

concrete5
Beginner's Guide

Create and customize your own website with the concrete5
Beginner's Guide

Remo Laubacher

BIRMINGHAM - MUMBAI

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

concrete5
Beginner's Guide

Copyright © 2011 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: March 2011

Production Reference: 1140311

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-849514-28-6

www.packtpub.com

Cover Image by Asher Wishkerman (a.wishkerman@mpic.de)

Credits

Author

Remo Laubacher

Reviewers

Alex Hutchinson

Franz Maruna

Shawn K. Quinn

Acquisition Editor

Sarah Cullington

Development Editor

Roger D'souza

Technical Editors

Vanjeet D'souza

Azharuddin Sheikh

Indexers

Monica Ajmera Mehta

Tejal Daruwale

Editorial Team Leader

Akshara Aware

Project Team Leader

Priya Mukherji

Project Coordinator

Sneha Harkut

Proofreader

Aaron Nash

Graphics

Nilesh Mohite

Production Coordinator

Shantanu Zagade

Cover Work

Shantanu Zagade

About the Author

Remo Laubacher grew up in Central Switzerland in a small village surrounded by lots of
mountains and natural beauty. He started working with computers when he was 10 years old
and then, after various computer related projects, focused on ERP and Oracle development.
After completing his BSc in Business Administration, Remo became a Partner at Ortic, his ERP
and Oracle business. His interest and up-to-date knowledge of the latest web technologies
allows him the freedom to work in website development. At mesch.ch—where he works as
a website consultant—Remo discovered concrete5 as the perfect tool for their web related
projects and has since become a key member of the c5 community. His tutorials can be
found at http://www.codeblog.ch

To Ida, the best mother you can have.

About the Reviewers

Alex Hutchinson spent 15 years in the Telecommunications industry as a Technical
Consultant for a Tier 1 carrier in London. In 2004, he set up MadeForSpace.com with his
wife Jo, an editorial and production consultant. Website development was the result of
their combination of publishing and technical skills and their passion for online access and
communication. Alex discovered concrete5 at the end of 2009 and has been an avid fan
and member of the community since then. Having enjoyed working on projects with Remo
Laubacher in the past, Alex has been shown the light on the inner workings of this fantastic
Content Management System.

He divides his time between London, where he meets with his clients, and Andalucía in Spain
where he lives next to the beach with his wife Jo and young daughter Emily.

Shawn K. Quinn is a lifelong computer and technology enthusiast with gifted intellect.
Shawn's love affair with technology began with an Atari 1200XL computer, which he taught
himself how to program in both BASIC and 6502 assembly language. Prior to the prominence
of the World Wide Web, Shawn was a BBS enthusiast, including some time as a sysop of
his own bulletin board, originally running under TAG and later under Maximus. Today, he is
an avid user of both concrete5 and WordPress for website development. Shawn heads an
up-and-coming marketing and publicity consulting firm, Hamster Powered Creative, with
a website at http://www.hamsterpoweredcreative.com, and also has a personal
website at http://www.shawnkquinn.com. His interests outside of computing include
poker, backgammon, chess, photography, the arts, camping, and Renaissance festivals.

I'd like to thank my friend Nick, who has stuck by me through almost two
decades after many other friends have came and went; my friend Isabella,
who helped me summon the courage to accept the opportunity to help
edit this book when it was offered; and my friends Larry, Bill, Kelsey, Laban,
Ed, Elaine, Ingrid, Ruth, and Trish (among others) for additional moral
support; my mom, Carla Quinn, who helped nurture my desire to learn
about computers from an early age, and who has never given up on me
through the years; my grandmother, Gloria Quinn, who has rescued me
from quite a few bad situations; and last but certainly not the least, I'd like
to thank my grandfather, George Quinn (who left us in 2002), an absolutely
spectacular grandfather to me while he was alive, who will be missed.

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at www.PacktPub.com and as a print book
customer, you are entitled to a discount on the eBook copy. Get in touch with us at service@
packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a range of
free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book library. Here,
you can access, read and search across Packt's entire library of books.

Why Subscribe?
Fully searchable across every book published by Packt

Copy and paste, print and bookmark content

On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib today
and view nine entirely free books. Simply use your login credentials for immediate access.

Instant Updates on New Packt Books
Get notified! Find out when new books are published by following @PacktEnterprise on Twitter, or the
Packt Enterprise Facebook page.

•

•

•

Table of Contents
Preface	 1

Chapter 1: Installation	 7
Preparing for installation	 7

Web browser	 7
Text editor	 8
Archive utility	 8
FTP client	 8

XAMPP installation	 8
Time for action – installing XAMPP	 9
Downloading concrete5	 15
Time for action – downloading the latest version	 15
Creating an empty SQL database	 16
Time for action – creating an empty SQL database	 17
Installing concrete5	 18
Time for action – installing concrete5	 19

The configuration file	 22
Pretty URLs	 23

Time for action – enabling pretty URLs	 23
Summary	 25

Chapter 2: Working with concrete5	 27
Getting familiar with concrete5	 27
Time for action – logging in to concrete5	 27
Adding new blocks 	 28
Time for action – adding new blocks	 29
Time for action – editing existing blocks	 33
Time for action – exiting edit mode	 34
The dashboard	 35
Adding more pages	 37

Table of Contents

[ii]

Time for action – adding pages to create a news section	 38
Time for action – adding blocks to new page	 41
Page defaults	 43
Time for action – adding default blocks to a page type	 43

Adding blocks to existing sites	 45
Page commands	 45

Moving and sorting pages	 46
Time for action – moving and sorting your pages	 46
Splitting content into columns	 48
Time for action – creating a multi-column layout	 48
Scrapbook	 51
Time for action – putting your addresses in a scrapbook	 52
Design and CSS	 54
Time for action – styling your blocks	 55
Summary	 59

Chapter 3: Permissions	 61
Basic permissions	 61

Adding users and groups	 62
Time for action – adding groups	 62

Group expiration options	 63

Time for action – adding users	 63
User attributes	 64

Sitemap and file manager permissions	 65
Time for action – assigning sitemap permissions	 65
Time for action – granting file manager permissions	 66

Granting edit access	 67
Managing edit access on a page by page basis	 67

Creating a protected website section	 69
Time for action – creating a protected website	 69

Task permissions	 70
Time for action – setting task permissions	 70

Dashboard access	 71
Time for action – granting partial dashboard access	 71
Advanced permission mode	 73
Time for action – activating the advanced permission mode	 73

Time based page visibility	 75
Time for action – setting time based page visibility	 75

Subpage permissions	 76
Time for action – setting sub-page permissions	 77

Block based permissions	 78
Time for action – using block permissions	 78

Table of Contents

[iii]

Area based permissions	 80
Time for action – restricting allowed blocks for an area	 80
Summary	 82

Chapter 4: Add-ons	 83
What's an add-on?	 83

Installing add-ons from the marketplace	 83
Time for action – installing an add-on	 84
Time for action – removing an add-on	 85

Manually installing an add-on	 86
Time for action – manually installing an add-on	 86
Theme	 87

Parts of a theme	 88
Theme file structure	 89

Blocks	 90
Block structure	 90

Packages	 91
Summary	 93

Chapter 5: Creating Your Own Theme	 95
The new layout	 95

The HTML code	 96
CSS rules	 98

Converting HTML and CSS to a concrete5 theme	 100
Time for action – creating the concrete5 theme header	 101
Time for action – creating the concrete5 theme footer	 103
Time for action – creating a page template	 104
Time for action – creating more page templates	 105
Installing your theme	 106
Time for action – installing theme	 107
PHP constants and functions	 107
Time for action – getting a list of available constants	 108
Time for action – list all available functions	 109
Time for action – checking for edit mode	 110
Time for action – hiding content from anonymous visitors	 111
Time for action – restricting numbers of blocks per area	 111
Time for action – inserting block wrapper in area	 112
Working with page attributes	 113
Time for action – using attributes to set background picture	 113
Time for action – accessing attribute data from a template	 115
Block in templates	 117
Time for action – replacing header area with template block	 117

Table of Contents

[iv]

Time for action – finding autonav block properties	 118
Time for action – specifying block template in area	 120
Applying theme to single page	 121
Time for action – creating single page layout	 121
Time for action – adding variables to handle login errors	 122
Creating a customizable theme	 124
Time for action – a creating customizable theme	 125
Summary	 127

Chapter 6: Customizing Block Layout	 129
Custom templates to modify block layout	 129
Thumbnails in a page list	 130
Time for action – adding thumbnails to a page list	 131
Time for action – restricting thumbnail dimension	 134
Time for action – restricting thumbnails to a custom dimension	 135
Template folder	 136
Time for action – creating a template folder	 137
Picture pop-ups in content block	 138
Time for action – building a lightbox gallery	 138
Gravatar picture in guestbook	 140
Time for action – adding a Gravatar picture to the guestbook	 140
Avoiding duplicate code in a custom template	 143
Time for action – including an existing template	 143
Auto-hide news page list	 144
Time for action – creating an auto-hide page list	 144
Transforming a slideshow into a gallery	 147
Time for action – creating a gallery template for a slideshow	 148
Time for action – adding a slideshow gallery	 150
Slideshow using file attributes	 151
Time for action – adding file attributes to our slideshow	 152
Time for action – using file attributes in the gallery	 153
Advanced tooltip in content block	 155
Time for action – creating advanced tooltips	 156
Summary	 157

Chapter 7: Advanced Navigation	 159
Autonav introduction	 159

Preparation	 159
Time for action – undoing autonav block integration	 160

Autonav options	 160
Autonav page structure	 160
Page order	 161
Example 1 – showing all pages	 161

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Table of Contents

[�]

Example 2 – showing relevant subpages	 162
Example 3 – showing relevant subpages starting from the top	 163

Autonav output	 163
Images in the navigation	 166
Time for action – creating page attributes for navigation 	 167
pictures	 167
Time for action – creating block picture navigation template	 167
CSS3 hover effect	 168
Time for action – creating a CSS3 transition autonav template	 169
Drop-down navigation	 171
Time for action -creating SooperFish template	 172
Hierarchical tree navigation	 174
Time for action – building a file explorer-like navigation	 174
Dynamically loading content	 176
Time for action – dynamically loading concret5 content using 	 176
jQuery	 176

Allowing direct links in dynamically loaded pages	 178
Time for action – direct link with dynamic content	 178
Summary	 180

Chapter 8: Creating Your Own Add-on Block	 181
Product information block	 181

Steps to create a block	 182
Database structure	 183

Time for action – creating the database structure	 183
Time for action – creating the block controller	 185
Time for action – creating the editing interface	 187
Time for action – printing block output	 189

Checking for mandatory fields	 190
Time for action – adding check for mandatory fields	 190

Adding product categories	 190
Time for action – adding product categories	 191
Product list	 193

Handling multiple block versions	 194
Time for action – handling multiple block versions	 194

Creating a product list block	 196
Time for action – creating the product list block	 196
Picture magnifier	 199
Time for action – creating the picture magnifier block	 200
PDF generation block	 203
Time for action – creating the PDF generation block	 204

generate_pdf.php	 207

Table of Contents

[vi]

FTP gallery	 208
Time for action – creating the FTP based picture gallery	 209
Summary	 216

Chapter 9: Everything in a Package	 217
What's a package?	 217

Package structure	 218
Package controller	 218

Time for action – creating the package controller	 218
Moving templates into package	 221
Moving themes and blocks into the package	 222
Time for action – moving jQZoom block into the package	 222
Time for action – moving a PDF block into the package	 223
Hooking into core events	 225

Event types	 226
Extending an event	 227

Maintenance tasks and jobs	 229
Time for action – execute concrete5 jobs periodically	 230

Creating a new job	 231
Time for action – creating a job to check for broken links	 232
Injecting header items	 238

Adding tooltips for every title tag	 238
Time for action – creating global tooltips	 238

JavaScript browser fixes	 240
Time for action – integrating CSS fix in the package	 240
Summary	 242

Chapter 10: Dashboard Extensions	 243
MVC—model view controller	 243
Broken link interface	 245
Time for action – creating the broken links dashboard 	 246
extension	 246

Moving database access into model	 249
Time for action – creating package model	 249

Multiple controller methods	 254
Time for action – adding a second controller method	 255
File editor embedded in the dashboard	 257
Time for action – creating the file editor add-on	 258

Controller without logic	 266
Summary	 268

Table of Contents

[vii]

Chapter 11: Deployment and Configuration	 269
Deployment	 269

Preparations for deployment	 269
Time for action – disabling pretty URL and cache	 270

Transfer MySQL database	 271
Time for action – transferring a MySQL database	 271

Transferring files to server	 274
Time for action – transferring files to the server	 274
Time for action – updating the configuration file	 275
Time for action – setting file permissions	 276
Configuration	 278

Updating the configuration file	 278
Base URL redirection	 279
Multilanguage	 280

Time for action – installing a translation file	 280
Cache to improve performance	 281

Time for action – getting PHP information	 282
Activating SQLite	 283
Using APC	 283
Measuring the site performance	 284

Summary	 286

Appendix: Pop Quiz Answers	 287
Chapter 1: Installation	 287

Pop Quiz 1	 287
Pop Quiz 2	 287

Chapter 2: Working with concrete5	 288
Pop Quiz 1	 288
Pop Quiz 2	 288

Chapter 3: Permissions	 289
Chapter 4: Add-ons	 289
Chapter 5: Creating Your Own Theme	 289

Pop quiz 1	 289
Pop Quiz 2	 289
Pop Quiz 3	 289

Chapter 6: Creating Your Own Add-on Block	 289
Chapter 9: Everything in a Package	 290

Pop Quiz 1	 290
Pop Quiz 2	 290
Pop Quiz 3	 290

Index	 291

Preface
The concrete5 Beginner's Guide will show you how to get up and running with concrete5 as
quickly and painlessly as possible. Taking you from installation to deployment, this is the only
reference that you will need for creating your new concrete5 site.

By using a number of real-world examples, as well as taking you through the set up of a
sample site, this book will enable you to become familiar with all of concrete5's features. Use
add-ons, themes, and blocks to give your site the look and feel that you desire. Simple PHP
will enable you to customize the layout and navigation options of your site as well as extend
the dashboard, giving you a fully functional, professional site in no time.

What this book covers
Chapter 1, Installation is all about the installation. You'll get a web server up and running on
your local computer which you'll then use to install concrete5.

Chapter 2, Working with concrete5; before you start customizing the site a few words about
using concrete5, the part which end users should know about concrete5.

Chapter 3, Permissions; concrete5 offers a lot of different permissions you can use to restrict
certain actions on your site. You'll have a small protected section on your site once you're
done with this chapter.

Chapter 4, Add-ons looks at add-ons: what types there are, where you can find them, and so
on. This is the big picture before we start digging deeper.

Chapter 5, Creating Your Own Theme; every site has to have a personal touch, and this is
where you'll learn how to create your own concrete5 theme to change the layout to the way
you want it to be.

Chapter 6, Customizing Block Layout will show how concrete5 uses blocks as content
elements. These elements can be styled as well as themes to get even more out
of concrete5.

Preface

[�]

Chapter 7, Advanced Navigation; creating a navigation isn't complicated but there are a few
things you have to know if you want to customize the navigation.

Chapter 8, Creating Your Own Add-on Block; while you can customize a lot by changing the
layout, you might be in the situation where you need a completely new function in your site;
check this chapter to get more information about that.

Chapter 9, Everything in a Package; being able to customize and extend almost everything
can make things a bit messy. Have a look at this chapter to see how you can wrap things in a
package for an easier handling.

Chapter 10, Dashboard Extension; block add-ons are great to manage the output of your site
but sometimes there are things you have to do in the background. You'll have an extension
which checks broken links in your site as well as a few smaller examples to manage your site.

Chapter 11, Deployment and Configuration; apart from a few configurations not needed on a
daily basis, we're just moving the site and add-ons we've created so far to another server.

Who this book is for
This book is ideal for developer who would like to build their first site with concrete5. You
will need to be a little bit familiar with PHP, MySQL and HTML but will likely have little to no
experience in using concrete5.

Conventions
In this book, you will find several headings appearing frequently.

To give clear instructions of how to complete a procedure or task, we use:

Time for action – heading
1.	 Action 1

2.	 Action 2

3.	 Action 3

Preface

[�]

Instructions often need some extra explanation so that they make sense, so they are
followed with:

What just happened?
This heading explains the working of tasks or instructions that you have just completed.

You will also find some other learning aids in the book, including:

Pop quiz – heading
These are short multiple choice questions intended to help you test your own understanding.

Have a go hero – heading
These set practical challenges and give you ideas for experimenting with what you
have learned.

You will also find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "We can include other contexts through the use of
the include directive."

A block of code is set as follows:

<?php
for ($i = 0; $i < count($cArray); $i++) {
 $cobj = $cArray[$i];
 $title = $cobj->getCollectionName();
?>

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

<?php
for ($i = 0; $i < count($cArray); $i++) {
 $cobj = $cArray[$i];
 $title = $cobj->getCollectionName(); }
?>

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "If you edit a page, you can
click on Design".

Preface

[�]

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to
develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send us a note in
the SUGGEST A TITLE form on www.packtpub.com or e-mail suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save
other readers from frustration and help us improve subsequent versions of this book.
If you find any errata, please report them by visiting http://www.packtpub.com/support,
selecting your book, clicking on the errata submission form link, and entering the details
of your errata. Once your errata are verified, your submission will be accepted and the
errata will be uploaded on our website, or added to any list of existing errata, under the
Errata section of that title. Any existing errata can be viewed by selecting your title from
http://www.packtpub.com/support.

Preface

[�]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

1
Installation

In this chapter you'll learn what you need to get your own concrete5 site up and
running on your local computer. You don't need to have a lot of experience with
Apache, PHP, and MySQL configuration as we're going to use XAMPP, which will
install all the necessary components in almost no time.

Before you can start working with concrete5, you have to set up an
environment where you can test and play around with concrete5 to get used
to it. If you have a web hosting account, you can install concrete5 there, but
since that isn't always the case, we'll install everything concrete5 needs to work
smoothly on your local Windows computer.

The local webserver will only be used to build and test the site as well as the
add-ons we're going to create. In the last chapter of this book, we're going to
move the site from your local computer to a live webserver.

Preparing for installation
There are a few tools you'll need before you can start the installation process. You
probably already work with similar tools, but let's still make sure you've got everything
before continuing.

Web browser
concrete5 supports all major browsers as long as you're working with an up-to-date version.
Please note: You can create a website which is viewable with Internet Explorer 6.0. The
In-context editing system won't work with Internet Explorer 6.0 which means that you
won't be able to update the content of your website, unless you use a more up-to-date
web browser like Internet Explorer 7 or higher.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Installation

[�]

Whether you use Firefox, Chrome, Safari, or Internet Explorer doesn't really matter.
concrete5 works with any recent browser with JavaScript capability, but it's recommended to
use the latest browser version since most concrete5 community members test new releases
with the newest browsers.

Text editor
Since we're going to edit lots of files you'll need a text editor. The requirements are quite
small; you can pick almost any text editor you want. Just make sure it does support PHP
syntax highlighting. If you don't work with PHP very often, here are some possible editors:

PSPad (Windows only, free), http://www.pspad.com. A simple text editor with
built-in FTP support. This can make a quick fix on your website even quicker.

Coda (Mac OS only, commercial), http://www.panic.com/coda/. A very slick
and clean editor, FTP support, CSS editor.

Notepad++ (Windows only, free), http://notepad-plus-plus.org/. A small
and fast replacement for Windows notepad.

There are a lot more text editors, as mentioned previously; you can use almost any editor
you want. If you're familiar with another product, just go with it. You won't find anything in
this book where you need a special text editor feature.

Archive utility
The same with the file archive utility; there are plenty of tools you can use as long as it
extracts standard zip files. If you don't have any archive utility installed, you can go with
IZArc http://www.izarc.org/; it's free and does a good job.

FTP client
Once more, there are lots of choices. You'll have to change file permissions later, so make
sure your FTP client includes this option. A powerful and well known client is FileZilla,
http://filezilla-project.org/. It's free as well and has a lot more features than
we need.

XAMPP installation
If you think you've found all the tools you'd like to use to create your website, you're ready
to install XAMPP.







Chapter 1

[�]

Time for action – installing XAMPP
concrete5 is a PHP application which uses PHP as its programming language in combination
with a MySQL database. There are lots of possibilities to meet the requirements of
concrete5. The preferred web server is Apache, IIS should work as well but isn't
supported by the core team, even if it isn't as well tested as Apache.

If you already have a server or a local Apache, PHP, and MySQL setup, you can skip this
step and continue with downloading concrete5. Otherwise, you are going to need to install
XAMPP on your local computer by following these simple steps:

1.	 Go to http://www.apachefriends.org/ and click on XAMPP for Windows.
Scroll down and download the latest version of XAMPP Lite. If you're not very
familiar with these tools, you should download the EXE and not the ZIP. Double-click
the EXE as soon as it has been downloaded. You should see the following window:

2.	 Click Install to start the installation process; it will take a while as it extracts quite a
lot of files. You can install XAMPP in your program directory C:\Program Files
but it won't work on Vista unless you modify some privileges. If you don't feel
comfortable changing your security settings, just use C:\ instead.

If you want to know more about the security changes needed on
Vista to install XAMPP in your program directory, go to this page and
follow the instructions: http://www.apachefriends.org/
en/faq-xampp-windows.html#vista

Installation

[10]

3.	 After the installation has completed you'll see an old fashioned console window
asking a few questions. They look like this; you can confirm all default values:

4.	 At the end you'll see a menu where you can execute different actions. You'll later
have to start the XAMPP Control Panel but let's leave this screen untouched for
now; we have to make one modification first.

Before you start XAMPP, you should change one MySQL setting. MySQL table
names are not case sensitive on Windows. This will cause some problems if you
want to move your site to a Linux server where MySQL is by default set up with
case sensitive table names. It's therefore recommended to change this, if you
work with concrete5:

Chapter 1

[11]

5.	 Go to the directory where you've installed XAMPP, open mysql and then bin.
It should look like the following:

6.	 The my.ini file contains several settings related to MySQL. Open the file and locate
the section mysqld and insert the following line:

lower_case_table_names = 0

The first lines should then look like the following:
Example MySQL config file for medium systems.
#
This is for a system with little memory (32M - 64M)
where MySQL plays an important part, or systems
up to 128M where MySQL is used together with
other programs (such as a web server)
#
You can copy this file to
/etc/my.cnf to set global options,
mysql-data-dir/my.cnf to set server-specific options

Installation

[12]

(in this installation this directory is @localstatedir@)
or
~/.my.cnf to set user-specific options.
#
In this file, you can use all long options that a
program supports.
If you want to know which options a program supports,
run the program with the "--help" option.

The following options will be passed to all MySQL clients
[client]
#user = your_username
#password = your_password
host = .
port = 3306
socket = "MySQL"

Here follows entries for some specific programs

The MySQL server
[mysqld]
lower_case_table_names = 0
basedir = "C:/xampplite/mysql/"
datadir = "C:/xampplite/mysql/data/"
port = 3306
socket = "MySQL"
skip-locking
key_buffer = 16M
max_allowed_packet = 1M
table_cache = 64
sort_buffer_size = 512K
net_buffer_length = 8K
read_buffer_size = 256K
read_rnd_buffer_size = 512K
myisam_sort_buffer_size = 8M

Downloading the example code for this book

You can download the example code files for all Packt books you have purchased
from your account at http://www.PacktPub.com. If you purchased this
book elsewhere, you can visit http://www.PacktPub.com/support and
register to have the files e-mailed directly to you.

7.	 Now that MySQL is properly configured, go back to the XAMPP console menu and
enter 1 to open the control panel where you can start and stop all components. You
should see the following window:

Chapter 1

[13]

8.	 Start both Apache and MySQL, and your web server will be up and running in no
time, ready for concrete5!

9.	 If everything worked you should be able to open your browser and enter
http://localhost/. On this screen you can select your preferred language
and you'll see a nice status page about XAMPP.

It might just happen that Apache doesn't start because port 80 is already
used by an application like Skype. You can click on Port-Check to see if
there are any ports being used before you start the XAMPP services. If
there are, either disable the other services, or reconfigure, or stop them.

What just happened?
The XAMPP setup package installed a working web server, including PHP with the most
commonly used modules and a MySQL database. This is what a lot of web applications
need, an environment which works for a lot of web applications and CMS's as well.

You've also had a quick look at one MySQL configuration file to avoid problems when
moving your data to a Linux server. If you want to know more about this setting, the MySQL
documentation is going to answer almost any question about table names: http://dev.
mysql.com/doc/refman/5.1/en/identifier-case-sensitivity.html.

Installation

[14]

Please don't forget, XAMPP is by default a user-friendly and simple system but
insecure to simplify the development process as much as possible. It is nice to
work with and great for your first experience with your own web server, but not
recommended for a production environment. Later in this book, we'll move your
site to a LAMP server (Linux, Apache, MySQL, and PHP) which is more widely
used by webhosting companies with a more secure configuration.

Pop quiz – requirements for concrete5
Like any other software, concrete5 needs certain things to run. Try to answer which of the
following items are true:

1.	 Which of the following server-side programming language(s) has been used to
build concrete5?

a.	 PHP

b.	 Microsoft ASP

c.	 Java

d.	 All of the above

2.	 Which of the following database(s) can you use with concrete5?

a.	 PostgreSQL

b.	 MySQL

c.	 Oracle

d.	 All of the above

3.	 Which of the following operating system(s) can you use to run concrete5?

a.	 Microsoft Windows

b.	 Mac OS X

c.	 Linux

d.	 All of the above

4.	 Name the webserver(s) you can use to run concrete5.

a.	 Microsoft IIS

b.	 Nginx

c.	 Apache

d.	 lighttpd

Chapter 1

[15]

Downloading concrete5
Your local web server is running, there is nothing else to prepare, and you are ready to install
concrete5 now. There are just a few more steps till you can log in to concrete5.

Time for action – downloading the latest version
Before we can install anything we have to get the latest concrete5 version from this URL:
http://www.concrete5.org/developers/downloads/ and follow these steps:

1.	 Open the ZIP archive and extract all the files to C:\xampplite\htdocs. Override
the files which are already in the directory.

2.	 After you've extracted the ZIP file you should see a structure like the following:

At the time of writing, concrete5 v5.4.1.1 was the latest version.
You can download a newer version if available; changes in the
installation process should be minor if there are any at all.

Installation

[16]

What just happened?
You've downloaded and extracted the concrete5 CMS files. Depending on your archive utility
it might have been the case that empty folders like updates, files, and others hadn't been
created. Make sure your structure looks like the one shown in the preceding screenshot.

Before we continue, a few words about the file structure you've just created. It's important
that you understand the structure of concrete5 before you start working with it. It's helpful
to have a clear understanding about the structure so you can find your files easily. You'll later
see that all add-ons in the marketplace follow this structure. Using the suggested structure
helps to keep a clean structure, no matter who builds the concrete5 site or add-on.

It might look a bit bulky to have so many folders in the root of your website but you'll realize
that it makes perfect sense to have this structure the more you work with concrete5. To give
you a first impression about the most important folders:

Folder Explanation

blocks Put your custom blocks in this folder; you'll learn more about blocks in the
next few chapters.

concrete Probably the most important part; this is where all core files, the actual CMS, is
located. Never update anything in this folder.

config The folder where concrete5 puts the configuration files.

files The file manager stores your files in this directory.

packages This is where you have to put add-ons if you install them manually.

updates The concrete5 auto update feature puts the new core in this directory.

There are a few more folders but you probably won't need them unless you dive deep into
concrete5. We won't use them in this book and therefore won't mention them.

Creating an empty SQL database
You must create an empty SQL database before you can install concrete5.

Chapter 1

[17]

Time for action – creating an empty SQL database
Use phpMyAdmin which is included in XAMPP Lite to create the database:

1.	 Open http://localhost/phpmyadmin/ or hit the Admin button next to MySQL
in the XAMPP control panel and you should see the following page:

2.	 Enter concrete5 as the database name.

3.	 Select the collation utf8_general_ci.

4.	 Hit Create.

5.	 Go to the Privileges tab and click on Add a new User to create a dedicated user
for concrete5.

Installation

[18]

6.	 When prompted, use the following credentials to fill in the following fields:

User Name: concrete5

Host: localhost
This makes sure that the user can only be used if the database is accessed
by the local machine.

Password: concrete5
The password to access your database. Feel free to use a more secure
password than concrete5, just make sure you remember it when we install
concrete5 in the next step.

7.	 Hit Go and the user is available and your database is ready for concrete5!

What just happened?
All the components are ready; Apache including PHP should be running and there's an empty
MySQL database to host your concrete5 site.

Please note: concrete5 can't be installed in a database which
isn't empty!

Installing concrete5
We're finally ready to get to the concrete5 part. Let's install it!







Chapter 1

[19]

Time for action – installing concrete5
To install concrete5, follow these steps:

1.	 Open your favorite browser and enter http://localhost/. You should see the
installation screen:

2.	 On the left there are a few checks to make sure that your web server meets all the
requirements of concrete5. A few words about the required items:

PHP: Whenever possible, try to use the latest PHP version.

JavaScript and MySQL: At this point, concrete5 only works with MySQL and
needs JavaScript because of its AJAX interface.

C5 Request URLs: By default you'll see index.php in each concrete5
URL you open. To get rid of this, you need to have the Apache module
mod_rewrite, which we're going to deal with later in this chapter.

Image Manipulation and XML Support: These are PHP modules which are
enabled by default and needed by concrete5.









Installation

[20]

Web Server Access to Files: Usually not a problem if you work with XAMPP
on Windows. The webserver must be able to write some files in your
website's installation directory. We'll discuss this issue later, when we move
the site to the production server.

Version Comparison: This feature uses Python to show you the difference
between page modifications. A nice feature but it doesn't work because
XAMPP Lite doesn't install Python. But since it's optional we're not going to
worry about it.

3.	 To install concrete5 you have to enter the following personal information:

Name Your Site: Any name you want—can be changed in the
dashboard later.

Your Email Address: The admin mail address. Make sure it exists;
this is where you'll receive a link to change the eventually forgotten
admin password.

4.	 You will also have to enter the following database information:

Server: Since the database is running on the same machine as the web
server, just enter localhost.

MySQL Username, MySQL Password, and Database Name: concrete5 or
whatever you used when you created the user in phpMyAdmin.

5.	 Sample Content: If you enable this, concrete5 will create a few sample pages to play
around with. Enable this, if you're new to concrete5, it will create some nice pages
where you can see the different blocks you can use to build your website.

6.	 If you've entered all the necessary information, click Install Concrete >!

What just happened?
A few seconds after you've clicked Install Concrete you should see a screen with an
automatically generated admin password. Make sure you don't lose it.













D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 1

[21]

concrete5 is installed and ready to work with on your computer!

You should now be able to open the default concrete5 website, by entering
http://localhost/ in your browser.

Installation

[22]

The configuration file
After you've successfully installed concrete5 you'll find a file called site.php in the config
directory. This is where the installation process has saved the information you've entered
during the process. Here's how it looks:

<?php
define('DB_SERVER', 'localhost');
define('DB_USERNAME', 'concrete5');
define('DB_PASSWORD', 'password');
define('DB_DATABASE', 'concrete5');
define('BASE_URL', 'http://localhost');
define('DIR_REL', '');
define('PASSWORD_SALT',
'zc8tSsYQI0E2MifRwboxBq6K9UmbL4X7vrf3Tz1unNFVCPWkO5glHjZaGpADJ');
?>

DB_SERVER, DB_USERNAME, DB_PASSWORD, and DB_DATABASE are obviously just
database related. If the credentials to access your MySQL database have changed,
this is where you have to modify them to make sure concrete5 can access your
database.

BASE_URL is used by default to make sure that your website visitors use your
primary domain. If your site is accessible by multiple domains, concrete5 will just
forward them to the URL specified in BASE_URL.

DIR_REL is empty if you've installed your website in the root. It's only filled if your
website is located in a subdirectory.

PASSWORD_SALT, this is a random string and is used in combination with the
password to generate the password hashes found in the user table. Salts are used to
complicate dictionary attacks and even if they are useless without a password you
should still not publish a real password salt to keep your site safe.

Pop quiz – the configuration file
1.	 You'll often have to check or modify a few lines in the configuration file, so where

can you find it?

a.	 <concrete5 installation directory>\config.php

b.	 <concrete5 installation directory>\config\config.php

c.	 <concrete5 installation directory>\config\site.php









Chapter 1

[23]

Pretty URLs
When you browse to a subpage in your concrete5 site you'll notice an odd thing in every
URL: there's index.php in it like this http://localhost/index.php/about/. Every
request to a page in concrete5 is processed by index.php. This has several advantages: It's
easier to check the permissions, there's a single point where the page rendering time can be
improved, and a few more things.

However, even with these advantages you probably wouldn't like to see index.php in every
URL. Luckily it's rather easy to change it if your web server supports rewrite rules. XAMPP
does, and here's what we have to do.

Time for action – enabling pretty URLs
Follow these steps to get rid of the index.php from you URLs:

1.	 Log in to concrete5.

2.	 Click on the Dashboard button in the top-right corner.

3.	 Select Sitewide Settings in the navigation.

4.	 Check Enable Pretty URLs and hit Save, you should see the following screen:

Installation

[24]

5.	 concrete5 should have created a file called .htaccess in the root of your website.
This is the file where the rewrite rules are stored which remove index.php from
the URLs.

You can now open a subpage by entering http://localhost/about/—the
index.php is gone.

What just happened?
Congratulations, you're done! concrete5 is running and you've also activated some options
to improve the behavior of concrete5.

You've enabled pretty URLs which uses the Apache mod_rewrite module to rewrite URLs.
In case you'd like to know more about this Apache feature this is the official documentation:

http://httpd.apache.org/docs/2.2/mod/mod_rewrite.html

Chapter 1

[25]

.htaccess is a configuration file most commonly used by Apache to configure Apache
modules on a directory level. It's a simple text file you can open with any text editor of your
choice. If you haven't worked with Apache before, the content might be a bit confusing but
concrete5 took care of it. You shouldn't have to modify anything on your own in this file.

Pretty URLs can also be used with Microsoft IIS but you need to install a
rewrite filter first.

If you want to try it on your own, you can find a solid and free rewrite
filter at this address: http://iirf.codeplex.com/.

Summary
You've reached the end of Chapter 1!

You should now have a working concrete5 installation from where you'll learn how
to work with concrete5.

In case you have to check or modify your concrete5 configuration, you should know
where to find the files.

We've looked at the requirements to run concrete5.

All the tools you'll need to go though this book should be installed in your computer.

We're going to use this test site to build our own site including some customization
and programming.











2
Working with concrete5

In this chapter you'll learn how to use concrete5 to manage the content of your
site. If you build websites for customers, this is the part your customers have
to learn and understand. More precisely, you'll learn to add, edit, and remove
content and you'll also learn how to insert columns and various text styles.

Getting familiar with concrete5
Before you start customizing and extending concrete5 you have to get familiar with the
tools you'll need when you want to update your site's content. Since you don't want to let
everyone update your site, you have to log in using the account which has been created
during the installation. Let's go through this step by step:

Time for action – logging in to concrete5
Follow these steps to log in to concrete5:

1.	 If you followed the first chapter step by step you can enter http://localhost/
and get to the default concrete5 home page.

2.	 At the bottom of the page you'll find a link Sign In to Edit this Site; click on it.

3.	 You can now log in with the user admin and the password generated during the
installation process.

Working with concrete5

[28]

What just happened?
When you're logged in, you'll see the exact same page with one major difference. There's a
toolbar on the top to execute certain actions on the current page.

The following table explains the different elements of the toolbar:

Button Explanation

Edit Page Before you can edit the content, you have to activate the edit
mode, more details in the next Time for action section.

Add Page This button adds a new page underneath the current page.

Dashboard This brings up the administration panel where you can create
users, install add-ons, and a lot more.

Help This buttons shows a small dialog with a link to the
documentation, forums, and a search box to find existing
posts in the concrete5 community.

Sign Out Hit this button to log out of concrete5.

Adding new blocks
Now that we are in the in-site editing mode, we can start editing our site. This works by
adding blocks to predefined areas. You'll see the different elements and standard blocks
of concrete5 as we go through the next Time for action section step by step.

Chapter 2

[29]

Time for action – adding new blocks
To add a new block to your concrete5 page follow these steps:

1.	 First, we would like to change some of the content on the home page. Click Edit
Page to activate the edit mode on the page.

2.	 The look of the page changes a bit when you're in the edit mode but you're still able
to see the actual page.

Working with concrete5

[30]

The default page type has four sections called areas. An area is a place where you
can insert content. Unlike other CMS's, editable areas in concrete5 themes aren't
specific to a content type.

What does this mean? If you create a theme you just specify where the user can
place content. You don't add any restriction to the content type by default.

The content elements are called blocks and can be put in any area several times.
This offers great flexibility; you can put a slideshow, a form, and a lot more stuff
anywhere you want.

3.	 At the bottom of each area you can find a link called Add To <Area-Name>.
It displays a small menu with different actions, as shown:

4.	 Right now, we only need Add Block. We're going to use the other items later in
this chapter. If you click on it, you'll see a dialog with all available blocks. By default
concrete5 ships with the following blocks:

Chapter 2

[31]

Content: Insert formatted text using a WYSIWYG editor.

HTML: For those who know HTML, this lets you insert plain HTML code.

Auto-Nav: Necessary to build a dynamic navigation. We'll cover this block at
full length later in this book.

External Form: Lets you build a form using an MVC approach. Programming
experience highly recommended.

Form: Offers a nice and easy to way to build forms. Not as flexible as an
external form but it doesn't require any HTML or PHP coding!

Page List: Displays a set of pages. It can be used to build a simple news list
or blog.

File: Insert a download link to a file you've uploaded to the file manager.

Image: Places content including a hover effect in the page.

Flash Content: Use this block to insert a flash banner or animation.

Guestbook: If you want your visitors to leave comments on your page, use
this block.

Slideshow: Creates an image slideshow with a smooth transition in just a
few clicks.

Search: Displays a form to let the visitors search for pages on your website.

Google Map: Uses a Google map to show your visitors where they can find
your company.

Video Player: Plays videos in different formats.





























Working with concrete5

[32]

RSS Displayer: Pulls news articles from another page by including an RSS
news feed.

Youtube Video: Puts your Youtube video on your website.

Survey: Creates a simple survey and displays the result using a pie chart.

5.	 Let's start by selecting Content to insert a new formatted text block. Another dialog
will pop up and display a WYSIWYG editor where you can enter text, including
images and links to other pages. It mostly works like any other text editing
application. You've got text formatting, some paragraph formats that you'll
probably know if you've been working with Internet technology before.

6.	 It should be pretty intuitive, but please have a quick look at the toolbar on the top
of the text area. If you want to insert a link to a concrete5 page or a file from the file
manager you have to use the toolbar above the text area.

7.	 Click Add and your text is part of the page!

What just happened?
You should understand how concrete5 changes the way a page looks when you enter the
edit mode. This is also one feature that makes concrete5 different from other CMS'; you can
edit the content in a view which looks a lot like the actual page.

We did have a quick look at the way concrete5 places content on your pages. You should also
have a first impression about the default blocks you can use when you install the standard
concrete5 distribution.







Chapter 2

[33]

Your playground site should also contain some words you've entered using the content block.

Now that you've added a new block, you should also try to edit an existing block.

Time for action – editing existing blocks
Follow these steps to edit an existing block on your site:

1.	 Once a block has been added, you can simply edit it again by clicking on it. The
following menu appears with different options:

Edit: this shows you the block editing block you've seen when you added a
new instance of the block.

Copy to Scrapbook: this copies the block into the scrapbook from where
you can use it at different places. Don't worry about it at the moment, as
there's a section about the scrapbook later in this chapter.

Move: click on this element to switch into a different mode where you can
drag blocks around to reorder them.

Delete: you don't need the block anymore? Hit this button and it's removed
from the page.

Design: this lets you style the blocks by using some CSS rules. There's
another Time for action section about this later in this chapter.

Custom Template: some blocks ship with different templates to change the
look of the output. We're going to have a detailed look at this feature in
Chapter 6.













Working with concrete5

[34]

What just happened?
We had a quick look at editing an existing block. There's not much; once you know how to
add a block, editing it is usually pretty much the same. You click on the block, select Edit, and
update the values you've previously entered.

Have a go hero – adding more blocks
As you've seen in the previous chapter, concrete5 ships with a lot more blocks than just the
content block we've discussed. Try to add and edit all the blocks you can use to get familiar
with concrete5. It's going to be routine when updating page content!

Time for action – exiting edit mode
Once you're done editing the page, you have several options in the toolbar which changed
when you entered the in-site editing mode.

1.	 The obvious first choice is Exit Edit Mode. It's what you'll need when you're done
editing the site. However, when you've added new content, there are several
choices you'll see when you hit that button:

Discard My Edits: Exit the edit mode and drop all changes.

Preview My Edits: This will create a new page version, but won't approve it,
hence keeping it hidden from the public.

Publish My Edits: Save changes and publish them, making all changes
visible to the public immediately. Click on this button in our case.

2.	 Properties, Design, Permissions, and Versions are accessible from your site's
dashboard as well. We'll cover them in the dashboard section of this chapter.

3.	 Move/Delete will show you a dialog where you can either select the new parent
page for the current page or delete it, if you don't need it anymore.







D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 2

[35]

Pop quiz – concrete5 in-site editing mode
Try to remember the things you can do while you're in the in-site editing mode.

1.	 What kind of blocks can you add to a concrete5 page?

2.	 What buttons can you see in the toolbar while you're editing a page?

3.	 What buttons are available once you leave the edit mode?

The das������hboard
Even with the really slick in-site editing system, there are still some tasks you can't do while
you're browsing the site. This is why there's still a dashboard where you can find several
options and forms to modify your concrete5 site.

While you're browsing the site while logged in, there's always a button called Dashboard in
the top right corner. Click on it and you should get to the dashboard.

Working with concrete5

[36]

We'll quickly go through all the items but won't cover all the details as it would take too
much time. Most parts on the dashboard are easy to understand anyway—take some time
and patience and you'll probably be able to figure out most of the options on the dashboard
very quickly. At the end of this section is a list with all the items we haven't mentioned; just
follow the next paragraphs and take some time at the end to play around with the rest.

When you open the dashboard you'll see the following boxes:

Item Explanation

Site Activity Some hints about the site activity, the current users, some statistical numbers,
and a note about form submissions.

Statistics concrete5 contains simple site statistics which show you the number of page
views right in the dashboard.

Help This search box crawls through the concrete5.org documentation and
community posts.

Latest News These items are directly pulled from concrete5.org, news about releases,
new items published in the community – everything you need to know
about concrete5.

Notes In case you tend to forget things. A small text area to write notes to yourself.

On the left you can find a few navigation items. This should only give you a rough overview;
we will cover the most important things later in this book. Just try to remember the things
you can find in the dashboard, it will make it easier to find the tools you need once you're
more used to working with concrete5.

Item Explanation

Sitemap While you can edit the page content easily using the in-site editing system, it
can still be very helpful to see a hierarchical page structure of your website.

File Manager When files are used in concrete5 they are uploaded using the file manager.
These are the things you can do here:

Upload and delete files
Manage files using sets
Assign attributes to files







Reports Some blocks like the survey or form block report data which you can find
under this section any time you want. There's also an option to export the
data to Excel.

