifyPropertyChanged notification as
well as raise information events, such as DataMemberChanging and DataMemberChanged.

 In this example, the OnGenderChanging and OnGenderChanged methods are partial
methods that you can implement in a buddy class on the client, should you wish. A
buddy class is a partial class you create to augment an existing partial class. In this way,
you can modify the behavior of the class without introducing an inherited class.

 Note the use of attributes to tell the UI that this is a required field with a maximum
length of 1. This information was automatically inferred from the entity model on the

Table 17.7 Important public members of the Entity class

Member Description

EntityState The data state of this entity: Detached, Unmodified, Modified,
New, or Deleted

HasChanges Indicates that this entity has changed since the last time it was saved

HasValidationErrors Indicates that this entity has failed validation

ValidationErrors Returns a collection of validation errors

GetOriginal Returns an instance of the unchanged entity from cache

Listing 17.3 The generated client-side Employee Entity property Gender

Validation
attributes
Licensed to Devon Greenway <devon.greenway@gmail.com>

494 CHAPTER 17 WCF RIA Services
server at code-generation time. For that reason, changes to the database will require
updates to the .edmx model and then automatic downstream updates here.

 In addition to the validation and display attributes described in chapters 12 and 13
and shown in this example, a number of other attributes are used in the entity.
Although we’ll get to how to use the special validation and display metadata attributes
in the next section, table 17.8 shows some of the helper attributes you’ll likely
run across.

Seeing the attributes in place provides a little insight into how Silverlight keeps track
of various properties. For example, you now know how the client knows that a certain
field is the primary key for the entity.

 Although the Entity class provides extensibility points on the client, it’s rare for
an application to use them for validation or anything remotely like a business func-
tion. Extensions provided on the client can’t be used back at the server and so can
become a disconnect between the two models. In order to keep the two in sync, the
RIA Services team provided a server-side model for extending the entity: metadata.

17.4.4 Using validation and display metadata

When you first created the domain service on the server, the wizard offered an option
to generate the associated metadata class. This metadata class is a partial class that
exists on the server and relates to a single entity. If you open the EmployeeSer-
vice.metadata.cs file in the server project, you’ll see both the Contact and Employee
partial classes.

 These partial classes include nested classes with the same public properties that are
also defined in the entity classes. Those are just placeholders, providing a location on
which you can define metadata to control the display and validation of the fields.

 But wait—why am I covering metadata in this section? Because this metadata is use-
ful only if the client understands it. Silverlight and parts of ASP.NET are currently the
only clients that can make sense of attribute-based annotation metadata for validation
and display.

Table 17.8 Interesting attributes on the Employee Entity

Attribute Description

DataMember Indicates that this property should be serialized by WCF and is part of the
data contract.

Association Specifies that the property is part of a relationship, such as a foreign key.
You’ll find this on the nested entities such as Contact.

XmlIgnore Indicates that this property shouldn’t be serialized. Useful on nested entities.

RoundtripOriginal Sends the object back to the server with its original value when the object is
updated, even though this property hasn’t changed.

Key Indicates that this field is part of the primary key.
Licensed to Devon Greenway <devon.greenway@gmail.com>

495Updating data
CONTROLLING DISPLAY

The DataForm labels and the DataGrid column headers have that ugly PascalCase text
formatting. It’d be nicer to introduce actual spaces to make the fields more human-
readable. You may even want to provide some tooltip descriptive information for cer-
tain fields.

 In the EmployeeService.metadata.cs class on the server, scroll down to the
Employee partial class and the nested EmployeeMetadata class within it. Find the
BirthDate field, and add this attribute:

[Display(Name="Birth Date",
 Description="The date this person was born.")]
public DateTime BirthDate { get; set; }

That says to use the string “Birth Date” for column headers and field labels; and if a
tooltip or other description approach is available, use this description. Figure 17.14
shows how this looks at runtime.

As you learned in chapter 13, annotations can be used for more than display. One of
the more powerful uses is for validation.
ADDING VALIDATION

You get data type validation and the inferred validation (string length, required, and
so forth) from the database for free. But you’ll typically want to add your own valida-
tion to make the UI more bulletproof.

 In the EmployeeService.metadata.cs class, scroll down to the Employee partial
class and the nested EmployeeMetadata class within it. Find the Gender field, and add
this attribute:

[RegularExpression("[MmFf]",
 ErrorMessage="Specify (M)ale or (F)emale, please")]
public string Gender { get; set; }

Run the application, and attempt to type something else into the Gender field. The
regular expression restricts the valid input choices to M, m, F, and f. The metadata

Figure 17.14 The Display annotation in use on the DataGrid on the left and the DataForm on the
right. At lower right is the Description property in a tooltip.
Licensed to Devon Greenway <devon.greenway@gmail.com>

496 CHAPTER 17 WCF RIA Services
entered on the server was automatically carried over to the client. If you open the
Chapter17.Web.g.cs file on the client and navigate to the generated Gender property,
you’ll see the addition of the new attribute:

[DataMember()]
[RegularExpression("[MFmf]",
 ErrorMessage="Specify (M)ale or (F)emale, please")]
[Required()]
[StringLength(1)]
public string Gender
...

The StringLength, Required, and DataMember attributes were previously there as part
of the inferred metadata coming from the data model.9

 Annotation for display and validation is a nice, easy way to add significant robust-
ness to your classes. Because the information goes into metadata buddy classes, you
don’t have to worry about the autogeneration process stepping on them.

 What you’ve seen so far is a model where the entity generated by the data access
layer, typically based directly on tables or views on the database, makes its way from the
database through the service to the client and into the UI. That’s okay sometimes,
especially when you have good mapping at the data access layer, but an additional
layer of abstraction could help protect the UI from changes in the database. That layer
is called a presentation model.

17.5 Loose coupling: using presentation models
So far, you’ve created a tight coupling between your database and the UI due to bring-
ing the data structure through from back to front. RIA Services enables you to create
entities that combine data from multiple entities in the data access layer—for exam-
ple, combining the Contact and Employee classes into a single logical entity.

 When using a presentation model, you can respond to changes in the database or
database model by changing only how the presentation model aggregates that data.
Also, you can simplify the client code by designing a model that aggregates only those
fields that are relevant to users of the client.

 Although conceptually similar, the presentation model here shouldn’t be confused
with the Presentation Model pattern. The pattern shares some similar goals and
approaches, but the RIA Services approach is more server-centric.

 I consider the presentation model to be one of the most important additions to
WCF RIA Services in terms of making it work with best practices and patterns such as
MVVM. As great as RIA Services is without it, it always bothered me that the data model
was logically coupling the UI to the services to the data access layer to the database.
Change one, and they all have to change—not a good situation to be in.

 Ideally, you’d have a good object-persistence mapper that would flatten objects
and relationships and handle all this for you, along with the knowledge to use it. That
alone would eliminate most uses of the presentation model approach, including the

9 For more information on annotating your classes, look at chapters 12 and 13.
Licensed to Devon Greenway <devon.greenway@gmail.com>

497Loose coupling: using presentation models
example I’ll include in this chapter. In many cases, developers don’t have this avail-
able to them, or don’t have the knowledge required to set up an existing one, or per-
haps are further constrained by other business or environmental factors.

 The presentation model approach is also good for combining data from multiple
sources. You can create a single entity that’s composed of fields from multiple databases.

 In all of these cases, the presentation model approach can be a huge help.
 In this section, you’ll take the employee service and model you’ve been working

with and convert (more correctly, rewrite) it to introduce a presentation model. I’ll
show you how to query data, update data, and insert data using this new model.

17.5.1 Creating the employee presentation model

You’ve been unable to perform insert and update operations on the Employee class so
far because it’s tied to the Contact class. This relationship is purely a database thing. It
makes little or no sense from an end-user perspective; they’re logically part of the
same entity. This is a common scenario, because we tend to factor out things such as
contact information, address information, and more in the database, and it always
causes no end of annoyances at the UI level.

 You have two goals in creating an employee presentation model:

■ Expose the contact information as first-class fields of a logical employee entity.
■ Limit the other fields that are returned to the client.

The first step in creating a presentation model is to create a class named EmployeeP-
resentationModel on the server project. Create this class in the server-side Models
folder. Listing 17.4 shows the code to use.

public class EmployeePresentationModel
{
 [Key]
 [Display(AutoGenerateField = false)]
 public int EmployeeID { get; set; }
 [Required]
 public string NationalIDNumber { get; set; }
 [Required]
 public string FirstName { get; set; }
 [Required]
 public string LastName { get; set; }
 [Required]
 public bool NameStyle { get; set; }
 [Display(AutoGenerateField=false)]
 public int ContactID { get; set; }
 [Display(Name="Email Address")]
 public string EmailAddress { get; set; }
 [Required]
 public int EmailPromotion { get; set; }
 public string Phone { get; set; }
 [Required]
 public string Title { get; set; }

Listing 17.4 The EmployeePresentationModel class
Licensed to Devon Greenway <devon.greenway@gmail.com>

498 CHAPTER 17 WCF RIA Services
 [Display(Name="Birth Date")]
 public DateTime BirthDate { get; set; }
 [Required]
 [Display(Name = "Hire Date")]
 public DateTime HireDate { get; set; }
 [Required]
 public string LoginID { get; set; }
 [Required]
 public string MaritalStatus { get; set; }
 [Required]
 [StringLength(1)]
 [RegularExpression("[MFmf]",
 ErrorMessage = "Specify (M)ale or (F)emale, please")]
 public string Gender { get; set; }
 [Required]
 public bool SalariedFlag { get; set; }
 [Required]
 public int VacationHours { get; set; }
 [Required]
 public int SickLeaveHours { get; set; }
 [Required]
 public bool CurrentFlag { get; set; }
}

In this listing, you create an aggregate Employee class that includes fields from both
the Employee and Contact classes you’ve been using so far. Also, because the metadata
is no longer inferred from the database or read using the metadata buddy class you
previously created, you add a minimum amount of metadata to ensure that required
fields are marked as such and to make a few of the names easier to read.

 In your own classes, you’ll need to make sure you account for required fields. If
you can’t infer them when performing an insert or update operation, you’ll need to
include them in the class so the user can input their values.

 This new class now abstracts you from the database. If the structure of the database
changes, you can change the query and update operations—the UI won’t be affected
(assuming it’s a structural change, not a change in what defines an employee).

 The next step is getting this information down to the client. To do that, you’ll need
to create at least one query operation and wire it through all the way to the Domain-
DataSource you’ve been using.

17.5.2 Supporting query operations

The presentation model approach requires a completely new domain service and new
query and update operations. The new domain service class will no longer be directly
based on the LinqToEntitiesDomainService base class, but will instead be based
directly on the DomainService base class.

 For lack of a better name, I called the domain service EmployeeContactService,
because it aggregates both the Employee and Contact entities. Create a new class file
with this name, and place it in the Services folder on the server project. Listing 17.5
contains the code for this service.
Licensed to Devon Greenway <devon.greenway@gmail.com>

499Loose coupling: using presentation models
[EnableClientAccess]
public class EmployeeContactService : DomainService
{
 private AdventureWorksEntities _context = new AdventureWorksEntities();

 public IQueryable<EmployeePresentationModel> GetEmployees()
 {
 return from e in _context.Employees
 orderby e.Title, e.HireDate
 select new EmployeePresentationModel()
 {
 BirthDate = e.BirthDate,
 ContactID = e.ContactID,
 CurrentFlag = e.CurrentFlag,
 EmailAddress = e.Contact.EmailAddress,
 EmailPromotion = e.Contact.EmailPromotion,
 EmployeeID = e.EmployeeID,
 FirstName = e.Contact.FirstName,
 LastName = e.Contact.LastName,
 NameStyle = e.Contact.NameStyle,
 NationalIDNumber = e.NationalIDNumber,
 Phone = e.Contact.Phone,
 SalariedFlag = e.SalariedFlag,
 SickLeaveHours = (int)e.SickLeaveHours,
 Title = e.Title,
 HireDate = e.HireDate,
 Gender = e.Gender,
 VacationHours = (int)e.VacationHours
 };
 }
}

The main code in this function performs a standard mapping of properties from two
entities to one other. Note that even with the custom methods, you’re still able to
return IQueryable and to allow composition on the client.
WIRING UP TO THE UI

Because you have the same query name as you used in the EmployeeService do-
main service, to use the new service from the UI, you need to make only one change-
change the DomainContext property of the DomainDataSource to point to the
EmployeeContactContext:

<riaControls:DomainDataSource.DomainContext>
 <!--<domain:EmployeeContext />-->
 <domain:EmployeeContactContext />
</riaControls:DomainDataSource.DomainContext>

Be sure to build before making this change; otherwise, the EmployeeContactContext
class won’t exist on the client. Note that you didn’t have to update any service refer-
ences or add a new service reference—the WCF RIA Services tooling took care of that
for you. That alone is worth the price of admission.

Listing 17.5 The EmployeeContactService
Licensed to Devon Greenway <devon.greenway@gmail.com>

500 CHAPTER 17 WCF RIA Services
When you run the application, you’ll see something like figure 17.15. The new UI has
fewer fields and looks a lot better than what you had before.

 You have a lot fewer fields in the UI now. Some, like Birth Date, which have had the
Display attribute applied, have better labels and column headers. You could set the
display name for the remaining ones, and the display order, as well using the same
attribute. For space reasons, I didn’t include the attributes in the listings here.

 The presentation model approach certainly works in this situation. It’s not meant just
for flattening objects, although you can use it for that. It also shines in situations where
you need to do joins in LINQ and combine the results into a single logical object.

 Retrieval is fine for a demo, but the real test comes when you need to use this
information in an update operation.

17.5.3 Supporting update operations

To perform an update using the presentation model approach, you’ll need to map
from the presentation model class to the back to the entities used in the backing store.
Essentially, you’re doing the reverse of what you did in the query operation.

Figure 17.15 The UI using the new EmployeePresentationModel class. Note how you have fields
from the contact object now available to the UI.
Licensed to Devon Greenway <devon.greenway@gmail.com>

501Loose coupling: using presentation models
 Listing 17.6 shows how to map from the presentation model back to the database
entities.

private void MapEmployee(Employee emp, EmployeePresentationModel

➥ employeePM)
{
 emp.BirthDate = employeePM.BirthDate;
 emp.CurrentFlag = employeePM.CurrentFlag;
 emp.Contact.EmailAddress = employeePM.EmailAddress;
 emp.Contact.EmailPromotion = employeePM.EmailPromotion;
 emp.Contact.FirstName = employeePM.FirstName;
 emp.Contact.LastName = employeePM.LastName;
 emp.Contact.NameStyle = employeePM.NameStyle;
 emp.Contact.Phone = employeePM.Phone;
 emp.NationalIDNumber = employeePM.NationalIDNumber;
 emp.SalariedFlag = employeePM.SalariedFlag;
 emp.SickLeaveHours = (short)employeePM.SickLeaveHours;
 emp.Title = employeePM.Title;
 emp.HireDate = employeePM.HireDate;
 emp.Gender = employeePM.Gender;
 emp.VacationHours = (short)employeePM.VacationHours;
 emp.MaritalStatus = employeePM.MaritalStatus;
 emp.LoginID = employeePM.LoginID;
}

[Update]
public void UpdateEmployee(EmployeePresentationModel employeePM)
{
 Employee emp = _context.Employees.

➥ Where(e => e.EmployeeID == employeePM.EmployeeID)
➥ .FirstOrDefault();

 MapEmployee(emp, employeePM);

 EmployeePresentationModel original =

➥ this.ChangeSet
➥ .GetOriginal<EmployeePresentationModel>(employeePM);

 if (original.CurrentFlag != employeePM.CurrentFlag ||
 original.EmailAddress != employeePM.EmailAddress ||
 original.EmailPromotion != employeePM.EmailPromotion ||
 original.FirstName != employeePM.FirstName ||
 original.LastName != employeePM.LastName ||
 original.NameStyle != employeePM.NameStyle ||
 original.Phone != employeePM.Phone)
 {
 emp.Contact.ModifiedDate = DateTime.Now;
 }

 _context.SaveChanges();
}

You’re definitely in manual-plumbing land at this point. Of course, if you want to have
separation between two layers, you’ll have some mapping. Here, the mapping is in a

Listing 17.6 The UpdateEmployee method

Get current
persisted entity

Save to
database
Licensed to Devon Greenway <devon.greenway@gmail.com>

502 CHAPTER 17 WCF RIA Services
reusable function so the Insert method can use it. Note how you check the original
employee to see if there were any changes before setting the modified date for the
Contact object. You’ll want to do the same for the Employee object; I left that out for
space considerations.

 The code you write in this function will be pretty dependent on your choice of
data access layer. The code here works well with the Entity Framework objects.

 The next type of operation you’ll need to support is the insertion of new objects.
This one can get tricky due to the creation of dependent entities and the generation
of keys.

17.5.4 Supporting insert operations

Update operations are easy, because you often don’t have to worry much about entity
relationships or foreign keys. Insert operations usually have a few extra steps to per-
form in addition to the mapping.

 Listing 17.7 shows the InsertEmployee function. This function makes use of the
MapEmployee function from the previous listing.

[Insert]
public void InsertEmployee(EmployeePresentationModel employeePM)
{
 Contact contact = _context.Contacts.CreateObject();
 Employee emp = _context.Employees.CreateObject();
 emp.Contact = contact;

 MapEmployee(emp, employeePM);

 contact.ModifiedDate = DateTime.Now;
 contact.rowguid = Guid.NewGuid();
 contact.PasswordHash = "Adventure";
 contact.PasswordSalt = "xyzzy";

 emp.ModifiedDate = DateTime.Now;
 emp.rowguid = Guid.NewGuid();

 _context.Contacts.AddObject(contact);
 _context.Employees.AddObject(emp);

 _context.SaveChanges();
}

This function creates the Contact and Employee data entities and sets the contact to
be the contact for the Employee. It then calls the MapEmployee function from the pre-
vious listing to map the presentation model properties to the data entity properties.
The next step is to set a few fields; the password-related fields here are dummies, but
the modified date fields are correct. The last step before saving changes is to add the
Contact and Employee to the entity sets. Finally, with a call to SaveChanges, the infor-
mation all goes in the database.

Listing 17.7 The InsertEmployee function
Licensed to Devon Greenway <devon.greenway@gmail.com>

503Business logic
 I’ve included the query, update, and insert methods. For space reasons, I left out
delete. This is a pretty simple function to build following the pattern established by
the code included here.

 The presentation model approach allows you to continue to benefit from WCF RIA
Services while also benefitting from the increased decoupling of the layers. Although
the database-through-UI coupling won’t be a problem for many applications, for any-
thing expected to survive into a maintenance mode, it can be a real pain.

 The presentation model approach isn’t without its issues. First, you have to write
more CRUD operation code, including mapping. This code has a habit of getting out
of sync; it’s also a great place to find typos and copy-paste errors. When using this
approach, I highly recommend building tests around your mapping functions and
keeping them up to date.

 So far, you’ve seen normal CRUD operations and simple validation. I threw in one
business function for calculating a vacation bonus, but otherwise you haven’t seen any
real business logic. The next section covers how to include this critical code in a RIA
Services application.

17.6 Business logic
A business application without business logic is just a forms-over-data maintenance
application. Although apps like that are easy to build using WCF RIA Services, they’re
not the usual case.

 Business logic usually consists of discrete functions that implement discrete rules.
Some may come in the form of validation, others may look like calculated fields, and
still others may be helper methods that return a current piece of data from an exter-
nal system.

 There are several places where you can put logic in your code. I’ve tried to capture
some general guidelines in table 17.9.

Table 17.9 Where to put your business logic

Type Location

Data validation Attributes on metadata or entities.

Field validation rule Noncritical: custom validators.

Critical: code in domain methods on the domain service. Prevent persistence if
criteria aren’t met.

External data access Domain methods on the server calling out to web services.

Services classes on the client, if the result won’t be required for server-side
validation.

Shared code services proxy or shared binary.

Calculated field If self-contained within the entity, as an additional property of the entity.

If requires integration with other data or services, as a method on the domain
service or shared code or a binary file.
Licensed to Devon Greenway <devon.greenway@gmail.com>

504 CHAPTER 17 WCF RIA Services
You’ve already seen how to write methods on the domain service. In the previous
chapter, we also looked at how to write business services on the client. In this section,
we’ll look at how to place logic in entities as well as how to share logic or code
between the client and server.

17.6.1 Business logic in entities

When a calculated field is part of the business logic for your application, one place
you can place it is directly on the entity. This makes sense if the data required for the
calculation exists on the entity itself. If the data is external, consider making the calcu-
lation a service that you call to get the results.

 A reasonable type of calculation might be, for example, one to take into account
your start date and how many vacation hours you have when deciding if you can go in
the hole to take a longer vacation than you would’ve been allowed to take if going
strictly by the book.

 Going back to the original generated classes, add the function in listing 17.8 to the
Employee class using a new file named Employee.shared.cs stored in the \Shared
folder on the web project.

using System;

namespace Chapter17.Web
{
 public partial class Employee
 {
 public int AllowedOverdraftVacationHours
 {
 get
 {
 DateTime today = DateTime.Today;

 int yearsInService = today.Year - HireDate.Year;

 if (HireDate.AddYears(yearsInService) > today)
 yearsInService--;

General calculation or
business logic

As a method on the domain service if a server round-trip is okay or required.

As a method in shared code or a binary file if needed on the client and server
with local calculation for speed.

On insert/update logic In the Insert/Update method in the domain service.

Reusable logic shared
between projects

Domain service.

Shared code or binary file.

Anything else Shared code or binary file.

Listing 17.8 An example business method on the Entity class

Table 17.9 Where to put your business logic (continued)

Type Location
Licensed to Devon Greenway <devon.greenway@gmail.com>

505Business logic
 if (yearsInService < 1)
 return 0;
 else if (yearsInService < 5)
 return 20;
 else
 return 40;
 }
 }
 }
}

The example in listing 17.8 performs a simple calculation. The key thing to note is
that it’s using information already available as part of the parent class. I don’t recom-
mend this approach if external information is required.

17.6.2 Sharing code

So far, you’ve put all the business logic into methods of the domain service or used it
as a property of the entity. The domain service is a great place to put logic you want
accessible to the client or server but executed on the server. For methods that match,
including them on the entity class is a great idea. Sharing code and controlling where
it executes is important.
SHARED SOURCE FILES

In the previous example, you saw how the code went into a file with the .shared.cs
extension. That naming is a convention understood by RIA Services. Anything with a
.shared.cs name is copied to the client on build as part of the code-generation pro-
cess. As long as you keep the namespaces clean, this provides an easy way to share
classes between the tiers.
LINKED SOURCE FILES

Visual Studio has long had the capability to link source files from one project to
another. As long as the contained source code (including namespace-using state-
ments) is compatible across both projects, it’ll work fine.

 This is source-level sharing. I’ve used it with WCF applications and also when dual-
targeting Silverlight and WPF. Just consider one project the master, and add the file to
it. Then, choose Add Existing Item in the other project, navigate to the source, and
click the Add drop-down button so you can add a link. As my favorite black-helmeted
villain would say, “All too easy.”
SHARED BINARIES

Silverlight 4 along with .NET 4 introduced another option for sharing: .NET 4 applica-
tions can add references to a Silverlight class library, as long as that class library uses
only certain namespaces. The allowable references and namespaces are strict but are
likely to expand over time.

 I’ve never been a big fan of this approach, because it feels a little dirty to me. But
for this type of use, it should be perfectly acceptable.

 Conceptually, one of the most important pieces of business logic for any given
application is often its security model. Business applications must be able to secure
Licensed to Devon Greenway <devon.greenway@gmail.com>

506 CHAPTER 17 WCF RIA Services
data and functions in a way that integrates with existing web sites and systems without
requiring yet another mechanism for maintaining security for the application.

17.7 Authentication and authorization
Authentication is the process of identifying a user. Authorization is the process of grant-
ing the user access to parts of the system. Business applications almost always require
some form or authentication and typically lock down critical functions using an autho-
rization scheme. It’s a rare system indeed where every user has complete access to
every function. But until RIA Services came along to help with this, implementing
security in Silverlight applications was a difficult process at best.

 WCF RIA Services authentication is built on ASP.NET authentication and member-
ship. I won’t go into great detail on how to configure ASP.NET, but any tutorial on
ASP.NET membership and authentication configuration will apply here.

 The Silverlight Business Application template includes much of the authentication
infrastructure built in. Normally, you’d have to add in the authentication domain ser-
vice and the appropriate entity classes. Fortunately, those are all there, just waiting to
be activated.

 In this section, we’ll look through the authentication and authorization capabilities
of ASP.NET, surfaced through WCF RIA Services. We’ll examine the UI and services that
the template provides and that
build on the RIA Services librar-
ies. Throughout, we’ll look at
both forms-based authentication
and Windows authentication.

17.7.1 Authentication

Authenticating users usually in-
volves getting their user name and
some sort of secret password (or
PIN or biometric data), and com-
paring the pair against data stored
in the database. Figure 17.16
shows the built-in Login dialog
that comes with the Silverlight
Business Application template.

 The dialog is wired up to the
AuthenticationService on the
web site, which in turn uses ASP.
NET membership. It also includes
an appropriate validation display
for incorrect username and pass-
word combinations. Figure 17.17
shows this view.

Figure 17.16 The Login dialog in the Silverlight Business
Application template. Note the registration link on the left.

Figure 17.17 The Login dialog when an incorrect password
was entered
Licensed to Devon Greenway <devon.greenway@gmail.com>

507Authentication and authorization
 There are two ways of validating this information in a RIA Services application:
forms-based authentication and Windows authentication.
FORMS-BASED AUTHENTICATION

Forms-based authentication (FBA) is cookie-based authentication in ASP.NET. Almost
any ASP.NET web site with an on-page login form is using a form of forms-based
authentication. Rather than relying on system tokens and security credentials pro-
vided by the operating system, each site or application can store user information in a
database. For the vast majority of applications running outside the firewall, this is the
way security is handled.

 To configure the users and roles for an application using FBA, you’ll use the
ASP.NET application configuration site. This site writes to the aspnetdb database (or
other database if so configured) where the membership data is stored. More often
than not, this database is located in the
App_Data folder on the ASP.NET site.

 To configure this application, select the
web project and choose the ASP.NET Con-
figuration option from the Project menu.
Figure 17.18 shows the menu you’ll see.

 You can create new users through the
administration site. In addition, the Silver-
light Business Application template
includes a self-service registration UI (which
you can disable if you desire) for allowing
self-registration of users. This form, shown
in figure 17.19, is wired up through the
UserRegistrationService on the server.

Figure 17.19 The Register
dialog in the Silverlight Business
Application template. For most
business applications, you’ll
secure or eliminate this dialog.

Figure 17.18 The Project menu showing the
ASP.NET Configuration option selected. This is
the option used to configure the authentication
database. If you don’t see it, make sure the
right project is selected.
Licensed to Devon Greenway <devon.greenway@gmail.com>

508 CHAPTER 17 WCF RIA Services
Configuring the site and application to use FBA is a two-step process. The first step is
to open the web.config file and ensure that the authentication mode is set to Forms:

 <authentication mode="Forms">
 <forms name=".Chapter17_ASPXAUTH" />
 </authentication>

The second step is to open App.xaml.cs and check the constructor to ensure the
Authentication property of the web context is set to FormsAuthentication:

webContext.Authentication = new FormsAuthentication();

With those two options set and a user created, you’re ready to try out the application.
Try logging in via the link on the main page. You’ll see the UI change to indicate your
login name, and the credential information itself will be available throughout
the application.

 Although FBA is the most common form of authentication, we can’t forget good
old Windows authentication.
WINDOWS AUTHENTICATION

Windows authentication relies on the Windows operating system and security infra-
structure to provide the appropriate authentication scheme and tokens. For behind-
the-firewall systems, Windows authentication is usually the better approach because
there’s no separate login process. Instead, the Silverlight application participates in
single sign-on (SSO) along with other applications on the client.

 To configure the application to use Windows authentication, first set the authenti-
cation mode in web.config:

<authentication mode="Windows" />

Then, in the App.xaml.cs file, modify the constructor to set the authentication to Win-
dows:

webContext.Authentication = new WindowsAuthentication();

The business application template has startup logic that attempts to automatically
resolve the credentials of the signed-in user. You’ll find with WindowsAuthentication
that a second or two after the application launches, you’re greeted with your creden-
tials in the upper-right corner. No Login dialog required!
REQUIRING AUTHENTICATION

Regardless of which approach you use (forms or Windows), you can require authenti-
cation from code or via attributes. On a domain service, it’s easy to mark a single
method as requiring a valid user account by applying the RequiresAuthentication
attribute:

[Insert]
[RequiresAuthentication]
public void InsertEmployee(EmployeePresentationModel employeePM)

Technically, this falls under authorization because you’re granting access based on
security. But the authorization system is even more powerful than this.
Licensed to Devon Greenway <devon.greenway@gmail.com>

509Authentication and authorization
17.7.2 Authorization

When you authorize users, you’re granting them permission to perform an action.
Authorization comes in many forms: client-side code can check to see whether users
are authenticated, as well as whether they’re members of a specific role; and server-
side code or attributes can grant access to individual service methods.

 The usual approach when working with authorization in ASP.NET and in RIA Ser-
vices is to use role-based authorization. This is especially useful with forms-based
authentication, because the roles can be configured using the same ASP.NET adminis-
tration application.
ROLE-BASED AUTHORIZATION

Although you could enable access to individual features on a user-by-user basis, role-
based authorization is by far the most common way to grant access. In this model,
users belong to roles, such as Manager, Administrator, or HR, and individual permis-
sions are granted to the roles.

 To enable roles in the RIA Services application, ensure that the roleManager entry
in web.config is set to true:

<roleManager enabled="true" />

When that setting is confirmed and you’ve created some users and added them to
appropriate roles, you can start to modify the application to look for those roles. The
easiest and most powerful check you can make is on the service methods on the
domain service. This is done via the RequiresRole attribute:

[Insert]
[RequiresRole("Manager")]
public void InsertEmployee(EmployeePresentationModel employeePM)

The RequiresRole attribute takes in one or more role names as strings. When the client
attempts to access the service method, the server consults the security tokens provided
and checks to see whether the user has the correct role. If the user isn’t a member of
that role, the service call results in an exception, which you must trap on the client.

 You must handle this exception and gracefully inform the user that access isn’t
allowed. When using the DomainDataSource control, you do this in the LoadedData
event:

private void DataSource_LoadedData(object sender, LoadedDataEventArgs e)
{
 if (e.HasError)
 {
 if (e.Error is DomainOperationException &&
 e.Error.Message.Contains("denied"))
 {
 MessageBox.Show("Insufficient permissions for operation. Nyah!");
 e.MarkErrorAsHandled();
 }
 }
}

Licensed to Devon Greenway <devon.greenway@gmail.com>

510 CHAPTER 17 WCF RIA Services
In the case of the EmployeeContactService, you require the Manager role for both
the Insert and Update methods and RequiresAuthentication for the query method.
For methods tagged with RequiresRole, you don’t need to also add RequiresAuthen-
tication; it’s assumed in the role check.

 The second way to check for authorization is to use the client-side WebContext
object. This is useful to enable/disable menu options and buttons, as well as to per-
form client-side checks. Don’t rely on this as your only security check, though, because
you always want the server to be secured.

 Here’s a simple security check in the code-behind:

if (WebContext.Current.User.IsInRole("Manager"))
 SubmitChanges.Visibility = Visibility.Visible;
else
 SubmitChanges.Visibility = Visibility.Collapsed;

I put this in the OnNavigatedTo handler, but that’s not the best place. Instead, you
want to reevaluate any UI changes like this whenever the user logs in or logs out.

 WCF RIA Services makes it easy to integrate authentication and authorization into
your own application. Because it builds on ASP.NET membership and security, you
know it’s using a well-known and time-tested approach, which is already supported by
the community.

17.8 Summary
I hope I’ve given you a taste of what WCF RIA Services can help you accomplish.
Despite the depth of this chapter, we’ve just scratched the surface. RIA Services sup-
ports transactions and concurrency schemes with conflict resolution; and it supports
composed entities where master-detail relationships can be saved in one chunk. There
are many more attributes that can be used, and variations on the domain services.

 RIA Services is big. Although associated with Silverlight, it’s a product in and of
itself. In this chapter we’ve looked at the business application template and used it
as the basis for developing a RIA Services application. We then dove right into the
WCF-based domain services both to expose the data via OData, JSON, and SOAP, as
well as via the native approach with Silverlight. The domain service included all the
usual CRUD (Create, Read, Update, Delete) operations, plus the ability to support
arbitrary functions.

 We also looked at the sometimes controversial DomainDataSource control, and its
amazing support for filtering, sorting, grouping, and paging. This control saves a ton
of time and a large amount of code.

 The DomainDataSource and the domain service combined to help us update data.
The natural UI counterpart to all this was the DataForm control. In fact, using the
DataForm, the DomainDataSource, and the generated domain service, you had a com-
plete CRUD UI with no code at all.

 One unfortunate side effect of all that was a tight coupling of the entities from the
database all the way through to the UI. Although it requires some extra effort, WCF
Licensed to Devon Greenway <devon.greenway@gmail.com>

511Summary
RIA Services has an answer for this coupling in the presentation model approach. In
that, you have to create entities and the domain service from scratch, but once done,
everything else “just works.”

 What about business logic? You can put your business logic inside invoke methods
on a domain service, as methods added to the partial class for the entity, and as shared
code that can be downloaded to the client as part of the build process. Not to mention
that you can use the standard Silverlight-supported approaches of shared source or
shared binaries.

 Finally, I’ve yet to see a serious business application that didn’t include authentica-
tion and authorization of some sort. No one wants to leave data-oriented applications
open for anyone to mess around with. Silverlight and WCF RIA Services can take
advantage of the security models in ASP.NET, building on proven technologies and
knowledge you may already possess.

 All this combines to be an intense and robust platform for building business appli-
cations—and it’s only at version 1!

 These last few chapters have been interesting and hopefully useful, but pretty
heads-down on the business side of things. In the next chapter, we’ll take a break from
virtual number crunching and dive into the vector graphics system and pixel shaders.

Licensed to Devon Greenway <devon.greenway@gmail.com>

Licensed to Devon Greenway <devon.greenway@gmail.com>

Part 3

Completing the experience

In Silverlight, developers are often exposed to tasks that used to be delegated
solely to design staff. Graphics, animation, behaviors, styles, and templates are
all the domain of the designer and integrator but are crucial for the developer
to understand in order to work effectively with them. We’ll even take a look at
creating your own controls that build upon the templating system.

 Additionally, media features are often an additional component of larger
applications. In these chapters you’ll learn how to integrate the various types of
video and audio media as well as work directly with bitmap-based images.

 We’ll wrap up this part, and the book as a whole, with a discussion about an
often overlooked part of our projects: the plug-in and application installation
experiences. You’ll learn how to handle situations where the user doesn’t have
Silverlight installed as well as how to create application preloaders.

Licensed to Devon Greenway <devon.greenway@gmail.com>

Licensed to Devon Greenway <devon.greenway@gmail.com>

Graphics and effects
In previous chapters, you’ve seen interesting controls that include text, rectangles,
and sometimes even more complex shapes. Even the lowly button, for example, has
text, a couple of rectangles, and a gradient background. Controls such as the pop-
up ChildWindow control have drop shadows to enhance their appearance and help
them stand out in the eyes of the user. Those buttons and other controls use vector
graphics, brushes, and effects.

 Graphics within Silverlight are vector-based; they’re mathematically based
objects. They’re ideal for Internet distribution because vector-based graphics can
be condensed to a smaller file size than their raster counterparts for images larger
than a thumbnail.

 Vector-based graphics are more than eye candy—they’re an extension to accessi-
bility. In traditional application environments, users with diminished eyesight gen-
erally have to squint to absorb visual content such as text and icons. Through

This chapter covers
■ Creating basic shapes and geometries
■ Painting with brushes
■ Working with effects
■ Creating pixel shader effects
515

Licensed to Devon Greenway <devon.greenway@gmail.com>

516 CHAPTER 18 Graphics and effects
scalability, these same users can fully enjoy your application with ease. Vector graphics
retain full fidelity when scaled up, something you can’t say about bitmap images. Vec-
tors actually improve in quality when scaled up.

 Silverlight also includes rich support for effects to help make your elements and
graphics stand out. The built-in drop shadow and blur effects have endless uses
throughout the application. When you want to do something more than a shadow or a
blur, there’s also the ability to create your own pixel shader effects, just as you can in
WPF and DirectX/XNA.

 Throughout this chapter, you’ll see the expanse of graphical capabilities within Sil-
verlight. We’ll start by discussing the most primitive shapes such as lines, rectangles,
and ellipses. After discussing the concept of geometries, we’ll lead you down a new
path and show you how to paint shapes and alter the way in which they’re rendered.
From there, you’ll add a little effect to your elements before venturing into the some-
times arcane world of custom pixel shaders.

18.1 Shapes
Shapes are probably the most regularly used elements when creating an illustration
because a Shape is the common basis for the Line, Rectangle, and other Shape ele-
ments, which you’ll see shortly. Each Shape is painted by two fundamental Brush ele-
ments. (Brushes are discussed later.) The first Brush, called Stroke, defines the
outline of a Shape. The second Brush, called Fill, describes how everything inside
the boundary of the Shape should be painted. It’s possible to create a Shape without
specifying the Stroke and Fill properties, but if you don’t specify the Stroke or Fill,
you’ll basically paint an invisible shape.

 Throughout this section, we’ll build on the concept of an abstract Shape to create
concrete visual elements. A lot of these visual elements will resemble shapes you
learned on Sesame Street, and some of these shapes will be a bit more complex. Table 18.1
provides a list of the shapes we’ll discuss.

The following sections describe each Shape listed in the table in greater detail. The
shapes are described in order of relative complexity. The Path element is part of a

Table 18.1 The Shape objects available within Silverlight

Element Description

Line A thin, continuous mark that connects two points

Ellipse In layman’s terms, a circle that can be stretched vertically or horizontally

Path A collection of connected curves and lines

Polygon A series of connected lines that make a closed shape

Polyline A series of connected straight lines

Rectangle A four-sided plane with four corners
Licensed to Devon Greenway <devon.greenway@gmail.com>

517Shapes
more general category that’ll be covered later in this chapter. First, you’ll learn about
the most rudimentary shape, the Line.

18.1.1 Lines

A Line is, obviously, a continuous line that connects two end points. Listing 18.1 shows
a basic line between two points and the XAML used to define it.

Result:

XAML:
<Canvas x:Name="myCanvas" Height="20" Width="50">
 <Line Stroke="Black" X1="10" Y1="10" X2="30" Y2="30" />
</Canvas>

Four double-precision floating-point properties (X1, Y1, X2, Y2) specify the x and y
coordinate pairs that define the beginning and ending points of the Line. Without
these properties, your Line will be little more than a figment of your imagination.

 Interestingly, these coordinates don’t represent an absolute position. They specify
a relative position within the coordinate space of the containing layout panel. Note that,
although Silverlight won’t automatically define the endpoints of a Line, the coordi-
nate space of the containing layout panel may be automatically created. Regardless,
the values of the coordinates represent pixel values, whether absolute or relative posi-
tioning is used.

 The Canvas used in listing 18.1 has a specific area. But, as described in chapter 7,
some layout panels provide a more dynamic layout environment. For instance, if this
Line were the second element defined within a StackPanel, it could end up in a
potentially undesirable location because the coordinates within a Line element spec-
ify a relative position.

18.1.2 Rectangle

A Rectangle does exactly what its name implies—it defines a rectangle. The Rectan-
gle in Silverlight provides one interesting tidbit that we’ll discuss after listing 18.2,
which shows the basic syntax of a Rectangle.

Result:

XAML:
<Rectangle Stroke="Black" Width="104" Height="64"
 Canvas.Left="8" Canvas.Top="8"/>

Listing 18.1 A basic Line in black

Listing 18.2 A basic Rectangle in black with no fill
Licensed to Devon Greenway <devon.greenway@gmail.com>

518 CHAPTER 18 Graphics and effects
This example shows an archetypal Rectangle. The key properties involved in the defi-
nition of the element are Width and Height. Collectively, these double properties
assist in creating the boundary of the Rectangle. You can determine the area of the
Shape by multiplying these two property values. (This nostalgic mathematical fact isn’t
the interesting tidbit alluded to earlier.)

 The Rectangle element exposes two properties, RadiusX and RadiusY, which
empower you to easily round off the corners of any Rectangle. Before you see an
example of this, consider how difficult this task would be in traditional HTML.
Although there are several options, the most straightforward involves importing an
image. Examine the XAML in listing 18.3, and note how simple it is to implement this
elegant feature.

Result:

XAML:
<Rectangle Stroke="Black" Width="104" Height="64"
 Canvas.Left="8" Canvas.Top="8" RadiusX="10" RadiusY="10"/>

The RadiusX and RadiusY double-precision floating-point properties allow you to set
the radius of the ellipse used to round off the corners of the Rectangle. (You’ll see
the Ellipse element in two shakes of a pup’s tail.) By lopsidedly setting the Radi-
usX and RadiusY properties, you can give a Rectangle a bulging look, as shown in
listing 18.4.

Result:

XAML:
<Rectangle Stroke="Black" Width="104" Height="64"
 Canvas.Left="8" Canvas.Top="8" RadiusX="15" RadiusY="50"/>

The bulging Rectangle is a fun little option. But occasionally, you may need a fully
rounded shape. This is where the Ellipse comes into play.

18.1.3 Ellipse

An Ellipse defines a basic circular shape. Listing 18.5 shows a basic Ellipse and the
XAML used to define it.

Listing 18.3 A Rectangle with rounded corners

Listing 18.4 A bulging Rectangle
Licensed to Devon Greenway <devon.greenway@gmail.com>

519Shapes
Result:

XAML:
<Ellipse Stroke="Black" Width="104" Height="64"
 Canvas.Left="8" Canvas.Top="8"/>

The Ellipse doesn’t provide any properties that distinguish it from the Rectangle.
The difference lies in how the two Shape elements are rendered. It’s important to rec-
ognize that Silverlight provides this type of Shape for your graphical needs—if for
nothing else than to know that you can draw a circle. Now, let’s move on to something
a little more interesting: the Polyline.

18.1.4 Polyline

What if you need to create an application that represents an EKG (or ECG) monitor?
How do you go about displaying the electrical impulses projected by a heart? Or, per-
haps you need to create a line chart that represents sales or financial trends. These
types of scenarios can entail large amounts of data that may be best illustrated
through intricate line-art drawings.

 You could use several Line elements, but this could prove to be cumbersome. The
Polyline provides a nice alternative that allows you to create a series of connected
line pieces using a single element. Listing 18.6 shows a Polyline in action.

Result:

XAML:
<Polyline Stroke="Black"
 Points="10,50 20,40 23,44 25,49 40,12 46,50 51,42 55,50" />

The Polyline uses a space-delimited list of coordinate pairs to define the line drawn.
Although each coordinate pair in this example contains integer values, each value rep-
resents a Point. A Point is represented in the form of [X-Coordinate],[Y-Coordinate]. Col-
lectively, all these Point elements are stored in the Points property. In being consistent
with the Line, each Point within the list is relative to the containing layout panel.

18.1.5 Polygon

The Polygon goes one step beyond the Polyline by ensuring that the Shape is always
closed. A Polyline creates an open Shape, whereas a Polygon always draws a closed
Shape. Listing 18.7 shows a basic trapezoid created with a Polygon.

Listing 18.5 The syntax and look of a basic Ellipse

Listing 18.6 A Polyline
Licensed to Devon Greenway <devon.greenway@gmail.com>

520 CHAPTER 18 Graphics and effects
Result:

XAML:
<Polygon Stroke="Black" Points="10,40 20,10 60,10 70,40 10,40" />

Like the sibling Polyline, the Polygon also utilizes the Points property. This prop-
erty works in a manner similar to the Points property of the Polyline; but regardless
of your selected coordinates, the Polygon always draws a closed shape.

 Listing 18.8 shows a Polyline and a Polygon using the same coordinates to illus-
trate how Silverlight renders them.

The available shapes provide a lot of flexibility to give your users valuable graphical
experiences. Occasionally, your requirements may exhaust the abilities of the various
shapes. A Geometry is a much more versatile option that can address the inadequacies
of a Shape.

18.2 Geometry
At first, a Geometry seems similar to a Shape because they both describe 2D shapes.
Unlike Shape elements, Geometry objects aren’t UIElement entities. UIElement objects
have an intrinsic ability to render themselves and expose graphical properties, such as
Opacity, that Geometry objects don’t have. Why, then, would you consider using a
Geometry? Well, a Geometry allows you to do the following:

■ Define a geometric shape. For example, imagine creating a user-based rating
system. In this scenario, you may want to use a set of five-pointed stars to rate an
item. Although a star isn’t a predefined shape, you could create this element
using a Geometry.

■ Define a region for clipping. Clipping is used to limit the visible area of another
object.

■ Define a region that can be used for hit-testing.

Listing 18.7 A Polygon

Listing 18.8 An open shape (Polyline) compared to a closed shape (Polygon)

Result:

XAML:
<Polyline
 Stroke="Black"
 Fill="White"
 Points="10,40 20,10 60,10 70,40"

/>

<Polygon
 Stroke="Black"
 Fill="White"

 Points="10,40 20,10 60,10 70,40"
/>
Licensed to Devon Greenway <devon.greenway@gmail.com>

521Geometry
These compelling reasons make examining the Geometry object a worthwhile
endeavor. A Geometry is an abstract concept. In fact, you can’t deliberately create just
a Geometry. Instead, you must rely on the geometrical concepts spread across three
basic categories: simple, path, and composite geometries.

18.2.1 Simple geometries

A simple geometry reflects some of the primitive geometrical shapes that you’ve already
seen. Simple geometries—such as LineGeometry, RectangleGeometry, and Ellipse-
Geometry—are provided to help you illustrate lines, rectangles, and circles.

 A LineGeometry illustrates the geometry of a basic line. Listing 18.9 shows how to
draw a line using a LineGeometry element. The example also shows what the same
markup would look like if you used the basic Line Shape described earlier.

Result:

Path XAML:
<Path Stroke="Black" StrokeThickness="1" >
 <Path.Data>
 <LineGeometry StartPoint="8,8" EndPoint="72,72" />
 </Path.Data>
</Path>

Line XAML:
<Line X1="8" Y1="8" X2="72" Y2="72"
 StrokeThickness="1" Stroke="Black" />

From this example, you can see that using the Line Shape XAML is much more com-
pact. But you can use also Geometry objects for clipping and hit-testing.

 In addition to the LineGeometry, a RectangleGeometry is also provided. The
RectangleGeometry defines the geometry of a rectangle. Listing 18.10 shows how to
create a rectangle using a RectangleGeometry and also provides the corresponding
definition with the Rectangle Shape.

Result:

Path XAML:
<Path Fill="Navy" Stroke="Black" StrokeThickness="1">
 <Path.Data>
 <RectangleGeometry Rect="8,8,64,64" />

Listing 18.9 Comparison between Line and LineGeometry

Listing 18.10 A RectangleGeometry compared to a Rectangle
Licensed to Devon Greenway <devon.greenway@gmail.com>

522 CHAPTER 18 Graphics and effects
 </Path.Data>
</Path>

Rectangle XAML:
<Rectangle Stroke="Black" StrokeThickness="1" Height="64"
 Width="64" Canvas.Top="8" Canvas.Left="8" Fill="Navy">
</Rectangle>

Like the Rectangle Shape, the RectangleGeometry also supports corner-rounding via
the RadiusX and RadiusY properties. Finally, we’ll review the EllipseGeometry for the
sake of completeness (see listing 18.11).

Result:

Path XAML:
<Path Fill="Navy" Stroke="Black" StrokeThickness="1">
 <Path.Data>
 <EllipseGeometry Center="40,40" RadiusX="36" RadiusY="36" />
 </Path.Data>
</Path>

Elipse XAML:
<Ellipse Canvas.Left="4" Canvas.Top="4" Height="72" Width="72"
 Fill="Navy" StrokeThickness="1" Stroke="Black" />

As useful as lines, rectangles, and circles are, occasionally, you need to create a more
dynamic shape. To create more complex shapes, Silverlight supports the use of the
PathGeometry.

18.2.2 Path geometries

A PathGeometry enables you to construct complex, detailed illustrations composed of
a variety of arcs, curves, and lines. These intricate depictions consist of a collection of
PathFigure objects, with each PathFigure representing a small section of the overall
illustration. In turn, each PathFigure is made up of a series of PathSegment objects.
Each PathSegment object describes a small piece of the overall figure. Before we get
too far ahead of ourselves, let’s review a basic example that shows a variety of meaning-
less squiggly lines for the sake of illustration (see listing 18.12).

Result:

Listing 18.11 An EllipseGeometry compared to an Ellipse

Listing 18.12 A PathGeometry
Licensed to Devon Greenway <devon.greenway@gmail.com>

523Geometry
XAML:
<Canvas
 Width="100" Height="100" Background="Gray">
 <Path Stroke="Red" StrokeThickness="2">
 <Path.Data>
 <PathGeometry>
 <PathGeometry.Figures>
 <PathFigure StartPoint="5,5">
 <PathFigure.Segments>
 <ArcSegment Size="10,10" RotationAngle="30"
 Point="20,10" IsLargeArc="False"
 SweepDirection="Clockwise" />
 <BezierSegment Point1="40,0" Point2="60,60" Point3="75,90"/>
 <LineSegment Point="80,15" />
 <PolyLineSegment Points="50,90 3,7" />
 <QuadraticBezierSegment Point1="90,90" Point2="70,60"/>
 </PathFigure.Segments>
 </PathFigure>
 </PathGeometry.Figures>
 </PathGeometry>
 </Path.Data>
 </Path>
</Canvas>

This example uses five different segment types to create random squiggles. Each indi-
vidual segment sequentially connects to the previous one, much like cars in a freight
train. Table 18.2 shows all the available segment types.

 From the options presented, it’s clear to see that you have tons of flexibility when it
comes to creating a geometrical shape. Sometimes you may need to explicitly use
other geometry objects. In these scenarios, you can use a composite geometry.

18.2.3 Composite geometries

You may need to create a complex shape that consists of disconnected entities. Or,
maybe you need to use Geometry entities, and you want to combine their area. The

Table 18.2 Available segment types

Segment type Usage

LineSegment A straight line connecting two points

PolyLineSegment A series of lines

ArcSegment An elliptical arch between two points

BezierSegment A cubic Bézier curve between two points

PolyBezierSegment A series of cubic Bézier curves

QuadraticBezierSegment A quadratic Bézier curve

PolyQuadraticBezierSegment A series of quadratic Bézier curves
Licensed to Devon Greenway <devon.greenway@gmail.com>

524 CHAPTER 18 Graphics and effects
GeometryGroup adequately addresses these scenarios. A GeometryGroup is a collection
of Geometry entities. Listing 18.13 illustrates how to orchestrate a composite geometry.

Result:

XAML:
<Path Stroke="Navy" StrokeThickness="8" Fill="Navy">
 <Path.Data>
 <GeometryGroup FillRule="Evenodd">
 <EllipseGeometry Center="20,40" RadiusX="15" RadiusY="15" />
 <LineGeometry StartPoint="20,40" EndPoint="70,40" />
 <LineGeometry StartPoint="66,38" EndPoint="66,55" />
 <LineGeometry StartPoint="55,38" EndPoint="55,55" />
 <EllipseGeometry Center="14,40" RadiusX="8" RadiusY="8" />
 </GeometryGroup>
 </Path.Data>
</Path>

This listing illustrates how to create a key using a complex geometry via the Geometry-
Group. It also introduces a property called FillRule, which determines how conflict-
ing areas should be filled. There are two acceptable values: EvenOdd and Nonzero.

 EvenOdd, the default used in the previous example, is pretty simple. It begins at a
point and goes outside of the overall shape, counting each line that it intersects along
the way. If the count is odd, the point is inside the shape. If the count is even, the
point is outside the shape. This rule determines how to fill the area.

 Alternatively, if the previous example had used the Nonzero option, the hole to
place the key on a key ring would’ve been filled because Nonzero counts the
number of lines it intersects along the way. But it also considers the direction of the
line. Based on the direction, the count is either incremented or decremented. At
the end of counting, if the total is zero, it’s assumed that the point is inside the over-
all shape.

 To take control of how an element is filled, you can use one of Silverlight’s many
brushes.

18.3 Brushes
Up to this point, you’ve seen how to define the boundaries of the various Shape ele-
ments. It’s equally important to understand how to fill the area within a Shape. To
paint the interior of a Shape or a variety of other visual elements, you must choose
from myriad Brush options including SolidColorBrush, LinearGradientBrush,
RadialGradientBrush, ImageBrush, and VideoBrush.

Listing 18.13 A composite geometry to make a key
Licensed to Devon Greenway <devon.greenway@gmail.com>

525Brushes
18.3.1 SolidColorBrush

The SolidColorBrush is without a doubt the most rudimentary of the Brush options.
A SolidColorBrush uses a single, solid color to paint an area. Listing 18.14 shows a
basic circle using a SolidColorBrush.

Result:

XAML:
<Ellipse Stroke="Black" StrokeThickness="3"
 Width="64" Height="64" Canvas.Left="8" Canvas.Top="8">
 <Ellipse.Fill>
 <SolidColorBrush Color="Navy" />
 </Ellipse.Fill>
</Ellipse>

This SolidColorBrush uses a System.Windows.Media.Color property named Color
to specify which color fills the area. Properties of this type can accept values repre-
sented in one of the following ways:

■ A predefined named color, such as Navy, that matches one of the names supported in
Internet Explorer, .NET Framework, and Windows Forms. Importantly, the Color class
in Silverlight belongs to the System.Windows.Media namespace. In Windows
Forms, it belongs to the System.Drawing namespace.

■ A Red, Green, Blue (RGB) hexadecimal string in the format of #RxGyBz. For instance,
in listing 18.14, you could replace Navy with its hexadecimal representation,
#000080.

■ An RGB hexadecimal string with an alpha channel in the format of #aRGB. This format
gives you a greater range than the typical RGB hexadecimal string because it has
built-in support for the opacity channel. As an example, you could convert Navy
to #AA000080 to give the color a washed-out appearance.

These color options give you a lot of flexibility when you’re defining a SolidColor-
Brush. If you’re using XAML, it’s much more convenient to explicitly set the Fill
property of a Shape, or any property that’s a Brush, and let Silverlight automatically
convert the value to a SolidColorBrush for you. Because of this, you could condense
the previous markup to this:

<Ellipse Stroke="Black" StrokeThickness="3" Fill="Navy"
 Width="64" Height="64" Canvas.Left="8" Canvas.Top="8">
</Ellipse>

Listing 18.14 A basic SolidColorBrush with the color Navy Blue
Licensed to Devon Greenway <devon.greenway@gmail.com>

526 CHAPTER 18 Graphics and effects
Although this explicit approach is convenient, it’s still important to remember the
SolidColorBrush, because if you’re trying to use solid colors through managed code,
you’ll need to use the System.Windows.Media.SolidColorBrush class.

 Occasionally, you may want something richer and more vibrant than a solid color.
Thankfully, Silverlight provides several alternatives such as the LinearGradientBrush.

18.3.2 LinearGradientBrush

The LinearGradientBrush paints an area with a gradual, soothing shift between colors
along a theoretical line. This Brush can shift between one or more colors through the
use of a series of predefined locations represented as GradientStop elements. Each
GradientStop element specifies where one color should shift to another. Listing 18.15
shows a basic LinearGradientBrush that uses two GradientStop elements to shift from
one Color to another.

Result:

XAML:
<Ellipse Stroke="Black" StrokeThickness="3"
 Width="64" Height="64" Canvas.Left="8" Canvas.Top="8">
 <Ellipse.Fill>
 <LinearGradientBrush>
 <GradientStop Color="Navy" Offset="0" />
 <GradientStop Color="White" Offset="1" />
 </LinearGradientBrush>
 </Ellipse.Fill>
</Ellipse>

This Ellipse illustrates how the LinearGradientBrush can be used to shift from Navy
in the upper-left corner to White in the lower-right corner. Each GradientStop in the
LinearGradientBrush specifies an Offset property that determines where the color,
specified in the Color property, should be reached within the Brush coordinate space.
But how does the Offset property know that 0 means the upper-left corner and 1
means the lower-right corner?

 The Offset property relies on two other properties, which
are defined within the LinearGradientBrush definition itself.
These two System.Windows.Point-based properties are Start-
Point and EndPoint and ultimately determine the beginning
and ending of a gradient. Collectively, these two properties
define a rectangular boundary in which the Offset property
works. This coordinate space can best be visualized as shown in
figure 18.1, where each corner displays a Point value.

Listing 18.15 A LinearGradientBrush rendered on a diagonal

Figure 18.1 The Brush
coordinate space
Licensed to Devon Greenway <devon.greenway@gmail.com>

527Brushes
 By default, the StartPoint property is set to represent the upper-left corner (0, 0)
of this coordinate space. Conversely, the EndPoint defaults to represent the lower-
right corner (1, 1) of the coordinate space. You can manipulate both property values
to take full control of the range in which the gradient occurs, as well as the direction.

 Imagine taking the previous example and making the gradient run horizontally
instead of diagonally. This can be accomplished by altering the StartPoint and End-
Point property values, as shown in listing 18.16.

Result:

XAML:
<Ellipse Stroke="Black" StrokeThickness="3"
 Width="64" Height="64" Canvas.Left="8" Canvas.Top="8">
 <Ellipse.Fill>
 <LinearGradientBrush StartPoint="0,0" EndPoint="1,0">
 <GradientStop Color="Navy" Offset="0" />
 <GradientStop Color="White" Offset="1" />
 </LinearGradientBrush>
 </Ellipse.Fill>
</Ellipse>

Although you could’ve rotated the imaginary gradient line by altering the Offset
property values of each of the GradientStop elements, the StartPoint and EndPoint
properties give you control over the entire range of the gradient. This fact becomes
particularly important when you begin to consider using multiple color transitions.

 Both the LinearGradientBrush and the RadialGradientBrush, which you’ll see
shortly, allow you to define as many GradientStop elements as you want. The more
GradientStop elements that are added, the more important it is to understand the
relationship between the Offset property and the StartPoint and EndPoint proper-
ties. Listing 18.17 shows how to use multiple GradientStop elements by adjusting the
Offset property.

Result:

XAML:
<Rectangle StrokeThickness="0" Width="200"
 Height="64" Canvas.Left="8" Canvas.Top="8">
 <Rectangle.Fill>
 <LinearGradientBrush StartPoint="0,0" EndPoint="1,0">

Listing 18.16 A LinearGradientBrush rendered horizontally

Listing 18.17 A horizontal LinearGradientBrush with multiple transitions
Licensed to Devon Greenway <devon.greenway@gmail.com>

528 CHAPTER 18 Graphics and effects
 <GradientStop Color="Yellow" Offset="0" />
 <GradientStop Color="Orange" Offset=".45" />
 <GradientStop Color="Blue" Offset=".55" />
 <GradientStop Color="Green" Offset="1" />
 </LinearGradientBrush>
 </Rectangle.Fill>
</Rectangle>

As the previous examples have shown, the LinearGradientBrush provides you with a
lot of opportunity to add richness to your applications. Occasionally, you may want to
add a sense of depth to your graphics. Although Silverlight supports only 2D graphics,
you can still deliver the illusion of depth by using a RadialGradientBrush.

18.3.3 RadialGradientBrush

The RadialGradientBrush is similar to the LinearGradientBrush except that the
color transitions begin from an originating Point. As the Brush radiates from the cen-
ter, it gradually paints elliptical transitions until a GradientStop is encountered. This
process continues from one GradientStop to the next until each one has been ren-
dered. Listing 18.18 illuminates a basic RadialGradientBrush.

Result:

XAML:
<Ellipse Width="75" Height="75" Stroke="Black">
 <Ellipse.Fill>
 <RadialGradientBrush>
 <GradientStop Color="Black" Offset="0"/>
 <GradientStop Color="Black" Offset="1"/>
 <GradientStop Color="Gray" Offset="0.5"/>
 </RadialGradientBrush>
 </Ellipse.Fill>
</Ellipse>

As this example shows, the brush begins at the center of the Ellipse by default. This
originating Point can be customized in one of two ways. The first approach involves
specifying a Point value within the Center property. The Center Point represents the
focal point of the outermost ellipse of the gradient. Alternatively, or in conjunction
with the Center, you can use the GradientOrigin property to specify the Point that
defines where the radial gradient emanates from.

 As a radial gradient is rendered, it grows from the GradientOrigin in a circular
fashion. Sometimes it’s necessary to use a more elliptical gradient instead of a pure
circular effect. To define an elliptical gradient, you need to utilize the RadiusX and
RadiusY properties, which are consistent with the properties of the same name from

Listing 18.18 A RadialGradientBrush
Licensed to Devon Greenway <devon.greenway@gmail.com>

529Brushes
the Ellipse element. Listing 18.19 compares several ellipses using different RadiusX
and RadiusY properties, which both default to .5.

Result:

XAML:
<Canvas Width="245" Height="75" Background="White">
 <Ellipse Width="75" Height="75" Stroke="Black">
 <Ellipse.Fill>
 <RadialGradientBrush>
 <GradientStop Color="Black" Offset="0"/>
 <GradientStop Color="Black" Offset="1"/>
 <GradientStop Color="Gray" Offset="0.5"/>
 </RadialGradientBrush>
 </Ellipse.Fill>
 </Ellipse>
 <Ellipse Width="75" Height="75" Canvas.Left="85"
 Stroke="Black">
 <Ellipse.Fill>
 <RadialGradientBrush RadiusX=".25">
 <GradientStop Color="Black" Offset="0"/>
 <GradientStop Color="Black" Offset="1"/>
 <GradientStop Color="Gray" Offset="0.5"/>
 </RadialGradientBrush>
 </Ellipse.Fill>
 </Ellipse>
 <Ellipse Width="75" Height="75" Canvas.Left="170"
 Stroke="Black">
 <Ellipse.Fill>
 <RadialGradientBrush RadiusY=".25">
 <GradientStop Color="Black" Offset="0"/>
 <GradientStop Color="Black" Offset="1"/>
 <GradientStop Color="Gray" Offset="0.5"/>
 </RadialGradientBrush>
 </Ellipse.Fill>
 </Ellipse>
</Canvas>

As the previous examples show, you can use a RadialGradientBrush to provide basic lin-
ear and radial effects. Although these Brush elements are appropriate in certain situa-
tions, occasionally you need to deliver a richer, more textured effect. Textures are often
delivered via images, which can be painted on visual elements using an ImageBrush.

18.3.4 ImageBrush

The ImageBrush allows you to fill an area with an image instead of a solid or shifting
color. The ImageBrush utilizes a picture specified within the ImageSource property to

Listing 18.19 Comparing uses of the RadiusX and RadiusY properties
Licensed to Devon Greenway <devon.greenway@gmail.com>

530 CHAPTER 18 Graphics and effects
paint a raster graphic. This Brush supports both .jpg and .png formats to deliver a tex-
tured effect to your visual elements. Listing 18.20 shows a basic ImageBrush using an
image named man.png.

Result:

XAML:
<Ellipse Width="60" Height="60" Stroke="Black">
 <Ellipse.Fill>
 <ImageBrush ImageSource="http://www.silverlightinaction.com/man.png" />
 </Ellipse.Fill>
</Ellipse>

As you can imagine, an ImageBrush can easily add a rich, vibrant touch to your paint-
ing surface. Sometimes, you may want your painting surface to be more dynamic and
livelier. With the same type of simplicity as the ImageBrush, you can paint a surface
with a video, using the VideoBrush.

18.3.5 VideoBrush

Imagine watching a shooting star speed across the night sky through the elliptical eye-
piece of a telescope. With the VideoBrush in action, you can deliver this type of scene
by drawing an Ellipse and filling it with a MediaElement. Listing 18.21 shows exactly
how to use the VideoBrush.

Result:

XAML:
<MediaElement x:Name="myMediaElement" Opacity="0"
 Source="http://www.silverlightinaction.com/video2.wmv" />
<Ellipse Width="100" Height="100" Stroke="Black">
 <Ellipse.Fill>
 <VideoBrush SourceName="myMediaElement" />
 </Ellipse.Fill>
</Ellipse>

As this example shows, the VideoBrush references a MediaElement through the
SourceName property. This fact allows you to manipulate the playback functionality of

Listing 18.20 An example of an ImageBrush

Listing 18.21 An example of a VideoBrush
Licensed to Devon Greenway <devon.greenway@gmail.com>

531Effects
a VideoBrush by altering the playback of the MediaElement as defined in chapter 7. If
you want to pause or stop the video displayed within a VideoBrush, you call the
Pause() or Stop() method of the MediaElement that the VideoBrush references.

 Up to this point, the Brush elements have been used in relation to a basic Ellipse.
An Ellipse was chosen for the sake of illustration; you can use all the Brush elements
that we’ve covered in any number of visual elements, including but not limited to a
Canvas, a TextBox, or even a TextBlock, as listing 18.22 shows.

Result:

XAML:
<MediaElement x:Name="myMediaElement" Opacity="0"
 Source="http://www.silverlightinaction.com/video2.wmv" />
<TextBlock Text="HELLO" FontFamily="Verdana"
 FontSize="80" FontWeight="Bold">
 <TextBlock.Foreground>
 <VideoBrush SourceName="myMediaElement" />
 </TextBlock.Foreground>
</TextBlock>

This sample only begins to show the potential allotted by the different Brush ele-
ments. All the Brush options are usable in any property that has a Brush type. You can
have a video paint text, or an image paint shapes or even controls. The sky’s the limit.

 In addition to these rich Brush options, Silverlight supports an interesting set of
features that can further alter the appearance of your shapes. Collectively, these are
called effects.

18.4 Effects
Much as is the case with animation, the subtle and appropriate use of effects can make
the difference between a UI that just sits there and one that really pops, drawing your
eye to information that’s important to you.

 Effects in Silverlight come in two primary forms: built-in effects, implemented in the
native Silverlight hardware-accelerated runtime code; and pixel shaders, implemented
by folks like us using a combination of managed code and High Level Shader Lan-
guage (HLSL) and run in software. The former allows for maximum performance for
common effects such as blur and shadows. The latter provides a lot of flexibility to
allow us to provide our own effects, while not breaking out of the sandbox.

 In this section, we’ll cover both types of effects. We’ll start with how to use the
built-in effects and follow that up with a primer on creating your own pixel shader
effects.

Listing 18.22 An example of a videoBrush within a TextBlock
Licensed to Devon Greenway <devon.greenway@gmail.com>

532 CHAPTER 18 Graphics and effects
18.4.1 Using built-in effects

Silverlight has two built-in effects: blur and drop shadow. The effects may be used on
any element or group of elements in the visual tree.

 Elements that have effects applied remain as interactive as they did prior to the
effect. Although it may be hard to read the text in a blurred-out TextBox, the TextBox
is still fully functional.
BLUR EFFECT

The blur effect in Silverlight, implemented through the BlurEffect class, provides a
way to shift an element or group of elements out of focus, as though you were looking
at it through frosted glass or a bad lens.

 Blur has only one property of interest: Radius. The Radius property controls how
large an area is sampled when the blur is run: the larger the radius, the blurrier the
result. Note that the larger the radius, the more computations required to achieve the
blur—a potential performance consideration, especially if a large area or animation is
involved.

 Listing 18.23 shows how to use the BlurEffect on a group of UI elements in a
StackPanel.

Result:

XAML:
<StackPanel x:Name="Elements" Margin="10">
 <TextBlock Text="Hello World" Margin="10" />
 <TextBox Text="This is a textbox" Margin="10" />
 <Button x:Name="Button" Content="Button" Margin="10"/>

 <StackPanel.Effect>
 <BlurEffect Radius="4" />
 </StackPanel.Effect>

</StackPanel>

In listing 18.23, the blur effect is applied to the entire StackPanel containing all the
UI elements. The net result is to blur everything inside that container. You can also
apply a blur to individual elements, of course. The effect is attached to the Stack-
Panel using the Effect property. The Effect property can have only one effect at any
point in time. If you want multiple effects on a single element, you need to use nested
panels or borders and apply the effects one per panel/border.

Listing 18.23 A blur with a 4-pixel radius

Effect on
StackPanel
Licensed to Devon Greenway <devon.greenway@gmail.com>

533Effects
 The blur effect is useful when combined with things such as a pop-up modal win-
dow (see chapter 15). In that case, a slight blur of the page contents helps drive home
the fact that the pop-up is modal and demands all of your attention.

 The second built-in effect is the drop shadow.
DROP SHADOW EFFECT

The drop shadow effect is one of those effects that’s best used in moderation, and used
subtly when used at all. Not only is there a performance and rendering quality con-
cern, but aesthetically, those of us who aren’t designers tend to use bold shadows
more often than looks good in an application.

 The DropShadowEffect class has several knobs you can use to fine-tune the effect.
Table 18.3 shows the five properties that alter the appearance of the effect.

When playing with shadows, I’ve found it more aesthetically pleasing to have the
ShadowDepth be 0 or close to 0, the Opacity set to some value around 0.5 or so, and
the BlurRadius set to a value that spreads out the effect—10 usually works well. That
gives you a light shadow that bleeds around all the edges. Listing 18.24 shows these
settings in use in the effect.

Result:

Table 18.3 Important DropShadowEffect properties

Property Description

Color Specifies the color of the shadow. Default is Black.

ShadowDepth Distance in pixels to displace the shadow relative to the element the
effect is applied to. Default is 5 pixels.

Direction An angle in degrees from 0 to 360 (counterclockwise), indicating where
the shadow lies relative to the element the effect is applied to. The
default is 315, which places the shadow in the lower-right corner.

BlurRadius Controls the blurriness of the shadow. A double value between 0 and 1,
with 1 being the softest. Default is 0.5.

Opacity Specifies how opaque the shadow is. A double value between 0 and 1,
with 1 being fully opaque. Default is 1.

Listing 18.24 A subtle drop shadow
Licensed to Devon Greenway <devon.greenway@gmail.com>

534 CHAPTER 18 Graphics and effects
XAML:
<Grid x:Name="LayoutRoot" Background="White">
 <Grid Background="White" Width="180" Margin="25">
 <StackPanel x:Name="Elements" Margin="10">
 <TextBlock Text="Hello World"
 Margin="10" />
 <TextBox Text="This is a textbox"
 Margin="10" />
 <Button x:Name="Button" Content="Button"
 Margin="10"/>
 </StackPanel>

 <Grid.Effect>
 <DropShadowEffect BlurRadius="10"
 Opacity="0.5"
 ShadowDepth="1" />
 </Grid.Effect>
 </Grid>
</Grid>

In listing 18.24, note that the effect is applied to a grid with an opaque background B.
If the grid had a transparent background, the effect would be applied individually to
each of the items inside the grid.

 As described before the listing, this example
uses a large blur radius, 50 percent opacity, and a
shadow depth of only 1 pixel. This provides a more
pleasing and subtle effect than the default shadow
appearance. Compare that to figure 18.2, with the
properties all left at their default values.

 Most people would find the default appearance
a bit jarring, or at least a little outdated. Fortu-
nately, the Silverlight team gave us all the tweaks we
need to be able to make the shadow look better.

 In addition to these designer-type recommenda-
tions, you should keep a few other things in mind
when using effects.
TRICKS AND CONSIDERATIONS

The built-in effects perform well, but they’ll tax your system resources if you apply
them to a really large area and/or animate any of the values on the effect. For exam-
ple, one thing I did early on was animate the background blur from 0 to 5 when dis-
playing a new dialog. It worked, but it was a processing hog.

 In addition to processing time, another consideration is the quality drop in the
result. Any elements with an effect applied to them are rendered out to a bitmap.
That means you automatically lose ClearType font rendering and fall back to grayscale
rendering. One way to get around this is to apply the effect to a shape of the same size
that sits behind the elements. Listing 18.25 shows how to use a rectangle behind the
grid to ensure that the grid contents stay at top rendering quality.

B

Figure 18.2 The default appearance
of the DropShadowEffect
Licensed to Devon Greenway <devon.greenway@gmail.com>

535Effects
<Grid x:Name="LayoutRoot" Background="White">
 <Grid Width="180" Margin="25">
 <Rectangle Fill="White">
 <Rectangle.Effect>
 <DropShadowEffect BlurRadius="10"
 Opacity="0.5"
 ShadowDepth="1" />
 </Rectangle.Effect>
 </Rectangle>

 <StackPanel x:Name="Elements" Margin="10">
 <TextBlock Text="Hello World" Margin="10" />
 <TextBox Text="This is a textbox" Margin="10" />
 <Button x:Name="Button" Content="Button"
 Margin="10"/>
 </StackPanel>
 </Grid>
</Grid>

This example removes the effect from the grid and places it on a background rectan-
gle sitting behind the elements. Because the rectangle isn’t a parent of the elements,
the effect isn’t applied to them. The only thing that’s rasterized in this example is the
Rectangle. The text retains ClearType font rendering.