Users and Groups An essential part to manage your permissions. We're going through this step
by step in the next chapter. Here, you are able to:

Manage users
Create and assign groups to users
Attach attributes to users







Chapter 2

[37]

Item Explanation

Scrapbook If you want to replicate a block across a site, add it to the scrapbook. There's
an example later in this chapter.

Pages and Themes This allows you to:

Install and activate themes

Create and edit page types

Add new page attributes

Create single pages









Add Functionality This allows you to install and update concrete5 add-ons.

System &
Maintenance

Maintain your website by executing these tasks:

Back up and restore your database in case you want to try
something and need the ability to go back to a previous state.

Update to a newer version of concrete5 if available.

Run jobs to index your site for the search functionality, creation of a
sitemap.xml for Google and process e-mails if you're using the
concrete5 community feature.







Sitewide Settings Lots of settings, change the rich-text editor toolbar, restrict access to your
site, some developer related information and more. We're going to look at a
few settings in the next chapter.

Pop quiz – dashboard features
Try to list the things you can find on the dashboard.

Adding more pages
concrete5 uses a sitemap to build a hierarchical tree of pages. This means that every page
has one root page. The top level is home and can't be removed.

If you already have a web site project going on, you've probably thought about the
hierarchical site structure for a bit. Use that structure if you have one, otherwise we're
just going to add some random pages.

Working with concrete5

[38]

Time for action – adding pages to create a news section
Follow these steps to add new pages to your site:

1.	 When you're in the Dashboard, click on Sitemap to get to the following screen:

2.	 Click on the Home page and you'll be presented with a menu. Right now, we only
need Add Page.

Chapter 2

[39]

3.	 Click on Add Page to bring the dialog up where you can enter the information about
the new page you want to create.

4.	 These are the field types as seen in the preceding screenshot. Enter the following
information into each field:

Choose a Page Type: When you're creating a theme you can add several
page types to offer the end user different layouts like single-column,
multi-column, and so on. We just select Full Width for now.

Name: The name/title of your page. As we're going to create a new section,
enter News.

Alias: This is generated by concrete5 when you enter the name. You could
change it if you want your page to be accessible using a different URL, but
leave it how it is for now.

5.	 Click the Add button and you should see the updated sitemap.







Working with concrete5

[40]

6.	 The page we just created is going to hold all the news entries together. Let's add
one sample entry by clicking on News to bring up the menu and selecting Add Page
again. Select a page type of your choice and enter a page name. You should have
another page underneath news:

What just happened?
After the new pages have been added, you can click on one and select View to see the page.
There are already a few blocks in the new page, even if you didn't add any of them. concrete5
took all the blocks which are predefined in the defaults and added them to your new page.

You've also seen that there are different page types, each of which will result in a different
page layout. Don't worry if you picked the wrong one; you can always hit the Design button
in the toolbar, while you're in edit mode, to bring up the dialog where you can change the
page type at any time.

We're going to add some more blocks to our page in the next time for action. After that
we're going to look at page defaults to help you to understand how some of the blocks
automatically appeared in the new page.

Chapter 2

[41]

When you're logged in you can always hit Add Page in the toolbar on the top.
This creates a child page to the current page. This can be done using the sitemap
as well; it's just another way to add a new page.

Time for action – adding blocks to new page
Add new blocks to your page by following these steps:

1.	 Open the News page, it already works but we can't see our news entry. Makes
sense; how should concrete5 know that we want to have a news list on this page?
It can't, so let's help concrete5 and create that list manually.

2.	 Go into the edit mode by clicking on Edit Page.

3.	 Display the block list by clicking on Add To Main.

4.	 Select Page List.

Working with concrete5

[42]

5.	 Change the option in the middle Location in Website to beneath this page. This
makes sure that only pages underneath news will be displayed. All other options
can be left the way they are.

6.	 Click on Add to insert the list into your page.

7.	 Leave the edit mode by clicking on Exit Edit Mode.

8.	 Select Publish My Edits to confirm your changes.

9.	 Done!

Chapter 2

[43]

What just happened?
There's a rather simple, but working, news section in your site which we'll improve later by
adding some more advanced features.

Even if the website you're creating still looks boring, at least you've got a structure. This
makes the design process easier as well, since you can easily add some content to your
design and see how it looks in the website.

Have a go hero – adding more pages
You've seen how pages can be added to represent a news section. The sitemap should give
you a good overview of your site. Try to add all the pages you think you need on your site,
whatever you do in the sitemap it's not going to break anything.

If you misspelled a page name, click on it and select Properties. You can change the
name at any time.

Selected the wrong page type? No problem, click on a page and hit Design and you'll
see a dialog where you can select another page type.

Page defaults
There are situations where you might want to put the same block on several pages. For
example: If your page has a picture in the head of each page, it would be helpful if there's
a default picture block in each page you create. For a small page, the navigation is probably
identical on each page.

In concrete5 you can manage not only the page content, but also the page type content.
What does this mean? Since every page is derived from a page type, they behave like
templates. Blocks in the page types are, by default, placed in every new page. It's also
possible to add blocks to existing pages by modifying the page type defaults on each
page as well.

Time for action – adding default blocks to a page type
Follow these steps to add default blocks to a page type:

1.	 Go to the dashboard and select Pages and Themes.

2.	 Click on the tab called Page Types.





Working with concrete5

[44]

3.	 On top of the screen, you can see a list with all available page types. Pick the one
where you'd like to add some default blocks by clicking on Defaults in the row of
the page type of your choice.

4.	 You'll be redirected to a screen which looks like a normal page but it's actually a
page type you're going to edit. Start the edit mode by clicking on Edit Page in the
top toolbar.

5.	 Click on Add To Header and select the image block, pick a file from the file manager,
and hit Add.

6.	 Save the changes by clicking on Exit Edit Mode and confirm it by clicking on Publish
My Edits.

What just happened?
By adding a block to the page type defaults, you've created a template-like page which
will be copied to each page you're going to create from the same page type. Even if you're
using this block in only 90% of all cases, you can still benefit from this feature. Removing or
modifying a block which has been added by using the page defaults is no problem.

Chapter 2

[45]

Adding blocks to existing sites
What if you added a block to a page type which you already used several times? For those
pages where you didn't add the block, you can use a menu item only available when editing
the page type defaults.

Click on the block you want to copy to the existing pages. Select Setup on Child Pages and
mark the pages in the dialog where you want to copy the block. Confirm your selection by
clicking on Update and all pages you've selected receive a copy of the block.

Page commands
When you click on a page in the sitemap, you can see several menu items to change anything
about a page. Properties, Set Permissions, Design, Versions, Delete, and Add Page are also
visible in the toolbar of the in-site editing mode. You'll see the same dialog, no matter where
you've opened it. Please note: Add Page will only be visible when you're looking at a page
without editing it, while the rest will be available when you actually edit a page.

Working with concrete5

[46]

The following are the items present in the menu:

Visit: Opens the selected page.

Properties: Shows a dialog where you can edit the values you enter when you create
a new page. Change page title and description, manage custom properties, and set
aliases for a page if you want the page to appear at different URLs.

Set Permissions: Manages the access to the page. More about this in the
next chapter.

Design: Changes the template or theme for the page.

Versions: You want to see how the page looked in the past? Versions shows you
every page version since it has been created. If you didn't publish a page change
and only hit preview when you left the edit mode, you'll see a new unapproved
page version in this dialog. Use this to approve the new version or go backwards
and approve an older version.

Delete: You don't need that page anymore? Delete it!

Search Pages: Activates the Page Search tab and sets the current page as the parent
page in the search dialog.

Explore Folders: Brings up the Folder View for the current page.

Add Page: We've used this item before, lets you add new pages.

Add External Link: You can use this option if you don't need a page but just a link to
another page which appears in your pages navigation.

Moving and sorting pages
While you are probably able to create a page structure without making a mistake, I'm not.
Luckily it's very easy to move pages around.

Time for action – moving and sorting your pages
Follow these steps to restructure your pages:

1.	 Go to the Sitemap.

2.	 Click on the icon of the page you want to move but don't release the mouse button.

3.	 You can now drag the item around and change its position by dropping it between
two other sitemap items.





















Chapter 2

[47]

4.	 If you drop the item on top of another page, the following dialog shows up:

5.	 Instead of just being able to resort to your page, this dialog allows you to create an
alias—a second URL for your page—as well as make copies of pages including
its children.

What just happened?
We've discovered some drag and drop functionality in concrete5. Whenever you want to
restructure your page, these tools will help us achieve the task very quickly.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Working with concrete5

[48]

Splitting content into columns
As you've seen, you can use page types to choose between different page layouts. But what
if your site looks like a newspaper—if it has more than 10 different layouts which are mostly
unique? You could create a page type and template for each of them, but there's a smarter
and easier way.

Time for action – creating a multi-column layout
To give your pages a multi-column layout, follow these steps:

1.	 Pick a page you've created in the previous section and open it.

2.	 Activate the edit mode by clicking on Edit Page.

3.	 When you click on Add To Main you should see the already familiar popup menu,
but this time don't add a new block—select Add Layout.

Chapter 2

[49]

4.	 After that, the following dialog should popup:

5.	 In this popup window, you've got several fields to enter values:

Columns: Enter the number of columns your layout should have.

Rows: Enter the number of rows you need for your table layout.

Spacing: If you want to have some space between the columns, enter the
value in pixels in this field.

Lock Widths: Mark this checkbox if you want to avoid accidental changes to
the column widths. You can unlock the layout at any time.

Save this style as a new preset: If you need the same number of columns
and rows several times, activate this and you'll be able to reuse it when
adding a layout on another page.

6.	 Click on Create Layout when you're done.











Working with concrete5

[50]

7.	 The main area contains three sub-areas where you can add blocks:

8.	 The additional areas behave like any other areas, but there are some small
differences if you look above the area:

Item Explanation

Click on this icon if you want to edit, delete or
unlock/lock a layout.

Columns in an unlocked layout can be resized by
dragging these handles.

What just happened?
You have seen how easily you can split content into several columns. One area has been split
into three columns to build a newspaper-like page. There's also a way to save these layouts
as presets in case you want several pages to have the same column layout.

There are some blocks in each area which you reordered by using the move feature of
concrete5. A feature that works not only with split areas, but areas in general.

Chapter 2

[51]

With everything you've read so far you can create lots of different page layouts without
having to write a single line of HTML code.

What you've seen so far should allow you to enter lots of different website content by using
only very few tools.

If there's some real content you want to add to your website, feel free to add it
now. We won't remove any of the pages we've created, even when we create a
new website layout!

Have a go hero – add more columns and blocks
Before you continue, try to add some blocks to the split areas. Try to build a newspaper
like page with three columns, some content, and pictures. Since we're not working with
real newspaper pages, you can also add some videos and show your grandparents what
newspapers are going to look like in the future.

If you click on an existing block, you can select Move in the popup menu. concrete5 will then
change the mode and enables block drag and drop functionality. You can even move blocks
from one split area into another.

Scrapbook
When you build a website, there's always some content which is identical on several pages.
For instance: A logo, an address, or a phone number if it appears on several pages. It's rather
annoying if you manually have to make sure all the pages are updated, it takes quite some
time and if you fail you'll quite likely get some complaints.

If you want to make things quick and dirty, put them in your PHP/HTML code and you're
done. But you don't want to make things dirty, and luckily you don't have to because there's
a scrapbook which is going to help you to get out of this misery.

Working with concrete5

[52]

Time for action – putting your addresses in a scrapbook
The following steps show you how to put your addresses in a scrapbook:

1.	 Log in to concrete5 and click on the Dashboard button. Select Scrapbook to see the
following screen:

2.	 Open the Global Scrapbook by clicking on it.

3.	 Hit Add Block to Scrapbook to bring up the dialog with all installed blocks.

4.	 Select the Content block and enter your address and add it to the scrapbook.
You should then see the additional block in the scrapbook with a small preview
of its content:

Chapter 2

[53]

5.	 You can rename blocks in the scrapbook by clicking on Rename to keep
things organized.

6.	 Go back to your website by clicking on Return to Website.

7.	 Bring a page of your choice in the edit mode and click on Add To Sidebar. But
instead of adding a new block, click on Paste from Scrapbook:

8.	 Select Global Scrapbook and click on the block you've previously added to
the Dashboard. The block appears in the page like a normal block, with just
one difference!

9.	 Click on the block you've just added and hit Edit; there's one small difference you
can see on the next screenshot. concrete5 tells you that this is a global block where
changes will affect all instances of this block throughout the site.

Working with concrete5

[54]

What just happened?
We've had a quick look at the scrapbook—a nice feature to manage blocks, used several
times in your site. You can use it to globally manage every block available on your site.

If you build a website for a customer you can easily add all the global blocks in advance. The
customer can then use the in-site editing system and won't have to learn how to use another
tool and can quickly update several pages with one update.

Design and CSS
Some blocks already contain options to personalize the look or behavior of it, some blocks
don't. However, concrete5 has a nice feature which uses CSS to customize the look of a
block, even if the block developer didn't add any options to support custom colors, fonts,
or anything like that.

You can see the following dialog to edit these, when you click on a block you've
already added:

Chapter 2

[55]

There are several options which apply different CSS rules to the selected block:

Time for action – styling your blocks
We would like to add an image to a page, but one that looks a bit emphasized, centered, and
with a border around it.

1.	 Navigate to the page where you want to add the picture.

2.	 Go into the edit mode.

Working with concrete5

[56]

3.	 Add a new Image block:

4.	 Select Choose Image to bring up the file manager.

5.	 In the top right corner you can select a picture from your local hard disk. Hit Upload
if you've selected the file you want to upload.

6.	 A small dialog appears where you could select another action to perform on the file:

Assign File Sets: concrete5 doesn't use folders like a traditional file
manager. Files can be assigned to one, several, or no sets.

Edit Properties: Shows you some properties about the uploaded file. If you
want to assign the file to a set, go for it, but it's just optional.





Chapter 2

[57]

7.	 Close the dialog and you should see a new file in the manager:

8.	 Click on the file and hit Choose to select the file as the one you want to display in
the image block.

9.	 Hit Add to insert the image block.

10.	Click on the block after you've added it and select Design. You'll see some fields
to add pre-defined CSS rules but also a text field in the CSS tab where more
experienced CSS writers can add their own styles manually.

11.	Go to the Border tab, set the border style to solid and width to 2px. In the Spacing
tab, enter 2px in each padding field and hit Update.

Working with concrete5

[58]

12.	 Our picture now has a black border. A simple design element you can add without
any line of code. You can probably make it look even better.

What just happened?
We've added a picture block where we uploaded a new picture to the concrete5 file
manager from our local hard disk.

We then added some CSS rules by using the concrete5 design feature to add a border around
the picture.

There's a lot more you can do with the Design dialog, and here are some ideas:

Add font styles, face, size, line height, and change the text color

Insert a background color or picture

Add different border styles to the block

Put some space between the blocks by adding padding and margin

Insert custom CSS rules or add an existing class to a block for more advanced
CSS styling

The Design dialog is not only available on blocks but also on areas. If
you click on Add Area <Name> you can find the Design item as well.
This allows you to change all blocks within an area, for example, you
can change the font face for a whole area.











Chapter 2

[59]

Have a go hero – play around
We've covered a bunch of different things to manage your website's content. We didn't look
at all the different tools, screens, or buttons but you soon realize that what you've seen
should be enough for most situations.

But before we continue, try to make sure you're familiar with the following tools. Try to
achieve these tasks:

Add a page and edit some of its properties like the title, the URL, and so on.

Each page can have a description which will be picked up by search engines. You can
find it in the properties as well.

Move and delete pages by using the Sitemap in the Dashboard.

Add, remove, and re-order blocks.

Upload, delete, and set properties for your files in the File Manager.

Try to use these files in file, download, and videos blocks.

Add a form with various controls and submit data that you'll later find in the
Dashboard under the Reports section.

Put blocks in the scrapbook.

Once you've successfully managed to execute these tasks you should be familiar with
managing concrete5 page content.

Summary
We've already looked at everything you need to manage the content of your website. Using
the features in this chapter allows you to create almost any page content you want. There
are several things we did:

We've added and edited blocks to update their content

Worked with the sitemap to add, remove, and update pages to build a hierarchical
page tree

Split a page into several columns for a quick and easy layout creation

We've had a look at the scrapbook to create a global block you can place on several
pages but only have to update on one

We used the design dialog to add a custom touch to an image block



























3
Permissions

While concrete5 runs well without any special configuration, there are some
parameters you can set to change the behavior of it to suit your needs. There
are also several options to restrict access to your website.

We're going to look at the most important configurations you can make while
adding a basic multiuser configuration which you can also use to build a simple
extranet or member section on your website.

There's a section in the Chapter 11, Deployment and Configuration named configuration
which might be helpful before you dive into this chapter. The following are the topics
covered in the section:

URL redirection, how does concrete5 handle requests on a website with
several addresses

How to change the language of the user interface in concrete5

Some words about the cache options in concrete5 that might improve your
website's performance

Basic permissions
When you run a website, you might want to have some personalized users with access to
edit the page content, but without the rights to update all site settings. In this chapter, we're
going to create a group, which you can assign to any number of users, if you want to give
them edit access.

We're also going to create a section in your website, which is only visible to registered users.
A first step towards an extranet! You can also use this method to hide certain pages on your
website from your parents.







D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Permissions

[62]

Adding users and groups
Users usually come and go; to keep the handling as easy as possible, we're going to create a
group for everything, even if there's just one user in it.

Time for action – adding groups
Carry out the following steps to add a group:

1.	 Log in to concrete5 and go to the Dashboard.

2.	 Select Users and Groups in the navigation on the left.

3.	 The screen to create new groups is straightforward, as shown in the
following screenshot:

4.	 Enter a group named Editors in the Name field. Click on Add to create the group.

5.	 Create another group named Members, which we'll use to manage the users with
access to our secret website section.

Chapter 3

[63]

What just happened?
We created two new groups, which we'll use during the process of building a small
community website. One is for the users with access to manage the website content and
another is for members who only get access to the normal website view without any access
to the dashboard or in-site editing toolbar.

Group expiration options
You might have noticed the expiration settings at the bottom (see the preceding screenshot)
when you created the groups. We don't need them at this point, but they can be quite
handy. Imagine you want to build a website where you sell subscriptions. How do you make
sure people have to pay after a certain period has passed by? You just set an expiration
option and you're done! There are two different ways to do that, which are as follows:

Automatically remove users from this group at a specific date and time: Enter a
fixed date the members should be removed or deactivated from the group.

Automatically remove users from this group once a certain amount of time has
passed: Set a period after which the members of the group have to be removed
or deactivated.

Time for action – adding users
1.	 Go to the Dashboard and select Users and Groups.

2.	 Click on Add User in the top navigation and you see a screen similar to the
following screenshot:





Permissions

[64]

3.	 The first three fields are mandatory. Enter your user credentials for the account you
want to use as an editor in Username, Password and Email Address. Tick Editors at
the bottom to assign the user the necessary group.

4.	 Click on Create User.

5.	 Create another user you want to use as a test member for your extranet. You should
now have three users, as shown in the following screenshot:

What just happened?
We've created two new users with restricted permissions to edit the page and view a
protected section we're going to create. They are now visible when you have a look at the
user section in the dashboard. In case the list gets bigger, concrete5 offers several tools,
including the following:

A search box to search after a username or e-mail address

Filters to display users belonging to one or more groups

An Excel export if you want to process the user data manually

User ����������attributes
When you created the new account, you probably saw the box named Registration Data.
Almost every website has different needs; while you need a username and password for all
of them, you probably don't need the same user attributes on every site.

concrete5 has a flexible and extendable attribute system allowing you to create and assign
attributes not just to users but also pages and files.







Chapter 3

[65]

During the account creation, you saw a few default attributes about message processing
created during the installation process. We don't need them at this point, but in case you
want to keep track of more data about your users, create attributes and you've got a flexible
system to manage your user data. We're going to add page attributes, which work the same
way as user attributes in Chapter 5, Create your Own Theme.

Sitemap and file ������������������� manager������������ permissions
By default, a group has no rights. To give a group access to edit your website's pages, we
have to grant them more rights. First, let's make sure that they get access to the sitemap.

Time for action – assigning sitemap permissions
Carry out the following for assigning sitemap permissions:

1.	 Go to the Dashboard and select Sitemap.

2.	 Select Access in the top navigation.

3.	 Our groups aren't visible yet; click on Add Group or User and select Editors in
the dialog.

4.	 Check the Yes radio button next to Access Sitemap and Page Search to give your
Editors access to the sitemap. It should look like the following screenshot:

Permissions

[66]

What just happened?
We've granted our editors the right to access the sitemap. This allows them to move and
delete pages using the in-site editing toolbar. They don't have access to the dashboard
sitemap yet though. You'll find an explanation about granting partial access to the
dashboard later in this chapter.

Now that you've allowed your editors to access the sitemap, you have to grant them access
to the file manager. They need to be able to add pictures and files to the pages they create,
don't they?

Time for action – granting file manager permissions
1.	 Open the Dashboard and select File Manager.

2.	 Navigate to Access.

3.	 Click on Add Group or User and select Editors and the following screen pops up:

4.	 Hit Save to confirm the changes.

What just happened?
You granted all members of Editors access to the file manager. This allows them to upload,
delete, and use the files within the pages.

By default, they are only going to see their own files. This can be handy if you, the admin,
want to upload system files that a normal user isn't supposed to see. However, if you want to
manage the page content using the admin account as well, you might have to allow any user
to see all files. In this case, you simply set Search Files to All.

Chapter 3

[67]

Granting edit ������access
We've got two new users, each of them a member of a group. This is the basic structure
we're going to use for all our permissions. However, they don't have more rights than a user
without any assigned group.

The basic permission mode has a simple screen where you can grant a group the necessary
rights to edit pages.

As shown in the following screenshot, go to Dashboard |Sitewide Settings |Access and
enable the checkbox for Editors to grant them the edit right:

Managing edit access on a page by page �����basis
By act﻿﻿ivating edit access for all members of Editors, we allowed them to edit every page in
our website. Internally, concrete5 assigns permissions to each page, even with the global
setting that we just enabled.

Permissions

[68]

Due to this detailed execution, we can manage permissions on a more precise level, if
necessary. You can find the actual permissions concrete5 assigned if you navigate to
the sitemap and click on a page in the tree and select Set Permissions as shown in the
following screenshot:

The dialog is split into two different parts; on the bottom, you can see all the groups allowed
to edit the page, and on top there's a list of groups able to view this page.

As we globally activated edit access to the group Editors, the checkbox for this Editors
group is ticked for every page by default. However, if you want to revoke the edit right
for one page, go ahead and uncheck the checkbox in this dialog, as shown in the
following screenshot:

Chapter 3

[69]

Creating a protected ��������������� website�������� section
You may have some secret information that you would like to put on the website that only
certain members should see. This can be handled with a password protected section.

Time for action – creating a protected website
Carry out the following steps:

1.	 Navigate to Dashboard | Sitemap and create a new page named VIP.

2.	 Click on the new page and select Set Permissions.

3.	 Uncheck the checkbox next to Guest in Who can view this page.

4.	 Tick the checkbox next to Members in Who can view this page.

5.	 Click on Save.

What just happened?
We removed the right for guests to access our VIP page but allowed members to access it.
When you log out, you won't see the VIP page anymore:

Permissions

[70]

You can send users belonging to the members group to the same login page you're using
when you want to edit your website: http://localhost/login/. Use the member
account you've created earlier to log in and a new page will be visible:

That's everything you need to do if you want to protect a page. Every block you place in such
a page won't be accessible to users who aren't logged in. A secret guestbook or a personal
poem—you decide who gets access to it!

Task �����permissions
While it should probably suffice to grant file and sitemap permissions in most situations, you
might get a big project where you want to split up the task with an even higher granularity.
There's another screen in concrete5 where you can manage a few more task permissions.

Time for action – setting task permissions
1.	 Go to the Dashboard and select Sitewide Settings in the left navigation.

2.	 Activate the Access tab.

3.	 Click on Click here to modify other permissions in the Other Permissions box.

Chapter 3

[71]

4.	 Manually added groups aren't listed by default; they have to be added first. Click on
Add Group or User and select your group in the dialog.

5.	 We only activate Change Content on Page Type Default Pages and Perform Full
Database Backups. Backups almost never hurt and updating default blocks for a
page type can be quite powerful for an editor, but also a bit dangerous. If your
editors aren't people who work carefully, you might want to skip that option.

What just happened?
We assigned two task permissions to our group Editors to give them a bit more power over
your concrete5 site. If you think you'll need more groups, different task permissions, go
ahead; nothing in the next chapter depends on them.

Dashboard access
The permissions we've set should work for most situations, but as always, there might be an
exception where an editor would like to see the hierarchical page tree in the dashboard to
get a better overview of the website.

It would be nice if we could allow editors to access the dashboard, but only certain parts of
it. We don't want them to delete our users or change the sitewide settings. It takes a few
clicks, but we can allow our users to access only a few items in the dashboard.

Time for action – granting partial dashboard access
1.	 Go to the Dashboard and click on Sitemap.

2.	 In the Sitemap, tick the checkbox Show System Pages to display the Dashboard
pages in the Sitemap.

3.	 Select the Dashboard page and click on Set Permissions.

Permissions

[72]

4.	 Tick the checkbox for Editors in the upper part, Who can view this page?

5.	 Click on Save.

concrete5 has inherited new permissions for all sub pages of the dashboard page.
This means that we are granted access to every item in the dashboard, which is
exactly what we didn't want to do. While the inheritance is usually quite handy if
you want to change the permissions, in this case it leads to a few more clicks. We
have to revoke the rights from all the dashboard sub pages that we don't want the
editors to have access to.

6.	 Expand the dashboard page by clicking on the small plus icon in front of the
page name.

7.	 Expand the Sitemap as well.

8.	 Click on the subpage Access and click on Set Permissions.

9.	 Uncheck the checkbox for Editors in the Who can view this page section.

10.	Do the same for these pages underneath Dashboard:

File Manager | Attributes

File Manager | Access

Reports | Logs

Users and Groups

Scrapbook

Pages and Themes

Add Functionality

System Maintenance

Sitewide Settings

What just happened?
As long as you didn't get a tennis elbow from all those clicks, you should now have a
dashboard which is partially accessible by your editors. When you log in to concrete5
with your editor account, you'll only see a part of the dashboard, as shown in the
following screenshot:



















Chapter 3

[73]

You are, of course, free to modify the list of pages we revoked from the group; the scrapbook
for example, could be quite handy for a power editor.

Advanced permission mode
The permissions you've seen in the previous section should be enough for a lot of websites.
However, sometimes you want to restrict the access even more. What if you wanted to
achieve the following things?

Restrict the blocks that a user can use

Make a page visible only during a certain time period

Get area and block specific control over your content

You haven't seen any of it, but everything is possible; you just have to activate the advanced
permission mode.

Time for action – activating the advanced permission mode
Carry out the following steps:

1.	 Open your configuration file config/site.php in your text editor.

2.	 Insert this line define('PERMISSIONS_MODEL', 'advanced'); within the PHP
tags. The file should look like the following:

<?php
 define('DB_SERVER', 'localhost');
 define('DB_USERNAME', 'concrete5');
 define('DB_PASSWORD', 'concrete5');







Permissions

[74]

 define('DB_DATABASE', 'concrete5');
 define('BASE_URL', 'http://localhost');
 define('DIR_REL', '');
 define('PASSWORD_SALT', 'R3nAjizpVw3AbleCFCuQIzNACYvnxoq');

 define('PERMISSIONS_MODEL', 'advanced');
?>

What just happened?
The constant PERMISSIONS_MODEL is set to advanced, which has a direct impact to several
places in the user interface. We're going to look at the changes this constant had in the next
few steps.

One quick preview: When you open the permissions dialog for a page, you'll see a
completely different dialog with a lot more options. You can control each action which
can be executed on a page for every group you've created:

Chapter 3

[75]

In the preceding screen, you can specify the source of the permissions. You can also select
Manually in the Set drop-down, if you want to override the permissions for a certain page
only. You can switch between different modes by changing the value in Currently Viewing:

Page Permissions: If you choose Manually for this section, you're able to specify
every action a certain group is allowed to execute. You can specify who's allowed to
update a page, approve a page modification, and so on.

Sub-Page Permissions: Specify the page types a user can add. See section Sub page
permissions, later in this chapter.

Timed Released Settings: Restrict the time a page is visible. More details are
provided in Time based page visibility section (the following section).

You can also specify what permissions a new page should get by choosing the option which
suits your needs at the bottom in Sub-pages added beneath this page. There are the
following two options:

Inherit the permissions of this page: Copies the permissions from the current page
to the new subpage.

Inherit page type default permissions: You can specify default permissions
on a page type, if you open the page type defaults using the dashboard:
Dashboard | Pages and Themes | Page Types | Defaults.

Time based page visibility
There are lots of situations where you might want to create a page but keep it hidden for
a while. Some publications should be visible on a certain date only and some offers should
only be visible for a specific time.

You can do all of this with a few clicks, but only if you've activated the advanced
permission mode.

Time for action – setting time based page visibility
Carry out the following steps:

1.	 Make sure that you've activated the advanced permission mode.

2.	 Go to the Sitemap and click on the page that you want to appear during a specified
period only.

3.	 Click on Set Permissions once again.











D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Permissions

[76]

4.	 Change Currently Viewing to Timed Release Settings and you should see the
following screen:

5.	 Select Manually in the top left drop-down Set; the controls should be enabled now.

6.	 Enable the two checkboxes in the row of Guest and specify the period between the
page is supposed to be accessible.

7.	 Click on Save.

What just happened?
By enabling the advanced permission mode, you've gotten the possibility to add timed
release settings to your pages. We restricted the guest access for a page. This could be
used if you wanted to give paying members early access to your content.

It also helps you if you need several days to prepare a page. Create the page, add some
content, send a link to management and once you've got the confirmation, go ahead, and
remove the timed setting.

Subpage permissions
concrete5 also allows you to restrict the page types a user is allowed to add as a subpage.

Chapter 3

[77]

Time for action – setting sub-page permissions
Carry out the following steps:

1.	 In the same dialog (refer the preceding screenshot), change Currently Viewing to
Sub-Page Permissions to get a list with groups and page types, as shown in the
following screenshot:

2.	 Switch the value in the drop-down at Set to Manually.

3.	 Select the page types you want your Editors to be able to add as subpages.

4.	 Click on Save to apply the new settings.

What just happened?
If you have a person who's only responsible for managing press releases, they only need one
page type. By using the advanced permission mode, you can make sure that they don't see
and care about the other pages types.

This is useful if your website gets bigger and has lots of page types. However, keep in
mind that it might help your end users, but also increases the effort necessary to manage
the website.

Permissions

[78]

Block based permissions
While the advanced permissions give you a lot of power over page permissions, you also
get more control over areas and blocks. You can now set permissions on block level for an
extremely detailed management of permissions.

However, be careful when you use this feature. You might want to think about it twice, as it
gets quite complicated to manage permissions on such a detailed level. Forget where you
specified block permissions and you'll end up fixing and digging around your website
very quickly.

We are going to use it anyways. In this case, we're adding a simple content block to inform
our members about the new protected website section we created earlier.

Time for action – using block permissions
Carry out the following steps:

1.	 Make sure that you've enabled the advanced permission mode.

2.	 Navigate to the home page and start editing the page by clicking on Edit Page.

3.	 Add a new content block to the sidebar where you'd like to inform your members
about the new section, as shown in the following screenshot:

Chapter 3

[79]

4.	 Due to our deliberate understatement, we'd like to make sure that guests cannot
see the new content block. Click on the block again and click on Set Permissions, as
shown in the following screenshot:

5.	 In the dialog showing up, simply uncheck the checkbox for Guests and click on
Update, as shown in the following screenshot:

Permissions

[80]

What just happened?
We revoked the right for guests to see a single content block. This works with any block in
concrete5, not just content blocks.

But again, think about this. Using such a high level of permissions is probably more difficult
to manage than you think.

Area based permissions
The advanced permission mode also adds permissions to areas where you can specify the
blocks allowed to be used in an area. If your website has grown over the time, you might
have installed lots of blocks which can be confusing to new users. While power users might
need all blocks, the person who manages the news is probably happy with very few blocks.

Let's make sure that our editors only have access to the blocks they really need.

Time for action – restricting allowed blocks for an area
Carry out the following steps:

1.	 Make sure that the advanced permission mode has been activated.

2.	 Navigate to your home page and enter the edit mode.

3.	 Click on Add to Sidebar and select Set Permissions, as shown in the
following screenshot:

4.	 In the dialog, you'll see your default groups and every block including the actions
read, write, and delete, as shown in the following screenshot:

Chapter 3

[81]

5.	 By default, the editor group is allowed to add every block. Simply remove those you
don't want your editors to use and confirm the changes by clicking on Update.

What just happened?
By using the area permissions, we've hidden some blocks from our editors. This can make
the editing of concrete5 even easier.

If you're building a site for an inexperienced computer user, use this feature to hide some of
the complexity and even a computer newbie is going to like working with you and concrete5.

Pop quiz – permissions in concrete5
1.	 Which features are only available when you activate the advanced permission mode?

Area permissions to restrict the blocks which can be added to an area

Grant rights to the file manager

Block permissions to specify who can read, write, and delete a specific block

Page permissions to hide a certain page from a user group

Time based page visibility to hide a page for a specified time











Permissions

[82]

2.	 How do you have to activate the advanced permission mode?

Checkbox in the Dashboard in the section Sitewide Settings

Configuration line in config/site.php

Configuration line in config.php

Summary
In this chapter you've learnt how to configure your concrete5 website.

We looked at permissions and created users without administration rights to edit
the website.

We've used this as well to create a VIP section on the website which is only visible to
members of your website.

We've activated the advanced permission mode to get access to a few more features
allowing you to control almost every aspect of your site in terms of permissions.

We then looked at permissions and created users without administration rights to
edit the website. We've used this as a base to create a VIP section in your website,
which is only visible to members of your website. In case your site has lots of
different users—we've activated the advanced permission mode to get access to a
few more features allowing you to control almost every aspect of your site in terms
of permissions.















4
Add-ons

concrete5 ships with a bunch of add-ons to build a basic site without adding
any additional components. However, the deeper you get into concrete5 the
more you'll realize that you want more features.

Thankfully, there's a marketplace with some free and some commercial add-ons
to extend concrete5 without having any development skills.

We are going to look at the different add-ons to learn about their structure to
get a first impression of how an add-on looks under the hood. Even if you don't
intend to build your own blocks or packages, this helps you to understand the
basics of concrete5 and makes it easier to help and support your customers.

What's an add-on?
A concrete5 add-on is basically a directory with a bunch of files. Everything you need is
located within a single directory. For most add-ons, you don't have to manually execute
any tasks, which you'll later see when we install an add-on.

There are different kinds of add-ons; we'll quickly look at all of them, but let's install an
add-on first.

Installing add-ons from the marketplace
If everything works fine, you can use the dashboard to install new add-ons without ever
leaving your site.

Add-ons

[84]

Time for action – installing an add-on
Carry out the following steps to install an add-on:

1.	 Go to your dashboard and click on Add Functionality.

2.	 Before you can access the marketplace, you have to connect to the concrete5.org
community. Click on Connect to Community. You're redirected to a screen where
you can enter the details about your site.

3.	 Enter the information about your site. No one is going to see this information; it's
only supposed to make it easier for you to manage your sites. You also have to
create a concrete5.org community account if you haven't done it already.

This has nothing to do with the accounts you've already created within
your site. This is an account for concrete5.org. You can use one account
to connect all your sites to the marketplace; you can also use it to
access the support forums on concrete5.org. If you haven't created an
account before, click on Create a new account on concrete5.org and
enter all the requested data, as shown in the following screenshot.

Chapter 4

[85]

4.	 Af﻿﻿﻿﻿ter your site has been connected with the marketplace, you get back to the
screen which shows the installed add-ons. Click on More Add-Ons to browse the
marketplace add-ons, as shown in the following screenshot:

5.	 Look for an add-on you like and click on Install.

Time for action – removing an add-on
Carry out the following steps if you want to remove an add-on:

1.	 You don't like the add-on you just installed? Go to Add Functionality again and
locate the previously installed add-on. Click on the Edit button next to the add-on.

2.	 At the bottom, you can find a button Uninstall Package. Click on it and the add-on
is no longer listed under the installed add-ons; it's now listed on the right where all
installable add-ons can be found.

Add-ons

[86]

What just happened?
By connecting your site to the concrete5.org marketplace, you gained direct access to all
add-ons uploaded to the marketplace. We've installed an add-on and also removed it. The
process to install a theme works the same way; click on Add Functionality but this time
locate More Themes and pick a layout.

Manually installing an add-on
The automatic installation process depends on a few PHP modules, such as cURL which if
missing will make it impossible to install an add-on using the preceding procedure. If you
aren't sure whether cURL is enabled on your server, go to Chapter 11, Deployment and
Configuration and look at the Time for action – get PHP information section. Once you've
created the file described in that section, you can see some information about cURL if it's
installed. In the case that it isn't, contact your host and ask if they can install it.

Time for action – manually installing an add-on
Carry out the following steps to install an add-on manually:

1.	 Go to http://www.concrete5.org and click on Marketplace at the top.

2.	 Find the add-on that you want to install.

3.	 Click on the Download button at the bottom.

4.	 On the next screen, click on Download Now.

5.	 Extract the downloaded ZIP file into the packages folder of your concrete5 site. If
you're working with a default XAMPP setup, the folder is c:\xampplite\htdocs\
packages.

6.	 Go back to your site's dashboard.

7.	 Click on Add Functionality.

8.	 In the right column underneath Downloaded and Ready to Install should be the
add-on you've downloaded. Click on Install and it will be ready to use.

What just happened?
By manually downloading and extracting the add-on, you've avoided the need for a few PHP
modules which aren't installed on every host.

Chapter 4

[87]

Every add-on from the marketplace is wrapped into a package, no matter whether it's a
theme, block, or just a template. This means you don't have to worry about the add-on type;
just install themes as a package and you'll be fine! Don't worry too much about the different
add-on types at the moment, as we're going to talk about them later in this chapter.

It's also less likely that you'll run into file system permission problems because you're
moving the files on your own. There are a few hints about moving your site to a Linux
server in Chapter 11, Deployment and Configuration where we also quickly look at the file
permissions. The user account the web server uses has usually only very few rights to reduce
the potential security risk. However, this can also make it more difficult for web applications
to execute certain commands on the server, such as downloading and extracting files.

Theme
A theme is responsible for the look of your website. By default, there are three themes you
can choose. You can see them when you navigate to Dashboard | Pages and Themes, as
shown in the following screenshot:

A theme isn't restricted to a certain layout structure like a portal. concrete5 themes can be
built using any HTML and CSS code you want. You can even create your JavaScript files on
the fly. You therefore find lots of different layouts and whatever you'd like to build; there are
pretty much no limits.

Add-ons

[88]

You can activate a theme by clicking on Activate. Confirm the activation on the next screen
and your website changes its layout immediately. If you're working on an active site, you
might want to hit Preview first to see how your page is going to look with the new theme.

Parts of a theme
We're going to create a theme in the next chapter, but before we start creating our own
layout, let's look at the way pages and their page types are organized in concrete5.

When you click on Inspect, you'll see a dialog like the following screenshot where some
elements of the theme will be displayed:

Each theme contains at least one template, the default.php file which will be used for a
page type without a template. The following illustration shows you the difference between a
page type and a template:

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 4

[89]

Each page has one page type. If there's a file in the theme with the same name as the page
type, it will be used and therefore has its own layout. For every page type without a matching
file in the theme, default.php will be used. This means that several page types can share
one layout. In the preceding illustration, News and Product both have the same layout.

Theme file structure
Not every theme contains the same files but there are some files which you'll find in most of
the themes. We're going to create a complete theme in the next chapter but just to give you
a first impression about the basic structure��� of a theme without going into all the details������� . This
can be helpful to understand concrete5 a little bit better, even if you don't intend to create
your own theme.

Most themes contain more or less the same files; the preceding screenshot shows you the
most common files. Here are same files along with a short explanation:

Elements: This directory usually contains two files, which are header.php and
footer.php. They are used to make sure you don't have to add a header and
footer to every template you create. They are optional though.

Images: Most themes use a few pictures; put them in this directory.

Default.php: This is the default file used by concrete5 to render your page.

Description.txt: This file is used when you install a theme, and it contains the
name and a short description.

Full.php: This is like default.php a template, but only used by pages of the
type full.

Left_sidebar.php: Another template for the page type left sidebar.













Add-ons

[90]

Main.css: The CSS file in concrete5 themes is usually called main.css. You aren't
forced to call your CSS file main.css though.

Thumbnail.png: Only displayed in the dashboard to make it easier to identify
your theme.

Typography.css: A second CSS file used by the page but also by the content block
for a proper preview of your text.

View.php: A special template used for single pages which you have to create
programmatically.

Blocks
We've already seen a few blocks in the previous chapters. In case you forgot: A block is
basically an element you can place in an area. Thanks to the really extensible architecture of
concrete5, it's quite easy to create a new block and add new functionality to your website.

Blocks are just like anything in concrete5 built using the Model-View-Controller (MVC)
pattern. This makes sure that every element in concrete5 follows the same structure. A
developer who builds extensions for concrete5 should have experience with object oriented
programming and the MVC pat﻿tern.

Understanding the MVC pattern isn't very difficult but helps pretty much any developer. It
basically makes sure that the layout (view) is in a file, split apart from the logic (controller)
and the data (model). You can find more information about the pattern on Wikipedia:
http://en.wikipedia.org/wiki/Model_View_Controller.

Block structure
What files does a block need?

This goes a bit deeper but might still be handy for a non-developer to know. Just knowing
where the files are located can help you to make some minor modifications to a block.









Chapter 4

[91]

The preceding screenshot shows you the files a basic block has, and these are their purposes:

Templates: A block can have different layouts. A picture gallery might use a pop-up
to display the picture or some JavaScript for a more dynamic design. Templates is
where you'd find these block layouts.

Tools: Some blocks use AJAX in their interface. Such AJAX scripts are usually
located in this directory.

Add.php: This is the file used for the block dialog when you add a new instance
of a block.

Auto.js:��������� An automatically added JavaScript file when editing your block.

Controller.php: This is where all the magic happens—processing your data,
converting your input, saving it to the database, and so on.

Db.xml: Most blocks have their own tables; you can find the table definition in
this file.

Edit.php: When you edit an existing block, this is the file used for the interface.

Form_setup_html.php: As most blocks work almost the same way, whether you
add or edit them, they share parts of their interfaces by moving them into this file.

Icon.png: A little icon 16x16 pixels used in the block list when choosing a block
to add.

View.php: This file renders the block output.

Packages
A package is basically a container for all elements. You can use it to wrap a theme, resources,
and blocks into a single package. This is mostly useful if you intend to build a big extension
where all the elements are connected together.

By using a package, you make add-ons easier to handle and install. You can also make the
installation process a bit more solid by extending the package's installer method to check
the requirements.





















Add-ons

[92]

You can easily recognize a package by looking at its structure, which is shown in the
following screenshot:

There are several indications telling you that you're looking at a package and not just a block
or theme:

There's a subdirectory called blocks or theme or any of the directories you can find
in the root of your site.

The controller is the only PHP file you can find in the root. A block would at least
need edit.php and add.php.

Every add-on in the marketplace is built as a package to make the
handling as easy as possible, even if there's just a single block in it.

Pop quiz – what's a package?
concrete5 allows you to use packages. What's their purpose?

Wrap different elements like themes and blocks into a single element for easy
handling and deployment.

Prepare�� your concrete5 site for deployment to another server.

Creating an �� installer��� for your extension where you can check the requirements and
create concrete5 objects your extension needs to work.

Preparing a concrete5 extension to be published in the official concrete5
marketplace.













Chapter 4

[93]

Summary
While there's a lot more you can extend in concrete5 by using a package, blocks and themes
are the ones you'll most likely need on a daily basis when you work with concrete5. A
package could contain controllers, single pages, events, and a lot more to extend almost
anything you want without touching the core. You haven't reached the end after you've gone
through themes and blocks!

We've had a quick look at the marketplace; you should know how to install add-ons
automatically and also manually.

You should have a basic understanding about the structure of themes, blocks, and packages.
We're going to cover all of them in the next few chapters, but make sure you know what an
add-on directory looks like. Following the same pattern as every concrete5 developer keeps
the process simple and clean for everybody.

5
Creating Your Own Theme

In this chapter, we're going to change the layout of the site we've created. To
achieve this, we will convert an HTML file into a concrete5 theme. This means
that we have to replace and insert a few lines of PHP code to make things a bit
more dynamic. However, you'll see that the basic conversion process is rather
easy and quick, creating a concrete5 theme does only require very little HTML
skills and almost no time.

Some code snippets are just modifications to other snippets in this chapter. If
you want to re-create the theme code on your own, you have to follow each
step and follow the instructions precisely. If you're in a hurry, at the end of the
chapter you'll find a link where you can download the finished theme.

The new layout
Before we start creating a concrete5 theme we need a layout. In this book, we're going to
use a simple layout without any pictures to keep the code as short as possible—it's about
concrete5 not about HTML and CSS.

If you don't have the time for an exercise, you can use your own layout. With good
knowledge of the basic technologies underneath concrete5, you should be able to amend
the instructions in this chapter to match your own layout. If you don't feel very comfortable
working with PHP you should probably use the printed HTML code in this chapter.

Creating Your Own Theme

[96]

First, a screenshot—this is what the site is going to look like once we've finished our theme:

While this layout isn't very pretty, it has an easy structure: Navigation on top and a big
content where we can insert any kind of block we want. If you're using your own layout, try
to use one with a simple structure, navigation on top or on the left with one big place for the
content, and try to avoid Flash. It is possible to use Flash and even a dynamic Flash menu can
be created with some programming knowledge but that's beyond the scope of this book.

The HTML code
Let's have a look at the HTML code:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>

<title>Concrete5 Theme</title>
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
<style type="text/css" media="screen">@import "main.css";</style>

</head>
<body>

<div id="wrapper">
 <div id="page">

Chapter 5

[97]

<div id="header_line_top"></div>
<div id="header">

<ul class="nav-dropdown">
Home
Test
About

</div>
<div id="header_line_bottom"></div>
<div id="content">

<p>
Paragraph 1
</p>

<p>
Paragraph 2
</p>

<p>
Paragraph 3
</p>
</div>
<div id=»footer_line_top»></div>
<div id=»footer»></div>
<div id=»footer_line_bottom»></div>
</div>
</div>

</body>
</html>

There are three highlighted lines in the preceding code:

The CSS import—to keep the layout instructions separated from the HTML elements,
we've got all the CSS rules in a different file named main.css. This is also how
almost all concrete5 themes are built.

The header block contains the navigation. As we're going to apply some styles to it,
make sure it has its own ID. Using an ID also improves the performance when using
CSS and JavaScript to access an element, as an ID is unique.

The same applies to the content block. Make sure it has a unique ID.







Creating Your Own Theme

[98]

Most web technologies we use nowadays are standardized in one way or another. Currently, the
most important organization is W3C. They also offer tools to validate your code.

Checking your code is never a bad idea. Navigate to http://validator.
w3.org/ and enter the address of the website you want to check or in this
case. As your website isn't accessible by the public, click on Validate by Direct
Input and paste the HTML code to see if there are any mistakes. While it should
be fairly easy to produce valid HTML code, things are a bit tricky with CSS. Due
to some old browser bugs, you're often forced to use invalid CSS rules. There's
often a way to rebuild the layout to avoid some invalid rules but sometimes this
isn't the case; you won't be doomed if something isn't 100% valid but you're on
the safer side if it is.

CSS rules
As mentioned earlier, all CSS rules are placed in a file named main.css. Let's have a look at
all CSS rules you have to put in our CSS file:

/* global HTML tag rules */
html, body, div, pre, form, fieldset, input, h1, h2, h3, h4, h5, h6,
p, textarea, ul, ol, li, dl, dt, dd, blockquote, th, td {
margin: 0;
padding: 0;
}
p {
margin: 5px 0px 15px 0px;
}
html {
height: 100%;
}
body {
background-color: #989898;
height: 100%;
}

/* layout rules */
#wrapper {
margin: 0 auto;
width: 980px;
text-align: left;
padding-top: 35px;
}

#page {
background: #FFFFFF;

Chapter 5

[99]

float: left;
width: 960px;
padding: 5px;
-moz-box-shadow: 0 0 15pxblack;
-webkit-box-shadow: 0 0 15pxblack;
box-shadow: 0 0 15pxblack;
border-radius: 10px;
}
/* header */
#header {
background: #262626;
border-radius: 10px 10px 0px 0px;
height: 75px;
}
#header_line_top {
background: #262626;
height: 0px;
}
#header_line_bottom {
background: #e64116;
height: 3px;
}
/* content */
#content {
min-height: 300px;
padding: 30px;
color: #1E1E1E;

font-family: verdana, helvetica, arial;
font-size: 13px;
line-height: 22px;
}
/* footer */
#footer {
background: #262626;
height: 75px;
border-radius: 0px 0px 10px 10px;
}
#footer_line_top {
background: #e64116;
height: 3px;
}
#footer_line_bottom {
background: #262626;

Creating Your Own Theme

[100]

height: 0px;
}
/* header navigation */
#header ul{
margin: 0px;
padding: 20px;
}
#header ulli {
float: left;
list-style-type: none;
}
#header ulli a {
margin-right: 20px;
display: block;
padding: 6px 15px 6px 15px;
color: #ccc;
text-decoration: none;
font-family: verdana, helvetica, arial;
}
#header ulli a:hover {
color: white;
}

As already mentioned, there are situations where the CSS file won't validate. The preceding
code is such an example, but not due to bugs in old browsers, but rather due to new features
not officially available in all browsers. Browser vendors often implement features before
they're standardized. They often start with a prefix like –webkit or -moz. At this point it's
a decision you have to make: either use the new features and make the CSS file invalid,
or don't.

In this case, it doesn't really hurt to use some of the new CSS3 features. Just make sure you
don't depend on them; the layout we're using looks a bit different when you look at it using a
browser like Internet Explorer 6.0, you won't see any shadows but the layout still works.

Converting HTML and CSS to a concrete5 theme
We've got our HTML and CSS files, so now we want them to be part of a new concrete5
theme with two editable areas, one for the content and one for the header. We ignore the
footer for now.

Chapter 5

[101]

Time for action – creating the concrete5 theme header
Carry out the following steps:

1.	 In the themes directory, create a new directory named c5book, but any other
name is fine as long as you're using letters and underscores and avoid the special
characters available on your keyboard.

2.	 Create a thumbnail 120 x 90 pixels of your site and save it as thumbnail.png
within your theme directory.

3.	 Create a file named description.txt in the new directory by using a text editor,
such as Notepad.

4.	 Open the file and enter the name of the theme in the first line and the description
on the second line. Its content should look like the following:

c5book Theme
Concrete5 Theme by Remo Laubacher

5.	 Save and close the file. You should have a structure like the one shown in the
following screenshot:

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Creating Your Own Theme

[102]

6.	 As we're going to create several page layouts sharing the same header and footer,
let's create a directory named elements for these common files.

7.	 Within elements, create a file named header.php and insert all the preceding
HTML code, including the DIV element with the ID header_line_bottom.

	 <?php defined('C5_EXECUTE') or die(_("Access Denied.")); ?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en"
lang="en">
<head>

<title>Concrete5 Theme</title>
<meta http-equiv="Content-Type" content="text/html;charset=utf-8"
/>

<link rel="stylesheet" media="screen" type="text/css" href="<?php
echo $this->getStyleSheet('main.css')?>" />

<link rel="stylesheet" media="screen" type="text/css" href="<?php
echo $this->getStyleSheet('typography.css')?>" />

<?php Loader::element('header_required'); ?>

</head>
<body>

<div id="wrapper">
 <div id="page">
<div id="header_line_top"></div>
<div id="header">

 <?php

 $a = new Area('Header Nav');

 $a->display($c);

 ?>

</div>
<div id="header_line_bottom"></div>

What just happened?
There are a few highlighted lines in the preceding code, which we modified in order to use
our HTML code in concrete5:

The first line makes sure you can't directly call our file to ensure that everything is
running in the concrete5 context.



Chapter 5

[103]

The next two highlighted lines include our CSS files the proper concrete5 way. You
can avoid the PHP function if you want but you'll get access to a nice concrete5
feature if you use $this->getStyleSheet, thanks to which you can easily change
properties of your CSS file in a nice interface without touching a single line of code.
There's more about it in this chapter in the Customizable themes section.

Loader::element makes sure the concrete5 in-site editing toolbar is included.
This is necessary to display the in-site editing toolbar, once you're logged in to
your site.

The last few highlighted lines define the place where blocks can be placed, an area.
The string Header Nav is what the user is going to see while editing the page.

We've split a part of our HTML code into a new file named header.php. While this isn't
mandatory, most themes follow this procedure and you probably should too, as long as you
don't have any good reason not to.

Even if you just have one page layout, you never know what happens next and keeping your
files clean and short makes it easier to read as well.

Let's create the next element, the footer!

Time for action – creating the concrete5 theme footer
Carry out the following steps:

1.	 In the elements directory, create a new file named footer.php.

2.	 From the original HTML file, copy everything starting at footer_line_top to the
end of the file and insert it into the new file:

	 <?php defined('C5_EXECUTE') or die(_("Access Denied.")); ?>

<div id="footer_line_top"></div>
<div id="footer"></div>
<div id="footer_line_bottom"></div>
</div>
</div>

	 <?php Loader::element('footer_required'); ?>

</body>
</html>

3.	 There are only two lines we have to insert. The first one is again, just a protection
to disallow direct calls to our file. The second one is a placeholder for a snippet you
can specify in the concrete5 dashboard. This is often used for a JavaScript statistics
tracking code.







Creating Your Own Theme

[104]

4.	 Save and close the file; there's nothing else to do in this file, as we're not having any
dynamic content in this file.

What just happened?
We created another shared element which holds the code for our footer. There's not much
code in it as we're trying to keep things simple and therefore, not putting any content in
the footer.

In case you create some theme templates, you can use this footer for all of them, which
makes sure that if you want a login link at the bottom you can do it once and it will appear
on all page types and therefore all pages as well.

Time for action – creating a page template
Carry out the following steps:

1.	 Go back to the directory where you've created description.txt and create
another file named default.php.

2.	 Insert the content DIV along with some PHP code:

<?php
defined('C5_EXECUTE') or die(_("Access Denied."));
$this->inc('elements/header.php');
?>

<div id="content">
<?php
$b = new Area('Main');
$b->display($c);
?>
</div>

<?php $this->inc('elements/footer.php'); ?>

What just happened?
Just like we did in the header, there's a line at the top to avoid direct calls and a few more
lines of code to insert another editable area named Main. As you can see, the creation of
the last file was also quite easy. There isn't a lot left from the original HTML code. However,
having a small default.php file is also quite helpful, as we have to extend this file in case
we need more page templates.

Chapter 5

[105]

Time for action – creating more page templates
Carry out the following steps:

1.	 concrete5 themes usually ship with a few default templates, one of them usually
named left_sidebar. Let's create it by copying default.php in a new file
named left_sidebar.php.

2.	 We're going to add two sub DIV elements to hold our left and main column:

<?php
defined('C5_EXECUTE') or die(_("Access Denied."));
$this->inc('elements/header.php');
?>

<div id="content">
	 <div id="left-sidebar">

	 <?php

	 $as = new Area('Sidebar');

	 $as->display($c);

	 ?>

	 </div>

	
	 <div id="main">

	 <?php

	 $b = new Area('Main');

	 $b->display($c);

	 ?>

	 </div>

	
	 <div class="clear"></div>

</div>

<?php $this->inc('elements/footer.php'); ?>

3.	 As we've added new HTML elements, we also have to insert a few more CSS rules in
main.css, as follows:

#left-sidebar {
float: left;
width: 250px;
margin-right: 30px;
}
#main {
float: left;

Creating Your Own Theme

[106]

width: 600px;
}
.clear {
clear: both;
}

4.	 Let's create another file named right_sidebar.php. Call the sidebar container
right-sidebar and switch the two DIV elements. Some more CSS rules are
necessary as well:

#right-sidebar {
float: left;
width: 250px;
margin-left: 30px;
}

What just happened?
We've created two more page templates for our site. If you edit a page, you can click on
Design and select the left- and right-sidebar template to change the location of the sidebar.

While you probably remember the layouts you can create within each area by splitting an
area into columns, it might have some advantages to create pages types as it is easier for the
user to specify the layout when creating a new page. However, you're of course free to avoid
additional templates by splitting an area into several columns. Up to whatever you like!

Pop quiz – what are page templates and page types?
What are page templates and page types used for?

A page template is a physical file in your theme where you build your HTML
structure����������������������������������� to implement your site's layout(s)

A page type always has its own page template

A page type can have its own page templates but doesn't need to have one

Unlike page templates, pages types can be used in the concrete5 interface as a
logical element to filter and search for pages

Installing����������� your theme
Once you've created all the files, you probably want to see how it looks on your site. As
we've placed the files at the right place, we don't have to use Add Functionality in the
dashboard, which is only necessary with blocks, packages, and themes wrapped in packages.









Chapter 5

[107]

Time for action – installing theme
Carry out the following steps:

1.	 Go to the dashboard and click on Pages and Themes.

2.	 Your new theme should appear at the end of the installed themes; click on Install, as
shown in the following screenshot:

3.	 In the next screen, you'll see all the page templates you've created. Click on Return
to Themes to get back to the previous screen.

4.	 You just installed your theme, but it isn't activated yet. Click on Preview if you want
to look at it before activating it or just click on Activate to use it right away.

What just happened?
We've installed our new theme which has been converted from a static HTML page. A theme
is nothing else but a bunch of files in a single directory, but it won't be available in concrete5
unless you follow the preceding steps.

PHP constants and ���������functions
The following subchapter isn't one you have to go through step by step; it's rather a
collection of small features that you can use to improve your concrete5 theme or block. The
code snippets won't have any purpose in the upcoming chapters; you can implement them if
you like, but you don't have to.

By default, concrete5 sets a bunch of constants that you can use when you create a theme
but also a block or any other type of add-on. Most of them aren't really useful, they are
needed by concrete5 within the core, but some are necessary and the rest give you an
impression about a few internal aspects of concrete5. There are also lots of functions,
some of them quite handy when you work within a theme template.

Creating Your Own Theme

[108]

While the basic template we've created works well for most situations, there are several
things you can do within a template and not only in the user interface. The code lines
aren't real life examples; they just give you a hint about things you can do once you run
into a problem.

Again, instead of publishing a complete list of constants you might need, we're going to look
at a simple way to get a list which will always show you all constants, no matter what version
of concrete5 you're using.

Time for action – getting a list of available constants
Carry out the following steps to get a list of available constants:

1.	 Open default.php from your theme in a text editor.

2.	 Look for the following PHP block:

<?php
$b = new Area('Main');
$b->display($c);
?>

3.	 Before the closing PHP tags ?>, insert a few more lines so it looks like the following:

<?php
$b = new Area('Main');
$b->display($c);

	 echo '<xmp>';

	 print_r(get_defined_constants(true));

	 echo '</xmp>';

?>

4.	 Open a page of a type without a page template. Remember, we've created a
template for the left- and right-sidebars. Pick full width for example, otherwise
the inserted code won't be executed.

5.	 The output will contain a huge list of constants categorized by modules. At the end
there's a category named user; these are the constants which are not coming from
PHP itself but rather from concrete5. Look at them and you'll find a lot of constants
related to directories and URLs. They might be useful one day.

Chapter 5

[109]

What just happened?
Even if you've built software for a long time you'll still find methods, properties, and a lot
more you haven't used before. You can try to remember all of them, but you'll probably have
a hard time doing so. The preceding code can help you to get some information about the
constants used in a PHP project.

Time for action – list all available functions
As with most classes, you often have to call a method to get a value and not directly access
a property as the method might do some additional checks you'd lose if you accessed the
property directly.

1.	 To get a list of all available methods without looking into the code, just add
the following code where you'd like to get more information. Let's put it in
default.php again like we did with the constants:

<?php
$b = new Area('Main');
$b->display($c);

	 echo '<xmp>';

	 $reflection = new ReflectionClass($this);

	 print_r($reflection->getMethods());

	 echo '</xmp>';

?>

2.	 This will print a long list where you can find all the available methods next to the
property named name:

Array
(
 [0] =>ReflectionMethod Object
 (
 [name] =>getInstance
 [class] => View
)

 [1] =>ReflectionMethod Object
 (
 [name] =>getThemeFromPath
 [class] => View
)

Creating Your Own Theme

[110]

What just happened?
The preceding Time for action section prints all available methods in the current context,
helping you to get a first impression about the available methods. The last two Time for
actions sections can be used in other PHP based projects.

You won't get a nice explanation about the constants or methods, but you'll still know if
something is available, helping you to be sure that you're on the right track.

Time for action – checking for edit mode
There are situations where you have to know if the user is currently editing the page. For
example, the in-site editing toolbar sometimes causes problems because it shifts down a few
elements. If your layout has been built using absolutely positioned layers, you probably have
to move down the layers a bit in case the toolbar is visible.

The current page object can be accessed by using the variable $c, which contains a method
that returns true if the page is currently in the edit mode. The following code will output a
short sentence, but only if the page is in the edit mode. You can put the following little bit of
code in default.php again or any other template you like:

<?php
if ($c->isEditMode()) {

echo 'You are editing this page at the moment!';

}

$b = new Area('Main');
$b->display($c);
?>

What just happened?
By calling the isEditMode method on the current page, which you can access by $c, you
can check if the user is currently editing the page. This offers you some flexibility in case a
layout or block causes problems in the edit mode. This simple check makes it easy to change,
hide, or disable certain functions on your site if it's necessary.

Chapter 5

[111]

Time for action – hiding content from anonymous visitors
Carry out the following steps:

1.	 We've already seen how we can hide a page or even a block from a user by using the
concrete5 user interface in combination with the advanced permission mode.

2.	 Let's hide content by using some code. Put the following lines in default.php:

<?php
	 $u = new User();

	 if ($u->isLoggedIn()) {

	 echo 'Secret key to world domination';

	 }

$b = new Area('Main');
$b->display($c);
?>

What just happened?
The preceding two Time for action sections can both be used to change the content by adding
some logic to the template.

While we've put both of them in a theme template, they are not only restricted to this
location. You can use the command new User almost anywhere in concrete5. The method
isEditMode also works at several places, theme templates, page list templates, or autonav
templates.

Time for action – restricting numbers of blocks per area
By default, you can place as many blocks in an area as you want. However, there are
situations where a restriction to a single block might have some advantages.

In an absolute positioned layout, it can happen that the Add To Main link overlaps with
another area or you simply want to make sure that there's just a single image block in the
header area.

1.	 Open the theme template where you'd like to add a restriction to the number of
blocks. default.php does the job again.

Creating Your Own Theme

[112]

2.	 Look for the PHP part where you specify the area and insert the highlighted line
shown here:

<?php
$b = new Area('Main');

	 $b->setBlockLimit(1);

$b->display($c);
?>

What just happened?
By simply adding one more line to our area, we made sure that only one block can be
inserted. This nifty little method makes sure that the interface stays clean and consistent. If
you've made a wrong decision, no worries—the line can be removed without any problems
at any time.

Time for action – inserting block wrapper in area
While you can do a lot with the CSS layout feature in concrete5, it might be the case that you
have to surround your block with some HTML code to style your site the way you want it to
look like. There's a simple way to add some wrapping code around each block in an area,
as follows:

1.	 Once more, open a theme template like default.php and look for the place where
you create the area.

2.	 Replace the PHP block using the following snippet:

<?php
$b = new Area('Main');

	 $b->setBlockWrapperStart('<div class="mainBlock">');

	 $b->setBlockWrapperEnd('</div>');

$b->display($c);
?>

What just happened?
The two lines of PHP code we've inserted in the preceding snippet simply surround each
block in the Main area with a DIV element.

Chapter 5

[113]

When you now create your CSS file, you can access them using .mainBlock. A few lines in
your CSS file like the following will add a line at the bottom of each block:

.mainBlock {
border-top: 1px solid black;
}

Working with page attributes
concrete5 ships with a few default attributes on pages, users, and files. You can easily add
new attributes to these objects to attach different kind of metadata to them. You can use
attributes to create dynamic elements in your theme without creating your own block.

A few things you can do with the default attributes:

Exclude a page from the navigation

Specify metadata for search engines

Exclude a page from the search index

These are just a few things you can do by default, without adding a new attribute. However,
what can we do if we create our own attributes?

Imagine we'd like to have a different background picture on each page. We could create a
block for this, but we can also use an attribute and a little modification to our theme.

Time for action – using attributes to set background picture
Carry out the following steps:

1.	 Go to the dashboard and click on Pages and Themes and then Attributes.

2.	 At the bottom, select Image/File and click on Go.

3.	 In the next screen, enter background for Handle and Background Picture in
Name. The handle is what you'll need to access your attribute from code.

4.	 Click on Add Attribute.

5.	 Go to Page Types.

6.	 Click on Edit next to the first page type.

7.	 In the middle, check the checkbox next to Background Picture. This makes sure the
attribute is displayed by default for each page of this type. You can add attributes to
a page, even if this checkbox isn't checked, but it saves one click.







Creating Your Own Theme

[114]

8.	 Click on Update Page Type.

9.	 Do the same for all page types where you'd like to use this attribute.

10.	Go to the home page and enable the edit mode.

11.	Click on Properties and select the last tab Custom Attributes. This is where you can
find all the attributes on a page.

12.	Use the file selector next to our new attribute to select a new background picture
for the current page.

13.	Click on Save and the selected picture will be assigned to our page.

Chapter 5

[115]

What just happened?
We've created a new image attribute, which we're using to assign a background picture to a
page of our choice.

This procedure works with every attribute, text, number, dates, and a few more. You can use
them in the same way if you want to manage page specific metadata.

It's now possible to assign pictures to a page, but nothing happens with this data at the
moment. We've got to add a few lines of code to display the new background picture.

Time for action – accessing attribute data from a template
Carry out the following steps:

1.	 Open header.php of your theme in your editor.

2.	 Remove the <body> tag; we're going to replace it with some code, which includes
the background picture.

3.	 Insert the following code right where you've removed the <body> tag:

<?php
$backgroundAttribute = $c->getAttribute('background');
if ($backgroundAttribute) {
 $backgroundFile = $backgroundAttribute->getRelativePath();
 echo "<body style=\"background:url('{$backgroundFile}')\">";
}
else {
echo "<body>";
}
?>

4.	 Reload your page and you'll see the new background picture instead of the
color gray.

What just happened?
We removed the static body tag and inserted some PHP code to fetch the attribute
value. This works by using $c->getAttribute. $c is a global variable referring to
the current page.

Creating Your Own Theme

[116]

getAttribute is a method available on all collection objects like pages. This method works
for all attributes but depending on the attribute type, you'll get a different object back. While
a text attribute returns a discrete value, a complex attribute type such as an address or an
image will return an object with several properties. How do you know what to do with the
attribute value? Use the following code to find all the properties; insert it right after <body>
in the template of your theme:

<?php
$attr = $c->getAttribute('background');
echo '<xmp>';
print_r($attr);
echo '</xmp>';
?>

This will print something like the following:

File Object
(
 [error] =>
 [fID] => 11
 [fDateAdded] => 2010-09-03 16:05:20
 [uID] => 1
 [fslID] => 0
 [fOverrideSetPermissions] => 0
 [fPassword] =>
 [fvID] => 1
)

What does this tell you? First and most important, the PHP object has been instantiated from
the class File. You can also see a few properties which might give you a first impression
about the data accessible from the object. However, in this case, it won't reveal a lot though.

You'll need some knowledge of object oriented programming, but once you know that the
attribute class is a File, you can quickly open concrete/models/file.php and have a
look at all the available methods. It might be a bit confusing if you look at this file for the
first time, but if you have the basic knowledge, take the time and you'll soon realize that the
concrete5 framework is easier than you probably think right now.

You won't find our method getRelativePath in the File class, as the call will be
forwarded to a PHP method named __call, which will try to look for the method in the
latest approved file version class which you can find in file_version.php. There you'll
find most methods you'll need when working with files like getRelativePath, getSize,
getAuthorName, and more. Don't worry if you're confused by this, it's not a must to
understand these procedures, but it will definitely help you at some point, especially if
you plan to build your own blocks and packages.

Chapter 5

[117]

Pop quiz – what are attributes?
What are attributes in concrete5?

Attributes are settings you can apply to the HTML code of your concrete5 theme.

Attributes are flexible add-ons you can assign to all objects in concrete5 like pages,
page types, groups, maintenance jobs, and so on.

Attributes can have different types like numbers, checkboxes, and files. You can
create and assign them to users, pages, and files.

concrete5 uses attributes to classify all pages of a site making it easier to keep an
overview of them.

Block in templates
Putting blocks in areas is a rather simple task, but if your users aren't experienced computer
users, it might be even too easy. What if they accidentally delete or modify the autonav, the
navigation block? It would break the site very quickly.

You can enable the advanced permission mode, which allows you to specify permission on
blocks and areas. However, enabling this mode can give you too much power and makes
managing the site more complicated. While this shouldn't be a problem once you're more
familiar with concrete5, there's another way you might want to check out—put block in
your templates!

Time for action – replacing header area with template block
Carry out the following steps:

1.	 Open elements/header.php from your theme in your text editor.

2.	 Look for the following highlighted lines and remove all of them:

<div id="wrapper">
<div id="page">
<div id="header_line_top"></div>
<div id="header">

	 <?php

	 $a = new Area('Header Nav');

	 $a->display($c);

	 ?>

</div>









D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Creating Your Own Theme

[118]

3.	 Next, insert the following PHP code instead:

<?php
$autonav = BlockType::getByHandle('autonav');
$autonav->controller->orderBy = 'display_asc';
$autonav->controller->displayPages = 'top';
$autonav->render('templates/header_menu');
?>

4.	 Save the file and reload your page. The header navigation is still there, but if you
switch into edit mode, there's nothing you can edit in the header navigation.

What just happened?
By replacing the area with the small code above, we've put the autonav block directly into
the template disallowing any modification in the user interface.

We've set a few properties to specify the intended autonav behavior and called render with
the argument templates/header_menu. This makes sure we're using the header menu
template which you can find in concrete/blocks/autonav/templates. Please note,
there's no .php extension when calling the render method.

If you want to use the default template of a block, just specify view:

$autonav->render('view');

Putting blocks in a template using this procedure works for almost any block, but how do you
know what kind of properties they have?

Time for action – finding autonav block properties
There are several tools doing a similar job, but Firefox in combination with Firebug has
proven to be a solid choice. Install Firefox if you haven't done that already.

1.	 Navigate to http://getfirebug.com/ and click on Install Firebug For Firefox.

2.	 After the installation procedure has succeeded, log in to your concrete5 test site
http://localhost/login/.

3.	 Navigate to the home page and switch to the edit mode. Click on Add to Main and
Add Block.

4.	 Pick the block you want to find the properties for. Autonav is a good choice as it has
a few properties you might not find very intuitive.

Chapter 5

[119]

5.	 When the block edit dialog is visible, right click on the first drop-down list, as shown
in the following screenshot:

6.	 The Firebug add-on has added a new menu item Inspect Element (as shown in the
preceding screenshot) click on it and Firebug will be displayed.

7.	 The focus should be set on the select element named orderBy. Expand it by
clicking on the small plus sign in front of it, as shown in the following screenshot:

8.	 This little Firebug screen tells you a lot: First, you can see the name of the property,
orderBy. Each option element has a value like display_asc, which is what you
have to use in the code along with the explanation you can also see in the form.

Creating Your Own Theme

[120]

What just happened?
Using Firebug, we discovered where we can quickly find all the block properties. concrete5
block edit dialogs work like a common HTML form and therefore, use tags like input and
select to update the block properties.

While this might be an uncommon kind of documentation, it will work with blocks which
have been released a minute ago, even if the developer didn't take the time to write the
documentation.

In the case of autonav, a complete example with all available properties would look like
the following:

$autonav = BlockType::getByHandle('autonav');
$autonav->controller->orderBy = 'display_asc';
$autonav->controller->displayUnavailablePages = 1;
$autonav->controller->displayPages = 'top';
$autonav->controller->displaySubPages = 'relevant';
$autonav->controller->displaySubPageLevels = 'enough_plus1';
$autonav->render('view');

Time for action – specifying block template in area
Sometimes you might want to set a default block template for an area. This might happen
if the default template doesn't work at all and the customer would have to select a
custom template for each block he adds. Let's save his time and specify a block template
in our template:

1.	 Open a theme template like default.php

2.	 Look for the PHP block which defines an area and insert the highlighted line from
the following snippet:

<?php
$b = new Area('Main');

	 $b->setCustomTemplate('autonav', 'templates/header_menu');

$b->display($c);
?>

What just happened?
The single line of code that we've added to our theme templates makes sure that for every
autonav block where no template has manually been specified in the user interface, the
header_menu template is used.

Chapter 5

[121]

While setting header_menu for all autonav blocks is probably a bit useless, you'll learn
how to build your own block templates in the next chapter. Once you've created your
own templates, it's just a matter of time until you realize that overriding the default block
template can be quite handy.

Applying theme to single page
There are a few pages in concrete5 you don't have to create on your own. They exist whether
you like it or not but luckily the chances are good you'll like them.

Assume you're using the existing login page you can find at http://localhost/login/
to grant some visitors access to the VIP section on your page. This works out of the box but it
doesn't look like it should; it still has the classic concrete5 look and doesn't look like our site
at all.

To apply the look of our site, we have to do two things. Create a special file in our theme
to handle these pages and activate the theme for these pages. The next two Time for action
sections are going to do these steps.

What's a single page?

A single page is a page which is likely to exist just once in your site. This is
usually due to a certain complexity or layout like the dashboard pages. A second
dashboard setting page is quite useless, which is why it has been built using a
single page.

For those familiar with other MVC frameworks, single pages are usually called
views or layouts.

Time for action – creating single page layout
Carry out the following steps:

1.	 Create a file named view.php in your theme.

2.	 Put the following code in it:

<?php
defined('C5_EXECUTE') or die(_("Access Denied."));
$this->inc('elements/header.php');
?>

<div id="content">
	 <?php

Creating Your Own Theme

[122]

	 echo $innerContent;

	 ?>

</div>

<?php $this->inc('elements/footer.php'); ?>

What just happened?
We've created another file in our theme which looks a lot like default.php. However,
there's one major difference, view.php must always output the variable $innerContent.
The content of single pages is generated by program code and saved in $innerContent.

Some controllers use more variables which you'll have to process as well in order to replace
the concrete5 core layout. The login page for example has another variable in order to make
sure errors are printed too.

Time for action – adding variables to handle login errors
Carry out the following steps:

1.	 Before you put any code in view.php, �����open concrete\themes\core\
concrete.php and have a look at the content of the file. Right before
$innerContent is printed there are a few lines about printing any existing errors.
This is what we're going to need in our view.php too. Copy and insert it in the new
file, and it should look like the following:

<?php
defined('C5_EXECUTE') or die(_("Access Denied."));
$this->inc('elements/header.php');
?>

<div id="content">

	 <?php if (isset($error) && $error != '') { ?>

	 <?php

	 if ($error instanceof Exception) {

	 $_error[] = $error->getMessage();

	 } else if ($error instanceofValidationErrorHelper) {

	 $_error = $error->getList();

	 } else if (is_array($error)) {

	 $_error = $error;

	 } else if (is_string($error)) {

	 $_error[] = $error;

	 }

Chapter 5

[123]

 ?>

 <ul class="ccm-error">

 <?php foreach($_error as $e) { ?><?php echo $e?>
 <?php } ?>

 <?php

 } ?>

<?php
echo $innerContent;
?>
</div>

<?php $this->inc('elements/footer.php'); ?>

2.	 Now that we handle errors as well; we can use our view.php to style the login
page. Open config/��������������������site_theme_paths.php in your editor.

3.	 There are already a few examples we can use as a template, or simply remove
everything and insert the following lines instead:

<?php
defined('C5_EXECUTE') or die(_("Access Denied."));
$v = View::getInstance();
$v->setThemeByPath('/login', "c5book");

4.	 Save the file and log out of concrete5 and go to http://localhost/login/.

Creating Your Own Theme

[124]

What just happened?
We've added view.php to our theme which can be used to apply a theme layout to single
pages. The login page has now been embedded into our page with a small modification to
config/site_theme_paths.php.

We're going to create our own single pages later in this book as well, but if you just want to
style existing single pages, this is everything you'll need.

Pop quiz – what's a single page?
1.	 A page like the one available at http://localhost/login/ is called single page

in concrete5. What are they?

a.	 Single pages are regular pages without a different to a page.

b.	 They are used for pages with a unique functionality not needed in other
places of the site.

c.	 Single pages are built using custom code following the MVC pattern.

d.	 Dashboard pages, as well as extensions to the dashboard by add-ons are
built using single pages.

2.	 In which situation would you consider using a single page? Please note that it's not
always a must to use a single page, but rather a recommendation.

a.	 A configuration page part of an add-on visible in the dashboard.

b.	 As a contact form to let your website visitors send you a message though
a form.

c.	 A custom 404 page to handle requests to pages not available anymore.

d.	 The member profile of your community with lots of custom functionality.

Creating a customizable theme
Creating a concrete5 theme does require some programming skills; it's a tool for
programmers and not just designers and end-users after all. However, there's a nice
way to allow end users to change some colors in a theme without any programming skill.

There's a simple way to create customizable CSS styles in almost no time. This feature allows
you to change colors and fonts and insert custom CSS rules using the concrete5 interface
without touching any files at all.

Chapter 5

[125]

Time for action – a creating customizable theme
Carry out the following steps:

1.	 Open main.css ���������������� from your theme.

2.	 There are several rules we have to replace; search for all of them and replace it with
the new code.

3.	 Look for body and replace it using the following code:

body {
 /* customize_background */ background-color: #989898;
 /* ����������������������� customize�������������� _background */
 height: 100%;
}

4.	 Search for #header_line_bottom and replace it with these lines:

#header_line_bottom {
 /* customize_header_line */ background-color: #e64116;
 /* customize_header_line */
 height: 3px;
}

5.	 Search for #footer_line_top and replace it with the following lines:

#footer_line_top {
 /* customize_footer_line */ background-color: #e64116;
 /* customize_footer_line */
 height: 3px;
}

6.	 At the end of the file, insert the following line:

/* customize_miscellaneous */ /* customize_miscellaneous */

Creating Your Own Theme

[126]

What just happened?
We've added some comments to our CSS file; they don't generate any errors if you validate
the file but concrete5 parses them and generates an interface on top of it where you can
change the values surrounded by these comments.

After you've saved the modified CSS file, you can navigate to Pages and Themes ������������� and click on
Customize next to the active theme. All the comments are transferred into a simple interface
where you can change the values by clicking on the icon on the left of each property. Change
them and you'll immediately see a preview of how the page is going to look with the new
values. If you're satisfied with your choice, click on Save and your site will be going green in
no time, as shown in the following screenshot:

It often happens that a new theme ignores the custom values. This is usually due to a
problem in the way the CSS file is included. If it has been directly linked using a relative path,
concrete5 won't be able to replace the values. Make sure you use the following code to
include your CSS file in case you want to use customizable style sheets:

<link rel="stylesheet" media="screen" type="text/css" href="<?php echo
$this->getStyleSheet('main.css')?>" />

Chapter 5

[127]

Summary
In this chapter, we've looked at the process to transform a static HTML site into a concrete5
theme by adding a few PHP calls in our files. We've split our theme into three parts, a
header, the actual content file, and a footer to make it easier to create different page
templates to allow a quick change of the page structure.

After we finished our theme, we installed it, and had a look at different functions you might
be able to use in case you want to get a little bit more out of concrete5.

Afterwards, we created a new page attribute where we can assign a page specific
background picture. The attribute example was rather simple, but once you've got
into it, you should be able to come up with a lot of different applications for attributes.

Next, we added a navigation block right into our template to avoid the need to use page
defaults or manually add the navigation on each page. This also made it impossible for the
end user to accidentally remove or modify the navigation, a part of the site which is quite
likely not to change every day.

We've also looked at a way to assign our page theme to existing single pages such as the
login page. This allows us to use built in concrete5 functionality for a community without
having to write lots of code.

If you followed each step of this chapter, you should have created a bunch of files for
your concrete5 site. For those who were in a rush or accidentally skipped a step, you
can download the complete theme in the 4286_05_c5book_theme.zip folder on
the Packt website

Extract the file in /themes and you can install it when you go to Pages and Themes in the
dashboard of your site.

6
Customizing Block Layout

In the previous chapter we looked at themes to customize the site's layout.
While this has probably been the more important part, concrete5 does not limit
you to page layout customization. You can also adapt every block layout to suit
your needs, without touching its actual logic, the inner working of it.

You can use PHP logic as well as JavaScript and CSS to change the output of a
block with this feature.

Custom templates to modify block layout
In Chapter 4 we had a first quick look at the structure of a block. We're going to take a
deeper look at two elements of that structure:

view.php: We're going to refer to it as the default block template. It's the file
responsible for the output of the block.

templates: This directory contains more (optional) block templates. Some blocks
already come with several templates, and some only with the default block template.

What does this mean in more detail?

A core custom template can be found in /concrete/blocks/<block-name>/
templates. Custom templates are optional though, you won't find a lot of
templates by default.

A custom template could also be placed in /blocks/<block-name>/templates.
What's the difference to the location mentioned above? You should avoid making
any modification to a file in the concrete directory. This is why it's possible to
override templates by using the same path without concrete at the beginning,
which will make it possible to update concrete5 without losing your modifications.









Customizing Block Layout

[130]

If there's no custom template, the block will either use view.php from this location
/concrete/blocks/<block-name> or /blocks/<block-name>. Again, the
latter path would be chosen if view.php existed in both locations.

When you click on a block you've added, there's a menu item called Custom Template:

After you've clicked on it, a small dialog appears with a list of available templates:

If you pick (None selected) the block will use the default block template view.php. As of
now, only the autonav and page_list blocks come with additional templates.

Thumbnails in a page list
Earlier in this book, we added a page list in the news page to display all child pages. If that's
not the case anymore, go to the News page and add a page list block and select beneath this
page to display the child pages.

This block makes it easy to create a list of pages—whether we're using it to display news, an
archive, or products. There's a title and a description and that's basically it.

Like most news pages, we're going to use a thumbnail to give the visitor a better impression
of the article.



Chapter 6

[131]

Time for action – adding thumbnails to a page list
You can add thumbnails to your page list by following these steps:

1.	 In the dashboard, go to Pages and Themes and then Attributes. Choose Image/File
and click on Go to add the new attribute.

2.	 Enter thumbnail in Handle and Thumbnail for Name.

3.	 Go to the sitemap and open the properties for the child page of News:

4.	 Activate the Custom Attribute register.

5.	 Select our new attribute Thumbnail from the drop down list.

6.	 Scroll down and select a picture you'd like to use for this page.

7.	 Hit Save to confirm the modification to the page.

8.	 We've entered all the data, so let's create the new template. Copy the file
concrete\blocks\page_list\view.php to a new file at the location
blocks\page_list\templates\news.php. You might have to create the
directories page_list and templates within each other.

9.	 Open the new file and look for the code printed below. It's the main loop which goes
through an array of pages supplied by the page list controller. This loop is what we
have to modify to output the picture associated with the page:

<?php
for ($i = 0; $i < count($cArray); $i++) {
 $cobj = $cArray[$i];
 $title = $cobj->getCollectionName(); ?>

Customizing Block Layout

[132]

<h3 class="ccm-page-list-title"><a href="<?php echo $nh->getLinkTo
Collection($cobj)?>"><?php echo $title?></h3>
<div class="ccm-page-list-description">
 <?php
 if(!$controller->truncateSummaries){
 echo $cobj->getCollectionDescription();
 }else{
 echo $textHelper->shorten($cobj->getCollectionDescription(),
 $controller->truncateChars);
 }
 ?>
</div>

10.	 In the previous chapter we've used $c in a theme template to access our page. In
the page list, we've got several pages in a loop. With each iteration, $cobj gets
updated with the next page in the list. While the variable has a different name, it still
refers to the same class, which means that all methods we've used before work on
$cobj as well.

We're going to use getAttribute again to get our thumbnail and print it before
the description:

<?php
for ($i = 0; $i < count($cArray); $i++) {
 $cobj = $cArray[$i];
 $title = $cobj->getCollectionName(); ?>

<h3 class="ccm-page-list-title"><a href="<?php echo $nh->getLinkTo
Collection($cobj)?>"><?php echo $title?></h3>
<?php
$thumbnail = $cobj->getAttribute('thumbnail');
if ($thumbnail) { ?>
 <div class="ccm-page-list-thumbnail"><img src="<?php echo
$thumbnail->getRelativePath() ?>" alt=""/></div>
<?php } ?>
<div class="ccm-page-list-description">
 <?php
 if(!$controller->truncateSummaries){
 echo $cobj->getCollectionDescription();
 }else{
 echo $textHelper->shorten($cobj->getCollectionDescription(),
 $controller->truncateChars);
 }
 ?>
</div>

Chapter 6

[133]

11.	Once you've saved your new template news.php, go back to the news page and
activate the edit mode.

12.	Click on the page list block and select Set Custom Template. In the dialog, pick our
template and click on Update.

What just happened?
We made a copy of the default page list template and created a new one which prints the
picture selected in the thumbnail attribute.

By making a copy of view.php outside of the concrete directory, we made sure that a
future update to a newer concrete5 version doesn't affect our template.

You may have noticed this; the template name in the user interface started with a capital
letter and didn't have a PHP extension at the end. concrete5 tries to keep the user interface
as easy as possible and hides some of the cryptic programmer stuff. There's a little
convention in the template name:

Template names in the interface start with a capital letter

There's no PHP at the end

The letter after an underscore is uppercase

This means that the file name packt_publishing.php would be displayed as
Packt Publishing.

While the template we've created should work quite well, you might get a huge picture in
the page list because we output the image with the same dimensions as you've uploaded it.
Wouldn't it be nice if concrete5 could restrict the maximum dimensions of the thumbnail?