 The Silverlight team may add more effects over time. Requests include true multi-
pass effects such as glow. In the meantime, it’s possible to create your own single-pass
effects using a little Silverlight code and the shader language.

18.4.2 Creating custom pixel shaders

Most people who know about pixel shaders have run across them in game develop-
ment. Games and various types of shaders have gone hand in hand because video
cards became powerful enough to offload most or all of the shader calculation and
logic. Most work done with pixel shaders is performed using the DirectX SDK and
optionally XNA.

 WPF also supports pixel shaders. Entire libraries of transitions and effects are avail-
able on CodePlex, all built using hardware-accelerated shaders.

 Pixel shaders in Silverlight are a simplified form of the full pixel shaders used in
games or in WPF. For security reasons, the shaders are all run in software and currently
support only Pixel Shader level 2. By not running them in hardware, Silverlight can
sandbox the code and avoid someone running malicious code on your video card. But
as technology progresses, the Silverlight team will likely consider allowing the shaders
to run on hardware in selected scenarios.
HOW PIXEL SHADERS WORK

Pixel shaders perform per-pixel processing on input. That input can be anything you
see in the visual tree in Silverlight, including images, video, and controls. Pixel shad-
ers in Silverlight are created using two main files. The first is a .NET class that’s used to
wrap the shader functionality and expose it to the rest of Silverlight. The second is the

Listing 18.25 Applying the drop shadow to a background Rectangle

Background
Rectangle
Licensed to Devon Greenway <devon.greenway@gmail.com>

536 CHAPTER 18 Graphics and effects
pixel shader itself, written in HLSL as an .fx file and compiled into a .ps file as a
resource in the Silverlight project.

 Pixel shaders are written in HLSL, a C-like language optimized for pixel process-
ing. The language is geared toward running on video card hardware, so you have to
deal with things such as registers, fixed numbers of variables, and limitations on over-
all complexity. In some of those ways, it’s like working in assembly language. You can
find a reference on HLSL syntax on MSDN at http://bit.ly/HLSLReference.

 Pixel shaders in Silverlight are software-rendered, but are parallelized. Although
they don’t take specific advantage of capabilities of video hardware, they’re executed
using the CPU’s fast SSE instruction set.

 Silverlight supports the ps_2_0 profile of the Shader Model 2 specification. A
shader profile is the target for compiling a shader, whereas a shader model is a specifica-
tion for capabilities of the shader. You’ll need to understand this when looking at
existing shader implementations to port to Silverlight or learning about HLSL syntax.
In the case of Shader Model 2, the limitation you’re likely to hit is the 96-instruction
limit. That limit is broken down into 64 arithmetic instructions and 32 texture-sample
instructions. The 64 arithmetic instruction limit will almost certainly be a bounding
limit for shaders of any complexity. In addition, if you manually compile the shaders
using the DirectX SDK, you’ll need to know what profile to use.
ENVIRONMENT SETUP

The most difficult part of writing a pixel shader is setting up the environment to allow
them to compile. There are three main options:

1 Download the DirectX SDK, and use the compiler there to build the shader.
2 Repurpose the WPF pixel shader build step.
3 Use a tool such as Shazzam to create and compile the shader.

You can download the DirectX SDK and use its command-line tools to compile the
shader. The SDK is roughly 500 MB and may be a bit much just to compile a shader.

 Option 2 is to repurpose the WPF pixel shader build step. Tim Heuer put together
a great blog post covering the steps required to set up your environment for develop-
ing pixel shaders. It’d be too much to include in this book, so I refer you to his post
here: http://bit.ly/SLPixelShaderCompile. I chose option 2, using a build task. It
involves some configuration as well as a template for the shader development.

 Another option is to use a tool such as Shazzam (http://shazzam-tool.com) to
compile the shader and manually add that into your project. Most Silverlight and WPF
developers doing serious work with pixel shaders use this tool. It also includes a num-
ber of training videos to help you get started with pixel shader development. Finally,
Shazzam includes a bunch of existing shaders in source form that you can learn from.

 Despite its hackish nature, if you want everything to happen inside Visual Studio, I
think you’re better off starting with Tim’s approach for the project structure. If you
don’t need everything integrated into Visual Studio and can add the files manually,
you’ll find that Shazzam is the best long-term solution. In either case, you’ll likely have
Shazzam open while you explore pixel shader development.
Licensed to Devon Greenway <devon.greenway@gmail.com>

http://bit.ly/HLSLReference
http://bit.ly/SLPixelShaderCompile
http://shazzam-tool.com

537Effects
 When your environment is set up and you can compile pixel shaders, you’re ready
to develop one of your own. Go ahead and set up your environment now. I’ll wait.
SHADER CODE

Pixel shaders are typically fairly complex; they do things such as alter the visual loca-
tion of pixels based on a complex algorithm. Learning how to write shaders is like
learning any other programming language, but with a heavy focus on performance
and optimization.

 A good place to learn is the WPF Pixel Shader Effects library on CodePlex: http://
wpffx.codeplex.com. Although originally intended for WPF use, Silverlight effects
were added once Silverlight supported HLSL-based pixel shaders.

 Listing 18.26 shows the HLSL source code for a pixel shader that takes a color and
multiplies every pixel by that color. The result is an image that appears to have been
photographed through a tinted lens.

//---
//
// Silverlight ShaderEffect HLSL -- ShaderEffect1
//
//---

//---
// Constant register mappings (float,double,Point,Color,Point3D...)
//---

float4 colorFilter : register(C0);

//---
// Sampler Inputs (Brushes, including ImplicitInput)
//---

sampler2D implicitInputSampler : register(S0);

//---
// Pixel Shader
//---

float4 main(float2 uv : TEXCOORD) : COLOR
{
 float4 color = tex2D(implicitInputSampler, uv);
 return color * colorFilter;
}

The shader first maps values into registers B supported by the shader model. Each
input and constant must be mapped to a register. A register is a well-known place in
hardware (virtual hardware in the Silverlight case) that can be used to store a value.
Registers are much faster than regular RAM when it comes to accessing values. If
you’ve ever done any x86 assembly language programming, or even any old DOS inter-
rupt programming, you know well the concept of registers.

 The section comments aren’t required, but you’ll find them in almost every pixel
shader implementation. Usually I’d leave them out of a code listing in this book, but
the shader is completely naked without them.

Listing 18.26 A simple pixel shader that applies a color filter

B

Standard main
function

C

Licensed to Devon Greenway <devon.greenway@gmail.com>

http://wpffx.codeplex.com
http://wpffx.codeplex.com

538 CHAPTER 18 Graphics and effects
 The actual code starts under the Pixel Shader section. Like all pixel shaders in Sil-
verlight, this has a main function that takes in a UV coordinate (a standard way of refer-
ring to an x and y position on a texture or image, but normalized into the range of 0
to 1 rather than absolute pixels) and returns a float4 color C.

 When you have the HLSL source for your shader, you’ll need to write a .NET class
to expose it in your project.
WRAPPER CLASS

To use a pixel shader, you need to provide a way for the rest of .NET to interact with it.
The wrapper class (often called just the pixel shader class) is responsible for loading the
compiled shader code and for exposing properties used to tweak the shader. The
Pixel Shader file template includes a wrapper class. In addition, Shazzam will generate
the wrapper class for you. The wrapper class for this example is shown in listing 18.27.

public class ShaderEffect1 : ShaderEffect
{
 private static PixelShader _pixelShader = new PixelShader();

 static ShaderEffect1()
 {
 _pixelShader.UriSource = new
 Uri("/SilverlightApplication61;component/ShaderEffect1.ps",
 UriKind.Relative);
 }

 public ShaderEffect1()
 {
 this.PixelShader = _pixelShader;

 UpdateShaderValue(InputProperty);
 UpdateShaderValue(ColorFilterProperty);
 }
}

public Brush Input
{
 get { return (Brush)GetValue(InputProperty); }
 set { SetValue(InputProperty, value); }
}

public static readonly DependencyProperty InputProperty =
 ShaderEffect.RegisterPixelShaderSamplerProperty("Input",
 typeof(ShaderEffect1), 0);

public Color ColorFilter
{
 get { return (Color)GetValue(ColorFilterProperty); }
 set { SetValue(ColorFilterProperty, value); }
}

public static readonly DependencyProperty ColorFilterProperty =
 DependencyProperty.Register("ColorFilter", typeof(Color),
 typeof(ShaderEffect1), new PropertyMetadata(Colors.Yellow,
 PixelShaderConstantCallback(0)));
}

Listing 18.27 A pixel shader wrapper class

B

Public instance
constructor

C

D

Licensed to Devon Greenway <devon.greenway@gmail.com>

539Effects
The static constructor B loads the pixel shader resource into a static PixelShader typed
property. Note the .ps extension: it’s loading the compiled resource. The PixelShader
is static because only one copy of the compiled code is needed within an application.

 Each of the dependency properties maps to a register in the shader. One of the
properties, of type Brush, is mapped implicitly C. Any additional properties must be
mapped directly to registers. In this source, you can see that the ColorFilterProp-
erty maps to constant register zero D in the pixel shader. The PixelShaderCon-
stantCallback takes the register number as a parameter. In the HLSL source,
constant register zero is mapped to the variable colorFilter.

 But how did a Color property become a float4, and what’s a float4 anyway?
Those are built-in vector types in the language. Table 18.4 has the mapping.

The member names for the individual floats depend on their usage. For example, a
color has the properties r, g, b, and a.

 HLSL is interesting in that it can perform multiplication and other operations on
whole structures. In that way, the number of instructions is reduced, but it can be hard
to understand when you first look at it. For example, the exmple multiplies together
two float4 values.
USING THE SHADER

With the shader compiled and the wrapper class in place, it’s time to try the shader in
your own application. Like any other element used in XAML, you must either include
an implicit namespace in your application settings or map a namespace in the XAML
file. In this case, because the shader is in the project with the XAML, you’ll use an
explicit map in the XAML.

 Listing 18.28 shows the effect of using the shader with a red tint. It’ll look gray in
print, but you can tell there’s a tint over the whole image.

Result:

Table 18.4 Mapping from .NET types to HLSL types

Shader type Description .NET type

float A single floating-point number double, single

float2 A vector with two floating-point numbers Point, Size, Vector

float3 A vector with three floating-point numbers (Unused in Silverlight)

float4 A vector with four floating-point numbers Color

Listing 18.28 Using the pixel shader effect in XAML
Licensed to Devon Greenway <devon.greenway@gmail.com>

540 CHAPTER 18 Graphics and effects
Code:
<UserControl x:Class="SilverlightApplication61.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 xmlns:local="clr-namespace:SilverlightApplication61"
 mc:Ignorable="d"
 d:DesignHeight="300" d:DesignWidth="400">

 <Grid x:Name="LayoutRoot">
 <Grid Background="White" Width="180" Margin="25">
 <StackPanel x:Name="Elements" Margin="10">
 <TextBlock Text="Hello World" Margin="10" />
 <TextBox Text="This is a textbox" Margin="10" />
 <Button x:Name="Button" Content="Button"
 Margin="10" />
 </StackPanel>

 <Grid.Effect>
 <local:ShaderEffect1 ColorFilter="Red" />
 </Grid.Effect>
 </Grid>
 </Grid>

</UserControl>

This is the same example used in previous sections, but instead of a drop-shadow, it
uses the pixel shader with a parameter of Red for the ColorFilter property B. The
end result is an angry red form. As was the case in the other examples, the use of a
pixel shader has reverted the text back to grayscale font smoothing.

 Pixel shaders are a great way to provide your own custom effects or to use effects
developed by others. Learning HLSL can be difficult at times, but the payoff is worth
it: you can use pixel shaders in Silverlight, in WPF, and, of course, in DirectX and XNA.
Pixel shaders, even the software-rendered ones in Silverlight, are extremely efficient
as well. When considering pixel-manipulation strategies in an application, the cre-
ation of a pixel shader should be high on your list of options.

18.5 Summary
Silverlight’s inherent graphical capabilities go far beyond cartoons and visual
fireworks. By shaping these elements into illustrations, graphics can provide a bridge
to your users to help them connect with difficult concepts. These valuable illustra-
tions can be composed of a series of shapes compiled from arcs, curves, and lines.
These shapes can then be filled with gradient colors or textured visuals such as
images and videos.

 Effects augment both graphics and controls. The use of a subtle drop shadow or a
blur can help users focus their attention on a specific part of the screen. If those
effects aren’t sufficient, you also have the option to create your own effects in the form
of pixel shaders.

B

Licensed to Devon Greenway <devon.greenway@gmail.com>

541Summary
 Vector graphics and effects are definitely some of the strong points in Silverlight.
Previous technologies had no equivalents; you had to write everything from scratch or
use primitive drawing options. Silverlight also has rich support for images and media,
another of its strong points. We’ll discuss that in chapters 20 and 21. Before we get
there, let’s put our newfound vector graphics skills to use on that oldest of modern
media: paper.

Licensed to Devon Greenway <devon.greenway@gmail.com>

Printing
Silverlight 4 is the first release that can be considered truly “ready for business.” The
support for binding and validation, WCF RIA Services, and out-of-browser trusted
applications are all major factors in this. One equally important reason is the added
support for printing.

 Many business applications need to print paper forms and reports as a standard
part of their process. Very large-scale applications typically farm that functionality
out to a server somewhere with centralized print systems. Most other applications
use printers directly mapped and available on the client workstation. For those
applications, platform support for printing is essential.

 Printing support opens up other nonbusiness scenarios as well. Now you can
make that coloring-book creator or recipe application you’ve had in your “cool app
ideas” folder. I joke about printing, but I used to print directions before I had a GPS,

This chapter covers
■ An overview of the printing API
■ How to print onscreen content
■ How to scale content for print
■ Getting data from a service for a report
■ Creating headers, footers, and more
542

Licensed to Devon Greenway <devon.greenway@gmail.com>

543How Silverlight printing works
and flight information before it was synchronized to my phone via exchange. There are
still many interesting and legitimate uses of printing inside and outside of business.

 In our tour of printing, we’ll take a look under the hood to understand how print-
ing works in Silverlight, then handle the use case of printing onscreen content. From
there, we’ll look at considerations that come into play when building multipage docu-
ments. Wrapping up, we’ll look at an example of a simple report writer with headers,
footers, and items rows.

19.1 How Silverlight printing works
When designing the printing system, the Silverlight team wanted something that
would work with all current onscreen visuals, while not adding a large feature payload
to the overall runtime. Team members also wanted something that would work cross-
platform and be available in all modes of operation: in-browser, out-of-browser trusted
applications, and out-of-browser sandboxed applications.

 For those reasons, the printing process resembles the overall screen layout process
(see chapter 6), with additional printing-specific steps tagged on. Figure 19.1 shows
the printing process at a high level.

 The printing process starts by creating a PrintDocument object and calling its
Print method. The PrintDocument then raises the BeginPrint event if there are any
listeners. Your own startup code can run inside that event handler. Then, for each
page to be printed, the PrintDocument raises the PrintPage event. Inside the handler
for that event, you’ll set the page visual and tell Silverlight if there are any more pages.
The printing system then lays out the content and rasterizes it into a bitmap to send to
the printer driver. Once that page is sent to the printer driver, Silverlight raises the
PrintPage event if you’ve indicated that there are more pages, or raises the EndPrint
event if not. During this process, the primary object you’re interacting with, the object
raising the three mentioned events, is the PrintDocument class.

 In this section, we’ll start with the PrintDocument class, covering its properties,
methods, and events. In detail, we’ll cover the PrintPage event and the actions you

NoPrint
BeginPrint

Event
EndPrint

Event
PrintPage

Event

Set
PageVisual

Layout

Rasterize

Send to
Printer Driver

More
Pages?

Yes

Visual Tree

Figure 19.1 The
printing process
at a high level.
User code may
be run inside
the BeginPrint,
PrintPage, and
EndPrint events.
Licensed to Devon Greenway <devon.greenway@gmail.com>

544 CHAPTER 19 Printing
take within it. After that, we’ll take a deeper look at the rasterization step and how that
affects the process.

19.1.1 The PrintDocument class

The heart of printing in Silverlight is the PrintDocument class, located in the Sys-
tem.Windows.Printing namespace. The PrintDocument class includes the single
Print method required to kick off the process, a helper property to provide access to
the page count, and three important events raised at different points in the process.
Table 19.1 describes each of these members.

In the remainder of this section, we’ll look at these properties, methods, and events in
more detail, starting with the Print method.
PRINT METHOD

The first step after instantiating the PrintDocument class is to call the Print method.
The Print method takes in a parameter specifying the name of your document. This
document name is what shows up in the operating system print spooler. The name
should be descriptive, containing the title of your report or document. If your applica-
tion plans to print many of these, you may want to add an identifier such as the
patient’s name in the case of a medical report, or perhaps some criteria used to gener-
ate the report. Listing 19.1 shows how to use the Print method.

XAML:
<Grid x:Name="LayoutRoot" Background="White">

 <Button x:Name="Print" Content="Print"
 Width="100" Height="30"
 Click="Print_Click"/>

</Grid>

Table 19.1 PrintDocument members

Member Description

Print method Displays the Printer dialog and, if accepted, raises the BeginPrint
event followed by the PrintPage event to begin the printing process.

PrintedPageCount
property

A dependency property containing the total number of pages printed.

BeginPrint and
EndPrint events

Events fired at the beginning and ending of the print job, respectively.

PrintPage event The most important event. This is the event that enables you to build
and print a single page.

Listing 19.1 Using the Print method and specifying a document name

TextBlock
will go here
Licensed to Devon Greenway <devon.greenway@gmail.com>

545How Silverlight printing works
C#:
private PrintDocument _document;

public MainPage()
{
 InitializeComponent();

 Loaded += new RoutedEventHandler(MainPage_Loaded);
}

void MainPage_Loaded(object sender, RoutedEventArgs e)
{
 _document = new PrintDocument();
}

private void Print_Click(object sender, RoutedEventArgs e)
{
 PrintForm("Brown, Pete");
}

private void PrintForm(string patientName)
{

 doc.Print("Admittance form for " + patientName);
}

This example doesn’t do anything meaningful yet—it doesn’t print anything. We’ll
use this as the base for the rest of the examples centered around PrintDocument. Spe-
cifically, the placeholders for the TextBlock and the event wire-up will be filled out in
later examples.

 As written, the code is fairly simple. It sets up the required PrintDocument class
instance and calls the Print method. The Print method is asynchronous: it immedi-
ately returns once you call it. But it raises all of its events back on the calling thread, so
the UI thread can still be blocked.

 Note that in untrusted applications, the Print method must be called from a user-
initiated event, such as a button click event. Trusted out-of-browser applications (see
chapter 5) eliminate this restriction. Once you wire up the PrintPage event (coming
up shortly), you’ll see that the print spool entry document name will contain the value
passed into the Print method. Figure 19.2 shows the Windows 7 print spooler with a
Silverlight print document spooled.

Create
PrintDocument

Event wire-up
will go here

Figure 19.2 The Windows 7 print spooler showing the Silverlight document titled “Admittance form
for Brown, Pete,” created in listing 19.1.
Licensed to Devon Greenway <devon.greenway@gmail.com>

546 CHAPTER 19 Printing
The PrintDocument supports multipage printing. While printing, you’ll find it useful to
get the current number of pages that have been printed, in order to report the print sta-
tus to your user. The PrintedPageCount property provides us with this information.
PRINTEDPAGECOUNT PROPERTY

The PrintedPageCount property contains the number of pages sent to the print
driver. This doesn’t necessarily correspond to the number of pages physically printed,
as printers are typically much slower than the PC they’re attached to. But it’s useful as
a general way of reporting status to the user.

 PrintedPageCount is a read-only dependency property, so you can bind to that in
XAML. Continuing from our example in listing 19.1, we can modify the code and
XAML as shown in listing 19.2 to support this. Add the TextBlock in the XAML to the
spot reserved with the comment.

XAML:
<TextBlock x:Name="PrintStatus"
 HorizontalAlignment="Center"
 VerticalAlignment="Bottom"
 Text="{Binding PrintedPageCount}"
 FontSize="40" />

C#:
void MainPage_Loaded(object sender, RoutedEventArgs e)
{
 _document = new PrintDocument();
 PrintStatus.DataContext = _document;
}

Now, when you print a multipage document, the status text will display the number of
pages that have been printed so far. This is similar to what you see when you print a
document in Microsoft Word, where a status dialog appears with a number showing
the progress.

TIP The PrintedPageCount property is incremented after the PrintPage
event returns. Any check you do after setting the PageVisual will need to take
into account that the PrintedPageCount hasn’t yet been incremented.

In addition to the PrintedPageCount property, two other events can be used for status
reporting, as well as for startup and shutdown code: BeginPrint and EndPrint.
THE BEGINPRINT AND ENDPRINT EVENTS

The BeginPrint and EndPrint events are raised at the beginning and end of the print
job, respectively. Specifically, BeginPrint is raised before the first call to the Print-
Page event, but after the printer dialog is shown, and EndPrint is raised after the last
call to EndPrint completes or if the user cancels printing in-progress.

 If the user cancels printing from the printer selection dialog, neither BeginPrint
nor EndPrint will be raised. Similarly, if Silverlight can’t print due to issues with paper
format or memory allocation, BeginPrint may not be called.

Listing 19.2 Showing the number of pages printed

Binding
statement

TextBlock
DataContext
Licensed to Devon Greenway <devon.greenway@gmail.com>

547How Silverlight printing works
 Continuing our example, the following code shows how to wire up the two events.
We won’t do anything with BeginPrint in this example, but we’ll show a message box
when completed using the EndPrint event handler. The event handlers should be
inserted into the listing 19.1 code, in the PrintForm method, where the event wire-up
comment is located:

_document.BeginPrint += (s, e) =>
 {
 };

_document.EndPrint += (s, e) =>
 {
 MessageBox.Show("Print job completed.");
 };

The BeginPrint and EndPrint methods may be used for status reporting or for
doing document build-up and tear-down. Unlike the PrintPage event, their event
arguments don’t contain any actionable information. It’s not essential to wire them
up, but you’ll find that a complete printing solution typically requires one or both
of them.

 One event that’s not optional is the PrintPage event.

19.1.2 The PrintPage Event

The PrintPage event is the heart of the user-code side of the printing system in Silver-
light. This is where you’ll obtain key layout information from the system and use it to
create or otherwise lay out the visuals you use to represent the page. It’s also the event
where the assignment of the printer page root visual occurs, and the event where the
decision is made as to how many pages the print document will contain.

 For each page that will be printed, the PrintDocument class raises the PrintPage
event. The PrintPage event passes in an instance of the PrintPageEventArgs class,
specific to that page. Table 19.2 shows the properties of the class.

We’ll cover each of the properties next, starting with the properties that report the
size of the area you can use for content: PageMargins and PrintableArea.

Table 19.2 PrintPageEventArgs members

Member Description

PageMargins property Gets the margins of the page as set by the printer driver
settings. Represented at 96dpi.

PrintableArea property The size (width and height) of the printable area inside the
margins of the page. This is represented at 96dpi.

HasMorePages property Set to true if there are additional pages after this one.

PageVisual property Set this to the root element (typically a panel) that makes
up the page content.
Licensed to Devon Greenway <devon.greenway@gmail.com>

548 CHAPTER 19 Printing
PAGEMARGINS AND PRINTABLEAREA PROPERTIES

The PageMargins property is a standard Thickness property like those used for mar-
gins throughout the rest of Silverlight. It reports the size of the margins set in the
printer configuration dialogs in your system.

 The PrintableArea property is a Size property that indicates the width and
height of the area within the margins. This is the area in which you can lay out your
content.

 It’s important to note that the PageMargins and PrintableArea measurements are
all provided at 96 dpi, consistent with screen layout. My printer handles resolutions up
to 1200 dpi (normally set to 600 dpi). Despite that, the printable page area comes
through at 784 x 1024 and the margins come through at 16,16,16,16. Add 32 (right
and left margin) to 784 and divide by 96, and you get 8 1/2 inches. Do the same for
the height and you get 11 inches. 8 1/2 x 11 inches is, in the US, the size of a standard
sheet of letter-sized paper. The print quality itself is better than that, but still not as
good as what you may be used to.

NOTE Silverlight is currently limited to printing documents sized at A3 or
smaller. Large-format pages may work in certain situations, but aren’t sup-
ported. For reasons why, see the section on rasterization.

Similarly, if you print using the Microsoft XPS Document print driver (a great test
driver), you’ll see that it has no enforced margins, and therefore provides a size of 816
x 1056.

 If the content you have won’t fit on a single page, Silverlight will clip it to the
dimensions specified in PrintableArea. In those cases, you may want to handle man-
ually clipping and saving the remaining elements for the next page. To indicate addi-
tional pages, use the HasMorePages property.
HASMOREPAGES PROPERTY

Printed documents may consist of more than one page. But without precalculating all
the page content (not a bad idea, but not required), you won’t know the number of
pages until you’re done printing. Similarly, you don’t necessarily know if a page is the
last page until you try to fit all the content into the printable area and see what fits.

 For those reasons, the PrintPage event includes the boolean HasMorePages prop-
erty. Simply assign true to this property to indicate that the current page isn’t the last
page to be printed. This will cause Silverlight to raise another PrintPage event upon
the completion of the current one. When you have no more pages to print, set Has-
MorePages to false (the default value) to end printing. The following code expands
upon listing 19.1 to do a simple check against a hard-coded number of pages. The -1
is because the PrintedPageCount is incremented after the PrintPage event returns:

int numberOfPages = 5;

_document.PrintPage += (s, e) =>
 {
 Debug.WriteLine("Printing page");
Licensed to Devon Greenway <devon.greenway@gmail.com>

549How Silverlight printing works
 e.PageVisual = LayoutRoot;
 e.HasMorePages =
 _document.PrintedPageCount < numberOfPages - 1;
 };

Note also that we’re effectively doing a print-screen in this example, by passing the
LayoutRoot in as the PageVisual to be printed. We’ll discuss PageVisual in detail in a
moment.

 You can also allow the user to cancel printing by setting HasMorePages to false
when he hits a cancel button. Doing so will terminate printing after the current page.
To do that, you’ll need to set a flag in your class and have your code in the print
method check for this flag. Additionally, if you know the user has hit cancel before
you set the PageVisual, you can both skip setting the PageVisual and set HasMoreP-
ages to false to avoid printing the current page and any subsequent pages.
PAGEVISUAL PROPERTY

The PageVisual property is the property you use to assign the root element of your
page. Think of your root element like LayoutRoot on a typical Silverlight page. This
will usually be a panel of some sort, but any UIElement will work.

 Before assigning the element to the PageVisual property, you need to ensure that
it has all of its children in place. When PageVisual is set, it’s then measured and laid out.
Since it’s not part of the proper Silverlight visual tree, adding elements to the visual
doesn’t cause an automatic measure and layout pass (see chapter 6 for more informa-
tion on measuring and layout). You can either manually force a measure and layout, or
simply populate the visual completely prior to assigning it to the PageVisual property.

 Figure 19.3 shows the result of add-
ing child elements after assigning the
PageVisual.

 When assigning the PageVisual,
keep in mind that any content out-
side the rectangle defined by the
PrintableArea will be clipped. If you
need to fit more content on the page, you can apply a scale transform (see chapter 6)
to shrink the content down by a ratio that will fit it all on-page.

 We’ll cover more on setting the PageVisual when we look at some specific print-
ing use cases in sections 19.2 and 19.3.

 Once the PageVisual is set and the PrintPage event returns, Silverlight prepares
the page for printing by first calling Measure and Arrange (the layout pass described
in chapter 6), and rasterizing it to a single bitmap representing the page.

19.1.3 Rasterization

In chapter 6, we discussed the rendering process for onscreen elements. One step of
that process was the rasterization of vector and text elements, and the included blit-
ting of raster (bitmap) elements. Printing follows the same general process, down to
the rasterization step.

Figure 19.3 The result of assigning the page visual
prior to adding child elements to a part of the visual.
Layout doesn’t happen automatically, so all the
elements are stacked on top of each other.
Licensed to Devon Greenway <devon.greenway@gmail.com>

550 CHAPTER 19 Printing
 When you print a tree of elements by assigning it as the page visual, those elements
are all rasterized into a page-sized bitmap (or larger if you overrun the size of the
page), clipped to the page dimensions, and sent to the printer.

 If you’re familiar with how printing normally works when using printer languages
such as PCL or PostScript, you may find the rasterization approach a little odd. In typi-
cal document printing, the print driver sends a list of commands to the printer; those
commands contain information such as drawing commands, raster images, font and
style specifications, and text commands. The end result is a smaller payload, and the
printer is free to optimize the printing for its own capabilities and resolution.

 The bitmap-based approach in Silverlight is flexible, is functional across platforms,
and supports anything Silverlight can render onscreen. But it’s fairly time- and memory-
intensive. A Microsoft Word document with text and images prints fairly quickly on my
HP LaserJet 1320, taking just a few seconds between my hitting the Print button and see-
ing output on the printer. A similar document printed through Silverlight takes con-
siderably longer because it’s treated as one (approximately) 8 1/2 x 11 inches bitmap.

 For those reasons, I don’t consider the printing API in Silverlight to be a good
choice for large reporting solutions. You’ll be waiting quite a long time for a 50-page
report to come off the printer. The actual speed is as much a function of the printer
hardware as anything, so your own mileage may vary.

 Caveats aside, we’ll now turn to a few common printing use cases and walk through
how to implement them using the Silverlight printing system, starting with printing
content as it appears onscreen.

19.2 Printing onscreen Information
If a user wants to print the entire web page, she can do so using the browser’s Print
button. This will also print the contents of any Silverlight control, but only what’s visi-
ble onscreen. If you have content in a ListBox, for example, and want to have it
expand to show its entire contents, you won’t be able to do that. If your Silverlight
application extends below the fold on the browser (if it’s taller than the visible portion
of the browser page), you’re also out of luck.

 Additionally, if you want to print only the contents of your Silverlight page and not
the surrounding web page, that’s not something most browsers will support. For that
scenario, you’ll want to use the printing API.

 In this section we’ll explore three ways of printing onscreen content: printing it as
is, providing a new root so it can perform layout specific to the printer page, and a
combination of providing a new root and using a ScaleTransform to ensure the con-
tent fits on the printed page.

19.2.1 Printing the content as is

The easiest way to print content is to simply hand off the root of your UI and print it as
is. This simple approach works for things that fit onscreen, or to provide the equiva-
lent of a print-screen function for your application. Figure 19.4 shows an example
Licensed to Devon Greenway <devon.greenway@gmail.com>

551Printing onscreen Information
application with a fixed height and width. We’ll want to perform the equivalent of a
print-screen on this application.

 Figure 19.4 shows the results of listing 19.3. Note that the application doesn’t auto-
matically scale to the size of the page, as it has a hard-coded height and width. Not
also that not all the content fits onscreen due to the hard-coded size.

 Listing 19.3 shows the markup for a little application that lists several images from
my web site. We’ll use this application markup throughout the rest of the examples in
this section.

<UserControl x:Class="SilverlightPrintTest.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Height="400" Width="500">

 <Grid x:Name="LayoutRoot" Background="White" Margin="5">
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="*" />
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>

 <TextBlock Text="Images from Pete's Site"
 FontSize="30"
 TextAlignment="Center" />

 <ScrollViewer Grid.Row="1">
 <StackPanel>
 <Image
 Source="http://10rem.net/media/507/

➥ pete-brown-silverlight-in-action.png"
 Stretch="None"/>
 <Image

Listing 19.3 UI XAML for the content printing example

Figure 19.4 The example
application from listing 19.3.
The application has a fixed
height and width.

Root visual

Hard-coded
application
size

ScrollViewer
with images
Licensed to Devon Greenway <devon.greenway@gmail.com>

552 CHAPTER 19 Printing
 Source="http://10rem.net/media/33418/wpfdisciples.png"
 Stretch="None" />
 <Image
 Source="http://10rem.net/media/17094/commodorelogo_100x100.png"
 Stretch="None" />

 </StackPanel>
 </ScrollViewer>

 <Button x:Name="Print" Content="Print"
 Grid.Row="2"
 Width="100" Height="30"
 Click="Print_Click"/>

 </Grid>
</UserControl>

If you use the browser to print that same content, all you’ll see is what’s visible on the
browser page. To get the same effect from Silverlight, you’ll simply assign the User-
Control or LayoutRoot to PageVisual in the printing code. Listing 19.4 shows how to
do that in the code-behind, using the XAML from listing 19.3.

public partial class MainPage : UserControl
{
 public MainPage()
 {
 InitializeComponent();
 }

 private PrintDocument _document = new PrintDocument();

 private void Print_Click(object sender, RoutedEventArgs e)
 {
 _document.PrintPage += (s, ea) =>
 {
 Debug.WriteLine("Printing page");

 ea.PageVisual = this;
 ea.HasMorePages = false;
 };

 _document.Print("Silverlight screen print");
 }
}

When you hit the Print button, the result is exactly what you see onscreen, but on a
printed page. Note that you could also assign the LayoutRoot as the element you
wanted to print. As the LayoutRoot already belongs to another visual tree, it won’t be
resized or anything when assigned to the PageVisual. One way around this is to
reroot the root element.

19.2.2 Rerooting the elements to fit

One way around the issue with fixed-size content is to take the LayoutRoot (or
another element) and reroot (or reparent) it in a printer-specific root element. That new

Listing 19.4 Printing the entire UserControl and retaining visual size

Print entire
user control
Licensed to Devon Greenway <devon.greenway@gmail.com>

553Printing onscreen Information
root element is sized to fit the printer page. Listing 19.5 shows how to reroot the ele-
ment using the BeginPrint and EndPrint events for setup and repair.

public partial class MainPage : UserControl
{
 public MainPage()
 {
 InitializeComponent();
 }

 private PrintDocument _document = new PrintDocument();

 private void Print_Click(object sender, RoutedEventArgs e)
 {
 Grid printRoot = new Grid();

 _document.BeginPrint += (s, ea) =>
 {
 this.Content = null;
 printRoot.Children.Add(LayoutRoot);
 };

 _document.EndPrint += (s, ea) =>
 {
 printRoot.Children.Remove(LayoutRoot);
 this.Content = LayoutRoot;

 MessageBox.Show("Print job complete.");
 };

 _document.PrintPage += (s, ea) =>
 {
 printRoot.Height = ea.PrintableArea.Height;
 printRoot.Width = ea.PrintableArea.Width;

 ea.PageVisual = printRoot;
 ea.HasMorePages = false;
 };

 _document.Print("Silverlight screen print");
 }
}

The process is picky, but relatively straightforward. Before you can move an element
to be a child of another element, you must first remove it from its current parent B.
In BeginPrint, we remove LayoutRoot from the page (its current parent) and add it
to the children of the new printer root. In EndPrint, we reverse the process C. When
printing, we simply size the new printer root to the dimensions provided by the print-
ing system, then assign to the PageVisual the new printer root element as opposed to
the user control itself.

 This whole swapping process exists only to allow us to provide layout dimensions
that differ from the onscreen dimensions. If you could resize the elements onscreen,
that would also work, but may be jarring to the user watching the process.

Listing 19.5 Rerooting an element into a printer-specific root

New printer-
specific root

B

C

Size print root
to printer page

Print it
Licensed to Devon Greenway <devon.greenway@gmail.com>

554 CHAPTER 19 Printing
 Depending upon the complexity of what you’re trying to do, this could be tricky.
For example, there may be unintended consequences associated with additional lay-
out passes for controls you’re using, or you may have binding information or
resources that are no longer accessible once rerooted. It’s not an approach I recom-
mend without first testing for your specific scenario. That being said, it gets around
the issue with having fixed-size page content and wanting to print the content in full.

 Another option is to scale the content to fit. Similar to this approach, you’ll need to
make a decision whether to do it live onscreen or scale using an offscreen visual tree.

19.2.3 Scaling content to fit

Scaling the content to fit on a single page is another way to print onscreen elements.
As was the case with the previous approaches, you can scale the content onscreen, in
the live visual tree, or you can reroot and scale the print-specific visual tree.

 In most cases, it’d be pretty jarring to scale the onscreen content, so for this exam-
ple, we’ll use the print-specific visual tree.

 In this example, I duplicated the content inside the ScrollViewer five times, in
order to provide sufficient content to illustrate the example. Simply copy and paste
the three Image elements in the XAML so they each appear five times.

 Next, modify the code from example 19.5 so it does an automatic scale using a
ScaleTransform (see chapter 6 for information on render transforms). Listing 19.6
shows the changed code in the two affected event handlers.

_document.EndPrint += (s, ea) =>
 {
 LayoutRoot.RenderTransform = null;
 printRoot.Children.Remove(LayoutRoot);
 this.Content = LayoutRoot;

 MessageBox.Show("Print job complete.");
 };

_document.PrintPage += (s, ea) =>
 {
 printRoot.Measure(
 new Size(double.PositiveInfinity,
 double.PositiveInfinity));
 printRoot.Width = printRoot.DesiredSize.Width;
 printRoot.Height = printRoot.DesiredSize.Height;

 ScaleTransform transform = new ScaleTransform();

 if (printRoot.Height > printRoot.Width)
 {
 transform.ScaleX = transform.ScaleY =
 ea.PrintableArea.Height / printRoot.Height;
 }
 else
 {

Listing 19.6 Transforming the content to fit on the printed page

Clear out render
transform

Measure for max
desired size

Calculate
scaling factor
Licensed to Devon Greenway <devon.greenway@gmail.com>

555Printing onscreen Information
 transform.ScaleX = transform.ScaleY =
 ea.PrintableArea.Width / printRoot.Width;
 }

 LayoutRoot.RenderTransform = transform;

 ea.PageVisual = printRoot;
 ea.HasMorePages = false;
 };

If you look closely, you can see that in
listing 19.6 I did something strange: I
assigned the render transform to Lay-
outRoot B instead of printRoot. Why
did I do that?

 It turns out that the print clipping is
applied directly to the PageVisual you
supply. If you also have a transform
attached to that visual, it’ll transform the
clipping rectangle as well. The effect is
having something that’s sized to fit the
page, but is clipped in exactly the same
spot it would be if it were at 100% scale—
not what we want.

 There are a couple ways you could
solve this. You could put yet another
visual between the PageVisual and the
LayoutRoot, or if it suits you, attach the
transform to the element one level
below the PageVisual: the LayoutRoot
in this case. Figure 19.5 illustrates how
this clipping and transforms interact.

 The figure shows what happens when
you put the transform on the same level
as the clip (left image) or one level
down, as shown on the right-side image.

 If you apply a transform to resize con-
tent and you attach it to an onscreen
visual, make sure you remove it when
complete. If the content already has a
transform applied to it, you’ll need to
either create a transform group, or—my
recommendation—inject a second
visual between your element and the
PageVisual.

Calculate
scaling factor

B

Figure 19.5 The content
on the left had the transform
applied directly to the
PageVisual. It was
clipped prior to transform-
ing. The content on the right
had the transform applied
one level below the Page-
Visual, at the Layout-
Root. The LayoutRoot
was transformed, and the
PageVisual was clipped,
providing the result we were
looking for.
Licensed to Devon Greenway <devon.greenway@gmail.com>

556 CHAPTER 19 Printing
 Printing the onscreen content is certainly useful, and often a desirable feature in
applications. More common is printing information specifically created for the printer.
Such content often spans more than one page, so we’ll look at printing purpose-built
trees and supporting multipage documents in the next section.

19.3 Multipage printing dedicated trees
Multipage printing comes in many flavors. You could be printing documents or let-
ters, perhaps with mail-merge fields. You may be printing a long tabular report, or you
may have to print a complex multipage form. All three have two things in common:
they may span more than one page and they contain information formatted specifi-
cally for the printer.

 Before we continue, let me reiterate: Silverlight printing isn’t currently opti-
mized for large multipage documents. Each page is a large bitmap, and takes some
time to print—how much depends on the printer and driver. If your application
needs to do a lot of printing, consider sending it through a server printer or another
approach, such as using COM automation to generate a report using Microsoft Word
or Excel.

 That out of the way, I’ll show you how and let you figure out whether it works in your
situation. In the remainder of this section, we’re going to build a simple report with
a page header and footer, and a number of lines in-between. This isn’t a full report
writer, although I do have something akin to that on http://silverlightreporting.
codeplex.com. We’ll start with building a little infrastructure, then print out pages with
just the line items. From there, we’ll add simple headers and footers to each page. First,
let’s set up our report data.

Whatever happened to the paperless office?
I often lament the fact that the paperless office promised in the 1990s never really
came to fruition. We make baby steps every year, but paper printouts are still essen-
tial to the world of business. Most important forms are still passed around in paper
format. Many computer systems are linked only by a manual paper and human data
entry process sitting between them.

Recently, I heard a story on NPR about a school system that’s going to save millions
of dollars in printer toner by changing the default email font to one that uses less
toner—yes, employees print email that much! Oddly enough, no one suggested
“please don’t print email” as a potential cost-saving measure.

It’s great to support printing in your application, and essential in many cases, but con-
sider other ways to service the use case when possible. For example, do they need
to print that appointment information your application is storing, or would it be equally
or perhaps more useful to provide them with an iCal file that they can import into their
own scheduling software and synchronize with their phone?
Licensed to Devon Greenway <devon.greenway@gmail.com>

http://silverlightreporting.codeplex.com
http://silverlightreporting.codeplex.com

557Multipage printing dedicated trees
19.3.1 Prerequisites

For this example, we’ll use the same AdventureWorks database and entity model used
in other chapters. Please refer to appendix A for instructions on setting up the data-
base, connection, and entity model in your web project.

 Once you have the database connection information and model set up, we can turn
our attention to creating a WCF service to surface the data to the Silverlight client.
CREATING THE SERVICE

Continuing in the web project, it’s time to create the service. The first step is to create
a folder named Services and into it add a new Silverlight Enabled WCF Service. Fig-
ure 19.6 shows the Add New Item dialog with the correct template selected and named.

For this demo, we’re only interested in read-only data, so we’re going to create a basic
service method that returns data from the Adventure Works entity model. We won’t
support create, update, or delete options. If you’re interested in options for that func-
tionality, read chapter 17 on WCF RIA Services.

 We’ll implement the service methods soon. Before we can do that, we need to cre-
ate the EmployeeReportItem class.
CREATING THE EMPLOYEEREPORTITEM CLASS

The EmployeeReportItem class represents a single row of data for our report. We
could simply send down the complete entities from the model, but that would be
wasteful and perhaps even confusing. Instead, we’ll create a denormalized entity that
contains properties from both the Employee and the Contact classes.

Figure 19.6 Adding a Silverlight-enabled WCF Service to the web project
Licensed to Devon Greenway <devon.greenway@gmail.com>

558 CHAPTER 19 Printing
 In the Services folder of the web project, create a new class named EmployeeRe-
portItem. Listing 19.7 shows the implementation of this class.

public class EmployeeReportItem
{
 public int EmployeeID { get; set; }
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public string Title { get; set; }
 public string EmailAddress { get; set; }
 public string Phone { get; set; }
 public DateTime HireDate { get; set; }
}

Note that since we’re using .NET 4 on the server, we don’t need to include DataCon-
tract and DataMember attributes in the class. WCF will serialize all public members by
default.

 Once the EmployeeReportItem class is in place, we can use it from our service.
ADDING THE SERVICE IMPLEMENTATION

The last step on the server-side of the project is to add the implementation of the GetEm-
ployeeReportData method of the service. This implementation will join the two entities
and pull out fields from them to create EmployeeReportItem instances. Those instances
will then be returned to the caller, our Silverlight client in this case. Listing 19.8 lists the
code required in the service.

[OperationContract]
public List<EmployeeReportItem> GetEmployeeReportData()
{
 using (AdventureWorksEntities context =
 new AdventureWorksEntities()) {
 var items =
 (from emp in context.Employees
 select new EmployeeReportItem()
 {
 EmployeeID = emp.EmployeeID,
 FirstName = emp.Contact.FirstName,
 LastName = emp.Contact.LastName,
 Title = emp.Title,
 EmailAddress = emp.Contact.EmailAddress,
 Phone = emp.Contact.Phone,
 HireDate = emp.HireDate
 }).Take (100)
 .ToList ();

 return items;
 }
}

Listing 19.7 The EmployeeReportItem class

Listing 19.8 The GetEmployees method of the AdventureWorksService class

Shape into
EmployeeReportItem

Limit return
count
Licensed to Devon Greenway <devon.greenway@gmail.com>

559Multipage printing dedicated trees
The service pulls information from the AdventureWorks database, using LINQ to both
limit the number of items returned to a reasonable number (100) as well as merge the
entities to create a single EmployeeReportItem for each row of data.
ADDING A REFERENCE TO THE SERVICE

The final required step before we get into the report itself is to add a reference to the
WCF service. First build the solution and ensure that there are no errors. Then, right-
click the Silverlight project and choose Add Service Reference.

 In the dialog, click Discover to find the services in your solution. If successful,
you’ll see something like figure 19.7.

 In the namespace area, enter the name Services. On the Silverlight client, that
will be the namespace (under our root namespace) into which the service client proxy
and the EmployeeReportItem class will be generated.
TEST THE SERVICE

Before we move into printing, let’s add one last step: testing. This is optional, but I
recommend doing it to ensure that all the other bits are working correctly.

 In the code-behind for the main page of your project, add the code shown in list-
ing 19.9. Be sure to right-click AdventureWorksServiceClient and choose Resolve
(or hit Alt-Shift-F10) to automatically add the correct using statement to the code file.
public MainPage()

Figure 19.7 Adding a service reference from our Silverlight project to the WCF Service
in the web project
Licensed to Devon Greenway <devon.greenway@gmail.com>

560 CHAPTER 19 Printing
{
 InitializeComponent();

 Loaded += new RoutedEventHandler(MainPage_Loaded);
}

void MainPage_Loaded(object sender, RoutedEventArgs e)
{
 var client = new AdventureWorksServiceClient();

 client.GetEmployeeReportDataCompleted += (s, ea) =>
 {
 if (ea.Result != null)
 {
 foreach (EmployeeReportItem item in ea.Result)
 {
 Debug.WriteLine(item.LastName + ", " + item.FirstName);
 }
 }
 };
 client.GetEmployeeReportDataAsync();
}

When you run the project, take a look at your Output window and see if it displays 100
names. If it does, you’re good. If not, debug any error you receive and try again. Once
it’s working, you’re ready to build the report, starting with the line items. Be sure to
remove the test code from the project.

19.3.2 Printing line items

For the report, we’re going to build a custom print-optimized visual tree using a com-
bination of code and data templates.

NOTE This report is optimized for learning the concepts and fitting into a
book. It’s not meant to be a reusable report class, but rather a starter to pro-
vide insight into how you might create your own reports in Silverlight.

In this and the following sections, we’ll first get the data from the WCF service into the
report class. Then we’ll print a single-page version of the report using just the line
items and a data template. The next step is modifying the report to support page
breaks. From there, we’ll add a header and footer before wrapping up.
CREATING THE EMPLOYEEREPORT CLASS AND LOADING DATA

The first step is to create, in the Silverlight project, a class named EmployeeReport.
Into that class, we’ll add code to call the service and load the data. The code to load
the data will be similar to the test code in listing 19.9. Listing 19.10 shows the class
with a LoadData method and the shell of the Print method.

public class EmployeeReport : FrameworkElement
{
 public EmployeeReport() { }

Listing 19.9 Code to test the service reference from Silverlight

Listing 19.10 The EmployeeReport class
Licensed to Devon Greenway <devon.greenway@gmail.com>

561Multipage printing dedicated trees
 public event EventHandler DataLoaded;

 private IEnumerable<EmployeeReportItem> _items;

 public void LoadData ()
 {
 var client = new AdventureWorksServiceClient();

 client.GetEmployeeReportDataCompleted += (s, e) =>
 {
 _items = e.Result;

 if (DataLoaded != null)
 DataLoaded(this, EventArgs.Empty);
 };

 client.GetEmployeeReportDataAsync();
 }

 private void InternalPrintReport()
 {
 }
}

I chose to derive from FrameworkElement for two reasons:

1 I need to derive from some DependencyObject-derived class in order to support
the dependency properties that will be used for the templates.

2 I want the element to be on-page and accessible in XAML.

For more on FrameworkElement, see chapter 6.
 Listing 19.10 forms the shell of our new report class. Because we’ll use it in XAML,

in addition to deriving from FrameworkElement, I needed to include a default con-
structor. It’s an empty constructor, but its presence means that it can be instantiated in
XAML. Additionally, as we need to support a user-initiated print process, I raise a Dat-
aLoaded event when the data is loaded. The UI can then capture that and allow the
user to click a button to perform the printing.

 Now that the class has been created, we’ll add support for the first template: the
item template.
ADDING THE ITEMTEMPLATE

The next step is to add a dependency property for the item template used to format
items on the report. The DependencyProperty will hold a DataTemplate containing
visuals and binding statements for the items rows. Listing 19.11 shows the code you’ll
need to add to the EmployeeReport class.

public DataTemplate ItemTemplate
{
 get { return (DataTemplate)GetValue(ItemTemplateProperty); }
 set { SetValue(ItemTemplateProperty, value); }
}

public static readonly DependencyProperty ItemTemplateProperty =

Listing 19.11 The ItemTemplate on the EmployeeReport class

Line items
for report

Handles actual
report printing
Licensed to Devon Greenway <devon.greenway@gmail.com>

562 CHAPTER 19 Printing
 DependencyProperty.Register("ItemTemplate",
 typeof(DataTemplate), typeof(EmployeeReport),
 new PropertyMetadata(null));

We’ll have a few more dependency properties to add before we’re through. Before we
do that, let’s crack open the MainPage XAML and add a reference to the EmployeeRe-
port type and flesh out the data template for the item rows.

 Listing 19.12 shows the MainPage XAML file with a reference to the local
namespace, and an instance of the report with an appropriate yet simple data tem-
plate. I’ve also added a Print button (with a click handler in the code-behind) to pro-
vide a way to print the report.

<local:EmployeeReport x:Name="Report">
 <local:EmployeeReport.ItemTemplate>
 <DataTemplate>
 <Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="40" />
 <ColumnDefinition Width="180" />
 <ColumnDefinition Width="180" />
 <ColumnDefinition Width="210" />
 <ColumnDefinition Width="100" />
 <ColumnDefinition Width="70" />
 </Grid.ColumnDefinitions>

 <TextBlock Grid.Column="0"
 Text="{Binding EmployeeID}" />

 <StackPanel Grid.Column="1" Orientation="Horizontal">
 <TextBlock Text="{Binding LastName}" />
 <TextBlock Text=", " />
 <TextBlock Text="{Binding FirstName}" />
 </StackPanel>

 <TextBlock Grid.Column="2"
 Text="{Binding Title}" />

 <TextBlock Grid.Column="3"
 Text="{Binding EmailAddress}" />

 <TextBlock Grid.Column="4"
 Text="{Binding Phone}" />

 <TextBlock Grid.Column="5"
 Text="{Binding HireDate, StringFormat='{}{0:d}'}" />
 </Grid>
 </DataTemplate>
 </local:EmployeeReport.ItemTemplate>
</local:EmployeeReport>

The local namespace is mapped to the project the code and markup reside within. The
ItemTemplate contains a DataTemplate that has a grid column for each column dis-
played on the report. Each column contains one or more fields bound to the properties

Listing 19.12 MainPage markup with an instance of our report and template
Licensed to Devon Greenway <devon.greenway@gmail.com>

563Multipage printing dedicated trees
of the EmployeeReportItem class. The EmployeeReport element itself resides in the
LayoutRoot grid, left out of the listing for space considerations. Also in the LayoutRoot
grid is the button previously mentioned:

<Button x:Name="Print" Content="Print" Width="100" Height="30"
 IsEnabled="False"
 Click="Print_Click"/>

Note that the button isn’t enabled by default. We’ll enable it once the data is loaded from
the service. The code to run the report can’t be included in the service return event han-
dler, because (in normal trust applications) it must be run from a user-initiated event.

 Listing 19.13 shows the code-behind with the code to load the report data and han-
dle the print report button click.

public MainPage()
{
 InitializeComponent();

 Loaded += new RoutedEventHandler(MainPage_Loaded);
}

void MainPage_Loaded(object sender, RoutedEventArgs e)
{
 Report.DataLoaded += (s,ea) =>
 {
 Print.IsEnabled = true;
 };

 Report.LoadData();
}

private void Print_Click(object sender, RoutedEventArgs e)
{
 Report.Print();
}

With the item template in place, and our print button wired up, we’ll turn our eyes
back to the PrintDocument class and the PrintPage event.
THE PRINT METHOD

The EmployeeReport class currently has a Print method that does nothing. We’ll
flesh that out a little more to include the usual trifecta of print event handlers, as
shown in listing 19.14.

private void Print()
{
 PrintDocument doc = new PrintDocument();

 IEnumerator<EmployeeReportItem> itemsEnumerator =
 _items.GetEnumerator();

 doc.BeginPrint += (s, e) =>

Listing 19.13 Code-behind for MainPage

Listing 19.14 The three printing event handlers, wired and ready to go

Enable button
when loaded

Load data

Enumerator
explained shortly
Licensed to Devon Greenway <devon.greenway@gmail.com>

564 CHAPTER 19 Printing
 {
 itemsEnumerator.Reset();
 };

 doc.EndPrint += (s, e) =>
 {
 MessageBox.Show("Report complete.");
 };

 doc.PrintPage += (s, e) =>
 {
 };

 doc.Print("Employee Report");
}

From this point forward, the majority of the code will go into the PrintPage method.
For space considerations, I won’t show the other event handlers or the Internal-
PrintReport function itself.
ENUMERATING ROWS

When I was in college, they made me learn COBOL. Not just any old COBOL, but
COBOL on an unforgiving editor on a VAX/VMS computer. If you’ve never written in
COBOL, give it a try—it’ll make you appreciate how little typing you need to get things
done in C#. Perhaps my interest in curly-brace languages like C# is actually the result
of the trauma I sustained in that class.

 Anyway, I digress. One thing that the COBOL class did teach was how to build
reports from code. That’s one skill that I’ve been able to use in most technologies
since. Up until now, though, I hadn’t been able to use that in Silverlight. Luckily,
that’s about to change.

 Normally when you process a bunch of rows of data, you’d use a LINQ statement or
a for each loop. Neither approach will work particularly well here, as we need to keep
a pointer to our position in the data while allowing Silverlight to raise separate events
for each page. Though we could use a simple for next loop and an index that we
keep track of externally, this is the type of scenario just built for IEnumerator<T>.

 In listing 19.16, you can see the enumerator declared inside the Print method.
This will be used to keep track of our current position in the report data. In the
BeginPrint event handler, I reset the enumerator. Doing so allows Print to be called
multiple times on the same data, without running into an enumerator problem.

 The enumerator approach is similar to what you might use in COBOL or in record-
set/rowset processing in another language, where there’s the concept of a “current”
record as opposed to an external loop index.

 In listing 19.15, I first create a StackPanel that will be used to hold the rows of
data. I then move through each row of data, instantiate the template, and add the
resulting element to the panel. Finally, the panel is set as the page visual, ready for Sil-
verlight to print.

Enumerator
explained shortly

PrintPage event
handler
Licensed to Devon Greenway <devon.greenway@gmail.com>

565Multipage printing dedicated trees
doc.PrintPage += (s, e) =>
{
 StackPanel itemsPanel = new StackPanel();

 while (itemsEnumerator.MoveNext())
 {
 FrameworkElement row =
 ItemTemplate.LoadContent() as FrameworkElement;

 row.DataContext = itemsEnumerator.Current;
 row.Measure(e.PrintableArea);

 itemsPanel.Children.Add(row);
 }

 e.PageVisual = itemsPanel;
 e.HasMorePages = false;
};

The code in listing 19.15 includes the majority of the important logic required to
print a report. It first creates a StackPanel B used to hold the content. It then loops
through the line items, creating a template-based element to be the row’s contents,
and then setting the data context C of that element to be the row data itself. It then
measures D the element, providing it the bounds of the page, and finally adds it to
the stack panel. Once all elements have been created, the page visual is set to the stack
panel and the “more pages” flag is set to false.

 In setting HasMorePages to false and not dealing with page breaks, the code in list-
ing 19.15 blindly prints, ignoring the end of the page. If this were old traditional
printing, green-bar fan-fold paper would be flying off the printer faster than we could
catch it, with printing on the seams and everywhere else. Silverlight will clip this, of
course, so the result will be only a single page that doesn’t overrun its boundaries. Fig-
ure 19.8 shows the top of the report page for reference, as it appears when using the
XPS document print driver.

Listing 19.15 Enumerating and printing each row of data

B

Create from
template

C
D

Add to
panel

Figure 19.8 The top portion of the report, shown in the XPS viewer
Licensed to Devon Greenway <devon.greenway@gmail.com>

566 CHAPTER 19 Printing
A short single page is nice, but losing data off the bottom isn’t. What we really want is
to support multiple pages and wrap contents on to those subsequent pages.

19.3.3 Adding multipage support

In order to support multiple pages, we need to keep track of the size of the report at every
row. You could precalculate the number of rows that will fit, but then you’d lose the flex-
ibility to have dynamically sized rows that change height based upon their content.

 Listing 19.16 shows what I did to keep track of the page size and ensure the con-
tent will fit on the page. Note the addition of the !full check in the while loop.

doc.BeginPrint += (s, e) =>
{
 itemsEnumerator.Reset();
 itemsEnumerator.MoveNext();
};

doc.PrintPage += (s, e) =>
{
 StackPanel itemsPanel = new StackPanel();

 double itemsAreaHeight = e.PrintableArea.Height;
 double itemsHeight = 0.0;

 bool full = false;
 bool moreItems = true;

 while (moreItems && !full)
 {
 FrameworkElement row =
 ItemTemplate.LoadContent() as FrameworkElement;

 row.DataContext = itemsEnumerator.Current;
 row.Measure(e.PrintableArea);

 itemsHeight += row.DesiredSize.Height;

 if (itemsHeight > itemsAreaHeight)
 {
 full = true;
 }
 else
 {
 itemsPanel.Children.Add(row);
 moreItems = itemsEnumerator.MoveNext();
 }
 }

 e.PageVisual = itemsPanel;
 e.HasMorePages = moreItems;
};

doc.Print("Employee Report");
}

Listing 19.16 Breaking when the page is full

Row
doesn’t fit

Row fits.
Add it

More items means
more pages
Licensed to Devon Greenway <devon.greenway@gmail.com>

567Multipage printing dedicated trees
The approach I used here to move things to the next page is a little hokey. For one
thing, that MoveNext in BeginPrint assumes the report will always have at least one
row of data. For another, there’s a wasted measure call when you reach the point of
moving to a new page.

 To really do multipage support correctly, you need to precalculate your pages. This
is the approach I took in the version I put up on CodePlex. But for the simple exam-
ple here, I decided to reserve a bit of buffer space at the bottom of the page, equal to
the size of one row. Of course, this assumes fixed-height rows. To support dynamically
sized rows, you’ll need to measure and then move the item to the next page if it
doesn’t fit—something much easier to do in a precalculation routine.

 Whatever approach you use, once you have some measuring infrastructure in
place, it becomes fairly easy to add a header and footer.

19.3.4 Adding a header and footer

The approach we’ll use to add a header and footer is similar to the items approach.
The header and footer will each have an associated DataTemplate property that will
be populated in XAML with the appropriate content. Listing 19.17 shows the property
declarations in the EmployeeReport class.

public DataTemplate PageHeaderTemplate
{
 get { return (DataTemplate)GetValue(PageHeaderTemplateProperty); }
 set { SetValue(PageHeaderTemplateProperty, value); }
}

public static readonly DependencyProperty PageHeaderTemplateProperty =
 DependencyProperty.Register("PageHeaderTemplate",
 typeof(DataTemplate), typeof(EmployeeReport),
 new PropertyMetadata(null));

public DataTemplate PageFooterTemplate
{
 get { return (DataTemplate)GetValue(PageFooterTemplateProperty); }
 set { SetValue(PageFooterTemplateProperty, value); }
}

public static readonly DependencyProperty PageFooterTemplateProperty =
 DependencyProperty.Register("PageFooterTemplate",
 typeof(DataTemplate), typeof(EmployeeReport),
 new PropertyMetadata(null));

public int PageNumber
{
 get { return (int)GetValue(PageNumberProperty); }
 private set { SetValue(PageNumberProperty, value); }
}

public static readonly DependencyProperty PageNumberProperty =
 DependencyProperty.Register("PageNumber",
 typeof(int), typeof(EmployeeReport),
 new PropertyMetadata(0));

Listing 19.17 Dependency properties for templates

Page header

Page footer

Read-only
page number
Licensed to Devon Greenway <devon.greenway@gmail.com>

568 CHAPTER 19 Printing
Note that I added a third dependency property to hold the page number. We’ll use
that inside the templates to show the current page number via a binding statement.
The two other dependency property declarations are pretty straightforward. We’ll
have one data template for the page header and another for the page footer. The
XAML data templates for listing 19.17 are shown in listing 19.18.

<local:EmployeeReport.PageHeaderTemplate>
 <DataTemplate>
 <Grid Margin="1 1 1 10">
 <Rectangle Stroke="Black"/>
 <TextBlock Text="Adventure Works Employee Report"
 FontSize="25" Margin="10"
 HorizontalAlignment="Left"
 VerticalAlignment="Center" />
 </Grid>
 </DataTemplate>
</local:EmployeeReport.PageHeaderTemplate>

<local:EmployeeReport.PageFooterTemplate>
 <DataTemplate>
 <Grid Margin="1 10 1 1">
 <Rectangle Stroke="Black" />
 <TextBlock
 Text="{Binding PageNumber,StringFormat='Page {0}'}"
 Margin="10" HorizontalAlignment="Right"
 VerticalAlignment="Center" />
 </Grid>
 </DataTemplate>
</local:EmployeeReport.PageFooterTemplate>

To support the page numbering used in listing 19.18, I had to add another reset line
to the BeginPrint event. This line resets PageNumber to 0, assuming we may print the
report more than once. Here’s the additional line of code, shown in context:

doc.BeginPrint += (s, e) =>
{
 itemsEnumerator.Reset();
 itemsEnumerator.MoveNext();
 PageNumber = 0;
};

You could leave out the PageNumber reset, and the worst that would happen would be
that your page numbers would continue to increment from report to report during
the same Silverlight session.

 That brings us to the real core of the multipage support: the PrintPage changes.
PrintPage gains a significant number of lines of code because we now need to build a
grid to contain the header, footer, and content rows. The StackPanel is still there, in
the central cell in the grid, but it’s now positioned between two other grid rows. List-
ing 19.19 shows the method, with the exception of the code right above and inside the
while loop, which remains untouched.

Listing 19.18 Header and footer data templates in MainPage XAML

Header

Footer
Licensed to Devon Greenway <devon.greenway@gmail.com>

569Multipage printing dedicated trees
doc.PrintPage += (s, e) =>
{
 PageNumber++;

 Grid rootGrid = new Grid();
 RowDefinition headerRow = new RowDefinition();
 headerRow.Height = GridLength.Auto;
 RowDefinition itemsRow = new RowDefinition();
 itemsRow.Height = new GridLength(1, GridUnitType.Star);
 RowDefinition footerRow = new RowDefinition();
 footerRow.Height = GridLength.Auto;

 rootGrid.RowDefinitions.Add(headerRow);
 rootGrid.RowDefinitions.Add(itemsRow);
 rootGrid.RowDefinitions.Add(footerRow);

 FrameworkElement header =
 PageHeaderTemplate.LoadContent() as FrameworkElement;
 header.DataContext = this;
 header.Measure(e.PrintableArea);
 Grid.SetRow(header, 0);

 StackPanel itemsPanel = new StackPanel();
 Grid.SetRow(itemsPanel, 1);

 FrameworkElement footer =
 PageFooterTemplate.LoadContent() as FrameworkElement;
 footer.DataContext = this;
 footer.Measure(e.PrintableArea);
 Grid.SetRow(footer, 2);

 rootGrid.Children.Add(header);
 rootGrid.Children.Add(itemsPanel);
 rootGrid.Children.Add(footer);

 double itemsAreaHeight = e.PrintableArea.Height -
 header.DesiredSize.Height - footer.DesiredSize.Height;

 ... itemsHeight, full, moreItems, while loop ...

 e.PageVisual = rootGrid;
 e.HasMorePages = moreItems;
};

The additions in listing 19.19 are long, but easily understood. I first increment the
page number B so we can use that in the bound header and footer. I then create a
new root element C, this time a grid. Three rows are added to the grid: the header
row D, the items row E, and the footer row F. The header and footer rows are auto-
sized; the middle items row is set to take up the remaining available space. I then cre-
ate the elements from the header and footer templates and add them to the
appropriate rows in the grid along with the StackPanel used to hold items G. Their
data contexts are set to the report object, so they can pick up the PageNumber prop-
erty. The final new step before the loop is to modify the way the itemsAreaHeight is
calculated, so it takes into account the size of the header and footer H. Finally, rather

Listing 19.19 Updated PrintPage code for header and footer

B

C
D

E

F

Create
header

Create
footer

G

H

I

Licensed to Devon Greenway <devon.greenway@gmail.com>

570 CHAPTER 19 Printing
than assign the items panel to the PageVisual, I assign the entire grid, header, items,
footer, and all I.

 Figure 19.9 shows the header and footer at the page break between page 1 and
page 2.

 It’s relatively easy to get the page number, as you see in the example code. It’s
more difficult to get a total page count. One common request for reports is the ability
to show the page number as “Page x of y” where x is the current page and y is the total
count of pages. Should you desire to do this, you’ll need to precalculate the pages
prior to printing—the approach I took in the version posted to CodePlex.

 Supporting multipage printing with headers and footers is easily done, given the
flexibility of data templates and the “no assumptions” low-level nature of the Silver-
light printing API. Though the performance of the printing system isn’t quite up to
par for huge multipage reports, the API does nothing to prevent you from creating
those types of print jobs should they be appropriate to your project.

 Combining the print API with binding and templates offers a good reuse story, and
allows you to spend more time in XAML using design tools and less time in code. You
could even extend the template model to include a report footer for totals, or modify
it further to support nested groups. The sky’s the limit.

19.4 Summary
In order for Silverlight to be taken seriously in the business world, it had to support a
flexible printing API. Though you can sometimes punt and skip on printing support
in consumer applications, the business world is less forgiving.

 With Silverlight 4, the product team delivered a very flexible printing API. It may
still be rough around the edges, especially in performance and, in some cases, raster
quality of the output, but it’s still a 1.0 API, and quite usable at that.

 The printing API in Silverlight can be used for anything from printing simple
onscreen content to complex multipage reports with headers, footers, grouping, and

Figure 19.9 The footer from page 1 and the header from page 2. Note the page number on the first page.
Licensed to Devon Greenway <devon.greenway@gmail.com>

571Summary
more. In this chapter we saw how to print content as it appears onscreen, then looked
at a few ways to handle scaling that content so it better fit the printer. We also looked
at content that was purpose-built specifically for the printer, whether a simple single-
page list or a multipage report including headers and footers.

 The information in this chapter can serve as a foundation upon which you can build
your own printing and reporting systems in your applications. But, should you want to
take the knowledge and simply apply it to someone else’s code, David Poll and I have
created a simple report writer project on CodePlex at http://silverlightreporting.
codeplex.com. We plan to use that as a test bed for new ideas and provide something
real that you can build upon to meet your own requirements. Take a look at it, if only
to see some of the other techniques described in this chapter, such as precalculat-
ing pages.

 In the next chapter, we’ll look at the media capabilities of Silverlight, including the
exciting webcam and microphone APIs introduced in Silverlight 4, and the media APIs
introduced in Silverlight 3.
Licensed to Devon Greenway <devon.greenway@gmail.com>

http://silverlightreporting.codeplex.com
http://silverlightreporting.codeplex.com

Displaying and
 capturing media
If you ask most non-Silverlight developers what Silverlight is, 8 out of 10 will proba-
bly say it’s Microsoft’s web media player. Part of that reputation comes from Silver-
light 1.0, which was only good as a media player. The other part comes from the
incredible advances the Silverlight team has made in making Silverlight a first class
media platform for the web.

 Silverlight excels at delivering high-quality HD media. In fact, it was one of the
first web technologies to support true 720p and 1080p HD media over decent but
not abnormal network pipes. Silverlight has been the driving media force behind
Netflix, as well as many online events such as the Olympics and March Madness.
Media is what has helped Silverlight expand onto the majority of internet-
connected desktops.

This chapter covers
■ Interactive playback
■ Playlist management
■ Working with raw media
■ Working with the webcam and microphone
572

Licensed to Devon Greenway <devon.greenway@gmail.com>

573Audio and video
 Allowing your users to experience digital media in a meaningful and personal
manner can be challenging and exciting. Throughout this chapter, you’ll learn how to
use items from within the System.Windows.Controls namespace to help accomplish
this. You’ll first see the flexible MediaElement control. Then, you’ll learn how to man-
age the media experience through the use of playlists and interactive playback. From
there, you’ll learn about accessing protected content, an essential feature for large
content publishers such as Netflix. We’ll also learn about creating raw video and audio
using the MediaStreamSource API. We’ll wrap up this chapter with an examination of
the webcam and microphone API introduced with Silverlight 4.

20.1 Audio and video
Integrating media into a Silverlight application is incredibly simple. To include a rich
media experience, you employ a MediaElement object. This general-purpose object
empowers you to deliver rich audio and video content. For a user to enjoy this high-
fidelity content, though, the media item must first be loaded and configured.

 Throughout the course of this section, you’ll learn how to load and configure
audio and video content. This section will begin with an in-depth discussion about the
MediaElement’s Source property. From there, you’ll see the properties that you can
use to configure both audio and video items. Next, you’ll see the items directly related
to audio content. We’ll then shift toward a focus on video content. This section will
conclude with an explanation of the lifecycle of a media file within a MediaElement.

20.1.1 Media source

The Source property of the MediaElement specifies the location of the audio or video
file to play. This file can be referenced by using either a relative or absolute URL. If
you have a video file called video.wmv in a subdirectory called Media within your web
application, you could use it by setting the Source property to Media/video.wmv. This
example shows a MediaElement that uses a relative media file:

<Grid x:Name="LayoutRoot" Background="White">
 <MediaElement x:Name="myMediaElement" Source="Media/video.wmv" />
</Grid>

This shows a video that belongs to the same web application as the Silverlight applica-
tion. Note the use of the forward slash (/) in the Source property. This property
allows you to use forward slashes, but not backslashes (\). In addition, the Source
property also has support for cross-domain URIs.

 Cross-domain URIs allow you to specify an absolute path to a media file. This fea-
ture gives you the flexibility to use a media asset stored on another server. If you
choose to use this approach, it’s important to gain permission to use the file before
doing so. You do have our permission to reference the video shown here:

<Grid x:Name="LayoutRoot">
 <MediaElement x:Name="myMediaElement"
 Source="http://www.silverlightinaction.com/video2.wmv" />
</Grid>
Licensed to Devon Greenway <devon.greenway@gmail.com>

574 CHAPTER 20 Displaying and capturing media
This example shows a video, which doesn’t include sound, being accessed from a
remote server. When accessing content from a remote server, you must use one of the
three acceptable protocols. Silverlight supports the HTTP, HTTPS, and MMS protocols.
In addition, the Source property expects certain formats.
SUPPORTED FORMATS

Have you ever wanted a snack or soda and accidently put foreign currency in your
local vending machine? Or, have you ever accidently put a DVD into a CD player? What
happened? Most likely, either nothing happened or some type of error was displayed.
These scenarios show that devices are created with specific formats in mind. Likewise,
the MediaElement expects certain formats.

 The MediaElement supports a powerful array of audio and video formats that
empower you to deliver high-quality media experiences over the internet. The
accepted audio formats ensure a truly high-fidelity aural experience. At the same
time, the supported video formats ensure a viewing experience that can scale from
mobile devices all the way up to high-definition displays. Table 20.1 shows the formats
supported by the MediaElement.

By targeting these media formats, the Silverlight runtime can be a self-contained envi-
ronment for media experiences. Once your users install the Silverlight runtime, they
can run all the supported media formats without having to download and install addi-
tional codecs.

 The format for media is important, but the delivery method is equally so. Table 20.2
lists the delivery methods Silverlight recognizes for audio and video.