Customizing Block Layout

[134]

Time for action – restricting thumbnail dimension
You can make concrete5 restrict the maximum thumbnail dimensions by taking the
following steps:

1.	 concrete5 generates system thumbnails for every graphic file. There are two levels
we can use by default: level 1 with a maximum dimension of 60 x 60 pixels and
level 2 with a maximum dimension of 250 x 250 pixels.

2.	 The file object returned by getAttribute has a method called getThumbnail
which we can use to access the thumbnail. After the modification, the template
should look like this:

<?php
for ($i = 0; $i < count($cArray); $i++) {
 $cobj = $cArray[$i];
 $title = $cobj->getCollectionName(); ?>

<h3 class="ccm-page-list-title"><a href="<?php echo $nh->getLinkTo
Collection($cobj)?>"><?php echo $title?></h3>
<?php
$thumbnail = $cobj->getAttribute('thumbnail');
if ($thumbnail) {
 echo '<div class="ccm-page-list-thumbnail">';
 echo $thumbnail->getThumbnail(2);
 echo '</div>';
} ?>
<div class="ccm-page-list-description">
 <?php
 if(!$controller->truncateSummaries){
 echo $cobj->getCollectionDescription();
 }else{
 echo $textHelper->shorten($cobj->getCollectionDescription(
),$controller->truncateChars);
 }
 ?>
</div>

What just happened?
By using the getThumbnail method, which is part of the file version object, we replaced
the original picture with the default thumbnail that concrete5 automatically generates. The
new code makes sure you're never going to see a picture bigger than 250 x 250 pixels, even if
someone uploaded a picture straight from the latest digital camera model.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 6

[135]

Time for action – restricting thumbnails to a custom dimension
Sometimes you might have to specify an exact dimension to suit your needs. concrete5 has
several helper classes, one called image which offers several functions, including a function
which generates and caches a thumbnail.

<?php
$imageHelper = Loader::helper("image");

for ($i = 0; $i < count($cArray); $i++) {
 $cobj = $cArray[$i];
 $title = $cobj->getCollectionName(); ?>

<h3 class="ccm-page-list-title"><a href="<?php echo $nh->getLinkToColl
ection($cobj)?>"><?php echo $title?></h3>
<?php

$thumbnail = $cobj->getAttribute('thumbnail');

if ($thumbnail) {

 $thumbnailObj = $imageHelper->getThumbnail($thumbnail,200,200);

 echo '<div class="ccm-page-list-thumbnail">';

 echo "src}\" alt=\"\" width=\
"{$thumbnailObj->width}\" height=\"{$thumbnailObj->height}\"/>";

 echo '</div>';

} ?>

<div class="ccm-page-list-description">
 <?php
 if(!$controller->truncateSummaries){
 echo $cobj->getCollectionDescription();
 }else{
 echo $textHelper->shorten($cobj->getCollectionDescription(),
 $controller->truncateChars);
 }
 ?>
</div>

What just happened?
We extended the first template to assure the thumbnails don't exceed a certain dimension.
The image we used in the last example, works not only within templates, but also in a
controller, theme template, or any other file which is part of the concrete5 framework.

The image helper function we used, made sure that the thumbnail was cached in order to
avoid unnecessary CPU time for further page views.

Customizing Block Layout

[136]

Having some knowledge about methods of classes available in concrete5 usually
helps you a lot, no matter what kind of add-on you're working on. While it might
be a bit overwhelming at the beginning, at least try to remember the methods
mentioned in this book. Once you get more used to the concrete5 framework
you'll quickly be able to learn new methods.

Have a go hero – improving thumbnail page list
Page types can be assigned attributes which will be displayed automatically, without
selecting them in the drop down list. Try to create a new page type called News to
make it easier and quicker to add a new News page.

The page list has a thumbnail but still looks rather simple and not very stylish. Since we've
assigned our new element a CSS class called ccm-page-list-thumbnail you can easily
access the element and change its layout. Try to use it in your theme to improve the layout.
Make the thumbnail appear on the left of the description, add a line at the end of each list,
and make other such improvements.

Have a go hero – explore concrete5 helpers
We did take a quick look at the image helper to generate a thumbnail, but concrete5 helpers
not only help you to generate thumbnails but also e-mails, HTML forms, JSON strings, and a
lot more.

You can find them by opening the directory concrete\helpers. You'll need a few of them
later in this book, but we can't cover all of them.

Template folder
In the previous example, we created a single file used as a custom template. Instead of
having just a single file, a template can also be a folder containing several files. This allows
you to put CSS and JavaScript files and your template in a single directory. It also makes sure
that CSS and JavaScript files are properly included in the header of your page.

Chapter 6

[137]

Time for action – creating a template folder
Follow these steps to create a folder for your templates:

1.	 Create a new folder in blocks\page_list\templates called news_2.

2.	 Copy the previously created news.php file into this directory and rename it
view.php.

3.	 Create a new file called view.css with the following content:

.ccm-page-list {
 border-bottom: 1px solid gray;
 padding-bottom: 20px;
 margin-bottom: 20px;
}
.ccm-page-list a {
 color: #262626;
}

What just happened?
We created a folder instead of a single file for our template. While view.php is mandatory,
there are lots of optional files you can use. Within a template in the templates folder, the
following are the files included by concrete5 in the header:

view.js

view.css

js/<anything>.js

css/<anything>.css

Whether you put the CSS rules in your theme or template using view.css or the css folder
has to be decided for each situation. There's not a single correct answer. But think about
whether you would like to reuse the template for other projects. If a template doesn't work
at all without the CSS rules, it might be better to put them in the template as this makes it
possible to copy and paste a single folder into a new project.









Customizing Block Layout

[138]

Pop quiz – how to include CSS and JavaScript files
1.	 Let's say you created a template for the content block found at the following

location: blocks\content\templates\my_template.����������������������� How could you include
the CSS and JavaScript files without touching any line of code in the core?

a.	 All files with the extension .js located in the directory called js.

b.	 All files with the extension .css or .js.

c.	 All files with the extension .css located in the directory called css.

d.	 Files in the root of the template directory called view.css or view.js.

Picture pop-ups in content block
concrete5 contains a bunch of add-ons by default and a lot more can be downloaded or
bought at the marketplace. While you definitely find a lot of really nice add-ons, sometimes
you can easily rebuild things with just a few small tricks.

Let's assume you've got a blog style page where you have some pictures in the text. It would
be nice if you could click on them like a gallery, wouldn't it?

jQuery is the preferred JavaScript library of concrete5 and is included by default. It usually
makes sense to use jQuery based libraries to avoid any conflicts between JavaScript libraries.
Using jQuery, MooTools, and YUI at the same time works, but you have to make some
modifications which can be time consuming and annoying. To keep this easy, we're going to
use jQuery lightbox written by Leandro Vieira which you can download at:

http://leandrovieira.com/projects/jquery/lightbox/.

Time for action – building a lightbox gallery
To build a lightbox gallery follow these steps:

1.	 Create the following directory: blocks/content/templates/lightbox.

2.	 Copy concrete/blocks/content/view.php into the new directory, keep the
filename view.php.

3.	 From the downloaded jQuery ZIP file, extract the folders images, css, and js but
make sure there's only jquery.lightbox-0.5.min.js in it—you have to remove
all the other JavaScript files.

Chapter 6

[139]

4.	 Add another file called view.js in the same directory as view.php. We need it to
initialize the lightbox script. Its content has to look like this:

$(document).ready(function() {
 $("a.lightbox").lightBox({
 imageBtnPrev: CCM_REL + "/blocks/content/templates/lightbox/
images/lightbox-btn-prev.gif",
 imageBtnNext: CCM_REL + "/blocks/content/templates/lightbox/
images/lightbox-btn-next.gif",
 imageLoading: CCM_REL + "/blocks/content/templates/lightbox/
images/lightbox-ico-loading.gif",
 imageBtnClose: CCM_REL + "/blocks/content/templates/
lightbox/images/lightbox-btn-close.gif",
 imageBlank: CCM_REL + "/blocks/content/templates/lightbox/
images/lightbox-blank.gif"
});
});

5.	 Go to the page where you'd like to insert a lightbox gallery and add a new
content block.

6.	 Enter a text like Skyline and select it.

7.	 Click on Add File in the toolbar on top of the text editor. Select the picture you want
to see when clicking on the link.

8.	 Update the content block and you should see a link called Skyline in it.

9.	 Click on the block and click on Custom Template. Select our template
called Lightbox.

10.	Exit the edit mode and publish the changes immediately.

11.	Click on the link and you'll see the well-known lightbox effect in your concrete5 site
for free.

Customizing Block Layout

[140]

What just happened?
We created another block template along with several folders and files to include the jQuery
lightbox files. The only file we had to create was view.js, where we initialized the jQuery
plugin, everything else was created by copy and paste action. If you're used to work with
blocks and templates, this process takes very little time.

concrete5 uses jQuery as well - it is included by default - which makes it tricky to use other
libraries such as MooTools or YUI. But luckily, you should be able to find more than enough
jQuery libraries you can use for your page.

Have a go hero – creating another JavaScript gallery
While lightbox seems to be an obvious choice for a picture gallery nowadays, there are a
lot more other galleries. You'll find lots of examples when you search for jquery galleries
on Google.

Look for one you like and try to convert it into a concrete5 template. At the end of the
chapter you can find another gallery template based on a script called AD Gallery.

Gravatar picture in guestbook
Gravatar is a widely used service to include a thumbnail of a person. It's a feature often
used in blogs to display a face next to a comment. Internet users upload their picture
at http://en.gravatar.com/ and assign it to their e-mail address.

The application can then generate an md5 hash by using this e-mail address and can display
an image of them, without exposing the actual mail address.

This procedure works with PHP like it does with any language where you can generate an
md5 hash:

$gravatarHash = md5(strtolower(trim('your.mail@address.com')));
echo "";

Let's add that feature to the guestbook block.

Time for action – adding a Gravatar picture to the guestbook
Follow these steps to easily add a Gravatar to the guestbook:

1.	 You will need to create the directory folder within blocks, guestbook,
templates and copy the file from concrete\blocks\guestbook\view.php
into the templates directory. After you've copied it, rename it to gravatar.php
to make it clear what the templates are going to be used for.

Chapter 6

[141]

2.	 The default block template contains quite a lot of code as it contains some functions
to manage the comments. We won't have to bother with it, but we have to find our
way around it. There are only a few lines we have to insert. Open gravatar.php
and search for the following loop; it's not the whole content of the file! Insert the
highlighted lines in your file:

foreach($posts as $p) { ?>
 <?php if($p['approved'] || $bp->canWrite()) { ?>
 <div class="guestBook-entry">
 <?php if($bp->canWrite()) { ?>
 <div class="guestBook-manage-links">
 <a href="<?php echo $this->action('loadEntry')."&entryID
=".$p['entryID'];?>#guestBookForm"><?php echo t('Edit')?> |
 <a href="<?php echo $this->action('removeEntry')."&entry
ID=".$p['entryID'];?>" onclick="return confirm('<?php echo t("Are
you sure you would like to remove this comment?")?>');"><?php echo
t('Remove')?> |
 <?php if($p['approved']) { ?>
 <a href="<?php echo $this->action('unApproveEntry').
"&entryID=".$p['entryID'];?>"><?php echo t('Un-Approve')?>
 <?php } else { ?>
 <a href="<?php echo $this->action('approveEntr
y')."&entryID=".$p['entryID'];?>"><?php echo t('Approve')?>
 <?php } ?>
 </div>
 <?php } ?>
 <div class="contentByLine">

 <?php $gravatarHash = md5(strtolower(trim($p['user_
email'])));
 echo "<img style=\"float:left;margin-right: 10px;\"
src=\"http://www.gravatar.com/avatar/{$gravatarHash}\"
alt=\"\"/>";
 ?>

 <?php echo t('Posted by')?>

 <?php

 if(intval($p['uID'])){
 $ui = UserInfo::getByID(intval($p['uID']));
 if (is_object($ui)) {
 echo $ui->getUserName();
 }
 }else echo $p['user_name'];
 ?>

 <?php echo t('on')?>

Customizing Block Layout

[142]

 <?php echo date($dateFormat,strtotime($p['entryDate']
));?>

 </div>
 <?php echo nl2br($p['commentText'])?>

 <div style="clear:both"></div>
 </div>
 <?php } ?>
<?php }

3.	 Save the file and go back to your site and navigate to a page where you'd like the
new guestbook to appear.

4.	 In the edit mode, add a new guestbook block to your page.

5.	 When added, click on it again and select Custom Template and find our new
Gravatar template in the list.

6.	 Post a new comment and check what happens.

What just happened?
The new template we created adds a Gravatar thumbnail to the guestbook by extending
the default block template with a few lines of additional code. If a person hasn't uploaded a
picture, you'll see the default Gravatar picture, but the script still works.

Chapter 6

[143]

Avoiding duplicate code in a custom template
You might have wondered why we always have to copy the whole template file in order
to modify just a single line. While copying the file is okay, it makes sure the changes don't
get lost when you update to a newer version of concrete5; there's an option to include an
existing template in a new one.

This works nicely if you just want to wrap an existing template. Let's assume you want to add
some CSS rules to a content block. You'll quickly realize that there's no wrapping DIV in it,
which makes it hard to apply styles for the content block. You can override any paragraph but
if that's not what you want to do you have to create a new template and add a surrounding
DIV element.

Time for action – including an existing template
You can include an existing template on your concrete5 site by taking the following steps:

1.	 Create a new file at the following location:

blocks/content/templates/wrapper.php.

2.	 Enter the following code in the new file:

<div class="content-wrapper">
<?php
$bvt = new BlockViewTemplate($b);
$bvt->setBlockCustomTemplate(false);

include($bvt->getTemplate());
?>
</div>

3.	 Save the file and go back to your concrete5 site.

4.	 Add a new content block and click on it after you've hit Update and select
Custom Template.

5.	 Select Wrapper and update again.

6.	 When you look at the HTML code generated by concrete5 you'll find an additional
DIV with a class called content-wrapper.

7.	 You can use this class in your CSS file called main.css. Add a rule like this to change
the background color:

.content-wrapper {
 background-color: silver;
}

Customizing Block Layout

[144]

What just happened?
We created a new template which basically includes the existing content block default block
template. There's just an additional HTML tag we've added to make it easier to access the
content block output by CSS rules.

How did this work? We used the global variable $b, which contains the block view instance
of the block for which we're creating a template.

We call setBlockCustomTemplate with false as its parameter to avoid rendering the
custom template (our file). It temporarily disables the custom template and allows us to
get the filename of the default block template by calling getTemplate. We include it and
we're done.

This procedure is especially useful if you just want to add code to the beginning or end of an
existing template. You can then be sure that once the default block template gets updated, it
will be included in your own custom template.

You'll find a more useful example in the next section!

Auto-hide news page list
The page list has come in handy a few times already and now we have even more features
to add. Let's assume your site has lots of visitors frequently looking for the top news on
your site. Putting them on the landing page might work but search engines will quite likely
forward your visitors to all kinds of sub-pages you created.

What could we do if we wanted to offer an easy access to our top news pages on every
page? You could add a standard page list everywhere but that would take up space for which
you probably have a better use. Couldn't we just add a News button which shows the list
when the visitor hovers over the button? Not out of the box but you're just a few steps
away from it!

Time for action – creating an auto-hide page list
Follow these steps to create an auto-hide page list:

1.	 Create a new directory structure for our template:

blocks/page_list/templates/auto_hide.

2.	 Within that directory, create a new view.php file. We don't have to copy the
original default block template as we're only going to surround the existing template
with a few elements as shown in the previous section.

Chapter 6

[145]

<div class="fixed-page-list<?php global $c; if ($c->isEditMode())
{ echo '-edit'; } ?>">
 <div class="fixed-page-list-content">
 <?php
 $bvt = new BlockViewTemplate($b);
 $bvt->setBlockCustomTemplate(false);

 include($bvt->getTemplate());
 ?>
 </div>
 <div class="fixed-page-list-button">
 News
 </div>
</div>

3.	 Create another file called view.css. Our News button is going to be attached
to the left border of the browser window. To do this, we have to add some CSS
rules, as follows:

.fixed-page-list {
 width:300px;
 height:300px;
 float:left;
 margin-left:-250px;
 left: 0px;
 top: 150px;
 margin-top: 100px;
 margin-right:10px;
 position:absolute;
 z-index:1;
}
.fixed-page-list .fixed-page-list-content {
 width: 240px;
 height: 290px;
 overflow: auto;
 float: left;
 background: white;
 padding: 5px;
 -moz-box-shadow: 0 0 1em black;
 -webkit-box-shadow: 0 0 1em black;
 box-shadow: 0 0 1em black; 	
}
.fixed-page-list .fixed-page-list-button {
 background: white;
 font-size: 120%;

Customizing Block Layout

[146]

 font-weight: bold;
 text-align: right;
 padding-right: 3px;
 cursor: pointer;
 -moz-box-shadow: 0 0 1em black;
 -webkit-box-shadow: 0 0 1em black;
 box-shadow: 0 0 1em black;
}

4.	 Finally, we need some JavaScript action to make sure the button stays in the
viewport of the browser, even when the visitor scrolls down. We also have to add a
hover effect to display the actual block content. Create a new file called view.js
with the following content:

$(document).ready(function($) {
 if (!($.browser.msie && $.browser.version == 6)) {
 $(window).scroll(function () {
 var scrollTop = $(this).scrollTop();
 if (scrollTop > 150) {
 $('.fixed-page-list').css('position','fixed');
 $('.fixed-page-list').css('top','0');
 } else if (scrollTop < 150) {
 $('.fixed-page-list').css(
 'position','absolute');
 $('.fixed-page-list').css('top','150px');
 }
 });
 }

 $('.fixed-page-list').hover(function() {
 $(this).animate({"margin-left": "0px"})
 }, function() {
 $(this).animate({"margin-left": "-250px"})
 });
});

5.	 Enable the page edit mode and add a new page list block with the settings to display
the pages you would like to appear in the box.

What just happened?
We created another view.php which looks a lot like the previous template we created.
It includes the existing templates and only adds some more HTML tags around it. There's
just one additional PHP element. We check if the page is currently in edit mode, the in-site
editing mode gets confused if we'd wanted to edit the page list in an absolute positioned
location. We simply rename the CSS class to ignore the CSS rules.

Chapter 6

[147]

view.css contains nothing but a few rules to fix the location of our block on the left border
of our browser window along with some colors, styles, and borders.

Our JavaScript view.js contains two different sections. The first one checks if we're using
Internet Explorer 6 in which case, the code won't be executed and the button will disappear
if we scroll down the page. For all other browsers we execute a little code when the user
scrolls the page. We simply move our element with the CSS class fixed-page-list into
the visible area using some jQuery commands.

Transforming a slideshow into a gallery
By default, concrete5 comes with a slideshow block you can use to quickly add a few pictures
with a smooth fading effect. However, sooner or later you quite likely want to create a more
classical picture gallery.

We've already created a template for the content block which you can use to embed a
picture gallery within your content. This is a nice feature because it allows you to wrap
text around your pictures and therefore provide more information to the visitor.

However, what if you just wanted to show some pictures? Maybe the 500 pictures you took
from your last trip to the moon? Adding every picture and link manually would be rather
annoying and looking at 500 pictures in a slideshow without seeing a thumbnail is also quite
time consuming but adding pictures to the slideshow block is rather easy. Let's turn the
slideshow block into a gallery!

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Customizing Block Layout

[148]

Time for action – creating a gallery template for a slideshow
Create a gallery slideshow template by following these steps:

1.	 We're going to use the same JavaScript as we've used with the picture pop-up
template for the content block. Go to jQuery lightbox at http://leandrovieira.
com/projects/jquery/lightbox/ and download the jQuery lightbox ZIP file.

2.	 Create a new directory named blocks/slideshow/templates/gallery.

3.	 From the downloaded jQuery ZIP file, extract the folders images, css, and js but
make sure there's only jquery.lightbox-0.5.min.js in it—you have to remove
the other JavaScript files.

4.	 Create a new file called view.php in the directory. We're not going to copy the
original view.php as we have to rewrite most of the code anyway. The following
code block shows you the complete content of our view.php; it's a lot smaller than
the default slideshow template:

<div class="ccm-slideshow-gallery">
<?php
defined('C5_EXECUTE') or die(_("Access Denied."));

foreach($images as $imgInfo) {
 $f = File::getByID($imgInfo['fID']);
 $fp = new Permissions($f);
 if ($fp->canRead()) {

 $fileName = $f->getFileName();
 $picturePath = $f->getRelativePath();
 $thumbnail = $f->getThumbnail(2);

 echo "<a title=\"{$fileName}\"
 href=\"{$picturePath}\">{$thumbnail}";
 }
}
?>
</div>

Chapter 6

[149]

5.	 Create another file called view.js in the same directory. We need it to load the
lightbox script:

$(document).ready(function() {
 $(".ccm-slideshow-gallery a").lightBox({
 imageBtnPrev: CCM_REL +
 "/blocks/slideshow/templates/gallery/images/
 lightbox-btn-prev.gif",
 imageBtnNext: CCM_REL +
 "/blocks/slideshow/templates/gallery/images/
 lightbox-btn-next.gif",
 imageLoading: CCM_REL +
 "/blocks/slideshow/templates/gallery/images/
 lightbox-ico-loading.gif",
 imageBtnClose: CCM_REL +
 "/blocks/slideshow/templates/gallery/images/
 lightbox-btn-close.gif",
 imageBlank: CCM_REL +
 "/blocks/slideshow/templates/gallery/images/
 lightbox-blank.gif"
 });
});

What just happened?
The process we went through is again quite simple and very similar to the picture pop-up
template we've created before.

We put all the files related to the jQuery lightbox right into our template directory. This
makes it easier to install the template as all the files are located in a single folder. Copy and
paste is enough to install this template in a new site.

Next, we created a completely new view.php which used a variable called $image
generated by the controller of the slideshow block. Depending on the settings you make
when adding a slideshow block, the controller puts a sequence of pictures in the image
variable and forwards it to the template. We simply used this array to print a thumbnail
and a link to the picture in the original size of the picture.

Our last file, view.js is again similar to the file we've created for the picture pop-up content
template. We only changed the jQuery selector to access all links within our DIV element
and not just link with the lightbox attribute.

Customizing Block Layout

[150]

Time for action – adding a slideshow gallery
To add the slideshow gallery we created follow these steps:

1.	 In the dashboard, go to the file manager and select all the files you'd like to appear
in the gallery by ticking the checkbox next to the picture:

2.	 As shown, click on Sets in the drop-down box above the files. We're going to use
a new set of files to access our files from the slideshow block. In the dialog which
appears, enter the name of the new set and tick the checkbox next to add. Click on
Update and all selected files will now belong to the new set:

3.	 Go to the page where you'd like the gallery to appear.

Chapter 6

[151]

4.	 Enable the edit mode and bring up the block list by clicking on Add To Main. From
the list, select Slideshow.

5.	 In the Type box, select Pictures from File Set. The interface changes and concrete5
automatically selects the first available set. Since we only have one, you don't have
to change it. If you're using the original slideshow template, you can specify the
display duration and fade time but since our template is going to turn the slideshow
into a gallery, these values won't be used.

6.	 Click on Add to insert the slideshow to our page. Click on the block again and select
Custom Template, then select our new template called Gallery and hit Update.

7.	 Leave the edit mode and publish all changes.

What just happened?
We added a bunch of files to a new set which we then used in our slideshow block. So far we
did what we'd have to do when we'd like to add a slideshow. But since we've created a new
template for the block, we've changed the template to our new custom template.

After we finished editing the page, you should have been able to use the new lightbox
gallery immediately.

Slideshow using file attributes
In the previous chapter, we worked with attributes assigned to pages. As already mentioned,
attributes can also be connected to files. Let's assume you've got a nice collection of photos
which are really important to you; you would therefore like to add a note to each picture,
telling a little bit about its story. Having this kind of information assigned to files makes it
easy for you, to pull them into any part of concrete5 you want.

Customizing Block Layout

[152]

In this section, we're going to add a new attribute to our files where we can save a little
description about the file. We then create another template for the slideshow block
which uses this attribute to display the additional information about the picture within
in the slideshow.

Time for action – adding file attributes to our slideshow
To add attributes to our slideshow follow these steps:

1.	 In the dashboard, go to the File Manager and select the Attributes register on top.
You should see the two default attributes, width and height. We are going to add
two more attributes, one for the title and one for a small description.

2.	 Select Text in the drop down at the bottom and hit Go. Enter title for Handle and
Title for Name. Click on Add Attribute to add the new attribute.

3.	 Select Text Area in the drop down and click on Go again. Enter description for
Handle and Description for Name. Leave the type as Plain Text and add the
new attribute.

4.	 You should now see four attributes. Next, go back to the File Manager.

5.	 Select the first file in your gallery set. Open the Properties dialog. Scroll down and
look for Other Properties. Click on the label Title and enter a title for the current
picture, click on the little icon with the pen when done. Do the same for Description
and close the dialog.

What just happened?
The new attributes we created are assigned to every file in the file manager but they don't
have a value by default. When filled, we can access them by using a single PHP function, a lot
like we did with the pages.

The text you entered is going to be used in the next Time for action section. We're going
to use it to show some information about the picture in the gallery by using the ad-gallery
jQuery plugin from Andy Ekdahl, which can be found at:

http://coffeescripter.com/code/ad-gallery/

Chapter 6

[153]

Time for action – using file attributes in the gallery
Include the file attributes in the gallery by following these steps:

1.	 Create a new directory structure, each directory within each other: blocks,
slideshow, templates, and ad_gallery.

2.	 Create a new file called view.php which generates the HTML output. It's similar
to the one we've created before but the structure is a bit different and we have to
access more attributes:

<div class="ad-gallery">
 <div class="ad-image-wrapper">
 </div>
 <div class="ad-controls">
 </div>
 <div class="ad-nav">
 <div class="ad-thumbs">
 <ul class="ad-thumb-list">
 <?php
 defined('C5_EXECUTE') or die(_("Access Denied."));

 foreach($images as $imgInfo) {
 $f = File::getByID($imgInfo['fID']);
 $fp = new Permissions($f);
 if ($fp->canRead()) {

 $fileName = $f->getFileName();
 $picturePath 	 = $f->getRelativePath();
 $thumbnail = $f->getThumbnail(2, false);
 $fileTitle = $f->getAttribute('title');
 $fileDescription = $f->getAttribute('description');

 echo "";
 echo "<a title=\"{$fileName}\"
 href=\"{$picturePath}\">";
 echo "<img src=\"{$thumbnail}\"
 title=\"{$fileTitle}\" alt=\"{$fileDescription}\"/>";
 echo "";
 echo "";
 }
 }
 ?>

 </div>
 </div>
</div>

Customizing Block Layout

[154]

3.	 Download the latest plugin from the following address:
http://coffeescripter.com/code/ad-gallery/. Download The whole kit
and kaboodle as there are a few pictures in it we're going to need as well.

4.	 In our template directory, create another directory called css and extract the CSS
files along with all pictures from the downloaded file to this directory. The directory
should contain the following files afterwards:

ad_next.png

ad_prev.png

ad_scroll_back.png

ad_scroll_forward.png

jquery.ad-gallery.css

loader.gif

opa75.png

5.	 Create another directory called js and extract jquery.ad-gallery.pack.js
to it.

6.	 For this template, we're not going to create our own CSS file; we simply reuse the
one which comes with AD Gallery. It's not going to look perfect on our site but it
works and saves us some time for the moment.

7.	 The AD Gallery plugin comes with a nicely working jQuery function we have to call
to initialize. For this, we create another file called view.js in the ad_gallery
directory with the following content; please note that you have to enter the correct
size of your pictures if you're not using the default pictures from concrete5:

$(document).ready(function () {
 $('.ad-gallery').adGallery({
 loader_image: CCM_REL +
 "/blocks/slideshow/templates/ad_gallery/css/loader.gif",
 width: 800,
 height: 192,
 animate_first_image: true
 });
});

8.	 Go back to the page where you want to use the new slideshow and add a new
slideshow block using our previously created file set. Click on the block and select
Custom Template, pick Ad Gallery from the list and hit Update.















Chapter 6

[155]

What just happened?
By writing only a few lines of code we were able to use an existing jQuery plugin to add a lot
more functionality to the default slideshow block included with concrete5.

jQuery plugins provide quick, stylish solutions and it's usually quite easy to embed them as
most of them extend jQuery with a single function. Some scripts also have lots of options
you can use to modify the behavior to suit your needs. AD Gallery comes with tons of
options to change the animation type, speed, effects, and a lot more.

Right now, with the templates we've created you have to modify view.js whenever you
want to change something about the gallery. Even if you just want to use the template for
pictures with a different dimension.

Advanced tooltip in content block
By default, HTML displays a simple hint on an element where you've set the title attribute.
Look at the following code:

<a title="CMS concrete5" href="http://concrete5.org/help" target="_
blank">help

Customizing Block Layout

[156]

This will produce the following result, although the exact output might differ depending on
your browser and operating system:

Again, jQuery is going to help us to customize this little information box. There's a nice
jQuery plugin called TipTip from Drew Wilson which you can find here: http://code.
drewwilson.com/entry/tiptip-jquery-plugin.

Time for action – creating advanced tooltips
Create a TipTip tooltip by the following steps:

1.	 Create a new directory structure for our template: /blocks/content/
templates/tip_tip.

2.	 Create a new file called view.php in it. We're going to use the previously described
technique again which allows us to extend the existing core template:

<div class="content-tip-tip">
 <?php
 $bvt = new BlockViewTemplate($b);
 $bvt->setBlockCustomTemplate(false);

 include($bvt->getTemplate());
 ?>
</div>

3.	 Download the TipTip source code from the following location:
http://code.drewwilson.com/entry/tiptip-jquery-plugin.

4.	 Extract the CSS file into a new folder called css within our template folder. Extract
jquery.tipTip.minified.js into a new directory called js.

5.	 We've added all but one file we need. The last file, called view.js, is going to
initialize the advanced tooltips:

$(function(){
 $(".content-tip-tip [title]").tipTip();
});

6.	 Go to the page where you want the new tooltip to appear. Edit the page and click
on a content block of your choice and click on Custom Template. Select Tip Tip and
hit Update.

Chapter 6

[157]

7.	 Make sure there are links in the content with the title attribute set. Click on a link
and hit the Anchor button in the toolbar; there should be a value next to the label
title. If not, add one and hit Update.

What just happened?
The last template in this chapter works a lot like the ones we've already created. We
included the default block template, in this case not by copying the whole file but rather
by wrapping the default block template in a new one.

We then added all the files from the jQuery plugin we needed, the CSS and JavaScript files.

Last we had to call the jQuery function tipTip for all HTML tags with the attribute title
within all elements having the CSS class content-tip-tip. The class we've added by
surrounding the existing block template with an additional DIV element.

Now, when you hover the link, you'll see a slightly different tooltip:

Summary
We've created several templates to extend the default concrete5 blocks. While we've only
looked at the page list, content, guestbook, and slideshow block, the procedure is the same
for every block you can find, also for blocks downloaded from the marketplace.

While templates are very easy to create, they sometimes lack functionality. In the previous
examples you might have seen some values we had to add statically to a JavaScript file. This is
one problem you might run into with templates, it's just a template, there's no way to change
the block edit interface. If you wanted to change values like the dimensions of the pictures in a
gallery you'd have to create your own block, exactly what we're going to do in Chapter 8.

You can find all the templates from this chapter in the accompanying ZIP file, extract it to
blocks and all templates will be available.

But luckily, concrete5 is not restricted to custom templates; you can easily build your own
block for a more sophisticated user experience. We're going to look at some more templates
to improve the autonav block, but afterwards, we're going to look at blocks.

Keep in mind that you have to avoid making any kind of modifications to files in the
concrete directory as it's part of the core and would be overridden if you updated
to a newer version of concrete5.

7
Advanced Navigation

In this chapter we'll have a deeper look at the autonav block you use to create
dynamic navigation. It basically pulls a selection of pages from the sitemap and
prints a hierarchical HTML structure which represents the navigation.

We're going to start with information about the use of the block. Afterwards
we're going to create a series of templates for the block in order to change the
look and the behavior of the navigation to explain the process of building a
custom navigation in concrete5.

Autonav introduction
Before we start customizing the autonav block, we're going to have a quick look at the
different options and the output. It's very helpful to be familiar with all the block options as
well as knowing the HTML output the block generates before you start extending the block.

Preparation
If you have followed the book chapter-by-chapter, you'll have the autonav block included
in your theme, more precisely in header.php of your theme. Since we're going to play with
navigation, we should undo this modification; changing the options in header.php would
be a bit annoying otherwise. If you're done with this chapter, you might want to put the code
back in place; it's mostly to make it easier to work with the custom templates we're going
to build.

Advanced Navigation

[160]

Time for action – undoing autonav block integration
1.	 Open header.php from your theme; it's located in the themes/c5book/

elements directory.

2.	 Since the following code snippet doesn't show the complete file, make sure
you replace the correct lines. Everything is underneath the HTML tag with the
ID header:

<div id="wrapper">
<div id="page">
<div id="header_line_top"></div>
<div id="header">

 <?php
 $a = new Area('Header Nav');
 $a->display($c);
 ?>

</div>
<div id="header_line_bottom"></div>

3.	 Save header.php and go back to your page. Make sure the navigation is still there,
if it isn't go back to edit the page and add a new autonav block in Header Nav.
After you've added it, change the custom template to Header Menu.

What just happened?
We had to undo a modification done before this chapter. The code which printed the
autonav block directly from the template would be fine if your navigation didn't change.
However, since we're working on the autonav block for a whole chapter, we had to remove
this code and replace it with the default code for an editable area.

Autonav options
The autonav block comes with a bunch of options you can use to create the correct
hierarchical output of pages in your navigation.

While you probably have to play around with it for a bit to get used to all the options, we're
still going to look at a few possible configurations which we'll need later in this chapter.

Autonav page structure
The example configurations we're going to look at use the structure shown in the
following screenshot. We won't need to tick the checkbox for system pages, which
would show the dashboard and some built-in pages. We don't want to include them
in our navigation anyway.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 7

[161]

It doesn't matter if your structure looks different at this point; the examples are easy to
understand even if your result looks a bit different.

Page order
By default, the autonav block uses the sort order which you can see in the sitemap as well.
This usually makes sense because it offers the biggest flexibility. Remember, you can arrange
pages by dragging their icon to the place where you want the page to be.

In all our examples you can choose whatever order you like; it doesn't have an effect on
our templates.

Example 1 ������������������� –������������������ showing all pages
The most basic configuration shows all pages, no matter where we are and no matter how
many pages there are. This configuration is useful when you create a JavaScript-based
navigation which displays subpages dynamically without reloading the page.

Advanced Navigation

[162]

The settings should be obvious and the result as well; it will show all pages shown in the
preceding structure.

When you create JavaScript drop-down navigation, you have to generate HTML code for all
elements you want to show, but that doesn't necessarily mean that you want to print all
elements. Assuming you've got hundreds of pages, would you like to see all of them in the
drop-down menu? Probably not, and this is why you can manually specify the number of
page levels you'd like to print. Use this for the drop-down navigation we're going to create
later in this chapter.

Example 2 – showing relevant subpages
In the structure just shown, assume you're on About, which has two direct child pages. If
we wanted to display the two subpages in the left sidebar of our page, we could use the
following settings:

Chapter 7

[163]

Example 3 – showing relevant subpages starting from the top
For a site where you only have a single navigation, probably on the left-hand side, you have
to start at the top and include all the relevant subpages. The settings are similar, but this
time we start at the top and include the level below the current subpage as well by using
these settings:

If you're on the About page again, you'd see all pages on the top, along with the About page
and the two subpages of it.

Autonav output
The autonav controller produces an HTML output which is compatible with most jQuery
libraries you can find. It uses an UL/LI structure to create a proper hierarchical representation
of the pages we show in our navigation.

Before we look at the actual output, here are some words about the process which
generates the output. The autonav block controller uses all the settings you make when you
add the block. It then creates an array of pages which doesn't have any children—it's a flat
array. Unlike what some of you would expect, there's no real recursion in the structure which
you have to process in the block template.

Advanced Navigation

[164]

How's an autonav block template supposed to print a hierarchical structure? That's not
too difficult; there's a property called level for each element in the array. You simply
have to check what happens to that level. Is the level of the current page element bigger
than the one from the previous element? If yes, create a new child to the current page.
Does it decrease? If yes, close the HTML tags for the child elements you created when the
level increased. Does this sound a bit abstract? Let's look at a simplified, not working, but
commented autonav template:

<?php
 defined('C5_EXECUTE') or die(_("Access Denied."));
 // get the list of all pages matching the selection
 $aBlocks = $controller->generateNav();

 $nh = Loader::helper('navigation');
 echo("<ul class=\"nav\">");

 // loop through all the pages
 foreach($aBlocks as $ni) {
 $_c = $ni->getCollectionObject();

 // get the level of the current element.
 // This is necessary to create the proper indentation.
 $thisLevel = $ni->getLevel();

 // the current page has a higher level than the previous
 // page which means that we have to print another UL
 // element to indent the next pages
 if ($thisLevel > $lastLevel) {
 echo("");
 }

 // the current page has a lower level compared to
 // the previous page. We have to close all the open
 // LI and UL elements we've previously opened
 else if ($thisLevel < $lastLevel) {
 for ($j = $thisLevel; $j < $lastLevel; $j++) {
 if ($lastLevel - $j > 1) {
 echo("");
 } else {
 echo("");
 }
 }
 }

Chapter 7

[165]

 // when adding a page, see "echo('..." below
 // the tag isn't closed as nested UL elements
 // have to be within the LI element. We always close
 // them in an iteration later
 else if ($i > 0) {
 echo("");
 }

 // output the page information, name and link
 echo('getURL() . '">' .
 $ni->getName() . '');

 // We have to compare the current page level
 // to the level of the previous page, safe
 // it in $lastLevel
 $lastLevel = $thisLevel;
 $i++;
 }

 // When the last page has been printed, it
 // can happen that we're not in the top level
 // and therefore have to close all the child
 // level we haven't closed yet
 $thisLevel = 0;
 for ($i = $thisLevel; $i <= $lastLevel; $i++) {
 echo("");
 }
?>

The templates we're going to create don't change a lot from the default PHP template. We
mostly use the HTML structure the default template generates and only add some CSS and
JavaScript. Understanding every detail of the default autonav template isn't necessary, but
still helps you to get the most out of the autonav block.

What we must understand is the HTML structure shown as follows—it's what you'll have to
work with when you create a custom navigation or layout:

<ul class="nav">
 <li class="nav-path-selected">
 Home

 <li class="nav-selected nav-path-selected">
 <a class="nav-selected nav-path-selected"
 href="/index.php/about/">About

Advanced Navigation

[166]

 Press Room

 Guestbook

 Search

 News

Since you're supposed to have some HTML knowledge to read this book, it should be fairly
easy to understand the preceding structure. Each new level added a new ul element which
contains an li element for each page along with an a element to make it clickable. Child
pages within a ul element belong to their parent, meaning that the li element of the
parent is closed when all the children have been printed.

The output uses the default template which adds some classes you can use to style
the navigation:

nav: The main ul tag contains this class. Use it to access all elements of
the navigation.

nav-selected: This class is assigned to the elements if they belong to the
current page.

nav-path-selected: This class can be found on pages which are above the
current page. They belong to the path of the current page, and are thus called
path-selected.

Images in the navigation
If you add a new autonav block, it will always print text links, no matter which template you
use or which option you select.

We're going to assign the navigation pictures as we did with the pictures attribute used in
the page list template where we've added a thumbnail. For this we have to create two new
attributes, one for the picture in the normal state and one displayed when the page is active.







Chapter 7

[167]

Time for action – creating page attributes for navigation
pictures

1.	 In the dashboard, go to Pages and Themes – Attributes.

2.	 At the bottom, select Image/File and click on Go.

3.	 Enter navigation_pic_off for handle and Navigation Picture Off for name.

4.	 Create another attribute with navigation_pic_on for handle and Navigation Picture
On for the name.

5.	 If you intend to use this for all navigation items, you might want to assign the new
attributes to the page types by default. Go to Page Types and click on Edit for each
page type. Select the two new attributes and click on Update Page Type.

What just happened?
By following the steps in the time for action, you created two attributes which allowed you to
assign two pictures to every page. Attributes in concrete5 are very flexible—you can create
and connect them to pages, users, and files in case you have to manage object-specific data.

Attributes can be helpful with a variety of different problems; make sure you know how to
use them.

Time for action – creating block picture navigation template
1.	 Copy the default autonav template concrete/blocks/autonav/view.php to

blocks/autonav/templates/picture_nav.php.

2.	 We have to modify a few lines in the new template, and the following snippet shows
you the lines you have to modify:

if (!$pageLink) {
	 $pageLink = $ni->getURL();
}

$navigationLinkOn = $navigationLinkOff = $ni->getName();

$navigationPicOff = $_c->getAttribute('navigation_pic_off');

$navigationPicOn = $_c->getAttribute('navigation_pic_on');

if ($navigationPicOn) {

 $navigationLinkOn = 'getURL() .
 '" alt="' . $navigationLinkOn . '"/>';

}

Advanced Navigation

[168]

	 if ($navigationPicOff) {

	 $navigationLinkOff = 'getURL() .
	 '" alt="' . $navigationLinkOn . '"/>';

	 }

	
if ($c->getCollectionID() == $_c->getCollectionID()) {

	 echo('<li class="nav-selected nav-path-selected"><a class=
	 "nav-selected nav-path-selected" href="' . $pageLink . '">' .
	 $navigationLinkOn . '');

	 } elseif (in_array($_c->getCollectionID(),
 $selectedPathCIDs)) {

	 echo('<li class="nav-path-selected"><a class=
	 "nav-path-selected" href="' . $pageLink . '">' .
	 $navigationLinkOn . '');

	 } else {
	 echo('' . $navigationLinkOff .
	 '');

}	

What just happened?
Using the two new attributes, we created another block template. We had to insert a bunch
of lines compared to the original template, but the logic behind it is rather simple.

First, we try to get all the information from the page we need—the name and the two
pictures. We then build the HTML code to print the clickable part of our link. If there's a
picture, we'll use it; if there isn't, we'll print the text as if nothing has changed.

In the preceding code you can see a comparison $c->getCollectionID() == $_c-
>getCollectionID(). This is what checks if we're currently processing the current page.
If we are on the current page, we have to print the first navigation picture; otherwise we use
the second attribute.

CSS3 hover effect
While CSS3 isn't well supported yet, it allows us to do things for which we previously needed
JavaScript. The use of JavaScript would have been possible for most effects as well, but we're
going to look at a CSS3-only effect to get a quick impression to see how easy it is to integrate
upcoming web technologies. Make sure you're using an up-to-date browser like Chrome 6 to
see the effect.

Chapter 7

[169]

The effect we're going to use is just a bit more than a classic CSS hover effect which you've
probably used before. It starts with something like this:

a {
 color: silver;
}
a:hover {
 color: black;
}

Such a CSS file would display all the links in silver and, when you hover over them, in black.
With CSS3, things get a bit fancier, but let's create the new template;
we'll see how it looks very quickly.

Time for action – creating a CSS3 transition autonav template
1.	 Create the directory structure for our new template autonav/templates/css3_

hover.

2.	 Our template works a lot like the existing header menu: copy concrete/blocks/
autonav/templates/header_menu.php to blocks/autonav/templates/
css3_hover/view.php.

3.	 Since we don't want to interfere with an existing autonav template, we rename
the main ul element. In the fifth line, make sure there's a class called nav-css3-
hover:

<?php
 defined('C5_EXECUTE') or die(_("Access Denied."));
 $aBlocks = $controller->generateNav();
 $c = Page::getCurrentPage();

	 echo("<ul class=\"nav-css3-hover\">");

 $nh = Loader::helper('navigation');

4.	 In our template directory, create another file called view.css:

.nav-css3-hover li {
 list-style-type: none;
 float: left;
}
.nav-css3-hover a {
 display: inline-block;
 padding: 4px;
 border: 2px solid transparent;
 -moz-transition: 0.25s -moz-transform;

Advanced Navigation

[170]

 transition: 0.25s transform;
 -webkit-transition: 0.25s -webkit-transform;
 -webkit-transform: scale(1) rotate(0);
 -moz-transform: scale(1) rotate(0);
 transform: scale(1) rotate(0);
}
.nav-css3-hover a:hover {
 background: #e64116;
 text-decoration: none;
 color: #ffffff;
 -webkit-border-radius: 4px;
 -moz-border-radius: 4px;
 border-radius: 4px;
 border: 2px solid white;
 -webkit-transform: scale(1.2) rotate(-3deg);
 -moz-transform: scale(1.2) rotate(-3deg);
 transform: scale(1.2) rotate(-3deg);
}
.nav-css3-hover li:nth-child(2n) a:hover {
 -webkit-transform: scale(1.2) rotate(3deg);
 -moz-transform: scale(1.2) rotate(3deg);
 transform: scale(1.2) rotate(3deg);
}

5.	 Save the files and go back to your page, edit it, and click on the navigation block
in the previously modified area. Select Custom Template, select Css3 Hover, and
Update the block.

What just happened?
Another quite simple template, which looks as follows:

The modification to view.php wouldn't have been necessary if we didn't care about
interfering with other navigations on the same page, which would only happen if there
were two navigation blocks anyway.

Chapter 7

[171]

At the end of the day it's only about the CSS file we've created. We will have a quick look at
the CSS rules used in the preceding example without going too much into the details of CSS3.
We had to use some browser-specific extensions because it's a rather new feature. If you
remove those, things are easier to read, for example:

.nav-css3-hover a {
	 display: inline-block;
	 padding: 4px;
	 border: 2px solid transparent;
	 transition: 0.25s transform;
	 transform: scale(1) rotate(0);
}

The transition property sets the duration for the effect and specifies the element we
want to use for the effect. In the case of the transform property, the simplified rule
relevant when the link is hovered over would look as follows:

.nav-css3-hover a:hover {
 transform: scale(1.2) rotate(-3deg);
}

Here we can see that the transform property has a different value than the one in the first
example. It's scaled and rotated a little bit which will cause the effect.

In short, transition sets the attribute to use, and will then transform into the value
specified in :hover. You can also use transition: 0.25s all, which would use
all properties.

Have a go hero – create more transitions
Instead of the transform property, you can access all kinds of CSS properties to create a
smooth transition effect.

transition: 0.25s color would gradually fade the color of the link to the color you
have specified in :hover. It works with the location, dimension, color, background, and
a lot more; there are lots of possibilities and it takes only a few lines of code.

Drop-down navigation
Drop-down navigations have been around for quite some time. When graphical user
interfaces got popular, they were everywhere. With more advanced web technologies
available, they also found a way onto the Internet.

Advanced Navigation

[172]

We therefore have to create one in concrete5 as well using the jQuery library. There are
lots of scripts available and most of them can be used, but we're going to use SooperFish by
Jurriaan Roelofs from http://www.sooperthemes.com. It's a great little plugin—easy to
work with and easy to integrate in concrete5.

Time for action – creating SooperFish template
1.	 Go to http://www.sooperthemes.com/open-source/jquery/jquery-

sooperfish-dropdown-menus and download the latest version available.

2.	 Create a new directory structure for our template blocks/autonav/templates/
sooperfish/js. From the downloaded ZIP file, extract jquery.sooperfish.
min.js in thejs directory.

3.	 In the directory just mentioned, create a new file called view.php. We could copy
it from the original template and rename the main ul element in case there's a
second navigation on the page. Feel free to do that, but please take care that you
rename all the CSS rules as well. However, in this case we're simply going to include
the original template as we already have several CSS rules in the theme which are
useful for our drop-down menu:

<?php
$bvt = new BlockViewTemplate($b);
$bvt->setBlockCustomTemplate(false);

include($bvt->getTemplate());
?>

4.	 Create another file called view.js where we initialize the SooperFish menu:

$(document).ready(function() {
 $('#header > ul').sooperfish();
});

5.	 If you create a drop-down menu, your HTML code must contain the child pages,
even if you only see them when hovering over the parent element. Since JavaScript
is responsible for showing and hiding the child elements, we have to make sure the
child elements are printed by autonav. Edit the page where you want to use the
drop-down menu, click on the autonav block, and apply these values:

Chapter 7

[173]

6.	 Update and publish the page.

What just happened?
A new template based on SooperFish is created. Since most of the CSS rules we created
earlier work with SooperFish, we do not even have to make any CSS modifications. The only
thing that is needed is the SooperFish JavaScript, another super small JavaScript to load the
script and the standard template. Depending on the CSS file from your theme, you might
have to include a modified version of some CSS rules you can find in the SooperFish ZIP file.
The menu does require a few CSS instructions in order to work properly.

When we created the view.js file, we did not pass any parameters to SooperFish, but there
are plenty of things you can configure with this plugin. If we have a look at the example from
the author's website, we'll find the following example:

$(document).ready(function() {
 $('#header >ul').sooperfish({
 hoverClass: 'over',
 delay: '400ms',
 dualColumn: 7,
 tripleColumn: 14,
 animationShow: {height:'show',opacity:'show'},
 speedShow: '800ms',
 easingShow: 'easeOutTurbo2',

Advanced Navigation

[174]

 animationHide: {width:'hide',opacity:'hide'},
 speedHide: '400ms',
 easingHide: 'easeOutTurbo',
 autoArrows: false
 });
});

An interesting feature other drop-down plugins don't offer can be configured by
dualColumn and tripleColumn. In the example above, any submenu with more than
seven elements will be divided into two columns.

All the other properties should be fairly easy to understand—they let you specify a custom
animation, duration, and some interface-related features such as arrows to indicate the
availability of child pages. There's a nice page where you can play with all these properties
at http://www.sooperthemes.com/sites/default/files/SooperFish/example.
html.

Hierarchical tree navigation
Another variant of drop-down navigation is a tree which works a bit like a file explorer. There
are plenty of jQuery plugins for this job around as well, but this time we're going to create
everything from scratch. Thanks to jQuery, this is going to take neither a lot of time nor a lot
of lines of code.

To keep the example as simple as possible, we're not using any pictures at all. You can surely
find a way to improve the layout once you've had a closer look at the jQuery code.

Time for action – building a file explorer-like navigation
1.	 Create another directory structure for our template blocks/autonav/

templates/tree.

2.	 Within that directory create view.php, but this time we'll use a different approach.
We only want to change the class name to keep the functionality separated from
other autonav blocks on the same page. We also don't want to copy the default
autonav block template to avoid redundant code. We're going to replace the ul
class name on-the-fly:

<?php
$bvt = new BlockViewTemplate($b);
$bvt->setBlockCustomTemplate(false);

function nav_tree_callback($buffer) {

Chapter 7

[175]

	 return str_replace('<ul class="nav">',
 '<ul class="nav-tree">',$buffer);
}

ob_start("nav_tree_callback");
include($bvt->getTemplate());
ob_end_flush();
?>

3.	 In another file called view.css, you have to place some layout instructions for our
tree. The script works without this, but the tree would look a bit misaligned:

.nav-tree li { list-style-type: none; }

.nav-tree { margin: 0px; padding: 0px; }

.nav-tree ul { margin: 0px; padding: 0px 0px 0px 20px; }

.nav-tree .tree-item-folder { cursor:pointer; }

.nav-tree .tree-item-type {display:inline-block; width: 10px;}

4.	 And finally some jQuery magic in view.js:

$(document).ready(function() {
 // prepend a span element in front of each link
 $(".nav-tree a").parent().prepend("<span class=
 \"tree-item-type\"> ");

 // those span element being part of a parent element get a "+"
 $(".nav-tree ul:has(*)").parent().find("> .tree-item-type")
 .text("+").toggleClass("tree-item-folder");

 // hide all submenus
 $(".nav-tree ul").hide();

 $(".tree-item-folder").click(function() {
 $(this).next().next().slideToggle("fast");
 })
});

Advanced Navigation

[176]

What just happened?
After you've created the template and assigned it to your autonav block you'll have a
tree-like navigation which looks as follows:

This is another template which doesn't use any external jQuery libraries at all. Thanks to
jQuery, we only needed a few magic lines of code to add a small "plus" sign in front of all
pages with subpages. It uses three lines of code to hide the subpages when the user clicks on
the "plus" sign, and a small PHP template which includes the default template but replaces
the ID to avoid any complications with other navigation blocks on the same page.

Dynamically loading content
During the last few years, AJAX has become very popular. It wasn't really new at that time
but people started using it more and more and of course, you can use it in concrete5.
Sometimes, AJAX is a bit too razzle-dazzle and so is the following autonav template we're
going to look at.

This demonstration is more about giving you ideas about what you can do rather than a
recommendation to use it on your website.

Time for action – dynamically loading concret5 content using
jQuery

1.	 As always, we need a new structure for our template. Make sure all these
directories exist within each other: blocks, autonav, templatesanddynamic_
loadbuilding this path blocks\autonav\templates\dynamic_load.

Chapter 7

[177]

2.	 Create a new file view.php with the well-known content:

<?php
$bvt = new BlockViewTemplate($b);
$bvt->setBlockCustomTemplate(false);

include($bvt->getTemplate());
?>

3.	 All the magic happens in our JavaScript file view.js:

$(document).ready(function() {
 $(".nav a").click(function() {
 var pageUrl = $(this).attr("href") + " #content > *";

 $("#content").slideUp("normal",function() {
 $("#content").load(pageUrl,"", function() {
 $("#content").slideDown("normal");			
 });
 });

 return false;
 });
});

4.	 After you've created all the files, go back to your page and change the Custom
Template of the autonav block where you want to try the dynamic page loading.

What just happened?
After you activate the template you can click on a link in the navigation. The browser won't
load a new page; instead our little jQuery script slides up the current content, dynamically
loads the new page, and slides the new content down.

This works by redirecting all clicks on links within the nav element using this selector:
$(".nav a"). We then build the URL we want to load. Please note that we append
#content > * at the end of the variable; the jQuery method load parses this expression,
and only returns the content of the new page which matches the selector. In this case all
HTML elements are under #content. Before we load the new content, we hide the existing
using slideUp and once the new content is loaded, we use slideDown to show it.

Advanced Navigation

[178]

However, as mentioned at the beginning, using this technique has lots of disadvantages:

We only load the content of the new page and skip the header. If the new pages
depend on JavaScript, we don't include the first page as it will fail.

Depending on the complexity of the content you load, the effect might be a bit
bumpy; use it for a personal portfolio page with little content to get a smooth effect,
and not your huge company website.

If you're in the edit mode looking at a dynamically loaded page and start the in-site
edit mode, you'll still edit the first page because concrete5 doesn't know anything
about that dynamic script which changed the content on-the-fly.

The preceding script makes it possible to directly link to your pages, but the page
address won't change when you load a new page. This however, can be avoided by
using a little more advanced script.

Allowing direct links in dynamically loaded pages
In order to make direct links possible, we're using a part of the URL called hash, which we
can set using JavaScript. The URL is going to look like this: http://localhost/#about.
While this still links to the first page, we can use a JavaScript method to check for the
existence of the hash and dynamically load the subpage, even if we're on the first page.

Time for action – direct link with dynamic content
1.	 Open view.js from the previous template again.

2.	 Replace everything with this content:

function getLinkHash(linkHref) {
 linkHref = linkHref.replace(CCM_DISPATCHER_FILENAME,"");	
 return linkHref.replace(new RegExp("[^a-zA-Z0-9_]","g"), "");
}

$(document).ready(function() {

 // check if there's a hash in the url and
 // dynamically load the page
 if (window.location.hash) {
 $(".nav a").each(function(index, value) {

 if ("#" + getLinkHash($(this).attr("href")) ==
 window.location.hash) {
 $("#content").load($(this).attr("href") + " #content > *");
 }
 })









D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 7

[179]

 }

 $(".nav a").click(function() {
 var linkHref = $(this).attr("href");
 var pageUrl = linkHref + " #content > *";		

 window.location.hash = getLinkHash(linkHref);

 $("#content").slideUp("normal",function() {
 $("#content").load(pageUrl,"", function() {
 $("#content").slideDown("normal");			
 });
 });

 return false;
 });
});

What just happened?
The preceding script is an extension to the previously created template. There are two
main additions:

When you click on a link, the name of the page will be sanitized and appended to
the URL by using window.location.hash.

When a page is loaded, there's a little code which checks if the current hash at the
end of the URL matches a link in the navigation. If it does, that page will be loaded
immediately.

When you directly open a page with a hash at the end, you'll still see the first page for a
very short time. This is because we have to wait until the first page is loaded before we load
the next page. Again, think about it before you really use this; with this addition it works
a bit better but still shouldn't be used in pages with a complicated structure and dynamic
elements in it.





Advanced Navigation

[180]

Summary
We took a closer look at the autonav block, an element you'll often need when you work
with concrete5. While a lot about the autonav block is down to experience, you should
already have gotten an impression about some of the possibilities.

The templates we created are fairly easy to modify or extend with some basic knowledge
about the used web technologies. The layout is mostly amendable by adding some CSS rules
and some templates we've created use JavaScript libraries, where you can modify some
parameters such as colors and the number of columns very easily by changing some
easy-to-understand variables.

Try to use the template we've created as a base for your own, custom navigation. You've got
examples which show you how to include JavaScript, CSS, and PHP to get the most out of the
autonav block to create almost any kind of navigation you want.

8
Creating Your Own Add-on Block

In this chapter, we will delve a bit deeper into the actual PHP development of
concrete5. In the previous chapters, we mostly copied and modified existing
functionality. This worked well for basic tasks and even some more advanced
features. However, there comes a point when you work with concrete5 when
you have to create a completely new block to meet your or your customers'
requirements.

Let's get started with a simple block, we'll go through this step by step and add
more functionality to it until we get to the end of this chapter.

Product information block
In this chapter, we're going to create a rather simple block, which allows you to enter
structured content in order to make sure the output looks identical for all products on your
webpage. This block is needed for the second example, which pulls information from every
information block to create a list.

Creating Your Own Add-on Block

[182]

While this block is called Product Information, it can easily be modified to hold different
kinds of information such as: News, real estate, FAQ, team members, and more. The input
dialog is going to contain three fields, one for the title, a picture, and a rich text editor for
the description. The result is going to look like the following:

Steps to �������������� create�������� a block
We already had a first quick look at the files of a basic block in Chapter 4, Add-ons. Now,
we're going to create these files. To do this, we have to create a new directory like we did
several times when we created a new template. However, this time we're not going to use
the name of an existing block which you can find in the concrete/blocks directory; we're
creating a new block and therefore have to use a new, unique name. For this, you have to
create a folder named product_information in your blocks directory.

Every block can have a little icon, which you'll see in the list when adding a new block. For
this, you can create a PNG picture, 16 x 16 pixels and save it as icon.png in the
new directory.

Chapter 8

[183]

Database structure
Most blocks have to process and save some kind of data, which is why we create an XML file
to hold our database model. We're not going to use traditional SQL commands to create or
alter our database tables. This has the advantage that you can easily describe our model in
an XML file which creates a new table or updates them in case there's an older version of it
in the database. The file we're going to create uses an ADOdb library, which is described at
http://phplens.com/lens/adodb/docs-datadict.htm.

XML is a standardized textual data format to manage any kind of data
structure, whether it's a letter, a configuration, or—like in our case, a
description of our database structure.

Time for action – creating the database structure
Carry out the following steps:

1.	 In our block directory, create a new file named db.xml; that's everything we'll need.

2.	 In this file, you have to add a hierarchical structure of tables and columns. The
whole content of the file should look like the following:

<?xml version="1.0"?>
<schema version="0.3">
 <table name="btProductInformation">
 <field name="bID" type="I">
 <key />
 <unsigned />
 </field>
 <field name="title" type="C" size="255"></field>
 <field name="description" type="X2"></field>
 <field name="fIDpicture" type="I"></field>
 </table>
</schema>

Creating Your Own Add-on Block

[184]

What just happened?
The file we created is everything we'll need to tell concrete5 what to create in the database
for our add-on. Most of it should be pretty intuitive; it starts with the obvious XML file
definition, a root element that you have to use in order to tell ADOdb to use the correct
version, a table, and a bunch of fields. Not too difficult, but the field types might be a bit
difficult to guess, so here's a list of the most common types you'll need:

Field Type Description

C Character field, capped to 255 characters. Use this for single line text fields like
the title in our example. This field type needs a size attribute where you have to
specify the length from 1 to 255.

X2 The largest multibyte varchar data type we've got. Use this for rich text field.

T Creates a timestamp field. There are other types for dates like D but always use T to
be consistent with the core add-ons.

I Short for integer; use this for numbers, foreign key references to files, and pages.

This list is not complete, but should be enough for most add-ons. If you're looking for a
complete list, you can go to http://phplens.com/lens/adodb/docs-datadict.htm.

If you want to save a "yes/no" in the database, you might be looking for a
Boolean data type. As the SQL 1999 standard does have some inconsistency
about that data type, there's no type for this that you can use with all databases.

In concrete5, simply use an integer field and save 0 for false and 1 for true.

There are also a few case-insensitive keywords, which we have to use to create indexes,
constraints, and set default values; look at the bID field in the preceding example to see
how they are implemented. The following options are available:

Keyword Explanation

AUTO / AUTOINCREMENT For columns where you need an auto incrementing number,
often used for primary keys.

KEY / PRIMARY Sets the primary key. Compound keys are allowed, simply set
this flag for multiple fields.

DEF / DEFAULT Use this if your column needs a default value. This attribute
needs to have a value like this: <default value="0"/>.

NOTNULL Create mandatory fields.

UNSIGNED Sets a number field to unsigned. Use this for auto
incrementing primary keys as there's no need for negative
numbers in such a situation.

Chapter 8

[185]

Keyword Explanation

DEFTIMESTAMP Sets a default function to get today's date and time.

NOQUOTE Disable default string auto quoting.

CONSTRAINTS Constraints to specify required relations between fields. Can
be manually handled in the controller of your add-on.

There's a column called bID which you must add in any case. bID is short for block ID and is
used by concrete5 to connect the proper page version to your block.

There's one behavior which might surprise you: after you've added one block to a page and
played it for a while you might end up having several entries in your block table, even if you
just added one block. How does this happen? concrete5 allows you to look at or approve an
older version of your page. This works by saving the content of every block from that time;
concrete5 automatically creates a new bID in case the block content has changed in a new
page version. It's nothing to be worried about at this point, but we'll have to keep this in
mind when creating more complex blocks.

Time for action – creating the block controller
Carry out the following steps:

1.	 Create another file named controller.php in our new add-on directory.

2.	 Put the following content in it:

<?php
defined('C5_EXECUTE') or die(_("Access Denied."));
class ProductInformationBlockController extends BlockController {

 protected $btTable = 'btProductInformation';
 protected $btInterfaceWidth = "590";
 protected $btInterfaceHeight = "450";

 public function getBlockTypeDescription() {
 return t("Embeds a Product Information in your web page.");
 }

 public function getBlockTypeName() {
 return t("Product Information");
 }

 function view(){
 $this->set('bID', $this->bID);

Creating Your Own Add-on Block

[186]

 }

 function save($data) {
 parent::save($data);
 }

 function getPicture() {
 if ($this->fIDpicture > 0) {
 return File::getByID($this->fIDpicture);
 }
 return null;
 }

}
?>

What just happened?
The file we created is the one which contains all the logic, the data processing. It's still very
small, but this is a file which can quickly grow. With this file, we start going into the object-
oriented programming. Let's go through the file step by step:

The line with defined simply checks if we're running the correct way from index.
php in order to make sure the security checks have been executed.

The next line is derived from our directory named product_information. The
result ProductInformationBlockController is created by the following rules:

Start with a capital letter

After every underscore, start with a capital letter again

At the end, add BlockController to the name and derive the class from
it as well

btTable sets the main table the block controller has to work with.

btInterfaceWidth and btInterfaceHeight set the size of our block
edit dialog.

The functions getBlockTypeDescription and getBlockTypeName return a
string to describe our block. Please note that the value returned is processed by the
function t as well. This function is used to translate that value into other languages.
In our case, it will return the value we passed to the function, since we don't have
any translations yet, but that's okay for now.

The function view isn't necessary in our block at the moment. It's only to show
you how to pass values to the view, in case you have to process your data before
rendering them.



















Chapter 8

[187]

Save is similar, but not necessary in our case. The block controller saves discrete
values automatically by matching the form field names with the field names of the
table we specified in btTable. However, if you wanted to save data from a child
table or add some checks to this method, this is where you could hook into it.

The last method getPicture is used because we only save a reference in the form
of a number when we work with files from the concrete5 file manager. Since we
have to work with this file reference several times, we add a new function which
returns the file object and not only the numeric reference to it.

Right now, this is everything we need to get our data in the database and back.

Time for action – creating the editing interface
Carry out the following steps:

1.	 As adding and editing a block is pretty much the same, we're going to create a file
named form_setup_html.php, which is shared by both add.php and edit.php.

2.	 First, let's create add.php and edit.php; both are rather simple and identical
because everything is located in form_setup_html.php:

<?php
defined('C5_EXECUTE') or die(_("Access Denied."));
$this->inc('form_setup_html.php');
?>

3.	 In a new file form_setup_html.php, save the following content:

<?php
defined('C5_EXECUTE') or die(_("Access Denied."));

$al = Loader::helper('concrete/asset_library');

echo '<div class="ccm-block-field-group">';
echo '<h2>' . t('Title') . '</h2>';
echo $form->text('title', $title, array('style' => 'width: 550px'));
echo '</div>';

echo '<div class="ccm-block-field-group">';
echo '<h2>' . t('Picture') . '</h2>';
echo $al->image('ccm-b-image', 'fIDpicture', t('Choose File'),
 $this->controller->getPicture());
echo '</div>';





Creating Your Own Add-on Block

[188]

echo '<div class="ccm-block-field-group">';
echo '<h2>' . t('Description') . '</h2>';

Loader::element('editor_init');
Loader::element('editor_config');
Loader::element('editor_controls', array('mode' => 'full'));
echo $form->textarea('description', $description, array('class' =>
 'ccm-advanced-editor'));
echo '</div>';
?>

What just happened?
Our code is getting bigger but we're also coming closer to finishing the first block. Let's go
through all the new steps:

Loader::helper is often used to include functionality from the concrete5 core. In
this case, we're loading the asset_library, which contains functions to include
the file manager.

Next we use a DIV element with a built in class named ccm-block-field-group.
This class adds a nice little line to make our dialog look a bit nicer.

The next line uses the function called t again, and again, this is just to make the
block translatable.

The $form refers to the form helper from which we use several methods. In this
case, the $form->text method with the following parameters:

ID of your input box.

Variable to process. Please note, this has been added automatically by
the controller because the table specified in btTable contains a column
with this name.

An array where you can pass any HTML attribute to the input element. In
this case, a style to specify the width of the control.

$al->image adds a selector, which pops up a dialog to select an image from the
file manager. There's another method you can use to select any kind of file, just use
$al->file instead. In the example, we've used the following few parameters:

The ID of your form field.

Name of your column. Must match with the blocks table.

Text to display when no file has been selected.

Reference to currently selected file. Must be a file object and not just the
reference in form of a number.

























Chapter 8

[189]

$form->textarea prints a plain text, multi-line input field. If you include some
HTML elements in front of it and add the proper CSS class, you'll get access to the
built-in rich text editor. Loader::element pulls files from concrete/elements
where you can find a bit more about the details of the rich text editor, in case you
want to know what's going on under the hood.

Time for action – printing block output
Carry out the following steps:

1.	 Last but not least, we have to make sure the data we save in the block gets printed
on the page. For this, we have to create a file named view.php.

2.	 We've got to access and print the file object along with some basic commands to
print the value of our variables. The content of the file has to look like this:

<div class="product-information">
<?php
$html = Loader::helper('html');

$picture = $this->controller->getPicture();

echo "<h2>{$title}</h2>";
if ($picture) {
 echo $html->image($picture->getURL());
}
echo "<p>{$description}</p>";
?>
</div>

What just happened?
The last part, the actual rendering of the content, is rather short. We did use another helper,
html, to print our image element. We could have built this string manually, but which option
you choose is up to you. We also used getPicture again to get a file object from the
controller. Besides these two commands, we only used simple echo statements to output
the content of our variables.

Now that we've created all the files, we can install our block. Go to Add Functionality in the
dashboard of your site and you'll see our new block. Click on Install and concrete5 will parse
db.xml and create the database structure.

Edit a page of your choice and add a new instance of our block, enter the data needed and
you'll get a structured output of the three fields.



Creating Your Own Add-on Block

[190]

Checking for mandatory fields
If we wanted to make sure there were no products without pictures, we could add a few
more lines of code.

Time for action – adding check for mandatory fields
Carry out the following steps:

1.	 In controller.php, add the following method after getBlockTypeName:

public function getJavaScriptStrings() {
 return array(
 'image-required' => t('You must select an image.')
);
}

2.	 Create a new file named auto.js that will automatically be included when you add
or edit a product information block instance. Put the following content in it:

ccmValidateBlockForm = function() {
 if ($("#ccm-b-image-fm-value").val() == '' || $("#ccm-b-image-
fm-value").val() == 0) {
 ccm_addError(ccm_t('image-required'));
 }
 return false;
}

What just happened?
We created a JavaScript, which is automatically included and called before the data is
saved. The method ccmValidateBlockForm is a built-in method, which you can use to
interact in the field checking process. ccm_addError adds an error to an internal array
based on texts processed by ccm_t, which is looking for values generated by the method
getJavaScriptStrings in the controller. This is necessary because JavaScript strings
can't be translated; we have to fetch them from our PHP based block controller.

Adding product ����������categories
We're going to make one more modification to this block before we start with another one.
Whether you want to manage products, news or anything else, you might want to split these
entries into categories.

For this, we're going to add another table to our block from which we're pulling all the
categories to add a drop-down menu to our block.

Chapter 8

[191]

Time for action – adding product categories
Carry out the following steps:

1.	 Open db.xml for your block; we've got to make a few modifications. The file should
look like the following afterwards:

<?xml version="1.0"?>
<schema version="0.3">
 <table name="btProductInformation">
 <field name="bID" type="I">
 <key />
 <unsigned />
 </field>
 <field name="title" type="C" size="255"></field>
 <field name="description" type="X2"></field>
 <field name="fIDpicture" type="I"></field>

 <field name="categoryID" type="I"></field>
 </table>

 <table name="btProductInformationCategories">

 <field name="categoryID" type="I">

 <autoincrement />

 <key />

 <unsigned />

 </field>

 <field name="category" type="C" size="255"></field>

 <index name="btProductInformationCategories_IX">

 <descr>Makes sure the categories are unique</descr>

 <col>category</col>

 <unique />

 </index>

 </table>

 <sql>

 <query>REPLACE INTO btProductInformationCategories(category)
 VALUES ('Top-Notch')</query>

 <query>REPLACE INTO btProductInformationCategories(category)
 VALUES ('Junk Goods')</query>

 </sql>

 </schema>

Creating Your Own Add-on Block

[192]

2.	 Next, open controller.php and add a new method which returns a list
of categories:

function getCategories() {
 $db = Loader::db();
 return $db->GetAssoc('SELECT categoryID,category FROM
btProductInformationCategories ORDER BY category');
}

3.	 Finally, we have to make sure that the form contains a drop-down with our
categories, open form_setup_html.php and add the following code at the
end, but make sure that you remove the closing PHP tag ?> first:

echo '<div class="ccm-block-field-group">';
echo '<h2>' . t('Category') . '</h2>';
echo $form->select('categoryID', $this->controller-
>getCategories(), $categoryID);
echo '</div>';
?>

What just happened?
A few modifications to add categories to our product information, starting with the
database model:

A new column to the existing table, which references to the Primary Key of our new
table btProductInformationCategories.

The new table with a numeric, incrementing Primary Key.

A single text field to hold the name of the category.

A small code to get the categories from the database—here we have to make sure the
array is returned in the correct way. The PHP array must have the following structure. This
is important because the array key (in angle brackets) must match the Primary Key of the
categories table:

Array
(
 [14] => Junk Goods
 [13] => Top-Notch
)

The method GetAssoc returns this structure if your query only returns two columns. If you
haven't worked with ADOdb before, you might want to look at the documentation first at
http://phplens.com/lens/adodb/docs-adodb.htm.







Chapter 8

[193]

Next, we used another method from the form helper to print a drop-down menu using the
preceding structure. By modifying the dialog we're already done, have a look at the new
dialog and you'll see the new feature in your block.

If you want to get an overview of the available helper methods you can use
to get access to the concrete5 default widgets, you should have a look at the
following web pages:

http://www.concrete5.org/documentation/developers/
forms/standard-widgets

http://www.concrete5.org/documentation/developers/
forms/concrete5-widgets.

Have a go hero – getting more information about blocks
We've created our first basic block. If you've already got a good feeling about these steps,
you might want to dig a bit deeper into the way blocks work. Where can you find more
information?

The official developer documentation is always a good start. You can find it at http://www.
concrete5.org/documentation/developers/. Look at the sections Blocks and Helpers
if you want to get more background information about the topics discussed in this chapter.
You'll get more information about helpers during the next few chapters, which you can use
for blocks as well as other add-ons like packages or themes.

It's not everyone's favorite, but the actual source code is more up to date than any book
or documentation. Try to get a picture of the files found in concrete5. If you remember, we
derived all our block controllers from BlockController, which you can find in concrete/
libraries/block_controller.php. This is where you'll find all the methods you
override in your block controller. If you're working on view.php, you should know that
you're working on an object instantiated from BlockView, which you can find in the same
directory too.

Product list
Wouldn't it be handy if we could create a list of all product information blocks in our
website? Creating a list of products or news? Just like we can with the page list block
which comes with the core? Sure we can, but we have to create another block.

Creating Your Own Add-on Block

[194]

Handling multiple �������������� block��������� versions
However, before we can start building this block, we have to make a few more modifications
to our product information block. Remember the explanation about bID at the beginning
of this chapter—every time a block content is updated, a new data record is created. This
means that after a few updates, we've got more table records than actual blocks we'd like to
show in our list.

There are several options to get around this problem:

We could dig into the database model of concrete5 and see where it stores the
information about page and block versions. This would certainly work, but as we
wouldn't be using an official API, it's possible that our code would be broken in a
future version of concrete5. Bad idea, but in case you're still wondering, have a look
at the table BlockRelations.

There's an attribute in the block controller that we can set to disable the concrete5
version control. This works by setting btIncludeAll to 1, just like you set the table
name by using btTable. This would certainly work as well, but users of concrete5
are quite likely going to expect that you don't break any core functionality like the
version control—let's skip this idea and look at a more sophisticated way.

Time for action – handling multiple block versions
We're going to add an attribute to our table to manage the replacement of block versions. In
our product list, we can see for this attribute to check if a block has been replaced.

1.	 Add a new table column by adding the following modification to db.xml; please
note, the code only shows a part of the actual file:

 <table name="btProductInformation">
 <field name="bID" type="I">
 <key />
 <unsigned />
 </field>
 <field name="title" type="C" size="255"></field>
 <field name="description" type="X2"></field>
 <field name="fIDpicture" type="I"></field>
 <field name="categoryID" type="I"></field>

 <field name="replacesBlockID" type="I"></field>
 <index name="btProductInformation_IX1">
 <descr>Makes sure replacment lookups perform well</descr>
 <col>replacesBlockID</col>
 <unique />
 </index>

</table>





Chapter 8

[195]

2.	 In controller.php, add the following duplicate method to the block
controller class:

function duplicate($newbID) {
 parent::duplicate($newbID);

 $db = Loader::db();
 $db->Execute('UPDATE btProductInformation SET replacesBlockID=?
WHERE bID=?',array($this->bID,$newbID));
}

What just happened?
We had to add a column to our block to be able to fetch the correct block version, the one
which is currently active on the page. The internal method duplicate is called when a
block is edited. In order to make sure the old version isn't removed, the block content ID is
duplicated before it's presented to the user to make changes.

In your XAMPP Control Panel, there's a button named Admin next to MySql. When you click
on it, you'll directly get to the phpMyAdmin installed with XAMPP. When you click on the
table btProductInformation, you'll see a screen like the following:

On this screenshot, you can see that the versions 73 and 74 have been replaced. Their IDs
have been saved in the column replacesBlockID for each corresponding successor. We are
going to use this information to present a list of all active block versions, in this case the
entry with the bID 76.

Creating Your Own Add-on Block

[196]

Creating a product list block
In this part, we're going to create another block from scratch which depends on the first
block. It simply pulls information from it and creates a list. At the end, we're going to have
a block which creates a simple list along with a link to get to the detail, which looks like
the following:

Time for action – creating the product list block
Carry out the following steps:

1.	 Create a new directory in blocks named product_list. We start with the
database model. Create a new file named db.xml in the new directory with the
following content:

<?xml version="1.0"?>
<schema version="0.3">
 <table name="btProductList">
 ��������������������������� <field name="bID" type="I">
 <key />
 <unsigned />
 </field>
 <field name="categoryID" type="I"></field>
 </table>
</schema>

2.	 Create another file named controller.php:

<?php
defined('C5_EXECUTE') or die(_("Access Denied."));
class ProductListBlockController extends BlockController {

 protected $btTable = 'btProductList';

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 8

[197]

 protected $btInterfaceWidth = "250";
 protected $btInterfaceHeight = "110";

 public function getBlockTypeDescription() {
 return t("Embeds a Product List in your web page.");
 }

 public function getBlockTypeName() {
 return t("Product List");
 }

 function getCategories() {
 $db = Loader::db();
 return $db->GetAssoc('SELECT categoryID,category
 FROM btProductInformationCategories ORDER BY category');
 }

 function getProducts() {
 $db = Loader::db();
 $blocks = array();

 // select all block instances which haven't been replaced
 $rs = $db->Execute('SELECT bID FROM btProductInformation bpi
 WHERE categoryID = ? AND NOT EXISTS (SELECT 1 FROM
 btProductInformation bpi_sub WHERE bpi.bID=bpi_sub.
 replacesBlockID)', array($this->categoryID));

 if ($rs) {
 while ($row = $rs->FetchRow()) {
 $blocks[] = Block::getByID($row['bID']);
 }
 }

 return $blocks;
 }
}
?>

3.	 Create two more files, add.php and edit.php. Both of them have
identical content:

<?php
defined('C5_EXECUTE') or die(_("Access Denied."));
$this->inc('form_setup_html.php');
?>

Creating Your Own Add-on Block

[198]

4.	 Create another file named form_setup_html.php with the following content; it's
the actual form which is used by add.php and edit.php:

<?php
defined('C5_EXECUTE') or die(_("Access Denied."));

$al = Loader::helper('concrete/asset_library');

echo '<div class="ccm-block-field-group">';
echo '<h2>' . t('Category') . '</h2>';
echo $form->select('categoryID', $this->controller->getCategories(),
 $categoryID, array('style' => 'width:235px;'));
echo '</div>';
?>

5.	 The last file, view.php, is going to print a list built within the controller:

<hr/>

<?php
defined('C5_EXECUTE') or die(_("Access Denied."));

$nh = Loader::helper('navigation');

$products = $this->controller->getProducts();
foreach ($products as $product) {
 $pageLink = $nh->getLinkToCollection
 ($product->getOriginalCollection());

 echo "<h2>{$product->instance->title}</h2>";
 echo "more...";
 echo "<hr/>";

}
?>

What just happened?
Let's go through the last section step by step:

db.xml, this file is rather simple. There's the mandatory bID because we're linking
this table to the block controller. And there's a numeric field to reference the
category for which we'd like to show the products.



Chapter 8

[199]

controller.php, beside the already known methods and properties at the
beginning, there are only two methods: getCategories, which is redundant to
the previous block and getProducts, which returns an array of blocks matching
our selection. We're not only getting the values from the database, we're using
Block::getByID to get a PHP object instead because it allows us to call any block
method we like.

add.php, edit.php, and form_setup_html.php are almost identical to the
previous block. The form is just simpler since we only have one element in it.

view.php, this file simply loops through the array generated by the controller
method getProducts. There's another helper, navigation, which has been used
several times in our autonav templates. We use it to create a link from our
page object.

Have a go hero – extend product list
The blocks we've created are working fine, but they aren't really finished. There are lots of
features we could add to improve them. It's not part of this book to go into every possible
detail; you've just been given an introduction to blocks. Now it's time to be creative and add
some more features—a few ideas:

Create more templates, a product list which prints a thumbnail, and maybe show
the first few words from the description

Add or modify the fields and turn the blocks into a news, calendar, FAQ application,
and so on

Allow the user to change the sort order of the product list

The possibilities are almost infinite; you'll find more ideas in no time.

Picture ���������magnifier
We've looked at several jQuery plugins when we created block templates, let's create
an add-on from scratch which bases on a jQuery plugin named jQZoom by Marco Renzi
available at http://www.mind-projects.it/projects/jqzoom/.













Creating Your Own Add-on Block

[200]

Time for action – creating the picture magnifier block
Carry out the following steps:

1.	 Create a new folder named jqzoom in blocks as we did before.

2.	 Download the plugin from the preceding link and copy the images directory to our
new folder. Do the same with the css directory and js but make sure there's just
one file in js named jqzoom.pack.1.0.1.js.

3.	 Create two files, add.php and edit.php, with the same content as always:

<?php
defined('C5_EXECUTE') or die(_("Access Denied."));
$this->inc('form_setup_html.php');
?>

4.	 The database structure file db.xml is quite simple:

<?xml version="1.0"?>
<schema version="0.3">
 <table name="btJqzoom">
 ��������������������������� <field name="bID" type="I">
 <key />
 <unsigned />
 </field>
 <field name="title" type="C" size="255"></field>
 <field name="fIDpicture" type="I"></field>
 </table>
</schema>

5.	 The block controller also is quite simple:

<?php
defined('C5_EXECUTE') or die(_("Access Denied."));
class JqzoomBlockController extends BlockController {

 protected $btTable = 'btJqzoom';
 protected $btInterfaceWidth = "590";
 protected $btInterfaceHeight = "450";

 public function getBlockTypeDescription() {
 return t("Embeds a picture magnifier in your page.");
 }

 public function getBlockTypeName() {

Chapter 8

[201]

 return t("jQZoom Picture");
 }

 public function getJavaScriptStrings() {
 return array(
 'image-required' => t('You must select an image.')
);
 }

 function getPicture() {
 if ($this->fIDpicture > 0) {
 return File::getByID($this->fIDpicture);
 }
 return null;
 }
}
?>

6.	 Next, we have to create the form used by add.php and edit.php:

<?php
defined('C5_EXECUTE') or die(_("Access Denied."));

$al = Loader::helper('concrete/asset_library');

echo '<div class="ccm-block-field-group">';
echo '<h2>' . t('Title') . '</h2>';
echo $form->text('title', $title, array('style' =>
 'width: 550px'));
echo '</div>';

echo '<div class="ccm-block-field-group">';
echo '<h2>' . t('Picture') . '</h2>';
echo $al->image('ccm-b-image', 'fIDpicture', t('Choose File'),
 $this->��������������������������controller����������������->getPicture());
echo '</div>';

?>

7.	 And of course, view.php, which prints the HTML structure used by jQZoom:

<div class="ccm-jqzoom">

<?php
$html = Loader::helper('html');
$image = Loader::helper('image');

Creating Your Own Add-on Block

[202]

$picture = $this->controller->getPicture();

if ($picture) {
 $bigPicture = $image->getThumbnail($picture,800,800)->src;
 $smallPicture = $image->getThumbnail($picture,200,200)->src;

 echo "controller->title}\"
 �������������������������href���������������������=\"{$bigPicture}\">";
 echo "<img src=\"{$smallPicture}\" alt=\"\" title=\"{$this-
 >������������������������controller��������������->title}\"/>";
 echo "";
}
?>

</div>

8.	 Since we've included a jQuery plugin, we have to make sure it's loaded as well;
create view.js with the following content:

$(document).ready(function(){
 if (!CCM_EDIT_MODE) {
 $('.jqzoom').jqzoom({
 showEffect: 'fadein',
 hideEffect: 'fadeout',
 fadeinSpeed: 'slow',
 fadeoutSpeed: 'normal',
 imageOpacity: 0.25,
 zoomWidth: 200,
 zoomHeight: 200
 });
 }
});

9.	 Save all the files and install the block in Add Functionality; place it wherever you
want on your site.

What just happened?
If you placed the block on your page, you'll see a small thumbnail and a magnified picture
on the right if you move your mouse over it. A simple but nice effect to get a closer look at
a picture:

Chapter 8

[203]

There are two files we want to have a closer look at:

view.php, this time there are two thumbnails in it and not just one. Why?
Sometimes people upload huge pictures, especially in times when even a cheap
camera can take pictures twice as big as your screen. By restricting the size of both
pictures, we can make sure that won't cause any problems on your site.

view.js, first, there's a variable CCM_EDIT_MODE, which we haven't used before.
By checking this variable, we can make sure that the jQuery plugin effect won't
cause any problems with the in-site editing concept. This can happen from time
to time. Disabling the effect in the edit mode is usually the easiest thing to do and
doesn't cause any problems.

The jQZoom plugin has several options, and in order to keep things simple, we didn't create a
user interface for all of them. If you want to change the properties, you currently have to do
this by modifying view.php and view.js. Unless you don't want to create an interface for
all the properties.

PDF generation block
HTML and the technologies which you can embed, offer a vast number of possibilities to
create almost anything you want. Whether it's a game, an application, or just a website,
there's a tool for it. However, even with the growing number of web technologies, printing is
still easier and more reliable if you've got a PDF file.

In this part, we're going to create a block which will simply print the word PDF, but in the
background, it's going to create a PDF on the fly. Let's take a look—you'll be surprised how
few steps we're going to need for this block!





Creating Your Own Add-on Block

[204]

Time for action – creating the PDF generation block
Carry out the following steps:

1.	 Create a new folder in blocks named pdf. In this folder, create the db.xml file like
we did before:

<?xml version="1.0"?>
<schema version="0.3">
 <table name="btPdf">
 ��������������������������� <field name="bID" type="I">
 <key />
 <unsigned />
 </field>
 </table>
</schema>

2.	 Create add.php and edit.php again; the content is again the same:

<?php
defined('C5_EXECUTE') or die(_("Access Denied."));
$this->inc('form_setup_html.php');
?>

3.	 The forth file form_setup_html.php doesn't have any options in this case; it's
even simpler than before:

<?php
defined('C5_EXECUTE') or die(_("Access Denied."));
?>
No options here!