Table 20.1 Media containers and codecs supported by Silverlight

Container Codec

Windows Media Windows Media Audio 7, 8, 9 (WMA Standard)
Windows Media Audio 9, 10 (WMA Professional)
WMV1 (Windows Media Video 7)
WMV2 (Windows Media Video 8)
WMV3 (Windows Media Video 9)

MP4 H.264 (ITU-T H.264 / ISO MPEG-4 AVC), AAC-LC

MP3 ISO MPEG-1 Layer III (MP3)

Table 20.2 Supported media delivery methods

Delivery method Supported containers

Progressive download Windows Media, MP4, MP3, ASX

Windows Media Streaming over HTTP Windows Media Server-Side Play List (SSPL)

Smooth Streaming fMP4

ASX Windows Media, MP4, ASX
Licensed to Devon Greenway <devon.greenway@gmail.com>

575Audio and video
In addition to the progressive download formats, table 20.2 shows two different
streaming methods: Smooth Streaming and Windows Media Streaming over HTTP.
SMOOTH STREAMING WITH IIS

Smooth Streaming is an HTTP-based multiple bit rate (MBR) adaptive media streaming
service implemented on Internet Information Server (IIS) on Windows servers.
Smooth Streaming dynamically detects client bandwidth and CPU usage and adapts to
conditions in close to real-time. Smooth Streaming provides:

■ Automatic adaptation to CPU constraints
■ Automatic adaptation to bandwidth constraints
■ Simplified caching and support for content delivery networks (CDN)

For example, if you’re watching an HD video on your client and suddenly you start a CPU-
intensive process such as a large compile, rather than drop frames, Smooth Streaming
detects the condition and lowers the quality of the video (lowers the bit rate, which typ-
ically means a lower resolution) so your viewing sessions continues uninterrupted.

 Similarly, if you’re watching an HD video and someone in your house starts a
large download, effectively taking up a large portion of your internet bandwidth,
Smooth Streaming will adapt to that as well, lowering the bit rate to fit into the avail-
able bandwidth.

 Finally, Smooth Streaming supports simplified caching of content, as the individ-
ual chunks are individual files, easily cached using standard HTTP file caching mecha-
nisms. The caches need not know anything about media formats; the bits are just files.
For the same reasons, proxies work just as well, requiring no special open ports or
knowledge of the formats.

 Smooth Streaming delivers small content fragments (about two to four seconds
worth of video) to the client, and verifies (with the help of Silverlight) that the con-
tent all arrived on time and played at the expected quality level. If a fragment doesn’t
meet these requirements due to bandwidth or processor restrictions, the next frag-
ment will be delivered at a lower quality level. If the conditions were favorable, the
next fragment will be delivered at the same or higher quality level.

 Similarly, if the video is available in 1080p HD, but the user is watching it on a dis-
play at 720p resolution, Smooth Streaming will send down only the 720p size chunks,
saving bandwidth and processing time.

 On the server, this requires that the videos be encoded to several different formats.
IIS Smooth Streaming keeps all the chunks for a given format in a single MP4 file, but

PlayReady DRM MP4

Server-side playlist Windows Media

MediaStreamSource Any container, as long as you write a parser for it

Table 20.2 Supported media delivery methods (continued)

Delivery method Supported containers
Licensed to Devon Greenway <devon.greenway@gmail.com>

576 CHAPTER 20 Displaying and capturing media
delivers the chunks as individual logical files. This makes server file management (and
file access) easier, while still providing for caching of chunks by local proxies and
downstream servers. Smooth Streaming files have the extension .ismv for video plus
audio, and .isma for audio-only. Figure 20.1 shows the structure of the Smooth
Streaming file on the server.

 The file includes a file type header to let us know this is the smooth streaming file.
Next, it includes Movie Metadata (moov) that describes what the file contains. Following
that are the individual two-second fragments for the entire movie. Each fragment con-
tains header information for the fragment, as well as the fragment bits themselves. The
file closes with an “mfra” index that allows for easy and accurate seeking within the file.1

 In addition to the media file described here, Smooth Streaming also uses a .ism
manifest file for the server, which describes the relationships between the different
server files, and a .ismc client manifest file, describing the available streams, codecs,
bit rates, markets, and so on. This .ismc file is what’s first delivered to the client when
the video is requested.

 An online example of Smooth Streaming with IIS and Silverlight may be seen on
the IIS Smooth Streaming site here: http://www.iis.net/media/experiencesmooth-
streaming. Other examples of Smooth Streaming through a CDN may be seen at
http://www.smoothhd.com.

 To encode video for use with Smooth Streaming, you use Microsoft Expression
Encoder. Once the videos are encoded, you can use the Expression Encoder Smooth
Streaming template to serve as the start of your video player, or you can use the Silver-
light Media Framework, covered in section 20.5.

 The Silverlight Media Framework (SMF) is the easiest way to incorporate Smooth
Streaming into your application. Before we cover that, let’s look at other forms of
streaming and downloading available to us.

1 IIS Smooth Streaming Technical Overview, Alex Zambelli, Microsoft, March 2009. http://bit.ly/Smooth-
StreamingTech

Figure 20.1 The Smooth Streaming server-side file format
Licensed to Devon Greenway <devon.greenway@gmail.com>

http://www.iis.net/media/experiencesmoothstreaming
http://www.iis.net/media/experiencesmoothstreaming
http://www.smoothhd.com
http://bit.ly/SmoothStreamingTech
http://bit.ly/SmoothStreamingTech

577Audio and video
WINDOWS MEDIA STREAMING

Though now generally out of favor due to the introduction of Smooth Streaming, Sil-
verlight still supports streaming media content over HTTP through server-side play lists
and the MMS protocol. The MMS protocol was built for sending many short messages to
a client, and uses a URI that begins with mms:// instead of http:// or https://. When
a media file is streamed through this protocol, your Silverlight application maintains an
open connection with the hosting server. This has two advantages. It enables you to
jump to any point in time within a media file, and streaming usually provides a more
cost-effective approach for delivering audio and video content because only the
requested content is downloaded, plus a little extra. This content is configurable
through the BufferingTime property.

TIP When evaluating media streaming options for HD content, lean toward
IIS Smooth Streaming over Windows Media Streaming. IIS Smooth Stream-
ing is better optimized to provide a great user experience with high bit rate
content, such as HD video.

The BufferingTime property enables you to view or specify how much of a buffer
should be downloaded. By default, this TimeSpan value is set to buffer 5 seconds worth
of content. If you’re streaming a 1-minute video, the video won’t begin playing until at
least 5 seconds of it has been retrieved. While this retrieval is occurring, the Current-
State property of the MediaElement (which we’ll discuss shortly) will be set to Buff-
ering. While the MediaElement is in a Buffering state, it’ll halt playback. You can
check to see what percentage of the buffering is completed by checking the Buffer-
ingProgress property.

 The BufferingProgress property gives you access to the percentage of the com-
pleted buffering. Because this property value is always between 0.0 and 1.0, you need
to multiply it by 100 to get the percentage. When this property changes by a value
greater than 5 percent, the BufferingProgressChanged event will be fired. This event
gives you the flexibility to keep your users informed through a progress bar or some
other UI construct. As you can imagine, this type of component can be valuable when
you’re streaming content.

 Often, streamed content can be quite lengthy. Because of this, it can be advanta-
geous to use MBR) files. MBR files enable you to provide the highest quality experi-
ence based on the available bandwidth. The really cool part is that the MediaElement
will automatically choose which bit rate to use based on the available bandwidth. In
addition, the MediaElement will automatically attempt to progressively download the
content if it can’t be streamed. That’s thinking progressively.
PROGRESSIVE DOWNLOAD

Progressive downloading involves requesting a media file over the HTTP or HTTPS proto-
col. When this occurs, the requested content is temporarily downloaded to a user’s
computer, enabling the user to quickly access any part of the media that has been
downloaded. In addition to fast access, using a progressive download generally pro-
vides a higher-quality media experience. Progressive downloading usually requires a
Licensed to Devon Greenway <devon.greenway@gmail.com>

578 CHAPTER 20 Displaying and capturing media
longer initial wait time than streaming, so you may want to keep your users informed
of how much wait time is left.

 Keeping your users informed is made possible through two key items within the Medi-
aElement. The first item is a property called DownloadProgress. It gives you access to the
percentage of the content that has been downloaded. The other item is an event called
DownloadProgressChanged. This event gives you the ability to do something such as
update a progress bar whenever the DownloadProgress property changes. In listing 20.1,
both these items are used to show the percentage of requested content that’s available.

XAML:
<UserControl x:Class="Chapter20.Page"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Width="400" Height="300">
 <Canvas x:Name="LayoutRoot" Background="White">
 <TextBlock x:Name="tb" Canvas.Top="0" />
 <MediaElement x:Name="me" Canvas.Top="20"
 Source="http://www.silverlightinaction.com/video3.wmv"

DownloadProgressChanged="me_DownloadProgressChanged" />
 </Canvas>
</UserControl>

C#:
using System;
using System.Windows;
using System.Windows.Controls;
namespace Chapter20
{
 public partial class Page : UserControl
 {
 public Page()
 { InitializeComponent(); }
 void me_DownloadProgressChanged(object sender, RoutedEventArgs e)
 {
 double percentage = me.DownloadProgress * 100.0;
 string text = String.Format("{0:f}", percentage) + "%";
 tb.Text = text;
 }
 }
}

This example shows a large video file (~13MB) being progressively downloaded B. As
this download progresses, the completion percentage is calculated C. This percent-
age is then formatted and presented to the user as the video is downloaded.

 Whether you stream content or progressively download it, the MediaElement
expects certain formats. These file formats are then retrieved over one of the accepted
protocols (HTTP, HTTPS, or MMS). The Source property simplifies this retrieval pro-
cess, and it works with both audio and video files. Once the media source is loaded,

Listing 20.1 The percentage of content ready for use within a MediaElement

MediaElement

B

C

Licensed to Devon Greenway <devon.greenway@gmail.com>

579Audio and video
the MediaElement can be used to configure the playback of a media item or obtain sta-
tus information. These items are available through a set of commonly used properties.

20.1.2 Common properties

The MediaElement provides a number of properties that are common to both audio and
video files. Interestingly, you’ve already seen several—the Source, BufferingTime,
BufferingProgress, and DownloadProgress properties. There are five other proper-
ties so fundamental to the MediaElement that we should discuss them now. These prop-
erties are AutoPlay, CanPause, CurrentState, NaturalDuration, and Position.
AUTOPLAY

The AutoPlay property specifies whether the MediaElement will automatically begin
playing. By default, a MediaElement will begin playing as soon as the content refer-
enced in the Source property is loaded. You can disable this default behavior by
changing the AutoPlay bool property to false. As you can imagine, once a media file
has begun playing, there may be times when you want to be able to pause it.
CANPAUSE

Sometimes you may want to allow a user to halt the playback of a MediaElement. By
default, the MediaElement will allow you to do this. But, by setting the CanPause prop-
erty of the MediaElement to false, you can prevent your users from pausing the play-
back. If you allow the pausing function and a user decides to halt the playback, it’ll
change the value of the CurrentState property.
CURRENTSTATE

The CurrentState property represents the mode the MediaElement is in. This mode
is exposed as a value of the System.Windows.Media.MediaElementState enumera-
tion. This enumeration provides all the possible states a MediaElement can be in.
These states are listed and described in table 20.3.

Table 20.3 The options available within the MediaElementState enumeration

Option Description

AcquiringLicense Occurs while a protected file is obtaining a license key (see section 20.4.3).

Buffering This signals that the MediaElement is in the process of loading a media file.

Closed The media has been unloaded from the MediaElement.

Individualizing Occurs while Silverlight is obtaining PlayReady components (see section 20.4.2).

Opening The MediaElement is trying to open the media item referenced through the
Source property.

Paused This represents that the MediaElement has halted playback.

Playing This signals that the MediaElement is moving forward and the media is
being enjoyed.

Stopped The MediaElement has media loaded. It isn’t currently playing, and the
Position is located at the start of the file.
Licensed to Devon Greenway <devon.greenway@gmail.com>

580 CHAPTER 20 Displaying and capturing media
Table 20.3 shows the options available within the MediaElementState enumeration.
This enumeration is used by the read-only CurrentState property. Considering that
this property is read-only, how does it get set? This property is altered through a
variety of methods you’ll learn about later in this chapter. Anytime the Current-
State property value is changed, an event called CurrentStateChanged is fired.
The state of the media item is a natural part of working with the MediaElement, as is
the duration.
NATURALDURATION

The NaturalDuration property gives you access to the natural duration of a media
item. This duration is available once the MediaElement has successfully opened a
media stream, so you shouldn’t use the NaturalDuration property until the Medi-
aOpened event has fired. Once the MediaOpened event has fired, you can access the
total length of a media item, as shown here:

void me_MediaOpened(object sender, RoutedEventArgs e)
{
 tb.Text = "Your video is " + me.NaturalDuration + " long.";
}

This example displays the total length of a media item in an assumed TextBlock. This
task takes place when the MediaOpened event of a MediaElement has triggered, so you
can assume that the media stream has been successfully accessed. Then, you use the
NaturalDuration property to show the length of the media stream. This length is
stored as a TimeSpan within the NaturalDuration property.

 The NaturalDuration property is a System.Windows.Duration entity. This type of
entity is a core element of the .NET Framework, and it exposes a property called Has-
TimeSpan that signals whether a TimeSpan is available. In the case of a MediaElement,
this property value will always be true, enabling you to access highly detailed informa-
tion about the length of a media stream through the TimeSpan property. This prop-
erty is demonstrated in this example:

void me_MediaOpened(object sender, RoutedEventArgs e)
{
 StringBuilder sb = new StringBuilder();
 sb.Append("Your video is ");
 sb.Append(me.NaturalDuration.TimeSpan.Minutes);
 sb.Append(" minutes, ");
 sb.Append(me.NaturalDuration.TimeSpan.Seconds);
 sb.Append(" seconds, and ");
 sb.Append(me.NaturalDuration.TimeSpan.Milliseconds);
 sb.Append("milliseconds.");
 tb.Text = sb.ToString();
}

This shows how to access detailed information about the length of a media item. As
you probably know, this information, as well as the position of the playback, is part of
almost any online media player.
Licensed to Devon Greenway <devon.greenway@gmail.com>

581Audio and video
POSITION

The Position property represents a point, or location, within a MediaElement. This
value can be read regardless of the CurrentState of the MediaElement, and it can be
set if the MediaElement object’s CanSeek property is true.

 The CanSeek property determines whether the Position can be programmatically
changed. This read-only property is set when a media item is loaded into a MediaEle-
ment. If the referenced media item is being streamed, this property will be set to
false. If the referenced media item is being downloaded progressively, the CanSeek
property will be set to true.

 When the CanSeek property is set to true, you can set the Position property to
any TimeSpan value. It’s recommended that you use a TimeSpan within the NaturalDu-
ration of a MediaElement. If you use a TimeSpan beyond the NaturalDuration, the
MediaElement will jump to the end of the media item.

 The Position is an important part of any media item—and so are the other com-
mon properties shared across audio and video files. These properties include Natu-
ralDuration, CurrentState, CanPause, and AutoPlay. Additional properties are
specific to the audio part of a media stream.

20.1.3 Audio specific properties

The MediaElement exposes several properties directly linked to audio features. These
features can be used to give users greater control over their listening experiences
and to engulf your users in your Silverlight application. These features can be deliv-
ered through the AudioStreamCount, AudioStreamIndex, Balance, IsMuted, and
Volume properties.
AUDIOSTREAMCOUNT/AUDIOSTREAMINDEX

Occasionally, audio or video files will contain more than one audio track. As an exam-
ple, a song may have one track for the guitar, one for the drums, and one for the
vocals. Usually, you won’t work with these kinds of audio files. Instead, you may come
across multilingual videos where each language has its own track. In both these situa-
tions, you can access the track-related information through the AudioStreamCount
and AudioStreamIndex properties.

 The AudioStreamCount and AudioStreamIndex properties give you access to the
individual audio tracks of a media file. The read-only AudioStreamCount property
stores the number of tracks available. The AudioStreamIndex property specifies which
of the available tracks to play (or is playing). Neither of these properties means any-
thing until the MediaOpened event has fired.

 When the MediaOpened event is fired, the AudioStreamCount and AudioStreamIn-
dex properties get set on the client’s machine. When this occurs, the audio tracks in
the media file are read. While these tracks are being read, a collection is being cre-
ated in the background. When this collection is fully created, the AudioStreamCount
property is set to match the number of tracks in the collection. Then, the
AudioStreamIndex property is set to begin using the first track in the collection.
Licensed to Devon Greenway <devon.greenway@gmail.com>

582 CHAPTER 20 Displaying and capturing media
Alternatively, if the AudioStreamIndex property is set at design time, that track will be
used. Either way, once an audio track is playing, it’s important to make sure that the
sound is balanced.
BALANCE

The Balance property enables you to effortlessly simulate sounds such as a wave gently
lapping a sandy shoreline or a swirling wind. These types of sounds often involve
sound shifting from one ear to the other; it would be startling if the sounds spastically
jumped from one ear to the other. The balance of the volume across your ears makes
these sounds much more natural.

 With the Balance property, you can gracefully spread out your sounds by specify-
ing a double-precision value between –1.0 and 1.0. If you set the property value to -1,
you can project sound entirely from the left-side speakers. If you set the value to 1, the
sound will leap from the right speakers. If you’re seeking a balance between the left
and right speakers, you set the value to 0.

 This property is more than an enumerator between the left, right, and center posi-
tions. It gives you the flexibility to do things like project 70 percent of a sound from
the right speaker by using a value of 0.7. The remaining 30 percent projects from the
left speaker. As you can imagine, you can easily depict a lifelike audible environment.
Sometimes it’s nice to shut out the sounds of life—enter IsMuted.
ISMUTED

Anything with an audio source should expose the ability to temporarily mute the
audio. Thankfully, the MediaElement exposes an IsMuted property.

 This property allows you to programmatically determine whether the sound associ-
ated with a MediaElement is audible. If a MediaElement is playing and this boolean
property is set to true, the MediaElement will continue to play, but it won’t be audible.

 As a bool, the IsMuted property is all or nothing. Usually, you’ll need to find a
happy medium between audible and inaudible. Silverlight also gives you this type of
control through the Volume property.
VOLUME

The Volume property is a double-precision, floating-point value that specifies the audi-
ble level of a MediaElement. This property value can range from an inaudible (0.0) all
the way up to a room-shaking 1.0. The room-shaking capabilities are ultimately
restrained by the user’s computer volume. By default, the Volume value is in the mid-
dle of this range at 0.5.

 The Volume property is one of the five properties that address audio-related fea-
tures. The other properties are the IsMuted, Balance, AudioStreamCount, and
AudioStreamIndex properties. The MediaElement also exposes a pair of properties
that are specific to the visual part of a media file.

20.1.4 Video specific properties

The MediaElement exposes four properties directly related to videos. The first two are
the DroppedFramesPerSecond and RenderedFramesPerSecond properties, both of
Licensed to Devon Greenway <devon.greenway@gmail.com>

583Audio and video
which deal with video frame rates. The other two properties, NaturalVideoHeight
and NaturalVideoWidth, deal with the dimensions of a video.

 The MediaElement exposes two read-only double-precision values related to the
frame rate of a video. RenderedFramesPerSecond gives you the number of frames that
are rendered per second. The other property, DroppedFramesPerSecond, lets you
know how many frames are being dropped per second. You can use these two proper-
ties to monitor the smoothness of a video. If a video begins to become jerky, the
DroppedFramesPerSecond value will increase. In this scenario, you may want to con-
sider using a video with smaller natural dimensions.

 The natural dimensions of a video are provided through two read-only properties.
The NaturalVideoHeight property represents the height of a video, the NaturalVid-
eoWidth property represents the video’s width. These int properties are both read-only
because they represent the original dimensions, in pixels, of a requested video. These
values are useful when a video is the primary focus of your UI. If you’re using an audio
file instead of a video file, these two properties will stay at their default values of 0. For
this reason, these properties are specific to video scenarios. Both video and audio files
are involved in a standard lifecycle.

20.1.5 The lifecycle of a media file

Throughout this section, you’ve seen a wide variety of properties. Some of these prop-
erty values are likely to change throughout the life of a media file, so it’s beneficial to
listen for those changes. As you might expect, the MediaElement provides a rich set of
events that enables you to watch for those changes (see table 20.4).

This table shows the events exposed by the MediaElement. Note that some state
changes trigger multiple events. For instance, if a video file runs its route within a

Table 20.4 The events of the MediaElement

Event Description

BufferingProgressChanged Triggered anytime the BufferingProgress property changes.

CurrentStateChanged Fired anytime the CurrentState property is altered.

DownloadProgressChanged Occurs whenever the DownloadProgress property changes.

MarkerReached Discussed in section 20.3.2.

MediaEnded Fired when the MediaElement is no longer playing audio and
video.

MediaFailed Triggered if the media item referenced in the Source property
can’t be found. Alternatively, this event will trigger if there’s a
problem with the media file itself.

MediaOpened Occurs after the information associated with the media has been
read and the media stream has been validated and opened.
Licensed to Devon Greenway <devon.greenway@gmail.com>

584 CHAPTER 20 Displaying and capturing media
MediaElement, the CurrentStateChanged and MediaEnded events will both fire. As a
result, you may need to create checks and balances within your code. To better under-
stand the typical life of a media file, please review figure 20.2.

 This figure shows the lifecycle of a media item that has played progressively
through a MediaElement. The Loaded event used in the figure is of the FrameworkEle-
ment variety. This event shows when the NaturalDuration is set. As you can see, this
property is set when the CurrentState is switched to Playing.

 If you reference a media item that can’t be found, the MediaFailed event will fire,
but the CurrentStateChanged event won’t be triggered. In other words, if you refer-
ence a media file that doesn’t exist, only the Loaded and MediaFailed events will
be triggered.

 The events of the MediaElement reflect the lifecycle of a media item. This item can
be impacted by a variety of audio- or video-related properties. Several properties are
common to both audio and video files. One of these properties represents the Source
of the media and can be referenced through a relative or remote Uri. Even more
interesting is the fact that you can use the Source property to reference playlists.

20.2 Playlists
A playlist is a list of audio or video tracks arranged in a specific order. These lists give
you a way to manage media elements that are part of a larger scheme such as a CD.
Playlists are more than ordered media items, though. Playlists give you a way to gener-
ate revenue through advertising. Regardless of how you intend to use them, Silverlight
has support for two playlist types.

 Throughout this section, you’ll learn about the two types of playlists supported in
Silverlight. The first kind of playlist, a client-side playlist, enables your Silverlight

Figure 20.2 The cycle
of events as a media item
plays progressively
within a MediaElement
Licensed to Devon Greenway <devon.greenway@gmail.com>

585Playlists
application to fully control interaction with the playlist. The other kind of playlist,
a server-side playlist (SSPL), gives the hosting server complete control over the
media experience.

20.2.1 Understanding client-side playlists

A client-side playlist is an XML file that can be interpreted by a MediaElement. This
XML file follows a special format known as ASX, which we’ll detail in a moment. Once
this file has been parsed by a MediaElement, the MediaElement will decide whether to
begin playing. This decision will be based on the AutoPlay property. If this property is
set to true, each of the items in the client-side playlist will begin playing one after the
other. Amazingly, all this happens naturally by pointing the Source property to an ASX
file as shown here:

<MediaElement x:Name="myMediaElement"
 Source="http://www.silverlightinaction.com/myPlaylist.asx" />

This shows how to request a client-side playlist. Note that this playlist uses the .asx file
extension. This file extension is the one typically used for client-side playlists, but you
can reference an ASX file with an extension of .asx, .isx, .wax, .wvx, .wmx, or .wpl. This
restriction may seem odd considering that an ASX file is an XML file. Without this dis-
tinction, the MediaElement would be unable to quickly tell the difference between a
client-side playlist and any of the other supported formats.

 A client-side playlist can be an effective way to deliver multiple media tracks. To
take advantage of client-side playlists, you must understand how to masterfully use
ASX files. These files can have rich descriptive information, known as metadata, sur-
rounding each of the tracks.
USING ASX FILES

Client-side playlists are defined as Advanced Stream Redirector (ASX) files—this is just a
fancy name for a specific XML format. Because this format is XML, you can create a cli-
ent-side playlist with your favorite text editor, Windows Media Player, or server-side
application. Regardless of your choice, this file will always follow a common structure,
which is shown in this example:

<ASX Version="3.0">
 <Title>Silverlight in Action Videos</Title>
 <Entry>
 <Title>Greetings</Title>
 <Author>Chad Campbell</Author>
 <Ref Href="http://www.silverlightinaction.com/video1.wmv" />
 </Entry>
 <Entry>
 <Title>City Scape</Title>
 <Author>Dan Herrenbruck</Author>
 <Ref Href="http://www.silverlightinaction.com/video2.wmv" />
 </Entry>
</ASX>

This example shows a pretty basic client-side playlist that uses a small portion of the
full ASX schema. This segment isn’t that far off from the full schema supported within
Licensed to Devon Greenway <devon.greenway@gmail.com>

586 CHAPTER 20 Displaying and capturing media
Silverlight. Silverlight only supports a subset of the full ASX schema, but this subset
still provides plenty of elements that can be used to deliver a rich client-side playlist
(see table 20.5).

This table shows the ASX elements supported within Silverlight. As you can see, an
ASX file is more than a list of URLs that point to media files. The ASX file format gives
you the opportunity to provide a lot of valuable metadata with a playlist. In fact, the
ASX format lets you specify metadata for the media items within the playlist, so it’s
important to understand how to access that metadata.
ACCESSING THE METADATA

The metadata for a media item can be found within a read-only property called
Attributes. This member of the MediaElement class exposes the metadata as a Dic-
tionary<string, string>. There are two interesting characteristics about this prop-
erty that deserve mentioning.

 The first is in regard to what metadata is exposed. Surprisingly, the metadata embed-
ded within a media item isn’t included. Unfortunately, there isn’t an elegant way to get
this information. The descriptive information stored within the ASX file is included, so
if you’re using client-side playlists you should provide as much metadata as you can.

Table 20.5 The ASX elements supported within Silverlight

Element Description

Abstract Provides a description for a client-side playlist or an entry within the playlist. This ele-
ment exposes an attribute called Version. This attribute should use the value 3.0 for
Silverlight applications.

Asx The root element of a client-side playlist.

Author Specifies the name(s) of the individual(s) that created a client-side playlist or an entry
within the playlist. Only one Author element can be used per ASX or Entry element.

Base Represents a URL that will get prepended before playing within the client.

Copyright States the copyright information for an ASX or Entry element.

Entry Defines an item in a client-side playlist. This element provides a boolean attribute called
ClientSkip. This attribute can be used to prevent a user from skipping tracks.

MoreInfo Enables you to specify a URL that provides more detailed information about the playlist
or media item.

Param Represents a custom parameter associated with a media item.

Ref This element is the item that specifies which file to refer to for a media clip. The Ref
element exposes a single attribute called Href that points to the URL of a media clip.

Title Signifies the moniker of a playlist or media item. For instance, if a playlist represents a
CD, the Title element in that case would represent the name of the CD. The Title
can also be used to specify the name of an individual track.
Licensed to Devon Greenway <devon.greenway@gmail.com>

587Playlists
 The other interesting item is related to the lifecycle of the Attributes property.
This property stores the metadata associated with an individual media item, so the
Attributes property is cleared and repopulated each time a different track in an ASX
file is started. If you’re changing your UI based on the values within the Attributes
property, you may consider doing this in the MediaOpened event. Alternatively, you
may decide to bypass client-side playlists altogether and use a server-side playlist.

20.2.2 Using server-side playlists

Server-side playlists empower content administrators to dynamically determine what
content is played, and when. The server streaming the content has complete control
over how the content is distributed. This approach provides several advantages over
client-side playlists, including:

■ Lower bandwidth costs—Generally client-side playlists serve content as sepa-
rate streams for each entry. This causes your Silverlight application to recon-
nect to the server multiple times, wasting precious bandwidth. Because server-
side playlists use a continuous stream, the Silverlight application only has to
connect once.

■ Dynamic playlist creation—Server-side playlists allow you to change a playlist
even after a Silverlight application has connected.

To take advantage of these features, you must write a script using the Synchronized
Multimedia Integration Language (SMIL). This script must be placed inside of a file
with the .wsx extension. As you’ve probably guessed, this file extension is used for
server-side playlists. Once these server-side playlists are created, you can use a Medi-
aElement to reference them.
CREATING WSX FILES

Server-side playlists are defined as .wsx files. These files are XML files that follow a spe-
cific XML format, which is demonstrated in the following sample .wsx file:

<?wsx version="1.0"?>
<smil>
 <seq id="sq1">
 <media id="advertisement1" src="advertisement1.wmv" />
 <media id="movie" src="myMovie.wmv" />
 <media id="advertisement2" src="advertisement2.wmv" />
 <seq>
</smil>

This XML example shows a basic .wsx file. This playlist uses three of the elements sup-
ported by the SMIL format in Silverlight—Media, Seq, and Smil. Silverlight supports a
total of five elements, which are listed and described table 20.6.

 The elements listed in the table give a content administrator the flexibility to con-
trol how content is distributed. To distribute this content, you use a MediaElement to
reference the .wsx file.
Licensed to Devon Greenway <devon.greenway@gmail.com>

588 CHAPTER 20 Displaying and capturing media
REFERENCING SERVER-SIDE PLAYLISTS

After your .wsx file has been created, you can publish it on your server. You must pub-
lish a server-side playlist before a Silverlight application can use it. Although publish-
ing a server-side playlist is beyond the scope of this book, connecting to one isn’t. You
can do this from a MediaElement as shown in this example:

<MediaElement Source="mms://www.silverlightinaction.com:1234/myPlaylist" />

This line of markup shows how to reference a server-side playlist from a MediaEle-
ment. You may have noticed that the playlist doesn’t include the .wsx file extension.
This extension usually gets removed during the publishing process. A MediaElement
must use the MMS protocol to request a server-side playlist. This playlist can be used to
stream content but can’t be used to serve downloadable content in Silverlight.

 Server-side playlists provide a way for content administrators to control the distri-
bution of their content. Client-side playlists turn that control over to the requesting
application. Either way, both options give you a way to distribute that web-based mix-
tape you’ve always wanted to send. Of course, playlists (and media players in general)
aren’t very useful without providing control over the playback.

20.3 Interactive playback
As you’ve seen up to this point, Silverlight makes it easy to deploy media content with
the MediaElement. This content could come in the form of an individual media item
or playlist. Regardless of where that media comes from, users generally want to con-
trol their own media experiences, and Silverlight makes it easy to make each experi-
ence an interactive one.

 The interactive playback features of Silverlight enable you to interact with media
in a variety of ways. Over the course of this section, you’ll see three key items that can
enhance a media experience. For starters, you’ll see how to control the play state on-
the-fly. Then, you’ll learn about interacting with your users throughout the course of
an audio or video file. Finally, you’ll see how to take advantage of Silverlight’s full-
screen mode to deliver a memorable media experience.

Table 20.6 The SMIL elements supported within Silverlight

Element Description

Excl “Exclusive.” A container for media items. These items can be played in any order, but only
one will be played at a time.

Media References an audio or video file through an src attribute.

Seq “Sequential.” A container for media items. These items will be played in sequential order.

Smil The root element for a server-side playlist.

Switch A container for a series of items that can be interchanged if one of the items fails.
Licensed to Devon Greenway <devon.greenway@gmail.com>

589Interactive playback
20.3.1 Controlling the play state

The MediaElement gives you the ability to programmatically change the play state of a
media item. This can be useful for providing things such as play, pause, and stop but-
tons. Note that you can’t change the play state directly through the read-only Cur-
rentState property; you must rely on three basic methods to control the momentum
of a media item. These methods are part of the MediaElement class and are described
in table 20.7.

This table shows the three methods that can be used to control the play state. These
methods are fairly straightforward and hardly worth mentioning, but this section
would be incomplete without them. You probably expected the ability to play and stop
a media item before seeing this list. In addition, you probably expected the ability to
pause an item, but you may not have anticipated the fact that pausing a media item
isn’t always an option.

 The Pause method will only work if the CanPause property is set to true. This read-
only property will be set to true if the user’s machine has the ability to halt playback of
a media file. Regardless of the user’s machine, a streaming media file will always set
the CanPause property to false. In these situations where the CanPause property is
false, you can still call the Pause method—it just won’t do anything.

 Providing an interactive experience often involves controlling the play state. This
ability enables users to send a message to the MediaElement about what they want. Sig-
nificantly, the MediaElement lets you send something back to the user when you want.
That’s only partially true. You’ll see what I mean as you learn about interacting with
your users in a timely fashion.

20.3.2 Working with the timeline

The MediaElement enables you to interact with your users at specific points in time.
This can be a great way to provide captions or subtitles in your videos. In addition, this
feature enables you to deliver advertisements, or other types of information, that are

Table 20.7 The methods that control the progress of a MediaElement

Method Description

Play Begins moving the Position of the MediaElement forward from wherever it’s currently
located. If you’re 5 seconds into a video and you pause it, this method will start playing the video
5 seconds in. Calling this method will change the CurrentState property to Playing.

Pause Halts the playback of a media item at the current Position. This method will change the
CurrentState property to Paused.

Stop Stops the downloading, buffering, and playback of a media item. In addition, this method
resets the Position to the beginning of the media item. Calling this method changes the
CurrentState property to Stopped.
Licensed to Devon Greenway <devon.greenway@gmail.com>

590 CHAPTER 20 Displaying and capturing media
relevant to a portion of a video. Regardless of your need, time-sensitive information
can be bundled with your media in the form of a timeline marker.

 A timeline marker is metadata that’s relevant to a specific point in time. This infor-
mation is generally part of a media file itself and is bundled during encoding. Signifi-
cantly, there are two different kinds of timeline markers. The first type is known as a
basic marker. It’s intended to be used when you need to provide fixed information. The
other kind of timeline marker is a script command; it can be used to run a piece of code.
Both kinds of markers will be represented as a TimelineMarker whose properties are
shown in table 20.8.

In general, these properties get populated when a TimelineMarker gets created.
TimelineMarker objects are usually created when a MediaElement initially reads a
media file. During this process, the metadata within the header of the file is used to
create TimelineMarker objects. These objects then are added to a publicly visible col-
lection called Markers.

 The Markers collection is a collection of timeline markers associated with a media
file. The items associated with this collection can’t be added through XAML, unlike
the majority of other collections in Silverlight, because the markers come from the
media item set as the Source of the owning MediaElement. Whenever one of these
timeline-marker element’s Time has come, the MediaElement will fire the Marker-
Reached event. This event provides an opportunity to recapture the data associated
with a marker, which can be useful for any number of things, including showing a cap-
tion (see listing 20.2).

XAML:
<Canvas>
 <MediaElement x:Name="me"
 Source="http://www.silverlightinaction.com/video3.wmv"
 MarkerReached="me_MarkerReached" />
 <TextBlock x:Name="tb" Canvas.Top="330"
 Foreground="White" FontSize="20" FontWeight="Bold" />
</Canvas>

Table 20.8 The properties associated with a TimelineMarker

Property Description

Text A value associated with marker. This string can be any value you want. You may want to
think of this as the value of a parameter.

Time The position of the marker within the media. This position is represented as a TimeSpan.

Type This string exposes the kind of marker for a script command. If a basic marker is being
used, this value will be NAME.

Listing 20.2 Using the MarkerReached event to show a caption on a MediaElement

B

Licensed to Devon Greenway <devon.greenway@gmail.com>

591Using protected content
Figure 20.3 A user requests protected
content from a server. This content is
downloaded, in encrypted format, to the
Silverlight application.

C#:
void me_MarkerReached(object sender, TimelineMarkerRoutedEventArgs e)
{
 tb.Text = e.Marker.Text;
}

This listing shows one way you can use the MarkerReached event B. This event pro-
vides a TimelineMarkerRoutedEventArgs parameter that gives you access to the Time-
lineMarker that tripped the event. Common uses for this event are captioning,
displaying ads (the text contains an ID or URL), text overlays, or displaying links to vid-
eos related to that marker. Many sites such as YouTube use similar functionality to dis-
play notes you add at specific points in the video.

 Markers add a whole new level of interactivity to your media player. To support
basic interaction, the MediaElement provides three simple methods that let you con-
trol the play state. Regardless of how you intend to control the media experience, it
must come from some server. Interestingly this server may serve up the experience as
protected content.

20.4 Using protected content
The interactive playback features within Silverlight can be used to give your users an
engaging media experience. Sometimes you may want to control who has access to
this experience. To enable you to do this, Silverlight has built-in support for a client-
access technology known as PlayReady for Silverlight.

 PlayReady for Silverlight, or PlayReady, is a content-access technology that enables
you to protect your media assets. These assets may be requested from a Silverlight
application through a MediaElement instance. This control’s Source property can be
used to request protected content from a hosting server. Throughout this section,
you’ll see an overview of how Silverlight uses PlayReady technology. This overview
includes requesting protected content, retrieving PlayReadycomponents, and unlock-
ing protected content.

20.4.1 Requesting protected content

A Silverlight application can request protected content, which may be in the form of a
protected stream or media file. This item can be requested through the Source property
of a MediaElement, so it’s safe to say that there’s
no difference on the client side between
requesting protected and unprotected con-
tent. In fact, Silverlight doesn’t know if content
is protected until it’s downloaded. This down-
load happens naturally when a request is
made, as shown in figure 20.3.

 Figure 20.3 shows the general idea of
requesting protected content from a fictional
domain. After this request is made, the server

Displaying marker text
Licensed to Devon Greenway <devon.greenway@gmail.com>

592 CHAPTER 20 Displaying and capturing media
Figure 20.5 The media content in this figure is
locked until a key is retrieved from the licensing
server. This server can implement custom logic
through the PlayReady SDK.

will send an encrypted version of the protected file back to the Silverlight application.
This file will have a special header that tells the Silverlight runtime that it’s a protected
file. This header will provide the location of the licensing server to Silverlight. But
before the licensing server can be reached, Silverlight must ensure that the user has the
necessary PlayReady components installed.

20.4.2 Retrieving the PlayReady components

By default, Silverlight has the infra-
structure for PlayReady, but the Play-
Ready components aren’t installed
along with the Silverlight runtime.
Instead, they’re automatically down-
loaded and installed when a user
requests a protected item. During this
one-time installation process, Silver-
light goes to the Microsoft.com site
and grabs the necessary components.
This transparent process is shown in
figure 20.4.

 Figure 20.4 shows how the content access components are retrieved. These compo-
nents may be customized for a user’s machine, solely for the sake of ensuring a robust
licensing experience. The user’s machine is sometimes referred to as an individualized
DRM client. This process happens automatically behind the scenes—you don’t have to
do a thing. Even after the PlayReady components have been installed, the content is
still locked. To unlock this content, a request must be made to the licensing server.

20.4.3 Unlocking protected content

Once a protected item has been downloaded to your Silverlight application, it’s still
encrypted. This encryption can only be unlocked by a key sent from a licensing server,
so if you try to play an encrypted file, Silverlight will search the encrypted file’s header
for the location of a licensing server. Silverlight will use this location to automatically
request a key from the licensing server to decrypt the protected content.

 When a licensing server retrieves a request for a key, it can either accept or deny the
request. The licensing server can be
used to implement some custom logic
to make that decision. This custom
logic must be implemented using the
server-side PlayReady SDK. Unfortu-
nately, this SDK is outside the scope of
this book, but you can probably imag-
ine how it could be used in a key
request. A basic key request is shown in
figure 20.5.

Figure 20.4 The process of installing the content
access components. This one-time process happens
the first time a user attempts to use a protected
item. Future attempts to access protected content
won’t go through the process of downloading and
installing PlayReady.
Licensed to Devon Greenway <devon.greenway@gmail.com>

593Using the Silverlight Media Framework
 This figure shows what the request for a content-access key looks like. If this
request is accepted, the licensing server will return a key. This key will unlock the pro-
tected content and begin playing it within the requesting MediaElement. If the request
is denied, a key won’t be returned. Instead, the requesting MediaElement will raise a
MediaFailed event.

 Silverlight has built-in support for the PlayReady content-access technology, which
works behind the scenes to retrieve and unlock protected content—audio and video.
One of the easiest ways to use PlayReady DRM and support HD video is to use the Sil-
verlight Media Framework.

20.5 Using the Silverlight Media Framework
The Silverlight Media Framework (SMF) is Microsoft’s open source scalable and cus-
tomizable media player for IIS Smooth Streaming. Like IIS Smooth Streaming itself, its
history dates to the Olympics video player and massive amounts of high-quality, pro-
tected video that needed to be served up in real-time during the event. It has since
evolved into an excellent multipurpose media player.

 If you’re building an HD media player, evaluating this framework should be at the
top of your task list. Key features of the framework include:

■ Support for IIS Smooth Streaming with bit rate monitoring, as well as progres-
sive download and Windows Media Streaming

■ Modular, supporting plug-ins
■ Support for popular ad standards
■ Full styling support

The framework supports much more than that, of course, but those are the top com-
pelling features. It has multiple points of extensibility, and if those aren’t enough, full
source code is provided.

 In this section, we’ll first look at what it takes to get the appropriate libraries for
the Silverlight Media Framework, then build a simple player that supports IIS Smooth
Streaming.

20.5.1 Using the player libraries

You can get the Silverlight Media Framework version 2 at http://smf.codeplex.com.
The downloads include both the binaries and the full source code. Also, like other
CodePlex projects, you can browse the full source code right on the site or download
it as part of a release. Be sure to get the latest version, which at the time of this writing
is version 2. Don’t bother with the older version 1. Significant changes were made
after the first version.

 To install the player, first download and install the IIS Smooth Streaming Client
player SDK using the Web Platform Installer at http://www.iis.net/download/
smoothclient. If the WebPI (Web Platform Installer) doesn’t work for you, there’s a
link right below it for downloading the MSI directly.
Licensed to Devon Greenway <devon.greenway@gmail.com>

http://smf.codeplex.com
http://www.iis.net/download/smoothclient
http://www.iis.net/download/smoothclient

594 CHAPTER 20 Displaying and capturing media
 Next, download the Silverlight Media
Framework v2 release (or the latest release
available at the time you’re reading this)
and install that on your machine. At the
time of this writing, the installer was a zip
file with the DLLs. If that’s the case when
you use it, place them in a common loca-
tion (but not a system folder such as Pro-
gram Files) that you’ll easily find from
within Visual Studio. If copied from a zip
and not an installer, be sure to unblock the
files individually per this KB article so you
can use them: http://go.microsoft.com/
fwlink/?LinkId=179545. Figure 20.6 shows
the dialog with the Unblock button.

20.5.2 Creating the player

Once you have everything installed and
unblocked, creating a complete media
player experience is as simple as referenc-
ing the SMF DLLs and creating an instance
of the player in XAML. Figure 20.7 shows
the default player appearance.

 Listing 20.3 shows how to instantiate the player from XAML. There are a few
key namespaces to keep in mind for Smooth Streaming projects. Under the

Figure 20.7 The default SMF media player with Big Buck Bunny, an IIS Smooth Streaming video, loaded

Figure 20.6 Unblocking an internet-downloaded
DLL in order to be able to reference it from within
a Visual Studio project
Licensed to Devon Greenway <devon.greenway@gmail.com>

http://go.microsoft.com/fwlink/?LinkId=179545
http://go.microsoft.com/fwlink/?LinkId=179545

595Using the Silverlight Media Framework
Microsoft.SilverlightMediaFramework namespace, there are the .Core, .Plu-
gins, and .Utilities namespaces and their associated assemblies. Be sure to refer-
ence them for all types of SMF projects. For regular Smooth Streaming, there’s the
Microsoft.Web.Media.SmoothStreaming.dll assembly. For progressive download
projects, use the Micosoft.SilverlightMediaFramework.Plugins.Progressive.

dll assembly instead.

<UserControl x:Class="SilverlightApplication57.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:Core="clr-namespace:Microsoft.SilverlightMediaFramework.Core;

➥ assembly=Microsoft.SilverlightMediaFramework.Core"
 xmlns:Media="clr-namespace:

➥ Microsoft.SilverlightMediaFramework.Core.Media;
➥ assembly=Microsoft.SilverlightMediaFramework.Core">

 <Grid x:Name="LayoutRoot" Background="White" Margin="15">
 <Core:SMFPlayer>
 <Core:SMFPlayer.Playlist>
 <Media:PlaylistItem DeliveryMethod="AdaptiveStreaming"
 MediaSource=

➥ "http://video3.smoothhd.com.edgesuite.net/ondemand/
➥ Big%20Buck%20Bunny%20Adaptive.ism/Manifest" />
 </Core:SMFPlayer.Playlist>
 </Core:SMFPlayer>
 </Grid>
</UserControl>

The Silverlight Media Framework player requires two namespaces to be included. The
first B, Core, is for the player itself. The second C, Media, is for the playlists and fea-
tures related to the media supported in the player. Due to the flexibility of the player,
loading media takes a few more lines than the usual MediaElement. In particular, the
player supports a playlist D with one or more playlist items queued in it. Each playlist
item includes a single piece of media with a specified delivery method E. The valid
values for DeliveryMethod are shown in table 20.9.

Listing 20.3 Instantiating the SMF Player from XAML

Table 20.9 Possible values for DeliveryMethod for the SMF player

Value Description

NotSpecified The default value. This will attempt to use the first media plug-in loaded.
As this can be unreliable in players that support more than one type of
media delivery method, always specify one of the following below.

AdaptiveStreaming The player will use IIS Smooth Streaming.

ProgressiveDownload The player will use a progressive download approach for playing the
media. This approach requires no server-side support.

Streaming The player will use Windows Media Streaming to play the media.

B

C

SMF player
D

E

Licensed to Devon Greenway <devon.greenway@gmail.com>

596 CHAPTER 20 Displaying and capturing media
It’s important to realize that the delivery methods supported are entirely controlled
by what plug-ins you package with your Silverlight application. If you leave out the
Progressive Download plug-in, for example, your player won’t support that deliv-
ery method.

 The Silverlight Media Framework is an excellent way to get a fully functional and
feature-rich player up and running in a minimum amount of time. It’s perfect for tra-
ditional video and audio. But what about media that ventures further into the nontra-
ditional? How about managed codecs or real-time-generated media? For those,
collectively called raw media, we have the Media Stream Source API.

20.6 Working with raw media
Silverlight has a strong but finite set of codecs it natively supports for audio and video
playback. If you want to use a format not natively supported, such as the WAV audio
file format or the AVI video format, that wasn’t an option until the Media Stream
Source (MSS) API was added.

 The MSS API was included in Silverlight 2, but that version required you to
transcode into one of the WMV/WMA/MP3 formats natively supported by Silverlight.
In Silverlight 3, the MSS API was augmented to support raw media formats where you
send the raw pixels or audio samples directly through the rest of the pipeline. This
made its use much easier, as it required knowledge only of the format you want to
decode. For the same reason, it runs faster, as an extra potentially CPU-intensive
encoding step is avoided.

 The MediaStreamSource API supports simultaneous video and audio streams. In
this section, we’ll look at creating raw video as well as raw audio. In both cases, we’ll
use algorithmically derived data to drive the raw media pipeline.

20.6.1 A custom MediaStreamSource class

To implement your own custom stream source, derive a class from MediaStream-
Source. As the name suggests, this class will be used as the source for a MediaElement
on the page. Table 20.10 shows that MediaStreamSource has several methods that you
must override in your implementation.

Table 20.10 MediaStreamSource virtual methods

Method Description

SeekAsync Sets the next position to be used in GetSampleAsync.
Call ReportSeekCompleted when done.

GetDiagnosticAsync Used to return diagnostic information. This method
can be a no-op as it’s not critical. If used, call
ReportGetDiagnosticCompleted when done.

SwitchMediaStreamAsync Used to change between configured media streams. This
method can be a no-op as it’s not critical. If used, call
ReportSwitchMediaStreamCompleted when done.
Licensed to Devon Greenway <devon.greenway@gmail.com>

597Working with raw media
One thing you’ll notice about the functions is that many of them are asynchronous.
The pattern followed in those methods is to perform the processing and then call a
ReportComplete method, the name of which varies by task, when finished.

 The asynchronous nature of the API helps keep performance up and keeps your
code from slowing down media playback.

 Listing 20.4 shows the skeleton of a MediaStreamSource implementation, includ-
ing the methods I just described. We’ll continue to build on this throughout the
remaining raw media sections.

public class CustomSource : MediaStreamSource
{
 private long _currentTime = 0;

 protected override void SeekAsync(long seekToTime)
 {
 _currentTime = seekToTime;
 ReportSeekCompleted(seekToTime);
 }

 protected override void GetDiagnosticAsync(
 MediaStreamSourceDiagnosticKind diagnosticKind)
 {
 throw new NotImplementedException();
 }

 protected override void SwitchMediaStreamAsync(
 MediaStreamDescription mediaStreamDescription)
 {
 throw new NotImplementedException();
 }

 protected override void GetSampleAsync(
 MediaStreamType mediaStreamType)
 {
 if (mediaStreamType == MediaStreamType.Audio)
 GetAudioSample();
 else if (mediaStreamType == MediaStreamType.Video)
 GetVideoSample();
 }

 protected override void OpenMediaAsync() { }

GetSampleAsync Required. Get the next sample and return it using
ReportGetSampleCompleted. If there’s any delay, call
ReportGetSampleProgress to indicate buffering.

OpenMediaAsync Required. Set up the metadata for the media and call
ReportOpenMediaCompleted.

CloseMedia Any shutdown and cleanup code should go here.

Listing 20.4 The basic MediaStreamSource structure

Table 20.10 MediaStreamSource virtual methods (continued)

Method Description

No-op
methods

GetSampleAsync

B

Licensed to Devon Greenway <devon.greenway@gmail.com>

598 CHAPTER 20 Displaying and capturing media
 protected override void CloseMedia() { }

 private void GetAudioSample() { }
 private void GetVideoSample() { }
}

The most important methods for our scenario are the OpenMediaAsync method B and
the two methods C that are used to get the next sample. Those two methods are called
from the GetSampleAsync method whenever an audio or video sample is requested.

 Once we have the CustomSource class created, we’ll need to use it as the source for
a MediaElement on a Silverlight page. Listing 20.5 shows how to wire this up using
XAML for the user interface and C# code for the actual wire-up.

XAML:
<Grid x:Name="LayoutRoot" Background="White">
 <MediaElement x:Name="MediaPlayer"
 AutoPlay="True"
 Stretch="Uniform"
 Margin="10" />
</Grid>

C#:
public partial class MainPage : UserControl
{
 public MainPage()
 {
 InitializeComponent();

 Loaded += new RoutedEventHandler(MainPage_Loaded);
 }

 CustomSource _mediaSource = new CustomSource();

 void MainPage_Loaded(object sender, RoutedEventArgs e)
 {
 MediaPlayer.SetSource(_mediaSource);
 }
}

In this listing, I first create a MediaElement B that will span the size of the page, then
assign the CustomSource instance to the source property C using the SetSource
method of the MediaElement. Once that’s completed, the MediaElement is set to play
and will start requesting samples from the CustomSource class.

 Right now, our CustomSource class doesn’t return any samples, so running the
application would show nothing. We’ll modify the class to return both video and
audio, starting with video.

20.6.2 Creating raw video

Being able to create video from raw bits is pretty exciting—it opens up all sorts of sce-
narios from bitmap-based animation to custom video codecs. I first played with raw

Listing 20.5 Using a custom MediaStreamSource class

C

B

Custom
MediaStreamSource

C

Licensed to Devon Greenway <devon.greenway@gmail.com>

599Working with raw media
video when I created my Silverlight
Commodore 64 emulator (mentioned
in chapter 5). I tried a few different
video presentation approaches before
I settled on generating the video dis-
play in real-time as a 50fps Medi-
aStreamSource video at 320 x 200.

 For this video example, we’re
going to generate white noise, much
like you see on an analog TV when
the signal is lost. When complete, the
application will look like figure 20.8.
If you lived in the US prior to cable
TV, this is what you saw after the
national anthem finished playing.

 We’ll start with the logic required
to set up the video stream, and follow
it up quickly with the code that
returns the individual frame samples.
SETTING UP THE VIDEO STREAM

When creating raw video, the first step is to set up the video stream parameters. The
parameters include things such as the height and width of the frame, the number of
frames per second, and the actual video format.

 Silverlight supports a number of different video formats, each identified by a
FourCC code. FourCC is a standard four-character code that’s used to uniquely identify
video formats. In addition to all of the existing formats (for example, H264 for h.264
video), two new formats were added specifically for use raw media and the Medi-
aStreamSource API. Those are listed in table 20.11.

In the example in this section, we’ll use the RGBA format to push raw pixels without
any special processing or encoding. It’s the easiest format to use, requiring no algo-
rithm other than providing a single pixel with a single color. Listing 20.6 shows the
video setup code for our simple white noise generator.

Table 20.11 Supported raw media FourCC codes in Silverlight

FourCC code Description

RGBA Raw, uncompressed RGB pixels with an alpha component. Silverlight
currently ignores the alpha component during processing.

YV12 YUV 12. This is a common media output format used in many codecs.

Figure 20.8 The completed white noise video
generator. When I was a boy, I used to imagine I was
watching an epic ant battle from high overhead. Well,
until I saw Poltergeist, which forever changed the
nature of white noise on the TV.
Licensed to Devon Greenway <devon.greenway@gmail.com>

600 CHAPTER 20 Displaying and capturing media
private int _frameTime = 0;
private const int _frameWidth = 320, _frameHeight = 200;
private const int _framePixelSize = 4;
private const int _frameBufferSize =
 _frameHeight * _frameWidth * _framePixelSize;
private const int _frameStreamSize = _frameBufferSize * 100;

private MemoryStream _frameStream = new MemoryStream(_frameStreamSize);
private MediaStreamDescription _videoDesc;

private void PrepareVideo()
{
 _frameTime = (int)TimeSpan.FromSeconds((double)1/30).Ticks;

 Dictionary<MediaStreamAttributeKeys, string> streamAttributes =
 new Dictionary<MediaStreamAttributeKeys, string>();

 streamAttributes[MediaStreamAttributeKeys.VideoFourCC] =
 "RGBA";
 streamAttributes[MediaStreamAttributeKeys.Height] =
 _frameHeight.ToString();
 streamAttributes[MediaStreamAttributeKeys.Width] =
 _frameWidth.ToString();

 _videoDesc = new MediaStreamDescription(
 MediaStreamType.Video, streamAttributes);
}

protected override void OpenMediaAsync()
{
 Dictionary<MediaSourceAttributesKeys, string> sourceAttributes =
 new Dictionary<MediaSourceAttributesKeys, string>();

 List<MediaStreamDescription> availableStreams =
 new List<MediaStreamDescription>();

 PrepareVideo();

 availableStreams.Add(_videoDesc);

 sourceAttributes[MediaSourceAttributesKeys.Duration] =
 TimeSpan.FromSeconds(0).Ticks.ToString(
 CultureInfo.InvariantCulture);

 sourceAttributes[MediaSourceAttributesKeys.CanSeek] =
 false.ToString();

 ReportOpenMediaCompleted(
 sourceAttributes, availableStreams);
}

Listing 20.6 shows two functions: OpenMediaAsync and PrepareVideo. They’ve been
broken up that way because OpenMediaAsync will also need to support audio later in
this section.

 When the class is wired up to a MediaElement, Silverlight will first call the OpenMe-
diaAsync function. In that function, you need to tell Silverlight what streams are avail-
able B, a single video stream in this case. Then you need to set up attributes for the

Listing 20.6 Setting up the video stream

30 frames
per second

D

E

F

B

0 is infinite
time

C

Licensed to Devon Greenway <devon.greenway@gmail.com>

601Working with raw media
duration of the video, infinite in our case, and whether you allow seeking. You take
that information and pass it into the ReportOpenMediaCompleted method C to tell
Silverlight you’re ready.

 The PrepareVideo method sets up some variables that will be used when we gener-
ate the samples. First, we identify the amount of time per frame. This can vary over the
course of the video, but it’ll be easier on the developer if you pick a constant frame rate.
Then we set up a dictionary of attributes that identifies the format of the video D and
the dimensions of each frame E. Finally, that’s all packed into a MediaStreamDescrip-
tion F to be used when we start generating frames.

 Once the video stream is set up, the next thing to do is to start pumping out frames
to be displayed.
RETURNING THE SAMPLE

The main purpose of a MediaStreamSource implementation is to return samples. In
the case of video, a sample is one complete frame, ready to be displayed. Listing 20.7
shows the GetVideoSample function, called by GetSampleAsync.

private int _frameStreamOffset = 0;
private Dictionary<MediaSampleAttributeKeys, string> _emptySampleDict =
 new Dictionary<MediaSampleAttributeKeys, string>();
private Random _random = new Random();
private byte[] _frameBuffer = new byte[_frameBufferSize];

private void GetVideoSample()
{
 if (_frameStreamOffset + _frameBufferSize > _frameStreamSize)
 {
 _frameStream.Seek(0, SeekOrigin.Begin);
 _frameStreamOffset = 0;
 }

 for (int i = 0; i < _frameBufferSize; i+= _framePixelSize)
 {
 if (_random.Next(0, 2) > 0)
 {
 _frameBuffer[i] = _frameBuffer[i + 1] =
 _frameBuffer[i + 2] = 0x55;
 }
 else
 {
 _frameBuffer[i] = _frameBuffer[i + 1] =
 _frameBuffer[i + 2] = 0xDD;
 }

 _frameBuffer[i + 3] = 0xFF;
 }

 _frameStream.Write(_frameBuffer, 0, _frameBufferSize);

 MediaStreamSample msSamp = new MediaStreamSample(
 _videoDesc, _frameStream, _frameStreamOffset,

Listing 20.7 Returning the video frame sample

Rewind
when at end

B

Alpha value
0xFF = Opaque

C

D

Licensed to Devon Greenway <devon.greenway@gmail.com>

602 CHAPTER 20 Displaying and capturing media
 _frameBufferSize, _currentTime, _emptySampleDict);

 _currentTime += _frameTime;

 _frameStreamOffset += _frameBufferSize;

 ReportGetSampleCompleted(msSamp);
}

The GetVideoSample function first checks to see whether we’re approaching the end
of the allocated video buffer. If so, it rewinds back to the beginning of the buffer. This
is an important check to make, as you don’t want to allocate a complete stream for
every frame, but a stream can’t be boundless in size.

 Once that’s done, I loop through the buffer, moving four bytes at a time (the size
of a single pixel in the buffer) and generate a random pixel value. The pixel will
either be almost white or almost black B. When playing with the sample, I found that
pure black and white was far too harsh, and these two slightly gray values looked more
natural. Though not obvious here, when setting the pixel values you need to do so in
Blue, Green, Red, Alpha (BGRA) order.

 The next step is to write the buffer to the stream C. In this simple example, I
could’ve written the bytes directly to the stream and eliminated the buffer. But in any-
thing more complex than this, you’re likely to have at least two buffers (a read-from
and a write-to buffer), and even more likely to have a queue of frame buffers used for
preloading the individual frames.

 Once the stream is populated, I then create the media stream sample D, incre-
ment our time counters, and call ReportGetSampleCompleted to return the sample to
Silverlight.

 One interesting note in this is how sample time is used rather than frame num-
bers. The use of a time for each frame allows Silverlight to drop frames when it starts
to lag behind. This was a key reason why I chose MediaStreamSource over other
approaches in the Silverlight C64 emulator. When the user’s machine is busy, or in
case it’s too slow to run the emulator at full frame rate, I continue to chug along and
let Silverlight skip frames it doesn’t have time to show. This helps keep everything in
sync time-wise, which is crucial when you’re also creating audio.

20.6.3 Creating raw audio

In the previous section, we created a white noise video generator. Let’s take that all
the way and add in white noise audio. Surprisingly, audio is somewhat more com-
plex to set up than video. This is due to the number of options available to you:
audio can have different sample bit sizes, be mono or stereo, have different sample
rates, and more.

 All this information is stored in a class known as WaveFormatEx. In order to fit
the listing into this book, I’m going to use a greatly simplified, but still functional,
version of this class. Listing 20.8 shows the class. Create this as a separate class file in
your project.

Licensed to Devon Greenway <devon.greenway@gmail.com>

603Working with raw media
public class WaveFormatEx
{
 public short FormatTag { get; set; }
 public short Channels { get; set; }
 public int SamplesPerSec { get; set; }
 public int AvgBytesPerSec { get; set; }
 public short BlockAlign { get; set; }
 public short BitsPerSample { get; set; }
 public short Size { get; set; }
 public const uint SizeOf = 18;
 public byte[] ext { get; set; }

 public const Int16 FormatPCM = 1;

 public string ToHexString()
 {
 string s = "";

 s += ToLittleEndianString(string.Format("{0:X4}", FormatTag));
 s += ToLittleEndianString(string.Format("{0:X4}", Channels));
 s += ToLittleEndianString(string.Format("{0:X8}", SamplesPerSec));
 s += ToLittleEndianString(string.Format("{0:X8}", AvgBytesPerSec));
 s += ToLittleEndianString(string.Format("{0:X4}", BlockAlign));
 s += ToLittleEndianString(string.Format("{0:X4}", BitsPerSample));
 s += ToLittleEndianString(string.Format("{0:X4}", Size));

 return s;
 }

 public static string ToLittleEndianString(string bigEndianString)
 {
 if (bigEndianString == null) { return ""; }

 char[] be = bigEndianString.ToCharArray();

 if (be.Length % 2 != 0) { return ""; }

 int i, ai, bi, ci, di;
 char a, b, c, d;
 for (i = 0; i < be.Length / 2; i += 2)
 {
 ai = i; bi = i + 1;

 ci = be.Length - 2 - i;
 di = be.Length - 1 - i;

 a = be[ai]; b = be[bi]; c = be[ci]; d = be[di];
 be[ci] = a; be[di] = b; be[ai] = c; be[bi] = d;
 }

 return new string(be);
 }

 public Int64 AudioDurationFromBufferSize(
 UInt32 cbAudioDataSize)
 {
 if (AvgBytesPerSec == 0) return 0;
 return (Int64)(cbAudioDataSize * 10000000 / AvgBytesPerSec);
 }
}

Listing 20.8 A simplified WaveFormatEx structure

Main output
function

Utility
functions
Licensed to Devon Greenway <devon.greenway@gmail.com>

604 CHAPTER 20 Displaying and capturing media
The WaveFormatEx class is simply a way to specify the format to be used for PCM wave
data in Silverlight. It’s a standard structure, forming the header of the .WAV file for-
mat, which is why you get oddities such as the big-to-little-endian format conversions.
The class-based version here includes a single helper utility function AudioDuration-
FromBufferSize, which will be used when we output the PCM samples.

 There are more complete implementations of WaveFormatEx to be found on the
web, including one in my Silverlight Synthesizer project at http://10rem.net. Those
implementations typically include a validation function that makes sure all the chosen
options are correct.

 With that class in place, we’ll turn our eye to the actual stream setup.
SETTING UP THE WAV MEDIA SOURCE

The first step in setting up the sound source is to modify the OpenMediaAsync func-
tion. That function currently includes a call to PrepareVideo followed by adding the
video stream description to the list of available streams. Modify that code so that it also
includes the audio description information as shown here:

...
PrepareVideo();
PrepareAudio();

availableStreams.Add(_videoDesc);
availableStreams.Add(_audioDesc);
...

Once those changes are in place, we’ll add the PrepareAudio function to the class.
The PrepareAudio function is the logical equivalent to the PrepareVideo function; it
sets up the format information for Silverlight to use when reading our samples. List-
ing 20.9 shows the code for that function and its required class member variables and
constants.

private WaveFormatEx _waveFormat = new WaveFormatEx();
private MediaStreamDescription _audioDesc;
private const int _audioBitsPerSample = 16;
private const int _audioChannels = 2;
private const int _audioSampleRate = 44100;

private void PrepareAudio()
{
 int ByteRate = _audioSampleRate * _audioChannels *
 (_audioBitsPerSample / 8);

 _waveFormat = new WaveFormatEx();
 _waveFormat.BitsPerSample = _audioBitsPerSample;
 _waveFormat.AvgBytesPerSec = (int)ByteRate;
 _waveFormat.Channels = _audioChannels;
 _waveFormat.BlockAlign =
 (short)(_audioChannels * (_audioBitsPerSample / 8));
 _waveFormat.ext = null;
 _waveFormat.FormatTag = WaveFormatEx.FormatPCM;

Listing 20.9 The PrepareAudio function

WaveFormatEx

B

C

D

Licensed to Devon Greenway <devon.greenway@gmail.com>

http://10rem.net

605Working with raw media
 _waveFormat.SamplesPerSec = _audioSampleRate;
 _waveFormat.Size = 0;

 Dictionary<MediaStreamAttributeKeys, string> streamAttributes =
 new Dictionary<MediaStreamAttributeKeys, string>();
 streamAttributes[MediaStreamAttributeKeys.CodecPrivateData] =
 _waveFormat.ToHexString();
 _audioDesc = new MediaStreamDescription(
 MediaStreamType.Audio, streamAttributes);
}

The most important parts of this listing are the constants controlling the sample for-
mat B. For this example, we’re generating 16-bit samples, in two channels (stereo
sound), at a sample rate of 44,100 samples per second: CD-quality audio.

 Once those constants are established, they’re used to figure out almost everything
else, including the number of bytes per second C and the block alignment D. Once
the WaveFormatEx structure is filled out with this information, I set it as the Codec Pri-
vate Data E using its little-endian hex string format. Finally, I create the audio
description from that data, to be used when reporting samples back to Silverlight.
CREATING SOUND SAMPLES

The final step is to output the audio samples. This requires generating the individual
samples and returning them in chunks of predefined size. We’ll use a random num-
ber generator to generate the noise, much like we did with video. Listing 20.10 shows
how to fill a buffer with audio and return those samples to Silverlight.

private long _currentAudioTimeStamp = 0;
private const int _audioBufferSize = 256;
private const int _audioStreamSize = _audioBufferSize * 100;
private byte[] _audioBuffer = new byte[_audioBufferSize];
private MemoryStream _audioStream = new MemoryStream(_audioStreamSize);
private int _audioStreamOffset = 0;
private double _volume = 0.5;

private void GetAudioSample()
{
 if (_audioStreamOffset + _audioBufferSize > _audioStreamSize)
 {
 _audioStream.Seek(0, SeekOrigin.Begin);
 _audioStreamOffset = 0;
 }

 for (int i = 0; i < _audioBufferSize;
 i += _audioBitsPerSample / 8)
 {
 short sample =
 (short)(_random.Next((int)short.MinValue,
 (int)short.MaxValue) * _volume);

 _audioBuffer[i] = (byte)(sample & 0xFF00);
 _audioBuffer[i + 1] = (byte)(sample & 0x00FF);
 }

Listing 20.10 Outputting audio samples

Must be
zero

E

Internal
buffer size

B

Sample
randomizer

C

Licensed to Devon Greenway <devon.greenway@gmail.com>

606 CHAPTER 20 Displaying and capturing media
 _audioStream.Write(_audioBuffer, 0, _audioBufferSize);

 MediaStreamSample msSamp = new MediaStreamSample(
 _audioDesc, _audioStream, _audioStreamOffset, _audioBufferSize,
 _currentAudioTimeStamp, _emptySampleDict);

 _currentAudioTimeStamp +=
 _waveFormat.AudioDurationFromBufferSize((uint)_audioBufferSize);

 _audioStream = new MemoryStream(_audioStreamSize);

 ReportGetSampleCompleted(msSamp);
}

The process for generating the white noise audio sample is similar to generating the
frames of video. But instead of having a fixed-width x height buffer we must fill, we
can generate as long or as short a sample as we want. This is controlled by the audio
buffer size set in code. In general, you want this number to be as low as possible, as
larger numbers typically introduce latency as well as skipped video frames—the system
is too busy generating audio to show the video frame. But set the number too low, and
the audio will stutter. If you find the white noise stuttering on your machine, up the
buffer to 512 or so and see how that works for you.

TIP To help with latency, you can also play with the AudioBufferLength
property of the MediaStreamSource class. In most cases, you won’t be able to
get that below 30ms or so, but that value is itself very hardware-dependent.
That property is my own contribution to the class, as I was the only one
insane enough to be writing a Silverlight-based audio synthesizer at the time.
I ran into problem after problem with the triple-buffering (my buffer, plus
Silverlight MSS buffer, plus underlying DirectX buffer), to the point where
all audio was delayed by about 2-3 seconds. The team worked with me to
identify where the issues were, and then added this knob into the base class
to help tweak for latency-sensitive applications like mine.

Once the buffer size is established, I perform the same stream overrun check B that
we did for video, and for the same reasons. Then, I loop through the buffer, 2 bytes
(16 bits) at a time, and generate a white noise sample. Once the sample is generated,
I get the 2 bytes from it using a little bit-masking C, and then write those bytes into
the buffer. Once the buffer is filled, it’s copied into the stream and the sample
response built D. After incrementing the time counters, the last step is to report the
sample to Silverlight E.

 If you run the application at this point, you should have a short delay while the
startup code is executed and the Silverlight internal buffers are filled, followed by
simultaneous audio and video white noise. On the surface, this may not seem impres-
sive. But when you consider that the video and audio is completely computer gener-
ated, it’s considerably more impressive.

 Raw audio and video also allow you to display any type of media for which you
can write a decoder. Much of the IIS Smooth Streaming client for Silverlight, for
example, is written using a custom MediaStreamSource implementation. Though

D

E

Licensed to Devon Greenway <devon.greenway@gmail.com>

607Using the webcam
writing a typically hardware-implemented 1080p HD codec in managed code may not
lead to good performance, there are many other popular formats which don’t have
native Silverlight support, but which would benefit from a custom MediaStream-
Source implementation.

 So far, we’ve seen a number of ways to get video and audio into Silverlight. The eas-
iest, of course, is to use a video format Silverlight supports and just point the MediaEl-
ement to it. Another way is to use the MediaStreamSource class to implement your own
managed codec. One final way to get video and audio into Silverlight is to use the web-
cam and microphone APIs. A segment of the API, especially the VideoSink and Audi-
oSink classes, is conceptually similar to the MediaStreamSource code we’ve completed
in this section, but thankfully much simpler.

20.7 Using the webcam
Silverlight 4 introduced the ability to capture media from video capture devices and
audio capture devices. Though designed with other devices (such as TV capture cards)
in mind, the current implementation handles only webcams and microphones. These
devices enable the Silverlight developer to capture raw video and audio data, as well as
snapshot stills. Though the first release of this isn’t suitable for conferencing scenarios
(there’s no built-in compression or encoding), it’s excellent for local capture and stor-
age and upload scenarios.

 If you’ve ever tried to use an arbitrary webcam (or microphone) using another
technology such as WPF, you’ll appreciate how simple the Silverlight team has made
this. Not only do you get to avoid DirectShow and similar technologies, but the web-
cam and mic access works cross-platform. As far as device abstraction layers go, this is
pretty sweet.

 In this section, we’ll first cover how to gain access to the webcam and microphone
in Silverlight. Then we’ll examine how to work with the default webcam and micro-
phones for the platform, including how to capture video and still images. Then,
because most machines have more than one audio capture device, and some even
more than one video capture device, we’ll look at what’s required to allow the user to
select a specific webcam or microphone.

20.7.1 Gaining access to capture devices

In sandboxed applications, the application must request access to the webcam from a
user-initiated event, such as a button click. This is to ensure that a rogue application
on a web site doesn’t start photographing you without your consent. The request is
explicit as shown here:

if (CaptureDeviceConfiguration.AllowedDeviceAccess ||
 CaptureDeviceConfiguration.RequestDeviceAccess())
{ ... }

The first check is to see whether the application has already been granted access;
this is true if it’s running under elevated trust or the user has already allowed access.
Licensed to Devon Greenway <devon.greenway@gmail.com>

608 CHAPTER 20 Displaying and capturing media
The second check runs only if the first check is false; it causes the webcam and
microphone device access confirmation dialog to be displayed, as shown in fig-
ure 20.9.

 Once the user has confirmed access, you can begin to capture using a specific
device or the default devices. Typically, you’ll use the default device.
CHANGING THE DEFAULT CAPTURE DEVICE

Silverlight allows the user to set the default webcam and default microphone. This is
done by right-clicking on any Silverlight application and selecting the Silverlight
menu option. Alternatively, the user can open Microsoft Silverlight from his program
shortcuts. Once there, select the Webcam/Mic tab and pick from the list of available
options. You’ll see a preview of the webcam to the left and an audio level meter for the
microphone on the right. Figure 20.10 shows the configuration dialog.