4.	 As easy is controller.php, with just the mandatory things in it—no logic or
anything else:

<?php
defined('C5_EXECUTE') or die(_("Access Denied."));
class PdfBlockController extends BlockController {

 protected $btTable = 'btPdf';
 protected $btInterfaceWidth = "200";
 protected $btInterfaceHeight = "140";

 public function getBlockTypeDescription() {
 return t("Add a PDF-Generation link in your web page.");
 }

Chapter 8

[205]

 public function getBlockTypeName() {
 return t("PDF Generator");
 }
}
?>

5.	 Here's a new element. As generating PDF files isn't that easy, we're going to use
a library for this. Go to http://mpdf.bpm1.com/ and download the latest ZIP
version (at the time of writing the latest is Version 5.1). Extract the ZIP file in
libraries but make sure it's the one in the root, not in the folder concrete.

6.	 Another new element, we're going to create a tool which we're calling from the
block; you'll see how it comes together in the next step, but for now, just create a
file named generate_pdf.php in the tools folder in the root of your site, not in
blocks, and put the following lines in it:

<?php
defined('C5_EXECUTE') or die(_("Access Denied."));

Loader::library('mpdf50/mpdf');
$fh = Loader::helper('file');

$header = <<<EOT
<style type="text/css">
 body { font-family: Helvetica, Arial; }
 h1 { border-bottom: 1px solid black; }
</style>
EOT;

$url = $_REQUEST['p'];
$content = $fh->getContents($url);
$content = preg_replace("/.*<body>|<\/body>.*/si", "", $content);
$content = preg_replace("/<!--hidden_in_pdf_start-->.*?<!--hidden_
in_pdf_end-->/siu", "", $content);

$mpdf=new mPDF('utf-8','A4');
$mpdf->showImageErrors = true;
$mpdf->SetCreator('PDF by concrete5');
$mpdf->useOnlyCoreFonts = true;
$mpdf->setBasePath($url);
$mpdf->WriteHTML($header . $content);
$mpdf->Output();
?>

Creating Your Own Add-on Block

[206]

7.	 Next, we have to create view.php to print a link which generates the PDF file. In
this case, we're printing a simple text link, but feel free to replace it with an icon:

<!--hidden_in_pdf_start-->
<?php
defined('C5_EXECUTE') or die(_('Access Denied.'));

$nh = Loader::helper('navigation');
$url = Loader::helper('concrete/urls');

$toolsUrl = $url->getToolsURL('generate_pdf');
$toolsUrl .= '?p=' . rawurlencode($nh->getLinkToCollection(
 $this->c, true));

echo "PDF";

?>
<!--hidden_in_pdf_end-->

8.	 When you print a PDF generated from your webpage, you probably don't want to
include all elements from the website. An element like the navigation might be
useless on a paper; no one can click on links printed on a paper. If you want to hide
the navigation in the PDF, you can edit header.php from your theme, which in case
you followed every chapter is located in themes/c5book/elements and insert the
highlighted lines:

<div id="wrapper">
 <div id="page">

 <!--hidden_in_pdf_start-->

 <div id="header_line_top"></div>
 <div id="header">
 <?php
 $a = new Area('Header Nav');
 $a->display($c);
 ?>
 </div>
 <div id="header_line_bottom"></div>

 <!--hidden_in_pdf_end-->

9.	 Once you've saved all the files, you can place the block anywhere you want and click
on it to generate a PDF.

Chapter 8

[207]

What just happened?
The block we created has only a few lines of code. Most of the problems have already been
solved by using mPDF, which does most of the magic in this little add-on. When you click on
the link, you should immediately see a page like the following:

There are a bunch of new files, most of them quite small, but there are a few things we
should have a look at:

generate_pdf.php
The file which calls mPDF contains two regex patterns to filter the content from the page.
The first one /.*<body>|<\/body>.*/si makes sure we only get the body and ignore the
header, as we don't want to include any of the styles from the website layout. This allows us
to style the PDF the way we want.

There's another regex pattern /<!—hidden_in_pdf_start-->.*?<!-- hidden_in_
pdf_end-->/siu to hide everything between the two HTML comments. It's what gets rid
of the navigation header in our step by step example.

At the beginning of the file are a few CSS rules. The mPDF library supports an impressive
number of CSS features. In our example, there's a rule to change the font and one to add a
line to the main headings, but there's a lot more you can do with CSS.

Creating Your Own Add-on Block

[208]

There are also a few HTML elements which you can put in the file to add page headers or
footers, a PDF table of contents, and page breaks. They aren't part of the official HTML
standard, and unless you've worked with mPDF before, you won't know about them. If
you want to get the most out of your PDF, you should probably have a look at the official
documentation available at http://mpdf1.com/manual/index.php.

view.php
The block template starts with the comment we already used to hide the navigation. We also
use this to hide the link to generate a PDF from the PDF once it has been created.

There's another helper urls, which has a function named getToolsURL that we use to
generate a link to our PDF generating tool. Whenever you want to directly call a PHP file in
concrete5, you should consider putting it in the tools directory like we just did. While
you can certainly call a PHP file directly from concrete5, you won't get access to the
concrete5 framework features, you can't use the models, helpers, or anything else
offered by the framework.

FTP gallery
We already created a few galleries on top of the slideshow block available by default. While
the file manager offers a bunch of nice features, some of you might still like to work with FTP
like we did in the old times without databases.

You can upload files using FTP into the incoming folder, which you can find in /files and
import them right into the file manager by using the little Upload Multiple link in the top
right corner of the file manager next to the Upload button. This certainly works, but what
happens if you want to move all the files into a different directory or delete or replace some
of the files using your favorite FTP client?

Now we're going to create another picture gallery, which uses the same jQuery lightbox
script which we've used before. You can find it at http://leandrovieira.com/
projects/jquery/lightbox/. You should have a bit more PHP experience in this one
as we create a few more lines of code in this example. This time we're going to create
everything from scratch and ignore the built-in file manager; we're going to get our
pictures straight from file system directories.

Chapter 8

[209]

The directory shown in the preceding screenshot will generate a gallery like that shown in
the following screenshot:

Time for action – creating the FTP based picture gallery
Carry out the following steps:

1.	 We start with a two new directories—one named ftp_gallery in blocks and
another named ftp_gallery but this time in files. Putting our pictures in
a directory underneath files has the advantage that we're less likely to have
problems with directory permissions as the files directory has to be writable
and concrete5 checked that during the installation.

2.	 The lightbox script files we need can be copied from the previous template, which
you can find in blocks/slideshow/templates/gallery; only the directories
css, js, and images are needed. If you haven't created that template, download
the script from http://leandrovieira.com/projects/jquery/lightbox/
and extract all the three directories from the ZIP file. However, remove all
JavaScripts except jquery.lightbox-0.5.min.js.

Creating Your Own Add-on Block

[210]

3.	 Both files, add.php and edit.php, are identical again:

<?php
defined('C5_EXECUTE') or die(_("Access Denied."));
$this->inc('form_setup_html.php');
?>

4.	 Next, the database table structure, as always, must be placed in a file named
db.xml:

<?xml version="1.0"?>
<schema version="0.3">
 <table name="btFtpGallery">
 <field name="bID" type="I">
 <key />
 <unsigned />
 </field>
 <field name="title" type="C" size="255"></field>
 <field name="directory" type="C" size="255"></field>
 <field name="thumbnailWidth" type="I"></field>
 <field name="thumbnailHeight" type="I"></field>
 </table>
</schema>

5.	 Next, we're going to create the controller.php; beside the mandatory stuff,
there are just two methods in it: getAlbums, which is used in the edit form to
display all available albums and getPictures, which is later used in view.php
to print the output:

<?php
defined('C5_EXECUTE') or die(_("Access Denied."));
class FtpGalleryBlockController extends BlockController {

 protected $btTable = 'btFtpGallery';
 protected $btInterfaceWidth = "290";
 protected $btInterfaceHeight = "225";

 public function getBlockTypeDescription() {
 return t("Embeds a Gallery in your web page.");
 }

 public function getBlockTypeName() {
 return t("FTP Gallery");
 }

 function view()

Chapter 8

[211]

 {
 $this->set('pictures', $this->getPictures());
 }
 /**
 * Returns a list of all albums (directories)
 * but skips the current and parent folder (. and ..)
 */
 function getAlbums()
 {
 $directories = scandir(DIR_FILES_UPLOADED . '/ftp_gallery/');
 $ret = array();
 foreach ($directories as $directory) {
 if ($directory == '.' || $directory == '..') continue;
 $ret[$directory] = $directory;
 }
 return $ret;
 }

 /**
 * Returns all pictures in the currently selected album
 * The return value is an array of a structure with these
 * elements: rel_file, thumbnail_rel_file, file_name
 */
 function getPictures()
 {
 $ih = Loader::helper('image');

 $galleryRelDirectory = DIR_REL . '/files/ftp_gallery/';
 $galleryDirectory = DIR_FILES_UPLOADED . '/ftp_gallery/' .
 $this->directory . '/';
 $galleryThumbnailDirectory = DIR_FILES_UPLOADED .
 '/ftp_gallery/' . $this->directory . '/thumbnails/';

 // create thumbnail directory if it doesn't exist
 if (!file_exists($galleryThumbnailDirectory)) {
 mkdir($galleryThumbnailDirectory);
 }

 // get all supported image formats
 $files = glob($galleryDirectory . '*.{jpg,gif,png}',
 GLOB_BRACE);

 // sort files ascending by modification date
 array_multisort(

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Creating Your Own Add-on Block

[212]

 array_map('filemtime',$files),
 SORT_NUMERIC,
 SORT_ASC,
 $files
);

 $pictures = array();
 foreach ($files as $file) {
 $pathInfo = pathinfo($file);

 $thumbnailFilename = $pathInfo['filename'] . '_' . $this-
 >thumbnailWidth . '_' . $this->thumbnailHeight . '.' .
 $pathInfo['extension'];
 $thumbnailFile = $galleryThumbnailDirectory .
 $thumbnailFilename;

 // create thumbnail if it doesn't exist
 if (!file_exists($thumbnailFile)) {
 $ih->create($file, $thumbnailFile, $this-
 >thumbnailWidth, $this->thumbnailHeight);
 }

 // build relative paths to files
 $relFile = $galleryRelDirectory . $this->directory . '/'
 . utf8_encode($pathInfo['basename']);
 $thumbnailRelFile = $galleryRelDirectory .
 $this->directory . '/thumbnails/' .
 utf8_encode($thumbnailFilename);
 $fileName = utf8_encode($pathInfo['filename']);

 // create array with all relevant data we have to process
 in view.php
 $pictures[] = array(
 'rel_file' => $relFile,
 'thumbnail_rel_file' => $thumbnailRelFile,
 'file_name' => $fileName
);
 }
 return $pictures;
 }
}
?>

Chapter 8

[213]

6.	 The form used to enter the block properties is rather simple if you had a look at the
previous examples. There's just one additional part to make sure there's a value
when adding a new block, but otherwise it's nothing but standard form widgets:

<?php
defined('C5_EXECUTE') or die(_("Access Denied."));

// set default value when adding a new block instance
if (!$thumbnailWidth || $thumbnailWidth < 1)
 $thumbnailWidth = 180;
if (!$thumbnailHeight || $thumbnailHeight < 1)
 $thumbnailHeight = 120;

echo '<div class="ccm-block-field-group">';
echo '<h2>' . t('Title') . '</h2>';
echo $form->text('title', $title, array('style' =>
 'width: 255px'));
echo '</div>';

echo '<div class="ccm-block-field-group">';
echo '<h2>' . t('Directory') . '</h2>';
echo $form->select('directory', $this->controller->getAlbums(),
 $directory, array('style' => 'width:265px;'));
echo '</div>';

echo '<div class="ccm-block-field-group">';
echo '<h2>' . t('Thumbnail Dimension') . '</h2>';
echo $form->label('labelThumbnailWidth', 'Width (px) ');
echo $form->text('thumbnailWidth', $thumbnailWidth,
 array('style' => 'width: 60px'));
echo $form->label('labelThumbnailHeight', ' Height (px) ');
echo $form->text('thumbnailHeight', $thumbnailHeight,
 array('style' => 'width: 60px'));
echo '</div>';

?>

7.	 In order to get some output from our block, we have to create the standard
template view.php:

<div class="ftp-gallery">
<?php
defined('C5_EXECUTE') or die(_("Access Denied."));

echo "<h2>{$title}<h2>";

Creating Your Own Add-on Block

[214]

foreach ($pictures as $picture) {
 echo "<a href=\"{$picture['rel_file']}\"
 title=\"{$picture['file_name']}\"><img
 src=\"{$picture['thumbnail_rel_file']}\" alt=\"\"/>";
}

?>
</div>

8.	 In order to initialize the lightbox script, we have to create a JavaScript file which is
automatically loaded as soon as the block has been placed on the page, view.js
like the previous files, directly in the directory of our block:

$(document).ready(function() {
 $(".ftp-gallery a").lightBox({
 imageBtnPrev: CCM_REL +
 "/blocks/ftp_gallery/images/lightbox-btn-prev.gif",
 imageBtnNext: CCM_REL +
 "/blocks/ftp_gallery/images/lightbox-btn-next.gif",
 imageLoading: CCM_REL +
 "/blocks/ftp_gallery/images/lightbox-ico-loading.gif",
 imageBtnClose: CCM_REL +
 "/blocks/ftp_gallery/images/lightbox-btn-close.gif",
 imageBlank: CCM_REL + "/blocks/ftp_gallery/images/lightbox-
 blank.gif",
 fixedNavigation: true,
 overlayBgColor: '#000',
 overlayOpacity: 0.8,
 });
});

9.	 It's not really a must but the gallery is going to look better if you create another
automatically included file named view.css with this content:

.ftp-gallery img {
 border: 0px;
 margin: 10px 10px 0px 0px;
}

10.	Once you've created all the files, go to the dashboard and on the subpage Add
Functionality, click on Install next to our new block.

Chapter 8

[215]

What just happened?
This time, we needed a bit more time and code, but mostly because of the PHP code to
handle the files, the concrete5 related code is still rather small. You can now go to files/
ftp_gallery and create a new subdirectory. Put all the pictures in this directory and go to
the concrete5 page where you'd like to place this gallery.

Select the directory, enter a title of your choice, and specify the maximum thumbnail size in
the following dialog:

Once you've clicked on Update, it will take a bit of time, since the thumbnails have to be
generated. However, do not worry; your visitors won't have to wait that long, as it happens
only when you add new pictures.

With the assumption that you have created some PHP websites and applications before,
there's really not much in this little add-on that you haven't done before. We just had to
make sure our code followed the proper concrete5 structure, which by now should be
pretty familiar.

Have a go hero – adding more gallery options
If you look at view.js we just created, you can see a few parameters in it, which are static.
Using the last three parameters, you could change the overlay������������������������������ color������������������������ , the opacity, and make
sure that the next and previous buttons are always visible in the gallery.

You could also try to use a different gallery script or add a text file to each directory from
which you fetch a description. Try to add support for subdirectories in order to allow users
to put subalbums in their album to split huge picture collections into several parts.

Creating Your Own Add-on Block

[216]

Summary
We created a few basic blocks; you should have gotten a first impression about the way
to build a block. Whether you build simple or more complicated blocks, the process we've
looked at stays pretty much the same. Depending on your background, things might be a bit
confusing at this point but take some time to go through these examples and you'll realize
they all work more or less the same way. You can also go and download some add-ons from
the marketplace or anywhere else on the Internet. There are always a few common elements
in concrete5 blocks. Once you understand them, it shouldn't be too difficult to use your PHP
and jQuery skill to come up with more advanced blocks.

Please note, we haven't looked at every method available, it's not a reference book. This
chapter was merely a collection of explanations about building blocks. If you're eager to
understand every detail of the concrete5 API, you have to dig a bit deeper. If you don't, just
remember the basic elements of a block—db.xml, which holds the structure of your tables,
add.php, and edit.php which are used when you're editing the page, controller.php
for the logic, and view.php for the visible things.

For the lazy ones, the complete source code created in this chapter can be found in the
4286_08_blocks.zip folder on the Packt website.

9
Everything in a Package

We created lots of different additions for concrete5 in the previous chapters.
The page layout has changed, as well as the block layout, and we even created
a completely new functionality from scratch.

While we were able to create and improve a lot of different things in concrete5
without touching the actual core files in the concrete directory, we might have
had to manually install several elements to get our functionality into a new
site. By using a package, we can wrap all the previously created elements into a
single directory, which can be installed by a single click on the dashboard.

What's a ��������package�?
Before we start creating our package, here are a few words about the functionality and
purpose of packages:

They can hold a single or several themes together

You can include blocks which your theme needs

You can check the requirements during the installation process in case your package
depends on other blocks, configurations, and so on

A package can be used to hook into events raised by concrete5 to execute custom
code during different kind of actions

You can create jobs, which run periodically to improve or check things in
your website











Everything in a Package

[218]

These are the most important things you can do with a package; some of it doesn't depend
on packages, but is easier to handle if you use packages. It's up to you, but putting every
extension in a package might even be useful if there's just a single element in it—why?

You never have to worry where to extract the add-on. It always belongs in the
packages directory

An add-on wrapped in a package can be submitted to the concrete5 marketplace
allowing you to earn money or make some people in the community happy by
releasing your add-on for free

Package ���������structure
We've already looked at different structures and you are probably already familiar with most
of the directories in concrete5. Before we continue, here are a few words about the package
structure, as it's essential that you understand its concept before we continue.

A package is basically a complete concrete5 structure within one directory. All the directories
are optional though. No need to create all of them, but you can create and use all of them
within a single package. The directory concrete is a lot like a package as well; it's just
located in its own directory and not within packages.

Package ����������controller
Like the blocks we've created, the package has a controller as well. First of all, it is used to
handle the installation process, but it's not limited to that. We can handle events and a few
more things in the package controller; there's more about that later in this chapter.

For now, we only need the controller to make sure the dashboard knows the package name
and description.

Time for action – creating the package controller
Carry out the following steps:

1.	 First, create a new directory named c5book in packages.

2.	 Within that directory, create a file named controller.php and put the following
content in it:

<?php
defined('C5_EXECUTE') or die(_("Access Denied."));

class c5bookPackage extends Package {





Chapter 9

[219]

 protected $pkgHandle = 'c5book';
 protected $appVersionRequired = '5.4.0';
 protected $pkgVersion = '1.0';

 public function getPackageDescription() {
 return t("Theme, Templates and Blocks from concrete5 for
 Beginner's");
 }

 public function getPackageName() {
 return t("c5book");
 }

 public function install() {
 $pkg = parent::install();
 }
}
?>

3.	 You can create a file named icon.png 97 x 97 pixels with 4px rounded transparent
corners. This is the official specification that you have to follow if you want to upload
your add-on to the concrete5 marketplace.

4.	 Once you've created the directory and the mandatory controller, you can go to your
dashboard and click on Add Functionality. It looks a lot like a block but when you
click on Install, the add-on is going to appear in the packages section.

Everything in a Package

[220]

What just happened?
The controller we created looks and works a lot like a block controller, which you should
have seen and created already. However, let's go through all the elements of the package
controller anyway, as it's important that you understand them:

pkgHandle: A unique handle for your package. You'll need this when you access
your package from code.

appVersionRequired: The minimum version required to install the add-on.
concrete5 will check that during the installation process.

pkgVersion: The current version of the package. Make sure that you change the
number when you release an update for a package; concrete5 has to know that it is
installing an update and not a new version.

getPackageDescription: Returns the description of your package. Use the t-
function to keep it translatable.

getPackageName: The same as above, just a bit shorter.

install: You could remove this method in the controller above, since we're only
calling its parent method and don't check anything else. It has no influence, but we'll
need this method later when we put blocks in our package. It's just a skeleton for
the next steps at the moment.

Pop quiz
1.	 In order to know if you have or want to build a package, you should know what you

can do with a package. Try to think of elements which can be part of a package.

a.	 A package can contain one or several blocks as well as block templates.

b.	 You can include themes and their page types in a package.

c.	 A package can contain a maintenance job which is executed regularly for
period checks, updates, and so on.

d.	 You can include a third-party library in a package.

2.	 Which of the following things can you do within a package?

a.	 You can catch events by concrete5 to hook into core processes like
executing custom code up on user addition, page modifications, and so on.

b.	 You can create a custom installation method to make sure all dependencies
are met before the add-on is installed. You can also use it to add objects
needed by your add-on like page types, sample pages, attributes, and a
lot more.

c.	 You can extend the uninstall method to assure that all traces of your
add-on are deleted properly.













Chapter 9

[221]

Moving templates into package
Remember the templates we've created? We placed them in the top level blocks directory.
Worked like a charm but imagine what happens when you create a theme which also needs
some block templates in order to make sure the blocks look like the theme? You'd have to
copy files into the blocks directory as well as themes. This is exactly what we're trying to
avoid with packages.

It's rather easy with templates; they work almost anywhere. You just have to copy the
folder slideshow from blocks to packages/c5book/blocks, as shown in the
following screenshot:

This step was even easier than most things we did before. We simply moved our templates
into a different directory—nothing else.

concrete5 looks for custom templates in different places like:

concrete/blocks/<block-name>/templates

blocks/<block-name>/templates

packages/<package-name>/blocks/<block-name>/templates

It doesn't matter where you put your templates, concrete5 will find them.







Everything in a Package

[222]

Moving ���������������������������������� theme����������������������������� s and blocks into the package
Now that we've got our templates in the package, let's move the new blocks we've created
into that package as well. The process is similar, but we have to call a method in the installer
which installs our block. concrete5 does not automatically install blocks within packages.

This means that we have to extend the empty install method shown earlier.

Before we move the blocks into the package you should remove all blocks first. To do this,
go to your dashboard, click on Add Functionality, click on the Edit button next to the block
you want to move, and click on the Remove button in the next screen. We'll start with the
jqzoom block.

Please note; removing a block will of course, remove all the blocks you've added
to your pages. Content will be lost if you move a block into a package after
you've already used it.

Time for action – moving jQZoom block into the package
Carry out the following steps:

1.	 As mentioned earlier, remove the jqzoom block from you website by using the Add
Functionality section in your dashboard.

2.	 Move the directory blocks/jqzoom to packages/c5book/blocks.

3.	 Open the package controller we created a few pages earlier; you can find it at
packages/c5book/controller.php. The following snippet shows only a part
of the controller, the install method. The only thing you have to do is insert the
highlighted line:

public function install() {

 $pkg = parent::install();

 // install blocks

 BlockType::installBlockTypeFromPackage('jqzoom', $pkg);

}

4.	 Save the file and go to your dashboard again. Select Add Functionality and locate
the c5book package; click on Edit and then Uninstall Package and confirm the
process on the next screen. Back on the Add Functionality screen, reinstall the
package again, which will automatically install the block.

Chapter 9

[223]

What just happened?
Besides moving files, we only had to add a single line of code to our existing package
controller. This is necessary, because blocks within packages aren't automatically installed.
When installing a package, only the install method of the controller is called, exactly the
place where we hook into and install our block.

The installBlockTypeFromPackage method takes two parameters: The block handle
and the package object. However, this doesn't mean that packages behave like namespaces.
What does this mean?

A block is connected to a package. This is necessary in order to be able to uninstall
the block when removing the package along with some other reasons.

Even though there's a connection between the two objects, a block handle must be
unique across all packages.

You've seen that we had to remove and reinstall the package several times while we only
moved a block. At this point, it probably looks a bit weird to do that, especially as you're
going to lose some content on your website.

However, when you're more familiar with the concrete5 framework, you'll usually know if
you're going to need a package and make that decision before you start creating new blocks.
If you're still in doubt, don't worry about it too much and create a package and not just a
block. Using a package is usually the safest choice.

Don't forget that all instances of a block will be removed from all pages when
you uninstall the block from your website. Make sure your package structure
doesn't change before you start adding content to your website.

Time for action – moving the PDF block into the package
Some blocks depend on helpers, files and libraries, which aren't in the block directory. The
PDF generator block is such an example. It depends on a file found in the tools directory in
the root of your concrete5 website. How do we include such a file in a package?

1.	 Move the pdf directory from blocks to packages/c5book/blocks since we also
want to include the block in the package.

2.	 Locate the c5book directory within packages and create a new subdirectory
named tools.

3.	 Move generate_pdf.php from tools to packages/c5book/tools.

4.	 Create another directory named libraries in packages/c5book.





Everything in a Package

[224]

5.	 Move the mpdf50 from libraries to packages/c5book/libraries.

As we've moved two objects, we have to make sure our code looks for them in
the right place. Open packages/c5book/tools/generate.php and look for
Loader::library at the beginning of the file. We have to add a second parameter
to Loader::library, as shown here:

<?php
defined('C5_EXECUTE') or die(_("Access Denied."));

 Loader::library('mpdf50/mpdf', 'c5book');

 $fh = Loader::helper('file');

$header = <<<EOT
<style type="text/css">
 body { font-family: Helvetica, Arial; }
 h1 { border-bottom: 1px solid black; }
</style>

EOT;

6.	 Next, open packages/c5book/blocks/pdf/view.php. We have to add the
package handle as the second parameter to make sure the tool file is loaded from
the package.

<!--hidden_in_pdf_start-->
<?php
defined('C5_EXECUTE') or die(_('Access Denied.'));

$nh = Loader::helper('navigation');
$url = Loader::helper('concrete/urls');

 $toolsUrl = $url->getToolsURL('generate_pdf', 'c5book');

$toolsUrl .= '?p=' . rawurlencode($nh->getLinkToCollection($this-
 >c, true));

echo "PDF";

?>
<!--hidden_in_pdf_end-->

Chapter 9

[225]

What just happened?
In the preceding example, we put got a file in the tools directory and a PDF generator in
the libraries directory, which we had to move as well.

Even at the risk of saying the same thing several times: A package can contain any element
of concrete5—libraries, tools, controllers, images, and so on. By putting all files in a single
package directory, we can make sure that all files are installed at once, thus making sure all
dependencies are met.

Nothing has changed beside the small changes we've made to the commands, which access
or load an element. A helper behaves like a helper, no matter where it's located.

Have a go hero – move more add-ons
We've moved two different blocks into our new package, along with the slideshow block
templates. These aren't all blocks we've created so far. Try to move all add-ons we've created
into our new package. If you need more information about that process, have a look at the
following page:

http://www.concrete5.org/documentation/developers/system/packages/

Hooking ���������������� into������������ core events
You've made it through a lot of different concrete5 features if you got to this point. We've
changed the layout, added new styles, added new functionality, and even wrapped these
things in a package.

However, what if you wanted to react to things happening in the concrete5 core? You want
to know when a page has been added, a group deleted, or a new user added. All of that can
be achieved by using events and concrete5 will tell you what's going on and let you execute
custom code and even interrupt some processes.

Before you can start using events, you have to enable them. By default, they are not
enabled, as most websites and website administrators don't need them and would be
nothing but overhead.

To do this, you have to set the constant ENABLE_APPLICATION_EVENTS to true. Open
config/site.php and insert the highlighted line:

<?php
define('DB_SERVER', 'localhost');
define('DB_USERNAME', 'concrete5');
define('DB_PASSWORD', 'concrete5');
define('DB_DATABASE', 'concrete5');

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Everything in a Package

[226]

define('BASE_URL', 'http://localhost');
define('DIR_REL', '');
define('PASSWORD_SALT', 'DSiBDSPC0wQCa3pAfnhgC8o77rosAFvZAMMG');
define('ENABLE_APPLICATION_EVENTS', true);

?>

Event������ types
There are a lot of different events you can use to extend some core functions. The following
table shows all the different events you can catch, along with their parameters described
with their number and the data type, and a short description:

Event Parameters Description

on_group_delete 1: Group Fired when a group is deleted. You can add
some checks and return false if you don't
want the group to be deleted.

on_user_add 1: UserInfo Fired when a new user is added.

on_user_delete 1: UserInfo Return false if the passed UserInfo object
shouldn't be deleted.

on_user_update 1: UserInfo Fired when a user is updated, passed
UserInfo object contains the updated values.

on_user_change_
password

1: UserInfo

2: String

Hook into this event if you want to replicate
user accounts including their password
(passed as a string in the second parameter)
to another system.

on_page_update 1: Page The passed argument contains the page
object of the updated page.

on_page_move 1: Page

2: Page

3: Page

Fired when the page passed in the first
argument is moved. Second parameter is the
old parent and third parameter is the new
parent page object.

on_page_duplicate 1: Page

2: Page

Catch this event if you want to know when a
page has been duplicated. First parameter is
the new parent, the second one the page to
be duplicated.

on_page_delete 1: Page First argument contains the page to be
deleted. Return false to cancel the process.

on_page_add 1: Page Fired for every new page added.

on_page_view 1: Page

2: User

Fired for each page view. Think twice before
hooking into this event as you'll get a lot of
calls and probably a lot of overhead.

Chapter 9

[227]

Event Parameters Description

on_page_version_
approve

1: CollectionVersion Fired when a page version is approved.

on_user_login 1: LoginController Fired when a user logs in.

on_before_render 1: View Hook into this event if you want to execute
some code before a page is rendered.

on_render_complete 1: View Fired if the page rendering process has been
completed.

Page related events are fired for every action on a page. As the concrete5
dashboard has been built using pages too, an event is fired for every action
happening on a dashboard page as well. You might want to think if you really
want to execute an event for dashboard pages.

Extending an event
The process to extend an event is pretty much the same for all events.

There are different places where you can include the code to hook into an event but as
we're dealing with packages we're going to include it in our package controller as well.
Open the package controller from packages/c5book/controller.php and look for
the on_start method.

It's going to look like the following code snippet if you've included the event the proper way:

function on_start() {
 $html = Loader::helper('html');

 // add advanced tooltips to every page
 $v = View::getInstance();
 $v->addHeaderItem($html->javascript('jquery.tipTip.minified.js',
 $this->pkgHandle));
 $v->addHeaderItem($html->css('tipTip.css', $this->pkgHandle));

 $v->addHeaderItem('<script type="text/javascript">$(function(){
 $("[title]").tipTip(); });</script>');

 // inform about new users
 Events::extend('on_user_add',

 'UserInformation',

 'userAdd',

 'packages/' . $this->pkgHandle . '/models/user_information.php');

}

Everything in a Package

[228]

The call to Events::extend is rather simple; there are four parameters:

1.	 The first parameter is obviously the name of the event you want to catch.

2.	 The class name where to look for the method to be called.

3.	 The method name which has to be called.

4.	 Location of the file where the class and method can be found.

Before we create the actual file, we have to create a new user attribute in order to make sure
the following example works. Go to your dashboard and click on Users and Groups and then
User Attributes. Add a new text attribute with ip_address as the handle and IP Address
as its name.

Next, we have to create the file which is called when the event is fired. Create a file named
user_information.php in packages/c5book/models, open it, and put the following
content in it:

<?php
defined('C5_EXECUTE') or die(_("Access Denied."));

class UserInformation {
 public function userAdd($ui) {
 $ui->setAttribute('ip_address', $_SERVER['REMOTE_ADDR']);
 }
}
?>

This little code is called when a new user is added, and once that happens, the call to
$ui->setAttribute saves the current IP address into the new attribute. This is an
easy way to see the IP address for each user who has registered on your website. Nothing
fancy, but it shows you how easily you can access objects from the core and add custom
functionality to it.

Pop quiz
1.	 What can you do by hooking into events? What kind of events can you catch?

a.	 You can interact on all kinds of actions executed on pages, like creation,
deletion, duplication, and so on.

b.	 You can add additional checks and disallow certain actions if your additional
requirements aren't met.

c.	 You can ensure consistency among your website by making sure our depended
objects are deleted once the core object like a page has been removed.

d.	 It allows you to hack into the core while still keeping the option to upgrade to
a newer version of concrete5 without modifying any core files at all.

Chapter 9

[229]

2.	 Thinking of real life examples; which of the following tasks can you achieve
using events?

a.	 Actions executed on user and group modifications, including password
changes, can be used to synchronize user accounts between different
systems.

b.	 Every time a job is executed an event is fired which you can use to write a
custom protocol.

c.	 You can monitor page changes and generate an e-mail on every page
modification to stay up to date with all changes.

d.	 You can monitor changes made in the dashboard section Sitewide Settings.

Maintenance tasks �������� and����� jobs
Some features in concrete5 depend on jobs, which have to be periodically executed if
you want to use them. By default there are three jobs installed, which you can find in the
dashboard when you navigate to System & Maintenance:

Index Search Engine: The full text search engine uses the Zend Lucene Search
library, which has to be updated by a maintenance job. If you don't execute this
job regularly, the website's users will only find old, outdated content.

Generate Sitemap: This job writes a file named sitemap.xml in the root of your
website, which helps search engine crawlers to index your site.

Process Email Posts: concrete5 has the ability to handle incoming e-mails. The
included community-like messaging system depends on it.

The following screenshot shows you how these jobs look in the dashboard:







Everything in a Package

[230]

Attention: By default, these jobs aren't executed. It's your responsibility as a website
administrator to use a scheduler available on your hosting system to make sure the jobs
run as planned. As operating systems, web hosting companies, system configurations, and
interfaces all differ greatly, no general solutions exist.

For now, you can simply execute the jobs by clicking on the Run Checked button. When your
website runs on a server accessible from the Internet, you have to set up a scheduled task on
that server. If you aren't familiar with that, get in contact with your hosting partner.

Time for action – execute concrete5 jobs periodically
Carry out the following steps to enable the scheduler on a Windows system:

1.	 Download the binaries of wget from the following URL:

http://gnuwin32.sourceforge.net/packages/wget.htm

2.	 Extract wget into a directory without blanks.

3.	 Press the Windows Key + R to open the run dialog and type cmd and confirm it by
clicking on OK.

4.	 In the command window, enter this command but modify the path to wget
according to the path where you've installed it as well as the job URL, which
you can see in your dashboard. The preceding screenshot shows the URL too.

schtasks /create /tn "Concrete5 Jobs" /tr "C:\wget.exe http://
your-site.com/index.php/tools/required/jobs?auth=9499e773311ba4305
d5b4b7f35b2c115" /sc daily

5.	 Confirm the command with the Enter key. You should get a confirmation that the job
has been created.

SUCCESS: The scheduled task "concrete5 Jobs" has successfully been created.

What just happened?
The preceding steps installed a task to make sure that all concrete5 jobs run daily. If you
want to test the command before you use it, open the console window again and run wget
appended by the URL of your concrete5 job, as follows:

C:\wget.exe http://your-site.com/index.php/tools/required/jobs?auth=9499e
773311ba4305d5b4b7f35b2c115

This command should return without an error and your jobs in concrete5 should all be
executed. The date in the column Last Run should be updated for every job afterwards.

Chapter 9

[231]

Please note: The scheduler runs on your local computer, which means that it will
only work as long as your computer runs. If you run a website on a server, you
shouldn't use your local computer to run jobs periodically, but instead use the
solution from your hosting company.

If you want to, you can execute the jobs right now; it shouldn't take long and you should see
an updated screen. The number of indexed pages should be higher if you haven't run the job
before since we created a few new pages.

An example based on Linux cron which executes all the jobs 30 minutes past
midnight would look like this:

 30 * * * * /usr/bin/wget -O - -q -t 1 http://your-
site.com/index.php/tools/required/jobs?auth=9499e77331
1ba4305d5b4b7f35b2c115

As you probably already expected, you can easily create your own jobs without touching the
concrete5 core. You can also put them in a package, which is exactly what we're going to do.

Creating a new job
Jobs are always located in a directory named jobs but there are several other places you can
find them:

In the root of your site

In the concrete directory

In every package directory

Our job is going to contain a little more PHP code than our usual examples, but since a job
doesn't really produce any output, there's not much besides code. What we're going to do
has been done before but not nicely integrated into concrete5. We're going to create a job,
which checks all your pages for broken links. It doesn't look professional if your visitors click
on links and get an ugly 404 error page.

The script is going to go through the following steps:

1.	 Get a list of all pages and loop through them.

2.	 Make sure the current page in the loop is accessible by the guest group as we don't
want to check hidden pages to keep the output compact.

3.	 If a page is accessible, we get a list of all blocks on that page.

4.	 We check the block type for every block we find and skip all but the content blocks.







Everything in a Package

[232]

5.	 The content block output is processed and every link is extracted using a
regex pattern.

6.	 As links can be absolute and relative, we have to prepend the server name in case it
isn't there.

7.	 We then check the HTTP status code for every link and save its result in a table.

There's going to be more than a hundred lines of code; if you don't want to type this, you
can find a download link at the end of the chapter.

Time for action – creating a job to check for broken links
Carry out the following steps:

1.	 A package can depend on database tables just like a block does. The procedure
is the same: create a db.xml file but this time it's located right in the package
directory. Therefore, create a file at packages/c5book/db.xml and put the
following content in it:

<?xml version="1.0"?>
<schema version="0.3">
 <table name="btLinkChecker">
 ��������������������������� <field name="cID" type="I">
 <key />
 <unsigned />
 </field>
 <field name="link" type="C" size="255">
 <key />
 </field>
 <field name="linkStatusCode" type="I"></field>
 <field name="linkStatusName" type="C" size="255"></field>
 </table>
</schema>

2.	 Make sure the directory packages/c5book/jobs exists. It's where we're going to
put our new job file.

3.	 In that new directory, create a file named link_checker.php with the
following content:

<?php
defined('C5_EXECUTE') or die(_("Access Denied."));

class LinkChecker extends Job
{

Chapter 9

[233]

 public function getJobName()
 {
 return t("Link Checker");
 }

 public function getJobDescription()
 {
 return t("Checks your site for broken links.");
 }

 /**
 * Returns the HTTP status text for the URL
 * passed in the first argument. Uses cURL
 * with a 5 second timeout by default and
 * get_headers as a fallback in case cURL
 * isn't installed
 */
 protected function getHttpStatus($url)
 {
 if (in_array('curl', get_loaded_extensions()))
 {
 $curl = curl_init();

 curl_setopt($curl, CURLOPT_URL, $url);
 curl_setopt($curl, CURLOPT_HEADER, 1);
 curl_setopt($curl, CURLOPT_RETURNTRANSFER, true);
 curl_setopt($curl, CURLOPT_CONNECTTIMEOUT, 5);

 curl_exec($curl);
 $ret = curl_getinfo($curl);
 curl_close($curl);

 return $ret['http_code'];
 }
 else
 {
 $headers = get_headers($url);
 return $headers[0];
 }
 }

 public function run()
 {
 Loader::model('page_list');

Everything in a Package

[234]

 $nh = Loader::helper('navigation');
 $db = Loader::db();
 $g = Group::getByID(GUEST_GROUP_ID);
 $linksFound = 0;
 $brokenLinksFound = 0;

 $pl = new PageList();
 $pl->ignoreAliases();

 $regexLinkPattern = 'href=\"([^\"]*)\"';
 $regexStatusPattern = '(.*) ([0-9]{3}) (.*)';

 $pages = $pl->get();

 // delete data from previous runs
 $db->Execute('DELETE FROM btLinkChecker');

 // 1. get all pages
 foreach ($pages as $page)
 {

 // 2. check permission
 $g->setPermissionsForObject($page);
 if ($g->canRead())
 {
 $collectionPath = $page->getCollectionPath();

 // 3. get all blocks
 $blocks = $page->getBlocks();
 foreach ($blocks as $block)
 {

 // 4. only process the output of content blocks
 if ($block->getBlockTypeHandle() == 'content')
 {
 $bi = $block->getInstance();

 // 5. get all links in the block output
 if(preg_match_all("/{$regexLinkPattern}/siU", $bi->content,
 $matches, PREG_SET_ORDER))
 {
 foreach($matches as $match)
 {
 $link = $match[1];
 // 6. check and fix link to make sure it is absolute
 if (substr($link,0,4) != 'http')
 {

Chapter 9

[235]

 if (substr($link,0,1) == '/')
 {
 $link = BASE_URL . $link;
 }
 else
 {
 $link = $nh->getLinkToCollection($page, true) . $link;
 }
 }

 // 7. check link status and save it in btLinkChecker
 $statusHeader = $this->getHttpStatus($link);
 preg_match('/(.*) ([0-9]{3})(.*)/',
 $statusHeader,$statusCodeMatches);

 $statusCode = $statusCodeMatches[2];
 $statusText = $statusCodeMatches[3];

 $linksFound++;

 // we check for 404 and "NULL" which is returned
 // if there's no webserver responding. 404 is
 // only returned by a running webserver
 if ($statusCode == '404' || !$statusCode)
 {
 $brokenLinksFound++;
 }

 $values = array($page->getCollectionID(), $link,
 $statusCode, $statusText);
 $db->Execute('INSERT INTO btLinkChecker (cID, link,
 linkStatusCode, linkStatusName) VALUES (?,?,?,?)',
 $values);
 }
 }
 }
 }
 }
 }

 return t('Found %d links, out of which %d are broken.',
 $linksFound, $brokenLinksFound);
 }
}
?>

Everything in a Package

[236]

4.	 In order to make sure our job is installed during the package installation, open
packages/c5book/controller.php and modify the install method to match
the following code:

public function install()
{
 $pkg = parent::install();

 // install blocks
 BlockType::installBlockTypeFromPackage('jqzoom', $pkg);
 BlockType::installBlockTypeFromPackage('product_information',
 $pkg);
 BlockType::installBlockTypeFromPackage('product_list', $pkg);
 BlockType::installBlockTypeFromPackage('ftp_gallery', $pkg);
 BlockType::installBlockTypeFromPackage('pdf', $pkg);

 // install link checker job
 Loader::model("job");

 Job::installByPackage("link_checker", $pkg);
}

5.	 We've added two elements to our package which are processed during the
installation. Go to Add Functionality and remove and install our package again. This
will create the database table and add a new job, which you'll see when you go to
System & Maintenance again.

What just happened?
After installing the package, you will see a new job named Link Checker. If you run the job
like shown in the following screenshot, you should get a message telling you how many
broken links there are on your site:

Chapter 9

[237]

However, what if there's a message saying that there are broken links on the website? For
now, there's no nice way to get access to that information, but have a look at phpMyAdmin
by going to your XAMPP Control Panel and click on Admin next to MySQL. Select the
concrete5 database and scroll down till you see btLinkChecker. Click on it and make sure
you're on the Browse tab. You should see something like the following:

We're going to create a nice interface for this table, but before that a few words about the
data you can find in the table.

Here you either see an entry with a 404 status code or an empty (NULL) value. As 404 is
returned by a web server, it means that the domain is available, but the page isn't. In case
the domain isn't available at all, you won't get anything back since there's no web server
returning your requests, hence the NULL value.

If you found a link which isn't working, you have to know where this link is located in your
website. This works by using the cID and appending it to index.php, which would look like
this: http://localhost/index.php?cID=64. Using the internal collection ID has one
big advantage: Even if you rename the page, you'll still be able to access the page and fix
the link.

Anything else in the table output doesn't really hurt and is mostly informational. There's just
one thing which you can check: Entries with a 301 status code indicate that the site owner
has moved a page and you could check the link to see where you actually end up and replace
it. By doing this, your links stay up to date and you save an additional redirection when your
visitors click on the links, even if they probably won't notice the difference.

Please note: as we only check the links within content blocks, it might happen that you
have broken links in another block which won't appear in the table of this add-on. Due to
simplicity and performance reasons, the example doesn't check these blocks. If you wanted
to extend it, look for the getBlockTypeHandle check and extend it by the blocks you want
to include as well.