 The settings start out using default capture devices on your machine. You can
change it from there. The changes will globally affect all Silverlight applications that
use the webcam or microphone.

 With the default device set in Silverlight, it’s time to write a little code to capture
information from the default webcam.

Figure 20.9 Webcam
and microphone access
confirmation dialog

Figure 20.10 Silverlight
default webcam and
microphone tab in the
Silverlight settings
dialog. Either that image
is horizontally stretched
in an unflattering way, or
I need to lay off the chips.
Licensed to Devon Greenway <devon.greenway@gmail.com>

609Using the webcam
20.7.2 Working with video

To get the default webcam, you need only call the GetDefaultVideoCaptureDevice
method of the CaptureDeviceConfiguration class. If this method returns null,
there’s no recognized webcam on the machine.

 Once you have a capture device, capturing video requires wiring up a capture
source and using it as the input source for a VideoBrush. The VideoBrush is then used
to fill a shape, typically a rectangle, on the Silverlight surface.

 Listing 20.11 shows how to create a simple webcam viewer using the default web-
cam at a default capture resolution.

Result:

XAML:
<Grid x:Name="LayoutRoot" Background="White">
 <Button x:Name="Capture" Content="Capture"
 Width="75" Height="23"
 HorizontalAlignment="Left" VerticalAlignment="Top"
 Margin="232,12,0,0" Click="Capture_Click" />
 <Rectangle x:Name="PresentationSurface"
 Width="376" Height="247"
 HorizontalAlignment="Left"
 VerticalAlignment="Top"
 Margin="12,41,0,0"
 />
</Grid>

C#:
private void Capture_Click(object sender, RoutedEventArgs e)
{
 if (CaptureDeviceConfiguration.AllowedDeviceAccess ||
 CaptureDeviceConfiguration.RequestDeviceAccess())
 {
 var camera =
 CaptureDeviceConfiguration.GetDefaultVideoCaptureDevice();

 if (camera != null)
 {
 var source = new CaptureSource();

 source.VideoCaptureDevice = camera;

Listing 20.11 Capturing video using the default capture device

B
C

D

Default
video
capture
device

E

Licensed to Devon Greenway <devon.greenway@gmail.com>

610 CHAPTER 20 Displaying and capturing media
 VideoBrush videoBrush = new VideoBrush();
 videoBrush.Stretch = Stretch.Uniform;
 videoBrush.SetSource(source);
 PresentationSurface.Fill = videoBrush;

 source.Start();
 }
 }
}

In listing 20.11, we first set up the button for the user-initiated video capture B and the
rectangle to hold the rendered output C, both in XAML. In the code, we perform the
check to see whether we have access, or request it if not D. Then we get the default
video capture device and assign it as the capture device for the CaptureSource E. The
video display isn’t a MediaElement. Instead, we create a VideoBrush, set its source to our
CaptureSource F, and then paint the rectangle with the output. Finally, we start the
capture itself.

 This example used the default capture resolution. That’s okay for an example, but
in a real application, you’ll likely want to pick a specific video format based on screen
resolution or even the frames per second (FPS).
SETTING THE DESIRED VIDEO FORMAT

Webcams typically support a number of resolutions and video formats. I have a Micro-
soft LifeCam Cinema on my PC, and it handles everything from the smallest of post-
age stamps to 720p HD video. As the capabilities vary from model to model, you’ll
need a way to query the webcam to identify its supported video formats.

 The VideoCaptureDevice class contains a number of properties. The one of inter-
est to us in this case is the SupportedFormats collection. SupportedFormats is a collec-
tion of VideoFormat objects, the properties of which are displayed in table 20.12.

To query the formats for my own camera, I injected this bit of code into the listing at
the beginning of this section:

foreach (VideoFormat format in camera.SupportedFormats)
 Debug.WriteLine(
 format.PixelWidth + "x" +

Table 20.12 The VideoFormat class

Member Description

FramesPerSecond A floating-point value indicating the number of frames per second.

PixelFormat Currently, the only valid pixel format is 32 bits per pixel, ARGB.

PixelHeight The height of the frames in pixels.

PixelWidth The width of the frames in pixels.

Stride The number of bytes in a single horizontal line of the frame. Divide this by
PixelWidth to know the bytes per pixel, regardless of PixelFormat.
A negative stride indicates the image is upside down.

F

Start
capturing
Licensed to Devon Greenway <devon.greenway@gmail.com>

611Using the webcam
 format.PixelHeight + " at " +
 format.FramesPerSecond + " fps " +
 format.PixelFormat.ToString());

The resulting list included (among many others) these entries:

640x480 at 30.00003 fps Unknown
160x120 at 30.00003 fps Unknown
160x120 at 30.00003 fps Unknown
1280x720 at 15.00002 fps Unknown
1280x720 at 15.00002 fps Unknown
960x544 at 30.00003 fps Unknown
960x544 at 30.00003 fps Unknown
800x448 at 30.00003 fps Unknown
800x448 at 30.00003 fps Unknown
800x600 at 30.00003 fps Unknown
...

Oddly enough, the pixel format came across as Unknown in all cases. Try it with your
own webcam and the results will likely vary. Once you see a video format that works for
you, you can choose it by assigning it to the DesiredFormat property of the VideoCap-
tureDevice. This example uses a LINQ expression to grab the first format with the
highest resolution:

var format = (from VideoFormat f in camera.SupportedFormats
 orderby f.PixelWidth * f.PixelHeight descending
 select f).FirstOrDefault<VideoFormat>();
if (format != null)
 camera.DesiredFormat = format;

That will pick the format with the highest total pixel count. You can modify the state-
ment to pick just the largest width, or the largest size that will fit within a given box,
and so forth. Figure 20.11 shows the 720p HD version of the webcam shot from the
previous listing.

Figure 20.11
Webcam screen shot
at 720p HD, selected
using the Desired-
Format property and
LINQ. I’m practicing
my raised-eyebrow
news anchor face.
I’ll try harder next
time. Dig the C128
in the background!
Licensed to Devon Greenway <devon.greenway@gmail.com>

612 CHAPTER 20 Displaying and capturing media
One reason you may want to capture at a high resolution is to support the capturing
of still images. The Silverlight webcam API allows you to use the webcam as a simple
still image camera, returning individual images as WriteableBitmap instances.

20.7.3 Capturing still images

Now that you have a reasonably high resolution selected, taking still photos makes
much more sense. The Silverlight webcam API supports taking still photos by using an
asynchronous capture method. You click a button and call a function, and a few frac-
tions of a second later, the event fires with the image data.

 In this section, we’ll augment our webcam display application to include a ListBox
filled with captured still images. Figure 20.12 shows the final application.

Listing 20.12 shows the new XAML required to create the display shown in figure 20.12.
Note the use of the DataTemplate for displaying the bound image information.

XAML:
<Grid x:Name="LayoutRoot" Background="White">
 <Button x:Name="Capture" Content="Capture"
 Width="75" Height="23" Margin="0,12,93,0"
 HorizontalAlignment="Right" VerticalAlignment="Top"
 Click="Capture_Click" />
 <Button x:Name="TakeSnapshot" Content="Snapshot"
 Height="23" Width="75" Margin="0,12,12,0"
 VerticalAlignment="Top" HorizontalAlignment="Right"
 Click="TakeSnapshot_Click" />
 <Rectangle x:Name="PresentationSurface" Margin="12,41,154,12" />

Listing 20.12 XAML Capturing still images

Figure 20.12 Capturing the largest video size, plus a series of still photos bound to a
ListBox on the right. Did I get the anchor look any better? Maybe I need a suit.

B

Licensed to Devon Greenway <devon.greenway@gmail.com>

613Using the webcam
 <ListBox x:Name="Images" Width="136" Margin="0,41,12,12"
 HorizontalAlignment="Right"
 ScrollViewer.HorizontalScrollBarVisibility="Disabled">
 <ListBox.ItemTemplate>
 <DataTemplate>
 <Image Margin="10" Height="50" Width="100"
 Source="{Binding}" />
 </DataTemplate>
 </ListBox.ItemTemplate>
 </ListBox>
</Grid>

The XAML in listing 20.12 creates a second button, for requesting a snapshot B, and
adds a ListBox C to hold the images. The DataTemplate for the ListBox is pretty
simple; all it includes is a single image with its source set to be the item bound to it D.

 Once you have the XAML in place, using the code in listing 20.13 to update the
code-behind.

public MainPage()
{
 InitializeComponent();
 Images.ItemsSource = _images;
}

private CaptureSource _source;
private ObservableCollection<ImageSource> _images =
 new ObservableCollection<ImageSource>();

private void Capture_Click(object sender, RoutedEventArgs e)
{
 if (CaptureDeviceConfiguration.AllowedDeviceAccess ||
 CaptureDeviceConfiguration.RequestDeviceAccess())
 {
 var camera =
 CaptureDeviceConfiguration.GetDefaultVideoCaptureDevice();

 if (camera != null)
 {
 _source = new CaptureSource();

 var format = (from VideoFormat f in camera.SupportedFormats
 orderby f.PixelWidth * f.PixelHeight descending
 select f).FirstOrDefault<VideoFormat>();
 if (format != null)
 camera.DesiredFormat = format;

 _source.VideoCaptureDevice = camera;

 VideoBrush videoBrush = new VideoBrush();
 videoBrush.Stretch = Stretch.Uniform;
 videoBrush.SetSource(_source);
 PresentationSurface.Fill = videoBrush;

 _source.CaptureImageCompleted += (s, ea) =>
 {

Listing 20.13 C# code for capturing the still images

C

D

C
CaptureSource
refactored to class-level

B

D

Video display
remains same

E

Licensed to Devon Greenway <devon.greenway@gmail.com>

614 CHAPTER 20 Displaying and capturing media
 _images.Add(ea.Result);
 };

 _source.Start();
 }
 }
}

private void TakeSnapshot_Click(object sender, RoutedEventArgs e)
{
 _source.CaptureImageAsync();
}

Listing 20.13 builds on our previous code, refactoring some things out to class-level
variables, and adding in some new code. In addition to refactoring the Capture-
Source out to class level, I added a new ObservableCollection of ImageSource B to
the class members. This will be used as the items source for the ListBox C to support
the binding of images using the DataTemplate.

 The majority of the code inside Capture_Click is the same as what we’ve built so
far. I included the LINQ method D for obtaining the highest resolution, as we saw in
previous examples. Toward the end of the method, before starting the webcam cap-
ture, I added an event handler E to add the captured image to the ObservableCol-
lection B. This image is a WriteableBitmap (covered in chapter 21) so we could do
additional manipulation with it if we wanted. Finally, the button click handler for the
snapshot button calls the CaptureImageAsync method F of the capture source.

 With that code in place, our webcam display app can now capture stills alongside dis-
playing the output from the webcam. In theory, you could treat those stills like individual
frames in a video, but a better way to access the frame data is to use a custom VideoSink.

20.7.4 Getting the raw video data

Obviously, capturing still images at random frames is no substitute for being able to
get at the raw video bits. Currently, the only way to access the raw video stream is to
create your own VideoSink class. This is a class that will take a video capture source
and let the capture source push samples to it. It’s possible then to get access to the raw
bytes for the frames, but they’ll be uncompressed. I have to stress that without fast
compression, a video conferencing or chat application would be out of the question.
Though possible to perform this compression from code inside Silverlight, it’s
unlikely to perform well enough to use on a real production application.

 Disclaimers aside, let’s see how to implement this ourselves. The first thing is to cre-
ate the custom VideoSink class. Listing 20.14 shows how to do this. The class has no real
implementation, as it’d completely depend on what you want to do with the bits. I’ve
seen some examples that write out uncompressed (huge) AVI files, for example.

public class CustomVideoSink : VideoSink
{
 private long _currentFrame = 0;

Listing 20.14 A sample VideoSink class for capturing raw webcam video

F

Licensed to Devon Greenway <devon.greenway@gmail.com>

615Using the webcam
 protected override void OnCaptureStarted()
 {
 VideoFrameQueue.Open();
 }

 protected override void OnCaptureStopped()
 {
 VideoFrameQueue.Close();
 }

 protected override void OnFormatChange(VideoFormat videoFormat)
 {
 VideoFrameQueue.VideoFormat = videoFormat;
 }

 protected override void OnSample(
 long sampleTimeInHundredNanoseconds,
 long frameDurationInHundredNanoseconds,
 byte[] sampleData)
 {
 _currentFrame++;

 VideoFrameQueue.Append(
 _currentFrame,
 sampleTimeInHundredNanoseconds,
 frameDurationInHundredNanoseconds,
 sampleData);

 System.Diagnostics.Debug.WriteLine(_currentFrame);
 }
}

In this example, CustomVideoSink derives from the VideoSink class. That class pro-
vides four overridable members of interest. The OnCaptureStarted B and OnCap-
tureStopped C methods are used for startup and shutdown code. In those methods,
I open and close a fictional VideoFrameQueue class. The implementation of that class
would vary significantly based on what you intend to do with the raw bytes, so I’ve left
it out of this example.

 One other utility method is OnFormatChanged. This is executed when the video for-
mat is changed, and will always fire at least once, at the beginning of the capture.
Once you know the video format, you can start doing something useful with the bytes
that make up each frame. The OnSample method provides those bytes to us.

 In the OnSample method, you’ll almost certainly want to write the bytes and other
required information to a queue to be processed. I’ve represented that with the Vid-
eoFrameQueue member. The queue would likely have a worker on a background thread
that would write the frame to a larger file format, or do some simple encoding/
compression as required. If you try to do that all inside this method, you’ll run into
timing issues.

 The last step is to hook your custom video sink in to the processing pipeline. First,
in the code-behind of the listing from the start of this chapter, add the following pri-
vate member variable:

private CustomVideoSink _sink = new CustomVideoSink();

B

C

Capture
format

Append frame
to queue
Licensed to Devon Greenway <devon.greenway@gmail.com>

616 CHAPTER 20 Displaying and capturing media
Then, in the same listing, modify the capture block in the button click event handler
to look like listing 20.15.

var camera =
 CaptureDeviceConfiguration.GetDefaultVideoCaptureDevice();

if (camera != null)
{
 var source = new CaptureSource();

 source.VideoCaptureDevice = camera;

 VideoBrush videoBrush = new VideoBrush();
 videoBrush.Stretch = Stretch.Uniform;
 videoBrush.SetSource(source);
 _sink.CaptureSource = source;
 PresentationSurface.Fill = videoBrush;

 source.Start();
}

In listing 20.15, we’ve wired our new CustomVideoSink into the existing code. The
new line in the event handler assigns the capture source, so the sink is now wired up
to the webcam. Note that you can have more than one video sink attached to any cap-
ture source, but the processor utilization will rise proportionally.

20.7.5 A note about audio

Video is seldom captured alone. More often than not, you’ll want to capture audio as
well. The Silverlight webcam and microphone API supports capturing audio indepen-
dently, or along with video.

 The Silverlight Microphone API is almost identical to the Webcam API, so we’ll
leave it out for space reasons. The primary difference is that instead of a VideoCap-
tureDevice, you’ll have an AudioCaptureDevice. There’s no native way to output the
raw audio, so you’ll need to create an AudioSink just like we created a VideoSink for
grabbing video frames. Of course, just as I noted with the VideoSink, what you do in
the AudioSink is going to depend upon what your plans are for encoding. The data
format that comes from Silverlight is raw PCM audio.

 The Silverlight Webcam API is a powerful way to integrate video capture devices into
your application. Already I’ve seen some novel uses including stop-motion animation,
image and gesture recognition, Facebook photo uploading, and more. The API is sim-
ple to use, providing us with the device capabilities and a simple way to request access.
It works cross-platform and abstracts away all the little details you’d normally need to
understand to work with webcam and microphone devices on various machines.

Listing 20.15 Using a custom VideoSink to grab frames

Wire up new
VideoSink
Licensed to Devon Greenway <devon.greenway@gmail.com>

617Summary
20.8 Summary
One of Silverlight’s main strengths is in media delivery. Looking at all the options pre-
sented in this chapter, it’s no wonder. Silverlight supports multiple formats of SD and
HD video and audio right out of the box. There’s an excellent CodePlex project called
the Silverlight Media Framework that provides support for IIS Smooth Streaming for
extremely high quality adaptive streaming.

 If Silverlight doesn’t support a media format you want to use, it has a provision for
allowing you to create managed codecs, decoding your own format and sending the
raw unencoded bytes to Silverlight. This API is so complete, I’ve even been able to use
it to generate video and audio from code, without any original media source files.

 Finally, not all media comes from files or algorithms. Sometimes, media comes
from you, in the form of captured video, audio, and still images from a webcam and
microphone. Silverlight has excellent support for all types of webcams and mics, cross-
browser and cross-platform.

 In the webcam still image capture demo, we used a couple image classes, including
the WriteableBitmap returned in the snapshot callback. Images are often used hand-
in-hand with video, both as still captures and as video thumbnails. Images are also
prevalent throughout most applications as button icons and other design elements. In
the next chapter, we’ll go through all the ways you can work with images in Silverlight,
including loading image files, generating images from scratch, and working with enor-
mous images with Deep Zoom.
Licensed to Devon Greenway <devon.greenway@gmail.com>

Working with
 bitmap images
Images are used on web pages all across the internet. They’re used in the form of
application icons, corporate logos, and photos of you and your friends. It’s been
quite a while since I’ve seen even a regular forms-over-data application that didn’t
have images in the UI somewhere. Obviously, bitmap-based images have become a
mainstay of application design.

 Naturally, Silverlight includes mechanisms for displaying this content through
the Image element and the MultiScaleImage control.

 In addition to displaying images, Silverlight includes the powerful ability to cre-
ate images from scratch or from other elements using the WriteableBitmap type.
You can even use the WriteableBitmap to provide support for formats not natively
supported in Silverlight (such as .GIF).

This chapter covers
■ Working with images
■ Creating images on the fly
■ Deep Zoom
■ Stretching content
618

Licensed to Devon Greenway <devon.greenway@gmail.com>

619Basic imaging
 In this chapter, we’ll start with the basics of imaging with the Image element. From
there, we’ll move on to creating images on the fly using the WriteableBitmap. Once
we have a handle on the WriteableBitmap, we’ll turn to Silverlight’s answer to enor-
mous gigapixel-level images or collections of images-Deep Zoom with the MultiSca-
leImage control. Finally, we’ll wrap up the chapter with a discussion of the different
ways of stretching content to fit the space allotted.

21.1 Basic imaging
The Image element enables you to display images from across the internet. In addi-
tion to loading images relative to your project, the Image element allows you to
retrieve images from another domain. Take a look at how listing 21.1 uses the Source
property to get an image from the http://www.silverlightinaction.com web site.

Result:

XAML:
<StackPanel Height="200" Width="100">
 <Image Source="http://www.silverlightinaction.com/man.png" />
</StackPanel>

The Image in this markup retrieves an image from the silverlightinaction.com
domain. This image is referenced through the Source property, which is set with a Uri
through XAML. If this property needs to be set programmatically, you must use an
ImageSource instead. Because this abstract class can’t be used directly, you use a der-
ivation known as BitmapImage. This class name is a little misleading because only the
types listed in table are 21.1 supported.

This table shows the image formats supported by the BitmapImage class. Because this
is the type used by the Source property, these image formats also represent those sup-
ported by the Image element in general.

 What are you to do if you want to load an image type that’s unsupported by Silverlight,
such as .gif or .bmp? In the previous chapter, we saw how you can use the MediaStream-
Source API to provide a hook to use when a video or audio format is unsupported. Luck-
ily, Silverlight includes an equivalent for still images, the WriteableBitmap.

Listing 21.1 An Image element that uses a picture from another domain

Format Extension(s)

Joint Photographic Experts Group .jpg, .jpeg, .jpe, .jfif, .jfi, .jif

Portable Network Graphics .png

Table 21.1 Image formats
supported by the Bitmap-
Image class. These formats
are inherently supported for-
mats of the Image element.
Licensed to Devon Greenway <devon.greenway@gmail.com>

http://www.silverlightinaction.com

620 CHAPTER 21 Working with bitmap images
21.2 Creating images at runtime
The WriteableBitmap (sometimes referred to as The Bitmap API) was introduced in
Silverlight 3. It provides the ability to generate new images based on existing images,
onscreen UI elements, or from scratch using pixel manipulation.

 WriteableBitmap is a class in the System.Windows.Media.Imaging namespace,
deriving from the common BitmapSource base class. Deriving from that class allows us
to use the WriteableBitmap in almost every place you could normally use any other
type of bitmap image class.

 The uses for this feature are numerous, and all over the map. I’ve personally used
it to generate Windows 7-style window thumbnails in a large Silverlight business appli-
cation for a customer. I’ve seen others use it in games, for destructive 2D UI (think
Lemmings where a bomb takes a chunk out of the ground). Still others have built their
own paint programs using this feature.

 In this section, we’ll look at the three main ways to use the WriteableBitmap class:
creating editable bitmaps from existing images, creating bitmaps from portions of the
visual tree, and creating bitmaps from scratch.

 Before we do that, we’ll have the usual project setup to do. In this case, create a new
Silverlight project and modify the MainPage.xaml markup to look like listing 21.2.

Result (in designer):

XAML:
<UserControl x:Class="BitmapApi.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d" d:DesignHeight="300" d:DesignWidth="500">

 <Grid x:Name="LayoutRoot" Background="White">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="150" />
 <ColumnDefinition Width="*" />
 </Grid.ColumnDefinitions>

Listing 21.2 MainPage.xaml for the WriteableBitmap examples
Licensed to Devon Greenway <devon.greenway@gmail.com>

621Creating images at runtime
 <StackPanel x:Name="Elements"
 Grid.Column="0"
 Margin="10">
 <TextBlock Text="Hello World" Margin="3" />
 <TextBox Text="This is a textbox" Margin="3" />
 <Button x:Name="Capture"
 Content="Capture" Margin="3" />
 <Image Source="Pete3YearsOld.jpg"
 Stretch="Uniform" />
 </StackPanel>

 <Image x:Name="ResultBitmap"
 Stretch="Uniform"
 Margin="10"
 Grid.Column="1" />
 </Grid>
</UserControl>

The markup includes a StackPanel B that we’ll use for our visual tree rendering
example, including an image of me at three years old that we’ll use to test creating
from existing images, and a result bitmap C that will display the writeable bitmap we
create in the code-behind.

 You likely don’t have a picture of me at three years old hanging around (if you do,
we probably need to chat), so pick any old jpeg you have on your machine and drag it
into the Silverlight project as a resource, using it instead.

 Our first trial of the WriteableBitmap class is going to be to create a new image
from an old one.

21.2.1 Creating from existing images

If you’re creating a photo-manipulation program, you’ll likely want to create a Write-
ableBitmap from an existing image. That new bitmap will enable you to access the
pixels to allow for drawing, erasing, recoloring, and pretty much anything else you can
write code for.

 There are some restrictions when creating images from existing images. If you
download the image from another server—in other words, a cross-domain call like we
discussed in chapter 14—you won’t be able to access the individual pixels of the
image. In our example, we’ll use an image that already exists in our project. The
resulting application will look like figure 21.1 once you click the Capture button.

 This example shows how to use one bitmap as a source to the writeable bitmap.
Once you have the image in a writeable bitmap, you can manipulate it all you’d like
(within the cross-domain restrictions I mentioned). Double-click the Capture button
to create an event handler, then place this code in the handler:

BitmapSource source = SourceImage.Source as BitmapSource;
WriteableBitmap bmp = new WriteableBitmap(source);
ResultBitmap.Source = bmp;

Of course, you can also load the image from a URL. This code, used in place of the
previous example, shows how:

B

Me at 3

C

Licensed to Devon Greenway <devon.greenway@gmail.com>

622 CHAPTER 21 Working with bitmap images
Uri uri =
 new Uri("BitmapApi;component/Pete3YearsOld.jpg",
 UriKind.Relative);
StreamResourceInfo res = Application.GetResourceStream(uri);

BitmapImage image = new BitmapImage();
image.SetSource(res.Stream);
WriteableBitmap bmp = new WriteableBitmap(image);

ResultBitmap.Source = bmp;

This example shows how to create a WriteableBitmap from an existing image that
hasn’t necessarily been loaded into an Image element onscreen.

 The convoluted loading scheme is required only because this file is a resource in
the Silverlight project. If it’s just a normal file on the server, you could’ve passed the
URI directly to the BitmapImage constructor.

NOTE The image is loaded asynchronously; the data isn’t available until the
BitmapImage.ImageLoaded event has fired. This is especially important when
working with images from external servers.

Another way to use the WriteableBitmap class is to create a rendering of a portion of
the visual tree.

Figure 21.1 A WriteableBitmap (right) created from another bitmap (left)
Licensed to Devon Greenway <devon.greenway@gmail.com>

623Creating images at runtime
21.2.2 Creating from UI elements

The WriteableBitmap class can be used to take a snapshot of all or a portion of the
visual tree. This allows you to easily create thumbnails of large forms for a Windows 7
taskbar-like effect, or capture still frames from videos playing in a MediaElement. Note
that cross-domain pixel-access checks are enforced, so if anything in the tree fails the
cross-domain check, everything will.

 As it turns out, creating a snapshot of a portion of the video tree is extremely sim-
ple. You pass the root element of the branch of the tree into the constructor of Write-
ableBitmap, along with an optional render transform. For example, see figure 21.2
for a direct 1:1 representation.

 To create the bitmap version of the UI as shown in figure 21.2, you only need a
couple of lines of code. Place these in the click event handler in place of the other
code shown so far:

WriteableBitmap bmp = new WriteableBitmap(Elements, null);
ResultBitmap.Source = bmp;

Elements is the name of the StackPanel containing the four elements. The fidelity of
the capture is close, but not perfect. For example, you lose ClearType rendering for
fonts, so most text will look a little different. Of course, if you pass in a render trans-
form (to rotate, skew, resize), it’ll definitely look different.

 The final approach is to create an image from scratch. We’ll discuss direct pixel
access at the same time; it applies to all three approaches.

Figure 21.2 The elements to the left are live elements in the visual tree. On the right, you can
see the bitmap representation of those elements, captured while the Capture button was clicked.
Licensed to Devon Greenway <devon.greenway@gmail.com>

624 CHAPTER 21 Working with bitmap images
DIRECT PIXEL ACCESS

The third approach to using the WriteableBitmap is to create an image from scratch.
This is useful when you want to create an image from code or allow the user to draw
on an empty canvas using the mouse.

 The direct pixel access techniques shown here also work for any of the previous
approaches, once the base image is loaded. Keep in mind that cross-domain images
don’t allow direct pixel access, and you’ll get an exception if you try to do so.

 To create an image from scratch, you need only provide dimensions, like this:

WriteableBitmap bmp = new WriteableBitmap(640, 480);

Then you’re free to start working with the image. The pixels are manipulated using
the Pixels property, which returns an array of integers. Each 32-bit integer represents
one pixel in pARGB (premultiplied alpha, red, green, blue) format. This example iter-
ates through the array, setting completely random values for the pixels:

Random random = new Random();
for (int i = 0; i < bmp.Pixels.Length; i++)
 bmp.Pixels[i] = random.Next();

ResultBitmap.Source = bmp;

That’s interesting, but not particularly helpful, as it doesn’t show how to set a specific
color. Setting a single pixel to a specific color is just as easy:

Color c = Colors.Orange;
bitmap.Pixels[i] = c.A << 24 | c.R << 16 | c.G << 8 | c.B;

The shifting combined with the bitwise OR operation packs the four values into their
correct position within the integer. To get an existing value, the code is a little more
verbose, but still amounts to the reverse of putting the pixel:

int pixel = bitmap.Pixels[i]
Color c = Color.FromArgb((byte)(pixel >> 24),
 (byte)(pixel >> 16),
 (byte)(pixel >> 8),
 (byte)(pixel));

In this example, the variable c will contain the correct color code for the pixel at posi-
tion i. The bitshift operators and byte masking take care of getting the correct values
from the correct positions in the integer.

 One interesting use of all this is to create new images using an algorithm. One of
the most impressive and best-known algorithms is the Mandelbrot fractal. We’ll close
the section on the WriteableBitmap by creating our own little Mandelbrot fractal
generator.

21.2.3 A Mandelbrot fractal generator

I love fractals. A number of the desktop wallpapers I created and offer through my
personal site were generated using fractal explorer programs such as Ktaza (no longer
available). In this section, we’ll build a simple visualizer for the Mandelbrot set, a com-
mon fractal. The Silverlight application will be able to produce results like figure 21.3.
Licensed to Devon Greenway <devon.greenway@gmail.com>

625Creating images at runtime
For efficiency, we’ll simply modify the same project we’ve been working with through-
out this section. Inside the button click handler, add the code from listing 21.3. This
code generates a Mandelbrot fractal, coloring it using the escape time algorithm.

int width = 1024; int height = 768;

int[] colorTable = new int[256];

for (int i = 0; i < 256; i++)
{
 Color c = Color.FromArgb(
 0xFF, (byte)(255 - i), (byte)(255 - i), (byte)(255));

 colorTable[i] = c.A << 24 | c.R << 16 | c.G << 8 | c.B;
}

WriteableBitmap bmp = new WriteableBitmap(width, height);

for (int x = 0; x < width; x++)
{
 for (int y = 0; y < height; y++)

Listing 21.3 Mandelbrot fractal in WriteableBitmap

Figure 21.3 The WriteableBitmap sample application modified to show a Mandelbrot fractal

B

Licensed to Devon Greenway <devon.greenway@gmail.com>

626 CHAPTER 21 Working with bitmap images
 {
 double zoom = 300;
 double x0 = 0; double y0 = 0;
 double cx = (x - width / 2) / zoom;
 double cy = (y - height / 2) / zoom;

 int iteration = 0;
 int maxIterations = 1000;

 while (x0 * x0 + y0 * y0 <= 4 && iteration < maxIterations)
 {
 double xtemp = x0 * x0 - y0 * y0 + cx;
 y0 = 2 * x0 * y0 + cy;
 x0 = xtemp;

 iteration++;
 }

 if (iteration == maxIterations)
 {
 bmp.Pixels[(y * width) + x] =
 colorTable[colorTable.GetUpperBound(0)];
 }
 else
 {
 bmp.Pixels[(y * width) + x] =
 colorTable[iteration % colorTable.Length];
 }
 }
}

ResultBitmap.Source = bmp;

Listing 21.3 shows how to generate a simple Mandelbrot fractal with coloration based
on the escape time algorithm. The code to make this work in Silverlight is straightfor-
ward. First, I build a color table B to be used by the escape time algorithm. The col-
ors simply fade from white to dark blue. I then create the WriteableBitmap instance.

 The majority of the remaining code is an implementation of the Mandelbrot frac-
tal algorithm. Should you want to modify the scale of the content, the zoom variable is
a good place to begin.

 The final step is to set the source of the bitmap onscreen to be the WriteableBit-
map C. This is consistent with the other examples.

 When I run this on my PC, the 1024 x 768 fractal generates and displays in subsec-
ond time. I remember in the ’80s I had a CBM-BASIC program that generated a Man-
delbrot set, and it ran all night, just to create a 320 x 200 image. Impressive.

 WriteableBitmap enables a number of important scenarios. First, you can use it to
duplicate an existing image to prepare it for editing. Second, you can take a snapshot
of a portion of the visual tree in order to create a thumbnail, or to snap a frame of a
video. Third, you can generate images, or modify existing images, entirely from code.
The scenarios for WriteableBitmap reach across all types of applications from games,
to image manipulation, to forms-over-data business applications. Plus, just about any-
where you can use an Image, you can use a WriteableBitmap.

Escape time
coloration

C

Licensed to Devon Greenway <devon.greenway@gmail.com>

627Deep Zoom
TIP WriteableBitmap requires a fair bit of effort to use for generating shapes
or lines. For those situations, you have to do the math to plot pixels efficiently.
The WriteableBitmapEx library on CodePlex at http://writeablebitmapex.
codeplex.com builds upon the WriteableBitmap to add support for these and
other functions.

The Image element will support images up to 4 gigapixels (four billion pixels) in size.
As you can imagine, using images this large can force your users to endure painful wait
times. In addition, with advancements in digital photography and photo-stitching, what
are you supposed to do with images larger than 4 gigapixels? To address these types of
situations, Silverlight exposes a slick feature called Deep Zoom.

21.3 Deep Zoom
Deep Zoom is a feature of Silverlight that enables users to explore groupings of high-
resolution images. Traditionally, viewing high-resolution images over the internet is
associated with painful wait times because high-resolution images are generally larger
in size. Silverlight’s Deep Zoom feature removes the usual long wait times. In addi-
tion, Deep Zoom natively allows users to drill into an image and see its most intricate
details. All this is delivered in a smooth viewing experience that runs with unprece-
dented performance. This kind of experience is made possible by the MultiScaleIm-
age control.

 The MultiScaleImage control, similar to the Image control, has the ability to effi-
ciently show incredibly high-resolution images. These images can be zoomed into, giv-
ing the user a close-up view of the content. Alternatively, the user can zoom away from
the image to get a bird’s-eye view of the image. Either way, these zooming features are
constrained to an area known as the viewport. This viewport can be zoomed into,
zoomed out of, and moved around the surface of an image, but this image really isn’t
an image at all—it’s a collection of images typically created by Deep Zoom Composer,
a free tool from Microsoft.

21.3.1 Showing an image

Showing an image within a MultiScaleImage control is nearly identical to showing an
image within an Image control. As with the Image control, the only property you need
to set to display an image is Source . This property is a MultiScaleTileSource that
can be used to reference a file, but this file isn’t a typical image file. Instead, this file is
an XML file, known as the Deep Zoom image (DZI) file, that describes a multiscale image.
We’ll share more about this file type in a moment; for now, look at how a MultiSca-
leImage is created in XAML:

<MultiScaleImage x:Name="myMultiScaleImage"
 Source="images/dzc_output.xml" />

This shows the XAML to load a relative multiscale image at design time. In the event that
you need to load a multiscale image at runtime, you use a DeepZoomImageTileSource
Licensed to Devon Greenway <devon.greenway@gmail.com>

http://writeablebitmapex.codeplex.com
http://writeablebitmapex.codeplex.com

628 CHAPTER 21 Working with bitmap images
instance. This type derives from the abstract base class MultiScaleTileSource, so it can
be used at runtime as shown here:

myMultiScaleImage.Source = new DeepZoomImageTileSource(
 new System.Uri("images/dzc_output.xml", UriKind.Relative));

This line of code shows how to load a multiscale image at runtime. If the referenced
image can’t be found, the MultiScaleImage object’s ImageOpenFailed event will be
fired. If the image is found, the ImageOpenSucceeded event will be triggered and the
image will be shown. Once this happens, you may consider giving your user the ability
to zoom in and out of the high-resolution image.

21.3.2 Zooming in and out

The MultiScaleImage control has the ability to show an extremely high-resolution
image. This control helps remove the traditional limitations associated with screen
real estate. This is accomplished by enabling your users to zoom in from a view as if
they were standing on top of a mountain.

 Zooming within a MultiScaleImage is handled by a method called ZoomAboutLog-
icalPoint. The ZoomAboutLogicalPoint method takes three parameters that describe
the zoom attempt. The first parameter determines how much to zoom by. The second
and third parameters specify from where in the image the zoom originates. These
parameters and the ZoomAboutLogicalPoint method are shown in listing 21.4.

C#:
public Page()
{
 InitializeComponent();
 this.KeyDown += new KeyEventHandler(Page_KeyDown);
 this.KeyUp += new KeyEventHandler(Page_KeyUp);
 myMultiScaleImage.MouseLeftButtonDown +=
 new MouseButtonEventHandler(myMultiScaleImage_MouseLeftButtonDown);
}
private bool shouldZoom = true;

void Page_KeyDown(object sender, KeyEventArgs e)
{
 if (e.Key == Key.Shift)
 shouldZoom = false;
}
void Page_KeyUp(object sender, KeyEventArgs e)
{
 shouldZoom = true;
}

void myMultiScaleImage_MouseLeftButtonDown(object sender,
 MouseButtonEventArgs e)
{
 Point point = e.GetPosition(myMultiScaleImage);
 point = myMultiScaleImage.ElementToLogicalPoint(point);

Listing 21.4 Implementing zoom functionality

Input event
wire-up

B

C

Licensed to Devon Greenway <devon.greenway@gmail.com>

629Deep Zoom
 if (shouldZoom == true)
 myMultiScaleImage.ZoomAboutLogicalPoint(1.5, point.X, point.Y);
 else
 myMultiScaleImage.ZoomAboutLogicalPoint(0.5, point.X, point.Y);
}

This listing looks like a lot of code. In short, this code enables the user to zoom in or out
of the MultiScaleImage defined earlier. To enable this functionality, you first listen for
a keypress B. If the keypress is made from the Shift key, the user is saying to zoom away
from the image. If the Shift key hasn’t been pressed, the zooming feature will default
to zooming in, so you also need to listen for a user releasing a key through the KeyUp
event. This event resets the zoom mode to the default after the Shift key has been
pressed. The real meat of this feature is demonstrated when the user clicks the Multi-
ScaleImage C. This action forces a call to the ZoomAboutLogicalPoint method, which
zooms according to the three parameters passed to it.

 The first parameter passed to the ZoomAboutLogicalPoint method determines
how to zoom on the image. If this double value is less than 1, the method will zoom
away from the image. If the value is greater than 1, the method will zoom into the
image. Either way, you can play around with this value to also adjust the speed in
which the zoom is applied. To determine where the zoom begins, you must rely on the
second and third parameters.

 The second parameter represents the logical x coordinate to zoom from, the third
parameter represents the logical y coordinate to zoom from. Both parameters are
double values that fall between 0 and 1. The fact that these values fall between 0 and 1
is what defines them as part of a logical coordinate system, but most items use a stan-
dard Cartesian coordinate system. Fortunately, the MultiScaleImage class exposes two
methods that enable you to convert Point objects between the two coordinate sys-
tems. The methods are:

■ ElementToLogicalPoint
■ LogicalToElementPoint

ElementToLogicalPoint converts a Cartesian Point to a logical Point. This is gener-
ally used to convert the position of the mouse cursor before zooming because the
ZoomAboutLogicalPoint method expects a logical point. Here’s an example, assum-
ing the user clicked the mouse at 125,200:

Point cartesianPoint = new Point(125, 200);
Point logicalPoint = myMultiScaleImage.ElementToLogicalPoint(cartesianPoint);
myMultiScaleImage.ZoomAboutLogicalPoint(1.5,
 logicalPoint.X, logicalPoint.Y);

LogicalToElementPoint converts a logical Point to a Cartesian Point. This allows
you to work with a point in a more familiar interface. Here’s an example of how to use
this method:

Point logicalPoint = new Point(0.25, 0.75);
Point cartesianPoint =
myMultiScaleImage.LogicalToElementPoint(logicalPoint);
Licensed to Devon Greenway <devon.greenway@gmail.com>

630 CHAPTER 21 Working with bitmap images
Together, these examples show how to convert between the two coordinate systems.
The logical coordinate system is necessary because it’s used for two important tasks.
The first task is zooming in and out of an image—which you just saw. The other major
task is selecting what part of a multiscale image to zoom in on. You’ll learn how to do
this in a moment. Regardless of your task, both require some knowledge of how to
manage the viewport.

21.3.3 Managing the viewport

The viewport is a rectangular region used to view a specific area of an image. This
region enables you to zoom in and focus on the details of a specific part of an image,
so you may want to think of the viewport as a way to interact with an image three-
dimensionally. By default, this region is the size of the entire MultiScaleImage control,
but you can change the size of the viewport through the ViewportWidth property.

 The ViewportWidth property sets the size of a viewport in relation to the logical
coordinate space. Anytime you change the ViewportWidth property, it’ll be in relation
to the hosting MultiScaleImage. For instance, if you set the ViewportWidth property
to 1.0, the viewport will be the same size as the hosting MultiScaleImage control. If you
change the ViewportWidth property to a double greater than 1.0, you’ll make the view-
port larger than the MultiScaleImage. This approach would give the user a sense of
zooming away from the image. Alternatively,
you can focus on a smaller portion of a multi-
scale image by providing a value less than 1.0.
Figure 21.4 illustrates this zooming-away effect.

 This figure shows the effects of changing
the ViewportWidth property to a double less
than 1.0. The figure on the left represents the
original multiscale image. As you can see, the
Silverlight logo in this image is only a small
portion of the area shown to the user. By set-
ting the ViewportWidth property to 0.33, the Silverlight logo becomes the focus of the
entire MultiScaleImage. In reality, the ViewportWidth is only part of the story. The
other part involves using the ViewportOrigin property.

 The ViewportOrigin specifies the position of the upper-left corner of the view-
port. This position is a logical Point relative to the upper-left corner of the MultiSca-
leImage. Each of the coordinates within the Point will be between 0.0 and 1.0. Note
that you can still define this value at design time. To do this, you have to set the View-
portOrigin property with the syntax shown here:

<MultiScaleImage x:Name="myMultiScaleImage"
 Source="images/dzc_output.xml"
 ViewportOrigin=".33,.33" />

This line of markup shows how to set the ViewportOrigin property value at design
time. As you might expect, this value can also be set at runtime by creating an instance

Figure 21.4 A MultiScaleImage with a
ViewportWidth of 0.33
Licensed to Devon Greenway <devon.greenway@gmail.com>

631Deep Zoom
of the Point class. This explanation hardly details the real value of the ViewportOri-
gin property—that it enables you to navigate around the surface of an image once
you’re zoomed in. By handling a user action (see chapter 8), you can change the view-
port position as necessary. The following example shows how to change the position
of the viewport on a mouse click:

void myMultiScaleImage_MouseLeftButtonUp(object sender,
 MouseButtonEventArgs e)
{
 Point newOrigin = e.GetPosition(myMultiScaleImage);
 myMultiScaleImage.ViewportOrigin =
 myMultiScaleImage.ElementToLogicalPoint(newOrigin);
}

This example shows how to reposition the ViewportOrigin based on where a user
clicked. Once it’s clicked, the viewport will move to the new Point. This process
begins with a nice smooth animation called a spring animation. This animation will play
anytime the viewport changes size or location—anytime you zoom in or out of an
image or pan the surface. This animation can be turned off by changing the
UseSprings bool property to false, but you won’t usually want to do this.

 In general, it’s recommended that you leave the UseSprings property set to true
because the animation creates a rich viewing experience. In addition, it gives the Mul-
tiScaleImage control more time to download any necessary data. Once the viewport
does change size or location, the MotionFinished event will be triggered, giving you
an opportunity to perform any UI updates that you may want to make to the display.

 The viewport is an important concept within the MultiScaleImage control. This
item gives you the power to scan the surface of a high-resolution image. In addition,
the viewport enables you to readily zoom in and out of an image. To enable this zoom-
ing functionality, you first load an image into the MultiScaleImage control. This
image is loaded through the Source property, and the Source should reference a .xml
file, which can be created by a tool. This tool is used when you’re ready to deploy a
multiscale image.

21.3.4 Deploying multiscale images

The MultiScaleImage control has built-in support for handling XML that details a
multiscale image. This type of file can be generated programmatically or by a tool
called Deep Zoom Composer. We won’t cover this tool in detail because of its simplistic
nature. Once you download and install the tool from the Microsoft Expression web-
site, you can quickly create XML files that can be used by the MultiScaleImage. These
files can be generated within the tool by going through a basic wizard. This wizard
goes through the following steps:

1 Import—Enables you to import your own images.
2 Compose—Lets you lay out how the images should appear.
3 Export—Determines where the result will be stored.
Licensed to Devon Greenway <devon.greenway@gmail.com>

632 CHAPTER 21 Working with bitmap images
These three steps will generate a .xml file and a file/folder structure. These two items
must then be added to your web application so that the MultiScaleImage control can
access them. Once this has been done, you can use Deep Zoom on your own images.

 Deep Zoom is a powerful feature available within Silverlight. Because this technol-
ogy relies on basic images and an XML file, there are no server-side requirements. In
addition, the only client-side requirement is Silverlight itself. This is great news
because, as you play with Deep Zoom, you’ll see the rich experience it provides. This
experience truly makes viewing high-resolution images over the internet enjoyable.

 One of the misconceptions about Silverlight is that everything must be a vector
shape. Silverlight provides a number of ways to load and display bitmap images, as well
as powerful ways to manipulate them. You can load regular .png and .jpeg files from
the web or a local resource; you can create images on the fly, or from other visuals;
and you can quickly zoom through collections with millions or billions of pixels at
play. All of this Silverlight does natively and fluidly, proving both a simple developer
experience and an excellent end-user experience.

 In the examples shown so far in this chapter, you may have noticed some different
values for the Stretch property. This property is shared by video and image elements
alike, and helps control how the content will fill (or not fill) the space provided.

21.4 Dealing with dead space
Throughout this chapter you’ve seen a variety of ways to deliver different kinds of
media. Often, media is intended to be a secondary part of an application instead of
the main attraction. For instance, a user’s profile picture is part of an application but
not as important as the profile information itself. As you can imagine, there’s the pos-
sibility that these profile pictures may be of different sizes. This can lead to dead
space, or areas that don’t include content. Fortunately, there’s a way to gracefully deal
with these situations. Please look at figure 21.5.

 The Image, MediaElement, and Shape (discussed chapter 18) classes expose a prop-
erty called Stretch. This property determines how the area devoted to an element will
be filled. This description will become clearer as you see the examples available in this
section. This property must be set to one of the four options available in the Sys-
tem.Windows.Media.Stretch enumerator, which exposes the None, Uniform, Fill,
and UniformToFill options.

Figure 21.5 The boundary of an Image element
in comparison to the actual size of the photo
Licensed to Devon Greenway <devon.greenway@gmail.com>

633Dealing with dead space
21.4.1 Filling the space

Most of the time, photos are represented as raster-based graphics. Raster-based graph-
ics often become pixellated and lose their detail when they’re enlarged. You can pre-
vent this from happening by using the option None for the Stretch value. This option
commands an element to maintain the original size of the requested content—this
option doesn’t make the content stretch at all. As you probably expected, you can set
this property value at design time, as shown in here:

<Image x:Name="myImage"
 Source="http://www.silverlightinaction.com/man.png"
 Stretch="None" />

The XAML in this example loads an Image and prevents it from stretching. The result
from this XAML can be seen in figure 21.5, which shows the results of the None option
when there’s plenty of space for a piece of content. Consider the scenario where the con-
tent is larger than the hosting element. Take a look at Walker’s picture (the content) in
an Image element (the hosting element) smaller than the picture (see listing 21.5).

Result:

XAML:
<Image x:Name="myImage" Width="75" Height="75"
 Source="http://www.silverlightinaction.com/man.png"
 Stretch="None" />

Unfortunately for Walker, his legs got cut off! (One of my slightly twisted tech review-
ers suggested he should be named “Sitter” now. Thanks, Tom.) As the result in this
listing shows, the original photo remains the same size, so the bottom and right edges
of the photo are cropped so that the image fits within the 75px-by-75px dimension of
the Image element. This illustration also erases any fears of an exception being thrown
in the case of an element being smaller than its content.

 At first glance, the None option may seem like the most obvious default option. It
may come as a surprise to find out that another option makes even more sense as the
default. When you begin to consider the fact that the Stretch option is applicable to
Image, MediaElement, and Shape elements, it makes much more sense to stretch items
by default, uniformly.

21.4.2 Uniform sizing

If you set the Stretch property to Uniform, the content of the element will symmetri-
cally expand or contract to occupy most of the available area. While the content
expands or contracts, the native aspect ratio will be preserved. This means that if you

Listing 21.5 Use of the None option on an undersized Image element
Licensed to Devon Greenway <devon.greenway@gmail.com>

634 CHAPTER 21 Working with bitmap images
revisit Walker’s picture, it’ll be stretched vertically, making him stand tall and proud
(see listing 21.6).

Result:

XAML:
<Image x:Name="myImage" Width="300" Height="200"
 Source="http://www.silverlightinaction.com/man.png"
 Stretch="Uniform" />

The gray backdrop in this listing represents the area that could be filled by an image.
Because the Uniform option stretches content proportionally, it must stop once either
a vertical or horizontal boundary is met. But, what happens if the content is larger
than the bounding element? Listing 21.7 shows how to maintain aspect ratio.

Result:

XAML:
<Image x:Name="myImage" Width="75" Height="75"
 Source="http://www.silverlightinaction.com/man.png"
 Stretch="Uniform" />

As this listing illustrates, the content remains intact. Instead of cropping the image, as
was the case in listing 21.5, the content scales to a smaller size. As the content scales
down, the aspect ratio stays the same. Although maintaining the aspect has its bene-
fits, occasionally you might need to fill the entire area, no matter what. For these situ-
ations, you have the Fill option.

21.4.3 Fill the area

The Fill option allows you to expand or contract the content of an element to fully
occupy the space allocated to it. You’ll most likely use this option in backdrop scenar-
ios where you want an Image to serve as wallpaper. Listing 21.8 shows what the Fill
option does to Walker’s picture.

Listing 21.6 A uniformly stretched Image with a photo smaller than the element

Listing 21.7 A uniformly stretched Image with a photo larger than the element
Licensed to Devon Greenway <devon.greenway@gmail.com>

635Dealing with dead space
Result:

XAML:
<Image x:Name="myImage" Width="300" Height="200"
 Source="http://www.silverlightinaction.com/man.png"
 Stretch="Fill" />

Walker looks a little bloated (it’s water weight, trust me) in this listing because,
although the Fill option will expand to ensure that every pixel allotted to an element
is used, the aspect ratio of the content won’t be preserved. Because of the oblong
dimensions of the photo, the photo is stretched horizontally—in turn, horizontally
stretching Walker.

 Sometimes, you may need the flexibility to fill an element while maintaining the
aspect ratio. For these circumstances, you have the UniformToFill option.

21.4.4 UniformToFill

As the name implies, this option is a hybrid between the Uniform and Fill options.
The content within an element will maintain its aspect ratio while filling the entire
bounding area. If the content has a different aspect ratio than the housing element,
the overflowing content will be clipped. See listing 21.9 for a small sample using our
friend Walker.

Result:

XAML:
<Image x:Name="myImage" Width="300" Height="200"
 Source="http://www.silverlightinaction.com/man.png"
 Stretch="UniformToFill" />

This listing illustrates how a raster-based graphic can become pixellated when
inflated. It also shows how the aspect ratio is maintained as the picture is enlarged to
fill every allocated pixel. As you’ve probably noticed, Walker’s legs are removed from
this picture. This is because the bottom edge has been removed to ensure that the
image fits within the allocated boundaries.

Listing 21.8 An Image using the Fill option to stretch an image

Listing 21.9 An Image using the UniformToFill Stretch option
Licensed to Devon Greenway <devon.greenway@gmail.com>

636 CHAPTER 21 Working with bitmap images
 Stretching can help you address a wide variety of filling situations. Silverlight
allows you to easily address any type of stretching situation through the Stretch prop-
erty. This property can be used with the Image and MediaElement items discussed ear-
lier in this chapter. Interestingly, the Stretch property isn’t supported by the
MultiScaleImage control. But, with those powerful deep-zooming capabilities, does it
really make sense to stretch? I think not.

21.5 Summary
Over the course of this chapter, we explored several ways of working with bitmap (also
known as raster) images. Silverlight natively supports .jpeg and .png images in the
Image element, but provides facilities for you to be able to construct any type of image
you’d like using direct pixel access with the WriteableBitmap.

 The WriteableBitmap allows you to construct images from existing UI elements,
from existing images, or even from individually placed pixels. This supports countless
scenarios from screen thumbnails, to video stills, to games and paint programs.

 For truly large images, or collections of large images, Silverlight provides the Mul-
tiScaleImage control, also known as Deep Zoom. Deep Zoom supports images in the
millions to billions of pixels allowing for very fast enlargement of specific areas while
minimizing the amount of memory, processing power, and bandwidth used.

 All of the image types support various stretch options to allow them to conform to
the shape of the container they’re placed in. Silverlight smoothly resizes images, pre-
serving aspect ratio if you desire.

 Along with media (see chapter 20) and vector graphics (see chapter 18), bitmap
images round out the graphical presentation capabilities of Silverlight, helping to put
the “rich” in rich internet application. In the next chapter we’ll learn how to use animation
to move from these static shapes to a more dynamic and interactive user experience.
Licensed to Devon Greenway <devon.greenway@gmail.com>

Animation
 and behaviors
Believe it or not, there once was a time when I had to cower in my cube at a client
site, trying to make sure no one saw me designing icons in a graphics program, or
hand-coding subtle timer-based animation for an application UI. Working with
those things was looked upon as “not real work.” At the same time, the clients
expected icons and application UI to magically appear as though someone just
pressed the “Make it Awesome” button on an IDE.

 Gladly, for most companies, those days are gone. The value of good graphics,
good UX, and for the most part, good animation have become mainstream in all
but the most conservative organizations. The last of those, and probably the least
broadly accepted, is animation.

This chapter covers
■ Providing interactive animations
■ Using keyframes
■ Using and creating easing functions
■ Working with and creating behaviors
637

Licensed to Devon Greenway <devon.greenway@gmail.com>

638 CHAPTER 22 Animation and behaviors
 Animation is a relative newcomer to the world of application development. Yes,
creative types have been doing it for years, but many of us haven’t seen much anima-
tion in our own applications, web or otherwise. Flash, WPF, Silverlight, and jQuery, not
to mention the vastly improved motion graphics on TV and in movies, have all helped
to finally make animation mainstream.

 Animation is a double-edged sword. Silverlight will make it simple for you to use
animation as much as you want, even if that’s overdoing it so much that your entire
application UI appears to be suspended from a bed of Slinky springs. I won’t judge,
honestly. I’ll just show you how to use the awesome capabilities Silverlight gives us.

 We’ll start by covering the basics of animation, of how animation is a change in the
value of a property over time. Then we’ll work with the timeline and storyboards.
Once we know how to group animations in a storyboard, we’ll cover how to create key
frames to allow Silverlight to interpolate the values between different points in time.
Of course, key frames would be pretty boring without easing functions, so that comes
next. We’ll even see how to create our own easing functions. Finally, we’ll wrap up the
chapter with some examples of using and creating behaviors.

22.1 Animation: it’s about time
An animation within Silverlight boils down to changing a single visual property over a
period of time. Without the concept of time, an animation would be a static graphic, and
there’d be no need for this chapter. By
gradually changing a visual property
over the course of a time period, you
can deliver dynamic effects. One such
effect is shown in figure 22.1.

 This figure shows the relationship
between the Opacity property of an
Image and the duration of an anima-
tion. As this animation progresses over
the course of a single second, the
Opacity value gradually increases. As the Opacity value increases, the Image gradually
becomes more and more opaque. You create this dramatic animation by using the code
in listing 22.1.

XAML:
<Image x:Name="myImage"
 Source="http://www.silverlightinaction.com/man.png">
 <Image.Triggers>
 <EventTrigger RoutedEvent="Image.Loaded">
 <BeginStoryboard>
 <Storyboard x:Name="myStoryboard">
 <DoubleAnimation Duration="0:0:2"
 Storyboard.TargetName="myImage"

Listing 22.1 XAML for fading in an Image over the course of one second

Figure 22.1 An image fading into view over the
course of one second
Licensed to Devon Greenway <devon.greenway@gmail.com>

639Mastering the timeline
 Storyboard.TargetProperty="Opacity"
 From="0" To="1" />
 </Storyboard>
 </BeginStoryboard>
 </EventTrigger>
 </Image.Triggers>
</Image>

This example shows the XAML responsible for fading an image into view. A lot of new
elements are presented within this small example; to gain an understanding of how
these elements relate to one another, here’s an overview of the items seen in listing 22.1:

1 The EventTrigger element initiates an action when the Image is loaded. This
action is represented as the BeginStoryboard element. A trigger is one way to
start an animation.

2 The Storyboard object is responsible for organizing and controlling the anima-
tions defined within it. Because of the BeginStoryboard action, this Story-
board is automatically started when the EventTrigger is fired.

3 The DoubleAnimation element specifies that you’re going to animate a double-
precision value. There are other animation types that we’ll cover in a moment.
But more importantly, the value to animate is referenced with help from the
Storyboard.TargetProperty and Storyboard.TargetName properties.

As this outline demonstrates, each element serves a specific purpose. These elements
work together to allow you to create lively animations. These animations ultimately
revolve around time. Time is probably best represented as a line such as the one
shown in figure 22.1. This timeline demonstrates how central the concept of time is to
an animation.

22.2 Mastering the timeline
At its base, every animation represents a Timeline object. This object is defined within
the System.Windows.Media.Animation namespace and is used to represent a period
of time. During this period of time, you have the opportunity to change the value
assigned to a visual property. To specify which property value should be changed, you
answer the following simple questions:

■ What type of property are you animating?
■ Where are you starting from, and where are you going?
■ How long should the animation run?

Although these questions sound fairly basic, there are a significant number of details
surrounding each one. For this reason, we’ll cover each question in detail, beginning
with the first question.

22.2.1 What type of property are you animating?

To create an animation, you first select a single visual attribute of a single element.
This item is guaranteed to have a data type associated with it. This data type will serve
Licensed to Devon Greenway <devon.greenway@gmail.com>

640 CHAPTER 22 Animation and behaviors
as the guiding light throughout the animation process. Ultimately, it’s what will decide
the type of animation that should be used. Imagine having a basic Ellipse that you
want to animate. The XAML for this sample is shown in listing 22.2.

XAML:
<UserControl x:Class="EllipseAnimation.Page"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Width="400" Height="400">
<Canvas x:Name="LayoutRoot" Background="White">
 <Canvas.Triggers>
 <EventTrigger RoutedEvent="Canvas.Loaded">
 <BeginStoryboard>
 <Storyboard x:Name="myStoryboard">
 </Storyboard>
 </BeginStoryboard>
 </EventTrigger>
 </Canvas.Triggers>

 <Path x:Name="myEllipse" Fill="Yellow" Stroke="Black"
 StrokeThickness="2" Height="400"Width="400">
 <Path.Data>
 <EllipseGeometry x:Name="EllipseGeometry"
 Center="25,25" RadiusX="25" RadiusY="25" />
 </Path.Data>
 </Path>

</Canvas>
</UserControl>

This example shows an Ellipse named myEllipse. This Ellipse will be used in the
remainder of this section to describe animating properties. Silverlight provides three
types of animations to assist you in creating dramatic visual effects. These types differ in
regard to the type of property being animated. Silverlight has the ability to animate dou-
ble, Point, and Color values via the DoubleAnimation, PointAnimation, and Color-
Animation types. We’ll begin by discussing the most useful type, the DoubleAnimation.
DOUBLEANIMATION

A DoubleAnimation enables you to animate a single property value from one double-
precision floating-point value to another. This is probably the most widely used type of
animation. To illustrate a DoubleAnimation, this example shows how you could fade
out the Ellipse defined in listing 22.2 over one second:

<DoubleAnimation Storyboard.TargetName="myEllipse"
 Storyboard.TargetProperty="Opacity"
 From="1" To="0"
 Duration="0:0:1" />

As this markup illustrates, delivering a fade effect is incredibly simple. The DoubleAn-
imation element prepares Silverlight to generate double-precision values between the

Listing 22.2 The XAML for a basic Ellipse

Animations
will go here
Licensed to Devon Greenway <devon.greenway@gmail.com>

641Mastering the timeline
From and To values. As you can imagine, this opens the doors to tons of animation sce-
narios, but not every opened door should necessarily be entered.

 Attempting to animate the FontSize property of a TextBlock can be a resource-
consuming task. Even though this property is implemented as a double-precision
value, animating it can quickly lead to poorly performing applications because the
text will be smoothed on every frame—an expensive process, even when the text is
using animation-optimized smoothing. For this reason, if you need to animate your
text, you may want to consider converting your TextBlock into a Path and using
a ScaleTransform.

 Regardless, the DoubleAnimation is still applicable in a variety of scenarios: creat-
ing fades, moving elements around a Panel, and performing transformations, among
other things. However useful the DoubleAnimation is, there still may be situations
where you need to animate Point-related values.
POINTANIMATION

The PointAnimation type enables you to animate from one pair of x and y coordi-
nates to another. As the name implies, this type of animation enables you to animate
any property that represents a System.Windows.Point. And although this type isn’t as
widely used throughout the Silverlight APIs as the double type, it still has its place. For
instance, you may need to animate the center of an EllipseGeometry object or
dynamically change the presentation of a brush. Regardless of the need, it’s nice to
know that you can rely on the PointAnimation, which is illustrated here:

<PointAnimation Storyboard.TargetProperty="Center"
 Storyboard.TargetName="EllipseGeometry"
 Duration="0:0:2"
 From="100,100"
 To="100,300" />

The animation in this example changes the origin of any transforms applied to the
Ellipse in listing 22.2. Generally, a PointAnimation will only be used in association
with transforms and the Geometry elements mentioned in chapter 18. But, for a more
subtle animation, you may consider using a ColorAnimation.
COLORANIMATION

A ColorAnimation enables you to create smooth transitions from one color to
another. These transitions can be performed between any two System.Win-

dows.Media.Color property values. For this reason, this type of animation is used pri-
marily with a brush as shown in this example:

<ColorAnimation Storyboard.TargetName="myEllipse"
 Storyboard.TargetProperty="(Fill).(SolidColorBrush.Color)"
 Duration="00:00:01"
 From="Yellow" To="Red" />

This XAML shows an assumed Ellipse shifting from Yellow to Red over the course of
one second. This animation, along with the others mentioned, shows how easy it is to
animate a property. Up to this point, we’ve only focused on animation related to a
Licensed to Devon Greenway <devon.greenway@gmail.com>

642 CHAPTER 22 Animation and behaviors
property type. In reality you also need to know how to specify the exact property
you’re animating.

 Each of the animation types that we’ve discussed exposes two attached properties
that specify the target of an animation. Appropriately, these attributes are called Sto-
ryboard.TargetProperty and Storyboard.TargetName. These properties work in
coordination to determine which property of a specific element will be animated. This
is a simplified description of these properties; a more detailed definition will be pro-
vided in section 22.3.2. For now, let’s turn our focus to the second question in our ani-
mation journey.

22.2.2 Where are you starting from and where are you going?

As figure 22.1 illustrated, an animation has a beginning and an end, whether inferred
or explicit. The end of an animation can be specified using one of two properties.
We’ll discuss each of these properties in detail later in this section. Before we can dis-
cuss the end of an animation, we should first discuss the beginning.
WHERE IS THE ANIMATION COMING FROM?

There’s a saying that you can’t know where you’re going until you know where you’ve
been. In regard to animation, this phrase should be changed to you can’t know where
you’re going unless you know where you’re from. To identify where an animation is
coming from, you rely on the aptly named From property.

 The From property is accessible from all the animation types that we’ve discussed.
This value determines where an animation will begin. The following XAML shows the
From property in action to help jump start our discussion:

<DoubleAnimation Storyboard.TargetName="myImage"
 Storyboard.TargetProperty="Opacity"
 From="0" To="1"
 Duration="0:0:1" />
...
<Image x:Name="myImage"
 Source=" http://www.silverlightinaction.com/man.png"
 Opacity=".25" />

This example is preparing to animate the Opacity property of an assumed Image. The
Opacity property of this Image is initially set to 0 when the animation starts. This is deter-
mined by the value provided within the From property. Once the animation begins, the
Opacity value gradually increases over the course of one second to the value of 1.

 Note that this value is compatible with the animation type. The 0 may look like an
integer, but at runtime, it’s automatically converted into a double-precision value. If
you’d attempted to set the From property value to Yellow, an exception would’ve been
thrown because Yellow isn’t a valid double-precision value. Alternatively, you can skip
this potential problem altogether by not defining a From property value; the From
property is an optional attribute.

 If a From value isn’t provided, the animation will automatically decide where to
start from. To decide where to begin, the animation will examine the target specified
Licensed to Devon Greenway <devon.greenway@gmail.com>

643Mastering the timeline
by the Storyboard.TargetName and Storyboard.TargetProperty attributes. Once
these are examined, the From property will be set to the current property value associ-
ated with the target, as shown in this example:

<DoubleAnimation Storyboard.TargetName="myImage"
 Storyboard.TargetProperty="Opacity"
 To="1" Duration="0:0:1" />
...
<Image x:Name="myImage"
 Source=" http://www.silverlightinaction.com/man.png"
 Opacity=".25" />

When the animation in this markup begins, it automatically determines that the
Opacity value within the animation should begin at .25. This is the current value of
the Opacity property, which is defined as the target. This approach can help create
smoother, more fluid animations. On the other hand, explicitly stating the From value
can have unexpected effects on your animations.

 Explicitly setting the From value can cause your animations to jump or jerk
between iterations because the animation may need to reset the target property back
to the value set within the From attribute. If you want more fluid animations, you may
consider having an animation end at, or just before, the value specified within the
From value. Alternatively, you may choose to skip setting the From value altogether.
Either way, you need to know where the animation is going.
WHERE AM I GOING?

One way to predetermine where an animation is going is by setting the To property.
The To property is exposed within the ColorAnimation, DoubleAnimation, and
PointAnimation types. This value represents the destination of a specific animation.
Like the From property, the value associated with the To property must be compatible
with the type of animation. To get a better feel for this property, examine its use in
this example:

<DoubleAnimation Storyboard.TargetProperty="Opacity"
 Storyboard.TargetName="myEllipse"
 Duration="0:0:1"
 From=".75" To="0" />

This XAML shows the Opacity of the Ellipse changing from .75 to 0 when the ani-
mation begins. Over the course of one second, the Opacity of the Ellipse will
change to 0. If you’ve defined a value for the From attribute, you don’t have to set the
To property. Instead, you can rely on the use of the By property.
HOW AM I GOING TO GET THERE?

The By property is a special shortcut that provides an alternate to the To property.
Instead of having to know where you want to go initially, you can conveniently specify
a value in the By attribute. When the animation is run, Silverlight adds the value
defined in the From field to the By value to automatically determine the To value. To
get a firmer understanding of how this can be used, take a look at this markup:
Licensed to Devon Greenway <devon.greenway@gmail.com>

644 CHAPTER 22 Animation and behaviors
<DoubleAnimation Storyboard.TargetName="myImage"
 Storyboard.TargetProperty="Opacity"
 From=".25" By=".50"
 Duration="0:0:1" />

This example defines the animation for an assumed Image. When the animation
begins, the Opacity property of the Image is set to .25. Over the course of one second,
you want this animation to increase the Opacity value by .50. When this animation has
started, the To value will essentially be .75. You can also decrease the Opacity value by
providing a negative value, as shown in this XAML fragment:

<DoubleAnimation Storyboard.TargetName="myImage"
 Storyboard.TargetProperty="Opacity"
 From=".25" By="-.10"
 Duration="0:0:1" />

This markup shows the alternative to increasing a value. Note that the By property
itself is an alternative to the To property. If both properties are defined, the To prop-
erty will take precedence and the By property will be ignored.

 The By and To properties enable you to provide guidance for your animations. These
animations begin at the value provided within the From field. To determine how long the
animation should take to get to the destination, we have one final question to address.

22.2.3 How long should the animation run?

As mentioned earlier, each animation is a Timeline object, so a number of valuable
time-related traits are shared among all animations. The most important of these
items is the Duration property.
HOW LONG?

The Duration property specifies how long it’ll take for a Timeline to complete a sin-
gle episode. This value can be defined using the TimeSpan syntax or it can use a pre-
defined value, defined within the Duration struct and described in table 22.1.

Table 22.1 illustrates that you have two options when it comes to controlling the Dura-
tion of an animation. To control the playback speed of an animation, call on the
SpeedRatio property.
THROTTLING THE ANIMATION

The SpeedRatio property represents the throttle for a Timeline. By default, this dou-
ble-precision value is set to 1.0. This value can be set to any positive double-precision
value and act as a multiplier to the Duration property value. Figure 22.2 shows the
Duration, SpeedRatio, and time values for a completed Timeline.

Property Description

Automatic Means that a Timeline will automatically end
when all child elements have been completed.

Forever Signals that an animation can run forever. Table 22.1 Options for
the Duration property
Licensed to Devon Greenway <devon.greenway@gmail.com>

645Mastering the timeline
As figure 22.2 illustrates, the SpeedRatio property can have a pretty significant
impact on the Duration of a Timeline. These results show that any value less than 1
will slow down an animation. At the same time, any value greater than 1 will speed
up the animation.

 Besides adjusting the speed of an animation, you may need to repeat its perfor-
mance. For this reason, there’s a RepeatBehavior property.
PLAY IT AGAIN

The RepeatBehavior property is an interesting animal that may act differently than
you’re anticipating. This property enables you to specify how many times an anima-
tion should be played back-to-back. This property also enables you to specify how long
the animation should run regardless of the Duration value—the animation will play
back-to-back until the time specified in the RepeatBehavior property has elapsed. To
get a further understanding of how this property works, examine figure 22.3.

 Figure 22.3 illustrates the effects of the RepeatBehavior property in relation to an
animation’s Duration. The first three bars illustrate how to use the RepeatBehavior to
specify the total number of times a Timeline should run. The last three bars show how
to use the RepeatBehavior to specify a specific length of time for a Timeline.

 As shown in the first three bars, you can append an x as the suffix to a positive,
double-precision value. This suffix informs Silverlight that you want an animation to

Figure 22.2 The effects of the
SpeedRatio on a Timeline
with a Duration of 10 seconds

Figure 22.3 The effects
of the RepeatBehavior
on a Timeline with a
Duration of 10 seconds
Licensed to Devon Greenway <devon.greenway@gmail.com>

646 CHAPTER 22 Animation and behaviors
run a specific number of times. The total number of times is represented as the value
before the x. If the RepeatBehavior is set to 2.0x, the animation will run two times; if
the value is set to 5.0x, it’ll run five times. These types of values can have a significant
impact on your animations.

 If the value before the x is greater than 1.0, you may notice a jerk between the iter-
ations of the animation because, unless your animation ends with the same value as it
started, it’ll need to jump to the start to be reset. If the value before the x is less than
1.0, you’ll notice that the animation will stop before the animation has completed
because the RepeatBehavior takes precedence over the Duration property. This can
have significant implications if you specify a time value as shown in the last three bars
of figure 22.3.

 By specifying a specific length of time for the RepeatBehavior, you’re informing
the Timeline to repeat until the specified time has elapsed. This length of time can be
specified using the TimeSpan format. Or, you can specify the Forever value to make
the Timeline run until you programmatically force the animation to stop. Either way,
at times you may want a more cyclical animation. For these situations, you may want to
consider the AutoReverse property.
TURN IT AROUND

The AutoReverse property enables you to automatically play a Timeline in reverse
after it has played once forward. This boolean property is, by default, set to false.
Changing this property value to true can enable you to deliver a throbbing effect—
among other things. Note that changing this property to true can have residual
effects on the overall playback of a Timeline.

 By setting the AutoReverse property to true, the overall playback time of a Timeline
may be doubled. When the AutoReverse property is true, a Timeline isn’t deemed fin-
ished until it plays once forward and once backward. If you’re specifying a number of
iterations within the RepeatBehavior property, a single iteration will take twice as long.

 Once an iteration has completed, you should have the ability to decide how it
should behave.
HOW WILL IT END?

When an animation reaches the end of a Timeline, it normally stays (or holds) at the
end, but the FillBehavior property gives you the opportunity to determine what to
do. When the end is reached, you can tell the playback what to do using one of the
options provided by the FillBehavior enumerator. These options and their descrip-
tions are shown in table 22.2.

Table 22.2 Available FillBehavior options

Value Description

HoldEnd When completed, a Timeline will stay at the end until told other-
wise. This is the default value for the FillBehavior property.

Stop Once the Timeline has completed, the playback position will
automatically reset to the beginning.
Licensed to Devon Greenway <devon.greenway@gmail.com>

647Storyboarding
You have two options: stay at the end or reset to the beginning. But the beginning of a
Timeline isn’t necessarily what it may seem. This beginning of a Timeline can be
altered by the BeginTime property.
FROM THE TOP

The BeginTime property represents when to start playing a Timeline. In reality, this
property sort of behaves as an offset, which can be set using the familiar TimeSpan for-
mat. By default, the BeginTime property’s value is set to null, which translates to 0.
This setting is why animations begin playing immediately when told to do so. You can
set this value to another TimeSpan value to provide an offset, as shown in this example:

<DoubleAnimation Storyboard.TargetName="myImage"
 Storyboard.TargetProperty="Opacity"
 From="0" To="1"
 BeginTime="00:00:5" Duration="0:0:1" />

This shows an Image that fades in over the course of one second. Unlike the previous
animations, this one won’t start immediately. Instead, once the animation begins to
play, it waits until the time specified within the BeginTime property has elapsed. Once
this time period has elapsed, the image begins to fade into view. Because of this, you
can assume the entire animation in this example takes six seconds to complete.

 The BeginTime property may seem somewhat odd. It is sort of odd if you consider
it only in regard to a single animation, but this property provides a significant amount
of value when you have multiple animations working together. To make use of multi-
ple animations, you must take advantage of the required Storyboard element.

22.3 Storyboarding
Every animation created within Silverlight must be defined within a Storyboard. A
Storyboard enables you to organize multiple animated parts that work together
simultaneously. Often, these animated parts will span different properties across dif-
ferent UI elements. It makes sense to have a way to collectively organize and control
these animated parts. Thankfully, the Storyboard enables you to do just that.

22.3.1 Understanding the storyboard

A Storyboard is an umbrella under which multiple animations can be defined to
address a common scenario. From a development perspective, a Storyboard can be
considered as a collection or grouping of animations. This grouping provides you
with a way to easily target and control one or more animations. The syntax is shown
this example:

<Storyboard x:Name="myStoryboard">
 <!-- The common animations -->
</Storyboard>

This XAML shows the basic syntax of a Storyboard. This Storyboard element could have
any number of animations placed inside it. You can place other Storyboard elements
within it if you so desire because the Children property of a Storyboard represents a
Licensed to Devon Greenway <devon.greenway@gmail.com>

648 CHAPTER 22 Animation and behaviors
collection of Timeline elements. You can add any type of animation or other Story-
board elements because they derive from the Timeline class. Listing 22.3 shows how you
can intertwine types within a single Storyboard.

<Storyboard x:Name="myStoryboard" Storyboard.TargetName="myRectangle">
 <DoubleAnimation x:Name="myDoubleAnimation" Duration="00:00:03"
 Storyboard.TargetProperty="Opacity"
 From="0" To="1" />
 <ColorAnimation x:Name="myColorAnimation"
 Storyboard.TargetProperty="(Shape.Fill).(SolidColorBrush.Color)"
 Duration="00:00:03"
 From="Green" To="Blue" />
</Storyboard>
...
<Rectangle x:Name="myRectangle" Width="180" Height="60" Fill="Green"
 Opacity="0" />

This listing shows a Storyboard that changes a Rectangle from green to blue as it
fades into view. This small sample begins to show the power allotted by the Story-
board. Before we discuss the other powerful features of the Storyboard, let’s look at
how to define the target of your animations.

22.3.2 Hitting the target

As mentioned earlier, the Storyboard exposes two attached properties that can be
used to set the target of an animation. The first is TargetName, and the second is Tar-
getProperty. These two property values are codependent and both are required to
create an animation. Without these values, your animations won’t know what to ani-
mate. If you define these two values within a Storyboard, you can share their values
across the child Timeline elements.

 As shown in the previous listing, the Storyboard uses the TargetName attached
property to specify the target of the animation. Each of the child animations uses the
same target element. If one of these animations needs to use a different element, you
can trump this value by providing a different TargetName value, using the approach
shown in listing 22.4.

<Storyboard x:Name="myStoryboard" Storyboard.TargetName="myRectangle">
 <ColorAnimation x:Name="myColorAnimation" Duration="00:00:03"
 Storyboard.TargetProperty="(Shape.Fill).(SolidColorBrush.Color)"
 From="Green" To="Blue" />

 <DoubleAnimation x:Name="myDoubleAnimation" Duration="00:00:03"
 Storyboard.TargetName="myRectangle2"
 Storyboard.TargetProperty="Opacity"
 From="0" To="1" />

 <DoubleAnimation x:Name="myDoubleAnimation2" Duration="00:00:05"

Listing 22.3 Syntax of Storyboard element with multiple animations

Listing 22.4 Animation overriding target of its parent Storyboard
Licensed to Devon Greenway <devon.greenway@gmail.com>

649Storyboarding
 Storyboard.TargetProperty="Width"
 To="180" />

</Storyboard>

...

<Rectangle x:Name="myRectangle" Width="180" Height="120" Fill="Green" />
<Rectangle x:Name="myRectangle2" Width="90" Height="30" Fill="Pink" />

This listing defines the primary target of the Storyboard as myRectangle. This target
is used by the myColorAnimation and myDoubleAnimation2 animations. myDoubleAn-
imation uses myRectangle2 as the target instead of myRectangle. This is accom-
plished by overriding the TargetName value set in the storyboard itself. Note that each
of the animations in this listing targets a separate property.

 To target a property within an animation, you use the TargetProperty attached
property. As you’ve probably guessed, this attribute allows you to specify which prop-
erty of the target element should be animated. You can specify the name of this prop-
erty in a couple of ways.

 The first and most explicit approach involves setting the name of the property you
intend to animate. This approach is used in myDoubleAnimation and myDouble-
Animation2. Generally, this approach will work for most of the properties throughout
the Silverlight APIs, but it won’t always be enough.

 Consider the situation where you want to change the color of a Brush. Generally,
the color of a Brush is defined as a property within a property within a property. This
is shown in the myColorAnimation animation of the listing. Although at first this may
not seem possible within XAML, there is a way.

 XAML supports a flexible property path model that enables you to access nested
properties. This model allows you to access the individual properties by drilling
through the hierarchy using element types. To drill down through the hierarchy, you
begin at an element type. From there, you access a specific property by using a period
as a delimiter. If the property represents a collection, you can access the individual
items by using an indexing syntax. To gain a firmer understanding of these syntactical
details, review listing 22.5.

<Storyboard x:Name="myStoryboard" Storyboard.TargetName="myRectangle">
 <ColorAnimation
 Storyboard.TargetProperty="(Shape.Fill).
 (GradientBrush.GradientStops)[1].(GradientStop.Color)"
 To="#FFBB0000" />
 <ColorAnimation
 Storyboard.TargetProperty="(Shape.Fill).
 (GradientBrush.GradientStops)[3].(GradientStop.Color)"
 To="#FFBB0000" />
</Storyboard>

...

Listing 22.5 Complex property paths in XAML Storyboards

B

C

Licensed to Devon Greenway <devon.greenway@gmail.com>

650 CHAPTER 22 Animation and behaviors
<Rectangle x:Name="myRectangle" Width="120" Height="60" >
 <Rectangle.Fill>
 <LinearGradientBrush EndPoint="1,0.5" StartPoint="0,0.5">
 <GradientStop Color="#FFDA0000" Offset="0"/>
 <GradientStop Color="#FFA500BB" Offset="0.25"/>
 <GradientStop Color="#FF000000" Offset="0.5"/>
 <GradientStop Color="#FFA500BB" Offset="0.75"/>
 <GradientStop Color="#FFDA0000" Offset="1"/>
 </LinearGradientBrush>
 </Rectangle.Fill>
</Rectangle>

This listing shows how to use the property path syntax to access the individual colors
used within the LinearGradientBrush. An index of 1 is used within B to reference
the second GradientStop in the brush. At the same time, an index of 3 C is used to
change the color of the fourth GradientStop. In addition to the indexing syntax, it’s
important to recognize the use of the parentheses around each property.

 Parentheses are used in the property path syntax to group a property with an ele-
ment. As shown in listing 22.5, you can’t begin by drilling into a property; instead, you
begin with an element type. From there, you specify the name of the property you
want to animate and continue by delimiting with a period. This syntax is depicted in
figure 22.4.

This figure shows the general syntax used for referencing properties using this prop-
erty path syntax. This approach makes it easy to access items that haven’t been explic-
itly named. This syntax enables you to readily take control of the properties within an
element. Equally important is the way that Silverlight enables you to take control of
the Storyboard itself.

22.3.3 Controlling the Storyboard

The Storyboard class exposes a number of valuable methods that enable you to pro-
grammatically control an animation. These methods, shown in table 22.3, reflect
many of the features you’ve already seen within the MediaElement.

Table 22.3 Methods associated with the Storyboard object

Method Description

Begin(...) Turns the hourglass to start pouring the sands of time. This method starts
the animations that are the Children of the Storyboard.

Pause(...) Halts the playback of the animations associated with a Storyboard
and preserves the current position.

Index 1

Index 3

Figure 22.4 The property path syntax in action
Licensed to Devon Greenway <devon.greenway@gmail.com>

651Storyboarding
The methods described in this table enable you to programmatically interact with a
Storyboard. In doing so, you can easily deliver a dynamic animation experience. This
experience may involve leaping forward to a later part in an animation or giving the
user control via interactive playback features. Either way, an important part of inter-
acting with an animation involves knowing when it’s finished. Thankfully, the Story-
board exposes the Completed event.

 The Completed event is the only event exposed by the Storyboard element. In
reality, this event is part of the Timeline. Regardless, the Completed event is triggered
when the assigning Storyboard has finished. A Storyboard is deemed finished once
all its child Timeline elements have completed. Listing 22.6 shows a MediaElement
performing one complete rotation when a user clicks it. Once this animation has com-
pleted, it’ll use another animation to fade the MediaElement out of view.

XAML:
<MediaElement x:Name="media"
 Source="http://www.silverlightinaction.com/video2.wmv"
 AutoPlay="True"
 MouseLeftButtonUp="media_MouseLeftButtonUp"
 RenderTransformOrigin="0.5,0.5">
 <MediaElement.Resources>
 <Storyboard x:Name="myStoryboard1"
 Completed="myStoryboard1_Completed">
 <DoubleAnimation Storyboard.TargetName="media"
 Storyboard.TargetProperty="(UIElement.RenderTransform).

➥ (TransformGroup.Children)[0].(RotateTransform.Angle)"
 From="0" To="360"
 Duration="00:00:02" />
 </Storyboard>
 <Storyboard x:Name="myStoryboard2">
 <DoubleAnimation Storyboard.TargetName="media"
 Storyboard.TargetProperty="Opacity"
 From="1" To="0"
 Duration="00:00:02" />
 </Storyboard>
 </MediaElement.Resources>
 <MediaElement.RenderTransform>

Resume(...) Continues the animations associated with a Storyboard from a previ-
ous position.

Seek(...) Skips to a new position within a Storyboard. The position is repre-
sented as a TimeSpan value.

Stop(...) Halts the playback of the animations associated with a Storyboard
and resets the playback position to the beginning of the Storyboard.

Listing 22.6 Using the Playback methods and Completed event

Table 22.3 Methods associated with the Storyboard object (continued)

Method Description
Licensed to Devon Greenway <devon.greenway@gmail.com>

652 CHAPTER 22 Animation and behaviors
 <TransformGroup>
 <RotateTransform Angle="0"/>
 </TransformGroup>
 </MediaElement.RenderTransform>
</MediaElement>

C#:
void media_MouseLeftButtonUp(object sender, MouseButtonEventArgs e)
{
 myStoryboard1.Begin();
}

void myStoryboard1_Completed(object sender, EventArgs e)
{
 myStoryboard2.Begin();
}

This listing shows how you can programmatically use the Completed event as well as
one of the interactive playback methods. When the user clicks the MediaElement, the
Storyboard defined as myStoryboard1 will begin playing. Once this Storyboard has
finished playing, the Completed event associated with it will be triggered. This event
handler will then start the animation defined in myStoryboard2. This example also
shows how you can define an animation as a resource. This is one of the two ways that
you can use an animation on the road to being resourceful.

22.3.4 Being resourceful

Storyboard elements enable you to create complex and intricate animations. These
animations may be used in response to an event or to something that has occurred
behind the scenes. Because of this, you need multiple ways to interact with a Story-
board. Thankfully, Silverlight gives you two approaches for organizing Storyboard
elements. You can define a Storyboard as either a resource or a trigger.
STORYBOARD AS A RESOURCE

The first approach for organizing a Storyboard involves defining it as a resource. A
resource is an easy way to set aside a commonly used item for reuse. (We’ll cover
resources more in chapter 23.) This item—in our case, a Storyboard—can be defined
as a resource by creating it within the Resources collection of a UIElement. This can
be accomplished by either programmatically adding it through code, or creating it
within XAML as shown in listing 22.7.

XAML:
<Canvas x:Name="myCanvas">
 <Canvas.Resources>
 <Storyboard x:Key="myStoryboard">
 <DoubleAnimation Duration="00:00:01"
 Storyboard.TargetName="myImage"
 Storyboard.TargetProperty="Opacity"
 From="1" To="0" />

Listing 22.7 Defining a Storyboard as a resource
Licensed to Devon Greenway <devon.greenway@gmail.com>

653Storyboarding
 </Storyboard>
 </Canvas.Resources>
 <Image x:Name="myImage"
 Source="http://www.silverlightinaction.com/man.png" />
</Canvas>

This listing shows how easy it is to define a Storyboard as a resource in XAML. The
definition of the Storyboard is placed within the Resources collection of the root
Canvas. The root element of a Silverlight page is generally where you’ll place your
resources because it makes the resources accessible to all the elements within the
page. Thankfully, the Resources collection can store as many or as few resources as
you need.

 Once a Storyboard is defined as a resource, it’s your responsibility to start it. You
must first programmatically retrieve it. This step involves retrieving the storyboard by
key. The following example shows the Storyboard from listing 22.7 being retrieved
from the resources collection, then programmatically started via the Begin method:

Storyboard myStoryboard = (Storyboard)(myCanvas.Resources["myStoryboard"]);
myStoryboard.Begin();

This illustrates how simple it is to programmatically start a Storyboard defined as a
resource.

 There are times when you know that a specific action should automatically start a
Storyboard. For these situations, Silverlight provides an elegant shortcut that enables
you to automatically start a Storyboard when a defined event occurs.
STORYBOARD AS A TRIGGER

The second approach for defining a Storyboard involves setting it as an event
handler. An EventTrigger is a special element that enables you to declaratively
define a response for a specified event. When this event occurs, the EventTrigger
automatically starts the defined Storyboard. To accomplish this, you follow a few
simple steps.

 First you decide which event you want to respond to. Currently, the only event sup-
ported within the EventTrigger is the Loaded event. To specify this event as the trig-
gering event, you must identify the type of object responsible for the event. Once
identified, you can set it, as well as the event, through the RoutedEvent property as
shown in this example:

<EventTrigger RoutedEvent="Canvas.Loaded">
 <!-- Insert Actions here -->
</EventTrigger>

As this shows, the RoutedEvent property uses a syntax that resembles elementType-
Name.eventName. The type name comes from the parent type. Generally, you’ll be able
to retrieve this type name from the attached property containing the trigger. This
attached property is called Triggers, and it’s available from all UIElement objects. If
you were to expand on our previous code example, you should have something like
this XAML fragment:
Licensed to Devon Greenway <devon.greenway@gmail.com>

654 CHAPTER 22 Animation and behaviors
<Canvas.Triggers>
 <EventTrigger RoutedEvent="Canvas.Loaded">
 <!-- Insert Actions here -->
 </EventTrigger>
</Canvas.Triggers>

This example shows how the EventTrigger has been added to a Canvas. Significantly,
this doesn’t mean that the target of the Storyboard will be the Canvas. Instead, as dis-
cussed earlier, the target of the Storyboard is set within the Storyboard itself. To set
the target of the Storyboard, you first define the Storyboard.

 If you’re defining a Storyboard within an EventTrigger, you must associate it with
an action. Currently, Silverlight only provides one action called BeginStoryboard,
which starts a Storyboard when called. You must use this action if you’re creating an
EventTrigger. To put all the pieces together, defining a Storyboard as a trigger would
look like listing 22.8.

<Canvas Width="100" Height="100" Background="White">
 <Canvas.Triggers>
 <EventTrigger RoutedEvent="Canvas.Loaded">
 <BeginStoryboard>
 <Storyboard x:Name="myStoryboard">
 <DoubleAnimation Duration="00:00:01"
 Storyboard.TargetName="myImage"
 Storyboard.TargetProperty="Opacity"
 From="0" To="1" />
 </Storyboard>
 </BeginStoryboard>
 </EventTrigger>
 </Canvas.Triggers>
 <Image x:Name="myImage"
 Source="http://www.silverlightinaction.com/man.png" />
</Canvas>

This example shows a Storyboard defined as a trigger. But the official Silverlight doc-
umentation included with the SDK recommends against using a trigger, as visual states
(covered in chapter 23) and behaviors are often better ways to start the animation.
Either way, the Storyboard provides a way to logically organize your animations.

 These animations are all about changing a visual property over time. As you’ve
seen, this process works in a linear fashion. To create even more dynamic visual
effects, it’s important to consider using a technique known as keyframing.

22.4 Keyframing
In the realm of traditional animation, animators will often present a high-level over-
view of a story by drawing out the main images. These images generally represent the
beginning and ending points of a transition; the endpoints represent the key frames
within an animation. Once the keyframes are created, the process of creating the ani-
mation in between them is fairly straightforward. Within software, this process of cre-
ating the in-between frames is known as interpolation or tweening.

Listing 22.8 Defining a Storyboard as an event trigger
Licensed to Devon Greenway <devon.greenway@gmail.com>

655Keyframing
To firmly grasp the concept of how keyframe animations can be used, let’s consider
the task of animating a bouncing ball. If you were to attempt to animate an ellipse, the
ball may look like that in figure 22.5 over some period of time.

 The arrows shown in this figure represent two things within the animation. They
represent the direction that the ball is bouncing and the parts of the animation cre-
ated via interpolation. This process of interpolation enables you to ignore having to
define the To, From, and By property values you were using earlier. Instead, you must
create a KeyFrame for each discrete location within an animation. Listing 22.9 shows
the XAML to reproduce the animation shown in figure 22.5.

<Canvas x:Name="LayoutRoot" Background="White">
 <Canvas.Triggers>
 <EventTrigger RoutedEvent="Canvas.Loaded">
 <BeginStoryboard>
 <Storyboard x:Name="myStoryboard">
 <DoubleAnimationUsingKeyFrames
 Storyboard.TargetName="myEllipse"
 Storyboard.TargetProperty="(Canvas.Left)">
 <LinearDoubleKeyFrame KeyTime="00:00:00" Value="0" />
 <LinearDoubleKeyFrame KeyTime="00:00:01" Value="77" />
 <LinearDoubleKeyFrame KeyTime="00:00:02" Value="148" />
 <LinearDoubleKeyFrame KeyTime="00:00:03" Value="223" />
 <LinearDoubleKeyFrame KeyTime="00:00:04" Value="315" />
 <LinearDoubleKeyFrame KeyTime="00:00:05" Value="397" />
 </DoubleAnimationUsingKeyFrames>
 <DoubleAnimationUsingKeyFrames
 Storyboard.TargetName="myEllipse"
 Storyboard.TargetProperty="(Canvas.Top)">
 <LinearDoubleKeyFrame KeyTime="00:00:00" Value="0" />
 <LinearDoubleKeyFrame KeyTime="00:00:01" Value="132" />
 <LinearDoubleKeyFrame KeyTime="00:00:02" Value="42" />
 <LinearDoubleKeyFrame KeyTime="00:00:03" Value="132" />
 <LinearDoubleKeyFrame KeyTime="00:00:04" Value="81" />
 <LinearDoubleKeyFrame KeyTime="00:00:05" Value="132" />

Listing 22.9 Creating a bouncing ball using keyframes

Figure 22.5 A bouncing
ball over some variable
amount of time
Licensed to Devon Greenway <devon.greenway@gmail.com>

656 CHAPTER 22 Animation and behaviors
 </DoubleAnimationUsingKeyFrames>
 </Storyboard>
 </BeginStoryboard>
 </EventTrigger>
 </Canvas.Triggers>

 <Ellipse Width="50" Height="50" x:Name="myEllipse"
 Fill="Maroon" Stroke="Black" />
</Canvas>

This example illustrates the general syntax of a KeyFrame. This example uses two key-
frame animations to move an Ellipse around the Canvas. The new position of the
Ellipse is interpolated between the values specified within the Value property of
each KeyFrame. The KeyFrame determines how to interpolate these values by referring
to the type of KeyFrame.

 The type of KeyFrame always follows a naming template that mimics [interpolation-
Type]propertyTypeKeyFrame. This syntax specifies the type of property that’s the target of
the animation. The syntax also specifies what type of interpolation should be used to
generate the in-between values. To simultaneously address both important items, Sil-
verlight provides the keyframe types shown in table 22.4.

Each type of keyframe helps to address specific animation scenarios. To understand
when a specific type of animation is relevant, it’s important to understand the various
types of interpolation.

22.4.1 Interpolation: it’s about acceleration

An interpolation type gives you control over how an animation will accelerate or deceler-
ate as it progresses. The interpolation type signals how an animation should estimate
the values in between keyframes. To estimate the values as you see fit, Silverlight pro-
vides three interpolation types: linear, spline, and discrete.
LINEAR INTERPOLATION

Linear interpolation constructs the most direct transition between two key frames. The
linear descriptor is used because the change between two keyframes occurs at a con-
stant, linear rate. Figure 22.6 shows an object moving between several points using lin-
ear interpolation.

Table 22.4 The keyframe types available within Silverlight

Discrete keyframe types Linear keyframe types Spline keyframe types

DiscreteColorKeyFrame LinearColorKeyFrame SplineColorKeyFrame

DiscreteDoubleKeyFrame LinearDoubleKeyFrame SplineDoubleKeyFrame

DiscreteObjectKeyFrame

DiscretePointKeyFrame LinearPointKeyFrame SplinePointKeyFrame
Licensed to Devon Greenway <devon.greenway@gmail.com>

657Keyframing
The idea of using an animation that occurs at a constant, predictable rate at first
seems appealing. But, as this figure shows, you can easily end up with a jerky or jagged
animation. This jarring can leave users feeling like they’re riding an old, wooden roll-
ercoaster. This effect occurs because the transition between two linear keyframes
occurs in distinct states. These stages may be desirable, but if they aren’t, there’s a way
to create even smoother transitions thanks to spline interpolation.
SPLINE INTERPOLATION

Splines are generally used to create smooth, seamless transitions. These transitions
occur by estimating the values as if they were generated along a Bézier curve. This
curve represents the values to use within a time segment. To illustrate, figure 22.7
shows a curved interpolation.

 If you compare this figure to figure 22.6, you can see how using splines allows you
to create a much smoother transition between keyframes. Note that the line in this figure
doesn’t represent the path that the ball travels along. Instead, the line gives the illusion
of varying speeds. These varying speeds are controlled through the KeySpline property.

 The KeySpline property enables you to control the progress of an animation
through two control points, which determine the curve that the values are interpolated
along. By default, this curve resembles a straight line. To generate values along some-
thing other than a line, you must understand how the KeySpline relates values to points
in time. This relationship, as well as the KeySpline syntax, is shown in figure 22.8.

Figure 22.6 How linear interpola-
tion is determined. Note the straight
lines between points.

Figure 22.7 An example
using spline interpolation
for approximation
Licensed to Devon Greenway <devon.greenway@gmail.com>

658 CHAPTER 22 Animation and behaviors
This figure shows the default curve defined by the KeySpline property. The two con-
trol points used in this figure are specified as 0.0,0.0 1.0,1.0. These control points
always follow a syntax that mimics x1,y1 x2,y2. In addition, each coordinate within
each point is specified as a positive double-precision value between 0.0 and 1.0. Any-
thing outside of this range will create a runtime error.

 The first point defined within the KeySpline property determines how values will
be generated along the first half of the curve. The second point defined within the
KeySpline property determines how values will be created along the second half of the
curve. Either way, if the y value is greater than the x value, the animation will run more
quickly. Alternatively, if the x value is greater than the y value, the animation will run
slower. Figure 22.9 shows sample curves along with their respective KeySpline values.

Figure 22.8
The relationship between
time and value as used by
the KeySpline property.

Figure 22.9 Sample time/value curves
used by the KeySpline property
Licensed to Devon Greenway <devon.greenway@gmail.com>

659Keyframing
The curves shown in this figure represent potential curves you can use for interpo-
lating values. In reality, you’ll need to play with these values until your keyframe ani-
mation feels right. Sometimes, an animation may feel right if the transitions are
more discrete.
DISCRETE INTERPOLATION

Occasionally, you may have to create an animation that jumps between values. These
rifts seem counterintuitive within the realm of animation because animations are
generally considered to be smooth. But, what if you were creating an animation that
depicted a Whack-a-Mole game? In a Whack-a-Mole game, small critters appear at
random from dark holes. This surprising effect can be effectively recreated using dis-
crete interpolation.

 When discrete interpolation is used, Silverlight generates sudden changes between
two keyframes. These sudden changes make it appear as if the interpolation doesn’t
occur at all. That’s because it doesn’t! Figure 22.10 illuminates how the discrete
method interpolates.

 This illustration is difficult to make sense of. Everything seemingly occurs at ran-
dom, just like Whack-a-Mole.

 Although randomness has its place, you often need control over when a keyframe
occurs. Luckily, there’s is a property that allows you to do just that—KeyTime.
KEYTIME

The KeyTime property of a KeyFrame represents the time at which the value specified
within a KeyFrame will be reached. In a sense, the KeyTime sort of represents a book-
mark within an animation. But, the position of this bookmark is completely depen-
dent on the TimeSpan value you use.

 By providing a TimeSpan value, you can specify the exact point in time when a Key-
Frame should be reached. This point in time is relative to the beginning of the anima-
tion that the KeyFrame is defined within, so the order of the keyframe elements is
irrelevant. But, this value still has to be assigned to the KeyTime property, as shown in
listing 22.10. In addition, the example shows an illustration of how the animation
would be rendered.

Figure 22.10 An example
using discrete interpolation
for approximation
Licensed to Devon Greenway <devon.greenway@gmail.com>

660 CHAPTER 22 Animation and behaviors
Result:

XAML:
<UserControl x:Class="CarAnimation.Page"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Width="400" Height="400">
 <Canvas x:Name="LayoutRoot" Background="White">
 <Canvas.Triggers>
 <EventTrigger RoutedEvent="Canvas.Loaded">
 <BeginStoryboard>
 <Storyboard x:Name="myStoryboard"
 Storyboard.TargetName="myImage"
 Storyboard.TargetProperty="(Canvas.Left)">
 <DoubleAnimationUsingKeyFrames Duration="00:00:08">
 <LinearDoubleKeyFrame Value="50" KeyTime="00:00:01" />
 <LinearDoubleKeyFrame Value="250" KeyTime="00:00:03.5" />
 <LinearDoubleKeyFrame Value="325" KeyTime="00:00:06" />
 <LinearDoubleKeyFrame Value="500" KeyTime="00:00:08" />
 </DoubleAnimationUsingKeyFrames>
 </Storyboard>
 </BeginStoryboard>
 </EventTrigger>
 </Canvas.Triggers>
 <Image x:Name="myImage"
 Source="http://www.silverlightinaction.com/car.png" />
 </Canvas>
</UserControl>

This listing shows the typical approach for defining KeyFrame elements within an ani-
mation. The KeyTime value in each KeyFrame is set to a TimeSpan value. This approach
provides a convenient and verbose way to perform an animation. This example shows
how important the KeyTime property is in keyframe animations, which are the types of
animations created by Expression Blend.

 These animations have been interesting, but they’ve all lacked a certain amount of
“pop” we’ve come to expect from modern applications. That’s because they’re not
using any sort of easing functions with the keyframes. Let’s fix that next.

22.5 Easing functions
Easing functions provide a way to liven up what would otherwise be pretty flat and bor-
ing animation. They provide acceleration/deceleration, and even bounce or spring to
the approach into (or departure from) a keyframe in an animation.

 If you’ve found animation to be a little too computer-generated so far, you’ll
appreciate the more organic effect that easing functions provide. Easing functions
perform a function f over time t. Time is provided by the animation system; the
easing function returns a value, normally between zero and one (it can over and

Listing 22.10 Using a TimeSpan value to specify the KeyTime
Licensed to Devon Greenway <devon.greenway@gmail.com>

661Easing functions
undershoot) that indicates progress toward the final value specified in the anima-
tion. We’ll cover more of the inner workings in the second half of this section when
we create our own easing function.

 Easing functions have three modes of use: EaseIn, EaseOut, and EaseInOut. The
modes affect how the easing function is applied to the animation over time. These
modes are easier seen than read. Figure 22.11 illustrates what the built-in Elasti-
cEase easing function looks like in all three of its modes.

 From the illustration, you can see that EaseIn and EaseOut are opposites; EaseOut
is the EaseIn function in reverse. EaseInOut is a little trickier. In that mode, the overall
time remains the same, but the function used is a combination of EaseIn and EaseOut.

 In this section, we’ll first look at how to use the great library of built-in easing func-
tions. Then, because customization is especially important when it comes to some-
thing as design-sensitive as how an animation functions over time, we’ll look at how to
build your own easing functions.

22.5.1 Using easing functions

Easing functions are used with special keyframes that start with the word Easing.
These key frames provide a property named EasingFunction, which accepts an easing
function to be used on that specific keyframe. Silverlight includes 11 built-in easing
functions, which are listed in table 22.5.

Table 22.5 Built-in easing functions

Easing function Description

BackEase Retracts the motion of an animation slightly before it begins to animate in
the path indicated.

BounceEase Creates a bouncing effect, like a rubber ball.

CircleEase Accelerates or decelerates using a circular function.

CubicEase Accelerates or decelerates using a cube function (time cubed).

ElasticEase An animation that resembles the oscillation of a spring. The lower the
supplied Springiness parameter, the more elastic the bounce. You
can go crazy with this and create some really fun animation.

EaseIn Elastic

Time

Va
lu

e

EaseOut Elastic

Time

Va
lu

e

EaseInOut Elastic

Time

Va
lu

e

Figure 22.11 The three modes: EaseIn, EaseOut, and EaseInOut for the ElasticEase easing
function
Licensed to Devon Greenway <devon.greenway@gmail.com>

662 CHAPTER 22 Animation and behaviors
MSDN has great documentation on the easing functions, including graphics showing
each of the modes and the actual functions in use. You can find the additional infor-
mation in the MSDN online library here: http://bit.ly/MSDNEasing.

 To use an easing function, you need to set up an animation using storyboards and
keyframes. Listing 22.11 shows an easing function attached to two animations.

<UserControl.Resources>
 <Storyboard x:Key="AnimateTarget">
 <DoubleAnimationUsingKeyFrames Storyboard.TargetName="Transform"
 Storyboard.TargetProperty="ScaleX">
 <EasingDoubleKeyFrame KeyTime="0:0:0" Value="0.0" />
 <EasingDoubleKeyFrame KeyTime="0:0:3" Value="5.0">
 <EasingDoubleKeyFrame.EasingFunction>
 <ElasticEase EasingMode="EaseOut"
 Oscillations="3" Springiness="2" />
 </EasingDoubleKeyFrame.EasingFunction>
 </EasingDoubleKeyFrame>
 </DoubleAnimationUsingKeyFrames>
 <DoubleAnimationUsingKeyFrames Storyboard.TargetName="Transform"
 Storyboard.TargetProperty="ScaleY">
 <EasingDoubleKeyFrame KeyTime="0:0:0" Value="0.0" />
 <EasingDoubleKeyFrame KeyTime="0:0:3" Value="5.0">
 <EasingDoubleKeyFrame.EasingFunction>
 <ElasticEase EasingMode="EaseOut"
 Oscillations="3" Springiness="2" />
 </EasingDoubleKeyFrame.EasingFunction>
 </EasingDoubleKeyFrame>
 </DoubleAnimationUsingKeyFrames>
 </Storyboard>
</UserControl.Resources>

<Grid x:Name="LayoutRoot" Background="White">
 <Rectangle Height="20" Width="20" Fill="BlueViolet"
 RenderTransformOrigin="0.5,0.5">
 <Rectangle.RenderTransform>

ExponentialEase Accelerates or decelerates using a formula based around the supplied
exponent.

PowerEase Accelerates or decelerates using a formula based on the supplied power.

QuadraticEase Accelerates or decelerates using a squaring function.

QuarticEase Accelerates or decelerates using a power of 4 function.

QuinticEase Accelerates or decelerates using a power of 5 function.

SineEase Accelerates or decelerates using the sine function.

Listing 22.11 Using the ElasticEase for some crazy animation

Table 22.5 Built-in easing functions (continued)

Easing function Description

Easing function
parameters
Licensed to Devon Greenway <devon.greenway@gmail.com>

http://bit.ly/MSDNEasing

663Easing functions
 <ScaleTransform x:Name="Transform" />
 </Rectangle.RenderTransform>
 </Rectangle>

 <Button x:Name="StartAnimation" Content="Start"
 HorizontalAlignment="Center" VerticalAlignment="Bottom"
 Width="100" Height="25" Margin="5"
 Click="StartAnimation_Click"/>
</Grid>

This example shows markup that contains a single rectangle to be animated. The
things we’ll be animating are the ScaleX and ScaleY properties of the ScaleTrans-
form B attached to the rectangle. The result of this is a spring-type animation, which
looks like you’re sitting directly below a block suspended from a rubber band.

 To start the animation, I used a button with the event handler wired up in markup.
The code-behind code in the event handler is a single line:

private void StartAnimation_Click(object sender, RoutedEventArgs e)
{
 ((Storyboard)Resources["AnimateTarget"]).Begin();
}

The line of code in the event handler finds the resource named AnimateTarget and,
assuming it’s a Storyboard, calls the function to start animating. With this code in
place, run the application and click the button. You’ll see the rectangle bounce in and
out until it comes to a quick rest. Try changing the Oscillations or Springiness
parameters in the easing function for very different effects: Oscillations controls the
number of bounces; Springiness controls the depth of the bounces.

 The built-in easing functions will serve the vast majority of our needs; you can cre-
ate just about any typical effect using them. What about atypical effects? What if you
want to include physics, or a function the team didn’t think of? For those situations,
the Silverlight team had the foresight to open up the API to enable us to create our
own easing functions.

22.5.2 Creating a custom easing function

The WPF and Silverlight teams put together a pretty comprehensive set of standard
easing functions. Most folks will never need or want to write one of their own.

 That said, you may come up with a specialized function and want to package that
in a way that enables others to use it from XAML or code in their own animation.

 To create your own easing function, you derive from EasingFunctionBase and
override the EaseInCore function.
EASINGFUNCTIONBASE

EasingFunctionBase provides the structure of an easing function. It includes the
EasingMode and its dependency property, as well as the Ease function, which is called
by the animation system. The Ease function, in turn, calls EaseInCore, the function
you provide.

B

Event handler
Licensed to Devon Greenway <devon.greenway@gmail.com>

664 CHAPTER 22 Animation and behaviors
EASEINCORE

This is where your easing code goes. You provide the implementation for EaseIn via
the EaseInCore code, and the runtime will automatically infer EaseOut and Ease-
InOut from that. EaseOut will be the reverse of EaseIn, and EaseInOut will be the
two together.

 EaseInCore takes a double representing normalized time, and expects you to
return the progress for that point in time. If you think of time as the x axis on a graph
and progress as the y axis, you’re taking in x as a parameter and returning y as
the result.

 A standard linear ease would return the value passed in. f(x) = x. Instantaneous
movement would be f(x) = 1. No movement (ever) would be f(x) = 0. The interesting
stuff happens when the result is between those numbers.

 Listing 22.12 shows a randomizing ease. This uses the built-in Random object to pro-
vide a random value that approaches the final value. The end result is a stuttering ani-
mation that eventually gets to the right place.

C#:
public class RandomEase : EasingFunctionBase
{
 private Random _random = new Random();

 protected override double EaseInCore(double normalizedTime)
 {
 return normalizedTime / 2.0 +
 _random.Next(0, 100) / 100.0 * (normalizedTime / 2.0);
 }
}

XAML:
<EasingDoubleKeyFrame.EasingFunction>
 <local:RandomEase EasingMode="EaseIn"/>
</EasingDoubleKeyFrame.EasingFunction>

To use this function, take the XAML from the ElasticEase demonstration and
replace the two easing functions with the XAML fragment here. Be sure to map an
XML namespace to the local application.

 Easing functions really help liven up animation, providing a sometimes more
organic but always more interesting way to move a value between two bounds. The
built-in easing functions cover almost every need you’ll have when animating in Silver-
light. For those cases when the built-in functions aren’t quite what you want, you can
create your own easing functions as long as you an express the equation in code.

 Easing functions were originally designed with Blend in mind. Designers love to be
able to specify an easing function to use on a keyframe; they can do it right from the
Blend UI. Another technology that came about due to Blend, this time from the
Blend team itself, is the behavior. Behaviors are fascinating ways to add animation,
code, or other reusable logic to your elements in XAML.

Listing 22.12 A custom randomizing ease
Licensed to Devon Greenway <devon.greenway@gmail.com>

665Behaviors, triggers, and actions
22.6 Behaviors, triggers, and actions
Behaviors, triggers, and actions are odd things. They can be virtually anything, do vir-
tually anything. Between stock behaviors and community-created ones, I’ve seen
everything from TextBox edit masks, to drag and drop, to physics, to effects, auto-
matic animations, and even ICommand substitutes for calling methods on events.
Because behaviors and animation are so closely tied to Expression Blend, I figured I’d
pop them in here. They’re reusable designer-friendly components. They interact with
the UI, but aren’t controls.

 While lumped together, behaviors, triggers, and actions are conceptually differ-
ent. Behaviors are self-contained units of functionality that act as a bit of a sidecar to
an existing object. They go along for the ride and respond to the environment in
which the object exists. Triggers are much like the built-in triggers we’ve seen in this
chapter, but more flexible in their applications. Actions are simpler in concept;
they’re attached to an object and provide a way to invoke some functionality. The
common way to refer to all three is by calling them behaviors, so that’s what we’ll do
in this chapter.

 One example of an action we’ve already seen was the CallMethodAction in chap-
ter 16. That action allows an arbitrary event to invoke an arbitrary method on an arbi-
trary object. Even outside the scope of the ViewModel pattern, that’s a pretty powerful
component to make available to the designer.

 The scope and power of behaviors are best understood by example. In order to
try them out, we need to first perform a bit of project setup to pull in the right core
bits.

 In order to work with behaviors, you’ll need to reference two Expression Blend
SDK libraries. If you have Expression Blend already installed, the SDK will be under
Program Files\Microsoft SDKs. If you don’t have Blend installed, you can still down-
load the SDK from http://bit.ly/Blend4SDK; it’s free and doesn’t require Expression
Blend on the machine.

 Once you have the SDK installed, reference the two Blend libraries as shown in fig-
ure 22.12.

 The final step is to add the appropriate namespaces into your XAML files. We’ll be
working with MainPage.xaml for the remaining examples, so place the following two
namespace declarations in the top element of that file:

xmlns:i="http://schemas.microsoft.com/expression/2010/interactivity"
xmlns:ei="http://schemas.microsoft.com/expression/2010/interactions"

With all the pieces in place, we’re ready to start playing around with behaviors. We’ll
first take a look at existing out-of-box functionality and how to use it in your own
applications. Then, because behaviors facilitate reuse and sharing, we’ll build our own
simple behavior for Silverlight.
Licensed to Devon Greenway <devon.greenway@gmail.com>

http://bit.ly/Blend4SDK

666 CHAPTER 22 Animation and behaviors
22.6.1 Using existing behaviors

In chapter 16, we saw how to use the CallMethodAction behavior. This is a simple but
flexible action that allows you to wire up any function to any event. Another interest-
ing behavior is the DataTrigger. This performs actions when the bound data meets a
specified condition. One of my favorite behaviors is the FluidMoveBehavior. Not only
does that behavior have a great visual effect at runtime, but it also builds on much of
what we’ve learned about animation in this chapter.
USING THE FLUIDMOVEBEHAVIOR

The FluidMoveBehavior helps get past abrupt layout changes. It listens to the layout
system, and when it finds a layout change, it smoothly animates from the old value to
the new value. This is extremely useful in panels such as wrap panels where resizing
may move several elements around at once.

 Listing 22.13 shows how to use the FluidMoveBehavior on a single element in the
UI. We’ll use the purple square example from the last section.

XAML:
<Grid x:Name="LayoutRoot" Background="White">
 <Rectangle x:Name="PurpleSquare"
 Height="20" Width="20"

Listing 22.13 Using the FluidMoveBehavior with an Element

Figure 22.12 Adding the Blend SDK assemblies as references. On my machine, the Microsoft.
Expression.Interactions library and the System.Windows.Interactivity library were
both located in C:\Program Files\Microsoft SDKs\Expression\Blend\Silverlight\v4.0\Libraries\.
Licensed to Devon Greenway <devon.greenway@gmail.com>

667Behaviors, triggers, and actions
 HorizontalAlignment="Left" VerticalAlignment="Top"
 Margin="20" Fill="BlueViolet">
 <i:Interaction.Behaviors>
 <ei:FluidMoveBehavior Duration="0:0:4">
 <ei:FluidMoveBehavior.EaseX>
 <ElasticEase EasingMode="EaseOut"
 Oscillations="3" Springiness="4" />
 </ei:FluidMoveBehavior.EaseX>
 <ei:FluidMoveBehavior.EaseY>
 <ElasticEase EasingMode="EaseOut"
 Oscillations="3" Springiness="4" />
 </ei:FluidMoveBehavior.EaseY>
 </ei:FluidMoveBehavior>
 </i:Interaction.Behaviors>
 </Rectangle>

 <Button x:Name="StartMove"
 Content="Start"
 HorizontalAlignment="Center" VerticalAlignment="Bottom"
 Width="100" Height="25" Margin="5"
 Click="StartMove_Click" />
</Grid>

C#:
private void StartMove_Click(object sender, RoutedEventArgs e)
{
 Thickness margin = PurpleSquare.Margin;
 margin.Left += 100;
 margin.Top += 100;

 PurpleSquare.Margin = margin;
}

This example shows how to smoothly move an element from one location to another.
What would normally have been an abrupt change in location is now a four-second
animation with an elastic easing function applied. These are the same easing func-
tions we discussed earlier in the chapter.

 Behind the scenes, this behavior builds an animation whenever layout-affecting
properties (margins, top, left, size, and so forth) are changed, and uses that animation
to move between the original layout value and the one specified.

 Other behaviors attach to objects in similar ways. The parameters may change, but
the approach is generally the same. In fact, we’ll see that when we create our own
behavior next.

22.6.2 Creating your own behavior

The System.Windows.Interactivity library includes the base classes you’ll typically
want to inherit from when creating your own behavior. There are additional special-
case base classes in the Blend library, including some that make it easier to work with
animation from within a behavior.

 For our example, we’re going to use the core Interactivity DLL and inherit from
Behavior<T> to provide a behavior that’ll allow itself to be attached to certain types of
elements.

Easing
function

Move
square
Licensed to Devon Greenway <devon.greenway@gmail.com>

668 CHAPTER 22 Animation and behaviors
 Behavior<T> has two main methods you must override in your implementation.
The first is OnAttached. OnAttached is called when the behavior is attached to an ele-
ment of type T. That element is referenced by the AssociatedObject property. The
second method is OnDetaching. This method allows you to perform any cleanup, such
as removing event handlers.

 Listing 22.14 shows our behavior attached to a button. This behavior will display a
MessageBox whenever the button is clicked. We’ll use the same FluidMoveBehavior
XAML as the previous section and attach this behavior to the Start button.

C#:
public class CustomBehavior : Behavior<Button>
{
 protected override void OnAttached()
 {
 base.OnAttached();
 AssociatedObject.Click += new RoutedEventHandler(OnButtonClick);
 }

 protected override void OnDetaching()
 {
 base.OnDetaching();
 AssociatedObject.Click -= OnButtonClick;
 }

 void OnButtonClick(object sender, RoutedEventArgs e)
 {
 MessageBox.Show("Button was Clicked!");
 }
}

XAML:
<Button x:Name="StartMove" Content="Start"
 HorizontalAlignment="Center" VerticalAlignment="Bottom"
 Width="100" Height="25" Margin="5"
 Click="StartMove_Click">
 <i:Interaction.Behaviors>
 <local:CustomBehavior />
 </i:Interaction.Behaviors>
</Button>

When you run the application and click the button, you’ll first see the MessageBox
from the behavior and then, because it’s a blocking call, once you close the box you’ll
see the FluidMoveBehavior in action.

 Once you’ve created a behavior or action that you like, be sure to share it on the
Expression Gallery at http://gallery.expression.microsoft.com. There are a ton of
interesting behaviors there; you may learn from some, and you may contribute others.
It’s a great community.

 Behaviors, triggers, and actions—collectively “behaviors”—provide an excellent
way to package up reusable bits of functionality without the overhead of a custom

Listing 22.14 A behavior that displays a MessageBox when a Button is clicked

Event handler
cleanup
Licensed to Devon Greenway <devon.greenway@gmail.com>

http://gallery.expression.microsoft.com

669Summary
control. The Blend SDK comes with a number of important behaviors, providing a
broad spectrum of capabilities. The Expression gallery includes a number of other
behaviors that you can download and use in your own applications. Already, a large
number of individuals and companies have developed and shared their own useful
behaviors with the community. And, if the existing behaviors are insufficient for your
needs, you can build your own behaviors using the same building blocks the expres-
sion team and community use.

22.7 Summary
Throughout this chapter, you saw the details associated with animating elements
within Silverlight. When it comes down to it, it’s really about manipulating a single
property over a time interval. This time interval can be specified within either an ani-
mation, or higher up the tree, a Storyboard. The Storyboard enables you to organize
and control multiple animations simultaneously, so you can create incredibly dra-
matic and engaging effects. With the help of keyframes, these effects can be devel-
oped extremely quickly and efficiently. When you add easing functions into the mix,
the results are visually stunning and can provide that “pop” your application needs.

 Behaviors provide reusable packages of functionality that can span a broad spec-
trum of capabilities. Some interact with animation and easing functions; others inter-
act with code; still others enable you to play sounds or provide special movement to
elements on a page. The community at the Expression Gallery has created a large
number of reusable behaviors that you can incorporate into your own applications. If
you want to create your own from scratch or contribute to that community, you
already have all the tools you need with Visual Studio 2010 and the Blend SDK.

 Providing an engaging user experience can be a valuable addition to any applica-
tion. Providing a consistent user experience is perhaps equally, if not more, valuable.
Silverlight has a variety of style and template features to help provide a consistent user
experience. These features are discussed in detail in chapter 23.
Licensed to Devon Greenway <devon.greenway@gmail.com>

Resources, styles,
 and control templates
Chapter 22 described the powerful animation features available in Silverlight.
These features are useful for creating entertaining illustrations and for adding a
degree of richness to your application. This richness can also be applied to con-
trols, as you’ll see in this chapter.

 Throughout this chapter, you’ll see how to apply rich styles to your application.
These styles are similar to the CSS features you may have seen in the HTML world.
In general, a Style declaration will be part of a resource, so we’ll cover resources
first. From there, you’ll learn how to manage resources in dictionaries before mov-
ing on to creating rich visual Styles themselves. We’ll cover both explicit and
implicit styles. Then you’ll see how to expand on the definition of a Style to define
a ControlTemplate, enabling you to redefine the visual structure of a Control.

This chapter covers
■ Using application resources
■ Control styling
■ Building control templates
■ The Visual State Manager
670

Licensed to Devon Greenway <devon.greenway@gmail.com>

671Being resourceful
Once we’ve covered that subject, you’ll learn how to use the VisualStateManager to
deliver engaging visual states and transition animations within your Control elements.

23.1 Being resourceful
In general, it’s a good idea to create reusable items whenever possible. This practice
makes your application more maintainable. In fact, creating reusable components is a
common idea within object-oriented languages such as C#. But, sometimes, you may
have items that represent nonexecutable pieces of data—for instance, an image, a
media file, or some XAML. These types of content generally fall into one of three cate-
gories: declarative resources, loose resources, and bundled resources. We’ll cover all
three of these categories in this section, beginning with declarative resources, which
are fairly different compared to the other two.

23.1.1 Declarative resources

Declarative resources are items intended to be shared across multiple elements in your
project. They can be any object you want to share. For instance, a resource can be
used to define a DataTemplate or Storyboard, as hinted at earlier in this book.
Resources are also a vital part of the styling and templating features discussed later in
this chapter. Before you see those features, let’s examine the basic syntax and usage of
a declarative resource (see listing 23.1).

Result:

XAML:
<StackPanel>
 <StackPanel.Resources>
 <LinearGradientBrush x:Key="myGradientBrush"
 StartPoint="0,0" EndPoint="1,1">
 <GradientStop Color="#FF575757"/>
 <GradientStop Color="#FFCDCDCD" Offset="1"/>
 </LinearGradientBrush>
 </StackPanel.Resources>

 <TextBlock Text="DECLARATIVE" FontWeight="Bold"
 FontFamily="Verdana" FontSize="40"
 Foreground="{StaticResource myGradientBrush}" />
 <TextBlock Text="RESOURCES" FontWeight="Bold"
 FontFamily="Verdana" FontSize="40"
 Foreground="{StaticResource myGradientBrush}" />
</StackPanel>

This listing shows a basic declarative resource scoped to a StackPanel in the form of a
LinearGradientBrush B. This GradientBrush is used by both TextBlock elements
defined in this listing C. This shared approach is possible because the resource is

Listing 23.1 The basic syntax and usage of a resource

Resource
dictionary

B

C

Licensed to Devon Greenway <devon.greenway@gmail.com>

672 CHAPTER 23 Resources, styles, and control templates
within the same scope as the two TextBlock elements. Within this section, you’ll learn
about resource scoping in further detail. In addition, you’ll see how to use declarative
resources at design time. This task will demonstrate to the meaning behind the x:Key
attribute and StaticResource items shown in listing 23.1. Finally, this section will end
with a discussion of using declarative resources at runtime.
DEFINING DECLARATIVE RESOURCES

Resources must be defined within an appropriately named collection called
Resources. This collection is a ResourceDictionary, a specialized dictionary contain-
ing resources identified by implicit or explicit keys. These resources and their associ-
ated keys can be defined at both design time and runtime. Both approaches are
shown in listing 23.2.

XAML:
<StackPanel x:Name="myStackPanel">
 <StackPanel.Resources>
 <SolidColorBrush x:Key="theSolidColorBrush" Color="Green" />
 </StackPanel.Resources>
</StackPanel>

C#:
SolidColorBrush brush = new SolidColorBrush();
brush.Color = Colors.Green;
myStackPanel.Resources.Add("theSolidColorBrush", brush);

This example shows how to define a resource at design time and runtime. Both
approaches require you to specify two items. The first item is the key, which in this
case is theSolidColorBrush. The other is the resource itself, which in this case is a
SolidColorBrush.

 The key of a resource is a string that uniquely identifies it. At runtime, this identi-
fier is set when you add a resource to a ResourceDictionary. Because the Resource-
Dictionary class implements the IDictionary interface, you can add a resource
using the Add method. The first parameter of this method represents a key. The
ResourceDictionary implements the IDictionary interface, so you should use the
x:Key attribute to identify a resource at design time. Keys are only necessary when you
want to explicitly use a resource, as shown in the examples so far. When we get into
styles, you’ll see how an implicit key can be useful as well. Once you’ve selected a key,
you may move on to the details of the resource.

 The resource itself is the reason for this section. This item can be virtually any
object that Silverlight allows to be shared. For example, controls and visuals can’t be
shared. In general, you’ll most likely use Storyboard, Style, and Template items as
resources with the occasional low-level int or double type and maybe even instances
of your own classes for data. Regardless of the type of resource, the item can only be
used within its respective scope.

Listing 23.2 SolidColorBrush defined as a resource at design time and runtime
Licensed to Devon Greenway <devon.greenway@gmail.com>

673Being resourceful
ALL ABOUT SCOPE

So far, we’ve seen resources placed into various on-page elements. That’s great for
nonstyle resources such as references to data objects and whatnot. When used with
styles, though, it’s similar to placing CSS styles directly into your HTML page—it works,
but it’s not really a best practice. In most cases, your resources are going to be placed
in a central location, such as in App.xaml.

 Resources defined in App.xaml are available to the entire application. The syntax
is the same as defining resources locally. After a resource has been defined, either
locally or through App.xaml, it can be referenced at design time through the Stati-
cResource markup extension:

<TextBlock x:Name="myTextBlock" Text="Hello, World"
 Foreground="{StaticResource theSolidColorBrush}" />

The StaticResource extension expects a single value that must match a key from an
in-scope ResourceDictionary. The resource must also be defined syntactically before
it’s referenced. Because of this requirement, listing 23.3 won’t work.

XAML:
<StackPanel x:Name="myStackPanel">
 <TextBlock x:Name="myTextBlock" Text="Hello, World"
 Foreground="{StaticResource theSolidColorBrush}" />
 <StackPanel.Resources>
 <SolidColorBrush x:Key="theSolidColorBrush" Color="Green" />
 </StackPanel.Resources>
</StackPanel>

This listing shows an invalid use of a resource; the resource is used before it’s defined.
If you attempt to run this example, it’ll throw an XamlParseException. The order in
which entries appear is especially important once you start working with independent
resource dictionaries and have to merge them in the correct order.
MERGING RESOURCE DICTIONARIES

Though App.xaml may ultimately be the aggregation point for your resources, a com-
mon strategy is to place resources into individual resource dictionary files. The files
are typically groups of related resources or entire application themes. Those resource
dictionary files are then compiled into the application (build action of Page, Custom
Tool set to MSBuild:Compile) and merged in from App.xaml or into the dictionaries
of individual pages.

 For example, listings 23.4 through 23.7 show how to merge two different
resource files into your application using App.xaml as the aggregation point but also
referencing from within the dictionaries. Listing 23.4 shows the first resource file,
StandardColors.xaml.

Listing 23.3 How not to be seen
Licensed to Devon Greenway <devon.greenway@gmail.com>

674 CHAPTER 23 Resources, styles, and control templates
StandardColors.xaml:
<ResourceDictionary
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">

 <SolidColorBrush x:Key="TextColor" Color="#FF303030" />

 <SolidColorBrush x:Key="HeadlineTextColor" Color="Black" />

 <LinearGradientBrush x:Key="PageBackgroundColor"
 StartPoint="0,0"
 EndPoint="0,1">
 <GradientStop Offset="0" Color="#FFFFFFFF" />
 <GradientStop Offset="1" Color="#FFD0D0D0" />
 </LinearGradientBrush>
</ResourceDictionary>

The StandardColors.xaml resource dictionary is our base dictionary. It has no depen-
dencies on others, but is used in several other places. This dictionary defines three
Brush resources, two of which are simple SolidColorBrush instances; the third is a
LinearGradientBrush.

 The StandardColors.xaml resource dictionary is used by the ControlStyles.xaml
resource dictionary shown in listing 23.5.

ControlStyles.xaml:
<ResourceDictionary
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">

 <ResourceDictionary.MergedDictionaries>
 <ResourceDictionary Source="StandardColors.xaml" />
 </ResourceDictionary.MergedDictionaries>

 <Style TargetType="TextBlock">
 <Setter Property="FontFamily"
 Value="Segoe UI" />
 <Setter Property="Foreground"
 Value="{StaticResource TextColor}" />
 </Style>

 <Style x:Key="HeadlineTextStyle"
 TargetType="TextBlock">
 <Setter Property="FontFamily"
 Value="Segoe UI" />
 <Setter Property="Foreground"
 Value="{StaticResource HeadlineTextColor}" />
 <Setter Property="FontSize"
 Value="20" />
 <Setter Property="Margin"
 Value="0 0 0 10" />
 </Style>
</ResourceDictionary>

Listing 23.4 Merging resource dictionaries—colors dictionary

Listing 23.5 Merging resource dictionaries—control styles dictionary

B

Defined
in colors
dictionary
Licensed to Devon Greenway <devon.greenway@gmail.com>

675Being resourceful
The standard colors dictionary is merged into the control styles dictionary B. This is
required because the control styles dictionary uses resources defined in the color dic-
tionary. As you’ll see in the next listing, dependencies can’t be chained; they don’t rip-
ple “upward” and must be explicitly defined in each XAML file. Listing 23.6 shows
App.xaml where the dictionaries are made available to the whole application.

App.xaml:
<Application
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 x:Class="MergeExample.App">
 <Application.Resources>
 <ResourceDictionary>
 <ResourceDictionary.MergedDictionaries>
 <ResourceDictionary Source="StandardColors.xaml" />
 <ResourceDictionary Source="ControlStyles.xaml" />
 </ResourceDictionary.MergedDictionaries>
 </ResourceDictionary>
 </Application.Resources>
</Application>

Listing 23.6 shows App.xaml. Both StandardColors.xaml B and ControlStyles.xaml C
are merged into App.xaml to make their included resources available to the rest of
the application. As I mentioned earlier, you can’t merge resources and expect the
dependencies to flow through. For example, StandardColors.xaml is merged into
ControlStyles.xaml. That’s not sufficient to make the resources in StandardCol-
ors.xaml available outside on the control styles; they’re in a private dictionary. To
expose them to the rest of the application, they’re all merged into the applicationwide
dictionary in the Application object (see listing 23.7).

MainPage.xaml:
<UserControl x:Class="MergeExample.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d"
 d:DesignHeight="300" d:DesignWidth="400">

 <Grid x:Name="LayoutRoot"
 Background="{StaticResource PageBackgroundColor}">
 <StackPanel>
 <TextBlock Text="This is a Headline"
 Style="{StaticResource HeadlineTextStyle}" />
 <TextBlock Text="This is normal text. It is implicitly styled.

➥ We'll get to implicit styling in just a bit." />

 </StackPanel>
 </Grid>
</UserControl>

Listing 23.6 Merging resource dictionaries—App.xaml

Listing 23.7 Merging resource dictionaries—main page

Merged
dictionaries

B
C

B

C

D

Licensed to Devon Greenway <devon.greenway@gmail.com>

676 CHAPTER 23 Resources, styles, and control templates
Finally, we get to our main page. MainPage.xaml is using a resource B defined in
StandardColors.xaml. It’s also using a control style C defined in ControlStyles.xaml.
Finally, the TextBlock D is using an implicit style defined in ControlStyles.xaml.

 If you’re coming from a CSS background, the way the resources are nested may
seem odd to you because each goes into a discrete dictionary instead of a global sheet.
In the next section, we’ll cover how to access those discrete dictionaries, whether
they’re at an element level or application level.
USING DECLARATIVE RESOURCES AT RUNTIME

Referencing resources at design time is useful for setting up the initial state of an
application. As an application runs, you may need to work with those resources
dynamically. To help you accomplish this feat, Silverlight enables you to search for,
insert, edit, and remove resources at runtime.

 Searching for a resource at runtime involves referencing the Resources property,
which is a ResourceDictionary available on every FrameworkElement and Applica-
tion. Because of this, you can readily search for a declarative resource by using its key.
If the resource isn’t found, null will be returned; if the resource is found, its object
representation will be returned. Because the return value may be an object, you may
need to cast the value to another type, as shown in this example:

var brush =
 myStackPanel.Resources["theSolidColorBrush"] as SolidColorBrush;
if (brush != null)
 brush.Color = Colors.Blue;

This code retrieves the SolidColorBrush defined as a resource in listing 23.2. Once
it’s retrieved, this Brush is changed from Green to Blue. This small but interesting
change occurs at runtime. When this code is executed, the TextBlock in listing 23.2
changes to Blue without any additional code because the Silverlight system automati-
cally listens for those changes. But, it doesn’t necessarily listen for when resources
are removed.

 Accessing resources in elements uses the same syntax for any given element. To
access resources defined in the application, it’s slightly different:

var brush =
 Application.Current.Resources["theSolidColorBrush"] as SolidColorBrush;
if (brush != null)
 brush.Color = Colors.Blue;

Rather than specifying an element, you need to specify Application.Current. Once
you move beyond that, the syntax is the same. This will also pick up any merged-in
resources, so there’s no special step required to navigate down into any other diction-
aries. (Note that in XAML, the difference is abstracted away by the StaticResource
extension.)

 Resources may be removed at runtime through the Remove method. This method
takes a string that represents the key of the resource to delete. Once it’s deleted, this
resource can’t be used. If the resource was applied to any items in your Silverlight
Licensed to Devon Greenway <devon.greenway@gmail.com>

677Being resourceful
application, the Resources attributes will still be in use; if you remove a resource, you
may want to manually update any elements using the declarative resource.

 Declarative resources are those defined within your Silverlight application. These
resources can be created at either design time or runtime. In addition, declarative
resources can be added, edited, and removed at runtime through the readily available
Resources property. In addition to declarative resources, Silverlight has another type
of resource known as loose resources.

23.1.2 Accessing loose resources

In addition to using resources defined within your XAML,
Silverlight enables you to access loose resources. A loose
resource is an external entity, which may represent some-
thing such as an image hosted on some server on the Inter-
net or some publicly visible JSON data. Regardless of the
type of content, Silverlight provides the ability to access
loose resources. To demonstrate accessing a loose resource,
imagine an ASP.NET web application with the structure
shown in figure 23.1.

 Figure 23.1 shows the structure of a basic ASP.NET web
application. This web application has one web page named
Default.aspx. Assume that this web page hosts the Silverlight
application defined within the MySilverlightApplica-
tion.xap file, which is nestled within the ClientBin direc-
tory. This will become important in a moment. Also note
the four image files that are part of this web application structure: image01.png,
image02.png, image03.png, and image04.png. These images represent the loose
resources that we’ll use throughout this section.

 You’ll learn two different ways to access loose resources. The first approach
involves referencing loose resources whose location is relative to the Silverlight appli-
cation. The second approach involves using an absolute Uri.
REFERENCING RELATIVE LOOSE RESOURCES

Silverlight allows you to access loose resources relative to the site of origin—the location
where the requesting Silverlight application resides. In many cases, your Silverlight
application will be stored within a subdirectory. For instance, in figure 23.1, the Silver-
light application (MySilverlightApplication.xap) is stored within the ClientBin direc-
tory, so this directory can be considered the site of origin. If you want to access
image01.png in figure 23.1, you could use the Source shown here:

<Image x:Name="myImage" Source="image01.png" />

This accesses a resource in the same directory as MySilverlightApplication.xap. This
directory represents the site of origin. If you change the Source property to
reference /image01.png, you’d get the same result because the site of origin repre-
sents the root directory when a relative URI is used. This syntax will still allow you to

Figure 23.1 A sample
web site project structure.
Note the four .png files.
Licensed to Devon Greenway <devon.greenway@gmail.com>

678 CHAPTER 23 Resources, styles, and control templates
reference loose resources in subdirectories. For instance, you could reference
image02.png in figure 23.1 using the Source in this example:

<Image x:Name="myImage" Source="directory/image02.png" />

This markup shows how to reference a loose resource in a subdirectory, demonstrat-
ing that you can use subdirectories with relative references. If you reference a .xap file
on a remote server, all your references will be relative to that remote reference. This is
important because you can’t use a relative URI to access loose resources in directories
that are ancestors to the site of origin. This restriction is a security measure to help
ensure that preexisting loose resources can’t be used unless you explicitly allow it. To
allow this use, you must expose them through the cross-domain policy file mentioned
in chapter 14 and use an absolute Uri.
RETRIEVING LOOSE RESOURCES WITH AN ABSOLUTE URI

Silverlight gives you the flexibility to access loose resources via an absolute Uri. This
gives you the flexibility to access resources from anywhere across the Internet as long
as the target server allows it in its cross-domain policy file. This requirement is also
necessary if you want to access a resource located up the directory tree from your .xap
file. For instance, if the Silverlight web site structure in figure 23.1 is hosted at http://
www.silverlightinaction.com, you could access image03.png by using the Source
shown here:

<Image x:Name=
 "myImage" Source="http://www.silverlightinaction.com/image03.png" />

This example shows how to access a loose resource via an absolute Uri. This Uri points
at the location of the resource, and this location will be loaded as a loose resource.
There’s also a way to bundle resources along with your Silverlight application.

23.1.3 Bundled resources

The third kind of resource used in Silverlight is referred to as a bundled resource. A bun-
dled resource is an item included in the .xap file of a Silverlight application. The term
“bundled resource” is a made-up expression used solely for the sake of communica-
tion. Bundled resources give you a way to include resources specific to a Silver-
light application.

 Throughout this section, you’ll learn about the two types of bundled resources
that can be used in Silverlight. The first is known as a content file—a file that’s added to
the .xap file and deployed alongside a Silverlight application. The other type of
resource is known as an embedded file, which represents an item that gets embedded
into a Silverlight assembly. This kind of resource can be useful for helping to hide
your valuable resources.
USING CONTENT FILES

A content file is one that’s added to a .xap file and deployed alongside a Silverlight
application within the .xap. If you define an image as a content file, that image will be
included within the resulting .xap file when the Silverlight application is built. In fact,
Licensed to Devon Greenway <devon.greenway@gmail.com>

http://www.silverlightinaction.com
http://www.silverlightinaction.com

679Being resourceful
any file with a build action of Content will be bundled into the resulting .xap file. Fig-
ure 23.2 shows a .png and .xml file being bundled into a .xap file as content files.

 Figure 23.2 shows two files that have been added and marked as content files. The
first, xmlData.xml, is a basic XML file. Once the project is built, this file ends up in the
root of the .xap file structure. The second, image.png, belongs to a nested directory
called images. When the project is built, this relative directory structure is carried over
to the final .xap file, which can be accessed using a relative path reference. All content
files can be referenced by providing a path relative to the application assembly. This
approach can be used at design time, as shown in this markup:

<Image x:Name="myImage" Source="/images/image.png" />

This example shows the syntax used to reference a content file at design time. The
leading forward slash (/) informs Silverlight to begin looking at the same level as the
application assembly. This approach is the recommended way to include content with
a Silverlight application because it makes things more easily accessible. Sometimes,
you may come across somebody who does things the old-school way—the content files
will be embedded within the Silverlight assembly. You’ll now see how to access these
embedded files.

Figure 23.2 Defining a file
as a content file. When it’s
compiled, the content file is
added to a .xap file.
Licensed to Devon Greenway <devon.greenway@gmail.com>

680 CHAPTER 23 Resources, styles, and control templates
USING EMBEDDED FILES

An embedded file is a file embedded within a Silverlight assembly, which may be
either an application or a library. Either way, an embedded file becomes a part of an
assembly by changing the build action to Resource. This file can be retrieved at design
time or runtime by providing a special URL structure.

 Embedded resources are accessible through a URL that has three parts. The first
part names the assembly to which the resource belongs. The second piece is a special
keyword called Component that declares a resource as being retrieved. The final part is
a relative URL that maps to the location of the resource within the assembly. These
three items come together to form a URL template that looks like the following:

[AssemblyName];component/[RelativePath]

This template can be used at design time or runtime. The design-time implementa-
tion relies on the element type to convert the resource. At runtime, you must manu-
ally convert the resource. First, you retrieve the embedded resource from the
assembly through the Application class, as shown in this line of code:

StreamResourceInfo resource = Application.GetResourceStream(
 new Uri("SilverlightApp1;component/embedded.png", UriKind.Relative));

This example shows how to retrieve the resource from the assembly. This resource is
represented as a StreamResourceInfo, which is part of the System.Windows.
Resources namespace. This class instance must be converted to the type appropriate
for your situation. As we mentioned earlier, you shouldn’t come across this scenario
very often. When it comes to content files, you’ll probably come across a loose
resource. In XAML, you’ll most likely use declarative resources. This approach is espe-
cially true if you’re giving your elements Style.

23.2 Giving your elements style
As you saw in section 23.1, resources are the nonexecutable parts of your application.
These parts are useful for creating items that can be reused multiple times. In addi-
tion to being reused, resources can also be shared by multiple elements. These two
characteristics make resources a natural fit for styling.

 Styling is a way to consistently share the same property values across multiple ele-
ments. To see why this is a good idea, imagine needing to create a typical forms-based
application. This application must use TextBox elements that have a bold 9 pt Ver-
dana font for input. In addition, you want to give the TextBox elements a subtle gradi-
ent background to make them more appealing. Without styles, you may decide to
implement these visual enhancements as shown in listing 23.8.

Result:

Listing 23.8 Brute-force approach to applying common properties
Licensed to Devon Greenway <devon.greenway@gmail.com>

681Giving your elements style
XAML:
<Grid x:Name="myGrid">
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto"/>
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto"/>
 <ColumnDefinition Width="Auto"/>
 </Grid.ColumnDefinitions>

 <TextBlock Text="First Name: " />

 <TextBox Height="24" Width="180" Grid.Column="1"
 FontFamily="Verdana" FontSize="12" FontWeight="Bold">
 <TextBox.Background>
 <LinearGradientBrush EndPoint="0.5,1" StartPoint="0.5,0">
 <GradientStop Color="#FFFFFFFF" Offset="1"/>
 <GradientStop Color="#FFD0D0D0" Offset="0"/>
 </LinearGradientBrush>
 </TextBox.Background>
 </TextBox>

 <TextBlock Text="LastName: " Grid.Row="1" />

 <TextBox Height="24" Width="180" Grid.Row="1" Grid.Column="1"
 FontFamily="Verdana" FontSize="12" FontWeight="Bold">
 <TextBox.Background>
 <LinearGradientBrush EndPoint="0.5,1" StartPoint="0.5,0">
 <GradientStop Color="#FFFFFFFF" Offset="1"/>
 <GradientStop Color="#FFD0D0D0" Offset="0"/>
 </LinearGradientBrush>
 </TextBox.Background>
 </TextBox>
</Grid>

Listing 23.8 shows the brute-force approach to defining the visual properties of multi-
ple elements. It defines two TextBox elements with the same values for the Height,
Width, FontFamily, FontSize, and FontWeight properties. In addition, the same com-
plex LinearGradientBrush definition is used for the Background of both TextBox ele-
ments. Unfortunately, this approach isn’t scalable. For instance, if you need to change
the font of the TextBox items, you’d have to make the change to each item, but you
can overcome this minor inconvenience using a Style.

 A Style is a way to share the same property values across multiple elements.
Throughout this section, you’ll learn how to create and use a Style. This approach
will help you avoid the maintenance nightmare shown in that last listing. You’ll first
see how to define the visual properties of a control through a Style. From there,
you’ll learn how to share a Style definition across multiple elements.

23.2.1 Defining the look

To define the look of an element using a Style, you simply set the Style property.
This instruction may sound redundant, but the property name is the same as the type
Licensed to Devon Greenway <devon.greenway@gmail.com>

682 CHAPTER 23 Resources, styles, and control templates
name. The Style property is available on every FrameworkElement, so virtually every
control in the Silverlight framework can be styled. You can do this by taking advantage
of the Style class’s Setters collection.

 The Setters collection stores the entire definition of a Style. This definition is
made up of individual property/value pairs similar to those seen in CSS within the
HTML world. In Silverlight, each combination is defined within a Setter element,
which lets you assign a value to a single visual property. Interestingly, this approach
can be used to set both simple and complex property values.
SETTING SIMPLE PROPERTY VALUES

A simple property is a property that can be set at design time with a primitively typed value.
A primitively typed value is something like an int or string value. These kinds of val-
ues can be used at design time to set the values for properties such as FontSize and
FontFamily. Listing 23.9 shows how to use five simple properties as part of a Style.

Result:

XAML:
<TextBox x:Name="myTextBox">
 <TextBox.Style>
 <Style TargetType="TextBox">
 <Setter Property="FontFamily" Value="Verdana" />
 <Setter Property="FontSize" Value="12" />
 <Setter Property="FontWeight" Value="Bold" />
 <Setter Property="Height" Value="24" />
 <Setter Property="Width" Value="180" />
 </Style>
 </TextBox.Style>
</TextBox>

This example shows how to define a Style B that uses five simple properties, each of
which is defined within a Setter element. These elements are automatically added to
the Style object’s Setters collection. More importantly, each of the items in this col-
lection is defined by two publicly visible attributes.

 The two attributes that define a Setter are called Property and Value. The Prop-
erty attribute determines which property the Value will be used with. The Property
must be a DependencyProperty, but the Value property can be set to any object.
Because of this fact, the Setter element is flexible, making it a natural fit for simple
properties. In addition, it’s also a natural fit for complex properties.
SETTING COMPLEX PROPERTY VALUES

A complex property is a property whose value is a general-purpose object. In general,
these kinds of properties have nested properties that must be set. For example, a Lin-
earGradientBrush could be considered a complex property value because it has the
additional stops broken out using property element syntax. Now, imagine trying to use

Listing 23.9 A basic style definition

Style property
B

Licensed to Devon Greenway <devon.greenway@gmail.com>

683Giving your elements style
this LinearGradientBrush as part of a Style. You must use an approach similar to
that shown in listing 23.10.

Result:

XAML:
<TextBox x:Name="myTextBox">
 <TextBox.Style>
 <Style TargetType="TextBox">
 <Setter Property="FontFamily" Value="Verdana"/>
 <Setter Property="FontSize" Value="12"/>
 <Setter Property="FontWeight" Value="Bold"/>
 <Setter Property="Height" Value="24"/>
 <Setter Property="Width" Value="180"/>
 <Setter Property="Background">
 <Setter.Value>
 <LinearGradientBrush EndPoint="0.5,1" StartPoint="0.5,0">
 <GradientStop Color="#FFFFFFFF" Offset="1"/>
 <GradientStop Color="#FFD0D0D0" Offset="0"/>
 </LinearGradientBrush>
 </Setter.Value>
 </Setter>
 </Style>
 </TextBox.Style>
</TextBox>

Listing 23.10 shows how to define a more complex property as part of a Style B.
There aren’t any new elements shown here, but it does show you how to break out the
Setter.Value into a nested property itself. This approach gives you the flexibility to
use something as complex as a LinearGradientBrush.