Everything in a Package

[238]

Injecting header items
Sometimes you want to make sure an element, such as a JavaScript, is shared in the header
of your HTML document. concrete5 allows you to inject any element, such as a JavaScript or
a CSS file into the head of your HTML document from your block or package controller.

Adding ���������������������������� tooltips�������������������� ������������������� for���������������� every title tag
Remember the content block template we created in Chapter 6, Customizing Block Layout
to enhance the custom tooltips with a more stylish version? The template works well, but it
only if you change the custom template for every content block where you want this tooltip
to appear. Now, let's say you forget to change the template on one page. Nothing would be
broken, but the look and feel of your website wouldn't be consistent, which is something
we'd like to avoid.

What options are there?

We could create a block for this which would use the content of the whole page.
This means that you wouldn't have to modify every content block but you'd still
have to place that block on every page.

We could also place it in the theme. This is an easy option which would work just
fine but has one little disadvantage. If you want to use this tooltip feature on other
sites you have to modify the page theme in order to get the functionality on another
page. This is not a big deal but can we avoid this?

We can!

Time for action – creating global tooltips
Carry out the following steps:

1.	 We're going to use the same script again, so download the TipTip source code from
the following URL:

http://code.drewwilson.com/entry/tiptip-jquery-plugin.

2.	 Extract jquery.tipTip.minified.js to packages/c5book/js. You have to
create the js folder first.

3.	 Extract tipTip.css to packages/c5book/css. You have to have the css
folder too.





Chapter 9

[239]

4.	 Now, we've got to make sure these files are loaded and properly called. To do this,
open the package controller packages/c5book/controller.php and insert the
highlighted lines, as follows:

<?php
defined('C5_EXECUTE') or die(_("Access Denied."));

class c5bookPackage extends Package {

 protected $pkgHandle = 'c5book';
 protected $appVersionRequired = '5.4.0';
 protected $pkgVersion = '1.0';

 public function getPackageDescription() {
 return t("Theme, Templates and Blocks from concrete5 for
 Beginner's");
 }

 public function getPackageName() {
 return t("c5book");
 }

 public function install() {
 $pkg = parent::install();

 // install blocks
 BlockType::installBlockTypeFromPackage('jqzoom', $pkg);
 BlockType::installBlockTypeFromPackage('product_
 information', $pkg);
 BlockType::installBlockTypeFromPackage(
 'product_list', $pkg);
 BlockType::installBlockTypeFromPackage(
 'ftp_gallery', $pkg);
 BlockType::installBlockTypeFromPackage('pdf', $pkg);
 }

function on_start() {
$html = Loader::helper('html');
$v = View::getInstance();
 $v->addHeaderItem(
 $html->javascript('jquery.tipTip.minified.js','c5book'));
$v->addHeaderItem($html->css('tipTip.css','c5book'));
$v->addHeaderItem('<script
type="text/javascript">$(function(){ $("[title]").tipTip();
});</script>');
}
}
?>

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Everything in a Package

[240]

What just happened?
The preceding code basically replaced the template we created before. However, the
new code replaces every tooltip, not only those in the content block. If you don't want
that behavior, you might want to keep using the previous template instead of this
package controller.

How does the preceding code work? The method on_start is automatically called for every
installed package during the page rendering process. This allows you to inject code into any
page on a website without actually modifying any pages. Do it once, use it everywhere!

There's a rather simple, but neat, add-on in the concrete5 marketplace, which
uses the same technique to include a little JavaScript check to detect old
browsers and if found also shows a little toolbar to inform website visitors to
update to a newer and more secure browser version. You can find it at the
following URL:

http://www.concrete5.org/marketplace/addons/scala-it-
browser-update-notification/

JavaScript ������������� browser������ fixes
A lot of web designers still make sure their website works for Internet Explorer 6.0 as well,
even if version 9.0 is already released. It's painful, but for something like this, a package can
make things a bit easier.

There are different projects you can use to help old browsers behave at least partially like
they should. One example can be found at http://www.dustindiaz.com/min-height-
fast-hack/ but there are a lot more out there. There's a complete package of fixes
available at http://code.google.com/p/ie7-js/. What if you wanted to use this for all
your websites? You could put this in your theme, but why not create a package for this?

Let's have a look at how easily we could integrate such a browser fix script in our
c5book package.

Time for action – integrating CSS fix in the package
Carry out the following step:

1.	 Open the controller from packages/c5book/controller.php and modify the
on_start method to match the following code:

function on_start() {
 $html = Loader::helper('html');

 // add advanced tooltips to every page

Chapter 9

[241]

 $v = View::getInstance();
 $v->addHeaderItem($html->javascript('jquery.tipTip.minified.js',
 $this->pkgHandle));
 $v->addHeaderItem($html->css('tipTip.css', $this->pkgHandle));

 $v->addHeaderItem('<script type="text/javascript">$(function(){
 $("[title]").tipTip(); });</script>');

 // inform about new users
 Events::extend('on_user_add',
 'UserInformation',
 'userAdd',
 'packages/' . $this->pkgHandle .
 '/models/user_information.php');

 // include MSIE fix
 $v->addHeaderItem('<!--[if lt IE 8]><script src=
 "http://ie7-js.googlecode.com/svn/version/2.1(beta4)/IE8.js">
 </script><![endif]-->');

}

What just happened?
We've included a simple JavaScript file to fix some issues with older browser versions. The
same works for different elements, such as a CSS reset script to reduce inconsistency among
different browsers. Check the following URLs if you want to start working with HTML5:

http://meyerweb.com/eric/tools/css/reset/

http://www.modernizr.com/

Include one of these scripts using the technique described earlier and parts of HTML5 will
work in browsers that aren't really HTML5 ready.

Pop quiz
What are the benefits of using addHeaderItem to include CSS and JavaScript files?

a.	 Using addHeaderItem in your package or block controller makes sure the elements
are included in the head of your HTML document.

b.	 Putting CSS files in the header allows the page to render progressively, which can
improve the user experience.

c.	 CSS and JavaScript files are easier to cache if they are saved in an external file which
is included by addHeaderItem.

d.	 All of the above.

Everything in a Package

[242]

Have a go hero – create a new package
We've included a lot of functionality in a single package. This simplifies a few things
because we don't have to create new packages all the time, but it comes at a
price—unnecessary overhead.

Try to move some of the created functionality into new packages. Having a package for a
single JavaScript fix seems a bit extreme as it contains some overhead, but is easier to work
with, as installing an additional package is only a matter of seconds.

Summary
In this chapter, you should have learned about the things we can do with a package. We
started by moving some of our previous add-ons into a package, making it easier to handle
and install. Creating a package is often about the installation process, which is one reason
why you have to wrap add-ons in a package if you want to publish them on the concrete5
marketplace.

We also had a quick look at events, a nice but advanced feature that you can use to execute
custom code upon certain events happening in the concrete5 core. An example: Being able
to hook into actions happening on your user database allows you to synchronize accounts
with another system. Think about third-party forum software you want to use—if you
already have a concrete5 website, you could create an interface to keep both user databases
up to date without needing your website's users to register twice.

Next, we created a maintenance job, which checks for broken links on your website. This was
just one example. Maintenance jobs or tasks can be used to optimize databases, index pages,
start an interface, and a lot more.

At the end of the chapter, we looked at a way to include JavaScripts in the header of every
page—a simple but effective way to include JavaScripts to improve the look and usability as
well as compatibility with older browsers.

10
Dashboard Extensions

In this chapter, we're going to look at extensions which add more reports, and
functions to the dashboard. As concrete5 uses the MVC pattern to do this, we're
also going to have a quick look at the theory behind this pattern. However, due
to the targeted audience, we're only going to scratch the surface of the topic,
in order to assure that a PHP programmer who hasn't worked with MVC before
gets enough information to understand the pattern and use it in concrete5.

MVC—model view controller
You might not have noticed, but we did use parts of the MVC pattern before when we built
our first block. A block consists of a controller located in a file named controller.php
and a view, by default named view.php. There can also be more views in the templates
directory, which are called custom block templates in concrete5.

In concrete5, most pages are created from a page type. It's what you mostly do when you
add a new page in the sitemap, but there are single pages like /login and /dashboard as
well. Their functionality is usually unique, thus they are called single pages. A single page is
what we're going to create when we output from an application in concrete5, which follows
the MVC pattern.

Why MVC? What are the problems MVC tries to solve?

Different elements of the application have been included in a single file, the
application logic, as well as the layout. There's no obvious structure in the
application, making it hard to get a clear understanding of it.

MVC allows different outputs for different devices, such as mobile phones.





Dashboard Extensions

[244]

It's hard to assign tasks to different people if there's no common structure in
the application. Without following a pattern, it's not clear which files have to be
modified when changing the database access, layout, or logic of the application.

Modularizing the application was tricky. Modifying a single part (logic, output, and
model) has been more time consuming than necessary.

There are different approaches to achieve these things, but MVC has proven to be a solid
and popular choice for lots of web, as well as desktop-applications.

How does the MVC pattern do this? It does this mostly by splitting the view (output), the
model (database access), and controller (logic, parsing, and so on) into different files. This
helps to keep a clean structure in your application. This makes it easier for a new developer
to understand your application, even if he hasn't worked with it before. The following
graphic illustrates how these units work together. There are some additional elements
to explain the use of these MVC elements:

Don't expect that an application will follow this MVC pattern in every case. There's
sometimes a situation where you'll have to break the pattern, but there has to be a good
reason for that. Don't give up the pattern too quickly; it's worth the effort.

Let's look at some situations which might happen during the lifecycle of a web application
and their solutions when working with MVC. If you ever created PHP applications where you
had the logic, database access, and output in one file, think how you'd have done that.

Database tuning: Let's assume your application doesn't perform anymore. You get a
database expert who knows everything about the database you're using, but there
are some queries he cannot tune without rewriting the query. By using a model,
he'll quickly get access to the query without having to read through lots of code
related to the business logic or output of your application, there's no HTML, AJAX,
or CSS interfering with the database access. He can use his full skills without wasting
any time on things he's not familiar with.







Chapter 10

[245]

Mobile phone layout: On a lovely Monday morning, two days before the project
deadline, your boss tells you that the customer realized that the stunning web
application you created doesn't work on his kid's Smartphone. Thankfully, you're
using MVC and don't have to recreate the whole application; you just have to add
another view to your application, add a check to detect mobile devices, and switch
to that layout (or theme in the case of concrete5).

New layout: Your new co-worker has to redesign the application. The super-
fast, flexible, and smart application you created 10 years ago doesn't look good
enough for the marketing department anymore. As you're too busy with the new
configuration management, you don't have enough time to teach your co-worker
about the inner-workings of your application. You also want to make sure that he
doesn't screw up the core of your application. Thankfully, you're using MVC and
only have to give him access to the views and not the models or controllers.

Can you see how MVC can make your life a lot easier? Splitting an application into different
files and objects allows you to use the skills of people the right way and keeps your
application more solid, extendable, easier to test, read, and maintain.

Broken link interface
In order to easily understand how this interface works, the first example has been over
simplified. The maintenance job we created in previous chapter searches for links in our
website and checks if they are still working. However, there's no interface in the dashboard
yet. We're going to use the data from the link checker job as a basis for our first dashboard
extension. We are starting with a controller and a single page (view), but no model for now.
We're going to add that later in this chapter.

At the end we're going to have an additional child page underneath Reports where the
broken links are listed, as shown in the following screenshot:





Dashboard Extensions

[246]

Time for action – creating the broken links dashboard
extension

Carry out the following steps:

1.	 In our package c5book, create a new directory structure controllers/
dashboard/reports.

2.	 Within the new directory, create a file named broken_links.php and put the
following content in it to fetch the data, and pass it on to the single page by using
$this->set:

<?php
defined('C5_EXECUTE') or die(_("Access Denied."));

class DashboardReportsBrokenLinksController extends Controller {

 public $helpers = array('form', 'html');

 public function view() {
 $db = Loader::db();

 $brokenLinks = array();
 $result = $db->Execute('SELECT * FROM btLinkChecker WHERE
 linkStatusCode NOT IN (200,302) OR linkStatusCode IS NULL');
 while ($row = $result->FetchRow()) {
 $row['page'] = Page::getByID($row['cID']);
 $row['status'] = $row['linkStatusCode'] . ' ' .
 $row['linkStatusName'];
 if (trim($row['status']) == '')
 $row['status'] = 'Server not found';
 $brokenLinks[] = $row;
 }
 $this->set('links', $brokenLinks);
 }

}
?>

3.	 In our package c5book, create a new directory structure single_pages/
dashboard/reports.

Chapter 10

[247]

4.	 Create a new file using the same name you've used for the controller and add the
following lines to it:

<?php
defined('C5_EXECUTE') or die(_("Access Denied."));
?>
<h1><?php echo t('Broken Links')?></h1>
<div class="ccm-dashboard-inner">

 <p><?php echo t('The following links didn\'t return 200 or 302
 OK / Found. You should check them to make sure they work as
 expected. Please note: No status code means the server didn\'t
 respond at all!')?></p>

 <table class="entry-form" >
 <tr>
 <td class="header">Page</td>
 <td class="header">Link</td>
 <td class="header">Status</td>
 </tr>
 <?php foreach ($links as $link): ?>
 <tr>
 <td>
 <a target="_blank" href="<?php echo $link['page']->
 getCollectionPath()?>/">
 <?php echo $link['page']->getCollectionName()?>

 </td>
 <td>
 <a target="_blank" href="<?php echo $link['link']?>">
 <?php echo $link['link']?>

 </td>
 <td>
 <?php echo $link['status']?>
 </td>
 </tr>
 <?php endforeach; ?>
 </table>

</div>

Dashboard Extensions

[248]

5.	 Single pages aren't automatically installed with the package, we have to modify our
package controller to achieve this. Open packages/c5book/controller.php
and look for the method install and insert the highlighted lines:

public function install() {
 $pkg = parent::install();

 // install blocks
 BlockType::installBlockTypeFromPackage('jqzoom', $pkg);
 BlockType::installBlockTypeFromPackage('product_information',
 $pkg);
 BlockType::installBlockTypeFromPackage('product_list', $pkg);
 BlockType::installBlockTypeFromPackage('ftp_gallery', $pkg);
 BlockType::installBlockTypeFromPackage('pdf', $pkg);

 // install link checker job
 Loader::model("job");
 Job::installByPackage("link_checker", $pkg);

 // install single pages

 Loader::model('single_page');

 SinglePage::add('/dashboard/reports/broken_links', $pkg);

}

6.	 Go to your dashboard and click on Add Functionality and select your package, then
uninstall and reinstall it.

What just happened?
After you reinstall our package, you should be able to see the new page when you click on
Reports in your dashboard, as shown in the preceding screenshot. If you look at the installer,
you can see that we've added our own page at /dashboard/reports/broken_links. How
do you know that path? A dashboard extension is basically a single page located in the right
structure. We could have placed our page in the top level and it would appear within our own
website using our own theme, but since we placed it underneath dashboard, it automatically
looks and behaves like a dashboard page. You can easily get the details about the dashboard
structure by navigating to the sitemap and tick the checkbox Show System Pages.

Whenever you run the maintenance job Link Checker, you should see an updated list
of broken links in this additional report. Please don't forget, that the job won't run
automatically unless you use a scheduler like cron.

Chapter 10

[249]

The example we created has been simplified to show you a first partial MVC example.
The controller we created, which of course can be found in the controllers directory,
is responsible for fetching the data from our database, something which should actually
happen in the model. We're going to split this part into a model to comply with all the MVC
parts right after this block.

In our controller, we've got only one method named view. This is a method which is
automatically called by the controller upon a page view if there's no other method
specified. We then use $this->set to pass a value to our single page. If you call
$this->set('weather', 'Lovely & Sunny'), you can access the content of weather
in the single page, as if it was a local variable with a command like echo $weather. This
works with discrete values, but also with objects or an array like we did in our example.

The output, our single page is rather simple; it basically creates a loop over the array
generated in the controller and prints a table. Nothing fancy, just a loop with a few
concrete5 methods to get the values of the object the right way.

Moving database access into model
As mentioned before, the database access should be encapsulated in a model in order to
make sure all database access can be found in the same place. While you'll probably find a
lot of examples in the wild where all database access is in the controller, we have to create a
model if we want to follow every part of MVC properly.

You'll see that the extra effort is rather small; it's no big deal to create a model, even if
there's just a single method in it.

Time for action – creating package model
Carry out the following steps:

1.	 In our package c5book, create a new folder named models if it doesn't already
exist. Within that folder, create a new file named broken_links.php.

<?php
defined('C5_EXECUTE') or die(_("Access Denied."));

class BrokenLinks {
 public static function add($cID, $link, $statusCode,
 $statusName) {
 $db = Loader::db();

 $values = array($cID, $link, $statusCode, $statusName);
 $db->Execute('INSERT INTO btLinkChecker (cID, link,
 linkStatusCode, linkStatusName) VALUES (?,?,?,?)', $values);

Dashboard Extensions

[250]

 }

 public static function deleteAll() {
 $db = Loader::db();

 $db->Execute('DELETE FROM btLinkChecker');
 }

 public static function getBrokenLinks($includeDetails=true) {
 $query = 'SELECT * FROM btLinkChecker WHERE linkStatusCode
 NOT IN (200,302) OR linkStatusCode IS NULL';
 return BrokenLinks::getLinksInternal(
 $query, $includeDetails);
 }

 public static function getAllLinks($includeDetails=true) {
 $query = 'SELECT * FROM btLinkChecker';
 return BrokenLinks::getLinksInternal(
 $query, $includeDetails);
 }

 private static function getLinksInternal($query,
 $includeDetails=true) {

 $db = Loader::db();

 $brokenLinks = array();
 $result = $db->Execute($query);
 while ($row = $result->FetchRow()) {
 if ($includeDetails) {
 $row['page'] = Page::getByID($row['cID']);
 $row['status'] = $row['linkStatusCode'] . ' ' .
 $row['linkStatusName'];
 if (trim($row['status']) == '')
 $row['status'] = 'Server not found';
 }

 $brokenLinks[] = $row;
 }

 return $brokenLinks;
 }
}
?>

Chapter 10

[251]

2.	 Next, we have to make sure our controller uses the model and doesn't contain any
SQL queries, open packages/c5book/controllers/dashboard/reports/
broken_links.php again and make sure it looks like the following:

<?php
defined('C5_EXECUTE') or die(_("Access Denied."));

class DashboardReportsBrokenLinksController extends Controller {

 public $helpers = array('form', 'html');

 public function view() {

 Loader::model('broken_links', 'c5book');
 $this->set('links', BrokenLinks::getBrokenLinks());

 }

}
?>

3.	 The maintenance job we've already created contains some SQL statements as well;
open packages/c5book/jobs/link_checker.php and modify the run method
to match the following code (the changed lines are highlighted):

public function run()
{
 Loader::model('page_list');

 Loader::model('broken_links', 'c5book');

 $nh = Loader::helper('navigation');
 $db = Loader::db();
 $g = Group::getByID(GUEST_GROUP_ID);
 $linksFound = 0;
 $brokenLinksFound = 0;

 $pl = new PageList();
 $pl->ignoreAliases();

 $regexLinkPattern = 'href=\"([^\"]*)\"';
 $regexStatusPattern = '(.*) ([0-9]{3}) (.*)';

 $pages = $pl->get();

Dashboard Extensions

[252]

 // delete data from previous runs
 BrokenLinks::deleteAll();

 // 1. get all pages
 foreach ($pages as $page)
 {

 // 2. check permission
 $g->setPermissionsForObject($page);
 if ($g->canRead())
 {
 $collectionPath = $page->getCollectionPath();

 // 3. get all blocks
 $blocks = $page->getBlocks();
 foreach ($blocks as $block)
 {

 // 4. only process the output of content blocks
 if ($block->getBlockTypeHandle() == 'content')
 {
 $bi = $block->getInstance();

 // 5. get all links in the block output
 if(preg_match_all("/{$regexLinkPattern}/siU", $bi->content,
 $matches, PREG_SET_ORDER))
 {
 foreach($matches as $match)
 {
 $link = $match[1];

 // 6. check and fix link to make sure they are absolute
 if (substr($link,0,4) != 'http')
 {
 if (substr($link,0,1) == '/')
 {
 $link = BASE_URL . $link;
 }
 else
 {
 $link = $nh->getLinkToCollection($page, true) . $link;
 }
 }

Chapter 10

[253]

 // 7. check link status and save it in btLinkChecker
 statusHeader = $this->getHttpStatus($link);
 preg_match('/(.*) ([0-9]{3})(.*)/',
 $statusHeader,$statusCodeMatches);

 $statusCode = $statusCodeMatches[2];
 $statusText = $statusCodeMatches[3];

 $linksFound++;

 // we check for 404 and "NULL" which is returned
 // if there's no webserver responding. 404 is
 // only returned by a running webserver
 if ($statusCode == '404' || !$statusCode)
 {
 $brokenLinksFound++;
 }

 BrokenLinks::add($page->getCollectionID(), $link,
 $statusCode, $statusText);

 }
 }
 }
 }
 }
 }

 return t('Found %d links, out of which %d are broken.',
 $linksFound, $brokenLinksFound);
}

4.	 Save all the files and run the job again. It works as if nothing has changed.

What just happened?
The changes we made won't be noticed by a person using the website, the output is still the
same. All changes are in the background and only improve the readability of the code by
following the MVC pattern.

Remember the example at the beginning of this chapter about database tuning? If you
happen to run into a database performance issue, you can quickly send someone your
model and it's quite clear what kind of requests you run on the database.

Dashboard Extensions

[254]

A few words about the number of executions per method and your database expert can tune
your application on the database side without knowing a lot of concrete5 or PHP.

The first MVC example is done. There are no interactions and no advanced features, but it
already contains every element of MVC. At this point, we're just going to add more features
to our files, but we're not going to add new parts such as models, controllers, or views.

Multiple ������������������ controller�������� methods
In the previous example, we used the view method to access our data and pass it on to the
single page. This method is the default method which is called when you open your page like
http://localhost/index.php/dashboard/reports/broken_links/.

If we want to add a second method to display all links, not only the broken ones, we can
easily add a new method to our controller. The previously created model contains two
methods, getBrokenLinks which we already use and getAllLinks which simply
returns all links found in the content blocks not only the broken ones.

All we have to do is to add a second controller method to switch between the two methods
and add some basic code to the single page.

The following illustration shows the way the URL is mapped to a controller method. By
default, concrete5 is going to call the view method if the URL is ended with a controller.
However, if you append a method name, concrete5 will look for a method with that name
in the controller.

The preceding illustration maps the following controller code:

<?php
defined('C5_EXECUTE') or die(_("Access Denied."));

class DashboardReportsBrokenLinksController extends Controller {

 public $helpers = array('form', 'html');

 public function view() {
 Loader::model('broken_links', 'c5book');

Chapter 10

[255]

 $this->set('mode', 'brokenLinks');
 $this->set('links', BrokenLinks::getBrokenLinks());
 }

 public function all() {

 Loader::model('broken_links', 'c5book');

 $this->set('mode', 'allLinks');
 $this->set('links', BrokenLinks::getAllLinks());
 }
}
?>

Time for action – adding a second controller method
Carry out the following steps:

1.	 Open the controller again packages/c5book/controllers/dashboard/
reports/broken_links.php and put the preceding code in it. It's pretty much
the same, except there's a second method in it to display all links.

2.	 The output, our single page, needs to handle these two modes as well. We're going
to display a different text and a different link to switch between the two modes.
We're using the variable mode, which is set to a different value by the two controller
methods. Open packages/c5book/single_pages/dashboard/reports/
broken_links.php and alter the content to match the following:

<?php
defined('C5_EXECUTE') or die(_("Access Denied."));
?>
<h1><?php echo t('Broken Links')?></h1>
<div class="ccm-dashboard-inner">

 <?php if ($mode == 'brokenLinks'): ?>
 <p><?php echo t('The following links didn\'t return 200 or 302 OK
 / Found. You should check them to make sure they work as
 expected. Please note: No status code means the server
 didn\'t respond at all!')?>
 </p>

 <p>
 <a href="<?php echo $this->url
 ('/dashboard/reports/broken_links', 'all')?>">Show All Links

 </p>

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Dashboard Extensions

[256]

 <?php else: ?>
 <p><?php echo t('These are all the links found in the content
 blocks of your site. Click on the link below to display broken
 links only.')?>
 </p>

 <p>
 <a href="<?php echo $this->url
 ('/dashboard/reports/broken_links')?>">Show Broken Links Only

 </p>

 <?php endif; ?>

 <table class="entry-form" >
 <tr>
 <td class="header">Page</td>
 <td class="header">Link</td>
 <td class="header">Status</td>
 </tr>
 <?php foreach ($links as $link): ?>
 <tr>
 <td>
 <a target="_blank" href="<?php echo $link['page']->
 getCollectionPath()?>/">
 <?php echo $link['page']->getCollectionName()?>

 </td>
 <td>
 <a target="_blank" href="<?php echo $link['link']?>">
 <?php echo $link['link']?>

 </td>
 <td>
 <?php echo $link['status']?>
 </td>
 </tr>
 <?php endforeach; ?>
 </table>

</div>

Chapter 10

[257]

What just happened?
The code change we made in the single page for our interface uses the two controller
methods illustrated above. We also added a check on the variable mode to change the
output according to the called controller method.

There are two important things to remember:

1.	 A call like $this->set('mode', 'allLinks') in the controller creates a variable
in the single pages called $mode with the value allLinks. This is the correct way to
pass data from the controller to the single page when working with concrete5.

2.	 When you only specify the controller name in the URL like http://localhost/
index.php/dashboard/reports/broken_links/ the method view is called.
In case a different method has to be called, it's simply appended to that URL like
http://localhost/index.php/dashboard/reports/broken_links/all/.

File editor embedded in the ���������dashboard
A topic which has been controversially discussed in the concrete5 community: Some
users would like to be able to access and modify all the files on their web space where the
concrete5 site is located within the dashboard.

It can be handy to quickly fix an issue with your add-on from your new tablet device while
you're on vacation—it could also cause trouble with your partner though. You don't have to
remember an FTP account, getting access to the dashboard is enough to do all work on your
website, updating content, fixing bugs in the add-ons, and so on.

Certainly, this is something which can be handy, but also a bit dangerous. Changing code
on a site which is running on a productive server should be well-thought-out. Being able to
make modifications very easily can also break things very quickly. Being able to modify all
files within a web application also means that the user account you're using to run the web
server must have write access to all the files. By default, concrete5 makes sure that it has
access to the directories files, packages, and config; this means that you might not be
able to change files in the theme directory unless you change the file permissions.

Dashboard Extensions

[258]

Building this add-on doesn't harm anyone, but think about it before you actually install it on
a productive site of yours. If you use it, it will look like the following:

Time for action – creating the file editor add-on
As we're going to create several files for this add-on, we're starting with an overview of the
form. It should help you to understand how all the different elements are working together.

The seven boxes shown in the preceding screenshot are the most important elements in the
add-on. To make things easier, all elements are visible which is not going to happen once
you're working with the add-on. There's no point displaying the please wait box if nothing is
going on.

Each number is given a name, which is the value we're going to use as the ID of the element:

1: directory-structure-waiting: only shown when we load new data using
our AJAX method to update the directory list.

2: directory-structure-up: this element is shown if we aren't on the top level
to get back to the parent directory.





Chapter 10

[259]

3: directory-structure-content: the actual list of directories and files.
Always visible.

4: file-access-waiting: the same for the files, displayed when a file is loading
and saving.

5: file-access-caption: in this element we're going to show the name of the
file which is currently open. This is especially helpful, as you can change to another
directory while you're still working on the file, which you opened earlier in
another directory.

6: file-access-textarea: the ID of the textarea where we load the content of
the file.

7: file-access-toolbar: this element holds all the buttons, which we
dynamically show and hide depending on whether a file is loaded or not.

As we're going to create a bunch of files, here's a list with all the files:

packages/c5book/controllers/dashboard/file_access.php: the second
MVC element, our controller which holds everything together.

packages/c5book/single_pages/dashboard/file_access.php:
remember the introduction about MVC? This is the view, which is called single
page in concrete5.

packages/c5book/css/file.access.css: the elements listed above need
some styles in order to be arranged properly.

packages/c5book/js/file.access.js: our add-on uses some AJAX calls; this
is where you'll find them.

packages/c5book/helpers/page_permissions.php: a small helper file to
ensure the safety of our AJAX files.

packages/c5book/tools/get_file.php: the file used by the AJAX script to get
the content of a file.

packages/c5book/tools/save_file.php: another file used by an AJAX
method to save a file.

packages/c5book/tools/get_structure.php: the last file, also used by an
AJAX method to get the directory list.



























Dashboard Extensions

[260]

We're going to create each file in the order of the preceding list:

1.	 Create packages/c5book/controllers/dashboard/file_access.php and
put the following content in it:

<?php
defined('C5_EXECUTE') or die(_("Access Denied."));

class DashboardFileAccessController extends Controller {
 public $helpers = array('form', 'html');

 public function on_start() {
 $html = Loader::helper('html');

 $this->addHeaderItem($html->css('file.access.css', 'c5book'));
 $this->addHeaderItem($html->javascript('file.access.js',
 'c5book'));
 }

}
?>

2.	 Create the single page packages/c5book/single_pages/dashboard/file_
access.php with the following content:

<?php
defined('C5_EXECUTE') or die(_("Access Denied."));
?>

<h1><?php echo t('File Access')?></h1>
<div class="ccm-dashboard-inner" style="min-height:500px;">

 <div id="directory-structure">
 <div id="directory-structure-waiting">Please wait...</div>
 <div id="directory-structure-up">Up One Level</div>
 <div id="directory-structure-content"></div>
 </div>

 <div id="file-access-container">
 <div id="file-access-waiting" style="display:none;">Please
 wait...
 </div>
 <div id="file-access-content" style="display:none;">
 <div id="file-access-caption"></div>
 <textarea id="file-access-textarea"></textarea>
 <div id="file-access-toolbar">

Chapter 10

[261]

 <?php
 $ih = Loader::helper('concrete/interface');
 echo $ih->button_js(t('Save'),'fileSave()','left');
 echo $ih->button_js(t('Cancel'),'fileCancel()','left');
 ?>
 </div>
 </div>
 </div>

 <div style="clear:both"></div>

</div>

3.	 Let's make sure our layout looks as expected and create packages/c5book/css/
file.access.css:

file-access-folder {
 background:
 url('../../../concrete/images/dashboard/sitemap/folder.png') no-
 repeat;
 padding-left: 22px;
 height: 20px;
 cursor: pointer;
}
file-access-file {
 background:
 url('../../../concrete/images/dashboard/sitemap/document.png')
 no-repeat;
 padding-left: 22px;
 height: 20px;
 cursor: pointer;
}
#directory-structure {
 float:left;
 width:15%;
}
#directory-structure-up {
 background:
 url('../../../concrete/images/dashboard/sitemap/up.png') no-
 repeat;
 padding-left: 22px;
 height: 20px;
 cursor: pointer;
 display: none;
}
#file-access-container {

Dashboard Extensions

[262]

 float:left;
 width:85%;
}
#file-access-textarea {
 width:100%;
 min-height:500px;
}

4.	 Next, the file with all the AJAX magic—packages/c5book/js/file.access.js:

var currentDirectory = '';
var currentFile = '';

function openDirectory()
{
 $("#directory-structure-waiting").show();
 $("#directory-structure-content").hide();
 $("#directory-structure-up").hide();
 $("#directory-structure-content").html("");

 $.post(CCM_REL + CCM_DISPATCHER_FILENAME +
 '/tools/packages/c5book/get_structure', {directory:
 currentDirectory}, function(data) {

 if (data.folders) {
 $.each(data.folders, function(idx, val) {
 $("#directory-structure-content").append("<div
 class=\"file-access-folder\">"+val+"</div>");
 })
 }
 if (data.files) {
 $.each(data.files, function(idx, val) {
 $("#directory-structure-content").append("<div
 class=\"file-access-file\">"+val+"</div>");
 })
 }

 if (currentDirectory != '') {
 $("#directory-structure-up").show();
 }

 $("#directory-structure-waiting").hide();
 $("#directory-structure-content").show();

 }, 'json');

Chapter 10

[263]

}

function openFile(filename)
{
 currentFile = currentDirectory + filename;

 $("#file-access-waiting").show();
 $("#file-access-content").hide();

 $.post(CCM_REL + CCM_DISPATCHER_FILENAME +
 '/tools/packages/c5book/get_file',
 {directory: currentDirectory, file: filename},
 function(data) {
 $("#file-access-textarea").val(data.fileContent);
 $("#file-access-caption").text(currentFile);
 $("#file-access-content").show();
 $("#file-access-waiting").hide();
 }, 'json');
}
function fileCancel()
{
 currentFile = '';
 $("#file-access-content").hide();
}
function fileSave()
{
 $("#file-access-waiting").show();
 $("#file-access-content").hide();

 $.post(CCM_REL + CCM_DISPATCHER_FILENAME +
 '/tools/packages/c5book/save_file',
 {file: currentFile, fileContent: $("#file-access-
 textarea").val()},
 function (data) {
 $("#file-access-waiting").hide();
 }, 'json');
}

$(document).ready(function() {
 openDirectory();

 $(".file-access-folder").live("click", function() {
 // append selected directory and reload
 currentDirectory += $(this).text() + "/";

Dashboard Extensions

[264]

 openDirectory();
 })

 $(".file-access-file").live("click", function() {
 openFile($(this).text());
 })

 $("#directory-structure-up").click(function() {
 // remove last directory from path and reload
 currentDirectory = currentDirectory.replace(/[\w]*\/$/,"");
 openDirectory();
 });
})

5.	 Next, we have to create our helper which is used in the three PHP files used by AJAX
calls. Create packages/c5book/helpers/page_permissions.php and put the
following content in it:

<?php
class PagePermissionsHelper {
 public static function exitIfNoReadAccess($path) {
 $page = Page::getByPath($path);
 $permissions = new Permissions($page);

 if (!$permissions->canRead()) {
 die();
 }
 }
}
?>�

6.	 Our first PHP file packages/c5book/tools/get_file.php used by the AJAX
methods:

<?php
defined('C5_EXECUTE') or die(_("Access Denied."));
header('Content-type: text/json');

Loader::helper('page_permissions', 'c5book');
PagePermissionsHelper::exitIfNoReadAccess
 ('/dashboard/file_access');

$files = array();
$folders = array();

$directory = './' . $_REQUEST['directory'];

Chapter 10

[265]

$file = $_REQUEST['file'];

$ret['fileContent'] = file_get_contents($directory . $file);

echo json_encode($ret);
?>

7.	 The second file for our AJAX methods—packages/c5book/tools/save_file:

<?php
defined('C5_EXECUTE') or die(_("Access Denied."));
header('Content-type: text/json');

Loader::helper('page_permissions', 'c5book');
PagePermissionsHelper::exitIfNoReadAccess
 ('/dashboard/file_access');

$file = './' . $_REQUEST['file'];

$ret['returnValue'] = file_put_contents($file,
 $_REQUEST['fileContent']);

echo json_encode($ret);
?>

8.	 Finally, the last AJAX file to load the directory and file structure—
packages/c5book/tools/get_structure.php:

<?php
defined('C5_EXECUTE') or die(_("Access Denied."));
header('Content-type: text/json');

Loader::helper('page_permissions', 'c5book');
PagePermissionsHelper::exitIfNoReadAccess
 ('/dashboard/file_access');

$ret['items'] = array();

$files = array();
$folders = array();

$directory = './' . $_REQUEST['directory'];
if ($dh = opendir($directory)) {

 while (false !== ($file = readdir($dh))) {

Dashboard Extensions

[266]

 if ($file == '.' || $file == '..') continue;

 if (is_dir($directory . $file)) {
 $ret['folders'][] = $file;
 }
 else {
 $ret['files'][] = $file;
 }
 }

 closedir($dh);
}

echo json_encode($ret);
?>

What just happened?
If everything worked as planned, you can reinstall the package and a new element File
Access in your dashboard should appear in the left navigation. If you click on it, the
structure should load shortly afterwards and you can navigate around and open text files,
edit them, and save the changes. No need to fire up your FTP application for a quick change
to the configuration files.

We're going to have a closer look at the controller, as it is a bit uncommon and doesn't
completely follow the usual MVC concept.

Controller without logic
If you look at packages/c5book/controllers/dashboard/file_access.php, you'll
find very few lines of code. Why is there almost no logic in the controller? You remember
the introduction—the controller contains all the logic of the add-on. As always in life, it's
full of exceptions.

The reason for this is simple: instead of reloading the whole dashboard page with every
action, we use AJAX to update only the parts which have actually changed. This not only
improves the look and feel, but also the performance.

AJAX always needs a different way to fetch data. This could have been a different method in
the controller, but this would usually have been linked to a view. In this case, it's easier to
create a completely independent file in the tools directory to process the AJAX requests.

Chapter 10

[267]

What does this mean at the end? The controller is pretty much empty; all the logic has been
moved into JavaScript files in combination with some independent tools.

The following graphic shows the relationship of all the different elements. As you can see,
all the actions go straight to the AJAX scripts and skip the controller, which is only used once
when the page is loaded the first time:

Have a go hero – extending the file editor add-on
This add-on works, but misses quite a few features any end user would expect to find when
looking at it. Why not try to add some features?

Here are some ideas:

Add the ability to download files

Detect the file type to make sure no one tries to load a binary file like ZIP or JPG into
the textarea

A place to upload a file, maybe with support for auto extracting ZIP files

Add a breadcrumb navigation to be able to navigate back to a previous
directory quicker

Support for different views like a tree structure, thumbnails, and so on. There are plenty of
things to do.









Dashboard Extensions

[268]

Summary
This was the last chapter where you actually built something. In the next and final chapter,
we're only going to look at how to deploy your site to a different server as well
as a few configurations you can make.

While most customizations and add-ons we created were pretty basic, they should have
given you the basic knowledge to build lots of different add-ons. Once you get used to the
concrete5 framework, you can build all kinds of add-ons just by knowing what has been
discussed so far in combination with some PHP and JavaScript knowledge.

Before you leave this chapter, think about the following things and make sure you know and
understand them. These are the basics from this chapter you should know if you build your
own dashboard extension:

A dashboard add-on is basically a single page like any other single page with the
exception that it's located underneath the dashboard in the sitemap. Please
note: these pages are only visible if you tick the checkbox Show System Pages.

You can put several methods in a single controller to process data or change the
behavior of the output.

Look at the graphic at the beginning of this chapter and make sure you understand
the separation of each element in the MVC pattern. Something which is also useful
to know if you work with other frameworks.

If you need more information about MVC and the process of creating a controller, including
methods with parameters, have a look at the following URL:

http://www.concrete5.org/documentation/how-tos/developers/basic-mvc-
in-concrete5/







11
Deployment and Configuration

In previous chapters we created a number of examples, but not all of them are
suited for your website. However, once you clean up everything and add the
content you want, you have to make your website available on the Internet.

In the last chapter of this book, you'll find information which might be useful
but not necessary during the step by step examples you've seen earlier in this
book. The deployment part is also full of hints and not everything you'll see has
to apply to your situation; keep that in mind.

Deployment
So far we've done all the work on your local computer, but you'll probably want to publish
your website on a web server accessible by the public someday. It's a bit difficult to assume
all the possible configurations out there. Every web server is a bit different; there are
different operating system, different web server software, and a lot of parameters your
hosting company can change.

In this section, you'll find information which should make the process of deploying your
website easier, no matter what hosting company you work with. However, keep in mind
that it can vary depending on your situation and you might have to adapt to that.

Preparations for deployment
The following steps aren't necessary in every case, but they make the deployment process a
bit more solid.

Deployment and Configuration

[270]

Time for action – disabling pretty URL and cache
Carry out the following steps:

1.	 In your dashboard, go to Sitewide Settings and make sure that the checkbox Enable
Pretty URLs isn't ticked and then click on Save if you had to change it, as shown in
the following screenshot:

2.	 Delete the file named .htaccess which is in the root of your site like index.php.

3.	 On the top in the dashboard, locate and select Debug to disable the cache.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 11

[271]

4.	 First, click on Clear Cache to clean up all the files saved in your files directory.

5.	 Then activate the radio button Disabled and then click on Update Cache, as shown
in the preceding screenshot.

What just happened?
Why did we disable the pretty URLs? concrete5 creates a .htaccess file to rewrite the
URLs, which is based on a technology by the Apache web server. If you move your website
to a server without support for .htaccess, your website might be broken after the move.

Please note, without pretty URLs you have to open the login page by using the
following address:

http://localhost/index.php/login.

The cache does not necessarily break things on your website, but since it's quite difficult to
predict what objects you will find in the cache, it is safer to disable it. You can enable it once
your website has found its new home. You can find the cached files in this directory
c:/xampplite/htdocs/files/cache; some can be read quite easily, and some
not so much.

Transfer MySQL ��������database
concrete5 uses MySQL to store most of its data found in the pages. It's therefore essential
to transfer it to the new server. There are plenty of ways to do this, you might even have
some bash scripts to transfer a database from one server to another; if you're that guy, this
chapter isn't for you.

We're going to use phpMyAdmin, mostly because it's a widely used tool to manage a MySQL
database. The XAMPP stack we've worked with also contains a version of phpMyAdmin,
which will make it an easy task to export the database.

Time for action – transferring a MySQL database
Carry out the following steps:

1.	 If it's not already running, locate the XAMPP Control Panel in your start menu and
open it. Apache and MySQL should be running, if not start them. Click on Admin
next to MySQL to open phpMyAdmin.

2.	 In the new phpMyAdmin screen, click on the database named concrete5, which
you'll find in the left column.

Deployment and Configuration

[272]

3.	 A new screen appears where you can activate the Export register on the top. Save
the data into a plain SQL file including the structure and data. You can see the
settings on the next screen:

4.	 After you've clicked on Go in the bottom right corner, you'll get a file containing all
the data of your database.

5.	 Now it's time to connect to the new website. Open phpMyAdmin on your new
server. If you don't know where to find it, contact your hosting partner.

6.	 After you've logged in to phpMyAdmin, locate the database on the left, which you
want to use for your website. Once you've selected it, click on Import on the right
screen. Select the file you've just downloaded and click on Go at the bottom right
corner, as shown in the following screenshot:

Chapter 11

[273]

What just happened?
The preceding steps were necessary to transfer the content of our MySQL database to the
new server. More experienced users are probably going to skip phpMyAdmin and simply use
two commands:

One to export the database on the Windows computer: mysqldump -u concrete5
-p concrete5 > sql.dump

Another one to import the dump file on the new server: mysql –u [user-on-new-
server] -p [database-on-new-server] < sql.dump

Not every database is configured the same way. Troubleshooting character sets can be
annoying and time consuming; due to the fact that concrete5 uses utf8 all the time, you
should try to make sure your database is set up the same way to avoid possible problems.

In the first chapter, we changed the MySQL setting, which made sure that our table names
were case sensitive, even on Windows. Without this setting, we would now have lower case
table names on a Linux server, which doesn't work, unless someone changed the default
setting on the server. If that happened, you'd have to change the server settings or rename
every table to its actual name. For example, areagroupblocktypes would have to be
named AreaGroupBlockTypes. In other words, just try to make sure you always work with
case sensitive MySQL server configurations to avoid the hassle.