 The approaches shown in both of these examples haven’t solved the problem of
scalability; they’ve just shown the syntax of a Style used inside of an element instead
of explicit properties. To solve to problem of scalability, you must understand how to
target your Style definitions so they may be reused.

23.2.2 Explicitly keyed style definitions

In CSS, one way to define styles is to include two parts. One part represents the name
of the style; the other part is the name of the HTML tag the style is applicable to. An
explicit Style in Silverlight also uses these two parts.

 The first part of a Style uniquely identifies a Style definition. As shown in the
previous two examples, this part is optional. It becomes a requirement only if you cre-
ate a Style as a resource and want to refer to it explicitly. If you choose this approach,
you must specify the x:Key attribute to uniquely identify the Style, and you must
specify the other part—the TargetType.

Listing 23.10 A complex property in a style definition

Style property

B

Licensed to Devon Greenway <devon.greenway@gmail.com>

684 CHAPTER 23 Resources, styles, and control templates
 The TargetType property signals which System.Type a Style is applicable to. This
property doesn’t need to be set if you define a Style within an element, as shown in
the previous examples. If you define a Style as a resource, you must set this property
as shown in listing 23.11.

XAML:
<Grid x:Name="myGrid" Background="White">
 <Grid.Resources>
 <Style x:Key="textStyle" TargetType="TextBox">
 <Setter Property="FontWeight" Value="Bold" />
 <Setter Property="FontFamily" Value="Verdana" />
 <Setter Property="FontSize" Value="12" />
 <Setter Property="Height" Value="24" />
 <Setter Property="Width" Value="180" />
 <Setter Property="Background">
 <Setter.Value>
 <LinearGradientBrush EndPoint="0.5,1" StartPoint="0.5,0">
 <GradientStop Color="#FFFFFFFF" Offset="1"/>
 <GradientStop Color="#FFD0D0D0" Offset="0"/>
 </LinearGradientBrush>
 </Setter.Value>
 </Setter>
 </Style>
 </Grid.Resources>
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition Width="Auto" />
 </Grid.ColumnDefinitions>
 <TextBlock Text="First Name: " />
 <TextBox Grid.Column="1"
 Style="{StaticResource textStyle}" />
 <TextBlock Text="LastName: " Grid.Row="1" />
 <TextBox Grid.Row="1" Grid.Column="1"
 Style="{StaticResource textStyle}" />
</Grid>

Listing 23.11 shows a Style defined as a resource. The Style in this case is configured
to be used with TextBox elements as set through the TargetType property B. If you
were to attempt to use this Style with an element of another type, an error would
occur. It can be used with any types that might derive from TextBox.

 CSS supports implicit styles, where you simply specify the type (a DIV, for example)
and CSS applies it to all DIV elements within a certain scope. Silverlight supports a sim-
ilar type of implicit styling.

Listing 23.11 Defining the TargetType of a Style

B

Style
in use
Licensed to Devon Greenway <devon.greenway@gmail.com>

685Giving your elements style
23.2.3 Implicit style definitions

In the previous example, we saw how a style may be reused by applying it to each con-
trol. In a large application with many controls, this procedure can be both tedious and
error prone. Silverlight 4 introduced implicit styles.

 Implicit styles look exactly like their explicit cousins, except they omit the key.
That’s it. If you define a style with a TargetType and omit the key, the TargetType
becomes the key and the style becomes implicit.

 Listing 23.12 shows the previous example but converted to an implicit style.

XAML:
<Grid x:Name="myGrid" Background="White">
 <Grid.Resources>
 <Style TargetType="TextBox">
 <Setter Property="FontWeight" Value="Bold" />
 <Setter Property="FontFamily" Value="Verdana" />
 <Setter Property="FontSize" Value="12" />
 <Setter Property="Height" Value="24" />
 <Setter Property="Width" Value="180" />
 <Setter Property="Background">
 <Setter.Value>
 <LinearGradientBrush EndPoint="0.5,1" StartPoint="0.5,0">
 <GradientStop Color="#FFFFFFFF" Offset="1"/>
 <GradientStop Color="#FFD0D0D0" Offset="0"/>
 </LinearGradientBrush>
 </Setter.Value>
 </Setter>
 </Style>
 </Grid.Resources>
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition Width="Auto" />
 </Grid.ColumnDefinitions>
 <TextBlock Text="First Name: " />
 <TextBox Grid.Column="1" />
 <TextBlock Text="LastName: " Grid.Row="1" />
 <TextBox Grid.Row="1" Grid.Column="1" />
</Grid>

Just as we saw in the previous example, this listing defines a style B that targets the Text-
Box type. But we’ve omitted the x:Key, so this is an implicit style. Note the TextBox con-
trols at the bottom of the listing: they now pick up the style without requiring any
StaticResource setting. This is a huge timesaver for applications of any real complexity.

 Styling, both explicit and implicit, is a powerful way to define the user interface
standards for your application. Design professionals (or integrators, depending on

Listing 23.12 Defining the TargetType of a Style

B

Style
in use
Licensed to Devon Greenway <devon.greenway@gmail.com>

686 CHAPTER 23 Resources, styles, and control templates
how your team is set up) spend a good bit of their time defining styles, just as they
would with HTML/CSS. They can work with them directly in XAML as we have here or
use Expression Blend to make the process easier.

 Once you’ve mastered styling, you’re ready to take a step beyond setting simple
properties and into working with the control templates themselves.

23.3 Creating templates
The styling features shown in section 23.2 are a welcome addition to the Silverlight
world. These items allow you to quickly create a consistent look throughout an appli-
cation. This look can be shared across the application by defining the styles as
resources. But, occasionally, the styling options can be somewhat limiting. To over-
come these limitations, you can use a template.

 A template empowers you to redefine the entire visual representation of an ele-
ment, giving you the flexibility to make any Control look the way you want it to look.
When doing this, you don’t sacrifice the behavior of the Control. You could create a
Button that looks and feels like an octagon and still reacts to the Click event. Over
the course of this section, you’ll experience the full power of a template by building a
control template. You’ll also see how to elegantly create a reusable template.

23.3.1 Building a control template

When you build a control template, it’ll ultimately be used with a Control. Every Con-
trol in Silverlight exposes a property called Template. This property is a ControlTem-
plate that lets you take complete control over what a Control looks like. In a sense,
when you set this property, you’re resetting the control’s appearance, giving you a
clean slate to work with. From there, you can make a Control look like whatever you
want it to look like. For instance, listing 23.13 changes the look of a Button to make it
look more like a sphere.

Result:

XAML:
<Button x:Name="myButton" Content="Hello">
 <Button.Template>
 <ControlTemplate>
 <Ellipse Height="90" Width="90" Stroke="Black" StrokeThickness="2">
 <Ellipse.Fill>
 <RadialGradientBrush GradientOrigin="0.3,0.2">
 <RadialGradientBrush.RelativeTransform>
 <TransformGroup>
 <ScaleTransform CenterX="0.5" CenterY="0.5"
 ScaleX="1.075" ScaleY="1.141"/>

Listing 23.13 Changing the look of a Button through a Template

Template
property

B

Licensed to Devon Greenway <devon.greenway@gmail.com>

687Creating templates
 <SkewTransform CenterX="0.5" CenterY="0.5"/>
 <RotateTransform CenterX="0.5" CenterY="0.5"/>
 <TranslateTransform X="-0.04" Y="0.07"/>
 </TransformGroup>
 </RadialGradientBrush.RelativeTransform>
 <GradientStop Color="#FFD9D9D9" Offset="0.004"/>
 <GradientStop Color="#FF2103BA" Offset="1"/>
 </RadialGradientBrush>
 </Ellipse.Fill>
 </Ellipse>
 </ControlTemplate>
 </Button.Template>
</Button>

This example shows a basic ControlTemplate B. This ControlTemplate is associated
with a Button through its Template property. Notably, if you were to define a Con-
trolTemplate as a resource, you’d associate the template with a specific type through
the TargetType property. This property behaves the same way as it did with the Style
class. Interestingly, when a template is used with a ContentControl, the Content prop-
erty doesn’t behave the same way.

 Over the course of this section, you’ll learn how to display content within a Con-
trolTemplate. This content will generally be placed inside a Panel or Border because
a ControlTemplate can have only one root element. This root element can then be used
to house the contents of a ContentControl or an ItemsControl. You’ll also see how to
customize the way in which the Items of an ItemsControl are arranged. But first, you’ll
see how to use properties that are part of the target control in your templates.
CONSIDERING CONTROL PROPERTIES

Ultimately, the purpose of a ControlTemplate is to define the appearance of a Con-
trol. This Control may have properties set that should be used within your template.
For instance, you may want to use the Background or FontFamily property values of a
Control in your ControlTemplate. In these types of situations, you should use a Tem-
plateBinding.

 A TemplateBinding is a special type of data binding used within a ControlTem-
plate. This data binding uses the Control to which the ControlTemplate is applied as
its data source. The data source is identified as a specific property within that Control.
This property is referenced by name when you create a TemplateBinding. An exam-
ple of such a reference is shown in listing 23.14.

Result:

XAML:
<Button x:Name="myButton" Content="Hello" Height="45" Width="45">
 <Button.Template>

Listing 23.14 Using a TemplateBinding for the target element’s properties
Licensed to Devon Greenway <devon.greenway@gmail.com>

688 CHAPTER 23 Resources, styles, and control templates
 <ControlTemplate>
 <Ellipse Fill="#FF2103BA" Stroke="Black" StrokeThickness="2"
 Height="{TemplateBinding Height}"
 Width="{TemplateBinding Width}" />
 </ControlTemplate>
 </Button.Template>
</Button>

This example shows the basic syntax of a TemplateBinding B. This syntax mimics
the data-binding syntax explained in chapter 11. In this case, the binding causes
the Height and Width property values of the Button to be used by the Ellipse in
the ControlTemplate. These property values are simple in comparison to what the
value of the Content property could be, though. If you’re going to display the Con-
tent of a ContentControl in a ControlTemplate, you may want to consider using
another approach.
DISPLAYING THE CONTENT

You may have noticed that the Content of the Button elements in the past two listings
hasn’t been shown because, when you define a ControlTemplate, you must tell Silver-
light where to place that Content. To help you do this task, Silverlight provides two
FrameworkElement instances: ContentPresenter and ItemsPresenter.

 The ContentPresenter class empowers you to specify where the Content of a Con-
tentControl should be shown. It may be easiest to think of this element as a place-
holder for some piece of Content. Beyond that, the syntax of a ContentPresenter is
the element itself, as shown in listing 23.15.

Result:

XAML:
<Button x:Name="myButton" Content="Hello" Height="20" Width="60">
 <Button.Template>
 <ControlTemplate>
 <Border Width="{TemplateBinding Width}" CornerRadius="8"
 BorderThickness="1" BorderBrush="Black" Background="Blue">
 <ContentPresenter HorizontalAlignment="Center" />
 </Border>
 </ControlTemplate>
 </Button.Template>
</Button>

This example shows the general usage of a ContentPresenter. As you can see, this
object is a placeholder designed to be used inside a ControlTemplate. This element is
generally limited to ContentControl scenarios and isn’t usually used in ItemsControl
situations. For these scenarios, you may want to consider an ItemsPresenter such as
the one shown in listing 23.16.

Listing 23.15 Using a ContentPresenter to display content

Control
template

B

Licensed to Devon Greenway <devon.greenway@gmail.com>

689Creating templates
Result:

XAML:
<ListBox x:Name="myListBox">
 <ListBox.Template>
 <ControlTemplate>
 <Border CornerRadius="20,7,20,7" BorderThickness="4,2,4,2"
 BorderBrush="LimeGreen" Padding="10">
 <ItemsPresenter />
 </Border>
 </ControlTemplate>
 </ListBox.Template>
 <ListBox.Items>
 <ListBoxItem><TextBlock>Item 1</TextBlock></ListBoxItem>
 <ListBoxItem><TextBlock>Item 2</TextBlock></ListBoxItem>
 <ListBoxItem><TextBlock>Item 3</TextBlock></ListBoxItem>
 </ListBox.Items>
</ListBox>

This example shows a ListBox with a ControlTemplate applied to it. The Items of
that ListBox are positioned according to the ItemsPresenter B. This element is
important because it determines where the Items will be positioned in a ControlTem-
plate, but the ItemsPresenter doesn’t determine how the Items will be arranged.
That’s the role of the ItemsPanel.
CONTROLLING ITEM ARRANGEMENT

The Items of an ItemsControl control are arranged according to the ItemsPanel
property. This property is a special kind of template that defines the Panel that will be
used to lay out the Items. By default, this property is set to use a StackPanel with a Ver-
tical Orientation. In reality, you’re free to use any of the Panel elements discussed in
chapter 3. You could use a Horizontal StackPanel, as shown in listing 23.17.

Result:

XAML:
<ListBox x:Name="myListBox">
 <ListBox.Template>
 <ControlTemplate>

Listing 23.16 Using an ItemsPresenter to display the Items of an ItemsControl

Listing 23.17 Declaring the ItemsPanel to arrange the Items of an ItemsControl

Control
Template

B

Licensed to Devon Greenway <devon.greenway@gmail.com>

690 CHAPTER 23 Resources, styles, and control templates
 <Border CornerRadius="20,7,20,7" BorderThickness="4,2,4,2"
 BorderBrush="LimeGreen" Padding="10">
 <ItemsPresenter />
 </Border>
 </ControlTemplate>
 </ListBox.Template>
 <ListBox.ItemsPanel>
 <ItemsPanelTemplate>
 <StackPanel Orientation="Horizontal" />
 </ItemsPanelTemplate>
 </ListBox.ItemsPanel>
 <ListBox.Items>
 <ListBoxItem>
 <TextBlock Padding="5">Item 1</TextBlock>
 </ListBoxItem>
 <ListBoxItem>
 <TextBlock Padding="5">Item 2</TextBlock>
 </ListBoxItem>
 <ListBoxItem>
 <TextBlock Padding="5">Item 3</TextBlock>
 </ListBoxItem>
 </ListBox.Items>
</ListBox>

This example uses a Horizontal StackPanel as the ItemsPanel B to arrange the
Items in the ListBox horizontally. It’s highly likely that you’ll only use a StackPanel
as an ItemsPanel. Although you can technically use another Panel element, the other
options require actual code. This code will be based entirely on your particular situa-
tion, so we won’t cover that topic in this section.

 The ControlTemplate class enables you to redefine the way a Control looks. This
new definition can use the target Control property values through a TemplateBind-
ing. When it comes to displaying the Content of a ContentControl, you should use a
ContentPresenter within a ControlTemplate. If this ControlTemplate is associated
with an ItemsControl, you may need to use an ItemsPresenter to show the Items.
These Items can be rendered in new ways thanks to the ItemsPanel property.

 Once you’ve settled on a ControlTemplate, you may want to use it across multiple
controls. Thankfully, Silverlight makes it easy to create reusable templates.

23.3.2 Creating reusable templates

Creating individual templates can be useful when you want to give individualized atten-
tion to your controls; templates can also be useful for creating a truly unique yet con-
sistent user experience. To help make it easier to deliver a consistent user experience,
Silverlight allows you to define a ControlTemplate as part of a Style (see listing 23.18).

Result:

Listing 23.18 Using a ControlTemplate within a Style

B Horizontal
StackPanel
Licensed to Devon Greenway <devon.greenway@gmail.com>

691Dealing with visual states
XAML:
<StackPanel x:Name="LayoutRoot" Background="White" Margin="10" Width="170">
 <StackPanel.Resources>
 <Style x:Key="buttonStyle" TargetType="Button">
 <Setter Property="Template">
 <Setter.Value>
 <ControlTemplate>
 <Ellipse Fill="#FF2103BA" Stroke="Black" StrokeThickness="2"
 Height="{TemplateBinding Height}"
 Width="{TemplateBinding Width}" />
 </ControlTemplate>
 </Setter.Value>
 </Setter>
 </Style>
 </StackPanel.Resources>
 <Button x:Name="myButton1" Height="30" Width="30"
 Style="{StaticResource buttonStyle}" />
 <Button x:Name="myButton2" Height="70" Width="70"
 Style="{StaticResource buttonStyle}" />
</StackPanel>

This example shows a ControlTemplate defined within a Style B. Though this is a
simple template, you can also define a ControlTemplate as complex as you need it to
be. You can even go as far as defining a ControlTemplate that considers visual states.

23.4 Dealing with visual states
Templates give you the flexibility to completely dictate what a Control looks like, but
the template explanation given in section 23.3 is only useful for defining the default
look of a Control. This default look represents the Control’s normal state. In reality,
most controls have multiple states. For instance, a Button can be in a pressed or dis-
abled state. To enable you to manage what a Control looks like in such a state, Silver-
light provides something known as the VisualStateManager.

 The VisualStateManager is an element that manages the states and the transition-
ing between states. This element belongs to the System.Windows namespace. Because
the VisualStateManager is in this namespace, it’s ready to be utilized in your Control
definitions. Before you can fully utilize the VisualStateManager, you must gain an
understanding of components involved in state and transition management. Once
you understand these components, you can leverage the power of the VisualStateM-
anager itself. As you’ll see in the conclusion of this section, this power can be wielded
across multiple elements with the help of a Style.

23.4.1 Understanding the components

The VisualStateManager relies on a variety of components to do its job. These com-
ponents make up something referred to as the parts and states model. This model is
designed to separate a Control element’s appearance from its behavior, ensuring that
you can customize the visual pieces of a Control without having to change its underly-
ing logic. To enable this feat, the parts and states model relies on three components:
states, transitions, and parts.

B

ControlTemplate
Licensed to Devon Greenway <devon.greenway@gmail.com>

692 CHAPTER 23 Resources, styles, and control templates
STATES

A state is used to reflect a particular aspect of a control. For instance, the Button has
one state that defines what it looks like by default. If a user moves the mouse over this
Button, it’ll enter another state. If the Button is pressed, it’ll change to yet another
state. These three states are shown in table 23.1.

This figure shows three of the states exposed by the Button class. In reality, the Button
class has many more states. These states are exposed to the VisualStateManager with
the help of the TemplateVisualStateAttribute. This attribute can be used by a Con-
trol to identify the states a Control can be in. In addition, because a Control can
simultaneously be in multiple states, the TemplateVisualStateAttribute exposes the
group that a state belongs to. The states and groups available on the Button class are
listed in table 23.2.

Each state is identified by a Name property, which is part of the TemplateVisualState-
Attribute. This property is complemented by another called GroupName, which deter-
mines the grouping for the state. The reason for this property is to logically group
together visual states. This is necessary because a Control can be in multiple states at
the same time. For instance, a Button can simultaneously be in a Focused state as well
as a Pressed state because the Pressed state is in a different group than the Focused
state. Perhaps a better example is a CheckBox being in a Checked state while also being
in a Disabled state. Either way, the main thing to understand is that groups are exclu-
sive—a Control can be in multiple states as long as those states belong to different
groups. States that are part of the same group have the ability to transition between
one another.

State GroupName

Disabled CommonStates

MouseOver CommonStates

Normal CommonStates

Pressed CommonStates

Focused FocusStates

Unfocused FocusStates

Normal MouseOver Pressed

Table 23.1 Several states of a Button. Each state has a slightly different visual appearance.

Table 23.2 The states and
groups of the Button class
Licensed to Devon Greenway <devon.greenway@gmail.com>

693Dealing with visual states
TRANSITIONS

A transition defines the way a Control looks as it changes from one state to another.
This change is represented as a Storyboard, so you’re free to implement a smooth
shift between two states. You can even do this at a fine granular level because of the
inclusion of parts.
PARTS

A part represents a specific element within a ControlTemplate. A part is generally used
when some underlying logic may need to change an area of a ControlTemplate. For
instance, the thumb on a Slider will change any time a user clicks the track. This
event will cause some underlying logic to
move the position of the thumb. Both the
thumb and track are defined as parts, as
shown in figure 23.3.

 This figure shows the two main parts of a
Slider, which has more parts. These parts
are defined by the TemplatePartAttrib-
ute, which enables you to specify the name and type of a UIElement that represents a
part within a Control. This attribute is used to transmit data about the element that
represents the part within the parts and states model. Now that this model has been
explained, let’s look at how to leverage it with the VisualStateManager.

23.4.2 Leveraging the VisualStateManager

The VisualStateManager is used by a ControlTemplate to manage the change
between states. This change can be used to generate two different kinds of effects.
The first is known as a state-based effect, which can be useful for doing something such
as creating an enlarged Button if a user moves the mouse over it. The other type is
known as a transitioning effect, which is useful for creating a fluid interface for controls
that may change between states of the same group. Both kinds of effects will be cov-
ered in this section.
CREATING STATE-BASED EFFECTS

A state-based effect is a transition that occurs at the moment a Control enters a Visu-
alState. When a Control enters this state, the Storyboard associated with the Visu-
alState begins. This Storyboard is defined as part of a ControlTemplate. The
Storyboard can be useful for creating a glowing effect or a ballooning effect (see list-
ing 23.19).

XAML:
<Button x:Name="myButton" Width="75" Height="75" Content="Push Me">
 <Button.Template>
 <ControlTemplate TargetType="Button">
 <Grid RenderTransformOrigin=".5,.5">
 <Grid.RenderTransform>

Listing 23.19 Creating a Button that enlarges when a user hovers over it

Template

Figure 23.3 The required parts of a Slider
are the thumb and the track. The actual
appearance of the slider isn’t important as long
as it has the parts that form the UI contract.
Licensed to Devon Greenway <devon.greenway@gmail.com>

694 CHAPTER 23 Resources, styles, and control templates
 <ScaleTransform x:Name="myTransform"/>
 </Grid.RenderTransform>
 <Ellipse x:Name="myEllipse" RenderTransformOrigin=".5,.5"
 Height="{TemplateBinding Height}"
 Width="{TemplateBinding Width}">
 <Ellipse.Fill>
 <RadialGradientBrush GradientOrigin="0.3,0.2">
 <RadialGradientBrush.RelativeTransform>
 <TransformGroup>
 <ScaleTransform CenterX="0.5" CenterY="0.5"
 ScaleX="1.075" ScaleY="1.141"/>
 <SkewTransform CenterX="0.5" CenterY="0.5"/>
 <RotateTransform CenterX="0.5" CenterY="0.5"/>
 <TranslateTransform X="-0.04" Y="0.07"/>
 </TransformGroup>
 </RadialGradientBrush.RelativeTransform>
 <GradientStop Color="#FFD9D9D9" Offset="0.004" />
 <GradientStop Color="#FF2103BA" Offset="1" />
 </RadialGradientBrush>
 </Ellipse.Fill>
 </Ellipse>
 <ContentPresenter HorizontalAlignment="Center"
 VerticalAlignment="Center" />
 <VisualStateManager.VisualStateGroups>
 <VisualStateGroup x:Name="CommonStates">
 <VisualState x:Name="MouseOver">
 <Storyboard>
 <DoubleAnimation From="1.0" To="1.25"
 Storyboard.TargetName="myTransform"
 Storyboard.TargetProperty="ScaleX" />
 <DoubleAnimation From="1.0" To="1.25"
 Storyboard.TargetName="myTransform"
 Storyboard.TargetProperty="ScaleY" />
 </Storyboard>
 </VisualState>
 </VisualStateGroup>
 </VisualStateManager.VisualStateGroups>
 </Grid>
 </ControlTemplate>
 </Button.Template>
</Button>

This listing defines an effect that occurs when a user triggers the MouseOver Visual-
State for the Button B. All of the items in this example have been described in the
previous chapters. You should note three main things. First, the VisualStateGroups
element tells the ControlTemplate that some custom Storyboard is going to be used
for a state. Second, this state belongs to a predefined group, which is described by the
VisualStateGroup element. Third, the VisualState items associated with this group
are detailed inside the element. This approach is useful for creating effects when a
Control enters a state. But the effect created in listing 23.19 would be better defined
as a VisualStateTransition.

Visual
states

B

Licensed to Devon Greenway <devon.greenway@gmail.com>

695Dealing with visual states
DEFINE TRANSITIONING EFFECTS

In addition to state-based transitions, the VisualStateManager enables you to define
a transition between states. You can trigger this transition in code by calling the
GoToState method or by using a DataStateBehavior or GoToStateAction behavior.
We’ll use GoToState here because it’s the most useful to control authors.

 To define a transition in XAML, you must use an element called VisualStateTran-
sition, which allows you to associate a Storyboard with a change between two states.
The beginning state is identified by a string property named From. The state being
transitioned to is specified by a string property called To. Listing 23.20 defines a tran-
sition that changes the Button in the previous listing back to a Normal state.

XAML:
<Button x:Name="myButton" Width="75" Height="75" Content="Push Me">
 <Button.Template>
 <ControlTemplate TargetType="Button">
 <Grid RenderTransformOrigin=".5,.5">
 <Grid.RenderTransform>
 <ScaleTransform x:Name="myTransform"/>
 </Grid.RenderTransform>
 <Ellipse x:Name="myEllipse" RenderTransformOrigin=".5,.5"
 Height="{TemplateBinding Height}"
 Width="{TemplateBinding Width}">
 <Ellipse.Fill>
 <RadialGradientBrush GradientOrigin="0.3,0.2">
 <RadialGradientBrush.RelativeTransform>
 <TransformGroup>
 <ScaleTransform CenterX="0.5" CenterY="0.5"
 ScaleX="1.075" ScaleY="1.141"/>
 <SkewTransform CenterX="0.5" CenterY="0.5"/>
 <RotateTransform CenterX="0.5" CenterY="0.5"/>
 <TranslateTransform X="-0.04" Y="0.07"/>
 </TransformGroup>
 </RadialGradientBrush.RelativeTransform>
 <GradientStop Color="#FFD9D9D9" Offset="0.004" />
 <GradientStop Color="#FF2103BA" Offset="1" />
 </RadialGradientBrush>
 </Ellipse.Fill>
 </Ellipse>
 <ContentPresenter HorizontalAlignment="Center"
 VerticalAlignment="Center" />
 <VisualStateManager.VisualStateGroups>
 <VisualStateGroup x:Name="CommonStates">
 <VisualState x:Name="Normal">
 <Storyboard>
 <DoubleAnimation To="1.0"
 Storyboard.TargetName="myTransform"
 Storyboard.TargetProperty="ScaleX" />
 <DoubleAnimation To="1.0"
 Storyboard.TargetName="myTransform"
 Storyboard.TargetProperty="ScaleY" />

Listing 23.20 Creating a Button that transitions when a user hovers or leaves it

B

C

Licensed to Devon Greenway <devon.greenway@gmail.com>

696 CHAPTER 23 Resources, styles, and control templates
 </Storyboard>
 </VisualState>
 <VisualState x:Name="MouseOver">
 <Storyboard>
 <DoubleAnimation To="1.25"
 Storyboard.TargetName="myTransform"
 Storyboard.TargetProperty="ScaleX" />
 <DoubleAnimation To="1.25"
 Storyboard.TargetName="myTransform"
 Storyboard.TargetProperty="ScaleY" />
 </Storyboard>
 </VisualState>
 <VisualStateGroup.Transitions>
 <VisualTransition From="Normal" To="MouseOver">
 <Storyboard Duration="00:00:01">
 <DoubleAnimation From="1.0" To="1.25"
 Storyboard.TargetName="myTransform"
 Storyboard.TargetProperty="ScaleX" />
 <DoubleAnimation From="1.0" To="1.25"
 Storyboard.TargetName="myTransform"
 Storyboard.TargetProperty="ScaleY" />
 </Storyboard>
 </VisualTransition>
 <VisualTransition From="MouseOver" To="Normal">
 <DoubleAnimation From="1.25" To="1.0"
 Storyboard.TargetName="myTransform"
 Storyboard.TargetProperty="ScaleX" />
 <DoubleAnimation From="1.25" To="1.0"
 Storyboard.TargetName="myTransform"
 Storyboard.TargetProperty="ScaleY" />
 </Storyboard>
 </VisualTransition>
 </VisualStateGroup.Transitions>
 </VisualStateGroup>
 </VisualStateManager.VisualStateGroups>
 </Grid>
 </ControlTemplate>
 </Button.Template>
</Button>

This listing shows the definitions of two VisualTransition elements. The first Visu-
alTransition scales the Button up as it changes from the Normal VisualState to the
MouseOver VisualState D. The second VisualTransition scales the Button down as
it goes from the MouseOver VisualState back to the Normal VisualState E. These
two transitions are necessary because, otherwise, the Button would be stuck looking
like it did in a MouseOver state. There are two other interesting tidbits in this example.

 First, you’ll also notice the addition of the two VisualState definitions C. These
are necessary to keep the transition animations in place. Without these definitions,
the transition animations would be lost. The other interesting piece in this example is
the use of the VisualStateGroup element B. You can only create transitions between
states that belong to the same group because, as we stated earlier, a Control can be in
multiple states as long as those states belong to different groups. Creating transitions

C

D

E

Licensed to Devon Greenway <devon.greenway@gmail.com>

697Summary
between states empowers you to create deeper and richer controls, so it’s only natural
to want to share these effects with multiple Control instances.

23.5 Sharing your visual states
Because the visual states you create with the VisualTransition and VisualState ele-
ments are part of a ControlTemplate, you can define them as part of a Style. For the
sake of completeness, listing 23.21 shows the transitions from the previous example
defined as part of a Style.

XAML:
<Grid x:Name="LayoutRoot" Background="White">
 <Grid.Resources>
 <Style x:Key="buttonStyle" TargetType="Button">
 <Setter Property="Template">
 <Setter.Value>
 <ControlTemplate TargetType="Button">
 ...
 </ControlTemplate>
 </Setter.Value>
 </Setter>
 </Style>
 </Grid.Resources>
 <Button x:Name="myButton" Width="75" Height="75" Content="Push Me"
 Style="{StaticResource buttonStyle}" />
</Grid>

This listing shows how the previously defined Button ControlTemplate can be
included in a Style. This ControlTemplate uses the VisualState and VisualTran-
sition elements from listing 23.20. This example puts everything from this chapter
together. The main thing to note is that you can leverage the VisualStateManager
within a Style declaration. This is an exciting news because there can be a lot of
XAML involved in creating effects for the various states and transitions of a Control.
These states and transitions are part of something known as the parts and states
model, which is supported by Microsoft Expression Blend. Because of this
convenience, you’re empowered to create some of the richest controls available on
the Internet.

23.6 Summary
Resources in Silverlight come in many flavors. The ones most associated with the word
resource are those we put in XAML, inside resource dictionaries. Those dictionaries can
be parts of controls in app.xaml or in separate files merged into existing resource dic-
tionaries. Resources defined this way can be just about anything from data source or
view model classes, to styles, to brush and color definitions.

 The most common uses of XAML resources are styles and control templates. Styles
provide a way to factor out the common property settings for controls and store them

Listing 23.21 Creating a button that enlarges when hovered over

Visual state
info goes here
Licensed to Devon Greenway <devon.greenway@gmail.com>

698 CHAPTER 23 Resources, styles, and control templates
in a location where they can be shared among many instances. Building upon styles
are control templates. Control templates go a step beyond what you can do with the
public properties affected with styles; they let you completely change the visual repre-
sentation of a control including its visual states and transitions.

 Another common type of resource is a file resource, accessed as a loose file,
embedded into the compiled DLL or copied into the zipped-up .xap. You’ll use these
whenever you want a file to be delivered with the application itself.

 Understanding resources, styles, templates, and visual states are all prerequisites to
building your own controls. We’ve covered user controls previously. In chapter 24
we’ll take on building truly lookless controls using everything we’ve learned so far.
Licensed to Devon Greenway <devon.greenway@gmail.com>

Creating
 panels and controls
The power of templating in Silverlight means we rarely have to create custom pan-
els and controls. More often than not, an existing element provides the behavior
we need and a custom template will provide the appearance. But there are times
when you really need something that behaves differently than any of the stock pan-
els or controls. For those cases, Silverlight provides a way for you to create your own
fully featured panels and controls, supporting all the same things that the built-in
ones support.

 Custom panels enable you to create your own specialized layout algorithms. For
example, you may want a panel that lays out its children using concentric circles
rather than a box model. Implementing custom panels also has a nice educational

This chapter covers
■ Creating a custom panel
■ Exploring measure and arrange layout steps
■ Creating a custom control
■ Supporting templating
■ Implementing visual states
699

Licensed to Devon Greenway <devon.greenway@gmail.com>

700 CHAPTER 24 Creating panels and controls
benefit: they help you visualize and understand the layout process. Once you’ve cre-
ated a few panels of your own, you’ll find you better understand how the built-in ones
work, and can better debug issues.

 Due to the power of templating and the use of UserControls, custom controls are
more rare than custom panels. But there will be times when a custom control is
exactly what you need to differentiate your application or support a critical bit of func-
tionality. Silverlight supports the creation of custom controls, including full templat-
ing and visual state management, making it a cinch to create your own.

 In this chapter, we’ll start by creating a custom panel. As you may have guessed, it’ll
be a panel that lays out its children in concentric circles or orbits. We’ll use that panel
to learn how to manage measuring and arranging, and how to bend the layout cycle to
our will. With the custom panel completed, we’ll turn our attention to creating a cus-
tom control. This will be an expander control, with support for a header and content,
all of which can be fully styled and templated.

24.1 Creating a custom panel
In chapter 6, I covered the layout system. In that system, the primary responsibility
for positioning and sizing controls falls to the panel the controls reside in. Some pan-
els, such as the Canvas, position using simple Left and Top coordinates. Others, such
as the StackPanel, lay out children based on a series of measurements and a place-
ment algorithm.

 In this section, we’re going to build a panel that doesn’t currently exist in Silver-
light: the OrbitPanel. This Panel will lay out elements in a circle rather than the hor-
izontal and vertical options available with the stock StackPanel or the box layout of a
Grid. The new panel in action can be seen in figure 24.1.

Figure 24.1 The
OrbitPanel in action. The
inner (first) orbit has nine
buttons. The outer (second)
orbit has five buttons.
Licensed to Devon Greenway <devon.greenway@gmail.com>

701Creating a custom panel
The OrbitPanel control supports an arbitrary number (greater than zero) of orbits.
Each orbit is a concentric circle starting at the center point. The amount of space allo-
cated to an orbit is a function of the number of orbits and the size of the panel itself.
If there are many orbits, the space will be narrower.

 The layout is done starting at angle 0 and equally dividing the remaining degrees
by the number of items in the specific orbit. Items added to the panel may specify an
orbit via the use of an attached property.

 In this section, we’ll build this panel, starting with project creation, including the
addition of a library project specifically made for this panel and for the custom con-
trol we’ll build later in the chapter. We’ll create a dependency property as well as an
attached property, both because they’re useful and because creating them is a neces-
sary skill for panel and control builders. From there, we’ll spend most of the time
looking at how to perform the measure and arrange steps described in chapter 6 to
layout the control. We’ll wrap up this section with a guide for some potential enhance-
ments should you desire to take the panel further on your own.

24.1.1 Project setup

For this example, create a new Silverlight project. I called mine Chapter24Controls.
Once the solution is up with the Silverlight application and test website, add another
project; this second project will be a Silverlight class library named ControlsLib.
Though I could’ve put the custom panel into the same project as the Silverlight appli-
cation, that’s almost never done in real-world scenarios.

 From the Silverlight application, add a project reference to the ControlsLib proj-
ect. Do this by right-clicking the Silverlight application, selecting Add Reference, navi-
gating to the Projects tab, and selecting the project. While you’re in the project,
remove the default class1.cs file that came with the template.

 With the project structure in place, let’s work on the OrbitPanel class.

24.1.2 The OrbitPanel class

The implementation of our panel will be in a single class named OrbitPanel. Inside
the ControlsLib project, add a new class named OrbitPanel. This class will contain all
the code for the custom panel. Derive the class from the Panel base type as shown
here:

namespace ControlsLib
{
 public class OrbitPanel : Panel
 {
 }
}

Panel is the base type for all layout panels in Silverlight, including the Canvas, Grid,
and StackPanel. The class itself derives directly from FrameworkElement, so it’s a
pretty low-level class, lacking the extras you’d find in something like Control. What it
does include is important to Panels: the Children property.
Licensed to Devon Greenway <devon.greenway@gmail.com>

702 CHAPTER 24 Creating panels and controls
 The Children property is a UIElementCollection—it’s a specialized collection of
child elements placed inside this panel. This is the key property that makes a Panel a
Panel.

 In addition to the Children property, the Panel class provides a Background brush
property and a boolean IsItemsHost, which is used in concert with the ItemsControl
class. Deriving from Panel allows you to substitute your panel for the StackPanel in a
ListBox, for example.

 The OrbitPanel class will have two dependency properties used to control how it
functions.

24.1.3 Properties

The OrbitPanel class will need to have two properties. The first, Orbits, will control
the number of concentric circles, or orbits, available for placing items. The second is
an attached property, Orbit, to be used on items placed into the panel; it controls
which circle the item is to be placed in.
ORBITS DEPENDENCY PROPERTY

In general, controls and panels should expose properties as dependency properties. If
there’s any possibility that they’ll be used in binding or animation, a dependency
property is the way to go. In fact, when the Silverlight team exposes properties as
straight CLR properties, more often than not, they get feedback that it should’ve been
a dependency property because a customer or someone in the community tried to use
it in binding or animation.

 Dependency properties are specified at the class level using a static property and
DependencyProperty.Register call. For use in code and XAML, they’re also wrapped
with a standard CLR property wrapper that internally uses the dependency property as
the backing store. Optionally, the dependency property may specify a callback func-
tion to be used when the property changes.

 Listing 24.1 shows the complete definition for the Orbits property, with all three
of these items in place.

public int Orbits
{
 get { return (int)GetValue(OrbitsProperty); }
 set { SetValue(OrbitsProperty, value); }
}

public static readonly DependencyProperty OrbitsProperty =
 DependencyProperty.Register("Orbits",
 typeof(int),
 typeof(OrbitPanel),
 new PropertyMetadata(1, OnOrbitsChanged));

private static void OnOrbitsChanged(DependencyObject d,
 DependencyPropertyChangedEventArgs e)
{

Listing 24.1 The Orbits property

CLR wrapper
property
Licensed to Devon Greenway <devon.greenway@gmail.com>

703Creating a custom panel
 if ((int)e.NewValue < 1)
 {
 throw new ArgumentException(
 "Orbits must be greater than or equal to 1.");
 }
}

The first thing you’ll notice in this code is the Orbits CLR property. This is a standard
CLR wrapper, used for simple property access in code and required for property access
in XAML. The property code uses the GetValue and SetValue methods, provided by
DependencyObject, to access the backing dependency property. Though not required
at a compiler or framework level (unless you want to use the property in XAML), pro-
viding the CLR wrapper is a standard practice when defining dependency properties.

TIP Visual Studio 2010 includes a snippet for declaring dependency proper-
ties for WPF. With a slight change to rename UIPropertyMetadata to Prop-
ertyMetadata in the last parameter, this works well for Silverlight
applications and saves you from remembering the exact syntax.

The next chunk of code in this listing defines and registers the dependency property.
The single line both defines the property and registers it with the property system.
The first parameter is the string name of the property. By convention, the name of the
dependency property variable is this string plus the word Property. The second parame-
ter is the type of the property itself—in this case, an int. The third parameter is the
type you’re registering the property on. The fourth and final parameter is a Proper-
tyMetadata object.

 The PropertyMetadata object can be used to specify a default value, a property
changed callback, or as seen here, both. When providing the default property value,
be very specific with the type. For example, a property value of 1 won’t work with a
double type; you must specify 1.0 or face the wrath of an obscure runtime error.

 The property changed callback function enables you to hook into the process to
perform actions when the dependency property changes. Note that you’d never want
to do this inside the CLR wrapper, as that would only catch a few of the scenarios
under which the property could change. The callback function takes in an instance of
the object that owns the property, as well as an EventArgs-derived class that has both
the new and old values available for inspection.

 All three pieces—the CLR wrapper, the dependency property definition and reg-
istration, and the callback function—make up the implementation of a single depen-
dency property in Silverlight. Though verbose, the benefits provided by dependency
properties are great, as seen throughout this book. When creating your own prop-
erties for panels and controls, err on the side of implementing them as depen-
dency properties.

 A specialized type of DependencyProperty, the attached property is used when you
want to provide a way to enhance the properties of another object. That’s exactly what
we need to do with the Orbit property.
Licensed to Devon Greenway <devon.greenway@gmail.com>

704 CHAPTER 24 Creating panels and controls
ORBIT ATTACHED PROPERTY

Each item added to the OrbitPanel needs to be assigned to a specific circle or orbit.
This is similar in concept to how a Grid needs items to specify rows and columns, or
how the Canvas needs Left and Top for each element. The way those properties are
specified is to use the type name (Grid or Canvas) and the property name together in
the element, like this:

<TextBox Grid.Row="0" Grid.Column="1" />
<TextBox Canvas.Left="100" Canvas.Top="150" />

In these examples, the TextBox doesn’t contain a Row, Column, Left, or Top property;
instead it relies on another type (the Grid or Canvas) to attach them. We’ll do the
same with the Orbit property of the OrbitPanel. Listing 24.2 shows the implementa-
tion of the Orbit attached property in the OrbitPanel class.

public static int GetOrbit(DependencyObject obj)
{
 return (int)obj.GetValue(OrbitProperty);
}

public static void SetOrbit(DependencyObject obj, int value)
{
 obj.SetValue(OrbitProperty, value);
}

public static readonly DependencyProperty OrbitProperty =
 DependencyProperty.RegisterAttached("Orbit",
 typeof(int),
 typeof(OrbitPanel),
 new PropertyMetadata(0));

Note that attached properties don’t use a CLR wrapper. Instead, you provide Get and
Set methods to allow the properties to be used in code and XAML.

 The RegisterAttached method is similar to the Register method seen in listing
24.1, with the parameters being identical. In this case, I didn’t use a callback method,
but instead provided a default value of zero.

 With this property in place, we’ll now be able to write markup like this:

<TextBox x:Name="FirstNameField" clib:OrbitPanel.Orbit="1" />

(The namespace declaration clib is assumed to be valid in the XAML file in which this
bit of markup lives.) To inspect the value of the attached property from code, use the
Get function defined in listing 24.2:

if (OrbitPanel.GetOrbit(FirstNameField) > 0) ...

In this way, we can now set and retrieve properties associated with objects, without
those objects having any provision for the properties in the first place. This is a power-
ful way to augment types to track additional data.

Listing 24.2 The Orbit attached property in the OrbitPanel class
Licensed to Devon Greenway <devon.greenway@gmail.com>

705Creating a custom panel
 Dependency properties—and the special type of dependency property, the
attached property—are essential and often use parts of the property system in Silver-
light. When creating your own panels and controls, you’ll almost certainly rely on
them as the primary means of providing “knobs” your users can use to control the
behavior of your custom classes.

 In the case of the OrbitPanel, both of these properties will come into play when
performing our custom layout.

24.1.4 Custom layout

The primary responsibility of a panel is the layout of its child controls. In truth, this is
what makes a panel a panel; a panel that performed no custom layout wouldn’t be
particularly useful.

 As we learned in chapter 6, the layout pass involves two primary steps: measure and
arrange. The measure step measures all the children of the panel, as well as the over-
all panel itself. The arrange step performs final placement of the children and sizing
of the panel. As the authors of a custom panel, it’s our responsibility to provide this
critical functionality. Listing 24.3 shows the measure step, implemented in the Mea-
sureOverride method of the OrbitPanel class.

protected override Size MeasureOverride(Size availableSize)
{
 var sortedItems = SortElements();

 double max = 0.0;

 foreach (List<UIElement> orbitItems in sortedItems)
 {
 if (orbitItems.Count > 0)
 {
 foreach (UIElement element in orbitItems)
 {
 element.Measure(availableSize);

 if (element.DesiredSize.Width > max)
 max = element.DesiredSize.Width;

 if (element.DesiredSize.Height > max)
 max = element.DesiredSize.Height;
 }
 }
 }

 Size desiredSize = new Size(max * Orbits * 2, max * Orbits * 2);

 if (double.IsInfinity(availableSize.Height) ||
 double.IsInfinity(availableSize.Width))

 return desiredSize;
 else
 return availableSize;
}

Listing 24.3 The measure step

Measure
each child

Return panel
measurements
Licensed to Devon Greenway <devon.greenway@gmail.com>

706 CHAPTER 24 Creating panels and controls
The measure pass starts by getting a list of all items, grouped by their orbit. The code
for this function, SortElements, is included in listing 24.5. I loop through each orbit,
then through each item in the orbit, and measure that item. I get the largest dimen-
sion (either width or height) from that element and compare it to the current max.
This is admittedly a bit of a hack, as the size allotted to each item is, in theory, a pie
slice, not a rectangle. In addition, due to the simplified nature of the orbit sizing, I
didn’t need to group the children by orbit. Nevertheless, it’ll work for this example.

 Once I’ve looped through every child item, I then calculate the desired size for
this panel. That is calculated by taking the number of orbits, multiplying by two to
account for the circular nature, then multiplying by the maximum item size. If the
original size passed in was unlimited, I return the desired size; otherwise, I return the
sized provided to the control.

 The most important step in this function is the step that measures each child.
That’s what sets the desired size for each child in preparation for the arrange step
shown in listing 24.4.

protected override Size ArrangeOverride(Size finalSize)
{
 var sortedItems = SortElements();

 double orbitSpacing = CalculateOrbitSpacing(finalSize);

 foreach (List<UIElement> orbitItems in sortedItems)
 {
 int count = orbitItems.Count;

 if (count > 0)
 {
 double circumference = 2 * Math.PI * orbitSpacing * (i + 1);
 double slotSize = Math.Min(orbitSpacing, circumference / count);
 double maxSize = Math.Min(orbitSpacing, slotSize);
 double angleIncrement = 360 / count;
 double currentAngle = 0;

 Point centerPoint =
 new Point(finalSize.Width / 2, finalSize.Height / 2);

 foreach (UIElement element in orbitItems)
 {
 double angle = Math.PI / 180 * (currentAngle - 90);

 double left = orbitSpacing * (i + 1) * Math.Cos(angle);
 double top = orbitSpacing * (i + 1) * Math.Sin(angle);

 Rect finalRect = new Rect(
 centerPoint.X + left - element.DesiredSize.Width / 2,
 centerPoint.Y + top - element.DesiredSize.Height / 2,
 element.DesiredSize.Width,
 element.DesiredSize.Height);

 element.Arrange(finalRect);

Listing 24.4 The arrange step

Place
child
in final
location
Licensed to Devon Greenway <devon.greenway@gmail.com>

707Creating a custom panel
 currentAngle += angleIncrement;
 }
 }
 }

 return base.ArrangeOverride(finalSize);
}

The arrange step is where the real layout happens. It’s in this function that the indi-
vidual children are placed in their final locations. This is the function that requires
digging way back to 10th or 11th grade to remember that trigonometry.

 This function, like the previous one, starts by sorting the children into their
respective orbits. This is done via the SortElements function, the body of which is
shown in listing 24.5. I then run through each orbit, calculating the size of the circle
and the angular offset of each item. The angle chosen is based on the number of
items in that orbit; it’s 360 degrees evenly divided by the item count.

 Then, I calculate the left and top position given the angle. This left and top will
actually be used for the center point of the element being placed. With that calcu-
lated, I call Arrange on the element to move it to its final location.

 Listings 24.3 and 24.4 relied on common functions. The code for both, Calcula-
teOrbitSpacing and SortElements, is included in listing 24.5, wrapping up the code
for the OrbitPanel class.

private double CalculateOrbitSpacing(Size availableSize)
{
 double constrainingSize = Math.Min(
 availableSize.Width, availableSize.Height);

 double space = constrainingSize / 2;

 return space / Orbits;
}

private List<UIElement>[] SortElements()
{
 var list = new List<UIElement>[Orbits];

 for (int i = 0; i < Orbits; i++)
 {
 if (i == Orbits - 1)
 list[i] = (from UIElement child in Children
 where GetOrbit(child) >= i
 select child).ToList<UIElement>();
 else
 list[i] = (from UIElement child in Children
 where GetOrbit(child) == i
 select child).ToList<UIElement>();
 }

 return list;
}

Listing 24.5 Supporting functions
Licensed to Devon Greenway <devon.greenway@gmail.com>

708 CHAPTER 24 Creating panels and controls
CalculateOrbitSpacing uses the size of the panel to figure out the spacing of the
individual concentric circles. This is done by evenly dividing up the total space. The
SortElements function takes each of the children and puts it into a list by orbit.

 Note that the SortElements function has special logic to group any elements in an
invalid orbit into the highest orbit. It doesn’t handle any cases where a negative
(invalid) orbit number was specified, but that’s easy enough to add.

 These three listings make up the full implementation of the OrbitPanel class.
With the code in place, the last thing to do is to test the panel on a page.
TEST MARKUP

To test the new panel, we’ll use a simple bit of markup that creates a number of but-
ton controls and places them into two different orbits. A third orbit is defined but not
used. Listing 24.6 shows the markup to be placed in MainPage.xaml. Before adding
this code, build the project to get the ControlsLib namespace to resolve and the
OrbitPanel IntelliSense to show.

<Grid x:Name="LayoutRoot" Background="White">
 <Grid.Resources>
 <Style TargetType="Button">
 <Setter Property="Width" Value="100" />
 <Setter Property="Height" Value="30" />
 </Style>
 </Grid.Resources>
 <clib:OrbitPanel Orbits="3">
 <Button Content="Button 1" Background="Orange"
 clib:OrbitPanel.Orbit="0" />
 <Button Content="Button 2" Background="Orange"
 clib:OrbitPanel.Orbit="0" />
 <Button Content="Button 3" Background="Orange"
 clib:OrbitPanel.Orbit="0" />
 <Button Content="Button 4" Background="Orange"
 clib:OrbitPanel.Orbit="0" />
 <Button Content="Button 5" Background="Orange"
 clib:OrbitPanel.Orbit="0" />
 <Button Content="Button 6" Background="Orange"
 clib:OrbitPanel.Orbit="0" />
 <Button Content="Button 7" Background="Orange"
 clib:OrbitPanel.Orbit="0" />
 <Button Content="Button 8" Background="Orange"
 clib:OrbitPanel.Orbit="0" />
 <Button Content="Button 9" Background="Orange"
 clib:OrbitPanel.Orbit="0" />

 <Button Content="Button 10" Background="Blue"
 clib:OrbitPanel.Orbit="1" />
 <Button Content="Button 11" Background="Blue"
 clib:OrbitPanel.Orbit="1" />
 <Button Content="Button 12" Background="Blue"
 clib:OrbitPanel.Orbit="1" />
 <Button Content="Button 13" Background="Blue"

Listing 24.6 Using the OrbitPanel from XAML

Panel with
3 orbits
Licensed to Devon Greenway <devon.greenway@gmail.com>

709Creating a custom panel
 clib:OrbitPanel.Orbit="1" />
 <Button Content="Button 14" Background="Blue"
 clib:OrbitPanel.Orbit="1" />
 </clib:OrbitPanel>
</Grid>

This listing produces the image from the opening of this section (figure 24.1), with
two orbits of buttons. In order for this listing to work, you must define the following
namespace:

xmlns:clib="clr-namespace:ControlsLib;assembly=ControlsLib"

Panels are all about measuring and arranging their children. Measuring is used to ask
each child what size it wants to be, and to provide the overall size for the panel.
Arranging is used to calculate the final location of each of the child elements.

 This panel has been a pretty simple implementation both for space reasons and to
keep to the essentials of what we need to learn. If you want to take it further, there are
some enhancements I’d recommend.

24.1.5 Enhancements

The panel we created in this section is a good starting point for your own panel
design. There are a number of places you could take this panel. Three enhancements
I’d recommend are using start and stop angles, defining orbits using a grid-like
approach, and item clipping.
START AND STOP ANGLES

Currently the panel starts calculating layout at zero degrees and completes at 360
degrees. A simple change would be to provide dependency properties for StartAngle
and StopAngle, and use those in the layout calculation. This would allow arcs of con-
trols rather than full orbits.
DEFINING ORBITS

Another potential change would be to make the orbit definitions more flexible.
Rather than only providing a number of orbits, you could use orbit definitions in the
same way the Grid panel uses RowDefinitions. An example of the markup might look
like this:

<clib:OrbitPanel>
 <clib:OrbitPanel.OrbitDefinitions>
 <clib:OrbitDefinition StartAngle="25" StopAngle="40" Width="100" />
 <clib:OrbitDefinition StartAngle="340" StopAngle="270" Width="Auto" />
 <clib:OrbitDefinition StartAngle="90" StopAngle="180" Width="*" />
 </clib:OrbitPanel.OrbitDefinitions>
 ...
</clib:OrbitPanel>

This would enable you to support different arcs for each orbit, as well as set widths
(optionally using grid units) for each orbit.

 You would accomplish this by creating a custom collection type to hold the orbit
definitions, then creating an OrbitDefinition class. The collection would be exposed
Licensed to Devon Greenway <devon.greenway@gmail.com>

710 CHAPTER 24 Creating panels and controls
by the panel. The measure and layout calculations would change to use the provided
sizes rather than calculating sizes.
ITEM CLIPPING

The third enhancement is item clipping. I didn’t implement this in the OrbitPanel
because, frankly, it doesn’t make a lot of sense to do so. But clipping the individual
child elements is often essential to the functioning of a panel.

 When an item is clipped, the portion of the element that would normally lie out-
side the allotted space isn’t shown. This is accomplished by setting the size of the rect-
angle in the arrange step to be smaller than the size of the element. For example, to
modify listing 24.4 to clip all elements to 30 x 30 pixel rectangles, change the final-
Rect to be calculated like this:

double maxWidth = 30;
double maxHeight = 30;
Rect finalRect = new Rect(centerPoint.X + left - maxWidth / 2,
 centerPoint.Y + top - maxHeight / 2,
 maxWidth, maxHeight);

In a real panel, you’d calculate the maxWidth and maxHeight based upon available
space in the layout slot. In addition to this calculation change, be sure to apply the
same measurement to the call to the measure step, so the child has the ability to resize
itself if possible.

 Creating a custom panel in Silverlight is a straightforward process once you decide
on a layout algorithm. The majority of the work is performed inside the measure and
arrange steps. The measure step is where the panel calculates the size of each element
and the size of the panel itself. The arrange step is where the panel performs the
actual positioning (and optional clipping) of the child elements.

 Creating a custom control is similar to creating a panel; many of the same steps
apply. In the next section, we’ll create a control that supports styling and visual states.

24.2 Creating a custom control
In the previous section, we built a custom panel. Panels differ from controls in that
they typically participate in the opposite side of layout: panels are responsible for lay-
ing out controls; controls are responsible for measuring themselves.

 When creating controls in Silverlight, you have two main choices: you can write a
UserControl or create a custom control. User controls, covered in chapter 10, are
more about composing other controls, whereas custom controls are about defining
new behavior to make available to developers.

 Custom controls differ from user controls in that they’re lookless by default—
they’re expected to work with a completely different control template as long as cer-
tain contracts are adhered to. User controls bring their templates along with them in
the form of the .xaml file; they support limited templating and styling capabilities.

 In this section, we’re going to build a custom control that can show grouped con-
tent with a header which, when clicked, shows or hides the content. There are already
Licensed to Devon Greenway <devon.greenway@gmail.com>

711Creating a custom control
controls that can do this, but building it will show you how to inherit from a base class
and support templating and visual states.

24.2.1 Choosing the base type

In chapter 10 we learned about the different types of controls available in Silverlight.
Many of the controls had common base types. When creating your own control, the
choice of base type will greatly impact how the control can be used and how other
developers will expect it to work. Table 24.1 shows the common base types you can
derive from.

When choosing a control, try to pick the richest one possible. If you’re building some-
thing that naturally fits the Selector model, that’s a better choice than picking Item-
sControl or Control. The more you use built-in functionality, the more your control
will behave like others in Silverlight without extra effort on your part.

 For the control we’re building, we’ll start with ContentControl and build from
there. In the ControlsLib project, add a new class named Expander:

namespace ControlsLib
{
 public class Expander : ContentControl
 {
 }
}

Table 24.1 Common control base types

Type Description

Control This is a generic base control. If none of the specialized variants
have what you need, derive from this class.

ContentControl A control that contains a single child item for display. The Button
and Label controls are examples of ContentControl.

ItemsControl A control that contains multiple child items for display. The control
supports adding individual items or binding to a list to obtain items.
The items are displayed using a supplied panel.

Selector An ItemsControl that supports selecting an item. An example of
this is a ListBox.

RangeBase A control that supports minimum, maximum, and current values.
One example is the Slider control; another is the ScrollBar.

ButtonBase A control that can be clicked to fire an event. Button and
HyperlinkButton are two examples.

ToggleButton A button-type control that supports keeping its state when clicked.
Examples include the ToggleButton when used as is, the
RadioButton, and the CheckBox.
Licensed to Devon Greenway <devon.greenway@gmail.com>

712 CHAPTER 24 Creating panels and controls
The ContentControl base class provides the ability to use properties such as Content
and ContentTemplate. We’ll definitely make use of those, but we also need to aug-
ment with our own properties for the header.

24.2.2 Properties

When supporting arbitrary content, the pattern is to have a content property of type
object and a template property of type DataTemplate. That way, the developer can cus-
tomize the presentation of the content without having to retemplate the entire control.

 The ContentControl base type supplies the Content and ContentTemplate prop-
erties that perform this function for the primary content. We’ll add Header and Head-
erTemplate to support the same for the top header. Both properties will be defined as
dependency properties, as shown in listing 24.7.

public object Header
{
 get { return (object)GetValue(HeaderProperty); }
 set { SetValue(HeaderProperty, value); }
}

public static readonly DependencyProperty HeaderProperty =
 DependencyProperty.Register("Header",
 typeof(object),
 typeof(Expander),
 new PropertyMetadata(null));

public DataTemplate HeaderTemplate
{
 get { return (DataTemplate)GetValue(HeaderTemplateProperty); }
 set { SetValue(HeaderTemplateProperty, value); }
}

public static readonly DependencyProperty HeaderTemplateProperty =
 DependencyProperty.Register("HeaderTemplate",
 typeof(DataTemplate),
 typeof(Expander),
 new PropertyMetadata(null));

Using object as the type for the header enables us to use anything from a string to a Grid
full of controls as the header. If a template is supplied, Silverlight will render using that.
If no template is supplied, Silverlight will render it natively if it’s a UIElement, or using
ToString if it’s any other type (such as an integer, string, or your custom class).

 In addition to the simplicity of class inheritance, one of the main differentiators
for a custom control over a user control is the control template.

24.2.3 The control template contract

When creating a custom control, it’s important to define the contract with the control
template. The contract consists of the things that must be in the control template in
order for your control to work.

Listing 24.7 The Header and HeaderTemplate properties
Licensed to Devon Greenway <devon.greenway@gmail.com>

713Creating a custom control
 In general, you want this contract to be as small as possible. Think long and hard
about what things you must have in the contract, as opposed to what could be accom-
plished with binding.

 In our control, the contract can be kept small: just a single toggle button. We need
the toggle button, in this case, because we’re going to use it to expand and collapse
the bottom section of the expander control. Listing 24.8 shows the class with the con-
tract in place.

[TemplatePart(Name=Expander.ExpanderButtonName,
 Type = typeof(ToggleButton))]
public class Expander : ContentControl
{
 private const string ExpanderButtonName = "ExpanderButton";

 private ToggleButton _expanderButton;

 public Expander()
 {
 DefaultStyleKey = typeof(Expander);
 }

 public override void OnApplyTemplate()
 {
 base.OnApplyTemplate();

 _expanderButton =
 GetTemplateChild(ExpanderButtonName) as ToggleButton;

 if (_expanderButton != null)
 {
 _expanderButton.Checked +=
 new RoutedEventHandler(OnExpanderButtonChecked);
 _expanderButton.Unchecked +=
 new RoutedEventHandler(OnExpanderButtonUnchecked);
 }
 }

 void OnExpanderButtonUnchecked(object sender, RoutedEventArgs e)
 { }

 void OnExpanderButtonChecked(object sender, RoutedEventArgs e)
 { }

}

The contract is defined both explicitly and implicitly. The explicit contract definition
is the TemplatePart attribute on the class. Though not enforced in code, this is used
by Expression Blend to enforce the contract in the tool. The attribute specifies both
the name of the required element as well as its type. A best practice is to use a constant
for the name, as it’ll also be used elsewhere in the code.

 The implicit contract is enforced by the OnApplyTemplate function. In this func-
tion, you’re going to look for the various template parts and attempt to resolve them

Listing 24.8 Contract with the control template

Template
part

OnApplyTemplate
Licensed to Devon Greenway <devon.greenway@gmail.com>

714 CHAPTER 24 Creating panels and controls
into variables you can use elsewhere in the class. OnApplyTemplate is called when the
control template is loaded for this instance of the control.

 In OnApplyTemplate, you’ll typically find the control instances by name using
GetTemplateChild (which does a FindName equivalent on the template) and wire up
any events or other hooks.

 Note also the constructor. The constructor specifies the default style key to be
used. This looks a little odd because it’s setting the key to the type of this class. As we’ll
see next, that’s exactly what we want.

24.2.4 The default template

Custom controls are designed to support templating by the designers and developers
using them. But every control should provide a default template to be used when no
other template has been applied.

 The default template is kept in a resource dictionary file named generic.xaml in
the themes folder of the assembly containing the control. In our project, that’s the
ControlsLib assembly. Add the themes folder and the generic.xaml file. Listing 24.9
shows the style to be included inside the ResourceDictionary tags.

<Style TargetType="clib:Expander">
 <Setter Property="Template">
 <Setter.Value>
 <ControlTemplate TargetType="clib:Expander">
 <Grid>

 <Rectangle Stroke="{TemplateBinding BorderBrush}"
 StrokeThickness="1" />

 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>

 <Grid x:Name="HeaderGrid" Grid.Row="0">
 <Rectangle Fill="DeepSkyBlue" />
 <ContentPresenter
 Content="{TemplateBinding Header}"
 ContentTemplate="{TemplateBinding HeaderTemplate}"
 VerticalAlignment="Center"
 Margin="5"/>

 <ToggleButton x:Name="ExpanderButton"
 HorizontalAlignment="Right"
 VerticalAlignment="Center"
 Content="#" IsChecked="True"
 Width="30" />
 </Grid>
 <Grid x:Name="ContentGrid" Grid.Row="1">
 <ContentPresenter

Listing 24.9 The control template

Note target type
and no key

Visual states
will go here
Licensed to Devon Greenway <devon.greenway@gmail.com>

715Creating a custom control
 Content="{TemplateBinding Content}"
 ContentTemplate="{TemplateBinding ContentTemplate}" />
 </Grid>
 </Grid>
 </Grid>
 </ControlTemplate>
 </Setter.Value>
 </Setter>
</Style>

Note that this style doesn’t have a key. The key is the type it targets; that’s why the con-
structor in listing 24.8 specifies the class type as the default style key.

 This listing shows the default style and template for the Expander control. The
template is defined just like the control templates we saw in chapter 23. In this case, I
use a grid to hold both the header and the content. The header and content are both
implemented using ContentPresenter elements. The ContentPresenter, when
bound to appropriate content and content template properties, takes care of all the
dirty work associated with presenting arbitrary content. Without it, there’d need to be
some way to use a TextBlock when it’s text, and other specialized types otherwise.

 For this listing to work, the ResourceDictionary tag will need the following
namespace added:

xmlns:clib="clr-namespace:ControlsLib"

In listing 24.9, I left room for the spot where the visual states will go. The final piece of
a custom control is the support and definition of VisualStateManager controlled
state management.

24.2.5 Visual states

Visual states describe the UI modes or states a control can be in. One visual state may
be when the mouse is over the control; another when the mouse button is clicked. A
third visual state may be when something is considered selected.

 In our control, the visual states will be Expanded and Collapsed. Using visual states
rather than hard-coding expand and collapse logic allows the designer or developer
to completely customize what it means for the control to be expanded or collapsed.
Remember, controls are lookless—they define behavior, not appearance.

 Listing 24.10 shows the parts of the Expander class required for supporting visual
states.

[TemplatePart(Name=Expander.ExpanderButtonName,
 Type = typeof(ToggleButton))]
[TemplateVisualState(Name = Expander.ExpandedStateName,
 GroupName = "ExpanderStates")]
[TemplateVisualState(Name = Expander.CollapsedStateName,
 GroupName = "ExpanderStates")]
public class Expander : ContentControl
{

Listing 24.10 Supporting visual states

Visual state
contract
Licensed to Devon Greenway <devon.greenway@gmail.com>

716 CHAPTER 24 Creating panels and controls
 private const string ExpanderButtonName = "ExpanderButton";
 private const string ExpandedStateName = "Expanded";
 private const string CollapsedStateName = "Collapsed";

 void OnExpanderButtonUnchecked(object sender, RoutedEventArgs e)
 {
 VisualStateManager.GoToState(this, CollapsedStateName, true);
 }

 void OnExpanderButtonChecked(object sender, RoutedEventArgs e)
 {
 VisualStateManager.GoToState(this, ExpandedStateName, true);
 }
...
}

Just as was the case with template parts, template visual states have both an explicit
and implicit contract. The explicit contract is handled by the TemplateVisualState
attribute. This allows Blend and other design tools to know what visual states are sup-
ported by this control.

 The implicit contract is handled by calls to VisualStateManager.GoToState. This
call works under the assumption that a particular visual state exists. If it exists, the con-
trol is put into that state. In this example, when the expander button (a template
part) is checked, we enter the Expanded state. When it’s unchecked, we enter the Col-
lapsed state.

 Using states like this allows you to define the appearance of each state completely
in XAML. Of course, we’ll need to provide a default implementation in the control
template in generic.xaml.

24.2.6 Visual states in template

Visual states are designed for XAML. They’re based around storyboards and refer-
ences within the same XAML file. For more in-depth information on creating states,
check out chapter 23.

 Listing 24.11 shows the visual states definition for the Expander control. Place this
markup into the spot called out in listing 24.9.

<VisualStateManager.VisualStateGroups>
 <VisualStateGroup x:Name="ExpanderStates">
 <VisualState x:Name="Expanded">
 <Storyboard>
 <ObjectAnimationUsingKeyFrames
 Storyboard.TargetName="ContentGrid"
 Storyboard.TargetProperty="Visibility">
 <DiscreteObjectKeyFrame KeyTime="00:00:00">
 <DiscreteObjectKeyFrame.Value>
 <Visibility>Visible</Visibility>
 </DiscreteObjectKeyFrame.Value>
 </DiscreteObjectKeyFrame>
 </ObjectAnimationUsingKeyFrames>

Listing 24.11 Visual states in the control template

Expanded
state
Licensed to Devon Greenway <devon.greenway@gmail.com>

717Creating a custom control
 </Storyboard>
 </VisualState>
 <VisualState x:Name="Collapsed">
 <Storyboard>
 <ObjectAnimationUsingKeyFrames
 Storyboard.TargetName="ContentGrid"
 Storyboard.TargetProperty="Visibility">
 <DiscreteObjectKeyFrame KeyTime="00:00:00">
 <DiscreteObjectKeyFrame.Value>
 <Visibility>Collapsed</Visibility>
 </DiscreteObjectKeyFrame.Value>
 </DiscreteObjectKeyFrame>
 </ObjectAnimationUsingKeyFrames>
 </Storyboard>
 </VisualState>
 </VisualStateGroup>
</VisualStateManager.VisualStateGroups>

Listing 24.11 provides the markup for two different visual states: Expanded and Col-
lapsed. Both refer by name to elements defined in listing 24.9. Using visual states like
this allows us to have a control that has no real dependency on elements inside XAML.
Instead, the control’s behavior specifies which state to enter, and the markup (which
can be changed by a developer or designer without access to the control’s source) can
completely define what it means to be in that state.
TESTING

The final step is to test the control. I used it to wrap the OrbitPanel we wrote in the
first section, but you could use it with any type of content. Here’s the MainPage.xaml
markup with the new control in place:

<Grid x:Name="LayoutRoot" Background="White">
 ...
 <clib:Expander Header="This is an Expander Control"
 Margin="20" BorderBrush="Black">
 <clib:OrbitPanel Orbits="3">
 ...
 </clib:OrbitPanel>
 </clib:Expander>
</Grid>

The result of the combination of both controls is shown in figure 24.2. The expander
encloses the OrbitPanel and its contents.

 Writing custom controls in Silverlight can be a rewarding experience. The templat-
ing approach means you don’t have to consider every possible way someone may want
to present your control; instead, you can focus on the required behavior.

 Controls in Silverlight are lookless. The code you write shouldn’t make assump-
tions, other than what’s in the explicit contract, about what the UI contains or how it’ll
behave. The use of template binding, template parts, and template visual states helps
keep this separation clean and understandable.

 In general, before you create a custom control, consider whether templating an
existing control will provide what you’re looking for. I’ve seen menu systems created

Collapsed
state
Licensed to Devon Greenway <devon.greenway@gmail.com>

718 CHAPTER 24 Creating panels and controls
entirely from ListBox controls, for example (I’m even responsible for one of them).
Once you’re sure that the behavior of existing controls doesn’t provide what you’re
looking for, you can embark upon creating your own control.

24.3 Summary
Silverlight has a highly extensible layout system. Imagine if other technologies allowed
you to easily create your own elements with completely custom layout algorithms.
HTML, for one, would be much more creative if you could encapsulate all that div
manipulation into something that works as a first-class citizen on any page.

 Custom panels and custom controls provide the ability to augment Silverlight with
your own requirements and your own ideas of how things should work. They provide a
way to extend the system, building upon the same foundations used in all of the other
built-in elements. They let you do things the designers and developers of Silverlight
may not have considered when building the platform.

 Creating a custom panel is easy once you learn to express the layout algorithm as a
pair of measure and arrange steps. Silverlight handles calling these steps when

Figure 24.2 The expander control with the custom layout panel included as content
Licensed to Devon Greenway <devon.greenway@gmail.com>

719Summary
needed, so all you need to concern yourself with is the functionality directly related to
your own custom layout algorithm. The sky’s the limit!

 Custom controls are equally powerful. If you’ve searched through the built-in con-
trols, the SDK, and the toolkit, and haven’t found a control with the behavior you want,
you can build your own from scratch. Silverlight provides strong building blocks in the
form of specialized base classes and the templating and state management patterns you
leverage in the creation of your controls. You don’t even need to worry about how it
looks, as once you define the behavior and the contracts, a designer can make the con-
trol look any way she wants. That’s the power of the lookless control model.

 In the next chapter, we’ll wrap up the book with a discussion around customizing
the install experience for all the awesome applications you’ll soon be creating.
Licensed to Devon Greenway <devon.greenway@gmail.com>

The install
 experience and preloaders
An often-overlooked aspect of putting a plug-in-based application on the Internet
is the experience of a brand-new user. Truthfully, plug-in apps aren’t unique in
this. I’ve seen many Windows client applications that depended on registry entries
or other files created during normal use but not present at first install. It’s easy to
be sloppy about testing that scenario because it’s so far removed from our day-to-
day lives.

 Nevertheless, not everyone in the world has Silverlight installed on their
machines, and not everyone has your application in their download cache. Any-
thing that gets between your user and using your application is a barrier that will
cause attrition. You need to continue to entice users to install the plug-in and wait
for your application to download (if it’s large) in order not to lose them.

 In this chapter, we’ll first look at how to customize the initial plug-in install and
upgrade experience. Then, because some applications can be really large and have

This chapter covers
■ Handling “Silverlight not installed” scenarios
■ Creating a custom preloader or splash screen
720

Licensed to Devon Greenway <devon.greenway@gmail.com>

721Handling the “Silverlight not installed” scenarios
lots of assets, we’ll look at approaches for building a custom preloader using XAML
and JavaScript.

25.1 Handling the “Silverlight not installed” scenarios
Although Silverlight has achieved excellent mar-
ket penetration since it was first introduced (it’s
around 60 percent at the time I’m writing this),
you’re still going to run into instances where the
plug-in isn’t installed on the user’s machine. In
those cases, the user will get the default Please
Install Silverlight image, as shown in figure 25.1.

 The default install badge is okay, but it
almost certainly doesn’t fit with the design of
your application. More important, it offers no
information about what your application will
provide after Silverlight is installed.

 Research has shown that in order to get users
to install the plug-in, they need to see what immediate benefit they’ll get by doing so.
The usual way to handle this is to show information about your application—perhaps
an explanation, almost certainly screenshots—as part of the appearance. You then
provide your own Click Now to Install button over those graphics. One of the best
examples of this is the Netflix player, shown in figure 25.2.

Figure 25.2 The Netflix player. This is an excellent example of a Silverlight
install prompt. It includes a ghosted image of the player, information about the
movie you’ve selected, and a clear call to action. (Image courtesy of Tim Heuer.)

Figure 25.1 The default image shown
when users don’t have Silverlight
installed on their machines
Licensed to Devon Greenway <devon.greenway@gmail.com>

722 CHAPTER 25 The install experience and preloaders
This example has everything a good install prompt needs:

■ It’s on-brand and consistent with the site. Using the default prompt would’ve been
jarring. By using a screenshot of the existing player, you maximize consistency
while also showing the purpose of the plug-in.

■ It’s about the content, not the plug-in. The install prompt doesn’t extol the virtues
of Silverlight; it focuses on what you’ll get (the movie Lean on Me) after you
install it. Make the decision about the content and benefits, not the technology.

■ The call to action is simple. The only real action to take on this page is the install.
If you look hard, there’s a link with pop-up instructions, but there’s no other
prompting, account creation, or other cruft in the way.

In this section, you’ll create a simple replacement plug-in install prompt, covering the
changes to the object tag and the HTML within it. It won’t be as pretty as the Netflix
prompt, but it’ll show how you can get there. We’ll wrap up with a bit of information
on how to further customize the experience.

25.1.1 Creating your own install experience

The experience you create to prompt for the plug-in must exist without any plug-in
installed. That means it’s all HTML and JavaScript. Typically, it’s some static images
and perhaps some text. Truly complex versions could have an application walk-
through complete with a jQuery slideshow of screen shots of the application. The
point is that you want something nice that entices the user to install the plug-in.

 Whatever HTML you decide to provide, you can easily place it inside the object tag.
Any HTML you include inside the object tag will be displayed when the plug-in isn’t
installed. For example, you could go with the silly text-only install prompt shown in
figure 25.3.

Figure 25.3 The new custom prompt to install Silverlight. I don’t know about you, but I’m totally
ready to install Silverlight now!
Licensed to Devon Greenway <devon.greenway@gmail.com>

723Handling the “Silverlight not installed” scenarios
In reality, you probably want to try a little harder than that, but you get the idea. The
URL I used came right from the default install experience includd with the template.
Whatever design you or your web designers come up with is fair game here. Listing
25.1 shows how to insert the HTML into the object tag.

<object data="data:application/x-silverlight-2,"
 type="application/x-silverlight-2"
 width="100%" height="100%">
 <param name="source" value="ClientBin/Chapter25.xap"/>
 <param name="onError" value="onSilverlightError" />
 <param name="background" value="white" />
 <param name="minRuntimeVersion" value="4.0.50401.0" />
 <param name="autoUpgrade" value="true" />
...
 <p style="font-size:30px;margin:30px"> If you

➥ install Silverlight you will see the most amazing
➥ application in the world. In the WORLD! Unicorns,
➥ rainbows, dogs and cats living together ... mass
➥ hysteria!</p>
</object>

Everything not a param but otherwise inside the object tag will be invisible when Sil-
verlight is installed and displayed when it’s not. The sky is pretty much the limit for
what you can do here.
ALWAYS GRABBING THE LATEST PLUG-IN

By default, the tooling provides a link to the version you built against. But a better
approach is to remove the version number completely, because you should always pro-
vide the latest plug-in to your users. To do that, remove everything after the link ID:

That will automatically grab the latest version of the plug-in when the user clicks the
link. Note that the parameter LinkID is case-sensitive.
HANDLING THE VERSION-UPGRADE SCENARIO

In the object tag, you saw the autoUpgrade and minRuntimeVersion properties. Those
two properties work together to handle scenarios where the user has Silverlight
installed, but it’s an old version. If the user’s version isn’t the latest version, but it’s equal
to or higher than the minRuntimeVersion, the user won’t be prompted to upgrade. But
if your application requires a newer version and you have autoUpgrade set to true, the
user will receive a standard Silverlight version dialog prompting them to upgrade.

 If you prefer to handle the upgrade process yourself, you can set autoUpgrade to
false and handle the 8001 - Upgrade required and 8002 - Browser restart required
errors in the OnError function. Although those errors will fire regardless of the value
of autoUpgrade, typically you’ll only do something meaningful with them when you’re
handling the process manually.

 Silverlight.js, discussed in chapter 3, includes a number of helper functions and
properties such as getSilverlight, isInstalled, isBrowserRestartInstalled, and

Listing 25.1 A replacement Silverlight plug-in install prompt
Licensed to Devon Greenway <devon.greenway@gmail.com>

724 CHAPTER 25 The install experience and preloaders
WaitForInstallCompletion that make the new install and upgrade experiences
highly scriptable from JavaScript.

 After you’ve tackled the “no plug-in installed” scenario or the upgrade scenario,
and the user has the plug-in installed, you should then turn to the application-loading
scenario and build a custom preloader or splash screen.

25.2 Using a custom preloader
Silverlight applications come in all shapes and sizes. Many of the more complex appli-
cations take a few seconds or more to load, because they have many images, large
binaries, media, or more. This is one place where the Flash developers had a real leg
up due to all the prior art. Every Flash application I’ve ever used has had a custom pre-
loader that displays appropriate branding and, often, real creativity. Blogs and even
entire sites have been created with no purpose other than to show some of the awe-
some preloaders that exist out there. Take a peek for yourself: www.bing.com/
search?q=best+flash+pre-loaders.

 Preloaders can be image-based or XAML-based and can include application-specific
branding. A preloader is a chance to provide something interesting and creative to
increase anticipation and excitement for the application. Some preloaders even include
mini-games; but unless your application takes 20 minutes to load, that may be overkill.

 Think of the preloader like the start of a movie. Although you typically want the open-
ing cuts to finish in short order so you can watch the movie, the best ones add to the over-
all story, increase awareness of what’s to come, and help generate some excitement.

 When it comes down to it, you can have the best-looking Silverlight application out
there, but if it shows several seconds of the default Silverlight loading animation, no one
will consider it a complete experience. Figure 25.4 shows
the default “spinning blue ball” loading experience.

 The default experience is there to ensure that your users
know the application is doing something while the applica-
tion or the application and required assets are downloaded.

 In general, you want to avoid both the default loader
and the double-download situation whenever possible. It’s
easy to create your own custom download experience,
including downloading media assets and more.

 Throughout this section, you’ll learn how to create a custom preloader. The first
step in this three-step process is creating the appearance of the preloader using
XAML. After it’s created, you can integrate the preloader with your solution to ensure
it’s used while a Silverlight application is being downloaded. While this download is
proceeding, you can choose to monitor its progress and update the visuals. All these
steps will be shown as a basic preloader is implemented.

25.2.1 Creating the appearance

Preloaders, or splash screens, are shown when the loading time of your application
exceeds a certain threshold, roughly half a second. The first step in creating a custom

Figure 25.4 The default
Silverlight ”spinning blue
ball” loading experience.
Licensed to Devon Greenway <devon.greenway@gmail.com>

www.bing.com/search?q=best+flash+pre-loaders
www.bing.com/search?q=best+flash+pre-loaders

725Using a custom preloader
splash screen is defining its appearance. You must take three important facts into
consideration:

■ The preloader is used while a .xap file is being downloaded, so it doesn’t make
sense to create the splash screen’s XAML inside of your Silverlight application.
Instead, you must create the XAML within the web site that hosts your Silver-
light application.

■ The preloader can’t use managed code, so you must use a scripting language
such as JavaScript for any runtime features of a custom splash screen.

■ You’re not limited to the Silverlight 1.0 API. Enhancements were made to the
JavaScript API post-Silverlight 1.0, such as additional panels and types of
animation.

With these constraints in mind, you can move forward with creating your own pre-
loader. Although a good preloader is a highly branded experience that seamlessly
blends into the design for your application, you’ll create a simple animation here for
space and complexity considerations. Such an animation might be defined in an XML
file on the web site called SilverlightLoader.xaml and look like the code in listing 25.2.

Result:

XAML:
<?xml version="1.0" encoding="utf-8" ?>
<Grid xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">
 <Grid.Background>
 <LinearGradientBrush>
 <GradientStop Color="#FFFFFFFF" Offset="0.25" />
 <GradientStop Color="#FFFFAF00" Offset="1.5" />
 </LinearGradientBrush>
 </Grid.Background>

 <Grid.Triggers>
 <EventTrigger RoutedEvent="Grid.Loaded">
 <BeginStoryboard>
 <Storyboard Storyboard.TargetName="EllipseRotateTransform"
 Storyboard.TargetProperty="Angle">
 <DoubleAnimation From="0" To="360"
 BeginTime="00:00:00" Duration="00:00:01"
 RepeatBehavior="Forever" />
 </Storyboard>
 </BeginStoryboard>

Listing 25.2 The XAML for a custom splash screen: SilverlightLoader.xaml

Uses trigger to
start animation
Licensed to Devon Greenway <devon.greenway@gmail.com>

726 CHAPTER 25 The install experience and preloaders
 </EventTrigger>
 </Grid.Triggers>

 <Grid HorizontalAlignment="Center" VerticalAlignment="Center"
 Height="80" Width="80" Margin="10">
 <Ellipse x:Name="myEllipse"
 Stroke="#FF000000" RenderTransformOrigin="0.5,0.5">
 <Ellipse.RenderTransform>
 <RotateTransform x:Name="EllipseRotateTransform" />
 </Ellipse.RenderTransform>
 <Ellipse.Fill>
 <RadialGradientBrush GradientOrigin="0.06,0.8">
 <RadialGradientBrush.RelativeTransform>
 <TranslateTransform X="-0.007" Y="0.008" />
 </RadialGradientBrush.RelativeTransform>
 <GradientStop Color="#FFCAFFB4" Offset="0" />
 <GradientStop Color="#FF39AF07" Offset="0.8" />
 <GradientStop Color="#FF7BCE09" Offset="1" />
 </RadialGradientBrush>
 </Ellipse.Fill>
 </Ellipse>

 <Ellipse Height="55" Width="55" Fill="#FFFFFFFF" Stroke="#FF000000" />

 <TextBlock x:Name="ProgressTextBlock" Width="55" Height="20"
 FontFamily="Verdana" FontSize="14" Text="0%"
 TextAlignment="Center" />
 </Grid>
</Grid>

This listing defines a basic set of shapes and animation within a Grid element. This
animation rotates an Ellipse around a TextBlock, which shows the progress of the
download. The progress of the download will be updated as the download progresses.

TIP If you want to try this yourself on an empty project, create a new Silver-
light application with a web site as usual. Then, on the Silverlight app,
embed some enormous file, such as a video or big zip file, into the .xap, so
it’s large. As long as the download takes more than 0.5 seconds or so, you’ll
see your preloader screen. The more latency you have, the more you’ll see
of your preloader. You can even constrain your download bandwidth (time
to dig out the old 9600 bps Hayes compatible) to really help it show off.

The root element of a preloader must be one of the Panel elements mentioned in
chapter 7, so you can’t use a UserControl element as you would if you were defining a
page. This has to do with the fact that managed code can’t be used with a splash
screen. After you’ve chosen a Panel and created the appearance of the splash screen,
you can integrate it with your web application.

25.2.2 Integrating the custom splash screen

The second step of using a custom splash screen is integrating it with a web applica-
tion. You reference the XAML of the splash screen when you create an instance of the
Silverlight plug-in. You can reference this XAML by using the splashScreenSource
property of the object tag, as shown in listing 25.3.
Licensed to Devon Greenway <devon.greenway@gmail.com>

727Using a custom preloader
<object data="data:application/x-silverlight-2,"
 type="application/x-silverlight-2"
 width="100%" height="100%">
 <param name="source" value="ClientBin/Chapter25.xap"/>
 <param name="onError" value="onSilverlightError" />
 <param name="splashScreenSource"
 value="SilverlightLoader.xaml" />
 <param name="onSourceDownloadProgressChanged"
 value="appDownloadProgressChanged" />
 <param name="onSourceDownloadComplete"
 value="appDownloadComplete" />
...
</object>

This listing uses the splashScreenSource property to reference the splash screen cre-
ated in listing 25.2. This property isn’t required by the createObjectEx function. By
using this property, you can point to where a custom splash screen’s XAML is stored.
For security reasons, the XAML must be located on the same web site as the page with
the object tag and the Silverlight .xap file. When the splash screen’s XAML is loaded,
you have the option of using the onSourceDownloadProgressChanged and onSource-
DownloadComplete event handlers to monitor the load progress.

25.2.3 Monitoring the load progress

The third, but optional, step in creating a preloader is monitoring the load progress.
To accomplish this, you wire up JavaScript event handlers to the onSourceDownload-
ProgressChanged and onSourceDownloadComplete events defined by the plug-in.
These event handlers are shown in listing 25.4.

JavaScript:
<script type="text/javascript">
function appDownloadProgressChanged(sender, args)
{
 var progressTextBlock = sender.findName("progressTextBlock");

 progressTextBlock.Text = (Math.round(args.progress * 100)) + "%";
}

function appDownloadComplete(sender, args)
{}
</script>

I typically include these event handlers in the same JavaScript script block that holds the
default Silverlight error handler. This listing shows the onSourceDownloadProgress-
Changed and onSourceDownloadComplete event handlers referenced in listing 25.3. The
onSourceDownloadProgressChanged event will fire any time the progress of a download
has changed by 0.5 percent or more. If this event is triggered, you may access the total
progress through the second parameter of the onSourceDownloadProgressChanged

Listing 25.3 Associating the preloader with the Silverlight application

Listing 25.4 The event handlers used for monitoring the download progress

XAML URL
Licensed to Devon Greenway <devon.greenway@gmail.com>

728 CHAPTER 25 The install experience and preloaders
event. This parameter exposes a floating-point property called progress. The value of
this property is between 0.0 and 1.0, so you must multiply the value by 100 in order to
convert the value to a percentage. When the progress has reached 1.0, the onSource-
DownloadComplete event will fire.

 The onSourceDownloadComplete event will fire when the requested Silverlight
application has been completely downloaded. Because the Silverlight application will
automatically start when it’s completely downloaded, you probably won’t use this
event. Instead, you’ll probably use the in-application Application.Startup event
mentioned earlier in this book, because at this point, you can begin using managed
code instead of relying on scripted code.

 Sometimes you need to provide more than just a preloader. Sometimes you need a
way to download whole portions of the application on demand, or at least in a lazy
way. For these scenarios, the Managed Extensibility Framework is the way to go.

25.3 Summary
A custom, branded install experience for the plug-in and a custom preloader are both
extremely simple to create—far less work than the overall application. If you have a
designer on-team, it can often be as simple as a few graphics and some basic XAML.

 But those little touches are what differentiate a great application from a good
application. They’re also the types of changes that keep users engaged and reduce the
drop-off of new users. The return is great compared to the effort involved.

 The first customization is for the plug-in install. When a new user without the Sil-
verlight plug-in comes to your application, you have the opportunity to engage them
and get them to install Silverlight. It’s through solid efforts in this space that Silver-
light gains market penetration and becomes easier to use in your applications.

 The second customization is for the application preloader or splash screen. This is
what you want to show the user while your application is loading. Most applications
with a significant number of images or other media, packaged into the .xap to avoid a
multitude of lazy loads later, are really big and benefit from some download progress
information. Sure, you could use the generic Silverlight spinning balls animation; but
to look professional, you want to use something that fits the design of your application
and seamlessly sits in your site.

 Combine both customizations, and you have a winning combination that will help
increase eyeballs and keep visitors interested and engaged.

 I hope you’ve enjoyed this book; I welcome your comments! If you liked it, I
encourage you to write an online review on your blog or on a retailer’s web site (such
as Amazon.com). The official forum for this book can be found on the publisher’s
web site at www.manning.com/pbrown, where you can ask questions, post comments,
and report any errata. You can also reach me on twitter at @Pete_Brown and on my
web site at http://10rem.net. I encourage you to join me in both places to get updates
and expansions to the content in this book and more. Thank you!

Licensed to Devon Greenway <devon.greenway@gmail.com>

http://10rem.net
www.manning.com/pbrown

appendix
Database, connection,
 and data model setup

In several examples in this book, including those in reporting (see chapter 19),
MVVM (see chapter 16), and WCF RIA Services (see chapter 17), we need to work
against database data and an entity data model. For this you’ll need SQL Server
with the AdventureWorks database loaded.

 In this appendix, we’ll install the database, and create the database connection
and the entity data model. The entity data model will be added to the ASP.NET web
project in your Silverlight solution.

A.1 Install the AdventureWorks database
If your database installation doesn’t already contain the AdventureWorks database,
visit http://msftdbprodsamples.codeplex.com/ to download the latest version for
your database version.

This chapter covers
■ Setting up a data connection
■ Creating an entity data model
729

Licensed to Devon Greenway <devon.greenway@gmail.com>

http://msftdbprodsamples.codeplex.com/

730 APPENDIX Database, connection, and data model setup
 The CodePlex database sample site includes a number of database releases for the
various editions of SQL Server, currently up to SQL Server 2008 R2. My own dedicated
database server is running SQL Server 2008, and I have a local SQL Server Express
2008 database instance that came with Visual Studio 2010. The sample databases will
install on either one.

A.1.1 Installing on a dedicated SQL Server instance

In this setup and in all of my examples, I’m using SQL Server 2008 on a dedicated
server. You can install locally or use a separate server or virtual machine (VM). Though
I haven’t tested with older versions, this should also work on SQL Server 2005. A
default installation of Visual Studio 2010 up-level versions (such as Pro and Ultimate)
includes SQL Server Express 2008. If you have an MSDN subscription, you can also
download the developer editions of SQL Server through your subscription program.

 If you have a full SQL Server 2008 installation, you can download the full MSI and
install the suite of databases. Once the database is installed, you can set up the data-
base connection and create the entity data model.

 The CodePlex site includes a walkthrough (kept current with the releases) show-
ing how to install the sample databases. Depending on the engine you’re using and
the options selected when you installed your database server, some databases may not
be available to you. The only database we use in this book is AdventureWorks, also
called AdventureWorks OLTP. You can ignore the warehousing and reporting data-
bases if you wish, as I don’t use them in the examples in this book.

 If you’re not using a full dedicated installation of SQL Server, you’ll want to install
using SQL Server Express.

A.1.2 Installing on SQL Server Express

SQL Server Express comes with most editions of Visual Studio and installs by default.
It’s the default database server used for ASP.NET membership, role, and session infor-
mation on a development machine. But since it doesn’t install any client tools, many
folks don’t realize it’s there.

 As with the dedicated SQL Server instance install, you can download the full MSI
and install the suite of databases. You can safely ignore the warehousing and reporting
databases. Once the database is installed, you can set up the database connection and
create the entity data model.

 If you’re not running a full instance of SQL Server, the databases will install locally
with SQL Server Express. When using SQL Server Express, you have two options:

1 Install the databases locally, then use them like any other SQL Server installa-
tion (doesn’t work in all install scenarios)

2 Install the databases locally, then drag the AdventureWorks.mdb file into your
App_Data folder on the asp.net project

I prefer the second option, as it simplifies the creation of the database connection, and
is supported in almost every installation scenario. But either option will typically work.
Licensed to Devon Greenway <devon.greenway@gmail.com>

731Database connection and entities
 Regardless of whether you used a local SQL Server instance or a remote one, once
you have the AdventureWorks database installed, you’ll need to create the database
connection and the entities.

A.2 Database connection and entities
First create a new Silverlight project
for the example you’re following.
Make sure you create the associated
web project (the default action), as
that’s where the connection informa-
tion and any services will live. The new
project dialog for the default Silver-
light project type will look like figure
A.1. The dialog for the Silverlight Busi-
ness Application template will be dif-
ferent, and will have the options
already set.

 Once you have the project cre-
ated, the next step is to add the data-
base connection and create entities.

 Right-click the web project in the
solution explorer and choose Add New Item. In the Data section of the installed tem-
plates, select ADO.NET Entity Data Model. Name that entity data model Adventure-
WorksEntities.edmx. Figure A.2 shows the dialog with the correct template selected
and named.

Figure A.2 Creating the AdventureWorksEntities entity data model

Figure A.1 When creating the Silverlight
application, be sure to host the application
in a new Web Application.
Licensed to Devon Greenway <devon.greenway@gmail.com>

732 APPENDIX Database, connection, and data model setup
Once you click Add, Visual Studio will walk you through a wizard that makes the process
of generating the model pretty easy. In the first page of the wizard, choose Generate from
database and hit Next. The other option, Empty model, would require you to build the
entities from scratch. Figure A.3 shows the wizard dialog with the correct option selected.

 You’ll then be presented with the Choose Your Data Connection step, as shown in
figure A.4. If the AdventureWorks database isn’t located in the connection list, click the

Figure A.7 The first step
of the Entity Data Model
Wizard. Be sure to choose
Generate from Database.

Figure A.7 The Choose Your Data Connection dialog box. If you don’t already have an AdventureWorks
connection created, click the New Connection button. This screenshot shows the data connection dialog
with a valid data connection already selected by default.
Licensed to Devon Greenway <devon.greenway@gmail.com>

733Database connection and entities
New Connection button and cre-
ate a new Microsoft SQL Server
(SqlClient) connection to your
database.

 If you already have a con-
nection for AdventureWorks set
up, select that. The authentica-
tion method chosen will differ
depending upon your SQL Server
setup. Figure A.5 shows how my
dialog looks, with all the interest-
ing bits redacted.

 Once the connection is
created, allow the dialog to save
the entity connection string as
AdventureWorksEntities. Also, if
you’re using SQL Server authenti-
cation, check the option to include
the sensitive data (password) in
the connection string, as shown in
the two radio buttons in the mid-
dle of figure A.4.

 If saving the connection infor-
mation makes you uncomfort-
able, you can either try with Win-
dows Authentication (depends on
machine/network setup) or cre-
ate a dedicated SQL Server account with limited rights just for the sample. Of the choices,
I recommend the dedicated SQL Server account.

 Once the connection is picked or newly set up, you’ll be prompted to select the
entities to be added to the model.

A.2.1 Choosing the entities to create

On the Choose Your Database Objects page, select the Employee (Human Resources)
table and the Contact (Person) table. Leave the other options as is, including setting
the namespace to AdventureWorksModel. Figure A.6 shows the correct selected tables
and the correct model name.

 You can of course name the model anything you’d like. But to follow the examples
in the book and use the code listings, you’ll want to use the names indicated in the
screenshots here.

 At this point, you’re able to finish the wizard. The wizard will process for a few sec-
onds, then add the connection information to your configuration file, and the model
.edmx and .edmx.cs files to your web project. The created .edmx file should look
something like figure A.7 when opened in the designer.

Figure A.5 Creating a new connection to the Adventure-
Works database. Be sure to test the connection.
Licensed to Devon Greenway <devon.greenway@gmail.com>

734 APPENDIX Database, connection, and data model setup
 Once you have the data model in
place, build the solution to get all
the types loaded, and continue
with the rest of the sample in the
chapter.

Figure A.6
Select the Contact and
Employee tables from
the AdventureWorks
database. Leave the
model namespace
set to Adventure-
WorksModel.

Figure A.7 The AdventureWorks model
viewed in the model designer. Double-
click the .edmx file in the web project to
view it on the design surface.
Licensed to Devon Greenway <devon.greenway@gmail.com>

index
A

absolute
file path 130
path 573
sizing 181–182
URIs 678

Abstract ASX element 586
AcceptsReturn property 219
access-policy element 338
accessing

cross-domain 336–340
local files 113–115
special folders 113

AcquiringLicense state 579
Action property 198
actions. See behaviors
Activate property 121
ActualHeight property 156
ActualWidth property 156
add methods 472
Add Service Reference dialog

box 343
adding

assemblies 401
links to top menu 389
menu items 401
new page 388
views 388

AddPropertyValue method 231
Adobe AIR 100
Adobe Flash

cross-domain policy 339
Advanced Stream Redirector. See

ASX

AdventureWorks database
557, 729–734

choosing entities 733
connecting 731–734
installing 729–731
installing on dedicated SQL

Server 730
installing on SQL Server

Express 730
Ajax 383
alert 69–70
Alert method 80
alignment

center 213
left 213
right 213

allow-from element 338
Alt modifier key 192
anchorPostion parameter 230
Angle property 160
AngleX property 161
AngleY property 161
animations 638–664

application performance 641
beginning and end 642
bouncing ball 655
changing a visual

property 638
controlling duration 644
controlling playback

speed 644
defining a storyboard

resource 652
delayed start 647
easing functions 660–664
episodic 644

fade 639–640
fluid 643
From property 642
Geometry 641
grouping into

storyboards 647
jagged 657
jerky 643, 646
keyframe timing 659
keyframing 654–660
looping 646
motion 641
playing in reverse 646
property types 639
Rectangle 648
reset to begining 646
spring 631
storyboarding 647–654
text hinting 206
time-related properties 644
timeline 639–647
triggering in response 653
value precedence 28
x and y coordinates 641

annotations
and validation 495

Any Source Multicast 375
APIs

bitmap API 8
Media Stream Source API 7

App.xaml file 673
Append file mode value 134
Apple

Command key 192
modifier key 192
OS X 192
735

Licensed to Devon Greenway <devon.greenway@gmail.com>

INDEX736
Apple Macintosh 208
Application 52

ResourceDictionary 676
application

dependencies 55
initialization 52

Application class
loading embedded

resources 680
Application object 52–55, 102
Application_Startup 52
Application_Unhandled-

Exception 53
Application.Current.InstallState

property 102
ApplicationName property 464
applications

Ajax 383
business logic 503–506
connecting to others 377–380
creating elevated trust

110–113
creating out-of-browser

101–110
dependencies 55
manifest files 51–52
navigation application 386
security 340
signed 111
startup process 48–50
themes 390
unsigned 111

ApplicationStrings class 465
ApplicationUnhandled-

ExceptionEventArgs 53
ApplyTemplate method 237
AppManifest.xaml 50, 55
AppManifest.xml

out-of-browser 101–102
architecture

WCF RIA Services 461
ArcSegment class 523
Arial font 208
arrange

pass 156
step 706

Arrange method 156
ArrangeOverride function 156
arranging content 173–175,

178–180
Arrow cursor 140
ASMX web service 348
ASP.NET 249, 264, 677

authentication and
authorization 506–510

forms-based
authentication 507

Silverlight control 59
assemblies

adding 401
DataAnnotations 304
Microsoft.Expression.

Interactions.dll 442
Microsoft.SilverlightMedia-

Framework.Plugins.
Progressive.dll 595

navigating to others 400–402
System.ComponentModel.

DataAnnotations 327
System.ServiceModel.Polling

Duplex 367
System.ServiceModel.Web

365
System.Windows.Controls.

Data 286
System.Windows.Controls.

DomainServices 479
System.Windows.Interactivity.

dll 442
assembly caching 55–57
AssemblyPart 51
Association attribute 494
ASX elements

Abstract 586
Asx 586
Author 586
Base 586
Copyright 586
Entry 586
MoreInfo 586
Param 586
Ref 586
Title 586

ASX files 585
asynchronous

communication 342
service call 345
testing 456
web service calls 352

asynchronous validation
321–326

AsyncState property 354
Atom 14

standard 360
Attach method 475
AttachAsModified method 475
attached properties 29–30, 145,

173, 180
Column 180
ColumnSpan 180

layout 29
OrbitPanel example 704
Row 180
TargetName 639, 648
TargetProperty 639, 648
Triggers 653

attributes
Association 494
DataMember 494, 496
Display 304–306
Editable 306
for validation 327
http-request-headers 338
include-subpaths 338
Invoke 475
Key 494
Path 338
Port 338
Property 682
Protocol 338
QueryAttribute 473
Required 496
RequiresRole 509
Resources 677
RoundtripOriginal 494
ScriptableMember 83
ScriptableType 83
StringLength 496
TemplatePart 713
TemplateVisualState 716
uri 338
Value 682
x:Key 672, 683
XmlIgnore 494

Attributes property 586
audio 581–582

balance 582
capturing with video 616
content properties 581
multitrack 581
raw audio 602–607
stereo 582
track count 581
volume 582

AudioStreamCount
property 581

AudioStreamIndex
property 581

authentication 506–508
definition 506
forms-based 507
requiring 508
Windows 508

authentication credentials 357
Licensed to Devon Greenway <devon.greenway@gmail.com>

INDEX 737
Authentication property 508
AuthenticationService class 506
Author ASX element 586
authorization 509–510

definition 506
role-based 509

AutoEllipsis property 487
AutoGenerateColumns

property 286
AutoGenerateField

property 305
AutoGenerateFilter

property 305
Automatic duration value 644
automatic sizing 182
automation. See COM
AutoPlay property 579, 585
AutoReverse property 646

impact on duration 646
autoUpgrade option 723
AvailableFreeSpace

property 131, 133
AvailableSpace parameter 155

B

Back button 385
BackEase class 661
background 55, 65
Background property

187, 235, 681
backslash restrictions 573
Balance property 582
Base ASX element 586
base types 711
basic marker 590
BasicHttpBinding class 345
BasicHttpSecurityMode

enumeration 345
Begin method 650
BeginGetRequestStream

method 355
BeginGetResponse

event handler 355
method 353

BeginningEdit event 292
BeginOpen method 369
BeginPrint event 543–544, 546
BeginStoryboard class 639, 654
BeginTime property 647
behaviors 33–34, 665–669

CallMethodAction 442
creating 667
DataTrigger 666

FluidMoveBehavior 666
included with Expression

Blend 33
Bézier curve 657
BezierSegment class 523
BiDi. See bidirectional text
bidirectional text 9
binaries

sharing 505
Binding 262, 265, 269, 345
binding

binding source and
target 262

to collections 274–276
data 263
DataForm class 296–299
to indexed elements 272
to objects 268–269
RelativeSource Self 272
source 267–276
support in INotifyDataError-

Info interface 323
syntax 263–265, 278, 287, 688
to properties 267–268
to UI elements 270–272
ValidatesOnDataErrors

property 316
binding modes 265–267

OneTime 265
OneWay 265, 268
TwoWay 266, 268, 277, 287

BindingMode enumerator 265
bitmap API 8
bitmap images

creating at runtime 620–627
creating from UI

elements 623–624
Deep Zoom 627–632
direct pixel access 624
stretching 632–636
supported formats 619

BitmapImage class 254, 619
BitmapSource class 620
Black font weight constant 209
BlurEffect class 532
BlurRadius property 533
Body property 76
Bold element 226
Bold font weight constant 209
BorderBrush property 235
BorderlessRoundCorners-

Window 122
BorderThickness property 236
Bottom enumeration value 143

BounceEase class 661
bouncing ball animation 655
browser

cache 129, 136
connection count limit 341
Internet Explorer 8 341
journals 384
limitations 341–342
name 82
navigating 81
navigation 383–386
networking API 342
plug-in 74
properties 82
redirecting 81
security 128

browser journals 384
controlling 406

BrowserHttp property 355
BrowserInformation

property 82
BrowserVersion property 82
Brush 516, 524–531

Background property 187
color changing

animation 649
coordinate space 526
Foreground property 211

brushes 524–531
on Canvas 531
color animation 641
Fill 516
ImageBrush 529
LinearGradientBrush

526–528
RadialGradientBrush

528–529
SolidColorBrush 525
Stroke 516
on TextBlock 531
on TextBox 531
VideoBrush 530

bubbling 31
buddy class 493
buffering progress 577
Buffering state 579
BufferingProgress property

577, 583
BufferingProgressChanged

event 577, 583
BufferingTime property 577
build actions 679–680

Resource 680
buildPromptHTML 61
Licensed to Devon Greenway <devon.greenway@gmail.com>

INDEX738
built-in effects 532–535
blur 532
drop shadow 533

bundled resources 678–680
business logic 503–506

factoring 434–435
in entities 504
where to put 503

Button class 241, 686, 692
visual states 691

ButtonBase class 240, 711
buttons 240–245
By property 643

C

cache visualization 154
cached composition 151–153
caching

assemblies 55–57
frame cache settings 400
page cache settings 399
pages 399
Smooth Streaming 575

CalculateVacationBonus
method 490

CallMethodAction behavior 442
Cancel property 292
CanExecute property 439
CanExecuteChanged event 439
CanGoBack property 395
CanGoForward property 395
CanMoveToFirstPage

property 487
CanMoveToNextPage

property 487
CanPause property 579, 589
CanSeek property 581
Canvas 199
Canvas element 172–175

arranging content 173–175
position offsets 173
setting offset position

programmatically 173
stack order 174

capture devices 607–616
accessing 607
changing the default 608
video 609–612

CaptureDeviceConfiguration
class 609

capturing
audio with video 616
from webcams and

microphones 607–616

still images 612–614
video 609–612

Cascading Style Sheets. See CSS
CDN 575
cells

spanning 180
Center

enumeration value 143
property 528

center text alignment 213
CenterX property 160–161
CenterY property 160–161
certificates 111
change methods 473
change-notification handler 267
CheckAndDownloadUpdate-

Async 107
CheckAndDownloadUpdate-

Completed event 107
CheckBox class 244

three-state checkbox 245
visual state management 692

Checked visual state 692
child elements 172
Children property 77, 172, 647
ChildWindow class 408
ChildWindow element

customizing 412
members 410
properties 412
showing 410–411

Chrome 58
chrome

custom window chrome 122
CircleEase class 661
classes

ApplicationStrings 465
ArcSegment 523
AuthenticationService 506
BackEase 661
BasicHttpBinding 345
BeginStoryboard 639, 654
BezierSegment 523
BitmapImage 254, 619
BitmapSource 620
BlurEffect 532
BounceEase 661
Brush 516, 524–531
buddy class 493
Button 241, 692
ButtonBase 240, 711
CaptureDeviceConfiguration

609
CheckBox 244
ChildWindow 408

CircleEase 661
Clipboard 222
ColorAnimation 641
ComboBox 248
CompositionTarget 148
ContentControl 238–240,

687, 711
ContentPresenter

239, 688, 715
Control 143, 235–238,

686, 711
ControlTemplate 686–687
CubicEase 661
CustomValidationAttribute

328
DataContractJsonSerializer

364
DataForm 293–304
DataGrid 286–293
DataGridBoundColumn 287
DataGridCheckBoxColumn

288
DataGridTemplateColumn

287
DataGridTextColumn 288
DataTemplate 289, 301, 561
DeepZoomImageTileSource

627
DependencyObject 255
DependencyProperty 682
DependencyPropertyChanged

EventArgs 255–256
DiscreteColorKeyFrame 656
DiscreteDoubleKeyFrame 656
DiscreteObjectKeyFrame 656
DiscretePointKeyFrame 656
DomainDataSource 486
DomainService 498
DoubleAnimation 639–640
DropShadowEffect 533
ElasticEase 661
Ellipse 516, 518
EllipseGeometry 522
EndpointAddress 345
Entity 492–494

business logic 504
EnumDataTypeAttribute 327
EventArgs 366
EventTrigger 443, 639, 653
Expander 715–716
ExponentialEase 662
FileInfo 414
FilterDescriptor 482
Frame 396–399
FrameworkElement 561
Licensed to Devon Greenway <devon.greenway@gmail.com>

INDEX 739
classes (continued)
Geometry 520–524
GeometryGroup 524
GradientStop 526, 528
HtmlDocument 76, 85
HtmlElement 77, 85
HtmlPage 76, 79, 83
HtmlWindow 79, 85
HttpWebRequest

352–353, 359
HyperlinkButton 241
Image 619
ImageBrush 529
InvokeOperation 492
IsolatedStorageFile 129–133
ItemsControl 245–252,

687, 711
ItemsPanel 689
ItemsPresenter 688
JsonObject 364
Keyboard 192
KeyEventArgs 191
LayoutInformation 157
Line 516–517
LinearColorKeyFrame 656
LinearDoubleKeyFrame 656
LinearGradientBrush

526–528, 681
LinearPointKeyFrame 656
LineGeometry 521
LineSegment 523
ListBox 246–248
ListBoxItem 247
MediaElement 573
MediaStreamSource 596–598
MessageReceivedEventArgs

378
metadata class 494
MouseEventArgs 194
MultiScaleImage 627–628
MultiScaleTileSource 627
NavigationService 393–396
NotificationWindow 108
OpenFileDialog 412
Page 388, 392–393
Panel 689
Path 516
PathFigure 522
PathGeometry 522
PathSegment 522
PixelShader 539
Point 519, 528, 631
PointAnimation 641
PollingDuplexHttpBinging

369

PolyBezierSegment 523
Polygon 144, 516, 519
Polyline 516, 519
PolyLineSegment 523
PolyQuadraticBezierSegment

523
Popup 408
PowerEase 662
PrintDocument 543–547
PrintPageEventArgs 547
PropertyChangedCallback

256
PropertyMetadata 255, 703
QuadraticBezierSegment 523
QuadraticEase 662
QuarticEase 662
QuinticEase 662
RadialGradientBrush

528–529
RadioButton 242–244
RangeAttribute 327
RangeBase 711
Rectangle 516–517
RectangleGeometry 521
RegularExpressionAttribute

327
RenderingEventArgs 149
RequiredAttribute 328
ResourceDictionary 672
ResourceWrapper 465
SaveFileDialog 412
ScaleTransform 554
Selector 248, 711
Setter 682
Shape 516–520, 632
SilverlightHost 84, 127
SocketAsyncEvents 374
SolidColorBrush 525
SplineColorKeyFrame 656
SplineDoubleKeyFrame 656
SplinePointKeyFrame 656
StackPanel 689
Storyboard 639
Stream 414
StreamReader 415
StreamResourceInfo 680
StringLengthAttribute 328
Style 680–686
SynchronizationContext

352, 368
SyndicationFeed 14
TabControl 249
TabItem 249
TemplatePartAttribute 693

TemplateVisualStateAttribute
692

TextBlock 345
Timeline 639, 646–648
TimelineMarker 589–591
TimelineMarkerRoutedEvent

Args 591
TimeSpan 647, 659
ToggleButton 242, 245, 711
TouchFrameEventArgs 197
TouchPoints 198
TypeConverter 41
UdpAnySourceMulticast-

Client 375
UdpSingleSourceMulticast

375
UriMapper 397
UserControl 252–257
UserRegistrationService 507
ValidationAttribute 328
ValidationContext 330
VideoBrush 530, 609
VideoCaptureDevice 610
VideoSink 614
ViewModel 429
VisualState 693–694, 697
VisualStateGroup 694, 696
VisualStateManager

691–697, 715
VisualStateTransition 694
VisualTransition 697
VisualTreeHelper 36
WebRequestCreator 355
Window 121
WriteableBitmap 620, 623
XamlReader 43
XDocument 16
XElement 362
XmlReader 362–363
XmlSerializer 363–364

ClearType 9, 205
orientation 207

Click event 240, 242
ClickMode

enumeration 240
property 240

client HTTP stack 355–360
creating 355
using automatically 356

client-side playlists 585–587
clientaccesspolicy.xml 337, 372
ClientBin

directory 677
ClientHttp property 355
clipboard 222
Licensed to Devon Greenway <devon.greenway@gmail.com>

INDEX740
Clipboard class 222
clipping 520, 710
clock tick 148
Close method 410
CloseAsync method 346
Closed

event 410
state 579

closed
DropDownClosed 249

CloseMedia method 597
Closing event 410
CLR 50, 264, 703

types
converters 39–42

wrappers 703
code

factoring 433–438
sharing 505

code-behind 269, 417–425
compared to Model-View-

ViewModel pattern 426
compared to ViewModel 433
factoring out into

ViewModel 428
MvvmApplication sample

application 422–425
and web services 419

codecs 574
H.264 8

CodePlex 9
WPF Pixel Shader Effects

library 537
Collapsed

enumeration value 141
visual state 715, 717

collecting
ink 199
sensitive data 224

collections
data binding 274–276
SupportedFormats 610

Color
property 201, 525–526, 533

animation 641
ColorAnimation class 641
colors 42

hexadecimal 42
multiple transitions 527

Column property 180
ColumnDefinitions

property 178
Columns property 288
ColumnSpan attached

property 180

ColumnSpan property 180
COM 110, 115–119

automating Microsoft
Excel 119

detecting availability 115–116
Location API 117
using for speech 117

ComboBox class 248
Comic Sans font 208
CommandButtonsVisibility

property 298
commands 438–442

surfacing to page 440
in XAML 32–33

Commodore 64 97
Common Language Runtime.

See CLR
CommonStates visual state

group 692
communication

asynchronous 342
communication APIs 336
Completed event 651
CompletedSynchronously

property 369
complex data types 347
complex property 682
composing dzi files 631
composite geometries 523
CompositeTransform 163
CompositionTarget class 148
Condensed font stretch

constant 209
configuration file 348
Confirm method 80
connected line segments 519
connecting

to AdventureWorks
database 731–734

connection count limit 341
to data sources 342–355
to other applications 377–380
service references 343
to sockets 372–374
to WCF services 366

connection count limit 341
constructors

NetworkCredential 358
XAML rules 22

consuming
REST services 352

content
build actions 679
files 678
overlapping 174

protected 591–593
rendering 174

content distribution networks.
See CDN

Content property 238, 240, 282,
688, 712

content-access key 593
ContentControl 238–240,

687, 711
buttons 240–245
data templates 281
flexibility 238

ContentPresenter class
239, 688, 715

ContentTemplate property
238, 240, 281, 712

context 71
contracts

control template contract 712
control

properties 687
templates 686–687

contract 712
visual states 716–718

Control class 143, 235–238,
686, 711

buttons 240–245
lookless controls 237

Control element 189
modifier key 192

controlling
browser journals 406

controls
customizing 710–718
DataPager 487
DomainDataSource 479
ListBox 16
reusable 252
RichTextBox 9
WebBrowser 87–92
WebBrowserBrush 92

ControlStyles.xaml file 674
ControlTemplate class 686–687

parts 693
using as part of a Style 690

Convert method 277
ConvertBack method 277
Converter property 278
ConverterCulture property 279
ConverterParameter

property 279
converting

JSON 364
CookieContainer property 359
Licensed to Devon Greenway <devon.greenway@gmail.com>

INDEX 741
cookies 128, 340
managing 359
with Silverlight 340

CookiesEnabled property 82
coordinate space 517
Copyright

ASX element 586
CoreCLR 50, 109
cost-effective media delivery 577
coupling

loose 496–503
Courier font 208
Create file mode value 134
create methods 472
Create Read Update Delete. See

CRUD
CreateDirectory method 131
CreateNew file mode value 134
createObject 61
createObjectEx 61, 71
createObjectEx function

id parameter 64
parameters 63–64
parentElement parameter 64
source parameter 63

createObjectEx method 727
creating

AdventureWorks entities 733
bitmap images 620–627
client HTTP stack 355
custom controls 710–718
custom panels 700–710
domain services 466–467
images from UI

elements 623–624
Mandelbrot fractals 624–627
navigation application 386
presentation models 497
raw audio 602–607
raw video 598–602
reusable templates 690
sound samples 605
templates 686–691

Credentials property 358
cross-domain 336–340

applications 68
policy element 338
policy file 678
TCP sockets 339
URI 573

cross-field validation 318–320
crossdomain.xml 339
CRUD 460
CSS 78, 207, 209, 682–683
CssClass property 77

CubicEase class 661
CultureInfo 278–279
curly braces 38, 264

syntax 278
CurrentSource property 395
CurrentState property 579–580,

583, 589
CurrentStateChanged event 583
Cursor property 140
cursors

Arrow 140
Eraser 140
Hand 140
IBeam 140
SizeNS 140
SizeWE 140
Stylus 140
Wait 140
web standards 140

custom controls 710–718
base types 711
control template contract 712
default template 714
properties 712
testing 717
visual states 715

custom pixel shader
effects 535–540

setting up environment 536
custom preloaders

creating 724–726
integrating 726
monitoring load progress 727

customizing
controls 710–718
field descriptions 299
field labels 299
layout 705–709
out-of-browser

navigation 403–408
panels 700–710
Silverlight install

experience 722–724
CustomValidationAttribute

class 328

D

data
annotating 304–307
cookies 340
displaying 286–292,

294–296, 495
domain services 465–480

downloading 344
exposing 465–480
filtering 481–483
formatting 17–18
grouping 485
integrity 340
loading from a file 412
OData format 467
paging 486–488
receiving 344
sending 346
sorting 484
updating 488–496
usable 360–366

data access
factoring 436–438

data annotations 304–307
for validation 327

data binding
binding modes 265–267
binding syntax 263–265
to collections 274–276
converting values 277–279
customizing display 276–280
dependency properties

263, 267
design time binding 264
fallback values 280
formatting values 276
to indexed elements 272
to keyed (string indexed)

elements 273
null values 280
to objects 268–269
to properties 267–268
relative source binding 271
runtime 263
source 267–276
string format 276
to UI elements 270–272
value converters 277–279

data integrity 340
data source, unbind 263
data sources

connecting to 342–355
data templates 281, 300

creating 280–283
with ContentControl 281
with ItemsControl 282

data types 539
complex 347
float 539
float2 539
float4 539
Licensed to Devon Greenway <devon.greenway@gmail.com>

INDEX742
DataAnnotations assembly 304
databases

connecting 731–734
DataContext 273

property 264, 268
DataContractJsonSerializer

class 364
DataForm class 293–304

binding 296–299
customizing 299
displaying data 294–296
and DomainDataService

control 489
templates 300
and WCF RIA Services

489–490
DataGrid class 286–293

automatically generating
columns 287

customizing data rows 289
customizing row and column

headers 291
displaying data 286–292
editing data 292
manually generating

columns 288
sorting 292
versus ItemControl 287

DataGridBeginningEdit-
EventArgs parameter 292

DataGridBoundColumn
class 287

DataGridCheckBoxColumn
class 288

DataGridHeaders
enumeration 291

DataGridRowDetailsVisibility-
Mode enumeration 290

DataGridTemplateColumn
class 287

DataGridTextColumn class 288
DataMember attribute 494, 496
DataMemberChanged

event 493
DataMemberChanging

event 493
DataPager control 487
DataTemplate 17, 281, 289, 301,

561, 671
DataTrigger behavior 666
DateTime 345
declarative resources 671, 677

defining 672
referencing at runtime 676

declaring
dependency properties 41
namespaces 25

Deep Zoom 627–632
Composer 631
showing images 627
viewport 630–631
zooming 628–630

DeepZoomImageTileSource
class 627

default value
value precedence 28

DefaultExt property 413
DefaultStateKey property 237
deferred

download 55
delete methods 473–474
DeleteDirectory method 130
DeleteFile method 130
DeliveryMethod property 595
Delta property 196
dependencies 55
dependency properties

27–29, 702
attached properties 29–30
data binding 263, 267
declaring 41
LeftProperty 145
OrbitPanel example 703
PrintPageCount 546
TopProperty 145
value precedence 28

DependencyObject 145, 255
DependencyProperty

146, 275, 682
See also dependency properties

DependencyProperty class
254, 682

naming guidelines 256
DependencyPropertyChanged-

EventArgs class 255–256
deploying media from a web

application 573
Deployment element 51
Deployment.ExternalParts 56
Deployment.Parts 51, 56
Description property 305
DescriptionViewerPosition

property 300
deserialization 353
Deserialize method 364
design patterns

Inversion of Control
pattern 429, 448

Model-View-Controller
20, 426

Model-View-ViewModel
21, 416–457

PresentationModel
pattern 425

design time binding 264
development 9–10

Expression Blend 10
setting up environment 9
user interfaces 12

dialog boxes 8, 408–415
displaying with ChildWindow

control 408–412
launching 412–414
retrieving results 414

DialogResult property 410–411
Dictionary structure 586
digital rights management. See

DRM
See also PlayReady

Direction property 533
DirectlyOver property 198
DirectX SDK 536
dirty state 303
Disabled visual state 692
discrete

interpolation 659
keyframe types 656

DiscreteColorKeyFrame
class 656

DiscreteDoubleKeyFrame
class 656

DiscreteObjectKeyFrame
class 656

DiscretePointKeyFrame
class 656

display
customizing 276–280

Display attribute 304–306
DisplayIndex property 289
displaying

bitmap images 619–636
data 286–292, 294–296, 495
media. See media
order 289
rich text 225–232
text 207–216, 218
validation errors 315

displaying media. See media
DisplayMemberBinding

property 287
DisplayMemberPath

property 275, 282
Licensed to Devon Greenway <devon.greenway@gmail.com>

INDEX 743
DisplayMode property 487
DnsEndPoint 373
DnsSafeHost property 373
Document Object Model. See

DOM
Document property 76
DocumentElement property 76
DocumentUri property 79
DOM 63–64, 74

accessing the browser
window 79

calling from managed
code 76–79

enabling access to 68
HTML DOM 76
variants supported by

Silverlight 75
W3C specification 74

domain context 490–492
properties and methods 490

domain element 338
domain services 465–480

connecting with code 477
creating 466–467
domain context 490–492
exposing to clients 468–472
method types 472–476
using from Silverlight

476–480
DomainDataService control

and DataForm control 489
DomainDataSource class 486

and filter descriptors 483
DomainDataSource control 479
domains

cross-domain access 336–340
DomainService class 498
dots per inch. See dpi
DoubleAnimation class 639–640
downloading data 344
DownloadProgress

property 578, 583
DownloadProgressChanged

event 578, 583
downloads

buffer 577
completion percentage 578

96dpi 208
dpi 548
DragMove method 124
DragResize method 125
drawing

line art 519
DrawingAttributes property 201

DRM 8
See also PlayReady

DropDownClosed event 249
DropDownOpened event 249
DroppedFramesPerSecond

property 582
DropShadowEffect class 533

properties 533
duplex

communication 368
services 367

Duration
property 644
structure 580

dynamic
playlist creation 587
resizing 185

dzi file 631

E

EaseIn easing mode 661
EaseInOut easing mode 661
EaseOut easing mode 661
easing functions 660–664

BackEase 661
BounceEase 661
CircleEase 661
CubicEase 661
custom 663
EaseIn mode 661
EaseInOut mode 661
EaseOut mode 661
ElasticEase 661
ExponentialEase 662
PowerEase 662
QuadraticEase 662
QuarticEase 662
QuinticEase 662

Eastern Asian fonts 208
Eclipse 45
Editable attribute 306
editing text 218–225
EditTemplate property 301
Effect property 532
effects 531–540

blur 532
built-in 532–535
custom pixel shaders 535–540
drop shadow 533
state-based effects 693
transitioning effects 695
tricks and considerations 534

ElasticEase class 661

element
properties 26
tree 146

ElementName 271
elements

access-policy 338
allow-from 338
Bold 226
Canvas 172–175
children 172
ColumnDefinition 178
cross-domain-policy 338
DataTemplate 17
domain 338
finding 146
FrameworkElement 139–146
grant-to 338
Grid 177–187
GridSplitter 179, 185
Hyperlink 227
InkPresenter 199
InlineUIContainer 228
Italic 226
moving programmatically 173
Paragraph 225
PasswordBox 224
policy 338
properties 26
resource 338
RichTextBox 225–232
RowDefinition 178
socket-resource 338
Span 226
StackPanel 176–177
TextBlock 172, 179, 207–218
TextBox 218–220
Transform 159–166
UIElement 139–146, 172

elevated trust 110–113
capabilities of 110
creating applications 110–113
detecting 113
full-screen mode 128
signed applications 111
unsigned applications 111

Ellipse class 516, 518
animation 640
comparison with

EllipseGeometry 522
control templates 688
keyframe animation 656
properties 519

EllipseGeometry class 522
comparison with Ellipse 522

EMBED tag 64
Licensed to Devon Greenway <devon.greenway@gmail.com>

INDEX744
embedded
mode 127

embedded files 678, 680
URL for 680

embedding fonts 216
Emoticon 283

keyboard shortcut 289
sort by Keys property 293
sort by Name property 293

EnableCacheVisualization
property 154

EnableFrameRateCounter 66
EnableGPUAcceleration

parameter 153
EnableGPUAcceleration-

Property 153
enableHtmlAccess 68
encryption 134
EndGetResponse method 354
EndPoint property 526
EndpointAddress 345
endpoints

JSON 469–472
OData 468
SOAP 472

EndPrint event 544, 546
entering

rich text 225–232
text 218–225

Entity class 492–494
business logic 504

Entity Framework Model 466
EntityContainer property 490
EntityState property 493
Entry ASX element 586
entry point 50, 52
EntryPointAssembly 51
EntryPointType 51
EnumDataTypeAttribute

class 327
enumeration values. See values
enumerations

BasicHttpSecurityMode 345
ClickMode 240
DataGridHeaders 291
DataGridRowDetailsVisibility

Mode 290
ModifierKeys 192
System.Windows.Media.Media

ElementState 579
UriKind 353

Environment.GetFolderPath
method 113

Eraser cursor 140
error handling 70

Error property 316
errorArgs 70
ErrorsChanged event 321
event bubbling 30
event handlers 345

BeginGetResponse 355
referencing from code 31

EventArgs class 366
events

BeginningEdit 292
BeginPrint 543–544, 546
bubbling 30
BufferingProgressChanged

577, 583
CanExecuteChanged 439
CheckAndDownloadUpdate-

Completed 107
Click 240, 242
Closed 410
Closing 410
Completed 651
CurrentStateChanged 583
DataMemberChanged 493
DataMemberChanging 493
DownloadProgressChanged

578, 583
DropDownOpened 249
EndPrint 544, 546
ErrorsChanged 321
FragmentNavigation 396
FrameReported 197–198
FullScreenChanged 127
ImageLoaded 622
in XAML 30–32
KeyDown 190, 629
KeyUp 190, 629
LayoutCompleted 156
Loaded 584, 653
LoadedData 509
MarkerReached 583, 590
MediaEnded 583
MediaFailed 583, 593
MediaOpened 580–581,

583, 587
MotionFinished 631
MouseEnter 194
MouseLeave 194
MouseLeftButtonDown

124, 193, 199
MouseLeftButtonUp 193, 199
MouseMove 194, 199
MouseRightButtonDown 193
MouseRightButtonUp 193
Navigated 396
Navigating 396, 400

NavigationFailed 396
NavigationStopped 396
NetworkAddressChanged 106
NotificationWindowClosed

109
onError 70
OnFragmentNavigation 393
onLoad 69
OnNavigatedFrom 393
OnNavigatedTo 393
OnNavigatingFrom 393
onSourceDownloadComplete

727
onSourceDownloadProgress-

Changed 727
PreparingCellForEdit 292
PrintPage 543–544, 547–549
referencing from code 31
referencing in XAML 31
Rendering 93, 149
routed events 30
Startup 728
startup events 69–70
TextChanged 218
TextInput 220
TextInputStart 220
TextInputUpdated 220

EventTrigger class 443, 639, 653
defining an action 654
supported events 653

Excel
automating with COM 119

Exception 53
ExceptionObject 53
exceptions

combining 314
combining with IDataError-

Info interface 320
IsolatedStorageException 130
System.Exception 328
validation 313–315
ValidationException 328
XmlParseException 673

Excl SMIL element 588
Execute method 439
Exit event 53
Expanded

font stretch constant 209
visual state 715, 717

Expander class 715–716
explicit styling 683
ExponentialEase class 662
exposing

data 465–480
domain services 468–472
Licensed to Devon Greenway <devon.greenway@gmail.com>

INDEX 745
exposing (continued)
JSON endpoints 469–472
OData endpoints 468
SOAP endpoints 472

Expression Blend 9–10, 45, 442,
660, 697

Assets panel 33
Expression Blend 4 SDK 442
ext namespace 250
extended controls 286

System.Windows.Controls
assembly 250

TabControl 250
Extensible Application Markup

Language. See XAML
ExtensionPart 56
ExtraBlack font weight

constant 209
ExtraBold font weight

constant 209
ExtraCondensed font stretch

constant 209
ExtraExpanded font stretch

constant 209
ExtraLight font weight

constant 209

F

factoring
business rules and logic

434–435
code 433–438
data access 436–438
service calls 436–438

fade animation 639–640
fallback values 280
FallbackValue 280
FBA. See forms-based authentica-

tion
fields

cross-field validation 318–320
customizing descriptions 299
customizing labels 299

File
object 114
property 414

file formats
PNG 8

FileInfo class 414
FileMode 134
files

.g.cs file 462

.xap 677–678

.xap format 50–51

App.xaml 673
ASX format 585
clientaccesspolicy.xml

337, 372
configuration file 348
content 678
content files 678
ControlStyles.xaml 674
crossdomain.xml 339
embedded 680
embedded files 678
ISX format 585
manifest files 51–52
media file lifecycle 583–584
playlists 585
prompting for 412–415
resource files 464
SDKStyles.xaml 390
ServiceReferences.Client-

Config 348
Silverlight.js 60–61, 723
Smooth Streaming files 576
source files

linked 505
shared 505

StandardColors.xaml 673
supported bitmap

formats 619
ToolkitStyles.xaml 390
utility files 60–61
WAX format 585
ways to open 134
WMX format 585
WPL format 585
WSX format 587
WVX format 585

filesystem
access restrictions 129
available free space 131
default quota 132
deleting files and

directories 130
isolated storage 129
listing files and

directories 129
reading files 135
writing files 133–135

Fill
property 525
stretch option 634

FillBehavior property 646
FillRule property 524

EvenOdd 524
Nonzero 524

filter descriptors 481
and DomainDataSource

class 483
Filter property 413
FilterDescriptor class 482

and DomainDataSource
class 483

FilterDescriptors property 481
FilterIndex property 413
filtering 481–483

filter descriptors 481
FilterOperator property 481
FinalSize parameter 156
finding elements 146
FindName method 146, 653
Firefox 75, 126
float type 539
float2 type 539
float3 type 539
float4 type 539
flow control 210
flow control elements

Inline 211
LineBreak 210
Run 210

FluidMoveBehavior
behavior 666

focus 189
setting via JavaScript 189

Focus method 189, 236
Focused visual state 692
FocusStates visual state

group 692
font stretch constants

Condensed 209
Expanded 209
ExtraCondensed 209
ExtraExpanded 209
Medium 209
Normal 209
SemiCondensed 209
SemiExpanded 209
UltraCondensed 209
UltraExpanded 209

font weight constants
Black 209
Bold 209
ExtraBlack 209
ExtraBold 209
ExtraLight 209
Light 209
Medium 209
Normal 209
SemiBold 209
Thin 209
Licensed to Devon Greenway <devon.greenway@gmail.com>

INDEX746
FontFamily property
207–208, 681

fonts
Arial 208
Comic Sans 208
Courier 208
Eastern Asian 208
embedding 216
Georgia 208
Italic style 210
Lucida 208
Normal style 210
subsetting 217
Times New Roman 208
Trebuchet 208
TrueType 208
Verdana 208

FontSize property 207–208, 681
animation 641
pixels versus points 208

FontStretch property
207, 209–210

FontWeight property
207, 209, 681

footers 567–570
Foreground property 211, 236
Forever duration value 644
formats

MP3 574
MP4 574
Windows Media 574

formatting 17–18
selected text 231

forms-based authentication 507
Forward button 385
FourCC codes 599
fractals. See Mandelbrot fractals
FragmentNavigation event 396
fragments. See hashtags
Frame class 396–399
Frame.CacheSize property 400
frameRate 66
FrameReported event 197–198
frames

cache settings 400
FramesPerSecond property 610
FrameworkElement 139–146

common properties 139–145
data binding 264
ResourceDictionary 676

FrameworkElement class 561
styles 682

From property 641, 695
default behavior 643

full-screen mode 126–128
normal 126–127
trusted applications 128

FullScreenChanged event 127
functions

ArrangeOverride 156
createObjectEx function

63–64
external validation

functions 330–331
GetIDsOfNames 117
GetPrimaryTouchPoint 198
MeasureOverride 155
of Silverlight.js utility file 61
Select 230

G

.g.cs file 462
Gecko 75
geometries 520–524

composite 523
path 522
simple 521–522

Geometry class 520–524
animation 641

GeometryGroup class 524
Georgia font 208
GET 351
GetDefaultVideoCaptureDevice

method 609
GetDiagnosticAsync

method 596
GetDirectoryNames

method 129
getElementById 64
GetElementById method 77
GetElementsByTagName

method 77
GetErrors method 321
GetFileNames method 130
GetIDsOfNames function 117
GetIsNetworkAvailable

method 106
GetLayoutClip method 157
GetLayoutSlot method 157
GetLeft method 173
GetOriginal method 493
GetPosition method 194
GetPrimaryTouchPoint

function 198
GetProperty method 78
GetPropertyValue method 231
GetResourceStream

method 680

GetResponseStream
method 354

GetSampleAsync method
597, 601

GetStyleAttribute method 78
GetStylusPoints method 200
GetTemplateChild method 714
GetTop method 174
GetUserStoreForApplication

method 129
GetUserStoreForSite

method 129, 133
GetValue method 146, 703
GoBack method 394
GoForward method 394
Google Chrome 126
GoToState method 695
GPS 117
GPUs

hardware acceleration 153
gradient

beginning and ending 526
elliptical 528
radial 528

GradientBrush class
declared as a resource 671

GradientOrigin property 528
GradientStop

property 650
GradientStop class 526, 528
grant-to element 338
graphics

effects 531–540
raster 530
raster-based 515, 633
vector-based 515

Grid
ColumnDefinitions

property 178
dimensions of a row or

column 181
RowDefinitions property 178
spanning content across mul-

tiple cells 180
Grid element 177–187

absolute sizing 182
adding rows or columns

programmatically 184
arranging content 178–180
automatic sizing 181
dynamic resizing 185
removing rows or columns

programmatically 184
star sizing 181

grid lines 179
Licensed to Devon Greenway <devon.greenway@gmail.com>

INDEX 747
GridLength value 181
GridSplitter element 179, 185
GroupDescriptor object 485
grouping 485
grouping animations 647
GroupName property

243, 305, 692

H

H.264 codec 8
Hand cursor 140
Handled property 53, 194, 196
handling text 218–220
handwriting 199–202
hardware acceleration 153
HasChanges property 490, 493
HasCloseButton property 412
HasElevatedPermissions 113
HasErrors property 321
HasHeader property 251
hashtags 384
HasMorePages property

547–548
HasSideEffects property 473
HasTimeSpan property 580
HasValidationErrors

property 493
Header property 250, 291
headers 356–357, 567–570

HTTP Referer 356–357
HeadersVisibility property 291
headless application 85
height 65
Height property 156, 181,

518, 681
Heuer, Tim 536
hexadecimal colors 42
High Level Shader

Language 536
HLSL. See High Level Shader

Language
HoldEnd enumeration

value 646
horizontal

offset 173
HorizontalAlignment

property 142
HorizontalContentAlignment

property 236
host 63
Host property 54
host window

basic properties 121
changing chrome 122

controlling 120–126
minimizing and

maximizing 123
moving 124
resizing 125
restoring and closing 123

hosting HTML 86–94
Hover click mode 241
HTML

EMBED tag 64
hosting 86–94
ID 64
OBJECT tag 64
table element 178
tags, no support 279

HTML DOM. See DOM
HtmlAttributeEncode 61
HtmlDocument class 76, 85
HtmlDocument object 79

Body property 76
DocumentElement

property 76
GetElementById method 77
GetElementsByTagName

method 77
HtmlElement class 77, 85
HtmlPage

Document property 76
HtmlPage class 76, 79, 83
HtmlWindow class 79, 85
HTTP

client stack 355–360
message chunking 369

HTTP Referer header 356–357
HTTP verbs 351
http-request-headers

attribute 338
HTTPS 340
HttpWebRequest 362
HttpWebRequest class

352–353, 359
Hyperlink element

inline 227
HyperlinkButton class 241

I

I/O. See filesystem
IAsyncResult 369
IAsyncResult interface 354
IBeam cursor 140
IChannelFactory 369
IChannelFactory interface 369

ICollectionView interface 292
ICommand interface 439

members 439
icons 106

out-of-browser 106
Id property 77
IDataErrorInfo interface

316–321
combining with

exceptions 320
comparison with

INotifyDataErrorInfo 321
cross-field validation 318–320
simple validation 317

IDispatch 117
IDuplexSessionChannel

interface 369
IEditableObject interface 302
IEnumerable 275
IEnumerable interface 474
IEnumerator interface 564
ignoreBrowserVer 68
IgnoredValue property 482
ignoring methods 476
IIS Smooth Streaming. See

Smooth Streaming
IList interface 292
Image

data binding 269
Image class 619

animating the Opacity
property 638

animation 642
pixellation 635
preserving aspect ratios 633
referencing loose

resources 677
stretching 633
supported image formats 619

ImageBrush class 529
ImageLoaded event 622
images

bitmaps 619–636
creating at runtime 620–627
creating from UI

elements 623–624
Deep Zoom 627–632
direct pixel access 624
Mandelbrot fractals 624–627
manipulating 621
pixellation 635
preserving aspect ratio 633
screenshots 623
showing with Deep Zoom 627
Licensed to Devon Greenway <devon.greenway@gmail.com>

INDEX748
images (continued)
stretching 632–636
zooming 628–630

ImageSource property 529, 619
IME. See input method editors
implicit styling 685
in-browser

comparison with out-of-
browser 96

include-subpaths attribute 338
IncreaseQuotaTo method 132
indexed elements

data binding 272
individualized DRM client 592
Individualizing state 579
infinite scroll 486
initialization parameters

52, 71–72
InitializeComponent 32
initParams 52, 71
ink 199–202

collecting 199
styling 201

InkPresenter 202
InkPresenter element 199
Inline flow control element 211
inline properties 26
inline styles 226
inline XAML 63
Inlines property 211
InlineUIContainer element 228
INotifyDataErrorInfo

interface 321–326
binding support 323
comparison with

IDataErrorInfo 321
implementing 322

INotifyPropertyChanged 267
INotifyPropertyChanged

interface 309, 429
input

validating 308
input devices 188

keyboard 189–193
input method editors 220–222
insert methods 472, 474, 502
Install method 105
installation 58, 66
installing

AdventureWorks
database 729–731

Silverlight plug-in 721–724
InstallState 102
interactive media playback

588–591

interfaces
IAsyncResult 354
IChannelFactory 369
ICollectionView 292
ICommand 439
IDataErrorInfo 316–321
IDuplexSessionChannel 369
IEditableObject 302
IEnumerable 474
IEnumerator 564
IList 292
INotifyDataErrorInfo

321–326
INotifyPropertyChanged

309, 429
IPagedCollectionView 487
IQueryable 474
ViewModels as 448

Internet Explorer 58
colors 525
DHTML Object Model 75
in full screen 126
Silverlight and ActiveX

model 48
understanding limits 109

Internet Explorer 8 341
Internet Standard Multicast 375
interpolation 655

curves 659
discrete 659
linear 656
spline 657
types 656

InvalidOperationException 242
Inversion of Control

pattern 429, 448
Invoke attribute 475
Invoke method 85
invoke methods 473, 475, 491
InvokeOperation class 492
InvokeScript method 91
IoC. See Inversion of Control

pattern
IPagedCollectionView

interface 487
IQueryable interface 474
IsActive property 121
IsCaseSensitive property 482
IsChecked property 243
IsComposable property 473
IsDefault property 473
IsDropDownOpen property 249
IsEnabled property 236
IsFullScreen property 127
IsItemsHost property 702

IsLoaded 55
IsLoading property 490
IsMuted property 582
isolated storage 128–136

administering 136
available free space 131
clearing all data 136
creating directories 131
default quota 132
deleting files and

directories 130
increasing quota 132
listing files and

directories 129
per domain quota 133
physical locations 136
quota 98
reading files 135
sensitive data 134, 136
writing files 133–135

IsolatedStorageException 130
IsolatedStorageFile class

129–133
IsolatedStorageFileStream 133
IsolatedStorageFileStream

object 135
IsPressed property 240
IsReadOnly property

218, 228, 292
IsSubmitting property 491
IsTabStop property 236
IsThreeState property 245
IsValid property 303
isWindowless 65
ISX files 585
Italic element 226
Italic font style 210
Items property 246, 274,

316, 689
ItemsCollection 245
ItemsControl 245

data binding 274
data templates 282

ItemsControl class 245–252,
687, 711

ItemSource property 16
ItemsPanel class 689
ItemsPanel property 246
ItemsPresenter class 688
ItemsSource property

246, 274, 282
ItemsTemplate property 246
ItemTemplate property 282
IValueConverter 277
Licensed to Devon Greenway <devon.greenway@gmail.com>

INDEX 749
J

JavaScript 189
calling managed code 83–85
creating a Silverlight

control 61–62
custom splash screens 725
invoking 91
jQuery 470
script tag 60

JavaScript Object Notation. See
JSON

jerky animation 657
JournalOwnership property 406
journals

controlling 406
JPG image format 619
jQuery 470
JSON 61, 353, 360, 677

converting 364
endpoints 469–472
serialization 365

JsonObject class 364
JSP 58

K

Kaxaml 45
Key attribute 494
Key property 192
keyboard 189–193

input limitations 127
modifier keys 192–193
responding to events 191

Keyboard class 192
KeyDown event 190, 629
keyed elements

data binding 273
KeyEventArgs class 191
KeyEventArgs parameter 190
keyframe animation 654–660
keyframes 654–660

timing 659
types 656

KeySpline property 657
control points 658
curves for interpolation 659

keystrokes 189–193
modifier keys 192–193

KeyTime property 659
KeyUp event 190, 629

L

LabelPosition property 299
lambda expressions 14, 351
LastOperation property 374
layout

arrange pass 156
arrange step 706
with attached properties 29
calculation 182
customizing 705–709
layout slots 157
layout system 155–159
measure pass 155
measure step 705
multipass 155–157
orbital 701
performance 158
radial 701
sizing and positioning 158
subpixel rendering 174
virtualization 158

layout panels
Canvas 172–175
Grid 177–187
StackPanel 176–177

layout slots 157
layout system 155–159
LayoutCompleted event 156
LayoutInformation class 157
LayoutRoot control

rerooting 552
Left

enumeration value 142
Left property 173
left text alignment 213
LeftProperty dependency

property 145
libraries

referencing 24–26
System.Windows.Interactivity

667
licensing server 592
Line class 516–517

comparison with
LineGeometry 521

x and y coordinate pairs 517

linear interpolation 656
linear keyframe types 656
LinearColorKeyFrame class 656
LinearDoubleKeyFrame 656
LinearGradientBrush class

526–528, 681
animation 650
declared as a resource 671

LinearPointKeyFrame 656
LineBreak flow control

element 210
LineGeometry class 521

comparison with Line 521
LineHeight property 214
LineSegment class 523
links

adding to top menu 389
LINQ

and web services 419
XLINQ 362
to XML 360

LINQ to XML 14, 360
parsing with 15

ListBox
data binding 275

ListBox class 246–248
control templates 689
defining items at design

time 247
defining look and feel 247
selecting items 248

ListBox control
binding 16

ListBoxItem class 247
Load method 43, 365
load progress

monitoring 727
Loaded event 584, 653
LoadedData event 509
LoadSize property 486
local file access 113–115

reading from files 114
writing to files 115

local values
value precedence 28

LocalMessageReceiver
object 377

LocalMessageSender object 378
Location API 117
logical trees XE 35
Licensed to Devon Greenway <devon.greenway@gmail.com>

INDEX750
lookless controls 237
looping animation 646
loose coupling 496–503
loose resources 677–678

referencing relatively 677
retrieving with absolute

URI 678
loose XAML 63
Lucida font 208

M

MainWindow object 123
managed code

calling DOM 76–79
calling from JavaScript 83–85
and scripting 82–86

managing
cookies 359

Mandelbrot fractals 624–627
manifest files. See AppMani-

fest.xaml
manipulating images 621
MapUri method 397
Margin property 143
MarkerReached event 583, 590
Markers property 590
markup extensions 38–39

StaticResource 672–673
TemplateBinding 687

Matrix3dProjection 168–169
MatrixTransform 164–166
MaxDropDownHeight

property 249
MaxLength property 218
MBR 575

streaming 577
measure

pass 155
step 705

MeasureOverride function 155
media

AcquiringLicense state 579
animation 638–664
audio 581–582
audio volume 582
available states 579
bitmap images 619–636
buffering progress 577
Buffering state 579
capturing audio with

video 616
capturing still images

612–614
capturing video 609–612

Closed state 579
common properties 579–581
controlling play state 589
cost-effective delivery 577
creating a media player with

SMF 594
delivery methods 574
duration 580
formats 574
getting raw video data

614–616
Individualizing state 579
interactive playback 588–591
length 580
lifecycle 583–584
metadata 586
Opening state 579
Paused state 579
pausing not an option 589
Playing state 579
playlists 584–588
progress bar 577
progressive download 595
progressive downloading 577
protected content 591–593
raw audio 602–607
raw media 596–607
raw video 598–602
raw video stream 599
setting the source 573–579
SMF 593–596
Smooth Streaming 575–576
spring animations 631
stereo balance 582
Stopped state 579
streaming audio 581
timeline markers 589–591
use permissions 573
video 582
Windows Media

Streaming 577
Media SMIL element 588
Media Stream Source API 7
MediaElement

sound volume 582
VideoBrush 530

MediaElement class 573
animation 651
audio-specific properties 581
automatic bit rate

selection 577
automatic play 579
common media

properties 579–581
duration 580

lifecycle 583–584
media lifecycle 584
media metadata 586
playback state 579
playlist support 585
PlayReady 591
programmatic

positioning 581
programmatically controlling

playback 589
progressive downloading 577
Source property 573–579
streaming media 577
supported media formats 574
timeline markers 590

MediaEnded event 583
MediaFailed event 583, 593
MediaOpened event 580–581,

583, 587
MediaStreamSource class

596–598
Medium font stretch

constant 209
Medium font weight

constant 209
menus

adding items 401
merging

resource dictionaries 673
message chunking 369
Message property 378
MessageReceivedEventArgs

class 378
metadata 468, 585

for display 494–496
for validation 494–496

methods
add methods 472
AddPropertyValue 231
Alert 80
ApplyTemplate 237
Arrange 156
Attach 475
AttachAsModified 475
Begin 650
BeginGetRequestStream 355
BeginGetResponse 353
BeginOpen 369
CalculateVacationBonus 490
CheckAndDownloadUpdate-

Async 107
Close 410
CloseAsync 346
CloseMedia 597
Confirm 80
Licensed to Devon Greenway <devon.greenway@gmail.com>

INDEX 751
methods (continued)
create methods 472
CreateDirectory 131
createObjectEx 727
delete methods 473–474
DeleteDirectory 130
DeleteFile 130
Deserialize 364
domain services 472–476
DragMove 124
DragResize 125
EndGetResponse 354
Environment.GetFolderPath

113
Execute 439
FindName 146, 653
Focus 189, 236
GetDefaultVideoCapture-

Device 609
GetDiagnosticAsync 596
GetDirectoryNames 129
GetElementById 77
GetElementsByTagName 77
GetErrors 321
GetFileNames 130
GetIsNetworkAvailable 106
GetLayoutClip 157
GetLayoutSlot 157
GetLeft 173
GetOriginal 493
GetPosition 194
GetPropertyValue 231
GetResourceStream 680
GetResponseStream 354
GetSampleAsync 597, 601
GetStyleAttribute 78
GetStylusPoints 200
GetTemplateChild 714
GetTop 174
GetUserStoreForApplication

129
GetUserStoreForSite 133
GetValue 146, 703
GoBack 394
GoForward 394
GoToState 695
ignoring 476
IncreaseQuotaTo 132
insert methods 472, 474, 502
Install 105
Invoke 85
invoke methods 473, 475, 491
InvokeScript 91
Load 43, 365
MapUri 397

media delivery methods 574
modify methods 473
named update methods 475
Navigate 81, 87, 394, 396
NavigateToBootkmark 81
NavigateToString 89
NotificationWindowClose 109
OnApplyTemplate 713
Open 411
OpenMediaAsync 597
OpenRead 414
OpenText 414
OpenWrite 414
Pause 531, 589, 650
Play 589
Post 352
Print 543–546
Prompt 80
query methods 472–474, 498
ReadObject 365
Refresh 394
Register 255, 702
RegisterAttached 704
RegisterScriptableObject 83
RejectChanges 491
Remove 676
remove methods 473
RemoveAt 184
Resume 651
SaveToString 92
Seek 651
SeekAsync 596
SetLeft 173
SetStyleAttribute 78
SetTop 174
SetValue 146, 703
Show 109, 410
ShowDialog 413
Stop 531, 589, 651
StopLoading 394
SubmitChanges 475, 490–492
SwitchMediaStreamAsync 596
update methods 473–474, 500
WriteObject 365
ZoomAboutLogicalPoint 628

microphones 8, 607–616
Microsoft Excel

Microsoft PowerPivot 469
Microsoft Expression 631
Microsoft PowerPivot 469
Microsoft Public License.