Deployment and Configuration

[274]

Transferring files to ������server
When you installed concrete5 you probably realized that it needs quite a lot of files. These
files have to be copied to the new server as well as the database. Again, there are tons of
options to do this.

We're going to use a traditional unencrypted FTP connection because it's enabled on most
web servers. You can use almost any FTP client, just make sure it allows you to change file
permissions. If you're not sure about it, just go with FileZilla, which you can download at
http://filezilla-project.org/.

Time for action – transferring files to the server
Carry out the following steps:

1.	 Open your FTP client and connect to the new server using the credentials you
received from your hosting partner.

2.	 Navigate to c:\xampplite\htdocs\ and select all the files in that directory.
Drag them to the right pane or select Upload to start the process, as shown in the
following screenshot:

Chapter 11

[275]

3.	 Once all the files have been uploaded, it will probably take a while, so you might
want to set the file system permissions.

What just happened?
We uploaded all the files from concrete5, as well as our own files added to the website to
the new server by using FileZilla.

Due to the fact that concrete5 contains a lot of files, it took a long time to upload all of them.
Even a very fast Internet connection won't change a lot. The FTP protocol has some overhead
on every file transferred to the server making the process slow as soon as you transfer lots of
single files.

If you can extract a ZIP archive or something similar on your server, you should compress all
the files into a single file first and upload that and then extract it.

Time for action – updating the configuration file
The URL to access your website changed and so did probably the username and password
to access the MySQL database. We have to update the configuration file to match the new
values by taking the following steps:

1.	 Open config/site.php and locate each of the following parameters.

2.	 DB_SERVER: this parameter has the value localhost, which quite likely will work
on your new server as well. Check your hosting information to be sure and modify
the value according to your information.

3.	 DB_USERNAME: this parameter has very likely changed; enter the username you
want to use to access your MySQL database.

4.	 DB_PASSWORD: another parameter which has probably changed; replace it with the
new password to access your MySQL database.

5.	 DB_DATABASE: another parameter you might have to change. Enter the name of the
new database where you've imported the MySQL dump in the previous section.

6.	 BASE_URL: concrete5 redirects you to the base URL by default. As the website isn't
running on localhost any longer, you have to update this value with the website
URL that you've received from your hosting partner. You can also disable the base
URL redirection by inserting the following line in the PHP block:

define('REDIRECT_TO_BASE_URL', false);

7.	 DIR_REL doesn't change if you followed this book step by step. It would change if
your website had to run in a subdirectory. Enter the path and you're okay.

Deployment and Configuration

[276]

What just happened?
We modified the configuration file to meet the new values to access your website and
MySQL database. Nothing fancy, but it had to be done.

If everything worked as planned, you should now be able to access your website under the
new address from your new web server.

Time for action – setting file permissions
This part might be unnecessary, depending on your web server configuration. It's all
about making sure that your web server can access the files from your website. The
following screenshot shows a simplified graphic without MySQL involved to illustrate
the communication between the web server and the files:

The web server can run under a different user than the PHP and the files can be owned by a
different user again. To make things even more difficult, you can use groups instead of users
as well. It's pretty hard to predict the configuration of your server; there is therefore no
single solution.

If you're running suEXEC or suPHP on Apache, then all the elements run with the same user
making your web server more secure, and easier to use in this case. The web server can
access and write the files by default; there's no need to change anything.

Accessing (reading) the files shouldn't be a problem. Files written by the FTP server are
almost always readable by the web server, but often not writable. The directories config,
files, packages, and updates should be writable by the web server.

Files on a Linux like server are usually writable by the user but no one else. If you right click
on the files directory in FileZilla and select File Permissions, you'll see a dialog like the one
shown in the following screenshot:

Chapter 11

[277]

These are the default settings mentioned earlier. The number 755 represents the nine
checkboxes in the screenshot. The first number is the owner, the second is the group, and
the third is the public.

Each setting has a number which creates the numeric value 755:

Execute: 1

Write: 2

Read: 4

If you add all the selected numbers in the order of owner, group, and public, you'll get 755.

Owner: 4 (Read) + 2 (Write) + 1 (Execute) = 7

Group: 4 (Read) + 1 (Execute) = 5

Public: 4 (Read) + 1 (Execute) = 5

When using FileZilla, you don't really have to care about these numbers, but you'll someday
find them very handy when you get into the console.

What do these numbers mean? If your web server doesn't run under the user that owns
your files, you won't be able to upload a new file, install a new package, and so on. Here is
what you should try to make sure everything works as it should:

1.	 Try to upload a new file in the file manager. It doesn't matter which method you're
using; you can upload a single file or several files by using the advanced multi file
uploader. If it works, you're the lucky one who doesn't have to change any settings.
If not, continue to step two.













Deployment and Configuration

[278]

2.	 We assume that your web server runs under same user that is set as the group
owner of your files and directory which have to be writable. Go back to FileZilla
and select config, files, packages, and updates if it exists. Click on the right mouse
button and select File Permissions again.

3.	 Tick the checkbox Write in the box of Group permissions and click on Ok.

4.	 Try to upload a file again. If it works, you're almost done. If it doesn't work, continue
to step five.

5.	 If your web server cannot even write a file if it's writable by all members of the
group, you can only allow everyone to write it and tick the checkbox Write in the
box Public permissions. Click on Ok and try to upload a file again, if it doesn't work,
you might have to ask for help in the concrete5 forums.

What just happened?
File permissions can be tricky, especially if you're not used to work with them. Hopefully, the
preceding steps worked for you, but due to the vast variety of server configurations, you can
never be sure.

There are also some web servers where you can change the file permissions by using an
FTP client, even though the dialog is available. In this case, you will probably have to use
an interface offered by your hosting company. Get in touch with them or ask for help in the
concrete5 community, but post as many details about your problem as you can!

If you're done with the transfer, you might want to enable the cache again. Have a look
at the previous paragraph where we changed the cache setting; you can find it in your
dashboard under Sitewide Settings | Debug.

Configuration
In this chapter, you'll find lots of different options you can set. You will probably have to
change them very rarely. Memorizing every part in this chapter isn't going to help you a lot,
but try to remember the things you can change in case you've got a project with special
requirements.

Updating the configuration file
While there are several options you can change using the concrete5 interface, there are also
lots of values you have to set in your configuration files.

Chapter 11

[279]

In this section you'll find some code snippets. Make sure you paste them between the PHP
tags. If the file config/site.php looks like the following:

<?php
define('DB_SERVER', 'localhost');
define('DB_USERNAME', 'concrete5');
define('DB_PASSWORD', 'concrete5');
define('DB_DATABASE', 'concrete5');
define('BASE_URL', 'http://www.example.com');
define('DIR_REL', '');
define('PASSWORD_SALT', 'R3nAjizpVw3AbleCFD2e5fZbXzNACYvnxoq');
?>

You have to insert the snippets before the closing PHP tag, as follows:

<?php
define('DB_SERVER', 'localhost');
define('DB_USERNAME', 'concrete5');
define('DB_PASSWORD', 'concrete5');
define('DB_DATABASE', 'concrete5');
define('BASE_URL', 'http://www.example.com');
define('DIR_REL', '');
define('PASSWORD_SALT', 'R3nAjizpVw3AbleCFD2e5fZbXzNACYvnxoq');
define('REDIRECT_TO_BASE_URL', 'FALSE');

?>

Base URL �����������redirection
On a site where you have more than one URL, you might want to make sure that one address is
used as the primary URL. Let's assume we've got two addresses: http://www.example.com
and http://www.beispiel.ch. As your company is located in the United States, you don't
want your visitors to stay on beispiel.ch. When you look into your generated site.php
file, you can already find the BASE_URL constant:

define('BASE_URL', 'http://www.example.com');

There's another constant which must be set to TRUE:

define('REDIRECT_TO_BASE_URL', 'TRUE');

By default, this constant is already set to TRUE, there's no need to change it if you want to
use the base URL redirection. If you don't want concrete5 to redirect to the base URL you've
entered, simply set REDIRECT_TO_BASE_URL to FALSE.

Deployment and Configuration

[280]

Multilanguage
You presumably understand English if you're reading this book, but you might still want to
use concrete5 in another language.

First, make sure your concrete5 has been translated to the language you're looking for. Check
the following project on mygengo to see the current state of the translations:

http://mygengo.com/string/p/concrete5-1

If you found your language in an up-to-date state, follow these steps to install the translation.

Time for action – installing a translation file
Carry out the following steps:

1.	 Open your browser and navigate to http://mygengo.com/string/p/
concrete5-1.

2.	 Look for the language you want to download and get the file and extract it into a
local directory.

3.	 Rename the file matching your concrete5 version to messages.po.

4.	 Go to http://www.poedit.net/, download Poedit, and install it.

5.	 Open the messages.po file you've downloaded using Poedit.

6.	 Save the file in Poedit; this will generate a file named messages.mo in the same
directory as messages.po. You should have a messages.mo file now. If you've
downloaded de_DE you have to put messages.po in the directory languages\
de_DE\LC_MESSAGES. You have to create the subdirectories manually.

Chapter 11

[281]

7.	 Once the files are where they belong, open config/site.php in the text editor of
your choice.

8.	 Insert the line define('LOCALE', 'de_DE');. It should look like the following:

<?php
define('DB_SERVER', 'localhost');
define('DB_USERNAME', 'concrete5');
define('DB_PASSWORD', 'concrete5');
define('DB_DATABASE', 'concrete5');
define('BASE_URL', 'http://localhost');
define('DIR_REL', '');
define('PASSWORD_SALT',
 'R3nAjizpVw3AbleCFD2e5f2AZkeCuQIzNACYvnxoq');

 define('LOCALE', 'de_DE');

?>

What just happened?
After you save the file, you can reload concrete5.

You should immediately see the changes in the toolbar at the top, as shown in the
following screenshot:

Cache to ������������������� improve������������ performance
concrete5 uses the Zend Framework for a few things, including caching objects to improve
performance. By using the Zend cache concrete5 can save the results of complex queries and
procedures to reduce the number of calls, and therefore improve a website's response time.
Thanks to Zend, there are lots of options and backends we can use for our cache.

Deployment and Configuration

[282]

By default, concrete5 uses a simple file cache but there are other backends you can use:

SQLite: Stores the cached objects in a SQLite database.

Memcached: Uses the distribution caching system daemon memcache.

APC: A shared memory caching extension for PHP.

XCache: Another shared memory cache extension.

Zend platform: Used an API from the Zend Platform Product.

Zend server: Zend server offers a disk and a shared memory extension which can be
used as well.

Static: Pulls static files to avoid PHP completely. Uses a complex configuration.

The information about the backends has been taken from the following page:

http://framework.zend.com/manual/en/zend.cache.html

If your web server supports any of the cache extensions, you should try to enable them
and make some tests to see if there's any change in the page generation time. Even though
XAMPP should be fast enough for your needs, performance can still be an issue. Once you've
got lots of hits or lots of concurrent users, things can slow down. If possible, use a cache
extension, even if you don't feel any performance issue.

In case you aren't sure about the installed cache extension, create a script with a call
to phpinfo.

Time for action – getting PHP information
Carry out the following steps:

1.	 Create a file named info.php in this directory: c:\xampplite\htdocs.

2.	 Enter the following lines:

<?php
phpinfo();
?>

3.	 Open http://localhost/info.php in your web browser.

What just happened?
The PHP information page contains everything about your PHP configuration. In case you
haven't seen this page before, make sure you get at least a little bit familiar with it as a lot
of people will ask for it when you ask questions in the concrete5 community.















Chapter 11

[283]

If an extension like APC is enabled, you can find it somewhere in the information page.
XAMPP doesn't come with a real cache extension like APC; the only backends we can
use are the file system and a SQLite database.

When you're looking to get support from a community such as
concrete5.org, people will often ask you about information you can
find in this information page as well. It does reveal lots of information
about your configuration, but it helps a lot if you can attach the output
of this page to a forum thread if you ask for help.

Activating SQLite
Using SQLite as a cache backend isn't really recommended and not widely used, but as it is
an extended backend, it has some additional parameters which make it a nice example, even
if you probably don't want to use it on your production server.

First, we have to get all necessary information about our backend from Zend. You'll
probably end up being on this page: http://framework.zend.com/manual/
en/zend.cache.backends.html#zend.cache.backends.sqlite. The page
tells us that there's one mandatory parameter we have to set to tell Zend Cache
where the cache database should be stored: cache_db_complete_path.

Open config/site.php and set CACHE_LIBRARY and CACHE_BACKEND_
OPTIONS. The configuration file should look like the following:

<?php
define('DB_SERVER', 'localhost');
define('DB_USERNAME', 'concrete5');
define('DB_PASSWORD', 'concrete5');
define('DB_DATABASE', 'concrete5');
define('BASE_URL', 'http://localhost');
define('DIR_REL', '');
define('PASSWORD_SALT', 'R3nAjizpVw3AbleCFD2e5CkeCuQIzNACYvnxoq');

 define('CACHE_LIBRARY', 'Sqlite');

 $cacheBackendOptions = array('cache_db_complete_path'=> 'sqlite-
 cache.db');

 define('CACHE_BACKEND_OPTIONS', serialize($cacheBackendOptions));

?>

Using APC
It doesn't work on XAMPP but if your web host supports it, you should activate APC when
you move the website to the production server. It's currently the preferred cache backend
of a lot of concrete5 developers and does noticeably improve the performance.





D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Deployment and Configuration

[284]

The APC backend doesn't have any options, so you don't have to set
CACHE_BACKEND_OPTIONS; only CACHE_LIBRARY is needed. The configuration
file should look like the following:

<?php
define('DB_SERVER', 'localhost');
define('DB_USERNAME', 'concrete5');
define('DB_PASSWORD', 'concrete5');
define('DB_DATABASE', 'concrete5');
define('BASE_URL', 'http://localhost');
define('DIR_REL', '');
define('PASSWORD_SALT', 'R3nAjizpVw3AbleCFD2exSwiUzKkbXezNACYvnxoq');

define('CACHE_LIBRARY', 'apc');

?>

Measuring the site performance
If you change the cache backend, you probably want to make sure that it actually improves
the performance. It can in fact happen that a cache backend slows down the process instead
of improving it. This might be because of a slow file system, an overloaded database server,
or anything else that runs on your server.

XAMPP installs Apache with a component named ApacheBench, a small executable file
named ab. This is a simple but nice way to test a website's performance:

1.	 If you're running Windows, press Windows+R and enter cmd and confirm it with a
click on the Ok button.

2.	 Enter c:\xampplite\apache\bin\ab.exe -c 5 -n 100 http://localhost/
and press Enter to confirm the command. The parameter –c sets the number of
concurrent requests to 5 and –n sets the number of requests to 100. After a few
seconds, you should see an output with lots of information—most people care
about Requests per second.

H:\>c:\xampplite\apache\bin\ab.exe -c 5 -n 100 http://localhost/
This is ApacheBench, Version 2.3 <$Revision: 655654 $>
Copyright 1996 Adam Twiss, Zeus Technology Ltd, http://www.
zeustech.net/
Licensed to The Apache Software Foundation, http://www.apache.org/

Benchmarking localhost (be patient).....done

Server Software: Apache/2.2.14
Server Hostname: localhost

Chapter 11

[285]

Server Port: 80

Document Path: /
Document Length: 8025 bytes

Concurrency Level: 5
Time taken for tests: 27.016 seconds
Complete requests: 100
Failed requests: 0
Write errors: 0
Total transferred: 845700 bytes
HTML transferred: 802500 bytes

 Requests per second: 3.70 [#/sec] (mean)

Time per request: 1350.799 [ms] (mean)
Time per request: 270.160 [ms] (mean, across all concurrent
requests)
Transfer rate: 30.57 [Kbytes/sec] received

Connection Times (ms)
 min mean[+/-sd] median max
Connect: 0 0 1.6 0 16
Processing: 828 1336 403.5 1313 2922
Waiting: 813 1313 400.2 1281 2891
Total: 828 1336 403.4 1313 2922

Percentage of the requests served within a certain time (ms)
 50% 1313
 66% 1406
 75% 1453
 80% 1484
 90% 1578
 95% 2547
 98% 2891
 99% 2922
 100% 2922 (longest request)

Using this simple tool allows you to quickly and easily compare a cache backend. It also
offers you a simple way to see if your new web host performs as good as they are saying. Just
replace http://localhost/ with the address of your server, but keep in mind that you're
going to execute a lot of requests. Don't use this tool for productive servers unless it's your
server you're benchmarking.

Deployment and Configuration

[286]

Summary
You've made it to the end of this book! We hope you enjoyed it and learned how to work
with concrete5 to create your own website with some basic customizations. While we
recognize that this book does not include the perfect solution for every problem, you now
have a few techniques to try out during your investigations.

If anything is unclear, feel free to contact the author at the following website:
http://www.c5book.com

Pop Quiz Answers

Chapter 1: Installation
Pop Quiz 1

1 a

2 b

3 d

4 Correct answer: a, b, c, and d. However, keep in mind that the core team only supports
Apache at the moment. As long as PHP works, you should be able to run concrete5, but
if you want to get good support it’s recommended to use Apache.

Pop Quiz 2
1 c

Pop Quiz Answers

[288]

Chapter 2: Working with concrete5
Pop Quiz 1

1 Content, HTML, Auto-Nav, External Form, Form, Page List, File, Image, Flash Content,
Guestbook, Slideshow, Search, Google Map, Video Player, RSS Displayer, Youtube Video,
Survey.

2 •	 Exit Edit Mode to cancel or save the changes you’ve made to a page

•	 Properties to change the title of the page, update meta information, and
change the values of page attributes

•	 Design to switch between the theme and page templates

•	 Versions to look at or approve an older version of the current page

•	 Move/Delete to remove or move the current page, Dashboard to go back to
the dashboard

•	 Help to get an easy link to answer a question in the community

•	 Sign Out to exit concrete5

3 •	 Edit Page to activate the edit mode for the current page

•	 Add Page to add a subpage beneath the current page.

Pop Quiz 2
1 •	 Sitemap to look at a hierarchical structure of your site

•	 File manager to manage your files available in concrete5
•	 Reports to check form and survey submissions as well as internal logs
•	 Users and groups to manage who has access to your site including a register to

manage attributes assigned to users to connect more information to each user
•	 Scrapbook
•	 Pages and Themes to install and remove themes as well as the ability to add,

modify, or remove page types
•	 Add Functionality, a place to install and remove add-ons available in your site
•	 System & Maintenance to create and restore database backups
•	 Sitewide Settings lets you change various options like caching, toolbar of the

rich text editor among lots of other things

Appendix

[289]

Chapter 3: Permissions
1 a, c, and e

2 b

Chapter 4: Add-ons
1 a, c, and d

Chapter 5: Creating Your Own Theme
Pop quiz 1

1 a, c, and d

Pop Quiz 2
1 c

Pop Quiz 3
1 b, c, and d

Chapter 6: Creating Your Own Add-on Block
1 a, c, and d

Pop Quiz Answers

[290]

Chapter 9: Everything in a Package
Pop Quiz 1

1 d

2 c

Pop Quiz 2
1 d

2 a and c

Pop Quiz 3
1 d

Index
Symbols
.htaccess file 24, 25

A
add-on

about 83
installing, from marketplace 83-85
installing, manually 86
removing 85

add-on, installing
from marketplace 83-85
manually 86

Add.php file 91
addresses

putting, in scrapbook 52-54
advanced permission mode

activating 73-75
advanced tooltip

creating 156, 157
in content block 155, 156

allowed blocks for an area
restricting 80

anonymous visitors
content, hiding from 111

ApacheBench 284
APC 282

using 283, 284
appVersionRequired 220
archive utility 8
area

about 30
block wrapper, inserting 112
number of blocks per area, hiding 111

attributes
about 117
adding, to slideshow 152

auto-hide page list
creating 144-146

Auto.js file 91
AUTO / AUTOINCREMENT 184
autonav

all pages, showing 161
block integration, undoing 160
example 161
options 160
output 163-66
page order 161
page structure 160, 161
relevant subpages, showing 162
relevant subpages from top, showing 163

autonav block 160
autonav block integration

undoing 160
autonav block properties

finding 118-120
autonav options 160
autonav page structure 160
autonav template 164, 176

B
background picture

setting, attributes used 113-115
BASE_URL 22
base URL redirection 279, 280
block controller

creating 185, 186

[292]

block layout
modifying, custom templates used 129, 130

block output
printing 189

block permissions
using 80

block picture navigation template
creating 167, 168

blocks
about 30, 90
adding 28-34
adding, to existing sites 45
adding, to new page 41-43
edit mode, exiting 34
existing blocks, editing 33
file structure 91
moving, into package 222
styling 55, 56

blocks folder 16
blocks per area

number, hiding 111
broken link interface

about 245
broken links dashboard extensions, creating

246-249
database, moving into access model 249
multiple controller methods 254, 255
package model, creating 249-253
second controller method, adding 255, 256

broken links dashboard extensions
creating 246-249

C
C5 Request URLs 19
cache

disabling 270, 271
Coda 8
columns

content, splitting 48
multi-column layout, creating 49, 51

concrete5
about 7, 9
add-on 83
add functionality item 37
Add Page button 28
advanced permissions mode, activating 73-75

advanced tooltip, creating 156, 157
advanced tooltip, in content block 155
allowed blocks for an area, restricting 80, 81
auto-hide page list, creating 144-146
autonav 159
block creating, steps 182
block permissions, using 80
blocks 90
blocks, adding 28-34
configuration file 22
CSS3 hover effect 168
dashboard button 28
downloading 15, 16
drop-down navigation 171
duplicate code, adding in custom template 143
dynamically loading content 176, 177
edit access, granting 67
edit access on a page by page basis, managing

68
edit mode, exiting 34
existing template, including 143, 144
file attributes, adding to slideshow 152
file attributes, using in gallery 153, 154
file manager item 36
file manager permissions, granting 66
FTP gallery 208
gallery template, creating for slideshow 148,

149
Gravatar picture, adding to guestbook 140-142
Gravatar picture, in guestbook 140
groups, adding 62
Help button 28
helpers 136
hierarchical tree navigation 174
in-site editing mode 35
installation process tools 7, 8
installing 19-21
JavaScript gallery, creating 140
layout 95, 96
lightbox gallery, building 138-140
logging into 27
mandatory fields, checking for 190
packages 91, 92
page attributes, creating for navigation pictures

167
pages and themes item 37
partial dashboard access, granting 71-73

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

[293]

PDF generation block 203, 204
permissions 61, 81
permissions, advanced mode 73
picture magnifier 199, 200
picture pop-ups 138
pretty URLs 23
product categories, adding 190, 191
product information block 181
product list 193
protected website, creating 69, 70
reports item 36
scrapbook item 37
sign out button 28
site.php file 22
sitemap item 36
sitemap permissions, assigning 65
sitewide settings item 37
slideshow, transforming into gallery 147, 148
slideshow gallery, adding 151
sub-page permissions, setting 77
system and maintenance item 37
task permissions, setting 70, 71
template folder 136-138
themes 87
thumbnail, restricting to custom dimension

135, 136
thumbnail dimension, restricting 134, 135
thumbnail page list, improving 136
thumbnails, adding to page list 131, 132
time based page visibility, setting 75, 76
user attributes 64
users, adding 62-64
users anf groups item 36

concrete5.org community 84
concrete5 add-on 83
concrete5 theme

CSS file, converting 100
footer, creating 103, 104
header, creating 101-103
HTML file, converting 100

concrete folder 16
config directory 22
config folder 16
configuration

APC, using 283
base URL redirection 279
cache 281

file, updating 278
PHP information, getting 282
site performance, measuring 284, 285
SQLite, activating 283
translation file. installing 280, 281

constants 108
CONSTRAINTS 185
content

direct link, with dynamic content 178, 179
direct links, adding in dynamically loaded pages

178
loading dynamically, jQuery content used 176,

178
multi-column layout, creating 48-51
splitting, into columns 48

content block
advanced tooltip 155, 156
picture pop-ups 138

controller 243-245
Controller.php file 91
CSS3 hover effect

about 168, 169
CSS3 transition autonav template, creating 169,

170
CSS3 transition autonav template

creating 169-171
transitions, creating 171

CSS file
converting, to concrete5 theme 100

CSS rules 98-100
custom dimension

thumbnails, restricting to 135, 136
customizable theme

creating 125, 126
custom template

duplicate code, avoiding 143
used, for modifying block layout 129, 130

D
dashboard

about 35
file editor, embedded 257
help item 36
latest news item 36
notes item 36
site activity item 36

[294]

statistics item 36
database structure

C, field type 184
creating 183
I, field type 184
T, field type 184
X2, field type 184

database tuning 244
Db.xml file 91
DB_DATABASE 22
DB_PASSWORD 22
DB_SERVER 22
DB_USERNAME 22
DEF / DEFAULT 184
Default.php file 89
default.php file 88, 89
default blocks

adding, to page type 43, 44
DEFTIMESTAMP 185
deployment

cache, disabling 270, 271
configuration file, updating 275
file permissions, setting 276-278
files, transferring to server 274, 275
MySQL database, transferring 271-273
preparing for 269
pretty URL, disabling 270, 271

Description.txt file 89
DIR_REL 22
downloading

concrete5 15, 16
drop-down navigation

about 171
SooperFish template, creating 172, 173

dynamically loading content
about 176
direct link with 179
jQuery used 176-178

E
Edit.php file 91
edit access

granting 67
on page by page basis, managing 67, 68

editing interface
creating 187, 188

edit mode
checking for 110

Edit Page button 28
Elements directory 89
events

core events, hooking into 225
extending 227, 228
on_before_render event 227
on_group_delete event 226
on_page_add event 226
on_page_delete event 226
on_page_duplicate event 226
on_page_move event 226
on_page_update event 226
on_page_version_approve event 227
on_page_view event 226
on_render_complete event 227
on_user_add event 226
on_user_change_password event 226
on_user_delete event 226
on_user_login event 227
on_user_update event 226
types 226

existing template
including 143

F
file attributes

using, in gallery 153-155
file editor

add-on, creating 258-266
add-on, extending 267
embedded, in dashboard 257

file explorer-like navigation
building 174, 176

file manager permissions
granting 66

file permissions
setting 276-278

files
transferring, to server 274, 275

files folder 16
file structure, blocks 91
file structure, themes 89, 90
FileZilla 8
Form_setup_html.php file 91

[295]

FTP based picture gallery
creating 209-215

FTP client 8
Full.php file 89
functions

about 109, 110

G
gallery

slideshow, transforming 147
template for slideshow, creating 148, 149

generate_pdf.php 207
Generate Sitemap 229
getBrokenLinks 254
getPackageDescription 220
getPackageName 220
global tooltips

creating 238, 239
Gravatar picture

adding, to guestbook 140-142
group expiration options 63
groups

adding 62, 63
guestbook

Gravatar picture, adding 140-142

H
header area

replacing, with template block 117, 118
hierarchical tree navigation

about 174
file explorer-like navigation, creating 174-176

HTML code 96-98
HTML file

converting, to concrete5 theme 100

I
Icon.png file 91
Images directory 89
in-site editing mode 35
index.php file 23
Index Search Engine 229
install 220
installation, add-on

from marketplace 83-85

manually 86
installation, concrete5

database information 20
personal information 20
requisites 19
steps 19-21

installation, XAMPP 9, 10
installation process tools, concrete5

about 7
archive utility 8
FTP client 8
text editor 8
web browser 7, 8

installing
add-on, from marketplace 83-85
concrete5 19-21
theme 106, 107
XAMPP 9, 10

IZArc
about 8
URL 8

J
JavaScript 19
JavaScript browser fixes

about 240
CSS fix, integrating in package 240, 241

JavaScript gallery
creating 140

jobs
about 229, 230
concrete5 jobs, executing periodically 230, 231
creating, to check for broken links 232-236
new job, creating 231, 232

jQZoom block
moving, into package 222, 223

K
KEY / PRIMARY 184

L
layout

about 95, 96
CSS rules 98-100
HTML code 96-98

[296]

Left_sidebar.php file 89
lightbox gallery

building 138
login errors

handling, variables added 122-124

M
Main.css file 90
mandatory fields

checking for 190
Memcached 282
mobile phone layout 245
mod_rewrite module 24
model

about 243-245
database access, moving 249-253

Model-View-Controller pattern. See MVC
pattern

multi-column layout
creating 48-51

multiple block versions
handling 194, 195

multiple controller methods
about 254, 255
second controller method, adding 255, 256

MVC
about 243-245
issues 243, 244

MVC pattern 90
my.ini file 11
MySQL

about 19
settings, modifying 10-12

MySQL database
transferring 271-273

N
nav-path-selected 166
nav-selected 166
navigation pictures

page attributes, creating 167
new layout 245
news section

creating, by adding pages 38-40
NOQUOTE 185

Notepad++ 8
NOTNULL 184

O
on_group_delete event 226
on_page_add event 226
on_page_delete event 226
on_page_duplicate event 226
on_page_move event 226
on_page_update event 226
on_page_version_approve event 227
on_page_view event 226
on_render_complete event 227
on_start method 227
on_user_add event 226
on_user_change_password event 226
on_user_login event 227

P
package

about 91, 217, 218
add-ons, moving 225
appVersionRequired 220
blocks, moving 222
controller, creating 218-220
getPackageDescription 220
getPackageName 220
install 220
jQZoom block, moving 222, 223
new package, creating 242
PDF block, moving 223-225
pkgHandle 220
pkgVersion 220
structure 218
templates, moving 221, 222
themes, moving 222
uses 91

package model
creating 249-253

packages folder 16
page attributes

about 113
attribute data, accessing from template 115,

116
creating, for navigation pictures 167

[297]

data attribute, accessing from template 116
used, for setting background picture 113, 115

page commands 45, 46
page defaults

adding 43
page list

thumbnails, adding 131-133
pages

adding 37, 43
adding, to create news section 38, 39
blocks, adding 41-43
moving 46, 47
sorting 46, 47

page template
creating 104-106
uses 106

page type
about 89
and template, differences 88
default blocks, adding 43, 44
uses 106

partial dashboard access, granting 71-73
PASSWORD_SALT 22
PDF block

moving, into package 223-225
PDF generation block

creating 204-206
generate_pdf.php 207
view.php 208

permissions
about 61
edit access, granting 67
edit access managing, on page by page basis

67, 68
file manager permissions, granting 66
group expiration, options 63
groups, adding 62, 63
partial dashboard access, granting 71-73
protected website section, creating 69, 70
sitemap permissions, assigning 65, 66
task permissions, setting 70, 71
user attributes 64
users, adding 62-64

permissions, advanced mode
about 73
activating 73-75
allowed blocks for an area, restricting 80, 81

area based permissions 80
block permissions, using 78, 79
sub-page permissions, setting 77
time based page visibility, setting 75, 76

PHP 9, 19
PHP information

getting 282
phpMyAdmin 17
PHP syntax highlighting 8
picture magnifier

about 199
block, creating 200-203

picture pop-ups
in content block 138

pkgVersion 220
pretty URLs

about 23
disabling 270, 271
enabling 23-25

Process Email Posts 229
product categories

adding 191
product information block

about 181
block controller, creating 185-187
block output, printing 189
creating, steps 182
database structure 183
database structure, creating 183, 184
editing interface, creating 187-189
mandatory fields checking for, adding 190
more information, getting 193
product categories, adding 191-193

product list
block, creating 196-199
extending 199
multiple block versions, creating 194
multiple block versions, handling 194, 195

product list block 198
creating 196, 197

protected website
creating 69

protected website, creating 69, 70
PSPad

about 8
URL 8

[298]

S
scrapbook

about 51
addresses, putting in 52-54

single page layout
about 124
creating 121, 122
theme, applying 121
variables, adding to handle login errors

122-124
site.php file

about 22
structure 22

sitemap permissions
assigning 65, 66

site performance
measuring 284

Skype 13
slideshow

attributes, adding 152
file attributes, using in gallery 153-155
file attributes used 151, 152
gallery, adding 150, 151
gallery template, creating 148, 149
transforming, into gallery 147

SooperFish template
creating 172, 173

SQL database
creating 16-18

SQLite
about 283
activating 283

Static 282
sub-page permissions

setting 77

T
task permissions

setting 70, 71
template

about 129
and page type, differences 88
moving, into package 221, 222

template block
autonav block properties, finding 118-120

block template in area, specifying 120, 121
header area, replacing 117, 118

template folder
about 136
creating 137, 138

Templates block 91
text editor 8
theme

about 87
applying, to single page 121
customizable theme, creating 124, 126
file structure 89, 90
installing 106, 107
moving, into package 222

theme footer
creating 103, 104

theme header
creating 101-103

Thumbnail.png 90
thumbnails

adding, to page list 131-133
dimension, restricting 134
page list, improving 136
restricting, to custom dimension 135, 136

time based page visibility
setting 75, 76

title tag
tooltips, adding 238

Tools block 91
tooltips

for title tag, adding 238
global tooltips, creating 238, 239

transform property 171
transition property 171
translation file

installing 280, 281
Typography.css file 90

U
UNSIGNED 184
updates folder 16
user attributes 64, 65
users

adding 63, 64

[299]

V
variables

adding, to handle login errors 122-124
view 243-245
view.php 129, 208
View.php file 90, 91
view method 254

W
web browser 7, 8

X
XAMPP

about 9, 14
installing 9, 10
MySQL settings, modifying 10-12

XAMPP Control Panel Application 13
XCache 282

Z
Zend platform 282
Zend server 282

Thank you for buying

concrete5 Beginner's Guide

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're
using to get the job done. Packt books are more specific and less general than the IT books
you have seen in the past. Our unique business model allows us to bring you more focused
information, giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around Open Source licences, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each Open Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get
some additional reward for your expertise.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

CMS Design Using PHP and jQuery
ISBN: 978-1-849512-52-7 Paperback: 340 pages

Build and improve your in-house PHP CMS by enhancing it
with jQuery

1.	 Create a completely functional and a professional
looking CMS

2.	 Add a modular architecture to your CMS and create
template-driven web designs

3.	 Use jQuery plugins to enhance the “feel” of
your CMS

4.	 A step-by-step explanatory tutorial to get your
hands dirty in building your own CMS

WordPress 3 Complete
ISBN: 978-1-849514-10-1 Paperback: 344 pages

Create your own complete website or blog from scratch with
WordPress

1.	 Learn everything you need for creating your own
feature-rich website or blog from scratch

2.	 Clear and practical explanations of all aspects of
WordPress

3.	 In-depth coverage of installation, themes, plugins,
and syndication

4.	 Explore WordPress as a fully functional content
management system

Please check www.PacktPub.com for information on our titles

CMS Made Simple 1.6: Beginner’s Guide
ISBN: 978-1-847198-20-4 Paperback: 364 pages

Create a fully functional and professional website using CMS
Made Simple

1.	 Learn everything there is to know about setting up a
professional website in CMS Made Simple

2.	 Implement your own design into CMS Made Simple
with the help of the easy-to-use template engine

3.	 Create photo galleries with LightBox and implement
many other JQuery effects like interactive navigation
in your website

4.	 Build an eStore and grasp the intricacies of setting
up an integrated PayPal checkout

PHP 5 CMS Framework Development - 2nd Edition
ISBN: 978-1-849511-34-6 Paperback: 416 pages

Expert insight and practical guidance to create an efficient,
flexible, and robust web-oriented PHP 5 framework

1.	 Learn about the design choices involved in the
creation of advanced web oriented PHP systems

2.	 Build an infrastructure for web applications that
provides high functionality while avoiding pre-
empting styling choices

3.	 Implement solid mechanisms for common features
such as menus, presentation services, user
management, and more

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Installation
	Preparing for installation
	Web browser
	Text editor
	Archive utility
	FTP client

	XAMPP installation
	Time for action – installing XAMPP
	Downloading concrete5
	Time for action – downloading the latest version
	Creating an empty SQL database
	Time for action – creating an empty SQL database
	Installing concrete5
	Time for action – installing concrete5
	The configuration file
	Pretty URLs

	Time for action – enabling pretty URLs
	Summary

	Chapter 2: Working with concrete5
	Getting familiar with concrete5
	Time for action – logging in to concrete5
	Adding new blocks
	Time for action – adding new blocks
	Time for action – editing existing blocks
	Time for action – exiting edit mode
	The dashboard
	Adding more pages
	Time for action – adding pages to create a news section
	Time for action – adding blocks to new page
	Page defaults
	Time for action – adding default blocks to a page type
	Adding blocks to existing sites

	Page commands
	Moving and sorting pages

	Time for action – moving and sorting your pages
	Splitting content into columns
	Time for action – creating a multi-column layout
	Scrapbook
	Time for action – putting your addresses in a scrapbook
	Design and CSS
	Time for action – styling your blocks
	Summary

	Chapter 3: Permissions
	Basic permissions
	Adding users and groups

	Time for action – adding groups
	Group expiration options

	Time for action – adding users
	User attributes
	Sitemap and file manager permissions

	Time for action – assigning sitemap permissions
	Time for action – granting file manager permissions
	Granting edit access
	Managing edit access on a page by page basis

	Creating a protected website section

	Time for action – creating a protected website
	Task permissions

	Time for action – setting task permissions
	Dashboard access

	Time for action – granting partial dashboard access
	Advanced permission mode
	Time for action – activating the advanced permission mode
	Time based page visibility

	Time for action – setting time based page visibility
	Subpage permissions

	Time for action – setting sub-page permissions
	Block based permissions

	Time for action – using block permissions
	Area based permissions

	Time for action – restricting allowed blocks for an area
	Summary

	Chapter 4: Add-ons
	What's an add-on?
	Installing add-ons from the marketplace

	Time for action – installing an add-on
	Time for action – removing an add-on
	Manually installing an add-on

	Time for action – manually installing an add-on
	Theme
	Parts of a theme
	Theme file structure

	Blocks
	Block structure

	Packages
	Summary

	Chapter 5: Creating Your Own Theme
	The new layout
	The HTML code
	CSS rules

	Converting HTML and CSS to a concrete5 theme
	Time for action – creating the concrete5 theme header
	Time for action – creating the concrete5 theme footer
	Time for action – creating a page template
	Time for action – creating more page templates
	Installing your theme
	Time for action – installing theme
	PHP constants and functions
	Time for action – getting a list of available constants
	Time for action – list all available functions
	Time for action – checking for edit mode
	Time for action – hiding content from anonymous visitors
	Time for action – restricting numbers of blocks per area
	Time for action – inserting block wrapper in area
	Working with page attributes
	Time for action – using attributes to set background picture
	Time for action – accessing attribute data from a template
	Block in templates
	Time for action – replacing header area with template block
	Time for action – finding autonav block properties
	Time for action – specifying block template in area
	Applying theme to single page
	Time for action – creating single page layout
	Time for action – adding variables to handle login errors
	Creating a customizable theme
	Time for action – a creating customizable theme
	Summary

	Chapter 6: Customizing Block Layout
	Custom templates to modify block layout
	Thumbnails in a page list
	Time for action – adding thumbnails to a page list
	Time for action – restricting thumbnail dimension
	Time for action – restricting thumbnails to a custom dimension
	Template folder
	Time for action – creating a template folder
	Picture pop-ups in content block
	Time for action – building a lightbox gallery
	Gravatar picture in guestbook
	Time for action – adding a Gravatar picture to the guestbook
	Avoiding duplicate code in a custom template
	Time for action – including an existing template
	Auto-hide news page list
	Time for action – creating an auto-hide page list
	Transforming a slideshow into a gallery
	Time for action – creating a gallery template for a slideshow
	Time for action – adding a slideshow gallery
	Slideshow using file attributes
	Time for action – adding file attributes to our slideshow
	Time for action – using file attributes in the gallery
	Advanced tooltip in content block
	Time for action – creating advanced tooltips
	Summary

	Chapter 7: Advanced Navigation
	Autonav introduction
	Preparation

	Time for action – undoing autonav block integration
	Autonav options
	Autonav page structure
	Page order
	Example 1 – showing all pages
	Example 2 – showing relevant subpages
	Example 3 – showing relevant subpages starting from the top

	Autonav output

	Images in the navigation
	Time for action – creating page attributes for navigation
	pictures
	Time for action – creating block picture navigation template
	CSS3 hover effect
	Time for action – creating a CSS3 transition autonav template
	Drop-down navigation
	Time for action -creating SooperFish template
	Hierarchical tree navigation
	Time for action – building a file explorer-like navigation
	Dynamically loading content
	Time for action – dynamically loading concret5 content using
	jQuery
	Allowing direct links in dynamically loaded pages

	Time for action – direct link with dynamic content
	Summary

	Chapter 8: Creating Your Own Add-on Block
	Product information block
	Steps to create a block
	Database structure

	Time for action – creating the database structure
	Time for action – creating the block controller
	Time for action – creating the editing interface
	Time for action – printing block output
	Checking for mandatory fields

	Time for action – adding check for mandatory fields
	Adding product categories

	Time for action – adding product categories
	Product list
	Handling multiple block versions

	Time for action – handling multiple block versions
	Creating a product list block

	Time for action – creating the product list block
	Picture magnifier
	Time for action – creating the picture magnifier block
	PDF generation block
	Time for action – creating the PDF generation block
	generate_pdf.php

	FTP gallery
	Time for action – creating the FTP based picture gallery
	Summary

	Chapter 9: Everything in a Package
	What's a package?
	Package structure
	Package controller

	Time for action – creating the package controller
	Moving templates into package
	Moving themes and blocks into the package
	Time for action – moving jQZoom block into the package
	Time for action – moving a PDF block into the package
	Hooking into core events
	Event types
	Extending an event

	Maintenance tasks and jobs
	Time for action – execute concrete5 jobs periodically
	Creating a new job

	Time for action – creating a job to check for broken links
	Injecting header items
	Adding tooltips for every title tag

	Time for action – creating global tooltips
	JavaScript browser fixes

	Time for action – integrating CSS fix in the package
	Summary

	Chapter 10: Dashboard Extensions
	MVC—model view controller
	Broken link interface
	Time for action – creating the broken links dashboard
	extension
	Moving database access into model

	Time for action – creating package model
	Multiple controller methods

	Time for action – adding a second controller method
	File editor embedded in the dashboard
	Time for action – creating the file editor add-on
	Controller without logic

	Summary

	Chapter 11: Deployment and Configuration
	Deployment
	Preparations for deployment

	Time for action – disabling pretty URL and cache
	Transfer MySQL database

	Time for action – transferring a MySQL database
	Transferring files to server

	Time for action – transferring files to the server
	Time for action – updating the configuration file
	Time for action – setting file permissions
	Configuration
	Updating the configuration file
	Base URL redirection
	Multilanguage

	Time for action – installing a translation file
	Cache to improve performance

	Time for action – getting PHP information
	Activating SQLite
	Using APC
	Measuring the site performance

	Summary

	Appendix: Pop Quiz Answers
	Chapter 1: Installation
	Pop Quiz 1
	Pop Quiz 2

	Chapter 2: Working with concrete5
	Pop Quiz 1
	Pop Quiz 2

	Chapter 3: Permissions
	Chapter 4: Add-ons
	Chapter 5: Creating Your Own Theme
	Pop quiz 1
	Pop Quiz 2
	Pop Quiz 3

	Chapter 6: Creating Your Own Add-on Block
	Chapter 9: Everything in a Package
	Pop Quiz 1
	Pop Quiz 2
	Pop Quiz 3

	Index