See Ms-PL
Microsoft.Expression.Interac-

tions.dll assembly 442

Microsoft.SilverlightMedia-
Framework namespace 595

Microsoft.SilverlightMedia-
Framework.Plugins.Progres-
sive.dll assembly 595

Microsoft.Web.Media.Smooth-
Streaming.dll assembly 595

mixtapes 584–588
MMS protocol 588
Mode property 263, 265
mode, Visible 290
Model 427

definition 427
Model-View-Controller design

pattern 20
Model-View-ViewModel design

pattern 21
sample application. See

MvvmApplication sample
application

Model-View-ViewModel
pattern 416–457

basics 425–433
commands 438–442
compared to code-

behind 426
history 425
Model. See Model
separation from UI 438–451
View. See View
ViewModel. See ViewModel

modifier keys 192–193
ModifierKeys enumeration 192
modify methods 473
MoreInfo ASX element 586
motion animation 641
MotionFinished event 631
mouse 193–197
mouse events 193–197

collecting ink 199
custom click event 195
location 194
mouse button events 193–195
mouse wheel 195–197
movement events 193–195

mouse scrolling 8
mouse wheel 195–197
MouseButtonEventArgs 194
MouseEnter event 194
MouseEventArgs class 194
MouseLeave event 194
MouseLeftButtonDown

event 124, 193, 199
MouseLeftButtonUp event

193, 199
Licensed to Devon Greenway <devon.greenway@gmail.com>

INDEX752
MouseMove event 194, 199
MouseOver visual state

692, 694, 696
MouseRightButtonDown

event 193
MouseRightButtonUp

event 193
moving elements

programmatically 173
movingPosition parameter 230
Mozilla Firefox 75
MP3 format 574
MP4 format 574

and Smooth Streaming 575
Ms-PL 60
multi-touch 8, 197–199
multicast

Any Source Multicast 375
Internet Standard

Multicast 375
Source Specific Multicast 376

multicast sockets 374–377
multiline text support 219
multilingual video files 581
multipage printing 556

prerequisites 557–560
multipass layout 155–157
multiple bit rate. See MBR
MultiScaleImage class 627–628

composing dzi files 631
viewport 630
zooming

programmatically 629
MultiScaleTileSource class 627
Multiselect property 413
multitrack audio 581
MVC design pattern. See Model-

View-Controller design pat-
tern

MVC pattern. See Model View
Controller pattern

MVVM pattern. See Model-View-
ViewModel pattern

MvvmApplication sample
application 418

AddVacationBonusCommand
command 441

base ViewModel class 429
busines logic 434–435
button functionality 424
CallMethodAction

behavior 442
code-behind solution

422–425
DataGrid code 422

Edit button 441–442
employee detail view 420
employee detail window

423, 447
employee list view 419, 422
EmployeeDataService

class 436
EmployeeListViewModel

clalss 434
EmployeeListViewModel

class 430, 437, 446
Employees property 431
EmployeeVacationBonusSer-

vice class 435
EmployeeViewModel

class 444
list page ViewModel 430
LoadEmployees method

433, 447
LoadingProgress overlay 420
OnNavigatedTo method

433, 450
pop-ups 425
SelectedEmployee

property 431
SilverlightTest class 457
testing 451–457
updated list view 431
View-specific entities 444
ViewModel locator 449
ViewModelCommand

class 439
and web services 419

N

Name property 82, 305, 692
named update methods 475
namescope 37–38, 377

bug in Silverlight 2 38
NameScope property 378
namespaces

CLR namespaces 24
declaring 25
ext 250
Microsoft.SilverlightMedia-

Framework 595
multiple 24
NetworkInformation 107
riaControls 479
System.Collections 292
System.ComponentModel

316, 321
System.ComponentModel.

DataAnnotations 327, 445

System.Device.Location 118
System.Drawing 525
System.IO.IsolatedStorage

129
System.Json 365
System.Runtime.Serialization

343
System.Runtime.Serialization.

Json 365
System.ServiceModel 343
System.ServiceModel.

Channels 344
System.Speech 117
System.Windows 691
System.Windows.Browser

76, 82–83
System.Windows.Controls

185, 286, 392
System.Windows.Controls.

Navigation 388
System.Windows.Documents

210
System.Windows.Ink 201
System.Windows.Input

140, 188, 192, 202
System.Windows.Interop 115
System.Windows.Markup 43
System.Windows.Media 525
System.Windows.Media.

Imaging 620
System.Windows.Resources

680
in XAML 23, 26
xaml 24
xaml/presentation 24

NaturalDuration property 580
NaturalVideoHeight

property 583
NaturalVideoWidth

property 583
Navigate method 81, 87,

394, 396
Navigated event 396
NavigateToBookmark

method 81
NavigateToString method 89
NavigateUri property 241
navigating

to other assemblies 400–402
Navigating event 396, 400
navigation 81

back and forward 385
browser journals 384
browsers 383–386
cancelling 400
Licensed to Devon Greenway <devon.greenway@gmail.com>

INDEX 753
navigation (continued)
custom controls 403–408
fragments. See hashtags
hashtags 384
history 383–386
navigation application 386
Navigation Application

template 386–392
out-of-browser 403–408
to pages 392–402

Navigation Application
template 386–392

NavigationCacheMode
property 399

NavigationContext
property 398

NavigationFailed event 396
NavigationService class 393–396

events 395
functions 394
properties 394

NavigationStopped event 396
nesting layout panels 177
nesting objects 22
.NET Framework 129, 580

colors 525
.NET Framework 3.0

WCF 366
Netflix

install page 722
Netscape 58
NetTcp protocol 349
NetworkAddressChanged

event 106
NetworkCredential

constructor 358
NetworkInformation

namespace 107
networking

client HTTP stack 355–360
stack 7

networks
cross-domain access 336–340

NewItemTemplate property 301
NewValue property 256
None stretch option 633
Normal font stretch

constant 209
Normal font style 210
Normal font weight

constant 209
Normal visual state 692, 696
normals 150
notification toast 108–109
NotificationWindow class 108

NotificationWindowClose
method 109

NSAPI 58
null values 280
NumericButtonCount

property 487

O

object
GroupDescriptor 485
SortDescriptor 484

OBJECT tag 64
object tag 59
object trees 23, 35–37

visual trees 35
objects

Application 102
application object 52–55
data binding 268–269
DependencyObject 145
File 114
IsolatedFileStreamObject 135
LocalMessageReceiver 377
LocalMessageSender 378
MainWindow 123
nesting 22
rotating 160
Settings 154
StreamWriter 134
strongly typed 364
WebContext 510
in XAML 22–23

occlusion 150–151
OData 467

endpoints 468
Offset property 526
offsets 173
OldValue property 256
OLE Automation 117
OnApplyTemplate method 713
onError 53, 69–70
OneTime binding mode 265
OneWay binding mode 265
OnFragmentNavigation

event 393
onLoad 69
OnNavigatedFrom event 393
OnNavigatedTo event 393
OnNavigatingFrom event 393
onSourceDownloadComplete

event 727
onSourceDownloadProgress-

Changed event 727

Opacity property 140, 533
animation 638, 642

Open file mode value 135
Open method 411
OpenFileDialog class 412

instantiating 412
properties 413

Opening state 579
OpenMediaAsync method 597
OpenOrCreate file mode

value 135
OpenRead method 414
OpenText method 414
OpenWrite method 414
operating system

detecting 116
Operator property 482
operators

PropertyPath 482
options

RenderAtScale 153
select from a list 245
selecting from list 248

OrbitPanel
Orbits property 702

OrbitPanel example 700–710,
717–718

CalculateOrbitSpacing
method 707

Children property 701
ControlsLib namespace 708
dependency properties 702
markup 708
MeasureOverride

method 705
Orbit property 704
OrbitPanel class 701
possible enhancements 709
project setup 701
properties 702
SortElements method

706–707
Order property 305
Orientation

property 176
orientation

ClearType 207
horizontal 176
vertical 176

OriginalSource property
194, 196

OS X 192
isolated storage locations 136

Oscillations property 663
Licensed to Devon Greenway <devon.greenway@gmail.com>

INDEX754
out-of-browser 96–100
application settings 101–102
capabilities 98
checking network state

106–108
comparison with in-

browser 96
controlling user

experience 102–106
creating applications 101–110
custom window chrome 122
customizing icons 106
elevated trust 110–113
end-user experience 98–100
forcing out-of-browser

mode 102
host window 120–126
icons 106
implementing 109
installation procss 99
minimizing and maximizing

windows 123
moving windows 124
navigating 403–408
notification toast 108–109
resizing windows 125
restoring and closing

windows 123
restrictions 98
updating 107
Windows 7 integration 98

out-of-browser mode 7
OutlineColor property 201
Outlook Web Access 383
OutOfBrowserSettings.xml 101

Icons section 106
Window element 122

overlapping content 174
OverlayBrush property 412
OverlayOpacity property 412
OWA. See Outlook Web Access

P

packaged XAML 63
Padding property 143, 215, 236
Page class 388, 392–393

navigation-related
functions 392

PageMargins property 547–548
pages

cache settings 399
caching 399
navigating to 392–402
new 388

numbers 568–570
page parameters 398
parameters 398
requesting 351
surfacing commands 440

PageSize property 486
PageVisual property 547, 549
paging 486–488
Panel class 254, 689

animation 641
Children property 702
clipping 710
custom panels 700–710
OrbitPanel example. See

OrbitPanel example
possible enhancements 709

Paragraph element 225
Param ASX element 586
parameters

anchorPostion 230
AvailableSpace 155
context 71
DataGridBeginningEditEvent

Args 292
EnableGPUAcceleration 153
FinalSize 156
id parameter 64
initialization 71–72
initParams 71
KeyEventArgs 190
movingPosition 230
parentElement parameter 64
source parameter 63
ValidatesOnExceptions 313

Parent property 77, 146
parentElement 64
parts 693

and states model 691, 697
Password property 224
PasswordBox element 224
PasswordChar property 224
passwords 136, 224
path

geometries 522
Path attribute 338
Path class 516
PathFigure class 522
PathGeometry class 522
paths

absolute 573
relative 573

PathSegment class 522
Pause method 531, 589, 650
Paused state 579

per-frame rendering
callback 148

performance 65
PHP 58
pixel shaders 535–540

custom effects 539
model 536
pixel shader class 538
profile 536
setting up environment 536
using 539
WPF Pixel Shader Effects

library 537
PixelFormat property 610
PixelHeight property 610
pixels 208
PixelShader class 539
PixelWidth property 610
Plain Old XML. See POX
PlaneProjection 166–167
Platform property 82
PlatformKeyCode property 192
Play method 589
playback control 579
Playing state 579
playlists 584–588

client-side 585–587
dynamic 587
server-side 587–588
support 585

PlayReady 591
installation 592
server SDK 592

plug-in. See browser plug-in
PNG 8

image format 619
Point class 519, 528, 631
PointAnimation class 641
points 208
Points property 519–520
policy element 338
policy file

serving 372
polling 367
PollingDuplexHttpBinding

class 369
PolyBezierSegment class 523
Polygon class 144, 516, 519

Points property 520
Polyline class 516, 519

coordinate pairs 519
PolyLineSegment class 523
PolyQuadraticBezierSegment

class 523
pop-up windows 8
Licensed to Devon Greenway <devon.greenway@gmail.com>

INDEX 755
pop-ups 408–415
MvvmApplication sample

application 425
Popup class 408
Port atribute 338
position

absolute 517
relative 517

position offsets 173
Position property 198, 581
POST 351, 354
Post method 352
PowerEase class 662
POX 353, 360

reading 360–364
preloaders 724–728

default 724
defining the appearance

of 724–726
JavaScript 725
monitoring load progress 727

PreparingCellForEdit event 292
presentation models 496–503

creating 497
Press click mode 241
Pressed visual state 692
Print method 543–546
PrintableArea property 547–548
PrintDocument class 543–547
PrintedPageCount

property 544, 546
printing 7, 543–570

clipping 555, 565
at different size 553
dpi 548
header and footer 567–570
how it works 543
large documents 550
line items 560
multipage 556
onscreen information

550–556
page breaks 565
page numbers 568–570
page size 548
rasterization 549
resolution. See dpi
scaling to fit 554–556
tracking page size 566
and transforms 554
and trust 545
visual tree 560–566

printing onscreen
information 550

as is 550–552

rerooting 552
scaling to fit 554–556

PrintPage event 543–544,
547–549

report writer example 568
PrintPageEventArgs class 547
progress

bar 577
property 728

progressive downloading 577
projection transforms 166–169
Prompt method 80
Prompt property 305
properties

AcceptsReturn 219
Action 198
Activate 121
ActualHeight 156
ActualWidth 156
Angle 160
AngleX 161
AngleY 161
animation 638–639
Application.Current.Install-

State 102
ApplicationName 464
AsyncState 354
attached 145, 173
attached properties 29–30
Attributes 586
audio-specific 581
AudioStreamCount 581
AudioStreamIndex 581
Authentication 508
AutoEllipsis 487
AutoGenerateColumns 286
AutoGenerateField 305
AutoGenerateFilter 305
AutoPlay 579, 585
AutoReverse 646
AvailableFreeSpace 131, 133
Background 187, 235, 681
background 65
Balanced 582
BeginTime 647
BlurRadius 533
Body 76
BorderBrush 235
BorderThickness 236
BrowserHttp 355
BrowserInformation 82
BrowserVersion 82
BufferingProgress 577, 583
BufferingTime 577
By 643

Cancel 292
CanExecute 439
CanGoBack 395
CanGoForward 395
CanMoveToFirstPage 487
CanMoveToNextPage 487
CanPause 579, 589
CanSeek 581
Center 528
CenterX 160–161
CenterY 160–161
Children 77, 172, 647
ClickMode 240
ClientHttp 355
Color 201, 526, 533
Column 180
ColumnDefinitions 178
Columns 288
ColumnSpan 180
CommandButtonsVisibility

298
common media

properties 579–581
CompletedSynchronously

369
complex 682
Content 238, 240, 688, 712
ContentTemplate

238, 240, 712
control properties 687
CookieContainer 359
CookiesEnabled 82
Credentials 358
CssClass 77
CurrentSource 395
CurrentState 579–580,

583, 589
Cursor 140
data binding 267–268
DefaultExt 413
DefaultStateKey 237
DeliveryMethod 595
Delta 196
dependency 27–29, 254, 702
Description 305
DescriptionViewerPosition

300
DialogResult 410–411
Direction 533
DirectlyOver 198
DisplayIndex 289
DisplayMemberBinding 287
DisplayMode 487
DnsSafeHost 373
DocumentElement 76
Licensed to Devon Greenway <devon.greenway@gmail.com>

INDEX756
properties (continued)
DocumentUri 79
DownloadProgress 578, 583
DrawingAttributes 201
DroppedFramesPerSecond

582
Duration 644
EditTemplate 301
Effect 532
EnableCacheVisualization

154
EnableGPUAcceleration-

Property 153
enableHtmlAccess 68
EndPoint 526
EntityContainer 490
EntityState 493
Error 316
File 414
Files 414
Fill 525
FillBehavior 646
FillRule 524
Filter 413
FilterDescriptors 481
FilterIndex 413
FilterOperator 481
FontFamily 207–208, 681
FontSize 207–208, 681
FontStretch 207, 209–210
FontWeight 207, 209, 681
Foreground 211, 236
Frame.CacheSize 400
frameRate 66
FramesPerSecond 610
FrameworkElement

properties 139–145
From 641, 695
GradientOrigin 528
GradientStop 650
GroupName 243, 305, 692
Handled 194, 196
HasChanges 490, 493
HasCloseButton 412
HasElevatedPermissions 113
HasErrors 321
HasHeader 251
HasMorePages 547–548
HasSideEffects 473
HasTimeSpan 580
HasValidationErrors 493
Header 250, 291
HeadersVisibility 291
Height 156, 181, 518, 681
height 65

Height versus
ActualHeight 156

HorizontalAlignment 142
HorizontalContentAlignment

236
Id 77
ignoreBrowserVer 68
IgnoredValue 482
ImageSource 529, 619
in XAML 26–27
inline 26
Inlines 211
IsActive 121
IsCaseSensitive 482
IsChecked 243
IsComposable 473
IsDefault 473
IsDropDownOpen 249
IsEnabled 236
IsFullScreen 127
IsItemsHost 702
IsLoading 490
IsMuted 582
IsPressed 240
IsReadOnly 218, 228, 292
IsSubmitting 491
IsTabStop 236
IsThreeState 245
IsValid 303
isWindowless 65
Item 316
Items 246, 689
ItemSource 16
ItemsPanel 246
ItemsSource 246
ItemsTemplate 246
JournalOwnership 406
Key 192
KeySpline 657
KeyTime 659
LabelPosition 299
LastOperation 374
Left 173
LeftProperty 145
LineHeight 214
LoadSize 486
looping 646
Margin 143
Markers 590
MaxDropDownHeight 249
MaxLength 218
Message 378
Multiselect 413
Name 82, 305, 692
NameScope 378

NaturalDuration 580
NaturalVideoHeight 583
NaturalVideoWidth 583
NavigateUri 241
NavigationCacheMode 399
NavigationContext 398
NewItemTemplate 301
NewValue 256
NumericButtonCount 487
Offset 526
OldValue 256
Opacity 140, 533
Operator 482
Order 305
Orientation 176
OriginalSource 194, 196
Oscillations 663
OutlineColor 201
OverlayBrush 412
OverlayOpacity 412
Padding 143, 215, 236
PageMargins 547–548
PageSize 486
PageVisual 547, 549
Parent 77, 146
Password 224
PasswordChar 224
PixelFormat 610
PixelHeight 610
PixelWidth 610
Platform 82
PlatformKeyCode 192
Points 519–520
Position 198, 581
PrintableArea 547–548
PrintedPageCount 544, 546
progress 728
Prompt 305
Property 256
property paths 30
PropertyChangedCallback

255
QueryString 398
Quota 131
Radius 532
RadiusX 518, 528
RadiusY 518, 528
ReadOnlyTemplate 301
ReceiverName 378
RenderedFramesPerSecond

582
RenderingTime 149
RepeatBehavior 645–646
Resources 672, 676
ResourceType 306
Licensed to Devon Greenway <devon.greenway@gmail.com>

INDEX 757
properties (continued)
Response 378
ResultLimit 473
RoutedEvent 653
Row 180
RowDefinitions 178
RowDetailsTemplate 289
RowDetailsVisibilityMode 289
SafeFileName 414
ScaleX 161
ScaleY 161
ScriptAlias 83
SelectedIndex 248
SelectedItems 248
SelectedText 220
Selection 230
SelectionChanged 248
SelectionLength 220
SelectionStart 220
SenderDomain 378
Setters 682
ShadowDepth 533
ShortName 306
ShowGridLines 179
simple 682
Size 198
SortMemberPath 292
Source 583, 591, 627, 678

hosting content for
control 87

MediaElement
property 573–579

NavigationService class
property 395

referencing an image 619
SourceName 530
SpeedRatio 644
SplashScreenSource 726
Springiness 663
StartPoint 526
Stretch 632–636
Stride 610
Style 681
StylusDevice 194, 196
TabIndex 236
TabNavigation 236
TabStripPlacement 252
TagName 77
TargetName 241, 639,

642, 648
TargetProperty 639, 642, 648
TargetType 684
Template 237, 686
Text 590

TextAlignment 213
TextDecorations 211
TextHintingMode 205
TextTrimming 212
TextWrapping 212, 219
Time 590
Title 412
To 641, 643, 695
TopMost 121
TopProperty 145
TouchDevice 198
Triggers 653
Type 590
UIElement properties

139–145
Underline 211
UriMappings 397
UseLayoutRounding 143–145
UserAgent 82
UseSprings 631
ValidatesOnDataErrors

316, 320
ValidatesOnExceptions

316, 320
ValidationErrors 493
Value 482, 656
version 66
VerticalAlignment 142
VerticalContentAlignment

236
video-specific 582
ViewportOrigin 630
ViewportWidth 630
Visibility 141
volume 582
Width 156, 181, 186, 518, 681
width 65
Width versus

ActualWidth 156
Window 79
WindowState 121
X 162
Y 162
ZIndex 175

properties, attached 180
property 241
Property attribute 682
property path

syntax 650
property paths 30
Property property 256
PropertyChanged event 268
PropertyChangedCallback

class 256

PropertyChangedCallback
property 255

PropertyChangedEventArgs 268
PropertyMetadata class 255, 703
PropertyPath operator 482
protected content 591–593

unlocking 592
protected media 591
Protocol attribute 338
protocols

HTTP 574
HTTPS 574
MMS 574, 577, 588
NetTcp 349
Silverlight 574

push services 366

Q

QuadraticBezierSegment
class 523

QuadraticEase class 662
query methods 472–474, 498

types of 474
query string 79, 398
QueryAttribute attribute 473
QueryString property 398
QuinticEase class 662
Quota property 131

R

RadialGradientBrush class
528–529

RadioButton class 242–244
grouping 243

Radius property 532
RadiusX property 518, 528
RadiusY property 518, 528
RangeAttribute class 327
RangeBase class 711
raster 515, 530, 549
rasterization 149–154, 549
raw audio

setting up source 604
sound samples 605

raw media 596–607
getting raw video data

614–616
raw audio 602–607
raw video 598–602

raw video
getting the data 614–616
setting up stream 599
Licensed to Devon Greenway <devon.greenway@gmail.com>

INDEX758
reading
POX 360–364
results 414
text files 415
XML 360–364

ReadObject method 365
ReadOnlyTemplate

property 301
ReceiverName property 378
receivers

creating 377
name 377

receiving data 344
Rectangle class 516–517

animation 648
bulging 518
comparison with

RectangleGeometry 521
rounded 518

RectangleGeometry class 521
comparison with

Rectangle 521
redirecting the browser 81
redraw regions 154
Ref ASX element 586
referencing

events 31
inline properties 26
libraries 24–26
Silverlight.js utility file 60

Refresh method 394
regions

for hit testing 520
Register method 255, 702
RegisterAttached method 704
registers 537
RegisterScriptableObject

method 83
RegularExpressionAttribute

class 327
RejectChanges method 491
relative

path 573
sizing 65
source binding 271
URIs 677, 679

Release click mode 241
Remove method 676
remove methods 473
RemoveAt method 184
render transforms 159–166
RenderAtScale option 153
RenderedFramesPerSecond

property 582

rendering 146–154
cached composition 151–153
content 174
occlusion 150–151
order 150
subpixel rendering 174
user Silverlight control 64–69

Rendering event 93, 149
rendering process 146–154

cached composition 151–153
clock tick 148
occlusion 150–151
order 150
per-frame rendering

callback 148
rasterization 149–154
steps 147

RenderingEventArgs class 149
RenderingTime property 149
RepeatBehavior property

645–646
replacing

selected text 231
report writer example

creating the service 557
DataLoaded event 561
DataTemplate property 567
EmployeeReport class

560, 567
EmployeeReportItem

class 557, 563
enumerating rows 564
GetEmployeeReportData

method 558
GetEmployees method 558
header and footer 567
IEnumerator 564
ItemTemplate 561
LoadData method 560
markup 562
multipage support 566
page numbering 568
Print method 560, 563
printing line items 560
PrintPage event 568
service implementation 558
testing 559

Representational State Transfer.
See REST

requesting
a page 351
protected content 591

Required attribute 496
RequiredAttribute class 328
RequiresRole attribute 509

rerooting 552
resource

element 338
keys 676

Resource build action 680
resource dictionaries 672–673
resource files 464
resource scoping 672–673
ResourceDictionary class 672
resources

animation 652
bundled 678–680
declarative 671–677
loose 677–678
referencing at design

time 673
referencing at runtime 676
referencing relatively 677
resource dictionaries 672–673
retrieving with absolute

URI 678
scope 673
scoping 672

Resources attribute 677
Resources property

652, 672, 676
ResourceType property 306
ResourceWrapper class 465
Response property 378
REST 351

consuming services 352
GETting from 353
POSTing to 354

RESTful services 351
ResultLimit property 473
results

reading 414
Resume method 651
reusable

components 671
controls 252
templates 690

RGB 525
aRGB format 525
RxGyBz format 525

RIA Services. See WCF RIA Ser-
vices

riaControls namespace 479
rich text 225–232

retrieving as XAML 232
RichTextBox control 9
RichTextBox element 225–232
Right enumeration value 142
right text alignment 213
right-clicking 8
Licensed to Devon Greenway <devon.greenway@gmail.com>

INDEX 759
role-based authorization 509
RootVisual 53
RotateTransform 159–160
rotating objects 160

counterclockwise 160
in place 160

RoundtripOriginal
attribute 494

routed events 30
RoutedEvent property 653
Row property 180
RowDefinition element 178
RowDefinitions property 178
RowDetailsTemplate

property 289
RowDetailsVisibilityMode

property 289
RowSpan attached property 180
RSS

standard 360
Run flow control element 210
runtime

binding 263
loading XAML 42–45
parsing XAML 43

RuntimeVersion attribute 51

S

Safari 58, 75, 109
SafeFileName property 414
safeguards

full-screen mode
restriction 127

limits to user input 127
sandbox 110
SaveFileDialog class 412

properties 413
SaveToString method 92
ScaleTransform 159–160
ScaleTransform class 554

instead of animation 641
ScaleX property 161
ScaleY property 161
screen mode

normal full-screen mode
126–127

resizing content 127
toggling 127

screenshots 623
script marker 590
ScriptableMember attribute 83
ScriptableType attribute 83
ScriptAlias property 83

scripting
and managed code 82–86

SDK
DirectX 536
Expression Blend 4 442
See also Silverlight 58

SDKStyles.xaml file 390
security 340, 506–510

attack 127
authentication 506–508
authorization 509–510
safe browsing 128
sandbox 414

Seek method 651
SeekAsync method 596
segments

Arc 523
Bezier 523
Line 523
PolyBezier 523
PolyLine 523
PolyQuadraticBezier 523
QuadraticBezier 523

Select function 230
selected text 229–232

formatting 231
replacing 231

SelectedIndex property 248
SelectedItems property 248
SelectedText property 220
selecting text 219
Selection property 230
SelectionChanged event 248
SelectionChanged property 248
SelectionLength property 220
SelectionStart property 220
Selector class 248, 711
SemiBold font weight

constant 209
SemiCondensed font stretch

constant 209
SemiExpanded font stretch

constant 209
sender

creating 378
SenderDomain property 378
sending data 346
Seq SMIL element 588
server

pushing data 367
server-side playlists 587–588
service

proxy 345
service calls

factoring 436–438

service references 343
ServiceReferences.ClientConfig

file 348
services

asynchronous 352
push 366
REST 351
two-way 366

SetBinding method 263
SetLeft method 173
SetProperty method 78
SetStyleAttribute method 78
Setter class 682
Setters property 682
Settings object 154
SetTop method 174
SetValue method 146, 703
Shader Model 2

specification 536
ShadowDepth property 533
Shape class 516–520, 632
shapes

circular 518
closed 519
five-pointed star 520
geometric 520
open 519

.shared.cs extension 505
sharing

binaries 505
code 505
source files 505
visual states 697

Shazzam 536
shearing transform 161
ShortName property 306
Show method 109, 410
ShowDialog method 413
ShowGridLines property 179
showing

dialog boxes 408–415
pop-ups 408–415

signing applications 111
SilverChat 377
Silverlight

accessing the browser
window 79

and Ajax 5
animation 638–664
application 58
application model 48–57
ASX elements 586
asynchronous communica-

tion restriction 342
backslash restrictions 573
Licensed to Devon Greenway <devon.greenway@gmail.com>

INDEX760
Silverlight (continued)
bidirectional text 9
bitmap API 8
browser limitations 341–342
business features 7
ClearType fonts 9
code-behind 417–425
collect handwritten

information 199
commands 438–442
communication APIs 336
configuration dialog 67
connecting to Twitter 10–18
connecting to web

services 343
creating a new application 12
customizing install

experience 722–724
data binding 262–267
database access 342
deploying media 573
development 9–10
dialog boxes 8
differences from WPF 35
DRM 8
entry point 50
every page a UserControl 253
font support 208
fonts 9
and H.264 8
hosting 12
hosting server 63
improvement over

HTML 245, 248, 415
initializing 71
installation 58
integrating media 573
integration with a web

page 65
and JavaScript 5
latest plug-in version 723
media delivery methods 574
media enhancements 7
Media Stream Source API 7
microphones 8
and mouse scrolling 8
multi-touch support 8
networking APIs 336
networking stack 7
new features 6–9
out-of-browser mode 7
performance 65
PlayReady 591
plug-in not installed 721–724
PNG support 8

pop-up windows 8
and printing 7
printing from 543–570
printing limitations 556
protocols 574
RichTextBox control 9
right-click support 8
running out-of-browser

96–100
SDK 10, 58, 162, 286
security 506–510
security safeguards 127
SMF 593–596
SMIL elements

supported 587
and SOAP 7
SOAP 1.1 protocol

support 343
startup events 69–70
streaming media 577
supported DOM variants 75
testing 451–457
text 204–233
the HTML DOM 63–64
and the web 4
types of applications 6
upgrading 723
use of cookies 340
user interaction 8
user interfaces 12
using domain services

from 476–480
validation 7
versus HTML 5 4
versus jQuery 4
visual prompts 408
WCF RIA Services 7
webcams 8
workflow 264
WPF 5

Silverlight 1.0
migrating to Silverlight 2.0 71
source URI 63

Silverlight 3
new features 6–9

Silverlight 4
new features 6–9

Silverlight application
bundled resources 678
content files 678
declarative resources 672
embedded files 680
location of isolated

storage 136
loose resources 677–678

site of origin 677
storing data on the local

filesystem 128–136
Silverlight Business Application

template 462–465
authentication 506
differences from navigation

template 465
Login dialog 506
self-service registration

UI 507
Silverlight control 58–62, 74

ASP.NET 59
creating from JavaScript

61–62
height 65
integrating with a web

property 62–72
keyboard input 189
width 65

Silverlight Media Framework. See
SMF

Silverlight plug-in 58–62
creating from JavaScript

61–62
default install badge 721
input focus 189
installing 721–724
integrating with a web

property 62–72
latest version 723
Netflix install page 722
not installed 721–724
security 128
setting focus via

JavaScript 189
upgrading 723
See also browser plug-in

Silverlight SDK 10
Silverlight Unit Testing

Framework 451–455
installing 452

Silverlight-Enabled WCF
Service 366

Silverlight.js file 723
Silverlight.js utility file 60–61

functions 61
referencing 60

Silverlight.net
website 60

SilverlightHost 54
SilverlightHost class 84, 127
simple geometries 521–522
simple properties 682
Licensed to Devon Greenway <devon.greenway@gmail.com>

INDEX 761
Single Responsibility
Principle 433

single sign-on (SSO) 508
site of origin 677
Size property 198
SizeNS cursor 140
SizeWE cursor 140
sizing precedence order 183
SkewTransform 159, 161
sllauncher.exe 109
SMF 576, 593–596

creating a media player 594
player libraries 593

SMIL 587
elements

Excl 588
Media 588
Seq 588
Smil 588
Switch 588

Smooth Streaming
575–576, 595

adapting to bandwidth
constraints 575

adapting to CPU
constraints 575

caching 575
encoding video with 576
file extensions 576
file formats 576

SOAP 7
endpoints 472
services 342

Socket 373
socket-resource element 338
SocketAsyncEventArgs class 374
sockets

connection, opening 373
multicast 374–377
response, handling 373
TCP 372–374

SocketType 373
Software Development Kit. See

SDK 58
SolidColorBrush 211
SolidColorBrush class 525

declared as a resource 672
SortDescriptor object 484
sorting 484
SortMemberPath property 292
sound, volume 582
Source property 87, 263, 395,

573–579, 583, 591, 619,
627, 678

playlists 584

Source Specific Multicast 376
source URI 55, 63
SourceName property 530
Span element 226
spanning cells 180
special folders 113
SpecialFolder enumeration 114
speech 117
Speech API 117
SpeedRatio property 644

impact on duration 645
splash screens 724–728

defining the appearance
of 724–726

integrating 726
monitoring load progress 727

splashScreenSource
property 726

spline interpolation 657
spline keyframe types 656
SplineColorKeyFrame class 656
SplineDoubleKeyFrame 656
SplinePointKeyFrame class 656
splines 657
spoofing 127
spring animation 631
Springiness property 663
SQL Server

installing AdventureWorks
on 730

SQL Server Express 730
installing AdventureWorks

on 730
SSL 345
stack order 175
StackPanel

layout of invisible
elements 141

StackPanel class 689
StackPanel element 176–177
StandardColors.xaml file 673
star sizing 181
StartPoint property 526
startup

events 69–70
process 48–50

Startup event 52, 728
StartupEventArgs 52
state-based effects 693
states 692

AcquiringLicense 579
Buffering 579
change between 695
Closed 579
Individualizing 579

manage change between 693
management 691
Opening 579
Paused 579
Playing 579
Stopped 579
transition 691
visual 691–697
See also visual states

StaticResource markup
extension 672–673

Stop
enumeration value 646
method 531, 589, 651

StopLoading method 394
Stopped state 579
Storyboard class 639, 647–654,

671, 693
controlling 650–652
defined 647
defining as a resource 652
programmatic control 651
triggering in response 653

storyboard control 650–652
storyboarding 647–654
Stream 353–354
Stream class 414
streaming

MBR 575
streaming media

available states 579
buffering progress 577
playlists 584–588
progress bar 577
raw video stream 599
Smooth Streaming 575–576
Windows Media

Streaming 577
StreamReader 135
StreamReader class 415
StreamResourceInfo class 680
StreamWriter 354
StreamWriter object 134
Stretch enumeration value 143
Stretch property 632–636

Fill option 634
None option 633
Uniform option 633
UniformToFill option 635

stretching 632–636
Fill option 634
None option 633
Uniform option 633
UniformToFill option 635
Licensed to Devon Greenway <devon.greenway@gmail.com>

INDEX762
Stride property 610
string-indexed elements

data binding 273
StringLength attribute 496
StringLengthAttribute class 328
Stroke 199
strongly typed objects 364
structures

Dictionary 586
Duration 580
TimeSpan 577, 581, 644

Style class 680–686
Style property 681
style setters

value precedence 28
styling 680–686

explicit 683
implicit 685
ink 201
reusable templates 690
state-based effects 693
states 692
templates 686–691
transitioning effects 695
visual states 691–697

stylus 188
Stylus cursor 140
StylusDevice object 200
StylusDevice property 194, 196
StylusPoint 202
SubmitChanges method

475, 490–492
submitting form data 351
subnavigation, responding

to 393
subpixel rendering 174
subsetting 217
SupportedFormats

collection 610
Switch SMIL element 588
SwitchMediaStreamAsync

method 596
SynchronizationContext

class 352, 368
Synchronized Multimedia Inte-

gration Language. See SMIL
synchronous validation 316–321
SyndicationFeed class 14
syntax

URIs 401
System.Collections

namespace 292
System.ComponentModel

namespace 268, 316, 321

System.Component-
Model.DataAnnotations

assembly 327
namespace 327, 445

System.Device.Location
namespace 118

System.Drawing namespace 525
System.Exception

exception 328
System.IO.IsolatedStorage

namespace 129
System.Json namespace 365
System.Net.Sockets 374
System.Runtime.Serialization

namespace 343
System.Runtime.Serialization.

Json namespace 365
System.ServiceModel

namespace 343
System.ServiceModel.Channels

namespace 344
System.ServiceModel.Polling-

Duplex assembly 367
System.ServiceModel.Web

assembly 365
System.Speech namespace 117
System.Windows

namespace 691
System.Windows.Browser

namespace 76, 82–83
System.Windows.Controls

namespace 185, 286,
392, 573

System.Windows.Controls.Data
assembly 286

System.Windows.Controls.dll
250

System.Windows.Con-
trols.DomainServices
assembly 479

System.Windows.Controls.Navi-
gation namespace 388

System.Windows.Documents
namespace 210

System.Windows.Ink
namespace 201

System.Windows.Input
namespace 140, 188,
192, 202

System.Windows.Interactivity
library 667

System.Windows.Interactivity.dll
assembly 442

System.Windows.Interop
namespace 115

System.Windows.Markup
namespace 43

System.Windows.Media
namespace 525

System.Windows.Media.Imag-
ing namespace 620

System.Windows.Media.
enumeration 579

System.Windows.Messaging 377
System.Windows.Resources

namespace 680
System.Xml.Serialization

namespace 363

T

TabControl class 249
defining look and feel 251

TabIndex property 236
TabItem

visual tree 249
TabNavigation property 236
TabStripPlacement

property 252
tabular format 178
TagName property 77
tags

object tag 59
TargetName 241
TargetName property

639, 642, 648
TargetNullValue 280
TargetProperty property

639, 642, 648
TargetType property 684
TCP sockets 372–374

allowed ports 372
cross-domain access 339

Template property 237, 686
TemplateBinding markup

extension 687
templated properties

value precedence 28
TemplatePart attribute 713
TemplatePartAttribute class 693
templates

control 686
custom control default

template 714
Navigation Application

template 386–392
reusable 690
Silverlight Business Applica-

tion template 462–465
styling 686–691
Licensed to Devon Greenway <devon.greenway@gmail.com>

INDEX 763
templates (continued)
visual states 716–718
WCF RIA Services 462–465

TemplateVisualState
attribute 716

TemplateVisualStateAttribute
class 692

testing 451–457
asynchronous operations 456
custom controls 717
definitions 451
report writer example 559
Silverlight Unit Testing

Framework 451–455
ViewModel 455

text 204–233
ClearType 205
collecting 218
copying to clipboard 222
displaying 207–216, 218
editing 218–225
entering 218–225
flow control 210
font properties 207–210
handling 218–220
hinting 205–207
inline styles 226
input method editors

220–222
inserting 232
Italic font style 210
multiline support 219
Normal font style 210
pixel size 208
point size 208
rich text 225–232
selected 229–232
selecting 219
spacing 214–216
subpixel rendering 205
text properties 211–214
viewing 218

text hinting 205–207
animation 206

Text property 218, 590
TextAlignment property 213
TextArea element 219
TextBlock 172

aligning text 213
flow control 210
text wrapping 212

TextBlock class 345
animation 641
using resource brushes 671

TextBlock element
179, 207–218

font properties 207–210
line spacing 214

TextBox 179
data binding 263, 269

TextBox class
styles 680
using in a UserControl 252

TextBox element 218–220
multiline support 219
wrapping text 219

TextChanged event 218
TextDecorations property 211
TextHintingMode property 205
TextInput event 220
TextInputStart event 220
TextInputUpdated event 220
TextTrimming property 212
TextWrapping property

212, 219
themes 390
threading

problems 352
three-state checkbox 245
Time property 590
Timeline 644
Timeline class 639, 646–648
timeline markers 589–591

basic marker 590
script marker 590

TimelineMarker 590
TimelineMarker class 589–591
TimelineMarkerRouted-

EventArgs class 591
TimeOfDay property 267
Times New Roman font 208
TimeSpan 590
TimeSpan class 647, 659
TimeSpan structure

577, 581, 644
Title

ASX element 586
Title property 412
To property 641, 643, 695
toast 108–109
ToggleButton class

242, 245, 711
ToolkitStyles.xaml file 390
tools

WCF RIA Services 462
XAML 45

Top
enumeration value 143

Top property 173
TopMost property 121
TopProperty dependency

property 145
ToString method 275, 282
TouchDevice property 198
TouchFrameEventArgs class 197
TouchPoints class 198
Transform 163
Transform element 159–166
transformations

multiple 162
TransformGroup 162
transforms

CompositeTransform 163
groups 162
Matrix3dProjection 168–169
MatrixTransform 164–166
PlaneProjection 166–167
projection 166–169
RotateTransform 159–160
ScaleTransform 159–160
shearing 161
SkewTransform 159, 161
TranslateTransform 159, 161
UIElement 159

transitioning effects 695
transitions

elliptical 528
multiple color 527

TranslateTransform 159, 161
transparency 140
transparent 65
trapezoid 519
Trebuchet font 208
trees

visual 247
triggering event 653
Triggers property 653
triggers. See behaviors
TrueType fonts 208
Truncate file mode value 135
trust 336–340

elevated 110–113
and printing 545

Twitter 10–18
API 13
Search 13

two-way services 366
TwoWay binding mode 266
type converters 39–42

custom 40–42
Type property 590
TypeConverter class 41
Licensed to Devon Greenway <devon.greenway@gmail.com>

INDEX764
types
base types 711
type converters 39–42

U

UDP multicast sockets 374
UdpAnySourceMulticastClient

class 375
UdpSingleSourceMulticast

class 375
UI

composition 23
separation from 438–451
updates 353
virtualization 287

UI elements
data binding 270–272

UIElement 139–146, 172
class 254
common properties 139–145
keyboard events 191
mouse events 193
transforms 159

UltraCondensed font stretch
constant 209

UltraExpanded font stretch
constant 209

Underline property 211
Unfocused visual state 692
UnhandledException event 53
uniform resource identifiers. See

URIs
Uniform stretch option 633
UniformToFill stretch

option 635
unlocking protected

content 592
update methods 473–474, 500
updating

data 488–496
uploading

to server 412
uri attribute 338
UriKind enumeration 353
UriMapper class 397
UriMappings property 397
URIs 242, 396–399, 577

absolute 678
cross-domain 573
destination 353
mapping 397, 401
relative 677
syntax 401

URL
for embedded files 680

usable data 360–366
UseLayoutRounding

property 143–145
user control

calling the control 257
defining appearance 253
defining behavior 254
development 253

user data 128
user experience 64–69

controlling out-of-browser
experience 102–106

out-of-browser 98–100
user interaction 8
user interfaces 480–488, 499

and DataForm control
489–490

filtering 481–483
grouping 485
paging 486–488
sorting 484

user Silverlight plug-in
rendering 64–69

user-controlled sizing 185
UserAgent property 82
UserControl

data binding 269
keyboard events 191

UserControl class 252–257
customizing 710

UserRegistrationService
class 507

UseSprings property 631
using

metadata 494–496
UV coordinates 538

V

ValidatesOnDataErrors
property 316, 320

ValidatesOnExceptions
parameter 313

ValidatesOnExceptions
property 316, 320

validation 7, 308
and annotations 495
asynchronous 321–326
calling external

functions 330–331
client service code 324
combining messages 314
in common function 318

comparison of
approaches 332

cross-field 318–320
custom code 314
custom validators 331
data annotations 327
displaying errors 315
employee example 309–315,

317–326, 328–332
exception-based 313–315
handling errors 313
IDataErrorInfo

interface 317–321
metadata 494–496
in Silverlight 2 309
synchronous 316–321
via attributes 327
WCF web service 323
with exceptions and IData-

ErrorInfo interface 320
ValidationAttribute class 328
ValidationContext class 330
ValidationErrors property 493
ValidationException

exception 328
Value

attribute 682
value

converters 277–279
precedence 28

Value property 482, 656
values

Application.Current.Install-
State 102

Bottom 143
Center 142–143
Collapsed 141
Hidden 142
Left 142
Right 142
Stretch 142
Top 143

VCR control 297
vector graphics 515
verbs

GET 351, 353
POST 351, 354

Verdana font 208
version 66
vertical

offset 173
VerticalAlignment property 142
VerticalContentAlignment

property 236
Licensed to Devon Greenway <devon.greenway@gmail.com>

INDEX 765
video 582
capturing 609–612
dimensions 583
frame rates 583
multilingual files 581
raw video 598–602

VideoBrush class 530, 609
VideoCaptureDevice class 610
VideoSink class 614
View 427

definition 427
View-specific entities 443–447
View-to-ViewModel ratio 430

View-Model-ViewModel pattern
View-specific entities 443

View-specific entities
and ViewModel 443–447

ViewModel 427
base class 429
compared to code-

behind 433
data access 436–438
definition 427
implementation 427–433
as interface 448
list page 430
locators 449–451
ownership 428
service calls 436–438
testing 455
and View-specific entities 443
View-to-ViewModel ratio 430

ViewModel locators 449–451
ViewModel pattern. See Model-

View-ViewModel pattern
viewport 627, 630–631

defined 630
managing 630
setting the size 630

ViewportOrigin property 630
ViewportWidth property 630
views

adding 388
virtual filesystem. See filesystem
virtual PC 107
virtualization 158
visibility modes

All 291
Collapsed 290
Column 291
Row 291
VisibleWhenSelected 290

Visibility property 141

visual
parts 693
tree 146

visual state groups
CommonStates 692
FocusStates 692

visual states 691–697, 715
change between 695
Checked 692
Collapsed 715, 717
Disabled 692
Expanded 715, 717
Focused 692
in control template 716–718
MouseOver 692, 694, 696
Normal 692, 696
Pressed 692
sharing 697
transition 693
Unfocused 692

Visual Studio 51
build actions 679–680
creating service

references 343
Silverlight-Enabled WCF

Service 366
Visual Studio 2010 10–11, 45
visual trees 35, 247

TabItem 249
traversing with

VisualTreeHelper 36
VisualState class 693–694, 697
VisualStateGroup class 694, 696
VisualStateManager class

691–697, 715
state-based effects 693
transitioning effects 693

VisualStateTransition class 694
VisualTransition class 697
VisualTreeHelper class 36
Volume property 582

W

W3C 74
Wait cursor 140
WAX files 585
WCF 366

connecting to 366
duplex services 367
error handling 366
web service for validation 323

WCF RIA Services 7
architecture 461

authentication and
authorization 506–510

business logic 503–506
and DataForm control

489–490
domain service 465–480
presentation models 496–503
resource files 464
template 462–465
tooling support 462
updating data 488–496
user interfaces 480–488

web properties 74
integrating the Silverlight

control 62–72
web servers

maintaining an open media
connection 577

web services
ASMX 348
and code-behind 419
and LINQ 419
MvvmApplication sample

application 419
REST 351

Web Services Description Lan-
guage. See WSDL

WebBrowser control 87–92
WebBrowserBrush control 92
webcams 8, 607–616
WebClient 55
WebContext object 510
WebKit 58, 109
WebRequestCreator class 355
websites 10

10rem.net 10
Channel 9 10
MSDN documention 10
Silverlight Cream 10
Silverlight TV 10

Whack-a-Mole 659
White Screen of Death 60
width 65
Width property 156, 181, 186,

518, 681
Window class 121
Window property 79
Windows authentication 508
Windows Communication Foun-

dation. See WCF
Windows Forms

colors 525
compared to XAML 21

Windows Logo key 192
Windows Media format 574
Licensed to Devon Greenway <devon.greenway@gmail.com>

INDEX766
Windows Media Player 585
Windows Media Streaming 577
Windows modifier key 192
Windows Presentation Founda-

tion. See WPF
Windows Vista

isolated storage locations 136
Windows XP

isolated storage locations 136
WindowState property 121
WMX files 585
World Wide Web 4

helpful sites 10
World Wide Web Consortium.

See W3C
WPF 5, 129, 210, 212, 264

commands 438–442
differences from

Silverlight 35
WPF Pixel Shader Effects

library 537
WPL files 585
WriteableBitmap class 620, 623

creating Mandelbrot
fractals 626

direct pixel access 624
WriteObject method 365
WS-* protocols 366
WSDL 343
WSX files 587
WVX files 585

X

X property 162
x:Key attribute 672, 683
XAML 20

alternate default
namespace 24

basics 21–34
behaviors 33–34
CLR namespaces 24
colors 42
commands 32–33
compared to Windows

Forms 21
constructor rules 22
data binding 263–264
declaring value

converters 277
defining a Line 517
defining an Ellipse 518
event handlers 31
events 30–32
extensions 38–42
from rich text 232
loading at runtime 42–45
loose 63
Name vs. x:Name 24
namespaces 23–26
objects 22–23
parsing at runtime 43
properties 26–30
runtime parsing 43
standard namespaces 24
tools 45

XAML extensions 38–42
markup extensions 38–39

XamlParseException 673
XamlReader 40
XamlReader class 43
XAP 48, 50–51

signing 112
XAP file 55, 63
.xap file 50–51, 677–678

displaying a splash screen dur-
ing download 725

XDocument class 16
XElement class 362
XLINQ 362
XLINQ. See LINQ to XML
XML

OData format 467
XmlIgnore attribute 494
XmlReader class 362–363
XmlSerializer class 363–364

Y

Y property 162

Z

ZIndex property 175
zoom

in 161
out 161

ZoomAboutLogicalPoint
method 628

zooming 628–630
Licensed to Devon Greenway <devon.greenway@gmail.com>

S
ilverlight gives you entirely new ways to create rich inter-
net applications, and now Silverlight 4 adds many power-
ful enhancements to the mix.

Silverlight 4 in Action is a comprehensive guide to application
building using C#. It goes into action immediately in a thor-
ough introduction. It then follows up with numerous nift y
examples to explore fl exible layout, control extensibility, the
communication and binding models, rich media, animation,
and much more.

Th is book explores practical questions in patterns, testing,
and performance optimization throughout. No previous
experience with Silverlight is required.

What’s Inside
Comprehensive and deep
Author an authority
Eff ective UI design with MVVM
Building with WCF RIA Services
Out-of-browser, COM and Custom Chrome

Pete Brown is the Microsoft Community Program Manager
for Silverlight and WPF. Th e First Edition was written by
independent developers Chad Campbell and John Stockton.

For online access to the author and a free ebook for owners
of this book, go to manning.com/Silverlight4inAction

$49.99 / Can $57.99 [INCLUDING eBOOK]

Silverlight 4 IN ACTION Pete Brown

SILVERLIGHT/.NET

“It raises the bar for
 Silverlight titles—go and
 buy this book!”
 —Richard Costall
 NxtGenUG Blog

“Th is is a great book and
 its MVVM chapter
 a true gem.”
 —Omar Shraim, Manning
 Author Online Forum

“Goes deeply into why Silverlight works the way
 it does, not just step by step explanations. Pete
 Brown is the only guy who could have written
 this book.” —Al Pascual, ERSI

M A N N I N G

SEE INSERT

	Silverlight 4 in Action
	brief contents
	contents
	preface
	acknowledgments
	about this book
	Audience
	The bits: what you need
	Roadmap
	Part 1: Introducing Silverlight
	Part 2: Structuring your application
	Part 3: Completing the experience
	Code conventions and downloads
	Author online
	About the author
	About the title

	about the cover illustration
	Introducing Silverlight
	Introducing Silverlight
	1.1 Silverlight and the web
	1.2 Silverlight and WPF
	1.3 Types of Silverlight applications
	1.4 What’s new since the first edition
	1.4.1 Features for business and client applications
	1.4.2 Media and graphics enhancements
	1.4.3 User interaction
	1.4.4 Text

	1.5 Getting started with Silverlight development
	1.5.1 Setting up your development environment
	1.5.2 Helpful sites

	1.6 Building your first Silverlight web application
	1.6.1 Project setup
	1.6.2 User interface
	1.6.3 Calling Twitter search
	1.6.4 Parsing the results and binding the ListBox
	1.6.5 Making the ListBox contents more meaningful

	1.7 Summary

	Core XAML
	2.1 XAML basics
	2.1.1 Objects
	2.1.2 Namespaces
	2.1.3 Properties
	2.1.4 Dependency properties
	2.1.5 Attached properties
	2.1.6 Events
	2.1.7 Commands
	2.1.8 Behaviors

	2.2 Object trees and namescope
	2.2.1 Object trees
	2.2.2 Namescope

	2.3 XAML extensions and type converters
	2.3.1 Markup extensions
	2.3.2 Type converters

	2.4 Loading XAML at runtime
	2.5 Tools for working in XAML
	2.6 Summary

	The application model and the plug-in
	3.1 The Silverlight application model
	3.1.1 Application startup process
	3.1.2 XAP
	3.1.3 The application manifest file
	3.1.4 The Silverlight application object
	3.1.5 Application dependencies
	3.1.6 Assembly caching

	3.2 Creating the Silverlight plug-in
	3.2.1 Using the object tag
	3.2.2 Using the Silverlight.js utility file
	3.2.3 Creating an instance of the Silverlight plug-in

	3.3 Integrating the Silverlight plug-in
	3.3.1 Relating the Silverlight application to the HTML DOM
	3.3.2 Clarifying the initial experience
	3.3.3 Handling plug-in events
	3.3.4 Sending initialization parameters

	3.4 Summary

	Integrating with the browser
	4.1 Silverlight and the HTML DOM
	4.2 Managing the web page from managed code
	4.2.1 Navigating web page contents
	4.2.2 Working with element properties
	4.2.3 Handling CSS information
	4.2.4 Accessing the query string

	4.3 Working with the user’s browser window
	4.3.1 Prompting the user
	4.3.2 Navigating the browser window
	4.3.3 Discovering the browser properties

	4.4 Bridging the scripting and managed code worlds
	4.4.1 Calling managed code from JavaScript
	4.4.2 Using JavaScript from managed code

	4.5 Hosting HTML in Silverlight
	4.5.1 Hosting the WebBrowser control
	4.5.2 Using the WebBrowserBrush

	4.6 Summary

	Integrating with the desktop
	5.1 Silverlight out of the browser
	5.1.1 Capabilities and restrictions
	5.1.2 The end-user experience

	5.2 Creating out-of-browser applications
	5.2.1 The out-of-browser settings file
	5.2.2 Controlling the experience
	5.2.3 Customizing icons
	5.2.4 Checking the network state
	5.2.5 Alerting the user with Notification toast
	5.2.6 Implementation specifics

	5.3 Escaping the sandbox—elevated trust
	5.3.1 Creating elevated-trust applications
	5.3.2 Detecting elevated trust mode

	5.4 Local file access
	5.4.1 Accessing special folders
	5.4.2 Reading from a file
	5.4.3 Writing to a file

	5.5 COM automation
	5.5.1 Detecting COM automation availability
	5.5.2 Using COM automation to make Silverlight talk
	5.5.3 Accessing GPS data using COM automation
	5.5.4 Automating Excel

	5.6 Controlling the host window
	5.6.1 Basic window properties
	5.6.2 Changing window chrome
	5.6.3 Minimizing, maximizing, restoring, and closing
	5.6.4 Moving
	5.6.5 Resizing

	5.7 Running in full screen
	5.7.1 Normal full-screen mode
	5.7.2 Elevated trust full-screen mode

	5.8 Storing data in isolated storage
	5.8.1 IsolatedStorageFile: the virtual filesystem
	5.8.2 Reading and writing files: the isolated storage way
	5.8.3 Administering isolated storage

	5.9 Summary

	Rendering, layout, and transforming
	6.1 The UIElement and FrameworkElement
	6.1.1 Properties
	6.1.2 Methods

	6.2 The rendering process
	6.2.1 Clock tick
	6.2.2 Per-frame rendering callback
	6.2.3 Rasterization

	6.3 The layout system
	6.3.1 Multipass layout—measuring and arranging
	6.3.2 The LayoutInformation class
	6.3.3 Performance considerations

	6.4 Render transforms
	6.4.1 RotateTransform
	6.4.2 ScaleTransform
	6.4.3 SkewTransform
	6.4.4 TranslateTransform
	6.4.5 TransformGroup
	6.4.6 CompositeTransform
	6.4.7 MatrixTransform

	6.5 3D projection transforms
	6.5.1 PlaneProjection
	6.5.2 Matrix3dProjection

	6.6 Summary

	Panels
	7.1 Canvas
	7.1.1 Arranging content of a Canvas

	7.2 The StackPanel
	7.3 The Grid
	7.3.1 Arranging Grid content
	7.3.2 Positioning Grid content
	7.3.3 Spanning cells
	7.3.4 Sizing it up
	7.3.5 Working with the grid programmatically
	7.3.6 Customizing cell boundaries

	7.4 Summary

	Human input
	8.1 Capturing the keyboard
	8.1.1 Understanding focus
	8.1.2 Handling keyboard events
	8.1.3 Dealing with modifier keys

	8.2 Mouse input
	8.2.1 Mouse button and movement events
	8.2.2 Using the mouse wheel

	8.3 Using multi-touch
	8.4 Collecting ink drawings
	8.4.1 Creating the InkPresenter
	8.4.2 Collecting ink
	8.4.3 Styling the ink

	8.5 Summary

	Text
	9.1 The text system
	9.1.1 Subpixel text rendering
	9.1.2 Text hinting

	9.2 Displaying text
	9.2.1 Font properties
	9.2.2 Flow control
	9.2.3 Text properties
	9.2.4 Spacing

	9.3 Embedding fonts
	9.4 Entering and editing text
	9.4.1 Handling basic text input
	9.4.2 Understanding input method editors
	9.4.3 Copying text with the Clipboard API
	9.4.4 Collecting sensitive data

	9.5 Entering and displaying rich text
	9.5.1 Formatting and inline elements
	9.5.2 Working with selected text

	9.6 Summary

	Controls and UserControls
	10.1 Control
	10.1.1 Appearance
	10.1.2 Navigation and state
	10.1.3 Templating

	10.2 ContentControl
	10.2.1 The ContentPresenter

	10.3 Button controls
	10.3.1 The Button
	10.3.2 The HyperlinkButton
	10.3.3 The RadioButton
	10.3.4 The CheckBox

	10.4 ItemsControls
	10.4.1 The ListBox
	10.4.2 The ComboBox
	10.4.3 The TabControl

	10.5 Creating UserControls
	10.5.1 Defining the appearance
	10.5.2 Defining the behavior
	10.5.3 Calling the control

	10.6 Summary

	Structuring your application
	Binding
	11.1 Binding with your data
	11.1.1 Mastering the binding syntax
	11.1.2 Choosing a binding mode

	11.2 Understanding your binding source
	11.2.1 Binding to a property
	11.2.2 Binding to an object
	11.2.3 Binding to a UI element
	11.2.4 Binding to an indexed element
	11.2.5 Binding to a keyed (string indexed) element
	11.2.6 Binding to an entire collection

	11.3 Customizing the display
	11.3.1 Formatting values
	11.3.2 Converting values during binding
	11.3.3 Providing default fallback values
	11.3.4 Handling null values

	11.4 Creating data templates
	11.4.1 Using a DataTemplate with a ContentControl
	11.4.2 Rendering an ItemsControl with a DataTemplate

	11.5 Summary

	Data controls: DataGrid and DataForm
	12.1 The DataGrid
	12.1.1 Displaying your data
	12.1.2 Editing grid data
	12.1.3 Sorting items

	12.2 The DataForm
	12.2.1 Displaying your data
	12.2.2 Binding to lists of data
	12.2.3 Customizing display
	12.2.4 Customizing edit, add, and display templates
	12.2.5 Finer control over editing and committing data

	12.3 Annotating for display
	12.3.1 The Display attribute
	12.3.2 The Editable attribute

	12.4 Summary

	Input validation
	13.1 The validation example source and UI
	13.2 Exception-based property validation
	13.2.1 Handling exception validation errors
	13.2.2 Custom validation code
	13.2.3 Validation error display

	13.3 Synchronous validation with IDataErrorInfo
	13.3.1 The IDataErrorInfo interface
	13.3.2 Simple validation with IDataErrorInfo
	13.3.3 Cross-field validation with IDataErrorInfo
	13.3.4 Combining exceptions and IDataErrorInfo

	13.4 Asynchronous validation with INotifyDataErrorInfo
	13.4.1 The INotifyDataErrorInfo interface
	13.4.2 Implementing the interface
	13.4.3 Binding support
	13.4.4 Building the WCF web service
	13.4.5 Adding the client service code
	13.4.6 Property modifications

	13.5 Annotating for validation
	13.5.1 Validation attributes
	13.5.2 Annotating your entity
	13.5.3 Calling external validation functions
	13.5.4 Creating custom validators

	13.6 Comparison of validation approaches
	13.7 Summary

	Networking and communications
	14.1 Trust, security, and browser limitations
	14.1.1 Cross-domain network access
	14.1.2 Making your application secure
	14.1.3 Limitations of the browser

	14.2 Connecting to data sources
	14.2.1 Using SOAP services
	14.2.2 RESTful services

	14.3 The client HTTP stack
	14.3.1 Manually creating the client stack
	14.3.2 Automatically using the client stack
	14.3.3 Automatically setting the HTTP Referer and other headers
	14.3.4 Authentication credentials
	14.3.5 Managing cookies with the CookieContainer

	14.4 Making the data usable
	14.4.1 Reading POX
	14.4.2 Converting JSON

	14.5 Using advanced services
	14.5.1 WCF service enhancements
	14.5.2 WCF duplex services
	14.5.3 Connecting to sockets
	14.5.4 Multicast sockets

	14.6 Connecting to other Silverlight applications
	14.6.1 Creating the receiver
	14.6.2 Creating the sender
	14.6.3 Putting it all together

	14.7 Summary

	Navigation and dialogs
	15.1 Browser navigation background
	15.1.1 Browser journals
	15.1.2 Anchor hashtags
	15.1.3 Back and forth

	15.2 The Navigation Application template
	15.2.1 Creating a navigation application
	15.2.2 Adding a new page
	15.2.3 Changing the application theme

	15.3 Navigating to pages
	15.3.1 The Page class
	15.3.2 The NavigationService class
	15.3.3 Frames and URIs
	15.3.4 Caching pages
	15.3.5 Navigating to pages in other assemblies

	15.4 Navigation out of the browser
	15.4.1 Providing custom navigation controls

	15.5 Showing dialogs and pop-ups
	15.5.1 The Popup control
	15.5.2 Displaying a dialog box with the ChildWindow control
	15.5.3 Prompting for a file

	15.6 Summary

	Structuring and testing with the MVVM/ViewModel pattern
	16.1 Project setup and traditional code-behind approach
	16.1.1 Project and service setup
	16.1.2 A typical code-behind solution

	16.2 Model-View-ViewModel basics
	16.2.1 Keep it simple: a basic ViewModel implementation

	16.3 Factoring out reusable code
	16.3.1 Business rules and logic
	16.3.2 Data access and service calls

	16.4 Better separation from the UI
	16.4.1 Using commands
	16.4.2 Using the CallMethodAction behavior
	16.4.3 View-specific entities and ViewModels
	16.4.4 Interfaces, IoC, and ViewModel locators

	16.5 Testing
	16.5.1 Introduction to the Silverlight Unit Testing Framework
	16.5.2 Testing the ViewModel
	16.5.3 Testing asynchronous operations

	16.6 Summary

	WCF RIA Services
	17.1 WCF RIA Services architecture, tooling, and template
	17.1.1 RIA Services tooling support
	17.1.2 Creating a project with the template

	17.2 Exposing data with the domain service
	17.2.1 Creating the domain service
	17.2.2 Exposing the domain service to other clients
	17.2.3 Domain service method types
	17.2.4 Using a domain service from Silverlight

	17.3 Filtering, sorting, grouping, and paging
	17.3.1 Filtering
	17.3.2 Sorting
	17.3.3 Grouping
	17.3.4 Paging

	17.4 Updating data
	17.4.1 Using the DataForm UI
	17.4.2 The domain context
	17.4.3 The Entity class
	17.4.4 Using validation and display metadata

	17.5 Loose coupling: using presentation models
	17.5.1 Creating the employee presentation model
	17.5.2 Supporting query operations
	17.5.3 Supporting update operations
	17.5.4 Supporting insert operations

	17.6 Business logic
	17.6.1 Business logic in entities
	17.6.2 Sharing code

	17.7 Authentication and authorization
	17.7.1 Authentication
	17.7.2 Authorization

	17.8 Summary

	Completing the experience
	Graphics and effects
	18.1 Shapes
	18.1.1 Lines
	18.1.2 Rectangle
	18.1.3 Ellipse
	18.1.4 Polyline
	18.1.5 Polygon

	18.2 Geometry
	18.2.1 Simple geometries
	18.2.2 Path geometries
	18.2.3 Composite geometries

	18.3 Brushes
	18.3.1 SolidColorBrush
	18.3.2 LinearGradientBrush
	18.3.3 RadialGradientBrush
	18.3.4 ImageBrush
	18.3.5 VideoBrush

	18.4 Effects
	18.4.1 Using built-in effects
	18.4.2 Creating custom pixel shaders

	18.5 Summary

	Printing
	19.1 How Silverlight printing works
	19.1.1 The PrintDocument class
	19.1.2 The PrintPage Event
	19.1.3 Rasterization

	19.2 Printing onscreen Information
	19.2.1 Printing the content as is
	19.2.2 Rerooting the elements to fit
	19.2.3 Scaling content to fit

	19.3 Multipage printing dedicated trees
	19.3.1 Prerequisites
	19.3.2 Printing line items
	19.3.3 Adding multipage support
	19.3.4 Adding a header and footer

	19.4 Summary

	Displaying and capturing media
	20.1 Audio and video
	20.1.1 Media source
	20.1.2 Common properties
	20.1.3 Audio specific properties
	20.1.4 Video specific properties
	20.1.5 The lifecycle of a media file

	20.2 Playlists
	20.2.1 Understanding client-side playlists
	20.2.2 Using server-side playlists

	20.3 Interactive playback
	20.3.1 Controlling the play state
	20.3.2 Working with the timeline

	20.4 Using protected content
	20.4.1 Requesting protected content
	20.4.2 Retrieving the PlayReady components
	20.4.3 Unlocking protected content

	20.5 Using the Silverlight Media Framework
	20.5.1 Using the player libraries
	20.5.2 Creating the player

	20.6 Working with raw media
	20.6.1 A custom MediaStreamSource class
	20.6.2 Creating raw video
	20.6.3 Creating raw audio

	20.7 Using the webcam
	20.7.1 Gaining access to capture devices
	20.7.2 Working with video
	20.7.3 Capturing still images
	20.7.4 Getting the raw video data
	20.7.5 A note about audio

	20.8 Summary

	Working with bitmap images
	21.1 Basic imaging
	21.2 Creating images at runtime
	21.2.1 Creating from existing images
	21.2.2 Creating from UI elements
	21.2.3 A Mandelbrot fractal generator

	21.3 Deep Zoom
	21.3.1 Showing an image
	21.3.2 Zooming in and out
	21.3.3 Managing the viewport
	21.3.4 Deploying multiscale images

	21.4 Dealing with dead space
	21.4.1 Filling the space
	21.4.2 Uniform sizing
	21.4.3 Fill the area
	21.4.4 UniformToFill

	21.5 Summary

	Animation and behaviors
	22.1 Animation: it’s about time
	22.2 Mastering the timeline
	22.2.1 What type of property are you animating?
	22.2.2 Where are you starting from and where are you going?
	22.2.3 How long should the animation run?

	22.3 Storyboarding
	22.3.1 Understanding the storyboard
	22.3.2 Hitting the target
	22.3.3 Controlling the Storyboard
	22.3.4 Being resourceful

	22.4 Keyframing
	22.4.1 Interpolation: it’s about acceleration

	22.5 Easing functions
	22.5.1 Using easing functions
	22.5.2 Creating a custom easing function

	22.6 Behaviors, triggers, and actions
	22.6.1 Using existing behaviors
	22.6.2 Creating your own behavior

	22.7 Summary

	Resources, styles, and control templates
	23.1 Being resourceful
	23.1.1 Declarative resources
	23.1.2 Accessing loose resources
	23.1.3 Bundled resources

	23.2 Giving your elements style
	23.2.1 Defining the look
	23.2.2 Explicitly keyed style definitions
	23.2.3 Implicit style definitions

	23.3 Creating templates
	23.3.1 Building a control template
	23.3.2 Creating reusable templates

	23.4 Dealing with visual states
	23.4.1 Understanding the components
	23.4.2 Leveraging the VisualStateManager

	23.5 Sharing your visual states
	23.6 Summary

	Creating panels and controls
	24.1 Creating a custom panel
	24.1.1 Project setup
	24.1.2 The OrbitPanel class
	24.1.3 Properties
	24.1.4 Custom layout
	24.1.5 Enhancements

	24.2 Creating a custom control
	24.2.1 Choosing the base type
	24.2.2 Properties
	24.2.3 The control template contract
	24.2.4 The default template
	24.2.5 Visual states
	24.2.6 Visual states in template

	24.3 Summary

	The install experience and preloaders
	25.1 Handling the “Silverlight not installed” scenarios
	25.1.1 Creating your own install experience

	25.2 Using a custom preloader
	25.2.1 Creating the appearance
	25.2.2 Integrating the custom splash screen
	25.2.3 Monitoring the load progress

	25.3 Summary

	Database, connection, and data model setup
	A.1 Install the AdventureWorks database
	A.1.1 Installing on a dedicated SQL Server instance
	A.1.2 Installing on SQL Server Express

	A.2 Database connection and entities
	A.2.1 Choosing the entities to create

	index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Back cover

